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Abstract

Ozone is a compound of interest in the troposphere due to its detrimental effect on human

health and the environment and is of particular concern in Beijing. Here the GEOS-Chem

chemical transport model was run with improved chemistry regionally over east China and

evaluated against the 2017 Atmospheric Pollution and Human Health in a Chinese Megac-

ity campaign. The primary emissions are found to require significant scaling to match

observation. While the model was able to reproduce the O3 concentration, the secondary

compound performance was lacking. A system to produce O3 isopleths was developed to

investigate the photochemical regime, and it was found that during the campaign, Beijing

was on average in a VOC limited regime, but there was a degree of day to day variability.

The VOC evaluation found that the most significant reduction in O3 would result from a

reduction in aromatic compounds. The significance of reactive uptake of HO2 onto aerosol

was investigated and found to profoundly affect the O3 concentration with the rate of NO

emissions affecting the sensitivity. The noontime radical loss pathways were investigated,

and it is found that while NO2 + OH was the dominant radical loss pathway in Beijing, the

contribution of radical-radical reactions and HO2 uptake varies throughout the campaign

period. Finally, a machine learning approach was developed to correct the O3 bias within

GEOS-Chem. The XGBoost algorithm was trained on six years (2010-2015) of global ob-

servational data and tested on two years (2016-2017). The model was able to predict and

thus improve the model performance at the nine testing sites and identify known published

biases globally. The approach was robust to the removal of training data, both spatially

and temporally and could be a useful tool for performance prioritized applications such as

air quality forecasts.
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Introduction
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1.1 Introduction

This thesis will focus on improving our understanding of tropospheric ozone (O3), a pol-

lutant which impacts human health, reduces crop yields and acts as a greenhouse gas. O3

lies at the centre of the chemistry of the troposphere due to its ability to form the OH rad-

ical, which constitutes the most important tropospheric chemical sink. Understanding the

processes controlling its concentrations requires understanding a wide range of chemical

and physical processes.

A significant body of previous work has been undertaken to understand O3. This the-

sis aims to fill three primary gaps in our understanding. The first two chapters focus on

summertime O3 in Beijing. Firstly, to improve our understanding of the optimal route to

control O3 in the city, and secondly, to explore aerosols’ role in controlling O3 in that city.

The final chapter looks more broadly to provide a newmethod of being able to simulate O3

around the world. All of these chapters use chemical transport models as a tool to support

this understanding.

Improvement of chemical transport models is usually "process" basedmeaning that ad-

ditional scientific understanding is programmed into the model to improve it. A process-

based approach is taken in the first two chapters where the motivation is to maximise

understanding in the model. New science is explicitly added to the model, and new tech-

niques are developed for diagnosing model behaviour. A process-based approach to model

improvement is contrasted with the third chapter, where an algorithmic approach is used to

maximise performance. The algorithm is then investigated for its potential to aid process

based improvement.

Given Beijing’s focus, this work is motivated by the potential health impacts of O3

and air pollution more widely. Thus in this chapter, the impact of air pollution on human

health is first described (Section 1.3). The sources of atmospheric pollutants (Section 1.4)

and the tropospheric gas chemistry involved in understanding O3 will be outlined (Section

1.5). Finally, this work’s chemical transport modelling will be introduced (Section 1.6).
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1.2 The history of air quality

Elevated concentration levels of O3 results in poor air quality and is keystone in ourmodern

understanding of air pollution however air quality has long been a concern for humanity.

Much of this stems from the overt nature of acrid smoke and foul odour. As far back as the

ancient Greeks there was an association of foul odour (particularly concerning stagnant

swamps) with "unhealthiness", while this was more reflective of water quality it created

the accepted concept of "bad air". The earliest documented case of air pollution in the UK

occurred in 1257 when Queen Eleanor visited Nottingham castle which was under repairs

at the time. The Queen was forced to leave the site "to preserve her health" due to the

smoke from the "new fuel", coal (Brimblecombe, 1976).

The fear of air pollution was common throughout medieval times, but it was not until

the industrial revolution that it become a prominent social issue. The widespread burning

of coal in dense urban areas created a perfect storm for air quality issues. During this time,

scientists identified that chimney sweeps were developing occupation specific cancer, and

the connection was made that coal soot was to blame (Waldron, 1983). This was the first

time a chemical substance had been identified as causing cancer. Between 1870 and 1897

periods of smog (the simultaneous occurrences of "smoke" and "fog") and low temperature

were blamed for a sharp rise in deaths in the London borough of Islington (Russell, 1924).

Unfortunately, no action was taken and in winter of 1952 London experienced a significant

pollution event in which the smog was so thick that traffic in the city came to a standstill

and a substantial increase in the mortality rate followed (M. L. Bell, D. L. Davis, and

Fletcher, 2004). These deaths were found to be the result of respiratory and cardiovascular

complications (W. P. D. Logan, 1953). Up until this point pollution was primarily seen as

an unavoidable consequence of urbanisation, however in the wake of the London smog

event, it was deemed that this was no longer acceptable, and in 1956 the Clean Air Act

came into effect. This was the first significant piece of legalisation to protect human health

concerning air pollution, this act put in place controls on coal combustion.

During this time, Los Angeles was also experiencing smog events. However, this smog

had a yellow colour and was not associated with cold temperatures. This was identified
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to be a "photochemical smog". Photochemical smog is where volatile organic compounds

(VOCs) and nitrogen oxides (NOx) react to form ozone (O3), reactive gases and partic-

ulate. While all of the species associated with photochemical smog are detrimental to

human health and the environment, it is O3 that is of greatest interest. O3 is of particu-

lar importance due to its problematically high concentration in polluted regions and long

lifetime, allowing it to be transported over large regions.

While this thesis will focus on O3, the atmosphere is a highly coupled system, and

thus it is impossible to isolate one compound. Policies will often look to tackle high

concentrations of multiple classes of harmful compounds at once. Furthermore, some

policy decisions can even make certain species worse in the process. The effect on human

health and ecosystem damage for the most problematic atmospheric compounds will now

be discussed.
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1.3 Health and ecosystem impact of air pollution

The degradation of air quality has repercussions for society and the natural environment

(Manisalidis et al., 2020). The impact of pollution can occur throughout the atmosphere,

such as chlorofluorocarbon damage to the O3 layer in the stratosphere (Farman, Gardiner,

and Shanklin, 1985). Additionally, the effects of indoor air pollution have also been in-

vestigated (Spengler and Sexton, 1983; Samet, Marbury, and Spengler, 1987; Bernstein

et al., 2008). In this thesis, the focus is on the repercussions at the bottom-most 15km of

the atmosphere, the troposphere, in outdoor air.

Many compounds in the troposphere can have a negative impact under certain condi-

tions. Here they are split into two classes and discussed: particulate consisting of tropo-

spheric aerosols (solid and liquid particles suspended in the air) and gases.

1.3.1 Particulate

Particulate matter (PM) consists of suspended particles in the air, and their negative impact

on health has been extensively studied. They are classified by their maximum diameter in

microns with the two main classes being PM2.5 (2.5 µm) and PM10 ( 10 µm). While all

particle sizes pose a level risk it is the smaller PM2.5 that is of most concern due to its abil-

ity to most effectively infiltrate deep into the respiratory system (Kelishadi and Poursafa,

2010; Lingli Zhang et al., 2019). These small particles can deposit on the bronchioles

and alveoli (Londahl et al., 2006) where they obstruct gas exchange and can penetrate the

bloodstream (Guaita et al., 2011). This process puts considerable stress on both the respi-

ratory and cardiovascular systems (Halonen et al., 2009; Perez et al., 2012; Samoli et al.,

2008). As a result, PM2.5 is predicted to be the cause of approximately 4 million deaths

per year (~7.6% of all deaths) (A. J. Cohen et al., 2017).

The composition of particulate can cause additional issues. In urban and industrial re-

gions, PMmay also contain heavy metals (Popoola, Adebanjo, and Adeoye, 2018). Heavy

metals such as lead, cadmium and zinc emitted from industry and vehicular emissions

(Viard et al., 2004) can bioaccumulate in the body, causing severe long term damage to

various bodily systems in both humans and animals (Goyer, 1990; Jaishankar et al., 2014).
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Polycyclic aromatic hydrocarbons are formed of a combination of two to six aromatic rings

via low heat combustion such as during biomass burning or domestic solid fuel use (D. Liu

et al., 2017). The larger of these compounds (greater than four rings) have low volatility

due to their size and are thus found exclusively in the particulate phase (Jariyasopit et al.,

2014). PAH’s primary health risk is their carcinogenicity and mutagenicity (S. J. C. Wei

et al., 1991), the mechanism for this comes not from the PAH compounds themselves but

from the metabolites formed within the body. The larger PAH are of the most significant

risk due to their metabolites having a structure that allows them to interact with DNA

(Huberman et al., 1976).

When particulate undergoes deposition viamoisture or precipitation, nitric and sulfuric

acid components of the aerosol can cause a drop in the pH of the water droplet (Parungo,

Nagamoto, and Madel, 1987). The formed acid rain can then cause ecological harm (A.

Singh and Agrawal, 2008) as well as economic damage via the destruction of food crops

(Irving, 1983). PM can cause further damage to plant life due to a reduction in photosyn-

thesis brought about by decreased visibility and changes to leaf surface temperature due

to the dry deposition resulting in a coating of particulate.

1.3.2 Gases

Nitrogen oxides (NOx) consisting of NO and NO2 are emitted predominantly from ve-

hicular exhaust (Richmond-Bryant et al., 2017) and are gas-phase compounds of concern

for human health. Nitrogen oxides have been found to increase the risk of cardiovascular

and respiratory diseases (Brunekreef et al., 2009) as well as causing irritation to the eyes,

throat, and nose (T.-M. Chen et al., 2007).

Volatile Organic Compounds (VOCs) are hydrocarbons (or compounds based on hy-

drocarbon molecule skeletons) that are found predominantly in the gas phase. VOCs have

some associated health risks such as carcinogenic compounds benzene, toluene, xylene

(Dehghani et al., 2018) and formaldehyde (Pilidis et al., 2009). However, the most prob-

lematic consequences of NOx and VOC emissions is the subsequent production of reactive

gases in the presence of sunlight.
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The secondary compounds formed by the photochemical reactions include; peroxy-

acetyl nitrates (PANs), aldehydes and nitric acid and O3. The combination of these secon-

daries with VOC and NOx is known as photochemical smog. These reactive compounds

are known to irritate eyes (Altshuller, 1977) and lungs (Jaffe, 1967) as well as the damage

they can cause to vegetation (Taylor, 1969). However, of these secondary gases, it is O3

with its potentially high concentration and relatively long tropospheric lifetime (weeks in

the summer) that is of most significant concern.

Long term exposure to O3 has been found to cause decreased respiratory and pul-

monary function, airway inflammation, and aggravation of pre-existing diseases such as

asthma (Schneidemesser et al., 2015; Kulle et al., 1985; Lippmann, 1989). Approximately

1.1 million premature deaths a year are believed to be a result of long-term O3 exposure

(Lim et al., 2012; R. A. Silva et al., 2013; Malley et al., 2017).

Exposure to O3 can damage plant life via mechanisms such as accelerating leaf deteri-

oration (Reich and Lassoie, 1985; Pell et al., 1999), altering carbon allocation (Friend and

Tomlinson, 1992; Coleman et al., 1995) and predisposing trees to attack by pests (Stark

et al., 1968; D. F. Karnosky et al., 2002). As a result, O3 has caused long term detriment

to forested regions (David F. Karnosky et al., 2007).

O3 can severely damage crops leading to reduced crop yield and quality (Krupa, Nosal,

and Legge, 1998). Total global annual economic loss as a result of O3 is predicted to be

between 14 and 26 billion dollars (Van Dingenen et al., 2009). Additionally, much of this

crop damage occurs in developing countries impacting food security (Tai and Maria Val

Martin, 2017).
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1.4 Emissions

A large number of different gas phase molecules are emitted into the atmosphere (Duce,

1978). Their mass and composition is limited by their volatility (they need to be gases at

surface temperatures) and their availability at the surface. This limits the range of possible

molecules to, in general, those that contain H, O, C, N, S, P, Br, I, Cl and Si.

These compounds have differing impacts on the atmosphere. Some are inert in the

lower part of the atmosphere and only influence the stratosphere (CFCs, HCFCs) due to

the high energy required to break their chemical bonds (S. A. Montzka et al., 2018). From

an urban health perspective there are two key group of compounds of for O3 production.

Firstly, VOCs and CO, these form the "fuel" for ozone production, and secondly, oxides

of nitrogen, these form the catalyst for the production of ozone (Haagensmit, Bradley, and

Fox, 1953).

1.4.1 Volatile organic compounds and carbon monoxide

Volatile organic compounds (VOCs) are hydrocarbons or hydrocarbon like compounds

that are predominantly found in the gas phase at atmospherically relevant temperatures (R.

Atkinson and Arey, 2003a). This is a diverse group of compounds including those from

anthropogenic (derived from human activity) and biogenic (derived from natural activity

in the biosphere) sources (R. Atkinson and Arey, 2003b), with lifetimes ranging from <1

hour in the case of unstable unsaturated branched compounds, to over ten years in the case

of methane (Sonnemann and Grygalashvyly, 2014).

The long lifetime of methane coupled with substantial globally distributed emissions

lead to it having the highest concentration of any of the VOCs in the atmosphere (Saunois

et al., 2016). But it has little impact on the urban or regional spatial scale (A. M. Fiore, Ja-

cob, et al., 2002). The other VOCs have a more profound influence (Derwent, Jenkin, and

Saunders, 1996). Their anthropogenic source is dominated by release of unused hydrocar-

bon fuels or their incomplete combustion within engines (Hong-li et al., 2017). However,

they are also used as industrial solvents, feed-stocks of industrial processes, and in domes-

tic applications (Y. M. Kim, Harrad, and Harrison, 2001). All of these lead to intentional
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or unintentional release of these compounds into the atmosphere.

A significant amount of organic matter is tied up in the biosphere predominantly in

plant life. This can be released into the atmosphere in two main ways. Plants naturally

release VOCs into the atmosphere (Simpson et al., 1995). Vast quantities of compounds

such as isoprene and monoterpenes are release into the atmosphere by plants (A. Guenther

et al., 2006), the exact reason for doing this is unclear but as the emission increase with

temperature it may be a mechanism for increasing heat tolerance. These emissions dwarf

the anthropogenic source in many parts of the world (Jacob and S. C. Wofsy, 1988). Forest

fires can also release substantial quantities of VOCs into the atmosphere as biomass is

decomposed by the fire (Andreae and Merlet, 2001).

Carbon monoxide (CO) acts in a similar way in the atmosphere to VOCs (Zhong et

al., 2017). It is emitted by the incomplete combustion of hydrocarbons, often due to a

lack of oxygen during the combustion process (Khalil and Rasmussen, 1990). Well main-

tained and designed engines and furnaces should result in limited emissions of CO but

poor maintenance or design can lead to substantial emissions (Horner, 2000). Similarly,

the structure of the fire in forest fires lead to limited availability of oxygen which can lead

to high CO emissions (Kasischke and Bruhwiler, 2002).

1.4.2 Oxides of nitrogen

In the troposphere the two prominent nitrogen oxides are NO and NO2 collectively referred

to as NOx. NOx is predominately emitted in the form of NO which are oxidised into NO2

via reaction with an atmospheric oxidant, overwhelmingly O3 (Chameides et al., 1992).

This reaction forms the central part of the NOx cycle (R. Atkinson, 2000). The nature of

the cycle varies depending on atmospheric conditions (M. Val Martin et al., 2008).

NO is formed via the reactions of atmospheric O2 and N2, and this reaction takes con-

siderable energy owing to the strong nitrogen triple bond on N2 (Noxon, 1976). Thus, high

temperature combustion is the dominant source of NOx into the atmosphere2 (Kavanaugh,

1987). Combustion engines produce temperatures greater than 1500 oC which facilitates

the production of NO (P. F. Flynn et al., 2000), and this is particularly evident in diesel
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engines which run hotter than petrol engines Hoekman and C. Robbins, 2012. Large scale

combustion from fossil fuel electrical power plants and industrial furnaces also reach tem-

peratures high enough to produce NO (Foy et al., 2015). Thus these anthropogenic sources

of NOx dominate the global emissions (Delmas, Serca, and Jambert, 1997).

Natural sources of NOx in the atmosphere also exist (Robinson and R. C. Robbins,

1970). Natural combustion within forest fires can emit substantial amounts of NO (H. B.

Singh et al., 2010). Another large natural source of NO is via lightning (D. Z. Stockwell

et al., 1999). Lighting has considerable energy and can thus break the O2 bond (Schumann

and Huntrieser, 2007). The oxygen atoms produced can then react with N2 to produce NO

(L. T. Murray, J. A. Logan, and Jacob, 2013). This represents the least quantified source

of NO owing to the sparse and instantaneous nature of lighting strikes, as well as effecting

the entire column below the storm system (Schumann and Huntrieser, 2007). Microbial

activity in soil releases NO and due to its global distribution it is a prominent contributor

to remote atmosphere emissions (Robinson and R. C. Robbins, 1970).
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1.5 Gas phase chemistry

Once emitted into the atmosphereVOCs and oxides of nitrogen are oxidized (Ravishankara,

1988). This results in the VOCs producing carbon dioxide, water or soluble species which

can be lost to clouds or wet surfaces. Oxides of nitrogen are similarly oxidized to give

nitric acid or other water soluble species (A. Martin, 1984). This oxidation chemistry is

central to controlling the amount of O3 that the atmosphere can produce and so its health

impacts.

VOC oxidation

OH is an extremely reactive radical that plays a central role in this oxidation chemistry

(R. Atkinson and Arey, 2003a). It provides the largest removal pathway for VOCs in the

atmosphere, and a significant route for the conversion of oxides of nitrogen into nitric acid

(Brown, Talukdar, and Ravishankara, 1999).

Most OH in the atmosphere is formed via Reaction R 1.2 when an oxygen atom in its

O(1D) excited state (typically following the photodissociation of ozone, (Reaction R 1.1)

reacts with a water molecule (Michelsen et al., 1994).

OH is particularly reactive towards hydrocarbons due to the H-abstraction converting

OH into H2O which is kinetically favourable due to O-H bonds being stronger than C-H

bonds (Kleinermanns and Luntz, 1982). The most common example of this reaction is the

reaction of OH with methane (CH4) (Vaghjiani and Ravishankara, 1991), Reaction R 1.3.

The methyl radical rapidly reacts with the abundant O2 to form a methyl peroxy radical

(Reaction R 1.4). This radical can be more generally referred to as RO2, where R is any

length alkyl chain (King, Canosa-Mas, and Wayne, 2001). At this point, the RO2 radical

can react in one of two ways depending on the NOx concentration.

When the concentration of nitric oxide (NO) is high, RO2 will react with the NO to

form an alkoxy radical (RO), in methane’s case this is a methoxy radical (Reaction R 1.5).

The RO will rapidly react with O2 through a selection of pathways (Bofill et al., 1999)

to form a hydrogenperoxy radical (HO2) and a formaldehyde molecule (Reaction R 1.6).

HO2 is analagous to RO2 and together make up the ROx family of compounds along with
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hydrogen and OHwhich can react with O2 and peroxy radicals respectively to form peroxy

radicals (ROx = H + HO + HO2 + RO2).

O3 + hv −−→ O(1D) · + O2 (R 1.1)

O(1D) · + H2O −−→ 2 OH · (R 1.2)

CH4 + OH · −−→ CH3 · + H2O (R 1.3)

CH3 · + O2 −−→ CH3O2 · (R 1.4)

CH3O2 · + NO −−→ CH3O · + NO2 (R 1.5)

CH3O · + O2 −−→ CH2O + HO2 · (R 1.6)

At this stage looking at reactions 1-6 it can be seen that the reaction of OH with

methane, produces two peroxy radicals. As such there has been a 2 fold amplification

in radicals.

If the concentration of NO is low, the CH3O2 will react with itself to produce a peroxide

species (Reactions R 1.7, R 1.8 and R 1.9). These peroxides are highly water soluble and

so can be removed from the gas phase (Shallcross et al., 2005).

HO2 + HO2 −−→ H2O2 + O2 (R 1.7)

CH3O2 + HO2 −−→ CH3OOH + O2 (R 1.8)

CH3O2 + CH3O2 −−→ CH3OOCH3 + O2 (R 1.9)

If the formaldehyde or peroxides produced are not wet deposited they can then go on

to react with an OH or photolyse (Sumner and Shepson, 1999). Following the formalde-

hyde reaction with OH (Reaction R 1.10) or photolysis pathway (Reaction R 1.11) leads

to the production of CHO which goes on to decompose and react with O2 to form CO and

HO2 (Reaction R 1.12). There is another non-radical photolysis pathway that produces CO

and H2 directly (Reaction R 1.13) (Moortgat and Warneck, 1979). Both CO and H2 are
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relatively stable but will ultimately react with OH to produce HO2 (Reactions R 1.14 and

R 1.15) (Meisner and Kaestner, 2016).

CH2O + OH −−→ CHO · + H2O (R 1.10)

CH2O + hv + O2 −−→ CHO · + HO2 · (R 1.11)

CHO · + O2 −−→ CO + HO2 · (R 1.12)

CH2O + hv −−→ CO + H2 (R 1.13)

H2 + OH · −−→ HO2 + H2O (R 1.14)

CO + OH · + O2 −−→ HO2 + CO2 (R 1.15)

Thus in this way hydrocarbons can be converted into CO2 and H2O. If the environment

is wet, water soluble species such as CH2O can dissolve into the liquid phase and be lost

from the gas phase, resulting in the incomplete oxidation of these compounds (Rodhe, F.

Dentener, and Schulz, 2002). Longer hydrocarbons may take slightly different reaction

pathways and can form complicated molecule structures through the chemical addition

of functional groups (peroxides, nitrates, aldehydes, ketones, enols etc.). However, this

chain of oxidation, where a parent hydrocarbon is sequentially oxidized through radical

chain reaction chemistry, is central to the chemistry of the troposphere (Jenkin, Saunders,

and Pilling, 1997).

The oxidation of CO to CO2 by OH (Reaction R 1.15), occurs via an HOCO adduct

to ultimately form HO2 (Reactions R 1.16, R 1.17 and R 1.18) (Ravishankara and R. L.

Thompson, 1983). Through this reaction, CO represents the largest source of HO2 in the

troposphere as well as the biggest OH sink, especially in the remote atmosphere. Once the

oxidation of VOCs has reached CO2 no more oxidation can take place. CO2 will go on

to live in the order of 100 years (Archer, 2005) in the atmosphere and it forms part of the

planets carbon cycle via photosynthesis where ultimately it will become incorporated into

the lithosphere of the planet (Battin et al., 2009). It is also the most important climate gas

(Cox et al., 2000).
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CO + OH · −−→ HOCO (R 1.16)

HOCO −−→ CO + OH (R 1.17)

HOCO −−→ CO2 + H · (R 1.18)

H · + O2 −−→ HO2 · (R 1.19)

Nitrogen oxide chemistry

As discussed in Section 2.4.3, oxides of nitrogen are emitted into the atmosphere from a

variety of sources, typically as NO. NO reacts predominantly with O3 to produce NO2,

but it can also react with the HO2 and RO2 formed from the oxidation of VOCs or CO, to

also produce NO2 (R. Atkinson and Arey, 2003a). NO2 can then go on to photolysis to

produce an ground state oxygen atom (O(3P)) and reform NO. Alternatively NO2 can react

with OH to from nitric acid (HNO3) (Brown, Talukdar, and Ravishankara, 1999). Nitric

acid is very soluble and will quickly wet deposit out of the atmosphere, or become bound

up in aerosol as aerosol phase NO−3 . This is an important removal pathway for NOx, and

NO−3 is an important component of atmospheric aerosol in urban areas (Ravishankara and

R. L. Thompson, 1983).

The O(3P) atom will react with oxygen to produce (O3), this is a highly energetic re-

action and requires a third body (usually N2 due to its atmospheric abundance) to act as a

collision partner and carry away the excess energy to stabilise the reaction (Monks, 2005).

During the day NO2 also has the potential to react with RO2 to form organic ni-

trates. The most important of these forms from the reaction of the peroxy-acetyl radical

(CH3CO3) with NO2 to form peroxy-acetyl nitrate (PAN) (Moxim, Levy, and Kasibhatla,

1996). PAN’s decomposition rate is highly temperature dependent. In hot condition (>30

oC) its lifetime is short (minutes). However, in cold conditions (-20oC) its lifetime can be

weeks. Therefore if the PAN can be produced downwind of urban centres and then trans-

ported into the cold upper troposphere it can effectively transport NOx away from polluted

regions (Jaegle, Jacob, et al., 1998). If the air mass descends and warms, the PAN will de-
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compose to release the NOx back into the air producing higher background concentrations

of NO than expected(Bottenheim, Brice, and Anlauf, 1984)

During the night NO2 reacts with O3 to form the NO3 (nitrate) radical, NO3 can then

go on to react with another NO2 to from N2O5. The nitrate radical is dominant nigh time

tropospheric oxidant. These highly photolabile compound decompose rapidly at sunrise

to reform NO and NO2.

1.5.1 Ozone production and loss

During the day time O3 is photolysed into O(1D) or O(3P) and then rapidly converted back

into O3 as these species react with O2 (Demore and Raper, 1966). This forms a number of

null cycles. Another, daytime null cycle, forms from the reaction of NO with O3 to give

NO2 and the subsequent photolysis of the NO2.

O3 + NO −−→ O2 + NO2 (R 1.20)

NO2 + hv −−→ NO + O(3P) (R 1.21)

O(3P) + O2 + M −−→ O3 + M (R 1.22)

Thus, it is possible to form an odd oxygen (Ox) family composed of O3, NO2, O(1D)

and O(3P). In most regions the O3 concentration is significantly higher than the concen-

tration of the other members of the family (Bates and Jacob, 2020).

Ox production does not occur during NO2 photolysis, as this just represents conversion

of one member of the family into another. However, it does occur when a peroxy radical

reacts with an NO molecule to generate an NO2 (Reaction R 1.13, R 1.15). As O3 is the

dominant member of the Ox family, the reaction of peroxy radicals with NO leads to the

net production of O3 (Kirchner and W. R. Stockwell, 1996).

Ox loss can occur in a number of ways. The formation of OH from the reaction of

O(1D) with H2O leads to a loss of Ox and so a loss of O3. The reaction of O3 with OH and

HO2 also forms a loss cycle for Ox.
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1.5.2 Photochemical regimes

O3 production is therefore due to the oxidation of VOCs in the presence of sunlight and

nitrogen oxides. The VOCs act as a fuel, and the oxides of nitrogen catalyse the pro-

cess. However, the relationship between the O3 production and emitted componds is com-

plex (Sillman, 1999). Two different chemical regimes: NOx limited and VOC limited

(Blanchard and Fairley, 2001). In a NOx limited regime increasing the NOx concentration

increases the O3 production, whereas increasing the VOCs has little impact. In a VOC

limited regime the opposite is true, increasing VOC concentration leads to increased O3

production, whereas increasing the NOx concentration does not (Thielmann et al., 2001).

These different regimes lie in the different sinks for the ROx radicals in the atmosphere.

Under low NOx conditions the reactions between ROx and other ROx is the dominant sink

for radicals (Reactions R 1.7, R 1.8 and R 1.9). Under high NOx conditions the reaction

between OH and NO2 is the dominant sink (Monks, 2005).

Thus as NOx concentrations increase the concentrations of radicals remains roughly

constant in the regime where the self reaction of ROx is the dominant sink. As the NOx

concentration increases yet further the dominant sink switches to be the reaction between

OH and NO2 and the radical concentration then drops. In the first regime the radical

concentration remains roughly constant but the NOx concentration increases, this leads to

increasedO3 production. This is knows as a NOx limited environment (Hamer et al., 2015).

In the second regime the NOx concentration continues to rise but the radical concentration

drops, so no more O3 can be produced, and the O3 production become insensitive to the

NOx concentration. However, in this environment increasing the VOC concentration leads

to increased RO2 concentrations, so O3 concentrations grow. This regime is knows as VOC

limited environment (K. Lu et al., 2010).

At high emissions of NO, nearly all of the O3 can be forced to react to give NO2. The

O3 concentration can become very low. This is described as being O3 titration (Imhoff

et al., 1995).
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Night-time chemistry

During the night-time the short lived photochemical components (OH, HO2 and RO2)

are quickly removed as their dominant source has been switch off. NO will now react

solely with O3 to produce NO2 (Brown, J. A. Neuman, et al., 2006). However NO2 can

no longer photolyse to produce O3 and will instead react with O3 to produce the radical

NO3 (Aliwell and R. L. Jones, 1998). As O3 is no longer being produced and reacts with

NO and NO2 the O3 concentration will now steadily reduce, however NOx emissions are

usually substantially lower than during the day and thus O3 doesn’t titrate out as quickly

as in the daytime VOC limited environment(Ripperton and F. M. Vukovich, 1971).

The NO3 radical is an important species during the night (Platt et al., 1990). However,

it is extremely photolabile and thus cannot exist in any appreciable amount during the

day. However at night in the absence of OH it becomes the dominant oxidant in the atmo-

sphere. It may also go to react with NO2 to form the reservoir species N2O5 (R. Atkinson,

Winer, and Pitts, 1986). N2O5 hydrolyses rapidly on aerosols to form aerosol phase nitrate

(Riemer et al., 2003). This represents the dominant night time sink for NOx species (Ying

Chen et al., 2018).
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1.6 Atmospheric Modelling

Atmospheric models are used in both research and commercial applications for under-

standing and predicting the weather, climate, and air quality. They are usually based on

numerical solution of the fundamental equations governing atmospheric behaviour, al-

though in recent years, machine learning algorithm approaches have also found utility.

Box models are the most basic form of atmospheric chemistry modelling. These zero-

dimensional models treat a sample of air as a well-mixed box of molecules. Each time

step the molecules in the box can undergo physical or chemical processes. Processes can

include chemical and photolytic reactions, wet or dry deposition and heterogeneous re-

actions. The "simple" design of these models allows them to be used to investigate very

complex systems without too much computational overhead.

Chemical transport models (CTMs) are Eulerian models where a three dimensional

grid of box models are solved, and meteorology fields drive transport between the grid

boxes. These meteorological fields can be calculated online (within the model) or sup-

plied from a previous calculation with a different model (offline). Offline models can not

represent the interaction between chemistry and meteorology. Whereas online models

need to represent the coupling between the two systems. Online models are often used to

understand climate processes, where changes in the composition of the atmosphere can

lead to changes in the radiative balance which in turn can lead to changes in the meteorol-

ogy and climate. Although these online models allow whole new classes of interactions

to be explored they make analysing model output difficult. Has the concentration of a gas

in the atmosphere changed between simulations because the chemistry of the atmosphere

changed or because the meteorology has changed? Diagnosing changes in online models

can prove to be surprisingly complicated. Online models can also be relatively slow to run

computationally as they have to solve the equations describing the meteorology as well as

the chemistry.

Offline models therefore have a place as they are relatively quick to run and remove

some of the interactions which simplifies the analysis. It is such a model that is has been

used in this thesis to gain more insight into the tropospheric chemistry of the atmosphere.
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The model used here is GEOS-Chem.

1.6.1 GEOS-Chem

GEOS-Chem was formed initially as an offline chemistry model closely driven from the

output of the NASA Goddard Earth Observing System (GEOS) Earth system model (Bey,

Jacob, et al., 2001). However, over the last twenty years, GEOS-Chem has developed

the capability of being driven by multiple different meteorological fields, whether from

climate models or from regional meteorological model (H. P. Lin et al., 2020).

GEOS-Chem has been designed to be grid-independent, allowing it to be adapted to

the available available meteorology. In this work GEOS-Chem "classic" is used. This is

a conventional offline chemistry transport model which can be used either in a global or a

nested regional configuration (X. Wang et al., 2019). The model has two vertical resolu-

tions, either a "full" 72 layer grid (mainly used for stratospheric research) or a "reduced" 47

layer resolution with the reduction coming at the expense of stratospheric fidelity (mainly

used for tropospheric chemistry).

The horizontal grid is user-defined and can be run either globally or nested, but to run

with a nested grid a global model is needed first to produce boundary conditions. The

spatial resolution is limited by the availability of met fields from NASA’s GEOS system

with 0.25◦by 0.3125◦currently the highest generally available resolution.

The different components of the GEOS-Chem model are now described.

Transport

InGEOS-Chem chemical species are either advected or non-advected. For advected species

transport between grid boxes is calculated based on the (S. J. Lin and Rood, 1996) advec-

tion algorithm, using achieved meteorology (u,v,w components of the wind fields).

The NASA GEOS system produce two sets of meteorological data products that may

be used with GEOS-Chem. The first of these is the Forward Processing (GEOS-FP) sys-

temwhich is a data assimilated product produced at near real-time with a spatial resolution

of 0.25◦by 0.3125◦and a temporal resolution of 1 hour. The second Modern-Era Retro-
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spective analysis for Research and Applications (MERRA-2) which is a reanalysis product

(with more data assimilated than the GEOS-FP system) which has used a consistent phys-

ical model over many years, enabling the generation of a consistent set of meteorological

fields back to the year 1980. MERRA-2 has a spatial resolution of 0.5◦by 0.625◦and tem-

poral resolution of 3 hours (Molod et al., 2015).

Sub-gridscale processes such as convective transport and boundary layer mixing are

calculated using the convective mass fluxes provided by the meteorological fields (X. Q.

Wu et al., 2007), and by a non-local turbulence scheme (J. T. Lin and McElroy, 2010).

Emissions

Emissions in GEOS-Chem are handled via the Harvard-NASA Emissions Component

(HEMCO), a dedicated emissions module (Keller et al., 2014).

GEOS-Chem includes two classes of emission, meteorologically dependant online

emissions and meteorologically independent offline emissions. Online emissions include

dust aerosol (Fairlie, Jacob, and R. J. Park, 2007), biogenic VOCs (A. B. Guenther et

al., 2012), lightning NOx (L. T. Murray, J. A. Logan, and Jacob, 2013), sea salt aerosol

(Alexander et al., 2005) and soil NOx (Hudman et al., 2012). The emission rates for these

species are calculated online by GEOS-Chem based on meteorological fields. However, as

of the recent v12.4 update, the archived output from a high-resolution run is used to keep

emissions consistent between resolutions. Nevertheless, if research necessitates alteration

to the emissions, they can be switched back online.

Three biomass burning inventories are available in GEOS-Chem; they include GFED

(Giglio, Randerson, and Werf, 2013), FINN (Wiedinmyer et al., 2011) and GFAS (Kaiser

et al., 2012). These inventories derive emissions from satellite-based burn area predic-

tions, a knowledge of the forest time, and observed emissions ratios between different

compounds.

Anthropogenic inventories are generated either globally or over select regions. The

regional inventories are generally run as a mosaic on top of the most current global emis-

sions. While GEOS-Chem does include default anthropogenic inventories, in most use
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cases, specific inventories are chosen based on the study being performed. As such, the

default inventories will not be discussed here and specifically chosen and discussed in the

model development sections of Chapters 2 and 4.

Chemistry

GEOS-Chem includes coupled aerosol-oxidant chemistry which is calculated via the Ki-

netic PreProcessor (KPP) chemical solver (Damian et al., 2002). KPP converts the chem-

ical mechanism into FORTRAN code which is solved via numerical scheme at run time.

The tropospheric chemistry scheme includes HOx, NOx, VOC, O3, halogens, aerosols.

The scheme is a reduced chemistry scheme, meaning it is not explicit and involves com-

bining products and skipping intermediates reactions in order to maximise computation

expediency. While the complexity of the scheme has steadily increased with advances in

computational power, some specific species mechanisms have been included; PAN (Fis-

cher et al., 2014), isoprene (Bates and Jacob, 2019), methanol (X. Chen et al., 2019),

Methyl, ethyl, and propyl nitrates (Fisher, Atlas, et al., 2018), halogens (X. Wang et al.,

2019) and Criegee intermediates (D. B. Millet et al., 2015).

The model includes reactive uptake of NO2, NO3, and N2O5 (Holmes et al., 2019;

McDuffie et al., 2018) as well as HO2 uptake (Mao, Fan, et al., 2013).

Photolysis rates are calculated via the Fast-JX module (H. S. Bian and M. J. Prather,

2002; Mao, Jacob, et al., 2010). The solar spectrum is binned into 18 wavelengths span-

ning 177 to 850 nm for full chemistry (coupled stratosphere troposphere) simulation or

7-8 bins spanning 291 to 850 nm for tropospheric simulations Tian et al., 2019.

Aerosol

The SO2−
4 -NO−3 -NH

+
3 aerosol chemistry is coupled to the gas phase chemistry (R. J. Park

et al., 2004), with partitioning being calculated via the GEOS-Chem implementation of

ISORROPIAII (Fountoukis and Nenes, 2007).

Direct emission of non-volatile organic aerosol (Pai et al., 2020) and black carbon

(Q. Q. Wang et al., 2014) use a simple irreversible scheme whereby emissions are ap-
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portioned between a hydrophilic and hydrophobic component. The hydrophobic aerosol

is "aged" to hydrophilic with an e-folding time of 1.15 days. Secondary organic aerosol

(SOA) uses the simplified Volatility Basis Set (VBS) scheme (Pye et al., 2010). The iso-

prene gas phase chemistry is coupled to the aqueous phase isoprene SOA scheme.

Mineral dust aerosol in GEOS-Chem uses a scheme that combines the mineral dust

component of the GOCART chemical transport model and the Dust Entrainment And De-

position (DEAD) scheme (Fairlie, Jacob, and R. J. Park, 2007). Mineral dust is split into

seven dust bins based on the effective radius ranging from 0.15 to 4.0 µm, which is con-

densed to four species for advection.

Sea salt aerosol consists of two bins; accumulation phase (0.01 to 0.5 µm) and course

phase sea salt (0.5 to 8 µm) (Alexander et al., 2005; Jaegle, Quinn, et al., 2011).

Aerosol optical depth (AOD) is calculated via a humidity dependent scheme (Ridley,

Heald, and Ford, 2012). GEOS-Chem calculates the resultant scattering and thus changes

in photolysis rates (Latimer and R. V. Martin, 2019).

Stratosphere

GEOS-Chem contains two mechanisms to represent the composition of the stratosphere.

The Unified tropospheric-stratospheric chemistry extension (UCX) (Eastham, Weisen-

stein, and Barrett, 2014) is a fully coupled chemistry scheme representing the chemistry

of both the troposphere and the stratosphere. There is also a linear ozone approximation

algorithm (LinOz) (McLinden et al., 2000) which calculates ozone and other species con-

centrations based on monthly mean archived production and loss frequencies of significant

stratospheric species (L. T. Murray, Jacob, et al., 2012). Given the nature of this thesis, the

LinOz linearised chemistry is used as it is computationally faster, and little of the research

focused on stratospheric issues.

Deposition

Wet deposition is included in GEOS-Chem for both aerosol and gases in the forms of

rainout and washout from large-scale and convective precipitation and scavenging in con-
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vective updrafts (H. Y. Liu et al., 2001; Selin and Jacob, 2008; Amos et al., 2012). Further

wet deposition via snow and cold precipitation is also included (Q. Wang et al., 2011).

Dry deposition velocities are calculated via a resistance-in-series model whereby the

velocity is inverse to the aerodynamic, boundary and canopy resistance (Y. H. Wang, Ja-

cob, and J. A. Logan, 1998). Additionally, the dry deposition velocity accounts for grav-

itational settling and turbulent dry transfer of particles to the surface (Fairlie, Jacob, and

R. J. Park, 2007). For aerosol deposition onto snow and ice a fixed dry deposition rate

(0.03 cm s−1) is used based on eddy co-variance flux measurements (Fisher, Jacob, et al.,

2011).
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1.7 Summary

The chemistry of the atmosphere plays an important role in determining the magnitude of

O3 air pollution. This chemistry is complex and non-linear, and as such the interactions

between its different components are challenging to understand, making optimal strategies

for reducing air pollution difficult.

1.7.1 Thesis aims

1. The first aim is to increase the understanding of the photochemistry occurring in the

summertime for Beijing in China. Beijing is a location of paramount interest for the

understanding of O3 chemistry due to its problematically high summer concentration

coupled with a high population density. This problem will be tackled via process

based improvements in the model whereby further chemical understanding will be

added to GEOS-Chem. In Chapter 2, the GEOS-Chem model’s ability to simulate

the city’s secondary gas phase chemistry is analysed. The cities’ photochemical

regime is diagnosed using a new day-by-day O3 isopleth technique. This chapter

will conclude by aiming to explore the sensitivity of O3 pollution to a selection of

VOCs.

2. The second aim is to use the improved Beijing model via the development of a new

diagnostic/visualisation technique to understand better the influence of heteroge-

neous uptake of HO2 in Beijing. Reactive HO2 uptake has become a prominent area

of study, mainly due to the unexpected recent rise in the Beijing summertime O3

concentration. In Chapter 3, the influence of HO2 uptake is explored and how it

interacts with the current understanding of radical loss.

3. Improvements in representing atmospheric O3 concentrations rely on improved sci-

entific understanding, facilitating process-based improvements in the model. the last

aim of this thesis is to develop an algorithmic approach to improve models focusing

on performance over chemical understanding. The algorithm’s behaviour will then

be examined to see if it can help understand model shortcoming and thus aid fu-
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ture process based improvements. In Chapter 4, a machine learning-based approach

to enhance the predictions of O3 concentrations by process-driven models such as

GEOS-Chem is created and tested.
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Chapter 2

Gas phase constraints on ozone

production over Beijing
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2.1 Introduction

In this chapter, a chemical transport model (GEOS-Chem), run regionally over eastern

China, is used to explore the photo-chemical control of summertime surface ozone (O3)

in Beijing. The evaluation was possible due to a substantial field campaign that took place

in Beijing in the summer of 2017. Funded by the U.K. Natural Environment Research

Council (NERC) in partnership with the National Science Foundation of China (NSFC),

UK Medical Research Council (MRC) and UK-China Innovation Newton Fund, the At-

mospheric Pollution and Human Health in a Chinese Mega-city project (APHH-Beijing)

provided a comprehensive assessment of the chemical state of the atmosphere over Bei-

jing (see Section 2.3) for 5 weeks in the summer (Shi et al., 2019). There were also similar

campaign in the winter months but this is not explored due to the lower photochemical

activity.

In this section, the overarching aim is to evaluate and where possible, improve the

chemical performance of GEOS-Chem over Beijing with a focus on O3. O3 will be the

primary focus due to its negative impact on human and ecological health. Additionally, due

to the complexity of the chemical interactions new ways of diagnosing and visualisation,

the chemical state will be explored.

The urban nature of the chemistry in Beijing required the GEOS-Chem chemistry

scheme to be improved beyond its standard (global focused) chemistry by the inclusion

of aromatic (Section 2.4.1) and ethene chemistry (Section 2.4.2). An initial simulation us-

ing the default emissions is compared to the observations (Section 2.5) and the emission

inventories are then tuned to match observations of primary emitted species (Section 2.6)

with the results analysed (Section 2.7).

The model’s ability to simulate secondary compounds (OH, OH reactivity, CH2O,

HO2, RO2, O3) is then evaluated (Section 2.8). Systematic perturbation experiments are

performed on the NO and VOC emissions in order to identify Beijing’s photo-chemical O3

production regime (VOC or NOx limited) (Section 2.9). To investigate the variability in

the photochemical regime O3 isopleths are developed and examined (Section 2.10). The

importance of different hydrocarbon classes (aromatics, alkenes, alkanes, and isoprene)
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for the production of O3 is then explored (Section 2.11). Finally conclusions are drawn as

to merits of either NOx or VOC reductions to reduce O3 in Beijing (Section 2.12).
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2.2 Ozone in China

O3 is a hazardous pollutant that poses a risk to both human health and vegetation (T. Wang

et al., 2017). As described in the Introduction (Chapter 1), many regions have issues with

excessive O3 concentrations. Over the last decade, the focus of global O3 research has

moved from countries in Europe and North America to China. With its large population

(1.4 billion), densely populated eastern and southern regions, and rapid economic devel-

opment, the emissions of air pollutants (S. X. Wang and Hao, 2012) has increased rapidly

over the last decades in China, and so it now has a severe O3 problem (B. Zheng et al.,

2018).

High concentrations of O3 are particularly prevalent in three mega-city regions; the

Yangtze River Delta (Shanghai), the Pearl River Delta (Hong Kong) and "Jing-Jin-Ji", the

Beijing metropolitan region or Capital Economic Zone (T. Wang et al., 2017). Each of

these regions has a population of approximately 100 million people. If they were stand-

alone countries, all three would rank in the global top 20 most populous countries. This

study focuses on the Beijing region.

The Chinese government has passed legislation that has successfully targeted primary

pollutants such as particulate matter (PM), sulphur dioxide (SO2), carbon monoxide (CO)

and nitrogen oxides (NOx) (Feng and W. J. Liao, 2016). In 2012, O3 was added to the

Chinese air quality control standards. However, reducing of O3 concentrations is more

complicated than for primary species, due to its non-linear chemistry (Sillman, J. A. Lo-

gan, and S. C. Wofsy, 1990).

Efforts to reduceO3 concentrations typically rest on two pillars: reducing the emissions

of oxides of nitrogen (NOx) and reducing the emissions of volatile organic compounds

(VOCs). Most emphasis for reducingO3 concentrations inwestern countries (LosAngeles,

London etc) has gone into reducing NOx emissions (Farber, Welsing, and Rozzi, 1994).

However, the atmospheric chemistry for a city such as Beijing is likely very different and

the so the role of VOCs needs to be considered fully.

Within a city, the VOCs most likely to cause ozone production are likely those which

are relatively short lived, have a high Photo-chemical Ozone Creation Potential (POCP)
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(Derwent, Jenkin, and Saunders, 1996), and are emitted in high concentrations. Four

classes of compounds that full-fill those criteria for Beijing are longer alkanes (butane and

larger), alkenes, aromatics, and biogenics (Q. Q. Li et al., 2020).

While all alkanes’ oxidation leads to O3 production, shorter alkanes have long lifetimes

(on the order of years, months and weeks for methane, ethane and propane respectively)

and are not of particular concern for urban regions as they diffuse over a large geograph-

ical area. Once the carbon number reaches four (butane) or greater, the lifetime is short

enough that the compound becomes of urban significance (Q. Q. Li et al., 2020). Larger

alkanes have POCP value ranging from 35 to 40 increasing with carbon length (Jenkin,

Saunders, and Pilling, 1997). The POCP values of alkanes are appreciably lower than

other compound classes explored in this section. Nonetheless, their higher concentration

leads to their incorporation in this analysis.

Alkenes (hydrocarbons with a double bond) are a class of VOC compound with com-

paratively short lifetimes (on the order hours (R. Atkinson and Arey, 2003a)) with respect

to OH due to the presence of the double bond. Ethene is the reference compound for

POCP calculations (Saunders et al., 2003), with a POCP value, by default, of 100. This

increases to 160 for propene due to additional stabilisation of the radical intermediate.

Larger alkenes such as cis-2-butene have been found to have even higher POCP values

above 200 (H. R. Cheng et al., 2010).

Aromatic compounds (specifically one ring "monoaromatic" compounds) are also pre-

dominantly anthropogenic (K. E. Ho et al., 2004). Benzene, toluene, xylene and trimethyl-

benzene (TMB) have POCP values of 3, 36, 97 and 180 (isomer averaged) respectively

based on Chinese (Hong Kong) conditions (H. R. Cheng et al., 2010). Aromatic com-

pounds’ propensity to create O3 is also related to their chemical decomposition products.

After the initial OH oxidation, aromatic compounds break down into dicarbonyl species

(such as CH3C(O)CHO) via ring-opening reactions (C. Bloss et al., 2005). These dicar-

bonyls are highly photolabile, rapidly photolysing to form two peroxy radicals during the

day. This contrasts to attack by the hydroxy radical which results in the production of only

one peroxy radical (G. d. Silva, 2010). This rapid photolysis of dicarbonyls can, therefore,
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cause "radical amplification," rapidly increasing the concentration of peroxy radicals and

thus O3.

Alkenes and Aromatic are emitted predominantly from vehicle fuel, both from the

exhaust and evaporation (Schuetzle et al., 1994). Chinese fuel standard V (H. H. Wei,

2019) (which was in place during APHH campaign) allowed for up to 24% and 40% of the

volume of gasoline to be aromatics and alkenes respectively. The Chinese fuel standard

V is comparable to the EU and American fuel standards (Y. H. Wang, R. Zheng, et al.,

2016).

Biogenic compounds are another class of VOCs with a high propensity to make ozone.

Emitted by the biosphere (trees, plants, algae, etc.), the class includes compounds such

as alpha pinene (C10H16), limonene (C10H16), 2-methyl-3-butene-2-ol (C5H9OH) and the

ubiquitous isoprene (C5H8). Emitted from a broad range of plant species isoprene repre-

sents the majority of biosphere VOC emissions (A. Guenther et al., 2006). Isoprene was

calculated by H. R. Cheng et al., 2010 to have a POCP value of 171 (based on Pearl River

Delta conditions). Isoprene’s high POCP value is due to the fast rate of reaction of its dou-

ble bonds with OH (daytime lifetime of approximately 1 hour) resulting in peroxy radical

production occurring close to the emission source and thus in the presence of plenty of

NOx.

Assuming Beijing’s O3 shows some sensitivity to VOC emissions, it is likely that these

four classes (alkanes, alkenes, aromatics, biogenics) of VOCs dominate its production.

This chapter thus explores two questions: is Beijing currently in a NOx or VOC sensitive

O3 regime, and which VOCs lead to the most O3 production?

Answering these questions requires using a numerical model of Beijing’s atmospheric

composition, and more widely China’s atmospheric chemistry. However, the model alone

will not answer the question. The real-life emissions may have diverged from those esti-

mated when the emission inventory was produced. Out of date inventories are particularly

problematic in rapidly developing regions such as China. Further to this, inventories are

not perfect, and many assumptions need to be made when developing the inventory which

can later be found to be unreliable. Thus observations of the concentration of pollutants
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are needed to constrain the model to give results relevant to the actual conditions in Beijing

experienced during the field campaign.
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2.3 Beijing Observations

The NERC / Chinese funded Atmospheric Pollution and Human Health in a Chinese

Megacity (APHH-Beijing) summer campaign (Shi et al., 2019) took place from May

21st to June 22nd 2017. It made extensive measurements of atmospheric composition

and physics at the Institute of Atmospheric Physics (IAP) observational site in Beijing

(39.976◦N 116.377◦E). These observations were designed to provide a complete set of

observations of the composition of the atmosphere and are valuable for providing con-

straint on an atmospheric chemistry transport model investigating O3 in Beijing.

Trace gasesO3, NO,NO2 and SO2 were detected by a set of commercial trace gas analy-

sers (Shi et al., 2019). VOC measurements for compounds C2 to C7 were measured using

dual-channel gas chromatography with a flame ionisation detector (DC-GC-FID) (Hop-

kins, C. E. Jones, and Lewis, 2011). Large mono-aromatic compounds such as xylene

and trimethylbenzene (TMB) fell outside the detection range of the DC-GC-FID and thus

concentrations were obtained via Proton Transfer Reaction Time-Of-Flight Mass Spec-

trometry (PTR-TOF-MS) (Huang et al., 2016).

OH, HO2 and RO2 measurements were made using fluorescence assay by gas expan-

sion (FAGE) (L. K. Whalley et al., 2010). OH reactivity and CH2O was measured using

laser-induced fluorescence (LIF) (Cryer, 2016). Photolysis rates weremeasured via a spec-

tral radiometer (Bohn et al., 2016). Organic and inorganic (NH+
4 , SO

2−
4 and NO−3 ) aerosol

were measured via aerosol mass spectroscopy (AMS) (Sun et al., 2016), while black car-

bon was measured via a centrifugal particle mass analyser coupled to a single-particle soot

photometer (CPMA-SP2) (D. T. Liu et al., 2017). Particle number and size distribution

were measured via a scanning mobility particle sizer (SMPS) spectrometer (Z. J. Wu et al.,

2016). Temperature and humidity were measured via a meteorological station (Jenkins,

2014).
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Table 2.1: Overview of measurements from the APHH campaign

Instrument Measurements
Commercial trace gas analysers O3, NO, NO2 and SO2 concentrations

DC-GC-FID C2 to C7 VOC concentrations
PTR-TOF-MS C8 and C9 aromatic compound concentrations

FAGE OH, HO2 and RO2 concentrations
LIF OH reactivity and CH2O concentration

Spectral radiometer Photolysis rates
AMS NH+

4 , SO
2−
4 and NO−3 aerosol concentrations

CPMA-SP2 Black carbon concentration
SMPS Particle number and distribution

Meteorological station Temperature and humidity

All observational data were re-sampled (mean) onto 10minute time-steps to harmonise

the observations with the model time-step. Observations (other than radical species) out-

side two standard deviations were removed to eliminate high concentration peaks which

could represent very localised sources such as a vehicle passing close to the measurement

apparatus.

These observations represent one of the most comprehensive set of observations of

the photochemical conditions within an urban Chinese area currently available. With the

observational dataset described, the model used for reproducing Beijing atmospheric con-

ditions is outlined.
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2.4 Model development

The model used for this analysis was GEOS-Chem (V12-8), run regionally in a nest over

Eastern China with the "tropchem" chemistry scheme. With the FlexGrid adaption the

model can be run over any grid for which GEOS-Chem compatible meteorological data is

available and so a smaller grid than is usually run for China (J. Zhu and H. Liao, 2016) was

used (Figure 2.1). GEOSForward Processing (GEOS-FP)meteorology (https://gmao.gsfc.nasa.gov/GMAO_products/)

was used as it provided the highest resolution currently compatible with GEOS-Chem

(0.25◦ x 0.3125◦). Boundary conditions for the regional simulation were generated from

a global GEOS-Chem simulation run at 4◦ by 5◦ resolution. Spin up of the global model

was run from the 1st of May 2016 to the 25th of May 2017.

Figure 2.1: Domain of nested area used in this study. Red cross indicates the campaign
location.

The standard chemistry scheme (https://github.com/geoschem/geos-chem/tree/master

/KPP) used in GEOS-Chem has been developed with a global atmospheric chemistry fo-

cus. As such the chemistry development has been centred around long-lived species such

as CH4, alkanes and CO. Isoprene while short-lived has a substantial global emission and

so is also included. The isoprene scheme was recently updated by Bates and Jacob, 2019.
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Propene is also included in the scheme to represent all other short lived species. However,

as identified earlier, for urban air pollution, aromatics and other alkenes play an important

role in determining O3 production. These are not in the standard chemistry of the model

and so need to be added in.

2.4.1 Aromatic chemistry scheme

Benzene, toluene and xylene are included in GEOS-Chem V12.8, but only in a rudimen-

tary form, to simulate the production of secondary organic aerosol (Henze, Seinfeld, Ng,

et al., 2008). The model does not include any of their subsequent gas phase degradation

chemistry that leads to the production of O3.

The inclusion of an improved representation of aromatic chemistry scheme would thus

seem necessary to model O3 in urban environments. Adding additional chemical complex-

ity, however, does increase the computation time it takes to run the model which could

reduce its scientific usefulness. The chemistry time step is often the most substantial com-

putational burden within chemical transport models (Long et al., 2015). Thus there is a

trade-off between model complexity and the time it takes to run the model, adding too

much complexity would make the model unusably slow.

Explicit or semi-explicit atmospheric chemical mechanisms such as the Master Chem-

ical Mechanism (MCM) contain ~17,000 reactions (Sommariva et al., 2020) and are usu-

ally run within a single chemical box. This compares to the GEOS-Chem "tropchem"

mechanism which is currently ~600 reactions. The 3-dimensional grid (latitude, longi-

tude and level) used to simulate East China in this study consists of 247,455 boxes. Thus

the inclusion of an explicit mechanism, such as the MCM, would lead to a large increase in

computational burden. A "reduced" chemical mechanism aims to include a smaller num-

ber of reactions, balancing the need to represent the complexity of the chemistry with the

need to keep the number of reactions to a minimum.

Two leading reduced regional atmospheric chemistry schemes are SAPRC (Carter,

1990) and RACMII (Goliff, W. R. Stockwell, and Lawson, 2013). SAPRC is frequently

used for investigating aromatic compounds (Y. Z. Chen et al., 2015; Yan et al., 2019; Bey,
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Aumont, and Toupance, 2001) but implements "operators" (Carter, 2010) to handle radical

production. This is inconsistent with the structure of GEOS-Chem, and so the RACM-II

was chosen to be implemented.

The RACM-II’s aromatic component (Goliff, W. R. Stockwell, and Lawson, 2013)

consists of 91 reactions and 52 compounds. It achieves simplification by aggregating

compounds with similar reactivity, structures and products together. Chemical species

from RACM-II were mapped to existing GEOS-Chem species where possible, leading to

29 additional species. RACMII explicitly includes the degradation chemistry for benzene,

toluene, o-xylene and a combined m and p-xylene species, but no higher carbon aromat-

ics. Deposition of the hydrocarbon oxidation products followed the GEOS-Chem standard

(H. Y. Liu et al., 2001; Y. H. Wang, Jacob, and J. A. Logan, 1998), with Henry’s Law con-

stants taken from Sander, 2015.

Trimethylbenzene (TMB) has a high POCP value (180) and has been identified as a

possible significant contributor to Chinese O3 production (Duan et al., 2008). Ambient

summer concentrations of ~0.3 ppb have been previously measured in Beijing (B. Wang

et al., 2010). Coupled with its high oxidation rate (~9 hour lifetime at 1x106 molecules

cm−3 OH), this would be indicative of a high rate of emission. A TMB specific emission

inventory is also available, and observations of TMB were made during the campaign.

Thus, finding a way of including this compound in the analysis seemed appropriate. How-

ever, TMB oxidation was not included in the RACMII chemistry scheme. To provide some

analysis of its influence, a TMB tracer was included in the model with its initial oxidation

by OH set at the MCM recommended rate. The resultant products were then made to be

the same as the combined mp-xylene’s degradation chemistry.

A large number of other aromatic compounds are emitted into the atmosphere. These

include ethyl-benzene, styrene, 3,5-di-methyl ethyl-benzene, di-ethyl benzene etc. To rep-

resent these in the model an "other" aromatic tracer was included using ethylbenzene as

their surrogate. Ethylbenzene was chosen as the surrogate species as it likely forms the

most substantial proportion of the additional aromatics (Hampton et al., 1983). As with

TMB, the MCM was used for a recommended ethylbenzene OH oxidation rate, and then
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this chemistry was also fed into the mp-xylene’s degradation pathway.

2.4.2 Ethene chemistry scheme

Currently, alkenes are included in GEOS-Chem in the form of the single alkene species

(labelled PRPE in GEOS-Chem). The species incorporates emissions of all alkenes with

a carbon number of three or higher. Although consideration could be given to the explicit

oxidation of the larger alkenes (butene etc), the most obvious compound missing from

the model’s oxidation scheme is ethene. Global emissions of anthropogenic ethene are

approximately double that of propene (Rhew et al., 2017).

Ethene is the POCP reference compounds and has been identified as a possible substan-

tial contributor to Chinese O3 production (Q. Q. Li et al., 2020). In order to keep the new

chemistry consistent with the new aromatic chemistry, the ethenemechanism fromRACM-

II were also incorporated into GEOS-Chem. As with the aromatic scheme, the species

from RACM-II were mapped to existing GEOS-Chem species. The new scheme included

11 reactions and only necessitated the addition of two new chemical species (ethene itself

and an ethene peroxy radical).
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Table 2.2: Summary of new species added to GEOS-Chem for the improved aromatic and
ethene schemes

GEOS-Chem Tracer Species
DCB1 Unsaturated dicarbonyls C4.5

DCB2 Unsaturated dicarbonyls C7

DCB3 Unsaturated dicarbonyls C4

BALD Benzaldehyde and other aromatic aldehydes
BALPA Peroxy radical from benzaldehyde oxidation
BALPB Peroxy radical from benzaldehyde oxidation
BALPC Peroxy radical from benzaldehyde oxidation
CSL Cresol and other hydroxy substituded aromatics
CHO Phenoxy readical formed from cresol

CSLOH Aromatic-OH adduct from cresol
PHEN Phenol

PHENNO3 Aromatic-NO3 adduct from phenol
MCT Methyl catechol

TRO2A Peroxy radical from toluene oxidation
TRO2B Peroxy radical from toluene oxidation
TRO2C Peroxy radical from toluene oxidation
PER1 Peroxy intermediate formed from toluene
PER2 Peroxy intermediate formed from toluene
EPX Epoxide formed in toluene and xylene reactions
XYLO o-Xylene
XRO2A Peroxy radical from mp-xylene oxidation
XRO2B Peroxy radical from mp-xylene oxidation
XRO2C Peroxy radical from mp-xylene oxidation
XORO2A Peroxy radical from o-Xylene oxidation
XORO2B Peroxy radical from o-Xylene oxidation

XO2 Accounts for for addition NO to NO2 conversions
MCTO Alkoxy radical formed from methyl catechol + HO

and methyl catechol + NO3
MCTP Alkoxy radical formed from methyl catechol + O3
TMB Trimethylbenzene
AROM Larger aromatics
C2H4 Ethene
EO2 Peroxy radical from C2H4
ETEG Ethylene glycol

2.4.3 Emissions inventories

Emissions of primary compounds into the atmosphere are the driving force for the produc-

tion of O3 in the atmosphere. In this section the standard emissions configuration used in

the model simulations are described and additions made to accommodate the new aromatic
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and alkene species described.

Anthropogenic

By default, GEOS-Chem uses the 2008 to 2010 MIX anthropogenic inventory (M. Li, Q.

Zhang, et al., 2017) for the Asian region. This study continues to use the MIX inventory

for NO, CO, NH3 and SO2. Despite the model being run for 2017, rather than 2010 (the last

year of the MIX dataset), no additional scalings are used in the initial model simulations.

While MIX does include a total VOC emissions, no speciation for the VOC species is

given. The CEDS global 2014 inventory (Hoesly et al., 2018) does provide emissions for

individual VOCs including aromatic and alkene compounds, and so the CEDS inventory

is used instead of the MIX inventory for the VOCs other than ethane and propane. Table

2.3 shows the mapping of CEDS to species in GEOS-Chem. CEDS is also used for the

emission of black carbon and for primary organic carbon aerosol.

Table 2.3: CEDS species to GEOS-Chem tracer mapping list.

GEOS-Chem tracer Compound name CEDS species
ALK4 C4 Alkanes and larger Butane

Pentane
Hexane and higher alkanes

C2H4 Ethene Ethene
PRPE C3 Alkenes and larger Propene

Other alkenes
BENZ Benzene Benzene
TOLU Toluene Toluene
XYLO O-Xylene Xylene x 0.33
XYLE MP-Xylene Xylene x 0.66
TMB Trimethylbenzene Trimethylbenzene
AROM Other aromatics Other aromatics
MOH Methanol Alcohol x 0.5
EOH Ethanol Alcohol x 0.375
ROH C3 Alcohols and larger Alcohol x 0.125
CH2O Formaldehyde Formaldehyde
ALD2 Acetaldehyde Acetaldehyde
RCHO C3 Aldehydes and larger Larger aldehydes
BCPO Hydrophobic Black carbon Black carbon x 0.8
BCPI Hydrophilic Black carbon Black carbon x 0.2
OCPO Hydrophobic Organic carbon Organic carbon x 0.5
OCPI Hydrophilic Organic carbon Organic carbon x 0.5
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Ethane and propane emissions still use theGEOS-Chemdefault Tzonmpa-Sosa (Tzompa-

Sosa et al., 2017) and Xiao (Y. P. Xiao et al., 2008) inventories respectively .

Biomass burning

The Global Fire Emission Database (GFED4) is the default biomass burning emission in-

ventory in GEOS-Chem (Giglio, Randerson, and Werf, 2013). GFED4 is implemented

into GEOS-Chem in the form of an extension module rather than direct emission files. It

uses input of the burnt area and tree type to calculate speciation and emission rate. This

makes changing the emissions cumbersome as any scaling would need to be hardcoded

into GEOS-Chem. Instead, the Global Fire Assimilation System (GFAS) was chosen for

biomass burning emissions (Kaiser et al., 2012). GFAS is an offline inventory, with speci-

ation and emission rate pre-calculated. This makes scaling the GFAS emissions straight-

forwards should it be necessary.

Biogenic

The Model of Emissions of Gases and Aerosols from Nature (MEGAN) inventory was

used for biogenic emissions (A. B. Guenther et al., 2012). As with GFED4, MEGAN is

an extension using global base emissions that are scaled based on a variety of variables

including leaf area, temperature, soil wetness and solar flux. NASA Moderate Resolution

Imaging Spectroradiometer (MODIS) data was used for leaf area index. There is no viable

alternative to MEGAN for GEOS-Chem and as such perturbation studies were performed

via alterations to the MEGAN source code.

Now the updates to the model chemistry scheme and emission inventories have been

explained, a comparison between the modelled physical parameters and those observed is

first undertaken and then a comparison between the composition calculated by the model

in this "initial" model simulation is described.
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2.5 Initial simulations

An initial simulation was performed to evaluate the performance of the model in its stan-

dard configuration. The model was run from May 18th to June 25th, with the first week

considered spin-up, with the initial conditions taken from an up-scaling of the boundary

condition run. The model run took approximately 30 hours to run using 20 CPU cores.

An initial comparison is made with the model’s ability to simulate the physical con-

ditions at the Beijing site, and then a comparison is made with the observed chemical

composition of the air.

2.5.1 Physical parameters

Correctly representing the meteorological parameters is critical for getting the chemical

transportation correct however, the physical parameter are also important for the chem-

istry. Tropospheric reactions that govern secondary organic compounds’ production are

temperature, solar radiation or humidity dependent. Therefore it is essential that before

evaluating other aspects of model performance, the model’s representation of these phys-

ical conditions is first evaluated. The time series and mean diurnal for the temperature,

J(NO2), J(O3->O(1D)) and Relative humidity for the period the campaign can be seen in

Figs. 2.2 and 2.3 respectively.
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Figure 2.2: Time series of modelled (red) and observed (black) physical variables at the
Institute of Atmospheric Physics (IAP)

Figure 2.3: Mean diurnal variations of modelled (red) and observed (black) physical vari-
ables. Shaded area indicates one standard deviation.

Temperature in the model is provided by the meteorological fields (GEOS-FP) and is in

good agreement with observations. Daytime diurnal mean temperature are within 0.5◦C of

the observation. There does though appear to be a more substantial underestimation of the

temperatures at night. This may reflect local conditions, compared to the more regional

conditions indicated by the 25 km model grid. It is not surprising that the agreement
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here is relatively good as the GEOS-FP system assimilates observed temperatures into its

products.

The j values are the first order rate of photolysis reactions and reflect a combination

of the solar radiation falling on the top of the atmosphere, the concentration of absorbing

and scattering elements within the atmosphere and the photochemical properties of the

reacting compound. As such, there is potential for uncertainty, including quantum yield

(Wuerth et al., 2011), solar flux (Shetter et al., 2003), the surface reflection (Y. Zhang,

Z. Q. Li, and Macke, 2002) and scattering by both clouds and aerosol (Latimer and R. V.

Martin, 2019). j(NO2) (NO2 + hν -> NO + O) and jO(1D) (O3 ->O1D) represent two

critical drivers of photochemistry in the atmosphere.

The noontime average j(NO2) values are overestimated by 15%. However this bias

predominately arise from an overestimation on a few low jNO2 days (May 29th, June 6th

and June 22nd). For the rest of the campaign the model performs well. This could reflect

problems in the GEOS-FP meteorology in replicating cloud opacity, or in the simulation

of aerosol scattering. Further work is necessary to evaluate why the model fails on these

days.

The jO(1D) bias appears to be larger and more consistent than found for jNO2, with

a mean noon time overestimation of 45%. This overestimate occurs on most days. A

number of explanations might exist for this. Aerosols are essential for light scattering.

The model appears to over estimate the concentration of aerosol mass but underestimates

aerosol surface area. Thus the model may also be under-representing scattering. The

single bin, mass based aerosol scheme used in these simulations makes improving these

calculations difficult. S. Li et al., 2019 show that GEOS-Chem’s Aerosol Optical Depth is

biased low over east China in GEOS-Chem, which would support this. jO(1D) can also be

biased due to an incorrect O3 column value, as this would increase or decrease absorption

before the light reaches Beijing.

A number of different humidity parameters could be evaluated here (absolute humidity,

relative humidity, vapour pressure etc). What is provided from the GEOS-FP assimilation

is water mass mixing ratio (kgmoisture kg−1 air), and it is this which is used for calculating
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gas phase reaction rates. However, for aerosol properties such as surface area and radius,

the relative humidity is important, which is derived from water mass mixing ratio and

temperature. The diurnal mean is similar to that observed but is biased low by 8% during

the day.

2.5.2 Initial comparison to chemical observations

Figure 2.4 shows the comparison of the initial model to the campaign observations for

some key species. The initial model performance was poor. NOx, toluene, SO2, and black

carbon show varying degrees of over estimation, whereas ethane, propane, TMB, >C3

alkenes and isoprene are all underestimated. Previous studies have examined the correct-

ness of the emissions inventories for Beijing (M. Li, H. Liu, et al., 2017; Deng et al.,

2020; Jing et al., 2016; M. Wang et al., 2014). However, given the initial level of model

performance, the model’s utility for science would likely be questionable. Conclusions on

the sensitivity of O3 over Beijing to VOCs or NOx using the initial model, would not be

grounded in a realistic representation of the chemical state.

The emphasis of this study is on the sensitivity of O3 to its precursor emissions rather

than understanding the magnitude of the emissions themselves. Therefore the model emis-

sions are "tuned" to fit the observation of the primary species and so provide better repro-

duction of the actual atmosphere in Beijing for the duration of the campaign.
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Figure 2.4: Time series of initial model (blue) and observed (black) primary species.
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2.6 Primary emission tuning

Tuning the model to fit the observations could be achieved in many ways. It is possible

to formally "invert" the emissions from the observations (Henze, Seinfeld, and Shindell,

2009; L. Zhu et al., 2013; Lee et al., 2011) or to "nudge" the model towards observations

through data assimilation (Mertens et al., 2020; Astitha et al., 2012). Both of these are

sophisticated approaches and are subject to significant ongoing research. A more straight-

forward approach was adopted here. The basis for this tuning was the mean diurnal cycle

of the observations during the campaign. The objective was to get the model to fit the

observations as tightly as possible by varying the anthropogenic and biogenic emissions

within the model domain.

The model showed little sensitivity from varying the biomass burning emissions. Sim-

ilarly, soil and lighting NOx sources are small compared to the anthropogenic sourced

within the domain. The two inventories that were therefore tuned were the anthropogenic

emission and the biogenic emissions. Changes to boundary conditions were found to have

little effect for most species but did show some sensitivity for certain long-lived species

(CO, C2H6 and O3). By only focusing on emissions, all differences between the model and

measurement are attributed to failures in the emissions, model sinks are correctly simu-

lated. The model’s ability to simulate the OH radical is discussed in Section 2.8.4 but

model shows a systematic underestimate in the OH concentration by around 30%, thus the

corrections made here are likely on the conservative side.

The other critical component is the transport term which mixes emitted compounds

out of model’s surface box both horizontally and vertically. Significant uncertainties lie

in the ability of models to simulate this correctly (Schuh et al., 2019), notably in the de-

scription of the boundary layer height. However, given that the emphasis of this chapter is

on the concentration of secondary compounds, this is not explored further. However, this

does mean that some of the emission correction could be a result of meteorological bias

(likely boundary layer height) rather than purely emission bias. Further research would be

required to separate these biases. As a result of this approach, the tuning of the emissions

will combine errors in the emissions, sink processes and meteorology.
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Anthropogenic emissions

In this class were the emissions of alkanes (C2H6, C3H8, ALK4 (alkanes with 4 or greater

carbons)), alkenes (C2H4, PRPE (alkenes with 3 or greater carbons), aromatics (benzene,

toluene, mp-xylene, o-xylene, trimethylbenzene, other aromatics), alcohols (methanol,

ethanol and larger alcohols), CO, NO, SO2, NH3, black carbon, organic carbon.For each

of these species the same scaling was applied over the whole model domain.

This domain level scaling was intended to reflect national level changes and errors in

the emissions. Some of the changes in industrial activity in Beijing, will correlate with

those in Shanghai. Similarly, policies to reduce emissions in Beijing should likely also

apply in Shanghai. The approach is not perfect. The industrial development of western

China has been faster than in the East (Crane et al., 2018), and there have been different

regulatory frameworks applied in different regions. However, given the lifetime of some of

the species (CO, O3, aerosol) scaling the emissions at a national level seemed appropriate.

The model was tuned to simulate observed NOx (NO + NO2) concentration rather than

the individual NO and NO2 species. It was not possible to tune NO and NO2 and achieve

the correct O3 concentration.

SO2 and NH3 were tuned to give the best agreement with the observed aerosol SO2−
4

and NH+
4 mass concentrations respectively as the aerosol mass and surface area were con-

sidered more important than replicating their gas phase components.

Isoprene

Isoprene emissions are highly variable (Dylan B.Millet et al., 2008), thus tuning the whole

of domain based on observations fromBeijing would seem inappropriate. Forested regions

are not likely to respond in the same way as urban regions. Instead, the emissions for the

Beijing urban region were tuned, leaving the rest of the domain with the default MEGAN

emissions. Figure 2.5 shows the area of the model that is scaled. The urban area was

restricted to just the Beijing City region as this area would be expected to be reasonably

homogeneous from a biogenic perspective. Only the base emission was scaled, MEGAN

then calculates the diurnal cycle and day to day variability based on meteorological con-
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ditions.

Figure 2.5: Map of Beijing area. Black box shows the area over which isoprene emissions
were scaled. Red cross indicates the location of the campaign site. Grey squares shows
the 0.25◦ model grid boxes.

2.6.1 Tuning methodology

The chemistry of the atmosphere is non-linear. Changing the emissions of one compound

does not necessarily lead to a linear change in the concentration of that compound, and it

can also lead to changes in the concentration of other compounds. Thus it is non-trivial to

find a set of emissions that fit all of the observations.

To simplify the analysis, the tuning focused initially on the mean concentration calcu-

lated by the model over the period of the campaign. Once the mean values were approxi-

mately correct attention turned to the campaign mean diurnal cycle.

For the initial comparison between the modelled and measured campaign means, the

diurnal cycle applied to the model emissions was removed. The model was then run mul-

tiple times, updating the scaling of NOx, isoprene and aromatic compounds, until the cam-
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paign mean value of those concentrations were comparable to the observations. This it-

erative approach was considered complete when the simulated mean matched within +/-

5 % of the observed mean. Once the threshold agreement had been reached, the mean

emission of the remaining VOCs and CO were tuned. Finally, the emission of primary

aerosol species (black carbon and organic carbon) and aerosol precursor species (NH3 and

SO2) were tuned.

Once the campaign mean model concentrations were comparable to those observed,

the diurnal emissions profile were tuned to fit the observations. Isoprene diurnal emissions

were not tuned, as their diurnal emissions profile is set by the MEGAN Inventory. The

tuning of the diurnal profiles was performed in a similar species order to the means, with

initial emphasis focusing on NOx and the aromatics. The same diurnal profile was used

for all of the species within the alcohols, aromatics and alkenes class.

Once tuned the model showed much better agreement between the model and the mea-

surements.
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2.7 Tuning Results

Figure 2.6 shows the mean calculated diurnal cycle for the concentration for the primary

gas species before and after tuning. After tuning the diurnal mean was close to the obser-

vation mean for most species, diurnal mean values can be seen in Table 2.7.

Figure 2.6: Mean hourly diurnals of the untuned model (blue), tuned model (red) and
observed (black) for the gas phase primary species. Shaded area indicates one standard
deviation in the hourly mean.
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The scale factor applied to the inventories after tuning can be seen in Table 2.5.

Table 2.5: Summary of primary compound scale factors on the daily mean emission rate.

Species Inventory Mean emission factor
NO 2010 MIX 0.87
CO 2010 MIX 1.08

Ethane 2008 Tzompa-Sosa 3.14
Propane 2014 XIAO 5.39

Alkanes C≥4 2014 CEDS 0.67
Ethene 2014 CEDS 1.07

Alkenes C≥3 2014 CEDS 7.13
Alcohols 2014 CEDS 5.03
Benzene 2014 CEDS 2.09
Toluene 2014 CEDS 1.00
Xylene 2014 CEDS 0.50
TMB 2014 CEDS 6.70

Isoprene 2014 CEDS 3.50

Table 2.6: Inventory and emission scale factors for the primary gas phase species

NO required a 0.87 mean scale factor, resulting in a mean emission rate of 4.55 mg

m−2 h−1. The emission flux is higher than the 3.55 mg m−2 h−1 flux calculated by Squires

et al., 2020 but falls well within the one standard deviation of that calculation (3.69 mg

m−2 h−1). A 13% reduction in NO emissions between the MIX inventory year (2010) and

the campaign year (2017) is close to the -17% predicted trend in Beijing (B. Zheng et al.,

2018).

Ethane and propane emissions required large scale factors of 3.14 and 5.39, respec-

tively. Alkane emission inventories have been observed to severely underestimate (by up

to a factor of eight) emissions in Chinese urban centres (Z. W. Mo et al., 2018). These

missing emissions are believed to be due to difficulties in quantifying fugitive fuel emis-

sions (Sillman, J. A. Logan, and S. C. Wofsy, 1990). Butane and larger alkanes (ALK4)

required a 33% reduction. The reason the CEDS over estimates ALK4 is unclear.

CEDS performs well on new ethene species requiring only a 7% increase in emissions.

The combined larger alkenes (PRPE), however, required the largest scale factor (7.13) of

all the primary species investigated. This represents a significant underestimation by the

CEDS inventory and may represent errors in the assumptions made about the composition
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of Chinese fuel in the inventory.

The scale factor required by the aromatics varies between species, indicating a poor

understanding of aromatic emissions activity (Watson, Chow, and Fujita, 2001). The emis-

sion flux of benzene (0.64 nmol m−2 s−1), toluene (2.64 m−2 s−1) and xylene (1.65 m−2

s−1) were all within one standard deviation of the mean fluxes (2.00, 1.94 and 2.07 nmol

m−2 s−1 respectively) observed during the campaign (Acton et al., 2020). Similar to PRPE,

TMB required a large 6.7 scale factor. This again may represent errors in the assumptions

about the composition of Chinese fuel in CEDS inventory.

Alcohols required a 5.03 scale factor on emissions. Methanol was the only primary

species that could not be readily fitted to the observation. The measured methanol flux

during the campaign was 8.0 nmol m−1 s−1 (Acton et al., 2020), while the model emis-

sion flux was 11.0 nmol m−1 s−1 and still underestimated concentrations (Figure 2.6).

To get agreement between the measured and modelled methanol by increasing the emis-

sions would have require a substantial increase in the emissions beyond the observational

constraint. It seems likely that much of unaccounted for methanol is secondary in origin

and the model underestimates could represent a failure in the chemistry, rather than in the

emissions.

Isoprene required a significant 3.5 scale factor on the baseMEGAN emissions to match

observation. However, this scaling resulted in a mean emission rate of 6.9 nmol m−2 s−1

close to the measured value of 7.6 nmol m−2 s−1 (Acton et al., 2020). The substantial

scale factor implies there is a fundamental error associated with the parameterisation of

isoprene emissions in Beijing. A previous study in southern China (Situ et al., 2014) also

found a large (110%) bias (albeit still smaller than the bias found in this study) however,

the 2014 study did not focus specifically on the urban areas. The underestimation could be

a result of incorrect leaf area index, speciation of flora or incorrect emission rates for the

given flora. The exact cause falls outside the scope of this project but considering the high

fraction of the OH reactivity due to isoprene in Beijing further work on Chinese isoprene

emissions appears essential.

Figure 2.7 shows the mean calculated diurnal cycle for the concentration of the indi-
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vidual aerosol species and the total aerosol surface area before and after tuning. After

the model tuning, performance for all compounds and the aerosol surface area has signif-

icantly improved. The mean daily, noon and midnight values are shown in Table 2.7, and

the necessary scalings given in Table 2.8.

Figure 2.7: Mean diurnals of the tuned model (red) and observed (black) for the aerosol
species and aerosol surface area. Shaded area indicates one standard deviation.
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Table 2.8: Summary of primary compound scale factors applied to the dailymean emission
rate.

Species Inventory Mean emission factor
SO2 2010 MIX 0.22
NH3 2010 MIX 0.76

Organic carbon 2014 CEDS 0.38
Black carbon 2014 CEDS 0.14

Table 2.9: Inventory and emission scale factors for the aerosol and aerosol precursor
species.

SO2 required considerable 78% reduction in order to replicate both the SO2 and the

sulphate concentrations. This large reduction is similar to the 62% published (B. Zheng et

al., 2018) reductions in SO2 emissions in China since the inventory was produced (2010).

Ammonia emissions were reduced by 24% in order to replicate the observed Ammo-

nium diurnal. The reduction is close to the 31% NH3 bias previously calculated in the

MIX emission inventory (Q. Q. Zhang et al., 2019).

Organic carbon required a 62% reduction in direct emissions. Distinguishing between

primary and secondary organic aerosol (SOA) is problematic, and as such, it is hard to

identify how much of the reduction is a result of excessive SOA production within the

model, and how much is due to errors in the emissions inventory. Nonetheless, primary

organic carbon emissions have been reducing in China in recent years (Lang et al., 2017).

Black carbon had the most considerable reduction of all species observed at 86%.

Black carbon emissions have been reducing in Beijing (Y. Chen et al., 2016). However,

the magnitude of the reductions found here appear in excess of the published values (38%)

and would suggest a possible issue within the CEDS emission inventory.

2.7.1 Diurnal profile

As well as changes to the mean emissions during the campaign, adjustments were made to

the diurnal emissions profiles, so that the modelled mean diurnal cycle fitted the observed

diurnal cycle.

Figure 2.8 shows the emissions profiles used for NO emissions compared to the default
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provided by the Global Emissions InitiAtive (GEIA) inventory (Stavrakou et al., 2009).

The diurnal profile has a very large peak in the morning and then a smaller secondary peak

in the afternoon. The shape and magnitude of the day/night difference are similar to that

calculated by Squires et al., 2020, albeit with a smaller afternoon peak. The calculated

diurnal is substantially more drastic than the default Beijing NO emission profile. This

likely reflects the overwhelming role of transport on NO emissions in Beijing. This may

have changed over the years as industrial and emissions sources are moved out of the

city to reduce human exposure. Future work would be required to separate the diurnal

scale factors into sector-specific factors. However, this could result in an even greater

transportation diurnal being required once a relatively flat diurnal from power generation

is applied as such this may elude to meteorology exaggerating this diurnal somewhat.

Figure 2.8: Default and tuned diurnal scale factor for NO emissions.

By default GEOS-Chem uses the same diurnal profile for all anthropogenic VOCs and

for CO. It was found that the fossil fuel species required splitting into three categories:

long lived species (CO, ethane and propane), short lived species (aromatic compounds,

alcohols and large alkanes (ALK4)), and alkenes (Figure 2.9).
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Figure 2.9: Default and tuned diurnal scale factor for VOC emissions.

All three profiles look relatively similar, with a "top hat" style profile, roughly follow-

ing day and night. The shorter lived the compound, the bigger the jump between day and

night time values. This may reflect some of the other model failures. OH concentrations

at night are essentially zero in the model, but are measurable in the observations. Thus

increased night time concentration in the model may allow a single diurnal profile to be

applied to the VOCs and to maintain model fidelity.

Tuning the model allowed there to be a "reasonable" comparison between the observed

concentrations of predominantly primary compounds and those simulated in the model.

The exact reasons for these differences have not been explored fully, although some indica-

tions suggest changes in the emissions between the year they were generated for (2010) and

the year of the campaign (2017), and issues with the concentrations OH calculated by the

model. Although not perfect the model agreement for the primary species is subjectively

now good enough for the model’s ability to simulate secondary species to be evaluated.
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2.8 Model performance

The focus of this chapter is on the sensitivity of secondary compounds (ultimately O3)

to potential policy driven changes in the emissions of primary compounds such as NOx

and VOCs. Now that the modelled concentration of these species match (to some extent)

the observations, the performance of the tuned model to simulate secondary compound

concentration is evaluated. As the model was tuned to the NOx rather than the individual

NOx species, the modelled NO and NO2 concentrations are assessed followed by HONO.

Then the model’s ability to simulate formaldehyde is assessed. The model’s ability to

simulate the ROx family members (OH, HO2, RO2) and OH reactivity is then evaluated.

Finally, the model performance for O3 is analysed.

2.8.1 NOx species

The model NO emissions were tuned to fit the observed NOx concentration, but the con-

centrations of the individual components (NO and NO2) were not constrained. Figures

2.10 and 2.11 shows the comparisons between the model and measurement for NO, NO2.
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Figure 2.10: Model (red) versus observed (black) NO concentration concentration time
series (top), mean diurnal with one standard deviation shaded (bottom left) and a scatter
plot (bottom right) of observations (x-axis) against model (y-axis), line of best fit (dashed),
1:1 line (solid) and +/- 50% line (dotted).
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Figure 2.11: Model (red) versus observed (black) NO2 concentration concentration time
series (top), mean diurnal with one standard deviation shaded (bottom left) and a scatter
plot (bottom right) of observations (x-axis) against model (y-axis), line of best fit (dashed),
1:1 line (solid) and +/- 50% line (dotted).

Despite the model being able to simulate to NOx concentrations well (Figure 2.6) with

a campaign mean of 22.27 ppbv in the observation and 22.43 ppbv in the model, it sim-

ulates the NO and NO2 concentrations individually less well. The mean modelled NO

concentration during the campaign was 2.6 ppbv, compared to the observed mean value of

3.2 ppbv, a high bias of 18%. The NO2 mean had a smaller bias (5%) but in the opposite

direction with a modelled value of 18.6 ppbv compared to an observed value of 19.5 ppbv.

Figure 2.12 shows the comparisons between the modelled and measured ratio.
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Figure 2.12: Model (red) versus observed (black) NO:NO2 ratio concentration concentra-
tion time series (top), mean diurnal with one standard deviation shaded (bottom left) and
a scatter plot (bottom right) of observations (x-axis) against model (y-axis), line of best fit
(dashed), 1:1 line (solid) and +/- 50% line (dotted).

During the daytime, the ratio should be described well by the Leighton relationship

(Chin et al., 1994). Assuming a steady-state for the concentration of NO (or NO2) the rate

of chemical production (dominated by NO2 + hv) is balanced by a chemical loss (domi-

nated by NO + O3). Loss rate analysis of NO at noontime found that only a few per cent

of NO reacted with RO2 and HO2 rather than O3. The relationship can be thus expressed

by Equation 2.1. Where jNO2 is the rate of NO2 photolysis and k is the rate of the O3 +

NO reaction.

[NO]

[NO2]
≈ jNO2

k[O3]
(Eq. 2.1)

In theory, the modelled NO to NO2 ratio should be the same as the observed if the

observed O3 concentration and jNO2 photolysis rates are well simulated. In general, the

model does replicate the observed O3 concentration well, and while jNO2 does have a
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mean bias (Section 2.5.1), for the majority of days, the jNO2 performs well. Thus the

measurements appear inconsistent with the Leighton relationship.

Processes occurring below the grid scale of the model are always a potential explana-

tion for NOx model failure. Local emissions of NOx may not have reached steady-state, but

this would likely lead to higher NO observed concentrations than modelled as the NO en-

riched emissions decay to the steady-state NO to NO2 ratio. However, observations show

the opposite of this, with the observed NO:NO2 ratio lower than would be expected from

steady-state.

Additional fast cycling of NO to NO2 would reconcile the observations although it is

unclear what could be providing this. The model underestimates RO2 but to convert NO

into NO2 at the same rate as O3 ( at 70 ppbv and 303 K), there would have to be around 4.5

x 109 cm−3 of RO2, whereas the mean observed daytime value is closer to 1x109 cm−3.

Halogen oxides (BrO, IO, ClO) can also convert NO into NO2 but were not measured

during the campaign. Again however to convert NO into NO2 at the same rate as O3, there

would need to be 63, 67 or 79 pptv of BrO, IO or ClO respectively. The concentration

of these radicals in the atmosphere is poorly understood (Tomas Sherwen et al., 2016),

but given the concentrations measured in oceanic sites (Mahajan et al., 2010) of these

compounds rarely exceeds a couple of pptv it would seem surprising if there could be tens

of pptv in an urban setting.

A problem with any explanation that converts more NO to NO2, is that it would also

increase the rate of O3 production. Added production would lead to a greater O3 con-

centration than is currently simulated, and the model simulation of O3 is already close to

observation.

Several interferences are possible on themeasurement of NO andNO2. Decomposition

of NOy species can lead to NO2 concentrations appearing artificially high (Reed et al.,

2016). It is also possible for species containing alkenes (Alam et al., 2020) to create

interference on both NO and NO2 observations. It is currently not possible to explain

why the model is unable to reproduce this ratio. Given the importance of this ratio to our

understanding of atmospheric chemistry, this is not reassuring but offers a great place to
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start important future work.

During the night, the biases are reversed, with modelled NO being too low (50%) and

NO2 being too high (~10%). During the night, there is no photolytic source of NO, and

most NO observed is thus from direct emissions. Give the site is located in central Beijing

the model likely underestimates the ratio during the nighttime due to local NO emissions

not yet having reached steady-state.

Much of the day to day variability is however simulated in themodel, with the transition

between more and less polluted periods being simulated by the model. This gives the

correlation between the model and measured NO and NO2 Pearson’s coefficient (R) of

0.47 and 0.56 respectively.

2.8.2 HONO

Figure 2.13 shows the model with the GEOS-Chem V12.8 default nitrous acid (HONO or

HNO2) sources (green), with an update described below (red) and the observations (black).

The default model hugely underestimates HONO during both the day and night.
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Figure 2.13: Model (red) versus observed (black) HONO concentration concentration time
series (top), mean diurnal with one standard deviation shaded (bottom left) and a scatter
plot (bottom right) of observations (x-axis) against model (y-axis), line of best fit (dashed),
1:1 line (solid) and +/- 50% line (dotted).

HONO is produced via three production pathways; homogeneously via the gas-phase

reaction between OH + NO, heterogeneously via the reaction of NO2 on particulates or

surfaces, and heterogeneously via a light-dependent reaction (L. Zhang et al., 2016). The

gas phase source is relatively well constrained and is represented in the model. The model

also contains a non-light dependent reaction of NO2 on aerosols to produce HONO. The

default for this is the IUPAC and JPL recommended values for the reactive uptake coeffi-

cient (Holmes et al., 2019). The model does not contain a light-dependent heterogeneous

source.

With this default configuration, there was a substantial underestimate in the HONO

(green line in Figure 2.13). There is however, some uncertainty about the heterogeneous

uptake coefficient, with evidence for it being much faster in urban environments (X. C.

Lu et al., 2018). The mechanism for this appears to be the complex layer of "organic ur-

ban grime" that builds upon aerosol (and potentially other surfaces) enhancing hydrolytic
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disproportionation of NO2 (K. F. Ho et al., 2010).

Consequently, the NO2 uptake coefficient was changed to give a value consistent with

that observed in Beijing(1 x 10−4) compared to the default values of 1 x 10−6 on organic

aerosol and 5 x 10−6 on sulfate aerosol (X. C. Lu et al., 2018). The values are also the same

as the value used in GEOS-Chem before the Holmes et al., 2019 update. This substantially

improved the performance of the model in replicating the nighttime HONO concentration

(red line in Figure 2.13), although still resulted in the model being approximately 30%

biased low at night.

During the day time the model still substantially underestimates the HONO concentra-

tion. There are a number of potential missing sources in the model including direct tailpipe

emissions from transport (Liang et al., 2017), soil emissions (Meusel et al., 2018), photol-

ysis of nitrate particulate (Ye, Zhou, et al., 2016) and photolysis of deposited HNO3 and

nitrate on the surface (Ye, Gao, et al., 2016). Additionally, as j value bias was found for

other species (NO2 and O(1D)) it is possible that there was bias in the jHONO.

Overall, even with the nighttime improvement, the model still had an Root Mean

Square Error of 1.3 ppb, with a mean mixing ratio of 0.47 ppbv and thus a substantial

260% error. The implications of this underestimate in the HONO for the photochemistry

of Beijing is discussed in Section 2.8.9.

2.8.3 Formaldehyde

Formaldehyde (CH2O) is a prominent product of VOC photochemical oxidation, particu-

larly during the atmospheric degradation of isoprene (Wittrock et al., 2006). The ability

of a model to reproduce the observed CH2O concentration is a useful marker for how well

the model replicates the rate of VOC oxidation. The model mean concentration during the

campaign was 3.5 ppbv, while that observed was slightly higher at 4.0 ppbv (Figure 2.14).
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Figure 2.14: Model (red) versus observed (black) CH2O concentration concentration time
series (top), mean diurnal with one standard deviation shaded (bottom left) and a scatter
plot (bottom right) of observations (x-axis) against model (y-axis), line of best fit (dashed),
1:1 line (solid) and +/- 50% line (dotted).

Qualitatively the model has some success in simulating the overall trend during the

campaign, with the differences between high and low days being reproduced. This gives

the model an R value of 0.54. Similar results are found from model evaluations of CH2O

in other locations such as the south east united states (Marvin et al., 2017).

The model’s ability to simulate CH2O would provide some evidence that its rate of

hydrocarbon oxidation is, roughly comparable to that observed. However, this will be in

contrast to the evidence from the observation of OH Reactivity and the RO2.

2.8.4 OH

The local hydroxyl radical (OH) concentration is rarely evaluated within chemical trans-

portmodels. Indirect global or hemispheric evaluations aremore common (Krol, Leeuwen,

and Lelieveld, 1998; Bey, Jacob, et al., 2001; W. J. Bloss et al., 2005), but it is usually
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thought that given the short lifetime of OH (0.01 to 1s), evaluation using a transport model,

even with a 25km grid resolution would not provide useful information. The difficulty in

making OH observations also limits their availability (Heard and Pilling, 2003). Neverthe-

less, as the dominant oxidant in the atmosphere, the OH concentration governs the lifetime

of most gas phase compounds. Our ability to accurately reproduce the OH concentration

has a profound effect on our ability to simulate atmospheric chemistry and thus it is useful

to evaluate model performance, even with the caveat of the model’s grid resolution.

Figure 2.15 shows a comparison between the OH observations made using the FAGE

technique (Section 2.3) and those simulated. Although the model captures the rough shape

of the observations with a daytime peak at noon and lower concentrations during the morn-

ing and evening, it significantly underestimates the concentration at all times.

Figure 2.15: Model (red) versus observed (black) OH radical concentration concentration
time series (top), mean diurnal with one standard deviation shaded (bottom left) and a
scatter plot (bottom right) of observations (x-axis) against model (y-axis), line of best fit
(dashed), 1:1 line (solid) and +/- 50% line (dotted).

The mean OH concentration during the campaign was 2.6 x 106 molecules cm−3 in the
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model and 3.7 x 106 molecules cm−3 in the observations. The model thus underestimates

the mean OH concentration by 30%. The bias was comparable to the 30% found by Z. F.

Tan, Rohrer, et al., 2018 in a box model study run over the same region but for a different

year. This is larger than found in a study of this campaign (Whalley et al., 2020).

At noontime the model underestimation was smaller at 1x106 molecules cm−3, 12.5%

lower than the 8x106 molecules cm−3 observed. Given the model’s substantial overestima-

tion of J(O1D) (Section 2.5.1) it is surprising that the model underestimates OH. However,

photolysis of HONO plays a dominant role in the sources of OH in Beijing (Whalley et al.,

2020). Thus model underestimation in morning HONO (Section 2.8.2) may be responsible

for the modelled OH concentration rising slower than the observation during the morning

(Couzo et al., 2015), and the general underestimation of OH be due to the underestimation

of HONO during the day. The model over estimation of J(O1D) may, to some extent, be

compensating for the model underestimation of HONO.

During the night, the model simulates essentially zero OH whereas the observations

appear to detect some OH, although these concentrations are close to, or at the limit of

detection of the instrument. At night there are no photolytic sources of radicals, however,

there are "dark sources" in the atmosphere from the reaction of alkenes with O3 or NO3

(Geyer et al., 2003). However, as the model underestimates night time NO concentrations

(Section 2.8.1), even if it gets the dark source of peroxy-radicals right there would be a

suppression of nighttime OH as there would be an underestimation of the rate of nighttime

conversion of peroxy radical into OH.

The observed OH concentration shows a high degree of day to day variability with

the OH concentration varying by an order of magnitude between the lowest (28th May)

and highest days (29th May). The model captured much of this variability resulting in an

R-value of 0.75. Much of this variability in OH is driven by variability in the photolysis

rates (Section 2.5.1). Days with low photolysis rates correlate with days with low OH,

reflecting the change between cloudy and clear days.
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2.8.5 HO2

As with OH, the hydroperoxy (HO2) radical concentration calculated by chemistry trans-

port models is seldom evaluated. However, calculating a correct hydroperoxy radical con-

centration is vital for reproducing O3 production in the models as the reaction between NO

and peroxy radicals is the source of O3 in the troposphere.

Figure 2.16: Model (red) versus observed (black) HO2 radical concentration concentration
time series (top), mean diurnal with one standard deviation shaded (bottom left) and a
scatter plot (bottom right) of observations (x-axis) against model (y-axis), line of best fit
(dashed), 1:1 line (solid) and +/- 50% line (dotted).

Throughout the campaign (Figure 2.16), the mean observed HO2 concentration was

1.2 x 108 molecules cm−3, whereas the model simulated 0.8 x 108 molecules cm−3.

Thus on average, the model underestimated the HO2 by 33%. The RMSE was 9.3

x 106 molecules cm−3 which at approximately 50% of the mean value which compares

favourably with a previous box model study by Z. F. Tan, Rohrer, et al., 2018 for the same

region.

During the day, the model agreement with the observations is generally good. There is
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a slight underestimation during the morning, which (as seen with OH) is likely due to the

shortage of nighttime HONO resulting in not enough morning radical production. This

is in contrast to the results of Whalley et al., (2020) who find their model substantially

overestimates the HO2 concentration during the day time. This probably reflects the dif-

ference in HOx concentrations calculated by their model (higher as they use the observed

HONO concentrations), and then differences in HOx speciation as their model uses the

measured NO and the GEOS-Chem model overestimates NO concentrations (see Section

2.8.1) which would reduce HO2 concentrations.

Similar to OH, the model predicted a significantly lower concentration of HO2 at night

than are observed. There is a noticeable evening shoulder in HO2 concentrations which

is not simulated in the model. "Dark" production routes of ROx do exist (Geyer et al.,

2003). The reaction of the double bonds in alkenes with either O3 or NO3 can lead to the

production of radicals (Kroll et al., 2002). The model simulation of both ethene and PRPE

(>= C3 alkenes) is generally good after tuning (Figure 2.6). Nighttime isoprene showed

concentrations of around 0.1 ppbv, whereas the model simulates close to zero, due to the

emissions scheme having no dark emissions source. Additionally, there was a significant

concentration of mono-terpenes at night (15.0 pptv) measured by the PTR-MS (H. Zhang

et al., 2020), which were not considered at all by the model chemistry. Some additional

work understanding night time chemistry in GEOS-Chem is needed.

2.8.6 RO2

Around 80% of the peroxy-radical pool (HO2+RO2) is in the form of organic peroxy-

radicals (RO2) (Figure 2.17), reflecting the sizeable organic fraction of the reactivity, com-

pared to that due to CO (Section 2.8.7).
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Figure 2.17: Model (red) versus observed (black) RO2 radical concentration concentration
time series (top), mean diurnal with one standard deviation shaded (bottom left) and a
scatter plot (bottom right) of observations (x-axis) against model (y-axis), line of best fit
(dashed), 1:1 line (solid) and +/- 50% line (dotted).

The model substantially underestimates RO2 concentration. Whereas the mean ob-

served concentration was 5.9 x 108 molecules cm−3, the model only simulated 1.6 x 108

(Figure 2.17).

The most significant underprediction of RO2 was during the morning. As with OH

and HO2, this was likely due to a lack of radicals due to an underestimation of nighttime

HONO. However, unlike the other radicals (OH and HO2), the bias was consistent through

the day. This is consistent with the model’s sizeable underestimate in the OH reactivity.

The observations show a noticeable shoulder in RO2 concentrations in the evening.

This is seen in other studies (Z. F. Tan, Hofzumahaus, et al., 2020) which is attributed to

the ozonolysis source of radicals extending further into the afternoon than the photolytic

source. The model shows some evidence of this but at a lower level than that observed.
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2.8.7 OH Reactivity

OH reactivity is a measurement of the OH lifetime and represents the first-order loss rate

constant for OH. The OH reactivity can be measured directly in the atmosphere (Yang

et al., 2017). It can also be extracted from the models via the summation of the first-order

rate of every reaction that removes an OH radical (Equation 2.2).

k′ =
∑
X

[X]kOH+X (Eq. 2.2)

Figure 2.18: Model (red) versus observed (black) OH reactivity concentration time series
(top), mean diurnal with one standard deviation shaded (bottom left) and a scatter plot
(bottom right) of observations (x-axis) against model (y-axis), line of best fit (dashed), 1:1
line (solid) and +/- 50% line (dotted).
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Figure 2.19: Stacked plot of modelled diurnally averaged (mean) OH reactivity by com-
pound class, with total observed OH reactivity in black.

It can be seen in Figure 2.18 that the model underpredicts OH reactivity by about 55%.

This under prediction is a well-known issue with models (Porter, Safieddine, and Heald,

2017; Z. Tan et al., 2019; Lisa K. Whalley et al., 2016). It is higher than that found from

the study of (Whalley et al., 2020), who explored the same dataset but from a box model

perspective. They also found their model underestimated the reactivity (by around 10 s−1),

a lesser extent than that seen here (around 13 s−1). Yang et al., 2017, again in a box model

in the same region of China, found a 21% model underestimate.

Previous studies have concluded that low bias is possibly explained by unmeasured

VOC and oxidation products. Some of this may be species missing from the GEOS-Chem

chemistry scheme, but Whalley et al., (2020) used the MCM chemistry for their modelling

and still found a significant underestimation. If there is a missing VOC, it would need to

provide an almost continuous source of reactivity, as the difference between the measured

and modelled reactivity is similar (13 s−1) during the day and the night.

One difference between the underestimate in the box model (Whalley et al., 2020)
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and GEOS-Chem is likely due to the box model considering the primary and degrada-

tion reactivity from monoterpenes whereas GEOS-Chem does not, and the GEOS-Chem

underestimate of the NO2 concentrations (Section 2.8.1).

Unmeasured compounds thatmight provide some additional reactivity could be sesquiter-

penes. These are highly reactive (lifetime of 7 minutes at an OH concentration of 8x106

cm−3) biogenic compounds. For those species to make up the difference in reactivity

(12 s−1), there would need to be (using an MCM recommend OH rate constant of 1.97 x

10−10 cm3 molecules−1 s−1) 1.5 ppbv of those compounds, which given their short life-

time, would require a large flux. There might be a whole unmeasured class of compounds

(Janechek, Hansen, and Stanier, 2017; Kumar, Chandra, and Sinha, 2018) or heteroge-

neous reactions (H. Xiao and B. Zhu, 2003) but with current understanding, it is hard to

explain the missing OH reactivity.

Some support for a missing source of reactivity comes from the RO2 observations

(Section 2.8.6). The modelled RO2 is significantly underestimated by the model. A sub-

stantial increase in the reactivity (if the OH reactions made RO2) could help to reduce this

problem.

2.8.8 O3

Given all of the problems the model appears to have with the fast photochemistry (NOx

and ROx), the model does a surprisingly good job of simulating the mean O3 (Figure 2.20).

The mean modelled O3 value of 51.6 ppb is close (2.9%) to the observed 53.1 ppb. This is

better than recent studies using chemical transport models in the same region (+7.5% X.

Lu et al., 2019, +5% P. Wang et al., 2019, +16% Hajime Akimoto et al., 2019. However,

this performance is not a surprise, as the emissions in the model have been tuned to give

the right concentration of the primary species.
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Figure 2.20: Model (red) versus observed (black) O3 concentration concentration time
series (top), mean diurnal with one standard deviation shaded (bottom left) and a scatter
plot (bottom right) of observations (x-axis) against model (y-axis), line of best fit (dashed),
1:1 line (solid) and +/- 50% line (dotted).

The model captures much of the day to day variability in the observations, with an R

value of 0.82. This is likely primarily due to the model’s ability to simulate the relative

variability in the daily photolysis rates (Section 2.5.1).

The diurnal mean O3 over estimated just before dawn, and underestimated at around

4pm, so the average O3 production during the day is underestimated by around 10 ppbv or

around 20%. This would allow for some additional O3 production due to missing RO2 but

would unlikely allow for a large increase in O3 production without a substantial increase

in O3 sinks.

2.8.9 Discussion

The overall objective of this chapter is to explore the sensitivity of the model’s O3 to

different potential policy levers (NOx reductions and VOC reductions). Using the model
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for experiment necessitates some faith that the model’s response to those leavers has some

relationship to the likely responses in the real atmosphere. From the perspective of the

model’s ability to simulate O3, this appears to be good. The model performs surprisingly

well at simulating O3. However, there are many ways that the model could get the right

O3 concentration for the wrong reason. The chemical sources and sink terms balance to

the correct answer while those terms are not necessarily correct. There is therefore, the

necessity to assess other aspects of the model, and it was in the secondary compound

performance that the model was found most wanting.

There still remains some significant problems in the model’s ability to simulate quan-

tities such as the NO to NO2 ratio, the concentration of RO2 and OH etc. However, the

model skill is not that different from that shown by box models (see for example Whalley

et al., 2020). A number of future research topics are highlighted by this analysis: sources

of daytime HONO, reasons for the failure to simulate the NO to NO2 ratio, missing reactiv-

ity, missing RO2 sources, nighttime sources of radicals etc. But the tuned model appears

to provide a substantially closer representation of the photochemistry of Beijing than the

untuned one. Attention can now be turned to understanding whether Beijing is in a NOx

or VOC limited chemical regime (Section 2.9), the role of different VOCs in leading to O3

production (Section 2.11) and the influence of heterogeneous chemistry (Chapter 3).
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2.9 Photochemical regime

Air pollution control strategies for O3 are typically based on understanding whether a

city is in a NOx or VOC limited regime (Chatani et al., 2014). When the photochemical

regime is NOx limited, an increase in the NOx concentration leads to an increase in the

O3 concentration (Sillman, 1999). In this regime, the radical loss is predominantly via the

self reaction of peroxy radicals, thus increasing NOx emissions increases the amount of

NO available to react with peroxy radicals to produce NO2, without decreasing the con-

centration of radicals, leading to more O3 production. Radical partitioning favours HO2

and RO2 over OH. As OH production limits the production of peroxy radicals, increasing

VOCs does not lead to an increase in peroxy radicals, and so does not lead to an increase

in O3.

As NOx emissions rise, more peroxy radicals react with NO rather than other peroxy

radicals, resulting in increased OH concentrations. The NO2 + OH reaction becomes the

largest radical loss pathway. At this point, increasing NOx emissions further leads to a

decrease in peroxy radical concentrations, and so in this regime, increasing NOx emissions

decreases the O3 concentration. Additional VOC would now rapidly react with the higher

OH concentration to produce more peroxy radicals which would themselves rapidly react

with NO forming NO2. As such, an increase in VOC would increase O3. This regime is

referred to as VOC limited.

Increasing the NOx emission even further would eventually result in a high O3 + NO

reaction rate which would cause a substantial amount of the odd oxygen (Ox = O3 + O(1D)

+ O(3P) + NO2) being held as NO2 rather than as O3. At this point, increasing NOx emis-

sions rapidly reduces O3 concentrations, although odd oxygen concentrations remain the

constant.

Recently it has become apparent that another factor at play in urban ozone photochem-

istry. Although uptake of HO2 onto aerosol has been known to be important for over 20

years (Jacob, 2000), it’s importance for urban environments has only been recognisedmore

recently (K. Li et al., 2019). This radical loss pathway is not considered in detail in this

chapter but forms the basis of Chapter 3.
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In order to identify which regime (NOx limited or VOC limited) Beijing was in during

the campaign, the model was run scaling VOC (both biogenic and anthropogenic) and NO

(anthropogenic only) emissions in the model domain by factors of 0.8 and 1.25 (0.8 =

1/1.25). Lightning, biomass and soil emissions of NOx were unchanged as their influence

on Beijing were negligible.

Figure 2.21 shows the spread of percentage changes in the daily max O3 concentration

at the observational site for the period of the campaign for these four simulations. On

average (solid coloured vertical lines), a decrease in NO emissions or an increase in VOC

emissions increased O3. Conversely, when NO was increased, or VOCs were decreased

O3 concentrations decreased. Therefore on average Beijing would be referred to as being

in a VOC limited regime (Xing et al., 2018).

Figure 2.21: Distribution plot of modelled 4 pm O3 during the campaign with different
scale factors on NO and VOC emissions. Mean (solid) and median (dashed) are indicated
with the vertical lines.

There is a marked difference in the distribution of daily O3 concentrations changes

(Figure 2.21) from changing NO or VOC emissions. Whereas the changes in VOC emis-

sions leads to a consistent increase or decrease in O3, changes in the NO emission can lead

to both increases or decreases depending on the day. The VOC perturbation distribution

appears as a single mode, whereas the NO perturbations appear to be bimodal.

The time series of the change in the daily maximum O3 with a reduction (0.8 scale

factor) in NO can be seen in Figure 2.22. The change to the NO emission elicited a different

response depending on the day of the campaign. While much of the campaign was clearly
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in a VOC limited regime (a reduction in NO emissions to to an increase in O3), over a

third of the campaign appeared to show no O3 sensitivity or presented a slight (< 2 %) NO

limited regime.

Figure 2.22: Time series of the reduction in daily maximum O3 with a 0.8 scale factor on
NO emissions.

The standard tool for understanding the photochemical regimes is the ozone isopleth

(Thielmann et al., 2001). These were historically generated with box models, but given the

advances in computational resources, these can now be calculated with chemical transport

models.
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2.10 Ozone isopleths

Historically, assessing and explaining the different photo-chemical regimes (NOx vs VOC

limited) is achieved by considering isopleths of O3 concentration under different emissions

of NOx and VOCs (Sillman and He, 2002). These are typically generated using box mod-

els run with chemical and meteorological conditions thought "typical" of the city under

considerations (Sillman and He, 2002).

In contrast to box models, chemical transport models simulate large areas simultane-

ously and have sophisticated transportation mechanisms allowing for upwind and down-

wind mixing, vertical transport, deposition schemes, coupled aerosol chemistry, etc. The

computational burden of running these models at sufficiently high resolution prevented

their use for resolving isopleths. However, increases in computational resource now allow

isopleths to be constructed from chemistry-transport models.

The GEOS-Chem model was used to construct O3 isopleths for Beijing by varying

the NO (anthropogenic only) and VOC (anthropogenic and biogenic) emissions indepen-

dently. The scaling was symmetric in log space with nine logarithmically distributed steps

between 0.1 and 10 (0.10, 0.18, 0.32, 0.56, 1.0, 1.8, 3.2, 5.6, 10.0) for both NO and VOCs.

This "coarse grid" covered a broad range of emission scaling with a focus on chemical

understanding. A finer grid with nine logarithmically distributed steps between 0.32 and

3.2 (0.32, 0.42, 0.56, 0.75, 1., 1.33, 1.78, 2.37, 3.2) was nested inside the coarse grid to

offer greater chemical resolution over the policy relevant range.

2.10.1 Aggregated isopleths

Figure 2.23 shows themodelledmean 4 pm (local) O3 isopleth for Beijing during the period

of the campaign. 4 pm was chosen as it represented the daily O3 peak (Section 2.8.8).

Increases in the VOC emissions are shown on the x axis, and increasing NO emissions are

shown on the y. The red ’ridge’ line running across the graph shows the point of maximum

O3 concentration at a given VOC emission scale factor, and the red dot represents the

"tuned" model simulation described in the previous sections,
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Figure 2.23: Isopleths of the mean 4 pm O3 concentration (ppb) for the period of the
campaign. Grey dots indicate what the VOC (anthropogenic + biogenic) and the NOx
(anthropogenic) were multiplied by in the simulations. Red dot indicates the model after
tuning.

The standard features expected from an O3 isopleth (Finlaysonpitts and Pitts, 1993)

are evident. The upper-left half of the plot represents the VOC limited regime, where in-

creases in VOC emissions sees an increase in O3 concentrations. In this area, increased

NO emissions result in lower O3, and ultimately O3 is almost entirely titrated away. Con-

versely, the lower-right half of the plot shows the NOx limited region, where sensitivity to

VOC is very small (horizontal lines), but increases in NOx emissions lead to an increase

in O3 concentrations.

The city’s emissions are currently located at the red dot in the centre of the plot with

a mean O3 concentration on the 80 ppbv isopleth. These conditions are at a higher NO

emissions rate / lower VOC emissions rate than the ridge line of maximum O3 (red line).

Themodel is thus in aVOC limited regime: a decrease inVOC emissions lead to a decrease

in O3, whereas a decrease in NO emissions will lead to an increase in O3, in agreement

with findings in Section 2.9.
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Figure 2.23 also shows that reductions in the NO emissions will lead to an increase

in the mean 4pm O3 concentration. A reduction in NO emissions of 50% would lead

to an increase in O3 to 87 ppbv. Reductions beyond that would the lead to reduced O3

concentrations. But to return to the present-day concentration of 80 ppbv would require a

80% reduction in NO emissions.

Reductions in VOC emissions, however, provides a greater opportunity for reduction

in O3 concentration. A 50% reduction in VOC emissions would produce a 20% drop in

the 4 pm average O3 (80 to 64 ppbv). This reduction could likely be achieved in less than a

50% total reduction by targeting high O3 forming potential VOCs, which will be discussed

further in Section 2.11.

Figure 2.24 shows the median 4 pm O3 isopleth. The most obvious feature of the plot

is the noisy contour lines. As the median is the value above which 50% of the data lies,

any change in the rank ordering of the 4pm O3 will likely lead to a step change in the

value of the median hence the noise. Section 2.9 showed that the O3 response to a change

in the NOx or VOC emission varied significantly between days. The mean plot reduces

the importance of these changes by considering all of the data points, in the median plot,

a change in emissions could shift the median day. Further evidence can be seen by the

fact that the curves are most erratic close to the ridgeline. As emissions are pushed to the

extremes, it is likely all the days converge on one regime (at ten times NO emission all

days will be very VOC limited).

Although there are differences in between the mean and median isopleth, these differ-

ences are rather small and do not change the perspective that the city in the model is in a

VOC limited regime.

101



Figure 2.24: Isopleths of the median 4 pm O3 concentration (ppb) for the period of the
campaign. Grey dots indicate what the VOC (anthropogenic + biogenic) and the NOx
(anthropogenic) were multiplied by in the simulations. Red dot indicates the model after
tuning.

So far, the focus has been on the average daily 4 pm O3, but one of the key advan-

tages of using a chemical transport model to produce isopleths is that the full campaign

is resolved. O3 damage to both the environment and human health (Heath, Lefohn, and

Musselman, 2009) is non-linear, with the higher O3 concentration days being substantially

more damaging than the lower days. Figures 2.25 and 2.26 shows how the modelled 75th

percentile 4 pm O3 concentration (103 ppbv under current conditions) and the maximum

4pm value (120 ppbv under current condition) would be affected by changing emissions.

The overall structure of these isopleths is similar to that of the mean (Figure 2.23) with

the present day conditions for the city being at higher NO emissions that the ridge line.

However there are some differences.
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Figure 2.25: Isopleths of the 75th percentile 4 pm O3 concentration (ppb) for the period of
the campaign. Grey dots indicate what the VOC (anthropogenic + biogenic) and the NOx
(anthropogenic) were multiplied by in the simulations. Red dot indicates the model after
tuning.
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Figure 2.26: Isopleths of the max 4 pm O3 concentration (ppb) for the period of the cam-
paign. Grey dots indicate what the VOC (anthropogenic + biogenic) and the NOx (anthro-
pogenic) were multiplied by in the simulations. Red dot indicates the model after tuning.

In both cases, the current conditions (red dots) lies closer to the ridge line than seen in

the mean or median isopleths. For the 75th percentile, reducing NO emissions leads to an

increase of only a couple of ppbv in the O3 concentration before the O3 drops. Reducing

the NO would barely increase max O3 at all. Thus depending upon the metric that policy

wishes to improve (mean, 75% percentile, maximum), the disadvantage of NOx emission

reductions changes.

2.10.2 Daily variability

The isopleths on individual days can be examined to provide a more in-depth analysis.

Days when O3 was above the 75th percentile can be split into two periods, the 27th to 28th

of May, and the 17th to 21st of June. These two periods with be referred to as the "May"

and "June" peaks, respectively and can be characterised by different isopleths.

An example of the May peak period isopleth can be seen in Figure 2.27 (4pm May
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28th). This day is characterised by as being VOC limited and the isopleth has a similar

form to the average isopleth (Figure 2.23) with NOx reductions increasing O3.

Figure 2.27: Isopleths of the May 28th 4 pm O3 concentration (ppb) for the period of
the campaign. Grey dots indicate what the VOC (anthropogenic + biogenic) and the NOx
(anthropogenic) were multiplied by in the simulations. Red dot indicates the model after
tuning.

The June period shows different behaviour. During this (June 20th example shown in

Figure 2.28) the O3 sits on the crest of the ridgeline, lying between the two regimes. While

VOC reduction would still reduce O3 more efficiently than reductions in NOx, reductions

in NOx would still produce a slight reduction as well. The regime here is neither NO or

VOC limited.
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Figure 2.28: Isopleths of the June 20th 4 pm O3 concentration (ppb) for the period of
the campaign. Grey dots indicate what the VOC (anthropogenic + biogenic) and the NOx
(anthropogenic) were multiplied by in the simulations. Red dot indicates the model after
tuning.

2.10.3 Implications

What is important to note here is that the June peak period represented the most extended

period of very high O3 during the campaign, with all five days having O3 concentration

greater than 100 ppb. Neither the average nor the 75th percentile isopleths placed the base

model on the ridgeline as it was with the June period.

A model study focused solely on the June high period would conclude that Beijing

is at the point of maximum O3 from a NOx emission perspective, thus focusing emission

reductions on both NO and VOC would be the optimal policy strategy. The May peak

period, however, indicates NOx reduction would have minimal effect on the O3. Thus a

greater focus would be on VOC reduction over NOx. Lastly, a model study that focused

solely on the mean would conclude that Beijing is VOC limited, and a NOx emission re-

duction would increase O3. Under these conditions, the emission reduction strategy may
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be to reduce VOC drastically to offset the increase caused by NOx reductions.

This shows the importance of examining individual O3 pollution events when consider-

ing the NOx and VOC mitigation strategies. VOC reduction was shown to be an effective

strategy for reducing O3 concentrations in Beijing under all conditions. The individual

contribution of different VOCs, and thus, most efficient VOC to target to reduce O3 will

now be investigated.
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2.11 Importance of different VOCs

Section 2.10 showed that the modelled mean, median, 75th percentile and max 4pm O3

concentration are all sensitive to VOC emissions. However, not all VOCs are the same.

Different VOCs display differing capacities to produce O3 (Duan et al., 2008). In this

section, the influence of different VOCs classes on modelled O3 is explored.

The primary emitted VOCs are split into five classes: CO, alkanes (ethane, propane,

and ALK4: alkanes with 4 or more carbons atoms), alkenes (ethene and PRPE : alkenes

with 3 ormore carbon atoms), isoprene and aromatics (benzene, toluene, xylene, trimethyl-

bezene and combined other monoaromatics). CO is technically not a VOC but we include

it here due to its ability to generate peroxy radicals and so O3. In order to compare each of

their contributions to O3 production, a series of perturbation simulations were performed,

where each class of compound was run with one of five multiplication factors; 0.0 (no

emissions), 0.2, 0.4, 0.6 or 0.8 applied to all emissions sources (anthropogenic and bio-

genic) over the whole domain and then compared to the base model.

In Figure 2.29 the percentage changes in the Beijing 4 pm O3 concentrations can be

seen for each of the perturbation simulation. Changing the CO, alkenes and alkanes emis-

sions each has a similar median contribution to O3 production of around a 6 to 7% re-

duction. While CO concentrations are much higher than than those of alkanes, which are

again much higher than the alkenes (campaign means of 483, 50 and 5 ppbv respectively),

their ozone formation potential is reversed (approximately 1, 14, 84 respectively) (H. Xiao

and B. Zhu, 2003) resulting in a similar overall influence on O3. The variability in the

sensitivity of the O3 (as represented by the inter-quartile range) is smaller for the alkanes

and CO than the alkenes. As they are longer lived compounds the boundary conditions

plays a more important role in defining their concentrations which means that the local

influence on the concentration is smaller.
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Figure 2.29: Box and whisker plot of change in base O3 concentration with a scale factor
on the emissions of each class of VOC compound.

Removal of isoprene emissions has a more substantial effect on the O3 concentrations

reducing the median 4 pm O3 by ~11%. The inter-quartile range (8% to 14%) is also

broader than for the CO, alkenes and alkanes, as the emissions flux is sensitive to tem-

perature and solar flux which vary day to day unlike the anthropogenic emissions which

follow the same diurnal variation in emissions every day. This leads to some days having

isoprene as a significant contributor to the OH reactivity, whilst on other days it plays a

less significant role.

Aromatic compounds were the most significant contributor to O3 with their removal

inducing a 15% reduction in the median 4 pm O3 concentration. Aromatics also have

the largest inter-quartile range of all the compound classes. A possible reason for this

variability is that aromatic compound emissions in the region are predominantly from

urban (X. M. Wang et al., 2002), and industrial (Y. Li et al., 2020) centres and have short

lifetimes (24 hours or less for methyl-substituted aromatics at 5 x 106 OHmolecules cm−3)

and low background concentration. Therefore air masses coming from polluted regions
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could have a far more significant aromatic influence on O3. Similarly, these air masses that

do not pass over forested areas could see a reduction in biogenic influence on O3 and thus

a relative increase in aromatic influence. Additionally, relative aromatic influence will

increase on days when isoprene emissions are lower due to meteorological conditions.

The influence of removing emissions of these VOCs on the mean diurnal cycle of the

short lived species (O3, OH, HO2 and RO2 is shown in Figure 2.30).

Figure 2.30: Diurnal mean O3 (top left), OH (top right), HO2 (bottom left) and RO2 (bot-
tom right) concentration with the removal of emissions of each class of VOC. Observation
in black with shaded one standard deviation.

The change in themeanO3 diurnal cycle from the different emission classes, unsurpris-

ingly follows that in Figure 2.29. Switching off the aromatics leads to the largest changes,

and the removal of the CO the smallest change. However, the influence of the different

VOC on the short lived species is more complex.

While aromatics compounds did substantially reduce the HO2 and RO2 concentrations

(~40% and ~50% respectively), the reduction was not as significant as seen with removing

isoprene emissions (~55% and ~62% respectively). This is unintuitive and may represent
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changes to the O3 sink term. The concentration of peroxy radical changes more for the

isoprene, but the influence is less on the O3.

VOCs can also influence the concentration of NO which in turn can affect the con-

centration of O3. Is the asymmetry between the O3 concentration and the peroxy-radical

concentrations for isoprene and aromatics due to their influence on NOx concentrations?

Figure 2.31 shows the impact of switching off the emission of the different VOCs on the

concentration on NO, NO2, NOx and NOy.

Overall theVOCs have little influence on the concentration ofNOy. There aremarginally

higher NOx concentrations without the aromatics, which likely reflects the influence of

aromatics on increasing the OH concentration. There are also higher NO concentrations

without aromatics, which reflect the increase in the NO to NO2 ratio with the lower O3

without the aromatics but from this analysis, it doesn’t look like the switch in importance

between the aromatics and the isoprene for O3 and peroxy radicals is due to their influence

on NOx concentrations.

Figure 2.31: Diurnal mean NO (top left), NO2 (top right), NOx (bottom left) and NOy

(bottom right) concentration with the removal of emissions of each class of VOC. Obser-
vation in black with shaded one standard deviation.
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Another explanation might be in the difference in the mechanism choices made for

the isoprene (Bates and Jacob, 2019) and aromatic (Goliff, W. R. Stockwell, and Lawson,

2013) oxidation schemes. These are very different schemes. The Bates and Jacob, 2019

scheme for isoprene is designed to work in both high and low NOx environments. It con-

tains a thorough representation of isoprene peroxy radicals reacting with HO2, RO2 and

NO. It is based on the 412 reactions and is a state of the art representation of the chem-

istry of isoprene. The RACM-II aromatic scheme is designed to be much more compact.

Radicals generated in this scheme can only react with HO2, NO and CH3O2. The rate con-

stants chosen for these reactions are also simplified and have no temperature dependence.

The different response of the O3 to the changes in the peroxy radicals may be due to the

different assumptions made in formulating the chemistry schemes. Further work will be

necessary to understand these choices and their implications.

While removing emissions of the VOCs reduced the concentrations of peroxy radicals

in all cases the response fromOH is different. Removing the emissions of the CO and alka-

nes increases the concentration of OH. This is due to the reduction in the OH sink and the

lack of influence of these compounds on other aspects of the chemistry system. However,

removing the emissions of the alkenes, isoprene and aromatics has the opposite effect, de-

creasing the OH concentration. This is on the face of it surprising given the importance

of these compounds as OH sinks (Section 2.8.7). However, all of these species are able to

rapidly return radicals on their oxidation by OH. So even through their removal leads to a

substantial reduction in the OH sink, it leads to an even larger reduction in the OH sources.

Hence overall the OH concentration drops. This is most notable for the aromatics. These

are oxidized by OH to form dicarbonyl species that are highly photolabile. They readily

photolyse to produce more radicals, resulting in an amplification of radical production.

Thus removal of aromatics reduces radical production far more than it decreases the OH

sink, and so the OH concentration increases substantially when the aromatics are emitted.

From this analysis both isoprene and aromatics are important for the O3 concentration

in Beijing. Next, the influence of local (city level) versus regional (whole domain) isoprene

is explored and then the influence of the different aromatic species (benzene, toluene etc)
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on O3 production is assessed.

2.11.1 Local versus Regional Isoprene

Figure 2.29 shows the importance of isoprene emissions for O3 concentrations in Beijing.

This reflects the large emissions rate and the short tropospheric lifetime (1-2 hours) of

isoprene. The influence of biogenic species on O3 production is well established especially

in the SE United States (A. M. Fiore, Horowitz, et al., 2005; Yuzhong Zhang and Y.Wang,

2016; Schwantes et al., 2020), but their role in China is less well established (Xie et al.,

2008; Z. Mo et al., 2018).

One important question here is location of the isoprene emissions having the influence.

Is it the isoprene emitted within the city, or from the isoprene emitted in the regional forests

surrounding Beijing? This is difficult to answer definitely as we do not have observations

of the atmospheric composition in the surrounding area to assess the model performance

against. Local Beijing emissions of isoprene were increased to match the observations

dataset (Section 2.6) but those outside of the region were kept at their default MEGAN

values.

Figure 2.32 shows the impact of switching off the emission of "local isoprene" (defined

by the region shown in Figure 2.5) or all isoprene in the model. Switching off all isoprene

emissions leads to a reduction of 12% in themedian 4pmO3 concentration (see also Figure

2.29), whereas switching off only the local isoprene reduces the median concentration by

only 3%. Thus much of the influence of isoprene on O3 on Beijing isn’t local but on the

regional scale.
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Figure 2.32: Box and whisker plot of change in base O3 concentration with the removal
of all domain isoprene emissions compared to the removal of local (isoprene originating
from the Beijing urban area) emissions.

In Figure 2.33, a map of the mean 4 pm percentage change in O3 from eliminating all

isoprene emissions can be seen. The hot spots for O3 influence line up with urban centres.

This reflects that these are the regions where O3 is being made, as they are the regions with

high NO concentrations. Beijing itself displays the highest observed relative reduction in

the region (-12%). It is likely Beijing is most sensitive as emissions were scaled by 3.5

times over the city to match observations. As was seen in Figure 2.32 only a quarter of this

reduction was a result of local (inside the black box) emissions. As isoprene only has a

short lifetime (2 hours at 5 x 10−6 OHmolecules), the regional isoprene emissions must be

having an impact on Beijing O3 via both the formation of advectable species such as CH2O,

methacrolein and methyl vinyl ketone and in increased transport of O3 concentration into

the city. From a policy perspective it is unlikely that meaningful improvements to O3

concentration could be achieved via targeting Beijing’s foliage (such as growing alternative

species of trees). However, this might be desirable for other air quality reasons such as

reducing particulate matter and altering street-level wind dynamics.

114



Figure 2.33: Map of the change in mean 4 pm O3 concentration with the removal of iso-
prene emissions.

2.11.2 Influence of the individual aromatic species

The aromatic class of compounds provide the largest influence on the O3 concentrations

(Figure 2.29). However this class consists of six different compounds. In order to under-

stand further the impact of the different members of this class of species individual pertur-

bation studies are performed where the emissions of the individual aromatics are switched

off (Figure 2.34). Although in the model xylene was split into two species (o-xylene and

mp-xylene), all isomers are combined for the analysis.
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Figure 2.34: Box and whisker plot of change in base O3 concentration with the removal
of emissions from each aromatic species.

Switching off the benzene emissions has minimal effect on the O3 concentration. Its

relatively low concentration ( 0.5 ppbv see Figure 2.6) and its long atmospheric lifetime

( 10 days at 1x10−6 molecules cm−3 OH) results in it not having a particularly large influ-

ence on local O3.

Removing toluene, xylene and TMB emissions has a more profound impact on O3 with

mean concentrations reducing by ~3 and 6, 3%, respectively.

The xylenes have the most profound impact despite their concentrations ( 0.5 ppbv)

being similar to those of benzene. Their rate constant with OH is 20 times faster than the

rate constant between benzene and OH, resulting in them having a much more significant

influence on local O3.

Removal of trimethylbenzene (TMB) emissions reduced O3 by ~3%, comparable to

the change seen in toluene. However, as the chemistry implemented to represent TMB is

the same as that of mp-xylene there is increased uncertainty about this conclusion. Further

work is required to assess whether this methodology is suitable or whether specific reduced

TMB scheme are necessary to represent the chemistry of aromatics fully.
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The last aromatic species was the "other aromatic" group, which used ethylbenzene as

its surrogate. As this class did not have any direct measurements, the inventory used was

CEDS (Section 2.4.3) with no scaling. As with TMB, the xylene chemistry was used to

represent the oxidation chemistry of the other aromatics. Thus the influence of this class

of compounds is uncertain, due to its emissions, speciation and chemistry.

It is informative to look at the concentrations of these compounds calculated without

any scaling of the CEDS emissions. Figure 2.6 shows the diurnal mean concentrations of

these compounds with their default emissions. The concentration of the xylenes are very

much higher than those observed, with day time concentration around twice as high as

observed. Thus without the observations, it might be concluded that these species had an

even more considerable influence on O3 production than they have in reality. Further work

to resolve these larger aromatics and development of their chemistry is needed to identify

whether they are needed or not.

Given these simulations, approaches that target reduce xylene concentrations in Beijing

would appear to be the most useful at reducing the O3 concentration.
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2.12 Conclusions

In this chapter, the GEOS-Chem CTM was run nested at 0.25◦ x 0.3135◦ resolution over

at East China with tuned emissions to explore the sensitivity of the modelled O3 to NOx

and VOC emissions.

The tuning assumed that all of the model failures were due to shortcomings in emis-

sions. Failures resulting from the meteorology or chemistry were not directly explored.

Future work could involve fixing the boundary layer to observed values either from sur-

face lidar or via satellite. Scale factors on emissions for many species were substantially,

indicating the CEDS, Tzompa-Sosa, Xiao and MIX inventories do not represent Beijing

emissions well. This may have been that substantial changes occurred in the emissions

from Beijing between the year for which the inventory was developed (2010 for MIX and

2014 for CEDS) or that the information and assumptions going into the emissions inven-

tory was flawed. Additionally, the default GEOS-Chem emission diurnal profiles, required

a greater day to night transition to fit the observations. It is not clear why this would be

the case but may reflect Chinese working practices compare to the North American or

European ones used to develop the diurnal factors. However, it is likely that much of this

profile is related chemistry weakness within the model. After tuning, the primary species

were much close to the observations.

The model performance for the secondary species, was in general poor. Some of this

was due to the underestimate of HONO concentrations which is the dominant source of

OH in Beijing (Whalley et al., 2020). Thus the source of radicals was likely underesti-

mated by the model. There was some compensation from an overestimation of J(O1D)

(which would increase the primary O3 source of radicals) but in general it appeared that

the model’s radical sources were underestimated. This is evident in the model’s total radi-

cal concentration (OH+HO2+RO2) where the model grossly underestimates, most notably

for the RO2. The model’s balance between HO2 and RO2 whilst favouring RO2 was still

significantly different from observations. This likely reflects the model’s underestimate

of OH reactivity suggesting a missing source of reactive carbon in the model. However,

the model simulation of CH2O was reasonably close to that observed, which would sug-
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gest that any missing reactive carbon species was not having a significant impact on the

smaller carbon species. The model’s ability to simulate the balance between NO and NO2

was also poor with little explanation of why. The observations suggest a lower NO con-

centration but a higher peroxy radical concentration. Although it seem unlikely that the

high peroxy radical concentration is the cause, a mechanism that would reduce the NO

concentration would allow for a higher peroxy radical concentration without causing the

O3 concentration to rise too high.

These failings do not appear to be restricted to the GEOS-Chem model. Many sim-

ilar failings were found by Whalley et al., (2020) using a constrained box model with a

very detailed chemistry. Although not subject to some failings due to the constraints (un-

derestimation of HONO, over estimation of NO, overestimation of J(O1D)), the problems

associated with underestimating reactivity and RO2 are still present. It would be surpris-

ing if other models, whether box or chemical transport would show a significantly better

performance that shown by the model here. Other models may have similar problems but

due to a lack of evaluation they may not be so evident.

Given these problems the O3 simulation appears to be surprisingly good. This likely

reflects compensating errors: an underestimate of RO2 together with an overestimate of

NO, an underestimate of the HONO source of radicals with an overestimate of J(O1D) etc.

Additionally it shows O3 is relatively insensitive to the fine detail once the main drivers

are reproduced well. However, the performance is likely as good as could be expected give

our understanding of the chemistry.

The modelled O3’s sensitivity to NOx and VOC emissions was explored and the model

was found to be in a VOC limited regime. There was some day to day variability, but in

general, the optimal way of reducing O3 in Beijing was to reduce VOC emissions. Reduc-

tions in NOx would likely increase mean O3 concentrations, but peak O3 would likely to

increase by less.

The most significant classes of species for O3 production were isoprene and aromatics.

They both lead to substantial increases in OH, HO2+RO2 and O3 concentrations. Isoprene

emissions from outside of the city was found to be a significant source of O3 within the

119



city, and xylenes were found to be the most important class of aromatics in generating O3.

With O3’s relationship between VOC and NOx emissions explored in this chapter, the

impact of HO2 uptake on O3 concentration will be investigated in the next.
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Chapter 3

The affect of hydroperoxyl radical

uptake onto aerosols for ozone

concentrations over Beijing
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3.1 Introduction

In Chapter 2, the focus was on how NOx and VOCs influence the production of O3 in

Beijing. This kind of approach dates back to the early analysis of O3 in cities such as Los

Angeles (Haagensmit, 1952; Pratapas and Calcagni, 1983; Seinfeld, 1989). More recently

the impact of particulate matter on O3 production has been discussed. For many years O3

and particulate matter pollution were considered to be separate problems. However more

recently it has become evident that they are to some extent interwoven (Mao, Fan, et al.,

2013; S. E. Bauer et al., 2004; Jacob, 2000).

Historically the impact of particulates on air pollution has been thought tomainly occur

through the hydrolysis of N2O5 on the surface of particulates during the night (Riemer et

al., 2003; W. L. Chang et al., 2016). However, more recently it has become evident that

uptake of HO2 onto aerosol can have a significant impact as well (Thornton and Abbatt,

2005). By providing a sink for ROx radicals this mechanism can reduce the amount of

O3 that an air mass can produce. It thus competes with the other sinks for radicals, the

OH+NO2 reaction and the self reaction of ROx species (HO2+HO2, RO2+HO2, RO2+RO2

etc.)

Beijing and the surrounding area has been a test bed for this more recent analysis.

However, some studies (K. Li et al., 2019; Xu et al., 2012; Lou, H. Liao, and B. Zhu, 2014;

J. Li et al., 2018) have claimed that the impact on particulate matter on O3 is significant,

whereas others claim little of minimal impact (Z. F. Tan, Hofzumahaus, et al., 2020).

The uptake rate of a molecule to a surface can be approximated by the first order loss

rate coefficient given by Equation 3.1 (Schwartz, 1984).

k = A

(
r

Dg

+
4

γω

)−1
(Eq. 3.1)

Where r (cm) is the aerosol particle effective radius, Dg (cm2 s−1 ) is the gas phase diffu-

sion coefficient, γ (unitless) is the reaction probability (also often referred to as the reactive

uptake coefficient), ω (cm s−1) is the mean molecule speed (calculated as (8kT/πm)1/2),

and A is the aerosol surface area concentration (cm2 cm −3). Under most situations the
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impact of diffusion is small and so the dominant terms in the equations are the surface area

concentration (A) and the reactive uptake coefficient (γ).

There is significant uncertainty on the value of γ. The literature contains values ranging

from <0.002 (Taketani, Kanaya, and H. Akimoto, 2008) to 0.4 (Taketani, Kanaya, Pocha-

nart, et al., 2012). Studies have found that particle radius (J. Guo et al., 2019), humidity

(Lakey et al., 2015), temperature (Thornton and Abbatt, 2005) and composition (notably

the copper content (J. T. Lin and McElroy, 2010)) could all play a role in governing the γ

value.

Particulate surface area concentration (A) also plays an important role for determining

the impact of heterogeneous processes. Model performance for the simulation of aerosol

often focuses onmass below a critical threshold (typically 1, 2.5 or 10µm) due to the health

impacts (Shiraiwa et al., 2017), or on number concentration of particulates greater than

critical sizes due their importance for cloud formation (Kulmala et al., 2013). However,

the performance of models in the calculation of aerosol surface area is not often reported.

In this chapter the impact of HO2 uptake onto the surface of aerosols, on O3 concentrations

is explored within a model in the context of the APHH campaign described in the Chapter

2.
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3.2 The significance of HO2 uptake on O3

The model (after tuning) described and evaluated in Chapter 2 is now used to explore

the sensitivity of O3 concentrations to HO2 uptake The default HO2 uptake coefficient

(γ) used in GEOS-Chem is 0.2 (Mao, Fan, et al., 2013). This falls in the middle of the

large range of experimentally derived values (0.002-0.4). Laboratory measurements of the

uptake coefficient made with Beijing aerosol (Taketani, Kanaya, Pochanart, et al., 2012)

gives a value in the range 0.09 – 0.40. The model value is in that range.

It is plausible that other peroxy radicals such as the methyl peroxy radical could also

undergo reactive uptake. However, there are minimal laboratory measurements of this

reaction, and thus any analysis would be highly speculative. Further, HO2 is the simplest

peroxy radical with the lowest molecular weight resulting in the highest collision rate.

Thus organic peroxy radicals with a reduced collision rate coupled with an expected lower

Henry’s law coefficient are likely to have a small relative impact on radical loss.

A summary of the model performance for aerosol surface area along with aerosol mass

and relative humidity is shown in Figure 3.1

Figure 3.1: Summary of the model (red) aerosol mass and surface area and relative humid-
ity mean diurnal performance compared to observation (black). One standard deviation is
displayed by the shaded area.

The model underestimates the surface area by approximately 12% averaged across

the day but has a day time (8 am to 8 pm) underestimation of 24%. The cause of this

underestimate is unclear, and there is a lack of published aerosol surface area performance

over China in chemical transport models. Conversely, the aerosol mass for the measured

species was overestimated by 32%which is in agreement with published values for GEOS-

Chem for the same region and time period (Dang and H. Liao, 2019). The model may be

overestimating the aerosol radius as was previously found in a study on aerosol optical
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depth bias (Latimer and R. V. Martin, 2019). Relative humidity was not the cause of a

radius over prediction as the model slightly (4%) underestimated the relative humidity

during the campaign. The model uses a single global value for each aerosol type. If the

radius was too small for a specific species this could account for the problem.

As well as the biases in the aerosol sink for HO2, there are significant model biases in

the other radical sinks (OH+NO2, ROx+ROx) which need to be considered. A summary

of the model radical and NO2 performance is shown in Figure 3.2

Figure 3.2: Summary of model (red) radical andNO2 mean diurnal performance compared
to observation (black). One standard deviation is displayed by the shaded area.

As discussed in Section 2.8, the model’s ability in simulating the other components of

the ROx radicals sinks is problematic. For the OH+NO2 route, the model underestimates

both the OH (22% at noon) and NO2 (14% at noon) concentration during the daytime.

For the ROx+ROx route, the model slightly underestimates HO2 (5% at noon) but signif-

icantly underestimates the RO2 (72% at noon). For the radical uptake route the model

underestimates surface area (12%) coupled with the slight 5% HO2 underestimate.

Overall there are significant biases in the performance of themodel for the ROx species,

which requires caution when considering the fidelity of the modelled O3 response to HO2

uptake. However, there is also utility in exploring the model sensitivity to this parameter

and then returning to these uncertainties once an understanding of the model sensitivity

has been achieved.

Severalmethods could provide an assessment of the impact of HO2 uptake onto aerosols.

However, the simplest is to multiply the reactive uptake coefficient used in the model by
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a constant. Assuming that the diffusive component of Equation 3.1 is small, this is equiv-

alent to increasing the aerosol surface area by the same fraction. Three additional model

simulations are therefore performed, which multiply the γ value used by 2, 0.5 and 0.

Figure 3.3 shows the time series of the change in O3 concentration from multiplying

the HO2 uptake coefficient by 2, 0.5 and 0.0.

Figure 3.3: Hourly averaged (mean) time series of O3 change resulting from different HO2

uptake coefficients relative to the the base model with a γ of 0.2

Switching off the uptake leads to an increase in the O3, with an increase of 13% (83

ppbv to 94 ppbv) in the mean 4 pm O3. Doubling the HO2 uptake reduces 4 pm O3 con-

centration by around 8% (83 ppbv to 76 ppbv), whereas halving it increases O3 by +5.5%

(83 ppb to 88). As with reducing NO and VOC emissions (Section 2.9), there is significant

day to day variation, with some days showing only a 1% change in O3 while the highest

response days are >10%.

The increase in O3 for the removal of HO2 uptake is a significant change to the com-

position. Switching off isoprene emissions in Section 2.11 led to a 11% reduction in the

mean 4pm O3 compared to the 13% increase found from removing HO2 uptake.

It is obvious that in the model the uptake of HO2 onto aerosol is an important processes

for controlling the concentration of O3 in Beijing during the 2017 field campaign. This

tends to confirm the work of K. Li et al., 2019, but seems to contrast with the work of Z. F.

Tan, Hofzumahaus, et al., 2020. In the next section the balance of radical loss processes
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is assessed and an effort is made to try and rationalise the different conclusions made by

these papers about the significance of this process.
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3.3 Radical loss pathways

As discussed in Chapters 1 and 2, the dominant radical removal pathway dictates the photo-

chemical regime of an air mass and so the strategy for controlling its O3. Conventionally,

an air mass is split into either a VOC limited regime (if the NO2 + OH pathway dominates

radical loss), or a NOx limited regime (if ROx + ROx dominates). However, if the uptake of

HO2 onto aerosol plays an important role in determining the radical termination perhaps

different classifications should be used.

The size of each radical loss pathway can be calculated in themodel and from the obser-

vations based on the concentration of OH, HO2, RO2, and NO2 as well as the temperature,

relative humidity, aerosol surface area and radius.

The equations to calculate each pathway were taken from GEOS-Chem (JPL recom-

mended). For calculating the HO2 uptake a γ value of 0.2 was used for both model and

observation. Methyl peroxy radical (MO2) was used as a surrogate for RO2. The use of

MO2 as a surrogate for all RO2 could lead to a slight overestimation of RO2 reaction rates

but should be adequate for this analysis. Thus ROx + ROx was made up of:

RO2 + HO2 (R 3.23)

RO2 + RO2 (R 3.24)

OH + HO2 (R 3.25)

HO2 + HO2 (R 3.26)

OH + OH (R 3.27)

Figure 3.4 shows the time series of the rate of radical loss for each hour of the field

campaign. Due to gaps in the observation data, not every day of the campaign can be

calculated for the observations. There is a strong diurnal cycle reflecting that for short

lived species such as these, the sink term needs to balance the source term, which is pre-

dominantly photo-chemical. The model is biased low on radical removal throughout the

campaign reflective for the underestimation in NO2, OH andRO2, and of the low calculated
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contractions of HONO (Section 2.8)

Figure 3.4: Hourly averaged (mean) time series of the modelled (red) and observed (black)
radical loss. Where total radical loss is (NO2+OH) + (HO2 uptake) + (ROx+ROx).

To simplify the analysis, the noon time rates for each day are extracted and expressed

as a fraction of the total loss rate For each day, there are three potential components

(ROx+ROx, HO2 uptake, and NO2 + OH) which add together to give the total loss rate.

These can be plotted on a ternary plot (Figure 3.5) which represents the fraction of the

noon time radical loss which passes through each of the 3 radical loss routes. The days

which could not have the observed radical loss calculated due to the missing data have

been included in the model plot as blue dots.
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Figure 3.5: Ternary plots representing the relative contribution of each radical loss path-
way to the total radical loss for model and observation. An air mass with 100% of loss via
ROx+ROx would lie in the top corner, lower left corer would be all HO2 uptake, and lower
right all NO2 + OH. Red dot shows the campaign mean location

Despite the issues with the model’s ability to simulate the OH, HO2 and RO2 radi-

cals, the mean balance between the sink processes (red dot) is in a very similar location

to that found for the observations. On average the NO2+OH is dominant sink process

with a ratio of 0.81:0.095:0.095 (OH+NO2:ROx+ROx:HO2 uptake) in the observation and

0.83:0.11:0.6 in the model mean. Some day to day variability can be seen with points

spreading out quite far from the mean. In general this spread in both the observed and

modelled is from the NO2+OH corner towards the ROx+ROx corner.

In order to explore this more fully the model simulation of the campaign is repeated

multiplying the anthropogenic NOx emissions by 1, 0.75 and 0.56 and independently mul-

tiplying the HO2 uptake coefficient by 0.55, 1.00 and 1.80 (the equivalent to changing

the aerosol surface area), to give a total of 9 simulations. Figure 3.6 shows impact of

these changes on the radical loss pathways in the ternary plots. The middle-left panel,

highlighted in red, is the same as the model panel in Figure 3.5, with the campaign mean

position indicated by the red dot. For each plot the red dot indicates the mean split in the

radical sinks for the campaign with the line leading from that point to the mean point in

the base case simulation.
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Figure 3.6: Ternary plots of the relative contribution of each radical loss pathway with
changing NO emissions and HO2 uptake. Red dot indicates the campaign mean, and the
red line identifies the change in mean location relative to the base model mean.

Decreasing the NO emissions (moving from the base simulation rightwards) leads to

the points moving upwards towards the ROx+ROx (top) corner of the diagram with a ten-

dency to also increase the importance of the heterogeneous uptake. With reduced NO

emissions, HO2 and RO2 concentrations increase. The loss is linear with the radical con-

centration for the heterogeneous uptake, but is the square for the self reaction. Thus as

NO emissions drop ROx + ROx increases faster than the HO2 uptake so much of the travel

(indicated by the red line) under reduced NO emissions is thus from the NO2+OH corner

to the ROx+ROx corner, rather than from the NO2+OH corner to the HO2 uptake corner.

Changes to the uptake coefficient (moving to the upper and lower row of the plot) in

the model is equivalent to changing the surface area. For the default NO emissions (the

left most 3 plots), the changes are relatively small compared to the changes from changing

the NOx emissions. At lower NOx concentrations, the change is larger. Under the standard

emissions conditions NO2+OH dominates the sink. Changes in the uptake of HO2 will not

have a significant overall effect on this. However, as NO emissions reduced the dominance
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ofNO2+OHwill become less and changes inHO2 uptake can have an impact on the balance

of radical loss.

From the results in this section, it can be seen that HO2 uptake can be an important

radical loss pathway, particularly when NO emissions are reduced from their current level.

The sensitivity of the model to heterogeneous chemistry thus depends upon the NOx con-

centration. To explore this further a large number of model simulations are performed to

explore the relationship between changes in NO emissions and changes in the uptake of

HO2.
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3.4 NOx / HO2 Uptake isopleths

In Chapter 2, O3 isopleths were used to investigate the effect of changes in VOC and NO

emissions on O3 concentrations. These are a traditional tool used to understand the appro-

priate photochemical regime for deciding policy for reducing O3 concentrations. However,

it is clear that changes in aerosol surface area can have an influence on O3 production. A

new way of exploring the photochemical environment is needed to be able to explore O3

production taking HO2 uptake into account. In this section O3 isopleths will be produced

which vary HO2 uptake instead of varying the VOC emissions

The method for generating these isopleth plots is the same as described in Section 2.10.

The GEOS-Chem model was used to construct O3 isopleths for Beijing by varying the NO

(anthropogenic only) and reactive uptake coefficient (γ) independently. The scaling was

symmetric in log space with nine logarithmically distributed steps between 0.1 and 10

(0.10, 0.18, 0.32, 0.56, 1.0, 1.8, 3.2, 5.6, 10.0) for both NO and γ. This "coarse grid"

covers a broad range of emission scaling with a focus on chemical understanding. A finer

grid with nine logarithmically distributed steps between 0.32 and 3.2 (0.32, 0.42, 0.56,

0.75, 1., 1.33, 1.78, 2.37, 3.2) was nested inside the coarse grid to offer greater chemical

resolution over the policy relevant range. The resulting isopleths are constructed from the

137 model runs.

Figure 3.7 shows the mean modelled 4 pm O3 as a function of the scaled HO2 up-

take coefficient (equivalent to scaling the aerosol surface area concentration) and the NO

emission. As with the NO-VOC isopleth (see Figure 2.23) at very high NO emissions (top

of the graph) O3 concentration are low due to NO titrating away O3. As NO emissions

are decreased, this titration effect is reduced, and as the radical concentrations increase,

due to lower radical loss from OH+NO2, the O3 concentration increases. This is a typical

response in a VOC limited regime. As NO emissions reduce further they reach a peak

and then drop, as the NO needed to make O3 reduces faster than the radical concentration

increases. This is typical of the NOx limited regime.
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Figure 3.7: Averaged (mean) modelled 4 pm O3 concentration isopleth for the duration
of the campaign. Contours show O3 concentrations with changing NO emissions (x-axis)
and HO2 uptake (y-axis). Red dot indicates location of the base (unscaled) run. The red
lines split the there HO2 uptake sensitivity regions.

Changing the HO2 uptake (akin to changing the aerosol surface area), modulates this

signal. At all NO emissions, there are higher O3 concentrations at lower value of uptake,

and lower O3 concentrations at higher uptake. There is a small modulation of the posi-

tion of peak O3 at different values of HO2 uptake, with peak O3 occurring at lower NO

emissions, when HO2 uptake increases.

The sensitivity of the model to changes in the HO2 uptake (aerosol surface area) can

be better seen in Figure 3.8. In the Figure, the axe are the same as Figure 3.7 and shows

the change in O3 for a given 20% change in HO2 uptake. The results are averaged over

bins of a 20% change in NO emissions.
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Figure 3.8: Campaign average modelled (mean) 4 pm O3 sensitivity to a 20% change in
HO2 uptake averaged (mean) over 20% changes inNO emission. Red dot indicates location
of the base (unscaled) run.

Looking at the O3 sensitivity in this way there are three regions of the graph:

• High NOx, insensitive region at high NO emissions, where the model shows little

sensitivity and the O3 isolines in Figure 3.7 are horizontal.

• Uptake Sensitive region in the middle, where changing the uptake leads to changes

in the O3, and the isolines run vertically.

• Low NOx, insensitive region towards the bottom left of the graph, where the model

become less sensitive to uptake and the isolines in Figure 3.7 again run horizontally.

In order to explain the processes controlling the radicals in these regions, isopleths of

radical concentration are drawn up. The 4pm daily O3 (Figure 3.7) is essentially an inte-

grated quantity reflecting the total daily radical chemistry. However, the radical chemistry

is most active around solar noon and so these radical isopleths are drawn up for the average

12 pm to 1 pm period.
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Figure 3.9 shows the mean noontime ROx (=RO2+HO2+OH) concentration isopleth.

At high NO emissions, ROx concentrations are low as O3 the concentration is low, leading

to low production of radicals. At moderate NO emissions, ROx concentrations increase

but show little sensitivity to HO2 uptake (relatively horizontal isolines). In this situation

most of the radical (ROx) loss is due to the NO2+OH reaction. Changing HO2 uptake

would result in only small changes in the total ROx loss and so there is little sensitivity to

HO2 uptake. At low NO emissions there is significant sensitivity to HO2 uptake (vertical

isolines). In this regime there is a balance between HO2 uptake and ROx+ROx reactions

as a radical sink and so there is sensitivity to HO2 uptake. At very low values of uptake

the isopleths are relatively far apart in the horizontal, but their spacing becomes closer to

the middle, with them becoming further spaced out towards the higher uptake rates. This

reflects the change in the sink processes. At low values of uptake, RO2+RO2 dominates,

and an increase in the uptake rate would have only a small impact on the over all rate

of loss of radicals. At moderate uptakes, the rate of RO2+RO2 and the HO2 uptake are

balanced. Increasing the HO2 uptake under these conditions leads to a rapid change in

ROx concentrations. As HO2 uptake increases yet further the lines space out once more.

This reflects the balance between HO2 and RO2 in making up ROx. As the HO2 uptake

increases the HO2 concentration drops and becomes an increasingly small fraction of ROx.

Thus the uptake becomes less and less efficient in moderating ROx concentration at higher

uptake rates.
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Figure 3.9: Averaged (mean) modelled 12 pm ROx ([OH] + [HO2] + [RO2]) concentra-
tion isopleth for the duration of the campaign. Contours show ROx concentrations with
changing NO emissions (x-axis) and HO2 uptake (y-axis). Red dot indicates location of
the base (unscaled) run.

This now explains the 3 regions shown in Figure 3.7. In the Aerosol Insensitive High-

NOx regime, HO2 uptake is not an important sink for radicals compared to the NO2+OH

route and so the atmosphere is insensitive to changes in uptake rate. In the Aerosol Insen-

sitive Low-NOx regime, HO2 uptake is again not an important sink for radicals compared

to the ROx+ROx sink, and so the atmosphere in not sensitive to aerosol uptake. Between

these two regions, HO2 uptake can effectively compete with the other sinks to remove

radicals and so the model shows sensitivity to the uptake.

Figure 3.8 shows peak sensitivity occurs at roughly doubling of the base HO2 uptake

coefficient or twice the aerosol surface area and around 80% of the base model NO emis-

sions. At uptake rates faster than that, sensitivity decreases again. This reflects the chang-

ing balance of HO2 and RO2. As uptake rates increases the HO2 is removed by aerosol but

the RO2 is not. Ultimately a change in the uptake has little impact on O3 production as all

of the HO2 has been removed. After a point the O3 becomes less and less sensitive to HO2
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uptake, as more and more of the total peroxy radical pool is made up of organic radicals.

Given this new understanding, attention is turned to trying to understand the different

conclusions that studies have reached about the importance of HO2 uptake.
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3.5 Radical loss isopleths

An alternative way of visualising this changing makeup of the radical sink in the model

is to look at the ratio between the different radical sink mechanisms (HO2 uptake, ROx

self reaction and NO2+OH) occurring at the different emissions and HO2 uptake condi-

tions run in the model. Figure 3.10 shows the mean noon time ratio between these rates

with blue representing the fraction of HO2 uptake, green the fraction of ROx self reaction

and red the fraction of the NO2+OH reaction. Dark red shows regions where NO2+OH

dominates, dark green where ROx+ROx dominates, and dark blue where uptake of HO2

dominates. The yellow regions represents a balance between ROx self reaction and the

NO2+OH reaction, magenta a balance between NO2+OH and HO2 uptake, and cyan rep-

resents a balance between ROx self reaction and HO2 uptake. Also plotted is the campaign

4pm mean O3 isopleths. The average base case model condition is indicated by the circle

on the plot.

139



Figure 3.10: The colour coded dominant 12 pm campaign average (mean) radical loss
pathway for a given scale factor on NO emission and HO2 uptake, where red is NO2+OH,
blue is HO2 uptake and green is ROx+ROx. Overlayed is the averaged modelled (mean) 4
pmO3 concentration isopleth for the duration of the campaign. The roundmarker indicates
the base run, while the triangle and cross indicate the calculated location of the observation
and filtered (for days for which there are observations) model respectively.

Given the observations made during the campaign, it is possible to derive a simi-

lar observed campaign noon-time average split between the radical loss pathways from

NO2+OH, HO2 uptake and ROx self reaction. A degree of approximation is necessary

for calculating the ROx self reaction rate. It consists of the reactions, HO2+HO2, HO2+

RO2, RO2+RO2 and HO2+OH. There is some degree of variation in the HO2+RO2 and

RO2+RO2 rate constants with RO2, so the methyl peroxy rate constant is used for simplic-

ity. The location of that ratio between NO2+OH, HO2 uptake and ROx self reaction is then

found and marked on Figure 3.10 as the triangle.
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The observational position ( 0.83 : 0.11 : 0.06 for NO2+OH : HO2 uptake : ROx self

reaction) is close to the mean model position (0.78 : 0.14 : 0.08) it is closer still when

only model days that there are observational data are averaged (0.79 : 0.13 : 0.08).

3.5.1 Understanding other work

Another publication has discussed the sensitivity of O3 in Beijing to HO2 uptake. K. Li et

al., 2019 described how the O3 observed in Beijing increased by 8 ppbv between 2013 and

2017. They found that during the five year period in Beijing, the observed PM2.5 levels

dropped 41%, while NOx emissions dropped 23%. Their model was able to reproduce 4.8

ppbv of the observed change in O3, and they attributed 4 ppbv (83%) of the change to the

reduction in particulate matter reducing the HO2 uptake. The paper gave their radical loss

pathways positions ( 0.44 : 0.24 : 0.33 for NO2+OH : HO2 uptake : ROx self reaction)

for 2016, which could be then located on radical loss plot (Figure 3.11) as the star marker.

This is located in a different part of the diagram with higher importance for HO2 uptake

(in the magenta zone). It also falls into the most sensitive position in the NO emissions /

HO2 uptake sensitivity plot (Figure 3.12)
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Figure 3.11: The colour coded dominant 12 pm campaign average (mean) radical loss
pathway for a given scale factor on NO emission and HO2 uptake, where red is NO2+OH,
blue is HO2 uptake and green is ROx+ROx. Overlayed is the averaged modelled (mean) 4
pmO3 concentration isopleth for the duration of the campaign. The roundmarker indicates
the base run, while the square, star, plus indicate the calculated locations for the different
years described in K. Li et al., 2019.

As the total change in NOx emissions and surface area (assuming it surface area and

PM2.5 scale proportionally) are known, the assumption was made that the change hap-

pened linearly across the five years and the 2013 and 2017 points (square and plus markers

respectively) can be placed on the plot via deduced reckoning.

The lack of O3 sensitivity to a 23% NO reduction compared to the ~5% increase in

O3 observed in Section 2.9 when moving from 1.25 to 1 scale on NO emissions) can be

explained by their relative positions on the isopleth. The K. Li et al., 2019 study sat at the

top of the NO ridge in the transitional regimes. It can be seen in Figure 3.12 that from the
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2013 position (square marker) and moving down to a lower rate of NO emission the route

of travel would be along the O3 curve and result in minimal change. This is in agreement

with Section 2.10 that found minimal O3 sensitivity to NO emissions when sitting close

to the maximum O3 ridgeline.

The 2017 NO emissions should have been similar for both studies, and thus the differ-

ence in the photochemical regimes could be based on the resolution the models were run.

K. Li et al., 2019was run at a 0.5◦x 0.625◦resolution compared to 0.25◦x 0.3125◦resolution

used in this study. As shown in Section 2.6 the actual Beijing urban region only spans a

two by two box region at 0.25◦thus at 0.5◦higher biogenic VOC and lower NO emissions

boxes from the surrounding region could be combined with the urban grid boxes. This

would alter the NO:VOC ratio and could thus have a profound effect on the photochemical

regime.

K. Li et al., 2019 found that a 41% drop in the aerosol surface area in five years resulted

in a ~5.0% increase in O3 in Beijing. Looking at the O3 sensitivity plot (Fig 3.12) it can be

seen that for this study originating from an uptake position 40% higher than the base run

would have resulted in a ~3.2 ppb (4.00%) increase in O3. The difference in sensitivity to

changes in uptake appears to be a result of reduced NO2 + OH influence.

A 41% reduction in uptake applied to the predicted position of K. Li et al., 2019 for

2013 (square marker) would see an O3 increase of ~4.75%, close to the value calculated

in the study. Nonetheless looking at the predicted position of the observations (triangle

marker) coming from the position of 41% higher uptake would have resulted in ~2.4 ppb

more O3 (~3.0%). However, when coupled with the ~5% increase in O3 due to reduc-

tions in NO emissions, the total increase is ~8%. An 8% reduction is close to the 7%

meteorological normalised observed value (K. Li et al., 2019).
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Figure 3.12: Campaign average modelled (mean) 4 pm O3 sensitivity to a 20% change in
HO2 uptake averaged (mean) over 20% changes in NO emission. The markers identify the
positions located in Figures 3.10 and 3.11.
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3.6 Spatial variance in radical loss distribution

Figure 3.10 presented the radical loss pathways in term of the fractional loss fromNO2+OH

rate (in red), ROx+ROx self reactions (green) and HO2 uptake (blue) and expressed the

different fractional combinations by adding these colour representations together.

This analysis was performed for a single site, but it can be extended geographically

to explore the balance of sinks through the model domain. Figure 3.13 shows the mean

noontime radical loss pathways across the model domain during the campaign period.

The Beijing observational site (circle marker) is in a red, NO2 + OH dominated grid box.

Much of the industrialised region to its south, the North China Plain is in a similar regime,

as is the area around Shanghai. To its north are regions in green where radical-radical

reactions dominate the sink processes. The transition between these regions, indicated by

the orange-yellow boxes shows where ROx +ROx and NO2+OH are relatively balanced

and so is close to the O3 ridgeline discussed in Section 2.10.

Over the Bohai Bay to the east of Beijing and into theNorth of theYellow Sea, magenta,

pink and blue regimes can be seen. In these regions HO2 uptake is important. As NOx

and aerosol is exported away from the Beijing source region, the NOx concentration drops

faster than the aerosol concentration as it has a shorter lifetime in the atmosphere. This

results in the aerosol uptake of HO2 becoming increasingly important away from the source

region, and so the colours move from red to magenta to blue.

The colours on themap of Figure 3.13 are somewhatmuted or pastel-shaded, indicating

that the regimes may not be clear-cut with multiple sinks playing a role either due to day

to day variability or over multiple days. There are several grid cells which appear white

which indicates a three-way split between the different uptake routes.
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Figure 3.13: Map of East China colour coded with the dominant 12 pm campaign average
(mean) radical loss pathway, where red is NO2+OH, blue is HO2 uptake and green is
ROx+ROx. The black dot indicates the location of observation campaign.

From this analysis, it is apparent that there is significant spatial variability in the sink

of radicals over East China. Within the domain, there are days and areas in which all three

of the sink processes dominate. Remote regions are not necessarily dominated by radical-

radical reactions, as the uptake of HO2 onto aerosols may also play an important role. Two

days during the campaign that did not show display a clear NO2+OH dominance with will

now be examined.

In Figure 3.14 the noontime dominant loss pathway forMay 28th can be seen with wind

quivers overlayed. Here the Beijing site has shifted to a Yellow regime indicating both ROx

+ ROx and NO2 + OH are dominant. This is in agreement with the findings from Section

2.9 that the regime in Beijing can change between days. The inland green regions on the

28th are more vividly green than the mean plot indicating that they are more definitively

in the ROx + ROx dominated regime. Conversely, over the coastal regions, there is a shift

to a HO2 uptake (blue) regime.

Figure 3.15 shows the combined NH+
4 , SO

2−
4 and NO−3 aerosol surface area. A hot spot

can be seen over the Yellow sea. The prevailing winds from both polluted industrial region
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south-east of Beijing, as well as Shanghai, carry polluted wind parcels into the Yellow Sea

on the 28th. High humidity associated with coastal regions may also increase the surface

area of the aerosol.

Figure 3.14: Map of East China colour coded with the dominant May 28th 12 pm radical
loss pathway, where red is NO2+OH, blue is HO2 uptake and green is ROx+ROx. The
black dot indicates the location of observation campaign. Wind quivers indicate the wind
velocity for a given grid box.
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Figure 3.15: Map of modelled NH+
4 , SO

2−
4 and NO−3 aerosol surface area at noon on May

28th.

In Figure 3.16 the noontime dominant loss pathway for June 22nd can be seen. Here

the inland shift was towards HO2 uptake regime indicating an increase in particulate. The

wind quivers on this day indicate that prevailing winds carried polluted urban wind parcels

inland to the north west. A pink transitional regime replaces the boundary regions of the

NO2 + OH dominated areas that were yellow in the mean plot. Figure 3.17 shows the

accumulation of NH+
4 , SO

2−
4 and NO−3 aerosol north and west of Beijing. Conversely, the

coastal regions shift to a green regime as "clean" air from the Pacific Ocean is carried into

the region.
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Figure 3.16: Map of East China colour coded with the dominant June 22nd 12 pm radical
loss pathway, where red is NO2+OH, blue is HO2 uptake and green is ROx+ROx. The
black dot indicates the location of observation campaign. Wind quivers indicate the wind
velocity for a given grid box.

Figure 3.17: Map of modelled NH+
4 , SO

2−
4 and NO−3 aerosol surface area at noon on June

22nd.
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3.7 Conclusions

HO2 uptake onto the surface of aerosols has been known since the 1980s but its importance

for determining regional photochemical O3 production has not been recognised until more

recently.

This work has attempted to understand the role of HO2 uptake from the perspective of a

chemical transport model tuned to the conditions of a specific field campaign. Under those

conditions and with the model chemistry used, HO2 uptake is as important as isoprene

emissions for determining the mean O3 concentration.

Exploring the model sensitivity to HO2 uptake, through a series of over 130 model

simulations it is possible to define 3 new chemical regimes: Aerosol Insensitive (High

NOx), Aerosol Sensitive, Aerosol Insensitive (Low NOx) which give different conditions

for a change in aerosol surface area to impact O3 production.

These regimes are associated with the changing balance of the different radical sinks

in the model (HO2 uptake, NO2+OH, ROx+ROx). Exploring those regimes specially and

temporally shows significant variation across the North China region of model with grid

cells being in pretty much all combinations of sinks at some point during the campaign.

There are a number of policy conclusions from these simulations:

• Across a region the size of the model domain there is significant spatial variability

in radical sinks. This is likely to lead to spatial differences in the response of O3 to

policy decision.

• Continuing to decreasing NO emissions is likely to lead to increases in O3 concen-

tration in much of the domain, where NO2+OH dominates radical loss (red areas).

• Beijing itself is on the edge of of the NO2+OH dominated region and depending on

the wind direction can fall into a more ROx+ROx, or HO2 uptake influenced domain.

• Given the model’s difficulties in simulating the OH, RO2, HO2 and aerosol surface

area concentrations there are significant uncertainties about the model’s ability to

provide useful conclusions about likely future evolution of O3 in the city.
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Chapter 4

Using machine learning for ozone bias

correction
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4.1 Introduction

The following chapter is based on Ivatt and M. J. Evans, 2020. My contributions included

the development of the technique, analysis, all model runs and writing of the paper.

In the previous chapters (VOC vs NOx control, uptake to HO2 onto aerosols), model

failings resulting in O3 bias have been shown. The failure to reproduce the NO/NO2 ratio,

the RO2 concentration, the aerosol surface area and the photolysis rates are all examples of

areas that themodel prediction differs from reality, and so impacts the quality of the O3 pre-

diction. Process-based models such as GEOS-Chem use a quantitative understanding of

physical, chemical and biological processes to make predictions about the environmental

state. Given uncertainties in their initial conditions, input variables and parameterisations,

these models show various biases. Much of the research into atmospheric chemistry re-

volves around reducing those biases due to uncertainties in the emissions of compounds

into the atmosphere (Rypdal and Winiwarter, 2001), the chemistry of these compounds

(Newsome and M. Evans, 2017) and meteorology (Schuh et al., 2019).

Understanding and reducing these biases is a critical scientific activity. However, the

ability to improve these predictions without having to improve the model at a process

level also has value. For example, air quality forecasting, and the quantification of the

impacts air pollutants on human and ecosystem health, would both benefit from improved

simulations, even without process-level improvements. Data assimilation techniques (P.

Bauer, Thorpe, and Brunet, 2015) are used to incorporate observations intometeorological

forecasts and some air quality forecasts (Bocquet et al., 2015). However, other tools and

techniques to improve model predictions would be useful.

One of these tools would be a "bias predictor" (where the bias is used here to mean the

ratio between the model and the measured quantity) (Harlass, Latif, and W. Park, 2015).

This would identify the modelled bias from observations and then define it as a function

of some other parameters, whether modelled or observed, allowing the model’s bias to be

predicted and thus removed. This particular has value when model performance is pri-

oritized over the explicit understanding of how the model works, such as operational air

quality models. While the prediction itself may have less value to the scientific commu-
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nity, how the algorithm calculated the value might have worth. By investigating how the

algorithm arrived at a prediction could shed light on so-called "known unknowns" where

analysis could help identify patterns and correlations in the model failure, which could aid

future process-based development.

In this chapter, the development of a bias predictor for O3 within the GEOS-Chem

model, based on a machine learning approach is explored. Once defined, the bias predictor

can then be applied more widely (in space or time) to model output to remove the bias,

bringing the model closer to the observations. The theory behind machine learning (Sect.

4.2) and the GEOS-Chem configuration used as the base model (Sect. 4.3) are discussed

first. The observations of O3 from four observational networks (Sect. 4.4) and the method

(Sect. 4.5) to produce bias predicting algorithm are then discussed. The performance

of the bias-corrected model is compared to testing data in Sect. 4.7. A more general

evaluation of the performance of bias correction compared to known global biases within

GEOS-Chem is described in Sect. 4.8). The predictions resilience to a reduction in the

number of training locations and duration of training data is discussed in Sections 4.8.1 and

4.9 respectively. Finally, an alternative method of prediction is considered (Sect. 4.10),

and the future potential of such amethodology for air quality forecasting is discussed (Sect.

4.11).
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4.2 Machine learning

Machine learning (specifically supervised machine learning) is a general term for any tech-

nique in which a computer is used to optimise an algorithm to make predictions based on

a training dataset (Ghahramani, 2015). With increases in computational power, several

techniques have risen to prominence. Two of particular interest for "large" (>10 million

samples) datasets applications are neural nets and decision trees (Maxwell, Warner, and

Fang, 2018).

What makes these techniques particularly powerful over traditional regression tech-

niques (such as linear regression) is their ability to process large multivariate datasets

(Ballabio, Grisoni, and Todeschini, 2018) while also capturing non-linear relationships

(Gardner and Dorling, 2000). Non-linear relationships are particularly important for un-

derstanding atmospheric components (such as O3), where changes in emissions often elicit

a non-linear response (Cohan et al., 2005).

A "neural net" is a technique whereby "hidden" layers of nodes connect input variables

(features) to an output prediction, mimicking neurons in the brain (Acharya et al., 2018).

Understanding and developing these hidden layers is still very much a continuing science.

During early experimentation, it was found that substantial and unpredictable changes re-

sulted from alterations to the architecture of the hidden layers (Gardner andDorling, 1998).

Further to this, the hidden layers can be almost impossible to interpret, notably when they

are emulating a complex system. Thus the use of neural nets was found to be problematic

especially for science (Cynthia, 2019) and alternative methods were explored.

A "decision tree" attempts to make a prediction based on a set of training data, by

breaking down the data into smaller subsets based on simple decisions based on the input

variables: if the value of an input variable is greater than a specified value. These splits

are known as nodes. The ability to readily visualise these nodes provides decision trees

with their interpretability (Kingsford and Salzberg, 2008). The data is then further broken

down with more and more decision nodes until a terminal node (leaf) is reached. Each

leaf contains a prediction for the variable, which is generally the mean of the samples that

took that route down the tree. An simple example of a decision tree can be seen in Figure
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4.1.

Figure 4.1: An example decision tree

The choice and value of hyperparameters is an important aspect when building de-

cision trees. These hyperparameters define the tree structure. A tree that is too shallow

(not enough splits) will miss fundamental relationships in the training data and result in a

"weak" or poor predictor. Conversely making the tree too deep will result in "overfitting"

and not achieve good generalisation of the training data (Jiang et al., 2019).

Identifying optimum hyperparameters is achieved via cross-validation, whereby the

training data is split into subsets (folds). A tree is then trained on all but one fold and

tested on the last remaining fold. This process is repeated for each fold, and the perfor-

mance metric (e.g. mean squared error) of each tree is averaged. Cross-validation is a

computationally burdensome task, with the process taking n-folds times longer to train

than the final tree, but it helps to define the appropriate values of the hyperparameter. As

such, this process cannot be carried out for every combination of hyperparameters, partic-

ularly on large datasets. Carefully chosen hyperparameters are vital with consideration of

how they will interact with a particular training dataset (Bengio, 2000). Incorrect use of

hyperparameters can bring about overfitting and under generalisation of the training data.

Decision trees can be used for "classification" (predicting a variable which falls into

two or more categories) or "regression" problems (predicting a variable which can have

any value). For developing a bias predictor, it is this regression configuration that will be
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used in this study.

The main drawback with decision trees is their tendency to overfit (Owaida et al.,

2017). It does not take too many splits to reach a point where only a minimal number

of training samples contributed to each leaf. The prediction ends up too closely reflect-

ing the quirks of the training dataset, rather than the underlying properties of the training

dataset. An improved approach is to use an ensemble of trees known as a decision "forest."

In a decision "forest", a collection of multiple different deep trees can be trained, with

each tree being trained on unique subsets of the training data. The predictions of all the

trees are then averaged to produce a final prediction. This technique is referred to as a

"random forest" (Breiman, 2001). While this is a capable machine learning method, it

has now been overtaken by what is known as a "gradient boosted" decision tree ensemble

approach.

The specific machine learning technique used in this study was the XGBoost python

package implementation of gradient boosted regression (T. Chen and Guestrin, 2016).

This ensemble method works by using shallow trees to minimise over-fitting and then

relying on a large number of trees to gain the complexity required. The real power of

this methodology lies in how the trees are trained. Each tree is trained sequentially on

the residuals of the previous tree, meaning that later trees can focus on more extreme and

unusual samples (Frery et al., 2017). The algorithm has a relatively quick training time

allowing for efficient cross-validation. Lastly, the technique is highly scalable, meaning

tests can be run on small subsets of data before increasing to much larger training datasets

(Torlay et al., 2017).

The XGBoost algorithm will be used to predict the O3 bias in the GEOS-Chem chem-

ical transport model, the configuration of which will now be described.
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4.3 GEOS-Chem

GEOS-Chem Version V11-01 (Bey, Jacob, et al., 2001) was used for the analysis. In this

proof of concept work, the model was run at a coarse resolution of 4o x 5o for computa-

tional expediency, using MERRA2 meteorology from the NASA Global Modelling and

Assimilation Office (https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/). The model con-

sisted of 47 vertical levels extending from the surface to approximately 80 km in altitude.

The model had the "tropchem" chemistry configuration which consists of 68 chemical

species and 448 reactions with a linearized version in the stratosphere (Eastham, Weisen-

stein, and Barrett, 2014). The emission inventories used were EDGAR (Crippa et al.,

2018) and RETRO (L. Hu, D. B. Millet, et al., 2015) for global anthropogenic emissions,

which were overwritten by regional inventories where available: NEI (USA) (Travis et al.,

2016), CAC (Canada) (Donkelaar et al., 2008), BRAVO (Mexico) (Kuhns, Knipping, and

J. M. Vukovich, 2005), EMEP (Europe) (Donkelaar et al., 2008) and MIX (East Asia) (M.

Li, Q. Zhang, et al., 2017)). GFED4 (Giglio, Randerson, and Werf, 2013) and MEGAN

(A. B. Guenther et al., 2012) were used for biomass burning and biogenic emissions re-

spectively. Details of the other emissions used and other details of the model can be found

online

(http://wiki.seas.harvard.edu/geos-chem/index.php/HEMCO_data_directories).

The model was run from January 1st 2010 to December 31st 2017 outputting the local

model state (the output variables are discussed in Section 4.5) for each grid box for which

observational O3 data was available (the observation dataset is discussed in Section 4.4).

Additionally, between January 1st 2016 and December 31st 2016, the model output hourly

local state data for all grid boxes (used for global analysis Section 4.8).
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4.4 Observations

In order to perform well, an algorithm must be built upon a clean, representative and well-

distributed dataset. Cleaning in data science terms means removing missing and corrupt

data as well as performing processes to homogenise the data such as time averaging.

For this study, a database of O3 observations from 1st of January 2010 to the 31st of

December 2017 was created. This dataset consisted of ground observations, measure-

ment from balloons (sondes) and measurements from the NASA "ATom" campaign. The

database consisted of 65,805,112 data points, the coverage at 4o x 5o resolution is shown

in Figure 4.2. Each set of observations will now be explained.

Figure 4.2: Locations of "meta" observations (averaged over model 4◦x5◦ grid boxes) from
the surface (EPA, EMEP and GAW in red), the ozone-sonde network (blue) and the ATom
flights (Green).

4.4.1 Surface Data

Surface O3 observations were compiled from an number of air quality and atmospheric

composition monitoring networks: the European Monitoring and Evaluation Program

(EMEP) (www.emep.int), the United States Environmental Protection Agency (EPA)

(https://www.epa.gov/outdoor-air-quality-data) and the Global Atmospheric Watch
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(GAW) (https://public.wmo.int/) observation networks. Due to the coarse spatial resolu-

tion of the model (4o x 5o), sites flagged as "urban" were removed. Urban measurements

are often made in regions of steep concentration gradients which can only be captured in

higher resolution models. Producing a useful bias correction for a coarse model for these

conditions would be difficult as there would be little information to base the bias correc-

tion on. Similarly, all mountain sites were removed due to the difficulty in representing

the complex topography typical of mountain locations within the large grid boxes. In this

study, mountain sites were defined as ground sites at pressure lower than 850 hPa.

Where multiple observations occurred in the same grid box at the same model time

step. A mean was taken of all simultaneous observations. This thus led to the generation

of a set of "meta-sites" which represent the hourly mean observations on the model grid.

Fig. 4.2 shows the locations of the meta sites used in this study.

4.4.2 Sonde Data

Ozone-sonde observations were from the World Ozone and Ultraviolet Radiation Data

Centre (https://woudc.org). The stratosphere falls outside the scope of this study, and thus

all stratospheric observations were removed. O3 concentrations greater than 100 ppb was

used as the definition of stratosphere (L. L. Pan et al., 2004). As with the ground sites,

meta-sites were generated on the three dimentional model grid. All sonde observation

below 850 hPa were removed to prevent ground and sondes sites being averaged into the

same meta-site.

Sonde observations provide regular long term sampling of the free troposphere. How-

ever, there are significant drawbacks relative to ground observations. Firstly, they lack

temporal resolution. Most sondes are released at noon once every couple of weeks. Thus

they represent at best a "snap shot" of the state of the atmosphere. Secondly, they are

distributed around the globe, there is a scarcity of locations. Most continents are only

sampled by a handful of sites.

159



4.4.3 ATom Data

The NASA ATom campaign flew over the Pacific and Atlantic oceans, in a loop from

northern poles, through to the southern poles, via the mid-latitudes and tropics (S. Wofsy

et al., 2018). The NASA DC8 aircraft sampled from the surface to 15 km measuring the

concentration of many compounds including O3.

Flights took place in four different seasons between July 2016 and May 2018, but

only the first three (summer, spring and winter) are used due to availability at the time

of writing. As with the sonde data, stratospheric observations were removed (>100 ppb),

and observations were averaged into meta-sites based on the model grid. A map of all grid

boxes that contain observations is shown in Figure 4.2.
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4.5 Training

The training dataset for the algorithm consisted of all ground and sonde observations be-

tween January 1st 2010 and December 31st 2015 (now referred to as "training period").

Importantly no ATom data was included in the training dataset, keeping the ATom obser-

vations as an independent testing dataset.

The corresponding modelled O3 predictions for the training period were used to cal-

culate the model bias for each meta observation point. The bias was defined in terms of a

scale factor; model prediction divided by observation. The XGBoost algorithm attempts to

produce the bias predictor function based on minimising a loss function, in this case mean

squared error (MSE). The nature of the MSE would suggest that a bias (model/measured)

of 10 was "worse" than one of 0.1 However, the model "failure" is the same in both cases.

To counter that, the algorithm is trained on the log2 of the bias. Thus a bias of 0.1

(log2(0.1)=-3.32) was weighted as highly as a a bias of 10 (log2(10)=+3.32) due to both

-3.32 and 3.32 having the same absolute value compared to 0.1 and 10. In total, there were

13,118,334 surface and 250,533 sonde biases in the training dataset.

The local model state at the time and location of each bias was used to produce training

features. The model local state consisted of the grid box concentration of the 68 chemicals

transported by the model (including O3) and 15 physical model parameters (see Table 4.1

and 4.2 respectively). While GEOS-Chem required modification to output some of these

variables, the decision was made to include as many readily available outputs as possible

and to let the machine learning algorithm decide what was important.

Hyperparameter tuning was achieved by 5 fold cross-validation of the training dataset.

Root Mean Squared Error (RMSE) was used as the performance metric. The training data

was organised by date to ensure each fold contained roughly a year slice of data. The

principal parameters tuned were the number and maximum depth of trees.

During cross-validation, similar performance could be achieved with 12 to 18 layers

of tree depth, with a reduction in the number of trees needed at higher depth. It was found

that the algorithm achieved the majority of its predictive power early in training, with the

last 90% of trees producing small gains in RMSE.
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As the number of trees was found to have a linear relationship with training time.

A compromise was made between training time and predictive strength. 150 trees with

a maximum depth of 12, was chosen as the configuration for testing. This selection of

hyperparameters with the full set of training data took 1 hour to train on a 40 core CPU

node, consisting of two Intel Xeon Gold 6138 CPUs.

The algorithm is now a trained "bias-predictor"; the input variables can now be exam-

ined for insight into the predictor’s structure.
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Table 4.1: Chemical tracers used during training.

Chemical tracers
NO Hydrophilic black carbon
O3 Hydrophobic organic carbon

Peroxyacetylnitrate Hydrophilic organic carbon
CO 0.7 micron dust

≥C4 alkanes 1.4 micron dust
Isoprene 2.4 micron dust
HNO3 4.5 micron dust
H2O2 Isoprene epoxide

Acetone Accumulation mode sea salt aerosol
Methyl ethyl ketone Coarse mode sea salt aerosol

Acetaldehyde Br2
≥C4 aldehydes Br

Methylvinylketone BrO
Methacrolein HOBr

Peroxymethacryloyl nitrate HBr
Peroxypropionylnitrate BrNO2
≥C4 alkylnitrates BrNO3

Propene CHBr3
Propane CH2Br2

Formaldehyde CH3Br
Ethane Methyl peroxy nitrate
N2O5 Beta isoprene nitrate
HNO4 Delta isoprene nitrate

Methylhydroperoxide 5C acid from isoprene
Dimethylsulfide Propanone nitrate

SO2 Hydroxyacetone
SO4

2- Glycoaldehyde
SO4

2- on sea salt HNO2
Methanesulfonic acid Nitrate from methyl ethyl ketone

NH3 Nitrate from methacrolein
NH4

+ Peroxide from isoprene
Inorganic nitrates Peroxyacetic acid

Inorganic nitrates on sea salt NO2
Hydrophobic black carbon NO3
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Table 4.2: Physical parameters used during training.

Physical parameters
Pressure

Temperature
Absolute humidity
Surface pressure

Aerosol surface area
Horizontal wind speed
Vertical wind speed
Isoprene epoxide
Cloud fraction
Optical depth

Solar zenith angle
Cos(day of year/360 ∗ 2π)
Sin(day of year/360 ∗ 2π)
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4.6 Feature importance

There are two metrics for investigating the importance of the input variables in the trained

bias-predictor: "gain" is the reduction loss function (mean squared error) gained from

splits using that feature, "weight" is the number of times a feature is used to decide a split.

The top 10 features by gain and weight for the training dataset is shown in Fig. 4.3 and

Fig. 4.4 respectively.

Fig. 4.3 shows those species that had the most profound effect (gain) on the predictive

ability of the bias-predictor. The most important feature from the analysis was the concen-

tration of NO3 (the nitrate radical). This has a high concentration in polluted night-time

environments and a low concentration in clean regions or during the daytime (Winer, R.

Atkinson, and Pitts, 1984). This feature appeared to be being used to correct the concen-

tration of O3 in regions such as the US which are polluted and have a significant high bias

at night a commonly observed feature (Yerramilli et al., 2012). The next most important

feature was the O3 concentration itself. This may reflect biases in regions with very low

O3 concentrations such as around Antarctica. The third most important feature was the

CH2O concentration. This may indicate biases over regions of high photochemical activ-

ity, as CH2O is a product of the photochemical oxidation of hydrocarbons (Wittrock et al.,

2006).
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Figure 4.3: Feature importance based on gain(the average gain across all splits the feature
is used in). *Methylhydroperoxide, **Peroxymethacryloyl nitrate

Surprisingly except for the O3 tracer itself, the top 10 features by weight (Fig. 4.4)

contained an entirely different set of species to that of gain. Variables that had high weight

but low gain would frequently appear further down the decision tree. These are variables

used for fine-tuning the correction, splitting small subsets of the data. Pressure had the
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highest weight, allowing the algorithm to form relationships with altitude. NO was the

second most important feature which may be used again as a diurnal marker. NO is also a

component of the NOx and thus has a direct chemical relationship with O3. The third most

prominent feature was the pressure at the surface; this provides topological information.

Future work should explore the explanatory capabilities of the algorithm, allowing for the

bias-predictor to provide qualitatively as well as quantitative understanding of the model

bias.
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Figure 4.4: Feature importance based on weights (the number of times a feature is used to
split he data across all trees).

With the bias-predictor trained and an idea of its structure known, its ability to predict

the model bias for a completely different set of years is now tested.
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4.7 Testing

The bias-predictor was tested on the period between January 1st 2016 and December 31st

2017 (now referred to the "testing period"). None of the data used to train the predictor

was thus used in its testing. Observed bias was calculated in the same way as the training

period and included 3,783,303 surface and 78,451 sonde observations. Additionally, the

ATom flight data (10,518 observations) was included as an independent testing dataset.

Testing was achieved by evaluating the performance of the model against observation

and then comparing the change in performance with the predicted bias removed. Three

performance metrics were chosen and are described in Sect. 4.7.1.

4.7.1 Performance metrics

The RootMean Squared Error (RMSE)measures the average error in the prediction (Equa-

tion 1.1). NormalisedMean Bias (NMB)measures the direction of the bias and normalises

to the result (Equation 1.2). The Pearson’s R correlation coefficient measures the linear

relationship between the prediction and the observation (Equation 1.3).

RMSE(y, ŷ) = [
1

N

N∑
i=1

(yi − ŷi)2]
1
2 (Eq. 4.1)

NMB(y, ŷ) =

∑N
i=1(yi − ŷi)∑N

i=0 yi
(Eq. 4.2)

R(y, ŷ) =

∑N
i=1[(yi − ȳi)(ŷi − ˆ̄yi)]∑N

i=1[(yi − ȳi)2(ŷi − ˆ̄yi)2]
1
2

(Eq. 4.3)

Where y is the observed values, ŷ is the predicted values andN is the number of samples.

4.7.2 Surface data

A point by point comparison between the testing period surface data and the model with

and without the bias correction is shown in Figure 4.5. The bias correction removes vir-

tually all of the model biases (NMB) taking it from 0.29 to -0.04, substantially reduces

the error (RMSE) from 16.2 ppb to 7.5 ppb and increases the correlation (Pearson’s R)
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between the model and the measurements from 0.48 to 0.84.
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Figure 4.5: Kernel density estimation plot of model verses observation for all ground sites
in the base model (upper panel) and corrected model (lower panel) for the testing period
(1/1/2016 to 31/12/2017). The dashed black line is the 1:1 line, the coloured line show the
orthogonal line of best fit. The plot is made up of 3,783,303 data points.
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The bias corrector appears to be doing a good job in removing the bias from the model

during the period 2016 to 2017. Amore focused analysis now evaluates what the algorithm

has done to make this improvement.

Diurnal variation

To probe the performance of the algorithm in more detail, the median diurnal cycles of

nine, globally distributed ground sites were examined. Results are shown in Fig. 4.6 with

statistics given in Table 4.3. The base model (blue line) shows substantial differences with

the observations (black line) for most sites. The removal of the predicted bias from the

base model (red line), lead to a significant increase in the fidelity of the simulation with

the red line looking substantially more like the black.

Over the USA sites, the base model overestimated at all times, consistent with previous

work (Travis et al., 2016), with the largest biases occurring during the night. The bias-

corrected model shows a diurnal cycle very similar to that observed. Averaged across the

three American sites the NMB reduced from a mean of 0.51 to -0.02, RMSEs reduced

from a mean of 15.1 ppb to 1.1 ppb, and Pearson R values increased from a mean of 0.92

to 1.00. The bias correction thus successfully corrected biases seen in the diurnal cycle,

notably the significant night-time bias.

Although the base model failure is less evident for the European sites, again consistent

with previous work (L. Hu, Keller, et al., 2018), there were small improvements with the

inclusion of the bias correction.

The Japanese data shows a differing pattern. Similar to the USA sites, the base model

over-estimates the O3, generating a much smaller diurnal cycle than observed. Although

the bias correction improves the median value, it did not entirely correct the diurnal cy-

cle. This is attributed to the coastal nature of Japan. The model grid-box containing the

Japanese observations is mainly oceanic, but the observations show a continental diurnal

cycle (a significant increase in O3 during the day similar to those seen in the USA). If

there is a fundamental mismatch between the model’s description of the site and the real-

ity (ocean verse land), the bias-predictor will form false relationships. Another potential
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reason for the reduced performance is that Japan experiences a substantial long-range O3

influence from China. In the current configuration of the model, only local features are

included in the training data. Thus the bias-predictor may not identify influences from

the surrounding area. Future work with the bias corrector could explore some regional

markers for important compounds. These regional markers and thus transportation biases

could be incorporated via the inclusion of the surrounding grid box concentrations or via

aggregated regional variables such as the mean 5 x 5 grid box value.

For the two clean tropical sites (Cape Verde and Cape Point in South Africa) the base

model already performs reasonably (T. Sherwen et al., 2016), so the bias-corrected version

improves little and slightly reduced the NMB performance at Cape Verde from 0.03 to

0.04. For the Antarctic site, the notable bias evident in the model (T. Sherwen et al., 2016)

was almost entirely removed by the bias correction, but that resulted in a small reduction

in the R-value.
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Figure 4.6: Median diurnal cycle for O3 at nine meta sites in 2016-2017. Shown are the
observations, the base model and the model corrected with the bias predictor. The median
values are shown as the continuous line and the 25th to 75th percentiles as shaded areas.
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Table 4.3: Statistics for diurnal variability at the nine selected sites for the period 1/1/2016-
31/12/2017, for the base model (BM) and the model with the bias correction applied (BC)

Pearson’s R RMSE / ppb NMB
Site BM BC BM BC BM BC

USA (California) 0.852 0.997 14.74 1.98 0.46 -0.06
USA (New York) 0.970 0.994 13.12 2.25 0.46 -0.08
USA (Texas) 0.915 0.998 16.29 1.45 0.62 -0.05

UK 0.993 0.998 1.02 1.39 -0.02 -0.05
Germany 0.791 0.991 3.25 0.92 0.09 0.01
Japan 0.98 0.764 14.9 6.94 0.48 -0.12

Cape Verde 0.994 0.812 1.23 1.38 -0.03 -0.04
South Africa (Cape Point) 0.081 0.616 3.32 2.34 -0.11 -0.08
Antarctica (Neumayer) 0.883 0.872 8.57 0.67 -0.33 -0.03

Seasonal variation

The seasonal median comparison for the nine sites can been seen in Fig 4.7 with statistics

given in Table 4.4. Over the polluted sites (USA, UK, Germany), biases are effectively

removed by the inclusion of bias correction. The performance for Japanwas less improved,

with the clean tropical sites again showing only small improvements. Over Antarctica,

significant bias was removed with the application of bias correction.

Where the performance statistics of the model were already good, such as the RMSE

at Cape Verde, or for the NMB at the UK, the inclusion of the bias correction can slightly

degrade performance (Table 4.4).
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Figure 4.7: Median seasonal cycle for O3 at nine meta sites in 2016-2017. Shown are the
observations, the base model and the model corrected with the bias predictor. The median
values are shown as the continuous lines and the 25th to 75th percentiles as shaded areas.
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Table 4.4: Statistics for seasonal variability at the nine selected sites for the period
1/1/2016-31/12/2017, for the base model (BM) and the model with the bias correction
applied (BC)

Pearson’s R RMSE / ppb NMB
Site BM BC BM BC BM BC

USA (California) 0.833 0.987 14.02 2.19 0.45 -0.06
USA (New York) 0.759 0.992 14.51 2.23 0.46 -0.08
USA (Texas) 0.335 0.991 16.64 1.45 0.62 -0.05

UK 0.519 0.935 7.27 2.51 -0.03 -0.05
Germany 0.848 0.956 6.55 2.42 0.09 0.01
Japan 0.939 0.972 14.0 3.92 0.48 -0.12

Cape Verde 0.956 0.978 1.61 1.73 -0.03 -0.04
South Africa (Cape Point) 0.953 0.976 3.6 2.63 -0.11 -0.08
Antarctica (Neumayer) 0.939 0.993 8.86 1.04 -0.33 -0.03

4.7.3 Sonde data

A point by point comparison between the sonde data in the testing period and the model

with and without the bias corrector is shown in Figure 4.8. Compared to observations, the

bias correction lowered the model biases (NMB) taking it from 0.03 to 0.02, reduced the

error (RMSE) from 12.9 ppb to 10.5 ppb and increased the correlation (Pearson’s R) from

0.73 to 0.78.

These improvements are small compared to the improvements seen at the ground. This

may be for a number of reasons.

GEOS-Chem already performs better in the free troposphere than at the surface (L.

Hu, Keller, et al., 2018) thus there was less overall bias to correct, so any improvement

would likely be small.

The methodology assumes that there are no biases between the observational tech-

niques. However, the measurements from the sondes used electrochemical sensors rather

than the UV absorption technique at the ground. There is a long history of corrections

to electro-chemical sondes to bring them into line with the UV method and some of the

differences may also be explained by this (Sterling et al., 2018). The spatial and temporal

coverage of the sondes is also limited, with most sonde flights taking place only at noon.
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This resulting in a much smaller dataset than for the surface observations. It is not appar-

ent how much information from the surface observations is being used when correcting

in the upper troposphere. This imbalance in observations may be resulting in reduced

improvements in the sonde data. A possible way to improve on the performance would

be to add further free troposphere data. The obvious dataset to include would be those

from the In-service aircraft for a global observing system (IAGOS) data. This consists of

observations made from commercial flights and provides a significant set of observations

that could be used (Nedelec et al., 2015).
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Figure 4.8: Kernel density estimation plot of model verses observation for all sonde sites
in the base model (upper panel) and corrected model (lower panel) for the testing period
(1/1/2016 to 31/12/2017). The dashed black line is the 1:1 line, the coloured line show the
orthogonal line of best fit.
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To examine model performance in the free troposphere in more detail, the median

vertical O3 concentration at three sonde locations (central Europe, Colorado and Australia)

were examined (Fig. 4.9 with statistics in Table 4.5).

At pressures greater than 400 hPa (below ~7 km) the base model made a reasonable

prediction of O3. Below this pressure the Colorado site was biased low, whereas the Aus-

tralian site was biased high. Both of which were corrected by the algorithm. At pressures

lower than 400 hPa the model started to show a profoundly high bias, which may be a prob-

lem with the stratospheric flux (Greenslade et al., 2017). This could result in too much

O3 being entrained from the stratosphere in the model and enriching the concentration in

the upper troposphere. The correction algorithm improved all three locations at this lower

pressure.

Figure 4.9: Vertical profile for O3 at sonde sites in 2016-2017. Shown are the observations
(black), the base model (blue) and the model corrected with the bias-predictor (red). The
median values are shown as the continuous lines and the 25th to 75th percentiles as shaded
areas.
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Table 4.5: Statistics for the sonde vertical profiles, for the base model (BM) and the bias
corrected model (BC).

Pearson’s R RMSE / ppb
Site BM BC BM BC

Central Europe 0.922 0.979 8.54 3.79
Colorado 0.898 0.972 8.35 3.86
Australia 0.923 0.814 11.89 9.58

4.7.4 ATom data

While the evaluation of the bias predictor has been for a different period to the training

data, the locations used for testing and training have been kept consistent. It would be

preferable to use a completely different dataset to evaluate the performance of the system.

The ATom dataset (described in Section 4.4) provides this independent evaluation.

Fig. 4.10 shows the point by point comparison with and without the bias correction. The

bias correction lowers the model bias (NMB) taking it from 0.08 to 0.06, reduces the error

(RMSE) from 12.1 ppb to 10.5 ppb and increases the correlation (Pearson’s R) from 0.76

to 0.79.

These biases and their improvements are similar to those seen with the sondes. Like-

wise, the improvement is significantly smaller than that seen for the surface data. The

RMSE was reduced by only 13% compared to ATom observations compared to 54% for

the surface observations. Similarly, Pearson’s R only marginally improved with the use of

the bias correction. Much of the improvement in the model’s performance for the ATom

flights will be coming from the observations collected by the sonde network. As men-

tioned (Section 4.4), the sonde observations are significantly less temporally and spatially

resolved than the surface observations. Thus for the bias-predictor to learn the bias, there

must be significant volumes of observations under sufficiently diverse conditions. It would

appear that the sonde network may not provide that level of information.
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Figure 4.10: Kernel density estimation plot of model verses observation for all ATom
locations in the base model (upper panel) and corrected model (lower panel) for the testing
period (1/1/2016 to 31/12/2017). The dashed black line is the 1:1 line, the coloured line
show the orthogonal line of best fit. The plot is made up of 10,518 data points.
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This testing shows that the use of the bias correction improves the performance of the

model as compared to independent test data. In the next section, the correction is applied

to every grid box, to examine the global distribution of the bias correction. .
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4.8 Global Correction

As described in Sect. 4.3, the local model state was output for every grid box for the year

2016. While the original plan was to run the bias-predictor on every grid box for every

hour, this produced a vast amount of data (>3 Tb). The size of the dataset resulted in

unfeasible running times for the algorithm. To reduce the computational load only the 1st

and 15th day of every month was used to get the approximate annual average predicted

bias. The predicted bias globally and zonally, can be seen in Fig. 4.11 and Fig. 4.12

respectively.
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Figure 4.11: Percentage annual mean predicted bias for the lower, middle and upper tro-
posphere.
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Many of the features of the predicted O3 bias have been identified in previous studies.

The southeastern United States has been previously recognised as being biased high, with

a daytime bias of 0 - 19 ppb (Travis et al., 2016; J. J. Guo et al., 2018). L. Hu, Keller, et al.,

2018 also found that the model was biased high at the surface in Europe but with a smaller

overall annual bias than the United States. This is consistent with the predictions made

in Fig. 4.11. The low O3 bias in the extra tropic Southern Hemisphere was described in

T. Sherwen et al., 2016 and Pound et al., 2019, with the latter blaming the simplistic ap-

proximations in the O3 deposition velocities. Schmidt et al., 2016 identified the Southern

Hemisphere low bias extending to approximately 8 km in altitude.

Figure 4.12: Percentage zonal annual mean predicted bias.

Understanding the model bias for regions outside the training data such as south Asia

is difficult. The algorithm calculated corrections based on what it learnt from regions with

similar chemical or physical conditions. So in the case of south Asia, it appears the cor-
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rection was based on the correction applied to the southeastern United States. Both these

areas have high biogenic and anthropogenic emissions. However, any error in the emis-

sions in Asia is likely to be different from that of the United States. The degree to which the

bias corrector can be "trusted" in these regions is thus unknown. Future work is necessary

to develop the technique to understand biases in the prediction and their robustness.

One way to test the stability of the prediction is to remove some of the training data

and retrain the bias-predictor. A comparison between the different bias predictors gives

some information about the robustness of the predictor. This analysis is performed in the

next section.

4.8.1 Data denial

To understand the uncertainty in the bias correction a so-called "data denial experiment"

is used. This technique assesses the impact of removing individual or regional sets of

observations from the training dataset. Two sets of experiments are performed here, first

the data from the nine sites examined in Sect. 4.7.2 are removed from the training dataset,

and in the second experiment, all western hemisphere points are removed from the training

dataset.

Data from the nine meta sites shown in Figures 4.13 and 4.14 ( California, New York,

Texas, UK, Germany, Japan, Cape Verde, South Africa (Cape Point), Antarctica (Neu-

mayer)) were removed from the training dataset and the bias-predictor was retrained. The

retrained bias-predictor was then used to re-correct the testing period data.

In the USA, removing the nine observational data sets did degrade the overall model

performance slightly (the green lines in Figures 4.13 and 4.14) compared to the full train-

ing dataset (red line). However, this reduction is relatively small, so it appears that the

neighbouring sites and other similar sites around the world (notably Europe) were similar

enough to the removed sites (CA, NY and TX) to provide sufficient information to almost

completely correct the bias. There were different degrees of impact for the other sites.

For the UK, the impact of removing the nine sites from the training dataset was min-

imal. For Germany, the bias corrections were more substantial and overcompensated the
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base model during the night and in the summer months. Removal of the Japan information

provided a simulation halfway between the simulation with and without the standard bias

correction. For remote sites, such as Cape Verde and South Africa, their removal made the

bias-corrected model worse than the base model. Similar to Japan, removing the Antarctic

site led to a bias correction which is between the standard bias-corrected model and the

standard model.

Much of this behaviour is related to the similarity of the removed sites to other sites in

the training data. For sites such as the US, and to some extent Europe, removing a few sites

had little influence on the bias-predictor, as there were several similar neighbouring sites

which could provide similar information. For other locations such as the "clean" Cape

Verde and South African sites, there were no other similar sites in the training data. Thus

removing those sites removed significant amounts of information. If there were no similar

sites for the bias correction to use, an inappropriate correction could be applied, which

made the simulation worse. For places such as the Japanese and Antarctic sites, there

were some similar sites (Fig. 4.2) in the training data, which provided some improvement

over the base model.
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Figure 4.13: Median diurnal cycle for O3 at nine meta sites in 2016-2017. Shown are the
observations (black), the base model (blue), corrected model trained with all observations
(red) and the model trained with the nine sites removed (green). The median values are
shown as the continuous line and the 25th to 75th percentiles as shaded areas.
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Figure 4.14: Median seasonal cycle for O3 at nine meta sites in 2016-2017. Shown are the
observations (black), the base model (blue), corrected model trained with all observations
(red) and the model trained with the nine sites removed (green). The median values are
shown as the continuous line and the 25th to 75th percentiles as shaded areas.

Taking the data denial experiment further, observations within North and South Amer-

ica (everything between -180◦ and -10◦ East) were removed from the training dataset. Fig-

ures 4.15 and 4.16 show the impact of this on the standard nine sites. Surprisingly for New

York and Texas, the bias-corrected model performed almost as well without any of North

and South America as it did with the full training dataset. The bias corrector predicted
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roughly the same correction for California as it does for New York and Texas. This over-

corrected the daytime concentration for California but simulated the night time and the

seasonal cycle much better than without the bias corrector. For the other six sites around

the world, the influence of removing North and South America was minimal.

It appears surprising that the corrections applied for North America were so good even

though the North American data was not included within the training dataset. This sug-

gests that there are some common reasons for biases between, say North America and

Europe. This may indicate a common global source of some of the bias due to errors in

the model’s chemistry or meteorology, which would be global (or at least northern hemi-

sphere land based) rather than a local source of bias.
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Figure 4.15: Median diurnal cycle for O3 at nine meta sites in 2016-2017. Shown are
the observations (black), the base model (blue), corrected model trained with all observa-
tions (red) and the model trained with Western Hemisphere (west of -20oE) data removed
(green). The median values are shown as the continuous line and the 25th to 75th per-
centiles as shaded areas.
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Figure 4.16: Median seasonal cycle for O3 at nine meta sites in 2016-2017. Shown are
the observations (black), the base model (blue), corrected model trained with all observa-
tions (red) and the model trained with Western Hemisphere (west of -20oE) data removed
(green). The median values are shown as the continuous line and the 25th to 75th per-
centiles as shaded areas.

The retrained bias-predictor with no Western Hemisphere data was used to predict the

mean global percentage bias as was done in Section 4.8. The difference in the predicted

absolute bias between the two bias predictors, one with all the data and one with western

hemisphere only is shown in Fig. 4.17.
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Formost sites where there are remaining observations (Europe andGAWsites) changes

in the bias prediction isminimal. However removing theWesternHemisphere sites changed

the prediction of some sites that still have observations in the training set, particularly

Spain. The algorithm was making some of its decisions based on similar biases observed

at sites in America. Spain being a polluted subtropical environment, is chemically sim-

ilar to sites in North America. The changes were much more profound in areas that had

no observations of their own. Removing the Western Hemisphere reduces the number of

unique environments the algorithm could learn from.
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Figure 4.17: Difference in the global mean annual surface O3 prediction between a pre-
dictor trained with western hemisphere observation data (west of -20oE) removed and a
predictor trained without this data. Red dots show locations of ground sites in the surface
to 900 hPa plot, and sonde locations in the other two plots. The dashed line shows the
-20oE line

These types of data denial experiments may provide for an ability to look for explana-

tions ofmodel failingswhich could be used to help improve the process level representation

within models. Another form of data denial is a reduction in the temporal length of the

training set, which will be investigated next.
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4.9 Training duration

In Section 4.5 the bias-predictor was trained using six years of data (2010-2015). When

incorporating certain observational data sets, this long training time provides a challenge.

For some critical locations such as China or India the observational record is not that

long. For high-resolution model data (e.g. The NASA GEOS global 12.5 km simulation

(L. Hu, Keller, et al., 2018)) managing and processing 73 parameters for six years could

be computationally burdensome for globally distributed data. Being able to reduce the

number of years of data while maintaining the usefulness of the approach would, therefore,

be useful.

The bias-predictor was retrained with varying lengths of training data. The end time

was kept as 31st of December 2015, while the start date was steadily moved back in time.

Figure 4.18 shows the change in the global performance of the model metrics for surface

O3 compared to the number of training months used (the diagnostics are the same as those

described in Sect. 4.7.1). Training with only a month of data showed some small benefit,

but significant benefit arose once at least eight months of training data had been included.

Using the bias-predictor trained with a year of observational data increased the perfor-

mance of the base model, halved the RMSE, removed most of the NMB and increased the

Pearson’s R by 60%.

Much of the variability in the power-spectrum of surface O3 is captured by timescales

of a year or less (Bowdalo, Mathew J. Evans, and Sofen, 2016) thus a timescale of a year

appears to be the best balance between computational burden and utility for an operational

system such as air quality forecasting.
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Figure 4.18: Performance change with increasing length of training data. The dot in each
plot represents the uncorrected model performance.

Up to this point, the focus has been on varying what data was used to train the predictor.

In the next section, an alternative method for correction is tested.
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4.10 Direct O3 concentration prediction

The bias correction method described so far, attempts to predict the model bias ([O3]model

/ [O3]measured). An alternative approach would be to predict [O3] directly, based on the

same chemical and physical input variables. An algorithm to do this, given the samemodel

local state information, was trained on the standard six years of the training period. For

the testing period, the direct prediction of surface O3 performed marginally better than the

bias correction for most metrics (Table. 4.6). RMSE decreased to 7.1 ppb from 7.5 ppbv,

NMB decreased to 0.00 from -0.04, and Pearson’s R increased to 0.85 from 0.84, but for

some metrics, the performance is less good.

Table 4.6: Statistical performance for the period 1/1/2016-31/12/2017 of the base model,
model with a predicted bias correction applied, and directly predicted O3 concentration
for the surface.

RMSE / ppb NMB Pearson’s R
Base O3 16.21 0.29 0.479

Corrected O3 7.48 -0.04 0.841
Predicted O3 7.11 0.00 0.850

For the ATom dataset, the bias predictor performs better than the direct prediction

(Table 4.7). This is interpreted here to mean that for locations where observations were

included in training (surface sites and sondes), directly predicting [O3] has benefits. How-

ever, for sites where no observations were used in the training, it is better to use the bias

corrector approach. Further work is necessary to advance understanding in the form of the

prediction that is necessary to provide the most useful enhancement of the system.

Table 4.7: Statistical performance for the period 1/1/2016-31/12/2017 of the base model,
model with a predicted bias correction applied, and directly predicted O3 concentration
for the ATom data.

RMSE / ppb NMB Pearson’s R
Base O3 12.11 0.08 0.761

Corrected O3 10.50 0.06 0.792
Predicted O3 10.92 0.11 0.797

198



4.11 Conclusions

The bias in O3 concentration calculated by a chemistry transport model can be reduced

through the use of amachine learning algorithm. The results appeared robust to data denial

and training length experiments. For activities such as air quality forecasting for sites

with a long observational record, bias-prediction appeared to offer a route to significant

improvements in the fidelity of the forecasts without having to improve the process-level

understanding. This work offers some practical advantages over data assimilation. The

observations do not necessarily need to be available in real-time. The training of the bias-

predictor can be made using past observations and applied to a forecast without the need

for the latest observations. The bias-predictor approach may also be applied to regions

where observational data is not available. Although necessitating care, the temporary lack

of available data is much less of a problem for this approach than for other methods of data

assimilation.

Further work on this approach could include running the model at a higher resolu-

tion in order to resolve a more significant number of observation sites and allow for the

evaluation of the averaging performed in this study. Further experimentation with other

machine learning techniques such as recurrent and convolutional neural network architec-

tures could also prove useful. These more complex architectures would allow additional

spatial and temporal information to be incorporated into the prediction. Another area of

interest would be to predict bias in other species such as NOx and particulate matter. Fi-

nally, there appears to be significant scope for exploring coupling such bias correction

methods with an operational air quality forecasting system to provide improved air quality

forecasts.
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Chapter 5

Conclusions
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5.1 Conclusions

This thesis has explored some of our understanding of the processes controlling O3 on a

regional to global scale. This topic has been the subject of intense scientific interest over

the last 40 years. However, there are still challenging science problems to be explored.

The focus of the first two science chapters was on the city of Beijing. China is now the

focus of much of the world’s research into air pollution, given the high population and

the highly polluted air experienced. The Atmospheric Pollution and Human Health in a

ChineseMega-city project (APHH-Beijing) campaign provided a comprehensive observa-

tional dataset to explore our understanding of air pollution in Beijing during the summer

of 2017.

This observational dataset, together with the GEOS-Chem chemistry transport model,

was used to explore the processes controlling O3 in the city of Beijing. After tuning the

primary emissions in the model to fit the observations (which identified a number of fail-

ings in the model emissions), the focus turned to an evaluation of the short lived species

in the model. These radical species play a fundamental role in determining the chemistry

of the atmosphere, yet are rarely evaluated within a chemistry transport model.

This evaluation identified some key failures in the model’s ability to simulate the rad-

ical chemistry.

• Failure to reproduce NO to NO2 ratio

• Failure to reproduce day time HONO concentrations

• Underestimation of OH reactivity

• Underestimation of RO2 concentrations

• Overestimation of j(O(1D)

Some of these failures were evident in box model simulations of the same data byWhalley

et al. (2020) and so these problems are not unique to the GEOS-Chem model. These fail-

ures limit our confidence in our ability to understand the processes controlling O3 in urban
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environments and so future work to address these problems is fundamental to developing

more robust policy options in the future.

Despite these problems with the short-lived radical chemistry, the model was able to

reproduce much of the variability observed in the O3 concentration throughout the cam-

paign. This suggest that the some of the errors in the model, may, to some extend be

compensating. The model may be simulating the right O3 for the wrong reasons.

Ozone isopleths have been used for decades as a tool to understand the photochemical

environment in a city. They have typically been calculated using box models of various

complexity but given the computational resources now available, the chemistry transport

model was used to calculate O3 isopleths for the city. These isopleths showed the typical

structure of a NOx and VOC limited regimes. In the mean, Beijing was found to be in the

VOC limited regime during the field campaign in 2017. In that situation a reduction in

NOx would lead to an increase in the O3 concentration. The magnitude of this increase

was found to reduce, depending on the metric used to assess the impact. The maximumO3

during the campaign would increase very little if NOx emissions were reduced, whereas

the mean O3 could increase by 7 ppbv.

Emissions of the aromatics (notably the xylenes) and isoprene (mainly from outside

of the city) were found to be the most important VOCs for O3 production. Reducing the

total VOC emissions, and notably the concentrations of the xylenes and other aromatics is

most likely the best route to reducing O3 in Beijing. Reducing the regional emissions of

isoprene would be difficult to achieve without devastation of the regional forests.

Uptake of HO2 onto aerosol surfaces was found to be an important inhibitor of O3

production under some circumstances. By diagnosing both the model and the observa-

tions, the magnitude of the different radical sinks (OH+NO2, ROx+ROx and HO2 uptake)

could be evaluated. Ternary diagrams were developed to show the relative importance of

the different sink processes both in the model and the observations and these showed that

despite the problems in the model’s fast photo-chemistry, the balance between the sinks

was approximately correct in the model.

Novel O3 isopleths were developed which varied NOx emission and and the magnitude
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of aerosol uptake of HO2. This identified 3 photochemical regimes:

• Aerosol insensitive (High NOx). In this regime the OH+NO2 reaction is overwhelm-

ingly the dominant radical sink. Variations in HO2 uptake don’t make a significant

impact on the radical concentration so O3 is insensitive to the aerosol surface area

density.

• Aerosol insensitive (Low NOx). In this regime the ROx+ROx reaction are over-

whelmingly the dominant radical sink. Variation in HO2 uptake does not make

a significant impact on the radical concentration so O3 is again insensitive to the

aerosol surface area density.

• Aerosol sensitive. In this regime there is a more equitable balance between the

different radical sinks and so a change in the rate of HO2 uptake onto aerosols can

have an impact on the radical concentration and so the O3 concentration.

By diagnosing the different radical sink processes it was possible to explore which

of the different dominant sinks was occurring spatially and temporally over the domain.

While the radical loss in Beijing is predominantly NO2 + OH dominated, prevailing winds

can shift this to a more ROx + ROx or HO2 uptake dominated regime. Large areas of the

domain were in each of the different loss regimes. Thus assessing our understanding of

each of these regimes is important.

Up to this point the focus has been on assessing and improving the processes repre-

sented in the model. However, substantial model biases still occur. For some applications

(air quality forecasting, understanding the spatial distribution of O3) this is problematic.

The final chapter, invoked a machine learning based approach to remove biases without

improving process level understanding.

The machine learning approach learned the bias from a large dataset of observations

that were compared to the model result. The algorithmwas able to learn the bias from a six

year training period and then improve the results of a two year test period. The algorithm

was able to learn some degree of bias for all nine globally distributed test sites. Further to

this, the algorithmwas able to identify published knownO3 biases in a variety of locations.
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Additionally, the technique displayed robustness to a reduction in observational data. This

technique could have significant potential use in systems that do not require a process level

understanding such as air quality forecasts.

To conclude, chemical transportmodels should be evaluated against short lived species.

There are still significant challenges ahead with regards to simulating O3. Underestimation

of the RO2 and HONO concentration, as well as the missing OH reactivity, could lead to

a substantially increased model O3 production and as of yet, there is not a clear candidate

for the removal of this added O3.

Machine learningwill likely revolutionize our ability to use and understand large datasets

and provide computationally efficient solutions for solving known unknowns. Future work

will be required to identify how best to incorporate machine learning techniques into sci-

ence.
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5.1.1 Closing remarks

This thesis sought to improve and increase understanding of how a chemical transport

model reproduces observed O3. Through the inclusion of improved chemistry and revised

emissions, the performance of the model was improved. This improvement was explicit,

meaning the exact changes in the model were known. The results were analysed, including

developing new investigatory and visualisation techniques resulting in a thorough under-

standing of what chemical processes were governing observed trends. However, the eval-

uation was time consuming, required an extensive local data set and was only evaluated

for one location at one time of year.

From a performance metric perspective, an algorithmic approach also improved the

representation of O3 within the model. While the algorithm only offered inferred ways

of identifying model behaviour, it provided a substantial increase in the model’s ability to

replicate O3 across the world, at all layers of the troposphere and all times of the year.

Process-based improvements to models are ideal, in a perfect world, every process

that governs the atmosphere would be replicated mathematically in the model. Models

represent our current understanding of atmospheric science and will continue to improve.

However, due to increasing computational power, increasing access to large datasets, and

developing more advanced machine learning techniques, algorithmically augmented mod-

els will likely have a substantial role in science in the future.
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