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Abstract 
 

Old growth tropical forests are an important carbon store, and currently function as a 

carbon sink. However, this sink capacity may already be declining and its future is highly 

uncertain, as patterns of tree mortality, one of the key processes shaping the future of 

tropical forest carbon, are still poorly understood. Accurate estimates of tropical tree 

mortality require substantial monitoring efforts across time and space, and analytical 

techniques that can account for variation at multiple scales. Here, I therefore develop 

Bayesian models to explore how tree mortality rates vary across the tropics and within 

Amazonia. Firstly, I derive recommendations for the sample size of plot monitoring 

networks to confidently detect short- and/or long-term changes in tree mortality rates. A 

key result is that forests with high baseline mortality rates require smaller plot sampling 

networks to detect a given change, compared to forests with lower rates. Secondly, using 

observations from an extensive long-term pan-tropical monitoring network, I derive 

mortality rate distributions at different, nested spatial scales: at the level of individual 

plots, biogeographical regions and continents. The results show that stem-based mortality 

rate distributions are best described at the scale of biogeographical regions: for example, 

forests in North Australia have lower mean mortality rates but suffer occasional larger-

scale disturbances, whereas forests in western Amazonia have higher mean mortality rates 

but few large-scale disturbances. Finally, I test whether the long-term increase in tree 

mortality rates in Amazonian forests is related to long-term trends in cumulative water 

deficit. The results confirm a long-term increase in tree mortality rates, but indicate that 

this trend is not primarily driven by increasing drought stress. Overall, these findings are 

important for designing efficient national strategies for monitoring the impact of climate 

change on forests, calibrating vegetation models and predicting the future of tropical 

carbon under climate change.
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1 Introduction 

1.1 Motivation 

The terrestrial biosphere has functioned as an important carbon sink over the past half 

century, with an estimated net annual absorption of around a third (3.2 ± 0.6 GtC year-1; ± 

1s) of the carbon dioxide (CO2) emitted by fossil fuels in the period 2009-2018 (9.5 ± 0.5 

GtC year-1; Friedlingstein et al., 2019). This sink is the result of more CO2 being fixed in 

vegetation during growth and regeneration than is released from land use change, 

respiration, or mortality events. Globally, the net sink in the terrestrial biosphere has been 

increasing on average since the 1980s (Friedlingstein et al., 2019). Recent estimates from 

the terrestrial tropical zone, range from the vegetation functioning as a slight net source of 

425.2 ± 92.0 MtC year-1 for 2003-2014 from woody carbon density changes estimates using 

MODIS (Baccini et al., 2017), through a range of estimates from a net vegetation source of 

0.5 to a net sink of 0.3 GtC year-1 using three atmospheric inversion models for 2009-2018 

(Friedlingstein et al., 2019), to a net sink of 0.1 ± 0.4 GtC year-1 using process-based models 

(Friedlingstein et al., 2019). Reducing uncertainty in these estimates to determine the 

trajectory of the carbon balance of tropical regions is an important research priority. 

The carbon balance of intact forest landscapes is a particularly important component of 

the overall carbon balance of tropical regions. Intact tropical forests have functioned as a 

gross carbon sink over recent decades, with estimates ranging from 1.19 ± 0.41 GtC year-1 

for intact forests (1990-2007; Pan et al., 2011) to 1.4 ± 0.8 GtC year-1 (1989-2003/7; 

Sarmiento et al., 2010). However, this sink is threatened by on-going climate change. For 

example, the observed carbon sink in aboveground biomass in Amazonian forests (Phillips 

et al., 1998; Baker et al., 2004a; Lewis et al., 2004b) already seems to have been decreasing 

in magnitude during the past two decades, due to losses from mortality outpacing gains 

from growth and recruitment (Brienen et al., 2015). The frequency and intensity of 

droughts has been increasing across Amazonia since the 1950s, and the dry season has 

increased in duration since 2005 (Marengo et al., 2011). During the 2005 El Niño drought, 

the old-growth Amazon forests turned from being a net carbon sink into a net carbon 

source, and released 1.2 to 1.6 GtC, due to increased losses from mortality (Phillips et al., 

2009). Understanding the drivers of tree mortality is therefore crucial for predicting the 

future of the carbon stocks of tropical forests and to determine the effects of any 

feedbacks between vegetation and climate change.  

Improved understanding of tree mortality has also been recognised as an important 

priority for modelling the future of tropical carbon. Within vegetation models, the 

mechanisms behind photosynthesis at the leaf level, carbon allocation to vegetation 

growth, losses through respiration, and their response to increasing temperatures at 
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different atmospheric CO2 concentrations are relatively well represented (following e.g. 

Farquhar et al., 1980; Lloyd and Farquhar, 2008; see e.g. Galbraith et al., 2010; Friend et 

al., 2014). However, the large-scale processes resulting in aboveground carbon losses, 

which are mainly driven by the deaths of individual trees, is still largely modelled indirectly 

as being driven by growth, supplemented by age- and stress-induced mortality and 

prescribed stochastic disturbances to account for fires and wind throws (Cramer et al., 

2001; Galbraith et al., 2013; Bugmann et al., 2019). A recent review has found that 

predictions of tree mortality in these dynamic vegetation models are the main determinant 

of the modelled response of forest dynamics to climate change (Bugmann et al., 2019). To 

improve these predictions, we need to quantify baselines of tropical tree mortality, 

provide insights into how mortality varies spatially, and ensure monitoring programmes 

can reliably detect on-going and future changes. 

1.2 An introduction to tropical tree mortality 

1.2.1 Longevity and death 

In order to discuss tree mortality, it is important to first consider the perhaps surprisingly 

complex issue of when an individual tree can be considered to have died. Though an 

individual tree is only considered dead when all its cells have died, even in healthy, 

growing, adult trees, only a small proportion of their cells are alive (e.g. ca. 10 % in a live 

conifer; Franklin et al., 1987). For example, the interior heartwood might already be 

considered dead, and in some cases even have been decomposed partially or completely, 

despite the individual still being fully alive (Westing, 1964; Franklin et al., 1987). 

Furthermore, a live individual can lose significant portions of its overall biomass through 

loss of parts of its crown or stem(s), following disturbances (e.g. hurricanes; Bellingham et 

al., 1995), or the fall of neighbouring trees (Franklin et al., 1987). Trees also have 

remarkable regenerative properties, where just a remaining intact apical root or shoot 

meristem may suffice to ensure survival (Munné-Bosch, 2014). Despite this complexity, 

studies of tree mortality need to assign trees a binary “alive” or “dead” status, and 

therefore from a biomass perspective, the shift of its overall biomass from the living to the 

dead carbon pool is generally assumed to fully occur at the moment of the individual’s 

actual demise (Franklin et al., 1987). 

There are various senescence-related factors that can contribute to eventual tree death, 

and these processes are best studied in the most long-lived trees. For example, through 

clonal propagation, individual clones of e.g. quaking aspen (Populus tremuloides) have 

managed to persist for over ten thousand years (Mitton and Grant, 1996) and non-clonal 

individual trees can also reach lifespans of thousands of years, with a record age of 5,062 

years ascribed to a living bristlecone pine (Pinus longaeva; Munné-Bosch, 2014). Even in 

the tropics, the maximum estimated longevities for most species is in the order of 
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hundreds of years (Laurance et al., 2004), with some individuals reaching ages of 1,400 

years (Chambers et al., 1998). If individual non-clonal trees can reach ages of thousands of 

years, what then could cause these individuals to eventually die? Westing (1964) proposed 

the following four mechanisms: the ratio of leaves to living mass to maintain becomes 

increasingly more unfavourable as a tree grows; through a build-up of inhibiting 

compounds or a lack of essential compounds over time; decay of heartwood can lead to a 

loss of structural integrity of the tree; or finally through meristem cells becoming 

increasingly damaged by background radiation. Any of these processes could reduce a 

tree’s resistance to external mortality agents and disturbances. As such, there is still 

considerable debate about whether trees ever die of senescence alone (Mencuccini et al., 

2005; Caswell and Salguero-Gómez, 2013; Munné-Bosch, 2014), and few studies address 

senescence explicitly, other than as an assumed decrease of overall tree ‘vigour’. 

1.2.2 Drivers of tree mortality 

The causes of tree mortality, also known as mortality drivers, can be categorised in a 

number of ways. For example, one could distinguish between mortality resulting from 

endogenous or exogenous drivers, with the former encompassing mortality due to 

senescence and the latter covering, for example, mortality caused by environmental 

disturbances or attacks by biotic agents (Lugo and Scatena, 1996). It is also possible to split 

exogenous drivers into biotic (e.g. insect or fungal attacks, as well as competition and 

senescence) and abiotic processes, such as environmental disturbances and stresses 

(Franklin et al., 1987; van der Sande et al., 2017). 

Tree mortality will generally be the result of various drivers acting consecutively or 

concurrently, even across these dichotomies (Franklin et al., 1987). For example, in a 

piñon-juniper woodland experiencing a drought lasting for 10 months, all piñon pines 

(Pinus edulis) that died had been infested by bark beetles (Ips confusus). The infestation 

did not occur until 8 months into the drought period (Breshears et al., 2009), leading some 

studies (e.g. Bendix et al., 2006; Hood et al., 2018) to make a distinction between the 

proximate drivers of mortality (i.e. the drought; see also Anderegg et al., 2012), and the 

ultimate drivers of mortality (i.e. the bark beetle infestation). While in this case the 

distinction seems straightforward, in other cases it might be much harder to disentangle 

which factor was mainly responsible for a tree’s demise, or even impossible to separate 

the factors at all. As such, the “spiral of death” as proposed by Franklin et al. (1987) seems 

a more realistic representation of how drivers can collectively contribute to eventual tree 

mortality: any driver can weaken a tree, but at any point the tree has the opportunity to 

escape the spiral and recover; however as the tree progresses further down the spiral, 

these opportunities for recovery diminish. 
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How a tree dies, i.e. the “mode of death”, can provide information on what might have 

caused the tree to die. Generally, the following main modes of tree mortality are 

distinguished: ‘broken’ (also crushed or snapped), ‘uprooted’, and ‘standing’ (Chao and 

Phillips, 2005; Martini et al., 2008). If a lateral force is exerted on a tree’s crown or stem 

(e.g. through wind, rainfall, or the falling of a neighbouring tree), this can result in a tree 

dying broken or uprooted (Putz et al., 1983). When the stem of a tree is not strong enough 

to withstand the force, due to it having a smaller diameter, the heartwood having been 

weakened or partially decomposed by biotic agents, or the wood density being lower, the 

tree will break (Putz et al., 1983; Arriaga, 2000; Chao et al., 2009; Vozmishcheva et al., 

2019). For example, in a forest in northern New York state, beech trees severely infected 

with beech bark disease were nearly twice as likely to die snapped than uprooted, 

following the 1995 storm (Papaik and Canham, 2006). However, if the stem can withstand 

the force, but the force exceeds the soil shear strength, or causes the roots to break or lose 

their grip on the soil, the tree will be uprooted (Putz et al., 1983). While the probability of 

this kind of event varies greatly among sites, according to local climate, soil type and 

topography, this tends to occur more on sandy soils, on slopes, when rooting depths are 

shallow, or when soils are waterlogged (Gale and Hall, 2001; Chao et al., 2009; Toledo et 

al., 2013). Furthermore, a broken or uprooted tree has the potential to crush or uproot 

other trees as well, leading to a multiple tree-fall event. For example, a study in Ecuador 

found 36 % of tree death events across four 2.5 hectare transects involved up to 14 trees 

(Gale and Barfod, 1999). Finally, various drivers, such as senescence, competition for 

nutrients and light, fire, lightning, drought or an attack by biotic agents, can result in a 

standing dead tree (Putz et al., 1983; Gale and Barfod, 1999; Gale and Hall, 2001). 

However, it can be challenging to correctly identify the mode of death, especially with long 

census interval lengths, because trees that have died standing can still get snapped or 

uprooted after death (Hennon and McClellan, 2003; Chao and Phillips, 2005). 

Drought 

During the 21st century, drought has arguably been the most pervasive catastrophic driver 

of tree mortality worldwide, with recent evidence from boreal (e.g. Peng et al., 2011; Ma 

et al., 2012; Searle and Chen, 2017; Hisano et al., 2019), and temperate (Villalba and 

Veblen, 1998; van Mantgem and Stephenson, 2007; Williams et al., 2010; Zhang et al., 

2014; Moore et al., 2016; Klockow et al., 2018; Archambeau et al., 2020), as well as tropical 

forests (Condit et al., 1995; Williamson et al., 2000; Aiba and Kitayama, 2002; van 

Nieuwstadt and Sheil, 2005; Chazdon et al., 2005; Itoh et al., 2012; Aleixo et al., 2019). 

Furthermore, the frequency and severity of droughts, as well as the area affected by them, 

is expected to increase with a changing climate (Marengo et al., 2012; Dai, 2013; Trenberth 

et al., 2014; Duffy et al., 2015; Allen et al., 2015; Naumann et al., 2018). However, despite 

numerous studies of drought responses ranging from observations of elevated mortality 
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rates in the field, responses of potted plants, plants in greenhouse tunnels or in the 

Biosphere 2 vivarium (e.g. Adams et al., 2009; Anderegg, 2012; Garcia-Forner et al., 2017; 

MacAllister et al., 2019), to rainfall-exclusion experiments in the field (e.g. Nepstad et al., 

2007; Misson et al., 2010; Plaut et al., 2012; Moser et al., 2014), the exact mechanism of 

how drought leads to mortality in some species, but not others, is still actively debated. 

This uncertainty is mainly due to the challenges of monitoring all potential pathways of 

drought stress in a non-invasive, non-destructive way in both those individuals that have 

managed to survive the drought and those that eventually succumb, as well as the degree 

of representativeness of such experiments, often conducted on saplings and seedlings, of 

how natural drought affects mature trees in the field. 

For some years, the prevalent notion has been that there are two mechanisms of drought-

induced tree mortality (Bréda et al., 2006; McDowell et al., 2008; Adams et al., 2009; 

Anderegg et al., 2012b; Mitchell et al., 2013; Sevanto et al., 2014; Garcia-Forner et al., 

2017; Hartmann et al., 2018), with mortality occurring as a result of carbon starvation 

(“drought avoidance”), or hydraulic failure (“drought tolerance”) due to cavitation in the 

xylem conduit or a hydraulic disconnect between the roots and the rhizosphere (Mackay et 

al., 2015). Isohydric species are generally presented as exhibiting a drought avoidance 

strategy, consisting of stomatal closure at a threshold water potential to minimize further 

water loss through transpiration. The suggested disadvantage of this strategy is that it 

might also limit the potential for carbon exchange, resulting in reduced carbon assimilation 

(McDowell et al., 2008). Combined with continued respiration costs, or even potentially 

increased respiration due to the higher temperatures, this strategy could eventually lead 

to death from carbon starvation, if the drought persists over a prolonged period of time 

(McDowell et al., 2008). In contrast, anisohydric species are believed to follow a drought 

tolerance strategy, which allows them to continue transpiration and carbon assimilation, 

despite reduced soil water availability (McDowell et al., 2008). However, this strategy is 

believed to carry the risk of cavitation in the xylem, if evapotranspiration causes xylem 

water potential to exceed critical cavitation thresholds. Cavitation results in air bubbles 

blocking stem water transport, and ultimately leads to desiccation of plant tissues (Bréda 

et al., 2006; McDowell et al., 2008). 

A subsequent refinement of these two mechanisms (McDowell, 2011; McDowell et al., 

2011) added more explicit interdependence and feedbacks between them. For example, a 

lack of non-structural carbohydrates might hamper refilling of embolized xylem conduits in 

a species with suspended carbon assimilation and can thus lead to hydraulic failure. 

Conversely, partial hydraulic failure in a species with continued evapotranspiration may 

lead to carbon starvation through reduced photosynthesis and reduced transport of water 

and carbohydrates to the relevant tissues. Although this interdependence between carbon 

starvation and hydraulic failure addresses some concerns (e.g. Sala, 2009; Sala et al., 2010), 
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overall, the original carbon starvation hypothesis as proposed by McDowell et al. (2008), 

where the size of the stored carbon pool determines how long the tree can survive before 

it succumbs to carbon starvation, is challenging to prove, and has still not been fully 

accepted (O’Grady et al., 2013; Meir et al., 2015; Hartmann et al., 2018). 

In particular, it is unclear whether a tree can actually die of carbon starvation in a natural 

drought setting, since, when observed in an experimental setting, plants with depleted 

carbon stores had generally obtained adequate water to continue transport between 

tissues. This in contrast to hydraulic failure, for which evidence has been observed in field 

settings. For example, in a multilevel mixed effects model in a worldwide meta-analysis of 

drought- and heat-induced tree mortality, a narrow hydraulic safety margin and the xylem 

water potentials at which 50 % respectively 80 % of hydraulic conductivity is lost, were the 

only significant predictors of tree mortality across all species (Anderegg et al., 2016a). 

Similarly, a recent synthesis of evidence from experimental and observational studies 

found all trees which suffered drought-induced mortality to have lost of more than half of 

their xylem conductivity (Adams et al., 2017). In contrast, a lower presence of non-

structural carbohydrates (NSC) in plant tissues was only found in 62 % of trees that died 

(Adams et al., 2017). However, when wanting to address potential depletion of carbon 

stores, it is important to take all plant tissues into account, since a localised effect might 

occur, especially if transportation between tissues is affected or reallocation towards other 

tissues like roots occurs (Nolan et al., 2017; Kannenberg et al., 2018). Evidence of a 

decrease in carbon stores in one or a few tissues, need not necessarily confirm a carbon 

starvation-induced mortality mechanism (Adams et al., 2017). For example, in an 

experimental set-up with Norway spruce trees, only root carbon stores were found to have 

decreased in trees that died, apparently as a result of impaired transport (Hartmann et al., 

2013b). An experiment designed to specifically address carbon starvation versus hydraulic 

failure as a mortality mechanism, found that only well-watered individuals were able to 

exhaust carbon stores completely prior to death, and water-deprivation resulted in 

saplings dying faster, than when starved of carbon (Hartmann et al., 2013a). It therefore 

seems carbon might be used for maintaining transport under water-limited conditions 

(Sala et al., 2012). However, a role might also be reserved for carbon in the post-drought 

recovery ability of individuals (Sala et al., 2012), as evidenced by a significant recovery of 

hydraulic conductivity following rehydration in seven out of 12 broadleaf species (Trifilò et 

al., 2019).  

Another point of contention stems from the proposed links between the different drought 

response mechanisms and species classified as being either isohydric or anisohydric 

(O’Grady et al., 2013; Sevanto et al., 2014; Garcia-Forner et al., 2017; Hochberg et al., 

2018). Firstly, there seem to be various, sometimes conflicting, definitions concerning the 

classification of (an)isohydry (Nolan et al., 2017; Hochberg et al., 2018; Ratzmann et al., 
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2019). Secondly, while genotype might play some role in the suite of hydraulic response 

mechanisms available to an individual, the environment seems to have a greater effect on 

whether an individual will display a more “(an)isohydric” response in a given 

environmental setting (Hochberg et al., 2018). In some cases, even individuals exposed to 

repeated droughts display a more (an)isohydric strategy, in response to an experimental 

drought, compared to individuals of the same species that have never previously been 

exposed to drought-like environmental conditions (Nolan et al., 2017). Furthermore, a 

study combining field observations and an experimental approach failed to identify 

differences in growth or carbon stores between species exhibiting supposedly opposing 

isohydric strategies (Garcia-Forner et al., 2017). This result is similar to the observed lack of 

differences in either growth or carbon stores between droughted and non-droughted trees 

in a long-term throughfall exclusion experiment (Rowland et al., 2015). Using different 

metrics might lead to less ambiguous hydraulic strategy classifications (Mencuccini et al., 

2015; Nolan et al., 2017; Hochberg et al., 2018; Ratzmann et al., 2019; Martinez-Vilalta et 

al., 2019). At the very least, it seems that (an)isohydry represents a continuum of hydraulic 

control strategies both within and among species (e.g. Parolari et al., 2014; Roman et al., 

2015; Skelton et al., 2015; Sperry and Love, 2015; Mencuccini et al., 2015; Nolan et al., 

2017). 

An alternative framework for considering how drought- and heat-induced water stresses 

can cause a tree to pass a threshold after which recovery is no longer possible, focuses on 

an individual’s overall water resource use balance (Anderegg et al., 2012a; Martinez-Vilalta 

et al., 2019). Rather than explicitly addressing carbon starvation or hydraulic failure, this 

approach allows for both as consequences of any accumulated “water debt” or lower 

“relative water content”. Using such a framework could help explain observations of 

lagged mortality following a drought (Drobyshev et al., 2007; Hiernaux et al., 2009; Suresh 

et al., 2010; Phillips et al., 2010; Anderegg et al., 2013; Aleixo et al., 2019), increased 

vulnerability to future disturbances (e.g. Mueller et al., 2005), and why trees have been 

observed to recover from droughts upon subsequent rewetting (e.g. Hartmann et al., 

2013; Gu et al., 2015). Another perspective is that drought-induced mortality is a result of 

resource competition, with drought killing the competitively suppressed individuals in 

cases of resource scarcity. Some evidence for this ideas was found in Texan Ashe juniper 

woodlands where density-dependent parameters were the main predictors of crown death 

of the dominant species during drought (Crouchet et al., 2019). As such, future droughts 

would merely accelerate existing forest dynamics, rather than lead to catastrophic dieback. 

Finally, while most focus has been on carbon starvation and hydraulic failure as drought-

induced mortality mechanisms, the high temperatures frequently accompanying droughts 

might also reserve a role for heat-induced tissue damage as a mortality mechanism 

(O’Grady et al., 2013; Teskey et al., 2015). 
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Fire 

Carbon dating of charcoal from soil layers suggest that fire return intervals in tropical 

rainforests historically used to be hundreds or thousands of years, mostly corresponding to 

periods with drier climatic conditions (Sanford et al., 1985; Goldammer and Seibert, 1989). 

Increasing deforestation pressures, and burning of nearby agricultural land or pastures, 

means that concurrently with the increasing frequency and severity of droughts, the 

incidences of tropical rainforest fires have been increasing in magnitude and occurrence 

over the past few decades, and are expected to keep increasing (Cochrane, 2003). Over 

two decades ago the regional fire rotations in the “arc of deforestation” in the Brazilian 

Amazon had already been estimated to have decreased to 7-14 years, up to a few decades, 

or 125 years at most, except in the wetter, aseasonal part (Cochrane et al., 1999).  

Normally, in an undisturbed tropical rainforest, only the drier fuel load present in local 

tree-fall gaps, generally representing less than 5 % of forest cover, becomes susceptible to 

burning after 16 days without precipitation (Cochrane, 2001). Deforestation causes a more 

open canopy, as well as an increased fuel load, that is able to dry out better, and as such 

allows fires to do much more damage, with increasing and drier fuel loads and decreasing 

canopy covers, upon each return (Uhl, 1998; Cochrane et al., 1999). During an initial fire, 

generally only circa 40 % of trees of over 10 centimetres diameter at breast height (dbh; 

corresponding to about 10 % of biomass) will be killed, since the fire will pass through the 

forest quickly enough to spare the larger trees with a slightly thicker bark (Cochrane, 

2001). Upon a second burning, due to the increased fuel load and a reduction of around 40 

% in original canopy cover (Cochrane, 2001), the fire can burn ten times more intensely 

(Cochrane, 2003) and for longer, thus also killing larger trees (with the same reduction of 

40 % of trees now corresponding to 40 % of biomass), and reduce canopy cover to 35 % of 

its original levels (Cochrane, 2001). In Africa, Asia and Australia, due to the presence of 

species with thicker bark, these reductions might progress less rapidly (trees >10 cm dbh 

had around 8-15 % mortality in unlogged forests in West Africa and Kalimantan following 

fires (Wirawan, 1983 (unpublished) in Goldammer and Seibert, 1990; Swaine, 1992). With 

a bark thickness of 5.9 mm a tree has a 50 % chance of surviving a low-intensity fires, 

whereas for the same chance of surviving high-intensity fires it would need a bark of 9.1 

mm (Hoffmann et al., 2012a). Nonetheless, the same process of canopy opening and 

subsequent warming and drying of the understory allows for invasion by highly flammable 

vegetation like grasses in all tropical forests (Jackson, 1968; Cochrane, 2001; Hoffmann et 

al., 2012b; Aubréville, 2013; Dwomoh and Wimberly, 2017). This invasion means that 

during subsequent fires, any remaining trees become susceptible to being killed too 

(Cochrane, 2001), while it also prevents successful reestablishment of higher wood density 

and shade-tolerant forest species (Jackson, 1968; Barlow and Peres, 2008; Aubréville, 

2013; Dwomoh and Wimberly, 2017; Silva et al., 2018). 
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The most direct mechanism through which fire has been proposed to kill trees, is through 

cambium necrosis. Thicker-barked individuals have been found to be better protected 

against this process (e.g. Stephens and Finney, 2002; Cochrane, 2003; van Nieuwstadt and 

Sheil, 2005; Jones et al., 2006; Lawes et al., 2011; Balch et al., 2011; Brando et al., 2012; 

Poorter et al., 2014; Hood et al., 2018). With increasing fire intensity or flame residence 

time, the likelihood of heat-induced damage to, or death of, phloem and vascular cambium 

increases (Cochrane, 2003; Bova and Dickinson, 2005; Michaletz and Johnson, 2007). If the 

damage occurs around the entire circumference of a tree, effectively girdling the tree, no 

transport of photosynthates to the roots will occur (Cochrane, 2003; Michaletz and 

Johnson, 2007). As such the roots will eventually starve, which in turn will lead to hydraulic 

failure (Michaletz and Johnson, 2007). Recently, evidence has also been established for 

fire-induced decreases in xylem conductivity, through cavitation resulting from heat-

induced decreases in sap surface tension, and heat-induced permanent deformations of 

xylem conduit walls (Michaletz et al., 2012; West et al., 2016). Furthermore, fire plumes 

could cause xylem cavitation, by increasing vapour pressure deficits so rapidly, that even 

trees with thicker bark might not be able to close their stomata to prevent the 

corresponding increased transpiration rates (West et al., 2016). This could potentially 

explain why a lagged mortality of up to three years has been observed for larger 

individuals following a fire (Barlow et al., 2003b; Baker et al., 2008), especially since 

evidence for a potential trade-off between thicker bark and embolism resistance has been 

identified (Resco de Dios et al., 2018). 

Increased fire-induced tropical tree mortality has been observed during exceptional 

drought years (e.g. Barlow et al., 2003a; Aragão et al., 2007; Brando et al., 2012; Granzow-

de la Cerda et al., 2012; Brando et al., 2014; Gatti et al., 2014; Anderson et al., 2015; Silva 

Junior et al., 2019), and with increasing deforestation and fragmentation (e.g. Cochrane et 

al., 1999; Cochrane, 2001; Brando et al., 2012; Grégoire et al., 2013; Brando et al., 2014; de 

Andrade et al., 2020). As such, future mortality from fires is expected to increase (Laurance 

and Williamson, 2001; Cochrane, 2003; Silva Junior et al., 2019). The moist forests in the 

seasonal parts of the Neotropics are amongst the most vulnerable to mortality from 

predicted future fires (Meir and Woodward, 2010; Pellegrini et al., 2017). At fire return 

intervals of 50-70 years, mainly shrub vegetation will dominate, and at 12-25 years, the 

vegetation will become completely open (Jackson, 1968), suggesting a possibility of 

rainforests transitioning to seasonal forests, savannahs or grasslands under increasingly 

fire-prone conditions (Laurance and Williamson, 2001; Malhi et al., 2009; Veldman and 

Putz, 2011; Aubréville, 2013; Brando et al., 2014; Dwomoh and Wimberly, 2017). 

Lightning 

While lightning is most prevalent in the tropics, the moist conditions of the air and fuel in 

tropical rainforests are generally not conducive to ignition of fires from lightning strikes 
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(Stott, 2000). Lightning will rarely result in a fire, unless it occurs towards the end of the 

dry season, when thunderstorms tend to be less accompanied by rainfall (Stott, 2000), and 

even then it might not affect more than a few trees. For instance, in Gabon, Tutin et al. 

(1996) observed that the locally tallest emergent tree (40 m tall, and 1.3 m wide at 1 m 

height) was struck by lightning, and caught fire, despite having high density wood and 

lacking flammable resins. However, its trunk and major branches were hollow, and host to 

both a large strangler fig and liana. Nonetheless, while the fire completely consumed the 

stricken individual, the main source of damage to the surrounding trees was from the 

collapse of its crown, killing one tree by snapping it and defoliating seven other 

neighbouring trees by 10-90 %. Combined with the heat from the fire, this resulted in the 

immediate death of another tree, with the largest of the remaining six trees dying broken 

five months later, at a point which had been exposed to the heat of the original fire. 

Interestingly, in general, through their lower resistivity, lianas might actually protect trees 

from lightning damage, with larger individuals and trees with greater electrical resistance 

predicted to benefit relatively more from this potential liana lightning protection 

mechanism (Gora et al., 2017). 

Lightning with a high peak current can cause steam explosions in the vascular cambium, 

resulting in a lightning scar (Gora et al., 2017), though such lightning scars are rarely 

observed in the tropics (Price, 2017). As such, in the absence of these scars or lightning-

induced fire, it has proved difficult to identify and thus quantify and understand the 

importance and mechanism of lightning as a driver of tree mortality in tropical forests 

(Yanoviak et al., 2017; Price, 2017). Lightning is believed to have resulted in the mortality 

of groups of circa 12-15 canopy and most of the understorey individuals of various sizes 

(up to 73 cm dbh) and from different species in a tropical forest in central Amazonia, 

creating gaps of 280, 600 and 680 m2, across a range of soils and topographies (Magnusson 

et al., 1996). This result matches estimates from a recent study specifically investigating 

lightning damage in central Panama, which found that each of 32 registered lightning 

strikes directly (within 11-13 months) killed 3.5 trees on average (0.94 of which >60 cm 

dbh; cf. 2), and damaged a further 11.4, including 2.13 trees of over 60 cm dbh (Yanoviak 

et al., 2020), and another central Amazonian study which found lightning had killed 3 

individuals of >10 cm dbh of more than one species, as well as most of the understorey 

trees (Fontes et al., 2018). An earlier study from Indonesia also identified numerous 

suspected lightning-induced tree mortality events, where multiple individuals in close 

proximity to each other from usually different species had mostly died standing, as well 

individual events where trunks did appear shattered, split or charred (Whittaker et al., 

1998). The leaves of the canopy trees were observed to have fallen (Magnusson et al., 

1996; Whittaker et al., 1998), with trees on the edge of the circle only having been 

defoliated on the side facing it (Whittaker et al., 1998). This result matches observations 

from a previous Panamanian study, which found that the only characteristic present in all 
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11 registered lightning strike events was flashover foliage damage (Yanoviak et al., 2017), 

and the more recent study identifying >50 % crown dieback in 14 % of damaged 

individuals, and 25-50 % crown dieback in a further 18 % (Yanoviak et al., 2020). Other 

commonly observed characteristics included damaged lianas (91 %, n=11); scorched, 

wilting and dying hemi-epiphytes (67 %, n=6) and at around 2-4 months following the 

lightning strike beetle infestations (55 %, n=11; Yanoviak et al., 2017). These patterns 

match observations from the suspected Indonesian lightning-induced mortality events, 

where, in addition to understory mortality, death of “stem creepers” had occurred too 

(Whittaker et al., 1998).  

Combined with the fact that lightning strikes are common during the wet season in central 

Amazonian and Panamanian tropical forests (Magnusson et al., 1996; Yanoviak et al., 

2017), it seems currently most tropical tree mortality from lightning strikes might be 

unaccompanied by fire, and might have previously been severely underestimated. The 

recent study of 32 lightning strikes suggests that at 40.5 % lightning is the most important 

direct driver of mortality of individual trees of over 60 cm dbh, and is directly responsible 

for the death of 4.5 % of all trees of over 10 cm dbh, increasing to 50.3 respectively 6.1 % if 

lagged mortalities observed after 11-13 months are taken into account (Yanoviak et al., 

2020). Furthermore, lightning frequency in tropical forests might help explain continental 

differences in woody biomass turnover rates and large tree densities, with Africa and the 

Americas experiencing the highest frequency of lightning over tropical forests, followed by 

Asia and Australia (Gora et al., 2020).  

Cloud-to-ground lightning is expected to increase along with a warming climate (Price and 

Rind, 1994), and smoke from fires has also been observed to increase the amount and 

intensity of positive polarity cloud to ground lightning strikes from thunderstorms (Lyons 

et al., 1998). Combined with the expected increasing drought severity and frequency, tree 

mortality from lightning-induced fires might start to become more prominent in the future.  

Lianas 

Lianas are woody vines that use trees for structural support and as a means to reach the 

canopy. High liana densities in forests or in individual trees (>75 % crown infestation) can 

result in tree mortality rates being twice as high (Ingwell et al., 2010; Tymen et al., 2016), 

with large lianas (≥10 cm diameter) even observed to have caused a threefold increase in 

basal area mortality rates of large trees (>50 cm dbh; Phillips et al., 2005). Due to not 

having to invest as much in tissues for structural support, lianas can maximise water 

transport and leaf investments (Paul and Yavitt, 2011), making them efficient above- and 

belowground resource competitors for trees. They also place a mechanical stress on host 

trees (Ingwell et al., 2010). This competition has been found to lead to trees in liana-

infested forests to display lower stem growth rates (van der Heijden et al., 2015; Marshall 
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et al., 2017), and overall aboveground biomass (Laurance et al., 2001), and to increase 

their investments in leaves (van der Heijden et al., 2015). As such, lianas will likely affect 

the carbon and water balance of trees, and consequently their resilience to any other 

potential stressors. A pan-tropical review found no significant difference in the magnitude 

of the inhibiting effect of lianas on average tree stem growth rates (Marshall et al., 2017). 

However, the greatest contribution of lianas to elevated tree mortality rates might result 

from their effect on forest composition following disturbances (Laurance et al., 2001; Paul 

and Yavitt, 2011; Tymen et al., 2016). 

Even at the individual tree level, liana infestations can be dynamic, with over 10 % of 

surviving trees with the highest crown infestation level in Panama observed to have 

become liana-free 11 years later, and, conversely, over 5 % of individuals which were 

previously liana-free, having become severely infested, regardless of their size class, 

pioneer-status or shade-tolerance (Ingwell et al., 2010). Furthermore, despite their more 

flexible structure and disturbance-recovery adaptation mechanisms (Paul and Yavitt, 

2011), the falling of a large host tree proved fatal for two thirds of large lianas (Phillips et 

al., 2005). However, while they can still be responsible for at least 30 % of basal area tree 

mortality (Phillips et al., 2005), large lianas are generally restricted to relatively 

undisturbed forest interiors, probably due to their dependence on large host trees 

(Laurance et al., 2001; Phillips et al., 2005; Poulsen et al., 2017). Higher densities of 

predominantly small lianas (2-3 cm diameter) are often observed in disturbed forest gaps, 

fragments or edges (Laurance et al., 2001; Paul and Yavitt, 2011; Bakayoko et al., 2011; 

Tymen et al., 2016). Lianas can quickly reach and close any gaps in the canopy and prevent 

slow-growing shade-tolerant forest species from recruiting, favouring the establishment of 

faster-growing tree species with higher mortality rates (Paul and Yavitt, 2011; Tymen et al., 

2016). This pattern is partly because some pioneer species are better able to avoid liana 

infestation (Putz, 1984; Laurance et al., 2001; Tymen et al., 2016). Liana-infested areas can 

be over 20 hectares in size, possibly establishing after large-scale disturbance like a micro-

tornado (Tymen et al., 2016). Once established, the higher dynamics of these forests result 

in more gaps being created, which can create a positive feedback in these high-mortality 

liana-infested forests (Phillips et al., 2002), enabling a state of arrested forest recovery, 

which can last for over 20 years (Laurance et al., 2001; Paul and Yavitt, 2011; Tymen et al., 

2016). However, the dense thickets created by lianas might also decrease tree mortality in 

hurricane-prone regions (Paul and Yavitt, 2011). 

Several studies have found lianas to have increased in undisturbed forests in the 

neotropics during recent decades (Phillips and Gentry, 1994; Laurance et al., 2014), with 

increases observed in liana densities, basal areas and mean size (Phillips et al., 2002), as 

well as concurrent increases in the number of trees with crown infestations and the mean 

crown infestation level per tree (Ingwell et al., 2010). However, a tropical review found no 
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such changes in liana densities had been identified in any African studies (Schnitzer and 

Bongers, 2011). This could be related to variations in functional traits between lianas in the 

different biogeographical regions. For instance, lianas in the neotropics were found to have 

larger leaves (Gallagher and Leishman, 2012). It has been suggested that the most likely 

mechanisms for increasing liana densities in the neotropics are increases in evaporative 

demand, atmospheric CO2 concentrations, and disturbances (Schnitzer and Bongers, 2011). 

Though lianas seem to be more adapted to drier environments with higher evaporative 

demands, and most species retain their leaves even in the dry season (Schnitzer and 

Bongers, 2011), they might be more vulnerable to prolonged drought conditions. Liana 

mortality increased by 70 % in a 4-year 60 % throughfall exclusion experiment (Nepstad et 

al., 2007), and the stems and leaves of lianas are more embolism-prone than those of their 

host trees (Johnson et al., 2013), with the leaves also potentially more vulnerable to 

overheating (Paul and Yavitt, 2011). As such, any expected continued increases in 

neotropical liana densities might be offset by increased drought-induced liana mortality, 

potentially resulting in no net difference in their overall contribution to future tropical tree 

mortality. 

Wind 

Apart from islands in the tropics (e.g. Samoa and other Polynesian islands, Puerto Rico and 

other Caribbean islands), which can suffer hurricane-induced tree mortality (e.g. Elmqvist 

et al., 1994; Franklin et al., 2004; Zimmerman et al., 2014; Webb et al., 2014; Eppinga and 

Pucko, 2018; Uriarte et al., 2019), northwest and central Amazonia also experience 

frequent severe disturbances by wind (Nelson et al., 1994; Espírito-Santo et al., 2014; 

Negrón-Juárez et al., 2018). Especially in the aseasonal northwest Amazon, this can lead to 

higher tree mortality rates from uprooting and mechanical breakage, most likely due to a 

combination of less deep rooting, rainfall events saturating soils, and lower wood densities 

(Negrón-Juárez et al., 2018; Fontes et al., 2018). This pattern has also been observed for 

lowland tropical forests in the more aseasonal parts of Asia (Ediriweera et al., 2020). Areas 

affected can range from a few individual trees up to 30 hectares (Negrón-Juárez et al., 

2010). While not resulting in immediate mortality, defoliation of trees and loss of branches 

(Webb et al., 2014; Eppinga and Pucko, 2018; Silvério et al., 2019) can also affect post-

disturbance survival. It has been suggested that wind disturbances might also contribute to 

elevated mortality rates of larger trees on forest edges (Laurance et al., 1997). 

Furthermore, elevated wind-induced mortality has been observed in previously burned 

forests (Silvério et al., 2019). After wind disturbances, light-demanding species with lower 

wood densities establish, leading to decades of elevated mortality rates from these faster 

turnover species following the initial disturbance event (Magnabosco Marra et al., 2018). 

Furthermore these species might be more vulnerable to breakage during future 

disturbances (Zimmerman et al., 1994; Magnabosco Marra et al., 2018). Under the 



 

 14 

prediction of more frequent and severe wind disturbances in the future, forests in the 

central Amazonian region and Caribbean are expected to see an increase in tree mortality 

from wind (O’Brien et al., 1992; Negrón-Juárez et al., 2018). 

Biotic agents 

While biotic agents, like insects, bacteria, and fungi, can be important drivers of mortality, 

with the ability to wipe out stands of one species, either directly through damage to 

leaves, stems, or roots, or by allowing entry of a fungus (Papaik et al., 2005), there is 

generally a very specific host-pathogen relationship. As such, temperate and boreal forests 

composed of fewer species are more vulnerable to large-scale die-off from biotic agents 

than tropical forests. Furthermore it is challenging to detect evidence of tree mortality 

induced by biotic agents, since the damage might not be clearly visible from the exterior of 

the tree. Studies of biotic agents of tree mortality in the tropics are therefore limited. 

Three out of 67 dead trees in central Amazonia were found to have been infected by fungi 

known to affect the xylem (Fontes et al., 2018). A global review of how climate change 

might affect biotic, disease-causing agents, found a leaf blight fungus, currently affecting 

many tree species in Southeast Asia and Australia, might increase in prevalence, but that 

root rot incidence is expected to decrease across the tropics (Sturrock et al., 2011). 

Flooding 

Flooding makes trees more vulnerable to becoming uprooted when exposed to lateral 

forces, and oxygen depletion limits water uptake by roots, thus depleting carbon reserves 

(Moser et al., 2019). In a recent central Amazonian study mortality rates were observed to 

be highest during the wet months of the year, even during drought years, with pioneer 

species suffering elevated mortality rates during events with excessive precipitation (Aleixo 

et al., 2019). Additionally, flooding events can be accompanied by increased water 

currents, causing trees to become uprooted or broken even in the absence of wind 

(Damasceno-Junior et al., 2004). With excessive precipitation events predicted to increase, 

alongside increased droughts, tree mortality might be expected to increase concurrently as 

a result of flooding (Aleixo et al., 2019). 

1.2.3 Background and catastrophic tree mortality 

In most mortality studies, tree mortality is quantified as a rate corresponding to the 

absolute number or proportion of deaths observed in an area after a certain time interval. 

This is generally expressed in terms of absolute or relative losses of individual numbers of 

stems, or of aboveground biomass, though basal-area losses are also used occasionally. 

When trying to classify tree mortality rates, a distinction that is often made, is between 

“background” mortality, and “catastrophic” mortality. While catastrophic disturbances 

have the possibility to wipe out complete stands, when taking into account the recurrence 
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frequency of catastrophic events, more trees may die through “background” mortality over 

long timescales, than as a result of catastrophic disturbances. For example, over the course 

of 100 years, background mortality killed 4-5 times more trees in the Luquillo Experimental 

Forest in Puerto Rico than landslides and hurricanes combined (Lugo and Scatena, 1996). 

Similarly, an increase in insect outbreak-induced dieback resulted in less biomass lost 

through mortality over a 14-year period in the western U.S., than a 0.5 % per year increase 

in background mortality rates over the same period (Das et al., 2016). An increase in long-

term background mortality rates, might therefore prove more disastrous for the continued 

functioning of forests as a carbon sink, than increased recurrences of catastrophic 

disturbance events. Based on the results from studies in tropical moist, wet and rain 

forests, which had an overall median mortality rate 1.6 % per year, where all 90th 

percentiles were under 3 %, and no individual observations exceeded 3.5 % per year, Lugo 

and Scatena (1996) proposed to designate mortality rates of under 5 % per year as 

background mortality, and anything exceeding that as catastrophic. However, expressing 

catastrophic events relative to a specific forest’s long-term (background) mean would be 

more insightful, especially if taking into account that region’s natural variability - for 

example through putting the threshold of catastrophic mortality at two standard 

deviations from the long-term mean (sensu Franklin et al., 1987).  

1.3 Mortality rate analyses 

1.3.1 Mortality rate measures 

Mortality rate measures express how many trees have died during a certain time period. 
For this you need to know how many trees there were initially (N0) and how many of those 

trees are still alive after a time period of t years (N1). According to Sheil et al. (1995), the 

most common mortality measure, the exponential mortality coefficient (l), assumes a 

constant mortality rate, leading to an exponential rate of population decline, such that:  

!" = 	!%&−()                          ( 1.1 ) 

From this the instantaneous exponential mortality coefficient l is defined as:  

( = *+(!0 !1⁄ )
)

                           ( 1.2 ) 

However, constant exponential decline can also be expressed through the proportion of 

trees that die each year, by using the annual mortality rate (m):  

!" = 	!%(1 −1)" 2⁄                       ( 1.3 ) 

 

This formulation essentially treats mortality as a discrete, rather than continuous, process 

(Sheil and May, 1996), with m determined as: � 
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1 = 	1 − (!" !%)⁄ " 2⁄                      ( 1.4 ) 

As such, m can be calculated from l and vice versa as: � 

1 = 	1 − &−(                            ( 1.5 ) 

( = 	− ln(1 −1)                          ( 1.6 ) 

The two different mortality measures are similar at a low level of mortality (e.g. for annual 

mortality rates of between 0 and 5 % per year), but at greater values, the differences 

become quite pronounced (Sheil et al., 1995; see Figure 1.1). 

Figure 1.1. Relationship between the annual mortality rate (m) and the exponential mortality rate (l).  
The dashed grey line represents a 1:1 relation for reference. (a) As m approaches 1, l approaches infinity.  
(b) For smaller annual mortality rates (up to ca. 0.05), m and l values are almost the same. 

Despite the fact that l is more widely used (e.g. Lieberman et al., 1985; Condit et al., 2004; 

Lewis et al., 2004a; Phillips et al., 2004; King et al., 2006; Madelaine et al., 2007; de Oliveira 

and Felfili, 2008; Poorter et al., 2008; Laurance et al., 2009), I agree with Sheil et al. (1995), 

that it is preferable to use m as a mortality rate measure over l, since it is a truly annual 

mortality rate, and as such more intuitive. For example, if half the trees in a forest were to 

die over the course of one year, this would result in an m of 0.5 or 50 %, whereas the l 

equivalent would be ln(2) ≈ 0.69. For annual mortality rates greater than 1-e-1 ≈ 0.63, as 

has been observed for example in the U.S. where 80 % of the non-seedling trees in a 

piñon-juniper woodland stand died over the course of 15 months (m=0.72) in New Mexico 

in 2002-2003 in response to a global change type drought and a concurrent bark beetle 

infestation (Breshears et al., 2005), l will exceed 1. This also applies to census intervals 

that are shorter than 1 year, since the conversion between these two mortality rate 

measures is independent of the census interval length. Thus, as m approaches 1, 

corresponding to complete stand mortality over the course of a year, due to its 

exponential nature, l approaches infinity.  

Since the majority of annual mortality rates in the datasets I have used are relatively small, 

and consequently the difference between m and l  is small (1st quantile-3rd quantile range 

is 0.5118-1.996 %·year-1 for m and 0.5131-2.016 %·year-1 for l), in this thesis I report only 

the findings obtained using m. 
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1.3.2 Census interval length 

Ideally, in order to collect comparable annual mortality rate data from field plots, they 

should be revisited at regular intervals of preferably one year. However, this is often not 

feasible though, due to the costs and efforts involved with such plot censuses. As such, 

mortality rate data collected for various plots may correspond to intervals of different 

lengths, and even consecutive censuses for the same plot might have varying interval 

lengths. If a plot contains a completely homogeneous population, where all individual trees 

have the same probability of mortality, this is not an issue. However, if a plot is composed 

of a more heterogeneous population, some of which tend to be short-lived and some of 

which tend to live for a longer period of time, the length of the census intervals becomes 

of importance (Sheil and May, 1996). As the census interval becomes longer, the 

probability increases that some of the rapidly growing individuals might have grown to the 

diameter of interest and died, without them ever having been recorded in a census. Thus 

with an increasing census interval length, mortality rates are underestimated (Sheil and 

May, 1996).  

To correct for this underestimation, Lewis et al. (2004b) developed a census interval effect 

correction factor using censuses from 14 long-term sample plots across Africa, Asia, 

Australia and Latin America: 

(6788 = 	( ∗ )%.%;                                           ( 1.7 ) 

where l is the exponential mortality rate as observed during a census interval length of t 

years, and lcorr the corrected exponential rate. 

Combining ( 1.5 ), ( 1.6 ) and ( 1.7 ), shows the annual mortality rate m can be corrected for 

the census interval effect in a similar fashion: 

16788 = 	1 − (1 −1))
0.08

                                    ( 1.8 ) 

Through ( 1.4 ) and ( 1.8 ) it follows that the census correction factor can also be directly 

applied when using the census data to derive the census corrected annual mortality rate as 

follows: 

16788 = 	1 − (!1 !0)⁄ 1 )0.92⁄                                   ( 1.9 ) 

The census interval corrected annual mortality rate mcorr remains constrained by no (0 %) 

mortality and complete (100 %) mortality, and the conversion between l and m, and vice 

versa, is maintained as per ( 1.5 ) and ( 1.6 ), independent of the census interval length (see 

Figure 1.2). 
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Figure 1.2. The effect of census interval length on the relationship between corrected  
and uncorrected mortality rates measures.  
(a) The census interval length corrected (lcorr) and observed (l) exponential mortality rates.  
(b) The census interval length corrected (mcorr) and observed (m) annual mortality rates.  
(c) The relationship between m and l is maintained, regardless of the correction for census  
interval length. 

In large permanent sample plots, e.g. those of the CTFS-ForestGEO network (Anderson-

Teixeira et al., 2015), which contains at least 12 plots of ≥50 hectares, with a median plot 

size of 25 hectares across all 59 plots, and where all woody stems ≥1 cm diameter at breast 

height (dbh) are censused, further issues may arise, as a census might take thus long to 

complete, that the census interval length will vary from stem to stem (generally the census 

date will be recorded per 20 x 20m quadrat, which might take several days to complete; 

Condit, 1998) within the plot. To deal with this (Condit et al., 1995) averaged the census 

interval lengths recorded for each individual stem of one species when calculating their 

species-specific mortality rates. However, Kubo et al. (2000) proposed to use maximum 

likelihood estimates for mortality, in a manner where this estimate collapses to Equation 

( 1.1 ) in the case where the census interval length for all individual trees is equal. While 

they found the relative error between these two methods of within-census interval 

correction to be generally smaller than 3 %, they stress that the maximum likelihood 

estimation method will be more robust at handling greater within census variation in 

individual interval lengths, especially at overall higher mortality rates, or when deriving 

rates for species with few individuals. While these issues of varying census interval lengths 
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between individuals do not apply to the data analysed in this thesis, due to smaller plot 

sizes and a greater dbh threshold used, the Bayesian methods used in this thesis can also 

address inter-census interval length variations, as well as other sources of inter-census 

variation, in a similar fashion by incorporating them into the likelihood function. 

1.3.3 Comparative studies 

Comparative studies are central to understanding variation in tree mortality rates. Plot-

level mortality rates are often compared between consecutive census intervals of the same 

(set of) plot(s), between different (sets of) plots, or across both space and time. This 

approach can be combined with comparing mortality rates among size classes or functional 

groups. When wanting to detect the effect of a “catastrophic” event or an experimental 

treatment on mortality rates, the rates observed for affected census intervals are generally 

compared to “background” mortality rates obtained during non-disturbed plot censuses. 

Furthermore, when trying to detect potential underlying drivers or explanatory variables of 

variations in (group-specific) mortality rates, mortality rates are generally compared across 

a range of variation in these driver values. 

A range of statistical approaches have been used to compare plot-based estimates of 

mortality. For example, species- or dbh class-, or functional group-specific mortality rate 

comparisons may involve chi-square, Kruskal-Wallis or Wilcoxon paired-sample tests, 

(Condit et al., 1995; Davies, 2001; Damasceno-Junior et al., 2004; Vilanova et al., 2018). 

The effect of a catastrophic event on mortality might be determined using G-tests or 

Fisher’s exact tests (Aiba and Kitayama, 2002; Nepstad et al., 2007), and comparison of 

mortality rates between census intervals or plots has been undertaken using Wilcoxon 

paired-sample or Student’s t-test (Condit et al., 1995; Whittaker et al., 1998). The influence 

of explanatory variables on tree mortality may be done using (logistic or multiple) 

regression, principal component analysis, or generalised least squares models (Davies, 

2001; Damasceno-Junior et al., 2004; de Toledo et al., 2011; Vilanova et al., 2018), or a 

Mann-Whitney U test if the explanatory variables are of a categorical nature (Condit et al., 

1995). 

However, comparative methods which simply compare plot-level estimates of mortality 

among sites or censuses can have two limitations. Firstly, they cannot effectively account 

for a range of sampling issues associated with data on tree mortality rates. For example, 

estimates of tree mortality rates are affected by comparing groups or plots with variation 

in census interval length, numbers of individuals, plot sizes, and census timing. 

Additionally, repeated censuses of the same set of trees are not independent of each 

other, just like measurements from plots within the same region are expected to be 

correlated to each other. Secondly, most approaches to comparative analysis essentially 
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cannot account for the fact that the drivers of mortality operate simultaneously at multiple 

scales. 

In Bayesian analyses, these issues can be dealt with through the likelihood function, and 

inclusion as potential explanatory variables at different hierarchical levels, from the 

individual to the region. Furthermore, by nesting individual tree observations within 

hierarchical levels, temporal and spatial correlation can also be accounted for (McElreath, 

2016). For example, repeated censuses of the same plot can be assumed to come from a 

plot level distribution, the parameters of which can be assumed to come from overarching 

levels of any of regional, continental, pan-tropical or even global distributions. Another 

advantage of hierarchical Bayesian analyses stems from the fact that within a hierarchical 

level, groups with more observations will automatically contribute more to the overall 

likelihood, without needing to explicitly weight for this, or losing data or variation through 

averaging (Kruschke, 2015; McElreath, 2016). The overarching distributions can even help 

constrain the estimates on regions with fewer observations (Kruschke, 2015). Finally, 

observations can be assumed to come from any distribution, and uncertainty estimates 

will be included on all estimated parameters (Kruschke, 2015; McElreath, 2016). 

It is important to note that Bayesian parameter uncertainty estimates are fundamentally 

different to the confidence intervals obtained in frequentist analyses, which is due to the 

different nature of these analyses. In frequentist analyses, one is trying to infer a specific 

value of a parameter which is believed to exist in the field of interest. The “confidence 

interval” obtained in frequentist analyses, denotes the proportion (e.g. 95%) of a large 

number of repeated samples in which the confidence interval will contain this parameter 

value of interest (Kruschke, 2015; McElreath, 2016). With Bayesian analyses, on the other 

hand, one is trying to approximate such parameter values, while including the confidence 

in any posterior parameter estimates as a probability. Here, the “credible interval” of a 

parameter estimate will contain the parameter value with the specified posterior 

probability (e.g. 95%; McElreath, 2016). 

As such Bayesian analyses offer a comprehensive analytical framework for exploring 

variation in mortality rates over time and space, that can account for the impact of tree-

level variation in size, plot-level variation in sampling, and large-scale variation in climate, 

soils and biogeography.  

1.4 Research aims and objectives 

In this thesis I aim to further our understanding of tropical tree mortality rates using a 

combination of simulations and (hierarchical) Bayesian analyses of observations from a 

long-term pan-tropical forest monitoring network. Specifically, I address the following 

questions: 
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- What minimum permanent plot network size is required for detecting short- and 
long-term changes in tropical tree mortality rates? (Chapter 2). 

- How does the relative importance of small-scale mortality rate events differ at 
various spatial scales across the tropics?(Chapter 3). 

- Is regional variation in mortality rates in Amazonia related to variation in drought 
intensity? (Chapter 4). 

These questions are addressed through the following objectives: 

Chapter 2: 

- Simulate tropical tree mortality dynamics in permanent sample plots 

- Sample the simulated data to determine if a significant change in mortality rates 
has occurred 

- Derive recommendations for the sample size of an optimal permanent plot 
network size capable of detecting a given change in tree mortality rates 

Chapter 3: 

- Derive pan-tropical mortality rates for each plot census in a pan-tropical dataset 

- Use a hierarchical Bayesian model to quantify the probabilities of mortality rate 
events of different magnitudes at various nested spatial scales 

- Asses at which spatial scale variation in tropical tree mortality rates are best 
expressed 

Chapter 4: 

- Using the mortality rates derived in Chapter 3, investigate regional trends in 
mortality rates in Amazonia, with both general linear analyses and Bayesian 
analyses 

- Extract the precipitation data corresponding to the plot census intervals and use 
them to derive a measure of drought intensity 

- Examine trends through time in these drought intensity measures, both in general 
linear analyses and using Bayesian analyses 

- Investigate correlations between mortality rates and drought intensities, using 
both general linear analyses and using Bayesian analyses 

1.5 Chapter outlines 

In the first chapter, I highlighted the importance of tropical old-growth forests as an 

important carbon store and sink, and of tree mortality as one of the key dynamic processes 

that shapes this function. I detailed how tree mortality is still poorly understood and 

reviewed our current understanding of some of the main drivers of tropical tree mortality. 

I reviewed commonly used mortality rate metrics and computational issues involved with 
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their derivation. Finally, I showed that hierarchical Bayesian models are particularly 

appropriate for understanding variation in tree mortality rates. 

In the second chapter I present the results from various forest dynamics simulation 

scenarios and use a power analysis to derive recommendations for the sample size of 

permanent plot networks to detect changes in mortality rates. The results can be used as a 

basis for the evaluation and expansion of existing monitoring networks at regional, 

national and international scales. 

In the third chapter I present a hierarchical Bayesian model used to quantify mortality rate 

distributions at different, nested, spatial scales. I use the results from this analysis to 

recommend at which spatial scale mortality rates are best described, which can help 

inform research efforts into drivers of mortality, as well as provide a basis for improving 

modelling. 

In the fourth chapter I identify potential trends in mortality rates and water deficits across 

South American biogeographical regions. I relate variation in an environmental driver to 

variation in tree mortality using both a linear and a Bayesian model approach.  

Finally, in the fifth chapter, I synthesize the main findings from this thesis and highlight 

directions for future research. 

2 Criteria for designing optimal sampling strategies for 
detecting changes in tree mortality rates in tropical 
forests 

2.1 Introduction  

Old-growth tropical forests have acted as a net carbon sink over recent decades, removing 

between circa 13 to 20 % of atmospheric CO2 emissions from fossil fuel combustion and 

cement production from 1990 to 2007 at a rate of 1.19 ± 0.41 GtC year-1 (Pan et al., 2011). 

However, the future of this sink under a changing climate is uncertain (Mitchard, 2018; 

Tagesson et al., 2020; Amigo, 2020). A key issue is whether increases in tree mortality 

rates, both due to more frequent short term spikes in mortality rates caused by 

“catastrophic” events like droughts (Allen, 2009; Brando et al., 2019), as well as long-term 

large-scale increases in community mortality rates, could cause the carbon sink of intact 

tropical forests to shut down (Brienen et al., 2015; Hubau et al., 2020). Increasing our 

understanding of both short-term and long-term trends in mortality rates is therefore 

important for understanding how climate change is affecting forest dynamics, for designing 

effective management and climate mitigation policies, and to help improve modelling 

efforts.  
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A key tool for understanding how tree mortality is changing are long-term inventories of 

permanent forest plot networks (e.g. Malhi et al., 2002; Lewis et al., 2009; Anderson-

Teixeira et al., 2015). These networks track forest dynamics across numerous plots through 

repeated censuses over multiple decades. However, maintaining these networks is labour-

intensive and expensive, and so national and international sampling networks need to be 

designed efficiently to detect both long-term and short-lived changes in forest dynamics. 

Most recommendations to date for efficient sample sizes for plot networks for policy-

focussed questions have concerned uses focussed on silvicultural yields (Alder and Synnott, 

1992), (national) carbon stock quantification (Köhl et al., 2011; Grussu et al., 2016) or 

biodiversity assessment (Grussu et al., 2016). At the same time, studies of plot network 

designs for ecological studies have mainly focussed on determining the most efficient plot 

size or shape to estimate biomass or species richness (Phillips et al., 2003). However, an 

optimal sampling strategy for one-off estimates of any of these parameters, will not 

necessarily capture the variability over time of a stochastic forest dynamic property such as 

tree mortality. As such, it is crucial to have monitoring strategies for tree mortality that can 

determine whether identified rates and the presence of any trends therein are a true 

representation of the ecosystem being studied, and are related to specific drivers such as a 

drought, or whether they are simply chance observations. 

Monitoring changes in forest dynamics like tree mortality is complex, since tree death 

occurs stochastically, and events can be clustered both in time and space. In particular, the 

design of a monitoring strategy needs to account for variability over time, whereas 

sampling strategies that are used for understanding static properties only need to account 

for variation in space. As a first step, we need to understand the minimum network sample 

size that will allow detection of the phenomena that we are interested in studying. The 

magnitudes and timescales of these trends in mortality vary greatly, and consequently the 

extent of the monitoring network required to detect them also varies.  

To address this issue, here, the sample size for detecting long-term and short-term trends 

in mortality rates will be evaluated. In terms of long-term trends, across the tropics, 

increases of up to 3 % in mortality rates have been observed over a period of three 

decades using 50 plots (Lewis et al., 2004b). Monitoring networks need to be able to 

detect this magnitude of change over these relatively long decadal timescales. In addition, 

we also need to be able to detect short-term elevated mortality rates from catastrophic 

disturbances. For instance, the 1997 El Niño drought was found to increase mortality rates 

in 12 plots by 71 % over a period of just over one year (Williamson et al., 2000). 

Confidence in detecting sustained or one-off changes in mortality rates will also be 

affected by census interval length, the overall average mortality rates, and the magnitude 

of change that is observed. For example, as census interval length increases, and the 

overall monitoring period increases, we will be more confident of detecting any changes 
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between two consecutive census intervals. Additionally, if a forest has higher initial 

mortality rates, a proportional increase would more easily stand out against that forest’s 

natural range of mortality rates. Consequently, it should require fewer plots to detect an 

increase of the same relative magnitude in relatively more dynamic forests, compared to 

less dynamic forests. Finally, as any increase or decrease in mortality rates becomes larger, 

fewer plots will be required to detect the change with confidence. Overall, increases in the 

census interval length, mean mortality rates and the magnitude of change are all expected 

to reduce the number of plots required to detect alterations in mortality rates. 

Understanding how sampling intensity is affected by these parameters will assist the 

design of efficient strategies for monitoring changes in forest mortality rates. 

Here, a power analysis is conducted, by simulating and sampling various short- and long-

term increases in mortality rates in permanent sample plots, in order to answer the 

following questions: 
 

- What is the minimum number of 1-hectare plots and the sampling strategy 
required for confidently identifying a long-term change of 1 to 3 % in annual stem-
based mortality rates? 

- What is the minimum number of 1-hectare plots required for confidently detecting 
a short-lived increase of 5 to 100 % in annual stem-based mortality rates caused by 
a one-off “catastrophic” (e.g. drought) event? 

2.2 Methods  

This chapter aims to identify the number of 1-hectare permanent sample plots required to 

detect long-term (see Section 2.2.1) or one-off short-term “catastrophic” (see Section 

2.2.2) increases of various magnitudes in annual mortality rates between two consecutive 

census intervals for a range of mortality rate distributions. This is achieved by sampling a 

series of simulations of the impact of a change in tree mortality rates on tree populations 

with varying characteristics.  

A change in mortality rates between two consecutive intervals can be determined in a 

number of ways: 
 

• Do the mortality rates observed during the first and second census interval come 

from distributions with significantly different means?  

• Do the absolute differences between the mortality rates observed during the first 

and second census interval significantly differ from zero?  

• Do the relative annual increases (where e.g. a doubling of mortality rates over the 

course of a year, corresponds to a relative annual increase of 100% per year) 
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between the mortality rates observed during the first and second census interval 

significantly differ from zero?  

Here, the smallest number of plots required to confidently detect a change, based on each 

of these metrics, is evaluated. 

All simulations and analyses were performed using R 3.4.4 (R Core Team, 2019) in RStudio 

1.1.463 (RStudio Team, 2016). 

2.2.1 Identifying increases in long-term mortality rates 

Extensive plot networks were simulated for a set of hypothetical forests that represent 

various underlying scenarios: 

Firstly, the “no increase”, or “baseline”, scenario represented forests with stable dynamics 

and stable population sizes, with no increase in annual mortality and recruitment rates 

(henceforth abbreviated as ‘m0r0’). Here, mortality balanced recruitment, and thus the 

overall population size remained the same on average through time. This represents a 

long-term equilibrium scenario. 

Secondly, an “increasing dynamics” scenario was simulated. Here, the annual mortality 

rates still balanced the annual recruitment rates, and the overall population size thus also 

remained the same on average through time, but both the annual mortality rates and the 

annual recruitment rates increased continually by either 1 % or 2 % each year (scenarios 

‘m1r1’ and ‘m2r2’ respectively). Such a scenario has been observed for example in West 

and South Amazonia, where raw mortality and recruitment rates increased by 2.15 

respectively 2.12 % per year between 1983 and 2001 (Phillips et al., 2004). 

Finally, in the “increasing population” scenario, the annual increase in recruitment rates 

outpaced the annual increase in mortality rates, and therefore the stem density per unit 

area increased each year. Three different variations of this scenario were simulated (see 

Table 2.1). The first version represents a forest with no increase in annual mortality rates, 

but where the annual recruitment rates increased by 1 % each year (‘m0r1’). In the second 

version, annual mortality rates increased by 1 % each year, while annual recruitment rates 

increased by 2 % each year (‘m1r2’). Lastly, a third version increased annual mortality and 

recruitment rates by 3 and 4 % each year respectively (variation ‘m3r4’ for short). Relative 

annual increases of a similar magnitude (mortality 3.08, recruitment 4.25 % per year) were 

identified across 50 South American plots by Lewis et al. (2004b) for the period 1971-2002. 

Next, the sensitivity of the results to variation in the distribution of mortality rates was 

examined. Since annual mortality rates represent the proportion of trees that have died 

per year, which are bounded by 0 (no mortality) and 1 (complete mortality), both the beta 

distribution and the logistic normal distribution were evaluated for modelling their 

distributions. However, due to these annual mortality rate distributions being strongly 
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positively skewed, with many small mortality events and few larger mortality events, the 

probability of annual mortality rates of zero was estimated as infinity in some of the 

Bayesian parameter estimation runs of Chapter 3 when using the beta distribution. Thus, 

the logistic normal distribution was found to provide a consistently better fit, and has been 

used throughout this thesis to model tree mortality probability distributions, which is in 

line with other studies (e.g. Hamilton Jr. and Edwards, 1976; Lines et al., 2010; Vanderwel 

et al., 2013). 

Table 2.1. The simulated scenarios of changes in annual mortality and recruitment rates. 
All variations were run for all mortality rate distributions (see Table 2.2), except for the baseline scenarios 
(corresponding to a 0 % increase in annual mortality rates, denoted by *), which were not run for the 
?(−@. AB, D. ABE) distribution. 

Forest population 
scenario type 

Annual mortality 
rate increase (%)* 

Annual recruitment 
rate increase (%) * 

Mortality/recruitment 
increase abbreviation 

No increase 0* 0* m0r0 
Increasing dynamics 1* 1* m1r1 
Increasing dynamics 2* 2* m2r2 
Increasing population 0* 1* m0r1 
Increasing population 1* 2* m1r2 
Increasing population 3* 4* m3r4 

 

As such, for each variation of the previously described scenarios (see Table 2.1), mortality 

rates were drawn from normal distributions in logistic space which varied in their mean 

and standard deviation. The chosen values ( !(−4.5, 0.5H), !(−4.5, 0.75H), 

!(−4.5, 1.0H), !(−4.25, 0.75H), !(−4.75, 0.75H)) correspond to mortality rate 

distributions with means of 1.2, 1.4, 1.7, 1.8 and 1.1 % per year respectively (see Table 

2.2). These distributions were chosen to represent tropical forests with a range of mean 

base mortality rates from as low as 1.1-1.2 % per year, e.g. as identified for East-Central 

(Phillips et al., 2004) and Central Amazonia (Williamson et al., 2000), to 1.7-1.8 % per year, 

e.g. as identified for Sabah, Malaysia (Newbery et al., 1999) and as a mean pan-tropical 

turnover estimate (Stephenson and van Mantgem, 2005).  

A three-step procedure (see Figure 2.1, Appendix A) was followed to determine the 

minimum number of plots required to detect different levels of long-term increase in 

annual mortality rates with increasing census interval length. In the first step, plot 

censuses datasets were generated for each of these scenarios and their corresponding 

annual rate distributions. The second step consisted of repeated sampling from these 

datasets. The final step consisted of analysing the results from the repeated sampling of 

these data. 
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Table 2.2. The parameters of the distributions from which all simulated annual mortality rates were 
drawn: means and standard deviations of the normal annual rate distributions in logistic space.  
Including the estimated median and mean mortality rates (in %·year-1) of the corresponding logit-normal 
distributions. 

Mortality distribution 
in logistic space 

Corresponding 
mortality rates 

Mean Standard 
deviation 

Median 
(%·year-1) 

Mean 
(%·year-1) 

-4.50 0.50 1.1 1.2 
-4.50 0.75 1.1 1.4 
-4.50 1.00 1.1 1.7 
-4.25 0.75 1.4 1.8 
-4.75 0.75 0.86 1.1 

 

Step 1. Generating the plot censuses datasets 

Plot censuses were simulated for sets of 100 plots and a unique plot identification number 

was assigned to each individual plot. For every plot, an initial census was simulated to have 

taken place in 1970, with annual re-censuses up until and including the year 2020. At the 

first census, all plots were initialised with 581 trees, which was the mean number across 

the permanent sample plots analysed by Lewis et al. (2004). Each tree was assigned a 

unique tree identification number, to track their status as ‘alive’ or ‘dead’ across the 

following re-censuses. Each tree was also assigned an “intrinsic mortality probability”, 

which determined the probability of that individual tree dying during the census interval.  

For the ‘baseline’ scenario, where there is no increase in annual mortality rates, the 

intrinsic mortality probabilities (p) were all drawn from a normal distribution in logistic 

space with base mean (μ) and standard deviation (σ) as follows: 

log L
"ML

~	!(O, PH)                                            ( 2.1 ) 

For the scenarios where the mortality rates increased with time, the increase in the 

corresponding annual mortality rate was compounded accordingly. For example, in the 

case of a relative annual increase in mortality rates of 0.01 (1 %; as in variations ‘m1r1’ or 

‘m1r2’), the annual mortality rate 1 after ) years was derived as 12 =	1%(1 + 0.01)2 

where 1% is the median of the annual mortality rate distribution at the start of the 

simulation period in 1970 () = 0). 

The probability of an individual tree surviving (s) the 1-year census interval is equal to one 

minus the probability that it will die; s = (1 -	p). These survival probabilities were used in 

Bernoulli trials, to determine for each individual tree whether they had survived that 

census interval or not. If the trial was a “success”, that individual tree was considered to 

have survived the census interval; if not, it was assumed to have died since the last census.
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Figure 2.1. Flowchart of the process for determining the recommended plot network size for detecting long-term mortality rate increases. 

Step 1: Generating the plot censuses dataset 
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For the individuals that died, the ‘alive’ status was changed to “0” and their individual tree 
IDs were removed from future census inventories. The alive trees maintained their ‘alive’ 
status of “1” and their IDs were retained for the next re-census. In addition to the 
possibility of trees dying in the interval between two censuses, new recruits could also 
pass the minimum size threshold during any given census interval. In order for recruits to 
numerically balance the deaths in the stable populations, or outpace the deaths in the 
increasing population scenarios, the number of recruits to be added during the re-census 
was also drawn from a normal distribution in logistic space (rounded up to the next integer 
value), whose mean increased in a similar fashion as described above. Each recruit was 
assumed to be ‘alive’, assigned a unique tree ID number, and an intrinsic mortality 
probability. 

Finally, during each plot’s re-census, a tally was made of the number of trees that were 
alive in that plot at the start of the preceding census interval (!"), the number that 
survived the census interval (!#), and the number that died during the census interval 
(!$). These values were used to calculate the annual mortality rate (%) for that census 
interval of length t = 1 year (sensu Sheil et al., 1995) as: 

% = 1− (*+,*-
*+

)
/
0                                            ( 2.2 )	

This process was applied to all 50 consecutive re-censuses of the 100 plots for each 
scenario.	

The different scenarios represented in these hypothetical forest populations translate to 
distinct trajectories in the actual numbers of dead and alive trees encountered at each plot 
census. The number of alive trees found at each (re-)census, is constant for the “no 
increase” and “increasing dynamics” scenarios (Figure 2.2a). In contrast, the number of 
alive trees increases through time for the forests with “increasing population” dynamics, 
which is the scenario where the relative increase in annual recruitment rates always 
outpaces the increase in annual mortality rates (Figure 2.2a). 

The number of dead trees found at each re-census (Figure 2.2b), is only constant through 
time for the “no increase” (‘m0r0’) scenario. The rate of increase being equal, the 
“increasing population” scenarios show higher numbers of dead trees, compared to the 
“increasing dynamics” or “no increase” scenarios, due to the overall population increasing 
in size. Since the increase in annual mortality rates is relative, there is no difference 
between the trend of the increasing annual mortality rates of the “increasing dynamics” 
scenario or that of the “increasing population” scenario (Figure 2.2.c) at the same rate of 
increase (e.g. ‘m1r1’ versus ‘m1r2’).  
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Figure 2.2 Trends in (a) the number of alive trees in each plot at the census year; (b) the number of dead 
trees per plot at the re-census year; (c) the annual mortality rate (%) at the mid year of the census interval. 
Results for six scenarios are shown: “no increase”, “increasing dynamics”, and “increasing population”, with 
variations for different magnitudes of increase in mortality rates. All trends are for the same mortality rate 
distribution with a median base mortality rate of 1.1 %·year-1. 	

For the two “baseline” variations, draws were only made from four mortality rate 
distributions. For the remaining four variations, five distributions were drawn from (see 
Error! Reference source not found.). The different standard deviation (0.5, 0.75, and 1.0) 
of three of the distributions (all with mean -4.5), was used to test the effect of variation in 
mortality rates for the number of plots required to detect an increasing trend. The 
distributions with different mean values (-4.25, -4.5, and -4.75; all with SD 0.75), were used 
to identify whether a greater number of plots might be needed for detecting a change in 
the annual mortality rates in forest with low, compared to high, mortality rates. 

The result of this first step was a dataset of 28 plot census tables, each with 3-3.5 million 
rows, for all the trees encountered annually in 100 plots over the simulated overall census 
period from 1970 to 2020 (see Appendix A: Figure A.1). These plot census tables form the 
dataset from which random samples were drawn in step 2. 
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Figure 2.3. The distributions from which mortality rates were drawn. 
(a) The probability density of the annual mortality rates in logistic space.  
(b) The probability density of the annual mortality rates for the equivalent logit-normal distributions. 

Step 2a. Sampling the simulated plot census data 

Random samples were drawn from the plot census datasets of 50 re-censuses of 100 plots 
each generated in step 1, at increasing census interval lengths and for an increasing 
number of plots. Each set of samples consists of three consecutive censuses. These three 
censuses were treated as being the initial census and the first and second re-census of that 
plot. The annual plot re-censuses were then consolidated, ignoring “missed dead recruits”, 
and thus focussing only on the trees that were alive at the start of the consolidated 
interval and recruits that appeared during this interval and were still alive at the time of 
the re-census. This procedure resulted in a new set of tallies for N0, Nt, and Nd for each 
new census interval length. This time, when calculating the annual mortality rate (m) as 
per Equation ( 2.2 ), t was equal to the consolidated census interval length in years (e.g. 
Figure 2.4). 

This sampling and consolidation procedure was repeated for interval lengths of 2, 5, 10 
and 20 years, and for an increasing number of plots (10, 20, 30, 40, 50, 60, 70, 80, 90, 100 
plots). The sampling of each of these combinations of consolidated interval length and 
number of plots from the plot census dataset was repeated 100 times (e.g. see Figure 2.5). 

This resulted in 112,000 consolidated plot census tables (derived from 28 plot census 
tables, resampled for 4 different consolidated interval lengths, for 10 different numbers of 
plots, repeated 100 times; see Appendix A: Figure A.2). 
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Figure 2.4. Example output of the plot census interval mortality rate generation and consolidation steps.  
Output generated for steps 1 (left panels) and 2a (middle and right panels) for distribution !(−4.25,0.75<), 
under the ‘m2r2’ scenario, for a consolidated interval length of 10 years, repetition #6/100. Left: the annual 
mortality rates generated for 100 plots with 50 annual re-censuses each from 1970-2020. Darker parts 
correspond to more plot censuses with a similar rate at that point in time. Middle: from the total number of 
plot censuses, two sets of consecutive censuses are selected to be consolidated (top: black triangles = the first 
set; bottom: black diamonds = the second set; both: grey circles = all the plot censuses generated), for, in this 
case, a total of 30 plots. Right: the annual mortality rates of the plot censuses to be consolidated (grey) and 
their consolidated rates (top: orange triangles = the first set; bottom: brown squares = the second set). 

 

 
Figure 2.5. Two examples of the results of the simulated annual plot census intervals consolidation process. 
Annual mortality rates versus (consolidated) census interval mid-year for two different distributions (a:  
!(−4.5, 0.75<), b: !(−4.5, 1.0<)), different population dynamics variations (a: m0r1, b: m1r2), different 
numbers of plots consolidated (l: 30, m:20, r:80), different consolidated interval lengths (a: 20 years, b:5 years), 
for different repetitions of the consolidation process (a:#73/100, b:#96/100). Grey dots are the observed 
annual plot census rates, which are consolidated into a first (orange triangles) and second (brown squares) 
consecutive interval set of the specified length. The dashed line shows the increase in the relative annual 
mortality rates for that variation through time. 
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Step 2b. Calculating and summarising the trends 

The samples of two consecutive consolidated plot census intervals were used for 
generating and summarising various trend detection metrics, to identify how many plots 
are required to detect a given increase in annual mortality rates. 

For trend detection, both the absolute difference (==>?@@, in percentage points) and the 
annual relative difference (ABC>?@@, in %) between the annual mortality rates (in % per 
year) of the second and first consecutive set of consolidated plot re-censuses was 
calculated. 

The absolute difference (==>?@@) in annual mortality rates (%D) of the consolidated set 
IDs (E) was calculated as:  

==>?@@FG,F/ = %< − %H																																																			( 2.3 )	

The annual relative difference (ABC>?@@), i.e. the proportion by which the annual mortality 
rates increased each year, was calculated using the census interval mid-years (JD) of the 
first and second consolidated sets as: 

ABC>?@@FG,F/ = KFG
F/
L

/
0GM0/ − 1																																																	( 2.4 )	

In addition to these absolute and relative comparisons between the first and second set of 
consolidated census intervals, summary statistics of the two sets were also generated 
across all plots for a given combination of number of plots and consolidated interval 
length. These summary statistics used were: 

• The mean annual mortality rates of the first and second set of consolidated intervals; 

- their corresponding lower and upper 95 % and 99 % confidence interval bounds 
and whether there was an overlap between these confidence intervals. 

• The absolute (ppDiff) and relative (relDiff) differences between the annual mortality 
rates of the two consecutive intervals; 

- their corresponding lower and upper 95 % and 99 % 2-tailed confidence intervals; 

- their corresponding lower 95 % and 99 % 1-tailed confidence intervals (since an 
increase is expected); 

- and whether these confidence intervals overlapped with zero. 

• A linear model of the relative differences in annual mortality rates of the two 
consecutive consolidated intervals versus the overall census period mid-year, where: 

- it was noted whether a significant intercept was identified (p ≤ 0.05 and p ≤ 0.01). 

Using these summary statistics, the 112,000 consolidated plot census tables generated in 
step 2a. were condensed into 28 trend result tables (e.g. middle and right panels of Figure 
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2.4). These trend result metrics tables have 4000 rows each, with one hundred random 
resampling repetitions for each unique combination of the four consolidated interval 
lengths and ten different numbers of plots (Figure A.2; e.g. Figure 2.5). 

Step 3. Analysing the trends 

In order to identify trends in the annual mortality rate metrics generated in step 2b above, 
and separate them from patterns which might merely have resulted from random variation 
in the plot census data, trend result metrics were compiled across the 100 repetitions of 
each combination (Figure 2.1, Figure A.3). The different combinations assessed the effect 
of the number of plots, consolidated interval length, relative annual increase scenario, and 
annual mortality rate distribution parameters. 

A number of different metrics were evaluated for their ability to detect the persistence of 
trends across the repetitions. A metric which needs fewer plots to detect the same 
increase is preferred. These metrics included: 

- the proportion of sample repetitions in which the 95 or 99 % confidence intervals of 
the mean annual mortality rates of the first and second set of consolidated intervals 
overlap; 

- the proportion of repetitions where the one- or two-tailed 95 or 99 % confidence 
intervals of the absolute (ppDiff) or relative (relDiff) difference between the mean 
annual mortality rates of the first and consolidated second set contain zero; 

- the proportion of cases in which the intercept of the linear model of the relative 
differences in annual mortality rates versus the census period mid-year was found to 
be significant at the 95 and 99 % level. 

Both ppDiff and relDiff had normal distributions, enabling the utilisation of their parametric 
confidence intervals. 

The result of this final step was a table of 1120 rows (for the 28 mortality rate dynamics 
variations, 4 consolidated interval lengths, 10 different numbers of plots), denoting the 
proportion of the total 100 repetitions where a metric of interest was observed (Figure 
A.3). From this table, the most efficient trend result metrics were identified. 

2.2.2 Identifying short-term mortality rate increases 

For answering the second research question, which aims to identify the number of forest 
sample plots required for detecting an increase in annual mortality rates caused by one-off 
short-term “catastrophic” events, a similar three-step approach was applied (see Figure 
2.6). Firstly, an extensive plot census sample dataset was generated for disturbances of 
various degrees of magnitude from which repeated random samples were drawn using an
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Figure 2.6. Flowchart of the process for determining the recommended plot network size for detecting short-term mortality rate increases. 
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increasing number of plots. The trend results were then also evaluated for their 
consistency in detecting increases of varying magnitudes using a specified number of plots. 
The main differences, compared to the process for detecting a long-term increase in 
mortality rates as described in Section 2.2.1, concern a greater magnitude of sudden 
increases in mortality rates, simulated as occurring over a shorter period of time, the 
inclusion of more plots in the first step, and a different sampling strategy in step 2a as 
detailed below. 

For simplicity, here, only one mortality rate distribution (!(−4.5, 0.75*), corresponding to 
median and mean mortality rates of 1.1 and 1.4 % per year respectively; see Table 2.2) was 
used to generate the sample plot censuses dataset. In addition, since the focus here is to 
detect potential increases in annual mortality rates associated with short-lived one-off 
catastrophic events, only a consolidated census interval length of 2 years was used. 
However, since intra-census interval variation might be greater than inter-census interval 
variation with just a 2-year census interval length and a low rate of increase in annual 
mortality rates, a larger number of plots (500) was simulated in step 1, to allow for random 
sampling up to a greater number of plots in step 2a (see Figure 2.6). 

Firstly, a sample dataset was generated simulating a one-off known increase in mortality 
rates. Simulated plots were initialised in 2010 and subjected to three years of (increasing) 
“background” annual mortality and recruitment rates under the m0r0, m2r2, m2r3 and 
m4r4 dynamics scenarios (2010-2013), after which the (relative increase in) “background” 
annual mortality rate was increased by either 5, 7.5, 10, 15, 20, 30, 40, 50, 75, or 100 % for 
two years (2013-2015). 

In step 2a, an increasing number of plots (10 to 250, in increments of 10) were randomly 
drawn from the dataset generated in the first step, with 100 draws made for each 
replicate. The plot censuses from these plots were consolidated in two ways, each 
representing a different post-disturbance tree mortality measurement scenario.  

The first scenario represents a short-lived mortality event, resulting only in elevated annual 
mortality rates for the duration of a single 1-year census interval, or where plots were re-
censused one year after the event, but which had already undergone a year of background 
mortality since the last re-census prior to the event. For these plots the consolidation 
process combined two “background mortality” census intervals into the first consolidated 
set (2010-2012), and one census interval with “background mortality” and one with 
“elevated mortality” into the second consolidated set (2012-2014). 

The second scenario represents a mortality event resulting in prolonged elevated mortality 
rates throughout the entire second 2-year census interval, with the timing of the mortality 
event immediately following the first census interval. This scenario can also be used to 
evaluate instances where the post-disturbance re-census has been made after a year. In 
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this scenario, the first set consisted of consolidation of two census intervals under 
“background mortality” (2011-2013), and the second set consisted of two census intervals 
under “catastrophic mortality” (2013-2015). 

Step 2b was the same as has been described for determining the number of plots required 
for detecting long-term increases in forest dynamics in Section 2.2.1: metrics of trends 
between the first and second consolidated set were compiled, across all plots for each of 
the 100 repetitions. 

In the third and final step, trend results were again compiled across all repetitions, for each 
combination of number of plots and magnitude of the catastrophic event (see Figure 2.6). 
These proportions were used to determine the number of plots required to detect a one-
off catastrophic event of a given magnitude in forests that are re-censused at a 2-year 
census interval length.  

Unless mentioned otherwise, all results focus on the number of plots required to detect an 
increase using the two-tailed 95 % confidence interval of the absolute (ppDiff) or relative 
(relDiff) difference in annual mortality rates between the two consecutive census intervals 
for the distribution with a mean base annual mortality rate of 1.4 % per year (Table 2.2). 
While all metrics at all levels of significance are provided in Appendix B, here only results 
which held across all repetitions are presented. For an evaluation of the various trend 
result metrics see Appendix C. 

2.3 Results  

2.3.1 Identifying long-term mortality rate increases 

Census interval length 

The number of plots required to detect an increase in annual mortality rates decreased as 
the consolidated census interval length increased (see Figure 2.7, Appendix B). 

For example, when using two consecutive census intervals of 2 years each, 100 plots are 
not enough to detect a mortality rate increase of up to 3 % per year for any of the 
mortality rate distributions. However, when using 5-year census intervals, a 3 % long-term 
increase in annual mortality rates can be detected using at least 30 (ppDiff) or 40 (relDiff) 
plots. For a 2 % increase, at least 90 plots were required to detect it confidently (both for 
ppDiff and relDiff). 

With a 10-year census interval length, only 10 plots were required to detect a 3 % increase 
in mortality rates, and 20 plots sufficed for detecting a 2 % increase. With this consolidated 
interval length, even increases of 1 % in annual mortality rates were detectable with just 
40 plots. 
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Finally, using 20-year census intervals, only 10 plots were required to detect an increase of 
1 % in annual mortality rates . 

 

Figure 2.7. The number of one hectare plots required for detecting a long-term increase of annual mortality 
rates decreases with increasing levels of forest dynamics and increasing census interval length.  
The dashed grey horizontal line demarcates where 5 % of repetitions generate confidence intervals on the 
estimate of change that contain zero: any points below this line represent sampling intensities that would 
confidently detect the specified change. Results shown here for consolidated intervals of length 5 (left) and 10 
years (right) for the non-baseline population dynamics variations, where m# and r# denote the relative 
increases in annual mortality and recruitment rates respectively for the different scenarios. 

Annual mortality rate distribution parameters 

In general, the mortality rate distributions with a higher mean value needed fewer plots to 
detect an increase of the same magnitude (see Appendix B). This pattern was more 
pronounced at longer census interval lengths and for greater long-term increases in 
mortality rates. For example, the annual mortality distribution with a mean of 1.8 % (-4.25 
in logistic space; median 1.4 %) needed only 60 plots to detect a 2 % increase using ppDiff; 
for the distribution with mean of 1.7 % (-4.5 in logistic space; median 1.1 %), this value 
increased to 90 plots, and with a mean of 1.1 % (-4.75 in logistic space; median 0.86 %), 
even 100 plots were not sufficient to detect this increase. 

While slightly less pronounced, it appears that mortality rate distributions with a higher 
standard deviation (SD) also needed fewer plots to detect the same long-term increase in 
mortality rates. For example, with a 10-year census interval length, for the distribution 
with a standard deviation of 1.0, just 30 plots were required to detect a 1 % increase in 
long-term mortality rates using ppDiff, while for a standard deviation of 0.75 this increased 
to 40, and for a standard deviation of 0.5, it was 70 plots. This same general trend was 
again observed for relDiff too (see ‘m1r1’ in Appendix B; for ‘m1r2’ 40, 40 and 60 plots 
were required respectively). 
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Population dynamics scenario 

The greater the long-term mortality rate increase, the fewer plots were needed to detect 
the change for any given distribution and consolidated interval length (see Figure 2.8). For 
example, for a census interval length of 10 years, only 10 plots were required to detect a 
3 % increase in annual mortality rates (using ppDiff), whereas detecting a 2 % increase 
required 20 plots, and detecting a 1 % increase required 40 plots (both for ‘m1r1’ and 
‘m1r2’; see right panel in Figure 2.7). As such, within a given distribution, the mortality rate 
increase mainly determines the number of plots required for detection, irrespective of 
whether the overall population is stable (equal increases in recruitment and mortality) or 
increasing (the increase in recruitment outpaces the increase in mortality). The same 
finding held for relDiff. 

 
Figure 2.8. The required sampling intensity for confidently detecting a long-term increase in mortality rates 
decreases with increasing forest dynamics and increasing census interval lengths.  
Detection confidence levels are defined as the proportion of repetitions where the two-tailed 95 % confidence 
interval of the percentage points difference between the two consecutive sets of annual mortality rates 
overlap with zero (from 0 % in dark green to 100 % in dark red; ≤5 % for all shades of green). These results are 
for a mortality rate distribution defined as !(−4.5, 0.75*), corresponding to a distribution with median and 
mean annual mortality rates of 1.1 and 1.7 % per year respectively. The asterisk (*) denotes the sampling 
intensity associated with the observed 3 % increase in mortality, and 4 % increase in recruitment reported by 
Lewis et al. (2004). 
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2.3.1 Identifying short-term mortality rate increases 

At a 2-year census interval length, the intra-plot census variation can equal or exceed the 
inter-plot census variation in annual mortality rates, and, as a result, a relatively high 
number of plots were required to detect relatively small increases caused by one-off 
mortality events (see Figure 2.9, Appendix D). 

 
Figure 2.9. The required sampling intensity for confidently detecting a one-off catastrophic increase in 
mortality rates decreases with increasing magnitude of the disturbance event. 
The impact of sample size on the proportion of repetitions (from 0 % (darkgreen) to 100 % (darkred); ≤5 % for 
the three shades of green) where overlap with zero is observed for the 95 % confidence intervals of the relative 
difference between the "background" annual mortality rates (drawn from distribution !(−4.5, 0.75*) , 
corresponding to a distribution with median and mean annual mortality rates of 1.1 and 1.7 % per year 
respectively, under variation ‘m0r0’ (no increase)), and those following a "catastrophic" event of varying 
magnitudes (relative annual mortality rate increase in %). Census interval length is 2 years, and the elevated 
“catastrophic” annual mortality rates persisted either for one year (left), or two years (right). The asterisk (*) 
denotes the observed relative increase in mortality rates (71 %) for 12 plots over a 1-year census interval 
reported by Williamson et al. (2000). 

The results from two different mortality event scenarios are presented here: firstly, the 
number of plots required to detect a “short-lived” mortality event, where the increased 
mortality rates persisted only for 1 year (left panel in Figure 2.9), and secondly, the number 
of plots required for detecting a “prolonged” mortality event, where the mortality rates 
increased at the specified relative increase rate throughout the 2-year census interval 
(right panel in Figure 2.9). 

For the first “short-lived” scenario, detecting a 10 % increase in annual mortality rates over 
a 2-year census period required 250 plots. As the relative annual increase in annual 
mortality rates for the catastrophic event year increases from 20, through 30, 40, 50, 75 to 
100 percent, the number of plots required to detect this increase drops from 190, through 
80, 40, 30, 20, to 10 (see Appendix D, left panel Figure 2.9). 

These results mean that 40 plots are sufficient to detect a 40 % increase in mean annual 
mortality rates, from 1.4 % to effectively 1.7 % during the consolidated census interval of 
length 2 years (with one year at 1.4 % year-1 and one at the 40 % increased “catastrophic” 
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rate of 2.0 % year-1). Ten plots are sufficient to detect an increase to effectively 2.2 % year-1 
in the case of one year with relative increase in mortality of 100 % (equivalent to elevating 
annual mortality rates to nearly 2.9 % year-1 during the year with the catastrophic mortality 
event). 

For the second scenario, where the “catastrophic” event resulted in two consecutive years 
of elevated mortality rates, fewer plots were needed to detect the increase in mortality 
rates caused by the event. Detecting a 5 % increase in annual mortality rates was possible 
with 250 plots, a 7.5 % increase was detectable with 190 plots, and 10 % increase with 130 
plots (see Appendix D, right panel Figure 2.9). 

As observed before, in forest plots with increasing mortality (and recruitment) rates 
through time, fewer plots were required to detect a relative increase of the same 
magnitude. For example, the second scenario required 130 plots to detect a 10 % increase 
in annual mortality rates over a 2-year period under the ‘m0r0’ population dynamics 
variation. However, if the forests that were experiencing a concurrent long-term 2 % 
increase in mortality rates (variations ‘m2r2’ and ‘m2r3’) only 50 plots were required to 
detect this same increase, and 30 plots sufficed in forests experiencing a 4 % long-term 
increase in mortality rates (see Appendix D). 

2.4 Discussion  

2.4.1 Identifying long-term mortality rate increases 

Overall, these results provide a range of conclusions for designing monitoring networks for 
detecting the impacts of climate change on forests. For identifying long-term sustained 
increases in annual mortality rates between two consecutive census intervals, an overall 
monitoring period of at least 10 years is recommended, though 20 years is preferable (see 
Figure 2.8). With an overall monitoring period of 20 years, a network of 40 one-hectare 
plots will allow for confident detection of increasing forest dynamics, even when the 
increases are relatively small (1 % annual increase in mortality rates, and 1-2 % annual 
increase in annual recruitment rates; see Figure 2.7, Appendix B). However, a minimum of 
60-70 plots is recommended if wanting to detect such small increases in forests with a 
relatively low overall base mortality (average annual mortality rates of 1.1 to 1.2 %·year-1; 
see Appendix B). A network of 60-70 plots will also enable detection of greater increases in 
forest dynamics (2 % increase in annual mortality and recruitment rates) for forests with a 
minimum average annual mortality rate of 1.4 %·year-1 using just a 10-year monitoring 
period, with two consecutive census intervals of 5 years each.  

In general, the results from published studies that report the presence of a long-term trend 
in mortality rates are based on sampling strategies that are consistent with the findings of 
this study. For example, Lewis et al. (2004) reported an increase in annual mortality and 
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recruitment rates of 3 and 4 % respectively based on 50 plots monitored for an average 
overall period of 13.25 years (see asterisk in Figure 2.8). The results here suggest that this 
kind of trend can confidently be detected with a network of just 30 plots and an overall 
monitoring period of 10 years, with comparable mean annual base mortality and 
recruitment rates to this study of 1.5 % year-1.  

Similarly, Phillips and Gentry (1994) used turnover times (the mean of mortality and 
recruitment rates), to report an average relative annual increase of 3.7 % using 19 non-
disturbed plots (mean 604 stems/ha, median 575), with an average census interval length 
of 8 years, where observed values of turnover rates increased from 1.54 to 2.04 %·year-1. 
The mortality rates for the overall monitoring period (mean 1.85 %·year-1, SD 0.75) were 
very similar to the turnover rates (mean 1.81 %·year-1, SD 0.71; Phillips and Gentry, 1994). 
When comparing their increase with the results from the similar ‘m3r4’ forest dynamics 
variation here, we find that detecting an increase of this magnitude using 19 plots 
corresponds to the highest level of confidence (see Figure 2.8). Furthermore, using an 
increased dataset of 27 pan-tropical forest plots, an increase of 3.93 % in annual turnover 
rates from 1.49 to 2.01 %·year-1 was identified over two consecutive censuses with an 
average interval length of 8.7 years. This sampling intensity again corresponds to such an 
increase being detected at the highest level of confidence using the ‘m3r4’ variation here 
(see Figure 2.8). 

In a study of the long-term dynamics of Amazonian mortality rates, various significant 
(p<0.05) long-term trends in annual mortality rates were identified (Phillips et al., 2004). 
When relating their reported increases (from 1.26 to 4.83 % per year) to the corresponding 
simulations, this study assigns a similar level of confidence to these increases. Equally, for 
the non-significant increase observed in the plots in East & Central Amazon (1.43 % per 
year for the raw data (n = 12, 14; 12 years; p=0.23), 0.91 % per year for corrected (n=28; 10 
years; p=0.33); Phillips et al., 2004), the results here agree that more plots with a longer 
overall monitoring period would be required in order to confidently assess that these 
trends are not merely due to natural variation. Due to the East & Central Amazon’s 
relatively low mean base annual mortality rates of 1.1-1.2 %, detecting an increase of 1 % 
at the highest level of confidence would require at least 50 (mean 1.1 %; median 0.86 % 
per year; Appendix B) or 70 (mean 1.2 %; median 1.1 % per year) plots with a 10-year 
census interval length. 

Finally, a long-term monitoring study of mortality rates in a Sri Lankan mixed-dipterocarp 
rainforest (Ediriweera et al., 2020), again helps to illustrate how even relatively minor 
changes can be confidently detected if the overall monitoring period is long enough. 
Significant changes in annual mortality rates were identified along a gradient of elevations, 
with a decrease of 0.70 % observed for the plots at lowest elevations over 40 years (from 
2.08 % to 1.81 % per year at an elevation of 335 m, using 16 plots), an annual increase of 
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2.38 % for the intermediate plots (from 1.23 % to 1.98 %·year-1, at 560m, for 18 plots), and 
an increase of 1.39 % in the highland (from 1.62 % to 2.14 %·year-1, at 915m, 16 plots). 
Despite the relatively small changes, we also find that increases of 1 % can be confidently 
detected with 10 plots with a census interval length of 20 years. 

In contrast, at first glance, the results here seem to conflict with those from a recent study 
addressing sampling efforts required for detecting changes in long-term mortality rates 
(McMahon et al., 2019). Their study found a substantially higher number of plots would be 
required to detect a given increase, with more re-censuses during a longer overall 
monitoring period, based on the overall time it would take at the specified sampling 
strategy to detect the increase in 80 % of the simulations using a changepoint analysis. 
Their models represented forests experiencing 50 years of stem mortality rates of 
2 %·year-1, which then linearly increased over the course of 10 years, to 50 years at 
4 %·year-1	mortality rates. When using a 1-hectare permanent sample plot network, they 
found 120 plots would be required, re-censused at least every three years for 30 years 
preceding and following the shift, and annually during the actual 10-year period when 
mortality rates increased, in order to confidently detect this increase. 

However, the intention of their study was to only detect shifts in mortality rates of large 
individuals (e.g. ≥60 cm dbh), or of one particular species, and thus their simulated plots 
had only 25 trees per hectare: as a result 120 plots in McMahon et al. (2019) correspond to 
just five of the plots modelled in this study. Assuming a similar overall census period of 70 
years, the relative annual increase between the average community mortality rates 
observed in the two consecutive 35-year census intervals would have been 1.82 %, which 
would be very confidently detected, at a community level, with just 5 fully sampled plots 
and three censuses. Furthermore, while McMahon et al. (2019) advocate that sampling of 
random individuals is the most efficient approach for detecting a shift to increased 
mortality rates of larger individuals or one species, due to these individuals being much 
further apart, this strategy might not necessarily cut down on overall fieldwork monitoring 
effort. More importantly however, permanent forest sample plots that measure and track 
all trees can serve to concurrently monitor much more than merely shifting mortality rates 
of some species through time, including for example recruitment rates, growth rates and 
forest species composition (e.g. Taylor et al., 2008). If mortality rates are found to be 
shifting, it is important to see how they are changing concurrently with these other 
variables, especially after any potentially catastrophic events (e.g. Fauset et al., 2012).  

As such, while change-point analyses and sampling of random individuals are useful for 
determining whether a linear shift has occurred between two consecutive series of 
baseline rates, and can pinpoint the timing of this shift, and as such help identify any 
potential causes, the recommendations presented here will help provide a more complete 
picture of any on-going dynamics and compositional changes, while also still allowing 
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evaluations of changes in mortality rates per size class, taxon, or functional group (e.g. 
Condit et al., 1999; Nakagawa et al., 2000; Sheil et al., 2000; Laurance et al., 2009).	

2.4.2 Identifying short-term mortality rate increases 

Detecting an increase of annual mortality rates caused by a catastrophic event is most 
efficiently done with a network of at least 40 plots (Figure 2.9). This will allow detection of 
increases of 40 %, if the event occurs a year after the last re-census, or 15 %, if it 
immediately follows the re-census, for a forest with a mean “background” mortality rate of 
1.4 %·year-1	and a 2-year census interval length (Figure 2.9). 

Published studies, which were able to identify significant short-term trends in mortality 
rates, appear generally to have used sampling strategies that are consistent with the 
recommendations from this study. For example, Williamson et al. (2000) used only 12 plots 
to detect the impact of the 1997 El Niño drought event on annual mortality rates in 1-
hectare central Amazonian old-growth rainforest permanent sample plots. While they 
identified a significant substantial relative increase (71 %, from 1.12% to 1.91%, p=0.004) in 
mortality rates for the droughted census intervals of merely 12-16 months, they found no 
significant difference between the mortality rates of the pre-drought and the 12 -13 
months long post-drought census intervals. As such, had these post-drought rates been 
included in an overall droughted census interval of circa 2 years, the number of plots 
would have been too few to have confidently detected the short-term increase, rather 
requiring closer to 20 plots (left panel of Figure 2.9). However, due to the short duration of 
the droughted census interval, and by effectively excluding non-droughted mortality rates 
from it, even 10 plots would have sufficed to detect an increase of this magnitude (right 
panel of Figure 2.9). 

Similarly, in an Atlantic tropical moist forest, the effect of the 1987 and 1999 El Niño-
Southern Oscillation (ENSO) effects were detected using just five plots (Rolim et al., 2005). 
The large magnitude of the increases, from the 17-year long-term average of 1.4 % per 
year (average census interval 2.1 years) to 3.8 % (relative annual increase of 39 %) for the 
1987 event and to 4.9 % (61 % annual increase) for the 1999 event, shows that events of a 
severe magnitude can still be confidently detected, even with a small sample size.  

The increases reported by Williamson et al. (2000) and Rolim et al., (2005) illustrate that if 
the catastrophic event is large enough (i.e. ≥30 % increase in annual rates over a 2-year 
period in the case of the former), a network of 5-10 plots can suffice to identify it. These 
studies however also highlight the importance of relatively frequent re-censuses when 
wanting to detect the impact of catastrophic events, since the event might otherwise occur 
several years after the last plot census, and thus include years experiencing only 
background mortality in the “catastrophic” census interval. This effect would substantially 
decrease the observed overall rates. 
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2.4.3 Limitations and further work 

The forest dynamics variations as simulated here did not evaluate the scenario where the 
trend in mortality rates outpaces that in recruitment rates, as observed for example by 
Murphy et al. (2013) for the long-term dynamics of tropical rainforests in Australia. These 
forests were frequently disturbed by cyclones at various degrees of severity, and there was 
a long-term mortality increase of 2 % per year , and a 1 % per year increase in recruitment 
rates across their 20 plots monitored for 40 years. However, the number of plots required 
for confidently detecting a relative annual increase in annual mortality rates of 1 %, varied 
very little between the scenario where the population was stable (increases in recruitment 
rates equalling those of mortality at 1 %; ‘m1r1’) and the scenario where the overall 
population was increasing (recruitment rates increasing at 2 %; ‘m1r2’). As such, no 
substantial differences in results are expected for scenarios where mortality outpaces 
recruitment (e.g. ‘m2r1’ as identified by Murphy et al., 2013) compared to the 
corresponding “stable population” scenario ‘m2r2’ simulated here. 

Despite the focus of this study being on detecting increases in mortality rates between 
consecutive census intervals, using the same monitoring efforts, a decreasing trend could 
also be detected. As such the method can also be applied to detect any potential eventual 
“levelling off” of currently observed increasing trends. 

Though the effect is not expected to substantially alter the number of recommended plots 
required, future studies could address detecting changing rates in declining populations, 
linear increases in forest dynamics and the effect of variable interval lengths across plot 
censuses. Furthermore, the method used here could be adapted to provide estimates for 
required monitoring efforts in non-rainforest forests in- and outside of the tropics and 
assess if the numbers of plots required are similar when focussing on biomass losses.  

2.4.4 Recommendations  

Most studies identifying changing forest dynamics focus on changes in biomass, but stem-
based mortality was found to be a key driver of size stand structure and above-ground 
biomass in Amazonia (Johnson et al., 2016). Here, we show that a permanent sampling 
network of 40 plots can be used to detect changes in long-term stem-based mortality rates 
of 1 %, with three censuses over a period of twenty years. In addition, with biennial 
censuses, a network of this size can also detect one-off increases of one year at 40 % and 
one year at the normal background mortality rate, or an increase 15 % if the disturbance 
immediately follows the last re-census and the elevated mortality is sustained until the 
next re-census. A network of at least 60 plots will detect annual increases ≥2 % in 
background mortality rates with three censuses over just ten years. A network of 100 
plots, with censuses conducted every two years, will detect one-off catastrophic increases 
(where the census includes one year at background mortality rates) of 20 % for forests 
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with increasing mortality rates through time, or where the mean background annual 
mortality rate is ≥1.8 %. 

These results indicate that recommendations for an optimal minimum sampling network 
size will therefore differ depending on the underlying level of forest dynamics of the 
region. For example, in regions with more dynamic forests like the Western Amazon 
(Johnson et al., 2016), it is advised to have a minimum sampling network of at least 40 
plots, censused biennially, with an earlier re-census of approximately a year after the 
occurrence of any catastrophic event. However, in forests with relatively low mean 
mortality rates, like those on the Guiana Shield (Johnson et al., 2016), establishing a 
network of 70 plots is recommended, to detect similar small changes in background 
mortality rates. In general, for confidently identifying short-term catastrophic increases of 
over 15 %, (or over 40 % if including one year at background mortality rates), like in 
eastern Amazonian forests during El Niño drought events (e.g. Williamson et al., 2000), a 
sampling network of at least 40 plots is recommended. If wanting to detect both long- and 
short-term changes in mortality rates reliably, through setting up an extensive monitoring 
network, it could be advised to resample a proportion of the plots each year. This would 
ensure that the overall longer census interval length would allow for detection of any long-
term trends, while still providing a recent re-census for that proportion of the plots for the 
detection of any short-term increases. Overall, the findings presented here will help 
national governments and environmental agencies design sampling strategies to detect 
changes in forest dynamics that are appropriate for their region (Vicuña Miñano et al., 
2019). The robust statistical basis for these decisions will enhance confidence and help to 
support long-term investment in forest monitoring.  
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3 Tree mortality rates vary among biogeographical regions 
across the tropics 

3.1 Introduction 

Tree mortality shapes the standing biomass and structure of forests, returns nutrients to 
the soil, and provides a habitat for insectivorous birds in snags and for macrofauna in 
deadwood (Franklin et al., 1987). Though they have the potential to be long-lived, most 
trees die relatively young through an external cause of tree mortality, or a combination of 
causes, which can include a lack of resources (e.g. light, nutrients, water), biotic agents 
(e.g. parasitic insects, lianas, fungi, strangler figs) and adverse environmental conditions 
(e.g. flooding, fires, heat waves, landslides, blow-downs, volcanic eruptions, air pollution; 
Mueller-Dombois, 1986; Franklin et al., 1987). These processes operate at varying spatial 
and temporal scales, affecting from one individual tree to entire stands. Characterising 
variation in pan-tropical tree mortality rates can aid insights into whether and how 
mortality rate distributions vary at different spatial scales, and the relative importance of 
mortality drivers in different locations. Furthermore, since stem-based mortality rates have 
been identified as a key predictor of aboveground biomass (Johnson et al., 2016), 
understanding how these rates vary across the tropics might help understand controls on 
variation in biomass.  

Existing studies that have examined tropical tree mortality rates at large spatial and 
temporal scales show there can be pronounced regional differences in mortality rates 
across the tropics. For example, western Amazonia, with its more fertile and shallow soils, 
has more dynamic forests than eastern Amazonia (Phillips et al., 2004; Quesada et al., 
2012), and woody biomass residence times differ amongst all three tropical continents 
(Galbraith et al., 2013). These studies show that mortality rates are not constant at large 
spatial scales across the tropics and highlight the need for further understanding of 
mortality as a key ecological process. However, most tropical tree mortality studies to date 
have focussed on mortality dynamics at local scales, over relatively short periods of time, 
and use different protocols, thus making inter-comparison a challenge.  

A large number of observations, through both time and space, is required for accurately 
characterising mortality dynamics (e.g. Lloyd et al. 2009). In this chapter, tree mortality 
rate distributions are therefore derived from a unique, long-term pan-tropical dataset 
spanning decades of measurements in hundreds of plots in the forests of all four tropical 
continents. This dataset enabled us to determine at which spatial scale tree mortality rate 
distributions can be best described. Following Feldpausch et al. (2012), we distinguish nine 
biogeographically distinct regions in the four continents with tropical forests (Figure 3.1). 
Based on the various edaphic, climatic and compositional processes in each of these 
biogeographical regions, we expect different regional mortality rate characteristics.  
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Figure 3.1. Location of the permanent sample plots within their corresponding biogeographical regions.  
Forest cover: European Commission, Joint Research Center 2003. Regions: Feldpausch et al. (2012). Plot locations: 
Lopez-Gonzalez et al. 2013. 

Lower mortality rates are expected in North Australia, and Central and East Africa; 
intermediate mortality rates in West Africa, the Brazilian and Guyana Shields, and East-
Central Amazonia; and higher mortality rates are expected in Western Amazonia and 
South-East Asia. The variability of mortality rates in these regions is mostly expected to 
follow the average mortality trends, except in West Africa and the Guyana Shield, where a 
greater variability in mortality rates is expected. We expect mortality rate distributions to 
vary among biogeographical regions, rather than merely among continents. We test this 
prediction by characterising mortality rate distributions at different scales (plot level, 
biogeographical, continental and pan-tropical), using nested hierarchical Bayesian models 
(Kruschke, 2015; McElreath, 2016). 

The Bayesian models that are used in this chapter to derive estimates of tropical tree 
mortality are based on a logistic function, as has been applied in other studies estimating 
probabilities for dichotomous events like a tree dying (e.g. Hamilton Jr. and Edwards, 1976; 
Lines et al., 2010; Vanderwel et al., 2013). This distribution allows the skewed nature of 
mortality rates, where the large majority of tree deaths are concentrated in small events, 
to be accounted for. For example, in Amazonia, individual tree deaths and small distur-
bances of less than 0.1 hectare in area account for approximately 88.3 % of 1.88 Pg of 
carbon lost annually through natural disturbances (Espírito-Santo et al., 2014). Thus, since 
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most observed tree mortality events tend to involve only a few trees at a time, and larger-
scale mortality events are rare, especially in the tropics, stem-based mortality rate 
distributions are expected to be long-tailed, as has been observed at the continental scale 
for pan-tropical woody residence times (Galbraith et al., 2013). 

3.2 Materials and methods 

3.2.1 Data 

We derive mortality rates from tree measurements in a selection of long-term permanent 
sample plots of the RAINFOR (e.g. Phillips et al. 2004), AfriTRON (Lewis et al., 2009), Asian 
and Australian networks, as collated in the Forest Plots Database (Lopez-Gonzalez et al., 
2013). The permanent sample plots are distributed across undisturbed old growth mixed 
forests in the tropics, and have a minimum plot area of 0.2 ha. 

The 411 plots are typically one ha in size (1st quantile (25 %): 0.72, Q2 (median): 1.0; Q3 (75 
%): 1.0). All trees with a diameter at breast-height (dbh; generally at 1.3 m) greater than or 
equal to 10 cm are tagged with a unique identification number, identified to the lowest 
possible taxonomic level and the dbh is measured. The plots have been re-censused 4.6 
times on average (range 2-22, median 2), and have a mean census interval of 3.6 years 
(Q1: 1.6, Q2: 2.8, Q3: 5.0), resulting in a total of 1514 re-censuses during the period 1953-
2012 (mean 1997). There are 26 unique plot census intervals in East Africa, 103 in Central 
Africa, 63 in West Africa, 69 in the Brazilian Shield (Amazonia), 246 in East-Central 
Amazonia, 262 in the Guyana Shield (Amazonia), 476 in West Amazonia, 183 in South-East 
Asia and 175 in North Australia, with a mean overall monitoring period of 14.1 years (Q1: 
6.2, Q2: 11.9, Q3: 18.1). When plots are re-censused, it is noted whether the tagged trees 
have survived the census interval. New recruits are tagged and also checked for their 
status as dead or alive in the following census. There were no plots where no tree deaths 
had been observed during the entire monitoring period of the plot. 

3.2.2 Mortality rates 

Tree mortality rates can be expressed using the numbers of stems lost during a census 
interval. Following Sheil et al. (1995) we consider a stand of trees with a constant annual 
mortality rate of , (year-1). The number of trees in our hypothetical stand that will survive 
(!-) a census interval of . years, out of the original number of trees that were alive (!/) at 
the start of the census interval, is given by: 

!- = 	!/(1 −,)3 ( 3.1 ) 
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The annual stem-based mortality rate (the fraction of stems dying per year) can thus be 
expressed using the fraction of surviving trees as: 

,	 = 1 − (!-/!/)-/3 ( 3.2 ) 

(Sheil et al., 1995). Our analysis sought to estimate and compare the magnitude of 
variation in , within plots through time, and among plots within biogeographical regions, 
continents, and across the tropics as a whole. To do so, we developed a set of hierarchical 
Bayesian models that each characterized the probability distribution of , at different 
spatial scales. 

3.2.3 Hierarchical Bayesian Analyses 

The structure of our hierarchical Bayesian models mimic the hierarchical nature of the tree 
measurement data collected in the permanent sample plots, where measurements are 
nested both temporally (various censuses over time per plot) and spatially (plots are 
located within biogeographical regions, contents and across the tropics). Here, the basic 
unit of mortality is one census interval in one plot, where the annual mortality rate during 
that census interval is derived from the number of trees that survive the census interval. 
We can further distinguish four scales of variation that describe the distribution of 
mortality rates among plots and census intervals: 

1. Since climatic conditions in the same spatial location can vary from year to year, 

the first hierarchical level is the plot-level, which contains the mortality rates 

during all the census intervals for a given plot. This level therefore represents 

variation of the mortality rates in that location through time. 

2. Plots within a biogeographical region are expected to exhibit more similar 

mortality rate distributions, due to similar geomorphologic and phylogenetic 

conditions. Biogeographical regions therefore form the next hierarchical level, 

with all the mortality rates of all the census intervals of all the plots in a 

biogeographical region contributing to the large-scale variation in mortality rates 

across space in that region. The biogeographical regions defined here (sensu 

Feldpausch et al., 2012) are Central Africa, East Africa, West Africa, the Brazilian 

Shield (Amazonia), East-Central Amazonia, the Guyana Shield (Amazonia), West 

Amazonia, South-East Asia and North Australia. 

3. As the main phylogenetic differences in composition across the tropics are at the 

continental scale, neighbouring biogeographic regions were grouped together 

into their corresponding continents for the next level in the analysis: Africa, Asia , 

Australia and South-America.  
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4. The highest hierarchical level is comprised of the tropics as a whole, capturing 

the variation in both space and time across all measured plot census intervals in 

an attempt to characterise pan-tropical spatiotemporal variations in mortality 

rate distributions.  

In this study, we define several variations on a basic statistical model. These model 
variations are each hierarchically structured, such that we can formally describe the 
probability distribution of mortality rates in different ways. By varying the spatial extent 
that these probability distributions represent, insight can be gained about the spatial scale 
that best describes variation in mortality rates and thus what processes may drive these 
differences. A full description of the distinctions of all tested models is provided in 
Appendix E.  

For the first level in the hierarchy, we describe the annual rates for each census of a plot 
with a logit-transformed normal distribution of all annual mortality rates of that plot. 
Models with just one hierarchical level (HL1), assume the variation in mortality between 
plots is the same as that within a plot over time (i.e., there is no plot-specific mortality 
effect). Models with two hierarchical levels (HL2) overcome this, by allowing for plot-
specific parameter estimates, nested within a regional level. While the mean mortality rate 
is plot-specific, the variance in mortality through time is shared across each region. At this 
second hierarchical level, the location parameters (mean) of these plot distributions are 
again assumed to be described by logit-normal distributions for the corresponding spatial 
region. This spatial region can either be the bio-geographical region, the continent or pan-
tropical, resulting in nine, four and one estimated regional distribution(s) respectively. 

Each of these three HL2 models is parameterised using a Bayesian Markov Chain Monte 
Carlo (MCMC) sampling approach with non-informative priors using Filzbach, a parameter 
estimation package (Purves and Lyutsarev, 2011). Three independent Markov chains are 
used for each model, to decrease the risk of finding a local maximum likelihood optimum. 
Each of these chains are run for a burn-in period of 500,000 iterations, with a further 
500,000 iterations for parameter estimations. Overall chain convergence is assured by 567  
values of less than or equal to 1.20. In this fashion estimates, including uncertainty, for all 
relevant model parameters (see Appendix E, Table E.2) and Deviance Information Criterion 
(DIC) values were obtained for each of the three models. The DIC is most appropriate for 
comparing hierarchical models (Spiegelhalter et al., 2002). 

Starting at the lowest level of the hierarchy, we estimate the annual mortality rate ,8,9 

(year-1) during census interval : in plot ;. However, since mortality rates are bounded by 0 
(no mortality) and 1 (complete mortality), and generally quite close to 0, this does not 
allow for an efficient sampling of the parameter space of interest. To ensure correct 
estimates are obtained, all model parameters are estimated as real numbers (<8,9 ∈ ℝ) 
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probability	of	N0-N1	trees	dying	during	
census	interval	t	of	length	T	in	plot	x	

and only logistically transformed when compared to mortality observations. In this case 
,8,9 is the logit of its corresponding model parameter <8,9 (year-1): 

,8,9 =
1

1 + WXYZ,[  ( 3.3 ) 

The probability of an individual tree dying during census interval : (of length . years) in 
plot ;, which has an estimated mortality rate of ,8,9 per year, is: 

\]^_W^8,9` = 1 − ]1 − ,8,9`
3

 ( 3.4 ) 

and the log-likelihood function for observing !/ − !- dead and !- surviving trees for that 
plot’s census interval, given ,8,9 and assuming a constant mortality rate during any given 

census interval, equates to: 

aa]!/, !-b,8,9` = (!/ − !-) ∗ log d1 − ]1 −,8,9`
3efgggggggggghggggggggggi+ !- ∗ log d]1 −,8,9`

3efgggggghggggggi 

 

( 3.5 ) 

Moving up to the first level of the hierarchy, it is assumed that the logit-transformed 
mortality rates <8,9, for each census interval : of length . in a given plot ;, are drawn from 

a normal distribution with a plot-specific mean <8  (year-1) and a region-specific standard 
deviation jk (year-1): 

<8,9~	!(<8, jk) ( 3.6 ) 

Considering the full dataset, at the highest level of the hierarchy, the plot-specific mean <8  
is drawn from a regional-scale (bio-geographical, continental or pan-tropical) normal 
distribution with a region-specific mean <m,k  (year-1) and standard deviation jk (year-1): 

<8	~	!(nk, 	jk) ( 3.7 ) 

The overall likelihood thus becomes: 

aa = aa]!/, !-b,8,9`fgggghggggi+ aa]<8,9b<8, jk`fggghgggi+ aa	(<8|nk, jk)fggghgggi      ( 3.8 ) 

 

For each region, census mid date and plot size parameters were included as linear 
predictor variables. 

3.3 Results 

The spatiotemporal variation in our observed pan-tropical mortality rates is found to be 
described well using a normal distribution in logit-space. All models converged well, with 
the maximum 567  ≤ 1.20 for all parameters of each model, ≤1.05 for all parameters of 
models with one hierarchical level (HL1), and ≤1.01 for all regional parameter estimates of 
HL2 models.  

probability	of	observing	
N1	surviving	trees	

likelihood	for	all	
plots	in	one	region	

likelihood	for	all	
census	intervals	of	

one	plot	

likelihood	for	one	plot	
census	interval	
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The Deviance Information Criterion (DIC) scores of the different models were compared to 
assess their performance. The biogeographical HL2 model had the lowest DIC score 
(32.0⋅104), which was lower than both that of the HL1 plots only model and the HL0 model 
without any hierarchical levels (32.3⋅104 vs 32.3⋅104 respectively). This HL2 biogeographical 
model assumes that the spatiotemporal distributions of mortality rates vary among 
biogeographic regions, rather than among continents or across the tropics as a whole, 
suggesting that intra-continental variation is greater than inter-continental variation. 

 

Figure 3.2. Mortality rate distribution parameter estimates for each biogeographical region. 
Estimates include 95 % credible intervals for the regional means µc (kx in figure) and standard deviations sc (sx 
in figure) of the normal distributions in logit-space (including back-transformed mean annual mortality rate 
estimates mx,t – µx in figure) describing the regional mortality rate distributions of observed annual mortality 
rates for each biogeographical region. 

All biogeographical back-transformed nk  values and their corresponding jk estimates in 
logit-space, are presented including 95 % credible intervals (Figure 3.2, Table 3.1). 
Northern Australia is the biogeographical region with the lowest median mortality rate 
(0.80 %⋅yr-1; mean 0.92⋅yr-1), which is significantly lower than the median of all other 
biogeographical regions, except for East Africa (1.12 %⋅yr-1; mean 1.40 %⋅yr-1), possibly due 
to the plots in East Africa only being represented by 26 plot census intervals. East Africa 
thus only has a significantly lower median than the two regions with the highest median 
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mortality estimates: West Amazonia (2.04 %⋅yr-1; mean 2.19 %⋅yr-1) and the Brazilian Shield 
(2.71 %⋅yr-1; mean 2.90 %⋅yr-1). 

Table 3.1. Parameter estimates of the annual mortality rate distributions for the various regions at the 
biogeographical (BG), continental (C), and pan-tropical (PT) level. 
Estimates include their 95 % credible intervals in brackets. The back-transformed regional estimates nk (%⋅year-

1), correspond to the medians of the logit-normal distributions, and the standard deviations are for the 
distribution in logit-space jk (year-1). Using both of these parameters, the corresponding equivalent regional 
mean annual mortality rates mc (%⋅year-1) have been derived. To enable comparison with values from other 
studies, the standard deviations of the logit-normal distribution sdc (year-1) are included. The coefficients of 
variation covc show the same trend as the original jk estimates. 

Region qr sr mc	 sdc	 covc	

BG Central Africa 1.16  (1.03-1.26) 0.35  (0.29-0.42) 1.23 0.44 0.35 

BG East Africa 1.12  (0.80-1.56) 0.69  (0.44-1.04) 1.40 1.05 0.75 

BG West Africa 1.43  (1.20-1.71) 0.67  (0.55-0.81) 1.77 1.28 0.72 

BG Brazilian Shield 2.71  (2.45-3.00) 0.39  (0.32-0.48) 2.90 1.14 0.39 

BG East-Central Amazonia 1.16  (1.08-1.25) 0.50  (0.44-0.57) 1.31 0.69 0.52 

BG Guyana Shield 1.25  (1.14-1.36) 0.54  (0.46-0.63) 1.44 0.82 0.57 

BG West Amazonia 2.04  (1.95-2.13) 0.39  (0.35-0.43) 2.19 0.86 0.39 

BG South-East Asia 1.47  (1.35-1.59) 0.45  (0.40-0.51) 1.62 0.75 0.46 

BG North Australia 0.80  (0.71-0.88) 0.54  (0.47-0.63) 0.92 0.53 0.57 

C Africa 1.24  (1.15-1.35) 0.54  (0.47-0.61) 1.42 0.81 0.57 

C South America 1.63  (1.57-1.70) 0.54  (0.50-0.57) 1.87 1.05 0.56 

C Asia 1.46  (1.35-1.57) 0.46  (0.40-0.52) 1.62 0.76 0.47 

C Australia 0.80  (0.72-0.88) 0.54  (0.46-0.62) 0.92 0.53 0.57 

PT Pan-tropical 1.43  (1.39-1.48) 0.57  (0.55-0.59) 1.66 1.00 0.60 
 

The median mortality rate estimate in Central Africa (1.16 %⋅ yr-1; mean 1.23 %⋅yr-1) is 
virtually identical to that of East-Central Amazonia (1.16 %⋅ yr-1; mean 1.31 %⋅yr-1) and 
similar to that of the Guyana Shield (1.25 %⋅ yr-1; mean 1.44 %⋅yr-1), though its standard 
deviation in logit-space (0.35 yr-1) is significantly lower. The nk  estimates of West Africa 
(1.43 %⋅yr-1; mean 1.77 %⋅yr-1) and South-East Asia (1.47 %⋅yr-1; mean 1.62 %⋅yr-1) are also 
similar to one another. Frequent high-mortality events observed in West Africa are likely to 
be responsible for its standard deviation estimate (0.67 yr-1) being significantly higher than 
that of South-East Asia (0.45 yr-1). 

Overall, after translating these biogeographical nk  and jk estimates into their 
corresponding mortality rate distributions (Figure 3.3), they are found to approximate the 
observed plot census interval rates reasonably well (Figure 3.4). 

While the variation in mortality rate distributions was found to be best described at the 
biogeographical scale, there is also evidence for differences among continents (DIC = 
32.5⋅104): the median mortality estimates n8  differ significantly between most continents, 
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Figure 3.3. The estimated annual mortality probability density distributions for all biogeographical regions.  
These distributions describe the relative probabilities of observing a given annual mortality rate m (µ in figure) 
in each of the biogeographical regions, back-transformed to a logit-normal distribution from the corresponding 
region’s µc and sc estimates in logistic space. 

based on a lack of overlap between the 95 % credible intervals of the parameter estimates 
(Table 3.1). Australian forests have the lowest median mortality rates (0.80 %⋅yr-1; mean 
0.92 %⋅yr-1). Median annual mortality rates in African forests are just significantly lower at 
1.24 %⋅yr-1 (mean 1.42 %⋅yr-1) than those of South-East Asian forests (1.46 ; mean 1.62 
%⋅yr-1). The credible intervals for South-East Asian forests slightly overlap the higher 
median rates of 1.63 %⋅yr-1 for plots in South America (mean 1.87 %⋅yr-1). This overlap is 
expected, since at the continental scale, the South American region includes forests from 
both the East-Central and Guyana Shield regions, which have a significantly lower 
estimates of nk  than South-East Asia in the biogeographical regions model. 
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Figure 3.4. The fit of the estimated probability density distributions of each biogeographical region relative 
to their proportions of mortality rates observed for each plot census interval. 
The number of observed plot censuses (n) is included for each region. 

The pan-tropical hierarchical mortality model has a similar DIC score to the continental 
scale model (3.25⋅104). The pan-tropical median estimate (1.43 %⋅yr-1; mean 1.66 %⋅yr-1) 
closely matches the rate observed in the actual plot census data of 1.42 %⋅yr-1, and 
estimates from previous studies of a mean pan-tropical turnover rate of 1.74 %⋅yr-1 (SE 
0.06; n=158; Stephenson and van Mantgem, 2005), and a median background tropical 
mortality rate of 1.6 %⋅yr-1 (n=68; Lugo and Scatena, 1996). 

The final estimated distributions confirm that mortality rates vary at biogeographical 
regions within continents, indicating that variation in tropical tree mortality is likely to be 
driven by a combination of edaphic, climatic and compositional factors. 

3.4 Discussion 

Regional variation in pan-tropical annual tree mortality rates can be captured well by 
normal distributions in logit-space using random effect hierarchical Bayesian analyses at 
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biogeographical, continental and pan-tropical spatial scales. Furthermore, this study has 
shown that this method can be used to specify probability distributions at these different 
spatial scales, including credible intervals for the parameter estimates. Crucially, this 
approach therefore allows robust statistical comparisons of the distributions. Overall, 
variation in mortality rates was greater among, rather than within regions: there are 
distinctive mortality rate distributions for different biogeographical regions, reflecting not 
only regional differences in the median and mean mortality rates, but also the relative 
importance of the magnitude of mortality events in shaping overall forest dynamics. 

Most estimated biogeographical region-specific mortality rate distribution parameters 
matched our expectations. The main inaccuracies in the predictions are in the variability of 
the mortality rates within a biogeographical region, with a third of them being the 
opposite of what was expected (high estimated variability in mortality rates, rather than 
the expected low variability, in East-Africa; low in West Amazonia; and high in Australia) 
and two being lower than expected (low in the Brazilian Shield (Amazonia) and average in 
South-East Asia). Of the median mortalities, only one estimate - for the Brazilian Shield - 
was higher than expected. 

Overall, the consistency of the predictions with the results suggests that regional median 
mortality rates can be predicted based on an understanding of variation in climatic and 
edaphic conditions, and species composition. Although the approach does not provide 
definitive answers as to the specific drivers involved in each case, it is possible to speculate 
on the key attributes of each region that may determine the different patterns. The key 
patterns documented here are high levels of variation in mortality rates among different 
regions of African forests, low mortality rates but with high variability in forests in North 
Australia, and high mortality rates with low variability for forests both in West Amazonia 
and on the Brazilian Shield. 

With regards to the influence of climatic and edaphic conditions on tree mortality rate 
distributions, we expected trees growing in arid, cooler, more seasonal and/or nutrient-
poor conditions to grow more slowly, become denser-wooded, and thus more resilient to 
unexpected dry spells or snapping during multiple tree- fall or wind-throw events (e.g. 
Muller-Landau, 2004), corresponding to lower expected mean mortality rates and less 
variability (Hammond, 2005; Error! Reference source not found.). Cyclones are expected 
to not only increase average mortality rates, but also the intraregional spatiotemporal 
variability, since some patches can experience large-scale blow-downs, while others will be 
unaffected (Table 3.1). If trees have a shallow rooting system, for instance due to the 
presence of a physical barrier, or their soil becomes waterlogged, storm events increase 
the likelihood of these trees being uprooted (Gratkowski, 1956; Table 3.1). With increasing 
soil age, weathering tends to increase soil depth and increase tree stability (Table 3.1). 
Finally, the geological history of different continents has resulted in differences in forest 
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composition and diversity (Richards, 1996), which may also cause differences in mortality 
rate distributions among different biogeographical regions. For example, South-East Asian 
tropical forests tend to be dominated by Dipterocarpaceae, whereas African forests tend 
have a much lower diversity (Richards, 1996; Primack and Corlett, 2005), Australian 
rainforests have more sclerophyllic species (Bowman, 2000) and South American forests 
are highly diverse (Primack and Corlett, 2005; Richards, 2005). Through combining these 
hypothesised effects from climatic and edaphic conditions and species compositions and 
diversity for the different biogeographical regions, we formulated our expectations for 
their relative mortality rate distribution characteristics (Table 3.3). 

Table 3.2. Hypothesised effect of climatic and edaphic variables on mean and variation in tree mortality 
rates 
é = positive effect (increased mortality rates/greater variability), ê = negative effect (reduced) 

  Hypothesised effect 

Climate Mean Variability 

Mean annual precipitation é é 

Seasonality ê ê 

Mean annual temperature é é 

Dry season (no. of months) ê ê 

Cyclone events é é 

Soils Mean Variability 

Soil fertility (org. C content) ê é 

Soil rooting depth ê ê 

Easily available moisture é é 

 

The relatively low median mortality rates of Central African forests, with very few larger 
mortality events (Figure 3.4, Table 3.1), may be driven by a combination of deep, nutrient-
poor, sandy, and acidic soils (Hart et al., 1989; Peh et al., 2011; Kearsley et al., 2013), a high 
abundance of shade-tolerant mono-dominant species (Lewis et al., 2013), and relatively 
low mean annual precipitation (Malhi and Wright, 2004). East African forests also had 
relatively low median mortality rates (Figure 3.2, Table 3.1), which may be due to relatively 
low mean annual precipitation and temperatures, with forests on deep soils with relatively 
little organic carbon content and little easily available moisture (Eggeling, 1947). While we 
expected there to be few larger mortality events, it actually appeared to be one of the 
mortality rate distributions with the heaviest tail (Figure 3.4), which could, amongst others, 
be caused by disturbances by elephants (Eggeling, 1947).  
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Table 3.3. Overall expected mean and variability in mortality rates for different biogeographic regions based on the hypothesized effects of predominant climatic and edaphic conditions 
(Table 3.1) and species composition. 
é = higher rates/greater variability, - = average rates/variability, ê = lower rates/less variability, MAP = mean annual precipitation, Snl. = seasonality (inter- and intra-annual climatic variation), 
MAT = mean annual temperature, DSL = dry season length, CE = cyclone events, SF = soil fertility, SD = soil rooting depth, EAM = easily available moisture, FD = forest diversity 

    MAP Snl. MAT DSL CE SF SD EAM FD Overall Motivation 

Central Africa 
Mean ê - - - - - ê - ê ê Deep, nutrient-poor, sandy, acidic soils (Hart et al., 1989; Peh et al., 2011; Kearsley et al., 2013). El 

Niño temperature effect average, precipitation unaffected (Malhi and Wright, 2004), shade-tolerant 
Gilbertiodendron mono-dominance common (Primack & Corlett 2005), otherwise mixed forests on 
similar soils (Hart et al. 1989; Peh et al. 2011), thus slower growing. 

Var. ê - - - - - ê - ê ê 

East Africa 
Mean ê - ê ê - é é ê ê ê Relatively low mean annual precipitation and temperature, long dry season, on deep soils with 

relatively little organic carbon content and little easily available moisture (Eggeling, 1947). Slightly 
increased mortality and variability expected due to elevational, precipitation and edaphic gradients, 
combined with disturbances by elephants (Eggeling, 1947) 

Var. ê - ê ê - ê é ê ê ê 

West Africa 
Mean - é é é - é - ê - - Overall higher mean annual temperatures, shorter dry seasons, little variation in precipitation 

throughout the year on comparably poor, slightly deeper soils, low mean wood density (Hammond, 
2005), but strong gradient from forests on more fertile soils with less precipitation to less fertile, 
acidic soils with more precipitation (Swaine, 1996) 

Var. - é é é - ê - ê - é 

Brazilian Shield, 
Amazonia 

Mean ê ê - ê - ê - - é - Relatively high abundance of disturbance-driven taxa like Swietenia and Attalea, with hyper-
dominance by Attalea speciosa (Hammond, 2005), despite relatively low mean annual precipitation 
and average temperatures; long dry season length and nutrient poor soils (Malhi and Wright, 2004) Var. ê ê - ê - é - - é - 

East-Central 
Amazonia 

Mean - - é - - é - é ê - Co-domination by dense-wooded Chysobalanaceae and Lacythidaceae (Hammond, 2005), average 
tropical climatic conditions, apart from a relatively high mean annual temperature, relatively young, 
clay-rich, but nutrient-poor soils (Quesada et al., 2011) Var. - - é - - ê - é ê - 

Guyana Shield, 
Amazonia 

Mean é é é é - ê ê - ê - Relatively high abundance of dense-wooded caesalpinoid legumes (Hammond, 2005), high mean 
annual precipitation and temperatures; old, nutrient poor soils, relatively strong intra- and inter-
annual climatic variations Var. é é é é - é ê - ê é 

Western 
Amazonia 

Mean - é é - - - é é é é Relatively high abundance of more dense disturbance-associated taxa (e.g. Iriartea and Swietenia; 
(Baker et al., 2004b; Hammond, 2005), blow-down events (Espírito-Santo et al., 2010), relatively high 
mean annual temperature and little seasonality, nutrient rich, young soils. Have already been shown 
to have more rapid turnover rates than Eastern Amazonia (Phillips et al., 2004)  

Var. - é é - - - é é é é 

South-East Asia 
Mean é é é é é ê é é é é No dry season, high mean annual temperatures and precipitation, relatively young and fertile soils, 

hurricane occurrences, mast-fruiting of Dipterocarps (creating disturbance-prone even-aged 
cohorts), higher temperatures and decreased precipitation during El Niño events relative to La Niña 
events (Malhi and Wright, 2004) causing high inter-annual climatic variation. 

Var. é é é é é é é é é é 

Australia 
Mean ê ê ê ê - ê - - ê ê  Fertile basalt soils of an intermediate age (Bowman, 2000), but relatively low mean annual 

precipitation and temperatures; high seasonality with a long dry season, abundance of 
sclerophyllous species. Var. ê ê ê ê - é - - ê ê 
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Mortality rate distribution parameters for East Africa, and to a lesser extent West Africa, 

had relatively wide credible intervals on both estimates (Table 3.1). This pattern may be 

due to a combination of a relatively low number of observations, and a high proportion of 

larger mortality events, particularly for East Africa. When comparing this region’s 

estimated distribution against the plot observations, the estimated distribution could be 

underestimating the likelihood of higher-mortality events (rates of circa 2-4 % ⋅year-1; 

Figure 3.4), which suggests a relatively high occurrence of disturbances in this region 

during the measurement period. Adding an African continental hierarchical level on top of 

the biogeographical hierarchical level could help constrain the credible intervals, but would 

also pull their regional estimates towards an overall African distribution, which would most 

likely result in further underestimation of these moderate mortality events. 

Unlike the other two African biogeographical regions, West African forests have mid-high 

median mortality rates, which may be primarily linked to the high soil fertility of the semi-

deciduous forests in this region (Swaine, 1996), combined with relatively higher mean 

annual temperatures (Malhi and Wright, 2004). The West African mortality rate 

distribution has a relatively heavy tail (Figure 3.4), as was expected, which may be partially 

due to the presence of a strong gradient from forests on more fertile soils with less 

precipitation to less fertile, acidic soils with more precipitation (Swaine, 1996). 

Furthermore, Ghanaian forests have been experiencing a compositional shift towards 

more drought-tolerant vegetation during the past couple of decades (Fauset et al., 2012), 

following a prolonged (1968-97) non-ENSO type drought (Nicholson et al., 2000). This 

climatic shift may also be driving mortality events of increased magnitude of less drought-

tolerant species (Fauset et al., 2012; Aguirre-Gutiérrez et al., 2019). 

Unexpectedly, the Brazilian Shield region experienced the highest median mortality rates 

of the tropics during the study period (Figure 3.2, Table 3.1). Mid-low median mortality 

rates were expected, based on the relatively average mean annual precipitation and 

temperatures, relatively pronounced dry seasons in terms of experienced intensity (Malhi 

and Wright, 2004), and relatively old, deep soils (Hammond, 2005). However, Marimon et 

al., (2014) have shown that forest trees close to the transition zone with the Cerrado in the 

south of this region have experienced greatly elevated mortality rates following the 2005 

non-ENSO drought (from ca. 1.5-1.6 %⋅yr-1 to ca. 4 %⋅yr-1). The region experienced an even 

more severe non-ENSO drought during the dry season in 2010, and in general dry season 

length and severity have been increasing over the past decade (Marengo et al., 2011). 

Interestingly, the Brazilian Shield’s mortality rate distribution also has the lightest tail, 

corresponding to a series of mortality events of largely similar magnitudes. Since nearly 

half of the plot census intervals in the Brazilian Shield span the period between these two 

drought events, the overall identified mortality rate distribution will have been largely 

influenced by these elevated mortality events. 
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The mid-low median mortality rates of East-Central Amazonian forests, with their average 

tail of slightly larger mortality events (Figure 3.2, Table 3.1), might results from their 

relatively young soils, which are rich in clay, but poor in available nutrients (Quesada et al., 

2011) and co-domination by denser-wooded species (Hammond, 2005). Median mortality 

rates of the same order were identified for the forests of the Guyana Shield, though with a 

slightly heavier tail (Figure 3.2, Table 3.1).Here we find relatively high mean annual 

precipitation and temperatures, with potentially pronounced inter-annual variation in 

precipitation during, amongst others, El Niño Southern Oscillation or La Niña phases, tree 

species with relatively high mean wood densities on old, acidic soils, with poor nutrient 

availability (Hammond, 2005).  

This in contrast to the forests in mostly aseasonal West Amazonia growing on soils 

enriched by erosion from the nearby mountain ranges (Hammond, 2005), which has been 

suggested as an important driver behind the relatively high observed median mortality 

rates (Figure 3.2, Table 3.1), especially relative to East-Central Amazonia (Phillips et al., 

2004). Quesada et al. (2012) suggest that the higher mortality rates in West Amazonia 

could also be a consequence of adverse soil physical properties, which predispose trees to 

a higher mortality risk through unfavourable conditions like bad drainage, low water 

retention capacity or little easily available rooting space, rather than directly through 

enhanced dynamics due to an increased nutrient availability. However, the proportion of 

trees dying uprooted was not found to differ significantly between north-western and 

north-eastern Amazonia (Chao et al., 2009), suggesting there are not necessarily solely any 

soil structural drivers at play. As trees in western Amazonia tend to die in small-scale 

multiple treefall events (Espírito-Santo et al., 2014) and the main mode of death is by being 

broken (Chao et al., 2009), this suggests small gaps are created frequently, and are filled by 

disturbance-driven taxa that can utilize the abundant nutrients to grow quickly. However, 

the fast growth strategy of these species comes at the cost of having a lower wood density, 

which predisposes them in turn to future breakage-related mortality events (Quesada et 

al., 2012). This feedback reinforces the pattern of small-scale mortality events driving the 

overall forest dynamics in this region (Quesada et al. 2012), and is confirmed by the fact 

that, despite being a region with one of the highest median mortality rates, contrary to our 

expectations, the standard deviation of the logit-normal distribution was found to be one 

of the lowest (Figure 3.2, Table 3.1). 

Forests in South-East Asia were found to have mid-high median mortality rates, with an 

average occurrence of larger-scale mortality events (Figure 3.2, Table 3.1). Here we find 

relatively high mean annual temperatures and precipitation, with little seasonality, 

relatively young and fertile soils, and a relatively high abundance of Dipterocarps, which 

have relatively lower wood densities (Hammond, 2005). El Niño Southern Oscillation 
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phases are accompanied by higher temperatures and decreased precipitation, relative to 

La Niña phases (Malhi and Wright, 2004) causing high inter-annual climatic variation.  

Median annual tree mortality rates were found to be lowest in forests in Northern 

Australia, however standard deviations were found to be mid-high (Figure 3.2, Table 3.1). 

Australia has relatively low mean annual precipitation and temperatures, with the greatest 

seasonal variation in temperatures, and the most pronounced dry season (Malhi and 

Wright, 2004). These conditions were expected to favour overall lower mortality rates, 

however the relatively ‘fat’ tail suggests the forests in this region are occasionally 

disturbed by external forces, resulting in mortality events of moderate intensity. A forty-

year study has indeed confirmed that Australian forests are regularly disturbed by soil 

pathogens, erosion, cyclones and droughts (Murphy et al., 2013). 

The statistical approach developed here has a range of potential applications. Firstly, the 

mortality rate distributions identified here can be used to place the mortality rates 

identified in local studies in a regional, continental or pan-tropical context. Secondly, this 

approach could be used to provide an improved description of tree mortality within 

vegetation models. Since most dynamic vegetation models work with the fraction of 

biomass that is lost, a similar study on biomass-based mortality rate distributions would be 

recommended, ideally including potential drivers directly as factors (e.g. sensu Lines et al. 

(2010) for stem mortality rates for the eastern U.S.). This could be used as means to 

explore how changes in any drivers may influence these distributions of forest dynamics. 

Alternatively, the approach used here of defining mortality rate distributions, and 

quantifying the relative probabilities of the magnitudes of mortality events, could be used 

to create probability distributions for stochastic tropical individual-based models at any 

spatial scale. Finally, these distributions can also be used for assessing and informing 

sampling strategies, as shown in Chapter 2. 

Overall, the inter-continental differences in median mortality rates identified in this study 

match those for woody biomass residence times from Galbraith et al. (2013), with 

mortality rates increasing, and thus residence times decreasing, from Australia, through 

Africa and Asia, to the Americas. However, here we also provide insight into the variability 

of the mortality rates within these regions, providing evidence of biological variation in 

their disturbance regimes at biogeographical scales. 
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4 4. Has drought stress caused the long-term increase in 
tree mortality rates in Amazonian forests? 

4.1 Introduction  

Tropical old-growth forests function as an important carbon sink, accounting for nearly 

two-thirds of the global biomass carbon sink in the period 1990-2007 (1.5 Pg C year-1; Pan 

et al., 2011). However, during recent decades there have been strong increases in stem-

based mortality rates in old growth South American tropical rain forests (Phillips et al., 

2008; Lewis et al., 2004b). Whilst increases in tree mortality rates are surpassed by 

recruitment, the tropical forests’ carbon sink will likely be preserved, but increasing tree 

mortality rates might transform these forests into a carbon source in the near future. 

Indeed, spatially, stem-based tree mortality rates are an important predictor of AGB 

(Johnson et al., 2016; Vilanova et al., 2018), and recent evidence suggests the increase in 

recruitment rates in Amazonian tropical old growth forests is starting to level off, whilst 

mortality rates are still increasing (Brienen et al., 2015; Hubau et al., 2020). Understanding 

the mechanisms driving variation in tree mortality rates in South American forests is 

important for understanding what could happen to this important carbon sink in the 

future. 

An increase in the prevalence and severity of droughts could be a crucial driver of the 

recent increase in tree mortality rates (Nepstad et al., 2007; Phillips et al., 2009; Allen et 

al., 2010; Marengo et al., 2011; Aubry-Kientz et al., 2015b). Studies of the impact of 

drought on Amazonian forests have mainly focussed on individual drought events (Bonal et 

al., 2016), and compared mortality rates of a pre-drought period, to those during or 

following these specific drought events (Phillips et al., 2009, 2010). For example, during the 

2005 Amazon drought, biomass losses through individual tree mortality were found to 

increase linearly with drought intensity, expressed as a change in maximum cumulative 

water deficit (Phillips et al., 2009). A similar pattern was identified using stem-based 

mortality rates for various individual drought years observed across the tropics, with 

Amazonian forests occupying the lower end of this relationship (Phillips et al., 2010). In 

addition, there have also been studies of the effects of two consecutive droughts (e.g. 

Feldpausch et al., 2016). In this case, anomalous biomass losses observed for Amazonian 

plot censuses spanning the 2010 drought were unrelated to the severity of the MCWD 

anomaly, and unrelated to whether the plots had been droughted previously during either 

the 2005 or the 2007 drought, or both (Feldpausch et al., 2016). However, there has been 

no study of how long-term increases in stem mortality rates are linked to long-term 

changes in drought stress that incorporate both short term droughts, and longer term 

climatic trends. Here, I therefore analyse how drought stress over the past decades may 
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have contributed to the observed increased stem-based tree mortality rates in South 

American forests, based on a long-term monitoring effort of permanent sample plots. 

This chapter thus aims to address the following questions: 

- Is there evidence of temporal changes in stem-based tree mortality across or 
within tropical South American old growth forests? 

- Is there evidence of temporal changes in the precipitation/transpiration-driven 
water balance in the climatologically differing biogeographical regions? 

- Can variation in water deficits partially explain variation in mortality rates, 
independent of any long term linear trend over time? 

4.2 Methods  

Firstly, stem-based mortality rates were derived for each region Amazonian region from 

field data from a long-term permanent sampling plot network (see 4.2.1). Secondly, the 

precipitation/transpiration-driven water balance was derived for the corresponding plot 

censuses (see 4.2.2). Any potential temporal trends and relations between them were 

firstly investigated using correlation and linear analyses (see Section 4.2.3), followed by 

Bayesian parameter estimation (see 4.2.4). 

4.2.1 Forest dynamics data from permanent sample plots 

Mortality rates across South America were derived from the long-term forest dynamics 

permanent sample plots measurements of the RAINFOR network (Phillips et al. 2004), 

accessed through the Forest Plots Database (Lopez-Gonzalez et al., 2013), and census 

interval corrected for the linear analyses as per (Lewis et al., 2004c). These permanent 

sample plots are located in undisturbed old growth mixed forest, across a range of 

different edaphic, biogeographic and environmental conditions. 

To determine whether variations in these conditions affect the dynamics of the forests in 

these regions differently, the 154 South American RAINFOR plots were split into 6 regions. 

A primary division was made based on biogeographic conditions following Feldpausch et 

al. (2011), distinguishing the Brazilian Shield, the Guyana Shield, and East-Central 

Amazonia. Feldpausch et al.’s West Amazonia was then further divided according to 

differing environmental conditions, resulting in separating the more aseasonal Northwest 

Amazonia, from the more seasonal Southwest Amazonia at -8° latitude as per Steege et al. 

(2013), and the drier Northwest Venezuelan plots north of 0° latitude (see Figure 4.1).	

Mortality rates were derived for the 616 plot census intervals with an average length of 3.4 

years (median 2.5) in a similar fashion as described in Chapter 3. On average the South 

American plots had been re-censused 4 times (range 1-20, median 3) between 1967-2008, 

with 16 plot census intervals in the Brazilian Shield, 64 in Northwest Amazonia, 119 in  
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Figure 4.1. Permanent sample plot locations within the six South American regions. 
Plot location indicators have been scaled for the number of census intervals. 

Southwest Amazonia, 74 in Northwest Venezuela, 184 in East-Central Amazonia and 159 in 

the Guyana Shield. 

The effect of the calculated maximum monthly cumulative water deficit (see Section 4.2.2) 

and the census interval mean and end date on these derived mortality rates for each plot 

census interval were estimated both using linear models (see Section 4.2.3) and using 

Hamiltonian MCMC parameter estimation techniques (see Section 4.2.4) in R using Stan as 

detailed below. 

4.2.2 Maximum monthly cumulative water deficit 

The maximum monthly cumulative water deficit (MCWD) was calculated using monthly 

precipitation data for the census interval period, including 2 years prior to the census date 

as per Aragão et al. (2007). The precipitation data was obtained from the high-resolution 

gridded time-series dataset CRU TS v. 3.10 (Harris et al., 2014), where the corresponding 

monthly data per 0.5° grid cell were selected using the ‘RNetCDF’ package (Michna and 

Woods, 2011) in R. In line with the procedure used by Aragão et al. (2007), transpiration 

from vegetation was assumed to be 100 mm/month. The cumulative water deficit 

calculations commenced at the wettest month of the year, when the soil is assumed to be 

fully saturated with water, corresponding to a deficit of 0 mm. If precipitation for the 
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following month(s) exceeded 100 mm, the soil was still assumed to be water-saturated and 

the MCWD calculation for the next month proceeded with no water deficit. 

When monthly transpiration exceeded the monthly precipitation, a water deficit in the soil 

was noted for that month, which was carried over to the next month, requiring 

precipitation in the following month to exceed transpiration by the amount of the deficit in 

order to cancel it out. For the overall census period, the month with the highest obtained 

cumulative water deficit was denoted as the maximum monthly cumulative water deficit 

(MCWD) for that period. The MCWD thus provides an indication of the degree of water-

stress the vegetation might have experienced during that census interval. However, during 

drought conditions, decreased precipitation may be accompanied by higher atmospheric 

temperatures and drier air, which increase evaporative demand, and might thus increase 

transpiration, unless stomatal conductance is adjusted accordingly(Bonal et al., 2016), 

resulting in a potential underestimation of soil water deficits by the MCWD (Malhi et al., 

2009). 

While some studies (e.g. Phillips et al., 2009) have used the mean annual MCWD for each 

census interval, here, we are interested in the effects of the highest overall MCWD 

observed during a census interval, similar to Feldpausch et al. (2016). The annual MCWD 

values (annMCWD) were calculated and evaluated as well, but mainly resulted in the same 

findings at the same level of significance. Additionally a tally was kept of the number of 

consecutive months during which a deficit was registered for each plot census interval. 

4.2.3 Linear models 

Firstly, for all South American regions, the Pearson product moment correlation coefficient 

between the tree mortality rates, MCWD and census mid and end date were examined 

using the ‘cor.test’ function from the ‘stats’ package available in base R. The pair-wise 

correlations included: (1) mortality rates versus census mid- and end-date, to test for an 

increase of mortality rates over time, using both the calculated observed mortality rates as 

they were (μ), and a normalised distribution of the mortality rates after a logit 

transformation (μ*); (2) MCWD versus census mid and end date, to test for an increase of 

maximum cumulative water deficits observed over time, using MCWD and a normalised 

distribution of the MCWD values (MCWD*). Since the MCWD values were negative, 

skewed towards smaller deficits, with only a few larger deficits, and also included zeroes in 

regions where precipitation exceeded 100 mm during each month of the year, the MCWD 

values were normalised as follows: !"#$∗	' − ln(−(!"#$− 1)), where 1 mm was 

subtracted from all deficits, to remove zeroes, and the deficits were transformed into 

positive numbers, both to enable a natural logarithm transformation, after which the 

values were returned to their original negative state, to facilitate comparison to the non-

transformed MCWD values; (3) mortality rates versus MCWD, to see if increases in 
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mortality rates, irrespective of their overall timings or trends, correspond to any increases 

in water deficits, using the untransformed and the normalised values of both of these.  

4.2.4 Hamiltonian parameter estimation	

A variation of the non-hierarchical Bayesian inference model described in Chapter 3 was 

used, focussing on mortality and water deficit trends at a biogeographical scale, since the 

results from Chapter 3 showed this to be an important scale for describing variation in 

annual tree mortality rates. Specifically, we test whether census interval mid or end date 
or MCWD were found to be predictors of the annual mortality rates ./,1 (year-1; in logistic 
space) observed during census interval ! in plot " of biogeographical region r as follows: 

./,1 =
1

1 + 4567,8
 ( 4.1 ) 

where 9/,1 is a linear function of either of the predictor variables: 

9/,1 = :; + <;=/,1	 ( 4.2 ) 

with :; being a region-specific constant parameter, <; the region-specific scaling 
parameter, and =/,1  the value of the predictor variable for that plot census interval. Both 

region-specific parameters are drawn from normal distributions: 

:;	~?@:;,A, BCDE

<;	~?@<;,A, BFDE
 ( 4.3 ) 

Since the MCWD values are negatively skewed, while also containing some zero values, 

their plot census specific normalised values were drawn from a regional normal 

distribution after transformation as per 4.2.3. 

The parameter estimation was performed using the ‘rstan’ package (Stan Development 

Team, 2018), since it uses Hamiltonian Monte Carlo sampling and is compiled in C++ 

(Kruschke, 2015), and has proven more efficient in evaluating the models of interest 

presented here, as evaluated by the MCMC diagnostics adapted from those provided in 

the ‘diagMCMC’ function by Kruschke (2015), with regards to representative sampling of 

the posterior distribution by all chains, the autocorrelation observed, the effective sample 

size and the “shrink factor” (Gelman-Rubin) statistic being close to 1, which indicates that 

the chains have all converged. 

All analyses described here were performed using R versions 3.2.1 and 3.4.4 (R Core Team, 

2015; R Core Team, 2019) in RStudio (RStudio Team, 2016). 
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4.3 Results 

4.3.1 Regional mortality trends 

Both the linear and Stan models of mortality rates with census interval mid and end dates 

suggest there has indeed been a highly significant increase of mortality rates through time 

for South America as a whole, with the most significant increase observed in NW 

Venezuela (correlation 44 %, p<0.005; see Table 4.1, Figure 4.2), followed by the Guyana 

Shield when using the transformed mortality rates (μ*; 34 %, p<0.005) and East-Central 

Amazonia for μ* in Stan (18 %, p<0.005). Southwest Amazonia also seems to have 

experienced a similar increase in mortality rates (18 %, p<0.05). However, while the 

correlation and linear analyses suggest Northwest Amazonia actually might have been 

experiencing a substantial decrease in annual mortality rates over time, this result was not 

found to be significant in the Bayesian analyses in Stan (-32 %, p<0.05 for the linear 

analyses, p<0.1 for Stan). For the Brazilian Shield, which already has the highest mean 

annual mortality rates of all there regions, there are indications that a slight increase might 

have occurred, though no significant trend could be discerned, likely due to the smaller 

sample of plot censuses for this region (n=16). 

 

Figure 4.2. Regional South American annual mortality rates versus census interval mid date. 
Including significant trends (p<0.05; see Table 4.1) of increasing annual mortality rates with time as identified 
for Southwest Amazonia, East-Central Amazonia, the Guyana Shield and across all the South American regions 
(long-dashed trend line in black). A significant decrease was identified for Northwest Amazonia, but only in the 
linear models, not in the Bayesian analyses. No significant trend with census interval mid date was identified 
for the annual mortality rates observed in the Brazilian Shield (p>0.10). 
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Table 4.1. Parameter estimates for potential relationships between regional South American tree mortality 
rates, time, and maximum cumulative water deficit. 
Analyses include correlation (Corr.; in %), linear (Glm) and Bayesian (Stan) pairwise comparisons (response 
variable ~ intercept + effect * predictor variable) for each of mortality rates, maximum cumulative water deficit 
(MCWD), and time per South American region and across all regions (μ = census interval corrected annual 
mortality rate (%); μ* normalized mortality rates in logistic space; MCWD = maximum monthly cumulative water 
deficit (mm); MCWD* normalized MCWD rates; time = census interval mid date; p values: bold = ≤ 0.001, 
underlined = ≤ 0.01, regular = ≤ 0.05, dark grey = ≤ 0.10, light grey > 0.10) 

Estim. 
type 

Response 
variable 

Predictor 
variable 

NW 
Venez. 
(n=74) 

NW 
Amaz. 
(n=64) 

EC 
Amaz. 

(n=184) 

SW 
Amaz. 

(n=119) 

Guyana 
Shield 

(n=159) 

Brazil. 
Shield 
(n=16) 

All 
regions 
(n=616) 

Corr. μ Time 44 -27 16 19 18 10 25 
Glm μ Time 0.063 -0.059 0.014 0.034 0.018 0.036 0.033 
Stan μ Time NA NA NA NA NA NA NA 
Corr. μ* Time 49 -32 18 18 34 3 36 
Glm μ* Time 0.045 -0.039 0.018 0.013 0.040 0.004 0.038 
Stan μ* Time 0.032 -0.023 0.022 0.014 0.017 -0.009 0.024 

Corr. MCWD Time -20 -13 36 -20 10 75 9 
Glm MCWD Time -4.738 -1.401 3.429 -4.990 1.080 9.370 1.714 
Stan MCWD Time -4.727 -0.807 2.813 -4.793 1.129 8.822 1.662 

Corr. MCWD* Time -38 2 26 -21 10 71 14 
Glm MCWD* Time -0.023 0.006 0.016 -0.021 0.004 0.025 0.017 
Stan MCWD* Time -0.023 0.018 0.012 -0.019 0.005 0.025 0.025 
Corr. μ MCWD 12 17 8 2 -13 -22 3 
Glm μ MCWD 0.001 0.003 0.001 0.000 -0.001 -0.006 0.000 
Stan μ MCWD NA NA NA NA NA NA NA 
Corr. μ* MCWD 8 15 4 13 -9 -30 0 
Glm μ* MCWD 0.000 0.002 0.000 0.000 -0.001 -0.003 0.000 
Stan μ* MCWD 0.000 0.001 0.001 0.000 -0.001 -0.003 0.000 
Corr. μ MCWD* -1 9 4 -9 -13 -25 5 
Glm μ MCWD* -0.029 0.055 0.060 -0.167 -0.266 -2.537 0.053 
Stan μ MCWD* NA NA NA NA NA NA NA 
Corr. μ* MCWD* 6 12 1 -3 -9 -32 9 
Glm μ* MCWD* 0.083 0.040 0.021 -0.021 -0.243 -1.127 0.077 
Stan μ* MCWD* 0.034 0.022 0.108 -0.043 -0.192 -1.163 0.057 

4.3.2 Regional changes in cumulative water deficits through time	

Overall, a slight positive correlation (14 %, p<0.005; see Table 4.1, Figure 4.3) was 

identified between the maximum cumulative water deficit (MCWD*) observed during each 

census interval and the census date, which suggests that maximum drought intensity has 

been lessening over time across South American rainforests. There are only two regions for 

which this trend holds at the regional scale though, namely East-Central Amazonia (26 %, 

p<0.005) and the Brazilian Shield (71 %, p<0.005). 
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In East-Central Amazonia, the range of MCWD values observed ranged from -351 to -69 

mm across all plot censuses in the 1980s, increasing to a range of -224 to -32 mm in the 

2000s. As such, across the entire census range some plots only experienced two to three 

months where the cumulative water deficit exceeded precipitation, and the overall 

maximum duration of any consecutive dry period decreased from nine months in the 

1980s, through eight in the 1990s, to seven in the 2000s.  

While the Brazilian Shield does not have many plot censuses, the identified maximum 

water deficit has decreased for some plot census intervals, increasing from the narrow 

range of -428 to -424 mm observed during the 1990s to -398 to -275 mm in the 2000s. Of 

all the regions, this is the only region where all the plot census intervals had a cumulative 

water deficit for a minimum duration of 7 consecutive months, though it never exceeded a 

maximum of 11 months, despite longer census interval lengths. As such, for the plot 

census intervals observed, there has always been one month of the year where the water 

deficit was cancelled out, increasing to up to five months for some census intervals in the 

2000s.  

 

Figure 4.3. Regional South American maximum cumulative water deficits (MCWD) versus census interval mid 
dates. 
Including significant trends (p<0.05; see Table 4.1) of increasing maximum cumulative water deficit with time 
as identified for Southwest Amazonia and Northwest Venezuela, and decreasing as identified for East-Central 
Amazonia, the Brazilian Shield and across all of the South American regions (long-dashed trend line in black). 
No significant trends were identified for Northwest Amazonia or the Guyana Shield. 

Census interval mid date
1970 1980 1990 2000

−2000

−1000
−750
−500
−400
−300
−200

−100
−75
−50

−20

−10

0

M
C

W
D

 (m
m

)

Brazilian Shield
NW Amazonia
SW Amazonia
NW Venezuela
EC Amazonia
Guyana Shield



 

 71 

Southwest Amazonia (-21 %, p<0.05; see Table 4.1, Figure 4.3) and to a greater extent also 

NW Venezuela (-38 %, p<0.005) have experienced droughts of increasing severity and 

duration. In Southwest Amazonia the maximum number of consecutive months with a 

water deficit across all plots census intervals increased from 7 in the 1980s, through 11 in 

the 1990s to 48 in the 2000s, and the cumulative water deficit increased from -239 mm, 

through -417 mm, to -1572mm. However, during this time period the median consecutive 

water deficit period stayed roughly the same at 6, 7, and 7 months respectively and the 

minimum actually decreased from -117 mm cumulative water deficit and 5 months 

duration, through -37 mm and 2 months, to -48 and 1 month. This result matches findings 

that since the mid 1970s the number of consecutive months with fewer than 100 mm 

precipitation has been gradually increasing in southern Amazonia (Marengo et al., 2011). 

The three census intervals with the greatest observed cumulative water deficit in terms of 

duration or magnitude covered the periods from March 1995-March 1997, July 2003-

March 2007 and March 2003-May 2006. The latter two overlap with the 2005 drought, 

during which most of Southwest Amazonia experienced some of the largest observed 

maximum cumulative water deficits (Aragão et al., 2007; Marengo et al., 2008). 

Despite the minimum consecutive period with a cumulative water deficit in Northwest 

Venezuela for the 1960s up until the 1990s having only been up to two months across all 

plot census intervals in Northwest Venezuela, this increased to 7 respectively 6 months in 

the 1990s and 2000s. Concurrently the deficit range increased from -364 to -19 mm in the 

1960s to -1811 to -268 mm in the 2000s, with both the minimum and the maximum 

steadily increasing in magnitude through time. This indicates that there has been a strong 

increase in drought duration and magnitude over time across plot censuses in this region. 

The three plot census intervals with the greatest observed deficits were July 1984-October 

1988, June 1994-June 2000, and June 2000-December 2002. The former two census 

interval each included a strong El Niño year: 1986-1987 (Yoon and Zeng, 2010) and 1997-

1998 (Feely et al., 2006). Additionally, the first of these two census intervals contained one 

La Niña year (1984-1985; Feely et al., 2006; Tedeschi et al., 2013), while the second 

included the following La Niña years: 1995-1996 (Feely et al., 2006), 1998-1999 (Feely et 

al., 2006; Tedeschi et al., 2013) and 1999-2000 (Yoon and Zeng, 2010; Tedeschi et al., 

2013). Typical La Niña years tend to decrease precipitation in northern South America 

(Tedeschi et al., 2013). 

No significant trends in MCWD through time have been identified for Northwest Amazonia 

and the Guyana Shield. In Northwest Amazonia, the maximum cumulative water deficit 

increased from -102 mm in the 1990s to -250 mm in the 2000s, but this is the only region 

that never experienced a water deficit for any of the plot censuses during the wettest 

month of the year, and where some of the plot censuses never even had a single month of 

deficit throughout the year. The maximum consecutive deficit duration was only 4 months 
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in this region. The deficits of -250 mm were observed in two plot censuses, both covering 

the period of mid-2004 to late 2005, out of 40 total plot census intervals in the 2000s. 

Consistent with these patterns, in some parts of Northwest Amazonia, the 2005 Amazon 

drought resulted in reductions in monthly precipitation of over 100 mm per month for 

most months between November 2004 and July 2005 (Marengo et al., 2008). 

The fact that no significant trend in cumulative water deficit was identified for the Guyana 

Shield, could partially be due to the fact that this region has relatively wide deficit ranges 

across the plot census intervals within each decade of the overall monitoring period. 

Furthermore, the region actually seemed to initially have been becoming wetter over time, 

gradually lessening its deficit range from -610 mm to -93 mm in the 1970s to -485 resp. -40 

mm in the 1990s, before returning to a range of -587 to -87 mm in the 2000s. In the 

Guyana Shield there have been a number of plot census intervals in each decade which 

seem to have been experiencing substantial deficits. 

These overall trends suggest that the south-eastern regions might be becoming moister on 

average and have been experiencing fewer intense droughts recently, whereas the 

droughts in the regions in the north- and south-western parts of South America may have 

been increasing in severity, with other areas remaining largely unaffected. 

4.3.3 Water deficit and regional stem-based mortality 

None of the individual regions in South America showed any correlation (see Table 4.1, 

Figure 4.4) between the maximum monthly cumulative water deficit (MCWD) and 

mortality rates, though a weak positive correlation was found between μ* and MCWD* for 

all regions combined (9 %, p<0.05). An increase in MCWD (greater deficit), will correspond 

to larger negative numbers, and a greater water deficit could be expected to increase 

mortality rates. This result is therefore contrary to the negative correlation that would be 

expected, if an increased water deficit causes an increase in mortality rates. Since both 

individual variables exhibit a positive trend through time, this could even suggest that 

mortality rates have increased, despite an overall decrease in MCWD through time.  

4.4 Discussion 

This study confirms that old-growth tropical forests in most South American regions and 

across South America moist tropical forests have experienced increases in long-term stem-

based tree mortality rates over time, as previously identified in other studies (Lewis et al., 

2004b; Phillips et al., 2004). The increase in instantaneous mortality rates identified by 

Lewis et al. (2004b) across 50 South American plots over the period 1971-2002 from 

1.50±0.19 % to 1.77±0.22 %·year-1, resembles the increase in annual mortality rate 

estimates obtained here of 1.41±0.12 to 1.51±0.11 %·year-1 identified here for the same 

period, using 302 respectively 350 plot censuses. Phillips et al. (2004) also identified an  
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Figure 4.4. Regional South American mortality rates versus maximum monthly cumulative water deficit 
(MCWD) values per census interval. 
Consecutive census intervals are connected with dashed lines. 

increase in mortality rates for south and west Amazonia, as we did here. However, they did 

not find any significant increase for all of east and central Amazonia (1986-1996; n=28; 

p=0.23), yet a significant increase of 2.2 %·year-1 was detected here using 184 plot 

censuses (1984-2007). Additionally, this study identifies significant increases in mortality 

rates for the Guyana Shield and Northwest Venezuela. The only regions for which no 

significant increase in stem-based mortality rates over time was discerned here, were 

Northwest Amazonia and the Brazilian Shield. For the latter region, there are indications 

that it might be exhibiting the same trend, but the number of plot census intervals is not 

sufficient to detect a significant trends. For Northwest Amazonia, a significant decrease of 

mortality rates through time was identified in the correlation and linear analyses, but this 

was not found in the Stan parameter estimation analyses. Despite having corrected the 

observed annual mortality rates for any census interval effect (sensu Lewis et al., 2004c), 

this result identified in the non-Bayesian inference analyses is expected to be an artefact, 

caused by an increased re-census effort during the last decade, with the shorter census 

intervals more often having recorded zero or very few deaths. This was confirmed by 

selecting only those 30 plot censuses that had similar numbers of observations for the 

same census periods, which resulted in no significant trends being detected in the 

correlation or linear analyses. This finding demonstrates that the Bayesian inference 

analyses are more robust to this kind of artefact.  
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The increasing severity and duration of consecutive months with a cumulative water deficit 

identified in NW Venezuela and the Brazilian Shield, did not translate into a significant 

correlation between the maximum cumulative water deficit (MCWD) and the mortality 

rates in these regions. East-Central Amazonia and the Brazilian Shield showed evidence 

that the water deficits there might have actually been decreasing with time, and similarly 

no significant correlation with the increasing mortality rates could be identified in these 

regions. For neither the Guyana Shield nor for the aseasonal Northwest Amazonia regions 

could any trend in the MCWD be discerned, and consequently no correlation with 

mortality rates was established for these regions. As a result, no straightforward 

relationship could be identified between the MCWD and stem-based mortality rates across 

South American tropical forests.  

This finding is in line with the results from a study by Feldpausch et al. (2016), which 

focussed on the impact of drought stress on biomass dynamics using precipitation data 

from the Tropical Rainfall Monitoring Mission (TRMM; available from 1998 onwards). Even 

when focussing only on those 97 plots that spanned the 2010 dry season with a census 

interval length of up to a maximum of 3.5 years, and using two additional alternative 

drought indices (the Standard Precipitation Index and the Standard Precipitation 

Evapotranspiration Index), Feldpausch et al. (2016) found that mortality biomass 

anomalies from the 2010 dry season water stress event varied independently of drought 

severity. Although Feldpausch et al. (2016) showed that a significantly greater number of 

trees died per year in the 46 plots that experienced relatively strong drought anomalies 

during the census intervals spanning the 2010 drought, relative to the number of dead 

trees per year identified in the pre-2010 census intervals, the lack of correlation between 

drought anomalies and mortality events demonstrates the difficulty of relating measures 

of drought stress to the magnitude of impact on forest structure. 

While we did not detect an increase in maximum cumulative water deficits as expected, a 

recent study by Hubau et al. (2020) did identify an increase in MCWD values over time 

across a set of 321 old-growth Amazonian plots, for the period 1989-2013, and using CRU 

data up to 2015, but for a different set of plots, Esquivel-Muelbert et al. (2019) identified 

an overall pan-Amazonian increase in annual water deficits. Their results suggest dry 

season droughts have indeed been increasing in magnitude in South American tropical 

forests, unlike the decrease in magnitude identified here. In contrast to this analysis, 

Hubau et al. (2020) used precipitation data from the Global Precipitation Climatology 

Centre, augmented with TRMM, and downscaled to ~1 km resolution, rather than data 

from the CRU, due to the former being more spatially detailed for Africa. While generally 

their MCWD values matched those used here (74 % correlation, p<0.001), using their 

MCWD values for the 443 plot censuses of 114 plots shared between both studies, a 

significant increase in the magnitude of water deficits over time is identified across all sites 
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(p<0.001; see Table 4.2). It also suggests droughts in East-Central Amazonia have been 

increasing over time (MCWD p<0.001; MCWD* p<0.05; see Table 4.2), rather than 

lessening, and this dataset reports a significant increase for NW Amazonia too (MCWD; 

p<0.05), though for Northwest Venezuela it suggests the opposite trend (MCWD*; p<0.05). 

Table 4.2. Re-evaluated parameter estimates for potential relationships between regional South American 
tree mortality rates, time, and maximum cumulative water deficit. 
The mean annual maximum cumulative water deficit (MCWD) values as identified by Hubau et al. (2020) were 
used to re-evaluate the MCWD general linear models of Table 4.1 of pairwise comparisons (response variable ~ 
intercept + effect * predictor variable) with mortality rates, and time per South American region and across all 
regions (μ = census interval corrected annual mortality rate (%); μ* normalized mortality rates in logistic space; 
MCWD = maximum monthly cumulative water deficit (mm); MCWD* normalized MCWD rates; time = census 
interval mid date; p values: bold = ≤ 0.001, regular = ≤ 0.05, dark grey = ≤ 0.10, light grey > 0.10). Blue shading 
indicates significant relationships that changed sign. Underlined values indicate relationships that have 
changed significance. 

Response 
variable 

Predictor 
variable 

NW 
Venez. 
(n=34) 

NW 
Amaz. 
(n=62) 

EC 
Amaz. 

(n=167) 

SW 
Amaz. 

(n=113) 

Guyana 
Shield 
(n=51) 

Brazil. 
Shield 
(n=16) 

All 
regions 
(n=443) 

MCWD Time -3.517 -2.137 -4.535 -3.642 0.215 -1.494 -2.462 
MCWD* Time 0.015 -0.047 -0.046 -0.045 -0.003 -0.005 -0.017 

μ MCWD 1.5E-05 3.0E-05 -2.1E-05 -5.9E-06 1.4E-09 1.4E-04 -2.7E-05 
μ* MCWD -4.3E-04 2.5E-03 -2.2E-03 -1.9E-04 2.5E-03 4.5E-03 -1.6E-03 

μ MCWD* 3.1E-03 -7.0E-04 -1.3E-03 -9.9E-04 3.4E-04 5.0E-02 -6.8E-04 

μ* MCWD* -0.125 -0.025 -0.147 -0.035 0.064 1.596 -0.036 

Similar to this study, Hubau et al. (2020) also did not find a significant relationship between 

mortality losses (whether transformed to fit normality assumptions or not) and MCWD. 

Only after accounting for variation in mean annual surface temperature (MAT), 

atmospheric CO2 concentrations, and the plot’s carbon residence time (CRT), did a 

significant relationship between MCWD and mortality emerge (p=0.030; Hubau et al., 

2020).  

The difference between the findings of Hubau et al. (2020), and the results here, might be 

due to differences in the climatological datasets, not accounting for variation in other 

parameters such as temperature, or how they derived their metric of drought. The method 

of MCWD calculation used by Hubau et al. (2020) focused on the multi-year mean of the 

maximum annual deficit identified per plot census. As a result the extremes of any 

individual drought events will be smoothed out over the census interval (Feldpausch et al., 

2016), in favour of identifying long-term trends and correlations. This thus resulted in 

identifying that plots with lower MCWD values (plots in wetter regions), tend to exhibit 

higher growth, and thus higher mortality, which resembles the overall trend identified 

across the regions here (Figure 4.4). Overall, while forest community responses to water 

deficits might be expected to vary at biogeographical scales, the variation in water deficits 

within regions happens at much smaller scales. 

There are a number of additional reasons why even when observing a significant increase 

in mean water deficits through time, it is hard to translate this directly to increased 
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mortality rates. Firstly, while we tried to preserve the highest deficits encountered during a 

census interval, the same could not be done for the mortality rates. While some tropical 

studies (e.g. Phillips et al., 2010) have shown that droughts can have an impact on 

mortality rates for some years following the drought, other studies (e.g. Williamson et al., 

2000) have shown that after an initial spike immediately following the drought event, 

mortality rates can return quite quickly to the pre-drought levels. Either of these will 

complicate relating mortality rate increases to greater water deficits. For instance, in the 

case of the former, especially if a re-census was timed shortly following the drought event, 

the lag could result in increased mortality rates during the following census interval. In the 

case of no lag, short-lived spikes in mortality rates will become more obscured by being 

averaged with multiple years at the non-droughted background mortality rate as the 

census interval length increases, regardless of the timing of the censuses relative to the 

drought event (see also Chapter 2). As the mean census interval length of these Amazonian 

long term forest plots used here is 3.4 years, this direct impact of droughts may thus be 

concealed. Ideally, only mortality rates derived from annual or biennial re-censuses should 

be used, though the increased biomass losses during the 2005 Amazon drought were 

detected using census intervals of up to five years (Phillips et al., 2009).  

If increased drought stress is not the primary driver of the long-term increase in tree 

mortality rates in Amazonian forests, what other processes may be occurring? One 

candidate is increased resource availability, most notably an increase in carbon dioxide 

(Lewis et al., 2004a), which could lead to a decreased life expectancy of trees as a result of 

increased dynamics (Brienen et al., 2012; Körner, 2017). Other candidate drivers include an 

increase in liana abundance (Phillips et al., 1994; Phillips et al., 2002; Wright and Calderon, 

2006), or rising temperatures. For example, the change in MAT was significant in the model 

of Hubau et al. (2020), suggesting that biomass losses from mortality may have increased 

along with increasing temperatures, due to the heat and water vapour deficit stresses 

(Hubau et al., 2020). Indeed, increased temperatures could also explain why increasing 

biomass losses were observed across Amazonia, regardless of whether plots were 

experiencing an anomalous maximum cumulative water deficit, in census intervals 

spanning the 2010 drought (Feldpausch et al., 2016). Similarly, a modelling study found the 

forest dynamics in the Guyana Shield to be more sensitive to increased temperatures than 

to precipitation anomalies and water stress (Aubry-Kientz et al., 2019). 

Overall, this analysis suggests that the long-term rise in tree mortality rates in Amazonian 

forests cannot be simply understood as a result of increasing drought stress. Bayesian 

approaches, which can accommodate the spatial structure of the data, and are robust to 

census interval artefacts, are a promising avenue for probing the drivers of trends in this 

key ecosystem process. 
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5 Synthesis 

In 2007 intact tropical forests accounted for ca. 63 % (228.2 GtC) of global C stored in living 

forest biomass (above- and belowground) and ca. 46 % (393.3±60.8 GtC) of total global C 

forest stocks (including deadwood, litter, and soil; Pan et al., 2011). While the terrestrial 

tropical net sink rates have been observed to have been increasing by 0.04±0.01 GtC year-1, 

especially in Africa and Asia, during recent decades (1990-2009; Sitch et al., 2015), it is 

uncertain how long this trend might continue. For instance, in the Amazon, recent 

evidence suggests losses through mortality have been outpacing gains from recruitment 

and growth during the past decades, resulting in a steady decline of its carbon sink 

capacity since the early 1990s, and recent evidence suggests a similar trend has been 

occurring in African forests since 2010 (Brienen et al., 2015; Hubau et al., 2020). Droughts 

have been occurring more frequently, and increasing in severity, under warmer conditions, 

which could be one of the factors driving increasing tree mortality under climate change, 

and has been identified as one of the risk factors for tropical forests potentially becoming a 

carbon source in the future (e.g. Allen et al., 2010; Allen et al., 2015). Here, I have 

increased our understanding of stem-based tropical tree mortality rates by (1) deriving 

recommendations for sampling network sizes required to confidently detect long- and 

short-term changes in mortality rates, (2) identifying at which spatial scale variation in 

tropical mortality rates can best be described, and (3) investigating whether the observed 

recent increases in Amazonian tree mortality rates were driven by increasing water 

deficits. 

5.1 Chapter 2: Criteria for designing optimal sampling strategies for 
detecting changes in tree mortality rates in tropical forests 

Long-term trends in annual tree mortality rates have been observed across the tropics, 

with increases of 2 % per year observed across 20 plots in Australia (Murphy et al., 2013), 

and 3 % per year reported across 50 South American plots (Lewis et al., 2004b). 

Additionally, short-term increases in mortality rates can be observed in response to one-

off catastrophic events. For example, the 1997 El Niño drought elevated mortality rates by 

71 % in 12 central Amazonian plots (Williamson et al., 2000). In order to be able to relate 

these changes in mortality rates to variation in (environmental) drivers, it is important to 

be able to have a permanent plot sampling strategy that can confidently establish that the 

detected trend is not merely the result of natural variation in local or regional mortality 

rates. To this end, simulated forests were sampled at different intensities, using 

combinations of an increasing number of plots and increasing census interval lengths. 
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These simulated forests varied in their degree of background dynamics, and in the strength 

of their long- or short-term trends in mortality rates. 

Overall, a minimum overall monitoring period of 20 years is recommended for detecting 

long-term changes in tree mortality rates, though increases of 2 % per year can be 

detected over the course of 10 years with two census intervals in a network of at least 90 

plots. However, for detecting short-term increases in mortality rates, annual or biennial 

census intervals are recommended. The former will allow detecting an increase of 15 % in 

mortality rates with a network of 40 plots. Finally, more dynamic forests with higher base 

mortality rates were found to require fewer plots to detect an increase of the same 

relative magnitude, than forests which had lower base mortality rates. For example, a 

network of 40 plots will suffice to detect an annual mortality increase of 1 % with three 

censuses at intervals of 10 years in more dynamic regions like the Western Amazon 

(Johnson et al., 2016), whereas for less dynamic regions like the Guiana Shield (Johnson et 

al., 2016) this recommendation increases to 70 plots to detect a similar increase. 

5.2 Chapter 3: Tree mortality rates vary among biogeographical 
regions across the tropics 

In order to understand variation in tropical tree mortality rates, and relate this to any 

potential drivers, it is important to know at which scales spatial scales they vary. Annual 

mortality rates were derived from a permanent sample network spanning hundreds of 

plots, across all four tropical continents, which have been monitored for decades, as 

collated in the ForestPlots database (Lopez-Gonzalez et al., 2013). Repeated censuses of 

the same plot are expected to be more similar to each other, than censuses of different 

plots. As such, mortality rates observed during each census are assumed to be drawn from 

plot level mortality rate distributions in a hierarchical Bayesian model. These plots in turn 

were assumed to be more similar within an overarching spatial region. As such, this 

chapter tested whether mortality rate distributions are best characterised at the 

biogeographical, continental or pan-tropical scale. Nine biogeographical regions were 

distinguished (sensu Feldpausch et al., 2012), where variation among these regions is 

expected to be greater than variation within them: Central Africa, East Africa, West Africa, 

the Brazilian Shield (Amazonia), East-Central Amazonia, the Guyana Shield (Amazonia), 

West Amazonia, South-East Asia and North Australia. 

Mortality rate distributions were found to be best described at the biogeographical level, 

indicating that variation in tropical tree mortality rates is likely the result of a combination 

of edaphic, climatic and compositional differences. The biogeographical regions cover a 

range of disturbance regimes, from Northwest Australia, which had the lowest median 

mortality rates (0.80 % yr-1; mean 0.92 % yr-1), but a relatively high coefficient of variation 

(0.57) – indicating a region with predominantly small-scale mortality events and occasional 
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larger disturbances (Murphy et al., 2013) – to West Amazonia, a region with relatively high 

median mortality rates (2.04 % yr-1; mean 2.19 % yr-1), but a relatively low coefficient of 

variation (0.39) – indicating a region in which most mortality events involve a small 

number of trees (Espírito-Santo et al., 2014). 

5.3 Chapter 4: Has drought stress caused the long-term increase in 
tree mortality rates in Amazonian forests? 

Mortality rates are reported to have increased since the mid 1970s in old-growth 

Amazonian forests (Phillips et al., 2008; Lewis et al., 2004b), and have recently been 

outpacing gains from recruitment and growth since ca. 2000, resulting in a levelling off of 

its net carbon sink role (Brienen et al., 2015; Hubau et al., 2020). Concurrently, the severity 

and frequency of droughts has been increasing, and the duration of the dry season has 

become longer since the mid 1970s (Marengo et al., 2011). However, until recently no 

concerted attempt to relate any long-term trend in mortality rates to increasing deficits 

had been made (Hubau et al., 2020). As such, here I used Bayesian models to evaluate 

regional trends in mortality rates and cumulative water deficits, and any relationship 

between them. 

In addition to Amazonia as a whole, forests in most biogeographical regions were found to 

have experienced increasing mortality rates, except the aseasonal Northwest Amazonia, 

and the Brazilian Shield. Cumulative water deficits were only found to have increased in 

magnitude in Northwest Venezuela and Southwest Amazonia, and actually lessened in 

East-Central Amazonia and the Brazilian Shield. However, changing water deficits were not 

found to be associated with increasing tree mortality rates in Amazonia. 

5.4 Research implications and future research 

With a changing climate, tropical tree mortality rates could be affected in a number of 

ways, ranging from increasing to even decreasing, with potentially different trends 

occurring at different locations and at different times across the tropics. Both increased 

atmospheric carbon dioxide concentrations, and increased catastrophic disturbances, 

might lead to an increased abundance of faster growing trees, with reduced longevity, and 

increased mortality rates, consequently resulting in reduced carbon storage in tropical 

forests (Bugmann and Bigler, 2011; Körner, 2017; McMahon et al., 2019; Büntgen et al., 

2019). However, on the other end of the response spectrum, evidence also exists of 

compositional shifts towards more species with more drought-tolerant traits, as has been 

observed for example in the Neotropics and Africa, which might eventually result in a 

decrease of overall mortality rates (Fauset et al., 2012; van der Sande et al., 2016; Esquivel-

Muelbert et al., 2019). 
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A recent review of 15 dynamic vegetation models (DVMs) found the mortality submodels 

to be the main predictor of the response of simulated long-term forest dynamics to 

different climate scenarios (Bugmann et al., 2019). The mortality models evaluated 

included a range of empirically, experimentally, and theoretically derived formulations, 

though the four global dynamic vegetation models evaluated all contained highly process-

based mortality models. While most alternative mortality formulations did not affect the 

recreation of observed forest dynamics trends, they led to widely diverging basal area and 

number of stems trajectories for some of the DVMs, often representing a greater source of 

uncertainty than the climate change scenario used. This highlights the need for increased 

understanding and representation in mortality models of the underlying processes driving 

these changes (Adams et al., 2013). In addition to providing guidance for the expansion of 

monitoring networks, the methods applied here can also aid in further improving mortality 

models. 

The individual-based Bayesian approach developed here could be readily used to calibrate 

patterns of tree mortality within emerging individual-based vegetation models. 

Historically, most large-scale vegetation models have represented carbon losses through 

average turnover rates for carbon pools of different vegetation compartments, generally 

using a single woody turnover value across one static tropical plant functional type (PFT) to 

represent losses from tree mortality (Galbraith et al., 2013). However, an appreciation of 

the importance of individual- and size-dependent processes for determining the dynamics 

of tropical forests (Fischer et al., 2016; Shugart et al., 2018), has led to the emergence of 

models that attempt to capture these stem-based processes (Fyllas et al., 2014; Aubry-

Kientz et al., 2015a). Such models require stem-based estimation of mortality rates which 

could be supplied by further iterations of the analyses described here.  

Secondly, the approaches used here could be developed to promote a better 

representation of biodiversity in vegetation models. A couple of the main limitations of 

previous iterations of dynamic vegetation models originate from the representation of 

vegetation by a limited set of static plant functional types represented by a few average 

trait values, with competition occurring at the PFT level, neither of which easily allows for 

compositional trait shifts under changing climatic conditions (Scheiter et al., 2013), thus 

potentially underestimating forest resilience (Sakschewski et al., 2016). Commonly used 

functional traits for representing the diversity of ecological responses of tropical 

rainforests in individual based forest models include wood density, maximum diameter, 

maximum height, leaf longevity, leaf nitrogen content, leaf phosphorus content, leaf dry 

mass per area (Fyllas et al., 2014; Sakschewski et al., 2015; Maréchaux and Chave, 2017; 

Aubry-Kientz et al., 2019). Estimates from the analytical approach here, through inclusion 

of functional traits in mortality models as predictor variables, could help identify 

distributions of and potential trends in mortality rates for different strategic groups, and 
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improve understanding of how tropical forests with different compositions might respond 

to changing environmental conditions. 

Finally, a key strength of the hierarchical approach used here is that it can aid attempts to 

bridge the scale-gap for understanding how processes such as tree mortality vary at scales 

from individuals to regions (Allen et al., 2010). Being able to describe and verify forest 

processes at scales that are larger than individual plots is crucial for calibrating remote 

sensing and modelling products that have much larger pixel sizes (Fischer et al., 2016; 

Rödig et al., 2017; Rammig et al., 2018), and could allow for integration of flux 

measurements over large scales (Anderegg et al., 2016b).  

Through expanded monitoring efforts, and further quantification and analyses of the 

underlying processes, utilising data from all available spatial scales, we can continue to 

improve our understanding of the mortality of tropical trees. Overall, the novel approaches 

and results described in this thesis could be used to address this challenge, and therefore 

contribute to a more robust understanding of the future of tropical carbon. 
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List of Abbreviations 
 

CRU  Climatic Research Unit 

dbh  diameter at breast height 

DVM  dynamic vegetation model 

ENSO  El Niño-Southern Oscillation 

HL0  Bayesian model with no hierarchical levels 

HL1  Bayesian model with one hierarchical level 

HL2  Bayesian model with two hierarchical levels 

m0r0  forest dynamics scenario, where neither mortality nor recruitment rates increase 

over time 

m0r1  forest dynamics scenario, where recruitment rates increase by 1 % per year, 

mortality rates stay the same 

m1r1  forest dynamics scenario, where both mortality and recruitment rates increase by 

1% per year 

m1r2  forest dynamics scenario, where mortality rates increase by 1% per year, and 

recruitment rates by 2% per year 

m2r2  forest dynamics scenario, where both mortality and recruitment rates increase by 

2% per year 

m3r4  forest dynamics scenario, where mortality rates increase by 3% per year, and 

recruitment rates by 4% per year 

PFT   plant functional type 

TRMM  Tropical Rainfall Monitoring Mission 
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Appendix A. Long-term mortality rate trend simulation and 
analysis process overview 

Figure A.1. Overview of the first step of the long-term trend simulation process, including descriptions and 
snippets of output. 
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Result: 28 plot census tables, containing ca. 3-3.5 million rows each for all 
trees in 100 plots, each with 50 re-censuses from 1970-2020; 1 plot census 
table for every unique combination of dynamics scenario and mortality rate 
distribution (see “Input”: five distributions for each of the four non-
baseline dynamics variations and four distributions for the two “baseline” 
variations, denoted by asterisks). 

Row 
nr. 

Distr. 
mean 

Distr. 
s.d. 

Mort. 
incr. 

Recr. 
incr. 

Plot 
id. 

Cens. 
year 

Cens. 
id 

Tree 
id 

Mort. 
prob.(%) 

Alive 
status 

Recruit 
status 

Cens. 
died 

1 -4.25 0.75 0 0 1 1970 0 1 3.52 1 0 NA 
2 -4.25 0.75 0 0 1 1970 0 2 1.08 1 0 NA 
3 -4.25 0.75 0 0 1 1970 0 3 5.52 1 0 NA 

4 -4.25 0.75 0 0 1 1970 0 4 0.61 1 0 NA 
5 -4.25 0.75 0 0 1 1970 0 5 0.45 1 0 NA 

… … … … … … … … … … … … … 
2049029 -4.25 0.75 0 0 66 2010 40 265 1.86 0 0 40 

2049030 -4.25 0.75 0 0 66 2010 40 270 1.07 1 0 NA 
… … … … … … … … … … … … … 

3079485 -4.25 0.75 0 0 100 2020 50 1133 9.99 1  1 NA 

	

The 28 individual tree-level plot census dynamics tables from above are 
summarized per plot census interval in 28 tables, containing 5000 rows 
each (100 plots, all with 50 census intervals). 

Row 
nr. 

Distr. 
mean 

Distr. 
s.d. 

Mort. 
incr. 

Recr. 
incr. 

Plot 
id. 

Cens. 
year 

Cens. 
id 

Cens.int. 
ln. (yr) N0 Nt Nd Nr Ann.mort. 

rate (%) 
1 -4.25 0.75 0 0 1 1971 1 1 581 582 5 6 0.86 
2 -4.25 0.75 0 0 1 1972 2 1 582 597 10 25 1.72 
3 -4.25 0.75 0 0 1 1973 3 1 597 597 14 14 2.35 
4 -4.25 0.75 0 0 1 1974 4 1 597 595 8 8 1.34 
5 -4.25 0.75 0 0 1 1975 5 1 595 594 5 5 0.84 
… … … … … … … … … … … … … … 

3390 -4.25 0.75 0 0 66 2010 40 1 581 584 6 9 1.03 
3391 -4.25 0.75 0 0 66 2011 41 1 584 578 9 3 1.54 

… … … … … … … … … … … … … … 
5000 -4.25 0.75 0 0 100 2020 50 1 609 602 13 6 2.13 

 
	

nPlots = 100, nCensInts= 50 
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Figure A.2. Overview of the second step of the long-term trend simulation process, including descriptions 
and snippets of output. 

 

 

Step	2	

In
pu

t 

No. 
plot 

C.ln 
(yr) 

Rep. 
id. 

Mean 
m1(%) 

Med. 
m1(%) 

L95 
m1 

U95 
m1 

Mean 
m2(%) 

Med. 
m2(%) 

L95 
m2 

U95 
m2 

Ovl. 
95% (…) 

10 2 1 1.88 1.78 1.62 2.14 1.54 1.50 1.35 1.73 1 … 
10 2 2 1.60 1.67 1.20 2.00 1.85 1.85 1.57 2.14 1 … 
10 2 3 1.73 1.77 1.41 2.04 1.66 1.75 1.41 1.91 1 … 

10 2 4 1.72 1.66 1.32 2.12 1.84 1.84 1.52 2.16 1 … 
10 2 5 1.96 1.86 1.67 2.26 2.02 1.91 1.72 2.32 1 … 

… … … … … … … … … … … … … 
20 20 40 1.83 1.84 1.78 1.89 1.82 1.80 1.76 1.88 1 … 

20 20 41 1.82 1.82 1.77 1.86 1.84 1.84 1.77 1.91 1 … 
… … … … … … … … … … … … … 

100 20 100 1.84 1.83 1.81 1.87 1.81 1.79 1.78 1.83 1 … 

	
The first nine trend result summary statistics of the “no increase” scenario 
of the ~?(−4.25, 0.75M) distribution. In total 28 trend result metrics tables 
are created with 4000 rows each (4 consolidation interval lengths for 10 
different numbers of plots, repeated 100 times). 

nReps = 100 

Consol. 
length 

2 
5 

10 

20 

	

No. of plots 

10 60 

20 70 

30 80 

40 90 
50 100 

	

Step 1 
output 

Plot 
id. 

Cens. 
year 1 

Cens. 
year2 

Cens. 
id 1 

Cens 
id. 2 

C.ln. 
(yr) 

Mort. 
r.1 (%) 

Mort. 
r.2 (%) 

Abs.dif 
(pp) 

Rel.dif 
(%) 

26 1976 1981 6 11 5 1.96 2.20 0.24 2.29 
31 2013 2018 43 48 5 1.84 1.44 -0.41 -5.02 
33 1991 1996 21 26 5 2.25 1.80 -0.45 -4.42 

39 2006 2011 36 41 5 1.87 1.44 -0.43 -5.21 
41 1982 1987 12 17 5 1.53 2.27 0.74 7.95 

55 1981 1986 11 16 5 1.77 1.93 0.16 1.72 
65 2000 2005 30 35 5 1.87 1.91 0.04 0.38 

93 1989 1994 19 24 5 1.81 1.41 -0.40 -4.98 
95 1988 1993 18 23 5 1.68 1.74 0.05 0.62 

99 2005 2010 35 40 5 1.60 1.52 -0.08 -1.03 

	
Result: 112,000 consolidated plot census tables (28 plot census dynamics 
tables, resampled for 4 different interval lengths, each for 10 different 
numbers of plots in total; repeated 100 times per unique combination of 
the preceding) with the number of table rows corresponding to that of the 
number of consolidated plots of that resampling run. The above illustrates 
the ~?(−4.25, 0.75M), no increase, consolidation interval length 5 years, 
number of plots 10, repetition ID 12 run. 
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Figure A.3. Overview of the third step of the long-term trend simulation process, including descriptions and 
snippets of output. 
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plot 
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No. 
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p_Ovl_
95M1_2 

p_Ovl_
99M1_2 

95p
p_0 

99p
p_0 

90p
p_0 (…) 

-4.25 0.75 0 0 10 2 100 0.99 1 0.97 1 0.97 … 
-4.25 0.75 0 0 10 5 100 1 1 0.99 1 0.96 … 
-4.25 0.75 0 0 10 10 100 1 1 1 1 0.98 … 

-4.25 0.75 0 0 10 20 100 1 1 0.98 1 0.98 … 
-4.25 0.75 0 0 20 2 100 1 1 0.98 1 0.94 … 

… … … … … … … … … … … … … 
-4.25 0.75 3 4 10 5 100 1 1 1 0.22 0.42 … 

-4.25 0.75 3 4 10 10 100 0.86 0.99 0.85 0 0 … 
… … … … … … … … … … … … … 

-4.75 0.75 3 4 100 20 100 0 0 0 0 0 … 

	
Result: one table, containing the Step 2 trend result metrics expressed as 
the number of observed occurrences, out of the total number of 
repetitions in 1120 rows (28 mortality rate dynamics variations, 4 
consolidation interval lengths, 10 different numbers of plots). 

For ease of interpretation, the proportional trend results metrics are 
represented visually. 
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Appendix B. Plot numbers for long-term increase detection for all metrics and levels of confidence 
Table B.1. The number of plots needed to achieve no overlap for any of the repetitions. 
As determined using the 2-tailed 95 or 99 % confidence intervals of the annual mortality rates of the first and second consolidated sets (M1M2_95, M1M2_99), or no overlap with zero of the 
two-tailed and one-tailed 95 or 99 % confidence intervals of the absolute (in percentage points) and relative difference between the annual mortality rates of the second and the first 
consolidated sets (ppD_95(2), ppD_95(1), ppD_9592), ppD_99(1), relD_95(2), relD_95(1), relD_99(2), relD_99(1)), for the different consolidated interval lengths (consolLn), population dynamics 
variations (dynVar), and mortality rate distributions (mortDistr). Darker shading indicates more plots are needed, up to a simulated maximum of 100. 

consolLn dynVar mortDistr M1M2_95 M1M2_99 ppD_95(2) ppD_95(1) ppD_99(2) ppDiff_99(1) relD_95(2) relD_95(1) relD_99(2) relD_99(1) 

5 

m3r4 

!(−4.25, 0.75+) >100 >100 20 20 40 40 20 20 40 30 
!(−4.5, 0.5+)					 >100 >100 30 30 40 30 40 30 50 40 
!(−4.5, 0.75+)			 >100 >100 30 30 40 40 40 40 40 40 
!(−4.5, 1.0+)						 >100 >100 20 20 40 40 20 20 40 40 
!(−4.75, 0.75+)	 >100 >100 30 30 30 30 30 30 40 40 

m2r2 

!(−4.25, 0.75+) >100 >100 60 60 90 80 60 60 >100 80 
!(−4.5, 0.5+)					 >100 >100 70 60 >100 80 80 70 >100 >100 
!(−4.5, 0.75+)			 >100 >100 90 60 90 90 90 60 90 90 
!(−4.5, 1.0+)						 >100 >100 70 70 100 70 70 50 80 70 
!(−4.75, 0.75+)	 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 

10 

m3r4 

!(−4.25, 0.75+) 30 40 10 10 10 10 10 10 10 10 
!(−4.5, 0.5+)					 30 50 10 10 10 10 10 10 10 10 
!(−4.5, 0.75+)			 30 50 10 10 10 10 10 10 10 10 
!(−4.5, 1.0+)						 30 50 10 10 10 10 10 10 10 10 
!(−4.75, 0.75+)	 30 50 10 10 10 10 10 10 10 10 

m2r2 

!(−4.25, 0.75+) 30 50 10 10 20 20 10 10 20 20 
!(−4.5, 0.5+)					 40 60 20 10 20 20 20 20 20 20 
!(−4.5, 0.75+)			 40 60 20 20 20 20 20 20 20 20 
!(−4.5, 1.0+)						 40 60 10 10 20 20 10 10 20 20 
!(−4.75, 0.75+)	 40 60 20 20 20 20 20 20 20 20 
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Table B.1. (Continued) The number of plots needed to achieve no overlap for any of the repetitions. 
 

consolLn dynVar mortDistr M1M2_95 M1M2_99 ppD_95(2) ppD_95(1) ppD_99(2) ppDiff_99(1) relD_95(2) relD_95(1) relD_99(2) relD_99(1) 

10 

m1r2 

!(−4.25, 0.75+) 70 >100 30 30 50 50 40 30 50 40 
!(−4.5, 0.5+)					 90 >100 60 40 60 60 60 40 60 60 
!(−4.5, 0.75+)			 100 >100 40 30 70 70 30 30 70 70 
!(−4.5, 1.0+)						 80 100 40 40 50 50 40 40 50 50 
!(−4.75, 0.75+)	 >100 >100 60 60 90 70 60 60 90 70 

m1r1 

!(−4.25, 0.75+) 70 100 50 40 50 50 40 40 50 50 
!(−4.5, 0.5+)					 >100 >100 70 70 80 70 70 70 80 70 
!(−4.5, 0.75+)			 80 100 40 40 60 40 40 40 60 50 
!(−4.5, 1.0+)						 80 100 30 30 60 60 40 30 60 60 
!(−4.75, 0.75+)	 100 >100 50 50 70 60 50 50 70 60 

20 

m3r4 

!(−4.25, 0.75+) 10 10 10 10 10 10 10 10 10 10 
!(−4.5, 0.5+)					 10 10 10 10 10 10 10 10 10 10 
!(−4.5, 0.75+)			 10 10 10 10 10 10 10 10 10 10 
!(−4.5, 1.0+)						 10 10 10 10 10 10 10 10 10 10 
!(−4.75, 0.75+)	 10 10 10 10 10 10 10 10 10 10 

m2r2 

!(−4.25, 0.75+) 10 10 10 10 10 10 10 10 10 10 
!(−4.5, 0.5+)					 10 10 10 10 10 10 10 10 10 10 
!(−4.5, 0.75+)			 10 10 10 10 10 10 10 10 10 10 
!(−4.5, 1.0+)						 10 10 10 10 10 10 10 10 10 10 
!(−4.75, 0.75+)	 10 10 10 10 10 10 10 10 10 10 

m1r2 

!(−4.25, 0.75+) 10 20 10 10 20 10 10 10 20 10 
!(−4.5, 0.5+)					 20 20 10 10 20 20 10 10 20 20 
!(−4.5, 0.75+)			 20 20 10 10 10 10 10 10 10 10 
!(−4.5, 1.0+)						 20 20 10 10 20 10 10 10 20 10 
!(−4.75, 0.75+)	 20 20 10 10 20 20 10 10 20 20 

m1r1 

!(−4.25, 0.75+) 10 20 10 10 10 10 10 10 10 10 
!(−4.5, 0.5+)					 20 20 10 10 20 20 10 10 20 20 
!(−4.5, 0.75+)			 20 20 10 10 20 10 10 10 20 10 
!(−4.5, 1.0+)						 20 20 10 10 20 10 10 10 20 10 
!(−4.75, 0.75+)	 20 20 10 10 20 10 10 10 20 20 
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Table B.2. The number of plots needed to achieve overlap for a maximum of just one of the repetitions. 
As determined using the 2-tailed 95 or 99 % confidence intervals of the annual mortality rates of the first and second consolidated sets (M1M2_95, M1M2_99), or a maximum of one repetition 
where zero was contained within the two-tailed and one-tailed 95 or 99 % confidence intervals of the absolute (in percentage points) and relative difference between the annual mortality rates 
of the second and the first consolidated sets (ppD_95(2), ppD_95(1), ppD_9592), ppD_99(1), relD_95(2), relD_95(1), relD_99(2), relD_99(1)), for the different consolidated interval lengths 
(consolLn), population dynamics variations (dynVar), and mortality rate distributions (mortDistr). Darker shading indicates more plots are needed, up to a simulated maximum of 100. 

consolLn dynVar mortDistr M1M2_95 M1M2_99 ppD_95(2) ppD_95(1) ppD_99(2) ppDiff_99(1) relD_95(2) relD_95(1) relD_99(2) relD_99(1) 

5 

m3r4 

!(−4.25, 0.75+) >100 >100 20 20 40 20 20 20 40 20 
!(−4.5, 0.5+)					 >100 >100 30 30 40 30 30 30 30 30 
!(−4.5, 0.75+)			 >100 >100 30 20 30 30 30 20 40 40 
!(−4.5, 1.0+)						 >100 >100 20 20 30 30 20 20 30 20 
!(−4.75, 0.75+)	 >100 >100 30 30 30 30 30 30 40 30 

m2r2 

!(−4.25, 0.75+) >100 >100 50 50 80 70 60 50 80 80 
!(−4.5, 0.5+)					 >100 >100 60 60 80 80 80 60 >100 80 
!(−4.5, 0.75+)			 >100 >100 60 60 80 60 60 60 70 70 
!(−4.5, 1.0+)						 >100 >100 50 50 70 80 60 50 70 70 
!(−4.75, 0.75+)	 >100 >100 60 60 >100 >100 >100 60 >100 >100 

10 

m3r4 

!(−4.25, 0.75+) 30 40 10 10 10 10 10 10 10 10 
!(−4.5, 0.5+)					 30 40 10 10 10 10 10 10 10 10 
!(−4.5, 0.75+)			 30 50 10 10 10 10 10 10 10 10 
!(−4.5, 1.0+)						 30 40 10 10 10 10 10 10 10 10 
!(−4.75, 0.75+)	 30 40 10 10 10 10 10 10 10 10 

m2r2 

!(−4.25, 0.75+) 30 50 10 10 20 20 10 10 20 20 
!(−4.5, 0.5+)					 40 60 20 10 20 20 20 10 20 20 
!(−4.5, 0.75+)			 40 50 10 10 20 20 10 10 20 20 
!(−4.5, 1.0+)						 40 50 10 10 20 20 10 10 20 20 
!(−4.75, 0.75+)	 40 60 20 10 20 20 20 10 20 20 

m1r2 

!(−4.25, 0.75+) 70 90 30 30 50 40 30 30 50 40 
!(−4.5, 0.5+)					 90 >100 40 40 60 50 40 40 60 60 
!(−4.5, 0.75+)			 80 >100 30 30 50 40 30 30 70 40 
!(−4.5, 1.0+)						 60 90 40 20 50 40 40 20 50 40 
!(−4.75, 0.75+)	 >100 >100 60 50 70 70 60 50 70 70 
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Table B.2. (Continued) The number of plots needed to achieve overlap for a maximum of just one of the repetitions. 
 

consolLn dynVar mortDistr M1M2_95 M1M2_99 ppD_95(2) ppD_95(1) ppD_99(2) ppDiff_99(1) relD_95(2) relD_95(1) relD_99(2) relD_99(1) 

10 m1r1 

!(−4.25, 0.75+) 70 100 40 40 40 40 40 40 40 40 
!(−4.5, 0.5+)					 >100 >100 50 50 70 70 50 50 70 70 
!(−4.5, 0.75+)			 80 90 40 30 50 40 40 30 50 40 
!(−4.5, 1.0+)						 80 100 30 30 60 40 30 30 60 50 
!(−4.75, 0.75+)	 100 >100 50 40 50 50 50 40 50 50 

20 

m3r4 

!(−4.25, 0.75+) 10 10 10 10 10 10 10 10 10 10 
!(−4.5, 0.5+)					 10 10 10 10 10 10 10 10 10 10 
!(−4.5, 0.75+)			 10 10 10 10 10 10 10 10 10 10 
!(−4.5, 1.0+)						 10 10 10 10 10 10 10 10 10 10 
!(−4.75, 0.75+)	 10 10 10 10 10 10 10 10 10 10 

m2r2 

!(−4.25, 0.75+) 10 10 10 10 10 10 10 10 10 10 
!(−4.5, 0.5+)					 10 10 10 10 10 10 10 10 10 10 
!(−4.5, 0.75+)			 10 10 10 10 10 10 10 10 10 10 
!(−4.5, 1.0+)						 10 10 10 10 10 10 10 10 10 10 
!(−4.75, 0.75+)	 10 10 10 10 10 10 10 10 10 10 

m1r2 

!(−4.25, 0.75+) 10 20 10 10 10 10 10 10 10 10 
!(−4.5, 0.5+)					 20 20 10 10 20 20 10 10 20 20 
!(−4.5, 0.75+)			 20 20 10 10 10 10 10 10 10 10 
!(−4.5, 1.0+)						 20 20 10 10 10 10 10 10 10 10 
!(−4.75, 0.75+)	 20 20 10 10 20 20 10 10 20 20 

m1r1 

!(−4.25, 0.75+) 10 20 10 10 10 10 10 10 10 10 
!(−4.5, 0.5+)					 20 20 10 10 20 10 10 10 20 10 
!(−4.5, 0.75+)			 20 20 10 10 10 10 10 10 10 10 
!(−4.5, 1.0+)						 10 20 10 10 10 10 10 10 10 10 
!(−4.75, 0.75+)	 20 20 10 10 20 10 10 10 20 10 
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Table B.3. The number of plots needed to achieve overlap for a maximum of two of the repetitions. 
As determined using the 2-tailed 95 or 99 % confidence intervals of the annual mortality rates of the first and second consolidated sets (M1M2_95, M1M2_99), or a maximum of two repetitions 
where zero was contained within the two-tailed and one-tailed 95 or 99 % confidence intervals of the absolute (in percentage points) and relative difference between the annual mortality rates 
of the second and the first consolidated sets (ppD_95(2), ppD_95(1), ppD_9592), ppD_99(1), relD_95(2), relD_95(1), relD_99(2), relD_99(1)), for the different consolidated interval lengths 
(consolLn), population dynamics variations (dynVar), and mortality rate distributions (mortDistr). Darker shading indicates more plots are needed, up to a simulated maximum of 100. 

consolLn dynVar mortDistr M1M2_95 M1M2_99 ppD_95(2) ppD_95(1) ppD_99(2) ppDiff_99(1) relD_95(2) relD_95(1) relD_99(2) relD_99(1) 

5 

m3r4 

!(−4.25, 0.75+) >100 >100 20 20 30 20 20 20 40 20 
!(−4.5, 0.5+)					 >100 >100 30 20 30 30 30 30 30 30 
!(−4.5, 0.75+)			 >100 >100 20 20 30 30 30 20 40 30 
!(−4.5, 1.0+)						 >100 >100 20 20 30 20 20 20 30 20 
!(−4.75, 0.75+)	 >100 >100 30 30 30 30 30 30 30 30 

m2r2 

!(−4.25, 0.75+) >100 >100 50 50 80 70 50 50 80 60 
!(−4.5, 0.5+)					 >100 >100 60 60 80 80 80 60 80 80 
!(−4.5, 0.75+)			 >100 >100 60 60 60 60 60 50 70 70 
!(−4.5, 1.0+)						 >100 >100 40 40 70 80 60 40 70 60 
!(−4.75, 0.75+)	 >100 >100 60 60 >100 >100 >100 60 >100 >100 

10 

m3r4 

!(−4.25, 0.75+) 30 40 10 10 10 10 10 10 10 10 
!(−4.5, 0.5+)					 30 40 10 10 10 10 10 10 10 10 
!(−4.5, 0.75+)			 30 50 10 10 10 10 10 10 10 10 
!(−4.5, 1.0+)						 30 40 10 10 10 10 10 10 10 10 
!(−4.75, 0.75+)	 30 40 10 10 10 10 10 10 10 10 

m2r2 

!(−4.25, 0.75+) 30 50 10 10 20 20 10 10 20 10 
!(−4.5, 0.5+)					 40 50 10 10 20 20 10 10 20 20 
!(−4.5, 0.75+)			 30 50 10 10 20 20 10 10 20 20 
!(−4.5, 1.0+)						 30 50 10 10 20 10 10 10 20 10 
!(−4.75, 0.75+)	 40 50 20 10 20 20 20 10 20 20 

m1r2 

!(−4.25, 0.75+) 60 80 30 30 40 40 30 30 40 40 
!(−4.5, 0.5+)					 90 >100 40 40 60 40 40 40 60 40 
!(−4.5, 0.75+)			 80 >100 30 30 50 40 30 30 50 40 
!(−4.5, 1.0+)						 60 90 30 20 40 40 30 20 50 40 
!(−4.75, 0.75+)	 90 >100 60 40 70 60 60 40 70 70 
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Table B.3. (Continued) The number of plots needed to achieve overlap for a maximum of two of the repetitions. 
 

consolLn dynVar mortDistr M1M2_95 M1M2_99 ppD_95(2) ppD_95(1) ppD_99(2) ppDiff_99(1) relD_95(2) relD_95(1) relD_99(2) relD_99(1) 

10 m1r1 

!(−4.25, 0.75+) 60 90 40 30 40 40 40 30 40 40 
!(−4.5, 0.5+)					 90 >100 50 50 70 60 50 50 70 70 
!(−4.5, 0.75+)			 70 90 40 30 40 40 40 30 40 40 
!(−4.5, 1.0+)						 70 100 30 30 50 40 30 30 50 40 
!(−4.75, 0.75+)	 100 >100 40 40 50 50 40 40 50 50 

20 

m3r4 

!(−4.25, 0.75+) 10 10 10 10 10 10 10 10 10 10 
!(−4.5, 0.5+)					 10 10 10 10 10 10 10 10 10 10 
!(−4.5, 0.75+)			 10 10 10 10 10 10 10 10 10 10 
!(−4.5, 1.0+)						 10 10 10 10 10 10 10 10 10 10 
!(−4.75, 0.75+)	 10 10 10 10 10 10 10 10 10 10 

m2r2 

!(−4.25, 0.75+) 10 10 10 10 10 10 10 10 10 10 
!(−4.5, 0.5+)					 10 10 10 10 10 10 10 10 10 10 
!(−4.5, 0.75+)			 10 10 10 10 10 10 10 10 10 10 
!(−4.5, 1.0+)						 10 10 10 10 10 10 10 10 10 10 
!(−4.75, 0.75+)	 10 10 10 10 10 10 10 10 10 10 

m1r2 

!(−4.25, 0.75+) 10 20 10 10 10 10 10 10 10 10 
!(−4.5, 0.5+)					 20 20 10 10 20 10 10 10 20 10 
!(−4.5, 0.75+)			 10 20 10 10 10 10 10 10 10 10 
!(−4.5, 1.0+)						 20 20 10 10 10 10 10 10 10 10 
!(−4.75, 0.75+)	 20 20 10 10 20 20 10 10 20 20 

m1r1 

!(−4.25, 0.75+) 10 20 10 10 10 10 10 10 10 10 
!(−4.5, 0.5+)					 10 20 10 10 20 10 10 10 20 10 
!(−4.5, 0.75+)			 20 20 10 10 10 10 10 10 10 10 
!(−4.5, 1.0+)						 10 20 10 10 10 10 10 10 10 10 
!(−4.75, 0.75+)	 20 20 10 10 20 10 10 10 20 10 
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Table B.4. The number of plots needed to achieve overlap for a maximum of five of the repetitions. 
As determined using the 2-tailed 95 or 99 % confidence intervals of the annual mortality rates of the first and second consolidated sets (M1M2_95, M1M2_99), or a maximum of five repetitions 
where zero was contained within the two-tailed and one-tailed 95 or 99 % confidence intervals of the absolute (in percentage points) and relative difference between the annual mortality rates 
of the second and the first consolidated sets (ppD_95(2), ppD_95(1), ppD_9592), ppD_99(1), relD_95(2), relD_95(1), relD_99(2), relD_99(1)), for the different consolidated interval lengths 
(consolLn), population dynamics variations (dynVar), and mortality rate distributions (mortDistr). Darker shading indicates more plots are needed, up to a simulated maximum of 100. 

consolLn dynVar mortDistr M1M2_95 M1M2_99 ppD_95(2) ppD_95(1) ppD_99(2) ppDiff_99(1) relD_95(2) relD_95(1) relD_99(2) relD_99(1) 

5 

m3r4 

!(−4.25, 0.75+) >100 >100 20 20 20 20 20 20 20 20 
!(−4.5, 0.5+)					 >100 >100 20 20 30 30 20 20 30 30 
!(−4.5, 0.75+)			 >100 >100 20 20 30 20 20 20 30 30 
!(−4.5, 1.0+)						 >100 >100 20 20 20 20 20 20 30 20 
!(−4.75, 0.75+)	 >100 >100 30 20 30 30 30 20 30 30 

m2r2 

!(−4.25, 0.75+) >100 >100 40 40 60 70 50 40 60 60 
!(−4.5, 0.5+)					 >100 >100 40 40 80 70 60 40 80 70 
!(−4.5, 0.75+)			 >100 >100 40 40 60 60 50 40 60 60 
!(−4.5, 1.0+)						 >100 >100 40 40 70 40 40 40 60 40 
!(−4.75, 0.75+)	 >100 >100 50 50 70 60 50 50 90 70 

10 

m3r4 

!(−4.25, 0.75+) 30 40 10 10 10 10 10 10 10 10 
!(−4.5, 0.5+)					 30 40 10 10 10 10 10 10 10 10 
!(−4.5, 0.75+)			 30 40 10 10 10 10 10 10 10 10 
!(−4.5, 1.0+)						 30 40 10 10 10 10 10 10 10 10 
!(−4.75, 0.75+)	 30 40 10 10 10 10 10 10 10 10 

m2r2 

!(−4.25, 0.75+) 30 50 10 10 20 10 10 10 20 10 
!(−4.5, 0.5+)					 30 50 10 10 20 10 10 10 20 10 
!(−4.5, 0.75+)			 30 50 10 10 20 20 10 10 20 20 
!(−4.5, 1.0+)						 30 50 10 10 10 10 10 10 10 10 
!(−4.75, 0.75+)	 30 50 10 10 20 20 20 10 20 20 

m1r2 

!(−4.25, 0.75+) 50 80 30 20 40 30 30 20 40 30 
!(−4.5, 0.5+)					 80 100 40 30 40 40 40 40 40 40 
!(−4.5, 0.75+)			 70 100 30 20 50 40 30 20 50 40 
!(−4.5, 1.0+)						 60 80 20 20 40 40 20 20 40 40 
!(−4.75, 0.75+)	 80 >100 40 40 60 60 50 40 60 60 
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Table B.4. (Continued) The number of plots needed to achieve overlap for a maximum of five of the repetitions. 
 

consolLn dynVar mortDistr M1M2_95 M1M2_99 ppD_95(2) ppD_95(1) ppD_99(2) ppDiff_99(1) relD_95(2) relD_95(1) relD_99(2) relD_99(1) 

10 m1r1 

!(−4.25, 0.75+) 60 80 30 20 40 40 30 20 40 40 
!(−4.5, 0.5+)					 70 >100 40 40 60 50 40 40 60 50 
!(−4.5, 0.75+)			 70 80 30 20 40 40 30 20 40 40 
!(−4.5, 1.0+)						 60 90 30 20 40 30 30 20 40 30 
!(−4.75, 0.75+)	 70 100 40 30 50 40 40 30 50 50 

20 

m3r4 

!(−4.25, 0.75+) 10 10 10 10 10 10 10 10 10 10 
!(−4.5, 0.5+)					 10 10 10 10 10 10 10 10 10 10 
!(−4.5, 0.75+)			 10 10 10 10 10 10 10 10 10 10 
!(−4.5, 1.0+)						 10 10 10 10 10 10 10 10 10 10 
!(−4.75, 0.75+)	 10 10 10 10 10 10 10 10 10 10 

m2r2 

!(−4.25, 0.75+) 10 10 10 10 10 10 10 10 10 10 
!(−4.5, 0.5+)					 10 10 10 10 10 10 10 10 10 10 
!(−4.5, 0.75+)			 10 10 10 10 10 10 10 10 10 10 
!(−4.5, 1.0+)						 10 10 10 10 10 10 10 10 10 10 
!(−4.75, 0.75+)	 10 10 10 10 10 10 10 10 10 10 

m1r2 

!(−4.25, 0.75+) 10 20 10 10 10 10 10 10 10 10 
!(−4.5, 0.5+)					 10 20 10 10 10 10 10 10 10 10 
!(−4.5, 0.75+)			 10 20 10 10 10 10 10 10 10 10 
!(−4.5, 1.0+)						 10 20 10 10 10 10 10 10 10 10 
!(−4.75, 0.75+)	 20 20 10 10 20 10 10 10 20 10 

m1r1 

!(−4.25, 0.75+) 10 20 10 10 10 10 10 10 10 10 
!(−4.5, 0.5+)					 10 20 10 10 10 10 10 10 10 10 
!(−4.5, 0.75+)			 10 20 10 10 10 10 10 10 10 10 
!(−4.5, 1.0+)						 10 20 10 10 10 10 10 10 10 10 
!(−4.75, 0.75+)	 10 20 10 10 10 10 10 10 10 10 
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Table B.5. The number of plots needed to achieve overlap for a maximum of ten of the repetitions. 
As determined using the 2-tailed 95 or 99 % confidence intervals of the annual mortality rates of the first and second consolidated sets (M1M2_95, M1M2_99), or a maximum of ten repetitions 
where zero was contained within the two-tailed and one-tailed 95 or 99 % confidence intervals of the absolute (in percentage points) and relative difference between the annual mortality rates 
of the second and the first consolidated sets (ppD_95(2), ppD_95(1), ppD_9592), ppD_99(1), relD_95(2), relD_95(1), relD_99(2), relD_99(1)), for the different consolidated interval lengths 
(consolLn), population dynamics variations (dynVar), and mortality rate distributions (mortDistr). Darker shading indicates more plots are needed, up to a simulated maximum of 100. 

consolLn dynVar mortDistr M1M2_95 M1M2_99 ppD_95(2) ppD_95(1) ppD_99(2) ppDiff_99(1) relD_95(2) relD_95(1) relD_99(2) relD_99(1) 

5 

m3r4 

!(−4.25, 0.75+) >100 >100 20 20 20 20 20 20 20 20 
!(−4.5, 0.5+)					 >100 >100 20 10 30 20 20 20 30 20 
!(−4.5, 0.75+)			 >100 >100 20 10 20 20 20 10 20 20 
!(−4.5, 1.0+)						 >100 >100 20 10 20 20 20 10 20 20 
!(−4.75, 0.75+)	 >100 >100 20 20 30 30 20 20 30 30 

m2r2 

!(−4.25, 0.75+) >100 >100 40 30 60 50 40 30 60 50 
!(−4.5, 0.5+)					 >100 >100 40 40 60 40 40 40 60 60 
!(−4.5, 0.75+)			 >100 >100 40 30 50 50 40 30 50 50 
!(−4.5, 1.0+)						 >100 >100 30 30 70 40 30 30 40 40 
!(−4.75, 0.75+)	 >100 >100 40 50 60 60 50 40 70 60 

m1r2 !(−4.5, 1.0+)						 >100 >100 >100 100 >100 >100 >100 100 >100 >100 

10 

m3r4 

!(−4.25, 0.75+) 30 40 10 10 10 10 10 10 10 10 
!(−4.5, 0.5+)					 30 40 10 10 10 10 10 10 10 10 
!(−4.5, 0.75+)			 30 40 10 10 10 10 10 10 10 10 
!(−4.5, 1.0+)						 30 40 10 10 10 10 10 10 10 10 
!(−4.75, 0.75+)	 30 40 10 10 10 10 10 10 10 10 

m2r2 

!(−4.25, 0.75+) 30 50 10 10 10 10 10 10 10 10 
!(−4.5, 0.5+)					 30 50 10 10 20 10 10 10 20 10 
!(−4.5, 0.75+)			 30 50 10 10 20 10 10 10 20 10 
!(−4.5, 1.0+)						 30 50 10 10 10 10 10 10 10 10 
!(−4.75, 0.75+)	 30 50 10 10 20 10 10 10 20 20 

m1r2 

!(−4.25, 0.75+) 50 70 20 20 30 30 20 20 30 30 
!(−4.5, 0.5+)					 60 100 40 30 40 40 40 30 40 40 
!(−4.5, 0.75+)			 70 90 20 20 40 30 30 20 40 30 
!(−4.5, 1.0+)						 50 80 20 20 40 30 20 20 40 30 
!(−4.75, 0.75+)	 70 >100 40 30 50 50 40 30 60 50 



 

 120 

Table B.5. (Continued) The number of plots needed to achieve overlap for a maximum of ten of the repetitions. 
 

consolLn dynVar mortDistr M1M2_95 M1M2_99 ppD_95(2) ppD_95(1) ppD_99(2) ppDiff_99(1) relD_95(2) relD_95(1) relD_99(2) relD_99(1) 

10 m1r1 

!(−4.25, 0.75+) 50 70 20 20 30 30 30 20 30 30 
!(−4.5, 0.5+)					 70 100 40 30 50 40 40 30 50 40 
!(−4.5, 0.75+)			 50 80 20 20 30 30 20 20 30 30 
!(−4.5, 1.0+)						 50 80 20 20 30 30 20 20 30 30 
!(−4.75, 0.75+)	 60 100 30 20 50 40 30 20 50 40 

20 

m3r4 

!(−4.25, 0.75+) 10 10 10 10 10 10 10 10 10 10 
!(−4.5, 0.5+)					 10 10 10 10 10 10 10 10 10 10 
!(−4.5, 0.75+)			 10 10 10 10 10 10 10 10 10 10 
!(−4.5, 1.0+)						 10 10 10 10 10 10 10 10 10 10 
!(−4.75, 0.75+)	 10 10 10 10 10 10 10 10 10 10 

m2r2 

!(−4.25, 0.75+) 10 10 10 10 10 10 10 10 10 10 
!(−4.5, 0.5+)					 10 10 10 10 10 10 10 10 10 10 
!(−4.5, 0.75+)			 10 10 10 10 10 10 10 10 10 10 
!(−4.5, 1.0+)						 10 10 10 10 10 10 10 10 10 10 
!(−4.75, 0.75+)	 10 10 10 10 10 10 10 10 10 10 

m1r2 

!(−4.25, 0.75+) 10 10 10 10 10 10 10 10 10 10 
!(−4.5, 0.5+)					 10 20 10 10 10 10 10 10 10 10 
!(−4.5, 0.75+)			 10 20 10 10 10 10 10 10 10 10 
!(−4.5, 1.0+)						 10 20 10 10 10 10 10 10 10 10 
!(−4.75, 0.75+)	 10 20 10 10 10 10 10 10 10 10 

m1r1 

!(−4.25, 0.75+) 10 10 10 10 10 10 10 10 10 10 
!(−4.5, 0.5+)					 10 20 10 10 10 10 10 10 10 10 
!(−4.5, 0.75+)			 10 20 10 10 10 10 10 10 10 10 
!(−4.5, 1.0+)						 10 20 10 10 10 10 10 10 10 10 
!(−4.75, 0.75+)	 10 20 10 10 10 10 10 10 10 10 
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Appendix C. A comparison of the trend result metrics 
 

Of the various trend result metrics used for determining the minimum number of plots 

required for each given set of parameters (consolidated interval length, dynamics 

variation, mortality distribution), the absence of an overlap with zero of the confidence 

intervals of the absolute (ppDiff) and relative (relDiff) differences between the two sets 

were found to be the most efficient at detecting an increase in annual mortality rates 

between two consecutive sets of census intervals across all parameters. 

When there was minimal or no overlap between the first and second consolidated sets, as 

was the case for the 20 year consolidated interval length (which samples 40 consecutive 

years out of a total 50-year period), the lack of overlap between the 95 % confidence 

intervals of the annual mortality rates of the first and second set proved nearly as efficient 

as the absence of overlap of the two-tailed 99 % confidence interval of ppDiff and relDiff 

with zero, but at shorter interval lengths the former trend result metric required on 

average 10-30 more plots to detect an increase of the same magnitude. 

Since the 99 % confidence interval is wider than the 95 % confidence interval, and a two-

tailed interval has a lower lower bound, compared to a one-tailed confidence interval, in 

general the least amount of plots needed to detect an increase was found for the one-

tailed 95 % confidence interval, followed by the two-tailed 95 %, one-tailed 99 %, and 

finally the two-tailed 99 % confidence interval. 

For some population dynamics variations or mortality distributions, the number of plots 

required to detect an increase was the same across all these confidence interval measures 

(e.g. 20 plots for both ppDiff and relDiff for no repetitions overlapping for variation m2r2, 

distributions !(−4.5, 0.75*) and !(−4.75, 0.75*), 10 year consolidated length). In other 

cases, a difference of 40 plots or greater was required for detecting the same increase 

between the one-tailed 95 % confidence interval and the two-tailed 99 % confidence 

interval (e.g. 60+ plots for ppDiff and 70+ plots for relDiff for no overlap under variation 

m2r2, distribution !(−4.5, 0.5*), 5 year consolidated length). 

In addition to the different levels of uncertainty associated with the confidence intervals, 

there are different significance levels associated with the proportion of repetitions where 

the confidence intervals did overlap with each other (when comparing the annual 

mortality rates of the consecutive sets) or zero (for ppDiff and relDiff). 

In the strictest case, which has been applied here, the number of plots chosen was such 

that no overlap being found for any of the repetitions was stable, also at greater numbers 

of plots. In some cases this resulted in the required number of plots being 20 higher, since 

no overlap was found at e.g. 40 plots (one-tailed 95 % confidence interval of ppDiff, 
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variation m2r2, distribution !(−4.5, 0.75*), 5 year consolidated interval length), but 

overlap was found again for three of the repetitions at 50 plots, before dropping back 

down permanently to no overlap for 60 plots and over. Consequently, when allowing the 

confidence intervals of 3 % of repetitions to contain zero, only 40 plots were required to 

detect the 2 % increase in annual mortality rates in this scenario. 
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Appendix D. Plots for short-term mortality rate increases 
Table D.1. The number of plots required to detect a short-term increase in mortality rates. 
Confidence from high to low: none (0 %; top left), one (1 %; top right), two (2 %; lower left) or five (5 %; lower 
right) of the total 100 repetitions’ 95 % confidence intervals contain zero, using the percentage points 
difference between mortality rates drawn from distributions with a mean of -4.5 or -4.25 (SD 0.75 for both) in 
logistic space and the relative increase in annual mortality rates (“Incr.”; in%), for events lasting one or two 
years (“Dur.”; in years), at a census interval length of two years, under various population dynamics scenarios 
(m denotes relative increase in annual mortality rates, r relative increase in recruitment). 

0 % overlap -4.5 -4.25  1 % overlap -4.5 -4.25 

Dur. Incr. m0r0 m2r2 m2r3 m4r4 m0r0  Dur. Incr. m0r0 m2r2 m2r3 m4r4 m0r0 

1 

5 >250 NA NA NA >250  

1 

5 >250 NA NA NA >250 

7.5 >250 NA NA NA NA  7.5 >250 NA NA NA NA 

10 250 190 170 130 >250  10 190 190 160 130 >250 

15 >250 NA NA NA NA  15 200 NA NA NA NA 

20 190 100 140 80 100  20 160 100 110 80 100 

30 80 NA NA NA NA  30 80 NA NA NA NA 

40 40 NA NA NA NA  40 30 NA NA NA NA 

50 30 20 30 20 40  50 30 20 30 20 30 

75 20 NA NA NA 20  75 20 NA NA NA 20 

100 10 10 NA NA NA  100 10 10 NA NA NA 

2 

5 250 NA NA NA 200  

2 

5 250 NA NA NA 160 

7.5 190 NA NA NA NA  7.5 140 NA NA NA NA 

10 130 50 50 30 80  10 100 50 50 30 80 

15 40 NA NA NA NA  15 40 NA NA NA NA 

20 20 20 20 20 20  20 20 20 20 20 20 

30 10 NA NA NA NA  30 10 NA NA NA NA 

40 10 NA NA NA NA  40 10 NA NA NA NA 

50 10 10 NA NA NA  50 10 10 NA NA NA 

75 10 NA NA NA NA  75 10 NA NA NA NA 

100 10 10 NA NA NA  100 10 10 NA NA NA 
               

2 % overlap -4.5 -4.25  5 % overlap -4.5 -4.25 

Dur. Incr. m0r0 m2r2 m2r3 m4r4 m0r0  Dur. Incr. m0r0 m2r2 m2r3 m4r4 m0r0 

1 

5 >250 NA NA NA >250  

1 

5 >250 NA NA NA >250 

7.5 >250 NA NA NA NA  7.5 >250 NA NA NA NA 

10 180 190 140 100 >250  10 160 150 110 90 250 

15 190 NA NA NA NA  15 180 NA NA NA NA 

20 160 90 100 70 100  20 160 90 90 70 80 

30 70 NA NA NA NA  30 60 NA NA NA NA 

40 30 NA NA NA NA  40 30 NA NA NA NA 

50 30 20 20 20 30  50 20 20 20 20 20 

75 20 NA NA NA 20  75 10 NA NA NA 10 

100 10 10 NA NA NA  100 10 10 NA NA NA 

2 

5 230 NA NA NA 160  

2 

5 220 NA NA NA 130 

7.5 140 NA NA NA NA  7.5 140 NA NA NA NA 

10 100 40 50 30 60  10 80 40 40 30 50 

15 30 NA NA NA NA  15 30 NA NA NA NA 

20 20 20 20 20 20  20 20 10 20 10 20 

30 10 NA NA NA NA  30 10 NA NA NA NA 

40 10 NA NA NA NA  40 10 NA NA NA NA 

50 10 10 NA NA NA  50 10 10 NA NA NA 

75 10 NA NA NA NA  75 10 NA NA NA NA 

100 10 10 NA NA NA  100 10 10 NA NA NA 
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Appendix E.  All pan-tropical hierarchical model descriptions  
 

Plots with fewer censuses should still yield reliable distributions due to the hierarchical 

nature of HL2 models, but the effect of specifying a minimum number of censuses per plot 

and a minimum number of plots satisfying this condition per spatial region is tested for, 

using no minimum (models with suffix ‘_min0’), a minimum of three (suffix ‘_min3’), of five 

(suffix ‘_min5’) and of seven (suffix ‘_min7’) censuses per plot and the specified minimum 

number of plots, with this minimum number of plot censuses, per region. Since the mean 

and standard deviation of the plots’ logit-normal distributions are assumed to exhibit logit-

normal distributions for all plots combined on a regional scale, and regions with a higher 

mean annual mortality rate could be expected to also have a higher variation in annual 

mortality rates, HL2 models are tested using both the assumption of correlation between 

these regional distributions (suffix ‘_bivar’) or independence (suffix ‘_noBivar’). 

In the higher-level models (HL1 & HL2) the assumption of not only the average mortality 

differing per region, but also the variation of regional mortality rates, is tested by having 

one set of models where the mean and standard deviation parameters are estimated 

separately for each bio-geographical or continental region (suffix ‘_indivSd’) and one set 

where the mean of the regional distributions is estimated per individual region, but a 

single standard deviation value is estimated for all the regions (suffix ‘_regSd’). For each 

model we obtain estimates, and uncertainty, for all relevant model parameters (Table E.1, 

Table E.2) using three chains with an appropriate number of burn-in iterations to ensure 

convergence (increasing with number of observations per region and model complexity). 

When the regional mean and standard deviation distributions are assumed to be 

correlated, since plots with a higher mean mortality rate might be expected to have a 

higher standard deviation, ,-  and log(1-) are drawn from a regional scale bivariate 

normal distribution, with the subscript ‘2, 3’ relating to the mean and standard deviation of 

the long term spatial mean on a regional scale, and ‘1, 3’ to the mean and standard 

deviation of the long term spatial standard deviation on a regional scale; 45  denotes the 

correlation between these two  

{,-, 	log(1-)}	~	!(,:,5, ,;,5, 	1:,5, 1;,5, 45)   ( E-1 ) 
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Table E.1. All hierarchical pan-tropical models and their properties. 
The region represented at the first and second hierarchical level (if present), the minimum number of plot 
censuses per plot/plots per region and whether the bivariate normal distribution was used. 

Model Code 1st Hier. level 2nd Hier. level Min. 
pc/p 

Incl. 
bivar. 

HL0 - - - - 

HL1BGR Biogeographical - - - 

HL1C Continental - - - 

HL1PT Pan-tropical - - - 

HL2BGR_min0_bivar Plot Biogeographical 0 Y 

HL2BGR_min0_noBivar Plot Biogeographical 0 N 

HL2BGR_min3_bivar Plot Biogeographical 3 Y 

HL2BGR_min3_noBivar Plot Biogeographical 3 N 

HL2BGR_min5_bivar Plot Biogeographical 5 Y 

HL2BGR_min5_noBivar Plot Biogeographical 5 N 

HL2BGR_min7_bivar Plot Biogeographical 7 Y 

HL2BGR_min7_noBivar Plot Biogeographical 7 N 

HL2C_min0_bivar Plot Continental 0 Y 

HL2C_min0_noBivar Plot Continental 0 N 

HL2C_min3_bivar Plot Continental 3 Y 

HL2C_min3_noBivar Plot Continental 3 N 

HL2C_min5_bivar Plot Continental 5 Y 

HL2C_min5_noBivar Plot Continental 5 N 

HL2C_min7_bivar Plot Continental 7 Y 

HL2C_min7_noBivar Plot Continental 7 N 

HL2PT_min0_bivar Plot Pan-tropical 0 Y 

HL2PT_min0_noBivar Plot Pan-tropical 0 N 

HL2PT_min3_bivar Plot Pan-tropical 3 Y 

HL2PT_min3_noBivar Plot Pan-tropical 3 N 

HL2PT_min5_bivar Plot Pan-tropical 5 Y 

HL2PT_min5_noBivar Plot Pan-tropical 5 N 

HL2PT_min7_bivar Plot Pan-tropical 7 Y 

HL2PT_min7_noBivar Plot Pan-tropical 7 N 
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Table E.2. All hierarchical pan-tropical model parameters and their descriptions. 

Par. Description 

!< Number of trees with dbh > 10 cm alive in region (HL1 models) or plot (HL2 
models) = at start of census interval > of length ? years 

!@ Number of trees out of !< in region (HL1 models) or plot (HL2 models) = that 
have survived the census interval > of length ? years 

= Region (HL1 models) or plot (HL2 models) identification number 

> Census interval identification number 

? Census interval length (years) 

A-,B The observed mortality rate in region/plot = during census interval > of length ? 
years (years-1) 

,-,B Estimated mortality rate in region/plot = during census interval > of length ? 
years, in logistic parameter space (years-1) 

2-,B Logistic transformation of ,-,B (years-1) 

,-  Estimated overall mean mortality rate in region/plot = (across all census 
intervals), in logistic parameter space (years-1) 

2-  Logistic transformation of ,-  (years-1); median of the back-transformed logit-
normal distribution 

1- Estimated overall standard deviation in mortality rates in region/plot = (across 
all census intervals; years-1)  

,:,5  Estimated overall mean of mean mortality rates in region 3 (across all plots in 
that region), in logistic parameter space (years-1) 

,;,5  Estimated overall standard deviation in mean mortality rates in region 3 (across 
all plots in that region; years-1) 

1;,5  Estimated overall mean of standard deviations in mortality rates in region 3 
(across all plots in that region), in logarithmic parameter space (years-1) 

1;,5  Estimated overall standard deviation in standard deviations of mortality rates in 
region 3 (across all regions in that continent), in logarithmic parameter space 
(years-1) 

45  Correlation coefficient between mean and standard deviation distributions in 
region 3 (across all plots in that region) 

 


