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Abstract 

Machine learning (ML) research has benefited from a deep understanding of biological 

mechanisms that have evolved to perform comparable tasks. Recent successes of ML models, 

superseding human performance in human perception based tasks has garnered interest in 

improving them further. However, the approach to improving ML models tends to be 

unstructured, particularly for the models that aim to mimic biology. This thesis proposes and 

applies a bidirectional learning paradigm to streamline the process of improving ML models’ 

performance in classification of a task, which humans are already adept at. The approach is 

validated taking human gait classification as the exemplar task. This paradigm possesses the 

additional benefit of investigating underlying mechanisms in human perception (HP) using the 

ML models.  Assessment of several biomimetic (BM) and non-biomimetic (NBM) machine 

learning models on an intrinsic feature of gait, namely the gender of the walker, establishes a 

functional overlap in the perception of gait between HP and BM, selecting the Long-Short-Term-

Memory (LSTM) architecture as the BM of choice for this study, when compared with other 

models such as support vector machines, decision trees and multi-layer perceptron models. 

Psychophysics and computational experiments are conducted to understand the overlap between 

human and machine models. The BM and HP derived from psychophysics experiments, share 

qualitatively similar profiles of gender classification accuracy across varying stimulus exposure 

durations. They also share the preference for motion-based cues over structural cues 

(BM=H>NBM). Further evaluation reveals a human-like expression of the inversion effect, a 

well-studied cognitive bias in HP that reduces the gender classification accuracy to 37% (p<0.05, 

chance at 50%) when exposed to inverted stimulus. Its expression in the BM supports the 

argument for learned rather than hard-wired mechanisms in HP. Particularly given the 

emergence of the effect in every BM, after training multiple randomly initialised BM models 

without prior anthropomorphic expectations of gait.  

 

The above aspects of HP, namely the preference for motion cues over structural cues and the 

lack of prior anthropomorphic expectations, were selected to improve BM performance. 

Representing gait explicitly as motion-based cues of a non-anthropomorphic, gender-neutral 

skeleton not only mitigates the inversion effect in BM, but also improves significantly the 

classification accuracy. In the case of gender classification of upright stimuli, mean accuracy 

improved by 6%, from 76% to 82% (F1,18 = 16, p<0.05). For inverted stimuli, mean accuracy 

improved by 45%, from 37% to 82% (F1,18 = 20, p<0.05). The model was further tested on a 

more challenging, extrinsic feature task; the classification of the emotional state of a walker. 

Emotions were visually induced in subjects through exposure to emotive or neutral images from 

the International Affective Picture System (IAPS) database. The classification accuracy of the 

BM was significantly above chance at 43% accuracy (p<0.05, chance at 33.3%). However, 

application of the proposed paradigm in further binary emotive state classification experiments, 

improved mean accuracy further by 23%, from 43% to 65% (F1,18 = 7.4, p<0.05) for the positive 

vs. neutral task. Results validate the proposed paradigm of concurrent bidirectional investigation 

of HP and BM for the classification of human gait, suggesting future applications for automating 

perceptual tasks for which the human brain and body has evolved.  
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Chapter 1 Introduction 

Human gait encodes a plethora of information such as one’s gender [1–11], state of emotion 

[12–17], personal identity [18–20] and the state of health [21–24]. The extraction of relevant 

features from gait has found its applications in biometric security, crowd surveillance, medical 

diagnostics and physiotherapy rehabilitation progress monitoring. By far, visual observation by 

humans has been the most versatile, robust and widely studied medium for gait analysis.   

Humans rely on visual perception of gait and utilise the neural mechanisms to make sense of it. 

The ability of the human brain to understand spatiotemporal patterns enables it to classify gait 

into a variety of categories. The categories vary from person identification, to a cohort of people 

or diagnosis of a particular clinical condition. Despite this ability, there are a few caveats to 

employing human observation for all gait analysis. Transferring acquired gait perception 

knowledge demands investment of resources for training new people. Examples of the need for 

such transfer, include clinical diagnosis or physiotherapy progress monitoring. Shortage of 

experienced professionals, perception errors due to fatigue, stochastic human errors and 

mortality further increase the challenge of depending solely on human observers as gait analysts. 

Thus encouraging the use of machines for automatic gait classification. 

Automating some or all aspects of gait analysis using a computer based model would resolve the 

majority of these problems. In theory, computers can operate indefinitely with high fidelity, 

eradicating any problems that may arise due to fatigue and minimising stochastic errors. The 

transference of information between computers is inexpensive, compared to humans, leveraging 

highly reliable digital information copying techniques. Additionally, the ability of these 

computational machines to communicate with each other in real-time parallel, enables fast and 

practically seamless updates of their knowledge base at a rate much higher than human 

communication and learning. If designed appropriately, the computational model can also help 

increase our understanding of the model of human perception (HP) of gait. There are numerous 

ways of developing computational models to classify human gait. One approach is through 

precise modelling of human gait as a set of stochastic equations for normative and abnormal gait 

patterns and finding the best fit for an individual’s gait. This approach involves explicit human 

expertise and intervention, deriving the biomechanical equations of gait. However, it’s a 

challenging approach as the equations have to be general enough to model the varieties of gait, 

while being specific enough to model the subtle deviations from the norm to model specific 

abnormalities. For example, in the case of the medical condition of knee Osteoarthritis, the 

biomechanical equations that model the specific deviation from the norm because of knee pain is 

to be modelled, ensuring a significant separation from another type of medical condition 

affecting gait, such as Complex Regional Pain Syndrome (CRPS) of the lower limbs. Not only 

does this require a translation of knowledge from an expert clinician into computer 

understandable language, which is extremely challenging, but also limited by mathematical 

expertise of the language formulator, possibly rendering itself non-generalisable to other 

conditions due to formulator biases. The challenge and investment required in modelling all the 

characteristics that can be derived from gait deters the exploration away from expert system-

https://paperpile.com/c/f3P1AS/andIH+SYw4E+M8H7t+SrWYH+X2Tod+xpKR2+VQfdM+tlJsw+z0Foc+RZw4E+xo6dw
https://paperpile.com/c/f3P1AS/mjWet+VWnOU+ltx8Y+mW3NC+fZP1N+UnPFX
https://paperpile.com/c/f3P1AS/SBpeJ+5GG0F+mhyje
https://paperpile.com/c/f3P1AS/oYXsS+zHyQ3+QzlGq+F5NF9
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based solutions, where a human expert is required to formulate the rules for the computational 

model. In contradiction to the expert system type of models, is the data driven computational 

modelling of the biological approach of humans, where humans develop an internal 

representation of human gait by observing people walk without being told explicitly what 

biomechanical equations govern human gait. A hybrid approach that combines machine-learning 

abilities with expert domain knowledge exists, termed as Inductive Logic Programming (ILP) 

and can prove useful to explore in terms of gait analysis [25], however the exploration of that 

approach is beyond the scope of this work. The selection criteria for the evaluation of 

computational models are the models that can learn to classify different features from a generic 

and holistic representation of gait, emphasising on minimal human intervention for handcrafting 

objective specific features. Towards this objective, the focus is on utilising machine learning 

models.  

Machine learning (ML) is a branch of artificial intelligence that provides computational 

algorithms, the ability to learn and improve from experience without being explicitly 

programmed by a human domain expert. ML develops learning mechanisms for a model and 

exposes it to representational examples of information to learn from. Essentially, it attempts to 

mimic the ‘learning from experience’ mechanism in humans. The various types of ML models 

are differentiated by their structure and the approach to learning. The nature of the model also 

determines the nature of information that can be processed and learned from. The underlying 

learning mechanisms of the ML models may either attempt to fit a hyperplane to best separate 

the data or model a possible nonlinear dependency between the input and output by closely 

resembling the biological neural network. For example, models such as support vector machines 

(SVMs) rely on static data for classification and regression, and depend on linear hyperplane 

separation for classification[26], whereas more complex models such as the recurrent artificial 

neural networks have the ability to process multi-dimensional dynamic temporal data and can fit 

a highly non-linear function to the training data for classification and regression[27]. On the 

other hand, decision trees (DTs) work akin to the process of deduction in logic, by using a 

measure of ‘purity’ to maximise the likelihood of belonging to a certain class [28]. The 

difference in learning principles make the models more or less suitable for operation on certain 

types of data.  

The ML algorithms have benefitted from our deep understanding of biological mechanisms that 

have evolved to perform a certain task, such as the analysis of human gait. In recent literature, 

ML techniques such as recurrent neural networks (RNNs) [27] and convolutional neural 

networks (CNNs) [27,29] have been developed based on human neuronal models. RNNs attempt 

to emulate the memory capability of the human brain by maintaining a cell state throughout the 

course of operating on a dynamic signal. The CNNs attempt to emulate the human visual 

perceptual mechanism by mimicking the neural layers in the occipital lobe i.e. V1 through V5 

[30]. Thus, making such models structurally biomimetic, i.e. mimicking or emulating biological 

systems in neuroscience. This is defined in detail later in the methods chapter (chapter 3).  

Given the ability of HP to learn to distinguish between gait patterns [10,12,13,18,21,32–34], one 

is encouraged to mimic HP and learning ability in machines when designing an artificial gait 

https://paperpile.com/c/f3P1AS/KvDwe
https://paperpile.com/c/f3P1AS/3Wck
https://paperpile.com/c/f3P1AS/paMtD
https://paperpile.com/c/f3P1AS/ppLEY
https://paperpile.com/c/f3P1AS/paMtD
https://paperpile.com/c/f3P1AS/paMtD+0WLUl
https://paperpile.com/c/f3P1AS/wUomo
https://paperpile.com/c/f3P1AS/Es75f+RZw4E+mjWet+VWnOU+X63do+wCMlU+SBpeJ+oYXsS
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classifier. However, the underlying biological learning mechanisms are not completely 

understood. For example, in case of gender classification from gait, studies have made 

contradictory claims of the perception being inherent in the brain, and being acquired through 

experiential learning [35–37]. The lack of understanding of the biological learning mechanism 

makes it difficult to establish the extent of reliability and common biases of the human observer. 

Thus, lacking concrete perceptual framework on which the computational model design can be 

based on. Consequently, one is also encouraged to gain an understanding of HP utilising the 

biomimetic machine learning models, in the course of their development.  

While there has been considerable development of biomimetic models (BM), such as RNNs and 

CNNs, the research related to enhancement of the models for a specific purpose is still limited. In 

theory, one can attempt an infinite amount of computational enhancements before narrowing 

down to the ideal technique to improve the performance of the BM. The process relies heavily on 

intuition, thus making the process of tuning the hyper-parameters of an ML model, more art than 

science. On the other extreme, one can develop a model that tunes the parameters automatically 

to achieve the best accuracy. While hyper-parameter optimisation is a viable option of tuning the 

ML model itself [38], it does not provide insights about the pre-processing or feature extraction 

step in training the model. There needs to be a middle ground, where one does not have to 

explore potentially infinite options for improvement and can take solace in a systematic approach 

to improving one’s models, while being able to understand the improvements made at a more 

human-understandable intuitive level. As mentioned previously, adhering to closely mimicking 

HP could provide a systematic approach to improving upon the model and thus be that middle 

ground. The hypothesis is proposed as follows, the biomimetic nature of the algorithms should 

be conducive to being improved upon by utilising knowledge of human neuroscience and 

perception. Understanding biological mechanisms and translating the insights into computational 

models should be able enhance the models. Established human perceptual preferences, 

weaknesses and strengths could prove beneficial for application (computationally) to enhance its 

capabilities. Moreover, experimenting with the BM may provide deeper insights into the 

underlying biological phenomenon, increasing our understanding of human neuroscience and 

perception. This thesis aims to verify the validity of this paradigm, of a bidirectional learning 

approach, for the development of a computational model for perceiving a phenomenon that 

biology has evolved to be good at. In addition, the insights gained from HP inspired 

computational enhancements could help make a case for the underlying learning mechanism in 

humans. Fig. 1 visually represents the proposed paradigm.  

In order to establish the validity of the proposed paradigm, human gait is used as the exemplar 

task. The two types of features of human gait that the models are evaluated on, (1) intrinsic, and 

(2) extrinsic. An intrinsic feature is defined as a feature of an individual that does not tend to 

change, such as one’s gender. Conversely, an extrinsic feature has a tendency to change 

frequently, sometimes in a matter of minutes, such as one’s emotional state. The reason for 

choosing the two types of classification features is to evaluate the generalisability of the 

classification ability of the artificial model, similar to humans. Successful classification of gait 

for a feature that tends not to change (gender) and that tends to change frequently (emotion) by 

https://paperpile.com/c/f3P1AS/9R5Ga+q6x1i+1TpPd
https://paperpile.com/c/f3P1AS/TOMCB
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the same model would support its generalisability as an artificial classifier. The two types of 

features mentioned are detailed further in the Methods chapter (Chapter 3).  

 

Figure 1: Schematic representation of the objectives and the proposed approach. The 

horizontal arrow represents the proposed bidirectional approach of improving machine 

perception of gait using human perception knowledge. The vertical arrow represents the 

corollary of understanding both human and machine perception better as a result of this 

approach 

The thesis follows a chapter-based structure, where the chapters are presented sequentially to 

demonstrate the evolving applications from the insights gained from the previous chapters, as 

follows. 

Chapter 1 provides the introduction to the topic of automated gait analysis and the relevance and 

need of incorporating human perception into the automation procedure. It mentions the 

motivation for developing an automatic gait classifier and the need for a systematic approach for 

selection and improvement of the classification model. 

Chapter 2 is divided into three sections providing: (1) the theoretical framework of human gait 

analysis; (2) overview of machine learning (ML), and; (3) relevant literature pertaining to 

application of machine learning in gait analysis. The first section provides an overall brief of gait 

analysis, by introducing the concept of human locomotion, delving into the history of its 

analysis, building up to the current practices and instruments used to measure gait. The second 

section, provides a brief overview and definitions of the widely used biomimetic (BM) and non-

biomimetic machine (NBM) learning models currently available. The descriptions are functional 

and relevant in the context of gait analysis. A detailed mathematical operation of the various 

models can be found in the Appendix. Finally, the third section, provides a summary of the 

existing literature and work related to the automation of gait analysis using machine learning 

algorithms, summarising the strengths and weaknesses of each approach. 

Chapter 3 lays the methodology for the experiments. It details the capture sensors used, protocol 

for data collection, development of the ML models and statistical methods used for the analysis 

of the results. 

Chapter 4 compares various ML models to human perception (HP) on the basis of gender 

classification from gait. The comparison is performed with the dual objective of determining the 
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biomimetic nature of the ML models on a functional level, as well as establishing baseline 

performance accuracies for the ML models, both for BM as well as NBM models. 

Chapter 5 tests the BM model (resulting from the previous chapter) for presence of human-like 

bias in gender-classification, and determines the validity of the proposed paradigm in potentially 

alleviating the bias while improving the model’s classification accuracy. The well-studied 

inversion effect in humans is taken as the exemplar bias to evaluate the model on. The presence 

of the effect in the model would not only further establish the biomimetic nature of the model, 

but also provide a plausible explanation for the presence of the effect in humans. The proposed 

bidirectional paradigm is utilised to modify the model and compare its classification accuracy 

with its initial unmodified version. A statistically significant reduction in the bias, along with an 

improvement in performance accuracy would establish the validity of the paradigm in 

successfully improving the model, thus providing an approach to improving the BM models. A 

statistically insignificant change or reduction in performance of the modified model would argue 

against the efficacy of such a systematic approach and warrant for further exploration. If 

successful, this could also provide evidence for the inversion effect being a learned phenomenon 

in humans, as opposed to being innate in the neuronal structure. 

Chapter 6 evaluates the model on an extrinsic feature of human gait; the emotional state of the 

subject. The BM is evaluated for its ability to classify the feature in a matter of minutes, by 

inducing human emotions in subjects through visual stimulus, and attempting to classify the 

emotion from the gait pattern. The validity of the proposed bidirectional paradigm is evaluated, 

similar to the previous chapter, by modifying the BM. A statistically significant improvement in 

the performance accuracy between the unmodified BM and modified BM would further establish 

the validity of the proposed paradigm. 

Chapter 7 collates the results of the experiments in the previous three chapters and discusses 

them with respect to the objectives and hypotheses set in the Introduction (Chapter 1) to evaluate 

the validity of the hypotheses and the limitations of the claims made. Additionally, further 

avenues of exploration are discussed as future work. 

Chapter 8 provides a conclusion, with a holistic overview of the motivation for developing an 

automatic gait classifier, proposals for a solution, experiments to determine the validity of the 

proposed solutions and insights discovered along the way. 
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Chapter 2 Background 

Understanding the current practices in analysing human gait could provide a better 

context for the experiments presented in future chapters. Especially as it’s been mostly done by 

human observers so far. This chapter briefs on three related aspects of human gait analysis. 

Firstly, the practices used in gait analysis by humans, from history to modern technological 

innovations in motion capture in section 2.1. Secondly, a brief functional introduction to the 

machine learning techniques used in this work and their justifications in section 2.2. Finally, the 

relevant literature in use of various machine learning techniques in automation of gait analysis, 

their advantages and limitations in section 2.3. The history of gait analysis, from utilising film-

based snapshots to cutting edge marker-less motion capture devices, provides an appreciation for 

the role and advancement in technology in the analysis. Notably, the data used in the 

experiments in this work is captured using marker-less sensors. In addition to the above 

mentioned sections, this chapter also very briefly introduces the studies on understanding human 

perception (HP) of gait, its preferences and weaknesses. It may also be noted that in this work, 

gait data is used mainly as a means of evaluating the relationship between human perception and 

biomimetic and non-biomimetic machine learning. The work attempts to focus on the learning, 

rather than gait analysis itself. This chapter provides a background to gait analysis for better 

context into understanding the complexities involved in gait analysis as a practice. 

2.1 Gait Analysis 

2.1.1 Human Gait 

Human gait is a complex acquired behaviour that requires little conscious thought by the walker 

in terms of limb movements, during routine activities [39]. The action of walking comprises two 

key stages: the activation of the nervous system and the stimulation of the musculoskeletal 

system [39]. Gait depends on the effective communication between the different aspects of the 

nervous system involved in the musculoskeletal signal generation, and any congenital or 

acquired problems in this complex process can result in gait disorders and gait abnormalities. 

The gait cycle can be broken down into two phases: the stance phase and the swing phase. As 

shown in Fig. 2, the stance is from the foot contacting the floor till the start of the swing phase 

when the toe leaves the ground. The swing phase, on the other hand, starts when the toe of the 

foot leaves contact with the ground and continues as long as the foot is in the air, above the 

ground. A stride comprises the portion of gait from the contact of one foot with the ground until 

the same foot is in contact with the ground again, while a step is defined as contact on the floor 

by one foot until there is contact by the other. Fig. 2 shows two steps and one full stride.  

 

Gait analysis can be described as the study of human locomotion, especially from a 

biomechanical perspective, and has historically relied on the human observer’s or clinician’s 

ability to assess an individual’s walk. Recent technological advancements, however, have 

allowed the development of tools which can be used to quantify and process the measurable 

parameters of human movement. The technologies also include the system used for the collection 

https://paperpile.com/c/f3P1AS/kXsLN
https://paperpile.com/c/f3P1AS/kXsLN
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of data from the walking subjects and in the analysis of the data. Gait analysis can be used in 

sports to improve a professional’s performance and also, as is the subject of this research, during 

the rehabilitation of people with gait disorders.  

 

 
Figure 2: The different stages within the stance, swing phases of one gait cycle of a 

healthy adult, which includes one stride and two steps [40]. The proportions of gait phases may 

vary in the case of motor dysfunctions 

2.1.2 History of Human Gait Analysis 

Gait analysis has a long history [40], but previous investigations were in large part limited by 

human vision and judgement. Measurements were therefore not entirely objective. In the 17th 

century, Borelli calculated the centre of gravity of the human body and described the distinct gait 

cycles, and by the 19th century the first quantitative measurements were made using Borelli’s 

description. The “stance” and “swing” phase of the gait were first used in these measurements by 

Wilhelm and Eduard Weber and continued as the foundation for later gait analysis approaches. 

Image analysis of gait started with a chronophotography, as can be seen in Fig. 3, allowing for 

sequential exposures of a runner to be recorded in a single photograph. The first 3D analysis was 

done in the 1890s in which a film was taken of people wearing light emitting markers, allowing 

for a more detailed evaluation of each phase of the gait. Although done manually, this technique 

presaged today’s marker-based systems using light reflecting markers [40, 41]. Research in the 

middle decades of the 20th century added the measurement from gait of energy use, rotation of 

limbs, and external pressure on the limbs in certain scenarios [40].    

https://paperpile.com/c/f3P1AS/KqXlD
https://paperpile.com/c/f3P1AS/KqXlD+sN4X9
https://paperpile.com/c/f3P1AS/KqXlD
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Figure 3: Chronophotography of human motions. Superimposition of several 

photographs of a man walking and running, late 19th century.  [43] 

Current marker-based motion capture systems use specially designed cameras for capturing the 

light reflecting off of or being emitted from markers positioned on specific predetermined parts 

of the body. Technology plays a substantial part in current gait analysis practices, both in the 

capture gait data as well as in the decision making process. More recently, the use of depth 

cameras introduced a new way of capturing the human body without markers, which also 

happens to be the technology used for capturing data for experiments in the future chapters. 

2.1.3 Gait Motion Capture Technology  

2.1.3.1 Marker based Motion Capture Systems 

Although marker-based motion capture systems are not directly utilised in the experiments 

undertaken in this work, they are generally regarded as the gold-standard given their sub-

millimetre accuracy in tracking the marker [42,43] and have been used for the calibration of 

marker-less motion capture systems. Marker-based motion capture systems are generally 

accompanied by a companion processing software with the capability of generating a skeletal 

representation of the body from the specific markers’ positions. The positions are obtained by 

placing reflective or illuminating markers on the limbs and trunk of the body, which are tracked 

by a set of (typically) infra-red cameras. There’s two versions of marker-based motion capture 

systems, namely, passive and active marker-based systems. Passive markers reflect the infrared 

light that is emitted by the cameras, and is captured back by the cameras themselves.  Contrarily, 

https://paperpile.com/c/f3P1AS/2H4lf+lIiGN
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active marker-based systems have markers which emit infrared light which are captured by the 

camera. The active markers technique enables the system to have different frequencies of light 

emitted by different markers or having the emissions cycle through the different emitters, thus 

making it much easier to appoint joint labels to the different markers, but at an additional 

monetary cost. Passive markers enable the marker based motion capture system to be cheaper 

than its active marker counterpart, but increases complexity of calibration and assigning joint 

labels to the different markers. However, marker based motion capture systems in general tend to 

be more expensive than the alternatives mentioned in this section. The number of cameras, in 

both active and passive systems, depends on the desired accuracy and also on the size of the 

room, while the number of markers will depend on the desired accuracy for representing, say, a 

single joint. Modern systems can calculate the angles and velocities of different joints and as 

well as the forces on the limbs. Additional tools, like force measuring pressure plates, can also be 

used [43,44]. Accurate calibration is always required, usually with a special fiducial marker 

wand, and this can be a time consuming and ad hoc process in some systems.  

There are several disadvantages to marker-based systems. Markers must be assigned to different 

joints in software, which can consume a lot of time, while the system loses accuracy over time 

unless the cameras are recalibrated frequently. Reflective marker systems are prone to noise in 

the light, which can only be counteracted by controlling the light level while measurements are 

taken. In addition, markers can sometimes move slightly with the skin or clothes, making the use 

of specially designed markers containing bodysuits often advisable. In spite of these 

shortcomings, the different possibilities of marker placement and high accuracy of marker-based 

systems qualifies them to be used in clinical environments. A few examples of marker-based 

systems are Vicon™ [42], OptiTrack™ [45] and Qualisys™ [46], both systems providing a very 

accurate representation and frequently used in medical environments and research (see Fig. 4), 

usually up to sub-millimetre accuracy in tracking the markers.  

 

https://paperpile.com/c/f3P1AS/4pUPV+lIiGN
https://paperpile.com/c/f3P1AS/2H4lf
https://paperpile.com/c/f3P1AS/IgqFM
https://paperpile.com/c/f3P1AS/5teIs
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Figure 4: Vicon™ marker placement. Some Vicon™ configurations require very precise 

placement of the markers on the body [46] 

2.1.3.2 Marker-less Motion Capture Systems 

Marker-less motion tracking technologies are more convenient in comparison to the marker 

based systems. Their setup time is considerably less as they do not require any physical markers 

to be attached to the body at specific anatomical landmarks. These sensors have the capability 

mapping their surroundings in all three-dimensions, detecting and isolating human presence and 

understanding the anatomy of the human body to triangulate positions of body parts on them, 

using various computer vision algorithms. The Microsoft Kinect™ sensor is the first mass-

market sensor developed for marker-less body tracking. The Kinect™ sensor was originally 

developed to introduce gesture controls into Microsoft Xbox™ Games, but with the built-in 

depth sensor and 30 fps frame rate was soon adopted for gait analysis [47]. The first version of 

the sensor used structured-light technology [48] to project and receive a unique pattern of light 

invisible to the human eye, with the emitter and receiver placed a known distance apart. The 

distortion caused in the pattern of light received, due to the depth of the reflecting surface in 

front of the sensor, helps understand the depth of the surfaces around the sensor. The second 

version of the sensor Kinect™ v2, used a time-of-flight sensor [48] to map the depth of reflecting 

https://paperpile.com/c/f3P1AS/hLaBc
https://paperpile.com/c/f3P1AS/d6y5e
https://paperpile.com/c/f3P1AS/d6y5e
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surfaces around the sensor, based on the time taken for the light to reflect back to the receiver. 

The sensor provides the depth using either structured-light or time-of-flight technology, which is 

further processed using computer vision algorithms provided as a software library [49] for 

detecting the presence and isolation of a human body. Successful detection of the human body 

further utilises the library's capabilities for mapping the limbs, trunk and head according to body 

position. The data from the Kinect™ can be processed and shown either as a raw feed of the 

video (RGB), depth (D) stream from the sensor or the processed skeleton extracted from the 

depth stream [50]. The processed skeleton is represented as X-Y-Z body joint positions of 25 

salient joints of the human body, allowing a stick figure to be drawn. Either the RGB-D stream 

or/and the extracted skeleton can be used for gait analysis.     

The extracted skeleton represents a tracked 3D body pose. Each body pose is a composition of 

various tracked joints arranged in 3D space and represented as x, y and z coordinates in the 

Euclidean space. These tracked 3D joints correspond to the centre of the joint in real-life, of the 

person the sensor is tracking. The accuracy and precision of tracking can be tested by examining 

the extent a joint was placed into the correct body part, and whether the position within the body 

part was correct over the whole dataset across multiple frames [51]. Notably, the tracking of 3D 

joints is usually performed internally by the software library that accompanies a marker less-

motion tracking sensor. For example, Fig. 5 shows the body parts being used for the detection of 

the joint positions in the case of the Microsoft Kinect™ sensor, which is the sensor used in this 

work.  Fig. 6 shows the Kinect™ v2 joint names and positions [50] of the tracked joints. 

 

 
Figure 5: An illustration of the joint extraction process from the depth image obtained 

from the Kinect™ sensor. The picture shows the body, then their individual body areas and their 

joint representations highlighted as multi-coloured segments. This is the internal representation 

of the body used in extraction of the skeleton by the Kinect™ sensor. The output i.e. 3D joint 

proposals are used as data source for classification of gait 

https://paperpile.com/c/f3P1AS/a6B2x
https://paperpile.com/c/f3P1AS/Ul69m
https://paperpile.com/c/f3P1AS/Cpvi1
https://paperpile.com/c/f3P1AS/Ul69m
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Figure 6: The names, positions and hierarchy of the joints represented in the skeleton 

extracted from the depth image of the Kinect™ sensor. There are a total of 25 joints that are 

extracted when including fingers[52] 

 

The Kinect™ sensor focuses on upper body movement due to its mainly gaming objectives, 

which is a disadvantage for gait analysis in that the legs and feet are sometimes not as accurate 

and fluctuate.  Nevertheless, the Kinect™ can still be used for gait capturing as it is accurate for 

the rest of the body, feet accuracy can be improved by post-analysis and averaging during 

continuous gait cycles improves estimates statistically. 

 

Notably, subsequent experimentation relies on the skeleton pose information provided by the 

Kinect™ v2 sensor for representing gait. Gait is taken as a sequence of skeletal poses, each 

represented as a set of 3D positions of 20 salient joints of the human body. The details of the data 

is elaborated in Chapter 3 (the Methods chapter). 

2.1.3.3 RGB based video capture 

Video-based gait analysis is arguably the most traditional and still widely used form of motion 

capture. Although video (RGB)-based gait analysis is not presented, it is relevant in 

understanding the current practice and future of gait analysis. Gait capture through RGB video 

entails capturing the whole human body within the frame of exposure while the person walks in 

front of the camera. However, the difficulty in articulating the exact skeleton pose from a video 

makes it difficult to quantify gait from an RGB video. Moreover the existence of additional cues 

in video such as body shape, clothing, hair, face provided additional cues which may corrupt the 
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information that could have been extracted purely from gait. The existence of personally 

identifiable features such as face, makes it harder to anonymize the data, requiring a manual 

post-processing step to obscure personally identifiable properties in the interest of data protection 

and privacy.  In addition, the analysis from video largely depends on the training and expertise of 

the analyser that tends to be an experienced human observer. Humans, while extremely versatile 

and accurate, are vulnerable to human errors. However, the recent advent of artificial intelligence 

and machine learning (detailed in Chapter 3) demonstrates potential of disrupting the field of gait 

analysis from two-dimensional RGB video, through the use of skeleton pose extraction 

technologies and specific gait analysis techniques.  

2.1.3.4 Inertial Measurement Unit (IMU) 

While all the above optical methods restrict the physical area for capture of motion, IMUs allow 

for motion capture in a non-laboratory setting. Although IMUs are not used in this study, it is a 

promising extension for evaluation of the models in a future study. Inertial measurement units 

(IMU) are devices that can measure a body’s specific force, angular motion and also the 

orientation of the body. They generally use a combination of accelerometers, gyroscopes and at 

times, magnetometers. The advent of wearables technology has popularized the use of IMUs for 

various applications such as fitness tracking (e.g. FitBit™ [52]), activity monitoring and for 

medical applications, such as event detection and rehabilitation. IMUs generally have a higher 

sampling rate compared to marker based or marker less systems, providing enough time-series 

data for analysis of motion with high precision [53]. IMUs also have the advantage of being 

portable, unlike the other motion capture technologies mentioned, with a ‘plug-and-forget’ 

nature of capturing motion data. IMU sensors embedded in smart phones, fitness trackers, smart 

watches and other proprietary hardware can be used to capture motion for an extended period of 

time without the wearer’s conscious knowledge. The collection of continuous amounts of data 

helps in fine-tuning the analysis of objectives, such as gait. However, the data captured by the 

IMU sensors cannot be natively analysed by a human observer and requires extensive post 

processing and specialised training to be understood by humans. In the case of video, marker-

based or marker-less motion capture systems, the motion captured can be visually relayed for 

analysis by a human observer in a way that is familiar to the observer. However, the signals 

obtained from IMU sensors cannot be directly understood by human observers, thus requiring 

additional intervention using computational methods for analysis.  

2.1.3.5 Electromyogram (EMG) 

 

Electromyography (EMG) is a diagnostic technique that evaluates the condition of muscles and 

associated motor neurons. The EMG signal is a biomedical signal that measures electrical 

currents generated in muscles during its contraction representing neuromuscular activities. The 

nervous system always controls the muscle activity (contraction/relaxation). Hence, the EMG 

signal is a complicated signal, which is controlled by the nervous system and is dependent on the 

anatomical and physiological properties of muscles. The synergistic activation of muscle tissues 

of the whole body in different stages of a gait cycle generates action currents that flow through 

the resistive medium of the tissues [54]. The voltage gradients thus produced are read and 

https://paperpile.com/c/f3P1AS/1GYt
https://paperpile.com/c/f3P1AS/9BVcJ
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recorded as myoelectrical signals. This technique helps understand gait as a function of signals 

from the motor neurons and the resulting contractions and relaxation of the tissues involved in 

gait. Studies have demonstrated the correlations between the EMG signals recorded from 

specific muscles involved in gait (primarily in the lower limbs) and the specific corresponding 

components in the gait cycle [55–59]. The insights into the neurophysiological mechanisms 

provided by EMG has its advantages in clinical practice as well [40, 56, 58, 60–62]. Studies have 

applied the neurophysiological insights in developing intelligence in prosthetics and robotics [56, 

63–66]. However, similar to the IMU signals, understanding the EMG signals requires explicit 

training and cannot be natively analysed by a human observer. Although EMGs are not used in 

the current study, it's a promising method of gait analysis, given its conduciveness in the creation 

of advanced limb prosthetics.   

 

Motion capture is the first phase of gait analysis, leading up to the phase of understanding the 

motion data captured. Historically, the data captured was analysed by trained human observers to 

spot inconsistencies in gait with limited statistical analysis, relying mostly on visual acquisition 

of data and analysis using a mental model of the observed gait. However, advancements in 

computation technology have led to the implementation of artificial gait analysers which are 

executed directly on the captured motion data. The artificial gait analysers are used both for 

simplification of the motion data for easy human understanding as well as for end-to-end 

classification of the captured locomotion, based on the initial motion data. Both approaches i.e. 

humans and machines, have advantages and disadvantages, which are elaborated upon in the 

next section.  

2.1.4 Gait Analysis through Human Perception 

Throughout history, gait analysis has largely been performed by human observation of gait and 

its perception. Thus, understanding the mechanisms of human perception (HP) of gait becomes 

imperative to understanding the strengths and weaknesses of the current practice. As it will be 

mentioned further in this section, humans are naturally good at perceiving gait, however, not 

without biases. Whether the biases are inherent or learned is not resolved yet and will be 

investigated briefly in future chapters using computational models. In 1975, Swedish 

psychophysicist, Johansson Gunnar first demonstrated that human observers are highly sensitive 

to the structure of biological motion [53, 67]. In his study, the observers were presented with 

highly simplified representations of human motion using ‘point-light’ stimuli consisting only of 

the dynamic locations of a small number of specific parts of the body of a walking person. This 

was achieved by attaching luminescent balls of light to the salient body joint locations and 

recording its movement using two-dimensional video cameras. Despite the sparsity of joints, 

people readily interpret these stimuli as representing human gait. Subsequent research with 

point-light walkers demonstrated that human observers could extract the identity of familiar 

people [18–20]. When the walkers are unfamiliar, people could extract certain biologically 

intrinsic features such as approximate age and gender. Human gait carries an abundance of 

information beyond such intrinsic features, including the emotional state [9, 10, 68]  and the state 

of health of the individual [21].  

https://paperpile.com/c/f3P1AS/wdXd+yUq1+3Shh+Vzdt+P46Y
https://paperpile.com/c/f3P1AS/yUq1+nZQE+Vzdt+Z4H8+KqXlD+1HM2
https://paperpile.com/c/f3P1AS/yUq1+sNoW+uuAV+l6UP+GzhW
https://paperpile.com/c/f3P1AS/yUq1+sNoW+uuAV+l6UP+GzhW
https://paperpile.com/c/f3P1AS/9BVcJ+zP80u
https://paperpile.com/c/f3P1AS/5GG0F+SBpeJ+mhyje
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Human observers possess the impressive ability to adapt to learning specific types of gait, for 

purposes ranging from personal identification to clinical evaluation. Given the objective of 

comparing HP with the computational models, it is useful to consider the capabilities of humans. 

On the other hand, they have been documented to possess certain biases in perception as well. 

Studies have noted that an overreliance of HP on specific anatomical features could lead to 

erroneous judgement in gender classification when presented with an altered visual stimuli [32, 

35, 36, 69]. In one study, the same experiment was repeated with the same participants, but by 

inverting the skeletal pose of the walkers. Almost all of the observers changed their perception of 

gender to the opposite of what they had predicted earlier for the same walker [32]. Thus proving 

a lack of robustness due to expectations of anatomical configurations (upright skeleton) and 

over-simplification of perception. In addition, HP is highly susceptible to fatigue, errors in 

judgement and mortality. Misclassification of human gait, especially in a clinical setting could 

lead to commensurate loss in resources and delay in restoration of normal health. Moreover, 

developing clinical perception is an expensive and time-consuming process that cannot be 

transferred between humans easily. Thus stressing on the need for an alternate inexpensive 

perception model that can intelligently perceive the same characteristics from human gait, while 

being fast and impervious to fatigue and stochastic errors in judgement.  

2.2 Machine Learning 

Advancements in computer technology has provided the opportunity of programming an 

artificially intelligent gait analyser. The algorithms recruited for the intelligent analysis could be 

chosen from a vast pool of techniques, ranging from simple statistical tools such as first-order 

statistics with thresholds, to complex biomimetic algorithms such as perceptron-based artificial 

neural networks [70]. These algorithms can be used for both classification into categories, and 

regression of numerical metrics. Thus, the algorithms can be utilised to classify human gait into 

two or more categories, and also find the probability of it belonging to one or the other class. 

Broadly the algorithms can be segregated into two paradigms, depending on who does the 

learning (1) Expert systems, and (2) Machine learning systems.  

Expert systems represent a set of algorithms that emulate the decision-making capability of a 

human expert. They are designed to solve complex problems by reasoning through bodies of 

knowledge, represented mainly as if-then rules rather than through conventional procedural code. 

Essentially, the full knowledge of the human expert is digitised and used in decision making. An 

expert specifies all the steps taken to make the decision, the basis for doing the same and an 

approach to handle exceptions. A rigid system follows the exact rules from the expert. A flexible 

system uses the knowledge as an initial guide and uses the expert’s guidance to learn, based on 

the feedback from the expert. In this approach, the human expert does the learning which is then 

transformed as a digital set of rules for the computer to perform its judgement. The set of 

algorithms are extremely helpful in the lack of sufficient data, as the training data requirement is 

minimal. Many projects start with expert systems to validate a new concept and progress towards 

machine learning approaches.  

https://paperpile.com/c/f3P1AS/9R5Ga+q6x1i+ubF0D+Es75f
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Machine learning (ML) systems represent a set of algorithms that computer systems use to 

perform a certain task without using explicit human defined instructions, relying on patterns and 

inference instead. They build a mathematical model based on sample data, known as “training 

data” to make judgements without being explicitly programmed to perform the task. Machine 

learning algorithms are used where it is difficult or infeasible to develop a conventional human 

generated set of rules for effective performance in the task given the limitations of HP. 

Additionally, with the availability of sufficient data, machine learning algorithms are employed 

to learn highly complex nonlinear patterns that are beyond the scope of HP. Although the 

algorithms do not require explicit instructions, human intervention is a necessary step in training 

during ‘supervised learning’.  

Many people now interact with systems based on machine learning every day, for example in 

image recognition systems, such as those used on social media; voice recognition systems, used 

by virtual personal assistants; and recommender systems, such as those used by online retailers. 

As the field develops further, machine learning shows promise of supporting potentially 

transformative advances in a range of areas, and the social and economic opportunities which 

follow are significant. In healthcare, machine learning is developing systems that can help 

doctors give more accurate or effective diagnosis for certain conditions. In transport, it is 

supporting the development of autonomous vehicles, and helping to make existing transport 

networks more efficient. For public services it has the potential to target support more effectively 

to those in need, or to tailor services to users. And in data analytics, machine learning is helping 

to make sense of the vast amount of data available to researchers today, offering new insights 

into biology, physics, medicine, social sciences, and more [83]. From an implementation 

perspective, machine learning algorithms are a combination of techniques that have been 

developed so that a machine can understand the nuances in a data and learn to make decisions 

based on the given training examples. This branch of machine learning is termed as supervised 

learning [71]. Under supervised learning, a model is generally trained for classification or 

regression or both [71]. Given the objective of gait classification, the focus shall be on 

supervised classification task and the ML models that are used for the task. The focus shall be on 

the evaluation of various ML models and improving them. There are common models that can be 

used for classification as well as regression, however this study does not focus on them. An 

overview of the canonical problems in machine learning is presented in Appendix F. 

ML is a vast field with active ongoing research, thus this section restricts the scope of ML to the 

most widely used techniques as of the time of writing this thesis and defines them in the context 

of the underlying learning mechanism used. The mathematical foundations of the techniques are 

detailed in the corresponding Appendices.  

2.2.1 Classification 

Classification is a supervised learning task for modelling and predicting categorical variables. 

Examples include classifying emotional sentiment, music genre, financial fraud or diagnosis of 

diseases in a person [82, 86, 87, 104, 159, 203]. Many regression algorithms have classification 

counterparts. The algorithms are usually adapted to predict a class (or class probabilities) instead 

of real numbers. In this case, multiple ML models will be evaluated on the basis of classification 

https://paperpile.com/c/f3P1AS/UVz06
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of gait into two or more categories. As discussed in later chapters, the classification outcomes in 

case of chapters 4 and 5 is the binary gender (male or female), while in case of chapter 6, it’s the 

state of emotion (between positive, negative or neutral). Different ML models have different 

approaches to communicating the output. To establish consistency amongst the models, a 

classification is considered as the category chosen either with the highest probability of outcome, 

or, the category remained after elimination of all the other candidate categories. 

2.2.2 Support Vector Machines 

Support Vector Machines (SVM) were first introduced by Vapnik in the early 90s [72]. They’ve 

found applications in a wide variety of areas. As binary classifiers, SVMs have been used in gait 

classification [11], face recognition [73], speech recognition [74] and text categorisation [75]. As 

regressors they’ve been used in control systems and communications [76], amongst others. In 

case of classification, SVMs construct a decision rule to classify vectors to one of two (or more) 

classes based on a training set of vectors whose classification is known a-priori. SVMs do this by 

implicitly mapping the training data into a higher dimensional feature space. A hyperplane 

(decision dividing surface) is then constructed in this feature space that bisects the two categories 

and maximises the margin of separation between itself and those points lying nearest to it (also 

known as the support vectors). This hyperplane or decision surface can then be used as a basis 

for classifying vectors of unknown classification. SVMs have the advantage of (1) implementing 

a form of structural risk minimisation - Essentially attempt to find a compromise between the 

minimisation of empirical risk and the prevention of overfitting[76], (2) attempting to solve a 

convex quadratic programming problem. Thus, lacking a non-global minima to get stuck in 

making the problem readily solvable in a single-shot (as opposed to iterative solving in neural 

networks) using quadratic programming techniques, and (3) specifying the final trained classifier 

completely in terms of its support vectors and the chosen kernel function type. 

They also have a corresponding regression-based alternative known as the support vector 

regressors (SVRs), which are a set of non-linear regressors inspired by Vapnik’s support vector 

method for pattern classification. Similar to Vapnik’s method, SVRs first map all the data into a 

higher dimensional feature space using some kernel function (usually). In this higher 

dimensional feature space they attempt to construct a linear function of position that mimics the 

relationship between the input and output observed. In other words, they try to find the non-

linear map between the points in the higher dimensional feature space and the class they belong 

to. SVRs are simpler than their corresponding competing methods such as unregularised least-

squares [77]. Details of the mathematical formulation of the SVMs are provided in Appendix A. 

2.2.3 Decision Trees (ID3) 

Decision trees (DT) are a popular tool in machine learning and statistics for classification tasks 

(both classification and regression). For example, the skeleton builder in the marker-less motion 

capture sensor i.e. the Kinect™ v2 uses decision trees to identify the different joints of the 

human body in the depth image [78]. The learning mechanism (also known as training phase) in 

a DT involves two steps, (1) learning a hierarchical, tree-structured partitioning of the input 

https://paperpile.com/c/f3P1AS/shyb
https://paperpile.com/c/f3P1AS/xo6dw
https://paperpile.com/c/f3P1AS/5snzj
https://paperpile.com/c/f3P1AS/f7TBX
https://paperpile.com/c/f3P1AS/DMybe
https://paperpile.com/c/f3P1AS/yQfdm
https://paperpile.com/c/f3P1AS/yQfdm
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space, and (2) learning to predict the label within each node. DTs are used extensively in data 

mining because they 

● are computationally fast to train and test 

● are well-suited for datasets with mixed attribute types i.e. binary, categorical, numerical 

● test with good accuracy and are interpretable 

DTs are a different paradigm of machine learning models from support vector machines. They 

are extremely effective, especially on categorical data. Similar to SVMs, decision trees are 

applicable as classifiers as well as regressors. However unlike the SVMs, decision trees are 

white-box classifiers. In other words, the set of rules developed during the training phase of 

decision trees can be explicitly laid out. While DTs are powerful, they are prone to overfitting on 

the training dataset and require additional heuristics to provide bounds to their complexity, such 

as pruning or limiting maximum depth. Intuitively they can be thought of to have a bias-variance 

trade-off. Where increasing depth of the tree captures increasing complexity within the training 

dataset. Deep decision trees have low bias but high variance. A decision tree algorithm trained 

on two different datasets can produce a result with high variance, hence DTs are sometimes 

termed as unstable learners. 

The basic objective in training DTs is to minimise the impurity or entropy of the training set. 

Intuitively, DTs attempt to minimise ambiguity in classification of a data point into a particular 

category. A highly impure dataset would possess a high ambiguity of classification. Impurity is 

generally measured as a quantifiable measure such as (1) Information Entropy, or (2) Gini 

Index/Gini impurity [79]. Details of the mathematical formulation of the model, its training and 

inference is provided in Appendix B with a worked- out example for further clarification. 

2.2.4 Artificial Neural Networks 

An artificial neural network (ANN) is a massively parallel network of interconnected digital 

processing elements (also known as neurons). The parallel nature of the network enables it to 

achieve the computation capacity deemed practically impossible for sequential computer models, 

which includes all the other machine learning models mentioned previously. The function of a 

single neuron in an ANN is simple, and is often taken as the functional weighted sim of the 

inputs, passed through a non-linear activation function followed by either a sequence of similar 

layers of neurons or further processed into an output layer for results. The biological neurons in 

the brain communicate by means of spike trains (or impulse trains). ANNs are designed to 

emulate this characteristic which enables them to learn. The perceptron model of the neuron that 

is implemented in the ANN captures the biological mechanism by encoding the spike rates as the 

output of the neuron. The ‘weights’ of connection between the neurons represent the strength of 

the bonding at synapse (represented numerically) or more intuitively the amount of contribution 

of the output of one neuron to the next. The study and application of artificial neural networks 

has the dual purpose of using our knowledge about the brain to develop effective and efficient 

solutions to the problem of human body motion analysis, as well as shedding some light on the 

possible biological neural mechanisms of the brain that are involved in visual motion analysis. 

https://paperpile.com/c/f3P1AS/m9PS5
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As mentioned in the previous section, support vector machines operate by fitting a linear 

hyperplane onto a dataset either in its original form or its projection through a nonlinear 

transformation function, while decision trees (or random forests [122]) inherently introduce 

nonlinearity through the minimisation of dataset impurity. However, the key advantage of 

artificial neural networks is the complexity of nonlinearity that can be mapped by the networks 

due to its compounded nonlinearity effect of multiple layers. The rich dynamical properties 

exhibited by some architectures have suggested applications in signal processing, robotics, and 

control amongst various others [159, 174, 177, 179]. The learning ability in ANNs is inspired by 

biological systems. The contribution of each neuron varies slowly with time according to the 

given training set, thus accounting for a stable long term contribution to the final output by each 

neuron. The ability to learn patterns and map the input stimulus to the output expected has 

leveraged the application of ANN in medical diagnosis, time series analysis and classification 

[74, 78, 82, 85, 86, 87, 101-104, 159, 179]. Gait, simply put, can be represented as a time series 

of multidimensional data, where each dimension represents the temporal evolution of the 

trajectory of a particular joint moving in three-dimensional space. Certain architectures of ANNs 

are very well suited for analysing such time series information to encode the spatiotemporal 

patterns encoded in the data. Similar to SVMs and DTs, ANNs do not require explicit 

specification of rules of the data to learn the patterns. The way they model a system is by 

considering the input-output examples of the process (called training examples/sets) and learning 

a possible nonlinear mapping between the inputs and outputs. The arrangement of neurons in the 

network is known as the network architecture, and it decides the type of data that can be best 

analysed by the network and its capacity for learning. The complexity of the nonlinear mapping 

function that can be learned by the network is generally defined by the number of layers in the 

network and the number of neurons per layer. As the number of layers and neurons increase the 

learning gets deeper, crediting the network with the term ‘deep learning’ network[80]. 

2.2.4.1 Recurrent Neural Network (RNN) 

The neural network architectures mentioned previously treat every input data point as an 

independent, self-contained vector with no relation to its previous to next input. However, 

biological brains are constantly active and correlate new data points with previous data points to 

make a longitudinal pattern. Humans don’t think from scratch every second. This is most evident 

during visual perception [81]. Similarly, gait is visually perceived by humans, because of the 

persistence of memory as the visual stimuli changes through a sequence of human body poses. 

Had there been no memory (or persistence of thought), each body pose would be treated 

independent of the others, leaving no room for the concept of gait. Traditional neural networks 

such as Multi-Layer Perceptron based Artificial Neural Networks (MLPs) [80] and 

Convolutional Neural Networks (CNNs) [30] suffer from this issue, which the RNN aims to 

address. RNNs emulate the biological feature of ‘memory’ or ‘persistence of thought’ through 

the use of looping back mechanisms in the architecture. In theory, RNNs can make use of 

information in arbitrarily long sequences. A simple RNN architecture is presented in Fig. 7. The 

unfolding of the RNNs with each time step inherently classifies this architecture as a deep neural 

network.  

https://paperpile.com/c/f3P1AS/umuXB
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Figure 7: A representation of the ‘unfolding’ of the RNN network with each subsequent input. 

Given the characteristics of RNN networks, each unfold increases the prominence of the 

vanishing and exploding gradient problem 

Similar to the biological brain, the RNNs achieve this by considering the existing state of the 

network along with the new input at every step of data point processing. The above figure shows 

the unfolding (or unrolling) of the network with every subsequent data point. The network 

essentially combines both the new input it receives as well as its old state (the collection of all its 

parameters) into a single input vector to process. The formulas that govern the computations are, 

● 𝑥𝑡 is the input at time step 𝑡. For example, 𝑥1could be a one-hot vector representation 

corresponding to the second word of a sentence 

● 𝑠𝑡 is the hidden state at time step 𝑡. It’s the “memory” of the network. 𝑠𝑡  is calculated 

based on the previous hidden state and the input at the current step 𝑠𝑡 = 𝑓(𝑈 ⋅ 𝑥𝑡 + 𝑊 ⋅

𝑠𝑡−1). The function 𝑓usually is a nonlinearity such as 𝑡𝑎𝑛ℎ or  𝑅𝑒𝐿𝑈. 𝑠−1which is 

required to calculate the first hidden state is typically either initialised to zero or 

randomly initialised 

● 𝑜𝑡is the output at step 𝑡. For example, if we wanted to predict the next word in a sentence, 

it would be a factor of various probabilities spanning across the language vocabulary. 

𝑜𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑉 ⋅ 𝑠𝑡) 

Intuitively, 

● 𝑠𝑡 can be thought of as the memory of the network. It captures the information about the 

processing of the previous data points in previous time steps. The output, 𝑜𝑡is calculated 

solely based on the memory at time 𝑡. However, in practice the function of the RNN 

depends highly on the implementation. A simple RNN cannot capture information from 

too many time steps ago. Specific modifications can be made to the simple RNN to 

improve its long-term temporal pattern capabilities (as mentioned in following sections).  

● Unlike simpler and more traditional deep neural networks such as MLP and to an extent 

CNNs, which use different unable parameters at each layer/step, the RNN shares the 

same tuneable parameters across all the ‘unfolded’ layers (as shown in 
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𝑈, 𝑉 𝑎𝑛𝑑 𝑊above). This reflects the self-learning and self-tuning capabilities of the 

biological human brain and the fact that every time step essentially affects the model as a 

whole including everything learned up until that time step. The advantage of this 

approach lies in the greatly reduced number of parameters to be learned.  

● Depending on the application, the output at each time step may or may not be essential. 

Application might focus only on the final output of the RNN and learn the required 

weights from the final output state. 

 

If we had to draw an analogy with human perception, recurrent neural networks (RNNs) can be 

thought of as multi-layer perceptron (MLP) networks, with memory added to them. For example, 

if ANNs are analogous to human perception, MLPs are similar to a memory-less learners. An 

MLP based learner would be able to learn the correlations between an input and an expected 

output, but would not remember the previous input provided to it and cannot correlate any 

previous inputs provided to the current output expected. It can only correlate the immediate input 

and output. Contrary to this, an RNN based learner would not only be able to correlate the 

current input, but also all the previous inputs provided to the current output. Essentially, it can 

correlate data through time to an expected output. RNNs are thus used to find temporal patterns 

to classify a signal/data sequence. 

2.2.4.2 The Vanishing and Exploding Gradients Problem in RNNs 

Understanding temporal patterns requires the model (whether biological or machine learning 

based) to persist the temporal information in time as the relevant information may either be 

spread across time or have different pockets of relevance in different times. This kind of 

dependence between sequence data is called long-term dependencies given the distance between 

the relevant information and the point where it is needed to make a classification. Unfortunately, 

practically, as distance becomes wider, RNNs lose most of the information making it extremely 

hard to learn the dependencies. They encounter either a ‘vanishing’ or ‘exploding’ gradient 

problem. The problem magnifies when the relevant bits of information are spread out at greater 

distances, especially when the more relevant bits of information towards the beginning of the 

data sequence, requiring the gradients to be propagated back in time all the way to the initial 

layer. The gradients being propagated through the deeper layers of the network undergo a 

sequence of matrix multiplications because of the chain rule. The results of the multiplications 

shrink exponentially, if they have small values (less than 1) until they vanish, making it 

impossible for the model to learn from them, leading to the vanishing gradient problem. On the 

other hand, if the values are large (greater than 1), they get larger and eventually increase 

exponentially to blow up and reach the limits of the highest number that could be processed by 

the computer, resulting in the crashing of the machine learning model, leading to the exploding 

gradient problem. 

The problem of exploding gradients can be dealt with to an extent by clipping the gradients to a 

predefined threshold, to prevent it from becoming too layer. This process doesn’t change the 

direction of the gradients, but only affects its magnitude. The vanishing gradient problem can be 

resolved to an extent with the identity RNN architecture [82]. Where the network weights are 

https://paperpile.com/c/f3P1AS/3jbmw
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initialised to the identity matrix and the activation function are all set to Rectified Linear Units 

(ReLUs) [160]. The resulting network encourages computations to stay close to the identity 

function. The effectiveness of this stems from the fact that when the gradients are propagated 

backwards through time, they remain constants of either a 0 or 1, hence aren't likely to suffer 

from vanishing gradients.  An even more popular and widely used solution is the Long Short-

Term Memory architecture (LSTM) [84]; a variant of the regular recurrent network which was 

designed to make it easy to capture long-term dependencies in sequence data. The standard RNN 

operates in such a way that the hidden state activation are influenced by the other local 

activations closest to them, which corresponds to a “short-term memory”, while the network 

weights are influenced by the computations that take place over entire long sequences, which 

corresponds to a “long-term memory”. Hence the RNN was redesigned so that it has an 

activation state that can also act like weights and preserve information over long distances, hence 

the name “Long Short-Term Memory”. 

Extending the human analogy established at the end of the previous section (read 2.2.4.1) the 

vanishing and exploding gradient problem can be thought of as a human learner without long 

term memory, who attempts to remember everything or forgets everything too soon. Exploding 

gradients can be thought of as a learner who tried to remember everything and thus saturates the 

whole system, reaching the capacity of remembering soon. Vanishing gradients can be thought 

of as a learner who forgets things too soon and is myopic in their remembrance of previous 

inputs, essentially making them similar to MLPs but with more tuneable parameters which are 

not utilised.  

2.2.4.3 Long Short Term Memory (LSTM) 

The Long Short Term Memory cell/unit is an improvement upon the standard RNN and features 

heavily in this work. Similar to the RNN, it receives its input from the current time step input 

𝑥𝑡and from the previous time step ‘hidden’ state of the network 𝑠𝑡−1 [84]. The main architectural 

changes are, 

● introduction of a memory cell state 𝑐𝑡 

● introduction if three sigmoid gates- forget gate 𝜎𝑓(𝑡), update gate 𝜎𝑢(𝑡)and the output 

gate 𝜎𝑜(𝑡) 

● the ability to remove or add information to the memory cell state 

The cell state and gates are learnable i.e. the LSTM learns the relevant temporal patterns in the 

training phase. Thus, it also learns the differences between different temporal patterns that lead 

to a certain classification, allowing it to identify subtle changes in patterns, which may be 

indiscernible from the aggregated gait metrics. This architecture is inspired from the memory and 

learning capabilities of the biological brain model as well. While the RNN introduced the 

concept of memory or thought persistence in the neural network, the problem of quickly 

forgetting everything, thus not being able to learn anything (also known as the vanishing gradient 

problem) or trying to remember everything leading to a crash of the model (known as exploding 

gradient) became apparent. The introduction of the memory cell state is similar to the concept of 

long term memory hypothesised in biological brains [84], to which information can be written 

and read from based on how relevant it is. The three various gates are used for regulation of 

information flow to and from the cell state, having parallels in relevance of information and 
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biological attention to the information and being receptive to new information. Thus LSTM aims 

to emulate an intelligent learning system that is capable of extracting relevant patterns across 

long time spans of information while being receptive and open enough to change itself while 

learning from new patterns.  The LSTM cell has featured heavily in recent research about 

classification of time-series based data, such as speech recognition [85], financial price 

prediction [86], music genre classification [87] and language translation [87,88] to name a few. 

Representation of human gait as a multidimensional time series signal allows it to be used as 

input data for the LSTM cell. The biomimetic emulation of memory and the underlying 

functional emulation of basic human biology makes it an excellent candidate for a biomimetic 

model (BM) to analyse gait. While there are other computational models that mimic biology 

more closely [89,90], there is a trade-off between the complexity of the model, leading to closer 

biomimicry and the practicality of training the model to be used as a classifier. Generally, an 

increase in complexity demands an increase in the size of training dataset and a higher 

computational budget for training and testing. There are other BM that have been proposed in 

literature are mentioned in section 4.2.1. However, the number of tuneable parameters in those 

models are orders of magnitude higher than the ones in the LSTM, requiring a training dataset 

and computational power that is considerably higher than what is available in a typical high-end 

computational device. Thus, given the practicality of the problem to be addressed, the more 

complex models are not evaluated here. 

 

Extending the human analogy mentioned in the previous section (read 2.2.4.2), LSTMs provide 

the advantage of deciding whether to remember a certain sequence or not, based on their 

relevance to the final expected output. LSTM based learners decouple their memory (cell state) 

from provided inputs and output using gates. The gates are responsible for learning whether to let 

a certain sequence of inputs affect the memory, based on their relevance to improving 

classification. This allows the learner to learn extended temporal patterns without forgetting the 

past inputs or reaching capacity trying to remember everything. Thus overcoming the problems 

found in RNNs.  

2.2.5 Model Comparison 

Models, like the support vector machines (SVM) [77] learn to linearly separate the training input 

features using a hyperplane to find the best class for a new test input feature set. In case of a non-

linearly separable dataset, SVMs utilise the non-linear projection functions, also known as 

kernels [77, 91, 92] to derive linearly separable projections of the input. While the SVMs are 

more suited to classifying numerical data, Decision Trees (DT) [28] are more versatile and can 

classify categorical data as well. DTs view all inputs as categories and learn to use the most 

relevant features to reduce ambiguity in class, while developing cumulative branches of rules to 

minimise ambiguity. The inner nodes of the DT represent binary rule sets, while the leaf nodes 

represent the classes. The appropriate combination of input features and hyper-parameters of the 

ML models can lead to optimal classification performance. Performance here is defined as the 

percentage of predicted classes matching the actual classes in the test set. However, in case of 

SVMs and DTs, the extraction of relevant features from multi-dimensional temporal signals like 

human gait requires human intervention and domain expertise, requiring a reinvention of features 
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for a new gait classification objective.  Biomimetic algorithms, of which artificial neural 

networks (ANN) are prominent [93], are inspired by the intricate complex connections of billions 

of neurons in the human brain and attempt to mimic the transference and modification of 

information as it flows through layers of neurons. ANNs make it possible for the learning models 

to learn highly non-linear relationships between the inputs and the output objectives, improving 

classification performance dramatically. Deep learning (DL) models-based on ANNs take it a 

step further and eliminate the need for any human intervention by designing specialised ANN 

models, to learn the features directly from the raw input and utilise the learned features in 

classification. Thus generating an end-to-end solution for any classification objective. DL 

models have also been shown to outperform all other ML models in classification. Memory-

based DL models, like the Recurrent Neural Networks and Long Short Term Memory (LSTM)-

based networks have the additional ability to understand sequential data [27,84] while learning 

the optimum features for classification, which makes them highly suitable for processing multi-

dimensional temporal data like human gait. Memoryless DL models like the deep feedforward 

neural network (FFNN) can learn features from static input directly and have been shown to 

outperform SVMs, DTs and shallow ANNs [80,94,95]. Interestingly, the process of learning the 

requisite features from input and utilising the features learned in classification is similar to how 

HP operates as well. ANNs mimic a memoryless analytical brain, while LSTMs mimic an 

analytical brain with both short and long term memory. SVMs and DTs represent purely 

statistical learning models with no correspondence with the human brain. We classify ANNs and 

LSTMs as biomimetic, and SVMs and DTs as non-biomimetic learning models.  

The objective of developing an artificial gait analyser favours the use of machine learning 

approaches as opposed to expert system-based techniques, given the capability of the former set 

of algorithms to learn highly complex nonlinear relationships for maximising performance. 

However, human observers have shown themselves to be accurate and versatile gait analysers, 

thus the incentive to adhere to human-like learning and inference mechanisms.  

2.2.6 Backpropagation and Genetic Algorithms 

The training phase of the ANNs (including RNNs, LSTMs) improves the ANNs’ ability for 

classification (or regression) by iteratively adjusting its hyper-parameters, such that, the output of 

the ANN closely matches the desired label of corresponding input in the training dataset. The 

adjustments to the ANNs are made either using (1) backpropagation (BP), or (2) genetic 

algorithms (GA). BP works by calculating the error deltas of the weights to be adjusted to 

minimise the error value in each iteration, by back-propagating the deltas to change the weights 

[70]. GA use a fitness function [70, 96] to determine the best performing models from the 

population and cross-breed them from the mating pool, usually with some crossover and 

mutation. Studies have compared both BP and GA on numerous parameters including time taken 

for training, size of training dataset, ease-of-use, outcome accuracy of classification and 

regression [97–100].   

Studies have employed GA to successfully classify human body movements, especially for 

clinical diagnosis [101–104]. The ease-of-use, low requirement of training dataset, explainability 

https://paperpile.com/c/f3P1AS/hMqtq
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https://paperpile.com/c/f3P1AS/yIIw+gKQ8+Ob8T+959A
https://paperpile.com/c/f3P1AS/gM3D+SE64+r9a6+JBGx
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and robustness to over-fitting have helped classify clinical conditions such as Parkinson’s 

[22,101–104]. 

BP can be thought of being analogous to ‘learning from mistakes’ in human perception. 

BP was originally proposed as a learning- mechanism for multi-layer perceptron networks [93]. 

Although it is generally agreed that BP cannot directly be implemented in real neurons, there is 

implicit recognition that neural mechanisms must somehow implement them [105]. Studies have 

reported the success of using BP in models of human learning at a molar level [105–107], while 

other studies have emphasized its failures [108–110]. The parallels between BP and human 

behavioural learning makes it the learning process of choice for our experiments that compare 

HP and BM models. Thus, for the experiments that utilise BM models, a variation of BP referred 

to as ‘backpropagation through time’ (BPTT) [111] is used to back-propagate the errors not only 

in space but also in time for the BP models. Appendix D.IV provides the mathematical details of 

the implementation of backpropagation for the ANNs. 

2.3 Related Work 

Gait classification is a well-researched application of gait analysis [9, 10, 18, 32, 67,112–115]. 

The ability to perceptually organise point-light displays (PLD) into the percept of a specific 

human action has long served as a demonstration that humans are adept at recognising the 

actions of their conspecifics. In 1973, Swedish Psychologist Gunnar Johansson published his 

results on experiments performed on motion perception of a multitude of directions in 3D space 

[67,112]. His experiments demonstrated the inferred depth and direction of motion from 2D 

point light animations of joints (without the need for the form aspect of the whole body) of a 

walking person from walking durations of a quarter of a second, establishing the powerful visual 

perceptual capabilities of the human mind and its reliance on optical flow to deduce motion. 

Subsequently, a meta-analysis of experiments was conducted examining gender classification 

capabilities of humans from point-light displays, obtaining 66% correct from side view and 71% 

for other views, with an optimal classification of ~79% correct[9,10]. To obtain estimates of 

perception efficiency, observers were presented with multiple repetitions of knocking, waving 

and lifting movements and evaluated the observations based on gender and affect classification 

of the model [10,116]. Efficiency was expressed as a squared ratio of human sensitivity to 

artificial neural network (ANN) sensitivity. The gender classification showed a proportion 

correct of 0.51 and an efficiency of 0.27%.A nuanced analysis of accuracy of gender 

classification was performed with confidence level of the observer of the PLD, showing ~85% 

correct at the highest confidence level[115]. Another study limited the temporal parameter of the 

duration of the stimulus to a minimum of 1.6 sec and a maximum of 2.7 sec of dynamic PLD to 

fully inform the observer of the gender of the walking model [32]. The conclusions from the 

above work informed the limits and variations of the study in this thesis in terms of human 

capabilities in gait analysis. A lack of available literature on gender classification efficiency from 

gait with human observers was also noted.  
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2.3.1 Automation of Gait Classification 

Automation of gait classification has been an ongoing research topic for more than two decades, 

with gender classification being the most common objective for evaluation of the proposed 

classification techniques. There has been an increase in the number of applications of machine 

learning (ML) and deep learning (DL) models in the classification of gender from gait towards 

the latter part of the decade. Support vector machines, decision trees and feedforward artificial 

neural networks being some of the most common classification models, with support vector 

machines being used most frequently [1–5, 11,117–119]. While the performance outcomes of the 

models are significantly higher than chance and supersede human performance in most cases, 

there is a marked dissimilarity between the way HP and ML models perceive gait. As mentioned 

in the Introduction, performance here is defined as the percentage of predicted classes matching 

the actual classes in the test set. Humans have the ability to visually observe the human body, 

isolate the skeletal dynamics and compare the motion to established notion of gait. However, the 

machine learning models (SVM, DT, ANN) operate on static data points. To conform to the 

input requirements of the models, human gait needs to be represented as a static set of numerical 

values. Multiple studies have explored the static representation in conjunction with different 

classification models with encouraging results. A brief of the related literature to classification 

gender from human gait is presented in Table 1. 

Most studies have utilised canonical static descriptors of gait, used for clinical applications; 

spatiotemporal gait metrics such as stride length, joint angles and displacements, gait cycle time 

etc. as features for gait classification. The main research in such studies is focused mainly on 

evaluating the machine learning models for classification accuracy. In the case of the intrinsic 

feature of gait, a relatively smaller number of studies have proposed novel features to be 

extracted from gait such as, Gait Energy Images (GEI)[118] and Gait Energy Volume (GEV) 

representations of gait [119]. The novel features have shown the most promise in gender 

classification from gait. There has also been a shift of motion capture technology from two-

dimensional RGB sensors to more sophisticated 3D motion capture technology, especially the 

marker-less technologies in recent literature [1, 2,119]. The shift in motion capture technology 

has led to dramatic improvements in classification technology, especially in gender classification 

from skeletal motion. However, the study of the potential of gait analysis using 3D sensors is at 

an early stage compared to the maturity of the 2D sensors.          

2D or 3D silhouette-based gait videos (such as GEI and GEV) are often model-based to fit a 

stick-figure to focus on the limb motion trajectories. For all purposes, model-free silhouettes are 

not considered as they provide additional external cues for easy classification of gender (hair, 

clothes etc), which contaminates the generalisability of the ML model to conditions other than 

what it’s been trained for. Lee and Grimson employ features from dynamic human silhouettes, 

by dividing the silhouette into seven regions and an ellipse is fit to each region [120]. The 

centroid, the aspect ratio of the major and minor axes of the ellipse, and the orientation of the 

major axis of the ellipse are taken as features. The method achieves a correct classification rate 

(CCR) of 84.5% in a database of 24 subjects (10 males and 14 females). Similarly, ellipse based 

features were used, but combined with multi-view features to improve performance [5]. Another 

https://paperpile.com/c/f3P1AS/8EitX+X2Tod+xo6dw+SrWYH+jrKy9+M8H7t+SYw4E+M27kL+andIH
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https://paperpile.com/c/f3P1AS/subjf
https://paperpile.com/c/f3P1AS/X2Tod
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study extracted static features as a sequence set of 2D stick figures and utilised an SVM and 

ANN as classifiers of choice [11]. The CCR is 95% for SVM and 92% for the ANN for 100 

subjects (84 males and 16 females). 26 hand-crafted features including cycle time, mean and 

standard deviations of joint angles, their displacements and their corresponding time derivatives 

were provided as inputs to the ANN. Different from these methods, a new method was proposed 

which recognises gender from static full body images, using Histogram of Oriented Gradients 

(HOG) as feature and Adaboost [121] and Random Forest Algorithms[122] as classifiers [4] . A 

CCR of 75% was achieved for 888 images. Notably, the concept of Gait Energy Image (GEI) 

was introduced [118] as a static representation of the dynamics of gait for individual person 

identification. Utilising this technique, CCR of ~88% was obtained in gender classification [3]. 

As GEI is model-free, the most important features in classification are hair style and chest, which 

are external cues and not inherent in the dynamic of gait itself.  

The launch of affordable RGB-D cameras made it possible to extract the 3D depth map of a 

walking person, without any contact with the personnel’s body, making the sensor suitable for 

biometric and clinical gait analysis. An extended version of the GEI to 3D using binary voxel 

volumes analogous to the 2D silhouettes, known as Gait Energy Volume (GEV) was proposed as 

a feature [119]. The study spatially aligned the voxels corresponding to the lower body averaged 

over a gait cycle. It was demonstrated that using 3D depth-based features along with traditional 

2D silhouette features led to a 6% rise in accuracy performance in gender classification from gait 

[2]. The study of the potential of gait analysis using 3D sensors is at an early stage compared to 

the maturity of 2D sensors.  

Although gender classification from gait has been studied extensively, most studies focus on 

human perception and machine perception in isolation, leading to a lack of literature 

encompassing HP, BM and NBM perceptions in the same study and evaluated using the same 

dataset. Among the notable works comparing HP and ML, Davis and Gao [1] use PLDs in an 

automatic method. The method proposed uses an adaptive three-mode Principal Component 

Analysis (PCA) to extract features from PLDs, the CCR in a 40 subjects database (20 males and 

20 females) is 95%. They also recruited 15 observers to recognise gender by visually observing 

the PLDs with a CCR of 69%. The exceptionally high performance of the automatic method 

could be attributed to the human intervention and the explicit hand-crafting of the static features 

(through PCA), which the human observers lack, leading to a bias in the perception of gender 

from gait between the learning models. While the learning models have been studied separately 

and evaluated for their performance at their best, studies exploring their learning efficiencies, in 

terms of the amount of information required to reach a certain level of performance has not been 

published to the best of our knowledge.  

In terms of the extrinsic feature of gait, the ability of human observers to understand emotion 

from gait is well studied. In 1890, James et al. believed that walking alongside another person 

and mimicking or even observing their gait would reveal what the walker is feeling[123,124]. In 

the 1900s, the idea of being able to ascertain one’s character from their style of walking was 

further solidified [9, 10, 17, 68, 124–128]. Human gait conveys affects similarly to voice or 

facial expressions [123]. Understanding emotional affect is an active area of study [17,126–128] 
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https://paperpile.com/c/f3P1AS/QKRvo+xVEXz
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and human observers have been able to identify emotion from biological motion [9, 10, 68, 128]. 

The ability of the observers in being able to extract the relevant features for emotion, has been 

studied in gestures such as knocking, waving, lifting [9,10], dancing[68] and gait 

[12,13,17,33,34]. Ability of human observers to extract emotion from gait was pioneered by 

Montepare et al. in 1987 [34] by utilising human observers to categorise neck-down videos of 

walkers into emotion categories of happiness, sadness, anger and pride. While most research on 

expression of emotions has focused on the human face as the medium of expression, there has 

been a rising interest in understanding the nuances of human gait and its correlation with 

emotion expressed by the walker [37, 68, 116, 128–130]. Examples of important features for 

determination of emotion can be divided into two categories, (1) Postural features, such as head 

inclination and elbow flexion, and (2) movement kinematics, such as velocity and acceleration 

(jerk of limbs), especially arm movements [116,131]. Thus, emotion classification acts as an 

ideal testing criteria for the ability of the BM to learn the relevant features for classification of a 

short-lived gait feature, providing support for its application in tasks such as clinical diagnosis 

and crowd sentiment monitoring.  

The use of static representations as features mentioned above for use in support vector machines, 

random forests, decision trees and multilayer perceptron neural networks, reduces the extensive 

dynamics of skeletal motion for a particular objective, making it less generalisable for objectives 

other than the one intended for the feature extraction. In general, a lack of research establishing 

parallels between human and artificial gait classifiers was observed, as of the time of conducting 

this research. Humans are still the best learners known and there is much to learn given the 

efficiency and accuracy of human learning and observation.   
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       Gait 
Data Source 

Type 

Extracted 
Feature 

Size of 
Dataset 

Classification 
Model Type 

Performance 
Output 

Authors 

2D 
silhouette 

Ellipse fit 
body regions 

24  
(10 M, 14 F) 

Calculated 
body part 

ratios 

85% Lee and 
Grimson 

[120] 

2D stick 
figure 

Shoulder 
focus 

20  
(7 M, 13 F) 

Human 
observers 

76% Saunsders 
et. al. [5] 

2D stick 
figure 

Motion 
signatures 

100  
(84 M, 16 F) 

SVM 95% Yoo et. al. 
[11] 

2D stick 
figure 

Motion 
signatures 

100  
(84 M, 16 F) 

ANN 92% Yoo et. al. 
[11] 

Full body 
images 

Raw Images 888  
(600 M, 288 F) 

AdaBoost 72% Cao et. al. 
[4] 

Full body 
images 

Raw Images 888 (600 M, 
288 F) 

Random 
Forest 

73% Cao et. al. 
[4] 

Full body 
images 

Edge Map 888  
(600 M, 288 F) 

Random 
Forest 

73% Cao et. al. 
[4] 

Full body 
images 

HOG 888  
(600 M, 288 F) 

Random 
Forest 

73% Cao et. al. 
[4] 

Full body 
images 

Part Based 
Gender 

Recognition 
(PBGR) 

888  
(600 M, 288 F) 

PBGR 76% Cao et. al. 
[4] 

2D 
silhouette 

Static images 124  
(93 M, 31 F) 

Human 
Observers 

95% Yu et. al. [3] 

2D 
silhouette 

Static images 124  
(93 M, 31 F) 

SVM 88% Yu et. al. [3] 

Point Light 
Displays 

Motion 
trajectories 

40  
(20 M, 20 F) 

PCA 95% Davis and 
Gao [1] 

Point Light 
Displays 

(PLD) 

PLD 
animation 

40  
(20 M, 20 F) 

Human 
Observer 

69% Davis and 
Gao [1] 

Table 1: Brief of the related literature, classification of gender from human gait 
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Chapter 3 Methods 

With the aim of comparing human perception (HP) of gait with machine perception 

(through the use of computational models), the models are divided into two categories, namely, 

biomimetic (BM) and non-biomimetic (NBM). As mentioned previously, the biomimetic 

category of ML models includes models that aim to emulate or mimic biological systems in 

neuroscience. Notably, there is a difference in being structurally and functionally biomimetic. 

The definition of biomimetic with respect to the categorisation of models is limited to being 

structurally biomimetic. Examples of this category include all the perceptron-based artificial 

neural networks. The extent to which it’s functionally biomimetic shall be evaluated in the next 

chapter. On the other hand, non-biomimetic models (NMB) include the models which are purely 

statistical in nature and do not attempt to emulate any biological or neurological behaviour. 

Examples of this category include hyperplane based classifiers (such as SVMs) or information 

entropy based classifiers (such as DTs).  

The experimental configuration for comparing HP, BM and NBM learning paradigms, can 

broadly be divided into: 

● Data collection- hardware and software setup for motion capture of walkers 

● Stimuli development- developing visual stimulus for the psychophysical experiments, 

data processing and feature extraction for evaluating the BM and NBM 

● Model development- developing the BM and NBM with specific hyper-parameters using 

open source libraries 

● Data analysis- the statistical tests used to address the hypothesis and research questions 

This chapter provides the common practices used across all the chapters. The result of data 

collection described in this chapter is utilised throughout the thesis. It is important to note that 

this chapter does not provide the specific implementation details, but rather a context of the 

experiments undertaken. The specific changes made to the data and models in each experiment 

are detailed in the bespoke experiments’ chapters themselves. 

3.1 Data Collection 

The hardware setup of the system consists of three parts: 

● A treadmill with side railings to hold on to for support 

● A motion capture sensor for capturing the biomechanics of the walking person 

● A 50 inch LED screen mounted vertically (portrait mode) in front of the treadmill for 

visually inducing a particular emotion in the walker 
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Figure 8: An illustration of the experiment setup for data collection, denoting the 

treadmill, walking subject, the 72 inch stimulus screen and the computer-controlled motion 

capture sensor. Sensor was kept at a vertical distance of 1 m and horizontal distance of 1.8 m 

from the center of the treadmill 

Fig. 8 shows the hardware setup for capturing the walkers’ data. The setup was utilised for data 

collection of both the intrinsic and extrinsic feature types of the experiments. As described in the 

Introduction chapter, gender is taken as an exemplar intrinsic feature while emotion is taken as 

an exemplar extrinsic feature. The Microsoft Kinect™ v2 [50] sensor was taken as the motion 

capture sensor of choice for all the data captures, given its accuracy in tracking the skeleton, 

portability and affordability.  

The Kinect™ camera features both a standard RGB camera, capable of capturing at a resolution 

of 1920x1080 at 30 frames per second, and a Time-of-Flight depth camera which is capable of 

capturing the depth at a resolution of 512x424 at 24 frames per second. Notably, for further 

experimentation, only the depth camera was considered for extraction of the skeletal pose. The 

RGB camera was not utilised. To measure depth, the Kinect™ emits infrared light and uses it’s 

Time-of-Flight camera to measure the time it takes for the reflected pulse to be received, using 

this data to calculate the depth of the subject [132]. According to the Kinect™’s datasheet, the 

optimum distance between the sensor and the user is approximately 1.8 m [133]. Thus the 

distance between the sensor and the midpoint of the treadmill was kept at 1.8 m. The walkers 

were suggested to remain at the center as far as possible. Both the depth and the RGB cameras 

run at 30 frames per second and the field of view is 43° vertically and 57° horizontally, with a 

vertical tilt range of ±27°. This range of coverage is more than sufficient for treadmill-based 

applications, although the available space between the camera and the user will depend on the 

experiment space’s layout. It is important to note that the input received from the RGB cameras 

was not utilised in any experiments. The skeleton tracking information extracted from the depth 

camera was the only raw source of information for the experiments. The sensor is equipped with 

a time-of-flight depth camera which is used to create a 3-dimensional depth map. The Kinect™ 

for Windows v2 library utilises the depth map to extract the skeletal joint coordinates as a 3D 

offset (in millimetres) from the position of the sensor (taken as origin) [134]. When compared 

https://paperpile.com/c/f3P1AS/Ul69m
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with the state-of-art optical motion tracking methods (such as Vicon™ [42]), the anatomical 

landmarks from the Kinect™ generated point clouds can be measured with high test-retest 

reliability, and the differences in the inter-class coefficient correlation between Kinect™ and 

Vicon™ are <0.16 [135,136]. Essentially, the 3D spatial coordinates of the body joint centres 

calculated by both the Kinect™ system and the state-of-art Vicon™ system are highly 

correlated. Further works showed that both systems can effectively capture >90% variance in 

full-body segment movements during exergaming [137]. The validity of biological motion 

captured using the Kinect™ v2 sensor is established with human observers through reflexive 

attentional orientation and extraction of emotional information from the upright and inverted 

PLD [138].  

 

It is important to note that all further experimentation utilises the above mentioned skeletal pose 

representation derived from the depth camera of the Kinect™ v2 sensor to represent gait. Gait is 

represented a sequence of skeletal poses of the human subject, captured at 24 frames (poses) per 

second. Each skeletal pose is described as a set of 3D Cartesian coordinates of 20 salient joints of 

the human body. Notably, the RGB camera video and raw depth information from the sensor was 

not used in the experiments. Although gait was captured as a temporal evolution of the 3D joint 

coordinates, certain experiments required further feature extraction to adhere to the constraints of 

the ML models. Specifically in the case of NBM models, which operate on static data. The 

following table (Table 1) briefs the features extracted from raw skeletal gait data, the details of 

which are presented in the corresponding experiment chapters 

 

Type of Feature ML Model 
Type(s) 

Classification 
Objective(s) 

Sections (Chapters) 

3D Joint Positions of 
Veridical Skeleton 

LSTM Gender Classification, 
Emotion Classification 

4.2, 4.5 (4), 
5.1 (5), 

6.1, 6.2 (6) 

3D Joint Velocities of 
Veridical Skeleton 

LSTM Gender Classification, 
Emotion Classification 

4.4, 4.5 (4), 
5.4 (5), 

6.1, 6.2 (6) 

3D Joint Accelerations 
of Veridical Skeleton 

LSTM Gender Classification, 
Emotion Classification 

5.4 (5), 
6.1, 6.2 (6) 

3D Joint Positions of 
Modified Skeleton 

LSTM Gender Classification, 
Emotion Classification 

5.2, 5.4 (5), 
6.1 (6) 

3D Joint Velocities of 
Modified Skeleton 

LSTM Gender Classification, 
Emotion Classification 

5.4 (5), 
6.1 (6) 

3D Joint Accelerations 
of Modified Skeleton 

LSTM Gender Classification, 
Emotion Classification 

5.4 (5), 
6.1 (6) 

2D Joint Positions of 
Veridical Skeleton 

LSTM Gender Classification 4.5 (4) 

https://paperpile.com/c/f3P1AS/2H4lf
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2D Joint Velocities of 
Veridical Skeleton 

LSTM Gender Classification 4.5 (4) 

First Order Statistics SVM, RDF Gender Classification 4.3 (4) 

Clinical Gait Metrics SVM, RDF Gender Classification 4.3 (4) 

Table 2: Variations of extracted features used in different experiments, adhering to 

different model constraints 

 

Human gait data was collected in two phases, in the UK, at the University of York and in the US, 

at Florida Atlantic University. In the case of UK, data was collected at the LIVE Lab (Room 

S008) in the Department of Electronic Engineering including various Bachelors and Masters of 

Engineering students, including myself. In the case of US, data was collected in the Psychology 

Department, by students of Prof. Terrence Barnhardt; David Bickham and Belen Wertheimer. 

The protocol of data collection in the case of US was designed by me, while in the case of UK, it 

was a group effort by the students of the LIVE Lab. In both countries, I setup the infrastructure 

(including software), provided training to the students who would perform majority of the data 

collection, collected the first few subjects with the students to demonstrate the procedure and 

monitored the sanctity of collected data in the subsequent subjects. In the case of US, the 

monitoring of data collection was performed through online cloud synchronisation of the 

captured data, which I could access remotely. The data collected in both UK and US were 

combined and utilised for the purposes of gender classification (intrinsic feature), whereas only 

the data collected in the US was utilised for classification of emotion (extrinsic feature). The 

following table (Table 2)  

 

Site of Data 
Collection 

Number of Subjects 
in the Dataset 

Classification Objective 
for the Dataset 

Chapter(s) which 
Utilise the Dataset 

University of York, 
UK 

41 (26 M, 15 F) Gender Classification 4, 5 

Florida Atlantic 
University, US 

22 (6 M, 16 F) Emotion Classification 6 

Table 3: Details of Data Collected, including their purpose and utilisation  

3.1.1 Intrinsic Feature: Gender 

Forty one consenting healthy adults (26 male, 15 female) between the ages of 18 and 50 years 

old were recorded walking on the treadmill. Participants volunteered and received credit towards 

a participation grade for their class. Written consent was obtained from all the participants taking 

part in the data collection process. Gait data was recorded as spatiotemporal three-dimensional 

joint trajectories for 20 tracked joints of the body. The tracked points on the walker’s skeleton 

included the head, neck, shoulders, elbows, wrists, fingertips, mid spine, back, hips, knees, hips, 

ankles and toes. The collection of the joint positions formed a static frame. Data was captured at 
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24 frames per second, each frame represented by 60 numbers (3D coordinates of 20 joints) and a 

corresponding timestamp of capture of the frame. Data was recorded for 6 sessions per 

participant. Each session consisted of a minute of walking on the treadmill at a self-selected 

speed followed by a minute’s rest. The joints were extracted utilising the Kinect™ for Windows 

v2 library provided by Microsoft. The details of the analysis of the data and its use in evaluating 

the biomimetic and non-BM is provided in Chapter 6. Table 1 provides the aggregated attributes 

of the walkers in this data collection process. This dataset is utilised in experiments conducted in 

Chapter 4 and 5. 

 

 Height (cm) Weight (kg) Age (years) 

Male 176.23 ± 32.43 80.49 ± 2.86 26 (26.06 ± 6.42) 

Female 128.56 ± 23.51 73.3 ± 4.59 21 ( 21.29 ± 1.23) 

Table 4: Description of the walking subjects taking part in the stimulus set. Both the HP 

and BM models are evaluated using this dataset. Age is displayed as median (mean ± standard 

deviation). 

3.1.2 Extrinsic Feature: Emotion 

Twenty-two subjects (6 males, 16 females) consenting healthy adults participated in the study. 

All the participants were undergraduate students who received credit towards a participation 

grade for their class. Appropriate consent forms were signed and anonymity maintained. The 

subjects walked on a treadmill set to a self-selected speed, approximately 1.5 meters from a 55-

inch Samsung Plasma Display screen mounted in landscape orientation on a TV mount, as 

shown in Fig. 23. Subjects walked for approximately 25 minutes on the treadmill, without any 

rest in between. During the treadmill walk, subjects were asked to focus on the screen ahead and 

were shown a sequence of photographs to induce certain emotions. Each subject was shown 

coloured photographs designed to induce, positive, negative and neutral emotions. The visual 

stimulus size was 43 degrees wide and 24 degrees long for the whole photograph, without any 

zero (black) padding. A degree here is defined as the subtended angle at the nodal point of the 

eye. The sequence of showing the photographs was randomised for each trial and the gap 

between showing the visual stimulus for invoking different emotions was about 5 minutes of 

walking without any stimulus. The photographs were provided by The Center for the Study of 

Emotion and Attention, University of Florida, through IAPS (International Affective Picture 

System) database [139]. The IAPS provides normative ratings of emotion (pleasure, arousal, 

dominance) for a set of colour photographs that provide a set of normative emotional stimuli for 

experimental investigations of emotion and attention, solely for use in academic, not-for-profit 

research at recognised degree-granting educational institutions. Gait information was captured 

during the subject’s exposure to each of three emotions inducing visual stimuli, separately. 

Similar to experiments in previous chapters, gait was recorded as spatiotemporal three-

dimensional joint trajectories for 20 tracked joints of the body. The tracked points on the 

walker’s skeleton included the head, neck, shoulders, elbows, wrists, fingertips, mid spine, back, 

hips, knees, hips, ankles and toes. The collection of the joint positions formed a static frame. 

https://paperpile.com/c/f3P1AS/3egt1
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Data was captured at 24 frames per second, each frame represented by 60 numbers (3D 

coordinates of 20 joints) and a corresponding timestamp of capture of the frame. The analysis of 

the data collected is detailed in Chapter 6. Notably, this dataset is utilised for experimentation in 

Chapter 6 only. 

3.2 Stimuli Development 

Each of the HPs, BM and NBM have a bespoke requirements for the type of data they operate 

on. Thus, multiple data processing pipelines were developed to manipulate the skeleton motion 

data captured to appropriately format the data to be used as stimuli for the various models. 

3.2.1 Psychophysical Experiments 

The multidimensional time series data of the temporal evolution of the skeletal joint coordinates 

was converted into a moving point light display (PLD) by processing the raw joint coordinates in 

the MATLAB[140] programming environment. The MATLAB program was developed by 

William Hahn and Elan Barenholtz at Florida Atlantic University, who also ran the subjects for 

the psychophysics experiments. Each of the skeletal poses was converted into a frame in the PLD 

by developing 20 white dots on a black background for each of the 20 skeletal joints. The 

position of the white dot matched the two-dimensional position of the corresponding skeletal 

joint, omitting the depth information. The timestamps of the original data capture were utilised 

for determining the frame rate in the converted PLD. Fig. 9 shows an example of the conversion 

of one of the skeletal poses into a frame in the PLD. 

 
Figure 9: Conversion of one skeletal pose into a frame in the point light animation to be 

used as visual stimulus for the psychophysics study 

https://paperpile.com/c/f3P1AS/r9gXw
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3.2.2 Computational Experiments  

The data was processed separately for the NBM and BM, according to the specific models’ 

operational requirements. In the case of the NBM, various spatiotemporal features were extracted 

from the multidimensional time series information of gait. The skeletal motion data was 

segregated into gait cycles, where the initiation and termination of the gait cycle is marked by the 

left foot coming in contact with the treadmill surface, concluding its swing phase. For each of the 

gait cycles, the following feature metrics were calculated: 

● Swing/Stance Ratio- the ratio of the amount of time spent by each leg in swing and stance 

phase 

● Single/Double Support Ratio- the ratio of the amount of time when the walker had one 

foot on the treadmill surface to both feet being on the treadmill surface 

● Stride Length- the distance covered by either foot from toe off (entering swing phase) to 

initial contact (entering stance phase), on the treadmill surface 

● Cadence- the number of gait cycles completed per minute 

In the case of BM, no features were extracted to provide a close parallel to the input provided to 

human perception experiments. However, the spatial smoothing of the joints was performed to 

reduce the jitteriness of the raw motion capture using a 12 Hz Butterworth low-pass filter. All the 

programming developed for the experiments were developed in Python 3.5.2 using Anaconda 

4.2.0 (64-bit)[78,141] as the Integrated Development Environment (IDE) of choice. The gait 

cycle feature extraction algorithms utilised the NumPy version 1.16.4 library[142], while the 

normalisations and low-pass filter smoothing were performed using the SciPy version 1.1.0 

library[143]. 

3.3 Model Development 

BM and NBM were developed using the open source Python libraries, Scikit-Learn v0.18.2 

[144] and Tensorflow v1.13 [145], in Python 3.5.2. The support vector machines (SVM) along 

with the various kernel initialisations, decision trees (DTs) and the random forest initialisations 

from the decision trees were implemented in the Scikit-learn library. The artificial neural 

networks along with the various architectures (feed-forward, recurrent and LSTM variation) 

were implemented using the Tensorflow library. In addition to being widely used, the libraries 

were chosen for their ability to accelerate execution by leveraging the hardware. Although scikit-

learn is largely written in Python, the core algorithms are written in Cython[146], an extremely 

efficient wrapper for C functions to achieve performance. For example, SVMs are implemented 

in the Cython wrapper around LIBSVM [146,147]. Its implementation negates the argument of 

Python being slow in training machine learning algorithms. Similarly, Tensorflow represents the 

artificial neural network as a set of multidimensional arrays (known as tensors) and can run on 

multiple CPUs and GPUs to leverage the parallel computation capabilities of multi-threading. 

Tensorflow leverages the CUDA technology [148] to execute operations on the tensors in 

parallel, to accelerate the process of learning. The implementation of all variations of artificial 

neural networks were developed natively in Python. 

https://paperpile.com/c/f3P1AS/EnfRZ+HW2Mj
https://paperpile.com/c/f3P1AS/01vj8
https://paperpile.com/c/f3P1AS/vW2iv
https://paperpile.com/c/f3P1AS/Ntd7b
https://paperpile.com/c/f3P1AS/KE7c6
https://paperpile.com/c/f3P1AS/zYjF9
https://paperpile.com/c/f3P1AS/zYjF9+9akAf
https://paperpile.com/c/f3P1AS/mWQ8J
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3.4 Data Analysis 

In case of the psychophysics experiments (evaluating for the intrinsic feature), the human 

observers were given a forced binary choice question of inferring the gender from the point light 

animations. Each observer had a corresponding accuracy of identifying the gender of the walker. 

Similarly, in the case of the computational models, each model was treated as an ‘independent 

observer’. For BM, a different random initialisation of the network weights (before training) 

implied a different independent observer. As each observer was assessed for gender 

classification performance with different variations of stimulus exposure duration, the output 

data collected contains the gender classification results per observer. The detailed breakdown of 

the results are provided after each corresponding experiment in chapters 4, 5 and 6. A normality 

test is performed on the results using the Shapiro-Wilk test, given the limited number of 

observers/models. Following which, a two-sided student’s t-test, specifically a one-sample t-test, 

is used for calculating statistical significance of equality of the expected mean value of a sample 

population and a known mean value. The null hypothesis in the above is that the expected value 

(mean) of a sample of independent observation is equal to the known population mean. 

Normality of the data is ensured using Shapiro-Wilk normality test before its parametric 

analyses. In case of the intrinsic feature i.e. binary gender of male or female, the known 

population mean is taken at 50% (chance performance) whereas in the case of extrinsic feature 

i.e. emotions (positive, negative and neutral) the known mean is 33.33%. A two-sided one 

sample t-test was used to test the sample mean for both positive and negative differences from 

the known performance mean. Details of the extrinsic feature data analysis is detailed in Chapter 

6. A one-way ANOVA [149] test is used to compare the performance between models for 

different exposure durations. The results of a single model was evaluated using a one-sample t-

test because the ANOVA test requires at least two sample population for analysis. However, for 

experiments which resulted in two independent sample populations, the ANOVA test was used 

to determine significance in difference of the means, as it provides a higher statistical 

significance compared to a two-tailed t-test. The results of the experiments of each of the 

chapters are presented as values that include the statistical test value themselves (t-statistic and 

F-value) as well as the corresponding p-value of statistical significance. It is important to note 

that the p-values mentioned are rounded to the nearest significant digit to make a point about the 

significance of rejecting the particular null hypothesis. For example, if the p-value is 0.009, then 

it is mentioned as p<0.01, rather than p<0.05 (as quoted in standard literature) to highlight their 

significance.  

In addition, performances are presented in aggregated mean and standard deviation formats 

wherever relevant. Implementations for determining all of the above statistics can be found in the 

SciPy v1.1.0 and NumPy v1.16.4 library.  

https://paperpile.com/c/f3P1AS/YKNxJ
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Chapter 4 Biological, biomimetic and non-biomimetic 

learning  

 

In the endeavour of developing a high performing, robust and versatile artificial gait 

classifier, inclusion of human perception (HP) as a gait classifier is essential, given the accurate 

and versatile nature of the biological perception.  

 

The definitions of biological, biomimetic and non-biomimetic were mentioned briefly in the 

methods chapter. However, to avoid any confusion, they are reiterated as follows, 

● Biological- this category includes the human observers (HP) only, given their biological 

learning nature 

● Biomimetic (BM) - this category includes the models that aim to emulate or mimic 

biological systems in neuroscience. This includes the perceptron-based artificial neural 

network models. Notably, the models included in this category are structurally 

biomimetic. Their extent of functional biomimicry with respect to gender classification 

from gait is the emphasis of this chapter. 

● Non-biomimetic (NBM) - this category includes models that are purely statistical and do 

not attempt to mimic any biological system. This includes hyperplane-based models, such 

as SVMs and models based on reduction of information entropy, such as the DTs. 

Notably, the definitions of ‘biomimetic’ and ‘non-biomimetic’ are limited with regards to their 

biological inspiration in terms of learning paradigms and does not include definitions pertaining 

to robotics or other variations. 

 

Inclusion of HP in this study also serves the purpose of filling the gap in the literature about 

evaluation of human and machine-based learning systems on the same gait dataset, as most 

studies focus on either human or machine-based gait analysis separately. In the case of humans, 

studies have shown a significantly higher than chance performance for HP in case of the 

objective of gender and personnel identification of the walker [7, 10, 18–20,115,127]. Most 

studies testing the validity of artificial gait classifiers have used gender classification as the test 

objective [7, 9, 10, 20, 32,115,127,150], owing to the abundance of literature about H’s ability to 

distinguish gender while acting as a good proxy for gait classification into binary classes. 

Maintaining the theme, this chapter uses gender classification as a testbed for evaluating HP, BM 

and NBM, on the same stimulus set. In addition to serving the practical objective of developing 

an artificial gait classifier, comparing humans with the various different machine learning 

algorithms, each possessing a different approach to learning, would help structure our 

understanding of HP and learning mechanism as well.  

 

Biological learning systems, such as HP, perceive gait motion through visual observation and 

extract the necessary information for a given objective, utilising either biological conditioning 

(for gender classification) or specialised learned training (for clinical gait disorder classification). 

Although highly efficient, the knowledge and perception learned by the biological brain is not 

easily replicated or transferred. The learning period to develop the necessary perception is highly 

https://paperpile.com/c/f3P1AS/VQfdM+mhyje+RKERH+SBpeJ+5GG0F+RZw4E+JXoDA
https://paperpile.com/c/f3P1AS/JXoDA+RZw4E+z0Foc+Es75f+RKERH+mhyje+feBJK+VQfdM
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variable. The learned perception itself is volatile and susceptible to fatigue, illness and mortality. 

Advancements in machine learning technology has recently enabled us to develop machine-

based perception and apply it to real world problems. Requiring a fraction of the time and 

resources, machine perception is impervious to the shortcomings of HP. In this study, we explore 

a variety of machine learning algorithms and compare them with humans, in the specific task of 

correctly perceiving gender from human gait. The specific objective was chosen given the human 

brain’s impressive ability to correctly identify gender from human gait. However, the learning 

paradigms could potentially be used in other gait analyses, including clinical gait analysis, with 

minimal modifications. However justifying the same requires further experimentation. Our study 

was conducted in two parts, 1) Psychophysical experiments for evaluating HP, 2) Computational 

experiments for evaluating machine perception. Both variations used the same dataset as input.  

This study emphasises on maintaining unbiased comparison conditions by avoiding heavy 

human induced modifications to the barebones ‘off-the-shelf’ computational models. One such   

modification could be by combining two or more different architectures of neural networks (such 

as CNNs and RNNs), thus creating ambiguity in contribution between either architecture.  

Appropriate pre-processing is performed based on the type of input expected by the models 

while maintaining high fidelity to the information content of gait in the inputs provided. The 

dataset used in all the experiments in this chapter is the same as described in section 3.1.1. This 

chapter focuses on a broad comparison of machine learning models with human perception on 

the task of gender identification from gait. The objectives of this chapter include (1) ascertaining 

similarities between the machine learning models and human perception, (2) deriving a baseline 

accuracy of classification of gender from gait. The gait dataset used for this chapter is a 

combination of the data collected in the US and the UK, detailed in the methods chapter (section 

3.1.1). The combined dataset contains skeletal gait representations of forty one consenting 

healthy adults (26 male, 15 female) between the ages of 18 and 50 years. 

4.1 Experiment 1: Biological Models 

Humans are the most versatile learners known in history. They have been known to reach the 

extent of neuroplasticity to alter existing biological nervous connections to achieve a certain 

objective [151], making those extremely powerful learning systems. Human vision in 

conjunction with their mental perception forms a complete sensory pathway to learn from, with 

the vision, acting as the data source and perception representing the learning model for inference 

from the visual data. In terms of gait perception, humans have been shown to understand 

multiple characteristics of gait through visual perception alone. Studies have shown humans to 

require no longer than 2 complete gait cycles to correctly identify gender from human gait [32, 

151]. In terms of duration, this translates to less than 2.7 seconds of walking animation. 

Although humans can detect and decipher biological motion from point light animation of 

walking human figures within 200 msec, at least 1.6 seconds of stimulus is required for 

significantly above chance performance. The current experiment aims to establish gender 

classification performance in humans as a function of increasing duration of stimulus exposure. 

In other words, the experiment aims to test humans for gender classification accuracy and 

https://paperpile.com/c/f3P1AS/DZdF6
https://paperpile.com/c/f3P1AS/DZdF6+Es75f
https://paperpile.com/c/f3P1AS/DZdF6+Es75f
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sensitivity with different durations of stimulus with each stimulus ending at a different stage of 

the gait cycle. 

4.1.1 Experiment Setup 

4.1.1.1 Stimuli  

A PC-compatible computer monitor with a high performance raster graphics system displayed 

stimuli on an Iiyama ProLite B2283HS colour monitor (1920x1080 resolution, 60 Hz refresh 

rate). Human figures were defined by 20 circular white dots of 5 pixel radius overlaid on a black 

background, located on the head, neck, shoulders, elbows, wrists, fingertips, back, spine, hips, 

knees, ankles and toes. None of the dots were occluded by other subjective parts of the figure. 

Animated sequences were developed by placing the dots at the three-dimensional trajectory of 

each of the 20 tracked joints, and temporally sampling the coordinates to produce 24 static 

frames per second, as shown in Fig. 10. 

The stimulus size was 6° wide and 8° long for the whole frame, including zero (black) padding. 

A degree here is defined as the subtended angle at the nodal point of the eye. The actual walking 

clip was 2.5° long and 4° wide. When the static frames were played in quick succession, a vivid 

impression of a walking person emerged. There was no progressive component to the walking 

animation, thus the human figure appeared to walk on an unseen treadmill with the walking 

direction oriented towards the observer. None were notably over- or underweight, as shown in 

Table 1. The x and z component were sampled to display the walker in the coronal plane. The 

coronal plane was chosen over the sagittal plane or axial plane to emphasise lateral sway and 

maximise the provision of dynamic cues to the observer [32,127]. The recorded gait sequences 

were converted into an animation sequence in the same fashion to be presented as visual stimuli. 

Animation playback was normalised for size [127] and occurred at veridical speed with linear 

interpolation of joint trajectories between frames. The veridical speed was determined based on 

the timestamps attached with each recorded frame. The observers were seated in a well-lit room 

in front of the monitor and had access to a standard computer mouse for interaction. The 

randomly chosen walker stimuli were presented for exposure durations of 0.4, 1.5, 2.5 and 3.8 

sec, followed by an on-screen prompt in the form of two buttons, a 2-alternative-forced-choice 

(2AFC) paradigm, requesting the observer’s perceptual classification of gender through a mouse 

click with screen buttons labelled as either ‘male’ or ‘female’. The order of all the stimuli 

presented was randomised. Following the response from the observer, the next stimulus was 

presented. A total of 200 walking clips were shown per observer per exposure duration and the 

responses recorded for each. 

 

https://paperpile.com/c/f3P1AS/Es75f+RKERH
https://paperpile.com/c/f3P1AS/RKERH
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Figure 10: Point Light Displays (PLD) of a walking stimulus, labelled A to H, at eight 

different stages of a gait cycle. In psychophysics experiments, the eight different body poses 

shown here are an example of the sequence of frames shown in the animation. Left to right, top 

to bottom show each of the frames that are shown one after the other at a rate of 24 frames per 

second to create the illusion of motion. Here, the body poses labelled A to H are played in quick 

succession to give the illusion of walking motion 

4.1.1.2 Biological Model (HP) 

Twenty one (15 female, 6 male) healthy observers with age ranging from 20 to 43 years old, 

participated in the experiment. All had some experience of biological motion displays, although 

none had been required to make judgements about gender. All subjects were naïve to the 

purposes of the experiment. Appropriate consent forms were obtained from the observers to 

ensure proper ethical compliance with approved Florida Atlantic University’s Internal Review 

Board (IRB).  

4.1.2 Results 

Using HP as the classification model achieved an accuracy of 63% of all the trials across all 

exposure durations, which was significantly greater than chance performance of 50% (t20 = 7.8, 

p<0.001. Correct classification at 0.4 sec, which consisted of approximately a quarter of a step cycle 

was above chance at 60%, (t20 = 3.7, p<0.01), which was in disagreement with a previous study 

[32]. This could be attributed to the presentation of the stimulus in the coronal plane as opposed to 

the sagittal plane [7], leading to higher emphasis on the dynamic cues. Performance at 1.5 sec was 

65.6% (t20 = 3.8, p<0.005), which is higher than the performance at 2.5 sec of 61.1% (t20 = 4.8, 

p<0.001). One study explains this anomalous phenomenon due to an additional partial step at 2.5 

https://paperpile.com/c/f3P1AS/Es75f
https://paperpile.com/c/f3P1AS/VQfdM
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sec by highlighting the preferred perception of velocity over positional cues, where sensitivity to 

gender classification decreases mid-swing in the gait cycle [127]. HP was able to discriminate 

gender with highest accuracy at 3.8 sec with 64.7%, (t20 = 3.4, p<0.01). Details of the results are 

shown in Table 2. Overall, HP is consistent with other perception studies [32, 67,127], thus 

providing a reliable baseline for comparison with the biomimetic performance on the same stimulus 

set. 

Model\Stimulus Duration 0.4 sec 1.5 sec 2.5 sec 3.8 sec 

Biological (HP) 60 (p<0.01) 66 (p<0.005) 61 (p<0.001) 65 (p<0.05) 

Table 5: Gender classification accuracy in % as a function of exposure duration of the 

stimulus 

4.2 Experiment 2: Biomimetic Models 

The artificial gait classifier should not only be able to classify gait for the objectives tested in this 

experiment, but also be versatile enough to classify a variety of given gait classification or 

regression objectives. Human observation has been known to achieve this amount of versatility 

and performance, which shall be utilised as a conceptual benchmark for evaluating the 

computational models. Artificial neural networks attempt to emulate the connectionist approach 

to learning in humans [152]. The connectionist approach attempts to mimic various aspects of 

the human brain. Convolutional neural networks (CNN) mimic the layered approach of the 

vision through implementation of a series of convolutions mimicking the layers V1 to V5 in the 

human visual cortex [153–157]. Recurrent neural networks (RNN) attempt to mimic the 

temporal pattern processing capabilities of the human brain by emulating biological memory. 

However, RNNs suffer from a technical problem, rendering their memories extremely short-term 

[158]. An improvement on the RNNs known as Long Short Term Memory (LSTM) cells, better 

emulates human memory and its temporal pattern capabilities by developing additional learnable 

gates to remember or forget information, enabling it to process temporal information over long 

periods of time. The learning gates inherent in the network parallel the short and long term 

memory of the human brain, enabling the network to remember the relevant temporal pattern 

while ignoring patterns that don’t contribute toward the classification objective. This experiment 

aims to present an LSTM network with the temporal evolution of joint trajectories during human 

gait and train it for gender classification to evaluate for resemblance with HP. Although there 

exist variations of the LSTM architecture, such as BiLSTM [159] and GRU [82] networks, they 

are modifications of the basic concept of introduction of multiple memory gates into the 

network, thus the experiment considers a standard LSTM without specialised modifications. 

Successful conformity between the biological and the model would encourage further 

exploration into the biomimetic approach to improve the BM model to superhuman performance 

levels.   

https://paperpile.com/c/f3P1AS/RKERH
https://paperpile.com/c/f3P1AS/zP80u+Es75f+RKERH
https://paperpile.com/c/f3P1AS/6mUXH
https://paperpile.com/c/f3P1AS/sNCII+Uxdn2+hV6Bi+5xu4t+swvwv
https://paperpile.com/c/f3P1AS/pksjl
https://paperpile.com/c/f3P1AS/39dTa
https://paperpile.com/c/f3P1AS/3jbmw
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4.2.1 Choice of Biomimetic Model (BM) 

While numerous models and approaches are possible [27,70,89,90,93] the following criteria 

were applied for the selection of biomimetic BM models: (1) modelling is based on biological 

principles and an understanding of neuroscience in a connectionist approach, (2) processing 

requires minimal human-assisted, hand-crafted feature design, (3) models are capable of 

processing arbitrarily long data sequences and (4) models are practical enough to train and 

classify on the available dataset. 

Previous works have proposed a computational biological model for motion perception through 

the use of feed-forward and recurrent ANNs that aim to emulate the two-fold neural pathway 

[89, 90]. The study [89] assumes that biological movement classification is based on a 

feedforward architecture of learned prototypical patterns. The proposed model developes 

corresponding models for global and local processing modules to provide a one-to-one 

correspondence to the hypothesised perceptual modules. Specific global and local features are 

extracted from motion (e.g. optical flow) to parallel the modification of information in the neural 

pathway. The two pathways emulate the form and motion pathways used by biological snapshot 

and pattern neurons. They were able to get high accuracy in identifying walking, running and 

limping using the computational models. One of their conclusions included the lack of need for 

modelling attention mechanisms for motion perception. Further studies [89,90] present a neural 

model that simulates receptive fields for images of the static human body, as found by 

neuroimaging studies and temporally integrates their responses by leaky integrator neurons. The 

model performance was compared to psychophysical experiments in terms of ability to 

categorise point-light displays into human walking and scrambled motion, with significant 

similarities in performance as they showed using template matching. Despite the perceptual 

correspondence, the practical applications of the model for automated gait classification is 

subject to the availability of an extensive training data and requirement for high computational 

capability, given the large number of tuneable parameters in the models. Moreover, the 

aforementioned model requires explicit pre-processing of gait information by extracting hand-

crafted optical flow features. The limited dataset and computational capability therefore dictates 

a more practical alternative that still meets the mimetic criterion. The models aim to mimic the 

human perceptual pathway very closely, discouraging non-human alterations to be performed on 

them to increase the performance to ‘superhuman’ levels. Computationally, traditional RNNs 

used in the previous studies suffer from the vanishing and exploding gradient problem, making 

them ineffective in meeting the criterion of being able to process long sequences [158]. On the 

other hand, Long Short Term Memory (LSTM) cells, a variety of RNNs, introduce additional 

gates in the network that regulate the flow of information into short and long term memory, thus 

enabling them to remember relevant temporal patterns over long periods of time [84]. LSTM 

cells also mimic the memory capability in human learning more closely In particular, their ability 

to learn multidimensional time series representations captures the dynamic joint trajectories in 

gait from point light animations as those used by HP. Additionally, there is no restriction on the 

model for the provision of structural information for processing. For the purposes of the current 

experiments, we consider LSTM models operating on sequences of PLD motion to be BM model 

https://paperpile.com/c/f3P1AS/hMqtq+J3VoU+paMtD+chGVy+KKapc
https://paperpile.com/c/f3P1AS/chGVy+KKapc
https://paperpile.com/c/f3P1AS/chGVy
https://paperpile.com/c/f3P1AS/chGVy+KKapc
https://paperpile.com/c/f3P1AS/pksjl
https://paperpile.com/c/f3P1AS/vQx2n
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machine learning model under evaluation. The alterations are inspired from HP literature to 

further test the biomimetic nature of the model, in the next chapter. 

4.2.2 Experiment Setup 

4.2.2.1 Biomimetic model (BM) 

  

 
Figure 11: Implementation of the LSTM network architecture for processing gait 

sequences. Gait is provided as a temporal sequence of 3D body poses, to the LSTM and the final 

inner cell state of the LSTM is fully connected with the binary output layer 

 

A standard LSTM cell model consisting of 128 hidden states was designed as shown in Fig. 11. 

The cell state weights were initialized as a random normal distribution. The final cell state was 

ReLU activated [160] and connected to an affine output layer, which represented the one-hot 

labelled gender identity of the walker during training. The ‘Male’ and ‘Female’ labels are 

represented as [1, 0] and [0, 1] respectively.  During testing, the output layer represented the 

classification values. The error of classification was evaluated using a cross-entropy function 

[161] for updating the weights using an Adam optimiser [162] based on the error differentials 

and a learning rate of 0.001. The most probable output was taken as the class label during 

classification. 10 different LSTM models were developed by randomising the initial weight 

matrix before training. Each of these could be argued to represent an independent HP undergoing 

training. The reason for the independence was also for the comparable statistics as followed in 

standard machine learning literature.   

4.2.2.2 Data Input.  

The three-dimensional trajectories of each of the 20 tracked joints were concatenated to form a 

vector representation of a static frame with a cardinality of 60, representing the location of the head, 

neck, shoulders, elbows, wrists, fingertips, mid-back, hips, knees, ankles and toes. Gait input to the 

model consisted of a sequence of vector representations of subsequent static frames, sampled at 24 

frames per second. Joint trajectories were size normalised [127] and standardised with a zero mean 

and unit standard deviation. Model training sessions included, initialization of the model weights, 

classification of the output probabilities based on the gait input, propagation of the classification 

https://paperpile.com/c/f3P1AS/DekMD
https://paperpile.com/c/f3P1AS/f0zx4
https://paperpile.com/c/f3P1AS/V3XYK
https://paperpile.com/c/f3P1AS/RKERH
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error and updating the network weights. Model training was executed in batches of 50 and repeated 

for 100 epochs. Input sequence durations mirrored the exposure durations in the corresponding HP 

experiment and varied incrementally for 10 durations from 0.4 sec to 3.8 sec in steps of 0.4 sec (10 

static frames). 10-fold cross validation was carried out to ensure model generalizability and a total 

of 250 gender classifications were obtained per input sequence duration. The models trained per 

session per duration were stored locally for future analyses. 

4.2.2.3 Model Training and Testing 

Each model training sessions included: 

● initialization of the model weights,  

● classification of the output probabilities based on the gait input,  

● choosing the higher probability output as the predicted class and converting it into a one-

hot encoding, 

● calculating the error by comparing it with the actual one-hot label, 

● back propagating the error deltas, and  

● updating the network weights using the Adam optimiser.  

Model training was executed in batches of 50 and repeated for 100 epochs to ensure stable error 

function values before backpropagation and update of weight values. Input sequence durations 

mirrored the exposure durations in the corresponding HP experiment and varied incrementally 

from 0.4 sec to 3.8 sec in steps of 0.4 sec. A 10-fold cross validation was carried out to ensure 

model generalizability. The model was generated and trained ‘from scratch’ for each fold. A total 

of 250 gender classifications were obtained per input sequence duration. Results were obtained 

as accuracy of gender classification for each gait duration.  

4.2.3 Results 

BM correctly classified 76% of all the gait inputs presented across all the input durations (t9 = 9.2, 

p<0.001). Chance performance remains the same at 50%. Correct classification at about a quarter 

of a step cycle at 0.4 sec was 71.5%, (t9 = 5, p<0.001), higher than the same with HP (F1,29 = 3.6, 

p<0.05). The difference in performance indicates a higher inference capacity from a limited amount 

of available data. Here, performance is defined as the correct classification of gender as a 

percentage of the total test samples classified. The inference performance increases slightly with 

an increase in the amount of information available from 0.4 to 3.8 sec (t9,9 = 2, p<0.1). At 3.8 sec, 

the model correctly classified gender with 81.2% accuracy (t9 = 9.6, p<0.001), considerably higher 

than HP (F1,29 = 9, p<0.01). Generalizing across all the input (or exposure) durations, the classified 

gender with a significantly higher accuracy than the HP (F1,29 = 39.9, p<0.05). Details of results 

obtained for the BM have been presented in Table 3 with the corresponding trend plotted in Fig. 

12. As shown in the figure, mean performance peaks temporarily at 1.6 sec (about halfway 

completion of one gait step) with 79% accuracy (t9 = 10.1, p<0.05), suggesting a dependence on 

dynamic and velocity cues similar to HP at 1.5 sec. Notably, performance (percentage of test data 

correctly classified) at all durations was above chance. It may also be noteworthy that while HP 

was exposed to the stimulus for a specific amount of time, whereas the BM was exposed to a 

specific number of frames of the stimulus. All data was captured at about 24 frames per second, 
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essentially translating a single frame into 0.04 seconds duration. Table 3 shows the exposure 

duration in a number of frames as well as in terms of number of frames, for a more accurate 

representation of the stimulus. However, Fig. 12 shows gender classification as a function of 

exposure duration in time only for a more intuitive visual representation. 

In summary, the BM performed significantly better than chance in gender classification from 3D 

moving point representations of human gait. Similar to human perception, there was a significant 

increase in gender classification accuracy for gait information duration of 0.4 seconds compared 

with duration of 3.8 seconds. The increased gender sensitivity at 1.6 seconds could be attributed 

to an inherent sensitivity to dynamic velocity-based cues in LSTM networks for gender 

classification, similar to HP. One could argue that the presentation of the stimulus as a forward 

facing (towards the camera) skeleton could potentially limit real-world applications. However, 

the availability of 3D data could be leveraged to apply a simple preprocessing rotational step to 

the skeleton to correct for any misalignment in global skeletal configuration. Having received the 

results from both HPs and BM, it would be interesting to compare them to the results obtained 

from computational models that do not emulate basic human biology and rely on a more 

statistical approach to learning and classification. Such models, are termed as NBM. 

 

 
Figure 12: Correct gender classification accuracy (in %, mean and standard error) by 

the BM as a function of exposure duration in seconds. 
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Stimulus Duration 
/ 

Model 

0.4 sec 1.5 sec 2.5 sec 3.8 sec 
  

Biological (HP) 60 (p<0.01) 65.6 (p<0.005) 61 (p<0.001) 64.7 (p<0.05) 

Biomimetic (BM) 71.5 (p<0.001) 73.1 (p<0.001) 77.1 (p<0.001) 81.2 (p<0.001) 

Table 6: Correct gender classification (in %) as a function of exposure duration of the 

stimulus (in terms of frames as well as seconds) with p<0.001 (using two-tailed t-test compared 

with chance) for all the durations. 

4.3 Experiment 3: Non-Biomimetic Model (NBM) 

Most machine learning-based automated gait analysis literature utilises NBM such as support 

vector machines (SVM) [77] and random decision forests (RDF) [122]. The NBM are capable of 

analysing static data only, unlike HP and LSTMs which can analyse sequences of data. Their 

reliance on the principles of linear separability and information entropy to create rules for 

classification, resembles expert systems. These models require a static vector representation of 

features and a corresponding class label for training. For testing, they require a static vector of 

features to predict the output class. In the case of gait data, they would require a static 

representation of the dynamic spatiotemporal gait data for classification. Thus, for the purpose of 

this experiment gait data was represented statically in two forms, (1) as first-order statistics of 

the temporal signals, and (2) extracted metrics used in a clinical setting to describe gait for 

diagnosis and rehabilitation monitoring. In this experiment, we evaluate the SVMs and RDFs on 

the two static representations of gait data for resemblance with HP and BM. 

4.3.1 Experiment Setup 

4.3.1.1 Non-biomimetic Model (NBM) 

SVMs are designed to linearly separate a set of vectors to achieve maximum classification 

accuracy. Their training phases help find the most optimal hyperplane for linear separation of 

sets of numerical feature vectors into binary classes. SVMs operate on numerical feature vectors 

and cannot implicitly handle categorical data. Decision trees, on the other hand, learn to classify 

data by choosing optimal split conditions of attributes to minimise ambiguity in classification. 

RDFs are a collection of decision trees that have been trained on randomly chosen subsets of 

features from the original dataset. The final verdict of predicted class in an RDF is taken as a 

majority vote of the consistent decision trees. The advantage of the RDF over SVMs lies in its 

ability to classify categorical data, in addition to numerical data. The SVMs used in this 

experiment vary in their kernel function that help project the feature set into an additional 

dimension to attain better linear separability. The SVM kernels include: 

● Linear, referred to as SVM-Linear, 

● Radial basis function with gamma as 0.99, referred to as SVM-RBF, and 

● Sigmoid, referred to as SVM-Sigmoid 

https://paperpile.com/c/f3P1AS/yuiE2
https://paperpile.com/c/f3P1AS/0xKfu
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The RDFs consisted of 10 randomly generated ID3 Decision Trees[28]  developed with a 

minimum requirement of 2 samples for splitting and a maximum of 3 features for splitting 

consideration.  

 

4.3.1.2 Data Input  

As mentioned earlier, gait data was processed for its static representation in two forms, (1) first-

order statistics for the time series data, and (2) relevant clinical gait metrics, as follows: 

● Gait data, originally represented as a temporal sequence of vectors, was described with 

four first-order statistics attributes, namely, minimum, maximum, mean and standard 

deviation of each dimension of the multi-dimensional time series signal. Given that the 

data was represented as a time series of 20 triplets (60 values per frame), the static 

representation consisted of 240 numerical values for every gait sequence. The temporal 

sequence duration of the signal varied from 0.4 sec to 3.8 sec in steps of 0.4 sec (10 

frames). The resulting static dataset was normalised between [-1, 1] and standardised to 

have a mean of zero and unit standard deviation. The final processed dataset consisted of 

250 features (of 240 values each) for each gait duration, with 9 gait durations in total 

(from 0.4 to 3.8 seconds). 

● The study was conducted in conjunction with the Cambridge University Hospitals, thus 

the gait metrics utilised for clinical gait analysis in the gait analysis laboratory were 

mirrored as static representations of gait. 12 clinically relevant spatiotemporal gait 

metrics, including, stride length, cadence, single-double support, stance-swing phase 

ratio, speed of walking and knee flexion for each leg during stance and swing were 

provided as input feature sets to the static learning models. All the features were 

standardised to have a mean value of zero and a standard deviation of one. The features 

were further normalised to lie within the [-1, 1] range for uniformity and to discourage 

the models from learning the gender from the structural information and to rely solely on 

the gait dynamics. The final dataset consisted of 250 features (of 12 numerical values 

each) for each of the gait duration, with 9 gait durations in total.  

Notably the spatiotemporal gait metrics were extracted per gait cycle by synchronising the 

recorded skeletal gait with the template of normative gait, as described in section 2.1. A gait 

cycle starts with the left foot toe off (lifting off of the ground), going into swing phase, 

subsequently entering stance phase with heel touch, finally followed by toe off again. The cycle 

from toe off to the subsequent tow off of the left foot was considered a single gait cycle and the 

metrics extracted for each of such cycles.  

4.3.1.3 Model Training and Testing 

Every training and testing session involved the development of SVMs (with various kernels) and 

RDFs ‘from scratch’, trained with a chosen section of the dataset and tested with the held-out 

dataset. A 10-fold cross validation training-testing protocol was followed, ensuring no overlap of 

participants between training and testing datasets. Thus, the testing dataset consisted of people 

not seen before by the models during training, maintaining generalizability of the models.  

https://paperpile.com/c/f3P1AS/ppLEY
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The cycle of model development, training and testing was started afresh for each session and for 

each type of data i.e. separately for first-order statistics and clinical gait metrics.  

4.3.2 Results 

The results obtained through operations upon (1) first-order statistics, and (2) clinical gait 

metrics were as follows: 

● In case of the first-order statistic feature sets, at 0.4 sec, the RDFs and SVMs of all the 

kernels were able to identify gender with significantly better than chance performance 

with: 

o RDF at 75%, t9 = 9, p<0.001,  

o SVM-Linear at 84%, t9 = 12, p<0.001,  

o SVM-RBF at 78%, t9 = 10, p<0.001, and  

o SVM-Sigmoid at 68%, t9 = 4, p<0.01, as shown in Fig. 13.  

● There was no significant difference in performance in the NBM between 0.4 sec and 3.8 

sec of duration, as shown in Fig. 13. In contrast, HP and LSTMs had demonstrated a 

substantial increase in performance with increase in temporal data availability. Gender 

sensitivity remained similar across all the durations of gait input, demonstrating a 

dynamic cue agnostic learning mechanism. The performance outputs have been detailed 

in Table 4.  

● In case of the clinical gait metrics, all the NBM performed close to chance performance. 

The best performing out of the cohort was the SVM with radial basis function (SVM-

RBF) with a gender classification accuracy of 59% (t9 = 1.8, 0.1<p<0.2), followed by the 

RDF classifier with an accuracy of 59% (t9 = 1.5, 0.1<p<0.2). The statistical significance 

of the results is yet to be established with the collection of more data. However, the 

motivation for testing the NBM further is reduced based on the results.  

 

 

Duration 
/Model 

0.4 sec 1.5 sec 2.5 sec 3.75 sec 

SVM-Linear 83.8 (p<0.001) 83.5 (p<0.001) 82.8 (p<0.001) 82.5 (p<0.001) 

SVM-RBF 78 (p<0.001) 78 (p<0.001) 78.5 (p<0.001) 77.9 (p<0.001) 

SVM-Sigmoid 68 (p<0.01) 68.1 (p<0.01) 68.2 (p<0.01) 68.2 (p<0.01) 

RDF 74.9 (p<0.001) 74.6 (p<0.001) 74.2 (p<0.001) 73.5 (p<0.001) 

Table 7: Correct gender classification accuracy (in %) by the NBM as a function of the 

duration of stimulus exposure (in number of frames). Statistical significance (p-value) is 

obtained using two-tailed t-test compared with chance (50%). 
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Figure 13: Correct gender classification accuracy by NBM (in %, mean and standard 

error) as a function of duration of gait data (in seconds) used to generate the static 

representation.  

4.4 Experiment 4: Biomimetic (BM) and Non-Biomimetic Models 

(NBM) with Velocity Cues 

Humans are known to rely on dynamic velocity-based cues when determining gender from gait, 

through (1) increase in performance between the coronal and sagittal point dot representations of 

the walking subject, and (2) change in gender classification sensitivity at different stages of the 

gait cycle. This experiment focuses on training the BM and NBM on velocity cues exclusively, 

to evaluate for the presence of this human-like characteristics. A conformity to the sensitivity 

profile obtained in Experiment. 2 establishes a common trait shared between human and 

machine-based models. 



51 

 

4.4.1 Experiment Setup: Biomimetic Model (BM) 

4.4.1.1 Biomimetic model (BM) 

The architecture of the BM follows the same architecture as described in Experiment. 2. The 

difference in this experiment lies in the data for training and testing rather than the model itself. 

The weights initialisation, training regime and classification protocols are kept the same.  

4.4.1.2 Biomimetic Data Input 

In Experiment 2, the BM was exposed to data that represented the joints as triplets of values that 

represented the three-dimensional position of the joint relative to the sensor position. For this 

experiment, the model is exposed with triplets of values, but representing velocities of the joints 

as opposed to the position. Temporal derivatives of the gait of the walkers were used for 

generating corresponding velocities of the joints. The positional data was smoothed with a 5-

frame moving average filter before calculating the derivatives for adjacent frames. The training 

and testing protocol was followed as mentioned in Experiment 2. Similarly, a 10-fold cross 

validation was performed to ensure generalisability of the model, ensuring that the walking 

participants included in the test set were different from the participants in the training set.  

4.4.2 Results 

4.4.2.1 Biomimetic model (BM) 

The biomimetic LSTM model trained with three-dimensional velocity (LSTM - Velocity) 

achieved an overall accuracy of 81% (t9 = 9.4, p<0.001), significantly better than the HP (F1,18 = 

82, p<0.001) for all durations as well as the LSTM model trained with three-dimensional 

positions (LSTM - Position) of joint trajectories, (F1,18 = 5.6, p<0.05). The model achieves its 

highest accuracy at 2.8 seconds of exposure with an accuracy of 83%, (t9 = 9.4, p<0.001). As 

shown in Fig. 14, the lack of velocity-based cues is noticed at 2.2 seconds in LSTM - Velocity, 

corresponding to the similar lack dynamic cues at the same time in LSTM - Position, 

demonstrating the dependence of the LSTM network on velocity while determining gender.  
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Figure 14: Correct gender classification (%, mean and standard error) by LSTM models 

trained with position and velocity as a function of exposure duration in seconds. 

4.4.3 Method: Non-Biomimetic Model (NBM) 

4.4.3.1 Non-Biomimetic Model (NBM) 

The non-biomimetic models namely the SVM-Linear, SVM-RBF, SVM-Sigmoid and the RDF 

remain the same as the previous experiment, however the training data provided is a static 

representation of the joint velocities trajectories as opposed to the positional trajectories.   

4.4.3.2 Non-Biomimetic Data Input 

The positional joint trajectories of 20 tracked joints are smooth using a 5-frame moving average 

filter followed by a temporal derivative of the smoothed signal to obtain the three-dimensional 

velocities of the joint trajectories. The result is represented as four first-order statistical 

attributes, namely, minimum, maximum, mean and standard deviation of the signal. The 

temporal duration of the signal varies from 0.4 sec to 3.8 sec in steps of 0.4 sec (10 frames). The 

static representation is normalised between [-1, 1] and standardised to have zero mean and unit 
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standard deviation. The resulting dataset is used for training and testing of the NBM models with 

a 10-fold cross validation of the walkers to ensure generalisability.  

4.4.4 Results  

4.4.4.1 Non-biomimetic models (NBM) 

 
Figure 15: Correct gender classification accuracy (in %, mean and standard error) of 

NBM trained with position and velocity information, as a function of duration of gait considered 

for extracting the static representation. 
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Model\Gait Data  Position Velocity F-Test, F1,19 

SVM - Linear 83% 76% 37 (p<0.001) 

SVM - RBF 78% 72% 52 (p<0.001) 

SVM - Sigmoid 68% 65% 5 (p<0.05) 

RDF 75% 68% 149 (p<0.001) 

Table 8: Correct gender classification accuracy (in %) by NBM trained with position and 

velocity gait information. 

Fig. 15 represents the gender classification performance of the NBM trained with the first-order 

statistics of the velocity profiles of the joints, as a function of the duration of gait data utilised to 

derive the static representations. As observed, the performance of the NBM actually significantly 

upon training with velocity data, compared with the position data (details provided in Table 5). 

SVM-Sigmoid demonstrates a significant increase in performance with increasing duration of 

gait data provided, (F1,18= 4.5, p<0.05) with the best accuracy of 67%. Additionally, the change 

in performance is not statistically significant in other SVM and RDF models. This behaviour 

goes against the expected biological behaviour and the results demonstrated by the LSTMs, 

denoting a loss of performance in a form of data which is biologically more conducive to gender 

classification.  

4.5 Experiment 5: Biomimetic Models with Two-dimensional Input 

LSTM networks have demonstrated their biomimetic nature not only architecturally but also 

behaviourally, through close resemblance with the HP, making it conducive to draw parallels 

between the learning mechanisms. However, one could argue a gap in parallelism of comparison 

as the HP observed the moving point animations on a two-dimensional screen for gender 

classification while the LSTMs were provided with three-dimensional motion information. This 

experiment trains the LSTMs with two-dimensional gait information to form a direct comparison 

with the HP, without assuming any depth inference capabilities of HP.  

4.5.1 Method 

4.5.1.1 Biomimetic model (BM) 

The LSTM model architecture is similar to the previous experiment. However the number of 

inputs are reduced by a third, owing to the loss of the z-components of the joint trajectories. The 

weights initialisation, training and testing regime and class classification protocols are 

maintained. The only difference is brought about by the difference, or lack thereof, of the data 

input being provided.  

4.5.1.2 Data Input 

Experiment 2 represented gait as a temporal evolution of the positional joint trajectories. The 

three-dimensional trajectories of each of the 20 tracked joints were concatenated to form a vector 
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representation of a static frame with 60 values (20 triplets). This experiment maintains the same 

data style but hides the z-component, modifying the vector representation to have a 40 values (20 

doublets, each doublet representing the X and Y coordinate of the joint trajectory). As mentioned 

in previous experiments, the gait information is varied from 0.4 sec to 3.8 sec in steps of roughly 

0.4 sec (10 frames). The resulting data is normalised between [-1, 1] and standardised to have 

zero mean and unit standard deviation.  

4.5.2 Results 

As shown in Fig. 16, there is no statistically significant difference in the outcomes of the LSTMs 

trained with three- and two-dimensional joint trajectories, in corresponding position and velocity 

information. In other words, omission of depth information didn’t impact the performance 

significantly. However, the difference between the models trained with corresponding 3D and 

2D values is significant across all durations (F1,18 = 6, p<0.05) for LSTM - 2D Position and 

LSTM - 2D Velocity, with accuracy of 76% and 80% respectively. Notably, the performance of 

the models trained with 3D and 2D velocities are significantly higher than the models trained 

with the corresponding position representations. The two-dimensional models also demonstrate 

the same unique gender sensitivity trait possessed by HP and BM trained with three-dimensional 

representations of gait, further supporting the close resemblance of the LSTM models with HP.  
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Figure 16: Comparison of correct gender classification accuracy (in %, mean and 

standard error) using biomimetic LSTM models trained in three- and two- dimensional position 

and velocity representations of the joint trajectories 

4.6 Discussion 

As shown in Experiment 1, HP was able to identify gender from gait with significantly above 

chance performance from moving dots presentations of joints, while conforming to existing HP 

literature. There is a significant increase in gender classification performance between 0.4 sec 

and 3.8 sec of stimulus exposure duration, further establishing H’s ability to learn from temporal 

patterns. The increased gender sensitivity at 1.5 seconds is attributed to the prevalence of 

dynamic, velocity-based cues at the phase of the step cycle corresponding to that time [7], 

demonstrating the preference of humans towards dynamic velocity-based cues compared to 

structural position-based cues for gender classification. Without the preference for dynamic cues, 

one would have expected a non-negative monotonically increasing performance with additional 

temporal information. Results from the psychophysics study encouraged its comparison with 

results obtained using the dataset with computational models.  

 

https://paperpile.com/c/f3P1AS/VQfdM
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Experiment 2 showed that the BM that were trained on the first-order statistical representations 

of the temporal signals performed significantly better than chance and the corresponding models 

trained on clinical gait metrics performed at or below chance performance. Notably, there was no 

significant change in performance with increasing duration of exposure of gait input, unlike both 

HP and BM. Thus, denoting a deviation from human-like models. In addition, there was no 

change in sensitivity to gender classification with increasing availability of information at 

different phases of the step cycle either. Both the above characteristics have been observed in 

HPs and LSTMs, suggesting a dissimilarity of the NBM from a common connectionist learning 

mechanism shared between HP and LSTMs. HP also possess the trait of being sensitive to 

dynamic velocity-based cues for gender classification. While NBM demonstrate their ability to 

classify gait with impressive accuracy, their non-compliance with human-like behaviour reduces 

their chances of consideration for the artificial gait classifier in terms of: 

● Need for static representations of gait, leading to loss of temporal data which may not 

necessarily translate to non-gender-based classification objectives 

● Need for human intervention (similar to an expert system) to engineer the necessary 

features given a different gait classification objective 

● Agnosticism to additional temporal data, leading to deviation from human-like perception 

which learns from increasing presence of data 

● Lack of change of gender classification sensitivity at different stages of the gait cycle 

However, humans are also known to be sensitive to dynamic cues of gait. Thus, in order to detect 

the existence of the biological trait of sensitivity to dynamic, velocity-based cues in the artificial 

classifiers, the Experiment 3 trains the models on velocity cues exclusively, to evaluate the 

change in performance. Experiment 3 also aims to establish the degree of conformity between 

HP and different approaches to learning in computational models. A significant increase in 

percentage correct gender classification, based on velocity-based cues (compared with position-

based cues) established a human-like behaviour in the computational models. 

 

Experiment 4 showed that training BM and NBM with joint velocities produced highly differing 

results when compared to the corresponding models trained with joint positional trajectories. The 

result of the NBM goes against the notionally established human dependence on dynamic 

velocity-based cues for gender classification. However, the results obtained through the 

biomimetic LSTM networks not only conforms to the expected biological behaviour, but also 

demonstrates the shared gender sensitivity trend observed at different phases of the walk cycle 

between the HP and BM. However, one could argue that the provision of three-dimensional gait 

information to the BM but the two-dimensional screen-based input to the HP could cause a gap 

in direct comparison between the models, making it difficult to draw parallels between the 

learning mechanisms. Towards this objective, Experiment 5 trained the biomimetic LSTM model 

and tested on two-dimensional gait information by omitting the depth information, which the HP 

had to infer from the screen.  

 

As demonstrated in Experiment 5, the loss of depth information didn’t cause any significant 

change in performance accuracy; all the traits that were shared with HP and corresponding BM 

trained with three-dimensional gait information were maintained, further supporting the close 

resemblance of the artificial model with HP. In case of the ML models, ten randomly initialised 
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(untrained) models undergo training and serve as ten independent artificial observers of gait. 

Thus, in case of intrinsic feature (gender) classification from gait, taking a confidence level of 

95%, sample size of 10 and a worst case classification accuracy percentage of 50%, provides a 

confidence interval of 30.99%. In the case of intrinsic feature classification HP, taking a 

confidence level of 95%, sample size of 21 and a worst case classification accuracy percentage 

of 50%, provides a confidence interval of 21.39%. 

 

In summary, biomimetic models share the following characteristics with HP, which the non-

biomimetic models either do not share or have the opposite trait of: (1) Increase in gender 

classification performance with increasing temporal availability of gait information, (2) 

Preference towards dynamic velocity-based cues as opposed to structural position-based cues for 

gender classification, leading to higher performance in the former data type, and (3) Unique 

trend of gender sensitivity during different phases of the walk cycle. The results support the 

existence of a memory-based generic learning system in HP of biological motion. Additionally, 

the close resemblance in performance between HP and BM confirms the ability of the 

computational learning models in emulating human learning dynamics. This result is further 

established by humans’ ability to acquire knowledge on gait classification which are not innate, 

for clinical and security identification purposes. 

From an application standpoint, the results encourage the potential of using BM for gait 

classification. Although the paper uses gender classification as the gait classification objective, 

the resemblance with HP widens the scope of application to non-gender related classification 

tasks as well. The results could also be further improved through a more conservative approach 

to cross-validation such as the leave-one-out cross validation. The improvements to be resulted 

from modifying the BM and training configurations is yet to be documented. Interestingly, the 

availability of 3D skeletal data delivers itself to test the effect of rotation of the skeleton and its 

correlation with gender identifiability for HP. The same should not affect the performance of the 

biomimetic as a simple pre-processing rotation step could correct for any misalignment in global 

skeletal configuration. While treadmill walking may not be congruent with over ground walking, 

the experiment establishes the ability of the machine-based models in extraction of relevant 

features from spatiotemporal skeletal data, given an objective which the model possesses no 

prior knowledge of. 

The NBM on the other hand, require explicitly hand crafted features which may not be 

applicable to a generic classification task. As shown in Experiment 3, the clinical gait metrics 

representation of gait didn’t possess information about gender, while the static four attribute 

representation possessed enough information about gender for a better than chance performance. 

The transferability of the same features towards a new objective (such as person identification) is 

brought into question and requires further experiments.   

4.7 Conclusions 

Humans are highly adept at classification of gait for a multitude of objectives, from gender 

classification to clinical diagnosis, while relying on a common learning mechanism of 
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spatiotemporal perception of gait. This thesis focuses on exploring underlying human learning 

mechanisms by training a number of machine learning models, each possessing a different 

approach to learning, and comparing results in the gait classification task of gender classification 

on the same stimulus set. Thus, the motivation for the analysis is two-fold. Firstly, to understand 

the underlying learning system in HP in making spatiotemporal classification decisions. 

Secondly, to find an artificial model to classify gait while maintaining a close resemblance with 

humans, to ensure generalisability across multiple gait classification tasks. Results indicate the 

existence of a generic memory-based biological learning system for spatiotemporal classification 

tasks that benefits from training. This result encourages the potential of utilising the biomimetic 

memory-based LSTM model, as the model of choice for a given gait classification task. NBM, 

while demonstrating high performance in the gender classification task, don’t follow the traits 

shown by HP, making them less reliable in performing a generic gait classification task. In 

addition, the need for generating static hand-crafted features from human gait brings the 

possibility of transference of static features across classification tasks into question. Notably, the 

learning efficiency of LSTM models also ensures that the performance is not significantly 

impacted even in the case of the absence of depth information, further supporting the biomimetic 

memory-based model as an effective artificial gait classifier.  
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Chapter 5 Biological and Biomimetic Perception of Gait  

Results from Experiments 2 and 5 in the previous chapter have demonstrated the 

commonalities between the biomimetic model (BM) and human perception (HP), supporting the 

possibility of application of the BM model as a versatile, high performing gait classifier. HP and 

BM possess commonalities such as, 

● Increase in performance accuracy with increasing visual stimulus exposure durations 

● Higher sensitivity to dynamic cues compared to static cues, and, 

● Qualitatively similar profile of performance in gender classification accuracy at different 

stages of the gait cycle. Notably, the profile is maintained in the absence of depth 

information as well.  

A significant body of research has investigated the information that can be extracted from human 

gait.  Johansson[67,112,113] first introduced the point light display (PLD) animation technique, 

in which points of light attached to the limb joints of  walkers were recorded in the dark, a type 

of stimulus that came to be known as ‘biological motion’. This basic paradigm led to extensive 

study of human visual perception of these dynamic patterns [9, 10, 32, 115, 117]. HP are not 

only able to distinguish biological motion from sparse noise, but can also recognise the identity 

of walkers [18,19] and generic attributes from strategically placed sparse PLDs, such as gender 

[7,20,32,127,150] emotion [9,10,68] and walking direction [36,69]. Human perception and 

learning, however versatile, has been documented to possess biases which affect its gait 

classification performance. The ability to perceive certain properties from biological motion has 

been found to be highly dependent on whether the stimulus conforms to a canonical, upright, 

viewpoint; when a point-light walker is inverted vertically, gender classification performance 

drops to below chance levels[32,35], a phenomenon known as the inversion effect[36]. This 

phenomenon has been well documented in other fields of literature as well, including facial 

expression classification [163–165]. The mechanism underlying inversion effect remains 

ambiguous, with reasons ranging from an innate neural structure which predisposes HP, to a 

learned perception due to heavily biased learning datasets, leading to fixed notions of anatomy 

[35,36,69]. The detrimental effect of inversion of visual stimulus on gender classification could 

be attributed to the disruption of the global configural perception of human gait [36], which may 

possess either an innate component or a learned component or a combination of the two. 

Assuming gender to be a global configural feature, one can argue for its learned nature 

[36,69,166–168] . However, in the case of gender from gait, HP are known to rely on anatomical 

differences in the skeletal structures between men and women for correct gender classification. 

Correct classification performance is maximised in an upright walker orientation in the coronal 

plane [32,127]. This specificity has been attributed to the differences in body structure and 

dynamics of the hips and shoulders between males and females [32,127]. In addition, new born 

babies also show predisposition of attention to localised features of gait [169]. If one was to 

argue about gender classification being a local feature, based on attention to the shoulders and 

hips as shown by previous studies experiments [32,127] suggest local motion perception to be an 

innate feature of HP [69]. This ambiguity is addressed through a series of experiments on the 

BM model in this chapter. Considering the BM no prior assumption of an anthropomorphic 
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structure of the human skeleton, results similar to HP experiment might suggest the origin of 

inversion effect as a learned behaviour rather than an innate one.  

This chapter aims to address the questions mentioned above, through a series of experiments. 

Experiment 1 tests for the presence of human-like susceptibility to inversion in the BM, by 

training and testing multiple instances of the BM model, each randomly initialised (before 

training). The objective is to demonstrate the presence of inversion vulnerability in the modes. 

Significant presence of the said effect would indicate that the inversion effect is an emergent 

property from learning the association between gender and the global configuration aspects of 

PLD-based biological motion. Additionally, a second motivation of this chapter is the 

development of a practical, high-performing artificial gait classifier that overcomes the observed 

limitations in HP. Thus Experiment 2 tests the dependence of the model on structural cues by 

removing them and forcing the model to learn the association between gender and motion cues 

only. The hypothesis being, if the models’ gender classification accuracy is being hindered due 

to the presence of structural cues (the way it does in humans), removing them should improve 

the accuracy in upright stimuli and robustness to inversion. A further extension of the hypothesis 

is tested in Experiment 3 by providing the model with spatiotemporally modified gait. The 

hypothesis in this case being, if the BM is functionally similar to humans, then provision of 

explicit motion based cues in addition to the removal of structural cues should improve gender 

classification accuracy in upright skeleton and increase robustness to inversion even further. The 

dataset used in all the experiments in this chapter is the same as that used in the previous chapter 

(Chapter 4), also described in section 3.1.1. 

 

As a notable corollary to the above experiments, the results of the experiments has the potential 

of also contributing towards the understanding of HP. In order to assess whether generic learning 

mechanisms could provide a plausible account for the inversion effect in humans, we assess the 

performance and robustness to inversion of several machine-learning models of varying degrees 

of similarity to theorised mechanisms used by humans in biological motion perception. If 

machine-learning models that are biomimetic show similar vulnerability to inversion, this could 

suggest that human performance depended on similar generic learning mechanisms, rather than 

needing to appeal to specialised modules. 

5.1 Experiment 1: Inversion Effect 

The inversion effect is an extensively studied phenomenon in HP. The effect has been studied 

through multiple input methods including face inversion [163,165,169,170] and biological motion 

inversion. When biological motion is presented upside-down, perception is strongly impaired 

[36,114,164] . The effect seemed to occur irrespective of the experimental task and affected the 

detection of a point-light walker [164,166]. In case of gender classification from gait, when 

presented with the vertically inverted stimuli, humans performed significantly below chance with 

performance varying from 37% to 41%, with significantly higher classification confidence when 

responding incorrectly. In most cases, humans changed their classification of gender for the same 

walker when presented with the inverted stimuli [32]. While Barclays et al. maintains the global 

coherent shape of the walker, it has invited criticism from subsequent works because of the 
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synthetic nature of the stimulus [167] which seems to omit local motion information. Given the 

importance of local motion,[35] utilised motion-captured data on human walkers to test for the 

inversion effect on gender perception, resulting in a chance or near chance performance on the 

inverted stimuli.  Retaining the same theme, this experiment evaluates the BM on metrics of 

accuracy and classification confidence when predicting inverted gait inputs, along with introducing 

the metric classification inversion probability. 

5.1.1 Experiment Setup 

5.1.1.1 Data Input 

During training, the BM model was provided with the same dataset as mentioned in Experiment 

1 of Chapter 4. Along with the dataset, the training and testing protocols were replicated as well. 

The model was trained with a sequence of frames of body poses, collectively representing human 

gait. Each frame represented the body pose as a collection of three-dimensional trajectory of 20 

tracked joints of the skeletal system. The testing criteria, however, was different from previous 

chapters. The test dataset was generated by vertically mirroring the three-dimensional joint 

trajectories of the walkers on a horizontal plane. Essentially, the y component of the trajectory 

was mirrored while maintaining the values of the x and z coordinates in the generated dataset. 

This resulted in a mirrored centre-of-mass motion as well. The joint trajectories were further 

processed through size normalisation followed by standardisation with a zero mean and unit 

standard deviation. The most probable output was taken as the class label during classification 

and the absolute difference in the classification values between the output nodes was regarded as 

classification confidence. Classification Inversion Probability here is defined as the ratio 

between the number of walkers with opposing gender classifications between upright and 

inverted orientation to the total number of walkers. 

5.1.1.2 Biomimetic Model (BM) 

Similar to Chapter 4, the model consisted of 128 randomly initialised hidden states. The final cell 

state was ReLU activated [160] and connected to an affine one-hot labelled output layer, where 

the ‘Male’ and ‘Female’ genders were encoded as [1,0] and [0,1] respectively. The model 

weights were updated using an Adam optimiser [162] based on the error differentials and a 

learning rate of 0.001. The most probable output was taken as the class label during 

classification. 10 different BM models were developed by randomising the initial weight matrix 

before training, thus developing 10 different BM. Each of the BM could be argued to represent 

an independent HP undergoing training. The reason for the independent BM was also for the 

comparable statistics as followed in standard machine learning literature. 

5.1.2 Results  

Across all input durations, the classification performance for the BM was below chance at 37% 

(t9 = -3.7, p<0.005). Performance across different durations remained stable without any 

significant difference. Overall, classification confidence levels for correct and incorrectly 

identified genders showed no significant difference (F1,18 =  0.03, 0.75<p<1.0). However, at 
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durations above 3.6 sec, classification confidence for incorrectly identified genders was higher 

than correct responses, with the difference in confidence levels being considerably below zero (t9 

= -2.7, p<0.05). The probability for inversion of gender classification remained close to chance 

performance of 50% overall. A higher probability for inversion was observed at 3.6 and 3.7 sec 

duration at 60%, with scope for further investigation for statistical significance. Fig. 17 visually 

compares the classification accuracy obtained from the model as a function of exposure duration 

to stimuli, both for veridical (upright) stimuli as well as vertically inverted stimuli.  

Interestingly the BM classification accuracy of the inverted walkers does not change significantly 

with increase in exposure duration and is similar to the accuracies reported in case of HP. For during 

shorter durations, classification confidence levels overlap for incorrect and correct classifications. 

The tendency of bias for both the HP as well as BM could be attributed to an over-reliance on the 

hip and shoulder motions as a result of the skeletal structural differences between men and women 

[32, 67, 127]. The objective of the next experiment is to condition the BM explicitly on dynamics 

of human gait using the gender-neutral structure of the walker, to observe the change in inversion 

effect and gender classification performance. However, evaluation of HP trained purely on dynamic 

motion is unattainable as humans need to see the anthropomorphic structure to derive the motion. 

The BM, however can be developed and trained on synthetically generated gender-neutral structure 

of the walker for learning discriminating features solely from the dynamic cues. Thus, the next 

experiment attempts to evaluate the contribution of skeleton structure-based cues to the perception 

of gender from gait in the inverted stimulus. If the BM functionally emulated HP, then lack of 

structural cues should reduce the effect of inversion of the stimulus, and thus, increase correct 

gender classification accuracy. However, a reduction (or no significant change) in accuracy would 

argue for a deviation of the BM from HP. 

 

https://paperpile.com/c/f3P1AS/zP80u+Es75f+RKERH
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Figure 17: Gender classification accuracy (in %, mean and standard error) of the BM 

when tested on veridical (upright skeleton) stimuli compared with (vertically) inverted stimuli. In 

both cases, the model is trained on veridical stimuli. 

5.2 Experiment 2: Contribution of Structural Cues for Biomimetic 

Models 

A gender-neutral posture was generated by averaging postures across all the participants of the 

study [127]. The resulting walker possesses a generic anthropomorphic posture within the 

variance of the participating subjects, which is then used for a human observation study. While 

this approach is perfectly suited for human observers, given their a priori assumption of an 

anthropomorphic model, the BM provides us with greater flexibility of experimentation because 

of their ability to learn a generic spatiotemporal stimulus. This allows for a higher range of 

postural modifications which can generalise beyond the variance of postures available in the 

dataset at hand. In this experiment, a new BM is developed for comparison with the model used 

in previous experiments and evaluated for gender classification accuracy and robustness to 

https://paperpile.com/c/f3P1AS/RKERH
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vertical inversion of the walker. For the purpose of this experiment, the model trained with 

veridical walkers shall be referred to as BM1, and the new model as BM2. BM2 is trained on a 

gait input sequence synthesised by modifying the structure of the walkers in the existing data to 

reflect a gender-neutral body structure. 

5.2.1 Method 

5.2.1.1 Biomimetic Model  

The model architecture was the same as that of the previous experiments. The training and 

testing of BM2 obeyed the same protocols as followed by the previous experiments, including 

development of 10 LSTMs with randomly generated initial weights, providing 9 degrees of 

freedom during evaluation of results. 

5.2.1.2 Data Input  

The input dataset is generated by changing the limb lengths of each of the 19 limbs connecting 

the 20 joints to have unit length. Fig. 17 describes the joint dependency tree of the human body 

as a hierarchy of attached joints, where each node in a subsequent layer of the tree is dependent 

on its parent node. The new three-dimensional joint trajectory of the gender-neutral walker is 

determined by adjusting the magnitude of the limb vector to a unit and calculating the new 

trajectory of the vector in the direction of the limb. The hip base is taken as the reference joint 

for calculating the new joint trajectories. The new joint trajectories are determined using the 

following steps:   

 

𝐿 =  |𝑖𝑝𝑜𝑠  −  𝑥𝑝𝑜𝑠| 

�̂� = (𝑖𝑝𝑜𝑠  − 𝑥𝑝𝑜𝑠) / 𝐿  

𝑖′𝑝𝑜𝑠  =  𝑥𝑝𝑜𝑠 +  �̂� 

 

where, 𝐿 is the limb length between parent joint 𝑥 and dependent joint 𝑖, with their trajectories 

represented by 𝑥𝑝𝑜𝑠 and 𝑖𝑝𝑜𝑠. �̂� is the unit vector in the direction of the limb vector and 𝑖′𝑝𝑜𝑠 is 

the new three-dimensional trajectory of the dependent joint 𝑖 after the structural correction. The 

process is repeated for each of the 19 limbs of the body. The result of structural corrections in the 

static frames is demonstrated in Fig. 18. The model is trained and tested with the new dataset 

similar to Experiment 1 and 2. 
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Figure 18: Joint dependency tree of the human body representing the parent and child 

joints originating from the hip base 

 

 
Figure 19: Point light display (PLD) of a walker with unit limb lengths at different stages 

of the gait cycle. This stimulus dataset is used for training and testing to evaluate for its 

dependence on structural cues of the walker. 
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5.2.2 Results 

BM2 performed at 75% accuracy in gender classification across all the input durations (t9 = 7, 

p<0.001). There was no significant difference in gender classification between the models BM1 

and BM2 (F1,18 = 0.004, 0.75<p<1.0), signifying alternative dynamic gender discriminatory cues 

available for the model to learn to the same degree of classification in case of vertically inverted 

walkers, BM2 performed slightly above chance performance at 53% (t9 = 2, p<0.1). However, 

there was a significant improvement in gender classification of vertically inverted walkers 

between the two BM across all durations (F1,18 = 138, p<0.001), suggesting a high contribution 

of structural cues towards the bias leading to poor performance in BM2 and increase in 

robustness with dynamic cues in BM1. The difference in classification confidence values 

between correct and incorrect responses was however not significant. 

Reduction in inversion effect in BM2 further supported the robustness of learning gender 

discriminating cues from dynamic information. However, model performance remained 

indistinguishable. Providing dynamic and velocity cues to HP has led to an improvement in 

gender classification [127]. The next experiment leverages this result to perform an extensive 

evaluation of dynamic cues of joint velocities and acceleration derived from veridical and 

structurally corrected walkers with the aim of establishing the best model training and testing 

strategy for accuracy, robustness and generalisability to non-gender related gait classification 

tasks. An increase in gender classification sensitivity with dynamic cues would demonstrate the 

existence of a common neural module shared between HP and BM, introducing the possibility of 

understanding the human brain better through biomimetic systems. As a practical outcome, the 

result would establish the best model training and testing strategy for accuracy, robustness and 

generalisability to non-gender related gait classification tasks as well.  

5.3 Experiment 3: Spatiotemporal Pre-processing Strategies for 

Biomimetic Models 

This experiment aims to evaluate the BM performance on datasets that have been synthetically 

generated through the application of various spatiotemporal pre-processing steps on the standard 

walkers’ dataset. It may be noteworthy to quickly recap that the synthetic modifications were 

implemented to isolate or enhance spatial and temporal characteristics of the skeleton during 

gait. The modifications are chosen based on known HP preferences and limitations. If BMs 

shared the functional similarities with HP, then the models trained with the modified version of 

gait are expected to improve the performance outcome both in terms of performance accuracy 

and by overcoming human-like limitations. The modifications are associated separately with 

spatial and temporal characteristics of gait i.e. skeletal structure of the walker, and dynamic 

motion trajectories of the joints of the skeleton. Succinctly, the spatial modification includes, (1) 

walkers’ veridical structure, and (2) structurally modified walkers to have unit limb lengths, as 

mentioned in Experiment 1. Temporal modification includes, (1) position, (2) velocity, and (3) 

acceleration of the three-dimensional joint trajectories. The objective of the analysis is to 

https://paperpile.com/c/f3P1AS/RKERH
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establish a strategy of choosing the appropriate model and pre-processing steps with a given 

threshold and priority of performance measures. 

5.3.1 Method 

5.3.1.1 Biomimetic Model 

The biomimetic architecture for building the framework of the model, training and testing 

protocol is the same as the previous experiments, however, differences in the spatiotemporal pre-

processing steps would result in six different trained models. The variations of BM trained on 

various synthetically generated datasets, requires a formalised method of referring to the models. 

Thus, the nomenclature of the models is established according to the following pre-processing 

steps: 

SPATIAL\TEMPORAL Position Velocity Acceleration 

Standard Structure BMpos BMvel BMacc 

Unit Limb Length Structure 
(gender-neutral) 

BMpos,ull BMvel,ull BMacc,ull 

 

Some of the models mentioned in the above cohort are covered in previous experiments. BMpos 

refers to BM1, while BMpos,ull refers to the BM2 model in the second experiment. 

5.3.1.2 Data Input 

Temporal derivatives of the gait of the standard walkers and gender-neutral skeleton walkers 

were used for generating the corresponding velocity and acceleration values from the position 

joint trajectories. The positional data was smoothed using a 5-frame moving average filter before 

calculating the derivatives for the subsequent frames to reduce high frequency artefacts. The data 

underwent normalisation and standardisation following the guidelines from the previous 

experiments before training and testing of the models. The procedure was replicated to generate 

the data for the vertically inverted walkers, by mirroring the joint trajectories on a horizontal 

plane passing through the centre-of-mass of the body, as described in Experiment 1. 

Subsequently, temporal derivatives of the trajectories provide the corresponding velocity and 

acceleration of the joints. The resulting datasets can be enumerated as follows: 

●    Position, velocity and acceleration of joints of walkers with the original skeletal data, 

●    Position, velocity and acceleration of joints of walkers with gender-neutral skeletal data, 

●    Vertically inverted data for the datasets mentioned above in 2. 

The trained models are tested on the upright walkers’ data for accuracy and on inverted walkers 

for robustness to viewpoint dependency. The corresponding classification confidence values 

were stored for future analysis. 
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5.3.2 Results 

5.3.2.1 Upright (Right-Side–Up) Skeleton 

The BMacc,ull model trained on joint accelerations of walkers with unit limb lengths, possessed 

the highest overall gender classification accuracy of 82% (t9 = 9.4, p<0.001, across all durations), 

with the performance reaching 87% at 3.75 sec (t9 = 12, p<0.001). The performance of the model 

increased with increasing input duration available from 0.4 to 3.75 sec, for the upright walker 

orientation (F1,18 = 5.1, p<0.05). Results from the BMacc,ull  model further demonstrates the 

presence of gender specific, distinct and robust features in the dynamics, specifically 

acceleration, of the joint motion trajectories of the walker with unit limb length structure. 

Detailed results of the models have been presented in Table 6 and Fig. 20, with BMacc,ull  closely 

followed by BMvel,ull with an accuracy of 82% (t9 = 12, p<0.001), on the upright orientation. A 

relatively significant improvement in their classification accuracy on the upright orientation 

(F1,18= 3.5, p<0.1) was observed. Structural and temporal processing achieved higher accuracy 

and robustness. 

Stimulus Exposure Duration 
/ 

Biomimetic Model 
0.4 sec 1.5 sec 2.5 sec 3.75 sec 

BMpos 71 73 77 81 

BMvel 79 81 82 82 

BMacc 76 77 79 79 

BMpos,ull 73 79 76 77 

BMvel,ull 78 82 83 83 

BMacc,ull 78 83 86 87 

Table 9: Correct gender classification accuracy (in %) by the BM across all the stimulus 

exposure durations (in seconds). 
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Figure 20: Correct gender classification accuracy (in %, mean and standard error) of all 

the BM variations as a function of exposure duration (in seconds). The values are filtered 

through a one-dimensional Gaussian filter 

5.3.2.2 Vertically Inverted Skeleton   

In case of vertically inverted stimuli, there was a significant improvement in classification 

accuracy in the models trained with the spatiotemporally modified gait, compared to the models 

trained with veridical gait. Coincidentally, as with the corresponding upright skeleton tests, 

BMacc,ull  had the highest performance in classification in vertically inverted walkers, with an 

accuracy of 81.6% across all durations (t9 = 12, p<0.001) supporting the argument of robustness 

of dynamic cues as opposed to structural cues. The accuracy of the model increased with 

increasing exposure duration available from 0.4 to 3.8 sec for the inverted skeleton orientation 

(F1,18 = 20, p<0.001). Fig. 21 shows the visual trend of classification accuracy with increase in 

exposure duration to vertically inverted stimuli in all the variation of the models. The difference 

in the accuracies is most notable at the highest exposure duration of 3.75 seconds (90 frames), 

where BMacc,ull performs at the highest classification accuracy of 81.6%, which is significantly 

higher than the accuracy of 37% obtained by  BMpos (F1,18 = 32.23, p<0.05). Notably, the 
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difference in accuracies are not significant within the models trained with corresponding velocity 

and acceleration of gait. For instance, at 3.75 seconds exposure duration, BMvel and BMacc are 

not significantly different from each other in terms of accuracy (F1,18 = 0.00, p>0.99) and 

BMvel,ull and BMacc,ull are not significantly different from each other (F1,18 = 0.11, p>0.7). 

However BMvel and BMvel,ull  differ significantly (F1,18 = 13.77, p<0.05) , similarly BMacc and 

BMacc,ull differ significantly as well (F1,18 = 26.92, p<0.05). This provides the impression that 

each subsequent layer of spatiotemporal modification i.e. from spatial modification and temporal 

modification results in an increase in gender classification accuracy. The same can also be 

visually inferred from Fig. 21. Notably, the increase in classification accuracy through temporal 

modification is higher than the corresponding increase through spatial modification. For 

instance, at 3.75 second exposure duration, BMpos,ull has a mean accuracy of 55.4% while BMvel 

has a mean accuracy of 62.6%, which is significantly higher than the former (F1,18 = 5.45, 

p<0.05).Additionally, BMacc,ull has the lowest overall Classification Inversion Probability of 0.12 

across all durations, as shown in Table 7. The models trained on veridical walker body 

structures, BMacc and BMvel performed similarly on the inverted walkers with an overall 

accuracy of 61%, p<0.001. Thus, structural and temporal processing achieved higher accuracy 

and robustness. Table 8 compares the classification of accuracies between all the pairs of BM 

and shows the difference in the accuracies using one-way ANOVA. 

 

Biomimetic 
Model 

Classification 
Inversion 

Probability 

BMpos 0.52 

BMvel 0.38 

BMacc 0.46 

BMpos,ull 0.36 

BMvel,ull 0.12 

BMacc,ull 0.12 

Table 10:  Average Classification Inversion Probability (fraction of test stimulus where 

the gender classification is inverted on inversion of stimulus) of the different variations of the 

BM 

 



72 

 

 

Figure 21: Gender classification accuracy (in %, mean and standard error) in case of 

vertically inverted stimuli using BM trained with a variety of spatiotemporally modified gait. The 

x-axis represents the exposure duration of the stimuli for the model, in seconds 
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 BMpos BMvel BMacc BMpos,ull BMvel,ull BMacc,ull 

BMpos p=1.0 p<0.05 p<0.05 p<0.05 p<0.05 p<0.05 

BMvel  p=1.0 p=0.99 p<0.05 p<0.05 p<0.05 

BMacc   p=1.0 p=0.15 p<0.05 p<0.05 

BMpos,ull    p=1.0 p=0.23 p<0.05 

BMvel,ull     p=1.0 p=0.93 

BMacc,ull      p=1.0 

Table 11: One-way ANOVA results on BM pairs (p-values). Null hypothesis assumes no 

significant difference in the means of the classification accuracies of the BM model pairs at 3.75 

sec duration of exposure to vertically inverted stimuli 

5.4 Experiment 4: Evaluating the Spatiotemporal Pre-processing 

Strategies for Biomimetic Models on 2D Gait Data 

One can argue for the difference in modes of evaluation of the presence of the inversion effect in 

the BM from the corresponding human experiments reported in literature. In literature, the 

inversion effect in human observers was detection through the vertical inversion of a walker on a 

two-dimensional screen. The information available to the observers in the experiments lacked 

depth information, but the corresponding information provided to the BM was three-dimensional 

and thus included depth. This discrepancy in stimuli could lead to a lack of similar evaluation 

criteria. However, upon further experimentation, the BM exhibited the inversion effect in the 

absence of depth information as well. Generalising the argument further, one can argue for the 

successful operation of the proposed approach to the presence of depth information, which was 

unavailable to the human observers. To address this question this experiment is conducted to 

evaluate the BM on the same criteria as earlier on gait information that lacks depth information 

(x and y coordinates of joints only) to closely resemble the HP counterpart of the experiment. 

The objectives of this experiment are (1) evaluate the efficacy of the proposed spatiotemporal 

modifications to improving the BM on 2D data, and (2) evaluate for the presence of inversion 

effect in the model on 2D data and evaluate for a change in gender classification accuracy on 

vertically stimuli after the proposed spatiotemporal modification. 

Similar to Experiment 3, an experiment was conducted to train and test the BM, but on 2D data. 

The setup of the experiment was the same as that of Experiment 3. The only difference was in 

terms of the data which the BM operated on. Unlike the previous experiment, this experiment 

trained the BM on gait data represented as a spatiotemporal evolution of the 2D (x and y) 

coordinates of the 20 salient joints of the skeleton. As with Experiment 3, the model was trained 

on upright skeletal coordinates and was tested on the vertically inverted skeletal coordinates for 

the inversion effect. Six different variations of the models were trained, based on six variations 
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of spatiotemporal modifications (as mentioned in the methods of Experiment 3). The rest of the 

experiment protocols remained the same.  

5.4.1 Results 

5.4.1.1 Upright (right-side-up) Skeleton 

Similar to its 3D counterpart in Experiment 3, BMacc,ull classified gender with the highest mean 

accuracy of 86.82% at 3.75 second exposure duration, significantly higher than chance (t9 = 13.1, 

p<0.05)  more accurate than BMpos (F1,18 = 4.34, p=0.05). The other four variations of the BM, 

namely BMvel, BMvel,ull, BMpos,ull and BMacc while performing significantly higher than chance 

were not significantly different from . Thus, similar to Experiment 3, the combination of all the 

spatiotemporal modifications results in the most accurate gender classification by a significant 

margin. The results are visually represented as a function of exposure duration (in seconds) in 

Fig. 22. 
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Figure 22: Gender classification accuracy (in %, mean and standard error) as a function 

of exposure duration (seconds) using BM trained using six varieties of spatiotemporal 

modifications on 2D gait 
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5.4.1.2 Vertically Inverted Skeleton 

The results are visually represented in Fig. 23. 

 

Figure 23: Gender classification accuracy of vertically inverted skeleton (in %, mean 

and standard error) using BM trained and tested on two-dimensional gait data (without depth 

information). Classification accuracy (%) as a function of exposure duration (seconds) of gait 

stimuli 

As confirmed visually in Fig. 23, the model exhibits inversion effect in the absence of depth 

information as well with a mean classification of 41.07% at a 3.75 second exposure duration, 

below chance performance (t9 = -1.9, 0.05<p<0.1). While the performance is not significantly 

below chance, there is a significant difference in classification accuracy on upright skeleton and 

inverted skeleton with a mean gender classification accuracy of the former at 77.57% and the 

latter at 41.07% (F1,18 = 40.93, p<0.05). An approximately 36% reduction in classification 

accuracy can be attributed to the inversion effect, which, as shown can be exhibited in the lack of 
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depth information as well. Notably, the spatiotemporal modifications on veridical gait improved 

classification accuracy on the models trained on the 2D representation of gait as well. For model 

comparison the same model nomenclature as that of the previous experiment is followed here as 

well. Similar to the previous experiment BMacc,ull  classified gender in the inverted stimuli with 

the highest mean accuracy of 66.29% (t9 = 4.90, p<0.05). Interestingly, unlike the previous 3D 

counterpart, the accuracy of BMvel and BMacc are significantly different from each other (F1,18 = 

4.97, p<0.05), while BMvel and BMvel,ull are not significantly different from each other. This 

suggests that the hypothesis of temporal modifications resulting in a higher increase in accuracy, 

compared to spatial changes, does not hold in case of models trained on 2D gait data. 

Nonetheless, any combination of spatiotemporal modifications result in a significantly higher 

gender classification accuracy in the models.  

In summary, gender classification accuracy and robustness increased with every additional 

spatiotemporal processing step, revealing more readily available gender discriminating cues with 

additional pre-processing. The lack of structural influence on the joint trajectories could 

exaggerate the behavioural differences expressed through motion between male and female 

walkers leading to a robustness in the inversion of the walker. The BM also demonstrated 

capacity for self-learning the relevant cues without the need for hand-crafted features. The 

significant improvement in performance between the best performing BM and the biological 

model (F1,29 = 113, p<0.001), is not surprising given the difference between  BMpos and 

biological perception, as shown in Experiment 1. The difference in performance accuracy 

between BMpos and BMacc,ull  is significant (F1,18 = 13, p<0.001), given the basic nature of the 

spatiotemporal pre-processing.  

However, the difference in robustness between BMacc,ull   and BMpos is significant, (F1,18 = 734, 

p<0.0001). Considering the similarity in inversion effect between BMpos and humans, the 

difference in robustness could be extended towards the perceptual bias of humans as well. 

Notably, when trained with the 2D variant of data (withholding depth information of the joints), 

no significant difference in performance profile was found while exhibiting similar biomimetic 

properties. 

5.5 Discussion 

The psychophysical results are consistent with previous studies in visual perception 

[8,67,113,127,171] , suggesting a plausible biological baseline for comparing human 

performance with the BM. Experiment 1 reveals that a common inversion effect is shared 

between humans and BM in the misclassification of inverted stimuli.  The emergence of the 

inversion effect in the BM as a result of learning the association between gender classification 

and biological motion supports the hypothesis of the inversion effect being a learned perception. 

The commonality also suggests that BM learning may operate using similar global mechanisms 

as humans in processing biological motion. That the BM tested exhibit the same characteristic 

after training (even when initialised with random weights) suggests that the behaviour emerges 

due to convergence towards a set of weights that are optimised for gender classification, and 

https://paperpile.com/c/f3P1AS/zP80u+68kCS+DSxXX+tlJsw+RKERH
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provides additional support for global configural perception as a learned process, as opposed to 

local perception as an innate one [167].  

Another way to look at the same phenomenon is through the top-down (background knowledge 

based) and bottom-up (data driven) approach to perception. The BM do not possess a 

preconceived anthropomorphic notion of the human body in motion but rather build their 

conception through observation of individual joint motions that are then correlated with gender. 

This resembles a data-driven, bottom-up approach to motion perception, whereas humans may 

create percepts from biological motion using both top-down and bottom up approaches [164].  

 

Experiments 2 and 3 were directed at understanding and improving the BM to become more 

robust than HP with the aim of developing a high-performing gait classifier. The absence of any 

preconceived anthropomorphics in the model is utilised in Experiment 2 using a gender neutral 

representation of the body structure in order to mitigate the inversion effect and to increase 

classification performance to progressively higher levels. The observation that humans use 

dynamics in preference to positional cues in identifying gender from gait [8] was leveraged in 

Experiment 3 to train the BM on the velocity or acceleration of the joints.  Higher temporal 

derivatives increased the accuracy, robustness and efficiency of the models. The increase in 

performance, despite the potential loss of relevant information (through omission of structural 

cues), highlights the redundant nature of the information extracted by both humans and the 

machine learning models. However, the advantage of machine models lie in their lack of 

restriction on the type of information they can work with, which is not necessarily the case in 

humans. For example, acceleration of foot trajectories is perceptually important [168] but may be 

difficult to provide in an isolated manner to improve performance. Machine models, on the other 

hand, allow for testing on arbitrary modifications to biological motion vectors, whether it is to 

improve model performance or to extend understanding of HP. Interestingly, Fig. 20 shows a 

visual increase in the standard error band in accuracies in BMacc,ull with increase in time duration 

of exposure, while the opposite is shown in the case of BMpos. Understanding the underlying 

cause of this phenomenon calls for further experiments, which, although is outside the scope of 

this thesis, but is an interesting avenue of exploration. 

5.6 Conclusions 

Gender classification from human gait was used to evaluate differences and commonalities 

between human and artificial and learners. A biomimetic machine learning model that does not 

require hand-crafted features is shown to resemble in operation certain functional aspects of 

human performance, while additional modifications guided by HP are shown to exceed it.  The 

results provide support for a generic, rather than a pre-tuned, learning system in human visual 

perception, and one that is based on global, rather than local, configural processing. The 

approach may allow for robust gait classification in other applications, such as for the diagnosis 

of clinical movement disorders. Other attributes of the walker such as age, weight, emotional 

state or other personality traits could be treated in a similar way. However additional data would 

be needed to represent such attributes. Given an extended database, it is straightforward and 

analogous to the gender classification problem to train and test the model for other attributes that 

may be represented in walking patterns.  

https://paperpile.com/c/f3P1AS/MiTI1
https://paperpile.com/c/f3P1AS/ysvUv
https://paperpile.com/c/f3P1AS/tlJsw
https://paperpile.com/c/f3P1AS/aPplc
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Dominance of dynamic information, presence of an inversion effect and increase in performance 

with increase in data availability are some of the aspects of HP that are shared by the machine 

models. Results demonstrate the potential of BM as an automatic gait classifier with performance 

significantly exceeding human observation. As a clinical application, the trained BM could be 

used as an assistive technology for clinicians in medical gait analysis. This is reserved as future 

work.  

As with any predictive model, the BM could possess biases of their own; however, the 

significantly higher performance and difference in known biases allows the opportunity for the 

models to be utilised either in isolation or together to compensate for each other’s biases.  
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Chapter 6 Extrinsic Feature Classification Using 

Biomimetic Models: Emotion Classification from Human 

Gait 

In the previous chapters, the biomimetic machine learning model was able to classify gender of a 

human walker with an accuracy that was significantly more than human observers’ performance. 

While the ability of the model was noteworthy, the classification outcome i.e. gender as a gait 

feature, is intrinsic to the walking subject. Generally, one’s gender remains the same throughout 

one’s lifetime. The proposed paradigm to improve the model was applicable in the particular 

classification outcome. However, the generalisability of the approach would be highlighted if it 

is applicable in a classification outcome that is conceptually different from the ones that has been 

evaluated on so far. Thus, this chapter focuses on the classification of gait features that are 

extrinsic and short-lived, using the same approach evaluated earlier. The inclusion criteria for the 

extrinsic gait feature are, (1) the availability of established human perception (HP) literature 

demonstrating the ability of humans in classifying the extrinsic feature from gait, and, (2) the 

potential of the feature to be externally induced and removed, possibly in a matter of a few 

minutes. Adhering to the above, the expression of the state of human emotion through gait is 

taken as a proxy for classification of the extrinsic gait feature. Extrinsic feature classification is a 

considerably harder problem to classify in comparison to gender, given the variety of ways in 

which humans display emotion and the lack of substantial studies correlating gait and authentic 

emotional exhibition. This chapter acts as a preliminary evaluation of the proposed paradigm and 

marks the beginning of a more detailed study.  

Previous studies of emotional state classification from gait have suggested an influence of 

heuristically chosen local features, such as head inclination, arm swing or heavy-footedness [12–

15, 17, 129]. However, the problem with such predetermined feature extraction is that, in 

principle, a very large number of such local features can be defined. Testing all the possible pre-

processed features would require a lot of time and resources, essentially violating the constraint 

that has been raised in the previous chapters i.e. minimisation of the expert human intervention 

and the need to handcraft features. Thus, in addition to evaluating the viability of the proposed 

paradigm, the experiments in this chapter also evaluate the ability of the biomimetic model (BM) 

in learning the necessary skeletal gait. Additionally, to maintain the sanctity of correspondence 

with HP, any global dimension reduction of gait was also avoided [33]. The gait dataset used for 

this chapter was collected in the US as detailed in the methods chapter (section 3.1.2). The 

dataset contains skeletal gait representations of twenty-two subjects (6 males, 16 females) 

consenting healthy adults, with visually induced emotions using images from the IAPS dataset. 

6.1 Experiment 1: Classification of Emotion from Human Gait Using 

Biomimetic Models 

In the experiment design, we emphasise and address the problem of authenticity of emotions 

being expressed through gait. Most previous literature used professional actors for motion 

https://paperpile.com/c/f3P1AS/mjWet+ltx8Y+UnPFX+6RPjs+VWnOU+mW3NC
https://paperpile.com/c/f3P1AS/mjWet+ltx8Y+UnPFX+6RPjs+VWnOU+mW3NC
https://paperpile.com/c/f3P1AS/X63do
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capture of gait, while the actors portrayed various emotions [12, 13, 17, 33, 34]. Few studies 

hired students with some acting experience and instructed them to feel the emotions while they 

walked [33,34], while other studies invoked the emotion either by asking them to recollect a life 

situation that made them feel a certain emotion[17,33,34] or read a passage designed to influence 

one’s emotions in a particular way[12]. The authenticity of emotions felt during different studies 

could deviate from natural emotion and may manifest differently in gait in unnatural ways. For 

example, we believe that the high classification accuracy of emotions in case of professional 

actors’ gait could be attributed to unnaturally exaggerated movements. The students who were 

asked to feel a certain emotion could also have exaggerated body movements, considering their 

objective was to ensure the expression of certain emotions. Adhering to the theme, the 

experiment was designed to ensure authentic expression of emotion through gait, through visual 

stimulus only without providing any explicit instruction to feel a certain emotion. All changes in 

gait due to emotional expressions are natural. In other words, the subjects were not asked to act 

according to a certain emotion. In fact, there was no explicit instruction provided in terms of 

exhibiting a certain emotion. 

6.1.1 Data Analysis 

6.1.1.1 Data Pre-processing 

The three-dimensional trajectories of each of the 20 tracked joints were concatenated to form a 

vector representation of a static frame with a cardinality of 60, representing the location of the 

head, neck, shoulders, elbows, wrists, fingertips, mid-back, hips, knees, ankles and toes. Gait 

input to the model consisted of a sequence of vector representations of subsequent static frames, 

sampled at 24 frames per second. Joint trajectories were size normalised [127] and standardised 

with a zero mean and unit standard deviation.  

In addition to the above dataset, the BM was also evaluated on synthetically generated gait data 

through the application of various spatiotemporal pre-processing steps on the veridical walker’s 

dataset, similar to Experiment 3 in Chapter. 5. The positional data was smoothed using a 5-frame 

moving average filter before calculating the derivatives for the subsequent frames. The data 

underwent size normalisation and standardisation following the guidelines from the previous 

experiments before training and testing of the models. The final pre-processed dataset included, 

(1) position, (2) velocity and (3) acceleration  and the corresponding temporal derivatives of the 

three-dimensional joint trajectories for the unit limb length skeleton as (4), (5) and (6) 

respectively. The additional dataset was generated based on the preference of HP in velocity of 

the movements, rather than position itself, when categorising emotion from biological motion 

[13,34].  

6.1.1.2 Biomimetic Model 

The BM architecture for building the framework of the model, training and testing protocol is the 

same as the previous experiments, however, differences in the spatiotemporal pre-processing 

steps results in three different models. Considering the classification objective of three emotions 

of ‘positive’, ‘negative’ and ‘neutral’, the BM was modified to have three output nodes, as 

opposed to two output nodes all the previous experiments. The final affine layer was modified to 

https://paperpile.com/c/f3P1AS/UnPFX+wCMlU+X63do+VWnOU+mjWet
https://paperpile.com/c/f3P1AS/wCMlU+X63do
https://paperpile.com/c/f3P1AS/UnPFX+wCMlU+X63do
https://paperpile.com/c/f3P1AS/mjWet
https://paperpile.com/c/f3P1AS/RKERH
https://paperpile.com/c/f3P1AS/wCMlU+VWnOU
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be fully connected to three output layer nodes, as shown in Fig. 24. The nomenclature of the 

models is established according to the pre-processing steps mentioned in Table 9. 

 

 
Figure 24: Model architecture of the BM for emotion classification of human gait into 

‘neutral’, ‘positive’ and ‘negative’ emotions. 

 

SPATIAL\TEMPORAL Position Velocity Acceleration 

Standard Structure BMpos  BMvel  BMacc 

Unit Limb Length Structure 
(gender-neutral) 

BMpos,ull  BMvel,ull  BMacc,ull  

Table 12: Nomenclature of the various BM based on the spatiotemporal preprocessing 

steps used to for training and testing of the models 

6.1.1.3 Model Training and Testing 

Model training sessions included, initialization of the model weights, classification of the output 

probabilities based on the gait input, propagation of the classification error and updating the 

network weights. Model training was executed in batches of 50 and repeated for 100 epochs. 

Gait input sequence was provided for 2.5 seconds (60 frames) which completes two full gait 

cycles, to maximise the data availability to the BM to classify emotions from. During training, 

emotion was provided as one-hot encoded labels with neutral, positive and negative represented 

as [1,0,0], [0,1,0] and [0,0,1] respectively. A conservative cross-validation approach, leave-one-

out policy was used for training and testing [172], to prevent lack of overestimation of 

performance accuracy. All six versions of the BM i.e. BMpos , BMvel , BMacc , BMpos,ull , BMvel,ull 

and BMacc,ull  were trained separately on position, velocity and acceleration datasets of veridical 

walkers and unit limb length normalised walkers datasets accordingly. Each version was 

initialized 10 times with different randomised weights and evaluated for statistical significance, 

thus providing 9 degrees of freedom for evaluating the performance accuracy. The models 

trained per session per duration were stored locally for future analyses. 

https://paperpile.com/c/f3P1AS/m0PnZ
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6.1.2 Results 

Table 10 details the results of the emotion classification task by the various BM, 

Biomimetic Model Accuracy of Emotion 
Classification (%) 

BMpos 43 (p<0.05) 

BMvel 41 (p<0.05) 

BMacc 44 (p<0.05) 

BMpos,ull 32 

BMvel,ull 41 

BMacc,ull 29 

Table 13:  Correct emotion classification accuracy (in %) by various BM trained with a 

specific spatiotemporal modifications made to the original gait dataset 

The BM that were trained on the synthetically modified skeleton to obtain gender-neutral 

structure performed either at chance or at an accuracy that could not be distinguished with 

statistical significance.  

Whereas, the models that were trained on the veridical walkers’ skeletons performed at an 

accuracy significantly above chance (chance taken as 33.33% in this case). In terms of mean 

performance accuracy, BMacc at 44% (t9 = 2.36, p<0.05) was closely followed by BMpos (43%, 

t9= 2.51, p<0.05) and BMvel at 41% (t9= 2.41, p<0.05). However, the difference in performance 

within the models was indistinguishable.          

The result demonstrates the ability of the BM in being able to extract and correctly classify a 

temporarily induced extrinsic feature. Interestingly, this demonstrates the ability of the model in 

classification of emotions that are changed in quick succession, in about 5 minutes. Improving on 

this baseline, the next objective is to understand the preferences of the model in terms of data 

type for a particular emotion. While one could determine the preference from the current result, 

it was deemed better practice to run new experiments by isolating the emotions in pairs for a 

better understanding of individual emotions. Literature suggests that human walkers tend to 

stoop down (change in structure of skeleton) and reduce gait speed when induced with a negative 

emotion and move their arms more (change in motion of the skeleton) when induced with a 

positive emotion [13,34].  

The inability of the BM models trained with gait of the gender-neutral skeleton i.e. BMpos,ull , 

BMvel,ull and BMacc,ull to classify emotion correctly, demonstrates a difference in expression of 

emotion between the genders. One might argue that this could be a result of a loss of information 

resulting from the gender-neutralisation modification. However, this argument can disputed by 

the results in Chapter 4 and 5, where the performance accuracy increased after modifying the 

https://paperpile.com/c/f3P1AS/wCMlU+VWnOU


84 

 

veridical skeleton. This result corroborates with the claim that men and women express their 

emotions differently in terms of facial expressions [173]. However, this to our knowledge is a 

novel contribution towards the question, that is, if emotional expressions in skeletal motion are 

sex specific. Given a correlation between skeletal anatomy and gender, the results demonstrate 

the dependence of a particular way of emotional expression on sex, thus, on the skeletal 

anatomy. Thus, leading to a loss of relevant distinguishing features upon neutralisation of gender 

specific anatomical differences in the skeleton. 

In order to understand the predominance of either structural or motion-based cues for different 

emotions, the next experiment focuses on a pair-wise training and testing of the two extremes of 

emotion. Specifically, the next experiment trains the BM models on neutral vs. positive and 

neutral vs. negative emotions to observe the preference of the models for either structure or 

motion of the skeleton for correct classification of induced emotion.   

6.2 Experiment 2: Pairwise Comparison of Positive and Negative 

Emotion with Neutral, Using Biomimetic Models 

6.2.1 Experiment Setup 

6.2.1.1 Data Input 

The data collected for the previous experiment was separately collated to form two groups (1) 

neutral and positive and (2) neutral and negative. The dimensionality of the data was the same as 

the previous experiment and the pre-processed configurations of the dataset was the same as well 

i.e. temporal derivatives of the size normalised dataset to form three types of data, namely (1) 

position, (2) velocity and (3) acceleration of the three-dimensional joint trajectories of 20 tracked 

joints.  

6.2.1.2 Biomimetic Model 

The BM model remains the same as the model in previous chapters. During training, a 

modification was made in the output layer to represent emotions as one-hot labels, representing 

both sets of emotion-pairs. In the first set, neutral and positive were represented as [1,0] and [0,1] 

respectively. In the second set, neutral and negative were represented as [1,0] and [0,1] 

respectively. Training and testing protocols were followed as per the sequence mentioned in 

Experiment. 3 in the previous chapter. 10 BM models were developed by initialising the weights 

randomly, conceptually representing 10 different perceptions, proving 9 degrees of freedom in 

statistical analysis of results. Three different variations of BM are trained based on three levels of 

temporal pre-processing steps, the nomenclature of the models provided in Table 11. As 

mentioned in the previous experiment, a conservative leave-one-out cross-validation policy was 

utilised for the training and testing protocols.  

 

 

https://paperpile.com/c/f3P1AS/PlCfR
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Spatiotemporal Pre-
processing 

Position Velocity Acceleration 

Biomimetic Model BMpos BMvel BMacc 

Table 14:  Nomenclature of the BM based on the temporal pre-processing of the dataset 

used for training and testing of the model 

6.2.2 Results 

6.2.2.1 Neutral versus Positive  

The results of operating the BM models on neutral and positive emotions are detailed in Table 

12. 

Biomimetic Model Accuracy of Emotion 
Classification (%) 

BMpos 54 (p<0.5) 

BMvel 66 (p<0.1) 

BMacc 66 (p<0.05) 

Table 15: Correct emotion classification accuracy of classification of ‘neutral’ and 

‘positive’ emotion (in %) by various BM operated on temporally pre-processed human gait data 

Temporal derivatives of gait data demonstrate a ready availability of emotion information for the 

BM to be able to learn from. Change performance, for the purpose of this experiment, is at 50%. 

Only the BMacc model was able to distinguish between neutral and positive emotion with a 

performance significantly above chance 66% (t9= 2.6, p<0.05), closely followed by BMvel  , 

which could classify emotions with the same average performance, but without a considerable 

statistical significance. However, BMpos was unable to distinguish between the emotions, with an 

average performance close to chance.   

Notably, there was an increase of 12% in the mean classification accuracy between BMpos and 

BMacc. However, the difference in accuracy was not significant (F1,18 = 2.8, p>0.1). However, a 

mean accuracy difference of 12% encouraged further exploration of HP literature and its 

application to improve BM classification. In Chapter 4, both HP and BM demonstrated a 

significant improvement upon increase in exposure to gait stimuli. Thus a variation of the 

experiment was conducted by increasing the exposure duration to 3.4 seconds (80 frames). 

Results of the increased exposure duration are detailed in Table 13 and Table 14. Results show a 

significant increase in the mean accuracy between BMpos and BMacc. Classification accuracy 

increased by 23%, from 43% to 65% (F1,18 = 7.4, p<0.05). While there was a decrease in the 

mean accuracy from 54% to 43%, however the decrease was not statistically significant (F1,18 = 

2.9, p = 0.1). 
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 Accuracy 

BMpos  43%, p<0.25 

BMvel 66%, p<0.1 

BMacc 65%, p<0.05 

Table 16: Classification accuracy of the BM for positive-neutral emotions (in %) for 

stimuli exposure duration of 3.4 seconds. Chance accuracy at 50% 

 

 BMpos BMvel BMacc 

BMpos  p=1.0 p<0.05 p<0.05 

BMvel  p=1.0 p=0.93 

BMacc   p=1.0 

Table 17: Difference in the mean accuracies (as p-values of one-way ANOVA) of the 

variations of BM. Null hypothesis assumes no significant difference in their means. Chance 

performance at 50% 

6.2.2.2 Neutral versus Negative 

The results of operating the BM model on neutral and positive emotions are detailed in Table 15. 

 

Biomimetic Model Accuracy of Emotion 
Classification (%) 

BMpos 52 (p<1.0) 

BMvel 59 (p<0.5) 

BMacc 63 (p<0.5) 

Table 18: Correct emotion classification accuracy of classification of ‘neutral’ and 

‘negative’ emotion by various BM operated on temporally preprocessed human gait data 

 

The results of the BM models do not demonstrate a performance significantly different from 

chance. Although the average classification increases with increasing levels of temporal 

derivatives, similar to the previous pair of emotions, there is no conclusive evidence of the BM 

model in being able to distinguish between neutral and negative emotion. The results show 

potential which can be investigated further by training additional models to strengthen the 

outcomes. In the current state of the experiment, taking a confidence level of 95%, sample size 

of 10 and a worst case classification accuracy percentage of 33.33%, provides a confidence 

interval of 29.22%.  
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Previous studies suggest a reduction of walking speed and downward tilting of the head (looking 

down) as two of the unique features of negative emotions[13,34], while no such claim was made 

for the positive emotional state. The treadmill forces the walker to maintain a constant walking 

speed throughout the negatively induced emotional state. One might argue that this artificially 

enforced treadmill walking could significantly mask the natural expressions of negative 

emotional state. Additionally, given the explicit instruction to the walkers to have a forward gaze 

to look at the sequence of photographs being displayed on the screen, it could artificially prevent 

the walkers from expressing the natural tendency to look down at the ground, thus, resulting in 

the inability of the BM in being to identify the negative emotion. For a deeper examination of 

this plausibility, a sensitivity analysis was performed, which revealed the reason for low 

accuracy being a very biased classification of gait towards the negative emotional state. Notably, 

71% of gait provided to the model during testing was classified as ‘negative’, hinting at a 

possible dominance of certain negative emotional gait traits over neutral gait. This requires 

further study in terms of understanding the nuances in the numerical values in negative gait 

which could lead to higher values of the cost function which might lead to a harsher correction of 

classification in case of a wrong classification of the negative emotional state. While the same 

may not be true for the neutral emotional state, leading to a forced prejudice of the BM model in 

identifying the majority of gait samples as negative to prevent large penalties due to wrong 

judgement. Future work shall explore the BM biases and prejudices in judgement based on the 

values of the cost functions and corresponding corrective adjustments to the weights. An ideal 

backpropagation function shall take the same into account to ensure a normative range of errors 

in spite of the data sample provided.  

6.2.3 Discussion 

The series of experiments in this chapter evaluated the ability of the biomimetic BM model in 

being able to classify emotion, a transient, extrinsic feature that is externally and visually 

induced for a few minutes, from human gait. The mode of induction of emotion was chosen to 

ensure a more authentic and natural expression of emotion in the walkers’ gait. Emotion 

classification was chosen as an extrinsic feature of gait, which can be argued to be a proxy for 

various such types of properties, such as clinical conditions, weight etc. The BM model was able 

to classify all three emotions with an overall accuracy significantly higher than chance. Thus 

demonstrating the ability of the model in being able to classify extrinsic features of gait, in 

addition to the intrinsic feature of gait from previous chapters (gender). Results from the binary-

classification task for positive and neutral emotions further supported the bidirectional learning 

paradigm for improving the accuracy of the BM. Leveraging motion based cues over structural 

based cues results in an increase of 12% (F1,18 = 2.8, p>0.1). However the difference was not 

significant. Further, application of the shared aspect of increase in accuracy with increase in 

exposure duration between HP and BM (see Chapter 4) resulted in a significant improvement of 

23%, from 43% to 65% (F1,18 = 7.4, p<0.05). 

 

A deeper analysis of the model preferences revealed a similar preference to skeletal motion (as 

opposed to skeletal posture) as that of HP when distinguishing positive emotional affect from 

neutral emotion, corroborating with existing human psychological literature. Simultaneously, the 

https://paperpile.com/c/f3P1AS/VWnOU+wCMlU
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inability of the model in being able to distinguish between the negative and neutral emotion 

shows a deviation of the biomimicry from established human psychological literature. However, 

one could argue that the experimental conditions and constraints restricted the natural expression 

of the negative emotional affect in gait, leading to the inability of the BM in being able to 

distinguish the emotion. Analysing the plausible ways of explaining this anomaly in result lead 

to the discovery of a mode of analysis that could explain not only the biases in outputs of the 

BM, but also, lead to the design of a better cost function. This aspect of the model shall be 

explored as part of future work on the development of the model.   
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Chapter 7 Discussion 

This thesis aims to streamline the process of selecting and improving machine learning 

(ML) models, particularly biomimetic models (BM), for classification of a task which humans 

have already been shown to be adept at. Classification of human gait is taken as the exemplar 

classification task. The streamlined process aims to translate the insights gained from human 

perception (with regards to the specific task) onto the ML models, to make intuitive and human 

understandable changes to the models and improve their performance. Towards that objective, 

the thesis proposes and tests the validity of a novel bidirectional learning paradigm for improving 

the ML using established human perception preferences and limitations in the classification of 

gait. In addition to improving performance of the ML models, this approach also aims to increase 

understanding of human perception (HP). The validity of the proposed paradigm for improving 

the BM is established through the classification of two conceptually different classification 

objectives, namely an intrinsic feature, which tends to remain constant over one’s lifetime and an 

extrinsic feature of human gait, which tends to change frequently, even in a matter of minutes. In 

this case, gender is taken as the exemplar intrinsic feature and human emotion is taken as the 

exemplar extrinsic feature. In theory, there are countless methods that can potentially improve 

the classification accuracy of the BM, requiring computational expertise, prior knowledge and 

intuition in the domain of application. In practice, however, given limited time and computing 

budget, the proposed approach could narrow the search space of such methods significantly.  

In order to establish the validity of the proposed approach, numerous experiments were 

executed to, (1) select a biomimetic machine learning model (BM), (2) apply the approach by 

modifying the BM according to known human perception preferences and limitations and 

compare its performance with the unmodified BM, and (3) test the same approach on a 

conceptually different classification objective to test the validity again. The experiments in 

Chapter 4 help identify a viable BM through a broad comparison of numerous ML models to 

human performance, specifically in terms of gender classification. The resulting BM from 

Chapter 4 is then modified in Chapter 5 according to the proposed bidirectional approach with 

the aim of improving its performance. Results from the initial experiments in Chapter 5 discover 

a shared limitation in terms of gender classification between HP and BM, establishing an aspect 

of functional similarity between HP and BM to be improved upon in the subsequent experiments. 

Results of the latter experiments in Chapter 5 which modify the BM, not only show a significant 

improvement in terms of performance accuracy, but also a significant reduction in a shared 

limitation between BM and HP. The discovery of the shared limitation and subsequent 

alleviation of it in the BM provides a potential explanation for the presence of the limitation in 

HP which is discussed later in this chapter. After establishing the validity of the proposed 

approach in terms of gender (intrinsic feature) classification, Chapter 6 applies the same 

approach, but in terms of classifying human emotion (extrinsic feature) from gait. Results from 

the experiments in Chapter 6 further establish the validity of the approach. Despite the increase 

in classification accuracy, the significance of the improvement is modest, in comparison to the 

results from gender classification. The details of the results of all the experiments, the insights 

gained and their relation to the study’s objectives (see Chapter 1) are discussed below. 
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The experiments were executed in three phases. Firstly, in Chapter 4, a broad comparison was 

performed under controlled conditions of non-biomimetic machine learning models (NBM), 

biomimetic machine learning models (BM) and human perception (HP), on the task of gender 

classification from gait. In the case of NBM, support vector machines [76] with multiple kernel 

functions [181] and decision forests [183-186] utilising Gini impurity [79] were considered as 

the exemplar NBM for the study. Whereas, in the case of BM, the Long-Short Term Memory 

cell [84] was considered as the exemplar BM. Results demonstrate shared aspects of 

classification between BM and HP. The shared aspects include an increase in accuracy with 

increase in stimulus exposure duration; higher accuracy in velocity-based cues compared to 

position-based cues, demonstrating a preference of motion-based compared with structural cues, 

and; a qualitative similarity in gender classification accuracy as a function of exposure duration. 

Notably, NBM did not share any of the above aspects with either BM or HP. In the case of 

NBM, classification accuracy did not change significantly with change in exposure duration. 

Upon provision of velocity-based cues, accuracy decreased significantly, demonstrating a 

deviation from the aspects shared between BM and HP. Thus, while intriguing parallels between 

human (HP) and biological models (BM) were apparent, a deeper investigation would be needed 

to account for differences in the present context. Notably, a different paradigm of neural 

networks based on spiking neurons [31] exists, that mimics low level biology rather than at a 

behavioural level as RNNs and CNNs do, which also has a promising potential for exploration.  

In the second experiment phase, described in Chapter 5, the BM was evaluated for the presence 

of a well-studied effect in HP, which has also been reported to negatively affect H’s gender 

classification accuracy; the inversion effect [8]. Results showed the emergence of a human-like 

inversion effect in BM, as a result of training. Applying findings from human perception to BM 

not only mitigated the magnitude of the effect but also improved its accuracy significantly in 

both upright and vertically inverted gait stimuli: mean gender classification accuracy improved 

by 6%, from 76% to 82% (F1,18 = 12, p<0.05) for upright stimuli, and by 45%, from 37% to 82% 

(F1,18 = 20, p<0.05), for inverted stimuli. 

Lastly, the third experimental phase is described in Chapter 6, where the validity of the proposed 

approach was also evaluated on an extrinsic feature of human gait, through the classification of 

emotional state entirely from the pattern of gait. Existing literature on classification of affective 

emotional state using HP, insists on the role of motion based cues over structural cues. Thus this 

was taken into account for the bidirectional approach for improving the accuracy of the BM. This 

in combination with the shared aspect of increase in accuracy with increase in exposure duration 

between HP and BM (from Chapter 4) was taken into account. Application of this approach 

(providing explicit motion based cues of gait with long exposure duration) resulted in a 

significant improvement of 23%, from 43% to 65% (F1,18 = 7.4, p<0.05) in the binary 

classification task of positive and neutral emotion. Notably, the literature on affective state 

perception relies on either amateur or professional actors, acting under instructions from the 

experimenter [12–17,37,68]. By contrast, in the experiments reported here the emotional states 

were visually induced naturally by showing subjects standardised affective images and without 

giving them any explicit instructions.  These results are therefore the first demonstration of 

classification of naturally induced (as opposed to performed) emotion from gait. The successful 

https://paperpile.com/c/f3P1AS/nHHyt
https://paperpile.com/c/f3P1AS/mjWet+ltx8Y+fZP1N+UnPFX+1TpPd+3DOD4+VWnOU+mW3NC
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automatic classification of gait changes in response to extrinsic features, in this case of emotional 

affect, may provide fruitful ground for exploring the effects of other extrinsic features in terms of 

both the capabilities of automatic BM classifiers and the physiological and psychological 

behaviours in people (HP).  

From the above, one can argue for shared aspects of perception between HP and BM particularly 

in terms of gait, given the functional commonalities mentioned and biomimetic structure of the 

BM. However, despite the commonalities, the BM is not intended to fully mirror neuronal 

structures in HP, especially given the simplicity of its structure in comparison to HP. Several 

studies have formulated more complex models that mimic the neuronal pathways of visual 

perception in HP more closely [27, 70, 89, 90]. The studies have mimicked the underlying neural 

network for biological motion perception which have been claimed to be responsible for 

perception of gait, and the BM does not parallel this complexity and sophistication. However, the 

shared common functionalities between HP and BM, given the orders of magnitude of difference 

in the models in terms of scale and complexity, certainly enables the BM to be used as a practical 

automatic gait classifier. The applicability of the BM given a limited computing budget and 

availability of training data also supports its pragmatism. Additionally, given the computational 

nature of the model there are no prior assumptions of an anthropomorphic representation of 

human gait, allowing potentially for the useful exploitation of the model for other classification 

tasks in any multidimensional time series as a testable hypothesis than can be explored in further 

research. These results encourage the application of the BM to problems outside of gait 

classification that may perhaps require a functional approximation of biological neural 

substrates. Potential applications include intelligent robotics [174], smart prosthetic devices [56, 

63], clinical diagnosis [25, 39, 102–104] and gait rehabilitation [175]. 

As proposed in the bidirectional learning paradigm, the BM could potentially be used as a tool 

for gaining insights into HP. As previously mentioned, the BM developed a human-like 

inversion effect, despite the absence of an anthropomorphic expectation of the skeleton in the 

gait information. The effect was an emergent behaviour in all the BM after training on veridical, 

right-side up skeletal gait stimuli, irrespective of their initial randomly generated configurations. 

The gender classification accuracy of the BM for vertically inverted stimuli decreased to below 

chance levels, to 37% (t9 = -3.7, p<0.05), similar to HP. This similarity could have hypothetically 

be brought about through by a significant disparity in the availability of veridical right-side-up 

walking datasets and upside-down walkers. Perhaps that could lead to the performance tilting 

below chance performance, because of the dependence of perception on hips and shoulder 

movements. Men are known to move their shoulders more, while women move their hips more 

[8]. In the vertically inverted stimuli, one could argue that the hips and shoulders approximately 

exchange positions anatomically, leading to a classification of gender to invert compared to what 

was inferred for the same subject in the right-side-up dataset, i.e. a male is reported as female, 

and vice versa. Studies have shown the indifference of new-borns to global configural 

characteristics of gait [169,176]. While the origin of inversion effect cannot be claimed with 

certainty from this research, the emergence of a similar behaviour in the BM and the similarity in 

gender classification outcomes suggests the possibility of the effect being a learned phenomenon 

rather than an innate feature of HP itself.  

https://paperpile.com/c/f3P1AS/paMtD+J3VoU+chGVy+KKapc
https://paperpile.com/c/f3P1AS/KRQd
https://paperpile.com/c/f3P1AS/sNoW+yUq1
https://paperpile.com/c/f3P1AS/sNoW+yUq1
https://paperpile.com/c/f3P1AS/SE64+r9a6+JBGx+KvDwe+kXsLN
https://paperpile.com/c/f3P1AS/d5Aw
https://paperpile.com/c/f3P1AS/tlJsw
https://paperpile.com/c/f3P1AS/FC82+GdSIi
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While the results of the experiments provide evidence for the applicability of the proposed 

bidirectional paradigm of improving BM, the impact of the proposed paradigm is probably only 

in its very beginnings. As computational resources become more affordable and the size of 

datasets increases, the model could be evolved readily to become significantly more 

sophisticated and better performing. Currently the scale and range of experimental results are 

limited by the computational budget, while the motivation for development is focused on the 

pragmatic application of the model as an automated gait classifier. A deviation of motivation 

towards biomimicry would encourage the exploration of other BM, including those that claim to 

mimic human perception more closely, making for interesting future avenues of exploration.  

The objectives of the thesis have been achieved within the scope defined in the beginning: see 

Fig. 25 for a concise illustration of results against the objectives set in Chapter 1. Considerable 

effort was made to ensure unbiased evaluation across all the models including HP, BM and 

NBM. However, the nature of the models introduces bias, given their operations. For example, 

the inability of the NBM in processing temporal information forces the need for aggregating the 

time series into fixed length vectors, leading to information loss. These results suggested a 

markedly different approach to learning between HP, BM and NBM. One might argue that the 

static representation of gait as first order statistics may not be the best representation of gait for 

operation by the NBM. However, representation of human gait as a set of widely accepted 

clinical gait metrics was not able to provide the requisite information either. 

Representation of a multi-dimensional time series data as a static numerical value, ensuring 

minimum loss of information is an ongoing researched topic. Future work shall also explore a 

multitude of static representations, such as the more recent. Recurrent Variational AutoEncoders 

(RVAE), which aims to develop a human interpretable static representation of time series data 

[177] that might also be used for human motion synthesis. Another variation of static 

representation could be based on PCA approach demonstrated by Troje et al. [127]. The use of 

Rough Path Signatures to generate a unique static representation of a time-series signal of fixed 

dimensionality is an additional promising avenue for exploration [125]. The architecture of the 

BM is only a functional emulation of our understanding of memory represented through 

perceptron-based neurons, deviating from the spiking biological neurons [31]. The various 

factors affecting the inference capabilities of the HP is not understood completely, introducing an 

unavoidable unfairness in the comparison. However, the conformation of BM to HP, shared 

aspects of perception and conduciveness to improvements based on perceptual findings, 

establishes the viability of the bidirectional paradigm of learning at a basic foundational level. 

While the artificial neural networks (ANNs) like the biomimetic model, demonstrate promise in 

analysis of gait and potentially other physiological phenomenon, they suffer from lack of 

interpretability. Being black-box models, understanding the criterion for a certain classification 

by the ANNs is a challenging task. In the case of humans, we get around this problem through 

verbal communication of the reasons for a particular classification. Interpretability of the 

decision by the ANNs is a current ongoing research topic, and would further strengthen the 

applicability of ANNs as an accurate and robust gait classifier. 

 

https://paperpile.com/c/f3P1AS/w1ICE
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Figure 25: Concise representation of the main findings with reference to the stated 

research objectives (see Chapter 1). The horizontal arrow points to the improvements to machine 

perception of gait by leveraging human perception knowledge. The vertical arrow refers to the 

deeper understanding of human perception using insights gained from machine perception  
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Chapter 8 Conclusions 

Humans are adept at extracting relevant features from gait for classifying the observed 

walker into an intrinsic or extrinsic feature class. Intrinsic features include features whose 

expression in gait remain comparatively unchanged in a person’s lifetime, such as gender, while 

extrinsic features that can change frequently, possibly in a matter of minutes, such as emotional 

affect or clinical conditions. Some features can be extracted perceptually by humans from gait 

without any training, such as gender and emotional affect, while others may require extensive 

training and analysis, such as for clinical diagnosis and athletic performance evaluation. 

Learning to extract the latter accurately may require years and can be demanding on time and 

resources and prove difficult to transfer to another person. Automation of classification of the 

features would not only alleviate such expertise dependent problems in analysis of gait, but may 

also extend its viability of application in places that currently do not have access to such 

expertise. If successful, the automated gait analysis could be used in a myriad of fields from 

crowd analysis, clinical diagnosis, sports medicine to sentiment analysis.  

Computational models that can be trained using machine learning (ML) techniques provide a 

viable approach to automating gait analysis. Fortunately, one can develop a ML model using 

various open source tools, making it an opportune time for exploration of such models. Towards 

this objective, in this thesis, psychophysical as well as computational experiments, spanning 

various machine learning models are executed with the aim of establishing a bidirectional 

learning approach between the two board fields of study; to improve our understanding of both 

human and machine perception concurrently. This approach leverages the strengths of either 

field to the study of the other, and inspires promising avenues for further research for both.  

So called biomimetic or bio-inspired approaches to artificial intelligence (AI) continue to evolve. 

As knowledge of human perception and neurophysiology increases, the potential for powerful 

new models and applications will also increase. This thesis has demonstrated that development 

of biomimetic ML models and human psychology can be advanced not just independently but 

also concurrently, providing a synergistic leverage to both fields of research. An amalgamation 

of the robust versatility of humans with the finesse and attention to detail in computational 

models is shown to be a useful approach. As both fields continue to progress, perhaps an 

augmentation of biomimetic models into our biological neural networks can be imagined that is 

deeper and much more profound than brain-machine interface currently allow, aimed at 

overcoming disabilities while enhancing our natural and very human perceptual qualities.   
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List of Abbreviations 

AI Artificial Intelligence 

ANN Artificial Neural Network 

BiLSTM Bidirectional Long Short Term Memory 

BM Biomimetic Model 

BP Backpropagation 

BPTT Backpropagation Through Time 

CART Classification And Regression Tree 

CCR Correct Classification Rate 

CNN Convolutional Neural Network 

CRPS Complex Regional Pain Syndrome 

DL Deep Learning 

DT Decision Tree 

EMG Electromyogram 

FAU Florida Atlantic University 

FFNN Feed-Forward Neural Network 

GA Genetic Algorithms 

GEI Gait Energy Image 

GEV Gait Energy Volume 

GRU Gated Recurrent Unit 

HP Human Perception 

ID3 Iterative Dichotomiser 3 

ILP Inductive Logic Programming 

IMU Inertial Measurement Unit 

LSTM Long Short Term Memory 

ML Machine Learning 

MLP Multi-Layer Perceptron 

NBM Non-Biomimetic Model 

PLD Point Light Display 

RBF Radial Basis Function 

RDF Random Decision Forest 

RGB Red Green Blue 

RGB-D Red Green Blue Depth 

RNN Recurrent Neural Network 

RVAE Recurrent Variational Auto-Encoder 

SVM Support Vector Machine 
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Appendix 

A Support Vector Machines 

A.I Hyperplane 

In a p-dimensional space, a hyperplane is a flat affine subspace (a subspace need not pass 

through the origin) of dimension p-1. It is defined by equation 

𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3+. . . + 𝛽𝑝𝑥𝑝  =  0 (1) 

for the parameter 𝛽1. . . 𝛽𝑝. In this case, the point X=(𝑥1, 𝑥2, 𝑥3, . . . . . 𝑥𝑝) lies on the hyperplane. If 

X lies on the hyperplane then it satisfied equation 1. But if it doesn’t then it the equation can take 

two forms, essentially signifying the point lying on either side of the hyperplane. The hyperplane 

divides the infinite hyperspace into two parts, each denoting a certain class.  

𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3+. . . + 𝛽𝑝𝑥𝑝  <  0  (2) 

𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3+. . . + 𝛽𝑝𝑥𝑝  >  0  (3) 

A.II Classification using a Separating Hyperplane 

Given an 𝑛 × 𝑝 data matrix that consists of 𝑛observations in a 𝑝dimensional space 

𝑥1  =  (𝑥11, 𝑥12, 𝑥13, 𝑥14, 𝑥15, 𝑥16. . . 𝑥1𝑝) ... 𝑥𝑛  =  (𝑥𝑛1, 𝑥𝑛2, 𝑥𝑛3, 𝑥𝑛4, 𝑥𝑛5, 𝑥𝑛6. . . 𝑥𝑛 𝑝) 

with each point 𝑥𝑖belonging to a class 𝑦𝑖 𝜖 {−1, 1}, where 𝑖 =  1,2,3,4. . . . . 𝑛 i.e. 𝑥1belongs to 

𝑦1and so on, where 𝑦𝑖is either +1 or -1 depending on which class it belongs to. The objective 

with SVMs is to develop a classifier that can classify a new given point 𝑋 in 𝑝-dimensional 

space based on the pattern of classification of the points 𝑥1, 𝑥2. . . 𝑥𝑛. The separating hyperplane 

is based on the concept developed by [180]. Given any point in hyper-dimensional space, 𝑥𝑖 

𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + 𝛽3𝑥𝑖3+. . . + 𝛽𝑝𝑥𝑖𝑝  <  0 if 𝑦𝑖 = −1 (4) 

𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + 𝛽3𝑥𝑖3+. . . + 𝛽𝑝𝑥𝑖𝑝  >  0 if 𝑦𝑖 = 1 (5) 

Combining equations 4 and 5, we get   𝑦𝑖(𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + 𝛽3𝑥𝑖3+. . . + 𝛽𝑝𝑥𝑖𝑝)  >  0   (6) 

Thus, in practice SVMs classify the new point 𝑋 based on which side of the hyperplane  it lies in 

the hyperspace. When substituted for 𝑥 in the equation  

𝑓(𝑥)  =  𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + 𝛽3𝑥𝑖3+. . . + 𝛽𝑝𝑥𝑖𝑝  (7) 

https://paperpile.com/c/f3P1AS/gAwjk
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a negative value classifies it into class -1 and a positive value places it in class 1 as shown in Fig. 

A- 1. 

 

Figure A- 1 Separating hyperplane denoted by HP in two-dimensional space 

A.III Maximal Margin Classifier 

Assuming a perfectly linearly separable dataset, there exists an infinite number of separating 

hyperplanes that could classify the data points. The objective of the SVM is to select the 

hyperplane that can separate the data points belonging to the different classes with the maximum 

margin of separation to ensure high confidence in classification. The maximal margin classifier 

is also known as the optimal separating hyperplane. The minimum distance of the training data 

points from the separating hyperplane is called the ‘margin’ [180]. The optimal hyperplane 

attempts to maximise the margin of separation, 𝑀, denoted by Fig. A- 2 and the equations, 

𝑚𝑎𝑥 𝑀 given 𝛽0, 𝛽1, 𝛽2, . . . , 𝛽𝑝  (8) 

subject to ∑𝑝
𝑗=1 𝛽𝑗

2 = 1, as the hyperplane vector is of unit length  (9) 

and 𝑦𝑖(𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + 𝛽3𝑥𝑖3+. . . + 𝛽𝑝𝑥𝑖𝑝)  ≥  𝑀   for all 𝑖 = 1,2. . . . 𝑛 (10) 

 

https://paperpile.com/c/f3P1AS/gAwjk
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Figure A- 2 Maximal margin hyperplane, HP and the margin M in two-dimensional space 

Equation 6 ensures a positive (or zero) value for the separation from the hyperplane. The left side 

of Equation 10 provides the distance of the point 𝑥𝑖from the separating hyperplane 𝐻 as a 

positive value 𝑀. Thus maximising the value of 𝑀would provide the maximal margin 

hyperplane that results in the value.  

A.IV Support Vector Classifier 

The maximal margin classifier has the ability to perfectly separate two linearly separable sets of 

data points. However, the strict margins of separations is not robust to small perturbations in data 

points. Mislabelling of a few data points penalises the performance heavily and results in a non-

optimal solution, as shown Fig. A- 3.  

 
Figure A- 3 Hyperplane changes affected by a small number of mislabelled data points 

 

This is generally termed as ‘overfitting’ in the training phase of machine learning algorithms, 

where the algorithm tries to fit all of the training data into the model, resulting in a less than ideal 

solution. Thus the need for introducing a margin of error allowed during training, also known as 
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soft margin classifier or support vector classifier. Unlike the maximal margin classifier, the soft 

margin classifier has some leeway in allowing some data points to fall on the wrong side of the 

dividing hyperplane with an error value 𝜀 as shown in Fig. A- 4. 

 
Figure A- 4 Soft Margin Classifier 

 

As shown in the figure, the points 𝑥1and 𝑥2fall on the wrong side of the hyperplane and have a 

distance of 𝜀1and 𝜀2from their corresponding support vectors. Similar to the maximal margin 

classifier, the soft margin classifier is the solution to the optimisation problem 

𝑚𝑎𝑥 𝑀 given 𝛽0, 𝛽1, 𝛽2, . . . , 𝛽𝑝  (11) 

subject to ∑𝑝
𝑗=1 𝛽𝑗

2 = 1 (12) 

and 𝑦𝑖(𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + 𝛽3𝑥𝑖3+. . . + 𝛽𝑝𝑥𝑖𝑝)  ≥  𝑀(1 − 𝜀𝑖)   for all 𝑖 = 1,2. . . . 𝑛 (13) 

𝜀𝑖 ≥ 0and ∑𝑛
𝑖=1 𝜀𝑖 ≤ 𝐶 (14) 

where 𝐶is the nonnegative tuning parameter. As shown in Fig. A- 4, 𝑀is the allowed ideal 

margin width which is intended to be as large as possible. The values 𝜀𝑖for the data points that 

were erroneously classified are called ‘slack variables’ that relax the margin requirements for the 

soft margin classifier. From the equations, it is clear that when 0 ≤ 𝜀𝑖 ≤ 1, the data point lies on 

the wrong side of the margin or hyperplane (as shown by the point 𝑥2 with the slack variable 𝜀2 

in the Fig. A- 4). However when 𝜀𝑖 > 1, the data point lies on the wrong side of both 

hyperplanes (as shown by the point 𝑥1with the slack variable 𝜀1 in the Fig. A- 4) 

A.V Solving for the Support Vector Classifier 

Combining equations 11 and 12 
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𝑚𝑎𝑥 𝑀 given 𝛽, 𝛽0,||𝛽||=1  (13) 

𝑦𝑖(𝑥𝑖
𝑇𝛽 + 𝛽0) ≥ 𝑀(1 − 𝜀𝑖), for all 𝑖 = 1,2. . . 𝑛 (14) 

𝜀𝑖 ≥ 0and ∑𝑛
𝑖=1 𝜀𝑖 ≤ 𝐶 (15) 

where 𝑥𝑖 ∈ 𝑅𝑝 with unit vector ||𝛽|| = 1. If we ignore the norm constraint on 𝛽, where 𝑀is 

defined as 𝑀 =
1

||𝛽||
, equations 13 to 15 can be represented as  

𝑚𝑖𝑛 ||𝛽|| (16) 

subject to 𝑦𝑖(𝑥𝑖
𝑇𝛽 + 𝛽0) ≥ 1 − 𝜀𝑖, for all 𝑖 = 1,2. . . 𝑛 (17) 

𝜀𝑖 ≥ 0and ∑𝑛
𝑖=1 𝜀𝑖 ≤ 𝐶 (18) 

The problem 16-18 is a quadratic equation with linear inequality constraints. Hence the solution 

for the same can be obtained using Lagrangian multipliers [181]. The problem can be rephrased 

as  

𝑚𝑖𝑛 
1

2
||𝛽||2 + 𝐶 ∑𝑛

𝑖=1 𝜀𝑖 (19) 

subject to 𝑦𝑖(𝑥𝑖
𝑇𝛽 + 𝛽0) ≥ 1 − 𝜀𝑖, for all 𝑖 = 1,2. . . 𝑛 (20) 

𝜀𝑖 ≥ 0 (21) 

Equation 19 is also known as the loss function that needs to be optimised. The first term 

represents the regularisation term while the second term represents the loss function penalty 

term. The lagrangian function is  

𝐿 =  
1

2
||𝛽||2 + 𝐶 ∑𝑛

𝑖=1 𝜀𝑖 − ∑𝑁
𝑖=1 𝛼𝑖[𝑦𝑖(𝑥𝑖

𝑇𝛽 + 𝛽0) − (1 − 𝜀𝑖)] − ∑𝑁
𝑖=1 𝜇𝑖𝜀𝑖 (22) 

Taking the partial derivative to zero, we get 

𝛽 = ∑𝑁
𝑖=1 𝛼𝑖𝑦𝑖𝑥𝑖, taking the partial derivative w.r.t. 𝛽 (23) 

∑𝑁
𝑖=1 𝛼𝑖𝑦𝑖 = 0, taking the partial derivative w.r.t. 𝑥𝑖 (24) 

𝛼𝑖 = 𝐶 − 𝜇𝑖for 𝑖 = 1,2. . . . 𝑁, taking the partial derivative w.r.t 𝜀𝑖 (25) 

where constraints 𝛼𝑖, 𝜇𝑖, 𝜀𝑖 ≥ 0. By substituting 23-25 into 22, we get 

𝑚𝑎𝑥 𝐿 =  ∑𝑁
𝑖=1 𝛼𝑖 −

1

2
∑𝑁

𝑖=1 ∑𝑁
𝑗=1 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖

𝑇𝑥𝑗   (26) 

subject to 0 ≤ 𝛼𝑖 ≤ 𝐶  (27) 

∑𝑁
𝑖=1 𝛼𝑖𝑦𝑖 = 0 (28) 

https://paperpile.com/c/f3P1AS/PkpGY
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In addition, the Karush-Kuhn-Tucker conditions are satisfied by the solution as following 

𝛼𝑖[𝑦𝑖(𝑥𝑖
𝑇𝛽 + 𝛽0) − (1 − 𝜀𝑖)] = 0   (29) 

𝜇𝑖𝜀𝑖 = 0 (30) 

[𝑦𝑖(𝑥𝑖
𝑇𝛽 + 𝛽0) − (1 − 𝜀𝑖)] ≥ 0 (31) 

For 𝑖 = 1,2. . . 𝑁 

The equations from 23 to 29 show characteristics of solutions to the primal and dual problems as 

described in the kernel functions [181]. Meanwhile Equation. 23 can provide us with the solution 

for 𝛽 which is in the form of 𝛽 = ∑𝑁
𝑖=1 𝛼𝑖𝑦𝑖𝑥𝑖 and the observations with constraints in 

Equation. 31 are notably known as ‘support vectors’ which refer to the data points that lie on the 

soft margin hyperplane. Some of the support secors meet the constraints referred to in Equation. 

29 and lie on the edge of the margin and can be utilised in solving for 𝛽0 

A.VI Kernel functions: Classification with Nonlinear Decision Boundaries 

The margin based classifiers, either soft or maximal margin classifiers are linear 

boundary classifiers. However, data points are not always linearly separable. Thus developing 

the need to develop a nonlinear decision boundary for proper classification. The feature space is 

required to be enlarged using functions of predictors, like quadratic or cubic projectors. An 

example of non-linearly separable data points is shown in Fig. A- 5. 

 

 
Figure A- 5 Example of data points distribution where linear separating boundary performs 

poorly 

 

From the figure, it is visually evident that a linear hyperplane would be unable to separate the 

https://paperpile.com/c/f3P1AS/PkpGY
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two sets of data points. Intuitively a circular nonlinear separation boundary would be best able to 

separate the data points into their respective classes and thus can be used as the decision 

boundary for test data points, as shown in Fig. A- 6. 

 
Figure A- 6 Better separation of data points using a nonlinear decision boundary compared to 

linear (separation boundary shown in blue) 

Mercer’s theorem states that if a function 𝐾(𝑎, 𝑏)satisfies all the mercer’s constraints 

[181] then there exists a function that can map 𝑎and 𝑏 into a higher dimension. 𝐾(𝑎, 𝑏) =

𝛷(𝑎)𝑇 . 𝛷(𝑏), where 𝛷()is known as the kernel function. It leverages the method of using the 

linear classifier to classify nonlinear data points. Mathematically, the above mentioned kernel 

function maps the input data points into a higher dimension making them more conducive to 

being separated by a linear separating hyperplane. Intuitively, if we use the kernel function that 

maps the points in Fig. A- 6 into a higher dimension 𝑧(𝑥, 𝑦) = 𝑥2 + 𝑦2then the resulting 

hyperspace can be divided into binary classes by using a linear hyperplane as shown in Fig. A- 7.  

 
Figure A- 7 Projection into higher dimension based on quadratic function enables linear 

separation 

 

https://paperpile.com/c/f3P1AS/PkpGY


116 

 

Based on the above example, mathematically, with 𝑝observations 𝑥1, 𝑥2, . . . . 𝑥𝑝a vector classifier 

along the quadratic form of 𝑥1, 𝑥1
2, . . . 𝑥𝑝, 𝑥𝑝

2 can be fit. Thus, the optimisation problem 

mentioned in 9 and 12 becomes 

𝑚𝑎𝑥 𝑀 given 𝛽0, 𝛽11, . . . . 𝛽𝑝1, 𝛽12, . . . . 𝛽𝑝2  (32) 

subject to ∑𝑝
𝑗=1 ∑2

𝑘 𝛽𝑗𝑘
2 = 1  (33) 

𝑦𝑖(𝛽0 + ∑𝑝
𝑗=1 𝛽𝑗1𝑥𝑖𝑗 + ∑𝑝

𝑗=1 𝛽𝑗2𝑥𝑖𝑗
2 ) ≥ 𝑀(1 − 𝜀𝑖), for all 𝑖 = 1,2. . . 𝑛 (34) 

𝜀𝑖 ≥ 0 and ∑𝑛
𝑖=1 𝜀𝑖 ≤ 𝐶  (35) 

The solution to the above equations will lead to the determination of the nonlinear decision 

boundary which would also be known as the support vector machine. In other cases the kernel 

can also be linear, radial basis function etc. In its most general form the support vector classifier 

can be represented as  

𝑓(𝑥)  =  𝛽0 + ∑𝑝
𝑗=1 𝛼𝑖𝐾(𝑥𝑖 , 𝑥𝑗) (36) 

where 𝐾(𝑥𝑖, 𝑥𝑗)represents the generic kernel function.  

The most popular kernel functions used in applications are, 

1. Gaussian radial basis function, where 𝐾(𝑥𝑖, 𝑥𝑗) = 𝑒𝑥𝑝(−𝛾||𝑥𝑖 − 𝑧𝑗||2) 

2. Gaussian function, where𝐾(𝑥𝑖, 𝑥𝑗) = 𝑒𝑥𝑝(−||𝑥𝑖 − 𝑧𝑗||2/2𝜎2) 

3. Polynomial kernel function, where, 𝐾(𝑥𝑖 , 𝑥𝑗) = (𝑥𝑖. 𝑥𝑗 + 𝑎)𝑏 

4. Linear kernel function, where 𝐾(𝑥𝑖, 𝑥𝑗) = 𝑥𝑖. 𝑥𝑗 

As a general empirical rule of thumb, in practical applications 

● Computational requirement for SVM learning: linear< polynomial< radial basis function 

● Performance in fitting any data: linear< polynomial< radial basis function 

● Risk of overfitting the training data: linear<polynomial< radial basis function 

● Risk of underfitting the training data: radial basis function< polynomial< linear 

● Tunable hyperparameters: linear (0)< radial basis function (1)< polynomial (3) 

B ID3 Decision Trees 

B.I Information Entropy 

Information entropy or simply entropy is a quantifiable measure of the amount of 

resources/capacity required to describe all the information in a sample. A homogenous sample 

with all similar elements results in an entropy of 0, while a purely random sample possesses the 

maximum entropy of 1. Mathematically, entropy is defined as  

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝐸) =  − ∑𝑛
𝑖=1 𝑝𝑖 ∗ 𝑙𝑜𝑔(𝑝𝑖)  (37) 

where 𝑝𝑖is defined as the probability of the sample belonging to class/category 𝑖 , while𝑖 

represents the different classes from 1 𝑡𝑜 𝑛. 

B.II Gini Index/Gini Impurity 

 Gini index is a quantifiable measure of the inequality in the sample. Similar to entropy, a gini 

index of 0 signifies a homogeneous sample set with all samples belonging to the same class, 

while a value of 1 signifies maximal inequality among the elements of the sample set. 

Mathematically, it is the sum of probabilities of each class, illustrated as  
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𝐺𝑖𝑛𝑖 𝑖𝑛𝑑𝑒𝑥 (𝐺) = 1 − ∑𝑛
𝑖=1 𝑝𝑖

2 (39) 

 

where 𝑖represents the classes 1 𝑡𝑜 𝑛 of the sample set. Notably, 0 ≤ 𝐺 ≤ 1. 

B.III Decision Tree Algorithm 

The algorithm itself can be visually represented as a tree, where each node in the tree represents 

the features (or attributes), each branch represents the decision (or the rule) and each leaf node 

represents the outcomes (classification, regression, whether discrete or continuous) as shown in 

Fig. B- 1. 

 
Figure B- 1 Schematic visual representation of a decision tree algorithm 

 

DTs are implemented using a variety of algorithms. The most widely used being, 

1. CART - Classification And Regression tree [182] 

2. ID3 [183] 

3. ID4.5 [184] 

The two most widely used being CART and ID3, which differ in the metric used for quantifying 

impurity as well their their area of application. 

B.IV CART - Classification and Regression Tree 

This generic DT learning algorithm can be used for both classification and regression. The 

training phase comprises minimising the Gini index as a measure of cost function to evaluate the 

quality of the split in feature selection in case of  a classification tree. The direct application of 

CART is in binary classification. In case of regression, it uses least squares as a metric to select 

features. The case of CART algorithm shall be explained with a commonly used weather dataset. 

 

The dataset describes the decision of playing (either Yes or No) given the outlook, temperature, 

humidity and wind conditions, which shall be treated as features/attributes.  

 

Day Outlook Temperature Humidity Wind Play Decision 

1 Sunny Hot High Weak No 

https://paperpile.com/c/f3P1AS/V1F1D
https://paperpile.com/c/f3P1AS/9TJZ8
https://paperpile.com/c/f3P1AS/mQEQj


118 

 

2 Sunny Hot High Strong No 

3 Overcast Hot High Weak Yes 

4 Rainfall Mild High Weak Yes 

5 Rainfall Cool Normal Weak Yes 

6 Rainfall Cool Normal Strong No 

7 Overcast Cool Normal Strong Yes 

8 Sunny Mild High Weak No 

9 Sunny Cool Normal Weak Yes 

10 Rainfall Mild Normal Weak Yes 

11 Sunny Mild Normal Strong Yes 

12 Overcast Mild High Strong Yes 

13 Overcast Hot Normal Weak Yes 

14 Rainfall Mild High Strong No 

 

Outlook is a nominal feature, which can take three values i.e. sunny, overcast or rain, 

summarised as follows 

 

Outlook Yes No Number of instances 

Sunny 2 3 5 

Overcast 4 0 4 

Rainfall 3 2 5 

 

The Gini index of Outlook is defined as follows 

 

Outlook Gini Index 

Sunny 1-(⅖)2-(⅗)2 = 1-0.16-0.36 = 0.48 

Overcast 1-(4/4)2-(0/4)2 = 1-1-0 = 0 

Rainfall 1-(⅗)2-(⅖)2 = 1-0.36-0.16 = 0.48 

Weighted sum of Gini index  (5/14)*0.48 + (4/14)*0 + (5/14)*0.48 = 0.342 
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Similarly for temperature 

Temperature Yes No Number of instances 

Hot 2 2 4 

Cool 3 1 4 

Mild 4 2 6 

 

Temperature Gini Index 

Hot 1-(2/4)2-(2/4)2 = 0.5 

Cool 1-(¾)2-(¼)2 = 0.375 

Mild 1- (4/6)2-(2/6)2 = 0.445 

Weighted sum of Gini index  (4/14)*0.5 + (4/14)*0.375 + (6/14)*0.445 = 0.439 

 

 

Humidity Yes No Number of instances 

High 3 4 7 

Normal 6 1 7 

 

Humidity Gini Index 

High 1-(3/7)2-(4/7)2 = 0.489 

Normal 1 - (6/7)2 - (1/7)2 = 0.244 

Weighted sum of Gini index (7/14)*0.489 + (7/14)*0.244 = 0.367 

 

 

Wind Yes No Number of instances 

Weak 6 2 8 
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Strong 3 3 6 

 

 

 

 

 

Wind Gini Index 

Weak 1 - (6/8)2 - (2/8)2 = 0.375 

Strong 1 - (3/6)2 - (3/6)2 = 0.5 

Weighted sum of Gini index (8/14)*0.375 + (6/14)*0.5 = 0.428 

 

The final decision for the root node among all the features, 

Features/Attributes Gini Index 

Outlook 0.342 

Temperature 0.439 

Humidity 0.367 

Wind 0.428 

 

From the table, the lowest Gini index of the Outlook feature is considered as the root node of the 

tree, as shown in Fig. B- 2.  

 
Figure B- 2 Decision tree with root node chosen based on Gini impurity 
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Next steps involve the corresponding weighted Gini impurity index for the subsets of data for the 

particular Outlook feature. For example for the Sunny instances, the subset is represented as  

Day Outlook Temperature Humidity Wind Play Decision 

1 Sunny Hot High Weak No 

2 Sunny Hot High Strong No 

8 Sunny Mild High Weak No 

9 Sunny Cool Normal Weak Yes 

11 Sunny Mild Normal Strong Yes 

 

Following the steps for the Sunny Outlook as before the final Gini index are 

Features Gini Index 

Temperature 0.2 

Humidity 0 

Wind 0.466 

 

Thus, the Humidity attribute results in pure splits of the dataset as can be seen from the perfect 

correlation between Humidity and Play Decision. Thus the resulting decision tree is represented 

in Fig. B- 3 

 
Figure B- 3 Decision tree after analysis of the Sunny Outlook subset 
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Following the same steps for all the features/attributes, the final decision trees can be represented 

as in Fig. B- 4. Detailed calculation of all the steps is omitted due to redundancy in conceptual 

development.  

 
Figure B- 4 The final decision tree finishing Gini impurity analysis of all the features 

 

B.V ID3 - Iterative Dichotomiser 3 

The ID3 algorithm was invented to generate a decision tree using Entropy as the metric for 

dataset imprity (as opposed to Gini index used by the CART algorithm). However, unlike the 

CART technique, ID3 is used for classification problems only. Feature splits are decided based 

on the amount of information gain obtained on splitting on a particular feature 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝐸) =  − ∑

𝑛

𝑖=1

𝑝𝑖 ∗ 𝑙𝑜𝑔(𝑝𝑖) 

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝐺𝑎𝑖𝑛 (𝑆, 𝐴)  =  𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆)  −  ∑ 𝑃(𝑆|𝐴) ∗ 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆|𝐴) (40) 

The feature chosen to split upon results in the highest information gain. As an example, the ID3 

algorithm shall be applied to the previously mentioned dataset to build the concept.  

 

From the dataset, 

● Number of observations = 14 

● Number of observations resulting in a ‘Yes’ decision = 9 

● Probability of a ‘Yes’ decision 𝑝(𝑌𝑒𝑠)  =  9/14 

● Number of observations resulting in a ‘No’ decision = 5 

● Probability of a ‘No’ decision 𝑝(𝑁𝑜)  =  5/14 
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𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛)  =  −𝑝(𝑌𝑒𝑠) ∗ 𝑙𝑜𝑔2𝑝(𝑌𝑒𝑠)  −  𝑝(𝑁𝑜) ∗ 𝑙𝑜𝑔2𝑝(𝑁𝑜) 

Substituting values: 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛)  =  −(9/14) ∗ 𝑙𝑜𝑔2(9/14)  −  (5/14) ∗

𝑙𝑜𝑔2(5/14)  =  0.94 

 

Given the four attributes of Outlook, Temperature, Humidity and Wind, the Information Gain 

that would be obtained on splitting based on any of the attributes would provide us with the best 

attribute to split on. As an example, the steps involved in calculating the Gain for Outlook - 

Sunny is detailed here. The subset of data for Outlook - Sunny would look like the following (as 

presented earlier) 

 

Day Outlook Temperatur
e 

Humidity Wind Play Decision 

1 Sunny Hot High Weak No 

2 Sunny Hot High Strong No 

8 Sunny Mild High Weak No 

9 Sunny Cool Normal Weak Yes 

11 Sunny Mild Normal Strong Yes 

 

 

1. Number of instances with Sunny outlook = 5 

2. Play Decision = ‘Yes’ given that Outlook is Sunny 𝑝(𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = ′𝑌𝑒𝑠′ | 𝑂𝑢𝑡𝑙𝑜𝑜𝑘 =

′𝑆𝑢𝑛𝑛𝑦′) = 2/5 

3. Play Decision = ‘No’ given a Sunny outlook 𝑝(𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = ′𝑁𝑜′|𝑂𝑢𝑡𝑙𝑜𝑜𝑘 = ′𝑆𝑢𝑛𝑛𝑦′) =

3/5 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛|𝑜𝑢𝑡𝑙𝑜𝑜𝑘 =  𝑠𝑢𝑛𝑛𝑦)  =  −(2/5) ∗ 𝑙𝑜𝑔2(2/5) − (3/5) ∗ 𝑙𝑜𝑔2(3/5)  

=  0.97 

Similarly 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛|𝑜𝑢𝑡𝑙𝑜𝑜𝑘 = 𝑜𝑣𝑒𝑟𝑐𝑎𝑠𝑡) =  −(4/4) ∗ 𝑙𝑜𝑔2(4/4)  =  0 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛|𝑜𝑢𝑡𝑙𝑜𝑜𝑘 =  𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙)  =  −(3/5) ∗ 𝑙𝑜𝑔2(3/5)  −  (2/5) ∗ 𝑙𝑜𝑔2(2/5)  

=  0.97 

Thus 

Information Gain (decision, outlook) = Entropy(decision) - 

p(decision|outlook=sunny)*log2p(decision|outlook=sunny) - 

p(decision|outlook=overcast)*log2p(decision|outlook=overcast) - 

p(decision|outlook=rainfall)*log2p(decision|outlook=rainfall) 

 

𝐺𝑎𝑖𝑛(𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑜𝑢𝑡𝑙𝑜𝑜𝑘)  =  0.94 − (5/14) ∗ 0.97 − (4/4) ∗ 0 − (5/14) ∗ 0.97 =  0.247 
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The information gain obtained on splitting on either attributes, 

● Gain(decision, outlook) = 0.247 

● Gain(decision, wind) = 0.048 

● Gain(decision, temperature) = 0.029 

● Gain(decision, humidity) = 0.151 

Thus the first node (root node) shall be based on Outlook given the highest gain in information.  

The subsequent steps are similar to the ones mentioned in the previous section, leading to the 

final decision tree structure of Fig. B- 4. Thus in this particular example case, leading to the same 

tree structure irrespective of the impurity metric considered.  

C Random Forests 

As the name suggests random forests are a collection of randomly developed decision 

trees. The development of randomised trees is based on three popular strategies, (1) training the 

individual trees on bootstrapped versions of the original dataset, (2) randomly sampling a subset 

of the original features before optimising for split dimension and split location, and (3) randomly 

sampling candidate pairs of split dimensions and split locations and restricting the search to just 

these pairs [185]. Although originally proposed for supervised learning, random forests are 

extremely flexible and can be employed for other purposes such as density estimation, manifold 

learning and semi-supervised learning [186]. Unlike decision trees, random forests are less prone 

to overfitting on the training dataset.  

 The random forest model used in the thesis combines the bootstrapped method along with 

feature bagging to develop highly robust and accurate random decision trees. Given the 

availability of sufficient training data, the choice does not suffer from lack of enough training 

samples. Each decision tree in the random forest was generated to select, at each candidate split 

in the learning process, a random subset of the features also known as ‘feature bagging’. The 

‘bootstrapping’ method selects a set of samples at random (with replacement) for training each 

decision tree. The generalisation accuracy was estimated on the left-out samples. The number of 

randomly chosen features for ‘feature-bagging’ was maintained to be the square root of the total 

number of features available, as suggested by the original inventors of the algorithm. The 

minimum number of samples required for proceeding with the split was kept at 2 to ensure pure 

or homogeneous sets at the leaf nodes. The features are randomly permuted at each split to 

maintain the same criterion across the splits. Gini impurity [79] is used as a quantitative measure 

of impurity of the samples. In the classification phase, the predicted class of an input sample is a 

vote by the trees in the forest, weighted by their probability estimates. That is, the predicted class 

is the one with the highest mean probability estimate across the trees.  

D Artificial Neural Networks 

D.I From Biological Neurons to Mathematical Model Neurons 

In a biological neuron, the membrane of the neuron maintains the concentration 

differences of various ions between the inside and outside of the cell through active ion pumps 

and controllable ion channels. At rest, the channels are closed resulting in a net negative 

https://paperpile.com/c/f3P1AS/rilKO
https://paperpile.com/c/f3P1AS/ccHkS
https://paperpile.com/c/f3P1AS/m9PS5
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potential of -70 mV on the inside of the cell compared to the outside fluid. When a sufficiently 

strong electrical excitation is provided, it results in a temporary less negative potential, triggering 

an opening of specific ion channels and leading to a chain reaction of other channels opening 

and/or closing. As a net result, an electrical peak of height around +40mV is generated for about 

1 msec and propagates along the membrane at a speed of about 5 m/sec. This peak is also known 

as the action potential also known as the spike or an impulse. The spike is followed by a 

refractory period, when no excitation can occur. This action potential serves as an electric 

communication signal propagating and spreading along the output channel of the neuron, the 

axon and other connected neurons. The junction between an output channel of one neuron and 

the input channel of another neuron is known as the synapse. The propagating spike impulse 

maintains its shape and strength between neurons, due to the trigger of release of a chemical, a 

neurotransmitter, when the spike reaches a synapse. Upon reaching a synapse, the 

neurotransmitter selectively opens ion channels in the membrane of the receiving neuron. If the 

channel being opened is the Na+ (Sodium ion) channel, it results in an increase in the probability 

of the receiving neuron to start firing a spike impulse itself, also known as excitatory synapse. 

However if the channel being opened is the Cl- (Chlorine ion) channel, it decreases the 

probability, also known as an inhibitory synapse. If the postsynaptic potential exceeds the 

neuron-specific threshold (of about -30 mV), it results in an action potential getting fired. The 

key to learning, adaptive and self-programming properties of the neuron is that the synapses and 

firing thresholds are not fixed and are updated on the fly.   

 Mathematically, the biological neuron is represented as a perceptron model. A perceptron 

takes some input values, called ‘features’ represented by 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5. . . 𝑥𝑛 weighted (through 

multiplication) with ‘weights’ represented as 𝑤1, 𝑤2, 𝑤3, 𝑤4. . . 𝑤𝑛 and combined linearly 

(through summation) over all the neurons to provide the output  𝑜 = 𝑓(𝑤1𝑥1 + 𝑤2𝑥2 +

𝑤3𝑥3+. . . 𝑤𝑖𝑥𝑖+. . . 𝑤𝑛𝑥𝑛). The function 𝑓() is determined based on the type of perceptron 

neuron.  The equation is represented visually in Fig. D- 1.  

 

 
Figure D- 1 Mathematical model of a single perceptron-based neuron 

 

Generalising the summation equation with the subscript 𝑖, the equation can be written as  
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∑𝑛
𝑖=1 𝑤𝑖𝑥𝑖  (41) 

As, 𝑥𝑖and 𝑤𝑖are of a fixed number of elements i.e. from 1 to n, they can be visualised as a vector 

of n-dimensions and the summation as a dot product of the two vectors.  

𝑥 =  [𝑥1, 𝑥2, 𝑥3, 𝑥4, . . . 𝑥𝑛]   (42) 

𝑤 =  [𝑤1, 𝑤2, 𝑤3, 𝑤4, . . . 𝑤𝑛]  (43) 

𝑤 ⋅ 𝑥 (44) 

Extending this logic, in case of multiple neurons in the hidden layer, and additional subscript is 

used to describe the weights for each connection between the input-hidden, hidden-hidden and 

hidden-output layers, as shown in Fig. D- 2. This architecture is known as the Multilayer 

Perceptron architecture (MLP).  

 
Figure D- 2 Multi layer perceptron (MLP) based artificial neural network architecture 

 

As a generalised extension of the previous equations, for MLP, 

ℎ =  𝑓1(𝑤 ⋅ 𝑥) , 𝑘 =  𝑓2(𝑣 ⋅ ℎ) , 𝑦 = 𝑓3(𝑧 ⋅ 𝑘) 

where 𝑓1, 𝑓2 𝑎𝑛𝑑 𝑓3are the nonlinear activation functions between the input-hidden, hidden-

hidden and hidden-output layers. 𝑦represents the output vector from the network.  

In addition to the weights components, each node also possesses a bias component to provide an 

offset to the input to that node. Similar to weights, the biases are also tunable parameters that can 

be learned, changing the equations to, 

ℎ =  𝑓1(𝑤 ⋅ 𝑥 +  𝑏1) , 𝑘 =  𝑓2(𝑣 ⋅ ℎ +  𝑏2) , 𝑦 = 𝑓3(𝑧 ⋅ 𝑘 +  𝑏3) 

where 𝑏1, 𝑏2 𝑎𝑛𝑑 𝑏3are the bias vectors for Hidden layer 1, Hidden layer 2 and the Output layer.  

The nonlinear activation functions are also known as the transfer functions and are essential to 

the introduction of nonlinearity in the functional mappings between the inputs and outputs (also 



127 

 

known as labels or response variables). In the absence of the activation function, the mapping 

would be linear, limiting the complexity of mapping that can be learned. This feature of ANNs 

has credited them with the term Universal Function Approximators given their ability to learn 

any nonlinear function given enough complexity and data. A requirement of the activation 

function is its differentiability. The differentiated errors are used for back propagation of the 

computed gradients of error (loss) values with respect to the weights for optimisation of the 

weight values using either Gradient Descent or any other optimisation technique for error 

reduction. The most commonly used activation functions are, (1) sigmoid or logistic, (2) tanh or 

hyperbolic tangent and (3) ReLU or Rectified Linear Units. Mathematically the functions have 

the following definition, 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥)  =  1 / ( 1 + 𝑒−𝑥) 

𝑡𝑎𝑛ℎ(𝑥)  =  (1 − 𝑒−2𝑥) / (1 + 𝑒−2𝑥) 

𝑅𝑒𝐿𝑈(𝑥)  =  𝑚𝑎𝑥(0, 𝑥) 

The output of the final activation function is provided as an input to a softmax [161] function to 

obtain the probabilities of belonging to a class, for classification problems. In case of a 

regression problem, a simple linear function is used.  

D.II Learning in Artificial Neural Networks 

As mentioned in the previous section, each neuron sums all the inputs from the previous layer, 

nonlinearly activates the output and passes directly to all neurons in the next layer. As values are 

sent from one layer to the next, a weight is assigned to each interconnecting line and is 

multiplied by the values. Values of the interconnecting weights predetermine the neural 

network's computation reaction to any arbitrary input pattern. As information is passed forward 

from the inputs towards the outputs, interconnecting weights are adjusted by a back-propagation 

algorithm during the learning/training phase so that known outputs will best match predicted 

outputs (also known as labels). The back-propagation is the most common algorithm used to 

train ANNs due to its ability to generalise well on a wide variety of problems. Training of an 

ANN is the procedure by which the values for the individual weights (and biases) are determined 

such that the relationship between the inputs, predicted outputs and labels of the network are 

modelled accurately. By varying the weights and determining the errors of classification (based 

on the modified weights) an error surface is developed. The dimensionality of the error surface is 

determined by the number of tuneable weights in the network. A simplified two-dimensional 

error surface is shown in Fig. D- 3 to illustrate the concept.  

https://paperpile.com/c/f3P1AS/f0zx4
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Figure D- 3 A schematic representation of an error surface 

The objective of training a neural network is to find the combination of weights which 

will result in the smallest error. In practice, it is not possible to plot such a surface due to the 

multitude of weights and hence it is more relevant to find the minimum point of the error. One 

possible technique is to use a procedure known as gradient descent. The backpropagation 

training algorithm uses this procedure to attempt to locate the global minimum of the error 

surface. The backpropagation algorithm is the most computationally straightforward algorithm 

for training the multilayer perceptron. Back-propagation has been shown to perform adequately 

in many applications. A great number of applications discussed in this paper used back-

propagation to train ANNs. Conceptually, the back-propagation algorithm is an iterative process 

involving a series of steps that are repeated sequentially until the desired error function value is 

obtained. The steps include, (1) network initialisation (or preparation), (2) generation of the input 

vector from training data, (3) propagation of the input vector through the network, (4) calculation 

of error signal value, (5) back propagation of the error through the network as delta changes to 

the weight to minimise the error, (6) adjustment of the weight values for reduction of the error, 

and (7) iteration through the same procedures for further reduction in the error.  

 

The above mentioned backpropagation algorithm is also known as online training 

whereby the network weights are adapted after each pattern has been presented. The alternative 

is known as batch training, where the summed error for all patterns is used to update the weights. 

In practice, many thousands of training iterations will be required before the network error 

reaches a satisfactory level as determined by the problem being addressed. Training should be 

stopped when the performance of the ANN on the independent test data reaches a maximum.  

D.III Error Function 

Classification error function used for calculating the deviation of the predicted classes 

from the actual classes (labels) have a few options within them. The error (also known as cost 
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function) function to use has been empirically tried and tested and the most popular list of 

functions collated.  

For regression, the most common function is the Mean Squared Error (MSE) approach that is 

used to find the deviation from actual numerical value,  

𝑀𝑆𝐸 =  1/𝑛 ∗  ∑

𝑛

𝑖=1

(𝑦𝑖 − ŷ𝑖)
2 

where 𝑛 represents the number of nodes in the output layer, 𝑦𝑖represents the actual regressed 

value that should be output, and ŷ𝑖 represents the predicted regressed value.  

For classification, the most effective error function has been empirically determined to be the 

cross-entropy function, also referred to as the logarithmic loss function. In binary classification, 

if the number of classes equals 2, then cross-entropy can be calculated as, 

−(𝑦 ⋅ 𝑙𝑜𝑔(𝑝) + (1 − 𝑦)𝑙𝑜𝑔(1 − 𝑝)) 

and if the number of classes, 𝑀is greater than 2 (i.e. multiclass classification), then the error (or 

loss) is calculated for each class label per observation and the result is summed, 

− ∑

𝑀

𝑐=1

𝑦𝑜,𝑐𝑙𝑜𝑔(𝑝𝑜,𝑐) 

where 𝑀 represents the number of classes, 𝑙𝑜𝑔is the natural logarithm, 𝑦is the binary indicator (0 

or 1), if class label 𝑐is the correct classification for observation 𝑜, 𝑝 is the predicted probability 

observation 𝑜of class 𝑐. In addition to the above functions, other loss functions include, (1) huber 

loss - typically used for regression. It’s less sensitive to outliers than the MSE is, as it treats the 

error as the square only inside a given interval, (2) hinge loss - typically used for classification, 

and (3) mean absolute error (L1) represented as ∑𝑛
𝑖=1 |ŷ𝑖 − 𝑦𝑖|, where ŷ𝑖represents the actual 

class labels, 𝑦𝑖represents the predicted class labels and 𝑛represents the number of class nodes 

 

D.IV Backpropagation for updating the weights    

Backpropagation was invented in the 1970s as a general optimisation method for 

performing automatic differentiation of complex nested functions. However, it wasn't until 1986, 

with the publishing of a paper by Rumelhart, Hinton, and Williams, titled "Learning 

Representations by Back-Propagating Errors," that the importance of the algorithm was 

appreciated by the machine learning community at large [187]. Backpropagation was one of the 

first methods able to demonstrate that artificial neural networks could learn good internal 

representations, i.e. their hidden layers learned nontrivial features. Experts examining multilayer 

feedforward networks trained using backpropagation actually found that many nodes learned 

features similar to those designed by human experts and those found by neuroscientists 

investigating biological neural networks in mammalian brains (e.g. certain nodes learned to 

detect edges, while others computed Gabor filters [188]). Even more importantly, because of the 

efficiency of the algorithm and the fact that domain experts were no longer required to discover 

appropriate features (this diverting away from the expert system based artificially intelligent 

systems), backpropagation allowed artificial neural networks to be applied to a much wider field 

of problems that were previously off-limits due to time and cost constraints.  

https://paperpile.com/c/f3P1AS/B3J6C
https://paperpile.com/c/f3P1AS/Axquz
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 Backpropagation requires three things: 

● Dataset (𝑥𝑖, 𝑦𝑖), where 𝑥𝑖is the input and 𝑦𝑖is the desired output of the network on the 

input. The set of input-output pairs of size 𝑛is denoted as 𝑋 =

 {(𝑥1, 𝑦1), (𝑥2, 𝑦2). . . (𝑥 , 𝑦𝑛) 

● An ANN whose parameters are collectively denoted by 𝜃. In backpropagation, the 

parameters of importance are 𝑤𝑖𝑗
𝑘 , the weights between the node 𝑗in layer 𝑘and node 𝑖in 

layer 𝑘 − 1, and 𝑏𝑖
𝑘, the biases for node 𝑖in layer 𝑘. 

● Error function represented as 𝐸(𝑋, 𝜃), which defines the error between the desired 

output𝑦𝑖and the predicted/calculated output ŷ𝑖of the neural network on the input 𝑥𝑖for a 

set of input-output pairs and a particular value of the parameters. 

Training a neural network with gradient descent requires the calculation of the error deltas. The 

deltas define the contribution of each of the tuneable parameters such as the weights 𝑤𝑖𝑗
𝑘 and the 

biases 𝑏𝑖
𝑘 gradient to the value of the error function. Subsequently, the deltas are multiplied with 

a learning rate 𝛼for updating the weights and biases in each iteration, according to, 

 𝜃𝑡+1  =  𝜃𝑡 − 𝛼
𝜕𝐸(𝑋,𝜃𝑡)

𝜕𝜃
 

where 𝜃𝑡collectively denotes the tunable parameters of the neural network at iteration 𝑡 in 

gradient descent.  

The following terms are utilised in a general formulation of a neural network, 

● 𝑤𝑖𝑗
𝑘 : weight for node 𝑗for the layer 𝑘for incoming node 𝑖 

● 𝑏𝑖
𝑘: bias for node 𝑖in layer 𝑘 

● 𝑎𝑖
𝑘: product sum plus bias (activation) for nide 𝑖in layer 𝑘 

● 𝑜𝑖
𝑘: output for node 𝑖in layer 𝑘 

● 𝑟𝑘: number of node sin layer 𝑘 

● 𝑔: activation function for hidden layer nodes 

● 𝑔𝑜:activation function for the output layer nodes 

The general backpropagation is dependent on the following five equations, 

● For the partial derivatives, 
𝜕𝐸𝑑

𝜕𝑤𝑖𝑗
𝑘 = 𝛿𝑗

𝑘𝑜𝑖
𝑘−1 

● For the final layer’s error term, 𝛿1
𝑚 = 𝑔𝑜

′ (𝑎1
𝑚)(ŷ𝑑 − 𝑦𝑑) 

● For the hidden layer’s error terms, 𝛿𝑗
𝑘 = 𝑔′(𝑎𝑗

𝑘) ∑𝑟𝑘+1

𝑙=1 𝑤𝑗𝑙
𝑘+1𝛿𝑙

𝑘+1 

● For combining the partial derivatives for each input-output pair, 
𝜕𝐸(𝑋,𝜃)

𝜕𝑤𝑖𝑗
𝑘 =

1

𝑛
∑𝑛

𝑑=1
𝜕

𝜕𝑤𝑖𝑗
𝑘 [

1

2
(ŷ𝑑 − 𝑦𝑑)2]  =  

1

𝑛
∑𝑛

𝑑=1
𝜕𝐸𝑑

𝜕𝑤𝑖𝑗
𝑘  

● For updating the weights, 𝛥𝑤𝑖𝑗
𝑘 =  −𝛼

𝜕𝐸(𝑋,𝜃)

𝜕𝑤𝑖𝑗
𝑘  

 

The general backpropagation algorithm proceeds in the following way, 

● Calculation of the forward phase for each input-output pair (𝑥𝑖, 𝑦𝑖)and storage of the 

results 
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● Calculation of the backward phase for each input-output pair and store the results for 

each weight connecting the nodes (within the layers) 

○ Evaluation of the error for the final layer 𝛿1
𝑚by using the second equation 

mentioned above 

○ Backpropagation of the error terms for the hidden layers, working backwards 

from the final hidden layer, by repeatedly using the their equation 

○ Evaluation of the partial derivatives of the individual errors with respect to the 

weights by using the first equation 

● Combination of the individual gradients for each input-output pair to get the total 

gradient for the entire set of input-output pairs by using the fourth equation 

● Updating the weights according to the learning rate 𝛼 and a total gradient by using the 

fifth equation (moving in the direction of the negative gradient)  

The backpropagation algorithm is repeated for multiple iterations for multiple batches of data, till 

stable minimum error point is reached. The accepted error values then leads to a trained neural 

network. The exact nature of the equations are highly dependent on the nature of the activation 

function, the number of layers in the neural network and the number of nodes per layer.  

            

E Artificial Neural Network Architectures 

In addition to the multi-layer perceptron (MLP) model, the two major biologically 

inspired paradigms of architectures are (1) convolutional neural networks, and (2) recurrent 

neural networks. 

 

E.I Convolutional Neural Networks (CNN) 

Convolutional neural networks (CNN) [30] are very similar to ordinary neural networks 

with the addition of multiple layers convolution kernel filters, which are learned. The presence of 

learnable kernel functions optimises the network for image analysis. In addition, the presence of 

an enormous amount of layers and weights (and biases) per layer makes it a ‘deep learning’ 

neural network. The architecture of a CNN is analogous to that of the connectivity pattern of 

neurons in the human brain and was inspired by the organisation of the visual cortex. Individual 

neurons respond to stimuli only in a restricted region of the visual field known as the receptive 

field. A collection of such fields overlap to cover the entire visual area. Similar to the biological 

neural connections in the visual cortex, the convolutional neural network is designed to capture 

the spatial correlations across the regions in the image for a particular objective such as object 

identification or pattern recognition.   

The mathematics of the CNN is very similar to the MLP, however the arrangement of the 

neurons is what makes it unique. The first layer of the CNN is a convolutional layer. Intuitively, 

it can be visualised as a flashlight shining across an image and sliding across it. In ML terms, the 

flashlight is called the filter (also known as the kernel) and the region that it is shining over is 

called the receptive field. The filter (kernel) is a set of numerical values represented in the form 

of an array. The depth of array is usually the same as the depth of the image its analysing. For 

example, in the case of a normal RGB image, the depth of both the image array and the kernel 

https://paperpile.com/c/f3P1AS/wUomo
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array is 3. As the filter slides over the image, it convolves with the underlying receptive field, 

though matrix multiplication (element wise multiplication) to result in a single numerical value, 

which in turn forms a part of the filtered image. This process is repeated multiple times, similar 

to the presence of multiple layers of neurons in the human brain’s visual cortex (V1 through V5) 

to learn increasingly complicated features with increasing filtration (through kernels) of the 

original image. The resulting array of numbers after the final filtration is called the activation 

map or the feature map, which is then connected to the output layer. The results of each 

convolutional layer is usually activated through a nonlinear function (such as ReLU). It is 

common to periodically insert a Pooling layer in-between successive convolutional layers in a 

CNN. Its function is to progressively reduce the spatial size of the representation to reduce the 

amount of parameters and computation in the network, and hence to also control overfitting. The 

Pooling Layer operates independently on every depth slice of the input and resizes it spatially, 

using the MAX operation (choosing the maximum value). The process is visually represented in 

Fig. E- 1. 

 
Figure E- 1 Schematic representation of a convolutional neural network 

 

The most popular case studies for CNNs are the ones that have performed exceptionally well in 

competitions such as Image Recognition in ILSVRC [189] such as, 

● LeNet. One of the first successful applications of Convolutional Networks were 

developed by Yann LeCun in 90’s. One of the most well-known of them being LeNet 

[190] architecture that was used to read zip codes, digits, etc. 

● AlexNet. The first network that shot CNN to fame in the Computer Vision community 

was the AlexNet [29] , developed by Alex Krizhevsky, Ilya Sutskever and Geoff Hinton. 

The AlexNet was a submission in the ImageNet ILSVRC challenge in 2012 and 

significantly outperformed the second runner-up (top 5 error of 16% compared to runner-

up with 26% error). The Network had a very similar architecture to LeNet, but was 

deeper, has more learnable parameters, and featured convolutional layers stacked on top 

of each other immediately followed by a pooling layer. 

https://paperpile.com/c/f3P1AS/i9r8U
https://paperpile.com/c/f3P1AS/NG2m7
https://paperpile.com/c/f3P1AS/0WLUl
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● ZF Net. The ILSVRC 2013 winner was a Convolutional Network from Matthew Zeiler 

and Rob Fergus. It became known as the ZFNet (short for Zeiler & Fergus Net). It was an 

improvement on AlexNet by adjusting several architectural hyperparameters, especially 

by expanding the size of the middle convolutional layers and making the stride and filter 

size on the first layer smaller. 

● GoogLeNet. The ILSVRC 2014 winner was an official CNN from Google developed by 

Szegedy et al. [191]. It initiated the development of an Inception Module that 

dramatically reduced the number of parameters in the network (4M, compared to 

AlexNet with 60M). Additionally, this paper uses Average Pooling instead of Fully 

Connected layers at the top of the CNN, eliminating a large amount of redundant 

parameters. GoogLeNet was followed up by several versions, most notably Inception-v4. 

● VGGNet.  VGGNet. [192],  from Karen Simonyan and Andrew Zisserman  is the runner-

up in ILSVRC 2014. It emphasised that network depth was an important factor in 

performance. Their final best network contains 16 CONV/FC layers and, appealingly, 

features an extremely homogeneous architecture that only performs 3x3 convolutions and 

2x2 pooling from the beginning to the end. A downside of the VGGNet is that it is more 

expensive to evaluate and uses a lot more memory and parameters (140M). Most of these 

parameters are in the first fully connected layer, and it was since found that these FC 

layers can be removed with no performance downgrade, significantly reducing the 

number of necessary parameters. 

● ResNet. Residual Network [193] developed by Kaiming He et al. was the winner of 

ILSVRC 2015. It features special skip connections and an impressive use of batch 

normalisation [194]. The architecture ignores the presence of a fully connected network 

at the end of the CNN. ResNets are currently by far the state of the art CNN and are the 

default choice for using CNNs in practice (as of May 10, 2016). 

F Canonical Problems in Machine Learning 

Table F- 1 succinctly presents the canonical problems encountered in machine learning as well as 

the typical models used to address the problems. 

 

Canonical 
Problem 

Machine Learning Models Example Application 

Classification Support vector machines 
Decision trees 
Random forest 
Neural networks 
Boosted trees 
Nearest neighbour 

Medical diagnosis: Does this tissue show 
signs of disease? What can we say about 
the person from his/her walking style? 
Banking: Is this transaction fraudulent?  
Computer vision: what type of object is in 
this picture? Is it a person? Is it a building? 

Regression Simple linear regression 
Polynomial regression 
Support vector regression 

Finance: what is the value of this stock 
going to be tomorrow?  
Housing: what would the price of this 

https://paperpile.com/c/f3P1AS/hXJ1i
https://paperpile.com/c/f3P1AS/sHHcG
https://paperpile.com/c/f3P1AS/y2Wyl
https://paperpile.com/c/f3P1AS/MrA1N
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Decision tree regression 
Random forest regression 

house be if it were sold today?  
Food quality: how many days before this 
strawberry is ripe?  
Image processing: how old is the person in 
this photo? 
Rehabilitation: Given the speed and state 
of recovery, how long might it take for the 
patient to get back to normal life? 

Clustering K-means 
Mean-shift 
DBSCAN 
EM clustering using GMM 
Agglomerative 
Hierarchical clustering 
 

E-commerce: which customers are 
exhibiting similar behaviour to each other, 
how do they group together?  
Video Streaming: what are the different 
types of video genres in our catalogue, and 
which videos are in the same genre? 

Dimensionality 
Reduction 

Principal component 
analysis 
Factor analysis 
Linear Discriminant 
Analysis 
Multidimensional scaling 
Isometric feature 
mapping 
Locally linear embedding 
Hessian Eigen mapping 
Autoencoders 

E-commerce: what combinations of 
features allow us to summarise the 
behaviour of our customers?  
Molecular biology: how can scientists 
summarise the behaviour of all 20,000 
human genes in a particular diseased 
tissue? 
Gait Analysis: What combinations of joint 
motions allows us to diagnose someone 
with the least amount of computation and 
which motions are therefore redundant? 

Semi-supervised 
Learning 

Generative models 
Low-density separation 
Graph-based methods 
Heuristic approaches 

Computer vision: how can object detection 
be developed, with only a small training 
data set?  
Drug discovery: which of the millions of 
possible drugs could be effective against a 
disease, given we have so far only tested a 
few? 

Reinforcement 
Learning 

Monte Carlo 
Q-learning 
Deep Q network 
Deep reinforcement 
learning 
Inverse reinforcement 
learning 
Apprenticeship learning 

Robots: how can a robot move through its 
environment?  
Games: which moves were important in 
helping the computer win a particular 
game? 
Gait Rehabilitation: Having tested 
rehabilitation techniques on people with 
gait-impairments, which rehabilitation 
techniques should be used for optimal 
rehabilitation, given this patient’s gait? 
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Table F- 1 Canonical problems encountered in machine learning 

G Classification Machine Learning Algorithms 

G.I (Regularised) Logistic Regression 

Logistic regression [195] is the classification counterpart to linear regression. Classifications are 

mapped to be between 0 and 1 through the logistic function, enabling classifications to be 

interpreted as class probabilities. 

The models themselves are still ‘linear’, thus they work at their best when the classes are linearly 

separable (i.e. they can be separated by a single decision surface). Logistic regression can also be 

regularised by penalising coefficients with a tuneable penalty strength. 

● Strengths: Outputs have an easily interpretable probabilistic distribution, and the 

algorithm can be regularised to avoid overfitting. Logistic models can be updated 

easily with new data using stochastic gradient descent. 

● Weaknesses: Logistic regression tends to underperform when there are multiple or 

non-linear decision boundaries. They are not flexible enough to capture more 

complex relationships naturally. 

G.II Classification Trees (Ensembles) 

Classification trees are the classification counterparts to regression trees. They are both 

commonly referred to as "decision trees" or by the umbrella term "classification and regression 

trees (CART) [122]" 

● Strengths: They are robust to outliers, scalable, and able to naturally model non-

linear decision boundaries owing to their hierarchical structure. 

● Weaknesses: Unconstrained, individual trees are prone to overfitting, but can be 

alleviated by ensemble methods. 

G.III Deep Learning (Artificial Neural Networks) 

Deep learning is can also be easily adapted to classification problems. In practice, deep learning 

techniques are used more commonly for classification tasks compared to regression. 

● Strengths: Deep learning performs very well when classifying for audio, text, and 

image data. It is inherently capable of handling both static and dynamic data.  

● Weaknesses: As with regression, deep neural networks require very large amounts of 

data to train, thus, is not treated as a general-purpose algorithm. 

G.IV Support Vector Machines (SVMs) 

Support vector machines (SVM) use kernels [181], to calculate the distance between two 

observations. The SVM algorithm maximises the distance between the closest members of 

separate classes, to place the classification decision boundary.  

https://paperpile.com/c/f3P1AS/43p3P
https://paperpile.com/c/f3P1AS/0xKfu
https://paperpile.com/c/f3P1AS/PkpGY
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For example, an SVM with a linear kernel is similar to logistic regression, where the SVM places 

a linear hyperplane such that the distance of each of the observations from the hyperplane is 

maximised. It then uses the linear hyperplane to decide the classes of the test dataset. Thus, in 

practice, the benefit of SVMs typically come from using non-linear kernels to model non-linear 

decision boundaries. 

● Strengths: SVMs can model non-linear decision boundaries, and have a plethora of 

nonlinear kernel options to choose from. The hyperplanes are fairly robust against 

overfitting, especially in high-dimensional space. 

● Weaknesses: SVMs are memory intensive, harder to tune due to the importance of 

choice of the kernel, and don't scale well to larger datasets. Typically random forests 

or artificial neural networks are usually preferred over SVMs. The latter having the 

advantage of using multiple nonlinear activations to map the nonlinearities between 

the dataset features. 

 

In machine learning, no one algorithm works best for every problem, and it’s especially 

relevant for supervised learning (i.e. predictive modelling). This is also known as the “No Free 

Lunch” theorem [196]. For example, one can’t say that neural networks are always better than 

decision trees or vice-versa. There are many factors at play, such as the size and structure of the 

dataset and amount of computation available. As a result, many different algorithms should be 

tried for a particular problem, while using a holdout “test set” of data to evaluate performance 

and select the final solution.  

H Use of Machine Learning in Clinical Gait Analysis 

Machine learning techniques have been used for gait classification, person recognition from 

movement patterns using basic, kinetic and kinematic gait data, and for gait event detection. The 

most common ML technique used in gait analysis by far is Support Vector Machines (SVMs). 

The results have been very promising in terms of person recognition, diagnosis of 

neurodegenerative diseases, especially in ageing population and studying the cause of gait 

degeneration with increasing age. It is well established that ageing, diseases and disorders 

influence gait patterns and considerable research has documented changes during unobstructed 

and obstructed walking that suggest age-related declines in lower limb control [197]. The major 

aim has been to identify key variables of gait degeneration in elderly individuals that might be 

predictors of falling behaviour due to loss of balance or use of gait as a measurement for efficacy 

of treatment of a certain disease. Research has shown that significant changes in gait can occur 

with age and disease in temporal and distance measures such as gait velocity, stride length, and 

stance and swing phase times [21]. In addition, foot-ground reaction force data during braking 

and propulsive phases [198] and joint angular motion data such as the ankle, knee and hip joint 

angles have shown effects of aging. To date, however, the relative influence of these measures in 

differentiating the age groups has not been demonstrated. 

Systems facilitating robust, automatic identification of persons have gained increasing 

acceptance during recent years. Systems for automatic identification play a decisive role in 

https://paperpile.com/c/f3P1AS/IMj8q
https://paperpile.com/c/f3P1AS/b3e38
https://paperpile.com/c/f3P1AS/oYXsS
https://paperpile.com/c/f3P1AS/vpofq
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surveillance scenarios (e.g., monitoring high security areas like banks or airports). Biometric 

techniques use characteristic physiological and behavioural specifics of different persons for 

identification. Examples for such techniques are the recognition of iris, face, fingerprint, gait, or 

the handwriting. Gait classification is a relatively new biometric technique. Using gait as a 

biometric gained increasing attention during the past years, since it offers many advantages 

compared to other biometrics [199–202]. Allowing for marker-free person identification is one 

of the key advantages of using gait as a biometric [201] In contrast to systems using for example 

the iris or the fingerprint of a person as biometrics, identification by gait does neither require the 

cooperation nor the attention of the subject.  To this end Kinect enables skeleton-detection and 

tracking of people in real time by an integrated depth camera. In comparison with traditional 

person recognition techniques, gait based person recognition has the advantage of providing 

reliable results even if the face is occluded from the camera view or the natural fingerprint 

altered in any way. Because of the high affordability of RGBD cameras (like the Kinect sensor), 

it could easily be used for surveillance, implementing multiple person recognition techniques.  

Techniques like SVMs have been employed in identifying neurodegenerative diseases 

like multiple sclerosis, Huntington’s disease, Parkinson’s disease, stroke and osteoarthritis [203]. 

But the accuracy of detection is usually limited by the representation of gait as the few hand 

crafted feature vectors used for classification. Techniques like SVMs, Random Forests and 

Bagged and Truncated Decision Trees rely on the feature vector directly, assuming complete 

representation of the principal components of the sample space by the feature vector. Thus, 

unless a dimensionality reduction step is implemented, such techniques do not consider the 

interdependencies of the features.  

Automated classification of gait pattern changes by a machine classifier from their 

respective measures is expected to offer many potential advantages. For example, Maki [204] 

using spatial-temporal measures of gait has shown significant changes in gait characteristics in 

the elderly fallers when compared to gait characteristics of elderly non-fallers. This research has 

particularly shown that some foot placement gait measures (e.g., step width and stride 

variability) displayed greater associations with falls classification. Therefore, early identification 

of gait changes due to falling behaviour by a machine classifier might trigger initiation of 

necessary measures to prevent injurious falls such as an exercise intervention program. Similar 

benefits could also be obtained in a clinical context via classification of abnormality in gait 

patterns and also by evaluating the effectiveness of treatment outcomes. In order to facilitate 

automated classification of gait patterns, neural networks and fuzzy clustering techniques have 

been applied for classification of normal and pathological gait [198,205], and also to differentiate 

gait simulations, such as leg length discrepancy from joint-angle measures [206]. However, it is 

well known that there are several limitations of neural network-based modelling, including: (i) 

dependency on a large number of parameters, e.g., network size, learning parameters and 

selection of initial weights, (ii) the possibility of being trapped into local minima, and (iii) 

overfitting on training data resulting in poor generalisation. Support vector machines (SVM) 

have emerged as a powerful technique for general purpose pattern classification. It has been 

applied to classification and regression problems with exceptionally good performance on a 

https://paperpile.com/c/f3P1AS/iks8k+kq2Nr+h82gz+EXeHI
https://paperpile.com/c/f3P1AS/h82gz
https://paperpile.com/c/f3P1AS/znyL1
https://paperpile.com/c/f3P1AS/ZLOZI
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range of binary classification tasks [11,73,207,208]. The primary advantage of SVM is its ability 

to minimise both structural and empirical risk leading to better generalisation for new data 

classification.  

 

Although the use of advanced technology has led to increased use of gait in biometrics, 

the applications of said technology as a diagnostic and rehabilitation tool is still lacking; 

metrology of gait being a huge bottleneck to its advancement. The lack of established 

quantitative reporting practices combined with the lack of normative data have hindered the 

exploration of its deterministic nature in diagnosis of neurodegenerative diseases and 

rehabilitation monitoring measure. Because of a lack of publicly available normative data and 

gait-analysis results based diagnostics or rehabilitation objectives, the interdependence and 

contribution of the gait metrics towards the final objectives is either unknown or highly 

qualitative, hindering its candidature for automation as well. 

 

One of the research objectives is to advance the metrics that are derived from gait, 

beyond the standard measures such as gait velocity, stride length and swing stance ratio, starting 

with narrow focus on stroke detection, mobility and rehabilitation and generalising towards other 

gait-impairing conditions. The achievement of this objective will not only result in a more 

detailed gait analysis report which would give deeper insights into the state of a patient to the 

clinician, but also, act as a highly reliable feature space for use in various classification tasks. 

Given the highly deterministic nature of diagnosis of diseases through gait analysis, the advanced 

feature space would enable highly accurate automated diagnosis of diseases, even at a very early 

symptom stage. In addition, keeping track of the metrics would provide useful insights into the 

recovery of the patient (thus, the efficacy of the rehabilitation measures) with time. Fortunately, 

the advent of the deep learning space combined with advanced sensors and the availability of 

high computation capabilities of machines, makes the topic a prime target for research at this 

time.  

 

The recent emergence of deep learning architectures have refocused the attention on 

artificial neural networks again. Artificial Neural Networks have the added advantage of finding 

multiple non-linear correlations between the features and reducing the dimensionality of the 

feature space, by preserving the principal components [209]. Moreover, with the increase of 

computation capabilities of systems of late and advancements in GPU and increased 

implementation of GPU based parallel processing programming, deep learning neural networks 

have been applied and tested thoroughly on various datasets and have proved their efficacy over 

almost all of the classical machine learning techniques, including perceptron based feedforward 

neural networks. The exploration of applications of deep learning networks in gait analysis is 

still in its infancy and is a major part of this thesis. 

 

  

https://paperpile.com/c/f3P1AS/17Qv2+tTKVG+xo6dw+5snzj
https://paperpile.com/c/f3P1AS/C30xC


139 

 

I Ethics Application, Protocol and Consent Forms 

 



140 

 

 



141 

 

 



142 

 

 



143 

 

 



144 

 



145 

 

 



146 

 

 



147 

 

 



148 

 

 



149 

 

 



150 

 

 
 



151 

 

 



152 

 

 



153 

 

 



154 

 

 



155 

 

 



156 

 

 



157 

 

 


