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Abstract

Drug repositioning, the method of finding new uses for existing drugs, holds the
potential to reduce the cost and time of drug development. Successful drug repositioning
strategies depend heavily on the availability and aggregation of different drug and disease
databases. Moreover, to yield greater understanding of drug prioritisation approaches, it is
necessary to objectively assess (benchmark) and compare different methods.

Data aggregation requires extensive curation of non-standardised drug nomenclature.
To overcome this, we used a graph-theoretic approach to construct a drug synonym resource
that collected drug identifiers from a range of publicly available sources, establishing
missing links between databases. Thus, we could systematically assess the performance of
available in silico drug repositioning methodologies with increased power for scoring true
positive drug-disease pairs.

We developed a novel pathway-based drug repositioning pipeline, based on a bipartite
network of pathway- and drug-gene set correlations that captured functional relationships.
To prioritise drugs, we used our bipartite network and the differentially expressed pathways
in a given disease that formed a disease signature. We then took the cumulative network
correlation between disease pathway and drug signatures to generate a drug prioritisation
score. We prioritised drugs for three case studies: juvenile idiopathic arthritis, Alzheimer’s
and Parkinson’s disease. We explored the use of different true positive lists in the evaluation
of drug repositioning performance, providing insight into the most appropriate benchmark
designs.

We have identified several promising drug candidates and showed that our method
successfully prioritises disease-modifying treatments over drugs offering symptomatic
relief. We have compared the pipeline’s performance to an alternative well-established
method and showed that our method has increased sensitivity to current treatment trends.
The successful translation of drug candidates identified in this thesis has the potential
to speed up the drug-discovery pipeline and thus more rapidly and efficiently deliver
disease-modifying treatments to patients.





Table of contents

List of figures xiii

List of tables xvii

Nomenclature xxi

1 Introduction to the Thesis 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Organisation of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Others’ Contributions to the Thesis . . . . . . . . . . . . . . . . . . . . . 4

2 Background 7

2.1 The Value of Drug Repositioning . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Drug Repositioning Data Types . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Genome-wide approaches . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Phenome studies . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.3 Drug-orientated approaches . . . . . . . . . . . . . . . . . . . . 19

2.3 Current Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Network methods . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2 Machine learning approaches . . . . . . . . . . . . . . . . . . . 22

2.3.3 Text-mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 Benchmarking methods . . . . . . . . . . . . . . . . . . . . . . 24



viii Table of contents

2.4.2 Benchmarking data sets . . . . . . . . . . . . . . . . . . . . . . 27

2.4.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Summary of the Current State . . . . . . . . . . . . . . . . . . . . . . . 30

2.6 Positioning of the Current Study . . . . . . . . . . . . . . . . . . . . . . 31

3 Materials and Methods 33

3.1 KATdb, the Drug Synonym Database . . . . . . . . . . . . . . . . . . . 34

3.1.1 Synonym extraction . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.2 Drug synonym source databases . . . . . . . . . . . . . . . . . . 35

3.1.3 Data cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.4 Database construction . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.5 Estimation of correctness . . . . . . . . . . . . . . . . . . . . . . 41

3.1.6 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.7 KATdb shiny app . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.8 Translation success and redundancy . . . . . . . . . . . . . . . . 42

3.2 Pathway-Drug Coexpression Network (PDxN) . . . . . . . . . . . . . . . 43

3.2.1 Gene expression background data . . . . . . . . . . . . . . . . . 43

3.2.2 Gene sets construction . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.3 Computational improvements to Pathway Coexpression Network
(PCxN) method . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.4 Network construction . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Disease Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.1 Disease gene expression data . . . . . . . . . . . . . . . . . . . . 48

3.3.2 Disease signature generation . . . . . . . . . . . . . . . . . . . . 51

3.4 Drug Prioritisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4.1 Disease cluster definition . . . . . . . . . . . . . . . . . . . . . . 53

3.4.2 Disease sub-network generation . . . . . . . . . . . . . . . . . . 53

3.4.3 Disease cluster score . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5.1 Disease signature . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5.2 Pathway Drug Coexpression Network (PDxN) . . . . . . . . . . 56



Table of contents ix

3.5.3 Drug prioritisation . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 KATdb, the Drug Synonym Database 61

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.1 Drug nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 Initial Database Overview . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5.1 Correctness estimation . . . . . . . . . . . . . . . . . . . . . . . 72

4.6 Database Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.7 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.8 KATdb Visual Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.9 Application Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.9.1 LINCS drug IDs to drug names . . . . . . . . . . . . . . . . . . 90

4.9.2 Annotating drug names with ATC codes . . . . . . . . . . . . . . 90

4.9.3 Translating approved drug names to LINCS drug IDs . . . . . . . 91

4.10 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5 The Drug Repositioning Pipeline 95

5.1 Pipeline Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2 Prototype Network Methods . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2.1 Pathway Drug Network (PDN) . . . . . . . . . . . . . . . . . . . 99

5.2.2 Pathway Coexpression Network (PCxN) . . . . . . . . . . . . . . 102

5.3 Pathway-Drug Coexpression Network (PDxN) . . . . . . . . . . . . . . . 106

5.3.1 Data resources . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.3.2 Reducing computational resource requirements . . . . . . . . . . 113

5.3.3 Network topology . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.3.4 Network clustering . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.3.5 Functional annotation of network clusters . . . . . . . . . . . . . 127

5.3.6 Annotation method limitations . . . . . . . . . . . . . . . . . . . 137



x Table of contents

5.4 Disease Signature Generation . . . . . . . . . . . . . . . . . . . . . . . . 138

5.4.1 Pathway summary statistic . . . . . . . . . . . . . . . . . . . . . 140

5.4.2 Differential pathway expression and disease pathway signature . . 142

5.5 Signature Processing and Drug Prioritisation . . . . . . . . . . . . . . . . 143

5.5.1 Score interpretation . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.6 Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.6.1 Score evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.6.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.7 Testing Drug Candidates in Disease Models . . . . . . . . . . . . . . . . 148

5.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.8.1 PDxN strengths and limitations . . . . . . . . . . . . . . . . . . 148

5.8.2 Disease signature strengths and limitations . . . . . . . . . . . . 150

5.8.3 Drug prioritisation strengths and limitations . . . . . . . . . . . . 151

6 Evaluation of the System: Application to juvenile idiopathic arthritis (JIA) 153

6.1 Disease Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.2 Case Study Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.2.1 Representative studies . . . . . . . . . . . . . . . . . . . . . . . 156

6.3 Disease Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.3.1 Pathway signatures . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.3.2 Overlap pathway signature . . . . . . . . . . . . . . . . . . . . . 167

6.3.3 Gene-level signatures . . . . . . . . . . . . . . . . . . . . . . . . 169

6.3.4 Disease ontology (DO) enrichment of gene and pathway signatures 170

6.4 Evaluating Drug Prioritisation . . . . . . . . . . . . . . . . . . . . . . . 173

6.4.1 Prioritised drug candidates . . . . . . . . . . . . . . . . . . . . . 174

6.4.2 True positive lists for JIA . . . . . . . . . . . . . . . . . . . . . . 177

6.4.3 Benchmarking with JIA approved drugs . . . . . . . . . . . . . . 178

6.4.4 The effect of drug signature features on drug signature rank . . . 180

6.4.5 Benchmarking with immunosuppressant, and anti-inflammatory
and antirheumatic drugs . . . . . . . . . . . . . . . . . . . . . . 183



Table of contents xi

6.4.6 Comparison with LINCS clue.io method . . . . . . . . . . . . . 185

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

7 Case Studies: Neurodegenerative Diseases 191

7.1 Case Study Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

7.2 Alzheimer’s Disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

7.2.1 Disease introduction . . . . . . . . . . . . . . . . . . . . . . . . 193

7.2.2 Alzheimer’s disease datasets . . . . . . . . . . . . . . . . . . . . 194

7.2.3 Disease pathway signatures . . . . . . . . . . . . . . . . . . . . 196

7.2.4 Evaluating drug prioritisation . . . . . . . . . . . . . . . . . . . 199

7.3 Parkinson’s Disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

7.3.1 Disease introduction . . . . . . . . . . . . . . . . . . . . . . . . 207

7.3.2 Parkinson’s disease datasets . . . . . . . . . . . . . . . . . . . . 208

7.3.3 Disease pathway signatures . . . . . . . . . . . . . . . . . . . . 209

7.3.4 Evaluating drug prioritisation . . . . . . . . . . . . . . . . . . . 213

7.4 Evaluating Drug Prioritisation Results with Approved Drugs . . . . . . . 219

7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

8 Conclusions 225

8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

8.2 Scope and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

8.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

8.4 Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

References 231

Appendix A Supplementary material to Chapter 3 271

Appendix B Supplementary material to Chapter 4 279

Appendix C Supplementary material to Chapter 5 287

Appendix D Supplementary material to Chapter 6 305



xii Table of contents

Appendix E Supplementary material to Chapter 7 319



List of figures

2.1 The number of publications in drug repositioning per year . . . . . . . . 10

2.2 De novo drug discovery and drug repositioning pipelines . . . . . . . . . 11

2.3 Classification of computational drug repositioning data types and methods 15

2.4 Hypothesis under-pinning signature-based drug repositioning methods . . 17

2.5 Comparison between the ROC curve and PRC in class balanced and
imbalanced algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Wikipedia Identifiers section of the info box . . . . . . . . . . . . . . . . 40

4.1 KATdb, the drug synonym database chapter overview . . . . . . . . . . . 64

4.2 KATdb, the drug synonym database method overview . . . . . . . . . . . 67

4.3 KATdb list of databases and name types (colour legend) . . . . . . . . . . 68

4.4 Number of terms per name type contributed by each source database . . . 69

4.5 The largest component prior to assessing correctness . . . . . . . . . . . 73

4.6 KATdb correctness assessment . . . . . . . . . . . . . . . . . . . . . . . 75

4.7 The largest component after removing RepurposeDB . . . . . . . . . . . 77

4.8 Trichostatin A in KATdb . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.9 KATdb widest and largest component . . . . . . . . . . . . . . . . . . . 82

4.10 KATdb robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.11 The KATdb logo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1 Drug repositioning pipeline overview . . . . . . . . . . . . . . . . . . . 97

5.2 Pathway Drug Network (PDN) overview . . . . . . . . . . . . . . . . . . 101

5.3 Pathway Coexpression Network (PCxN) overview . . . . . . . . . . . . . 103

5.4 The L1000CDS drug signatures in PDxN . . . . . . . . . . . . . . . . . 111



xiv List of figures

5.5 Computational improvement of PCxN method . . . . . . . . . . . . . . . 115

5.6 PCxN, PDxN and PDxN projections . . . . . . . . . . . . . . . . . . . . 118

5.7 PCxN and PDxN network properties . . . . . . . . . . . . . . . . . . . . 121

5.8 PDxN inter- and intra-cluster interactions . . . . . . . . . . . . . . . . . 126

5.9 Pathway annotation enrichment of PCxN clusters . . . . . . . . . . . . . 128

5.10 Pathway annotation enrichment of PDxN bipartite clusters . . . . . . . . 131

5.11 Drug annotation enrichment of PDxN bipartite clusters . . . . . . . . . . 134

5.12 Disease signature generation overview . . . . . . . . . . . . . . . . . . . 139

5.13 Pathway summary statistic . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.14 Interrogating PDxN with the disease signature . . . . . . . . . . . . . . . 144

5.15 Predicted health outcomes based on pathway and drug directionality in
PDxN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.1 Correlation and overlap between juvenile idiopathic arthritis (JIA) disease
pathway signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.2 Disease ontology enrichment in systemic JIA (sJIA) pathway- and gene-
level differential expression . . . . . . . . . . . . . . . . . . . . . . . . . 172

6.3 AUC score summary for sJIA benchmarked with approved drugs for each
condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.4 Mean true positive drug rank in sJIA prioritised drug lists per drug signa-
ture feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

6.5 AUC score summary for sJIA studies before and after removing low-
ranking drug signature features . . . . . . . . . . . . . . . . . . . . . . . 184

6.6 AUC score summary for sJIA benchmarked with 3 different true positive lists186

7.1 Mean true positive drug rank in Alzheimer’s disease (AD) prioritised drug
lists per drug signature feature . . . . . . . . . . . . . . . . . . . . . . . 205

7.2 AUC score summary for AD studies before and after removing selected
drug signature features . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

7.3 Benchmarking Parkinson’s disease (PD) prioritised drug lists with neuro-
protective drugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

7.4 AUC score summary for AD and PD benchmarked with approved drugs
for each condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

B.1 KATdb synonym relationship correctness per source database . . . . . . . 282

B.2 KATdb visual interface part 1 . . . . . . . . . . . . . . . . . . . . . . . . 283



List of figures xv

B.3 KATdb visual interface part 2 . . . . . . . . . . . . . . . . . . . . . . . . 284

B.4 KATdb visual interface part 3 . . . . . . . . . . . . . . . . . . . . . . . . 285

C.1 ATC level 2 drug annotation enrichment of PDxN bipartite clusters . . . . 300

C.2 Pathway annotation enrichment of PDxN pathway projection . . . . . . . 301

C.3 ATC level 1 drug annotation enrichment of PDxN drug projections . . . . 302

C.4 Simplified example of edge summarisation through the pipeline . . . . . 303

D.1 JIA differential pathway expression profiles . . . . . . . . . . . . . . . . 308

D.2 Distribution of expected and observed size of overlap between sJIA differ-
entially expressed pathways . . . . . . . . . . . . . . . . . . . . . . . . . 309





List of tables

2.1 Examples of approved repositioned drugs and those in clinical trials . . . 8

2.2 Confusion matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Source synonym databases . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Disease gene expression datasets for disease signature generation . . . . . 50

3.3 Number of genes and pathways used in the Disease ontology enrichment
query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Contingency table for shared terms between network clusters and annota-
tion groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5 Confusion matrix for predicted drug lists . . . . . . . . . . . . . . . . . . 60

4.1 KATdb statistical overview . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 KATdb translation test cases . . . . . . . . . . . . . . . . . . . . . . . . 89

5.1 Summary of computational improvements of the Pathway Coexpression
Network (PCxN) method . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.2 Summary of PCxN properties at different significance thresholds . . . . . 120

5.3 Summary of Pathway Drug Coexpression Network (PDxN) properties at
different significance thresholds . . . . . . . . . . . . . . . . . . . . . . 120

5.4 Summary of node membership and internal edges in PDxN clusters . . . 125

6.1 Overview of juvenile idiopathic arthritis (JIA) studies . . . . . . . . . . . 156

6.2 Systemic JIA (sJIA) disease signature pathways (GSE7753) . . . . . . . 161

6.3 sJIA disease signature pathways (GSE112057) . . . . . . . . . . . . . . 164

6.4 Overlap sJIA disease signature pathways . . . . . . . . . . . . . . . . . . 168

6.5 Number of enriched Disease ontology terms from sJIA pathway- and
gene-level differential expression analysis . . . . . . . . . . . . . . . . . 171



xviii List of tables

7.1 Overview of neurodegenerative datasets . . . . . . . . . . . . . . . . . . 193

7.2 Alzheimer’s disease (AD) disease signature pathways (A5 3D cell model) 196

7.3 Parkinson’s disease (PD) disease signature pathways (lysosomal dysfunction)210

A.1 Summary of drug synonyms extracted from source databases . . . . . . . 272

A.2 Test case details for KATdb versus manual translation . . . . . . . . . . . 275

A.3 GEO DataSet search result for JIA gene expression studies summary . . . 276

B.1 KATdb-generated aspirin synonyms . . . . . . . . . . . . . . . . . . . . 279

B.2 Individual source database contributions to the KATdb drug graph . . . . 281

C.1 AD curated list used in Pita-Juárez et al. (2018) case study . . . . . . . . 287

C.2 Pathway membership to KEGG and Reactome pathway groups . . . . . . 288

C.3 Anatomical therapeutic chemical (ATC) level 1 and level 2 classification . 298

D.1 sJIA disease signature genes (GSE7753) . . . . . . . . . . . . . . . . . . 305

D.2 sJIA disease signature genes (GSE112057) . . . . . . . . . . . . . . . . 306

D.3 Number of drug signatures prioritised by sJIA disease pathway signatures 310

D.4 The top 10 drugs prioritised for GSE7753 pathway clusters . . . . . . . . 310

D.5 List of approved drugs for JIA . . . . . . . . . . . . . . . . . . . . . . . 312

D.6 List of approved drugs for JIA and rheumatoid arthritis . . . . . . . . . . 313

D.7 List of drugs in ATC class M01: Anti-inflammatory and antirheumatic
products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

D.8 List of drugs in ATC class L04A: Immunosuppressants . . . . . . . . . . 317

D.9 Number of drug signatures in PDxN per cell type with cell annotations . . 317

E.1 Number of drug signatures prioritised by neurodegenerative disease path-
way signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

E.2 The top 10 drugs prioritised for A5 3D cell model pathway clusters . . . . 320

E.3 The top 10 drugs prioritised for AD Mayo dataset pathway clusters . . . . 321

E.4 List of approved drugs for AD . . . . . . . . . . . . . . . . . . . . . . . 322

E.5 The top 10 drugs prioritised for PD lysosomal dysfunction pathway clusters323

E.6 List of approved drugs for PD . . . . . . . . . . . . . . . . . . . . . . . 324



List of tables xix

E.7 List of neuroprotective drugs for PD . . . . . . . . . . . . . . . . . . . . 325





Nomenclature

Gene and Protein Acronyms
α-Syn α-synuclein
3’UTR 3 prime untranslated region
6-OHDA 6-hydroxydopamine
Aβ amyloid-β
AChE acetylcholinesterase
AHSP alpha-haemoglobin stabilising protein
ALDH aldehyde dehydrogenase
AP1 activator protein 1
APOBEC3G apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like

3G
APP β -amyloid precursor protein
ASH2L absent, small, or homeotic-like
Bcl2 B-cell lymphoma 2
BCLAF1 BCL-associated factor 1
C2 complement component 2
C4 complement component 4
CBX4 chromobox 4
CD40 cluster of differentiation 40
CDC42 cell division control protein 42 homolog
CD cluster of differentiation
CDK cyclin-dependent kinase
CII type II collagen
COX cyclooxygenases
CYP cytochrome P450
EGFR epidermal growth factor receptor
EphB1 ephrin
EPO erythropoietin
ERK extracellular signal-regulated kinase
FLT3 FMS-like receptor tyrosine kinase 3
GABAB gamma-aminobutyric acid B
HDAC histone deacetylase
HIF hypoxia inducible factor



xxii Nomenclature

HLA human leukocyte antigen
Hsp90 heat shock protein 90
IgM immunoglobulin M
I-κB inhibitor of NF-κB
IL-1 interleukin-1
IL-6 interleukin-6
iNOS inducible nitric oxide synthase
JAK2 janus kinase 2
JNK c-Jun N-terminal kinase
KO knockout
MAPK mitogen-activated protein kinases
MHC major histocompatibility complex
MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
mTOR mammalian target of rapamycin
NF-κB nuclear factor κ-light-chain-enhancer of activated B cells
NFT neurofibrillary tangle
NK natural killer
NLRP3 NOD-like receptor family, pyrin domain containing 3
NMDA N-methyl-D-aspartate
PAR4 protease-activated receptor 4
PARP poly(ADP-Ribose) polymerase
PDE3A phosphodiesterase 3A
PI3K phosphoinositide 3-kinase
PKC protein kinase C
PKL1 polo-like kinase 1
PSEN1 presenilin 1
Pyk2 protein-tyrosine kinase 2
RAC1 Ras-related C3 botulinum toxin substrate 1
RAP1 repressor activator protein 1
RNA pol III RNA polymerase III
ROS reactive oxygen species
SAHA suberoylanilide hydroxamic acid
SEPT2 septin 2
SFPQ splicing factor proline- and glutamine-rich
SLC solute carrier
SNCA gene encoding α-synuclein
STAT3 signal transducer and activator of transcription 3
SUMO small ubiquitin-like modifier
Tcf3 T-cell factor 3
TCRA T-cell receptor activation
TCR T-cell receptor
TGFβ transforming growth factor beta



Nomenclature xxiii

Th1 T helper 1 cells
Th2 T helper 2 cells
TIA1 T-cell intracellular antigen-1
TMD transmembrane domain
TNFα tumour necrosis factor alpha
TNF tumour necrosis factor
UPS ubiquitin proteasome system
VEGFR vascular endothelial growth factor receptor 2
VEGF vascular endothelial growth factor
ZAP70 zeta-associated protein of 70kD
Other Symbols
↔ edge between two nodes
E edge between two vertices
G graph in graph theory sense, consisting of edges E, and vertices V
r̂ correlation estimate
t t-test statistic
V vertex or node
Glossary
Aβ42/40 ratio plays a role in Alzheimer’s disease pathogenesis
A5 Alzheimer’s disease 3D cell culture model with low Aβ42/40 ratio

accuracy TP+TN
total = TP+TN

TP+TN+FP+FN

authority regulatory body responsible for maintaining the identifier, type of
name, e.g. synonym or DrugBank

betweenness
centrality

measures the extent to which a vertex lies on the shortest path between
other vertices

Biocarta pathway database
bipartite or two-mode network, is a network where nodes belong to two distinct

sets and there are only edges between two nodes from different sets
and no edges between nodes in the same set

BRD ID Broad ID, the primary drug identifier in LINCS and LINCS-derived
drug signature datasets

CAS number unique numerical identifier assigned by CAS to every chemical sub-
stance described in open scientific literature, also known as CAS
Registry Number, CASRN

ChEBI Chemical entities of biological interest database developed by EBI
ChEMBL chemical database developed by EMBL
chirality the geometric property of a rigid object or spatial arrangement of

points or atoms
CMap Connectivity Map, predecessor to LINCS, database of drug perturba-

tion signatures
connected
component

is a subnetwork in which any two nodes are connected to each other
but are not connected to any nodes outside that subnetwork

edge betweenness
centrality

measures the extent to which the shortest path between other vertices
passes through an edge



xxiv Nomenclature

enantiomer one of two molecules which are mirror images of each other, also
known as optical isomers

FN false negative, the number of incorrect classifications of the positive
case

FP false positive, the number of incorrect classifications of the negative
case

FPR false positive rate, FP
actual false =

FP
FP+TN

H10 Alzheimer’s disease 3D cell culture model with high Aβ42/40 ratio
I45F Alzheimer’s disease 3D cell culture model with high Aβ42/40 ratio
I47F Alzheimer’s disease 3D cell culture model with low Aβ42/40 ratio
InChI the IUPAC International Chemical Identifier, textual identifier for

chemical substances
InChIKey condensed, 27-character version of hashed InChI (using the SHA-256

algorithm)
INN international non-proprietary name, generic name
KEGG pathway database
L1000CDS drug signature database consisting of LINCS Level 3 data processed

with a characteristic direction measure
L1000 gene expression profiling method for cost-effective, high-throughput

screening, profiling 978 landmark transcripts
LINCS database of drug perturbation signatures
MOA mechanism of action refers to the specific biochemical interaction

through which a drug substance produces its pharmacological effect
MoA mode of action describes a functional or anatomical change, resulting

from the exposure of a living organism to a substance
modularity is a measure of the strength of division of a network into clusters or

modules measuring the density of edges inside communities to edges
outside communities

MSigDB pathway database
PID pathway database

precision TP
predicted true =

TP
TP+FP

PubChem CID PubChem Compound ID, unique chemical structures in PubChem
PubChem SID PubChem Substance ID, depositor-provided substance descriptions
PubChem database maintained by the US NIH
PubMed search engine accessing database of references and abstracts on life

sciences and biomedical topics
Reactome pathway database

recall TP
actual true =

TP
TP+FN , also known as true positive rate or sensitivity

ROC curve receiver operating characteristics curve, showing false positive rate on
x axis and sensitivity on y

RxNorm CUI identifier for the normalised clinical drug dictionary of the Unified
Medical Language System

sensitivity TP
actual true =

TP
TP+FN , also known as true positive rate or recall

specificity 1 - false positive rate



Nomenclature xxv

stereoisomerism or spatial isomerism is when molecules have the same molecular
formula and the same sequence of bonded atoms, but differ in 3D
orientation of their atoms in space

TNR true negative rate, TN
actual false =

TN
TN+FP , also known as specificity, 1−

FPR
TN true negative, the number of correct classifications of the negative case

TPR true positive rate, TP
actual true =

TP
TP+FN , also known as sensitivity or recall

TP true positive, the number of correct classifications of the positive case
unipartite or one-mode network, is a network where all nodes belong to one set
Acronyms and Abbreviations
3DDS 3D drugs screen
AACT Aggregate analysis of clinicaltrials.gov database
AD Alzheimer’s disease
ADCL Alzheimer’s disease curated list
ADHD attention deficit hyperactivity disorder
ADMET Absorption, Distribution, Metabolism, Excretion, and Toxicity
AIDS acquired immune deficiency syndrome
ALS amyotrophic lateral sclerosis
ASSESS Analysis of sample set enrichment scores
ATC Anatomical Therapeutic Chemical
AUC area under the receiver operating characteristics (ROC) curve
AUPRC Area under Precision-recall curve
AUROC Area under the receiver operating characteristics curve
BBB blood-brain barrier
BRD Broad ID
CAS Chemical Abstract Service
CasRN CAS Registry Number, also known as CASRN or CAS Number
ChEBI Chemical Entities of Biological Interest
ChEMBL Chemicals EMBL
CIA collagen-induced arthritis
CID Compound ID
CMap Connectivity Map
conc. concentration
COVID-19 coronavirus disease 2019
COVID-19 coronavirus disease 19
cpm Counts Per Million
csv comma separated values
CTD Comparative Toxicogenomics Database
CUI Concept Unique Identifier
DB database
db database
DE differential expression
DEG differentially expressed gene



xxvi Nomenclature

DEP differentially expressed pathway
DMARD disease modifying antirheumatic drug
DNI Drugs of New Indications (Liu et al., 2013), also referred to as Liu2013
DO Disease ontology
DPD Drugs Product Database
EBI European Bioinformatics Institute
ECHA European Chemicals Agency
ECM extracellular matrix
EHR electronic health records
EINECS European Inventory of Existing Commercial Chemical Substances
EMA European Medicines Agency
EMBL European Molecular Biology Laboratory
EPAR European public assessment report
Eq. equation
ER endoplasmic reticulum
EU European Union
fAD familial Alzheimer’s disease
FAERS FDA adverse event reporting system
FC Fold Change
FDA the US Food and Drug Administration
FDR False Discovery Rate
Fig. figure
FLS fibroblasts-like synoviocytes
FN false negative
FP false positive
FPR false positive rate
fRMA frozen robust multi-array analysis
FTP file transfer protocol
GB gigabyte
GCH1 GTP cyclohydrolase 1
GEO Gene Expression Omnibus
GNUSE global normalized unscaled standard error
GO gene ontology
GPL11154 Illumina HiSeq 2000
GPL570 Affymetrix Human Genome U133 Plus 2.0 Array
GPL96 Affymetrix Human Genome U133A Array
GPL97 Affymetrix Human Genome U133B Array
GSEA gene set enrichment analysis
GSRS Global Substance Registration System
GSVA Gene set enrichment analysis
GTP guanosine-5’-triphosphate



Nomenclature xxvii

GWAS genome wide association studies
h hour
HIV human immunodeficiency virus
hNPCs human neuronal progenitor cells
HOM homozygous
HPV human papillomavirus
ID identifier
ILAR International League of Associations for Rheumatology
InChI IUPAC International Chemical Identifier
INN international non-proprietary name
IUPAC International Union of Pure and Applied Chemistry
JIA juvenile idiopathic arthritis
polyJIA polyarticular juvenile idiopathic arthritis
sJIA systemic juvenile idiopathic arthritis
KEGG Kyoto Encyclopedia of Genes and Genomes

L1000CDS2 LINCS L1000 characteristic direction signature search engine
L1000CDS L1000 Characteristic Direction Signature
L1000FWD L1000 fireworks display
limma Linear models for microarray data
LINCS Library of Integrated Network-based Cellular Signatures
logFC log2 fold change
LPAwb+ Label Propagation Algorithm weighted bipartite plus
LSM LINCS standardized unique small molecule
MESH Medical Subject Headings
MOA mechanism of action
MoA mode of action
MSigDB Molecular Signatures Database
NaB sodium butyrate
n/a not applicable
NDF-RT National Drug File - Reference Terminology
NIH National Institutes of Health (United States)
N negative
NSAID non-steroidal anti-inflammatory drug
OMIM Online Mendelian Inheritance in Man
PBMC peripheral blood mononuclear cells
PCA principal component analysis
PCxN Pathway Coexpression Network
PDN Pathway Drug Network
PD Parkinson’s disease
PDxN Pathway Drug Coexpression Network
pert id perturbagen ID
pert time perturbagen time



xxviii Nomenclature

PharmGKB Pharmacogenomics Knowledge Base
PheWAS phenome wide association studies
PID Pathway Interaction Database
P positive
PRC Precision-Recall curve
PREDICT Prediction of drug indications
pval p-value
QC quality control
qval q-value, adjusted p-value
RA rheumatoid arthritis
RF- rheumatoid factor negative
RIN RNA integrity number
ROC receiver operating characteristics
SD standard deviation
SID Substance ID
SITraN Sheffield Institute for Translational Neuroscience
SMILES simplified molecular-input line-entry system
sPD sporadic Parkinson’s disease
SPL Structured Product Labels
SSRI selective serotonin reuptake inhibitor
TMM trimmed mean of M values
TNR true negative rate
TN true negative
TPR true positive rate
TP true positive
TTD Therapeutic Target Database
UK The United Kingdom of Great Britain and Northern Ireland
µM micro (µ) molar, concentration unit
UMLS Unified Medical Language System
UNII Unique Ingredient Identifier
URL uniform resource locator
USD United States dollar
US The United States of America
VHA Veterans Health Administration
vmem virtual memory
WHOCC World Health Organisation Collaborating Centre
WHO World Health Organisation
WT wild type
yrs years



Chapter 1

Introduction to the Thesis

1.1 Motivation

Drug repositioning, also referred to as drug repurposing, is the process of finding
new uses for existing drugs. It holds the potential to reduce the price of developing new
drug candidates and fast-track drug discoveries. It has significant translational potential
to identify novel drug candidates for disease with no approved or disease-modifying
interventions. Successful drug repositioning strategies depend heavily on the availability
and aggregation of different information resources. With the increased availability of
publicly available data, we can now develop powerful new methods that can provide new
insights into drug discovery and disease progression.

However, with large amounts of data, come organisational and aggregation challenges
because of non-standardised naming conventions. In addition, to successfully translate
proposed novel indications from studies to clinical treatments, it is necessary to objectively
assess and compare currently available drug repositioning methods. It has become chal-
lenging to perform this comparison, because poorly established links between databases
lead to incorrect scoring of true positives as false negatives and thus affect the performance
score, clouding insight into best drug repositioning approaches.

To overcome the multiple chemical naming conventions a drug synonym database
was constructed to aid in benchmarking of drug repositioning methods. Applying this
system together with a novel well-characterised disease-agnostic signature-based drug
repositioning method, we have leveraged the increasing amounts of publicly available data



2 Introduction to the Thesis

in order to expand the landscape of the current drug repositioning methods and to deliver a
new pathway-based approach to gain insight into the mechanism of disease.

1.2 Contributions

There are four main contributions to knowledge from work described in this thesis:

(i) A novel well-characterised pathway-based coexpression network drug repositioning
pipeline,

(ii) Development of a drug synonym database aiding in drug repositioning pipeline
performance assessments,

(iii) Characterisation and performance evaluation for in silico drug repositioning results,
(iv) Computational performance improvement of a published method increasing avail-

ability and further development.

In addition, this work has already contributed to securing financial support for de-
velopment of this project beyond the completion of the current project. The work
described in this thesis has been a significant contribution to NIH R01 research grant
proposal entitled "The Alzheimer’s Disease Resiliome: Pathway Analysis and Drug Dis-
covery"(http://grantome.com/grant/NIH/R01-AG062547-01) awarded $668,819 per year
for 5 years (subject to annual review, $3,344,097 total).

1.3 Publications

Y. Pita-Juárez, G. Altschuler, S. Kariotis, W. Wei, K. Koler, C. Green, R. Tanzi, and
W. Hide. The pathway coexpression network: Revealing pathway relationships. PLoS

Comput. Biol., 14(3):e1006042, 2018.

K. Koler, S. L. Morgan, D. R. Jones, D. Wang, and W. A. Hide. KATdb: a graph
theoretic approach to unification of drug names. Manuscript in Preparation, 2020.

H. Larbalestier, M. Keatinge, L. Trollope, E. White, S. Gowda, W. Wei, K. Koler,
S. Semenova, N. Rimmer, S. Sweeney, J. Mazzolini, D. Sieger, W. A. Hide, R. Macdonald,
J. McDearmid, P. Panula, and O. Bandmann. Tyrosine hydroxylase depletion and inflam-

http://grantome.com/grant/NIH/R01-AG062547-01
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matory dysregulation in a zebrafish gch1−/− Parkinson’s disease model. Manuscript in
Preparation, 2020.

S. L. Morgan, P. Naderi, K. Koler, Y. Pita-Juarez, I. Vlachos, and W. A. Hide. Are all
pathways related to Alzheimer’s disease? Manuscript in Preparation, 2020.

D. von Maydell, K. Koler, M. Jorfi, E. Brand, J. Aronson, K. J. Washicosky, S. S.
Kwak, M. Cetinbas, R. Sadreyev, J. Park, S. L. Wagner, W. Hide, R. E. Tanzi, and D. Y.
Kim. Identifying shared enriched pathways driven by pathogenic Aβ accumulation in 3D
cellular models and human Alzheimer’s brain. Manuscript in Preparation, 2020.

Acknowledged in M. P. Menden, D. Wang, M. J. Mason, B. Szalai, K. C. Bulusu,
Y. Guan, T. Yu, J. Kang, M. Jeon, R. Wolfinger, T. Nguyen, M. Zaslavskiy, AstraZeneca-
Sanger Drug Combination DREAM Consortium, I. S. Jang, Z. Ghazoui, M. E. Ahsen,
R. Vogel, E. C. Neto, T. Norman, E. K. Y. Tang, M. J. Garnett, G. Y. D. Veroli, S. Fawell,
G. Stolovitzky, J. Guinney, J. R. Dry, and J. Saez-Rodriguez. Community assessment to ad-
vance computational prediction of cancer drug combinations in a pharmacogenomic screen.
Nat. Commun., 10(1):2674, 2019. ISSN 2041-1723. doi: 10.1038/s41467-019-09799-2.

1.4 Organisation of the Thesis

The thesis is divided into the following chapters:

• Chapter 1: Introduction to the Thesis

• Chapter 2: Background

• Chapter 3: Materials and Methods

• Chapter 4: KATdb, the Drug Synonym Database

• Chapter 5: The Drug Repositioning Pipeline

• Chapter 6: Evaluation of the System: Application to juvenile idiopathic arthritis
(JIA)

• Chapter 7: Case Studies: Neurodegenerative Diseases

• Chapter 8: Conclusions

Chapter 1 summarises the key contributions and publications (including manuscripts
in preparation) that have resulted from the work related to or the work described in this
thesis. Chapter 2 offers context and background information to the drug repositioning field
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and its relevance to the work presented in this thesis. Chapter 3 is a description of the
materials and methods used in later chapters. Chapter 4 is a stand-alone project describing
the development of a drug synonym database that has been utilised in benchmarking the
drug repositioning pipeline described in the following chapters. Chapter 5 describes and
characterises the drug repositioning pipeline presented as the key contribution of this
thesis. It includes a description of development and characterisation of each individual
step of the pipeline that was then applied to three different case studies in Chapters 6 and
7. Chapters 6 and 7 describe in detail the application of the drug repositioning pipeline to
juvenile rheumatoid arthritis (Chapter 6), and two neurodegenerative diseases: Alzheimer’s
and Parkinson’s disease (Chapter 7). Chapter 8 offers a summary discussion of the work
presented and outlines points for future development.

1.5 Others’ Contributions to the Thesis

Chapter 4: KATdb, the Drug Synonym Database: David R. Jones (Sheffield Insti-
tute for Translational Neuroscience (SITraN), University of Sheffield) has contributed to
the concept of using graph theory to resolve heterogeneous drug nomenclature.

Chapter 5: The Drug Repositioning Pipeline: Gabriel Altschuler (SITraN, Uni-
versity of Sheffield) was instrumental in the design of the initial PhD project proposal
and has demonstrated the adopted overarching concept for a drug repurposing method
in Joachim et al. (2018). Yered Pita-Juárez’s PhD project (Department of Biostatistics,
Harvard T.H. Chan School of Public Health) served as the basis for the underlying method
used in the coexpression network construction. This work was described in Pita-Juárez
et al. (2018). Sokratis Kariotis (SITraN, University of Sheffield) provided coding support
in the computational improvement of the Pita-Juárez et al. (2018) method.

Chapter 6: Evaluation of the System: Application to juvenile idiopathic arthritis
(JIA): Professor Lester Kobzik (Department of Environmental Health, Harvard T.H. Chan
School of Public Health) assisted in the curation of the publicly available juvenile idiopathic
arthritis studies and advised on the interpretation of the results in relation to the standard
treatment practice.

Chapter 7: Case Studies: Neurodegenerative Diseases: Alzheimer’s disease: As-
sistant Professor Doo Yeon Kim (Department of Neurology, Massachusetts General Hospi-
tal, Harvard Medical School) and Professor Rudolph E. Tanzi (Department of Neurology,
Massachusetts General Hospital, Harvard Medical School) shared preprocessed 3D cell
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model RNA-Seq data described in Kwak et al. (2020), and the positive drug hits from the
3D drug screen. The RNA-Seq data was preprocessed by the Harvard Bioinformatics Core.
Assistant Professor Doo Yeon Kim has also kindly provided context for their 3D models
and their characterisation. Sarah Morgan (SITraN, University of Sheffield; Department of
Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School) advised on
the Mayo Alzheimer’s disease dataset sample selection. Parkinson’s disease: Professor
Oliver Bandmann (SITraN, University of Sheffield) shared the human sporadic Parkinson’s
disease RNA-Seq data described in Carling et al. (2020) and the zebrafish GCH1 mutant
data described in Larbalestier et al. (2020). Professor Oliver Bandmann has also kindly
curated a list of neuroprotective drugs. The Carling et al. (2020) RNA-Seq data was
preprocessed by Claire Green (SITraN, University of Sheffield) and the Larbalestier et al.
(2020) zebrafish data by Wenbin Wei (SITraN, University of Sheffield).

All draft chapters were reviewed by my main supervisor Winston A. Hide. In addition,
Sarah Morgan provided valuable feedback on Chapters 1, 2, 6 and 7, David R. Jones for
Chapter 4, Pourya Naderi for Chapters 3 and 5, Lester Kobzik for Chapter 6, and David
Rapley reviewed Chapter 8.





Chapter 2

Background

2.1 The Value of Drug Repositioning

With high rates of clinical trial failures and stricter rules on drug safety, de novo drug
discovery is both expensive, time consuming, and has a high failure rate. Recent reports
are putting the cost of drug development at between $0.7-2.6 billion (in 2013 USD) with
a yearly increase of 8.5% over general price inflation (DiMasi et al., 2016; Prasad and
Mailankody, 2017). The number of drugs that are approved has not shown a concomi-
tant increase, despite major advances in science and technology, as well as increased
investments in de novo drug discovery (Oprea and Overington, 2015). With decreasing
productivity, finding new uses for already existing drugs has become an appealing option.

Drug repositioning, or drug repurposing, is the development of new drugs by using al-
ready approved or investigational compounds (Shameer et al., 2017). It offers a cheaper and
lower-risk alternative to de novo drug discovery. Importantly, reuse of existing approved
drugs has the added benefit of rapid use for patient treatment—drugs have known toxicity
assessments and known side effects as well as history of patient use. There are numerous
successful drug repositioning examples and even more in development (Table 2.1). In
particular, the past decade has seen an increasing number of drug repositioning studies
(Brum et al., 2015; Cheng et al., 2014; Dudley et al., 2011b; Ferrero and Agarwal, 2018;
Sirota et al., 2011; Zhang et al., 2016) (Fig. 2.1). However, the majority of research and
development spending is still allocated for new drug discoveries (Booth and Zemmel,
2004).
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Table (2.1) Examples of approved repositioned drugs and those in clinical trials. Drugs and
their indications were extracted from Gns et al. (2019); Park (2019); Pushpakom et al. (2019); Rosa
and Santos (2020) (referenced as † § ‡ þ, respectively). Year of approval for the new indication
is listed for successfully repositioned drugs and the phase number and its associated clinical trial
IDs are listed for drugs in clinical trials. AD — Alzheimer’s disease; ADHD — attention deficit
hyperactivity disorder; AIDS — acquired immune deficiency syndrome; ALS — amyotrophic
lateral sclerosis; COVID-19 — coronavirus disease 2019; HIV — human immunodeficiency virus;
JIA — juvenile idiopathic arthritis; PD — Parkinson’s disease; RA — rheumatoid arthritis; ‡ —
Pushpakom et al. (2019); § — Park (2019); þ — Rosa and Santos (2020); † — Gns et al. (2019);
* — curated by Katjuša Koler.

Drug First indication New indications Year of approval /
Clinical trial phase Source

atomoxetine PD ADHD 2002 ‡

aspirin inflammation, pain antiplatelet, colorectal
cancer 1998, 2015 ‡§

raloxifene osteoporosis breast cancer 2007 ‡§
ketoconazole fungal infections cushing syndrome 2014 ‡
sildenafil angina erectile dysfunction 1998 ‡§

celecoxib inflammation, pain familial adenomatous
polyps 2000 ‡

allopurinol cancer gout 1966 §
minoxidil hypertension hair loss 1988 ‡

finasteride benign prostatic
hyperplasia hair loss 1997 §

zidovudine cancer HIV/AIDS 1987 ‡§
propranolol hypertension migraine headache 1974 §
gabapentin epilepsy neuropathic pain 2002 §

gemcitabine antiviral
non-small cell

lung cancer, metastatic
breast cancer

1998, 2004 §

topiramate epilepsy obesity 2012 ‡

dapoxetine analgesia and
depression premature ejaculation 2012 ‡

methotrexate cancer RA 1988 §
rituximab cancer RA 2006 ‡
bupropion depression smoking cessation 1997 §

duloxetine depression stress urinary
incontinence 2004 ‡§

thalidomide morning sickness leprosy, multiple
myeloma, COVID-19

1998,2006, 2
(NCT04273529,
NCT04273581)

‡§þ

fingolimod transplant rejection multiple sclerosis,
COVID-19

2010, 2
(NCT04280588) ‡þ

bromocriptine PD type 2 diabetes, AD 2009, 1-2
(NCT04413344) §*

levetiracetam epilepsy AD
2 (NCT04004702,

NCT02002819,
NCT03875638,
NCT03489044)

*

continues on the next page
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Table 2.1 continued

Drug First indication New indications Year of approval /
Clinical trial phase Source

vitamin C vitamin C deficiency,
wounds COVID-19

2 (NCT04264533,
NCT04363216,
NCT04401150,
NCT04344184)

þ

darunavir-
cobicistat HIV/AIDS COVID-19 3 (NCT04252274,

NCT04425382) þ

dexamethasone RA COVID-19
4 (NCT04325061),
3 (NCT04395105,
NCT04327401)

*

sarilumab RA JIA 2 (NCT02991469,
NCT02776735) *

baricitinib RA JIA 3 (NCT03773978,
NCT03773965) *

nelfinavir HIV/AIDS Kaposi sarcoma, other
cancers 2 (NCT03077451) †‡

saracatinib experimental
anticancer drug lymphangioleiomyomatosis 2 (NCT02737202) ‡

paracetamol analgesic, antipyretic malaria 3 (NCT03056391) †
riluzole ALS mild AD 2 (NCT01703117) †

propranolol cardiovascular
diseases osteoporosis 1 (NCT02467400) †

nilotinib chronic myeloid
leukemia PD 2 (NCT03205488) †

isradipine hypertension PD 3 (NCT02168842) †

exenatide type 2 diabetes PD 3 (NCT04232969),
2 (NCT04305002) *

droxidopa neurogenic orthostatic
hypotension PD

4 (NCT03229174),
2 (NCT03446807,
NCT03567447)

*

ibuprofen JIA, osteoarthritis tuberculosis 2 (NCT02781909) †

Repurposed drug candidates have a higher probability of success, as well as a faster
development pipeline (Fig. 2.2). The development time for de novo drug discovery ranges
from 10–17 years (Fig. 2.2A), while drug repositioning studies can produce results in 3–12
years (Fig. 2.2B) (Ashburn and Thor, 2004). Since these drugs have already been through
several stages of development and the toxicology, safety and pharmacokinetic profiles
have been conducted, the risks of repositioning these drugs are lower. While overall de

novo drug discovery has a reported less than 10% success rate, with Phase II clinical trials
having the highest attrition rate (Mullard, 2016).

Lower costs and lower risks in drug repositioning also mean that rare diseases, mostly
overlooked by pharma, can be considered without the need for large scale preclinical
investment (Hodos et al., 2016). There are about 7000 rare diseases that together affect
approximately 10% of the world’s population, but only a handful have known treatments.
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Fig. (2.1) The number of publications in drug repositioning is growing every year. The
number of publications reflects publications on PubMed with keywords "drug repositioning" or
"drug repositioning". Every year includes publications from 1st January to 31st December during a
given year. The number of publications was extracted from PubMed in March 2020.
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There has been an increasing rate of orphan drugs, drugs that treat rare diseases, on the
market, with about one in five resulting from repositioning studies (Davies et al., 2017).
In addition, rare disease treatments, excluding cancer therapies, have also shown a higher
than average overall success rate of 25% in clinical trials (Mullard, 2016).

There may be limited interest in drug repositioning from big pharmaceutical companies
as a drug with a new indication usually does not produce a big financial return due to
the complex patenting rules. Focusing on the United States (US), first the drug needs
to be shown to constitute patentable subject matter. The second step is an application
of the new use patent which assesses the novelty of a drug itself and its use. It requires
no previous patent, description in publication or access to the drug in the public domain
before the patent application is filed (Conour, 2018). A common strategy to meet the drug
novelty requirements is patenting a novel drug combination or a novel dosage form or
route of administration (Shaughnessy, 2011; Smith, 2011). In addition to the novelty of
the drug, a novel method of use strengthens the new use claim. The main obstacle in the
new use claim is to overcome the obviousness criteria i.e. showing an average clinician
or researcher would have not expected the drug to be useful for the new indication. The
originality criteria can be met by showing unexpected results, e.g. drug combinations
showing synergy, working at surprisingly low dosage or showing a drug acts via a novel
mechanism of action (Conour, 2018). Another obstacle is collecting sufficient amounts of
data to demonstrate the new use, in which time the obviousness criteria might be harder
to overcome as more research is done and published by others (Breckenridge and Jacob,
2019). To complicate the patenting landscape further, the patenting rules vary between
jurisdictions e.g. similar new use patents are available in the US, Australia, European
Union (EU) and China, but not in India and Brazil (Conour, 2018). To encourage drug
repositioning the EU has extended the new use patent to 8 years of data protection and 2
years of market exclusivity, while in the US there is an initial 5 year period with a 3 year
extension. Nevertheless if the generic version of that drug with the same active ingredient
is available, it is often prescribed/purchased over the more expensive branded new drug
protected by the new use patent, e.g. in Germany it is obligatory to prescribe the generic,
cheaper medicine if available, decreasing profits for the repositioned drug (Breckenridge
and Jacob, 2019)

In spite of the patent regulations, in recent years, there has been a shift from de novo

drug development supported by pharma to drug repositioning backed by governments, non-
profit organisations and academia. The government-started initiatives, the National Center
for Advancing Translational Sciences (US) and Medical Research Council (UK) have
started large scale funding programs in partnership with industry to find new indications
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for significantly researched drugs developed in industry (Mullard, 2012). The US Food
and Drug Administration (FDA) has also been creating online resources designed for
computational drug repositioning. With more government funds and public resources
available, academia has an opportunity to further push drug development forward.

Repositioning study approaches range across in vitro, ex vivo and in silico screenings.
Initially, repositioning success stories have happened serendipitously or observationally
(Table 2.1). With the availability of high-performance computing, high throughput- and
high content cell-based screening methods, and large amounts of omics data, drug reposi-
tioning methods have become more systematic and knowledge-driven (Sleigh and Barton,
2012). The increasing size of large-scale publicly available genomic and phenotypic
databases makes scalable computational methods development of particular interest as
they offer a much cheaper alternative to wet lab hypothesis-based approaches. In addition,
combining genomic, phenotypic and other clinical data can help elucidate the drug’s mode
of action. More importantly, it provides an opportunity to gain insight into the mechanism
of a disease.

Early studies (Campillos et al., 2008; Keiser et al., 2009; Kinnings et al., 2009) mostly
focused on drug similarities, such as chemical structure or side effect, while newer studies
(Glicksberg et al., 2015; Xu and Wang, 2016; Zhang et al., 2016, 2013) have focused on
integrating heterogeneous data from multiple databases. Most studies promise superior
methods for prioritising drug candidates, but how do we know if their claims are correct?
We need a gold-standard data set. Without standardised and centralised benchmarks to
allow an unbiased evaluation of performance and comparison, there are no means to
define the relative performance of approaches. Currently, studies rely on different bench-
marking approaches using a varying selection of reference databases or skip to validation
with a case study. Demonstrating the rapid evolution of the field; a recent standardised
repositioning database RepurposeDB1; has been launched to provide a platform where
all successful attempts have been logged and new attempts can be submitted in a repo-
sitioning investigations-specific format (Shameer et al., 2017). As a publicly available
resource, RepurposeDB would allow the generation of a benchmarking dataset that could
be systematically applied and used in drug repositioning studies.

1RepurposeDB (Shameer et al., 2017) is no longer available online (27th May 2020)
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2.2 Drug Repositioning Data Types

Computational strategies can be roughly classified based on the type of data used.
Approaches predominantly relying on drug databases can be classified as drug-based and
those depending on disease data are disease-based. In this classification, the basis of
discovery is an important distinction. For example, in drug-based strategies, the discovery
comes from the perspective of the chemical and its properties, whereas in disease-based
approaches, the discovery comes from pathology or clinical characteristics of the disease
(Dudley et al., 2011a).

The main difference is that they are powered by distinct hypotheses. In a drug-
based approach, the assumption is that drugs with similar properties, such as structure or
bioactivity, to an already approved drug will have similar therapeutic effects and thus be
as effective. A disease-based approach hypothesises that diseases with similar properties,
such as symptoms or transcriptional signature, require the same therapies and can therefore
be treated with the same drugs (Liu et al., 2013). Both assumptions rely on an assessment
of similarity between drugs or diseases, which in turn is the source of key differences
in repositioning approaches. Similarity criteria, for example, can range from the drugs’
chemical structures in molecular docking approaches to gene expression under drug and
disease conditions. The increasing diversity in data sources available for supporting these
computational approaches contributes to the variety of different repositioning methods.
The databases available further split the methods into: genome-wide, phenome-focused,
and drug-orientated (Li et al., 2016) (Fig. 2.3).

2.2.1 Genome-wide approaches

Advances in genomics have significantly increased the amount and availability of
genetic and transcriptomic data in a large set of different drug and disease settings in
addition to controls in cell lines, tissue samples and animal models. In particular, gene
expression data has been the most widely used for systematic repositioning methods, with
Connectivity Map (CMap) (Lamb et al., 2006), later extended into the Library of Integrated
Network-based Cellular Signatures (LINCS) (Subramanian et al., 2017), as one of the key
resources. These databases provide a rich resource of gene expression profiles using a
selection of mostly cancer cell lines treated with different perturbations under a selection of
different conditions. Lamb et al. (2006) constructed a detailed map designed for exploration
of functional connections among diseases, genes and drug perturbations. They proposed a
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gene signature-based approach (Fig. 2.4), where, by systematically extracting differentially
expressed genes under drug perturbation, they obtain a unique drug signature that they
later can match to a user input disease signature. They prioritise drug candidates that have
high negative connectivity to the input disease signature. The concept is formulated so that
the aberrant disease signature is counterbalanced by the drug’s opposing signature and
reverts the cell to normal state (Lamb et al., 2006).

The power of this approach has been demonstrated in several successful studies (Chang
et al., 2010; Chen et al., 2011; Dudley et al., 2011b; Johnstone et al., 2012; Kunkel et al.,
2011), and adopted in this thesis (Chapters 5, 6 and 7). Very few systematic evaluations
of each method’s performance have been completed (Cheng et al., 2014). This can be
partially explained by the lack of a gold-standard truth table consisting of true drug-disease
relationships (addressed in Chapters 6 and 7), as well as the effort to generate the disease
signatures required for querying CMap (Cheng et al., 2014). NCBI’s Gene Expression
Omnibus (GEO) (Barrett et al., 2005), the largest public data repository for transcriptomic
data, is one such resource that is widely used for extracting disease signatures, allowing
for a more systematic use of CMap. An important consideration for the use of GEO is the
bias from overrepresentation of cancer-related samples.

Hu and Agarwal (2009) constructed drug↔disease networks by using the CMap
drug signature system, employing part of its methodology and adding GEO disease
and drug data. They constructed drug and disease genomic signatures and used two
approaches for network construction. The first approach used correlation and the second
was based on enrichment (Hu and Agarwal, 2009). Similarly, Jadamba and Shin (2016)
constructed an enrichment based pathway↔drug network. They constructed the network
by establishing pathway↔drug associations with Gene set enrichment analysis (GSEA)
(Subramanian et al., 2005) on CMap drug signatures. They then generated disease pathways
by obtaining disease gene expression from GEO and performed GSEA enrichment on the
top dysregulated genes. Semi-supervised learning approach based on known drugs for the
disease was then used to prioritise novel drug candidates. All these approaches are largely
limited by the availability and quality of input data, so careful assessment of this data is
required before integrating it into the drug repositioning system. Another consideration
is that many diseases usually affect different tissues in the system, so a representative
transcriptional profile of disease can be hard to obtain and model (Dudley et al., 2011a).
This thesis introduces a novel network-based method (Chapter 5) that addresses the disease
tissue specificity by prioritising drug candidates based on a disease case study specific
signature.
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Fig. (2.4) Hypothesis under-pinning signature-based drug repositioning methods. The
signature concept is formulated so that opposite drug and disease signatures can counterbalance
the effects and revert the cell to normal state (Lamb et al., 2006). Signature-based methods
systematically extract differentially expressed genes (up- or down-regulated) under drug
perturbation, then obtain a unique drug signature that can be matched to a user input disease
signature. The most highly anti-correlated signatures to the input disease signature are the
prioritised drug candidates.
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Guilt-by-association approaches

A drug-centric approach can also be taken with CMap data. It finds perturbations with
similar signatures, and then extrapolates one drug’s use to the other drug with a matching
signature. A drug-centric approach is also known as the guilt-by-association approach
(Chiang and Butte, 2009). Applying the drug-based strategy hypothesis, if one drug causes
a particular transcriptional response and another drug causes a similar response, they
are likely to work through a similar mode of action (MoA) and thus might be beneficial
for similar diseases. In a case where one drug’s MoA is known, and the other’s is not,
this approach can provide insight into the second’s MoA. MoA transcriptional similarity
approaches have also been successfully used by combining FDA approved indications
with their off-label use, generating approximately 57,000 new drug indications that were
enriched in clinical trials (Chiang and Butte, 2009).

Genetic association drug study approaches

Drugs with known protein targets that have been genetically associated with a disease
have also been included in drug repositioning studies. Genome-wide association studies
(GWAS) show association between genetic variants and complex diseases. Sanseau et al.
(2012) have shown that 15.6% of GWAS genes are associated with a drug, compared
to only 5.7% of all human genes, making GWAS genes promising drug repositioning
targets. From GWAS-associated drugs more than half had the marketed indication different
from that of GWAS, which identifies potential candidates for repositioning (Sanseau et al.,
2012). An example of this approach was performed by Okada et al. (2014) who conducted
a GWAS meta-analysis looking at rheumatoid arthritis and identified promising drug
repositioning candidates (Okada et al., 2014). There are, however, some challenges that
this approach carries; the biggest being the problem of directionality of the therapeutic
effect. For example, it is not evident from GWAS information alone whether an inhibitor
or an activator is required. In GWAS approaches, rare diseases are overlooked as high
participant numbers are necessary for reliable GWAS.

2.2.2 Phenome studies

In addition to GWAS-driven repositioning studies that examine the relationship be-
tween the phenotype to a genetic variant, a phenome-wide association studies (PheWAS)
approach has been used. PheWAS make use of electronic medical record systems to make
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connections from genotype to phenotype. A powerful advantage of PheWAS is that they
can measure genetic associations with many diseases simultaneously (Hebbring, 2014).
Like GWAS, PheWAS can be used for hypothesis generation, rather than full system-
atic repositioning studies. PheWAS has the ability to identify novel genetic associations
with human diseases that can be later integrated with other drug and disease resources in
repositioning approaches.

Clinical observations of side effects are another source for repositioning hypotheses.
Perhaps the most famous example in repositioning comes from the unexpected side effect of
sildenafil citrate, for which the primary indication was angina. As a result of the commonly
reported side effect of penile erection during clinical trials, this drug was later approved
for erectile dysfunction (Ghofrani et al., 2006). More recently, side effect data from drug
labels and clinical trials have been used to predict new drug targets as well as provide
insight on MoA of drugs with similar uncommon side effects. Side effects allow for the
transitive linking of drugs to diseases as they present the drugs’ physiological effect. With
about 70 side effects reported per drug on average (Duke et al., 2011), studies constructing
and matching drugs’ side effect profiles have emerged, hypothesising that drugs with
similar profiles will share similar therapeutic properties through related MoA (Ye et al.,
2014). An advantage in this type of approach is that the side effects reported have been
observed on human subjects rather than animal models, which avoids translational issues
that commonly occur in transition from preclinical studies to clinical trials. However,
it does require having well-defined side effect profiles, which are harder to obtain for
newer drugs as clinical testing takes years. Even though repositioning with the use of side
effect data seems promising, it does not provide a deeper understanding of the underlying
mechanisms required for drug development studies. However, PheWAS and side effect
data could be exploited by integrating them with other resources to improve a method’s
performance and increase the potential of identified repositioning candidates.

2.2.3 Drug-orientated approaches

One of the key aspects driving drug repositioning is the fact that drugs show promis-
cuous targeting. Drugs often interact with more than one target in the biological system;
a phenomenon that is widely explored in chemical similarity drug repositioning efforts.
Cheminformatics explores and predicts new targets for existing drugs as well as similar
drugs for known targets by looking at structural and chemical properties. Chemicals with
related structures often have related biological properties and affect biological systems in
similar ways (Swamidass, 2011). Current methods can integrate different sets of resources
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and predict similar drugs working on the same target (Chiang and Butte, 2009; Keiser et al.,
2009; Li and Lu, 2012a). These leverage the availability of high-throughput screening
data, literature-mined biochemical data and databases, such as PubChem (Bolton et al.,
2008) and ChEMBL (Gaulton et al., 2017), which are populated with chemical structures
and other properties. Chemical-similarity approaches are usually based on extracting a
set of chemical properties for a selection of drugs and then constructing networks where
the more similar chemicals would cluster together. Although the predictive activity from
structural similarity has been well established, some pairs of chemicals that are structurally
similar can have a very different activity (Guha and van Drie, 2008). Another problem
with chemical-similarity approaches is the quality and availability of chemical data. Many
structures and other chemical properties contain errors or the information on them is
withheld by pharma (Warren et al., 2012). Because drugs get metabolised and distributed
in the biological system differently, considering only structural properties is not always
predictive of a drug’s physiological effects. Integrative methods combining different kinds
of data address these issues by using different data types to improve performance of these
approaches.

Molecular docking is another drug-based strategy relying on structural and chemical
information. It is a modelling approach that is aimed at predicting physical interactions be-
tween existing drugs and finding new therapeutic targets associated with disease. Molecular
docking uses 3D modelling and simulation to find a fit for a drug into a protein-binding site
and then calculate the binding affinity (Meng et al., 2011). As more protein 3D structures
become resolved, this has become a popular repositioning strategy. These approaches
are computationally demanding so they can be used either on a target-by-target basis
exploring repositioning opportunities of well-defined targets or can be more widely applied
by proposing drug↔target interaction networks (Dudley et al., 2011a). An advantage of
this strategy is its ability to predict new targets for drugs and, more importantly, to predict
side effects by identifying off-target interactions. However, an even greater concern than
with the chemical similarity approach is the correctness of structural information, as the
core of these knowledge-driven predictions is based on the chemical 3D structure. In
particular, stereoisomers and protonation states need to be carefully considered, which
makes this type of approach very challenging (Oprea and Overington, 2015). For now,
molecular docking strategies are known to have high false positive rates, but as more
curated 3D structures become available, they are likely to increase in prediction accuracy
(Dudley et al., 2011a).
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2.3 Current Methods

Independent of data types defined by the type of resources used, different methods
can be applied in the drug repositioning pipeline. The methods can be generally split into
machine learning algorithms, network-based and text mining methods (Fig. 2.3).

2.3.1 Network methods

With the intention of capturing complex interdependent relationships, any relationship
between drugs, diseases and targets can be modelled using networks. Network-based
methods aim to organise these relationships and provide further insight into biological
processes. The ability to connect molecular signatures to phenotypes and investigate the
effect and mechanisms of different perturbations on biological systems within the network
framework is of particular significance to drug repositioning (Wu et al., 2013). With
the combination of different data resources, studies have proposed various methods for
network construction: drug↔drug (Zhou et al., 2015), drug↔target (Wang et al., 2013),
drug↔disease (Paik et al., 2015), drug↔target↔disease (Li and Lu, 2012b), disease↔side
effect (Yang and Agarwal, 2011) and transcriptional networks (Hu and Agarwal, 2009)
have been used, with some studies integrating one or more different types of network
together. Similarly, in this thesis we introduce a pathway-drug coexpression network that
is based on transcriptomic data, as well as curated and experimental gene sets (Chapter 5).

One of the earliest network integration studies was performed by Nacher and Schwartz
(2008), who constructed a drug↔therapy bipartite network alongside its drug and therapy
network projections. Drugs sharing at least one therapy were connected in the drug
network whilst therapies with shared drugs were connected in the therapy network. They
found that drugs involved in many treatments had a higher betweenness centrality value
in the drug-therapy network and thus were hypothesized to interact with multiple targets.
This study provided a global map of known drugs and therapies, serving as a knowledge
base for repositioning hypothesis generation (Nacher and Schwartz, 2008). While this
method used known relationships, many use networks to predict new relationships. One
such method, Prediction of drug indications (PREDICT), leverages several drug↔drug
and disease↔disease similarity measures, one of which, a protein↔protein interaction
network-based similarity, is used to predict novel drug indications with a machine learning
algorithm (Gottlieb et al., 2011). When making predictions an important consideration is
the data quality used in the model. The predictions are only as good as the information
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they are based on. This is why most studies opt for manually curated data and make an
effort to integrate multiple sources to account for data acquisition bias. The downside
of any prediction method is that in addition to a need for successful benchmarking and
evidence of high precision, the predictions still need to be experimentally validated.

2.3.2 Machine learning approaches

Machine learning methods can leverage the wide range of drug repositioning resources
to study the underlying systems and predict novel associations between drugs and dis-
eases. Machine learning methods utilise similarity measures to construct classification
features and then a learning classification rule that separates between a true and a false
node association. Machine learning methods take several different approaches to drug
repositioning using various sets of data and the particular design of the method relies on the
data resources used (Vanhaelen et al., 2017). Gottlieb et al. (2011) used a machine learning
algorithm to predict novel drug indications from drug and disease similarity measures.
They used a set of known drug–disease associations, constructed from DrugBank (Law
et al., 2014) and Online Mendelian Inheritance in Man (OMIM) (Hamosh et al., 2002),
as a training set, then used the similarity measures to construct classification features and
predict novel drug indications with a logistic regression classifier. An advantage of this
method is that it can be applied to new drugs with no previous indication information. The
authors performed integration of additional similarity measures such as disease-specific
gene expression signatures, which could potentially lead to personalised medicine (Got-
tlieb et al., 2011). Many different machine learning algorithms are being developed, each
with their own strengths and weaknesses. In general, methods improve their performance
and prediction power by integrating different methodological approaches. A big advan-
tage of machine learning methods is that they can be benchmarked with cross-validation
approaches, but still require a well-defined positive and negative benchmarking data set.

2.3.3 Text-mining

With the exponential growth of biomedical literature, it has become more challenging
to extract knowledge, especially since most of the biomedical knowledge is recorded in
free-text format (Hunter and Cohen, 2006). Text mining methods have been developed to
automatically extract desirable information and assist researches in new discoveries. When
applied to drug repositioning, information on drugs and diseases is being mined from
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biomedical literature as well as electronic health records (EHR), drug labels, clinical trials,
disease and drug databases. EHR in particular are an information rich source containing
longitudinal data on millions of patients, with access to lab results, standardised diagnosis
codes, treatment plans and physician notes. However, for now EHR still have some
legal, ethical and financial concerns, as well as errors in diagnosis codes, irregularity and
differences in reporting between institutions (Yao et al., 2011).

Text-based methods aim to extract terms and their inter-relations, which can be organ-
ised into ontologies with controlled vocabularies and provide a framework for mapping
associations between concepts. It is now possible to detect novel drug indications by
extracting relevant knowledge and inferring relationships between drugs, targets, diseases
and side effects even if they were not mentioned in the same abstract (Andronis et al.,
2011). Even though the methods in text mining are developing fast, they are still mainly
used in addition to either machine learning or network-based methods. For example,
Sun et al. (2016) constructed a tripartite network connecting associated genes, drugs and
diseases. They then integrated a text mining method to evaluate the findings and score
the confidence level of predicted associations (Sun et al., 2016). There is great potential
in integrating text mining methods as they can efficiently extract the knowledge about
reagents in drug repositioning approaches. Furthermore, novel associations and predictions
can gain power if integrated with a wide range of a priori knowledge. Currently many
repositioning data resources are being constructed with text mining and curation methods.
The hidden knowledge from text has the potential to serve as a source for a standardised
benchmarking dataset needed to help evaluate current drug repositioning studies.

2.4 Benchmarking

Considering the heterogeneity of approaches to drug repositioning, it is not surpris-
ing that there are an increased number of publications offering improved and superior
methodology (Fig. 2.1). Claims are usually based on comparison between study results
and existing biomedical knowledge. However, no standardised way of comparing and
evaluating the power of different methodologies has been adopted. Studies adopt two
main approaches to assess individual success: benchmarking and validation. There is an
important distinction between benchmarking and validation, which is often overlooked
but will be considered in this thesis. Benchmarking is based on method evaluation with
a structured gold-standard data set. Validation is the assessment of the validity of the
method’s results. For example, benchmarking would consider how many of the already
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known drug↔disease relationships the method can find, thus, assessing the general per-
formance and reliability. Validation, on the other hand, would show that the method has
the power to identify novel indications that can be translated into practice. Benchmarking
deals with computationally assessing the method’s ability to give reliable predictions and
is currently based on looking at the recall rate of approved drug indications obtained with
text-mining or curation methods. Validation of biological relevance is still examined by
wet lab experiments or during preclinical animal studies (Vanhaelen et al., 2017).

2.4.1 Benchmarking methods

Many repositioning studies claim that they have analytically benchmarked their meth-
ods in some way. However, no agreed best practice of benchmarking computational
predictions exists, which makes it hard to assess how useful a particular approach is in
producing reliable repositioning hypotheses. There are three main techniques to assess the
accuracy of results:

(i) overlap between predictions and a set of known drug indications,

(ii) sensitivity- and specificity-based methods,

(iii) cross-validation in machine learning methods (Brown and Patel, 2016).

Overlap methods analytically measure the extent to which an approach correctly
identifies known indications. Overlap methods can include currently approved and/or
investigational drug uses. They can assess the general ability of the method to make valid
claims by measuring the sensitivity, also called recall, of the approach, which is the rate of
correctly identified true positives. The advantage of this approach is that it only needs a
list of true indications to compare with their predictions (Brown and Patel, 2016), while
sensitivity and specificity methods also require a list of negative interactions, which are
harder to compile. A disadvantage of the overlap method is that it cannot be used for
machine learning approaches. Meanwhile, cross-validation is a well-established method of
benchmarking machine learning algorithms. With cross-validation, the algorithm is already
optimised on part of the data called the training set and tested on another previously unseen
set. Testing the algorithm can highlight overfitting of the algorithm to the training data set
and more importantly, its results are more representative of its future performance (Lever
et al., 2016). Cross-validation allows for the calculation of both sensitivity and specificity.

Commonly, a combination of both sensitivity and specificity will be used in bench-
marking, which describe the recall or true positive rate (TPR) and the true negative rate
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Fig. (2.5) Comparison between receiver operating characteristic curve (ROC, A) and
precision-recall curve (PRC, B) in class balanced and imbalanced algorithms. PRC changes
with imbalanced classes, while there is no change on ROC plot. Each panel contains two plots with
balanced (left) and imbalanced (right) for (A) ROC and (B) PRC. Five curves represent different
performance levels: random (red), poor early retrieval (blue), good early retrieval (green), excellent
(purple), and perfect (orange). N — negative; P — positive. Modified from Saito and Rehmsmeier
(2015).



26 Background

(TNR), respectively. The benchmarking measures are calculated using a confusion matrix
(Table 2.2). The false positive rate (FPR) and TPR can be plotted into a receiver operating
characteristics curve (ROC, Fig. 2.5A) and a commonly reported value for benchmarking
is the area under the ROC curve (AUROC) (Cheng et al., 2014; Guney, 2016). The ROC
curve is created by plotting the TPR (sensitivity) against the FPR (1 - specificity, Fig. 2.5A).
Results are summarised by calculating the AUROC of the predictions.

Table (2.2) Confusion matrix describing performance of a classification model with true
known values. FN — False Negative; FP — False Positive; TN — True Negative; TP — True
Positive.

Predicted

True False

Actual
True TP FN
False FP TN

This method relies on two benchmarking datasets: a gold standard for true positives
(TPs) and one for false positives (FPs) or true negatives (TNs). However, many only
define a TP set of known drug indications and assume the rest of their predictions as FPs
(Gottlieb et al., 2011; Takarabe et al., 2012; Yang et al., 2013a). The assumption that all
predictions apart from those in a TP set are false, is counterintuitive, as the purpose of
the algorithm is to establish new drug indications, whereas this benchmarking approach
assumes all novel predictions as FPs. Furthermore, the definition of different gold-standard
data sets impacts the AUROC estimates and makes the reported sensitivity and specificity
non-comparable between studies if different resources are used for the benchmarking data
set. We explore the strengths and weaknesses of using different types of "true positive"
drug sets in three case studies in Chapters 6 and 7. These benchmarking shortcomings
could be avoided with the universal use of a well-defined and standardised gold-standard
set that includes both successful drug indications as well as negative drug–indication
pairs from failed clinical trials. Finally, this method creates a significant imbalance in
the number of true and FPs, which has been shown to reduce the accuracy of AUROC
and other sensitivity and specificity estimates (Davis and Goadrich, 2006; Fawcett, 2006)
(Fig. 2.5). Precision-recall curve (PRC, Fig. 2.5B) and the area under PRC (AUPRC) have
been suggested as alternative measures, because they are sensitive to the class imbalance
(Fig. 2.5B). In contrast to the FPR, used in AUROC, that measures the fraction of negative
examples that are mislabelled as positive, precision (positive predictive value) measures



2.4 Benchmarking 27

the fraction of examples classified as positive that are truly positive (Davis and Goadrich,
2006).

AUROC and AUPRC offer the most rigorous analytical assessment of repositioning
methods. They both come with drawbacks that have currently not been overcome. The
lack of a well-defined positive and negative gold-standard set compromises the reliability
and reproducibility of both benchmarking methods. An additional factor compromising
both benchmarking methods is the data used in the repositioning method. If the data is
mainly cancer-based it is likely to perform better in cancer predictions than, for example,
neurological conditions. Thus, if a generalised benchmarking set including all diseases
is applied it could penalise a good performance in cancer, thus a disease area specific
benchmarking might be more appropriate when repositioning methods are tailored to
one disease area. For the moment, overlap benchmarking methods offer a more accurate
assessment as more time and effort has been invested into formulating a data set of approved
drug indications including both first time and second use drugs. However, even for overlap
methods, a gold-standard data set of approved indications should be used.

2.4.2 Benchmarking data sets

The field has recognised the lack and importance of a structured benchmarking data
set that includes both true and failed indications. Several recent studies have attempted
to tackle this problem. Some identified the lack of structured data sets (Brown and Patel,
2016; Li et al., 2016), some constructed their own (Cheng et al., 2014; Li and Lu, 2012a;
Yang et al., 2013a; Zhang et al., 2013), and others proposed a gold-standard data set (Brown
and Patel, 2017; Khare et al., 2013; Kissa and Tsatsaronis, 2015; Liu et al., 2013; Shameer
et al., 2017). However, the sets from different studies are usually compiled for a variety
of drug uses. For example, Cheng et al. (2014) used FDA-approved drug indications, in
Kissa and Tsatsaronis (2015), and Liu et al. (2013) they included successfully repurposed
drugs, while Chiang and Butte (2009) include off-label use. Brown and Patel (2017) took
a step further and included drugs from failed clinical trials. Even though methods included
the same type of drugs, for example FDA-approved drugs, they usually used a different
combination of data resources to construct their gold-standard data set. Most are compiled
from publicly available databases, such as DrugBank (Law et al., 2014), PharmGKB (Gong
et al., 2002), National Drug File - Reference Terminology (NDF-RT) (Bodenreider, 2004)
and DailyMed (NIH U.S. National Library of Medicine, 2016). For example, Khare et al.
(2013) used DailyMed for FDA-approved drug labels, while Cheng et al. (2014) used
Pharmaprojects (Pharma Intelligence, 2017) and FDA Adverse Event Reporting System



28 Background

(FAERS). Each data resource contains different information, therefore even the methods
that have been benchmarked cannot be compared, further highlighting the necessity of a
standardised and widely adopted benchmark data set.

A potential explanation to why there is no widely accepted gold-standard data set
might be because systematic computational drug repositioning is a relatively new and fast
developing field. In the past few years, the lack of a benchmark has been noted, with no
agreement on what type of drug indications it should consist of, nor what resources those
should come from. One of the problems is that indications are still mostly described in
free-text which makes them harder to extract. Text mining efforts are close to overcoming
this, but manual curation is still needed in most cases to ensure only true drug↔indication
pairs are included (Khare et al., 2013). However, there is still a lack of a wider agreement
on what vocabulary and coding system to use. Benchmarking is also confounded by
drug terminology. There is considerable heterogeneity in the vocabulary used in different
databases. Drugs often have many synonyms. Different standardised databases exist
employing controlled vocabularies for drugs and disease, but are lacking interoperability
to allow integration across a wider range of resources. For example, the Unified Med-
ical Language System (UMLS) (Bodenreider, 2004) consists of a set of programs that
work towards unifying the vocabulary and codes from other systems. This problem is
further addressed in Chapter 4 where a drug synonym database was constructed to resolve
heterogeneity in drug nomenclature.

Ideally, a list of approved and failed indications across a wide range of diseases is
needed. It should not be restricted only to FDA-approved drugs, but also include drugs
approved by other corresponding authorities with well-defined approval protocols. Care
should be taken when identifying true indications as some might be false positives (i.e.
drugs that only provide symptomatic relief rather than directly affecting the disease)
(Cheng et al., 2014). In addition, when defining negative indications, only drugs failing
clinical trials because of toxicity or lack of efficacy should be included. These measures
might highly reduce the numbers of negative indications, as many clinical trial databases
such as Aggregate analysis of clinicaltrials.gov (AACT) database (Tasneem et al., 2012)
often lack detailed explanations on why a trial has been terminated. An accurate, complete
and up-to-date resource should be used for extraction of this information. Finally, drugs
and indications should be in one of the widely used controlled vocabularies such as UMLS
(Bodenreider, 2004) to allow interoperability. Further steps would be to include not only
indication information but also the dosage and form (Khare et al., 2013) and grouping
indications into disease areas would be beneficial when assessing methods tailored to a
specific disease.
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A publicly available database, RepoDB, provides a systematic extraction of approved
and failed drug–indication pairs that has a high potential to become a widely used bench-
marking data set. It is closest to fulfilling the requirements of a good benchmark, because
it includes positive and negative indications. It consists of 6677 approved and 4123 failed
drug indications across 1571 unique drugs and 2051 indications. For approved indications:
the drug list has been extracted from DrugBank (Law et al., 2014); all drug synonyms,
their DrugBank ID and UMLS indication were extracted from DrugCentral (Ursu et al.,
2017); while failed clinical trials information was extracted from AACT that is based on
ClinicalTrials.gov. Data from AACT included details on failed trials, UMLS indications,
and MeSH interventions that were mapped to the DrugCentral synonyms to compile the
final database (Brown and Patel, 2016). However, some care should be taken using failed
drug–indication pairs, as many trials ended due to the lack of funding or, more commonly,
with no information on the reason for termination.

Establishing a widely accepted benchmarking set has the potential to improve consis-
tency and reproducibility in the field, as well as to allow objective comparison between
methods and increase the accuracy of reported benchmarking values. Consequently, posi-
tive validation results will become more likely and, from that, improved translation into
clinical treatments.

2.4.3 Validation

Studies usually perform validation of a few selected candidates to show the applied
potential of their method and to satisfy the ultimate goal, which is to find a new drug
indication that can be translated into clinical applications. If the novel predictions are to
be pursued, experimental validations consisting of in vitro and in vivo preclinical drug
evaluations become necessary. For example, once potential candidates have been identified,
their biological significance can be explored in the literature. Drug properties such as
side effects, cost, availability, intake form and distribution, should also be considered
when narrowing down the search space for candidates. Brown and Patel (2016) observed
that some studies completed this in an addition to previous benchmarking whereas others
omitted assessing the general performance of their method, skipping straight to validation of
carefully selected predictions. An example of a benchmark omission by Sirota et al. (2011)
involved identifying one novel drug indication out of over 16,000 drug-indication pairs
tested, from which there were 2664 statistically significant associations with more than half
of therapeutic interest. They tested a drug with a moderate score for the association to lung
adenocarcinoma, on the basis that it is an inexpensive off-patent drug with a favourable side
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effect profile. The authors then demonstrated its success with a series of in vitro and in vivo

experiments as well as evidence from the literature (Sirota et al., 2011). Their promising
result identified in one case study shows the potential of their method, however, it cannot
be extrapolated to all predictions made by the method. In repositioning studies focused
only on one disease or one drug, this approach might be more acceptable, as their method
is closely suited to the specific conditions of that disease and drug, and their search space
will be smaller and better defined. However, it is best practice to generally evaluate the
method with a well-defined benchmark and proceed with validation of carefully selected
candidates if the method shows high sensitivity and specificity. This way the method’s
power is systematically assessed, and its predictions will be more likely to succeed further
down the drug development pipeline.

2.5 Summary of the Current State

Drug repositioning carries the potential of large economic and public health benefits
for the public, academia and government. Repositioning can accelerate drug discovery
and systematically investigate many previously overlooked diseases, such as rare dis-
eases as well as disease areas with poor de novo drug development success, for example,
Alzheimer’s disease. Drug repositioning is highly dependent on the availability and quality
of data resources, such as CMap, GEO and ClinicalTrials.gov. As more large-scale assays
are generated, a more detailed molecular understanding of drug and disease mechanisms
is becoming possible. In particular, this can lead to improving disease classification,
such as cancer subtypes, which can yield better results in drug repositioning studies as
well as improve personalised medicine, where therapies are targeted at specific patient
sub-populations.

More repositioning methods can be developed as more data from different techniques,
formats and domains become available. The richness of resources allows the use of various
different combinations and consequently the design of many approaches that can be used
to identify candidates for repositioning. Several different approaches have been considered
in this chapter, each with their own advantages and disadvantages. Integration of these
methods often results in higher sensitivity and specificity, which indicate improved success
in identifying novel indications. With improved benchmarking practices, the repositioning
methods could be compared more vigorously in order to prioritise the most effective
one. In addition, identification of best methods can accelerate prioritisation of novel drug
indications as well as further development of repositioning approaches.
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At the moment, most publicly available repositioning studies have not yet been trans-
lated into clinical trials. Even though repositioning provides the opportunity to shorten
drug development time, the requirement for preclinical testing and clinical trials often
remains. A number of repositioning candidates have, however, already undergone phase
I, which assesses safety. Phase II, which addresses efficacy, requires more resources for
further drug validation. A combination of different funding sources, such as pharma,
governments and charities, could help overcome the costs of accelerated drug repositioning
trials. As more recognition for repositioning studies occurs, more funding opportunities
are becoming available.

In summary, recent methodological advances in the rapidly emerging field of drug
repositioning provide a new perspective to revolutionise drug development, offering a
potentially faster and cheaper alternative to current de novo drug discovery practices. We
identify five key areas for improvement:

(i) systematic database development for increasing amounts of data,

(ii) increasing public access to studies and resources,

(iii) developing a standardised protocol for recording clinical trials with well-annotated
outcomes,

(iv) development of a widely applied gold-standard benchmark,

(v) increasing funding for translation of candidates from computational studies into
clinical trials.

With such advances, we predict drug repositioning will become an invaluable resource to
lead the way in drug development.

2.6 Positioning of the Current Study

In this chapter, we considered strategies for computational repositioning to provide
context for our drug repositioning system. We assessed different types of computational
methods and the type of databases used in each (Fig. 2.3). Highlighting that to our
knowledge there are no pathway↔gene set correlation approaches. Furthermore, we
highlighted the shortcomings of benchmarking and validation attempts adopted by studies
in the field of computational drug repositioning. We have identified a set of requirements
for a standardised benchmark that we explored further in the benchmarking methodology
developed in this project.
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In this thesis, we have developed a disease-based drug repositioning method based on
the signature reversal hypothesis (Fig. 2.4). In Chapter 5, we present a novel pathway-
based correlation network approach where we estimated correlation coefficients between
pathways and LINCS drug signatures on a background of a large curated collection of
GEO gene expression data. We have identified several related methods in this chapter, such
as Hu and Agarwal (2009), and Jadamba and Shin (2016), however, we took the unique
approach of constructing a bipartite-network based on the pathway- and drug-gene set
correlation capturing functional relationships.

To overcome some of the benchmarking challenges discussed, we have built a drug syn-
onym resource that can overcome the use of heterogeneous drug nomenclature (Chapter 4).
We explored the use of different true positive lists in the evaluation of drug reposition-
ing performance (Chapters 6 and 7), providing insight into most appropriate benchmark
designs.



Chapter 3

Materials and Methods

Others’ contributions to this chapter

Network construction method. Yered Pita-Juárez’s PhD project (Department of Bio-
statistics, Harvard T.H. Chan School of Public Health) served as the basis for the underlying
method used in the pathway-drug coexpression network construction (Pita-Juárez et al.,
2018). Wenbin Wei (Sheffield Institute of Translational Neuroscience (SITraN), University
of Sheffield) and Sokratis Kariotis (SITraN, University of Sheffield) were both involved
in the code review to identify points for improvement. Sokratis Kariotis provided coding
support in the computational improvement of the Pita-Juárez et al. (2018) method.

Juvenile idiopathic arthritis study curation. Professor Lester Kobzik (Department
of Environmental Health, Harvard T.H. Chan School of Public Health) assisted in the
curation of the publicly available juvenile idiopathic arthritis studies.

Alzheimer’s disease data and preprocessing. Assistant Professor Doo Yeon Kim
(Department of Neurology, Massachusetts General Hospital, Harvard Medical School) and
Professor Rudolph E. Tanzi (Department of Neurology, Massachusetts General Hospital,
Harvard Medical School) shared preprocessed 3D cell model RNA-Seq data described in
Kwak et al. (2020), and the positive drug hits from the 3D drug screen. The RNA-Seq data
was preprocessed by the Harvard Bioinformatics Core. Sarah Morgan (SITraN, University
of Sheffield; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard
Medical School) advised on the Mayo Alzheimer’s disease dataset sample selection.

Parkinson’s disease data and preprocessing. Professor Oliver Bandmann (SITraN,
University of Sheffield) shared the human sporadic Parkinson’s disease RNA-Seq data
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(Carling et al., 2020) and the zebrafish GCH1 mutant data (Larbalestier et al., 2020). Pro-
fessor Oliver Bandmann has also curated a list of neuroprotective drugs. The Carling et al.
(2020) RNA-Seq data was preprocessed by Claire Green (SITraN, University of Sheffield)
and the Larbalestier et al. (2020) zebrafish data by Wenbin Wei (SITraN, University of
Sheffield).

3.1 KATdb, the Drug Synonym Database

This section describes the resources and methods used in the construction of KATdb,
the drug synonym database. KATdb is a resource containing drug and chemical identifiers,
names and synonyms from several databases. The databases described in Table 3.1. were
used as the source of synonym information for KATdb.

3.1.1 Synonym extraction

From each database listed in Table 3.1, we extracted the database-specific unique
identifier, synonyms, external identifiers, and systematic identifiers (see Supplementary
Table A.1). We formatted the names, so they retain information of the type of name they
include, termed: the authority, followed by the identifier provided in the database.

From each of the resources (Table 3.1) the dataset was reshaped into a database of
edges. Each edge (Va,Vb) ∈ Eab was defined by one unique relationship listed in a source
database between a vertex, Va, represented by the unique identifier authority:value pair
and a vertex, Vb, for synonym or external identifier:value pair for a given dataset. An edge
between two vertices was:

Va ↔Vb (3.1)

then each relationship from each database is reshaped into:

database authority:unique identifier ↔ synonym authority:value (3.2)

For example, one relationship from ChEMBL database would be represented as:

ChEMBL:CHEMBL25 ↔ Wikipedia:Aspirin (3.3)
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The synonyms extracted from each database are listed in Supplementary Table A.1.

3.1.2 Drug synonym source databases

We utilised the databases in Table 3.1 for their drug synonym information. The main
applications of the databases are briefly described in Table 3.1. The details of data obtained
from each database are described below.

Table (3.1) Description of individual source databases used in KATdb. ATC — Anatomical
Therapeutic Chemical; ChEMBL — Chemicals database by European Molecular Biology Labora-
tory; CMap — Connectivity Map; CTD — Comparative Toxicogenomics Database; DB — database;
DNI — Drugs of New Indications (Liu et al., 2013); EMA — European Medicines Agency; EU —
the European Union; KEGG — Kyoto Encyclopedia of Genes and Genomes; LINCS — Library
of Integrated Network-based Cellular Signatures; PharmGKB — Pharmacogenomics Knowledge
Base; TTD — Therapeutic Target Database.

Database Website Description

ATC https://www.whocc.no/atc/ A hierarchical therapeutic chemical classifica-
tion system.

BindingDB https://www.bindingdb.org/ Database of measured binding affinities, focus-
ing on interactions of drug-targets to drugs.

ChEMBL https://www.ebi.ac.uk/
chembl/

Manually curated database of bioactive
molecules with drug-like properties.

CMap https://portals.
broadinstitute.org/cmap/

Cellular signatures from genetic and pharma-
cologic perturbagens.

CMaptoATC http://www.gepedia.org/
instances.html

Dataset of CMap instances annotated with
names and ATC codes.

CTD http://ctdbase.org/
Curated database describing relationships be-
tween drugs, genes, diseases, pathways and
other annotations.

DNI http://dx.doi.org/10.1016/j.
drudis.2012.08.005

Database of drugs with novel, repurposed in-
dications.

DrugBank https://www.drugbank.ca/ Resource that combines detailed drug data
with drug target information.

DrugCentral http://drugcentral.org/
download

Online drug information resource including
now drug approval data.

EMA https://www.ema.europa.
eu/en

The EU agency responsible for the scientific
evaluation, supervision and safety monitoring
of medicines in the EU.

KEGG https://www.genome.jp/
kegg/

Collection of databases for understanding
high-level functions of the biological system.

https://www.whocc.no/atc/
https://www.bindingdb.org/
https://www.ebi.ac.uk/chembl/
https://www.ebi.ac.uk/chembl/
https://portals.broadinstitute.org/cmap/
https://portals.broadinstitute.org/cmap/
http://www.gepedia.org/instances.html
http://www.gepedia.org/instances.html
http://ctdbase.org/
http://dx.doi.org/10.1016/j.drudis.2012.08.005
http://dx.doi.org/10.1016/j.drudis.2012.08.005
https://www.drugbank.ca/
http://drugcentral.org/download
http://drugcentral.org/download
https://www.ema.europa.eu/en
https://www.ema.europa.eu/en
https://www.genome.jp/kegg/
https://www.genome.jp/kegg/
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Table 3.1 continued

Database Website Description

LINCS http://lincsportal.ccs.miami.
edu/

Reference library of cell-based perturbation-
response signatures.

PharmGKB https://www.pharmgkb.org/
Curated database of clinical information for
drugs and diseases, including gene-drug and
genotype-phenotype relationships.

RepoDB http://apps.chiragjpgroup.
org/repoDB/

Database of approved and failed drug indica-
tions.

RepurposeDB http://repurposedb.
dudleylab.org

A collection of repurposed drugs, drug targets
and diseases, which was assembled, indexed
and annotated from public data.

TTD http://bidd.nus.edu.sg/
group/cjttd/

Database of known and explored therapeutic
protein and nucleic acid targets, the targeted
disease, pathway information and the corre-
sponding drugs.

Wikipedia https://en.wikipedia.org/
Free online encyclopaedia, created and edited
by volunteers, hosted by the Wikimedia Foun-
dation.

Anatomical Therapeutic Chemical (ATC) Classification System (WHOCC, 2018).
The 2018AB version released on 5th November 2018 and uploaded on 29th April 2019
was downloaded from https://bioportal.bioontology.org/ontologies/ATC on 6th August
2019. The ATC code was used as the unique identifier and it was extracted with the World
Health Organisation (WHO) name, RxNorm Concept Unique Identifier (CUI) and other
synonyms.

BindingDB (Gilson et al., 2016). The lists and identifier mappings from BindingDB
were retrieved from https://www.bindingdb.org/bind/chemsearch/marvin/SDFdownload.

jsp?all_download=yes on 6th August 2019. The BindingDB ID was used as the unique
identifier, while we extracted PubChem Concept Unique Identifier (CID), ChEMBL and
Chemical Entities of Biological Interest (ChEBI) database identifiers using Python 3.6
(van Rossum and Drake Jr, 1995).

ChEMBL (Gaulton et al., 2017). The ChEMBL version 25 SQLite database was
downloaded from http:// ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_

25/ , DOI:10.6019/CHEMBL.database.25 on 26th July 2019. ChEMBL ID, Compound
name, ATC classification and WHO name were extracted from "compound records",
"molecule atc classification", "atc classification" and "molecule dictionary" tables using

http://lincsportal.ccs.miami.edu/
http://lincsportal.ccs.miami.edu/
https://www.pharmgkb.org/
http://apps.chiragjpgroup.org/repoDB/
http://apps.chiragjpgroup.org/repoDB/
http://repurposedb.dudleylab.org
http://repurposedb.dudleylab.org
http://bidd.nus.edu.sg/group/cjttd/
http://bidd.nus.edu.sg/group/cjttd/
https://en.wikipedia.org/
https://bioportal.bioontology.org/ontologies/ATC
https://www.bindingdb.org/bind/chemsearch/marvin/SDFdownload.jsp?all_download=yes
https://www.bindingdb.org/bind/chemsearch/marvin/SDFdownload.jsp?all_download=yes
http://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_25/
http://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_25/
10.6019/CHEMBL.database.25
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SQLite 3. The output was processed with Python 3.6 (van Rossum and Drake Jr, 1995) to
arrange the synonym relationships as a list of edges for further processing.

Connectivity Map (CMap) (Lamb et al., 2006). The instance inventory from Affymetrix-
based CMap "build 02" dataset was downloaded on 2nd August 2019 from https://portals.

broadinstitute.org/cmap/ accessible upon creating a free account. CMap Name, CMap
Instance ID and Catalog Name were extracted and processed in Python 3.6 (van Rossum
and Drake Jr, 1995).

CMaptoATC (Gepedia, 2010). The CMap to ATC relationships were retrieved from
http://www.gepedia.org/ instances.html on 5th August 2019. CMap Name, CMap Instance
ID and ATC classification were extracted using Python 3.6 (van Rossum and Drake Jr,
1995).

Comparative Toxicogenomics Database (CTD) (Davis et al., 2019). The curated
Chemical vocabulary (26th June 2019 release) was retrieved from CTD, MDI Biological
Laboratory, Salisbury Cove, Maine, and NC State University, Raleigh, North Carolina,
accessed at http://ctdbase.org/downloads/ on 5th August 2019. CTD Chemical ID, CTD
Name, Chemical Abstract Service (CAS) number, synonyms, DrugBank ID, PubChem
CID and Medical Subject Headings (MESH) terms were extracted using Python 3.6 (van
Rossum and Drake Jr, 1995). CTD Chemical ID was used as the unique identifier.

Drugs of New Indications (Liu et al., 2013), also referred to as Liu2013. Drugs of
New Indications (DNI) database described in Liu et al. (2013) was downloaded from Sup-

plementary Table S2 at http://dx.doi.org/10.1016/ j.drudis.2012.08.005 on 8th November
2017. The drug name and the CAS number were extracted from the database using Python
3.6 (van Rossum and Drake Jr, 1995).

DrugBank (Law et al., 2014). The DrugBank version 5.1.4 (released 2nd July 2019)
was retrieved from https://www.drugbank.ca/releases on 25th July 2019 accessible upon
creating a free account. The database was processed in Python 3.6 (van Rossum and
Drake Jr, 1995) using BeautifulSoup. DrugBank ID, DrugBank Name, CAS number,
ATC classification, ChEMBL, Drugs Product Database (DPD), Kyoto Encyclopedia of
Genes and Genomes (KEGG), Pharmacogenomics Knowledge Base (PharmGKB), ChEBI,
ChemSpider, PubChem CID, Wikipedia and other external identifiers and associations
were extracted into a list of edges.

DrugCentral (Ursu et al., 2017). The SMILES and InChI file was retrieved from http:

//drugcentral.org/download on 5th August 2019. DrugCentral ID, Simplified Molecular-

https://portals.broadinstitute.org/cmap/
https://portals.broadinstitute.org/cmap/
http://www.gepedia.org/instances.html
http://ctdbase.org/downloads/
http:// dx.doi.org/10.1016/j.drudis.2012.08.005
https://www.drugbank.ca/releases
http://drugcentral.org/download
http://drugcentral.org/download
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Input Line-Entry System (SMILES), the IUPAC International Chemical Identifier (InChI),
InChI Key, International Non-proprietary Name (INN) and CAS number were extracted
using Python 3.6 (van Rossum and Drake Jr, 1995).

European Medicines Agency (EMA) (European Medicines Agency, 2019). The
European public assessment reports (EPAR) for all human and veterinary medicines were
retrieved from https://www.ema.europa.eu/en/medicines/download-medicine-data on 6th

August 2019. The EPARs are full scientific assessment reports of medicines authorised
at EU level. They include information on medicines that have been refused a marketing
authorisation or that have been suspended or withdrawn after being approved. EMA Id,
Active substance, EMA Name and synonyms were extracted using Python 3.6 (van Rossum
and Drake Jr, 1995).

Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and Goto, 2000).
All drug entries from KEGG were retrieved using their GenomeNet FTP download of
KEGG MEDICUS from https://www.kegg.jp/kegg/download/ on 5th August 2019. KEGG
Drug ID as the unique identifier and CAS number, ChEBI, ChEMBL, DrugBank and other
external identifiers or synonyms were extracted using Python 3.6 (van Rossum and Drake
Jr, 1995).

Library of Integrated Network-based Cellular Signatures (LINCS) (Koleti et al.,
2018). The LINCS Standardized Unique Small Molecule (LSM) release number 28
(Release Date: 20th February 2018) was retrieved on 10th July 2018 from http:// lincsportal.

ccs.miami.edu/dcic-portal/#/ list/Small_Molecules. LINCS ID, LINCS Center ID, LINCS
Name, Alternative Name, PubChem CID, SMILES, InChI, InChI Key, ChEMBL, ChEBI,
DrugCentral and other synonyms were extracted and processed in Python 3.6 (van Rossum
and Drake Jr, 1995). In addition, the LINCS Data Portal Small Molecule Catalog was
retrieved from http:// lincsportal.ccs.miami.edu/SmallMolecules/catalog on 6th August
2019. LINCS ID, LINCS Name, Alternative Name, PubChem CID, SMILES, InChI, and
ChEBI ID were extracted and processed in Python 3.6 (van Rossum and Drake Jr, 1995).

Pharmacogenomics Knowledge Base (PharmGKB) (Whirl-Carrillo et al., 2012).
The summaries of chemical information (Primary data — Drugs/Chemicals) annotated by
PharmGKB were retrieved from https://www.pharmgkb.org/downloads on 5th August 2019.
PharmGKB ID was used as the unique identifier with synonym relationships to PharmGKB
name, Generic name, Trade name, SMILES, InChI and other external identifiers.

RepoDB (Brown and Patel, 2017). The RepoDB dataset version 1.2 was retrieved
from http://apps.chiragjpgroup.org/repoDB/ on 3rd November 2017. RepoDB was built

https://www.ema.europa.eu/en/medicines/download-medicine-data
https://www.kegg.jp/kegg/download/
http://lincsportal.ccs.miami.edu/dcic-portal/#/list/Small_Molecules
http://lincsportal.ccs.miami.edu/dcic-portal/#/list/Small_Molecules
http://lincsportal.ccs.miami.edu/SmallMolecules/catalog
https://www.pharmgkb.org/downloads
http://apps.chiragjpgroup.org/repoDB/
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using the 25th October 2016 build of DrugCentral (Ursu et al., 2017), the 27th March 2016
build of the Aggregate analysis of clinicaltrials.gov database (AACT) database by Clinical
Trials Transformation Initiative http://www.ctti-clinicaltrials.org, and the 2016AB release
of the Unified Medical Language System (UMLS) (Bodenreider, 2004). Drug name and
DrugBank ID have been extracted using Python 3.6 (van Rossum and Drake Jr, 1995).

RepurposeDB (Shameer et al., 2017). The Chemo-Genomic Enrichment Analysis
(CGEA) subset of Version 1.0 was retrieved from http:// repurposedb.dudleylab.org/data on
12th October 2017. RepurposeDB identifier together with CAS number, ChEBI, ChEMBL,
DrugBank, InChI, KEGG, MESH, PubChem CID, SMILES and other synonyms were
extracted using Python 3.6 (van Rossum and Drake Jr, 1995).

Therapeutic Target Database (TTD) (Li et al., 2018). Synonyms of drugs and small
molecules and cross-matching ID between TTD drugs and public databases were retrieved
from the September 2017 release available at https://db.idrblab.org/ ttd/ full-data-download

on 1st November 2017. TTD identifier, CAS number, ChEBI, PubChem CID and other
synonyms were extracted using Python 3.6 (van Rossum and Drake Jr, 1995).

Wikipedia (Wikipedia contributors, 2018). The drug info boxes as seen on Fig. 3.1
were scraped from all Wikipedia pages in: "Infobox drug tracking categories" and "Chem-
box tracking categories" on 2nd August 2019 using pywikibot in Python 3.6 (van Rossum
and Drake Jr, 1995). Three different info boxes were considered from the scraped templates:
"Drugbox", "Infobox drug" and "Chembox". The Wikipedia name for the page entry was
extracted as the unique identifier. The synonyms were extracted from the identifiers section
in drug info boxes (Fig. 3.1). Identifiers that have not been successfully verified (red cross
✘) have been excluded. The following identifiers were extracted: CAS Number, ChEBI,
ChEMBL, ChemSpider, DrugBank, InChI, InChI Key, KEGG, Unique Ingredient Identifier
(UNII), European Inventory of Existing Commercial Chemical Substances (EINECS),
IUPAC, KEGG, MESH, PubChem CID, SMILES, synonym (see Supplementary Table A.1
for a list of types of synonyms extracted)

3.1.3 Data cleaning

KATdb edge entities for the described databases were extracted, cleaned, and processed
in R (R Core Team, 2019) using tidyr (Wickham and Henry, 2019), dplyr (Wickham
et al., 2019) and stringr (Wickham, 2019). Extracted identifiers relating to protein
structure, genes or targets and associated disease indications were removed. The URLs

http://www.ctti-clinicaltrials.org
http://repurposedb.dudleylab.org/data
https://db.idrblab.org/ttd/full-data-download
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Fig. (3.1) Loratadine example of Wikipedia Identifiers section of the info box. The info box
includes key compound information including identifiers from different authorities. The green tick
✓ (yes) or red cross ✘ (no) indicate if the identifier has been automatically authenticated on the exter-
nal authority’s site. Screen captured 25th July 2019 at https://en.wikipedia.org/wiki/Loratadine.

https://en.wikipedia.org/wiki/Loratadine
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from Wikipedia and other web addresses, as well as names and identifiers including URL
encoding were URL decoded. Different spellings and abbreviations of authority names
were unified to one representative authority name. Where there was one primary human-
readable name provided, the name was assigned to Database-name Name name type, e.g.
DrugBank Name. When the value in an authority:value pair did not match the authority
standard and followed another standard, the value was reassigned to the predicted correct
authority. Curated relationships are annotated with "katkoler" next to the original source.
Typographical errors from source databases were removed.

3.1.4 Database construction

From the cleaned edge database, we constructed a graph in R (R Core Team, 2019)
using igraph (Csardi and Nepusz, 2006). We constructed graph Gc = (V,E), where Gc

is a graph on drug (compound) synonym information. V , the set of vertices, represent a
database authority:value pair (Eq. (3.2)) and E, the set of edges, represents each synonym
relationship from a source database.

Vertices were unified where they shared a name and authority, hence each source
database provided a unique source of edges, but a shared source of vertices. Edges
extracted from each source database correspond to a subset of all edges. An edge only
exists if the relationship is present in one of the source databases.

We identified connected components of graph Gc, under expectation that each con-
nected component represented a set of drug synonyms for one drug. Each connected
component was assigned a KATdb unique identifier.

A MySQL database was constructed and implemented into the KATdb shiny app.

3.1.5 Estimation of correctness

The 10 largest components were selected for partial manual curation. The edge
betweenness algorithm, as described by Brandes (2001) and implemented in igraph

(Csardi and Nepusz, 2006), was calculated for all edges in the 10 largest components
and 2% of edges with the highest edge betweenness score were manually assessed for
correctness. Each node of the manually checked edges was searched on Google (https:

//www.google.com/ ) to manually establish the connection to the other node in at least
two databases (excluding the source edge database). Each edge was assigned one of the

https://www.google.com/
https://www.google.com/
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following terms: correct, related structure, related or incorrect, signifying the level of
correctness. An edge was assigned correct if the relationship could be established manually
between the two vertices from two additional databases (not including the source database).
Spatial isomers and small structural changes were marked as related structures. Edges
connecting individual ingredients of the same mixture were marked as related. Edges
connecting non-related drugs were marked as incorrect.

A source database identified with high levels of incorrect edges was removed from
KATdb. The synonym database was reconstructed, and the estimation of correctness was
repeated. We again identified 10 largest connected components and manually validated the
2% of edges with the highest betweenness score.

3.1.6 Robustness

We tested KATdb robustness by removing a random subset of nodes, 5% at a time for 10
iterations. We measured the size of the largest component (Lordan and Albareda-Sambola,
2019), the mean component size and the number of components. These robustness
measures were averaged across 10 iterations. We performed the test on the whole network
and also on network variations with one source database removed at a time.

3.1.7 KATdb shiny app

A visual interface for KATdb was developed using shiny (Chang et al., 2019) to allow
exploration of KATdb’s components and the relationships connected into one synonym
entity. It provides an overview of KATdb and provides a mapping functionality, where
drug names and identifiers can be translated from one synonym authority to another.
Additionally, it facilitates exploration of synonym relationships in table format and as plots
by exploring information encompassed in each connected component.

3.1.8 Translation success and redundancy

We defined the input name as the name that was used as the query name, the number
of found names as the number of input names that were found in KATdb, the goal name as
the name to which we were aiming to map the input name, and mapped terms as all found
names that had at least one goal name.
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We defined:

translation success =
|mapped names|
|found names|

(3.4)

measuring what proportion of input names present in KATdb that were mapped to at least
one goal synonym, and:

translation redundancy =
|goal names|

|mapped names|
(3.5)

measuring how many successfully mapped names, mapped to more than one goal name.

Translation test cases (A-K) and their details are listed in Supplementary Table A.2 and
summarised in Chapter 4 Table 4.2. For KATdb cases we used the translation feature of
KATdb visual interface to map drug names into the goal name type. For manual test case
A (BRD ID to name) we used L1000CDS2 metadata and mapped pert_id to pert_desc. For
manual case E (RepoDB name to LINCS name) we mapped names by matching lower-case
names from input type to goal name type. For manual case F (RepoDB name to BRD ID)
we used mapping results from E and then matched them to mapping results from A, so that
the mapping path was as follows: RepoDB name → LINCS name → BRD ID.

All translations ignored the letter case during mapping, summarisation, and translation
success and redundancy calculation.

3.2 Pathway-Drug Coexpression Network (PDxN)

The method for the Pathway-Drug Coexpression Network (PDxN) was adapted from
Pita-Juárez et al. (2018). The published method designed for pathway gene sets was
applied here to an updated and heavily extended gene set collection including pathway
gene sets and drug signatures.

3.2.1 Gene expression background data

We used 134 experiments with 3207 Affymetrix Human Genome U133 Plus 2.0
microarrays (GPL570) from 72 normal human tissues manually curated in Barcode 3.0
(McCall et al., 2014). The curated microarrays in Barcode 3.0 have been filtered to exclude
poor quality samples using the global normalized unscaled standard error (GNUSE) method
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(McCall et al., 2011a) which was a single-array version of a multi-array quality metrics
(McCall et al., 2011b, 2014). We used the R package GEOquery (Davis and Meltzer, 2007)
to retrieve raw files from the Gene Expression Omnibus (GEO) (Barrett et al., 2007) and
we processed the raw data with frozen robust multi-array analysis (fRMA) (McCall et al.,
2010). Redundancies in probe annotations were solved by mapping multiple probes to
unique Entrez Gene IDs by their mean expression level. To reduce batch effect, the genes
in each experiment were ranked, from 1 (low expression) to K (high expression), giving
the same dynamic range to each experiment.

3.2.2 Gene sets construction

Two independent sets of gene sets were constructed for PDxN; set P, the set of pathways
and set D, the set of chemical or drug gene sets. Set P consists of gene sets represented by
canonical pathways from MSigDB (Subramanian et al., 2005) and static modules from
pathprint (Altschuler et al., 2013; Wu et al., 2010b). Set D includes two gene sets for
each drug, an up- and down-regulated, genes separately for a given drug from L1000
characteristic direction signature search engine (L1000CDS2) (Duan et al., 2016).

MSigDB (Subramanian et al., 2005). C2: Canonical Pathways collection from
MSigDB (Subramanian et al., 2005) (v6.2 updated July 2018) was retrieved from http:

// software.broadinstitute.org/gsea/downloads.jsp on 26th July 2018. The collection is a
curated selection of 1329 pathway annotations from other databases: Reactome (Croft
et al., 2011), KEGG (Kanehisa et al., 2014), the Pathway Interaction Database (PID)
(Schaefer et al., 2009), Biocarta (Nishimura, 2001), the Matrisome Project (Naba et al.,
2012), Signal Transduction Knowledge Environment (Gough, 2002), SigmaAldrich and
Signalling Gateway (Saunders et al., 2008).

Pathprint (Altschuler et al., 2013). pathprint (Altschuler et al., 2013) is a Biocon-
ductor (Huber et al., 2015) package that includes 633 gene sets. The gene sets represent
pathways derived from a range of pathway databases (Reactome (Croft et al., 2011), KEGG
(Kanehisa et al., 2014), Wikipathways (Kelder et al., 2012), Netpath (Kandasamy et al.,
2010)) in addition to static modules derived from a functional gene interaction network
(Wu et al., 2010b). Only the static modules from the pathprint package were used.

L1000CDS (Duan et al., 2016). We used drug signatures from the L1000 charac-
teristic direction signature (L1000CDS) dataset available at L1000CDS search engine
(L1000CDS2) (Duan et al., 2016). The L1000CDS’ underlying dataset is the drug expres-

http://software.broadinstitute.org/gsea/downloads.jsp
http://software.broadinstitute.org/gsea/downloads.jsp
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sion data from LINCS Level 3: Normalised gene expression profiles of landmark genes
and imputed transcripts (Subramanian et al., 2017). Level 3 data has been normalised
using invariant set scaling followed by quantile normalisation first within-plate and then
across replicate plates. LINCS Level 3 has been processed into drug signatures with a
characteristic direction (CD) method. Each drug signature represents a set of replicates
under specific conditions, a combination of drug, cell line, exposure time, concentration
and batch. Cell lines include primary cell lines, cancer cell lines, stem cell lines, and
differentiated cell lines from different tissue types (Supplementary Table D.9).

CD measures (Clark et al., 2014) is a multivariate method that first identifies the linear
hyperplane that best separates the control samples from the case samples using linear
discriminant analysis, and then uses the normal to the hyperplane to define the direction of
change in expression space for each gene.

L1000CDS has used LINCS L1000 Level 3 normalised data to calculate a CD unit
vector for each experiment replicate in comparison with all the control replicates on
the same plate. A CD signature has been computed for each experimental condition by
averaging the CDs across replicates. The mean of the pairwise cosine distance between
the CDs across replicates has been used as a test statistic to assess the significance of each
signature. The mean has been compared with a null distribution constructed from random
sampling of irrelevant CD replicates to compute a p-value. The differentially expressed
genes have been calculated using the random product algorithm.

The CD signatures and associated metadata are stored in a MongoDB database and
are available for download from L1000CDS2. L1000CD signatures were downloaded
from http://amp.pharm.mssm.edu/public/L1000CDS_download/ on 13th July 2018. Drug
signatures were extracted using MongoDB and Python.

On 13th July 2018, the L1000CDS database included 119,156 drug signatures of which
26,124 met the significance threshold of p-value < 0.05 and had more than 5 genes in each
direction.

Each drug signature was split into two individual and non-overlapping gene sets: up-
regulated, and down-regulated gene set according to member gene CD value, CD > 0 for
up- and CD < 0 for down-regulated. Thus, each drug node in PDxN represents a particular
drug-direction gene set.

http://amp.pharm.mssm.edu/public/L1000CDS_download/
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3.2.3 Computational improvements to Pathway Coexpression Network
(PCxN) method

The code review and rewriting R functions into C++ were done in collaboration with
thesis supervisor Wenbin Wei and junior programmer Sokratis Kariotis. The performance
testing was done by the author of this thesis.

We accessed the Pathway Coexpression Network (PCxN) method (Pita-Juárez et al.,
2018) code base at https://github.com/yeredh/pcxn_plos on 19th March 2018. We reviewed
the 4-part method and concluded that part 0 and 3 had negligible resource requirements.
In part 1, we identified a repeated calculation when summarising the pathway expression
for each pathway pair. We resolved it by pre-calculating a pathway summary matrix. We
increased the parallelisation of part 1 by calculating one experiment per task rather than
one tissue per task. We increased from 72 to 134 tasks for part 1. In part 2, we identified
that the part was split into number of pairs

1000 tasks where the most resource consuming step
was repeated by each task. Each task was required to read into memory all study-level
correlation estimates, which was identified as the bottleneck. We decreased the number of
tasks and thus the redundantly repeated reading into memory by increasing the number of
pairs per task from 1000 to 100,000.

We added two additional features that improve performance at a large number of gene
sets. We implemented an option to limit the calculation to relationships between different
types of nodes or only within one type of node. Additionally, we added an optional
feature that joins different completed versions of the network. These two features were not
compared to the original method.

We measured the performance improvement by running a set of test runs with the
original and improved PCxN method. We varied the number of the gene sets and the
number of relationships calculated. We used 1473 pathway gene sets from the PDxN
pathway set. In each test we calculated all possible relationships, i.e. all pathway↔pathway
pairs, resulting in n(n−1)

2 number of pairs, where n is the number of gene sets.

In order to calculate the whole network from the original method, we were required
to increase the number of tasks part 2 calculated and part 3 joined from 2 to number of pairs

1000 ,
because the code available on GitHub (https://github.com/yeredh/pcxn_plos, 19th March
2018) only calculates 2000 pairs. In addition, we used an updated pathway set compared
to the PCxN pathway set described in Pita-Juárez et al. (2018). The updated pathway set
consisted of 1473 pathways compared to 1330 in the method paper.

https://github.com/yeredh/pcxn_plos
https://github.com/yeredh/pcxn_plos


3.2 Pathway-Drug Coexpression Network (PDxN) 47

We tested both methods at 10, 20, 50, 100, 200, 400, 800, 1000, 1200 and 1473 random
gene sets from the PDxN pathway set, where the 1473-version represented the whole
PDxN pathway node set. We ran each part with 8 cores with 4GB virtual memory (vmem)
each. We measured maximum vmem and wall clock time. We ran each of the tests twice
and averaged the max vmem and wall clock time. We reported a total maximum vmem
and wall clock time per part and for all parts together with an increasing number of pairs.

3.2.4 Network construction

We adapted the network construction method described in Pita-Juárez et al. (2018) to
an extended collection including drug and pathway gene sets and limiting the relationships
to pathway↔drug rather than all possible relationships.

A bipartite weighted network was constructed with two independent sets: P, the set of
pathway nodes and D, the set of chemical nodes including up- and down-regulated genes as
separate gene sets for each drug. The Pearson correlation estimates (R Core Team, 2019), r̂,
were calculated for every node pair between P and D. An edge between nodes exists if the
correlation estimate between those nodes is below the adjusted p-value (q-value) threshold
< 0.05. The edges were weighted by the absolute value of the correlation estimate, |r̂|.

The network was constructed based on the expression correlation between a pair of
gene sets, from set P to set D. The gene set correlation coefficients and their corresponding
p-values were first estimated for each experiment, then the experiment-level estimates
were combined into global estimates.

The genes in each experiment were first ranked, from 1 (low expression) to K (high
expression), giving the same dynamic range to each experiment. As each gene set is
represented by a set of genes, the gene set expression E is a gene set summary statistic
based on the expression ranks of the gene set genes. The gene set expression E is the
mean of the expression ranks of the gene set genes. We used the shrinkage estimator
from R package corpcor (Schafer et al., 2017) to compute the experiment-level gene
set correlation coefficients conditioning on gene overlap. The overall correlation from
experiment-level estimates between two gene sets is calculated with Hunter-Schmidt
weighted average estimator. The overall p-value was calculated with Liptak p-value
aggregation. The combined p-values were then adjusted with Benjamini-Hochberg FDR
method.
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The overlap coefficient was calculated by the size of the intersection divided by the
size of the smaller of the two sets

oGH =
|G∩H|

min{|G|, |H|}
(3.6)

where o is the overlap between gene set G and H. Two disjointed (i.e. non-overlapping)
gene sets have the overlap coefficient = 0. If a gene set is fully contained within the other,
then the overlap coefficient = 1.

Pathway Coexpression Network (PCxN) construction

A new version of PCxN was constructed with the improved method to enable direct
comparisons with PDxN. We constructed PCxN using the MSigDB v6.2 C2 Canonical
Pathways (Subramanian et al., 2005) and Pathprint Static Modules (Altschuler et al., 2013;
Wu et al., 2010b) as in PDxN pathway set P. Correlation estimates were calculated between
each pair of pathway gene sets as described in 3.2.4.

3.3 Disease Signature

3.3.1 Disease gene expression data

Gene expression studies used in case studies are summarised in Table 3.2.

Juvenile idiopathic arthritis

We queried the GEO datasets search engine for juvenile idiopathic arthritis (JIA) in
blood or peripheral blood mononuclear cells (PBMC) studies analysed on either microarray
or high throughput sequencing. We used the query:

"(Juvenile Idiopathic Arthritis

OR juvenile idiopathic arthritis)

AND (blood OR PBMC)

AND "gse"[Filter]

AND ("Expression profiling by array"[Filter]

OR "Expression profiling by high throughput sequencing"[Filter])"
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at https://www.ncbi.nlm.nih.gov/gds on 9th January 2019. The search yielded 30 studies
(Supplementary Table A.3). An additional 20 studies were curated by rheumatoid arthritis
expert Professor Lester Kobzik (Department of Environmental Health, Harvard T.H. Chan
School of Public Health) (personal communication). 18 studies with less than 20 samples
were not considered due to low sample numbers. Six studies were excluded because of no
control samples. Two studies were excluded because they did not include any JIA samples.
Three studies were excluded because they only included treated JIA samples. Five were
analysed on not commonly used arrays and thus excluded due to their platform. One was
excluded because of the study design, it investigated monozygotic twins. One study was a
duplicate of another study and one was removed because it represented a super series, from
which the individual series were already included in the search results. The remaining 16
studies were then curated by Lester Kobzik. Ten studies were selected based on having
untreated systemic or polyarticular JIA with control samples in either PBMC or whole
blood (Table 3.2). In addition, GSE79970 was removed, because the data was identified to
be unsuitable to study JIA by the authors (Wong et al., 2016).

Alzheimer’s disease (AD)

Preprocessed RNA-Seq data on G2B2, H10, A5, I45F, and I47F Alzheimer’s 3D cell
models (Kwak et al., 2020) was shared by collaborators in the Tanzi and Kim labs (Doo
Yeon Kim, Assistant Professor of Neurology, Harvard Medical School, Building 114,
Charlestown Navy Yard, 16th Street, Charlestown, Massachusetts 02129, USA). The 3D
cell model RNA-Seq data was preprocessed by the Harvard Bioinformatics Core.

Preprocessed RNA-Seq from the deceased human brain was obtained from the Mayo
dataset (doi:10.7303/syn2580853) (Allen et al., 2016), accessible at https://www.synapse.

org/#!Synapse:syn3163039. Sarah Morgan (SITraN, University of Sheffield; Department
of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School) advised on
the Mayo Alzheimer’s disease dataset sample selection. Control and Alzheimer’s disease
samples from temporal cortex were used with the age at death >= 75 and RNA integrity
number (RIN) >= 7.5 (Gallego Romero et al., 2014).

Parkinson’s disease (PD)

RNA-Seq data from sporadic Parkinson’s patients’ fibroblasts with lysosomal or mito-
chondrial dysfunction (Carling et al., 2020), and zebrafish (D. rerio) homozygous GCH1

https://www.ncbi.nlm.nih.gov/gds
doi:10.7303/syn2580853
https://www.synapse.org/#!Synapse:syn3163039
https://www.synapse.org/#!Synapse:syn3163039
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Table (3.2) Summary of gene expression datasets used for disease signature generation in
case studies as well as assessing the method. Number of control and disease samples post-quality
control is listed in brackets in their respective columns. AD — Alzheimer’s disease; GCH1 —
GTP cyclohydrolase 1; GPL570 — U133 Plus 2.0 Array; GPL96 — U133A Array; GPL97 —
U133B Array; GPL11154 — Illumina HiSeq 2000; JIA — juvenile idiopathic arthritis; n/a — not
applicable; PD — Parkinson’s disease; PBMC — peripheral blood mononuclear cells; polyJIA —
polyarticular JIA; sJIA — systemic JIA.

Dataset Platform Sample
Tissue

Control
Samples

Disease
Samples Disease Organism

GSE15645 GPL570 PBMC 13 (12) 14 (13) RF-
polyJIA human

GSE26554 GPL570 PBMC 23 (22) 38 (35) RF-
polyJIA human

GSE20307 GPL570 PBMC 56 (52) 20 (20) sJIA human
GSE21521 GPL570 PBMC 29 (26) 18 (18) sJIA human
GSE7753 GPL570 PBMC 30 (27) 17 (17) sJIA human

GSE80060 GPL570 whole blood 22 (22) 22 (21) sJIA human
GSE8650 GPL96 PBMC 21 (21) 16 (14) sJIA human
GSE8650 GPL97 PBMC 21 (21) 12 (12) sJIA human

GSE112057 RNA-Seq whole blood 12 (12) 26 (26) sJIA human
H10, A5,

G2B2 RNA-Seq neurons 3 (3) 3, 3 (3, 3) AD 3D cell line

I45F, I47F,
G2B2 RNA-Seq neurons 3 (3) 3, 3 (3, 3) AD 3D cell line

Mayo RNA-Seq temporal
cortex 37 (37) 69 (69) AD human

Lysosomal
dysfunction RNA-Seq fibroblast 4 (4) 5 (4) PD human

Mitochondrial
dysfunction RNA-Seq fibroblast 5 (4) 5 (4) PD human

GCH1 mutant RNA-Seq neurons 4 (3) 4 (4) PD zebrafish
GSE133815 GPL570 liver 12 (11) 11 (11) n/a human
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mutant neurons (Larbalestier et al., 2020) were shared by collaborators in the Bandmann
lab (Oliver Bandmann, Professor of Movement Disorders Neurology, Department of Neu-
roscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, 385a
Glossop Road, Sheffield, S10 2HQ).

Young and Old Liver

GSE133815 microarray human dataset not related to JIA, AD or PD was selected as
control. GSE133815, accessible from GEO, includes liver samples of young (21–45 years)
and old (69+ years) men and women.

3.3.2 Disease signature generation

Preprocessing

Microarray. The raw microarray data was downloaded from GEO with series matrix
files including metadata. Quality control was carried out to identify and remove any
outliers. In particular, R package arrayQualityMetrics was used to identify outliers
in microarray studies (Kauffmann et al., 2009). arrayQualityMetrics assesses: (i)
between array comparison by calculating distances between arrays and doing principle
component analysis, (ii) homogeneity between arrays with boxplots of log2 intensities and
density estimate plots, (iii) variance mean dependence with standard deviation versus rank
of the mean, and (iv) relative log expression (Brettschneider et al., 2007). Given a gene
expression dataset with n samples, appropriate samples were chosen for comparison. Raw
microarray data was processed with fRMA available in R package frma (McCall et al.,
2010). For array number GPL96 and GPL97, from the GSE8650 data set, RMA from affy

(Gautier et al., 2004) was used.

RNA-Seq. All but the PD datasets were obtained as count-level matrices. The Carling
et al. (2020) Lysosomal and mitochondrial dysfunction RNA-Seq data was preprocessed by
Claire Green (SITraN, University of Sheffield) and the Larbalestier et al. (2020) zebrafish
data by Wenbin Wei (SITraN, University of Sheffield). The PD RNA-Seq samples were
preprocessed with RNA-Seq pipeline bcbio (https://github.com/bcbio/bcbio-nextgen)
using Salmon quantification (Patro et al., 2017). In all RNA-Seq studies, outliers were
identified with principal component analysis (PCA). Transcripts with low expression (less
than 10 counts in more samples than the size of the smallest group) were excluded from

https://github.com/bcbio/bcbio-nextgen
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further analysis. The data was normalised by using trimmed mean of M values (TMM)
normalisation implemented in edgeR (Robinson et al., 2010).

The remaining genes in the RNA-Seq and microarray datasets were mapped to Entrez
Gene IDs with Biomart (Durinck et al., 2009). The homolog mapping from zebrafish to
human Entrez Gene IDs was performed with Biomart for GCH1 mutant dataset. To resolve
redundancies, multiple probes were mapped to unique Entrez Gene IDs by their mean
expression level. The pathway data using Entrez Gene IDs was downloaded from MSigDB
C2 collection (August 2018) (Subramanian et al., 2005). The gene expression dataset was
then further filtered to m pathway member genes that were represented in the data.

The RNA-Seq normalised counts were then log-transformed using voom from limma

(Ritchie et al., 2015). The RNA-Seq data was transformed to an array-comparable scale
so that the same statistical tests could be applied to both types of data in the downstream
analysis.

Gene set summary statistic — Mean top 50%

The mean top 50% gene set summary statistic was adapted from Hwang (2012)
(Fig. 5.13). The gene expression profiles were z-scaled for each gene across samples.
Then the summary statistic was calculated across samples, n, for each gene set or pathway,
m, whose member genes were represented in the data.

The resulting m×n matrix X is then a z-scaled gene expression profile of the pathway’s
member genes across samples and each element xi j is a z-scaled expression level of a
member gene i in sample j.

The member genes’ expression profile was subject to Welch’s t-test. Then, the member
genes were sorted by |t| in descending order, or equivalently, by p-value in ascending
order. The top 50% of the member genes were selected. If there was an odd number of
member genes, then the gene member with median |t| was also selected. Selected genes’
gene expression profile was averaged:

a j =
1
m

m

∑
i=l

xi j (3.7)

This pathway-level aggregation method derived a pathway expression profile, a, which
was a vector with n elements.
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Due to different rates of mapping from a particular probe set m, the number of genes in
a pathway varied between different studies analysed with this method.

Differential pathway expression

The pathway summary matrix of case and control samples was then used to generate
differential pathway expression profile using limma. The pathways with q-value < 0.5
were considered differentially expressed. The top up-regulated pathways were defined as
pathways with the highest positive logFC score and the top down-regulated pathways were
defined as pathways with the lowest negative logFC score. The top up- and down-regulated
pathways together were considered as the disease pathway signature.

3.4 Drug Prioritisation

3.4.1 Disease cluster definition

The pathways from the disease signature (Section 3.3) consisting of n number of top
up-regulated pathways and n number of top down-regulated pathways (q-value < 0.05)
were separated into clusters. We ran drug prioritisation for n = 5,10,15,20.

3.4.2 Disease sub-network generation

PDxN was filtered so that only correlation edges with q-value < 0.05 were considered.
A disease sub-network was generated consisting of pathway nodes representing pathways
from the disease clusters and all connected drug nodes.

3.4.3 Disease cluster score

Each disease cluster was considered separately. First the average correlation was
calculated per drug-direction node (one for up and one for down per drug) for each cluster,
forming a correlation cluster score (Eq. (3.8)). The edge p-values were combined with
Fisher’s method (Eq. (3.10)) (Mosteller and Fisher, 1948).
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The pathway cluster↔drug-direction summary:

r̂Pd =
n

∑
p∈P

(rpd)×
1
|P|

(3.8)

where r̂Pd is the cluster P to drug-direction d summary correlation estimate, n is the number
of pathway to drug-direction edges (q-value < 0.05), r̂pd is the correlation edge between
pathway node p and drug-direction node d.

The difference between the cluster correlations was then calculated between the up
and the down part of the drug node (Eq. (3.9)) and the p-values were again combined with
Fisher’s method (Eq. (3.10)).

The pathway cluster↔drug summary:

r̂PD = r̂Pdup − r̂Pddn (3.9)

where r̂Pdup is the cluster P to up-regulated drug dup summary correlation estimate, r̂Pddn

is the cluster P to down-regulated drug ddn summary correlation estimate, r̂PD is the
correlation edge between pathway cluster P and drug D, previously represented as two
drug-direction nodes dup and ddn.

Fisher’s method:

−2∑ log(ppd) (3.10)

Where ppd is the q-value for the edge between pathway p and drug-direction node d.

3.5 Benchmarking

3.5.1 Disease signature

Correlation between differentially expressed pathways. Spearman’s rank correla-
tion was calculated between differential pathway expression log2 fold change (logFC)
values for all pathways (no p-value cut off) between every pair of studies. Spearman’s
correlation was chosen due to its increased robustness to outliers compared to Pearson’s.
A heatmap was plotted with ComplexHeatmap (Gu et al., 2016).
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Overlap between differentially expressed pathways. Pairwise overlap of differen-
tially expressed pathways (q-value < 0.05) was calculated between all JIA studies as well
as the liver study (GSE133815). The overlap coefficient was calculated by the size of the
intersection divided by the size of the smaller of the two sets of pathways

oPQ =
|P∩Q|

min{|P|, |Q|}
(3.11)

where o was the overlap coefficient between differentially expressed pathway signatures (q-
value < 0.05) from studies P and Q. Two disjoint sets of differentially expressed pathways
(DEP) have the overlap coefficient of 0 and if a DEP set is fully contained within the other,
then the overlap coefficient = 1.

Overlap sJIA signature. Overlapping sJIA differentially expressed pathways were
generated from differentially expressed pathway profiles (q-value < 0.05) from PBMC
systemic JIA (sJIA) studies (GSE7753, GSE20307, GSE21521, GSE8650_GPL96, and
GSE8650_GPL96). The significance of the size of the overlap was tested with a permuta-
tion test (number of permutations =10,000) (Phipson and Smyth, 2010).

Gene-level disease signature. Differential gene expression was performed for two
sJIA studies: GSE7753 and GSE112057. We quality controlled and preprocessed the
studies as described in Section 3.3.2. The transcripts were mapped to Entrez Gene IDs with
Biomart (Durinck et al., 2009). To resolve redundancies, multiple probes were mapped
to unique Entrez Gene IDs by their mean expression level. The RNA-Seq normalised
counts were then log-scaled using voom from limma (Ritchie et al., 2015). We generated
differentially expressed pathways with limma (Ritchie et al., 2015). If not stated otherwise
we defined differentially expressed genes as all genes that meet the significance threshold
of q-value < 0.05 and absolute log fold change |logFC| > 1.

Enrichment. Disease ontology (Schriml et al., 2019) enrichment was performed with
clusterProfiler (Yu et al., 2012), DOSE (Yu et al., 2015) and enrichplot (Yu, 2019)
on the top differentially expressed genes and pathways. We define the top differentially
expressed genes as the 1000 genes with the highest absolute logFC (q-value < 0.05), and
top differentially expressed pathways as the top n pathways with the highest absolute
logFC (q-value < 0.05) whose genes members added up to 1000 unique genes (Table 3.3).
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Table (3.3) Number of genes and pathways used in the Disease ontology enrichment query.
The numeric columns reflect the number of genes used for gene-level, and the total number of
pathways with number of genes in brackets for pathway-level enrichment.

Study Level Total Up-regulated Down-regulated

GSE7753 gene 1000 580 420
GSE112057 gene 1000 350 650
GSE7753 pathway 45 (999) 40 (553) 5 (448)
GSE112057 pathway 75 (991) 52 (654) 23 (369)
sJIA PBMC overlap pathway 23 (980) 6 (210) 17 (770)

3.5.2 Pathway Drug Coexpression Network (PDxN)

Pathway and drug annotation enrichment

Network projections. A projection of Pathway Drug Coexpression Network (PDxN)
(q-value < 0.05) was made for each of the node sets, P and D using igraph (Csardi and
Nepusz, 2006), making a pathway projected graph and a drug projected graph.

PCxN (q-value < 0.05), and PDxN pathway projection were clustered with Louvain,
also known as Multi-level, community-finding method with igraph R package (Blondel
et al., 2008). PDxN (q-value < 0.05) was clustered using Label Propagation Algorithm
weighted bipartite plus (LPAwb+) (Beckett, 2016) from bipartite (Dormann et al., 2009)
R package. Absolute edge correlation estimates were used as edge weights in weighted
clustering for PDxN and PCxN. PDxN drug projection was first split into drug-up and
drug-down subgraphs and then clustered with Louvain method.

KEGG and Reactome enrichment. Pathways in PDxN, PCxN and PDxN path-
way projection were annotated with KEGG B-level terms and Reactome pathway group
terms. KEGG hierarchical structure of pathways was downloaded on 20th Septem-
ber 2019 from https://www.kegg.jp/kegg-bin/get_htext?hsa00001 and Reactome Path-
ways hierarchy relationship file was downloaded on 20th September 2019 from https:

// reactome.org/download-data. The Reactome pathway network was constructed with
igraph and clustered with Louvain method (Blondel et al., 2008). The clusters were
annotated with Reactome group pathway terms.

Every pathway in PDxN or PCxN that was present in the KEGG hierarchical structure
of pathways or Reactome pathway network was annotated with the higher-level pathway

https://www.kegg.jp/kegg-bin/get_htext?hsa00001
https://reactome.org/download-data
https://reactome.org/download-data
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terms (KEGG B-level and Reactome group term). Making an i× j matrix x where i

represents the number of pathway annotation classes and j represents the number of PDxN
or PCxN clusters. Over- or under-representation of annotated pathways in a particular
network cluster was assessed with an enrichment score.

Let x be an i× j matrix. The enrichment score for xi j is then:

enr(xi j) =
observed(xi j)

expected(xi j)
(3.12)

where:

observed(xi j) = xi j (3.13)

expected(xi j) =
(∑

ni
l=1 xil)(∑

n j
l=1 xl j)

∑
ni,n j
l=1,k=1 xlk

(3.14)

with ni and n j as the number of rows and columns in x, respectively. Then:

enr(xi j) =
xi j(∑

ni,n j
l=1,k=1 xlk)

(∑
ni
l=1 xil)(∑

n j
l=1 xl j)

(3.15)

enrichment scores below 1 indicating under-representation or depletion were trans-
formed:

enr(xi j)< 1 =− 1
enr(xi j)

(3.16)

so that enr(xi j) > 1 represents enrichment and enr(xi j) < −1 represents depletion. For
example, −2 would indicate twice less than expected and +2 indicates twice as many as
expected. An enrichment score of |enr(xi j)| = 1 indicates that the observed number of
terms is the same as the number of terms expected by chance.

We used a contingency table based on shared terms between the network cluster and
annotation group to calculate the enrichment score p-value using a two-sided minimum
likelihood hypergeometric test (Table 3.4).

ATC class enrichment. Using KATdb, drug names from PDxN were mapped to
Anatomical Therapeutic Chemical (ATC) classification system codes. Drug nodes in
PDxN and the subgraphs of the PDxN drug projection were then annotated with ATC
classification system level 3 codes. ATC codes were accessed as described in Section 3.1.2.
Redundancies in ATC annotations were resolved by counting the drug matching to multiple
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Table (3.4) Contingency table for shared terms between network clusters and annotation
groups. The contingency table splits the pathway terms in a network cluster and an annotation
group in 4 disjoint sets. xi j — terms in the cluster and in the annotation group; y = ∑

ni
l=1 xil — terms

in the annotation group; z = ∑
ni,n j
l=1,k=1 xlk − y — terms not in the annotation group; m = ∑

n j
l=1 xl j —

terms in the network cluster.

Terms in network cluster

IN NOT IN Total

Terms in annotation group
IN xi j y− xi j y
NOT IN m− xi j z− (m− xi j) z

Total m (y+ z−m) y+ z

ATC classes in each class. Enrichment scores were calculated from a i× j matrix x

where i represents the number of ATC annotation classes and j represents the number
of PDxN or projection clusters. The enrichment was calculated as described above in
Eqs. (3.15), (3.16). The enrichment p-value was calculated using the hypergeometric test
from contingency table (Table 3.4) adapted for ATC class terms.

3.5.3 Drug prioritisation

Prioritised drug lists were scored for approved or experimental drugs for a given
disease. We assessed the performance by generating receiver operating characteristic
(ROC) curves and calculating the area under the ROC curve (AUC). Different definitions
of "true positive" drug lists were explored in order to establish strengths and weaknesses
of each approach. Current gold-standard lists of approved drugs were used in each case
study. ATC classes were used to highlight the weaknesses of approved lists in JIA case
study. In AD, an experimental in vitro drug screen true positive list was used and in PD we
used a list of expert-curated experimental neuroprotective drugs.

True positive drug lists

Approved drug-disease pairs. RepoDB (Brown and Patel, 2017) and European
Medicines Agency (EMA) (European Medicines Agency, 2019) were used to extract
approved drugs for:

(i) juvenile idiopathic arthritis with query "rheumatoid OR juvenile arthritis",

(ii) juvenile idiopathic arthritis with query "juvenile arthritis",

(iii) Alzheimer’s disease with query "alzheimer",
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(iv) Parkinson’s disease with query "parkinson",

RepoDB (Brown and Patel, 2017) a resource that when downloaded included 1571
drugs and 2051 diseases. It included 6677 approved and 4123 failed FDA drug-disease
pairs. When downloaded European Medicines Agency (EMA) (European Medicines
Agency, 2019) included 1111 authorised, 46 refused, and 226 withdrawn drug-disease
pairs. It included 1038 different drugs and 1547 free-text descriptions of indications. The
extracted approved lists were mapped to BRD IDs with KATdb (Supplementary Tables D.5,
D.6, E.4, and E.6).

ATC class lists. Two ATC drug classes have been used in benchmarking sJIA pri-
oritised drug lists: M01 – Anti-inflammatory and antirheumatic products, and L04A –
Immunosuppressants. All BRD IDs annotated with M01 or L04A were extracted and
marked as true positives in their respective tests (Supplementary Tables D.7 and D.8).

AD in vitro drug screen list. A confidential true positive (TP) drug list was shared
with us by our collaborator Tanzi and Kim group. The list consists of drugs which have
shown reduction in Aβ or reduction in Aβ and tau as part of the high-throughput 3D
drugs screen (3DDS) using 3D human neural culture systems related to the A5 3D cell
culture. Out of approximately 1200 FDA and other biologically active drugs screened, 38
ameliorated AD-related pathology.

Curated neuroprotective drugs. A list of 6 neuroprotective drugs was curated by
Professor Oliver Bandmann (SITraN, University of Sheffield) as potential true positives
for Parkinson’s disease. The neuroprotective drugs were mapped to BRD IDs with KATdb
(Supplementary Table E.7).

Evaluating drug signature feature ranking

The prioritised drug lists were ranked from 1 (best) to n (worst), where n is the number
of drug signatures associated with a prioritisation score in a given list. The ranks were
scaled to a range of 0–1, where 0 is the best and 1 represents the worst rank. The list
was then subsetted to include only drug signatures in a TP list. The TP drug signature
ranks were averaged between lists from 5 and 10 pathway clusters, and 15 and 20 pathway
clusters, yielding two instead of four ranked drug lists. Scaled ranks were then averaged
across each drug signature feature (batch, drug id, concentration, cell line, perturbation
time) per each 5–10 or 15–20 pathway prioritised drug list. The mean scaled rank was
calculated representing the average feature rank across all prioritised drug lists. Features
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that were on average in the bottom 40% were marked as low-performing and removed
from the prioritised drug lists.

ROC curve generation

The ROC curves and AUC scores were generated using R package precrec. The
prioritised drug list was assessed for its specificity and sensitivity by scoring it with a
selected TP drug list. Specificity and sensitivity were generated based on the confusion
matrix (Table 3.5).

Table (3.5) Confusion matrix describing performance of generated prioritised drug lists
scored with approved or experimental true drugs. True drugs are drugs from a true positive list,
which can be a list of approved, experimental or predicted drugs. FN — False Negative; FP —
False Positive; TN — True Negative; TP — True Positive.

Predicted drug

above threshold below threshold

Approved drug
True TP FN
False FP TN

The threshold values for generation of the ROC curve equate to the increasing length
of the ranked list, from 0 to n, where n is the number of drug signatures with an associated
score. The AUC scores were summarised in a heatmap plotted with ComplexHeatmap (Gu
et al., 2016).

Comparison with LINCS on clue.io

Drug prioritisation from official LINCS platform available at https://clue.io/ was
performed on 30th January 2020 to compare PDxN pipeline to an alternative method. The
gene-level GSE7753 disease signature consisting of the most up- and down-regulated genes
was used for the query. The query was run at 175, 100, 50 and 20 up- and down-regulated
genes, as recommended by the platform. The results were downloaded and .gctx files
analysed in R with cmapR (CMap Group at The Broad Institute, 2018). The summary
across cell lines score was used for assessing the method’s performance. The resulting
prioritised drug lists were benchmarked with the approved JIA and RA list, and ATC M01
and L04A lists.

https://clue.io/


Chapter 4

KATdb, the Drug Synonym Database

Others’ contributions to this chapter. David R. Jones (Sheffield Institute for Trans-
lational Neuroscience (SITraN), University of Sheffield) has contributed to the concept of
using graph theory to resolve heterogeneous drug nomenclature described in this chapter.

4.1 Abstract

Computational drug repositioning depends heavily on the availability and aggregation
of different information resources. Successful translation of novel findings to clinical
treatments requires objective assessment and benchmarking of drug repositioning methods.
Proposed benchmarking methods include scoring indications against a well-defined gold-
standard truth table. It has become challenging to perform this comparison, because poorly
established links between databases lead to incorrect scoring of true positives as false
negatives, affecting the performance score.

Drug repositioning methods often combine information from various drug and disease
databases, each consisting of disparate collections of entries and entry-specific properties.
The increased availability of publicly available data and its organisation come with ag-
gregation challenges for repositioning because naming conventions are non-standardised.
Each drug and chemical database offers a variety of drug identifiers with heterogeneous
associated names. The associated names include external identifier links to other similar
databases. When we aggregate drug data from different sources in a unified system, the
data contains duplicate entries under different identifiers, solely due to poorly established
links between databases caused by the lack of interoperability between databases and use
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of inconsistent naming conventions. This harms our ability to build systems that use and
develop drug knowledge.

To overcome some of the complexity, we have constructed a semantic translation
resource, KATdb, which addresses the need for cross-database assessment of drug names,
by collecting drug identifiers and synonyms from diverse publicly available sources. We
have used graph theoretic approaches to connect identifiers and synonyms from different
sources, establishing missing links between databases. KATdb is based on many databases
with the aim to unify and connect the synonym information, and make a step toward
a complete resource of drug-synonym information, currently connecting drug names
and identifiers from 17 drug databases. 45 different types of drug synonyms have been
extracted including standardised chemical descriptors, names and database identifiers.
KATdb helps leverage the increased amounts of data and can overcome some of the
aggregation challenges. KATdb, the drug synonym database, increases the mapping and
the usability of benchmarking datasets by translating drug names and identifiers into a
shared language.

To improve the objective comparison of repositioning methods, we have used KATdb
in benchmarking. It has improved translation between a drug repositioning system built on
the Library of Integrated Network-based Cellular Signatures (LINCS) (Koleti et al., 2018;
Subramanian et al., 2017) and two well-defined drug-disease relationship truth tables,
RepoDB (Brown and Patel, 2017) and European Medicines Agency (EMA) (European
Medicines Agency, 2019). We have shown that KATdb increased the rate of transla-
tion 1.9-fold between approved drug names to LINCS identifiers. Thus, we were able
to systematically assess performance of currently available in silico drug repositioning
methodologies with increased power for scoring true positive indications enhanced with
KATdb.

4.2 Introduction

There is an increasing amount of medical data becoming available every day and
with it, new methods using the data in complex ways (Dinov, 2016). In drug reposition-
ing, methods often combine knowledge from many different sources, introducing data
aggregation challenges. Data aggregation challenges arise when different sources use
non-uniform metadata language and nomenclature. For example, most drug repositioning
methods rely on compiling different types of drug data and information from different
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sources. It is expected that the nomenclature used is not uniform. Disparate drug naming
can lead to methods where one drug might be presented as multiple different drug enti-
ties under different names because the information comes from different sources. The
heterogeneous nature of the nomenclature introduces duplicate information in systems
and consequently, affects the power of benchmarking. In drug repositioning, methods are
usually benchmarked by scoring true drug-disease relationships prioritised by the method.
Typically, when the benchmarking method is scoring the retrieval of known relationships,
the novel proposed relationships are only marked as true if drug names match. Therefore,
the repositioning method will have inferior performance, if non-matching nomenclature is
used between drug names utilised in the method and the true drug names.

Several studies and reviews have identified the problem of inconsistent and non-
standardised nomenclature (Akhondi et al., 2015; Chambers et al., 2013; Dashti et al.,
2019; Drug and Therapeutics Bulletin, 2018; Wohlgemuth et al., 2010). Numerous drug
and chemical databases each introduce a unique identifier to identify a particular drug
or chemical entry in their database. While the unique identifiers make their database
more searchable, the poorly established links to other databases make aggregation more
challenging. With each database establishing their own identifiers, the drugs can be referred
to with at least as many names as there are databases. There are several well-defined naming
conventions for chemicals, such as simplified molecular-input line-entry system (SMILES)
or the International Union of Pure and Applied Chemistry (IUPAC) International Chemical
Identifier (InChI), and several human-readable names such as International non-proprietary
names (INNs) or trade names. There has been a move towards providing cross-referencing
to other databases (Ursu et al., 2017; Wishart et al., 2018), however, these sections are
limited to only a few links, are not systematic, and are sometimes erroneous.

4.2.1 Drug nomenclature

In this chapter, we distinguished between drugs and chemicals. We defined a chemical

as one chemical compound, while a drug was defined as one or more chemical compounds.
Each drug has several names and identifiers. We defined drug names as human-readable
names, including generic and trade names. While we mostly considered identifiers as
alphanumeric terms relating to drug identity. We used the term synonym to indicate any
combination of names and identifiers predicted to refer to one drug identity. A database
or synonym authority was defined as the synonym or name type, often matching the
database name or the nomenclature standard. We used name type and synonym type
interchangeably.
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There are well-defined chemical nomenclature guidelines and standards, but because
one or more chemicals can define a drug, the drug nomenclature becomes less clear. In
addition to the many chemicals in one drug challenge, there are several localised authorities
governing drug nomenclature (Drug and Therapeutics Bulletin, 2018).

Each database uses one primary, unique identifier which is governed by a defined
organisation or authority. The database-specific identifiers are traditionally regulated by
the database creators, while the chemical nomenclature, drug classification systems, and
generic names have their own authorities, e.g. the World Health Organisation (WHO)
oversees the INN and a sub-organisation WHO Collaborating Centre for Drug Statistics
Methodology (WHOCC) regulates the Anatomical Therapeutic Chemical (ATC) classifica-
tion. There are some types of drug names and identifiers that are based on nomenclature
principles released by an individual or organisation and then used and created by users, e.g.
SMILES. These are not overseen by one single authority.

To add to the drug nomenclature complexity, approved and marketed drugs are of-
ten known under different names depending on the country (e.g. paracetamol (UK),
acetaminophen (USA)) and the pharmaceutical company brand. They sometimes include
different ingredients depending on the country and their names are regulated by a local
governing body, e.g. European Medicines Agency (EMA, EU), the US Food and Drug
Administration (FDA, US) (Drug and Therapeutics Bulletin, 2018). In Supplementary
Table B.1, we show an example of each name type collected in KATdb for aspirin. For
each name type we found an identifier linked to the synonym "aspirin" in either the KATdb
or by manually searching for it online. We collected at least one synonym for 45 different
name types out of which most have been found in KATdb.

We developed a semantic translation network, named KATdb (Fig. 4.1), based on
several drug and chemical databases with the aim to unify and connect the synonym
information. We aggregated synonym information from several databases with only a
subset of these developed with the main aim to provide a comprehensive collection of
knowledge about chemicals and drugs (Table 3.1). However, each of the source databases
used in KATdb has, in addition to the primary identifier, also provided at least one other
synonym. We connected 45 different types of drug names and identifiers from 17 drug
databases. The identifiers included standardised chemical descriptors, names and database
IDs. KATdb increased the semantic translation and the usability of benchmarking datasets
by translating drug names and identifiers into a shared language.
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4.3 Approach

We used a graph theoretic approach to connect all synonyms into a network (Steyvers
and Tenenbaum, 2005), where synonyms representing one drug connected into one con-
nected component. A graph theoretic approach facilitated the construction of a semantic
network where its topology was exploited to provide novel insights. The approach is
described in Fig. 4.2.

We selected a set of drug and chemical databases based on their availability, popularity
and comprehensiveness (Fig. 4.2a). We additionally selected a set of published drug–
disease relationship datasets with two or more synonyms as our aim was to use KATdb
in mapping drug names from truth-table name to drug repositioning method name. From
each database listed in Materials and Methods Table 3.1 we extracted the database specific
unique identifier, name, external identifiers, and other associated synonyms. Each extracted
relationship between a unique identifier and a synonym was added to a database of edges
(Fig. 4.2b). The edges were first curated and cleaned to only include synonyms related to
drugs and chemicals. Where there was one primary human-readable name provided, the
name was assigned to Database-name Name name type, e.g. DrugBank Name. Table A.1
lists all extracted and used types of synonyms.

We constructed a graph from the cleaned edge database, where each node represents
an authority:value pair and each edge is a synonym relationship between two nodes
(Fig. 4.2c). The synonym network was decomposed into connected components. A
connected component, or simply component, is a subnetwork in which any two nodes
are connected to each other but are not connected to any nodes outside the subnetwork.
Under assumption that all extracted relationships were correct, we hypothesised that
each connected component represented a set of synonyms for one drug. Each connected
component included relationships between synonyms from one or more databases. We
assigned a KATdb unique identifier to each component (Fig. 4.2d). A MySQL database
was constructed and a KATdb visual interface was created with shiny (Chang et al., 2019).

4.4 Initial Database Overview

In this section we provide a brief overview of the initial KATdb, followed by a section
exploring the database correctness. After correction assessment, we reconstructed KATdb
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Fig. (4.3) KATdb list of databases and name types (colour legend). Colours in squares anno-
tate source databases and colours in circles annotate name types. Manually curated relationships
are annotated with "katkoler" next to the original source. Please refer to these colour annotations
throughout this chapter. On Figs. 4.5, 4.7, 4.8, and 4.9 the squares annotate edges and circles
annotate nodes. On Fig. 4.4 squares annotate the columns and circles the rows. On Fig. 4.10 the
squares annotate the lines which represent the removed database. ATC — Anatomical Therapeutic
Chemical; BRD — Broad ID; CasRN — CAS Registry Number; ChEBI — Chemical Entities
of Biological Interest; ChEMBL — Chemicals database by European Molecular Biology Labora-
tory; CID — Compound ID; CMap — Connectivity Map; CTD — Comparative Toxicogenomics
Database; DB — database; DPD — Drugs Product Database; EINECS — European Inventory
of Existing Commercial Chemical Substances; EMA — European Medicines Agency; FDA —
the US Food and Drug Administration; InChI — the IUPAC International Chemical Identifier;
IUPAC — International Union of Pure and Applied Chemistry; KEGG — Kyoto Encyclopedia
of Genes and Genomes; L1000CDS2 — LINCS L1000 characteristic direction signature search
engine; LINCS — Library of Integrated Network-based Cellular Signatures; MESH — Medical
Subject Headings; NDFRT — National Drug File - Reference Terminology; PharmGKB — Phar-
macogenomics Knowledge Base; SMILES — Simplified molecular-input line-entry system; TTD
— Therapeutic Target Database; UMLS — Unified Medical Language System; UNII — Unique
Ingredient Identifier; URL — Uniform Resource Locator; WHO — World Health Organisation.
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Fig. (4.4) Number of terms per name type contributed by each source database. Each
database (columns) contributes a set of synonyms connecting different name types (rows). Some
databases contributed many more synonyms than others. There are name types that appear in more
databases. Manually curated relationships are annotated with "katkoler" next to the original source.
Please refer to Fig. 4.3 (page 68) for the colour legend and acronyms for source database and name
type annotations. The number of terms is log10 scaled. Each column is summarised in the top
margin (number of synonyms in database), and each row is summarised in the left margin (number
of synonyms with name type). The node and edge contributions to KATdb per database are listed
in Supplementary Table B.2.



70 KATdb, the Drug Synonym Database

removing the most erroneous database. A more detailed overview of KATdb is discussed
after the correctness section.

We successfully extracted over 2.8 million synonym relationships between 3.3 million
different drug names and identifiers. KATdb initially consisted of synonyms extracted
from 18 different databases representing 45 different synonym types. The source databases
and synonym types are listed in Fig. 4.3.

Name types present in more than one database had the potential to establish cross-
database connections, which increased the translation power of KATdb. The numbers of
synonyms of a particular name type present in source databases are summarised in Fig. 4.4.
Most databases have provided poorly-characterised synonyms, where the database did not
include the information on what type of synonym the value was. These were commonly
found in synonym sections, and predominantly included human-readable names. The
second most abundant name type across databases was the PubChem Compound ID (CID),
which is present in 10 different databases.

The most popular synonym type by number of terms was the BindingDB ID, present
in only three databases: BindingDB, PharmGKB, and DrugBank. Another highly used
name type was PubChem Compound ID (CID), present in 10 databases. The PubChem
CID was one of the most frequent name types in KATdb, although we had not included
PubChem as a source database, suggesting the community-recognised importance of the
database. PubChem was the world’s largest freely accessible chemistry database (Kim
et al., 2016). However, due to computational limits we were unable to integrate the large
PubChem Compound database into KATdb.

PharmGKB provided the highest variety of name types, connecting 19 different name
types, followed by Wikipedia with 16 different name types. While PharmGKB provided
the highest number of different name types, only 13 types were present in at least one
other database. 13 out of 16 name types used in Wikipedia were used in at least 2 other
databases.

Overall, BindingDB contributed the most relationships, followed by the Library of
Integrated Network-based Cellular Signatures (LINCS) (Supplementary Table B.2). Bind-
ingDB included relationships from 4 different name types, the BindingDB identifier to
PubChem CID, Chemical Entities of Biological Interest (ChEBI), and ChEMBL. LINCS
contributed to connections between 12 different name types.
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Liu et al. (2013) and RepoDB (Brown and Patel, 2017) contributed only relationships
between synonym↔CasRN, and RepoDB Name↔DrugBank, respectively. Even though
both added a small amount of connections to the overall KATdb, they could both be used
as gold-standard true positive benchmarking datasets. Thus, it was important to be able to
map the drug names from truth-tables to identifiers used in drug repositioning methods.

4.5 Correctness

To assess the reliability of our approach, we assessed how faithfully each component
represented one drug. We predicted that there would be the following correctness outcomes
(Fig. 4.2e):

1. one component representing one drug, synonyms connected by correct links,
2. one component representing many drugs, synonyms connected by incorrect links.

The links could be incorrect to a different degree:
(a) one component representing structurally similar drugs,
(b) one component representing related drugs, e.g. a mixture and a single ingredi-

ent of a drug,
(c) one component representing non-related drugs,

3. two or more components representing one drug as a result of missing links.

Each of the correctness outcomes had a different set of impacts on the overall cor-
rectness of the synonym graph. The correct links, unifying synonyms belonging to one
drug, had no negative impact. The most severe repercussions happened when the incorrect
links connected non-related drugs. Any mapping or translation from one synonym type to
another would therefore be partially incorrect. Incorrect links connecting related drugs
were less severe where one drug ingredient existing on its own also connected to other
ingredients in a particular drug mixture. The mixture compounds likely complemented
each other, but translation of single compound identifiers would also erroneously map to
other mixture components.

The links connecting structurally similar drugs could be considered ambiguous. We
classed spatial isomers and oxidised or reduced versions of one compound as structurally
similar. Active and inactive forms of chemicals might be structurally distinct, but they
commonly appear together. Spatial isomerism or stereoisomerism is when molecules have
the same molecular formula and the same sequence of bonded atoms, but differ in 3D
orientation of their atoms in space (McNaught et al., 1997). An enantiomer is one of two
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molecules which are mirror images of each other (McNaught et al., 1997), also known as
optical isomers. Although stereoisomers in mixtures often differ in properties, they appear
together, e.g. thalidomide. Approximately half of marketed drugs are chiral, and of these,
approximately half are mixtures of enantiomers rather than single enantiomers (Hutt, 2002;
McConathy and Owens, 2003). Thus, we acknowledge that although structurally similar
drugs that are connected into one component would be technically incorrect, we considered
that mapping synonyms to a stereoisomer would be less detrimental than mapping to an
unrelated drug.

The last predicted correctness outcome was the missing links. While they were not
desirable, as they represent the lack of information, they did not carry many negative
effects. Mapping would still be correct, even though a particular search for synonyms for
one drug might reference two or more connected components.

4.5.1 Correctness estimation

To evaluate the correctness of KATdb, we manually investigated a set of connections.
We investigated edges that we predicted as topologically important and thus more likely to
influence the correctness of downstream reasoning.

We chose to investigate the edges in the largest components as these components
included more synonyms than we expected. We estimated that there are ∼100 synonyms
for one drug, with at least one for each name type (45) and an additional 45 to roughly
account for non-unique identifiers. Many name types mapped to more than one synonym
per drug. Considering our estimate, it was unlikely that one drug could be identified by
more than 600 synonyms.

The second parameter for prioritisation of edges related to the topological role of a
given edge. Edge betweenness centrality is defined as the number of shortest paths that
go through an edge in a graph (Girvan and Newman, 2002). An edge with a high edge
betweenness centrality score is represented by a bridge-like connector between two parts
of a graph. These edges are important links that connect two well-connected parts of the
connected component. The removal of such edge would affect the communication between
many pairs of nodes in the two parts of a graph (Lu and Zhang, 2013).

The largest component (Fig. 4.5) displayed both of these concepts. It consisted of 609
nodes connected with 1043 edges. The edges with high edge betweenness centrality often
provided the only bridge between one part of the component to another. Several edges
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Fig. (4.5) The largest connected component prior to assessing correctness. There are 609
nodes and 1043 edges in the component. The node size and edge width are proportional to the
node and edge betweenness centrality. The key connector edges between different well-connected
parts of the component are thicker, indicating the topological importance of that edge as well as the
increased likelihood of that edge to be incorrect. A node represents one drug name or identifier
and an edge represents the direct synonym relationship between two nodes extracted from a source
database. The node colour signifies the name type and the edge colour matches the source database.
Please refer to Fig. 4.3 (page 68) for the colour legend for edges (square — source database) and
nodes (circle — name type).



74 KATdb, the Drug Synonym Database

showed disproportionately high edge betweenness centrality (thicker edges on Fig. 4.5).
For instance, there were 7 edges from RepurposeDB with high edge betweenness centrality
(thick purple edges on Fig. 4.5) that were key for the overall connectivity of this component.
It was important to the overall component structure that these edges were correct. However,
we predicted that there were several incorrect edges in this component, particularly the
edges with a high edge betweenness centrality score.

To systematically assess the correctness of the graph, we incorporated both component
size and edge betweenness centrality into our test. We first selected edges in the top
10 largest connected components and then prioritised the edges with the highest edge
betweenness. The top 2% of edges with the highest edge betweenness centrality in the top
10 largest connected components were manually checked. While a source database can be
a key source of providing missing links, it can at the same time be the most detrimental to
component correctness if those relationships are in fact incorrect.

Four different iterations were considered in estimating correctness. First, we assessed
the largest and the 10 largest components from the initial KATdb, referred to as A1 and
A10, respectively. Followed by the second assessment of the largest and the 10 largest
components after removing the source database with the highest proportion of incorrect
edges, referred to as B1 and B10, respectively.

Each node of the manually checked edges was searched on Google (https://www.google.

com/ ) to manually establish the connection to the other node in at least two databases
(excluding the source edge database). We assigned one of the following values to the level
of correctness for each checked edge:

(i) correct
(ii) related structure

(iii) related
(iv) incorrect

An edge was marked as correct if the relationship between synonyms was established in
two other source databases. Spatial isomers and small structural changes were marked
as related structures. Edges connecting individual ingredients of the same mixture were
marked as related. Edges connecting non-related drugs were marked as incorrect.

https://www.google.com/
https://www.google.com/
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Fig. (4.6) KATdb correctness assessment. Four different iterations were considered in estimat-
ing correctness. A1 and A10 assess the largest and the 10 largest components from the initial
KATdb, respectively. B1 and B10 assess the largest and the 10 largest components, respectively,
after removing RepurposeDB as a source database. We assigned one of 4 different levels of correct-
ness to each manually checked synonym relationship. The top plot summaries the proportion of
each correctness level in an experiment. The table (middle) summarises the experiment properties.
The two plots (bottom row) show the edge betweenness values for a manually checked edge with
assigned correctness level.
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The initial assessment

The top 10 largest components ranged from 240 (10th largest) to 609 (the largest) nodes,
with a total of 6001 edges. We manually investigated 121 (2%) edges with the highest
betweenness centrality (Fig. 4.6 – A10). We identified 84 correct, 15 structurally related, 4
related, and 18 incorrect edges. Estimating > 69.4% of correct edges at first iteration of
KATdb and < 14.9% of incorrect edges. The incorrectly linked components were driven
by errors in the source databases, which were propagated in the KATdb.

Out of the 18 incorrect edges, 10 were found in the largest component and all 10 were
from one database, RepurposeDB1 (Supplementary Fig. B.1). The largest component
highlighted a systematic fault in 11 consecutive rows of RepurposeDB (rows 520 (betazole)
– 531 (naproxen)), where the CasRN identifiers were the correct identifiers for the drug
listed in the row above. An additional small erroneous section of the RepurposeDB table
was identified (rows 117 (indometacin) – 120 (prednisolone)), where the KEGG IDs were
correct for the drug name in the row above. RepurposeDB was removed as a consequence of
contributing a high proportion of incorrect edges, however it is possible that the systematic
faults were limited to the identified sections and that the remaining relationships were
correct. This highlights the strength of using edge betweenness centrality as a measure of
correctness for individual edges, however a more systematic curation would be required to
extrapolate the limited findings from faulty RepurposeDB relationships to the remainder
of the database. We re-evaluated the largest component by removing all RepurposeDB
edges (Fig. 4.7). The component separated into 13 smaller components, from which, 5
were smaller than the rest. The size of the resulting largest component was 107 nodes, with
no edges that had disproportionately high edge betweenness centrality scores. While we
have reduced the proportion of incorrect edges to ∼0%, we have also removed 14 at least
correct links. The relatively small components were likely connected to the larger group of
synonyms through one of the correct RepurposeDB edges, that are now missing links.

In the top 10 largest components of the initial KATdb, 16 incorrect edges were extracted
from RepurposeDB, 1 from TTD and 1 from LINCS. We removed RepurposeDB as a
source database in the next iteration of the database, because it contributed 89% of the
detected incorrect edges. We repeated the test after removing all edges from RepurposeDB
(Fig. 4.6 – B1, B10).

1RepurposeDB (Shameer et al., 2017) is no longer available online (27th May 2020)
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Fig. (4.7) The largest component after removing RepurposeDB. The component (Fig. 4.5)
split into 13 separate components. 5 of those were relatively small compared to the remaining
8. After removing all RepurposeDB edges, there were no assessed incorrect edges remaining. A
node represents one drug name or identifier and an edge represents the direct synonym relationship
between two nodes extracted from a source database. The node and edge width is proportional
to node and edge betweenness. Please refer to Fig. 4.3 (page 68) for the colour legend for edges
(square - source database) and nodes (circle - name type).
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The second assessment

After RepurposeDB removal, we identified 68 correct, 12 structurally related, 7 related,
and 1 incorrect edge in the top 2% of edges with the highest edge betweenness centrality
score from the newly defined 10 largest components. Estimating > 77.3% of correct and
< 1.1% of incorrect edges overall. The new largest component consisted of 474 nodes and
the 10th largest consisted of 219 nodes.

The top 10 components were still larger than expected. While we have reduced the
number of incorrect edges, we still retained ∼8.0% of edges connecting related drugs
and ∼13.6% of edges linking structurally related drugs. These edges have been extracted
from several different source databases: related from 4 and structurally related from 7. If
we removed all of the source databases with errors, we would significantly decrease the
size and connectivity of KATdb. Instead we indicated the edge correctness with the edge
betweenness centrality score.

Edge betweenness centrality as correctness predictor

After manually checking ∼200 edges, we assessed our hypothesis that the high edge
betweenness centrality score would indicate a higher likelihood that the edge was incor-
rect (Fig. 4.6 bottom row). We assessed each version of KATdb separately as the edge
betweenness centrality score was influenced by the topological features of the network.
We showed that edges connecting random drug synonyms had a higher edge betweenness
scores than those connecting same, structurally related or broadly related drugs (t-test
p-value= 0.00166, Fig. 4.6 bottom row – A10). In addition, the links connecting loosely
related drugs had a higher median compared to those that connected structurally related
synonyms in both iterations, but their scores were not significantly different (A10 – p-
value=0.564, B10 – p-value= 0.450). After removing RepurposeDB edges (B10), the
correct relationships had a significantly lower edge betweenness score compared to any
other assessed edge (t-test p-value= 0.00846).

By removing RepurposeDB we have increased the estimated correctness from 69.4%
to 77.3% and more importantly, we reduced the estimated proportion of incorrect edges
from 14.9% to 1.1%. The largest components were still larger than expected, thus it was
important to use translated terms while acknowledging their limitations by investigating
their network properties, such as edge betweenness centrality. We have demonstrated that
edges with a high betweenness centrality score were more likely to be incorrect. Therefore,
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we could hypothesise that our correctness estimate was in reality even higher, > 77.3%,
and that there were < 1.1% incorrect, < 8.0% related, and < 13.6% structurally related
edges.

4.6 Database Overview

After assessing correctness on the initial KATdb, we have found a disproportionate
amount of incorrect edges extracted from RepurposeDB. To be able to use KATdb with
more confidence, we have removed all edges from RepurposeDB, resulting in KATdb
consisting of 2.85 million edges from 17 different databases between 3.31 million nodes
(Table 4.1). The database was separated into 983,560 connected components, with each
connected component hypothesised to represent synonyms for one drug.

The node with the highest degree was CMap Name:trichostatin A, connected to another
370 synonyms (Fig. 4.8, central node in ball-like component). 364 of those were CMap
Instance IDs and the remaining 6 were synonyms. Searching "trichostatin A" in the
database, resulted in 3 components: 2 large, of those one was CMap-themed, one from
mixed sources, and 1 component of only 2 nodes from PharmGKB (Fig. 4.8).

Overall, 67.5% of the nodes were connected to only one other node, contributing
non-essential relationships for overall connectivity. 39.1% of all components represented
the smallest by definition. They included only two synonym nodes. 93.3% of all KATdb
components had the diameter ≤ 2. However, only a few specific topological shapes have
the diameter ≤ 2:

• a connection between two nodes: V1↔V2, Fig. 4.8 – small two-node component,
• linear connection between three nodes: V1↔V2↔V3,
• connected triangle between three nodes: same as above with V1↔V3, △,
• ring or more connected square between 4 nodes: 2, 4,
• ring or more connected pentagon between 5 nodes: D,
• star-like components with one central node: +, E, B, Fig. 4.8 – bottom, ball-like

component.
• star-like components with one central node and one or more extra edges between

star rays: ▷◁, ⋉, ⋊, Bp.

These components did not add much information as they connected two synonyms with
no or one intermediate synonym. They represented poorly connected and/or seldom used
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Table (4.1) KATdb statistical overview. Statistics including general graph, node and connected
component properties for the drug synonym graph.

Property Type Property Value

graph Total number of edges 2851870
graph Total number of sources 17
graph Total number of nodes 3305952
graph Total number of name types 44
graph Total number of connected components 983560
node Highest degree node 370 (CMap Name:trichostatin A)
node Median degree of a node 1
node % degree == 1 67.5%
component Largest component size 474
component Median size 3
component Mean size 3.36
component % size == 2 39.1%
component Max diameter 24
component % diameter <= 2 93.3%
component Mean shortest path 3.01

Fig. (4.8) Trichostatin A in KATdb. Three connected components represented trichostatin A
in KATdb. The CMap Name node in the centre of the ball-like component was the node with
the highest degree in the whole database. There were 3, rather than only 1, separate components
because of missing links failing to connect all the synonyms. A node represents one drug name or
identifier and an edge represents the direct synonym relationship between two nodes extracted from
a source database. Please refer to Fig. 4.3 (page 68) for the colour legend for edges (square - source
database) and nodes (circle - name type).
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synonyms. However, if additional databases were added, they would have the potential to
connect to bigger components. A major reason for the high proportion of components with
small diameter was that we do not connect names based on their human-readable names,
unless those names were well-defined e.g. INN or Wikipedia names. Therefore, most
connections between different source databases were established through alphanumeric
identifiers.

The remaining 6.7% of components with diameter > 2 connected at least two source
databases. The widest component with diameter = 24 was also the largest component with
474 nodes (Fig. 4.9). During correctness estimation, we checked 32 of the 722 edges in the
widest component with the highest betweenness score (highlighted in Fig. 4.9). It could
be seen that the largest component represented at least 2 related drugs, as the removal of
the related (Fig. 4.9 yellow highlight) edge would have split the component in two. The
component represented a drug called conjugated estrogens that:

“contains a mix of estrogen from which about 50% is represented by estrone sulfate
followed by 25% of equilin sulfate, 15% of 17-alpha-dehydroequilenin sulfate, 3% of

equilenin sulfate, 5% of 17-alpha and 17-beta-dihydroequilenin sulfate, 2% of 17-alpha-
estradiolsulfate and 3% of 17-beta-estradiolsulfate. It also presents a large number of

unidentified molecules with weak estrogenic activity as well as non-human molecules when

it is obtained from pregnant mares’ urine.” (DrugBank, 2005; Lauritzen and Studd, 2005)

Due to the compounds appearing in a complex oestrogen mixture, the largest component
represented a set of chemically related compounds, rather than one single one. All checked
edges link to a human-readable name that includes "estro/a" as the root of the name. It
represented one drug, however, that drug was a mixture of many individual but related
compounds. We have not investigated if each of the chemicals was used as an individual
compound. However, analysing the component, there were 160 synonyms, 48 ChEMBL
Names, 41 CMap Instance IDs, 16 SMILES, 11 PubChem CIDs, 8 Wikipedia pages, 7
InChI Keys, 5 DrugBank IDs, etc. To estimate how many different compounds were in the
component, we could consider the frequency of the name types. The median frequency
in this component was 5.5, however, there were many non-unique identifiers, such as
synonyms or CMap Instance IDs, that might have skewed this estimate.

To resolve the largest component into single compounds would require extensive
curation of all edges and detailed knowledge of the chemical structures. With decreasing
component size the probability of erroneous edges decreased. Considering that only
235 (0.024%) out of ∼1 million components consisted of more than 100 nodes, we
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Fig. (4.9) KATdb widest and largest component - conjugated estrogens. It consisted of 474
synonyms and had the diameter of 24. It included at least 2 edges connecting related (yellow)
and 3 connecting structurally related synonyms (dark blue). A node represents one drug name or
identifier and an edge represents the direct synonym relationship between two nodes extracted from
a source database. Please refer to Fig. 4.3 (page 68) for the colour legend for edges (square - source
database) and nodes (circle - name type) and to Fig. 4.6 (page 75) for the colour legend on edge
correctness level highlights (blue — correct; dark blue — structurally related; yellow — related;
none — not manually assessed for correctness).
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proceeded with the investigation of KATdb properties, acknowledging the currently defined
limitations.

4.7 Robustness

The KATdb network was tested for robustness to assess its ability to cope with errors
and perturbations. Robustness assesses the ability to maintain connectivity after deletion
of nodes. The connectivity of the resulting network was measured by the size of the largest
connected component (Lordan and Albareda-Sambola, 2019). In addition to the size of the
largest component, we measured the mean component size and number of components.
We tested KATdb by removing a random subset of nodes 5% at a time for 10 iterations. We
performed the test on the whole network and also on the network with one source database
removed at the time.

The largest component from the whole KATdb network drastically decreased in size
when we started removing random nodes (Fig. 4.10A). It reduced to less than half the
size with 25% of the nodes removed. It was approximately one fifth of the size when
removing 50% of the nodes and one tenth with 75% of nodes removed. Fig. 4.10A shows
that removing the majority of source databases had a small effect on the overall structure
of the network, suggesting that the edges extracted from those databases were supported by
other edges. There were three databases that changed the resilience of the network: LINCS,
PharmGKB and ChEMBL. After removing edges from LINCS, the largest component
reduced from 474 to 265 nodes. This indicated that LINCS provided edges that connect
several smaller components to a bigger component. It suggested that LINCS is a key
contributor to overall connectivity of the synonym components. It also indicated that
there may be several incorrect edges contributed by LINCS. The other two databases that
had a large effect on the size of the largest component were PharmGKB with 301 nodes
in the largest component and ChEMBL with 372 nodes. Similar assumptions could be
made for these as for LINCS contributions. The correctness evaluation (Supplementary
Fig. B.1 – B10) supported the idea that these databases may have had a higher proportion
of incorrect, related and structurally related edges. When estimating correctness for the
top 10 largest components by manually checking top 2% of edges with the highest edge
betweenness centrality, all three were found with some related and/or structurally related
edges. PharmGKB and LINCS had a high, but similar proportion of related and structurally
related edges (43% and 31%, respectively), and the only two ChEMBL edges checked
were both connecting structurally related synonyms.
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Fig. (4.10) KATdb robustness. The KATdb network robustness was tested by removing a
random subset of nodes, 5% at the time. We explored the influence of each source database
on the KATdb synonym network by removing one source database at a time, followed by the
removal of a random subset of nodes. Random nodes were removed to assess the resulting graphs’
robustness. Robustness was assessed by (A) the mean size of the largest component, (B) the
mean of the mean component size, (C) the mean number of components. *none — no database
removed apart from RepurposeDB that was not included in the final version of KATdb. ATC
— Anatomical Therapeutic Chemical; ChEMBL — Chemicals database by European Molecular
Biology Laboratory; CMap — Connectivity Map; CTD — Comparative Toxicogenomics Database;
EMA — European Medicines Agency; KEGG — Kyoto Encyclopedia of Genes and Genomes;
L1000CDS2 — L1000 characteristic direction signature search engine; LINCS — Library of
Integrated Network-based Cellular Signatures; PharmGKB — Pharmacogenomics Knowledge
Base; TTD — Therapeutic Target Database.
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We investigated the mean component size and the number of components in our
robustness test, because a large proportion of KATdb components were relatively small.
Removal of most databases did not alter mean component size decrease compared to the
whole network (Fig. 4.10B). Similar to changes observed in the largest component size,
removing LINCS resulted in a smaller mean component size of 3.00, again suggesting
that LINCS provided key connections linking smaller components. However, the largest
difference was observed when removing BindingDB. Removing BindingDB increased the
mean component size from 3.36 to 5.45, suggesting that BindingDB contributed many
small components that were not connecting to other databases. BindingDB contributed
41% of all edges and included 58% of all nodes from KATdb, covering names from
only 4 different name types. Therefore, it was expected that many of those edges were
not connecting to the rest of the network. This was supported by Fig. 4.10C, where we
observed that removing BindingDB reduced the number of components from 983,560 to
260,360 (26.5%). The drastic decrease in number of components, together with increased
average when removing BindingDB further supported that BindingDB primarily added
small components. The second largest decrease in component numbers was observed by
removing CTD, where the number of components decreased to 825,061 (83.9%). CTD
contributed 12% of all edges, thus it was expected that removing so many edges would
have reduced the number of overall components. Removing ∼30-35% of nodes increased
the number of components for each test run. After removing more than ∼35% the number
of components then gradually decreased to 0. This behaviour suggested that initially larger
components were split into smaller ones, however, by removing more than 35% of nodes,
we started removing whole components and thus the number of components decreased.

The robustness analysis has indicated different types of contributions from some
databases. BindingDB has been shown to contribute mostly small connected components,
while LINCS, PharmGKB and ChEMBL contributed important, but possibly also incorrect,
links to the largest components. Overall, the removal of individual databases mimicked
the robustness of the whole network. BindingDB which contributed approximately half
of KATdb terms, could be considered an exception, as it mimicked the whole network
when investigating the size of the largest component, but its removal increased the mean
component size and decreased the number of components.
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Fig. (4.11) The KATdb logo.

4.8 KATdb Visual Interface

A prototype visual interface was developed with shiny (Chang et al., 2019) to allow
exploration of KATdb’s components and the relationships connected into one synonym
entity as well as mapping from one synonym authority to another. As part of the brand
identity development, KATdb was associated with a cat-themed logo (Fig. 4.11). The
minimal viable product consists of:

(i) welcome page with summary statistic of KATdb (Supplementary Fig. B.2),

(ii) translate your drug list page (Supplementary Fig. B.3),

(iii) explore components page (Supplementary Fig. B.4),

(iv) table of all nodes,

(v) table of all edges.

The welcome page (Supplementary Fig. B.2) offers an overview of the current KATdb
version. It briefly introduces the aims of KATdb and lists the key summary statistics,
such as: the number of nodes, edges and connected components as well as the number of
different sources and name types.

Translate your list page (Supplementary Fig. B.3) can be used to retrieve drug syn-
onyms from a user-defined list of drug names or identifiers. It allows translating from
one or a mix of many authorities to all or a selected list of target authorities. An example
translation from WHO or ChEMBL names for aspirin and paracetamol translated to
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DrugBank identifier is pre-prepared to demonstrate one possible search. The user has
the option of exploring the translated list within the app or downloading it as a CSV file
(Shafranovich, 2005).

Explore components page (Supplementary Fig. B.4) plots a selected number of com-
ponents. The components are ordered by the decreasing number of nodes. The user can
choose to plot a window of up to 100 components decreasing in size at one time or provide
a list of KATdb identifiers from tables on translate your list page or tables of nodes and

edges. The component structure can be further explored by interactively removing edges
and nodes from a particular source database or name type, respectively. The edge and node
size on a zoomed-in plot correspond to edge and node betweenness centrality, allowing the
user to estimate overall correctness of the component.

Tables of nodes and edges pages provide complete lists of nodes and edges currently
present in KATdb. Table of all nodes lists the component KATdb ID that the node is part
of, name type, name and degree for each node. Table of all edges lists the KATdb ID that
the edge is present in, the two nodes the edge is connecting and the source database from
which the edge has been extracted.

The KATdb shiny app has been used throughout this thesis. It has been used in the
following sections: 4.9, 5.3.5, 6.4.1, 7.2.4, 7.3.4.

4.9 Application Test Cases

We have applied KATdb to three different test cases, related to work described in
this thesis. In the following chapters, we used the LINCS L1000 characteristic direction
signatures search engine (L1000CDS2) (Duan et al., 2016) as the source database for
drug perturbation signatures. We thus focused on unifying the nomenclature used in
L1000CDS2, the BRD IDs, in three different use cases:

(i) BRD ID to any name,

(ii) BRD ID to ATC code,

(iii) approved drug names to BRD ID.

The LINCS nomenclature. BRD IDs are the primary identifiers in LINCS (Subra-
manian et al., 2017) and L1000CDS2 (Duan et al., 2016). BRD ID, or Broad ID, is an
identifier used to uniquely address a particular small molecule. It was developed by the
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Broad Institute and consists of 13 characters, "BRD-" followed by 9 characters, to uniquely
identify the physical batch of the chemical, e.g. BRD-K11433652 for aspirin. In the
L1000CDS2 metadata the BRD IDs are listed as perturbagen ID (pert_id) and associated
with perturbagen description (pert_desc) which is either "-666" for missing/not known
names or a more common, often human-readable name. In this section, we have referred
to it as the LINCS name.

Translation measures. In each test case, we used the translation feature of KATdb
visual interface, for a comparison we performed manual mapping in 3 test cases. We used
the following nomenclature: Input name is the name that was used as query name, the
number of found names is the number of input names that were found in KATdb, the goal

name is the name to which we were aiming to map the input name. We classed all found
names that have at least one goal name as mapped terms.

To determine translation success and redundancy, we counted the number of unique
input, found, and goal names, different connected components, as well as the number of
mapped and not mapped terms. We defined translation success as:

translation success =
number of mapped terms
number of found names

(4.1)

measuring what proportion of input names present in KATdb were mapped to at least one
synonym, and translation redundancy as:

translation redundancy =
number of unique goal names

number of mapped terms
(4.2)

measuring how many successfully mapped names, mapped to more than one goal name.

Translation success score ranges from 0–1. Translation success = 1 indicated that all
input names present in KATdb have been mapped to at least one goal synonym and < 1
meant that not all input names found in KATdb have been mapped to the goal name type.

Translation redundancy = 1 indicates 1:1 mapping, > 1 indicated that more than one
goal name per mapped name and < 1 suggested that more than one mapped name matches
the same goal name. Some name types were by definition non-unique so redundancy score
> 1 was expected. In addition, if our translation was aiming to map to more than one goal
name, a 1:1 mapping would be indicated by 1:number of goal name types.
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Table (4.2) KATdb and manual translation test cases. Success improvement is calculated as Translation success B
Translation success A for B and similarly Translation success F

Translation success G for
F. The test case details can be found in Supplementary Table A.2. * — unique perturbagen IDs from drug signatures below significance threshold p-value
< 0.05 in L1000CDS2 signature database. ATC — Anatomical Therapeutic Chemical; BRD ID — Broad ID; EMA — European Medicines Agency; LINCS
— Library of Integrated Network-based Cellular Signatures.

Method Input name
type

Goal name
type

Unique
input
names

Unique
foundnames

Unique
goal
names

Differentcompo-
nents

Mapped
terms

Not
mapped
terms

Translationsuccess
Translation
redundancy

Success im-
provement

A manual BRD ID name 5913 5913 5183 n/a 4521 1392 0.765 1.146 n/a
B KATdb BRD ID name 5913 5910 36999 5646 5907 3 0.999 6.264 1.307
C KATdb BRD ID ATC 5913 5910 3174 5646 1294 4616 0.219 2.453 n/a
D KATdb BRD ID* ATC 3123 3121 1676 2994 641 2480 0.205 2.615 n/a

E manual RepoDB
name

LINCS
name 1572 1572 548 n/a 548 1024 0.349 1.000 n/a

F manual RepoDB
name BRD ID 1572 1572 684 n/a 548 1024 0.349 1.248 n/a

G KATdb RepoDB
name BRD ID 1572 1564 1410 1779 1052 512 0.673 1.340 1.930

H KATdb RepoDB DB BRD ID 1572 1562 1279 1512 1036 526 0.663 1.235 n/a
I KATdb EMA name BRD ID 1615 1381 400 1427 421 960 0.305 0.950 n/a
J KATdb EMA INN BRD ID 1040 883 442 1060 350 533 0.396 1.263 n/a

K KATdb RepoDB +
EMA name BRD ID 5802 4968 1459 2862 2608 2360 0.525 0.559 n/a
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We summarised each test case (A–K) and its outcomes in Table 4.2, the test case details
can be found in Supplementary Table A.2.

4.9.1 LINCS drug IDs to drug names (A–B)

In order to explore how many BRD IDs from L1000CDS2 we could map to names
(case A–B, Table 4.2), we first (A) manually mapped all BRD IDs (perturbagen ID) to
LINCS names (perturbagen description) using the L1000CDS2 metadata. Initially, no
name was assigned to 2878 BRD IDs, however, 1486 BRD IDs that appeared in more than
one experimental condition were assigned a human-readable name in one experiment, but
not in another. In A, we gave preference to human-readable names when one BRD ID
mapped to "-666" and a name. In B, we utilised KATdb to perform the same test. The
translation success was higher in B (0.99) compared to A (0.76). KATdb was unable to
map only 3 out of 5913 BRD IDs, compared to 1392, if done manually. KATdb improved
the translation success 1.3-fold. B had a much higher translation redundancy, where it
retrieved 6.3 names for each BRD ID, compared to 1.1 in A. In B, we queried KATdb
to return 13 different name types that consist of human-readable names (Supplementary
Table A.2), thus a higher than 1:1 mapping was expected.

4.9.2 Annotating drug names with ATC codes (C-D)

We explored the therapeutic classification of L1000CDS2 drug signatures by mapping
all unique L1000CDS2 identifiers to Anatomical Therapeutic Chemical (ATC) classification
codes. We performed two tests C and D (Table 4.2). In both cases we used KATdb to
map BRD IDs to ATC codes. In C, we used all unique BRD IDs available in L1000CDS2

and in D we used BRD IDs from signatures that met a significance threshold (p-value <
0.05). In C we started with 5913 unique BRD IDs and in D with 3123. In both cases, the
translation success was similar (C:0.22 and D:0.21), which was to be expected as D input
was a subset of C. The translation redundancy was also similar with 1:2.5 ACT codes for
C and 1:2.6 for D.

The translation success in C–D was much lower than in A–B. A–B mapped to names
which many chemicals and drugs get associated with, however, not every drug has an
ATC code. ATC codes are assigned by the WHO Collaborating Centre for Drug Statistics
Methodology (WHOCC) if requested. They are linked to specific indications so investi-
gational drugs are not included in the ATC classification. LINCS L1000 data consists of
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signatures from ∼20,000 small molecules, of which only ∼3000 are well-characterised
and ∼16,000 unannotated small molecules. We thus estimated that only ∼3000 out of
∼20,000 drugs (∼15%) would have an associated ATC code, thus we hypothesised that
the translation rate reflected the underlying LINCS database structure. More information
on L1000CDS2 data and ATC is discussed in Chapter 5: The Drug Repositioning Pipeline
sections 5.3.1 and 5.3.5, respectively.

4.9.3 Translating approved drug names to LINCS drug IDs (E–K)

As a final step of the project described in this thesis, we wanted to assess the per-
formance of the novel drug repositioning method (Chapters 6 and 7. We scored the
performance based on the methods’ ability to retrieve already approved drugs for a par-
ticular indication. We used subsets of two lists of approved drugs: RepoDB and EMA.
RepoDB and EMA include information on the FDA and EMA approved, withdrawn, and
failed drugs. To score a prioritised list of BRD ID drugs with a list of approved drugs, we
were required to map the approved names into BRD IDs. To explore different mapping
characteristics of KATdb, we prepared 7 different test cases (E-K, Table 4.2), but only
used K in benchmarking the drug repositioning method described as the core contribution
of this thesis.

Translating RepoDB (E–H)

We manually mapped RepoDB names to LINCS names in E and to BRD IDs in F.
From 1572 RepoDB names we successfully mapped 548 to LINCS names, with translation
success of 0.35. In F we first mapped RepoDB names to LINCS names (as in E) and then
to BRD IDs. The translation success was 0.35, limited by the first mapping step.

We next repeated the mapping from F with KATdb (G). The translation success score
was improved 1.9-fold, to 0.67, compared to manual mapping with the intermediate
step. With KATdb the mapping from one name type to another was not limited to one
intermediate step, but could simultaneously use all synonym information. In F, the mapping
was done in two steps: RepoDB name → LINCS name → BRD ID, while KATdb
automated multiple steps with various intermediates. This could be achieved with manual
mapping as well, but it would require extensive work, including database search, data
cleaning, and data aggregation. For each additional database that could yield additional
synonyms these steps would have to be repeated and more complex translation maps of
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possible synonym information flow would have to be constructed. The network nature of
KATdb efficiently connected all extracted relationships.

In H, we explored the translation success of translating from one identifier to another.
In addition to names, RepoDB includes a DrugBank ID for every drug name. Instead
of the RepoDB name, we used DrugBank ID to map to BRD IDs. The success rate
was similar to G, 0.674 compared to 0.665 in H. We hypothesised that using unique
identifiers from a curated database would yield higher quality results compared to using
drug names. However, the translation success scores were comparable in G-H, so we
predicted comparable confidence in mapping from name to BRD ID. The similar translation
success was probably due to similar mapping paths from either RepoDB name or RepoDB
DrugBank ID to BRD ID, because we included RepoDB in KATdb. Thus, the RepoDB
name and RepoDB DrugBank IDs were directly connected in KATdb and any mapping
path from either of them would have likely passed through the other.

Translating EMA (I–J)

EMA dataset included two human-readable names, the EMA name, which is a trade
name and an INN. In I and J we translated from EMA name and INN to BRD ID,
respectively. There were 1615 unique EMA names and 1040 INNs present in EMA. Every
EMA name was assigned an INN. 1385 EMA names and 886 INNs were found in KATdb,
that mapped to 955 and 1022 BRD IDs, respectively. Although there were ∼1.6-times
more EMA names than INNs, they mapped to approximately the same number of BRD
IDs. EMA names were mapped with translation success of 0.3 and INNs with 0.4. The
translation redundancy was also higher in J; these findings suggested that INNs are more
frequently used nomenclature than EMA names.

Translating RepoDB and EMA (K)

In the final test case, K, we joined all approved drug identifiers: RepoDB and EMA
names, DrugBank IDs, and INNs to map them to BRD IDs. From ∼5000 input names
found in KATdb, we successfully mapped approximately 50%. Translation redundancy
score indicated that on average there were 1:0.6 BRD IDs for each search name. This
indicated that approximately 2 input names matched to 1 BRD ID. As we initiated the
search with two identifiers per drug, we would expect that two input names matched one
goal name.
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4.10 Discussion

In this chapter, we developed and characterised a drug synonym resource, KATdb, that
overcomes challenges in unifying drug nomenclature. KATdb collected drug identifiers and
synonyms from 17 different databases. It improved the translation rate by exploiting graph
theoretic principles and is able to estimate the correctness of source database information.

Several studies and reviews have identified the problem of inconsistent and non-
standardised nomenclature (Akhondi et al., 2015; Chambers et al., 2013; Dashti et al.,
2019; Drug and Therapeutics Bulletin, 2018; Wohlgemuth et al., 2010). Most chemical
and drug databases have increased the number of synonyms and external references to
other databases (Ursu et al., 2017; Wishart et al., 2018). Wohlgemuth et al. (2010) have
developed a service offering single and batch conversion of chemical names to improve the
nomenclature used in metabolomic reports. Their service allows one name type per query
and the user needs to specify one out of over 200 name types. Although the service is more
comprehensive than KATdb, it is chemical focused, therefore there are key drug and drug
repositioning resources missing that have contributed to KATdb. In addition, their service
relies on established 1:1 links, while KATdb is able to translate with several intermediate
steps, linking synonyms that are not directly linked in any of the source databases.

We have shown that KATdb increased the translation success rate compared to manual
mapping. When published, the use of the KATdb visual interface has been created to
represent an intuitive and fast way to translate drug lists from and to one or many name
types. Each group of synonyms will be possible to investigate by examining the component
structure with edge betweenness indicating correctness confidence.

The creation of KATdb has relied upon, and has been limited by, source database
correctness, where some databases are less vigilant on the correctness of external syn-
onyms. Consequently, KATdb has required more data curation. Thus, we propose that
drug databases develop a simple user reporting system where reporting incorrect infor-
mation is possible, so that each user of that database can benefit from increased quality.
Wikipedia is one resource where it is user input reliant and allows real-time corrections and
updates. During this investigation we were able to correct several pieces of information on
Wikipedia, and thus improve the quality of consequent versions of any databases gaining
information from Wikipedia. We acknowledge that the errors were introduced by users.

Due to poorly established nomenclature practices for drug mixtures, we have not
resolved them in KATdb. Many structurally similar drugs also appeared as one marketed
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drug. In larger KATdb connected components, synonyms from related and structurally
similar drugs grouped together as one drug. In some cases, this offered additional insight
into therapeutic value. For any particular investigation a set of well-defined criteria for
drug mixtures and further curation may be required.

A graph theoretic approach to resolving drug mixtures could be implemented when
more relationships are added. One of the most widely used external identifiers, PubChem
CID, is the primary unique identifier for the comprehensive public PubChem Compound
database, that has not yet been included in KATdb. In addition to the Compound database,
PubChem also provides a Substance database, which is based on non-unique entries of
chemical information by the public. The confusion between the two types of identifiers,
CID and SID, for Compound and Substance database, respectively, presents a challenge
as many databases using the PubChem IDs as external identifiers do not specify whether
they are using CID or SID. Due to their similarity and unclear distinctions between CID
and SID in public databases, we omitted using SIDs as PubChem curates and assigns them
to a more-frequently used and unique CID. Implementing PubChem into KATdb could
reinforce already established relationships between synonyms and consequently, tighten
clusters within connected components. This would allow the identification of "bridge"
edges that we showed are more likely to convey false synonym relationships.

An important further step is to increase the availability of KATdb by publishing the
visual interface and hosting the database online. Additional features, such as user curation
and edge betweenness filtering, would enrich the user experience and improve the quality
of the resource. We predict that the development and publication of a KATdb R package
would increase its implementation into benchmarking pipelines.

KATdb was developed with the aim to increase translation between different types of
drug names used in truth-tables and drug repositioning methods. Mapping approved drugs
to other drug identifiers presents a benchmarking challenge that KATdb can overcome.
Upon publication, we encourage users to use KATdb in benchmarking drug repositioning
methods and increase the ability to objectively compare different repositioning methods.



Chapter 5

The Drug Repositioning Pipeline

This chapter describes the development of the drug repositioning pipeline that is the
key contribution of this thesis. The work has been developed as the result of two prototype
concepts: the Pathway Drug Network (PDN) (Joachim et al., 2018) and the Pathway
Coexpression Network (PCxN) (Pita-Juárez et al., 2018). After a brief overview of the
pipeline, we describe the core component: the Pathway Drug Coexpression Network
(PDxN). Development and characterisation of PDxN is the main focus of this chapter. The
remaining pipeline components are briefly described and discussed in relation to PDxN,
but further explored in later chapters when applied to 3 case studies.

The Alzheimer’s disease (AD) case study of PCxN and Complement to GSEA section
published in Pita-Juárez et al. (2018) were conducted and written in collaboration with the
first author as initial analysis of work contributing to this thesis.

Others’ contributions to this chapter. Gabriel Altschuler (Sheffield Institute for
Translational Neuroscience (SITraN), University of Sheffield) designed the overarching
concept for a drug repositioning method (Joachim et al., 2018) adopted in this chapter.
Yered Pita-Juárez’s PhD project (Department of Biostatistics, Harvard T.H. Chan School of
Public Health) served as the basis for the underlying method (Pita-Juárez et al., 2018) used
for the network construction. Wenbin Wei (SITraN, University of Sheffield) and Sokratis
Kariotis (SITraN, University of Sheffield) were both involved in the code review to identify
points for improvement. Sokratis Kariotis provided coding support in the computational
improvement of the Pita-Juárez et al. (2018) method.
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5.1 Pipeline Overview

This chapter presents the Pathway-Drug Coexpression Network (PDxN): a signature-
based drug repositioning pipeline. It is a novel pathway-based network method, relying
upon gene set correlations that capture the inherent relationships between pathways and
drug response signatures across a background of gene expression data. It is unique
in that it utilises gene set correlation to create global relationships, giving insight into
the degree to which they show similar and/or opposite functionality. The PDxN drug
repositioning pipeline is a disease-agnostic approach; each disease pathway signature is
used to interrogate PDxN separately.

The PDxN drug repositioning pipeline (Fig. 5.1) has 5 main components that are used
to process input data:

(i) the PDxN base system generation,

(ii) disease signature generation,

(iii) signature processing and drug prioritisation,

(iv) benchmarking,

(v) in vitro drug testing.

The first component is used as the base system and the other four are dynamically applied
to new data sets or case studies.

System generation. We generated PDxN by applying an adaptation of the method
described in Pita-Juárez et al. (2018). It is a correlation-based method that summarises
the expression of gene set members across a curated background of gene expression
microarrays from the Barcode project (McCall et al., 2014). We applied it to two types of
gene sets: a pathway set from the Molecular Signatures Database (MSigDB) (Subramanian
et al., 2005) and Pathprint (Altschuler et al., 2013) (details in Section 5.3.1 Data resources),
and a drug set of signatures from L1000 characteristic direction signature search engine
(L1000CDS2) (Duan et al., 2016) that were split into an up- and down-regulated gene
set for each drug signature. The genes in the up- or down-regulated drug gene sets were
defined as genes that were either up- or down-regulated upon drug perturbation compared
to control. We calculated the correlation between each pathway↔drug-direction pair. The
correlation estimates represented the edges in the resulting bipartite network with 1473
pathway nodes, 26,124 up-regulated drug nodes, 26,124 down-regulated drug nodes and
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Fig. (5.1) Drug repositioning pipeline overview. The pipeline consists of 5 main components that are used to process input data: (i) the Pathway-Drug
Coexpression Network (PDxN) generation (green, centre), (ii) Disease signature generation (red, top), (iii) Signature processing and drug prioritisation
(orange and yellow, middle-right), (iv) Benchmarking (blue, bottom) and (v) drug testing (teal, rightmost). The pipeline can be applied to any disease with
available gene expression data to generate a disease pathway signature. PDxN relationships between pathways in disease signature and drug signatures are
summarised to generate a prioritised drug list. The top drug candidates can then be tested in vitro for further investigation.
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76,961,304 edges between each pathway↔drug-direction pair. We filtered the network to
only include correlation estimates meeting a significance threshold (q-value < 0.05).

Disease signature generation. We generated a disease pathway signature from either
microarray or RNA-Seq data, comparing disease samples against controls. We summarised
z-scaled gene expression for each pathway by calculating the mean expression of the top
50% pathway member genes with highest |t| score (Section 5.4). We then used limma

(Ritchie et al., 2015) to generate differentially expressed pathways. We extracted the
5, 10, 15 and 20 most up-regulated (log2 fold change (logFC) > 0, adjusted p-value (q-
value) < 0.05) and the 5, 10, 15 and 20 most down-regulated (logFC < 0, q-value < 0.05)
pathways to construct the disease signature.

Signature processing and drug prioritisation. The pathways from the disease sig-
nature were split into up- and down-regulated pathway clusters depending on their fold
change. We summarised PDxN correlation estimates between each pathway cluster to each
drug-direction node. We then summarised the up- and down-direction node of each drug
to each pathway cluster, so that we derived one summarised edge score representing the
relationship between each pathway cluster↔drug pair. The drug list was then prioritised
with a decreasing correlation summary score for down- and increasing for up-regulated
cluster.

Benchmarking. The prioritised drug list was benchmarked with approved drugs for
the disease of interest. If there were no approved drugs for a particular disease, drugs
predicted to have a beneficial effect were used instead. A receiver operating characteristic
(ROC) curve was calculated for each cluster, assessing the overall performance of PDxN,
drug signature generation and signature processing steps. An area under the ROC curve
(AUC) was calculated and the AUC score was used to identify the most successful pathway
cluster.

Drug testing. A prioritised drug list for the most successful pathway cluster was
further investigated. The top drugs were manually curated based on their availability,
toxicity and known beneficial effects. The curated drug candidates were then provided to
our collaborators to be validated in a wet lab setting e.g. in vitro or in vivo.

Data resources. The drug repositioning method focused on using publicly available
data with a range of different types of databases used at different stages of the pipeline.
There were three main data types used in the pipeline:
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(i) gene expression datasets for the disease signature generation and background con-
struction in the base network,

(ii) gene set databases for pathway and drug signatures in the network,

(iii) benchmarking datasets to evaluate the performance of the method.

The data provided from collaborators were used when applying the pipeline to new case
studies for disease signature generation. When available, we used existing drug screen
results from disease models for benchmarking.

5.2 Prototype Network Methods

Two prototype methods have been used as the basis for the pathway-based network
repositioning system described in this thesis with the intent to combine the strengths from
both while improving on the weaknesses. The first, the Pathway Drug Network (PDN)
(Joachim et al., 2018), was developed as a drug repositioning system featuring pathprint

(Altschuler et al., 2013) for pathway signature generation, and drug and disease gene
sets extracted from Connectivity Map (CMap), PharmGKB and CTD. In this prototype,
the correlation estimates were calculated across 58,475 microarrays. Specific user-input
pathway clusters were then considered for correlation with drug-based signatures. The
second, the Pathway Coexpression Network (PCxN) (Pita-Juárez et al., 2018), aims to inter-
pret functional interaction between pathways by systematically quantifying coexpression
between canonical pathways from the MSigDB (Subramanian et al., 2005). The correlation
was estimated on a curated collection of 3207 microarrays from 72 normal human tissues.
The PCxN method accounts for shared genes between annotations to establish significant
correlations between pathways with related functions rather than with similar annotations.

We incorporated the network construction concept from PCxN, and from PDN we took
the concept of combining pathway and drug signatures, while considering disease pathway
clusters for drug prioritisation.

5.2.1 Pathway Drug Network (PDN) — Sepsis case study
(Joachim et al., 2018)

The first prototype system, Pathway Drug Network (PDN), described in Joachim et al.
(2018), tests whether an experimental gene signature is positively or negatively correlated
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to a gene signature associated with drug perturbation response from a collection of cell lines.
The base network was constructed by calculating the expression correlation between 16,150
drug, disease and pathway gene sets averaged across 58,475 microarrays. By measuring
correlation between gene sets across thousands of experiments, they hypothesised that the
action that regulates, or is regulated by two gene sets may be linked and/or have similar
or opposite functional roles. The drug candidates might therefore promote beneficial
pathways or inhibit harmful ones.

The PDN was applied to a sepsis case study (Fig. 5.2). The network considered specific
pathway clusters for correlation with drug-based signatures. The query pathway clusters
were defined after identifying differences in pathway activity using Pathprint (Altschuler
et al., 2013) on publicly available sepsis microarrays. Separate pathway clusters were
considered based on combinations of up- and down-regulated pathways between adult
and children samples. The network neighbourhood of the sepsis cluster pathways was
used to identify drugs that were most positively or most negatively linked to the pathway
clusters. For each cluster, a sub-network was constructed that contained nodes representing
each of the member pathways of that cluster, together with all the base network nodes
with connecting edges to the cluster members. The significance of the base nodes was
ranked using the edge p-values aggregated by Fisher’s method (Mosteller and Fisher, 1948).
The p-values were then further aggregated across drug nodes and clusters accounting for
direction of the correlation, resulting in one p-value for each drug-correlation direction-

cluster combination. The final drug↔cluster score was calculated by combining the
p-value ranks of correlation direction for each drug↔cluster pair.

The top drug candidates were identified by extensive curation of the top scoring drugs
for each of the clusters. The curation considered published data collected in preclinical
animal models of sepsis on top scoring drug candidates and drugs similar to those top
scoring candidates. Evaluation and validation of the resulting drug list by both literature
curation and direct experimentation showed substantial enrichment for promising drug
candidates. Joachim et al. (2018) have demonstrated that their methodology was more
effective at generating positive drug leads than a gene-level method Library of Integrated
Network-based Cellular Signatures (LINCS) (Wang et al. (2016b), Appendix Tables S1-S5
in Joachim et al. (2018)).

In summary, PDN offers an alternative to traditional signature-based methods. It
tests whether an experimental gene signature is correlated or anti-correlated to the gene
signature associated with drug treatment. It quantifies the relationship between two
pathway signatures across many experiments rather than accessing their similarity in a
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Fig. (5.2) Pathway Drug Network (PDN) overview. (1) Publicly available datasets from tran-
scriptome profiling experiments are identified that include blood leukocyte samples from adult and
child sepsis patients. (2) After data processing, (3) Pathprint is used to translate the gene expression
patterns at the pathway activity level. After identifying age-associated differences in pathway
activity, the pathways are used to facilitate drug discovery by constructing targeted pathway drug
networks (PDNs). (4) The method works by incorporating target pathways into a base network
built upon the correlation in the expression of > 16,000 disease, pathway, and drug gene signatures
across > 50,000 individual microarrays. The resultant network neighbourhood was used to identify
drugs with positive or negative association with high-survival (child) or high-mortality (adult)
pathways, respectively. (5) The top drug leads were validated by curating and analysing prior data
collected in preclinical models of sepsis and also by directly testing their ability to improve survival
in a mouse model of fatal endotoxemia. Figure taken, and legend modified from Joachim et al.
(2018).
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single test. Using human transcriptomics data in both network construction and sepsis
signature development increased potential value of subsequent analyses. It has the potential
to link any pair of gene signatures in terms of their transcriptional regulation, irrespective
of their source, thus providing the possibility to consider use-case specific curated gene
signatures. Having a base correlation network meant that case specific clusters of pathways
could be used to detect any associated drugs.

Limitations

The main limitations of this approach are related to the meta-analysis of microarray
data. The disease signature generation was limited to platforms available in Pathprint,
hence overlooking the vast amount of RNA-Seq datasets. The reliance on a relatively small
collection of CMap drug perturbation signatures that are quantified on cancer cell lines may
have also skewed results. Updating the system to include a much larger successor of CMap,
LINCS as well as a newer version of pathway gene sets might have also provided additional
power. In addition, final drug candidate score based on aggregation of the correlation
estimates, instead of p-values, might have revealed more biologically meaningful drug
candidates for a given pathway cluster. Despite these limitations, the method served as
proof of concept for pathway-based signature driven network methods.

5.2.2 Pathway Coexpression Network (PCxN) — Alzheimer’s
disease case study (Pita-Juárez et al., 2018)

The Pathway Coexpression Network (PCxN), described in Pita-Juárez et al. (2018),
is based on a coexpression method that describes global relationships between pathways.
It provides an interpretation of functional interactions between pathways by quantifying
coexpression between 1330 canonical pathways using a curated collection of 3207 microar-
rays in 134 experiments from 72 normal human tissues from GEO curated in Barcode 3.0
(McCall et al., 2014). PCxN is a weighted undirected network where the nodes represent
pathway gene sets, and the edges are based on the correlation between the expression of the
pathways. We integrated a wide range of experiments by estimating the correlation between
summaries of the pathway expression, testing their significance in every experiment, and
then aggregating the experiment-level estimates into global estimates. In Pita-Juárez et al.
(2018), we demonstrated that PCxN provides novel insight into mechanisms of complex
diseases using an Alzheimer’s disease (AD) case study.
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Fig. (5.3) Pathway Coexpression Network (PCxN) overview. (1) Human gene expression
arrays for normal human tissues curated from GEO in Barcode 3.0. (2) The gene expression
levels were replaced by their ranks so all arrays share a common scale. (3) For each microarray
experiment, we first estimated the pathway expression-based on the mean of the expression ranks,
then the pathway correlation adjusted for shared genes and tested the significance of the correlation.
(4) We aggregated the experiment-level estimates to get the global pathway correlation and its
corresponding significance. (5) We built a pathway coexpression network based on the significant
pathway correlations. Figure taken and legend modified from Pita-Juárez et al. (2018).
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The network was created (Fig. 5.3) by first ranking normalised gene expression levels
to provide uniform scale for all samples. Ranks provided a robust summary statistic
to calculate expression scores that were independent of the dynamic range of an array.
Pathways were assigned an expression summary in each sample based on the mean rank
of its member genes. Since the gene expression background was composed of several
experiments representing different tissues, the estimated correlation between each pair of
canonical pathways summarised expression and tested for significance in every experiment.
We then combined the experiment-level estimates into global estimates. Two pathways
were connected in the resulting coexpression network if the correlation coefficient between
them was significant after adjusting for multiple comparisons.

PCxN adjusts the correlation between pathways by conditioning on the shared genes
(Fig. 5.3 part 3) to overcome the pathway annotation redundancies. Pathway databases
often include pathways that share genes to varying degrees and shared genes between
pathways can either be a consequence of closely related functions or redundant annotation
from different sources. Therefore, not accounting for such redundancies during pathway
analysis could lead to identifying pathways relationships due to high content-similarity,
rather than truly related biological mechanisms. The advantage of PCxN approach is that,
by accounting for shared genes between pathways, the relationship between canonical
pathways were established when their functions were related, rather than when their
annotations had similar content.

PCxN provides a powerful means to generate models for complex diseases by providing
pathways significantly correlated with an assay-independent disease gene signature. We
applied PCxN to identify key processes related to AD, interpreting a mixed genetic
association and experimental derived set of disease genes in the context of gene co-
expression. PCxN retrieved pathways significantly correlated with an expert curated AD
gene list.

The PCxN case study: Alzheimer’s disease

In the PCxN paper (Pita-Juárez et al., 2018), we used genes within an AD curated
list (ADCL) as the disease gene signature. The ADCL is a set of association-derived and
experimentally-derived genes related to AD that were curated by an AD expert (Professor
Rudolph Tanzi, Harvard Medical School) to represent the current understanding of AD
(list published in Pita-Juárez et al. (2018), Supplementary Table C.1). We integrated the
ADCL to PCxN as an additional gene set, following the same method as for the other
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pathways. PCxN allowed us to identify canonical pathways significantly correlated with
the curated AD gene list.

Since PCxN does not rely on shared genes, PCxN uncovered relationships that would
have been missed by methods that rely only on gene overlap to describe the relationships
between pathways. All of the top ten correlated pathways had no genes in common with
the ADCL. These pathways have known relationships with AD, amyloid pathology or
immune system. Furthermore, the correlated pathways were significantly enriched for
genes associated with AD independently derived from genome wide association studies.
These results showed the value of PCxN in finding biological processes associated with
complex diseases using gene signatures.

PCxN provided a powerful contribution to the interpretation of the gene set enrichment
methods by describing the relationships between enriched pathways independent of gene
overlap. We used PCxN to describe the relationships between pathways identified as en-
riched by gene set enrichment analysis (GSEA) in a published microarray gene expression
experiment profiling the effect of AD in the superior frontal gyrus. We expanded the
scope of gene set enrichment results by retrieving pathways correlated with the enriched
pathways. The PCxN revealed that correlated pathways from an AD expression profiling
study include functional clusters involved in cell adhesion and oxidative stress. It provided
a powerful new framework for interrogation of global pathway relationships.

Limitations

PCxN relied on the completeness and correctness of pathway annotations to relate
biological processes. A limitation is that PCxN only considers a pathway as a gene list,
omitting any knowledge of the interaction between its members. Compared to pathways as
a gene list, pathway topology-based methods have been shown to perform better (Nguyen
et al., 2019). It is also limited by the gene expression data used to estimate the correlations.
The current implementation only used one microarray platform and a curated expression
background. This implementation of PCxN did not take advantage of the growing number
of publicly available RNA-Seq datasets. The method could be expanded to include a wider
range of pathway annotations and to use gene expression data from other platforms such
as RNA-Seq.

PCxN established the utility of describing relationships between pathways in a broad
context. By using a diverse set of gene expression experiments, it leveraged correlation
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estimates across various human tissues effectively capturing relationships regardless of
shared genes.

5.3 Pathway-Drug Coexpression Network (PDxN)

The Pathway-Drug Coexpression Network (PDxN) is a weighted bipartite network
connecting pathway and drug gene sets. The PDxN is, as the name suggests, a pathway-
based network estimating the correlation between pathway and drug nodes. It is the core of
the drug repositioning pipeline described in this thesis. It serves as the base network that is
then interrogated with user-specific disease pathway signatures. While most other pipeline
components were generated for each individual application, PDxN was pre-calculated and
remained relatively static, with the dynamic possibility to be expanded to include other
gene sets.

The relationships between gene sets were based on the methodology of PCxN (Pita-
Juárez et al., 2018) (Section 5.2.2). The PDxN relationships estimated correlation by
summarising the expression of gene set members across a curated normal background of
gene expression microarrays from Barcode 3.0 (McCall et al., 2014) and then calculating
the correlation between each pair of pathway↔drug gene sets. The background gene
expression data consisted of 134 experiments with 3207 Affymetrix Human Genome U133
Plus 2.0 microarrays (GPL570) from 72 normal human tissues.

The correlation in PDxN was calculated between two types of gene sets, a pathway
set of 1329 pathways from MSigDB (Subramanian et al., 2005) and a subset of 144 static
modules from Pathprint (Altschuler et al., 2013; Wu et al., 2010b), and a drug set of
26,124 drug signatures from L1000CDS2 (Duan et al., 2016) that were split into an up- and
down-regulated gene set for each drug signature. We calculated the correlation between
each pathway↔drug-direction pair, resulting in a bipartite network with 1473 pathway
nodes, 26,124 up-regulated drug nodes, 26,124 down-regulated drug nodes and 76,961,304
edges between each pathway↔drug-direction pair.

We adapted the idea of using many types of gene sets from PDN, which included
pathway, drug and disease gene sets. However, a part of drug- and all disease-gene sets in
PDN were limited to genes researched and annotated to be associated with the drug/disease,
skewed by a reporting and curation bias towards well-studied genes and processes. Curated
drug and disease gene sets also lack directionality that can be preserved with signatures
generated from gene expression data. Therefore, we have only included experimentally-
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derived drug signatures in PDxN. The gene expression-based drug signatures used in
PDN were updated from the pilot CMap (Lamb et al., 2006) dataset to a larger successor
database LINCS (Keenan et al., 2018; Subramanian et al., 2017), processed by using the
characteristic direction as part of the L1000CDS database (Duan et al., 2016). While the
pathway gene sets were in their definition limited by their annotations, we updated and
expanded the pathway gene sets to MSigDB v6.2 (Subramanian et al., 2005) and added
data-driven static modules from pathprint (Altschuler et al., 2013; Wu et al., 2010b).

To be able to apply it to an expanded set of gene sets, we have improved the com-
putational efficiency of the PCxN methodology (Section 5.3.2). We applied it to two
types of gene sets, pathway and drug, and limited the relationships calculated to only
pathway↔drug, rather than all possible relationships, to further decrease the computa-
tional requirements. We were able to apply the PCxN method to a ∼36-times bigger node
set, calculating ∼71-times more edges.

5.3.1 Data resources

The PDxN was built from 4 different resources: MSigDB (Subramanian et al., 2005),
Pathprint (Altschuler et al., 2013) and L1000CDS (Duan et al., 2016) for gene sets and
Barcode 3.0 (McCall et al., 2014) for background gene expression data.

MSigDB (Subramanian et al., 2005)

The network nodes were represented by 1473 pathway nodes of which 1329 are
MSigDB v6.2 C2 canonical pathways. The Molecular Signatures Database (MSigDB) is
a collection of annotated gene sets designed for use with Gene Set Enrichment Analysis
(GSEA) software. It is divided into 8 main collections:

(i) H: hallmark gene sets,

(ii) C1: positional gene sets,

(iii) C2: curated gene sets,

(iv) C3: motif gene sets,

(v) C4: computational gene sets,

(vi) C5: gene ontology (GO) gene sets,

(vii) C6: oncogenic gene sets,
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(viii) C7: immunologic gene sets.

We considered using H and C2, but due to low numbers (50) of gene sets present in H,
we proceeded with only C2. C2 consisted of 4276 gene sets that were further split into
CGP: chemical and genetic perturbations (3433), and CP: Canonical pathways (1329). As
we utilised a more expansive set of chemical perturbations, we only used CP Canonical
Pathways subset of C2 curated gene sets in our pathway set of gene sets.

The C2 Canonical Pathways include canonical representations of biological processes
compiled by domain experts. They were aggregated from the following pathway databases:

(i) Reactome (Matthews et al., 2009),

(ii) KEGG (Kanehisa et al., 2014),

(iii) the Pathway Interaction Database (PID) (Schaefer et al., 2009),

(iv) Biocarta (Nishimura, 2001),

(v) the Matrisome Project (Naba et al., 2012),

(vi) Signal Transduction Knowledge Environment (Gough, 2002),

(vii) SigmaAldrich (SA) and Signaling Gateway (Saunders et al., 2008).

Pathprint static modules (Altschuler et al., 2013; Wu et al., 2010b)

In addition to MSigDB C2 Canonical Pathways we included 144 static modules from
pathprint R package (Altschuler et al., 2013). Static modules are a set of data-derived
functional-interaction gene clusters (Wu et al., 2010b). Pathprint included 633 pathways of
which there were 489 canonical pathways and 144 static modules. The canonical pathways
were constructed from KEGG, Reactome and Wikipathways. We incorporated only static
modules, because the canonical pathways include pathway annotations from outdated
versions of databases used in MSigDB.

We used static modules (Wu et al., 2010b) to counterbalance inherent curation bias
towards well-studied genes introduced in MSigDB gene sets. Static modules are non-
curated gene sets of highly connected genes from a functional-interaction network. They
enabled us to examine the activity of less studied or annotated biological processes.

As described in Wu et al. (2010b), the functional-interaction network was constructed
by extending curated pathways with non-curated sources of information, including protein-
protein interactions, gene co-expression, protein domain interaction, GO annotations and
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text-mined protein interactions. The functional-interaction network consisted of 181,706
interactions between 9452 genes. A Markov cluster algorithm was used to decompose
the network, yielding 144 highly connected functional-interaction clusters, termed static
modules, ranging in size from 10 to 743 nodes or member genes. Each cluster was named
according to the member gene with the highest degree, i.e. the hub gene. The modules
cover 6458 genes, 1551 of which are not represented in MSigDB v6.2 C2 Canonical
pathways.

Top GO terms associated with all the static modules can be found in Altschuler et al.
(2013) "Additional file 2" to provide additional biological context for the static modules.

LINCS L1000 (Subramanian et al., 2017) and L1000CDS (Duan et al., 2016)

The Library of Integrated Network-based Cellular Signatures (LINCS) L1000 small
molecule expression profiles is the underlying dataset for the L1000 characteristic direction
signature (L1000CDS) database used as the source of drug signatures in PDxN.

The LINCS L1000 dataset utilised a new gene expression profiling method, L1000, that
drastically lowered cost and therefore enabled cost-effective, high-throughput screenings
currently totalling 1.30 million L1000 profiles available in LINCS. The L1000 profiling
method measures 978 landmark transcripts and then imputes the rest of the transcripts.
They showed that the ∼1000 data-driven landmark transcripts were sufficient to recover
82% of the information in the full transcriptome (Subramanian et al., 2017).

The LINCS L1000 project has collected gene expression profiles for over 25,000
genetic and small molecule perturbagens at a variety of time points, concentrations, and cell
lines, generating ∼470,000 signatures (consolidating replicates) from 1.3 million profiles.
There were ∼20,000 small molecules of which a small subset of ∼3000 represented the
annotated small molecules that were systematically profiled in 9 core cell lines (A375,
A549, HA1E, HCC515, HEPG2, HT29, MCF7, PC3, and VCAP) — the touchstone subset,
and the rest (∼16,000) were unannotated small molecules that were tested in variable cell
lines — the discover subset.

The LINCS L1000 data was separated into five data levels at different points in the
analysis pipeline:

(i) Level 1: Raw unprocessed data,

(ii) Level 2: Gene expression values per 1000 genes,

https://genomemedicine.biomedcentral.com/articles/10.1186/gm472#Sec29
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(iii) Level 3: Normalised gene expression profiles of landmark genes and imputed
transcripts,

(iv) Level 4: Gene signatures computed using z-scores relative to the plate population as
control or relative to the plate vehicle control

(v) Level 5: Differential gene expression signatures computed using the moderate
z-score method.

The L1000CDS dataset used characteristic direction (CD) method to calculate the
differentially expressed genes of the profiles in LINCS L1000. The CD (Clark et al., 2014)
is a multivariate method that first identifies the linear hyperplane that best separates the
control from the case samples using linear discriminant analysis. It then uses the normal to
the hyperplane to define the direction of change in expression space for each gene. It gives
less weight to individual genes that display a large change in magnitude when comparing
two conditions. Some genes that change in magnitude substantially may be given a lower
score, or a p-value, compared with other methods such as the fold-change method. The CD
method gives more weight to genes that move together in the same direction across repeats.
Therefore, a gene that changed less but moved together with a large group of genes in other
repeats may have been scored higher than a gene that changed more in overall magnitude
(Duan et al., 2016).

The L1000CDS used LINCS L1000 Level 3 normalised data to calculate a CD unit
vector for each experimental replicate compared to all the control replicates on the same
plate. The CDs across replicates were then averaged. The mean of the pairwise cosine
distance between the CDs across replicates was used as a test statistic to generate a p-value.
Duan et al. (2016) showed that processing the L1000 data with CD method significantly
improved signal to noise compared with the moderate z-score method currently used by
original LINCS to compute L1000 signatures.

To remain directionality of drug signatures, we split each signature into two non-
overlapping gene sets: up-regulated, and down-regulated gene set according to the CD
value of each member gene. CD > 0 for up- and CD < 0 for down-regulated. So that
each drug node in PDxN represented a particular direction of drug expression in specific
conditions.

The L1000CDS included 119,156 drug signatures of which 26,124 met a significance
threshold (p-value < 0.05) and included more than 5 genes in each direction. Resulting in
26,124 up- and 26,124 down-regulated drug nodes, contributing to 52,248 drug nodes.
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Fig. (5.4) The L1000CDS drug signatures in PDxN. Distribution of 26,124 drug signatures
(p-value < 0.05) representing 3105 different drugs across cell types (light blue), exposure times
(h, dark blue) and concentrations (µM, yellow). Showing the 9 most predominant cell lines, at
mostly 24h exposure time at 10µM concentration. Each drug signature is combined across several
replicates. Node colour indicates metadata property type (node type). Edge colour represents the
concentration value in µM. Concentration values are rounded to 1 significant digit. h — hours;
L1000CDS — L1000 Characteristic Direction Signature; PDxN — Pathway Drug Coexpression
Network.
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Each drug signature represented a specific set of conditions, varying drug, exposure
time, cell type and concentration (Fig. 5.4). Cell types included primary cell lines, cancer
cell lines, stem cell lines, and differentiated cell lines from different tissue types. It can
be seen from Fig. 5.4 that the distribution of 26,124 drug signatures from L1000CDS still
mimics the structure of LINCS L1000 data where there were 9 predominant cell lines
(A375, A549, HA1E, HCC515, HEPG2, HT29, MCF7, PC3, and VCAP) systematically
tested at two exposure times (24h and 6h) and several concentrations, but predominantly at
10µM. There were fewer signatures tested in other cell lines (not the main 9) and it can be
seen from Fig. 5.4 that these were tested in a less systematic way.

Barcode 3.0

We calculated the correlation estimates between pathway and drug gene sets in a
curated normal background of gene expression microarrays from Barcode 3.0 (McCall
et al., 2014). We summarised the expression of each gene set in each sample. We then
calculated the correlation between each pair of pathway↔drug gene set across samples and
combined it across experiments. The background gene expression data consisted of 134
experiments with 3207 Affymetrix Human Genome U133 Plus 2.0 microarrays (GPL570)
from 72 normal human tissues. The curated microarrays in Barcode 3.0 were filtered to
exclude poor quality samples (McCall et al., 2011b, 2014).

We based our pipeline on a normal background of gene expression data, so that we
could follow the signature hypothesis and match opposite drug and disease signatures to try
drive the system back to normal, healthy state (Fig. 2.4). The disease signature was defined
in disease gene expression data and drug signatures were defined from drug perturbations
in a set of conditions on a variety of cell lines. We brought them together and investigated
their correlation relationship on the curated background of normal gene expression in a
collection of tissues. We captured the functional relationships between pathways and drug
signatures under normal conditions. We could identify pathway↔drug pairs that were
closely related across many tissues. We quantified relationships between pathways that
were dysregulated in disease conditions and drug genes that were dysregulated upon drug
treatment.
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5.3.2 Reducing computational resource requirements

The PCxN method used to construct PDxN, was initially designed to compute rela-
tionships between 1330 pathways. In order to be able to apply this method to a much
larger pathway and drug set, we were required to perform significant computational im-
provements. We focused on reducing computational requirements and improving the
computational speed. The original method had been split into four parts:

(i) Part 0: Filter gene set annotations to keep only genes present in the gene expression
background

(ii) Part 1: Get experiment-level estimate; estimate all pairwise pathway correlation
coefficients and corresponding p-values

(iii) Part 2: Aggregate the experiment-level correlation estimates and p-values

(iv) Part 3: Aggregate results into a single data structure

Each part needed to be completed in full before the next could start.

In collaboration with thesis supervisor Wenbin Wei and junior programmer Sokratis
Kariotis we started with a desk review of the code. This led us to identifying a set
of possible slow points. We tested the key functions to identify the bottlenecks. The
largest bottlenecks were partially rewritten in C++ by Sokratis Kariotis, but because of the
large amount of R dependencies it did not provide any speedup. Part 0 and 3 required a
negligible amount of time and memory compared to part 1 and 2. Therefore, we focused
our improvements only on part 1 and 2.

In part 1, we identified that there was a redundantly repeated calculation when sum-
marising the pathway expression for each pathway pair. Instead of summarising the
pathway once for every experiment, the pathway summary was calculated whenever the
pathway was in a pathway pair. To resolve this, we pre-calculated the pathway summary
matrix and then called it when calculating the pathway pair correlation.

In the original method part 1 was split in 72 tasks, one task per tissue, with tissues
represented by 1–11 experiments. The tissues tasks with more experiments were therefore
queuing the experiments and were predicted to take longer. To allow further parallelisation,
we split part 1 into even more tasks. We calculated estimates for one experiment per task,
splitting experiment-level estimates in 134 smaller tasks.

In part 2 where we combined the experiment-level estimates, we increased the number
of pairs calculated per task from 1000 to 100,000. While it was faster to combine 1000
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pairs per task, the number of parts increased linearly with an increasing size of relationships,
e.g. 5 tasks for 100 gene sets with 4950 pairs to 500 tasks for 1000 gene sets with 499,500
pairs. In each task all the experiment-level estimates needed to be read into memory and
then subsetted to the task pairs before the experiment-level estimates were combined for
each task pair.

The original PCxN was thus split into 1 task for part 0, 72 for part 1, number of pairs
1000 tasks

for part 2 and 1 for part 3. We restructured it so that it ran in 1 task for part 0, 134 for part
1, number of pairs

100000 tasks for part 2 and 1 for part 3. We predicted that increasing the number
of tasks in part 1 and decreasing in part 2 will improve computational efficiency of the
method.

We added two new features that made it possible to apply it to a much larger number of
gene sets. We first limited the pairs calculated to those of interest rather than all possible
pairs. For example, in PDxN we were only interested in pathway↔drug pairs, while PCxN
calculates all possible pairs. Additionally, due to memory constraints when considering
larger gene sets, we added an extra optional joining step that can join multiple subsets of
the network together. For example, with the current version of PDxN, we split the drug
gene sets into 6 sets and calculated 6 sub-versions of PDxN, one for each drug subset, that
were then joined and p-values corrected for multiple testing.

We measured the performance improvement by running a set of test runs with the
original and improved PCxN method (Fig. 5.5). We varied the number of the gene sets and
consequently, also the number of relationships calculated. We used the PDxN pathway
set in our tests where we calculated all possible relationships, i.e. all pathway↔pathway
pairs. We tested both methods at 10, 20, 50, 100, 200, 400, 800, 1000, 1200 and 1473
gene sets, with 1473 representing the updated size of PCxN. We ran each part with 8 cores
with 4GB virtual memory (vmem) each. We repeated each test two times. We measured
maximum vmem (max vmem) and wall clock time. Wall clock time is the actual amount
of time taken to perform a task. We reported max vmem and wall clock time per part and
total for all parts together with an increasing number of pairs.

Pre-calculating pathway summary scores in part 1 and keeping them in memory
decreased the computational time but increased the initial memory burden. The memory
requirement stabilised with an increasing number of gene sets. As the number of pairs
increased, the total max vmem of the original version surpassed the memory requirements
of the improved version. The wall clock time of the original part 1 increased at ∼2-times
the rate of the improved version. The most significant improvement was increasing the
number of pairs calculated in part 2 from 1000 per task to 100,000. In each task, all the
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Fig. (5.5) Computational improvement of PCxN method. We improved the original PCxN
method to be able to apply it to a larger number of gene sets. The PCxN method is split into 4 parts.
Part 0 and 3 represent a negligible part of total time and memory. We thus focused on improving
part 1 and 2. We tested the original and the improved method with an increasing number of gene
sets and thus pairs. We measured (A) the total wall clock time (in h) and (B) the total maximum
virtual memory (max vmem, in GB). There is ∼ 10-times improvement in total wall clock time and
∼ 15-times improvement in total max vmem. GB — gigabyte; h — hours; max vmem — maximum
virtual memory; PCxN — Pathway Coexpression Network; PDxN — Pathway Drug Coexpression
Network.
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experiment-level estimates were read into the environment and then subsetted to the task
pairs. The more tasks part was split into, the more times this was repeated, introducing
large memory and time burdens. It is possible that a further increase in the number of pairs
per task would further decrease the total memory and time. In addition, the new feature of
joining the sub-networks made it possible to dynamically add extra gene sets, without the
need to re-calculate the existing network.

Table (5.1) Summary of the computational improvements of the PCxN method (Pita-Juárez
et al., 2018). Improvement is calculated as the original method’s parameter divided by the improved.
An improvement score > 1 indicates an improvement and < 1 indicates a decrease in performance.
max vmem — maximum virtual memory; PCxN — Pathway Coexpression Network.

Number of
gene sets

Number of
pairs

Total max vmem
improvement

Total wall clock
time

improvement

10 45 0.633 0.450
20 190 0.767 0.435
50 1225 0.704 0.614
100 4950 0.506 0.921
200 19900 0.517 1.520
400 79800 0.954 2.500
800 319600 3.950 4.850
1000 499500 8.210 6.540
1200 719400 11.200 8.480
1473 1084128 15.700 11.700

The final results showed that changes caused a decrease in performance when consider-
ing a small number of pairs (≲ 5000) but an increasing improvement when testing a larger
number of pairs. We measured ∼12-times speedup at 1473 gene sets and 1,084,128 pairs,
and ∼16-times lower total max vmem. Testing showed no change in results.

The improved performance of the method made it more accessible and available for
reuse and further development. For example, with increasing availability of data and
continuous evolving curated databases, the improved performance makes it possible to
update the system with new information available.

5.3.3 Network topology

We constructed PDxN with computationally improved PCxN method (Pita-Juárez et al.,
2018), making use of additionally implemented features that made it possible to apply the
method to an extended number of gene sets. We described the resulting network in more
detail by considering its topological features.
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Network topology describes the topological structure of a network in particular the
arrangement of the network elements. We modelled gene sets as nodes and the correlation
estimates between nodes as weighted connections termed edges. Using graph theory,
network topology gives insight in the underlying structure and properties of a particular
network. We investigated the PDxN topology and compared it to the PCxN to evaluate
their structure at varying significance thresholds and to investigate whether functional
relationships were also captured in PDxN even though we were applying the PCxN method
to two types of gene sets. An updated version of PCxN was generated using the same
pathway set as used in PDxN.

A distinctive feature of PDxN is that it is a bipartite network, where nodes are separated
in two independent sets, drugs and pathways, and connections exist only between two
nodes from different sets (Fig. 5.6). In comparison, PCxN is a fully connected network
where all nodes are connected to all other nodes (at significance threshold p-value ≤ 1). It
has only one set of nodes, pathway nodes. In both networks the connections between nodes
represent the correlation estimates calculated for the pair of gene sets that the connected
nodes are representing. The correlation estimate is a summarised correlation score for
given nodes across experiments on a background of gene expression. The edges can be
positive or negative depending on the correlation estimate, where two gene sets are either
positively or negatively correlated. Each correlation estimate has an associated q-value,
which is used to filter the edges in a fully connected PCxN and a complete bipartite PDxN.
Absolute correlation values were used as edge weights in clustering of both graphs and
generating PDxN projections.

Theoretically, PDxN could be a unipartite network where we would be investigating all
possible relationships between gene sets, ignoring the underlying information the gene sets
represent. However, we have only considered relationships between pathway↔drug pairs
rather than all possible relationships, i.e. pathway↔drug, pathway↔pathway (PCxN),
drug↔drug, due to computational limitations as well as the aims of the proposed pipeline.
The omitted relationships could be calculated to further investigate pathway↔pathway and
drug↔drug relationships. By limiting our relationships to only pathway↔drug we were
required to calculate only n×m = 76,961,304 rather than (n+m)((n+m)−1)

2 = 1,442,946,060
of all possible edges, where |P|= n is the number of nodes in pathway set P and |C|= m

the number of nodes in drug set C. Thus, PDxN (at significance threshold p-value ≤ 1)
represented 5.33% of all possible relationships, significantly reducing the computational
burden.
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Fig. (5.6) PCxN, PDxN and PDxN projections. PCxN consists of one set of nodes: a pathway
node-set, P; while PDxN consists of two sets of nodes: a pathway set, P, and a drug node-set, D.
The pathway node set (pink) consists of gene sets annotated with a particular function i.e. pathway
and static modules representing functionally connected gene communities. The drug node sets
consist of two nodes for each drug, one representing up- (blue, Dup) and one down-regulated (teal,
Ddn) genes from drug perturbation experiments. The connections between nodes in PDxN and
PCxN (dark blue, red) represent correlation estimates of gene sets represented by the two nodes on
a background of gene expression data. Connections exist only between two nodes from different
sets in PDxN. In PCxN, connections exist between nodes in the pathway node set. The edges can
be positive (red) or negative (blue) depending on the correlation estimate, where two gene sets are
positively or negatively correlated. PDxN is projected into drug and pathway network projections,
where the nodes in each projection are connected if they are connected to the same node from the
other node set in the original bipartite network. PCxN — Pathway Coexpression Network; PDxN —
Pathway Drug Coexpression Network.
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To further characterise PDxN and PCxN we investigated their topological features. We
first looked at how the networks change at q-value thresholds. Tables 5.2 (PCxN) and 5.3
(PDxN) show that over 90% of network edges in both networks have an q-value > 0.99.
This was expected as gene sets were likely to be differentially regulated in different tissues
and hence were not likely to have a consistent relationship across experiments. Table 5.2
shows that on average, pathways only have significant relationships with less than 10% of
other pathways (Table 5.2). PDxN has even fewer connections which could be explained
by a higher number of gene sets. With higher number of gene sets (1473 for PCxN and
53,721 for PDxN), the system was trying to summarise a higher number of individual
member genes (10,450 unique genes for PCxN and 14,781 for PDxN) across experiments
and tissues, thus we could expect fewer consistently expressed relationships.

We generated sub-networks for PDxN and PCxN to further investigate how mean
degree and the total number of nodes, and the total number of edges changed with the
q-value threshold for the edge correlation values (Fig. 5.7A-B). As seen in tables 5.2 and
5.3, there was a drastic decrease at q-value ∼= 1 in edge properties (number of edges (green),
mean degree of pathway nodes (dark blue) and mean degree of drug nodes (blue), right
side for both, PCxN (5.7A) and PDxN (5.7B)). The networks were relatively unaffected
at 0.99 > q-value > 0.05 (Fig. 5.7A-B right, dashed line — q-value = 0.05) with all the
metrics decreasing slowly with lower p-value thresholds. The networks gradually reduced
in size at q-values < 0.05 (Fig. 5.7A–B left) in a linear manner.

At q-value ≤ 0.05 there were 4.32% of edges remaining connecting 95.2% of pathway
and 89.5% of drug nodes, PCxN, in contrast, is higher with 7.26% of edges remaining
intra-connecting 97.6% of pathway nodes.

In the remainder of this thesis we used PDxN and PCxN with a q-value threshold
< 0.05. At that threshold there were 1402 pathways, 21,227 drug signatures with both di-
rection nodes, 2442 with only up-regulated signatures, and 1841 with only down-regulated
signatures. On average each pathway was connected to ∼ 2370 drug nodes of which
1345.6 were up-regulated and 1024.2 were down-regulated. Each drug node was con-
nected to ∼ 71 pathways (up-drug nodes to 79.7 pathway nodes and down-drug nodes to
62.2 pathways). There were 1437 pathway gene sets remaining in PCxN connected to
∼ 110 other pathways.

We compared the PDxN correlation value and q-value distributions to PCxN. We
observed similar q-value and correlation distributions (Fig.5.7D, E, respectively) in PDxN
and PCxN, despite the fact that PDxN has over 40-times more edges than PCxN (at q-value
< 0.05) and there were no overlapping edges between the networks. It could be argued
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Table (5.2) Summary of PCxN properties at different significance thresholds. Each q-value
threshold represents values ≤ than the value stated. The value in brackets states the % of the total
number of nodes or edges. PCxN — Pathway Coexpression Network.

q-value Number of
pathway nodes

Mean degree of
pathway nodes

Total number of
edges

0.001 1417 (96.2%) 92.2 65341 (6.03%)
0.005 1424 (96.7%) 98.5 70122 (6.47%)
0.01 1428 (96.9%) 101.6 72541 (6.69%)
0.05 1437 (97.6%) 109.5 78685 (7.26%)
0.99 1448 (98.3%) 132.9 96222 (8.88%)

1 1473 (100%) 1472.0 1084128 (100%)

Table (5.3) Summary of PDxN properties at different significance thresholds. Each q-value
threshold represents values ≤ than the value stated. The value in brackets states the % of the total
number of a given property. PDxN — Pathway Drug Coexpression Network.

q-value
Number of

pathway
nodes

Mean
degree of
pathway

nodes

Number of
drug nodes

Mean
degree of

drug nodes
Total number of

edges

0.001 1335 (90.6%) 1969.3 44316 (84.8%) 59.3 2629043 (3.42%)
0.005 1361 (92.4%) 2112.0 45240 (86.6%) 63.5 2874376 (3.73%)
0.01 1382 (93.8%) 2167.1 45668 (87.4%) 65.6 2994883 (3.89%)
0.05 1402 (95.2%) 2369.7 46737 (89.5%) 71.1 3322333 (4.32%)
0.99 1429 (97%) 2983.9 48923 (93.6%) 87.2 4264050 (5.54%)

1 1473 (100%) 52248.0 52248 (100%) 1473.0 76961304 (100%)
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metric
mean degree of drug nodes
mean degree of pathway nodes
number of drug nodes
number of pathway nodes
total number of edges

network
PDxN
PCxN

Fig. (5.7) PCxN and PDxN network properties. Mean degree and number of drug and pathway
nodes and total number edges for (A) PCxN and (B) PDxN are shown at q-value cut-offs for
the edge correlation. The networks are relatively unaffected at q-values > 0.05. The drastic fall
at q-value ∼= 1 in edge properties on the right reflects the variation in gene expression across
experiments and tissues. Note that the x-axis on the A–B left is log10-scaled. Relationship between
edge correlation and q-value (C), q-value (D) and correlation (E) distributions for PDxN (blue) and
PCxN (pink) at q-value < 0.05. The networks show similar q-value and correlation distributions
even though PDxN is much larger and has no-overlapping edges with PCxN. The dashed line
represents q-value = 0.05. correlation — edge correlation value, correlation between two gene
sets on a background of gene expression data; PCxN — Pathway Coexpression Network; PDxN —
Pathway Drug Coexpression Network; qval — q-value.
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that a much smaller PCxN still modelled the discussed topology of a larger PDxN with
limited calculated relationships. Both PDxN and PCxN had a much higher proportion of
positively correlated gene sets (Fig.5.7C, E), with positive edges reaching higher absolute
correlation values and higher levels of significance. The imbalance between the number of
positive and negative edges was more disproportionate in PDxN with 96.1% of edges with
correlation > 0 in PDxN, compared to 94.8% in PCxN. This imbalance was important for
the consideration for the downstream drug repositioning pipeline.

5.3.4 Network clustering

To investigate the functional context of PDxN and PCxN topology we clustered each
network (q-value < 0.05) and then annotated pathway nodes with KEGG and Reactome
pathway groups, and drug nodes with the Anatomical Therapeutic Chemical (ATC) clas-
sification classes. In this section, we provide a summary of clustering algorithms used
and introduce two different approaches to analysing a bipartite network. We then describe
the PDxN community structure and discuss the functional annotation patterns detected by
clustering PCxN and PDxN.

Network clustering methods

We clustered each network with a modularity-based community detection method. We
used the Louvain, also known as multi-level, method (Blondel et al., 2008) for PCxN and
the PDxN network projections, and the Label Propagation Algorithm weighted bipartite
plus (LPAwb+) (Beckett, 2016) method for PDxN. We chose two different methods,
because Louvain is designed for unipartite graphs and LPAwb+ for weighted bipartite
networks. Both methods are based on optimising modularity and are implemented in
R (R Core Team, 2019) packages, igraph (Csardi and Nepusz, 2006) and bipartite

(Dormann et al., 2009), respectively.

Network modularity is a measure of the strength of division of a network into clusters
or modules. It compares the density of edges inside communities to edges outside com-
munities. Networks with high modularity have dense connections between the nodes in
the same cluster but sparse connections between nodes in different clusters. Modularity
values lie in the range between −1 and 1. Modularity is the fraction of the edges that fall
within the given groups minus the expected fraction if edges were distributed at random
(Li and Schuurmans, 2011). It is positive if the number of edges within groups exceeds the
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number expected by chance. There are several methods for network community structure
detection that use modularity optimisation.

The Louvain method (Blondel et al., 2008), developed at University of Louvain, extracts
communities or clusters from large networks by optimising modularity as the algorithm
progresses. Optimising the modularity value theoretically results in the best possible
grouping of the nodes of a given network, however, going through all possible iterations
of the nodes into groups is unfeasible. In the Louvain method, first small communities
are found by optimising modularity locally on all nodes, then each small community is
grouped into one node and the first step is repeated, limiting the number of iterations
required and therefore applicable to large networks. The Louvain method was chosen for
PCxN and PDxN projections as it was shown to be an appropriate method for networks
with less than 6000 nodes, but also for large networks with not well-defined communities
(Yang et al., 2016). We applied weighted Louvain clustering to PCxN, the edges were
weighted by the absolute values of correlation estimates.

In contrast to simply applying a clustering algorithm to a bipartite network, we could
approach the characterisation of bipartite network communities in two common ways: we
could create two unipartite projections from a bipartite network (Fig. 5.6) or investigate
the original bipartite network accounting for its bipartite nature.

A network projection can be used to reduce dimensionality in a bipartite network,
by summarising it into two, unipartite graphs, one for each set of nodes. Two nodes
within the same set are connected in the projection if they are connected to the same
(share a common neighbouring) node from the second set in the original bipartite network
(Fig. 5.6). This approach is particularly common as it allows studying a bipartite network
as two unipartite networks and can therefore use the powerful tools provided for classical,
unipartite networks. However, there are potential drawbacks to projections. By reducing
the dimensionality and complexity of the original network, there is some information in
the bipartite structure that may disappear after projection. For example, two drug nodes
that had low correlation with a pathway node are now equivalent to two drug nodes that
were connected with a large correlation value. On the other hand, if two drug nodes have
a lot of common neighbours, that will be reflected in the projection as increased edge
weight. When projecting, we also introduce an inflation of the number of edges, which
introduces large demands for computational resources and thus makes further processing
more challenging. Lastly, some properties of the projection may be due to projection
itself rather than the underlying network (Latapy et al., 2008). There are a few ways to
compensate for limitations introduced by projections. To reduce the size of the projection
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and retain the most meaningful information, a filtering approach is usually applied to the
network before the projection. In addition, a weighting projection approach is commonly
used to decrease the loss of information (Pavlopoulos et al., 2018).

An alternative to using network projections is to use the original network. This
approach considers and accounts for the bipartite nature of networks. There are fewer tools
available for topological analysis of bipartite networks than for unipartite, but there is a
growing number of proposed approaches applicable to bipartite networks, some of which
are extensions of the traditional unipartite measures. An additional difficulty is that the
available approaches are usually developed for particular applications and are thus very
case specific and lack generality (Latapy et al., 2008).

We used three main criteria for selecting an appropriate clustering approach for a
bipartite network: finding a clustering approach designed for weighted bipartite networks
that outperformed other methods, an ability to analyse large networks, and its implementa-
tion within an R package. We identified the LPAwb+ (Beckett, 2016) implementation in
bipartite (Dormann et al., 2009) as the most appropriate choice given our criteria.

The LPAwb+ (Beckett, 2016) is based on LPAb+ (Liu et al., 2010) which uses label
propagation and multi-step agglomeration to maximise modularity identifying joint com-
munities composed of both types of nodes in non-weighted bipartite networks. Similarly
to LPAb+, but developed to account for the edge weights, LPAwb+ consists of two stages:
step 1 that maximises modularity on a node-by-node basis using label propagation, and
step 2 that joins modules together when it results in increased network modularity. In
more detail, first a unique label is given to each of the nodes in the smallest of the two sets.
Then the label propagation stage is initiated where the algorithm asynchronous updates the
labels of each node set to locally maximise modularity. The nodes in one set can only use
information about the nodes in the other set to update their labels. The labels are updated
in turns until modularity can no longer be increased. The second agglomeration step seeks
the global maximum by merging groups of communities together as the local maxima
identified in step 1 may not be the global maximum. Each identified community module is
composed of nodes from both sets that share the same label. Merging of two different com-
munities can only occur if that results in an increase in network modularity and there is no
third community whose merger with either of the two communities would result in a larger
increase in modularity. Step 1 and then step 2 are repeated until it is no longer possible to
increase network modularity by merging any of the communities together (Beckett, 2016).
LPAwb+ is only the second weighted bipartite algorithm proposed. It robustly identifies
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partitions with high modularity scores, it is appropriate for large networks and outperforms
the first proposed bipartite weighted algorithm QuanBiMo (Dormann and Strauss, 2014).

Weighted bipartite clustering of PDxN

We first clustered PDxN with LPAwb+ (Beckett, 2016) and identified 12 clusters with
both pathway and drug members (Fig. 5.8). The clusters varied in size, with 6 large (> 1%
nodes in cluster 1, 2, 3, 5, 6, 9) and 6 very small (< 1% nodes in cluster 4, 7, 8, 10,
11, 12) clusters (Table 5.4). The largest cluster, according to the number of nodes, was
cluster 6 with 29% of all nodes and largest by the number of edges was cluster 2 with
32% of all edges from pathway nodes and also 32% of all edges from drug nodes. Cluster
2 predominantly included edges from pathway↔up-regulated drug nodes and cluster 9
included pathway↔down-regulated drug node relationships. The separation and clustering
of up- and down-regulated signatures from one another was expected.

Table (5.4) Summary of node membership and internal edges in PDxN clusters. % for total
nodes is the proportion of nodes in that cluster compared to all, % for internal edges is the proportion
of internal edges compared to all edges from pathways and drugs in that cluster, respectively.

Cluster Pathway
nodes

Up-
regulated

drug nodes

Down-
regulated

drug nodes
Total nodes Internal edges

1 137 2713 2362 5212 (11%) 121288 (34%, 34%)
2 348 7162 2559 10069 (21%) 576343 (54%, 54%)
3 216 3348 3299 6863 (14%) 109761 (29%, 29%)
4 9 40 3 52 (0.11%) 135 (28%, 45%)
5 11 835 1017 1863 (3.9%) 11913 (58%, 60%)
6 321 7431 6056 13808 (29%) 403005 (48%, 54%)
7 5 218 12 235 (0.49%) 674 (29%, 34%)
8 1 0 1 2 (0.0042%) 1 (100%, 25%)
9 351 1921 7757 10029 (21%) 524025 (79%, 70%)
10 1 0 1 2 (0.0042%) 1 (25%, 25%)
11 1 1 0 2 (0.0042%) 1 (100%, 100%)
12 1 0 1 2 (0.0042%) 1 (50%, 20%)

Although we have defined PDxN clusters and assigned cluster membership to each
node, we could see high levels of inter-connectivity between clusters. This is particularly
noticeable on Fig. 5.8 with smaller clusters e.g. 4, 5, 7, and 10, where we can observe many
connections from both pathway and drug nodes in a particular cluster that lead do other
clusters. Cluster 11 was the only cluster that has only connections within the cluster and
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Fig. (5.8) PDxN inter- and intra-cluster interactions. PDxN was clustered using LPAwb+
(Beckett, 2016) identifying 12 clusters varying in size. The clusters are interconnected. Cluster
member nodes interact with nodes from the same cluster e.g. P1↔D1 and nodes from other clusters
e.g. P1↔D2. Each cluster is made from nodes in pathway (P, left) and drug (D, right) node sets.
The number after P or D indicates the cluster the P or D partition belongs to. The size of the node
is proportional to the number of edges from pathway nodes (P) to drug nodes (D) in a given cluster.
The node colour represents the cluster membership. The edge colour represents the colour of the
drug node direction (in D, right) a particular pathway is connected to. PDxN — Pathway Drug
Coexpression Network.
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none outside, however, cluster 11 only includes two nodes (pathway↔up-regulated drug)
and one edge, so by definition the edge could only be connecting the two member nodes
and thus, was only connected within the cluster. Considering only large clusters, cluster 9
was the most intra-connected (79% internal pathway and 70% internal drug edges) and
cluster 3 was the most inter-connected (71% external pathway and drug edges).

An advantage of using a bipartite weighted approach was that we have identified
clusters that consist of both pathway and drug nodes. We were therefore able to explore
relationships between pathways and drugs within the same cluster as well as pathways and
drugs responsible for connections with other clusters.

5.3.5 Functional annotation of network clusters

Below we explore the functional landscape of PDxN and compare it with PCxN. We
describe PCxN and PDxN clusters annotated with pathway groups from KEGG (Kanehisa
and Goto, 2000) and Reactome (Matthews et al., 2009). In addition, we also annotated the
PDxN clusters with the ATC drug classes.

Pathway annotation of PCxN and PDxN clusters

To explore if PDxN not only mimics PCxN topology but also retains the functional
relationships, we annotated each network with KEGG (Kanehisa and Goto, 2000) and
Reactome (Matthews et al., 2009) pathway group terms (Supplementary Table C.2). Both
KEGG and Reactome offer hierarchical relationships between pathway terms. As both
resources were present in PCxN and PDxN, we leveraged their hierarchical nature to
explore the functional landscape of both networks and look for enrichment of higher-level
pathway terms in network clusters.

The KEGG hierarchical pathway structure is split into 4 levels: A–D. Where A is the
most general and D the most detailed pathway annotation. Level A consists of 6 groups
(Metabolism, Genetic Information Processing, Environmental Information Processing,

Cellular Processes, Organismal Systems, Human Diseases) and level B of 46 group terms.
Level C pathway annotations are included in MSigDB C2 Canonical Pathway set. The
Reactome pathway annotations are linked into a network. We clustered the Reactome
pathway annotations network into 27 pathway groups. Pathway names from pathway node
set were name-matched to KEGG level C and Reactome pathway annotations. We matched
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Fig. (5.9) KEGG and Reactome pathway annotation enrichment of PCxN clusters. The
heatmap summarises enrichment (pink) or depletion (teal) score. Absolute enrichment values of
0 or above 1.5 and below significance threshold p-value < 0.05 are displayed. The first number
displayed is the enrichment or depletion score, while the number in () is the observed number. When
the observed number is 0, the depletion score cannot be calculated, thus we displayed number-of-
observed terms : the-number-of-expected terms in (). Column names correspond to arbitrary PCxN
cluster numbers. Cluster numbers are not related to PDxN clusters, but some clusters show similar
enrichment patterns (PCxN-cluster↔PDxN-clusters: 2↔1, (1,4–6,11)↔(4,5,7,10,11), 7↔9, 8↔3,
10↔6). Row names are KEGG and Reactome pathway group names. Only clusters with at least
one pathway group annotation are shown. KEGG — Kyoto Encyclopedia of Genes and Genomes;
PCxN — Pathway Coexpression Network; PDxN — Pathway Drug Coexpression Network.
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312 different Reactome pathways from both PCxN and PDxN to 23 group terms and 146
of KEGG pathways to 36 B level terms (Supplementary Table C.2). We matched 296/660
Reactome pathways in PCxN, 307/636 in PDxN, and 144/183 KEGG pathways in PCxN
and 148/176 in PDxN.

We calculated enrichment or depletion for a given pathway group for each cluster. We
summarised enrichment values in Fig. 5.9 for PCxN and Fig. 5.10 for PDxN.

The PCxN consisted of 12 clusters, of which 10 (cluster numbers 1, 2, 4–8 and 10–12)
had at least one pathway group annotation. Cluster 1, 4, 6 and 11 were the smallest
clusters with 1–2 pathway annotations. Enriched biological pathway sets existed for nearly
every cluster. Cluster 1, 4 and 11 include metabolism pathways and cluster 6 included
the only membrane transport pathway. Cluster 5 was mostly enriched in metabolism
pathways, it was enriched in Transport of small molecules, general Metabolism from
Reactome and several metabolism groups from KEGG: Xenobiotics biodegradation and

metabolism, Metabolism of terpenoids and polyketides, Lipid metabolism, Amino acid

metabolism, Metabolism of cofactors and vitamins, and Carbohydrate metabolism. Cluster
10 enriched in Cardiovascular disease, Hemostasis, Developmental biology, Cellular

community, Extracellular matrix organisation and Muscle contraction. Cluster 7 enriched
in core cell processes (genetic information processing), it enriched in Metabolism of

proteins, DNA repair, Cell cycle, Meiosis, Metabolism of RNA, Transcription, Replication

and repair, Folding sorting and degradation, and Cell growth and Death. Both transcription
groups from Reactome and KEGG enrich in this cluster. It was also enriched in Disease

pathways and Neuronal system. Cluster 2 enriched in immune system related groups:
Immune system (KEGG and Reactome), Infectious disease: Bacterial, Immune disease,

Hemostasis. Cluster 8 enriched in signalling groups: Signalling and Signal transduction,
and most specific cancer type pathways. A small cluster 12 consisting of 5 annotated
pathways enriched in Signalling and Disease.

In summary, there were a few clusters that enrich for mainly one type of pathway
annotation. Cluster 5 mostly included metabolism pathways, cluster 10 included devel-
opmental pathways and cell-cell communications, cluster 7 included core cell processes
like transcription, and cluster 2 enriched in immune pathways. Considering that the PCxN
method accounted for shared genes and assigned significant correlation coefficients be-
tween pathways representing related functions and non-significant correlation coefficients
for pathways with redundant annotations representing the same function, we have shown
that PCxN can be clustered in several functionally enriched clusters. PCxN explored
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functional relationships between pathways and provided a framework for interrogation of
global pathway relationships (Pita-Juárez et al., 2018).

We repeated the functional pathway annotation with bipartite clustered PDxN discussed
above. As with PCxN, PDxN also consisted of 12 clusters, of which 10 (cluster numbers
1–7 and 9–11) had at least one pathway group annotation. There were several small clusters,
cluster 10 and 11 have only one pathway annotation. They both were related to metabolism.
Cluster 7 with 3 annotated pathways enriched in Lipid metabolism and cluster 5 with 4
pathways in Metabolism of proteins and Translation. Cluster 4 with 8 annotated pathways
enriched in Xenobiotics biodegradation and metabolism and Carbohydrate metabolism.
We observed that the small clusters were mostly related to metabolism. Cluster 9 mostly
involved the core cell processes (genetic information processing): DNA repair, Cell cycle,

Folding, sorting and degradation, Meiosis, Metabolism of RNA, Transcription, and Repli-

cation and repair, but also, Disease pathways, Amino acid and Carbohydrate metabolism.
Cluster 6 enriched in Extracellular matrix organisation, Muscle contraction, Cardiovascu-

lar disease, Endocrine system, Developmental biology, and Hemostasis. Cluster 2 enriched
in the Neuronal and Sensory system. Cluster 3 in Signalling and specific cancer types, and
cluster 1 in the Immune system (KEGG and Reactome) and Immune disease.

As in PCxN, there were a few clusters that enriched in mainly one type of pathway
annotations. The small clusters mostly included metabolism pathways, cluster 6 included
developmental pathways and cell-cell communications, cluster 9 included core cell pro-
cesses and cluster 1 enriched in immune pathways.

PCxN estimated the correlation between pathway pairs and PDxN included only
pathway↔drug pairs. Every PDxN pathway pair put in the same cluster depended on a
similar relationship to a set of drug nodes. As in PCxN, the correlation coefficients in
PDxN also accounted for shared genes and thus gave significant relationships to pathways
representing related functions rather than redundant annotation. Considering that we
clustered PDxN by using information from the other set of nodes, we still retrieved
significantly enriched functional clusters that modelled the PCxN clusters. Even though
we used different clustering approaches and the networks were different in their topology,
we see consistent patterns of enrichment between PCxN and PDxN. The similar PCxN-
cluster↔PDxN-cluster pairs were: 2↔1, (1,4–6,11)↔(4,5,7,10,11), 7↔9, 8↔3, 10↔6.

It was encouraging to see such functional overlap in PCxN and PDxN clusters. It
showed that pathway↔pathway relationships were transmitted across pathway↔drug↔pathway
edges. Although we accounted for gene set overlap, we still clustered similarly annotated
pathway groups together. For example, both Reactome and KEGG Immune system groups
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Fig. (5.10) KEGG and Reactome pathway annotation enrichment of PDxN bipartite clus-
ters. The heatmap summarises enrichment (pink) or depletion (teal) scores. Absolute enrichment
values of 0 or above 1.5 and below significance threshold p-value < 0.05 are displayed. The first
number displayed is the enrichment or depletion score, while the number in () is the observed
number. When the observed number is 0, the depletion score cannot be calculated, thus we dis-
played number-of-observed terms : the-number-of-expected terms in (). Cluster numbers are not
corresponding to PCxN clusters. Column names are PDxN clusters as seen in Figs.5.8, 5.11 and
Table 5.4. Some clusters show similar enrichment patterns to PCxN (PCxN-cluster↔PDxN-clusters:
2↔1, (1,4–6,11)↔(4,5,7,10,11), 7↔9, 8↔3, 10↔6). Row names are KEGG and Reactome path-
way group names. Only clusters with at least one pathway group annotation are shown. KEGG —
Kyoto Encyclopedia of Genes and Genomes; PCxN — Pathway Coexpression Network; PDxN —
Pathway Drug Coexpression Network.
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clustered away from other pathway groups in both PCxN (cluster 2) and PDxN (cluster 1)
with relatively high enrichment scores (PCxN: KEGG 6.2, Reactome 5.5; PDxN: KEGG
8.1, Reactome 5.2). In addition to the Immune system group, there are also other immune
related groups: Infectious disease: bacterial (KEGG: PCxN 6.2) and Immune disease

(KEGG: PCxN 6.2, PDxN 10) that were highly enriched in either or both networks.

In addition, PCxN cluster 7 and PDxN cluster 9 overlapped in most enriched path-
way groups involving genetic information processing: DNA repair, Cell cycle, Meiosis,

Metabolism of RNA, Transcription, Replication and repair, and Folding, sorting and degra-

dation. Each of these groups was enriched 3.1-times in PCxN and 3.5-times in PDxN. Both
of these clusters were also enriched in the Reactome Disease group (PCxN 2.1; PDxN 2.2)
which consisted of several viral life cycle pathways (Supplementary Table C.2).

Drug class annotation of PDxN clusters

With the possibility that there may be shared functional relationships between drugs,
we annotated drug nodes with Anatomical Therapeutic Chemical (ATC) classification.

The World Health Organisation (WHO) Collaborating Centre for Drug Statistics
Methodology (WHOCC)-controlled ATC classification system is a drug system that clas-
sifies the active ingredients of drugs according to the organ or system on which they
act and their therapeutic, pharmacological and chemical properties. It is a hierarchical
classification consisting of 5 levels, each level describing a particular property and encoded
by a predefined set of digits or letters:

(i) ATC level 1: Main anatomical (or pharmacological) group, there are 14 groups,
consists of one letter which is the first letter of the code.

(ii) ATC level 2: Pharmacological or therapeutic subgroup, consists of two digits.

(iii) ATC level 3 and 4: Chemical, Pharmacological or Therapeutic subgroup, consists of
one letter each.

(iv) ATC level 5: Chemical substance, consists of two digits.

The predefined letters and digits from each level form the ATC code, with first letter
indicating the level 1 group and last two digits the level 5 group, e.g. aspirin: B - Blood

and blood forming organs, B01 - antithrombotic agents, B01A - antithrombotic agents,

B01AC - Platelet aggregation inhibitors excl. heparin, B01AC06 - acetylsalicylic acid.
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With the aim for one ATC code for each medical product, medicinal substances are
classified according to their main therapeutic use. However, they sometimes have multiple
ATC codes for different strengths or routes of administration with distinct indications.
Combinations of two or more active ingredients in a medicinal substance also have their
own ATC code, different to when they are prescribed individually. The coverage of the
system is not comprehensive. An application has to be sent to the WHO to create a new
ATC code. Obsolete drugs or drugs withdrawn from the market are kept in the system. A
substance is not included if no request for inclusion has been received (WHOCC, 2018).

We have taken advantage of the hierarchical nature of the ATC classification system.
We used KATdb to annotate drug IDs from the PDxN drug set with ATC codes. We
matched 1294 BRD IDs to 2022 ATC codes. 634 annotated drugs were still in PDxN at
q-value < 0.05 with 378 mapped to one ATC code, 105 to two, 77 to three and 74 to four or
more. The drugs that mapped to the most ATC codes were hydrocortisone, dexamethasone
and betamethasone. They matched to 17, 13 and 12 ATC codes, respectively with 21, 17
and 18 listed on the official ATC index website (https://www.whocc.no/atc_ddd_index/ ).

We annotated PDxN drugs with level 1 (Fig. 5.11) and level 2 (Supplementary Fig. C.1)
ATC codes. Hierarchical relationship between level 1 and level 2 codes can be found
in Supplementary Table C.3. Up- and down-regulated drug signatures were considered
separately as we would not expect the up- and down-regulated signature from one or
similar drugs to cluster together. Where there were multiple ATC codes for one drug, we
considered the drug in all matched ATC categories. Each annotated drug could be present
in multiple conditions: variations of cell-line, exposure time, concentration, and batch.

From 12 PDxN clusters, 7 (clusters 1–3,5–7,9) had at least one drug annotation in
up- and down-regulated drug subset. When compared to pathway-level annotation, there
were fewer overall enriched functional terms. Assessing level 1 enrichment (Fig. 5.11),
two clusters had enriched terms in both up- and down-regulated subset. The smallest
cluster 7 enriched in Nervous system and Cardiovascular system drugs when considering
the up-regulated subset, and enriched in Respiratory system drugs in the down-regulated
subset. Cluster 9 enriched in Antineoplastic and immunomodulating agents in the up-
regulated subset, and in Various drug classes in the down-regulated subset. The level 2 ATC
groups enriched in Various drug classes are Diagnostic agents (21/25 drug signatures),
and All other therapeutic products (22/25 drug signatures) (Supplementary Fig. C.1,
Supplementary Table C.3).

The rest of the clusters were either enriched in one subset (cluster up:1–2 and down:5–
6), mostly depleted in one (up:9) or both (3) subsets or not showing any significant

https://www.whocc.no/atc_ddd_index/
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Fig. (5.11)
ATC level 1 drug annotation enrichment of PDxN bipartite clusters. The heatmap summarises enrichment (pink) or depletion (teal) scores for drug
nodes consisting of either up- or down-regulated genes. Absolute enrichment values of 0 or above 1.5 and below significance threshold p-value < 0.05 are
displayed. The first number displayed is the enrichment or depletion score, while the number in () is the observed number. When the observed number is 0,
the depletion score cannot be calculated, thus we displayed number-of-observed terms : the-number-of-expected terms in (). Column names are PDxN
clusters as seen in Figs.5.8, 5.11 and Table 5.4. Row names are ATC level 1 class names. Only clusters with at least one ATC class annotation are shown.
* — ATC term was shortened, full terms are listed in Supplementary Table C.3; ATC — Anatomical Therapeutic Chemical; PDxN — Pathway Drug
Coexpression Network.



5.3 Pathway-Drug Coexpression Network (PDxN) 135

enrichment/depletion patterns (up:6, down:1–2). In the up-regulated set, cluster 2 enriched
in Antiparasitic products, insecticides and repellents, Blood and blood forming organ

drugs, and Various drug classes (Diagnostic agents and Contrast media). Cluster 1
enriched in Anti-infectives for systemic use. In the down-regulated set, cluster 6 enriched
in Dermatologicals, Alimentary tract and metabolism, and Sensory organ drugs. Cluster 5
enriched in Anti-infectives for systemic use, Nervous system and Muscolo-skeletal system

drugs.

There were a few ATC level 1 classes that enriched in different clusters depending on the
direction of the signature: Various drugs enriched in up:2 (drug signature direction:cluster

number) and down:9, Nervous system drugs enriched in up:7, up:3 and down:5, and
Anti-infectives for systemic use were up in 1 and down in 5. These relationships were
interesting as the drugs belonging to that class consistently cluster together in both up- and
down-regulated signatures. In both cases, the Various drug class enriched in the cluster
where there was a clear imbalance between direction of signatures. In cluster 2, there
were mostly up-regulated signatures and in cluster 9 there were mostly down-regulated
signatures (Fig. 5.8).

We investigated how enrichment patterns within clusters relate pathway and drug
annotations, suggesting pathway-level interaction with specific drugs or classes of drugs.
For example, cluster 1 enriched in Anti-infectives for systemic use (ATC level 1 code: J) in
the up-regulated drugs and immune response-related pathway groups. Another example
was cluster 9 that enriched Antineoplastic and immunomodulating agents (ATC level 1
code: L) in up-regulated drugs as well as in genetic information processing pathway groups.
The antineoplastic ATC class included drugs used for treatment of malignant neoplastic
diseases, with drugs that prevent, inhibit or halt the development of tumours. Errors in
genetic information processing pathways like Transcription, Replication and Repair, DNA

repair, and Cell cycle have been a well-known mode of action for tumour development
and cancer (Hartwell and Kastan, 1994). We observed that drugs that likely promote high
fidelity of core cell processes clustered together with pathways involving those genes.

PDxN pathway and drug projection annotation

In addition to annotating bipartite clustered PDxN, we investigated the relationships
between the same type of nodes by calculating PDxN projections for each set of nodes.
Two nodes within the same node set were connected in the projection only if they had
been connected to the same node in the opposite set in the original network. If a node
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pair within the same set of nodes connected to the more than one node in the opposite
set, the multiple connections in the projection were represented as increased weight of the
projected edge. We used the q-value < 0.05 threshold on edges to project only the most
relevant parts of the network. Consequently, the projections included the information that
was used downstream the repositioning pipeline. We summarised 4.3% of all the possible
edges between pathway and drug node sets in PDxN by applying the significance threshold.
We thus hypothesised that the projection would still provide insight in key relationships in
the network.

We clustered each projection with the Louvain method (Blondel et al., 2008) for
community detection and annotated each cluster with pathway and drug annotations. We
clustered the up- and down-regulated signatures in the drug projection separately. The
projections clustered in 3 clusters each. The pathway projection split into two similarly
sized clusters of ∼700 nodes and one with one node. There were about 300 annotated
pathways in the large pathway projection clusters. The up-regulated signatures in drug
projection clustered into 3 clusters with ∼1500, ∼1000 and ∼500 annotated nodes. The
down-regulated signatures clustered into 3 clusters with ∼2000, ∼1000 and ∼50 annotated
nodes. Both projections were less granular likely due to losing weight information from
the original bipartite network. The annotations in projection clusters (Supplementary
Fig. C.2 for annotation of pathway projection clusters, and Supplementary Fig. C.3 for
drug projection annotation at ATC level 1) showed similar trends to that of bipartite
clustering.

Most pathway projection enriched terms overlapped with PDxN. The Extracellular

matrix organisation, Immune disease, Immune system (Reactome, KEGG), Hemostasis,

Cancer:specific types enriched in projection cluster 1 also enriched in clusters 1, 3 and 6 in
PDxN. Neuronal system, Disease, Carbohydrate metabolism, Cell cycle, Metabolism of

RNA are enriched in pathway projection cluster 2. Neuronal system also enriched in PDxN
cluster 2 and the rest enriched in PDxN cluster 9. Only Cellular community - eukaryotes

and Apoptosis pathway groups were enriched in pathway projection, but not in PDxN.
Cellular community group clustered with Extracellular matrix organisation in projection
cluster 1 and Apoptosis clustered with Cell cycle in projection cluster 2. Although the
pathway annotations did not form as many well-defined clusters as in PDxN, they still
showed separation into functional clusters with one or two main functions like genetic
information processing or immune related pathway groups.

The drug projection showed similar patterns of mimicking PDxN clustering as the
pathway projection. All drug projection enriched terms were also enriched in PDxN. The
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up-regulated drug projection sub-network showed enrichments only in cluster 3. The
enriched ATC classes were: Antiparasitic products, insecticides and repellents, Blood

and blood forming organ drugs, and Cardiovascular system drugs. The first two also
enriched in up-regulated subset in PDxN cluster 2 and the last enriched in cluster 7. The
down-regulated drug projection sub-network enriched in: Anti-infectives for systemic use,

Nervous system drugs and Muscolo-skeletal system drugs in projection sub-network cluster
1 and also in PDxN cluster 5.

Although information was lost due to dimensionality reduction, we still observed
similar functionally annotated clustering patterns between PDxN and its projections.

5.3.6 Annotation method limitations

We demonstrated functional clusters in both pathway and drug subset, nonetheless, we
considered the limitations of each annotation method.

We used KEGG and Reactome pathway groups to annotate PCxN, PDxN and its
pathway projection. Both these resources are manually curated. Curation of pathways
is an ongoing process and, with time, we will be able to annotate pathways with more
accuracy by re-defining established pathways and splitting generic pathways into more
detailed processes. An example of pathway curation is the C2 Canonical pathways from
MSigDB version 6.2 (July 2018) used in this thesis, which has been updated to include
2199 (increase of 738 pathways) in version 7.0 (August 2019). To avoid misannotation
we only annotated pathways if the KEGG/Reactome name matched perfectly to MSigDB
version 6.2. We were only able to annotate 56% of PDxN pathways (52% in PCxN). In
addition, not all pathways had clear membership to a particular larger pathway group as
the cell processes are interlinked, thus not all pathways can be annotated with a single
larger functional group.

The drug annotation comes with its own disadvantages. The main drawback of using
ATC classification is that the system first splits drugs by main anatomical group rather
than the mode of action. For example, anti-infectives can be found not only in ATC level 1
class J: Anti-infectives for systemic use, but also in 14 other ATC classes across 6 different
level 1 groups. The mode of action is considered on lower levels of the classification. ATC
represents an established drug classification system (World Health Organization et al.,
2003). Despite these disadvantages, it is still a well-defined drug classification system that
was used to gain insight into functional grouping of drugs.
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Whilst there are limitations in the annotation approach taken, we were able to find
functional consistency between PCxN, PDxN and its projections. We argue that PDxN
represents functionally meaningful relationships within and between pathways and drugs.

5.4 Disease Signature Generation

In order to utilise PDxN in drug repositioning, we developed a set of accompanying
steps. PDxN provides a way to investigate the general functional landscape and relation-
ships between pathways and drug gene sets. We developed a disease signature generation
step that generates a pathway signature that is used to query PDxN and provide a closeup
on the disease signature related processes. The PDxN drug repositioning pipeline is dis-
ease agnostic in its nature, meaning that we can apply it to any disease as long as we can
generate a disease signature. Here we propose a pathway disease signature generation
method that consists of three main parts: a pathway summary step, differential pathway
expression and from that, identification of the most up- and down-regulated pathways
(Fig. 5.12).

A pathway-centred approach was taken, as transforming gene expression data to a
pathway space is expected to yield a more robust representation of the data in which
technological and biological variance across samples is reduced (Guo et al., 2005). As
outlined in Subramanian et al. (2005) gene-level differential expression (DE) approaches
have a few major limitations:

(i) after multiple hypotheses testing, no individual gene may meet the significance
threshold,

(ii) alternatively, a long list of genes within a significance threshold could be yielded
with no underlying biological theme, followed by ad hoc interpretation depending
on a biologist’s area of expertise,

(iii) single gene analysis may miss important effects on pathways,

(iv) study of the same biological system with different data sets might result in low
overlap of genes below the significance threshold.

A pathway-centred approach can overcome some of these limitations, by looking at
the consensus expression of gene members. While expression of individual genes in a
pathway may vary considerably across samples with similar phenotypic characteristics,
expression of the pathway as a whole may become consistent across the samples, thus
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Fig. (5.12) Disease signature generation overview. Disease input gene expression data is
processed to generate a disease signature. First genes are summarised into pathway-level expression
with the top 50% mean method. The pathway summary score is then analysed with limma (Ritchie
et al., 2015) to yield a list of differentially expressed pathways. The extremes, the most up- and
down-regulated pathways, are identified and used as a disease pathway signature used to interrogate
PDxN. Two sample groups, case and control (yellow and purple), are required for the disease
signature generation step. Pink fold change indicates up- and blue down-regulated pathways. limma
— Linear models for microarray data.
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giving more importance to multiple genes that display a similar change in expression rather
than a single gene that changes expression independently.

To generate a disease pathway signature, we first require disease and control gene
expression data. Both microarray and RNA-Seq expression data can be analysed with the
current pipeline. First, the gene expression data was quality-controlled, so that outliers or
poor-quality samples were removed. To make RNA-Seq comparable to microarray data, we
log-transform normalised and quality-controlled RNA-Seq with voom from linear models
for microarray data (limma) (Ritchie et al., 2015). The gene expression data was then
z-scaled for each gene across samples and then summarised to a pathway-level with the top
50% mean summary statistic (Hwang, 2012). The summarised pathway expression scores
were then analysed with limma package (Ritchie et al., 2015) to identify differentially
expressed pathways. The top 5, 10, 15, and 20 most up- and down-regulated pathways
according to the fold change were defined as the disease signatures. The disease pathway
signatures were then used to explore the disease PDxN sub-network and identify potential
drug candidates.

5.4.1 Pathway summary statistic

The key step of the disease signature generation was the pathway summary statistic.
There are several ways gene expression data is used in pathway analysis, most focusing
on gene set enrichment, e.g. Gene Set Enrichment Analysis (GSEA) (Subramanian et al.,
2005), gene set variation analysis (GSVA) (Hänzelmann et al., 2013) or analysis of sample
set enrichment scores (ASSESS) (Edelman et al., 2006). An alternative approach is
pathway aggregation methods, that transform gene expression data from gene to pathway
level. The pathway-level scores can then be used in downstream analysis applying analysis
pipelines normally applied to gene-level data. Hwang (2012) systematically compared
the 6 most prominent aggregation methods. They assessed performance of 5 existing
methods and proposed a 6th, the mean top 50% method. The mean top 50% method is a
variant of a simple all mean approach, where the mean of all member genes is used as a
summary statistic. They show that Mean top 50% and ASSESS (Edelman et al., 2006)
are the two best performing methods at classification accuracy and correlative extent of
pathway signatures between the dataset pairs. ASSESS is considered to be a sample-level
extension of GSEA (Subramanian et al., 2005) as they both calculate enrichment scores
for each pathway. We chose the mean top 50% as our pathway aggregation method as it
achieved the highest accuracy rank in both their external and internal validation.
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Fig. (5.13) Pathway summary statistic. In the first step of disease signature generation, the input gene expression data is summarised into pathway-level
expression. The top 50% mean method modified from Hwang (2012) is used as a pathway summary statistic. First, genes are z-scaled across samples so that
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pathway summary statistic method. Red indicates a positive and blue a negative t-statistic. Diagram modified from Hwang (2012).
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The mean top 50% (Fig. 5.13) method takes z-scaled gene expression data. The data
is scaled for each gene across all samples, so that the gene expression has mean of 0 and
standard deviation = 1. For each pathway in a pathway set, the scaled gene expression
matrix is subsetted to pathway gene members. Welch’s t-test (Welch, 1947) is performed
on the pathway gene member sub-matrix, identifying the genes that are most different
between two conditions. The genes are ranked by absolute t-statistic, |t|. The expression
of the top 50% of genes with highest |t| is then averaged, yielding a pathway profile,
consisting of a pathway score for each sample. The summary statistic is repeated for every
pathway in a pathway set resulting in a p×n matrix, where p is the number of pathways
and n is the number of samples.

5.4.2 Differential pathway expression and disease pathway signature

The pathway-level summarised expression data mimicking the traditional gene ex-
pression data could be applied to well-established tools for downstream processing of
gene-level data. We used limma (Ritchie et al., 2015) for one main reason: the R package
provides integrated comparable analysis pipelines for microarray and RNA-Seq gene
expression data.

Limma is as the name suggests, based on linear modelling. It requires a matrix of
expression values, where each row represents a genomic feature relevant to the current
study, and each column corresponds to a sample. It fits a linear model to each row of
data. The empirical Bayes framework borrows information across genes in a dynamic way
to smooth out variances, allowing for different levels of variability between genes and
between samples. The method uses posterior variances in a t-test setting, making statistical
conclusions more reliable when the number of samples is small. The Benjamini-Hochberg
correction is applied to estimate the false discovery rate (FDR). The voom function applied
to RNA-Seq data, log2-transforms the normalised counts and estimates the mean-variance
relationship for the transformed data to assign weights for each observation. The limma-
voom approach makes RNA-Seq count data comparable to microarray datasets. It allowed
the application of the same methods to both types of data in the downstream analysis. In
addition, using limma for both, microarray and RNA-Seq, meant that the same statistical
tests were applied to both data types.

We analysed our pathway-summarised matrix with limma and identified differentially
expressed pathways that meet a significance threshold FDR < 0.05. We ordered the
pathways by decreasing log fold change (logFC), where the top pathways represented the
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most up-regulated pathways between case and control and the bottom pathways (with the
lowest logFC) represented the most down-regulated pathways. We took top n most up- and
down-regulated pathways as disease pathway signatures used in downstream analysis for
disease-specific drug prioritisation. We generated prioritised drug lists for drug signatures
with n = 5,10,15,20.

5.5 Signature Processing and Drug Prioritisation

The signature processing step brings together a pre-calculated PDxN and a disease-
specific pathway signature. In this step, the edges between pathway and drug nodes were
summarised (Fig. 5.14). To preserve directionality of the disease pathway signature, we
separated the up- and the down-regulated pathways into two pathway clusters (an up- and
a down-regulated cluster). While we took inspiration from the PDN prototype method to
consider pathways together (Joachim et al., 2018), we deviated from their approach by
focusing on summarising correlation estimates rather than the p-values.

The PDxN sub-networks were constructed for each pathway cluster. Each sub-network
consisted of pathway nodes that were in a pathway cluster and all drug nodes that were
connected to the cluster pathways. The correlation edges between cluster pathways and
drugs were then summarised. First, the edges were summarised by pathway cluster,
meaning that we join individual pathways in a cluster, forming a pathway cluster node.
The edges, which connect individual pathways in a cluster with drug-direction nodes, were
summarised by taking the mean of the edge weights, resulting in one edge between each
pathway cluster↔drug-direction node. In the next step we summarised the correlation
by drug, so that we join the up- and down-regulated drug nodes into one. We took the
difference between pathway cluster↔up-regulated drug and pathway cluster↔down-

regulated drug so that we derived one summarised edge for each pathway cluster↔drug.

5.5.1 Score interpretation

To interpret the resulting score, we applied the signature-driven hypothesis (Fig. 2.4),
where we hypothesised that a treatment with a drug working in the opposite direction
than the disease (compared to control) would drive the diseased system back to a healthy
balance.
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We were interested in identifying a disease signature that was the opposite to the drug
signature (Fig. 5.15), therefore we would expect the best success from:

(i) an up-regulated drug signature that was positively correlated with the down-regulated
pathway cluster,

(ii) a down-regulated drug signature that was positively correlated with an up-regulated
cluster,

(iii) an up-regulated drug signature that was negatively correlated with the up-regulated
pathway cluster,

(iv) a down-regulated drug signature that was negatively correlated with the down-
regulated pathway cluster.

When we considered the summarised drug score, that we calculated by taking the difference
between an up- and a down-regulated drug↔pathway cluster score, we would expect
a final negative score for the up-regulated pathway cluster and a positive score for the
down-regulated pathway cluster to yield beneficial outcomes (Fig. 5.15).

5.6 Benchmarking

An important step in the development of any new method is benchmarking. Benchmark-
ing systematically assesses the performance of a given method. In this drug repositioning
pipeline we benchmarked the final output, which was the prioritised drug list. The priori-
tised drug list was assessed on its ability to prioritise already known drugs with beneficial
effects on a disease of interest. Where available, we used the approved indications by the
US Food and Drug Administration (FDA) and the European Medicines Agency (EMA) as
a true positive list. If no drugs had been approved for the disease of interest, we extended
the true positive list to drugs predicted by a disease expert to have a beneficial effect on the
underlying mechanism of disease.

5.6.1 Score evaluation

A receiver operating characteristic (ROC) curve was generated for each cluster, sum-
marising its performance by plotting the sensitivity (TPR) and specificity (1 - FPR). The
ROC curve illustrated the ability of a cluster score to recall the true positive drugs. The
area under the ROC curve (AUC) was calculated for each cluster, where AUC = 1 indicated
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perfect performance, i.e. the true positive drugs had the best score and all other drugs
had a lower score, and AUC = 0.5 indicated randomness, i.e. drugs were prioritised at
random. Therefore, a cluster with a higher AUC score was more successful at predicting
true positive drugs than others.

5.6.2 Assumptions

There were two main assumptions made in this benchmarking approach:

(i) the approved drugs treat the disease and not its symptoms,

(ii) the predicted, prioritised drugs are all true negatives.

Drugs providing symptomatic relief often present the majority of approved drugs
for use in a particular disease, thus the first assumption might have lowered the "true"
performance score as our data-driven predictions based on the pathway disease signature
were aimed at treating the disease and not the symptoms. As we did not design our
system to prioritise drugs for symptomatic relief, but rather to reverse the disease state
back to a healthy balance, the drugs that are approved for symptomatic relief e.g. pain
relief for headache resulting from a brain tumour, were likely to lower the algorithms
performance score. A possible solution to account for this limitation is to curate a set of
drugs that are targeting the disease mechanism and not only the symptoms. However, not
all disease mechanisms or drug modes of actions are well-defined, and not many diseases
have approved medications that target only the disease itself.

The second assumption is contradictory to the aim and purpose of this study. The
method was designed to predict novel drug candidates for a given disease, while the
benchmark assumed that the predicted drugs were true negatives. It is possible that if
the method predicted drug candidates that could be validated later, but have not yet been
approved, the initial benchmarking performance of the algorithm would be low. It is thus
important to re-evaluate the performance of any method with any results from validation.

Although there were two significant assumptions made in this benchmarking approach,
it was the best available systematic assessment method to guide us in identifying best-
performing methods.
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5.7 Testing Drug Candidates in Disease Models

Testing drug candidates in disease models was out of scope for this thesis, however,
the results from the work described in Chapters 6 and 7 have been utilised for potential
validation by our wet-lab collaborators at the Harvard Medical School and the Sheffield
Institute for Translational Neuroscience.

The prioritised drug lists from our pipeline were further investigated to identify top drug
candidates. The top scoring drugs could be manually curated based on their availability,
toxicity, previous test results and known beneficial effects. The available drug candidates
could then be tested by our collaborators in disease models. Depending on funding and
facilities available, a selected number of top scoring candidates from each pathway cluster
will be tested. A subset of drugs could be further investigated in a combination of different
conditions: varying disease model age, concentration and exposure time.

Any drug screen results could be used to additionally benchmark and characterise the
drug repositioning pipeline and influence further method development.

5.8 Discussion

In this chapter, we have described the drug repositioning pipeline, that is the core focus
of this thesis, we also provided detailed description and reasoning for each of the pipeline
components, and characterised the underlying network that powers the identification of
novel drug candidates.

5.8.1 PDxN strengths and limitations

There are several limitations and points of improvement to the PDxN method. Although
we preserved directionality of signatures where possible, we did not account for internal
pathway structure. Whilst, we heavily relied on the correctness of the pathway annota-
tions, we also included data-driven static modules and drug gene sets derived from gene
expression experiments. Nevertheless, the system requires continuous version updates with
new versions of pathway annotations, as both the size and quality of annotation databases
increase with time (Wadi et al., 2016). Although we defined drug gene sets from gene
expression experiments, those drugs were mostly tested on cancer cell lines and other
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immortalised cell lines and were thus unlikely to faithfully represent the reaction of either
control or diseased cells. An additional weakness of the drug-perturbation database is that
due to logistics, only a subset of the drugs tested have been performed in a systematic set
of conditions. This is understandable given the scale of the project and the database (∼1.3
million signatures) as it would be an unrealistic expectation for all the conditions tested
within the same laboratory with the same drug batches. Even for those, the signatures
may lack consistency, given the high variation between replicates. The most frequently
tested conditions in the drug-perturbation datasets pose their own limitations. For example
the most commonly tested concentration of 10µM is likely unsuitable for use in humans
so any conclusions made from those experiments would require further testing and dose
optimisation. Similarly the exposure times currently tested do not consider the absorption
rate or bioavailability of a drug in a human body.

Another important limitation is the gene expression background data used in the PDxN
methodology. It involved a curated set of microarray data, and so it was limited to a small
subset of available gene expression data as it did not yet include any experiments from
the growing plethora of RNA-Seq data. In addition, we currently looked for consistent
relationships between gene sets across many tissues. While this gave us insight into global
relationships, it would be beneficial to look at tissue-specific background gene expression
data for drug repositioning using PDxN.

Because we were interested in capturing a global overview of relationships that could
be interrogated in our drug repositioning pipeline, we reduced dimensionality in multiple
summarising steps. We reduced the information carried onward in the pipeline with each
step. Therefore, we were likely losing some meaningful, and keeping some irrelevant or
random, information in each step. We acknowledge these limitations in the final result
interpretation as noise is likely to accumulate.

In addition to biological implications of the current method, we considered its computa-
tional limitations. PDxN has already significantly reduced the computational requirements
of the PCxN method, while maintaining the original idea. The PCxN method was designed
for 1330 gene sets taking approximately 100h of computational time. We were able to
consider over 50,000 gene sets by limiting the relationships calculated, restructuring the
code, increased parallelisation, and calculating subsets of the network and combining
them at the end. The current version with 53,721 nodes and 76,961,304 edges was ap-
proaching the limit with currently available computational resources. It would require
further computational improvements if larger datasets were to be implemented. However,
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the rapid development in computational power over the last decade is promising for the
implementation of large datasets.

Despite these limitations, we have shown here, and in Pita-Juárez et al. (2018) that
the method captured biologically relevant information. Here we compared PCxN to
PDxN and found several topological and functional similarities. While PCxN consisted of
pathway↔pathway relationships, PDxN only considered relationships between pathway
and drug nodes. Whilst, PDxN was topologically similar to the much smaller PCxN, PDxN
included ∼36-times as many nodes and ∼71-times as many edges as PCxN. As in PCxN,
the PDxN clusters enriched in similar functionally-related pathway groups. The PDxN
pathways formed similar clusters to PCxN, suggesting that the PDxN captured comparable
biologically relevant information despite its bipartite nature. Annotation enrichment
in drugs showed fewer clear patterns. However, the annotation patterns were present
also when investigating the PDxN pathway and drug projections. Through functional
annotation of PDxN clusters, we have shown that PDxN captured functionally meaningful
relationships and can thus confidently use PDxN in further analysis.

5.8.2 Disease signature strengths and limitations

We have developed a disease signature generation method that was designed to identify
key dysregulated pathways in a disease data set. We implemented a pathway-level approach
in order to capture the consensus expression of gene members rather than individual gene
dysregulation. As in PDxN, the method not only relied on correctness of curated pathway
annotations, but also included data-derived static modules, allowing us to counterbalance
inherent curation bias. However, the approach did not take into account pathway topology,
which has shown to improve performance of pathway-based methods (Nguyen et al.,
2019). We preserved directionality, which is lost by most enrichment-based methods,
by generating up- and down-regulated sets of pathways that could then be interrogated
separately in the downstream PDxN analysis.

By keeping this step of the drug repositioning pipeline separated from the underlying
relatively static PDxN, we enabled a drug repositioning approach that was not restricted to
a particular disease. Any use-cases could be considered upon disease signature generation
from case and control gene expression data. Given the method’s reliance on use-case
expression data, we provide additional disease signature characteristics and biological
interpretation of the results in the following chapters.
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5.8.3 Drug prioritisation strengths and limitations

We have implemented a correlation-based drug prioritisation, that leveraged the PDxN
topology and use-case defined disease pathway signatures. The approach preserved
directionality by considering up- and down-regulated disease pathways separately. It
generated PDxN sub-networks between the up- or down-regulated pathways and the drug
nodes connected to those. It consisted of several summarisation steps that reduced the
PDxN correlation connections into one summary score. While the approach leveraged the
PDxN topology, it only considered the disease pathways’ first neighbours, overlooking all
other topological information.

Our direction-sensitive approach allowed the implementation of the signature reversal
hypothesis (Lamb et al., 2006), which is based on prioritising drugs that have an opposite
signature to that of the disease, so that together their signatures counterbalance toward a
healthy state. Further strengths and limitations are explored in the following chapters. We
evaluated this method’s performance and identified the top prioritised drug candidates in
three different case studies described in the following chapters.

In this chapter, we have identified several strengths and limitations to the current
approach. We have characterised the underlying PDxN, however in order to further explore
all the remaining components of the drug prioritisation pipeline we have applied it to three
case studies: juvenile idiopathic arthritis, Alzheimer’s and Parkinson’s disease.





Chapter 6

Evaluation of the System: Application
to juvenile idiopathic arthritis (JIA)

In this chapter we characterise the drug repositioning pipeline components by applying
them to a juvenile idiopathic arthritis (JIA) case study. We applied methods described in
Chapters 3 and 5 to publicly available JIA datasets.

In this chapter, we explored the method’s strengths and weaknesses by applying it to a
large set of studies. In the following chapter, Chapter 7: Case Studies: Neurodegenerative
Diseases, we applied the same pipeline to another two case studies: Alzheimer’s and
Parkinson’s disease. These two chapters follow a similar structure with the following
chapter focusing on neurodegenerative disease drug repositioning pipeline results.

Others’ contributions to this chapter. Professor Lester Kobzik (Department of Envi-
ronmental Health, Harvard T.H. Chan School of Public Health) assisted in the curation of
the publicly available juvenile idiopathic arthritis studies and advised on the interpretation
of the results in relation to the standard treatment practice.

6.1 Disease Introduction

Juvenile idiopathic arthritis (JIA) describes a group of clinically heterogeneous chronic
arthritic diseases of unknown cause, present for a continuous period of at least 6 weeks
in juveniles less than 16 years old (Petty et al., 2004). JIA is the most common chronic
rheumatic disease in children and can cause short- and long-term disability. It has preva-
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lence of approximately 1 per 1000 in developed countries (Beukelman et al., 2011). The
cause of JIA is poorly understood but it is thought to be related to both genetic and
environmental factors, which lead to disease heterogeneity. It has been divided by the
International League of Associations for Rheumatology (ILAR) into several subcategories
with distinct presentation, clinical manifestations and genetic backgrounds (Giancane et al.,
2016). Although ILAR classification is based on the biological basis of the subtypes, there
is increasing evidence for heterogeneity within JIA subtypes (Fall et al., 2007).

In this chapter we focused on systemic JIA (sJIA), characterised by systemic inflam-
mation including recurrent fever and rash. It involves arthritis in one or more joints with or
preceded by fever (Akioka, 2019). Arthritis is swelling within a joint, or limitation in the
range of joint movement with joint pain or tenderness (Petty et al., 2004). This subtype
is the most likely to combine with macrophage activation syndrome — a life-threatening
complication. sJIA patients show a different inflammatory profile compared to the other
subtypes (Akioka, 2019). In particular, the concentrations of interleukin-6 (IL-6) are
increased in patients during active systemic disease and correlate with the extent of joint
involvement (de Benedetti et al., 1991). The overproduction of IL-6 can also explain many
of the extra-articular manifestations of this disease, such as stunted growth (de Benedetti
et al., 1997).

In addition to sJIA datasets, we analysed two that present as Immunoglobulin M (IgM)
rheumatoid factor negative (RF-) polyarticular JIA (polyJIA). RF- polyJIA is characterised
by having 5 or more affected joints within the first 6 months of disease with the absence of
the RF (Petty et al., 2004). RF- polyJIA shows higher prevalence in girls with its onset
more common in early childhood (Ringold et al., 2014). Patients with sJIA who later
develop arthritis in multiple joints can all have polyarticular disease but are excluded
from the polyJIA subtype based on the ILAR classification. polyJIA children tend to
have a more complex course of treatment compared to children with fewer affected joints.
They are at increased risk for joint damage, resulting in poorer functional outcomes and
decreased quality of life (Oberle et al., 2014). Several genetic risk loci have been identified
indicating increased susceptibility to JIA, many within the human leukocyte antigen (HLA)
region (Ombrello et al., 2015).

None of the current available drugs have curative properties, but they greatly im-
prove disease management. Treatment options include non-steroidal anti-inflammatory
drugs (NSAIDs), intra-articular glucocorticoid injections, traditional disease modifying
antirheumatic drugs (DMARDs), and biologic therapy, including tumour necrosis fac-
tor (TNF) inhibitors, interleukin-1 (IL-1), and IL-6 inhibitors (Beukelman et al., 2011).
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Treatment is tailored to control the disease and limit disability while balancing these with
excessive immunosuppression and side effects from these medications (Ravelli et al., 2018).
The more joints that are involved in the disease or the more severe the systemic symptoms,
the greater the amounts of immunosuppressant necessary, causing greater side effects
(Harris et al., 2013).

Although the functional outcomes have greatly improved over the last few decades,
approximately 40% of sJIA and one third of RF- polyJIA patients develop moderate or
severe disability. In addition, JIA often extends into adulthood where higher unemployment
rates among patients are observed, suggesting difficulty adapting to adult life (Oen et al.,
2002). It is thus necessary to establish better treatments that would increase recovery and
decrease long-term disability.

6.2 Case Study Design

In this chapter, we focused on generating prioritised drug lists with the Pathway Drug
co-expression Network (PDxN) pipeline for treatment of sJIA. We first generated pathway-
level disease signatures from a curated set of sJIA and RF- polyJIA studies (Section 5.4).
We then applied the sJIA disease signatures to the signature processing method (Section 5.5)
and evaluated the resulting prioritised drug lists by comparison with an approved drug list.
We explored the sensitivity of the PDxN method by further analysing the prioritised drug
lists and comparing our results to an online Library of Integrated Network-based Cellular
Signatures (LINCS) query tool (https://clue.io/ ), an alternative gene-based method based
on the same drug signatures.

In order to be able to differentiate between studies representing the same disease and
tissue, we referred to studies by their Gene Expression Omnibus (GEO) accession number
(starting with GSE). We treated GSE88650 as two separate studies, because the samples
were profiled on two different platforms (GPL96, GPL97) with discrete probe sets. We
provided disease, tissue and array annotations on all figures. We referred to microarray
platforms by their GEO accession number (starting with GPL) and referred to GPL11154
(Illumina HiSeq 2000) as RNA-Seq.

We focused on 8 different JIA studies: 6 included sJIA, and 2 RF- polyJIA samples
(Table 6.1). Two sJIA studies included samples from the whole blood, the rest were profiled
in peripheral blood mononuclear cells (PBMC), a fraction of the whole blood. Most studies
were analysed on GPL570. In addition to JIA studies, we included an unrelated microarray

https://clue.io/
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dataset consisting of liver samples from old and young individuals (GSE133815, Table 3.2)
to serve as the control study. We used it as a control in the disease signature generation
step because it represented a study from the same organism, on the most commonly used
platform in our curated selection of JIA studies, but of non-inflammatory condition.

Table (6.1) Overview of JIA studies. The control and disease sample numbers in the table
reflect the number of samples post quality control (QC). Sample numbers before QC are listed in
Table 3.2. * — in GSE26554, the 3 sJIA samples were removed due to the low number, instead
the larger group of RF- PolyJIA samples was used. GPL570 — U133 Plus 2.0 Array; GPL96
— U133A Array; GPL97 — U133B Array; GPL11154 — Illumina HiSeq 2000; JIA — juvenile
idiopathic arthritis; PBMC — peripheral blood mononuclear cells; RF- polyJIA — rheumatoid
factor negative polyarticular JIA; sJIA — systemic JIA.

GEO
accession Platform Tissue Control

samples
Disease
samples Disease Reference

GSE15645 GPL570 PBMC 12 13 RF-
polyJIA

Knowlton et al.
(2009)

GSE26554 GPL570 PBMC 22 3∗, 35 sJIA∗, RF-
polyJIA

Thompson et al.
(2012)

GSE20307 GPL570 PBMC 52 20 sJIA Barnes et al. (2010)
GSE21521 GPL570 PBMC 26 18 sJIA Hinze et al. (2010)
GSE7753 GPL570 PBMC 27 17 sJIA Fall et al. (2007)

GSE8650 GPL96 PBMC 21 14 sJIA Allantaz et al.
(2007)

GSE8650 GPL97 PBMC 21 12 sJIA Allantaz et al.
(2007)

GSE112057 GPL11154 whole
blood 12 26 sJIA Mo et al. (2018)

GSE80060 GPL570 whole
blood 22 21 sJIA Brachat et al.

(2017)

6.2.1 Representative studies

As there were several studies being analysed separately, we, for clarity, chose only
two representative studies, GSE7753 and GSE112057, that we discussed in detail. We
interpreted both studies for disease signature characterisation and only GSE7753 for
further downstream analysis. Both representative studies included samples from sJIA
patients. GSE7753 samples were extracted from PBMC and analysed on Affymetrix
Human Genome U133 Plus 2.0 Array (GPL570) which were the most common tissue
and array in the curated set of JIA studies. GSE7753 thus represents the most common
sJIA subtype, tissue and platform among the curated set of JIA studies considered in this
chapter. GSE112057 was selected because it was the only curated RNA-Seq sJIA study.
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We generated disease signatures for GSE112057, but the study was excluded from further
downstream analysis because we focused our analysis on only sJIA PBMC studies, and
GSE112057 consisted of tissue samples from whole blood. While we showed summarised
results of the curated studies, we also show a further break-down of the representative
study results.

6.3 Disease Signatures

We generated signatures (Sections 3.3 and 5.4) for a set of curated sJIA and polyJIA
gene expression studies. An additional non-JIA microarray dataset was analysed to serve
as control in characterisation of the disease signature generation. The studies were profiled
on 4 different platforms in three different tissues. We generated pathway signatures for all
10 studies and gene-level signatures for 2 representative studies (one microarray and one
RNA-Seq JIA).

6.3.1 Pathway signatures

We employed a pathway-level approach, as it was expected to yield a more robust
representation of the gene expression data as the technological and biological variance
across samples is reduced (Guo et al., 2005). The pathway-level analysis captured the
consensus expression of gene members, rather than individual gene variance. The pathway
signatures generated were compatible with the PDxN system, thus allowing identification
of potential drug candidates.

Pathway signature correlation and overlap

We investigated the sensitivity of the pathway disease signature generation method,
before applying the signatures in downstream analysis. To determine whether the signature
generation method was sensitive to the underlying biological similarities and differences
between the studies, we analysed studies from two JIA subtypes and a non-JIA liver
study comparing tissue samples from old and young individuals (GSE133815). Out of
7 sJIA studies, 5 included samples from PBMC and two from whole blood. We wanted
to determine whether our differential pathway expression approach could identify the
biological differences and similarities between JIA subtypes and tissues, and overcome the
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Fig. (6.1) Correlation and overlap between JIA disease pathway signatures. (A) Spearman
correlation between logFCs of JIA differentially expressed pathways (DEPs) and DEPs from one
non-related study (GSE133815) with no p-value threshold. (B) Overlap between disease pathway
signatures (q-value < 0.05). Supplementary Fig. D.1 shows the differential pathway expression
profile (q-value < 0.05) for each of the 10 studies. DEP — differentially expressed pathway; JIA —
juvenile idiopathic arthritis; logFC — log2 fold change; PBMC — peripheral blood mononuclear
cells; RF- polyJIA — rheumatoid factor negative polyarticular JIA; sJIA — systemic JIA.
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platform effect. We hypothesised that sJIA PBMC studies will produce similar pathway
profiles, distinct from other JIA studies and sJIA studies profiled in the whole blood.
Additionally, we hypothesised that the liver study will produce the most contrasting
pathway signature.

In order to assess the similarities of differentially expressed pathway lists, we calculated
Spearman’s correlation and the overlap between differential pathway expression profiles
for each pair of the analysed studies (Fig. 6.1). We calculated the correlation of log2 fold
change (logFC) values for all pathways with no p-value threshold (Fig. 6.1A). All JIA
studies formed a positively correlated cluster, while the control liver study was negatively
correlated with all JIA studies and consequently clustered separately from them. 5 out of 7
sJIA studies clustered together with one polyJIA study. GSE20307, GSE8650_GPL96,
GSE7753 and GSE21521 formed a tight cluster with high positive correlation scores
between the study pairs. The other two sJIA studies (GSE80060, GSE112057) clustered
with the second polyJIA study away from the other JIA studies. The two sJIA studies,
clustering apart from the majority of studies, were from the whole blood rather than the
PBMC.

We assessed the overlap size between differently expressed pathways (DEPs) (q-value
< 0.05) for each pair of studies, ignoring the DEP direction (Fig. 6.1B). The overlap values
were relatively high (> 0.5) due to the high number of DEPs meeting the significance
threshold. A possible reason for the high number of significant DEPs is that the pathway
summary scores represent the mean expression of only the most different genes between
two conditions thus leading to enhanced pathway-level differences between two conditions.
The pair of studies with the highest correlation (GSE7753 and GSE21521) also showed a
high overlap value. Due to a large number of DEPs (1250/1473) GSE80060 showed high
overlap with all other studies, including the control liver study. The liver study showed
low overlap with studies with fewer DEPs. As the liver study showed negative correlation
with all JIA studies (no q-value threshold), it suggested that the DEPs were expressed in
opposite directions despite the high overlap. The differential pathway expression profiles
for each of the 10 studies (q-value < 0.05, Supplementary Fig. D.1) showed that the clear
outlier by direction of DEPs was the liver study we included as the control. Its profile
contradicted all other studies by having mostly up-regulated pathways when the rest have
down-regulated and vice versa.

The whole blood sJIA RNA-Seq study (GSE112057) had higher correlation with other
JIA studies compared to the negatively correlated control study. It showed high correlation
with the other whole blood sJIA microarray study (GSE80060) suggesting that the method
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could partially overcome the platform effect. No RNA-Seq data from PBMC sJIA samples
were available at the time of study selection; therefore, we could not make definitive
conclusions about the signature method’s inherent ability to overcome microarray and
RNA-Seq platform differences.

Clustering of the differential pathway expression analysis results suggested that the
pathway-level signature generation method was sensitive to the underlying biology of the
samples, while partially overcoming the platform effect. It was able to distinguish between
JIA and non-JIA studies, in addition, it showed the potential to differentiate different JIA
subtypes or studies from different tissues. The sJIA GPL96 study (GSE8650) consistently
clustered with the other sJIA studies analysed on the more common GPL570 platform.
Due to discrete probe sets GSE8650 analysed on GPL97 did not show similar patterns of
logFC values to the GPL96, despite analysing the same samples (Supplementary Fig. D.1).
Both GPL96 and GPL97 probe sets are subsets of GPL570 (Affymetrix, 2003a,b). The
differential pathway expression analysis suggested that GPL96 included a more relevant
probe set for JIA compared to GPL97. Returning to the hypothesis we showed that the
sJIA PBMC studies produced similar pathway profiles, distinct from other JIA studies and
sJIA studies profiled in the whole blood. Additionally, we confirmed that the control liver
study produced the most contrasting pathway signature.

Interpretation of differentially expressed pathways

While we generated the differential pathway expression profiles for all studies listed
in Table 6.1, we conducted a literature review for biological relevance of the 10 most up-
and down-regulated pathways from only the two representative studies (GSE7753 and
GSE112057). We investigated whether each pathway has been linked to JIA or rheumatoid
arthritis pathology. The top 20 most up- and down-regulated pathways for GSE7753 and
GSE112057 are listed in Tables 6.2 and 6.3, respectively.
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Table (6.2) GSE7753 sJIA disease signature pathways. The top 20 most up- (rank: 1 to 20)
and down- (rank: -1 to -20) regulated pathways (q-value < 0.05). Drugs were prioritised for the
up- and down-regulated pathway clusters at: the top 5, 10, 15 or 20 pathways by decreasing log
fold change (LogFC) for up- and decreasing for down-regulated pathways. The genes in pathway
column represents the number of possible genes in that pathway, while genes in data is the number
of pathway genes found in data. sJIA — systemic juvenile idiopathic arthritis.

Rank Pathway LogFC q-value
Genes

in
path-
way

Genes
in

data

1 Biocarta AHSP pathway 1.300 1.22e-06 13 12
2 Reactome G1 S SPECIFIC TRANSCRIPTION 1.140 6.98e-06 19 17
3 SA G2 and M PHASES 1.110 8.55e-06 8 8

4 Reactome POST CHAPERONIN TUBULIN
FOLDING pathway 1.060 4.68e-06 19 16

5 Reactome METABOLISM of PORPHYRINS 1.040 4.68e-06 14 13
6 Reactome RNA POL I PROMOTER OPENING 0.982 6.98e-06 62 43

7 Reactome ACTIVATION of the AP1 FAMILY of
TRANSCRIPTION FACTORS 0.971 4.00e-06 10 10

8 Biocarta GLYCOLYSIS pathway 0.942 4.62e-04 10 10

9 Reactome CREATION of C4 and C2 ACTIVA-
TORS 0.941 1.09e-04 10 8

10 Reactome UNWINDING of DNA 0.937 7.05e-05 11 11
11 SPTAN1 10 Static Module 0.892 1.81e-05 10 10
12 Reactome AMYLOIDS 0.879 8.23e-06 83 63
13 Biocarta EPONFKB pathway 0.858 6.90e-06 11 11
14 Biocarta SKP2E2F pathway 0.845 6.98e-06 10 10

15 Reactome DEGRADATION of the EXTRACEL-
LULAR MATRIX 0.844 3.90e-06 29 28

16 Biocarta DREAM pathway 0.843 6.64e-06 14 14
17 Reactome PACKAGING of TELOMERE ENDS 0.831 1.16e-04 48 36
18 SPI1 10 Static Module 0.823 2.08e-05 10 9

19 Reactome SYNTHESIS of BILE ACIDS and BILE
SALTS via 24 HYDROXYCHOLESTEROL 0.810 3.90e-06 10 10

20 Biocarta GRANULOCYTES pathway 0.809 1.62e-05 14 14
-1 SFPQ 10 Static Module -0.919 8.06e-05 10 8
-2 BCLAF1 25 Static Module -0.898 1.52e-04 25 25
-3 ASH2L 391 Static Module -0.799 4.06e-05 390 335
-4 TIA1 10 Static Module -0.763 1.90e-03 10 10
-5 Biocarta TCRA pathway -0.758 1.26e-03 13 11
-6 Reactome GLUCURONIDATION -0.702 2.70e-05 18 9
-7 KEGG CIRCADIAN RHYTHM MAMMAL -0.691 6.98e-06 13 13
-8 Reactome PEPTIDE CHAIN ELONGATION -0.684 1.63e-03 153 83

-9 Reactome 3 UTR MEDIATED TRANSLA-
TIONAL REGULATION -0.665 1.04e-03 176 103

-10 KEGG RIBOSOME -0.660 2.73e-03 88 85

-11 Reactome PROCESSING of INTRONLESS PRE
MRNAS -0.659 6.59e-04 14 14

-12 Reactome FORMATION of the TERNARY COM-
PLEX and SUBSEQUENTLY the 43S COMPLEX -0.659 1.97e-03 74 47

-13 Reactome TRANSLOCATION of ZAP 70 to IM-
MUNOLOGICAL SYNAPSE -0.657 4.99e-03 14 12

continues on the next page
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Table 6.2 continued

Rank Pathway LogFC q-value
Genes

in
path-
way

Genes
in

data

-14
Reactome ACTIVATION of the MRNA UPON
BINDING of the CAP BINDING COMPLEX and
EIFS and SUBSEQUENT BINDING to 43S

-0.615 1.62e-03 84 55

-15 PID CIRCADIAN pathway -0.613 4.06e-05 16 16

-16 Reactome INFLUENZA VIRAL RNA TRAN-
SCRIPTION and REPLICATION -0.607 2.69e-03 169 99

-17 Reactome NONSENSE MEDIATED DECAY EN-
HANCED by the EXON JUNCTION COMPLEX -0.600 1.14e-03 176 104

-18 Reactome GENERIC TRANSCRIPTION pathway -0.596 6.24e-05 352 329

-19
Reactome SRP DEPENDENT COTRANSLA-
TIONAL PROTEIN TARGETING to MEM-
BRANE

-0.595 3.78e-03 179 106

-20 HLA-A 53 Static Module -0.594 1.89e-04 51 42

The top 10 up-regulated pathways in GSE7753 were involved in the cell cycle (Re-

actome G1/S specific transcription, SA G2 and M phases, Reactome Unwinding of DNA

(Howard, 1953)), erythropoiesis (Biocarta AHSP pathway, Reactome Metabolism of por-

phyrins), transcription (Reactome RNA Pol I promoter opening, Reactome Activation of

the Activator protein 1 (AP1) family of transcription factors (Angel and Karin, 1991)),
complement activation (Reactome Creation of C4 and C2 activators), glycolysis (Bio-

carta Glycolysis pathway), and tubulin folding (Reactome Post-chaperonin tubulin folding

pathway) (Table 6.2).

Erythropoiesis. The top up-regulated pathway in GSE7753 was the Biocarta alpha

haemoglobin stabilising protein (AHSP) pathway involved in erythropoiesis, production
of mature red blood cells (Weiss et al., 2005). It is considered to be an indicator of
ineffective erythropoiesis as higher proportion of immature PBMC sub-populations were
identified with flow cytometry in samples from this study (GSE7753, Fall et al. (2007))
and supported by later studies (GSE21521 (Hinze et al., 2010), and GSE13501 (duplicate
sJIA samples from GSE20307), (Barnes et al., 2009)). The 5th most up-regulated pathway
(Reactome Metabolism of porphyrins) was also related to the production of red blood
cells. Porphyrins form a porphyrin complex that is in haem, the pigment in red blood
cells (Perutz et al., 1960). Complement activation. The complement system is part of the
innate immune system, it is also a key mediator of inflammatory injury (Walport, 2001).
It was shown that the levels of bound C3 and C4 to the circulating immune complexes
were significantly higher in RF- polyJIA (Gilliam et al., 2011), as well as that the levels
of plasma complement activation fragments correlate with active JIA (Aggarwal et al.,
2000; Jarvis et al., 1993). Glycolysis. An increased glycolytic activity has been observed
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in rheumatoid arthritis (RA) synovial fluid (Ciurtin et al., 2006; Henderson et al., 1979;
Naughton et al., 1993). Additionally, it has been shown that the hypoxia-inducible factor 1
α (HIF-1α), whose expression is also increased in synovial fluid (Hollander et al., 2001),
can increase the expression of glycolytic enzymes in the inflammatory synovium (Distler
et al., 2004).

The top 10 down-regulated pathways in GSE7753 were related to TNFα (SFPQ Static

module, TIA1 Static module), HLA (Biocarta TCRA pathway), drug metabolism (Reactome

Glucuronidation), transcription (ASH2L Static module), translation (Reactome Peptide

chain elongation, Reactome 3’UTR mediated translation, KEGG Ribosome, BCLAF1

Static module), and circadian rhythm (KEGG Circadian rhythm mammal) (Table 6.2).

TNFα . The most down-regulated pathway in GSE7753 was the SFPQ Static module

with splicing factor proline- and glutamine-rich (SFPQ) as its hub gene. SFPQ modulates
phosphodiesterase 3A (PDE3A), whose locus has been established as a strong genetic
marker of anti-TNF therapy response (Acosta-Colman et al., 2013; Rhee et al., 2017).
TNFα is one of the most important cytokines involved in JIA pathogenesis and is thought
to account for the articular manifestation of JIA together with other pro-inflammatory
cytokines like IL-1α and IL-6 (Kutukculer et al., 1998; Lepore et al., 1994). The 4th most
down-regulated pathway (TIA1 Static module) is also associated with TNFα . The arthritis
suppressor gene, T-cell intracellular antigen-1 (TIA-1), lowers the expression of TNFα

(Phillips et al., 2004). BCL-associated factor 1 (BCLAF1) is the hub gene in another down-
regulated Static module. BCLAF1 is induced by nuclear factor κ-light-chain-enhancer of
activated B cells (NF-κB) transcriptional activity (Shao et al., 2016) and NF-κB is induced
by TNFα (Hayden and Ghosh, 2014). HLA. The Biocarta TCRA pathway involving T-cell
receptor (TCR) activation was linked to JIA’s best established genetic risk factor, the HLA
complex (Ombrello et al., 2015). HLA encodes the major histocompatibility complex
(MHC) that stimulates TCRs (Dausset, 1958; Zinkernagel and Doherty, 1979). Drug
metabolism. The 6th most down-regulated pathway was the Reactome Glucuronidation.
Glucuronidation is commonly involved in drug metabolism including the metabolism of
NSAIDs which are commonly administered to JIA patients (Kuehl et al., 2005; Williams
et al., 2004). NSAIDs have also shown inhibitory potential of glucuronidation (Mano
et al., 2007). While GSE7753 sJIA samples were considered untreated, the authors only
specified that samples were taken prior to the initiation of treatment with DMARDs or
steroids (Fall et al., 2007). Therefore, the glucuronidation pathway could be dysregulated
due to patients receiving treatment other than DMARDs or steroids.



164 Evaluation of the System: Application to juvenile idiopathic arthritis (JIA)

The top up-regulated pathways in GSE112057 were related to the cytoskeleton (Bio-

carta Salmonella pathway, Biocarta RAB pathway, Biocarta CDC42RAC pathway, Bio-

carta ACTINY pathway, SEPT2 Static module), hypoxia (Reactome Oxygen dependent

proline hydroxylation of hypoxia inducible factor alpha, Reactome Regulation of hypoxia

inducible factor HIF by oxygen), NF-κB (Reactome RAP1 signalling, Biocarta EPO/NFKB

pathway), and platelet activation (PID Thrombin PAR4 pathway) (Table 6.3).

Table (6.3) GSE112057 sJIA disease signature pathways. The top 20 most up- (rank: 1 to
20) and down- (rank: -1 to -20) regulated pathways (q-value < 0.05). Drugs were prioritised for
up- and down-regulated pathway clusters at: the top 5, 10, 15 or 20 pathways by decreasing log
fold change (LogFC) for up- and decreasing for down-regulated pathways. The genes in pathway
column represents the number of possible genes in that pathway, while genes in data is the number
of pathway genes found in data. sJIA — systemic juvenile idiopathic arthritis.

Rank Pathway LogFC q-value
Genes

in
path-
way

Genes
in

data

1 Biocarta SALMONELLA pathway 1.100 0.005650 13 11
2 Biocarta RAB pathway 1.090 0.005800 12 9
3 Biocarta CDC42RAC pathway 1.090 0.005690 16 14

4
Reactome OXYGEN DEPENDENT PROLINE
HYDROXYLATION of HYPOXIA INDUCIBLE
FACTOR ALPHA

1.070 0.001440 18 11

5 PID THROMBIN PAR4 pathway 1.050 0.006610 15 10
6 Biocarta ACTINY pathway 1.020 0.006930 20 15
7 SEPT2 21 Static Module 1.000 0.004050 20 5
8 Reactome REGULATION of HYPOXIA IN-

DUCIBLE FACTOR HIF by OXYGEN 0.994 0.003480 25 16
9 Reactome RAP1 SIGNALLING 0.988 0.004080 17 12

10 Biocarta EPONFKB pathway 0.986 0.006990 11 9
11 Reactome DSCAM INTERACTIONS 0.976 0.008430 11 6
12 KEGG DORSO VENTRAL AXIS FORMATION 0.976 0.007780 25 14
13 PID IL5 pathway 0.976 0.008080 14 13
14 Biocarta HCMV pathway 0.965 0.005230 17 17
15 PRKCA 14 Static Module 0.965 0.008430 14 5
16 Reactome SIGNALING by NOTCH2 0.965 0.007630 12 10
17 Biocarta MONOCYTE pathway 0.957 0.006250 11 10
18 Biocarta RANKL pathway 0.956 0.007200 14 10

19
Reactome RECEPTOR LIGAND BINDING INITI-
ATES the SECOND PROTEOLYTIC CLEAVAGE
of NOTCH RECEPTOR

0.945 0.009520 12 6

20 Reactome IL 6 SIGNALING 0.940 0.007270 11 9
-1 Reactome PROSTANOID LIGAND RECEPTORS -1.040 0.001440 10 6
-2 Reactome COLLAGEN FORMATION -0.976 0.003400 58 16
-3 Biocarta NUCLEARRS pathway -0.962 0.001610 15 7
-4 Reactome VEGF LIGAND RECEPTOR INTER-

ACTIONS -0.961 0.003800 10 5

-5 Reactome EICOSANOID LIGAND BINDING RE-
CEPTORS -0.955 0.001740 16 8

-6 Reactome TRANSLOCATION of ZAP 70 to IM-
MUNOLOGICAL SYNAPSE -0.954 0.008080 14 7

-7 PID CONE pathway -0.946 0.002520 23 5
-8 Reactome APOBEC3G MEDIATED RESIS-

TANCE to HIV1 INFECTION -0.936 0.005690 12 5

continues on the next page
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Table 6.3 continued

Rank Pathway LogFC q-value
Genes

in
path-
way

Genes
in

data

-9 Reactome RNA POL III TRANSCRIPTION INI-
TIATION FROM TYPE 2 PROMOTER -0.918 0.006830 23 22

-10 Reactome RNA POL III CHAIN ELONGATION -0.887 0.007570 17 16
-11 Reactome RNA POL III TRANSCRIPTION TER-

MINATION -0.874 0.006930 19 17

-12 KEGG VALINE LEUCINE and ISOLEUCINE
BIOSYNTHESIS -0.847 0.011700 11 9

-13 PID CIRCADIAN pathway -0.830 0.012200 16 11
-14 KEGG RNA POLYMERASE -0.830 0.007270 29 27
-15 Reactome NCAM1 INTERACTIONS -0.803 0.000994 39 12
-16 Biocarta NO2IL12 pathway -0.799 0.001910 17 13
-17 Reactome RECRUITMENT of NUMA to MI-

TOTIC CENTROSOMES -0.799 0.006990 10 10
-18 Biocarta SET pathway -0.797 0.001440 11 10
-19 Reactome ABCA TRANSPORTERS in LIPID

HOMEOSTASIS -0.791 0.001960 18 8

-20
Reactome BIOSYNTHESIS of the N GLY-
CAN PRECURSOR DOLICHOL LIPID LINKED
OLIGOSACCHARIDE LLO and TRANSFER to
A NASCENT PROTEIN

-0.784 0.005690 29 25

Actin cytoskeleton. The Salmonella pathway includes two Rho GTPases, cell division
control protein 42 homolog (CDC42) and Ras-related C3 botulinum toxin substrate 1
(RAC1) (also key proteins in Biocarta CDC42/RAC pathway), that regulate the actin
cytoskeleton (Chen et al., 1996). Rab GTPase coordinates with Rho GTPases in regulation
of cytoskeleton organisation (reviewed in Kjos et al. (2018)), the ACTINY pathway includes
proteins involved in actin polymerization including Rac1. Septin 2 (SEPT2) is involved
in stabilisation of actin fibres (Kinoshita et al., 2002; Schmidt and Nichols, 2004). These
pathways suggested actin cytoskeleton dysregulation in JIA. Actin cytoskeleton and its
components have previously been identified as dysregulated in JIA plasma (Gibson et al.,
2012), polyJIA synovium (Finnegan et al., 2014) and RA synovial fibroblasts (Aidinis
et al., 2005; Matsuo et al., 2006; Vasilopoulos et al., 2007). Hypoxia and NF-κB. The
NF-κB and hypoxia inducible factor (HIF) have been shown to act interdependently in
hypoxia and inflammation (Belaiba et al., 2007; Rius et al., 2008; Walmsley et al., 2005).
Additionally, synovial hypoxia has been a constant feature of RA (Quiñonez-Flores et al.,
2016). HIF-2α , overexpressed in synovial fibroblasts, regulates the expression of receptor
activator of NF-κB ligand (Ryu et al., 2014) and is involved in cartilage erosion (Huh
et al., 2015). HIF-1α can be activated via NF-κB pathway in the presence of bacterial
lipopolysaccharides (Frede et al., 2006). In addition to HIF related pathways, RAP1
signalling and EPO/NFKB pathway were also linked to NF-κB. Repressor activator protein
1 (RAP1) regulates NF-κB-dependent gene expression (Teo et al., 2010). Erythropoietin
(Epo) secreted by the kidney stimulates red blood cell production and is also secreted
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in the brain in response to hypoxia, induced by HIF-1 (Digicaylioglu and Lipton, 2001).
Platelet activation. Thrombin, the most potent platelet activator, mediates the process
through two proteinase-activated receptors (PARs) 1 and 4 (Wu et al., 2010a). Active JIA
was associated with increased mean platelet volume, which is an indicator of systemic
inflammation (Güneş et al., 2015).

The top down-regulated pathways in GSE112057 were related to drug response
(Reactome Prostanoid ligand receptors, Biocarta NUCLEARRS pathway, Eicosanoid

ligand binding receptors), NF-κB (Reactome VEGF ligand receptor interactions), im-
mune response (Reactome Translocation of ZAP70 to immunological synapse, Reactome

APOBEC3G mediated resistance to HIV1 infection, Reactome RNA pol III transcription

initiation from type 2 promoter, Reactome RNA pol III chain elongation), and collagen
formation (Reactome Collagen formation) (Table 6.3).

Drug response. Arachidonic acid can be metabolised into different classes of eicosanoids
by cyclooxygenases (COX), lipoxygenases, or cytochrome P450 (CYP) enzymes and
Prostanoid receptors bind prostanoids, a subclass of eicosanoids, which are COX metabo-
lites. Most NSAIDs are non-selective inhibitors of COX, thus can limit the rate of arachi-
donic acid metabolism and consequently, prostanoid formation (Allaj et al., 2013). COX-2
expression is induced by various inflammatory stimuli and can be suppressed by glucocorti-
coids like dexamethasone (Smith et al., 2000). CYPs present in the Biocarta NUCLEARRS

pathway are responsible for clearing approximately 80% of the top 200 prescribed drugs
in the US (Zanger et al., 2008). Only partial treatment information was accessible in Mo
et al. (2018) for GSE112057. In their analysis they adjusted for treatment based on 3
non-exclusive categories of medication: known treatment with DMARDs, biologics, and
steroids, however, no treatment information was provided in the metadata in the GEO
dataset. Thus, it is likely that the patients have received various treatments that we were
unable to correct for due to the lack of treatment metadata. The disease pathways were
likely a result of drug perturbations, as suggested by dysregulation of drug metabolism
related pathways. NF-κB. The vascular endothelial growth factor (VEGF) expression is
regulated by TNFα and NF-κB (Yoshida et al., 1997), its concentrations have also been
positively correlated with the disease activity in JIA (Maeno et al., 1999; Świdrowska
et al., 2015). Immune response. Zeta-associated protein of 70kD (ZAP70) normally
expressed near the surface membrane of T and natural killer (NK) cells, is essential in the
T cell activation. Additionally, it has also been found in B cells obtained from the synovial
fluid and tissue of RA patients. The percentage of ZAP-70+ B cells correlates with levels
of IL-6 (Tolusso et al., 2009). The Apolipoprotein B mRNA editing enzyme, catalytic
polypeptide-like 3G (APOBEC3G) family provide innate resistance to retroviruses by
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mutating the viral DNA into non-functional provirus and inducing the innate immune
response (Harris and Dudley, 2015). RNA polymerase III has been shown to transcribe
pathogenic DNA and trigger the innate immune response (Chiu et al., 2009). Collagen
formation. Autoantibodies to type II collagen (CII), the predominant structural protein of
articular cartilage, have been detected in the serum of sJIA patients (Myers et al., 2001).

In summary, the differential pathway analysis of GSE7753 and GSE112057 has iden-
tified several JIA-related dysregulated pathways. In both studies there were several in-
flammatory and immune-related processes, some associated with well-established JIA
proteins like TNFα and NF-κB. In both studies drug metabolism-related pathways were
down-regulated, suggesting patients might have received some treatment before sample ex-
traction, leading to dysregulation of those pathways. These results were further supported
by Ramanathan et al. (2018). They have identified similar trends in their pathway analysis
of public JIA datasets (including GSE21521 and two other studies). Their analysis iden-
tified pathways elevated in JIA included cytokine signalling pathways, kinase pathways
(NF-κB), pathways relating to cell migration (actin cytoskeleton), pathways relating to
production of reactive oxygen species (ROS, hypoxia-related) and regulation of the cell
cycle checkpoints (Ramanathan et al., 2018). These groups were also found in GSE7753
and GSE112057 discussed in this section. The pathological relevance of the top up- and
down-regulated pathways further demonstrated the sensitivity of the differential pathway
expression method.

6.3.2 Overlap pathway signature

In order to assess the consensus sJIA PBMC signature, we identified the overlapping
DEPs from all 5 sJIA PBMC studies (GSE20307, GSE21521, GSE7753, GSE8650_GPL96,
GSE8650_GPL97). From the 5 studies there were 208 overlapping DEPs (q-value < 0.05
in each study). The expected range of intersect size from a random permutation test was
54–113 pathways (expected mean = 82.8), with the observed overlap size of 208 (p-value
= 1e-04, Supplementary Fig. D.2). We ranked the overlap pathways by mean logFC. The
20 most up- and down-regulated pathways are listed in Table 6.4.
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Table (6.4) Overlap PBMC sJIA disease signature pathways. The top 20 most up- (rank: 1 to
20) and down- (rank: -1 to -20) regulated overlap pathways from GSE20307, GSE21521, GSE7753,
GSE8650_GPL96, GSE8650_GPL96 (q-value < 0.05 in each study). Drugs were prioritized for
up- and down-regulated pathway clusters at: the top 5, 10, 15 or 20 pathways by decreasing mean
log fold change (mean logFC). The genes in pathway column represents the number of possible
genes in that pathway. Genes in data is the number of pathway genes found in data. PBMC —
peripheral blood mononuclear cells; sJIA — systemic juvenile idiopathic arthritis.

Rank Pathway mean
LogFC

1 Reactome DEGRADATION of the EXTRACELLULAR MATRIX 0.889
2 Reactome AMYLOIDS 0.775
3 Reactome UNWINDING of DNA 0.746
4 KEGG COMPLEMENT and COAGULATION CASCADES 0.716
5 Reactome INHIBITION of VOLTAGE GATED CA2 CHANNELS via GBETA

GAMMA SUBUNITS 0.694
6 Reactome FORMATION of FIBRIN CLOT CLOTTING CASCADE 0.692
7 Reactome ORGANIC CATION ANION ZWITTERION TRANSPORT 0.686
8 Reactome AMINE COMPOUND SLC TRANSPORTERS 0.679
9 Reactome PLATELET CALCIUM HOMEOSTASIS 0.676
10 PID INTEGRIN A9B1 pathway 0.667
11 NFIC 21 Static Module 0.662
12 Reactome SYNTHESIS of PC 0.654
13 Reactome INWARDLY RECTIFYING K CHANNELS 0.641
14 F2 46 Static Module 0.633
15 Biocarta UCALPAIN pathway 0.623
16 SA G1 and S PHASES 0.608
17 KEGG SYSTEMIC LUPUS ERYTHEMATOSUS 0.594
18 PID P38 GAMMA DELTA pathway 0.590
19 Reactome NITRIC OXIDE STIMULATES GUANYLATE CYCLASE 0.582
20 Reactome GABA B RECEPTOR ACTIVATION 0.575
-1 Reactome PEPTIDE CHAIN ELONGATION -0.880

-2 Reactome FORMATION of the TERNARY COMPLEX and SUBSEQUENTLY
the 43S COMPLEX -0.870

-3 Reactome 3 UTR MEDIATED TRANSLATIONAL REGULATION -0.867
-4 BCLAF1 25 Static Module -0.867
-5 KEGG RIBOSOME -0.864
-6 Reactome ACTIVATION of the MRNA UPON BINDING of the CAP BINDING

COMPLEX and EIFS and SUBSEQUENT BINDING to 43S -0.837

-7 Reactome NONSENSE MEDIATED DECAY ENHANCED by the EXON
JUNCTION COMPLEX -0.833

-8 Reactome INFLUENZA VIRAL RNA TRANSCRIPTION and REPLICATION -0.830
-9 Reactome SRP DEPENDENT COTRANSLATIONAL PROTEIN TARGETING

to MEMBRANE -0.826
-10 Reactome TRANSLATION -0.810
-11 Reactome INFLUENZA LIFE CYCLE -0.803
-12 RPS27A 138 Static Module -0.797
-13 ASH2L 391 Static Module -0.789
-14 Reactome MRNA 3 END PROCESSING -0.740
-15 Reactome CLEAVAGE of GROWING TRANSCRIPT in the TERMINATION

REGION -0.702
-16 KEGG SPLICEOSOME -0.678
-17 EPRS 15 Static Module -0.671
-18 Reactome PROCESSING of CAPPED INTRON CONTAINING PRE MRNA -0.670
-19 Reactome NEP NS2 INTERACTS with the CELLULAR EXPORT MACHIN-

ERY -0.669
-20 POLR2A 195 Static Module -0.667
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Briefly, the top up-regulated overlap pathways were related to the extracellular matrix
(Reactome Degradation of the extracellular matrix, Reactome Amyloids, PID Integrin A9B1

pathway), coagulation (KEGG Complement and coagulation cascades, Reactome Forma-

tion of fibrin clot clotting cascade, Reactome Platelet calcium homeostasis), transport
(Reactome Organic cation/anion/zwitterion transport, Reactome Amine compound SLC

transporters), DNA unwinding (Reactome Unwinding of DNA), and gamma-aminobutyric
acid B (GABAB) receptors (Reactome Inhibition of voltage gated Ca2+ channels via

Gbeta/gamma subunits).

The most down-regulated overlap pathways were related to transcription (Reactome

Nonsense mediated decay enhanced by the exon junction complex, Reactome Influenza

viral RNA transcription and replication), translation (Reactome Peptide chain elongation,
Reactome Formation of the ternary complex and subsequently the 43S complex, Reactome

3’UTR mediated translational regulation, KEGG Ribosome, Reactome Activation of the

mRNA upon binding of the CAP binding complex and EIFS and subsequent binding to

43S, Reactome SRP-dependent cotranslational protein targeting to membrane, Reactome

Translation), and NF-κB induced BCLAF1 (BCLAF1 Static module).

Although there was a large overlap between the sJIA PBMC overlap pathways, the
top pathways were related to generic cell processes rather than processes related to JIA
pathology. We hypothesised that this was due to including GSE8050_GPL97 in the overlap,
because the GSE8050_GPL97 pathway profile was the least correlated with the lowest
overlap to the other 4 PBMC sJIA studies (see Supplementary Fig. D.1 and Fig. 6.1).
We tested whether GSE8050_GPL97 reduced the overlap size by generating the sJIA
PBMC overlap by leaving out either GSE8050_GPL96 or GSE8050_GPL97. The overlap
size leaving out GSE8050_GPL97 was 455 with expected range 144–217 (mean = 178),
compared to overlap size of 255 with expected range of 114–183 (mean = 148) when
leaving out GSE8050_GPL96. Thus, confirming that GSE8050_GPL97 inclusion restricted
the size and likely also the disease-relevant pathways. We continued our analysis with the
overlap signature including GSE8050_GPL97 to highlight the limitations of the consensus
signature as well as avoid overfitting to a small subset of sJIA studies.

6.3.3 Gene-level signatures

We generated gene signatures from 2 representative studies: GSE7753 (microarray)
and GSE112057 (RNA-Seq). We identified 2239 (1145 up- and 1094 down-regulated,
q-value < 0.05) differentially expressed genes (DEGs) for GSE7753 and 2496 (1156 up-
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and 1340 down-regulated, q-value < 0.05). The top 20 up- and down-regulated genes are
listed in Supplementary Tables D.1 and D.2 for GSE7753 and GSE112057, respectively.

Overall, there were 4 solute carrier (SLC) family members dysregulated in the top 20
genes (per direction) in GSE7753 and 3 in GSE112057. This family of transporters is key
in two transport associated pathways identified in the overlap pathway signature. 8 out of
20 GSE7753 up-regulated genes had "blood" or "hemoglobin" in the description, likely
influencing the red blood cell-associated pathways up-regulated in GSE7753 pathway
analysis. In each study there was one C4-related gene, a C4 binding protein in GSE112057
and a C4 receptor in GSE7753. GSE112057 had two down-regulated keratin genes that
were likely driving the down-regulation of Reactome Collagen formation in GSE112057
pathway analysis (Supplementary Tables D.1 and D.2).

6.3.4 Disease ontology (DO) enrichment of gene and pathway signa-
tures

To investigate the similarities and differences between gene- and pathway-level JIA
signatures we performed enrichment analysis of disease ontology (DO) terms. We investi-
gated enrichment of the top 1000 differentially expressed genes by decreasing |logFC| and
the top DEPs (decreasing |logFC|) whose member genes add up to 1000. In addition to
gene- and pathway-level enrichment of GSE7753 and GSE112057, we also included the
sJIA PBMC pathway overlap signature. For clarity, we referred to enrichment tests with
test letters A–D:

(A) gene-level GSE112057,

(B) pathway-level GSE112057,

(C) gene-level GSE7753,

(D) pathway-level GSE7753,

(E) sJIA PBMC overlap pathways.

The pathway-level enrichment analysis yielded 7.1- (GSE112057) and 4.5-times
(GSE7753) more enriched DO terms (q-value < 0.05) than the gene-level analysis (Ta-
ble 6.5). This was likely due to pathways consisting of curated sets of genes that are
involved in the same process, and at the same time, DO terms encompassing biologically
connected genes. The overlap between single-study pathway-level enriched terms was
88.3% (B∩D) compared to 40.2% (A∩C) between gene-level studies, suggesting that
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the pathway-level analysis has identified highly related processes overcoming the plat-
form effect, while the gene-level analysis provided more disparate sets of differentially
expressed genes. The overlap in enriched DO terms from the same study at pathway- and
gene-level was similar between both studies (GSE112057 (A∩B): 97.5% and GSE7753
(C∩D): 93.5%), suggesting the biology represented by the top DEGs was also captured by
the pathway-level analysis.

Table (6.5) Number of enriched Disease ontology terms from sJIA pathway- and gene-level
differential expression analysis. Letters in () refer to enrichment tests in 6.3.4: (A) gene-level
GSE112057, (B) pathway-level GSE112057, (C) gene-level GSE7753, (D) pathway-level GSE7753.
Overlap % is calculated as the number of overlapping terms divided by the smaller of the two sets
of enriched terms (Chapter 3 Eq. (3.11)). sJIA — systemic juvenile idiopathic arthritis.

study

GSE112057 GSE7753 overlap

level
gene (A) 82 (C) 124 33 (40.2%)
pathway (B) 582 (D) 556 491 (88.3%)

overlap 80 (97.5%) 116 (93.5%) 33

We next investigated the top 10 terms from each enrichment test and the overlap be-
tween those (Fig. 6.2). All cases enriched in several blood- and immune system-related
diseases, several of which have been previously related or co-studied with JIA or RA (hep-

atitis (Canna et al., 2009), coagulation abnormalities (Bloom et al., 1998; Hadchouel et al.,
1985), bacterial infections (Beukelman et al., 2012), malignancy/lymphoma/leukaemia

(Demir et al., 2019; Kok et al., 2014; Murray et al., 2004; Wilton and Matteson, 2017),
atherosclerosis (reviewed in Jednacz and Rutkowska-Sak (2012)), anaemia (Koerper et al.,
1978; Raj, 2009)).

Five out of 36 listed top DO terms related to female reproductive organ cancer (female

reproductive organ cancer, malignant ovarian surface epithelial-stromal neoplasm, ovary

epithelial cancer, cervix carcinoma, cervical cancer). While these could have been driven
by female to male imbalance in patients versus controls, persistent human papillomavirus
(HPV) infections and increased risk of cervical dysplasia and cervical cancer has been
reported in adults with RA (Kim et al., 2015; Rojo-Contreras et al., 2012; Waisberg et al.,
2015). In addition, JIA patients with abnormal cervical cytology had a higher frequency of
HPV infection with a lower frequency of HPV vaccination compared to non-JIA controls
(Ferreira et al., 2019).

From the 36 listed DO terms in Fig. 6.2, 15 were overlapping in test A–D, includ-
ing rheumatic disease. Due to pathways consisting of biologically related genes, the
enrichment values from pathway tests had higher gene ratios and lower p-values. The
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Fig. (6.2) Disease ontology enrichment in sJIA differential gene and pathway expression
analysis. Two sJIA studies, GSE112057 (A–B) and GSE7753 (C–D), were analysed on gene- (A,
C) and pathway-level (B, D). Enrichment results for the overlapping DEPs from 5 sJIA studies from
PBMC are in E (rightmost). Enrichment was calculated for the top 1000 differentially expressed
genes and the top ∼1000 gene members from the most differentially expressed pathways according
to highest |logFC| (p-value < 0.05). The top 10 terms (ranked by p-value) are listed per study.
Additional terms are marked in each case if they overlap with the top 10 from another test. DEP
— differentially expressed pathway; p.adjust — q-value; PBMC — peripheral blood mononuclear
cells; sJIA — systemic juvenile idiopathic arthritis.
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pathway-level tests (Fig. 6.2B,D) had a higher overlap between the top DO terms, includ-
ing comparable gene ratios, e.g. higher gene ratio in hepatitis and hematopoietic system

disease, and lower ratios in thrombophilia and sickle cell anaemia.

The sJIA PBMC overlap signature enriched in 122 DO terms (A∩E = 25, B∩E = 113,
C∩E = 35, D∩E = 115, A∩B∩C∩D∩E = 13). There were fewer enriched terms than in
two other pathway-level tests (B, D), suggesting that when identifying the intersecting
pathways across multiple studies, we lost some information, but retained the consensus
signature. Based on previous analysis of DEP profiles (Supplementary Fig. D.1 and top
DEPs (Table 6.4), it was likely that these differences were driven by GSE8050_GPL97.
The top enriched terms overlapped with terms found in the other tests (Fig. 6.2E), in
particular all top terms from E were also in D.

The enrichment analysis of DO terms suggested that there was concordance between
top terms identified by gene- and pathway-level tests. However, the pathway-level analysis
enriches in more DO terms and led to fewer disparate terms when comparing two pathway-
level analyses from different platforms compared to gene-level analysis comparing the
same two studies. The sJIA PBMC overlap pathway signature enriched in fewer DO terms
than the other two pathway-level tests (B, D), suggesting reduction of signal and increase
in noise when joining 5 studies from the same disease and tissue, but from 3 different
platforms.

6.4 Evaluating Drug Prioritisation

After the identification of disease pathway signatures, we continued with the signature
processing and drug prioritisation step in the PDxN drug repositioning pipeline (Sec-
tion 5.5). In brief, the most up- and down-regulated disease signature pathways were
separated into up- and down-regulated pathway clusters. We defined the pathway clusters
as 5, 10, 15 or 20 up- or down-regulated pathways. The PDxN sub-networks were then
constructed for each pathway cluster including all pathway nodes from the cluster and all
the drug nodes that were connected to at least one cluster pathway. The PDxN correlation
edges were then summarised per pathway cluster followed by summarisation step per
drug direction (joining the up- and down-regulated drug signature node). The remaining
summary edges between each pathway cluster↔drug pair were prioritised by increasing
summary score for up-regulated pathway cluster and decreasing for the down-regulated
pathway cluster (see Fig. 5.15 and Supplementary Fig. C.4).
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In this section, we first looked at the top prioritised drug candidates for GSE7753 and
then assessed the performance of the pipeline by scoring the resulting prioritised drug
list with a gold-standard list of true positive drugs. We assessed the influence of the drug
signature features (e.g. cell line, concentration, batch) and the quality of the true positive
list on the performance score.

6.4.1 Prioritised drug candidates

We prioritised drug candidates for each of the sJIA PBMC studies as well as the sJIA
PBMC overlap signature. For each study we analysed up- and down-regulated pathway
clusters with 5, 10, 15 or 20 pathways. For clarity, we referred to these clusters by
their abbreviated names consisting of direction and size, e.g. up10 represents the cluster
consisting of the top 10 up-regulated cluster. In addition, clusters: up10, up15 and up20

were together notated as up10:20. A prioritised drug list was generated by interrogating
the PDxN with each pathway cluster. The resulting prioritised list returned a cluster score
and the score q-value for each drug signature that was connected to the pathway cluster
(Section 5.5). A drug signature is a unique combination of drug id, cell type, perturbation
time, drug concentration and batch. Prioritised drug lists varied in length depending on
how well-connected the disease pathway clusters are to the drug signature nodes (the
lengths of each drug list are in Supplementary Table D.3).

The sJIA pathway clusters (including the overlap pathway signature) prioritised 2740–
14,542 drug signatures (Section 5.5). In particular, the up-regulated clusters yielded
3467–14,542 drug signatures and the down-regulated yielded 2740–9810. Up-regulated
clusters had a higher mean length compared to the down-regulated ones. The list length
positively correlated with the mean size of the cluster separated by direction, indicating
that in PDxN, larger pathway clusters (i.e. more pathways) were connected to more drug
signatures.

The top drug candidates

While we prioritised drug candidates for each of the sJIA PBMC studies, we only
conducted a literature review for the top drug candidates identified from GSE7753 disease
pathway clusters. We investigated the top 10 drug signatures from the eight pathway
clusters generated for GSE7753 (up- and down-regulated at 5, 10, 15, and 20 pathways
each, Supplementary Table D.4). Across the 8 lists (up5:20, down5:20), 43 unique drugs
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were prioritised in the top 10 drugs. Of those, 23 drugs only ranked in one of the lists, and
11 of those appeared in clusters consisting of 5 pathways. Suggesting that drug lists from
clusters with 5 pathways were less robust than from larger clusters.

Seven drugs ranked in the top 10 of down10:20 (diethylstilbestrol, H5902, MK-2206,

SPECTRUM_000090, amlodipine base, SPB02303, geldanamycin), one, wortmannin
(BRD-A75409952), ranked in the up5 and up15:20 clusters, and 4 drugs ranked in
the up15:20 clusters (SUGA1_008424, cobaltous chloride, 2541665-P1, FPA1_000240).
From these, MK-2206 (BRD-K68065987) consistently ranked 4th, SPECTRUM_000090
(BRD-A80151636) 5th, and geldanamycin (BRD-A19500257) 8th in the down10:20.
SUGA1_008424 (BRD-K33164466) ranked 1st in the up15 and up-20.

MK-2206 is an Akt inhibitor that has been shown to enhance the antitumour effect of
chemotherapeutic agents. Higher levels of phosphorylated Akt have been found in synovial
tissue from RA patients, which could be further increased with TNFα stimulation, suggest-
ing that Akt contributes to stimulatory effects of TNFα (Zhang et al., 2001). Additionally,
Pan et al. (2018) suppressed the Akt pathway with Quetiapine, an antipsychotic, which
decreased the levels of pro-inflammatory cytokines such as IL-6 and IL-1β in an arthritis
mouse model through subsequent NF-κB and CREB signalling pathways. Geldanamycin
is an antitumour antibiotic that inhibits Hsp90 and downregulates Akt. It induces apoptosis
and inhibits inflammation by suppressing NF-κB in RA fibroblasts-like synoviocytes
(FLS). Together with infiltrated leukocytes, FLS contribute to RA progression (Ma et al.,
2019). Geldanamycin has also been shown to inhibit the production of TNFα , IL-6, and
IL-1β in activated macrophages (Wax et al., 2003). Our literature search did not yield any
information on biological effects of SPECTRUM_000090 and SUGA1_008424. However,
open-label studies of Bromocriptine, a SPECTRUM_000090 stereoisomer, have resulted
in significant improvement of clinical measures of RA (Figueroa et al., 1998, 1997).

Two drugs ranked in the top 10 in both up- and down-regulated clusters. Gemcitabine
(BRD-K15108141) drug signature from 3 different cell types ranked in the top 10 of three
up-regulated clusters and one down-regulated cluster. Gemcitabine is used in several
cancers, and it also has antiproliferative effects on lymphocytes which contribute to RA
pathogenicity. A study in collagen-induced arthritis (CIA) rats showed decreased TNF-α
levels as well as reduced inflammation and cartilage destruction in the Gemcitabine-treated
group (Dağli et al., 2017). ALW-II-38-3 (BRD-K68191783) was present in two up- and
one down-regulated clusters. ALW-II-38-3 is an Eph kinase inhibitor (Choi et al., 2009).
Ephrin-B1 (EphB1), an ALW-II-38-3 substrate, expression was increased in synovial
fibroblast cells of RA patients compared with osteoarthritis patients. An increase was also
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seen in peripheral blood lymphocytes of RA patients compared with healthy controls. In
an RA animal model, activation of the EphB1 receptor resulted in an increase in TNFα

and IL-6 production (Kitamura et al., 2008).

Cytarabine (BRD-K33106058) signature from two different cell types ranked 1st and
2nd in the up10 cluster, 2nd in up15, and 6th and 7th in up5. It is used for haematological
malignancies due to its ability to inhibit the DNA polymerase, which results in decrease
of DNA replication and repair (Momparler, 2013). It has no anti-inflammatory activity,
but it has shown immunosuppressant activity by inhibiting the onset of adjuvant-induced
arthritis in rats as well as inhibiting local inflammation (Glenn, 1968; Glenn et al., 1977).
GDC-0980 (BRD-A18328003) ranked in the top 10 in all 4 down-regulated clusters (at
rank number 9, 2, 3, 1, with increasing cluster size). GDC-0980 is a Phosphoinositide
3-kinase (PI3K)/mammalian target of rapamycin (mTOR) kinase inhibitor, that inhibits
tumour cell growth and triggers apoptosis. Selective inhibition of PI3Kγ and PI3Kδ

suppressed joint inflammation and damage in RA mice models (Camps et al., 2005; Randis
et al., 2008).

Out of the 43 drugs, we were able to associate 7 with Anatomical Therapeutic Chemical
(ATC) classification codes. ATC classification is a drug system that classifies the active
ingredients of drugs according to the organ or system on which they act and their therapeu-
tic, pharmacological and chemical properties (Section 5.3.5). 4 belong to L01B class of
Antimetabolites, and one to each of the following classes: CO1BA Antiarrhythmics, class
Ia, GO3C/LO2AA Estrogens, L04A Immunosuppressants, and NO6A Antidepressants.
Clofarabine, which is in the L01B class with Gemcitabine and Cytarabine, is a purine
nucleoside analogue that interferes with nucleic acid synthesis, terminating DNA chain
elongation and inhibiting DNA repair. It is used for treatment of acute lymphoblastic
leukaemia in children and young people. Clofarabine can inhibit methotrexate transport, by
competitive binding of ABCG2, a methotrexate transporter (Nagai et al., 2011). No other
connection to RA or JIA was found. Pepstatin A, in CO1BA ATC class, inhibits aspartyl
proteases like HIV proteases and cathepsins D. Pepstatin increases the collagenolytic
activity leading to collagen degradation (McAdoo et al., 1973). It does not reduce in-
flammation or joint destruction in RA rats (Biroc et al., 2001). Diethylstilbestrol, also
known as stilboestrol, part of G03C and LO2AA, is an oestrogen agonist. It has been
linked to cause many cancers after in utero exposure (Hatch et al., 1998). However,
maintained pregnancy levels of oestrogen have been shown to sustain complete protection
from postpartum exacerbation of CIA in mice, suggesting immunosuppressive effects of
oestrogen (Mattsson et al., 1991). 2-chloro-2-deoxyadenosine, also known as cladribine,
is an immunosuppressant in L04A class. Schirmer et al. (1997) have shown that it can
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decrease T and B cell populations in patients with refractory RA. Sertraline, from the
N06A class, is an antidepressant from selective serotonin reuptake inhibitor (SSRI) family.
RA model rats showed significant reduction in arthritis upon treatment with Sertraline,
this was accompanied by an increase in IL-10 and decrease in TNFα . The improvement
was not significantly different to treatment with methotrexate, which is the most com-
monly used RA drug (Baharav et al., 2012). Additionally, another two SSRIs showed
anti-inflammatory activity in human and mouse models of RA (Sacre et al., 2010).

In summary, we assessed the relevance of 13 out of 43 top drug candidates, based on
their consistent presence in the top 10 in more than one prioritised list or their known ATC
classification. Six drugs have shown improvement in RA patients, rat or mouse models,
an additional three have shown to be involved in RA- and JIA-related processes, one has
been shown to not improve the condition in rats and one has no recorded connection to
arthritis. We could not find any biological information on two drugs, but an isomer of one
was shown to improve RA. Although these results are encouraging, a more systematic
approach is necessary for the evaluation of the pipeline’s performance.

6.4.2 True positive lists for JIA

To systematically assess the pipeline’s performance and the quality of the prioritised
lists, we assessed how well our method prioritised approved drugs and disease-relevant
ATC drug classes. We used four different lists of true positives (TPs): two consisting
of approved drugs and two investigating the performance of two relevant ATC classes.
The ATC class-based lists were used to overcome some approved-list limitations. Drugs
are often approved for either treatment or symptomatic relief for a particular disease. In
addition, they consist of several types of drugs, e.g. in JIA, it includes pain-relief as well as
immunosuppressants. To compensate for these limitations, we compared our performance
scored by an anti-inflammatory and antirheumatic class as well as an immunosuppressant
ATC class of drugs.

Approved drugs for JIA (Supplementary Table D.5). This list would be expected to
be the gold standard for testing the pipeline’s performance. However, from 37 drug names
(including international nonproprietary names (INN) and trade names) only 8 were mapped
to 4 Broad (BRD) IDs and only 2 of those BRD IDs were present in PDxN. Both of those
represented methotrexate. The 2 BRD IDs were present in 5 different drug signatures. Due
to the limited number of TP drugs we decided to extend the list after the initial analysis to
include RA-approved drugs.
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Approved drugs for JIA and RA (Supplementary Table D.6). We included drugs
from the list mentioned above and added approved RA drug names from EMA (European
Medicines Agency, 2019) and RepoDB (Brown and Patel, 2016). We retrieved 106 INN
and trade names for JIA and RA, 55 mapped to 76 BRD IDs. From those 40 were in
PDxN in 183 different signatures. The approved drugs with the most signatures in PDxN
are cyclosporine and auranofin with 62 and 31 drug signatures, respectively. Together
they represent more than half of the approved signatures. Most benchmarking tests in
this section used the approved drugs for JIA and RA as the TP list. We specified when
alternative lists erre used.

ATC class M01: Anti-inflammatory and antirheumatic products (Supplementary
Table D.7). 47 BRDs from the whole LINCS were mapped to 49 M01 codes. From those,
20 BRDs were present in PDxN in 88 signatures. Again, the majority, 31, of the drug
signatures represent auranofin, and 21 represent valdecoxib. 13/20 PDxN BRD IDs in this
list were also in the JIA and RA approved list.

ATC class L04A: Immunosuppressants (Supplementary Table D.8). This group
included TNFα , IL-1, and IL-6 inhibitors as well as methotrexate. 14 BRDs from the
whole LINCS were mapped to 20 L04A codes. From those, 17 BRDs were present in
PDxN in 130 signatures. Nearly half (62/130) of the signatures represent ciclosporin (also
known as cyclosporine). 9/17 PDxN BRD IDs in this list were also in the JIA and RA
approved list. There was no overlap between M01 and L04A lists.

6.4.3 Benchmarking with JIA approved drugs

We first evaluated the performance of the method by scoring the generated prioritised
drug lists with a TP list consisting of approved JIA drugs (Fig. 6.3).

We generated ROC curves for sJIA prioritised drug lists scoring their sensitivity
and specificity with the approved JIA TP list. ROC curves and areas under the ROC
curves (AUCs) are a standard way of reporting the method performance. The ROC curve
measures sensitivity (recall) and specificity (true negative rate) of a given method based
on a confusion matrix (Table 3.5). In this case, it assumed all predicted drugs that were
not on the TP list were false positives or true negatives, depending on the threshold. This
assumption was counterintuitive as it considered all novel drugs as incorrect. Even if drugs
prioritised by this method were more appropriate for treatment than the approved drugs,
our method would generate AUC << 1. AUC = 1 indicates perfect performance, AUC =
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0.5 is random performance, and AUC < 0.5 is worse than random. The AUC scores from
different disease clusters are summarised in Fig. 6.3.

The results showed superior performance for the sJIA up-regulated clusters compared
to the down-regulated clusters. Due to the low number of TP in the list, there was a high
number of prioritised lists without a score, meaning that no TP drugs were associated with a
score in that prioritised drug list. All 5 signatures considered as TP represent methotrexate,
the most commonly used JIA treatment (Ferrara et al., 2018), suggesting that our method
was prioritising the current gold standard disease modifying treatment.

There were several high-scoring lists (AUC > 0.7), but there were also a few poorly
scoring lists, such as GSE20307 down10:20. These results suggested that prioritising drugs
separately for the up- and down-regulated clusters might provide better drug candidates
than if the disease signatures from both directions were considered together. Further work
considering the effect of combining the prioritisation scores would provide further insight
into this observed performance property. While our method showed great sensitivity and
selectivity for the JIA-approved drug list, the list was very limited in length. However, it
could have indicated that fewer, but better fitting drugs might serve as superior predictors
of performance than the TP lists with a broader selection of mixed-effect drugs. To explore
this further we benchmarked JIA with two different JIA-relevant therapeutic classes later
in the chapter.

Due to the limited number of approved JIA drugs in PDxN, we decided to use an
extended list including RA-approved drugs in the remainder of the chapter.

6.4.4 The effect of drug signature features on drug signature rank

When evaluating the performance of our pipeline with a larger TP list including JIA and
RA approved drugs, we first assessed the effect of the drug signature experimental features
on the ranking of the drug signatures in the prioritised list. Each drug signature had the
following features: batch, drug ID, concentration of perturbagen, cell line, and perturbation
time. We assessed the rank of the approved JIA and RA drugs across prioritised drug lists
from sJIA studies’ disease signatures (including sJIA overlap), for up5:20 and down5:20

pathway clusters. For each drug signature feature we computed the mean rank of TP
signatures with that particular feature in each prioritised drug list (Fig. 6.4). For example,
we calculated the mean rank of TP signatures tested in batch number CPC020, and
separately we also calculated the mean rank of all signatures in the U937 cell line for each
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drug list. Due to similarity in rankings in similarly sized pathway clusters, we combined
the mean ranks between lists from 5 and 10 pathways, and 15 and 20. The mean ranks
were scaled so that the best mean rank (of 1) was scaled to 0 and the worst rank (length of
the list) to 1. The scaled rank represented the percentile at which the drug appears, e.g. a
drug signature with scaled rank = 0.01 was at the top 1% of the prioritised drug signatures.
We excluded GSE7753 from this analysis, so that we could cross-validate by assessing
whether the patterns defined in other studies also held for GSE7753.

Similar patterns of rank appeared in the lists from the same direction signatures, sug-
gesting non-random behaviour because disease signatures from different studies similarly
ranked the TP drugs. In addition, lists from the same study, but different size clusters group
together. The prioritised lists from the sJIA overlap clustered with GSE8650_GPL97 for
up- and with GSE8650_GPL96 and GSE8650_GPL97 for down-regulated signatures. The
overlap signature generated without GSE8650_GPL97 (data not shown) clustered with
GSE8650_GPL96 for up- and with GSE8650_GPL96 and GSE21521 for down-regulated
signatures. These results suggested that the overlap signature results in the downstream
analysis would be the most similar to GSE8650_GPL97, while if GSE8650_GPL97 was
not included in the overlap generation they would be the most similar to GSE8650_GPL96.
There were batches, drugs and cell lines which consistently rank at the top and some that
ranked at bottom of the lists, independent of pathway cluster direction (Fig. 6.4). We
calculated the mean scaled rank per feature in order to identify best and worst performing
features. If the feature was not present in one of the prioritised drug lists, we assigned a
mean rank of 0.5.

Batch. 4 batches were identified as consistently low-ranking. Some batches included
signatures from a limited number of drugs or cell ids, therefore the batch effect was
confounded to other variable features. Drug ID. Out of 8 drugs identified as low rank-
ing across all lists, 3 were in S02BA Corticosteroids, 3 in M01 Anti-inflammatory and
Antirheumatics products, one in L04A Immunosuppressants and one in N02 Analgesics
ATC class. Among the M01 drugs was auranofin (BRD-A79465854), which was one of
the most frequent drugs in JIA and RA approved drug signatures. Concentration. All TP
signatures were tested in 10µM. As expected, the mean rank across all drug lists was ∼0.5.
We expected this as on average, if the drug signature feature displayed no ranking bias, the
scaled mean rank would equal 0.5, indicating that the feature ranks in the middle of the
prioritised drug list. Cell type. From the 7 cell lines identified as consistently ranking in
the bottom of the prioritised list, two were from colon, and the rest from blood, liver, lung,
skin and uterus. This could suggest that drug signatures tested in these cell lines were not
appropriate for JIA drug evaluation. Perturbation time. Although signatures perturbed
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for 6 hours ranked lower on average than 24h signatures, they did not consistently rank in
the bottom 40% of the lists.

We assessed the effect of removing the worst performing features by removing them
from the drug list when assessing specificity and selectivity of the whole prioritised list.
We defined the worst performing features as the features whose mean scaled rank across
all drug lists was above 0.6, in other words, that feature was on average in the bottom 40%
of the list, independent of direction, study, or size of the pathway cluster.

We generated ROC curves and their AUCs for GSE7753 prioritised drug lists (Fig. 6.5A–
B) scoring their sensitivity and specificity with the approved JIA and RA TP list. The
performance AUC scores for the sJIA studies including GSE7753 are summarised in
Fig. 6.5C. The initial benchmarking with JIA- and RA-approved TP list suggested random
or worse than random performance of our method (AUC < 0.5). However, removing
consistently low-ranking features, identified from all but GSE7753 sJIA prioritised drug
lists, improved the overall performance of GSE7753, as well as other studies’ performance.
However, those were involved in the identification of low-ranking features, thus directly
influencing the ranking (Fig. 6.5C). Therefore, there was a risk that the identified features
are overfitted to those studies. Prioritised lists for both directions improved after removing
low-ranking features, however AUCs from more down-regulated clusters surpassed AUC
> 0.6.

6.4.5 Benchmarking with immunosuppressant, and
anti-inflammatory and antirheumatic drugs

To further assess the influence of TP drug lists on the performance score, we inves-
tigated the individual contribution of two major drug groups approved for JIA and RA:
immunosuppressants, and anti-inflammatory and antirheumatic drugs. When identifying
individual effects of drug signature parameters, the consistently low-ranking drugs were
predominately in M01 anti-inflammatory and antirheumatic drugs ATC class, suggesting
that those drugs were deprioritised by our system. We hypothesised that M01 class drugs
will generate lower AUC scores compared to those of L04A Immunosuppressants ATC
class based on relative potency and the current treatment trends in JIA. We included all
drugs annotated with their respective class, not only those approved for JIA and RA.

While scoring prioritised drug lists with approved JIA and RA drugs suggested random
or worse than random performance (Fig. 6.6A), scoring it with M01 indicated much
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Fig. (6.5) AUC score summary for sJIA studies before and after removing low-ranking
drug signature features. (A–B) ROC curves for the PDxN-derived drug lists, prioritised by the
disease signatures defined from the GSE7753 study. Lists were scored against an approved drug
list for rheumatoid arthritis (RA) and juvenile idiopathic arthritis (JIA) (Supplementary Table D.6).
Performance is indicated for (A) up- and (B) down-regulated disease pathway clusters of different
sizes before (dotted line) and after (full line) the removal of low-ranking drug signature features
(identified in Fig. 6.4). The AUC, TP and TN counts are displayed for the after ROC curves.
(C) Summary of AUCs per sJIA PBMC study, signature direction and pathway cluster size before
(C top) and after (C bottom) the removal of low-ranking features. AUC — area under the ROC
curve; PBMC — peripheral blood mononuclear cells; PDxN — Pathway Drug Coexpression
Network; ROC — receiver operating characteristics; sJIA — systemic JIA; TN — true negative;
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worse performance (Fig. 6.6B), but scoring with the L04A class indicated better than
random in several studies (Fig. 6.6C). The drug lists from down-regulated pathway clusters
ranked the M05 drugs predominantly in the bottom half of the lists (AUC < 0.5). The
up-regulated clusters ranked the L04A drugs in the top half, generating AUCs > 0.7
in three studies. These results indicated that the drug prioritisation method prioritised
several immunosuppressant drugs in most sJIA signatures, while associating low ranks
with anti-inflammatory and antirheumatic drugs.

As mentioned above, the many NSAIDs in the anti-inflammatory category, while
the most common, are often only used for pain relief, or as initial treatment during JIA
diagnosis (Armon, 2018; Ringold et al., 2013). Systemic patients benefit most significantly
from immunosuppressant treatment (Ravelli et al., 2018). There has been a recent move
towards immediate aggressive treatment, yielding better outcomes for patients (Ravelli
et al., 2018). Our prioritisation results reflected the currently emerging trends in treatment
of sJIA. In addition, although every effort had been made to curate only studies with
previously untreated samples, it is unrealistic to expect that children with sJIA refrained
from pain-relief medications included in the M01 group. Thus, the fact that our method
deprioritised the M01 group could be due to patients already under treatment from M01
drugs, or perhaps due to M01 not being the most appropriate course of treatment for sJIA
patients.

6.4.6 Comparison with LINCS clue.io method

We compared our method to LINCS (Subramanian et al., 2017). LINCS is an al-
ternative, well-established repositioning pipeline available online at https://clue.io/ lincs.
The proof of concept for LINCS, the Connectivity Map (Lamb et al., 2006), has been
cited 3334-times and the extended LINCS dataset (Subramanian et al., 2017) has been
cited 457 times (both as of 2nd March 2020 on Google Scholar). We chose LINCS as
a comparable method to PDxN as both are based on the same hypothesis of signature
reversion (Fig. 2.4). In addition, the drug signature data used in PDxN has been developed
by the LINCS project, thus the underlying drug data is the same between the two methods.
The main difference between the methods is that PDxN is a pathway-based, and LINCS is
a gene-based drug prioritisation method.

We queried https://clue.io/ lincs with differentially expressed genes from sJIA study
GSE7753. Because we investigated the top prioritised drugs at 4 different-sized clusters in
PDxN, we submitted 4 different-sized sets of genes to LINCS. Per website recommenda-

https://clue.io/lincs
https://clue.io/lincs
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Fig. (6.6) AUC score summary for sJIA benchmarked with 3 different true positive lists.
True positive lists used for scoring the sensitivity and specificity of prioritised drug lists: (A,D)
EMA and FDA RA and JIA approved drugs, (B,E) Anti-inflammatory and antirheumatic products
(ATC M01), (C,F) Immunosuppressants (ATC L04A). (A–C) AUC summary heatmaps for sJIA
PBMC studies with different true positive lists. (D–F) ROC curves scored with 3 different TP lists
comparing PDxN vs LINCS performance from GSE7753 disease signatures. ATC — Anatomical
Therapeutic Chemical; AUC — area under the ROC curve; EMA — European Medicines Agency;
FDA — the US Food and Drug Administration; JIA — juvenile idiopathic arthritis; LINCS —
Library of Integrated Network-based Cellular Signatures; PBMC —- peripheral blood mononuclear
cells; PDxN — Pathway Drug Coexpression Network; RA — rheumatoid arthritis; ROC — receiver
operating characteristics; sJIA — systemic JIA; TN — true negative; TP — true positive.
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tions, we submitted the top up- and down-regulated gene lists between 10–150 genes (20,
50, 100, and 150 per direction, q-value < 0.05). We used the recommended summarised
score across cell lines for comparison with PDxN.

Benchmarking the LINCS-prioritised lists with approved JIA and RA drugs yielded
similar AUC scores to PDxN (LINCS: 0.45–0.54 (mean AUC = 0.49), PDxN: 0.43–0.49
(mean AUC = 0.46), Fig. 6.6D). Because we demonstrated that the AUC≈0.5 could be
driven by opposite performance from two major drug classes represented in the approved
TP list, we benchmarked LINCS with M01 and L04A ATC class drugs (Fig. 6.6E–F).
While PDxN-analysed GSE7753 signatures decreased their performance in M01 (mean
AUC = 0.40) and increase it in L04A-benchmarked tests (mean AUC = 0.70), LINCS
showed little change in performance when benchmarked with different lists (LINCS mean
AUCs: M01: 0.53, L04A: 0.52).

The differences in performance between PDxN and LINCS could be due to underlying
differences in the two methods. The factors influencing the different performance could be
that:

(i) the pathway-level signatures were more representative of underlying biology,

(ii) the correlation network approach was more appropriate for drug repositioning,

(iii) joining opposite-direction signatures decreased sensitivity.

In summary, PDxN and LINCS gave a comparable AUC score when benchmarked with
the full panel of JIA and RA approved drugs. PDxN outperformed LINCS when scoring
for the immunosuppressant group of drugs, which has been shown to be more relevant in
current treatment of JIA. LINCS outperformed PDxN when scoring for M01 drugs, due to
the PDxN deprioritisation of anti-inflammatory drugs.

6.5 Discussion

In this chapter we have demonstrated the pipeline’s ability to prioritise drugs relevant
to JIA. We have shown that our disease signature generation method was robust for its
ability to generate a consensus signature. It yielded highly concordant lists of pathways
across disparate JIA studies derived from different platforms. We have shown that the
JIA disease signatures were contrasting to that of the liver control study (GSE133815).
The liver samples from old and young individuals were a good control as they came from
the same organism and were profiled on the same platform as the majority of the JIA
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studies. Additionally, they represented a non-inflammatory condition. A drawback of using
GSE133815 as control was that the study included a relatively low number of samples as
well as that the samples were not age-matched to those of JIA. We have shown that the
top dysregulated pathways we have identified in our representative studies were related
to JIA. They contained dysregulated genes and pathways enriched in blood and immune
response-related disease ontology terms as well as rheumatic disease.

We have identified promising prioritised drug candidates from GSE7753. Out of 13
literature-searched drugs, six have shown improvement in RA patients, rat or mouse models,
an additional three have shown to be involved in RA- and JIA-related processes. Two had no
associated biological information, but an isomer of one of them has shown an improvement
in RA. In order for these top drug candidates to be validated experimentally, the findings
from the literature review would be used and the most promising drug candidates and drugs
related to those would be further theoretically evaluated for their solubility, bioavailability
and toxicity. The top candidates with beneficial solubility and toxicity profiles would
then be tested in an in vitro disease model to assess its efficacy and to optimise their dose
and exposure times, before any further in vitro and in vivo tests would be carried out.
Therefore, each promising drug candidate identified in an in silico drug repositioning
pipeline undergoes extensive in vitro and in vivo validation before it would be used in a
clinical trial.

While we have shown promising disease signatures and drug candidates we need to
consider an important limitation in this case study. We excluded JIA studies focusing on the
investigation of particular treatments during our study selection process, several JIA studies
used in this chapter included samples from children treated with NSAIDs. In addition,
the selected studies varied in their sample sizes. A weighted approach to reflect study
sample sizes and confounding use of NSAIDs could be explored in the future development
of the consensus disease signature generation. This approach could enhance the value
of results from studies with high sample numbers as well as decrease the importance of
studies in which the patients have received treatment. In addition, because the GSE7753
included samples treated with NSAIDs, the repositioning candidates from the literature
search might be associated with NSAID use and not the underlying sJIA pathology. To
correct for this confounding effect drug signatures from NSAIDs or other administered
medications could be used. Alternatively, results from studies with samples from untreated
patients could be prioritised.

We have demonstrated the influence of drug signature features such as batch, drug
ID and cell type, on the drug signature ranking. We explored two definitions of TP lists
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for benchmarking the method’s performance: (i) two lists of approved drugs and (ii) two
therapeutically relevant ATC classes. We highlighted the limitation of using approved
drugs as a gold-standard TP list for diseases with low number of approved drugs in addition
to showing distinct performance of two therapeutic classes of drugs that were combined in
the extended approved TP list. Usage of ATC classes as TP drug lists for benchmarking
showed that a particular therapeutic class could be prioritised over another.

We have shown that our method prioritises immunosuppressant over anti-inflammatory
and antirheumatic drugs, which reflects the current treatment recommendations. By
assessing performance with therapeutic classes we have highlighted how PDxN could
be used to prioritise not only individual drugs but also classes of drugs. Prioritising the
immunosuppressant and disease-modifying group of drugs over the anti-inflammatory
group that provides only symptomatic relief pointed to the possibility of de novo discovery
of best therapeutic classes for diseases with unknown or reduced treatment options.





Chapter 7

Case Studies: Neurodegenerative
Diseases

In this chapter, we have applied our method to two additional case studies: Alzheimer’s
and Parkinson’s disease. We have chosen these devastating neurodegenerative diseases due
to the current lack of disease-modifying treatments. This work has been performed in col-
laboration with two world-leading groups in their respective areas: the Tanzi and Kim group
from Harvard Medical School and Massachusetts General Hospital for Alzheimer’s disease
(AD), and Bandmann group from the Sheffield Institute for Translational Neuroscience
for Parkinson’s disease (PD). Our collaborators have provided relevant RNA-Seq data,
analysed in this chapter, together with drug lists used for evaluation of the method. The
results from this chapter provided a unique translational opportunity to our collaborators,
enabling them to test prioritised drug candidates that have been carefully benchmarked, in

vitro and in vivo.

Each case study section follows the outline of the previous chapter (Chapter 6: Evalua-
tion of the System: Application to juvenile idiopathic arthritis (JIA)) focusing on the drug
repositioning pipeline results. We conclude the chapter with parallel evaluation of drug
prioritisation results for approved drugs for the two neurodegenerative case studies: AD
and PD.



192 Case Studies: Neurodegenerative Diseases

Others’ contributions to this chapter

Alzheimer’s disease. Assistant Professor Doo Yeon Kim (Department of Neurology,
Massachusetts General Hospital, Harvard Medical School) and Professor Rudolph E. Tanzi
(Department of Neurology, Massachusetts General Hospital, Harvard Medical School)
shared preprocessed 3D cell model RNA-Seq data described in Kwak et al. (2020), and
the positive drug hits from the 3D drug screen. The RNA-Seq data was preprocessed
by the Harvard Bioinformatics Core. Assistant Professor Doo Yeon Kim has also kindly
provided context for their 3D models and their characterisation. Sarah Morgan (Sheffield
Institute for Translational Neuroscience (SITraN), University of Sheffield; Department of
Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School) advised on
the Mayo Alzheimer’s disease dataset sample selection.

Parkinson’s disease. Professor Oliver Bandmann (SITraN, University of Sheffield)
shared the human sporadic Parkinson’s disease RNA-Seq data described in Carling et al.
(2020) and the zebrafish GCH1 mutant data described in Larbalestier et al. (2020). Pro-
fessor Oliver Bandmann has also kindly curated a list of neuroprotective drugs. The
Carling et al. (2020) RNA-Seq data was preprocessed by Claire Green (SITraN, University
of Sheffield) and the Larbalestier et al. (2020) zebrafish data by Wenbin Wei (SITraN,
University of Sheffield).

7.1 Case Study Design

The pipeline was first applied to AD, results were interpreted, and then we applied the
pipeline to PD. For each case study, as in Chapter 6, we generated pathway-level disease
signatures (Section 5.4), which were then applied to the signature processing method
(Section 5.5). We evaluated the resulting prioritised drug lists with known or predicted true
positive (TP) drugs. Both case studies were designed with the aim of prioritising drugs
based on a disease signature defined from human data. The top prioritised drugs have
the potential to be validated in vitro and in vivo. However, to establish the confidence in
the method’s performance we focused on prioritising drugs from three-dimensional (3D)
cell models for AD. We focused our analysis on the PD human fibroblast data to test the
limitations of our current approach. The collaborator-provided PD datasets include a low
number of case and control samples, thus we aimed to explore how low-sample number
affects the pipeline’s performance.
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Across both case studies, we analysed 8 different datasets (Table 7.1). In AD, our
analysis was based on AD organoid models and comparison with human subjects. We
analysed 4 different 3D disease model cell cultures (Choi et al., 2014; Kwak et al., 2020)
and compared the cell line results to the Mayo dataset (Allen et al., 2016) which included
human temporal cortex samples from deceased subjects with AD. In PD, our analysis was
based on fibroblasts from sporadic PD (sPD) patients with either characterised lysosomal
or mitochondrial dysfunction (Carling et al., 2020). We subsequently compared those
results to a GCH1 mutant zebrafish PD model (Larbalestier et al., 2020).

Table (7.1) Overview of neurodegenerative datasets. All datasets include RNA-Seq data. The
control and disease samples reflect the number after quality control (QC). Sample numbers before
QC are listed in Table 3.2. AD — Alzheimer’s disease; Lyso — lysosomal dysfunction; Mito —
mitochondrial dysfunction; PD — Parkinson’s disease.

Dataset Tissue Control
samples

Disease
samples Disease Organism Feature Reference

A5 neurons 3 3 AD 3D cell
line low Aβ42/40 Choi et al.

(2014)
H10 neurons 3 3 AD 3D cell

line high Aβ42/40 Choi et al.
(2014)

I47F neurons 3 3 AD 3D cell
line low Aβ42/40 Kwak et al.

(2020)
I45F neurons 3 3 AD 3D cell

line high Aβ42/40 Kwak et al.
(2020)

Mayo temporal
cortex 37 69 AD human Braak ≥ 4 Allen et al.

(2016)
Lyso skin

fibroblast 4 4 PD human high lysosome
counts

Carling et al.
(2020)

Mito skin
fibroblast 4 4 PD human low ATP

levels
Carling et al.

(2020)
GCH1 neurons 3 4 PD zebrafish low gch1

expression
Larbalestier
et al. (2020)

7.2 Alzheimer’s Disease

7.2.1 Disease introduction

Alzheimer’s disease (AD) is a progressive, multifarious, neurodegenerative disorder.
It is the most common type of dementia and one of the great health-care challenges of
the 21st century. In 2017, it was the sixth leading cause of death in the US. The unpaid
care provided by family members and caregivers to people with Alzheimer’s and other
dementias is valued at ∼$230 billion (Alzheimer’s Association, 2019).
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AD-related pathology is thought to begin 20 years or more before AD symptoms arise,
whereby an accumulation of brain changes cause memory loss and language problems
(Villemagne et al., 2013). As the disease progresses, the accumulation of toxic protein
or protein fragment deposits leads to neurodegeneration. Pathologically AD is charac-
terised by intracellular neurofibrillary tangles and extracellular amyloid protein deposits
contributing to senile plaques (Braak and Braak, 1991). The pathological changes lead
to inflammation and contribute to atrophy. The accumulation of toxic β -amyloid and tau
activates microglia, the primary innate immune cells in brains responsible for clearance of
toxic fragments and proteins. While the neuropathological features of AD are recognised,
little is known about the causes of the disease and no curative treatments are available
(Selkoe and Hardy, 2016).

The majority of the approved drugs for AD temporarily improve symptoms by increas-
ing the number of neurotransmitters in the brain. They are mostly acetylcholinesterase
(AChE) inhibitors, that improve cognition, but do not slow disease progression. Memantine
blocks glutamate receptors in the brain to reduce excess simulation that can damage nerve
cells. The effectiveness of these drugs varies from person to person and is limited in
duration (Yiannopoulou and Papageorgiou, 2013).

The greatest risk factors for late-onset AD are age, carrying the APOE-ε4 mutation and
having family history of the disease. APOE encodes a cholesterol transporter (Fratiglioni
et al., 1993; Hebert et al., 2010; Saunders et al., 1993). Regular physical activity, manage-
ment of cardiovascular risk factors, lifelong learning and cognitive training are associated
with reduced risk of cognitive decline (Baumgart et al., 2015).

7.2.2 Alzheimer’s disease datasets

In our AD case study, we used RNA-Seq data from 4 different 3D cell culture models
of AD developed by Tanzi and Kim lab, and one publicly accessible dataset from deceased
AD human brains (Table 7.1).

3D cell cultures (Choi et al., 2014; Kwak et al., 2020)

We used data from 4 different 3D human neural cell culture models of AD (Table 7.1).
A5 and H10 are human neuronal progenitor cells (hNPCs) with high levels of toxic amyloid-
β (Aβ ) species overexpressing human amyloid precursor protein (APP), and APP and
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Presenilin 1 (PSEN1), respectively. I47F and I45F are hNPCs with an APP transmembrane
domain (TMD) mutation.

A5 and H10 are constructs with a Swedish and London familial AD (fAD) APP
mutation. In addition, H10 also has the fAD PSEN1∆E9 mutation. I47F and I45F include
the Swedish fAD APP mutation and have their respective isoleucine (I) to phenylalanine
(F) mutations in the APP TMD.

Patients with the Swedish or London mutation display early-onset AD. The Swedish
double (KM670/671NL) mutation is immediately adjacent to the β -secretase cleavage site
in APP. It increases production of Aβ by competitive β -secretase cleavage of N-terminal
APP (Haass et al., 1995). The London (V717I) mutation occurs in the APP TMD and
increases the Aβ42/40 ratio by having little effect on Aβ40 (Eckman et al., 1997; Goate
et al., 1991; Hardy and Allsop, 1991). The PSEN1∆E9 (S290C;T291_S319del) mutation
removes a 5.9kb sequence from PSEN1 due to an amino acid substitution at the splice
junction of exon 8 causing the skipping of exon 9 (Smith et al., 2001). The mutation
causes impaired APP processing and increased Aβ42/40 ratio (Borchelt et al., 1996). I47F
(I718F) causes Aβ48–42 blockage decreasing the Aβ42/40 ratio and I45F (I716F) causes
Aβ49–40 blockage increasing the Aβ42/40 ratio (Kwak et al., 2020; Lichtenthaler et al.,
1999).

The A5 and I47F cell cultures develop low Aβ42/40 ratio, while the H10 and I45F
develop a high ratio (Table 7.1). Most fAD mutations increase the Aβ42/40 ratio, strongly
suggesting that an increased ratio plays an important role in AD pathogenesis (Tanzi and
Bertram, 2005). The clonal hNPCs recapitulate amyloid-β and tau pathology. They exhibit
phosphorylated tau in the soma and neurites, as well as filamentous tau (Choi et al., 2014;
Kwak et al., 2020). Kwak et al. (2020) have shown that the Aβ42/40 ratio drives the tau
pathology in 3D cell culture models.

Mayo dataset (Allen et al., 2016)

The Mayo dataset includes deceased human temporal cortex samples from the Mayo
Brain Bank and Banner Sun Health cohort. The AD cases are diagnosed based on Braak
score ≥ 4, while controls include elderly brains (Braak ≤ 3) without any diagnosed
cognitive decline (Allen et al., 2016). The Braak score reflects the degree of pathology
in AD, with a higher score indicating higher degree of accumulation of tau constituting
neurofibrillary tangles (Braak and Braak, 1991). We selected AD and control samples over
the age of 75.
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The representative study

We focused our interpretation on the results from the A5 cell culture. The A5 was
chosen because it has been optimised for drug screens. Due to their high Aβ42/40 ratio
the H10 and I45F cell lines show increased neuronal death, thus making them less suitable
for drug screens. Additionally, the I47F has only recently been developed and has not yet
been optimised for drug screens.

We focused on the A5 model system rather than the human dataset, because the
model system enabled the use of true positives from a drug screen targeting the molecular
pathology of AD whereas the approved drugs for AD in humans offer only symptomatic
relief. The Mayo dataset was used to identify promising top drug candidates that scored
highly in both the AD model and the human dataset, highlighting the drugs with increased
model-to-human translation potential.

7.2.3 Disease pathway signatures

The top 10 up-regulated pathways for A5 were mostly related to the inflammatory
response (Biocarta INFLAM pathway, KEGG Asthma, KEGG Graft versus host disease,
KEGG Autoimmune thyroid disease, KEGG Allograft rejection, Reactome Phosphorylation

of CD3 and TCR zeta chains, Reactome PD1 signaling), brain development (SIX3 Static

module, CBX4 Static module), and fatty acid metabolism (KEGG Linoleic acid metabolism)
(Table 7.2).

Table (7.2) Alzheimer’s disease (AD) disease signature pathways (A5 3D cell model). The
top 20 most up- (rank: 1 to 20) and down- (rank: -1 to -20) regulated pathways (q-value < 0.05).
Drugs were prioritised for up- and down-regulated pathway clusters at: the top 5, 10, 15 or 20
pathways by decreasing log fold change (LogFC) for up- and decreasing for down-regulated
pathways. The genes in pathway column represents the number of possible genes in that pathway,
while genes in data is the number of pathway genes found in data.

Rank Pathway LogFC q-value
Genes

in
path-
way

Genes
in

data

1 Biocarta INFLAM pathway 1.74 4.02e-05 29 9
2 KEGG ASTHMA 1.73 2.80e-04 30 6
3 KEGG GRAFT VERSUS HOST DISEASE 1.73 2.80e-04 42 6
4 KEGG AUTOIMMUNE THYROID DISEASE 1.72 2.94e-04 53 7
5 KEGG ALLOGRAFT REJECTION 1.72 2.94e-04 38 7
6 Reactome PHOSPHORYLATION of CD3 and

TCR ZETA CHAINS 1.71 3.34e-04 16 5
7 Reactome PD1 SIGNALING 1.71 3.34e-04 18 6

continues on the next page
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Table 7.2 continued

Rank Pathway LogFC q-value
Genes

in
path-
way

Genes
in

data

8 SIX3 11 Static Module 1.64 3.06e-04 11 6
9 KEGG LINOLEIC ACID METABOLISM 1.64 1.11e-04 29 6

10 CBX4 10 Static Module 1.62 3.61e-04 10 8
11 MLH1 20 Static Module 1.62 1.98e-04 16 8
12 Reactome ACTIVATION of the AP1 FAMILY of

TRANSCRIPTION FACTORS 1.61 1.09e-04 10 10
13 HIST3H3 14 Static Module 1.61 4.07e-04 14 9
14 Reactome PROLACTIN RECEPTOR SIGNAL-

ING 1.54 1.57e-03 14 8
15 HTATIP 20 Static Module 1.53 7.92e-05 19 19
16 Reactome POL SWITCHING 1.53 2.41e-04 13 13
17 Reactome TRYPTOPHAN CATABOLISM 1.49 4.22e-04 11 8
18 KEGG PRIMARY BILE ACID BIOSYNTHESIS 1.45 1.64e-04 16 8
19 KEGG SYSTEMIC LUPUS ERYTHEMATOSUS 1.30 1.11e-04 140 38
20 KEGG TYPE I DIABETES MELLITUS 1.23 3.61e-04 44 13
-1 Biocarta SRCRPTP pathway -1.77 3.47e-05 11 10
-2 Reactome PEPTIDE CHAIN ELONGATION -1.76 3.61e-05 153 81
-3 KEGG RIBOSOME -1.76 3.61e-05 88 83
-4 TCF3 20 Static Module -1.75 4.02e-05 20 12
-5 Reactome 3 UTR MEDIATED TRANSLA-

TIONAL REGULATION -1.75 3.61e-05 176 101
-6 Biocarta CBL pathway -1.74 3.47e-05 13 11

-7
Reactome SRP DEPENDENT COTRANSLA-
TIONAL PROTEIN TARGETING to MEM-
BRANE

-1.74 4.02e-05 179 104

-8 Reactome INFLUENZA VIRAL RNA TRAN-
SCRIPTION and REPLICATION -1.74 5.52e-05 169 97

-9 Reactome TRANSLATION -1.72 3.61e-05 222 140
-10 Biocarta GLYCOLYSIS pathway -1.71 3.47e-05 10 8
-11 Reactome FORMATION of the TERNARY COM-

PLEX and SUBSEQUENTLY the 43S COMPLEX -1.71 3.61e-05 74 46

-12 Reactome RETROGRADE NEUROTROPHIN
SIGNALLING -1.70 3.47e-05 13 11

-13
Reactome ACTIVATION of the MRNA UPON
BINDING of the CAP BINDING COMPLEX and
EIFS and SUBSEQUENT BINDING to 43S

-1.70 4.02e-05 84 54

-14 Reactome FACILITATIVE NA INDEPENDENT
GLUCOSE TRANSPORTERS -1.69 1.00e-04 12 8

-15 Biocarta AMI pathway -1.69 4.02e-05 20 10
-16 Reactome GLUTATHIONE CONJUGATION -1.69 3.47e-05 23 16
-17 RPS27A 138 Static Module -1.68 3.61e-05 138 132
-18 Biocarta KREB pathway -1.67 8.72e-05 8 8
-19 Biocarta PTC1 pathway -1.66 9.65e-05 11 9
-20 Reactome ORGANIC CATION ANION ZWITTE-

RION TRANSPORT -1.66 2.89e-04 13 7

Inflammatory response. All the inflammatory pathways identified in the top 10 up-
regulated pathway included cytokines such as interleukin-6 (IL-6), interleukin-1 (IL-1),
cluster of differentiation 40 (CD40) and tumour necrosis factor (TNF) as well as major
histocompatibility complex (MHC). In AD, neuroinflammation is triggered by microglia
detecting misfolded and aggregated proteins. However, an inflammatory signal is not
expected from the 3D AD model without microglia. Kwak et al. (2020) have shown
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that their clonal hNPCs differentiate into neurons as well as astrocytes, another primary
innate immune cell in brains, in 3D cultures. Reactive astrocytes and microglia have
been identified in the vicinity of the Aβ deposits (Verkhratsky et al., 2016). It has been
shown that astrocytes are activated by Aβ , leading to increase in inflammatory factors like
IL-1β , IL-6 and TNFα , which reduce synaptic and neuronal health in cell models of AD
(Garwood et al., 2011; Phillips et al., 2014). Brain development. SIX3, the hub gene
in SIX3 Static module, was identified in 3 different DNA methylation studies conducted
in different cohorts and brain areas as differentially methylated in AD (Altuna et al.,
2019; De Jager et al., 2014; Qin et al., 2020). SIX3 is involved in the equilibrium control
between proliferation and differentiation of neural progenitor cells during mammalian
neurogenesis (Appolloni et al., 2008). Its activation leads to eye and forebrain hypoplasia
in zebrafish (Kobayashi et al., 2001). Chromobox 4 (CBX4), from the CBX4 Static

module, is an E3 Small ubiquitin-like modifier (SUMO)-protein ligase that mediates
SUMO modification of BMI1, which is required for the accumulation of BMI1 at sites of
DNA damage (Ismail et al., 2012). BMI1 deficiency in mice results in growth retardation
and neurodegeneration. BMI1 expression was shown to be silenced in AD brains, but not
in early-onset fAD, frontotemporal dementia, or Lewy body disease (Flamier et al., 2018).
Fatty acid metabolism. Linoleic acid is an essential unsaturated fatty acid metabolised
by many cytochrome P450s (CYPs). Lower levels of linoleic acid have been found in the
middle frontal gyrus in samples from individuals with significant AD neuropathology, but
no cognitive decline, and even lower in AD patients compared to controls (Snowden et al.,
2017). A study of Saudi elderly women also showed lower levels of linoleic acid in AD
patient blood (Alsumari et al., 2019).

The top 10 down-regulated pathways were mostly involved in translation (Reactome

Peptide chain elongation, KEGG Ribosome, Reactome 3’UTR mediated translational

regulation, Reactome SRP-dependent cotranslational protein targeting to membrane, Reac-

tome Translation, Reactome Influenza viral RNA transcription and replication), glycolysis
(Biocarta Glycolysis pathway), cell proliferation (Biocarta SRCRPTP pathway, Biocarta

CBL pathway), and Wnt signalling (TCF3 Static module) (Table 7.2).

Translation. Decreased levels of several genes encoding ribosomal proteins and
reduced protein levels of elongation factors were characterised in advanced stages of AD.
Changes are even more marked in rapid course AD (Garcia-Esparcia et al., 2017). Cell
proliferation. Both Src from Biocarta SRCRPTP pathway and its target Cbl (Biocarta

CBL pathways) are involved in cell proliferation. Both pathways include PRKCA and
PRKCB, encoding Protein kinase Cα (PKCα) and Cβ (PKCβ ), respectively. PRKCB
levels were found to be dysregulated in AD brains (Gerschütz et al., 2014), and three
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highly penetrant variants were defined in the PRKCA gene in families with late-onset AD
(Alfonso et al., 2016). The authors suggest that enhanced PKCα activity may contribute
to AD, possibly by mediating the actions of Aβ on synapses. Wnt signalling. Aβ is
thought to trigger the Wnt signalling pathway dysregulation, which could contribute to
synaptic dysfunction and degradation (Palomer et al., 2019). T-cell factor 3 (Tcf3), from
TCF3 Static module, and several other components of the Wnt pathway signalling were
dysregulated in AD brains (Riise et al., 2015). Nuclear Tcf7l1/Tcf3 gene expression was
found to be associated with disease stage, neurofibrillary tangles (NFTs) and cognition in
the hippocampus of AD samples (Blalock et al., 2004; Gómez Ravetti et al., 2010).

In summary, the top dysregulated pathways identified in the 3D cell culture model
reflected well-established AD-processes. The majority of the top 10 up-regulated pathways
were related to inflammatory response, and the down-regulated pathways were mostly
related to translation.

7.2.4 Evaluating drug prioritisation

The top drug candidates

We assessed the top 10 prioritised drugs for each of the 8 pathway clusters using the
same approach as in the JIA representative study (Section 6.4.1). The pathway clusters
used for drug prioritisation represented the top 5, 10, 15, and 20 up- and down-regulated
pathways. For clarity, we referred to them with an abbreviated name: up5 or up10 for the
top 5 or 10 up-regulated pathways, respectively. up5:20 notation includes all 4 up-regulated
pathway clusters. We performed a literature search on drugs appearing in the top 10 in
more than one cluster. We prioritised drugs that were prioritised by opposite direction
clusters, drugs that appeared in the highest number of clusters and drugs that consistently
scored at the top. Additionally, we looked for association with AD for two drugs that have
ranked in the top 10 in our representative 3D cell culture model and also in top 10 drug
lists from Mayo disease signatures. The top 10 drugs in up10, up20, down10 and down20

are listed in Supplementary Table E.2.

Across the eight A5 pathway clusters, 46 unique BRD IDs were identified. 27 of those
appear in one cluster, from that 21 were in an up- and six in a down-regulated cluster.
MLS003329221 (BRD-K81814927) has been prioritised in two clusters with opposite
directions, in up15 and down15. However, no related biological information was found for
this drug.
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Six drugs have been prioritised in the top 10 of the A5 down-regulated clusters
(down5:20): H5902 (BRD-K15402119), diethylstilbestrol (BRD-K45330754), SPEC-
TRUM_000090 (BRD-A80151636), SCHEMBL2560033 (BRD-K17739445), SPB02303
(BRD-K99532291), geldanamycin (BRD-A19500257). H5902, also known as huperzine
A, ranked first in three, and second in one of the down5:20. H5902 acts as a cholinesterase
inhibitor, studies suggest it improves memory and protects nerve cells, which could slow
the cognitive decline associated with AD (Huang et al., 2014; Qian and Ke, 2014; Wang
et al., 2011). It is a natural AChE inhibitor derived from Huperzia serrata used in Chinese
folk medicine. It is a licensed AD treatment in China (Zangara, 2003). In addition to the
symptomatic, cognitive-enhancing effect via the AChE inhibition (Rafii et al., 2011; Yang
et al., 2013b), studies have shown the potential for it to serve as a disease-modifying agent
for AD (reviewed in Qian and Ke (2014)). It was shown that huperzine A could suppress
Aβ accumulation and hyperphosphorylated tau formation when administered at an early
stage of AD in AD animal models (Huang et al., 2014; Wang et al., 2011).

Diethylstilbestrol ranked second in 3 and first in 1 of the down-regulated clusters.
SPECTRUM_000090 (BRD-A80151636) ranked third in down5:20. Geldanamycin (BRD-
A19500257) ranked between 6–9th across the down5:20 clusters. Diethylstilbestrol, SPEC-
TRUM_000090 and geldanamycin have all also appeared in the top drug candidates for JIA
(Section 6.4.1), the similarities in the top drugs could be due to artefacts in prioritisation
scoring or due to the inflammation-related pathways in both JIA and AD down-regulated
clusters. There is no evidence of diethylstilbestrol, an oestrogen agonist, having an effect
on AD. However, some evidence from animal studies, and from both observational studies
and clinical trials suggest that oestrogen is neuroprotective. For example, long-term self-
reported postmenopausal hormone therapy was associated with reduced AD risk (Imtiaz
et al., 2017), but recent clinical trials and observation studies have not found an association
between hormone therapy and AD (Gleason et al., 2015). Additionally, the Women’s Health
Initiative Study has shown that oestrogen treatment in late post-menopause increases risk
(Shumaker et al., 2004). Rocca et al. (2011) have proposed that the conflicting evidence
could be explained by the window of opportunity hypothesis that indicates that the results
are highly dependent on the cohort age assessed in each trial. As in JIA, no biological
information was associated with SPECTRUM_000090, but its isomer, bromocriptine,
was identified in a drug screen for its ability to lower Aβ in a dose-dependent manner.
Together with cromolyn and topiramate, it has been identified as part of the most effective
combination that reduced the Aβ content in familial and sporadic AD patient neurons
(Kondo et al., 2017). Geldanamycin, a heat shock protein 90 (Hsp90) inhibitor, has been
shown to potently and preferentially reduce phospho-tau levels (Petrucelli et al., 2004),
although with a high degree of toxicity (Ansar et al., 2007). Hsp90 is a chaperone protein
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that regulates tau metabolism and Aβ processing. Several geldanamycin derivatives have
been developed to reduce toxicity and improve potency but have failed in clinical trials
due to low solubility and toxicity (Blair et al., 2014). No information could be found for
SCHEMBL2560033 (BRD-K17739445) and SPB02303 (BRD-K99532291). However,
SCHEMBL2560033 was predicted to be a dopamine receptor antagonist (probability =

0.72) and SPB02303 a histone deacetylase (HDAC) inhibitor (probability = 0.76) by L1000
fireworks display (L1000FWD) (Wang et al., 2018). The mechanism of action (MOA) was
predicted by clustering drug signatures and assigning MOAs of known, well-characterised
drugs to less known preclinical drugs. HDAC inhibitors were one of their well-defined
clusters, hence, the high probability value. Other drugs without any associated biological
information mentioned in this section did not yield any high-probability MOAs. HDAC3
inhibition has been shown to reverse AD-related pathology in vitro and in an AD mouse
model (Janczura et al., 2018). HDAC2 inhibitor, vorinostat is currently in clinical trials
(ClinicalTrials.gov, 2019). Another HDAC inhibitor sodium butyrate (NaB) has been
demonstrated to improve memory performance and rescue neurodegeneration in several
AD mouse models (Cao et al., 2018). More HDCA inhibitors and their effects are reviewed
in De Simone and Milelli (2019). Post-mortem studies showed loss of dopamine D2
receptors in the temporal lobes in AD and a decrease of D2 receptor availability was shown
in AD patient hippocampus, suggesting that dopamine receptors antagonists are unlikely
to improve AD, but more likely to worsen the condition (Kemppainen et al., 2003).

TG101348 (BRD-K12502280), also known as fedratinib, is a semi-selective Janus
kinase 2 (JAK2) and FMS-like Receptor Tyrosine Kinase 3 (FLT3) inhibitor. It ranked in
the top 10 in two signatures in each up5 and up10. It has been shown that Aβ -dependent
inactivation of the JAK2/signal transducer and activator of transcription 3 (STAT3) axis in
hippocampal neurons causes cholinergic dysfunction, which leads to memory impairment
related to AD. In addition, activation of JAK2/STAT3 axis with a humanin derivative
restored cognitive function in an AD model (Chiba et al., 2009). It is thus likely that
fedratinib would worsen AD due to inactivation of JAK2. However, evidence suggests that
inhibition of FLT3 might be beneficial in AD by reducing neuronal oxidative stress. FLT3
inhibitors blocked ferroptotic cell death in neurons by preventing lipid peroxidation that
triggers glutamate toxicity (Kang et al., 2014).

Amlodipine base (BRD-A64297288), prioritised by the down5:10, and down20 path-
way clusters, is a calcium channel blocker with antihypertensive and antianginal properties.
While amlodipine did not show cognitive improvement, likely due to poor brain availabil-
ity, another related drug, nilvadipine, stabilised cognition in patients with mild cognitive
impairment (Hanyu et al., 2007). Although both reduced hypertension (a risk factor in
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AD), nilvadipine was shown to increase cerebral blood flow in the hippocampus, a feature
that is reduced early in the development of AD (de Jong et al., 2019).

BI 2536 (BRD-K64890080) was the top scoring drug in the up5:10 clusters. It is a
polo-like kinase 1 (PLK1) inhibitor that reduces β -amyloid-induced neuronal cell death
in an AD cell model (Song et al., 2011). PLK1 is present in hippocampal and cortical
neurons of AD patients, but not controls (Harris et al., 2000). PLK1 is a cell cycle regulator
and its expression in AD patients suggests neuronal cell-cycle re-entry triggered by Aβ

(Peng et al., 2015; Song et al., 2011). S-8599 (BRD-K49810818), also known as sorafenib
was the top-ranking drug in up20, and second in up15. It is a multikinase inhibitor of
Raf1, BRaf, vascular endothelial growth factor receptor 2 (VEGFR2) and other kinases,
including FLT3. Active form of Raf-1, cRaf-1, is up-regulated in post-mortem AD brains
and AD mouse models. Sorafenib inhibits cRaf-1 and nuclear factor κ-light-chain-enhancer
of activated B cells (NF-κB), it decreases APP, inducible nitric oxide synthase (iNOS)
and cyclooxygenase-2 (COX-2) expression and restores working memory in AD mice
(Echeverria et al., 2009).

Two drugs, JNK-9L and AG14361, from the top 10 in the A5 clusters were also found
in the top 10 in the Mayo clusters (Supplementary Table E.3). JNK-9L ranked in the
top 10 in Mayo up20 and A5 up15. AG14361 ranked in A5 up15 and Mayo down5:10.
JNK-9L (BRD-K19220233) is a c-Jun N-terminal kinase (JNK) inhibitor. Aβ activates
JNK and caspase-8 leading to neuronal apoptosis (Wei et al., 2002). In addition, JNK3
enhances Aβ production and plays a role in maturation and development of neurofibrillary
tangles. Increased levels of phosphorylated JNK have been shown in human post-mortem
brains of AD patients that co-localised with Aβ (Killick et al., 2014; Zhu et al., 2001).
It has also been correlated with the rate of cognitive decline (Gourmaud et al., 2015).
JNK3 is the major kinase for APP phosphorylation and a depletion of JNK3 in AD mice
resulted in a reduction of Aβ42 peptide levels, overall plaque load and an increase of
number of neurons and improved cognition (Yoon et al., 2012). It has been shown that
JNK3-mediated phosphorylation regulated APP cleavage by inducing the amyloidogenic
processing of the protein, while JNK inhibition reduced this processing and increased
the non-amyloidogenic route in vitro by blocking APP phosphorylation (Colombo et al.,
2009; Morishima et al., 2001; Savage et al., 2002). AG14361 (BRD-K00615600) is a poly
(ADP-Ribose) polymerase (PARP) inhibitor. PARP1 is responsible for the maintenance
of genome stability, transcriptional regulation, and long-term potentiation in neurons.
However, the extensive activation of it under pathological conditions may lead to cell
death (Strosznajder et al., 2012). Enhanced PARP activity has been demonstrated in the
AD human brain (Love et al., 1999). Aβ and inflammation can lead to activation of



7.2 Alzheimer’s Disease 203

PARP1 and cell death (Abeti et al., 2011; Adamczyk et al., 2005; Strosznajder et al., 2000).
A PARP1 gene polymorphism has also been associated with the risk of AD (Liu et al.,
2010). PARP1 inhibition and deficiency have been shown to prevent Aβ -triggered toxicity,
increase release of neurotrophic factors such as Transforming growth factor β (TGFβ )
and vascular endothelial growth factor (VEGF), and preserve the ability of microglia to
phagocytose Aβ peptides (Kauppinen et al., 2011).

In summary, even though the AD disease signature was developed on a 3D cell model,
the top prioritised drugs showed a remarkably close relevance to human AD physiology and
symptoms, such as targeting cognitive impairment. Out of 11 evaluated drugs most showed
direct or indirect evidence of improvement in cell and animal models. Several related drugs
have been in clinical trials. The top-ranking drug in down-regulated clusters, huperzine A,
is approved for treating AD in China and there is supporting evidence for not only cognitive
improvement in AD patients, but also disease-modifying beneficial effects (Huang et al.
(2014); Wang et al. (2011), reviewed in Qian and Ke (2014)). SPB02303’s predicted
mechanism of action would probably cause deteriorating effects. The two drugs that have
also been identified in the top prioritised drugs for the Mayo dataset show high relevance to
AD pathology and present promising translational drug candidates. The current cell model
reflects advanced AD pathology, and several top prioritised drugs target those processes.
However, if pre-symptomatic AD processes are identified, our system could potentially
prioritise drugs for those dysregulated processes providing early therapeutic intervention.

True positive lists for AD

Approved drugs for AD (Supplementary Table E.4). Ideally, this list would be the
gold standard for testing the pipeline’s performance. However, there are not many available
treatments for AD. From 29 brand and international non-proprietary names (INN), only 11
were mapped to 5 Broad (BRD) IDs and only 2 of those BRD IDs were present in PDxN.
The 2 BRD IDs (donepezil and memantine) were present in 5 different drug signatures.
Due to the limited number of AD approved drugs in PDxN we used a list of TPs from an
in vitro drug screen.

AD in vitro drug screen. A confidential list was shared with us by our collaborator
Tanzi and Kim group. Due to its confidential nature, the list cannot be shared in this thesis.
They identified drugs that have shown reduction in Aβ or reduction in Aβ and tau as part
of the 3D drugs screen (3DDS). The 3DDS was a high-throughput drug screening for AD
using 3D human neural culture systems related to A5 3D cell culture. Approximately
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1200 of the Food and Drug Administration (FDA) and other biologically active drugs were
screened. They have identified 38 drugs that had a beneficial effect in the 3D cell line
model. Only 18 of those were present in PDxN. We mapped them to 31 BRD IDs and 30
of those BRD IDs were present in PDxN. The 30 BRD IDs were present in 300 different
drug signatures. This was the primary TP list used in benchmarking tests in this section.

Benchmarking

We showed in the previous chapter, Chapter 6, that the drug signature features had an
effect on the drug signature rank (Section 6.4.4). We calculated the mean scaled rank of
each drug signature feature from the in vitro drug screen TP list for each of the cell lines,
leaving out A5 for cross-validation (Figure 7.1). Again, we showed that some signature
features were consistently associated with low ranks and some with high. The I47F (low
Aβ42/40 ratio) lists showed differential ranking to those of H10 and I45F (low Aβ42/40
ratio). In particular, the drug lists from H10 and I45F produced similar rankings of drug
signature features depending on the direction of the input pathway clusters.

Two batches (CPC005, CPC015), two drugs, and two cell lines (MDST8, SW620)
consistently ranked in the bottom 40%. There were no concentration values or perturbation
times that on average rank in the last 40% of the lists. Both cell lines were developed from
colon carcinoma (Supplementary Table D.9). MDST8 was also consistently ranked in the
bottom 40% across JIA prioritised drug lists.

We assessed the effect of the worst performing features by removing any drug signature
that included features that were on average ranked in the bottom 40% of the list. We
generated receiver operating characteristic (ROC) curves for A5 prioritised drug lists by
scoring the specificity and sensitivity with 3DDS drugs (Fig. 7.2). The area under the
ROC curve (AUC) of 1 indicates perfect, AUC = 0.5 indicates random, and AUC <

0.5 worse than random performance. The performance before and after removal of poor
scoring features was comparable and indicated random performance (AUC ≈ 0.5). The
best performing cluster in A5 that yielded the highest AUC score was the up20 (AUC
= 0.55). The down-regulated clusters yielded AUC scores in the range of 0.43–0.47. If
we took the performance of < 0.5 AUC as a guide, then these results suggested that the
developed drug repositioning pipeline was not able to prioritise drugs that ameliorate AD
pathology in a 3D model of AD. However, the literature search of the top 10 drugs across
each prioritised list suggested otherwise. The poor AUC scores could be explained by
the length of the prioritised lists. Each of the prioritised drug lists in A5 has between
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3944–11313 true negative (TN) signatures and 80–147 TP signatures. Translationally, only
the top 10–100 would be of realistic interest for further validation. Thus, when assessing
our method, the steepness of the initial ROC curve slope would be of higher importance,
because it represents the performance of the top scoring drugs. The performance of the
top 1000 drugs in A5 clusters is represented at x-axis values of 1-Specificity < 0.25 for
the shortest list (Fig. 7.2B cluster size 5 - light blue) and < 0.088 for the longest list
(Fig. 7.2A cluster size 20 - pink). The slope on all, but in particular the A5 up20 (Fig. 7.2A
cluster size 20 - pink), is much steeper at lower 1-Specificity values. For example, if we
considered the top 1000 drugs for up20 the slope is steeper than the diagonal indicating
random performance (m1000 = 1.85) and the slope for only the top 100 is m100 = 3.70,
suggesting high sensitivity at the topmost prioritised drugs. Even the worst performing
cluster, cluster down20 ((Fig. 7.2B cluster size 20 - pink, AUC = 0.43), has a steep initial
slope m100 = 3.83 that then lowers to m1000 = 0.79.

The literature search and the benchmarking results suggested that our method can
effectively recall the 3DDS drugs that have shown an improvement in AD-related pathology
in an AD 3D cell culture model. Assessing the performance of all drug signatures assigned
a prioritisation score suggested random performance. In this analysis, the benchmarking
results were limited by the lack of more appropriate true positive drugs. However, literature
searched top drugs and the initial steepness of the ROC curve indicated promising results.
Further characterisation of the benchmarking and alternative benchmarking designs are
necessary for more conclusive results.

7.3 Parkinson’s Disease

7.3.1 Disease introduction

Parkinson’s disease (PD) is a progressive, multifactorial, neurodegenerative disease. It
is the second most common neurodegenerative disorder, after AD, affecting approximately
1% of people over the age of 60 (Tysnes and Storstein, 2017). As in AD, PD-related
pathology is thought to begin many years before the clinical manifestation.

Pathologically, it is characterised by aggregations of α-synuclein (α-Syn) into mostly
insoluble Lewy bodies (Braak et al., 2003) and progressive neurodegeneration of dopamin-
ergic neurons in the substantia nigra pars compacta. Severe motor symptoms, such as
resting tremor, rigidity, bradykinesia, gait, and balance dysfunction result in severely
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reduced mobility and strongly impair patients’ quality of life (Jankovic, 2008; Thomas
and Beal, 2007). Non-motor symptoms have been of increasing interest (Chaudhuri et al.,
2006). The cellular mechanisms underlying dopaminergic cell death in PD are still not
fully understood, but mitochondrial dysfunction, oxidative stress and inflammation are
strongly implicated in the pathogenesis of both familial and sporadic PD cases. Aberrant
post-translational modifications and age-dependent insufficient quality control systems
lead to cellular overload of dysfunctional proteins (Dauer and Przedborski, 2003).

Approximately 90% of PD cases have a sporadic origin, which may be caused by
environmental factors together with genetic susceptibility. The remaining 10% represent
familial forms of the disease often associated with an earlier onset (Thomas and Beal,
2007). The main risk factor for developing PD is ageing (Tysnes and Storstein, 2017). The
α-synuclein gene (SNCA) is a major risk factor linked to sporadic PD (Simón-Sánchez
et al., 2009).

Current treatments offer symptomatic relief, but none stop or decrease the dopaminergic
neuron degeneration (Oertel, 2017). The discovery of levodopa, a dopamine precursor,
revolutionised the treatment of PD. However, after several years of treatment most patients
develop dyskinesias, which are difficult to treat and can develop into a significant source
of disability (Poewe et al., 2010). Current research is directed toward modulation and
clearance of α-Syn aggregates (Oertel, 2017).

7.3.2 Parkinson’s disease datasets

In the PD case study, we used data from 2 different sporadic PD (sPD) subgroups and
one from a PD zebrafish model (Table 7.1).

Lysosomal and mitochondrial dysfunction data

We used data from 2 distinct sPD groups collected and characterised in one dataset
(Carling et al., 2020). Lysosomal and mitochondrial dysfunction were characterised in
skin fibroblasts from sPD patient cohort. Patients with lysosomal counts greater than 3
standard deviations (SD) from the mean of the age-matched controls were characterised
as lysosomal dysfunction group and patients with ATP activity lower than 3 SD from the
control mean were grouped into mitochondrial dysfunction group.



7.3 Parkinson’s Disease 209

GHC1 zebrafish

The zebrafish dataset consisted of GCH1 mutant and wild type (WT) control samples.
GCH1 encodes the enzyme GTP cyclohydrolase 1, which is essential for dopamine synthe-
sis in nigrostriatal cells (Kurian et al., 2011). Rare GCH1 variants have been associated
with increased risk of PD (Mencacci et al., 2014).

The gch1 mutant zebrafish line was generated with CRISPR/Cas9 targeting exon 1
inducing a 94 base pair deletion. It resulted in a frameshift mutation, with a predicted non-
sense protein product, removing the GTP cyclohydrolase domain. The homozygous (HOM)
mutant showed 21.3% reduction in gch1 mRNA levels compared to WT (Larbalestier et al.,
2020).

The dataset includes RNA-Seq data from WT and gch1−/− zebrafish larval brain tissue
from pooled brain samples from 4 biological replicates per genotype (gch1−/− and WT) at
8 days post fertilisation (Larbalestier et al., 2020).

The representative study

Due to the low sample number in both the lysosomal and mitochondrial dysfunction
group, the lysosomal dysfunction group was chosen for further analysis because it yielded
more differentially expressed genes than the mitochondrial dysfunction analysis in Carling
et al. (2020), suggesting more measurable differences between case and control subjects.

The zebrafish dataset was used to identify promising top drug candidates that scored
highly in both the human lysosomal deficiency and the zebrafish model, highlighting the
drugs with increased model-to-human translation potential.

7.3.3 Disease pathway signatures

We performed a literature search to establish whether the top dysregulated pathways
in the lysosomal dysfunction dataset were linked to known PD processes. We searched
the top 10 most up- or down-regulated pathways. The top 20 up- and down-regulated
pathways are listed in Table 7.3.
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Table (7.3) Parkinson’s disease (PD) lysosomal dysfunction disease signature pathways.
The top 20 most up- (rank: 1 to 20) and down- (rank: -1 to -20) regulated pathways (q-value
< 0.05). Drugs were prioritised for up- and down-regulated pathway clusters at: the top 5, 10, 15
or 20 pathways by decreasing log fold change (LogFC) for up- and decreasing for down-regulated
pathways. The genes in pathway column represents the number of possible genes in that pathway,
while genes in data is the number of pathway genes found in data.

Rank Pathway LogFC q-value
Genes

in path-
way

Genes
in

data

1 Reactome N GLYCAN ANTENNAE ELONGA-
TION 1.41 0.00226 14 10

2 Biocarta UCALPAIN pathway 1.40 0.00234 18 14
3 Biocarta ECM pathway 1.38 0.00226 24 22
4 Biocarta MCALPAIN pathway 1.37 0.00226 25 20
5 SPI1 10 Static Module 1.36 0.00226 10 8
6 Biocarta CBL pathway 1.34 0.00918 13 12
7 Reactome N GLYCAN TRIMMING in the ER and

CALNEXIN CALRETICULIN CYCLE 1.34 0.00236 13 13
8 Reactome CALNEXIN CALRETICULIN CYCLE 1.32 0.00267 11 11
9 Reactome REGULATION of INSULIN SECRE-

TION by ACETYLCHOLINE 1.31 0.02520 11 6

10 Reactome PLATELET CALCIUM HOMEOSTA-
SIS 1.29 0.00617 18 9

11 Reactome COPI MEDIATED TRANSPORT 1.29 0.00844 10 10
12 Reactome FATTY ACYL COA BIOSYNTHESIS 1.28 0.00603 18 15
13 Biocarta CFTR pathway 1.28 0.00442 12 10
14 Biocarta KREB pathway 1.27 0.00849 8 8
15 Biocarta CCR3 pathway 1.26 0.00691 23 16
16 Biocarta GLYCOLYSIS pathway 1.26 0.04610 10 8
17 KEGG STEROID BIOSYNTHESIS 1.25 0.00907 17 16
18 Reactome SYNTHESIS of VERY LONG CHAIN

FATTY ACYL COAS 1.24 0.00617 14 12
19 Biocarta EPHA4 pathway 1.24 0.00267 10 7
20 Reactome TRANSFERRIN ENDOCYTOSIS and

RECYCLING 1.24 0.00472 25 22
-1 Reactome PEPTIDE CHAIN ELONGATION -1.55 0.00472 153 83
-2 CBX4 10 Static Module -1.51 0.00234 10 10
-3 Biocarta IL7 pathway -1.50 0.00234 17 14
-4 SIX3 11 Static Module -1.49 0.00234 11 8
-5 KEGG RIBOSOME -1.48 0.00617 88 85
-6 PAX6 19 Static Module -1.47 0.00579 19 6
-7 Reactome 3 UTR MEDIATED TRANSLA-

TIONAL REGULATION -1.46 0.00691 176 103

-8 Reactome INFLUENZA VIRAL RNA TRAN-
SCRIPTION and REPLICATION -1.45 0.00791 169 99

-9 Reactome ETHANOL OXIDATION -1.45 0.00271 10 6
-10 Biocarta TH1TH2 pathway -1.45 0.00226 19 7
-11 KEGG CIRCADIAN RHYTHM MAMMAL -1.43 0.00226 13 13
-12 RARA 17 Static Module -1.41 0.00226 17 11
-13 SMAD4 27 Static Module -1.41 0.00234 26 18
-14 Reactome BMAL1 CLOCK NPAS2 ACTIVATES

CIRCADIAN EXPRESSION -1.40 0.00226 36 34

-15 Reactome NONSENSE MEDIATED DECAY EN-
HANCED by the EXON JUNCTION COMPLEX -1.40 0.00894 176 104

-16 Reactome FORMATION of the TERNARY COM-
PLEX and SUBSEQUENTLY the 43S COMPLEX -1.40 0.00840 74 48

-17 STX5 12 Static Module -1.38 0.00226 12 11
-18 Biocarta CLASSIC pathway -1.38 0.00791 14 7
-19 ST IL 13 pathway -1.38 0.00601 7 6
-20 Biocarta NKT pathway -1.38 0.00226 29 9
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The top 10 up-regulated pathways in the lysosomal dysfunction dataset were related
to endoplasmic reticulum (ER) stress and unfolded protein response (Reactome N-glycan

antennae elongation, Reactome N-glycan trimming in the ER and calnexin/calreticulin

cycle, Reactome Calnexin/calreticulin cycle), α-Syn cleavage (Biocarta UCALPAIN path-

way, Biocarta MCALPAIN pathway), and other miscellaneous processes (Biocarta ECM

pathway, SPI1 Static module, Biocarta CBL pathway, Reactome Regulation of insulin

secretion by acetylcholine, Reactome Platelet calcium homeostasis) (Table 7.3).

ER stress and unfolded protein response. Calnexin and calreticulin are ER chaper-
one proteins that recognise unfolded proteins that have been glycosylated (Williams, 2006).
They promote proper folding and protect glycoproteins from aggregation or premature
export from the ER. They detect unfolded and terminally misfolded proteins and trigger
the ER-associated degradation via the ubiquitin proteasome system (UPS) (Ellgaard and
Helenius, 2003). Calnexin has been shown to associate with the α-Syn protein complex
in the cytoplasm. Internalisation of aggregated α-Syn has been related to calnexin (Liu
et al., 2007). Overexpression of wild-type or mutant α-Syn caused accumulation in the
ER and activation of the unfolded protein response in yeast PD models (Cooper et al.,
2006). Activation of the unfolded protein response has been characterised in post-mortem
PD brain (Hoozemans et al., 2007). α-Syn cleavage. Calpains are calcium-activated
non-lysosomal intracellular cysteine proteases. Increased M-calpain expression has been
detected in midbrain of PD patients (Mouatt-Prigent et al., 1996). α-Syn is a substrate for
calpain cleavage (Mishizen-Eberz et al., 2003). Calpain-cleaved α-Syn fragments generate
a high-molecular weight species and convert α-Syn from a random coil into a β -sheet
structure, which enhances the ability of α-Syn to aggregate. Calpain cleaves α-Syn in
human brains of PD and dementia with Lewy bodies patients. The cleaved α-Syn frag-
ments co-localise with activated calpain (Dufty et al., 2007). Inhibition of calpain reduced
α-Syn pathology and improved activity performance in α-Syn mice (Hassen et al., 2018).
SPI1, encoding the PU.1 transcription factor, is expressed in microglia (Walton et al.,
2000) and is vital for microglial survival (Smith et al., 2013). Microarray analysis in mixed
glial cultures identified several genes altered by PU.1 silencing that are also risk variants
in PD (Gosselin et al., 2017; Rustenhoven et al., 2018). CBL pathway includes CBL-
mediated ligand-induced downregulation of epidermal growth factor receptors (EGFR)
through degradation (de Melker et al., 2004). Similarly to CBL, a Parkin KO accelerates
EGFR endocytosis and degradation (Fallon et al., 2006). EGFR is degraded by both the
proteasome and lysosome (Levkowitz et al., 1999). Calcium homeostasis is disrupted by
α-Syn aggregation. Its significance in PD is extensively reviewed in Zaichick et al. (2017).
Insulin secretion by acetylcholine is driven by two Ca2+ dependent mechanisms (Gilon
and Henquin, 2001). Acetylcholine levels are abnormally low in PD (Rizzi and Tan, 2017).
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Extracellular matrix (ECM) is disrupted by α-synuclein moving to the extracellular space
in PD and related neurodegenerative diseases (Lee et al., 2014a).

The top 10 down-regulated pathways were involved in translation (Reactome Peptide

chain elongation, KEGG Ribosome, Reactome 3’UTR mediated translational regulation,
Reactome Influenza viral RNA transcription and replication), brain development (CBX4

Static module, SIX3 Static module, PAX6 Static module), immune response (Biocarta

IL7 pathway, Biocarta TH1TH2 pathway), and ethanol metabolism (Reactome Ethanol

oxidation) (Table 7.3).

Translation. Translation is highly dysregulated in PD. Several of the familial PD
mutations are linked to deregulation of mRNA translation, suggesting its importance in PD
onset (Correddu and Leung, 2019). A US patent for measuring decreased translation in
PD demonstrated that sPD patients showed reduced levels of translation in skin fibroblasts
(Flinkman et al., 2019). Brain development. CBX4 is one of the Polycomb-group
proteins that bind and repress genes in embryonic stem cells through lineage commitment
to the terminal differentiated state. It has been identified as downregulated in PD blood
(Tan et al., 2018). Dopamine signalling has been shown to lead to a loss of Polycomb
repression and aberrant gene activation in parkinsonian mice (Södersten et al., 2014). SIX3
is a Wnt1 suppressor (Lagutin et al., 2003), its down-regulation could thus dysregulate
the Wnt signalling pathway, which has been linked to neurodegeneration (Berwick and
Harvey, 2012). Parkin knockout (KO) in mice resulted in excessive Wnt signalling and
was associated with primary dopaminergic neuron death (Rawal et al., 2009). PAX6 is
expressed in selective populations of dopaminergic neurons. Post-mortem tissue from PD
patients showed decreased levels of substantia nigra PAX6+ cells. Over-expression of
PAX6 in cells treated with PD neurotoxins resulted in increased cell survival and reduction
of apoptosis and oxidative stress markers (Thomas et al., 2016). Immune response. IL-7
is a key cytokine essential for normal development of B and T cells. JAK3-phosphorylated
IL-7 activates STAT5, Src kinases, phosphoinositide 3-kinase (PI3K), protein-tyrosine
kinase 2 (Pyk2) and B-cell lymphoma 2 (Bcl2) proteins (Foxwell et al., 1995). Induction
of these correlated with the growth-promoting effects of IL-7. T helper 1 and 2 cell
(Th1/Th2) differentiation creates helper T cells that produce and respond to two different
sets of cytokines. The Th1 cell cytokines stimulate the phagocytosis and destruction of
microbial pathogens while Th2 cytokines like IL-4 generally stimulate the production
of antibodies directed toward large extracellular parasites. PD patients have reduced
Th2 with naive T cells differentiating towards Th1 (Kustrimovic et al., 2018). Ethanol
metabolism. Aldehyde dehydrogenases (ALDH) play an important role in ethanol and
dopamine metabolism (Yu et al., 2016). Growing evidence suggests that the aldehyde
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metabolites from dopamine are neurotoxic, and their intraneuronal accumulation has
been associated with neuronal cell death leading to neurodegeneration (Li et al., 2001).
ALDH2 polymorphism that reduces the enzyme activity has been associated with decreased
cognitive function in PD patients (Yu et al., 2016).

In summary, the top dysregulated pathways in the lysosomal dysfunction group were
linked to known PD processes. The up-regulated pathways were related to ER stress and
unfolded protein response as well as to α-Syn aggregation. As in AD, the down-regulated
pathways were mostly linked to translation.

7.3.4 Evaluating drug prioritisation

The top drug candidates

We assessed the top 10 drugs for each of the 8 pathway clusters defined from the sPD
lysosomal deficiency disease signature (Supplementary Table E.5). Across the 8 clusters
32 unique drugs were prioritised, with 11 appearing in only one cluster. Seven drugs were
prioritised across all lists from the up-regulated signatures (up5:20), and 6 were prioritised
across drug lists from the down-regulated signatures (down5:20).

All 6 drugs prioritised in down5:20 were also prioritised in down5:20 for A5 AD cell
culture. These similarities were likely due to high overlap in the top 10 down-regulated
pathways. Diethylstilbestrol, an oestrogen agonist, has not been tested in PD patients or
models, however, PD displays greater prevalence and earlier age at onset in men (Elbaz
et al., 2002). Treatment of male and female PD mice with a brain-selective oestrogen
improved PD symptoms in both. Untreated female mice displayed less severe symptoms
at a later age that oestrogen treatment still further improved, while male mice treated
with oestrogen displayed reduced α-Syn build-up and improved their motor performance
(Rajsombath et al., 2019). H5902, or huperzine A, is an AChE inhibitor. It has also been
shown to inhibit reactive oxygen species formation, caspase-3 and N-methyl-D-aspartate
(NMDA) glutamate receptor activity (Wang and Tang, 2005). Caspase-3 is an impor-
tant factor in neuronal death. There is an increased amount of active caspase-3-positive
dopaminergic neurons in PD patients (Hartmann et al., 2000). 6-hydroxydopamine (6-
OHDA), a neurotoxin commonly used to model PD (Simola et al., 2007), also causes
activation of caspase-3 (Singh et al., 2010). 6-OHDA-induced dopaminergic neuronal
degeneration is attenuated by caspase inhibitors (von Coelln et al., 2001). In addition,
NMDA receptor antagonists are effective antiparkinsonian agents and can reduce the com-



214 Case Studies: Neurodegenerative Diseases

plications of chronic dopaminergic therapy in animal models (Nash and Brotchie, 2002;
Papa et al., 1995). Dextromethorphan, an NMDA antagonist, reduced dyskinesia in PD
patients, but its beneficial effects are limited by adverse effects (Verhagen Metman et al.,
1998a,b). Remacemide, another NMDA antagonist has shown no clear effect on parkinso-
nian symptoms over a 5-week trial (Shoulson et al., 2001). No biological information is
associated with SPECTRUM_000090 and SPB02303. However, bromocriptine, a SPEC-
TRUM_000090 isomer, is a dopamine agonist used in treatment of PD (Lieberman and
Goldstein, 1985), and SPB02303 has been predicted to be an HDAC inhibitor (probability
= 0.76) by L1000FWD (Wang et al., 2018). Harrison et al. (2018) show that there is a
disease-dependant increase in histone acetylation observed in PD humans. Several specific
and non-specific HDAC inhibitors have been shown to be neuroprotective in PD models
(Chen et al., 2015; Choong et al., 2016; Di Fruscia et al., 2015; Harrison et al., 2016; Jian
et al., 2017; Outeiro et al., 2007; Pinho et al., 2016; Suo et al., 2015). Geldanamycin, a
Hsp90 inhibitor, has been shown to suppress α-Syn neurotoxicity in Drosophila despite
the continued presence of Lewy body-like inclusions (Auluck et al., 2005). It also pro-
tects against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic
neurotoxicity in mice (Shen et al., 2005). Due to high toxicity, poor solubility, and poor
blood-brain barrier (BBB) permeability geldanamycin derivatives have been explored for
translation (Friesen et al., 2017). Higher cumulative use of amlodipine base, a calcium
channel blocker used in hypertension has been associated with reduced risk of PD even
though amlodipine shows low BBB permeability (Lee et al., 2014b; Qiu et al., 2011).

The drugs prioritised by the up-regulated pathway clusters (up5:20) were: Hydroquini-
dine, CGP-60474, HY-11001, 5284616, Menadione, BRD-K60067222 and U18666A in
increasing (best to worst) mean rank order. Hydroquinidine (BRD-A06390036) scored
first in 3 and second in one of the clusters. It is a Class I antiarrhythmic and an inward
sodium channel inhibitor. Lower serum sodium was identified with longer duration and
higher levodopa dose PD patients with dyskinesia. The serum sodium inversely corre-
lated with the duration of disease (Mao et al., 2017). Excessive membrane depolarisation
contributing to PD pathology could be reduced by depressing postsynaptic sodium influx
with a sodium channel inhibitor. Lamotrigine and riluzole, sodium channel inhibitors,
have shown beneficial effects in PD animal models (Caputi et al., 2003). CGP-60474
(BRD-K79090631) is a VEGFR-2 and PKC inhibitor that scored with a mean rank of
1.75 in up5:20. Increased levels of VEGF and its receptors were characterised in PD
(Shim and Madsen, 2018). Other angiogenesis markers are associated with gait difficulties
and BBB dysfunction (Janelidze et al., 2015). Deferoxamine-mediated up-regulation of
hypoxia-inducible factor 1α (HIF-1α) that also up-regulates VEGFR has shown to prevent
dopaminergic neuronal death in PD mice (Guo et al., 2016). Several other studies have
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demonstrated neuroprotective effects of VEGF (Falk et al., 2009; Poesen et al., 2008;
Wada et al., 2006; Yasuhara et al., 2004, 2005). On the other hand, PKC inhibitor rottlerin
demonstrated neuroprotective effects in PD cell culture and animal models (Zhang et al.,
2007). HY-11001 (BRD-K64800655), more commonly referred to as PHA-793887, is
a pan-cyclin-dependent kinase (CDK) inhibitor. CDK5 has been shown to be a medi-
ator of dopaminergic neuron loss in a PD mouse model, with its inhibition attenuating
hypolocomotion (Smith et al., 2003). Elevated levels of CDK5 have been reported in
dopamine neurons in human post-mortem PD brains (Nakamura et al., 1997). Increased
activity of cyclin D3/CDK6/pRB pathway was shown in lymphoblasts from sPD. This
pathway was targeted upstream with two HDAC inhibitors that reduced 6-OHDA-induced
cell death (Alquézar et al., 2015). Inhibition of CDK1 provides neuroprotection against
ischemic neuronal death (Marlier et al., 2018). 5284616 (BRD-K89626439), better known
as sirolimus or rapamycin, is the mammalian target of rapamycin (mTOR) inhibitor. It
is an immunosuppressant commonly used in organ transplant patients. Sirolimus has
been shown to revert cognitive and affective deficits in PD mouse model (Masini et al.,
2018). Eight other studies showing improvement upon sirolimus treatment in animal
models are reviewed in Bové et al. (2011). One of them demonstrates that sirolimus
protects against dopaminergic neurodegeneration by increasing lysosomal biogenesis,
autophagosome-lysosome fusion, and lysosome-mediated clearance of accumulated au-
tophagosomes (Dehay et al., 2010). A combination therapy with sirolimus and trehalose
in PD mouse model activated autophagy and reversed both neuronal dopaminergic and
behavioural deficits (Pupyshev et al., 2019). Another combination therapy with sirolimus
and RTB101 is currently in Phase 1/2 trial for PD (resTORbio, Inc., 2019). Menadione
(BRD-K78126613), vitamin K3, is a superoxide releasing oxidative stressor. It is a potent
activator of mitogen-activated protein kinases (MAPKs) like extracellular signal-regulated
kinases 1 and 2 (ERK1, ERK2). Menadione addition and α-Syn expression decrease yeast
cell viability (Zampol and Barros, 2018). It has been shown to have anti-fibrillation activity
by reducing Aβ42 aggregations and reducing neuronal cytotoxicity in a human neuronal
cell line (Alam et al., 2016). Menadione increases neuronal cell death, release of TNF-α ,
IL-1α , and IL-1β in cultured neurons (Tripathy and Grammas, 2009). Menadione treated
neuronal cells over-expressing α-Syn localised α-Syn in the plasma membrane and also
developed Lewy body-like inclusions (Wang et al., 2016a). No biological information
was associated with BRD-K60067222, and only low probability MOAs were predicted by
L1000FWD (Wang et al., 2018). U18666A (BRD-A81795050) is a cholesterol synthesis
and transport inhibitor, it thus increases intracellular cholesterol. It is used to simulate
intracellular accumulation of cholesterol leading to neurodegeneration in cells of Niemann-
Pick type C patients (Nunes et al., 2013). The lysosomal cholesterol accumulation in
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neurons resulted in increased lysosomal stability and sensitivity, and reduced oxidative
stress-induced apoptosis (Appelqvist et al., 2012). Higher serum cholesterol has been
associated with decreased PD risk in men (Rozani et al., 2018). Cathepsin D enzyme
activity which reflects lysosomal activity was decreased in lysosomal dysfunction sPD
patients (Carling et al., 2020). It was shown that cathepsin D expression and enzyme
activity increased upon U18666A-mediated toxicity (Amritraj et al., 2013). A treatment of
neuroblastoma cells showed that lysosomal cholesterol accumulation is a stress response
protecting lysosomal membrane integrity in response to early apoptotic stress. However,
high cholesterol also stimulated α-Syn aggregation (Eriksson et al., 2017).

Six drugs from the top 10 in the lysosomal dysfunction clusters were also found in
the top 10 in the mitochondrial dysfunction and/or the zebrafish dataset. There were three
drugs (emetine, vorinostat, and sirolimus) that scored in the top 10 in clusters from all three
datasets. In addition, geldanamycin, cephaeline, and homoharringtonine scored in the top
10 for the lysosomal dysfunction and GCH1 mutant data. Additional four drugs (alvocidib,
cefixime, prucalopride, and quinacrine hydrochloride) overlapped in the clusters from the
mitochondrial dysfunction and zebrafish datasets. The PD-relevant geldanamycin and
sirolimus have been reviewed above. Emetine (BRD-A25687296) and the structurally
similar cephaeline (BRD-K80348542) are used in blocking protein synthesis. They can be
metabolised from dopamine in a medicinal plant Psychotria ipecacuanha, where they were
discovered (Nomura and Kutchan, 2010), but have been shown to not affect the central
dopaminergic mechanisms in rats (Lal et al., 1972). Vorinostat (BRD-K81418486) also
known as suberoylanilide hydroxamic acid (SAHA), is a HDAC inhibitor which has shown
neuroprotective and survival promoting effects on dopaminergic neurons in neuron-glia
cultures (Chen et al., 2012) as well as show early neuroprotection by preventing mito-
chondrial fragmentation in a PD cell model (Alquézar et al., 2015). Homoharringtonine
(BRD-K76674262) is an apoptosis inducing compound which was shown to initially de-
crease mitofilin expression, followed by a rapid increase within 6 hours of treatment (Jin
et al., 2004). Mitofilin deficiency is detrimental to cell viability and response to stress, in
particular it is essential for maintaining mitochondrial structure (reviewed in van Laar et al.
(2018)).

In summary, several drugs showed promising beneficial effects on PD-related pathology,
while some suggest further deterioration. Notably, two drugs had potential lysosomal
implications. All drugs that were commonly prioritised by the down5:20 lysosomal
dysfunction sPD signatures were also in the top 10 of down5:20 from the A5 signatures.
These also overlapped with drugs prioritised in JIA down10:20. This could be due to
system artefacts or due to common inflammatory and other processes driving these diseases.
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All case studies had several translation-associated down-regulated pathways. We found
several plausible connections to commonly prioritised drugs for each of the case studies.
The top drug prioritisation results were encouraging, given that the disease signature was
generated from a human dataset with a small sample size and consequently the pathway
clusters were likely of reduced quality.

True positive lists for PD

Approved drugs for PD (Supplementary Table E.6). We extracted 58 trade and INN
drug names from the FDA and European Medicines Agency (EMA) approved treatments
for PD. 38 were mapped to 27 BRD IDs and only seven of those BRD IDs were present in
PDxN. These appeared in 11 different drug signatures. As with other case studies, this list
would be expected to be the gold standard for testing the pipeline’s performance in PD.
However, PD treatment is focused on symptomatic relief, therefore we initially benchmark
PD with an expert-curated list of neuroprotective drugs.

PD neuroprotective drugs (Supplementary Table E.7). Our PD collaborator, Oliver
Bandmann, provided us with a list of neuroprotective drugs that are predicted to target
plausible causal PD mechanisms. From the six curated drug names, five were mapped
to eight BRD IDs. Seven of those BRD IDs were present in PDxN, in 44 different drug
signatures.

Benchmarking

As with the two other case studies, we explored the effects of drug signature features
on their ranking (Fig. 7.3A). Given a much smaller set of studies, only mitochondrial
dysfunction disease signature was used to assess rankings, leaving out lysosomal dys-
function prioritised drug lists for cross-validation. We took an alternative benchmarking
approach for PD. Rather than scoring our prioritised drug lists for recovery of approved
drugs (i.e. true positives) as means to objectively evaluate the method’s performance, we
benchmarked it with an expert curated neuroprotective drug list. As discussed above, a
big limitation of using approved lists is that we make an assumption that the approved
drugs are a treatment for the causal basis of the given disease rather than a treatment of
its symptoms. In particular, PD’s approved treatments are focused on symptomatic relief.
Therefore, a drug repositioning method focused on treating the causal basis of disease
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Fig. (7.3) Benchmarking Parkinson’s disease (PD) prioritised drug lists with neuroprotec-
tive drugs. (A) Scaled mean TP drug ranks in PD drug lists per drug signature feature. Prioritised
drug lists from the mitochondrial deficiency (Mito) up- and down-regulated pathway signatures with
5, 10, 15 or 20 pathways were scored with a curated list of neuroprotective drugs (Supplementary
Table E.7). Mean rank of 1 (top prioritised drug) was scaled to 0 and the worst rank to 1. Drug
signature features were selected for removal if the TP drug signatures with that feature ranked
on average in the bottom 40% across mitochondrial dataset signatures, leaving out the lysosomal
dataset. (C–D) ROC curves for the PDxN-derived drug lists, prioritised by the lysosomal dysfunc-
tion (Lyso) disease signatures including (B) up- and (C) down-regulated disease pathway clusters
of different sizes before (dotted line) and after (full line) the removal of low-ranking drug signature
features (A). The AUC, TP and TN counts are displayed for the after ROC curves. (D) Summary
of AUCs per PD study, signature direction and pathway cluster size before (C top) and after (C
bottom) removing selected drug signature features. AUC — area under the ROC curve; conc. —
concentration; PDxN — Pathway Drug Coexpression Network; pert time — perturbation time;
ROC — receiver operating characteristics; TN — true negative; TP — true positive.
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rather than its symptoms would be penalised in approved drug-orientated scoring, if the
approved drugs only treat symptoms.

Given a small neuroprotective TP list of 8 BRD IDs, from which only 6 ranked in
the mitochondrial dysfunction drug lists, the ranking patterns were more extreme. The
ranked drug lists clustered according to the direction of the pathway signatures. This was
expected as the smaller pathway clusters (5, 10 pathways) were subsets of the larger clusters
(15, 20 pathways). One batch (CPC006), three TP drugs (BRD-K96354014 (nifedipine),
BRD-K32821942 (azathioprine), BRD-U88459701 (atorvastatin)) and three cell lines
(VCAP, HT29, HT115) were identified as consistently low ranking. The remaining three
BRD IDs represent nilotinib (BRD-K81528515), and atorvastatin (BRD-K69726342,
BRD-A82307304). The two of the three poorly performing cell lines were from colon
carcinoma and one from prostate cancer (Supplementary Table D.9). Due to only including
mitochondrial dysfunction drug lists in this analysis, the identification of poorly performing
features was highly skewed to mitochondrial dysfunction drug lists. Upon removal of these
features the performance in both lysosomal and mitochondrial dysfunction improved, with
the best lysosomal cluster (down5) improving from AUC = 0.71 to AUC = 0.91. The
prioritised lists from down-regulated lysosomal dysfunction signatures showed relatively
encouraging performance (AUC: 0.61–0.71), even before the removal of the identified
poorly-performing features (Fig. 7.3C–D). Even though there was a limited amount of
the TP drug signatures (3–10), the initial slope is relatively steep in lists from up- and
down-regulated pathway clusters.

These results suggested that carefully defined TP lists might have been of higher
value when assessing method’s performance than approved treatments. However, a major
limitation of this analysis was the low number of lysosomal and mitochondrial samples as
well as only one currently included study for deciding poorly performing features. The
addition of extra sPD studies would have provided clearer indications of ranking trends in
drug signature features.

7.4 Evaluating Drug Prioritisation Results with Approved
Drugs

In each of the case studies we evaluated the performance of the method by scoring the
generated prioritised drug lists with alternative TP lists. We opted for alternative TP lists
for several reasons:
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Fig. (7.4) AUC score summary for AD and PD benchmarked with approved drugs for each
condition. AD 3D cell culture models and Mayo dataset were scored with AD approved drugs (Sup-
plementary Table E.4), and PD lysosomal and mitochondrial dysfunction (Lyso, Mito, respectively),
and zebrafish GCH1 were assessed with PD approved drugs (Supplementary Table E.6). Several
prioritised drug lists did not associate a score with any TP drugs (grey square). The AUCs > 0.6
are displayed. AD — Alzheimer’s disease; AUC — area under the ROC curve; PD — Parkinson’s
disease; ROC — receiver operating characteristics; TP — true positive.
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(i) there were very few approved drugs for the chosen case study,

(ii) only a limited number of the approved drugs were present in PDxN,

(iii) the approved drugs were predominately meant for symptom management rather than
disease-modification.

Although we excluded the approved lists in the main evaluation of the method’s
performance, we benchmarked the AD cell culture and Mayo dataset with AD-approved
drugs, and sPD and the GCH1 zebrafish drug lists with PD-approved drugs (Fig. 7.4).
The results showed distinct patterns between drug lists from up- and down-regulated
pathway clusters. For example, Mayo up-regulated clusters performed much better than
the down-regulated, while the down-regulated AD cell culture signatures performed better
than the corresponding up-regulated clusters. Due to the low number of TP in each of the
lists, there were several prioritised lists without a score, meaning that no TP drugs were
associated with a score in that prioritised drug list. There were many very high-scoring
lists (AUC > 0.9), but there were also a few poorly scoring lists, such as A5 up5 and
I47F down15. Nevertheless, it is hard to make any conclusive statements as the number
of the TP drugs was limited, and several drug lists had no score associated with the TP
drug signatures. The PD-approved list scored poorly in the up-regulated clusters, and
approximately at random in the down-regulated lysosomal dysfunction and GCH1 lists.

These results suggested that prioritising drugs separately for the up- and down-regulated
clusters might have provided better drug candidates than if the disease signatures from both
directions were considered together. Further work considering the effect of combining the
prioritisation scores would provide further insight into this observed performance property.
While our method showed great sensitivity and selectivity for the AD-approved drug list,
the list was very limited in length. However, it could indicate that fewer, but better fitting
drugs might serve as superior predictors of performance than the TP lists with a broader
selection of mixed-effect drugs. For example, we showed that our method is better at
recalling neuroprotective than approved PD drugs.

7.5 Discussion

In this chapter, we applied our drug repositioning method to two case studies: Alzheimer’s
and Parkinson’s disease. Both represent common neurodegenerative diseases with dys-
regulated protein aggregation and clearance mechanisms. Both associate increased risk
with increased age. The two diseases were selected because although they have both been
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heavily researched, neither has available disease-modifying treatments. In addition, we
had the impactful opportunity for our collaborators to test our prioritised drug candidates
in vitro and in vivo.

In contrast to Chapter 6, where we used a set of publicly available datasets, we
wanted to evaluate a closer to real-life application scenario by analysing collaborator-
provided datasets which often come with limited sample sizes. Even though there were
low numbers of case and control samples available, our approach identified key pathways
in both disease systems. In AD, a set of biologically-relevant dysregulated pathways
were determined using a 3D cell culture model displaying low Aβ42/40 ratio. In PD, we
identified a set of PD-related pathways in a lysosomal dysfunction dataset. No pathways
with known links to lysosomal dysfunction were identified. Intriguingly, both AD and
PD dysregulated pathways included a set of down-regulated translation-related pathways,
suggesting partially overlapping neurodegenerative disease mechanisms.

The commonalities between down-regulated pathways led to an overlapping set of
the top prioritised drugs. We have successfully linked the top prioritised drugs to their
respective diseases for both AD and PD signatures. Promisingly, the top prioritised drug for
AD, huperzine A, has already been shown to improve cognition in AD and is hypothesised
to also be disease-modifying.

In this chapter, we analysed a mix of human and disease model data in order to increase
the chance of translational success in the drug development pipeline by prioritising the drug
candidates that have been prioritised for human as well as disease model data. Before these
are validated experimentally, the findings from the literature review would be used and the
most promising drug candidates and drugs related to those would be further theoretically
evaluated for their solubility, bioavailability, and toxicity. In particular, an important
consideration in neurodegenerative diseases that the PDxN method did not account for is
the drug’s ability to penetrate the blood-brain barrier. The top candidates with beneficial
pharmacokinetic profiles would then be tested in an in vitro disease model to assess its
efficacy and to optimise their dose and exposure times, before any further in vitro and in

vivo tests would be carried out. Therefore, each promising drug candidate identified in an
in silico drug repositioning pipeline would undergo extensive in vitro and in vivo validation
before it would be used in a clinical trial.

We benchmarked AD with a set of drugs identified to ameliorate AD-related pathology
in a large-scale drug screen. Our method showed high sensitivity and selectivity in the
top 100–1000 ranked drugs, but overall showed near-random performance. We bench-
marked PD with a curated list of neuroprotective drugs. The down-regulated signatures
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from lysosomal dysfunction yielded relatively high AUC scores in the range of 0.61–0.71.
Prioritised drug lists for the lysosomal dysfunction signatures demonstrated better sensi-
tivity and specificity with neuroprotective drugs compared to PD-approved drugs. The
difference in performance could be due to heterogeneity of drug classes or due to the
overabundance of symptomatic relief over disease-modifying treatments in the approved
list of PD drugs. Both sJIA and AD studies yielded high AUC scores when benchmarked
with their respective approved lists. However, these lists included a low number of TP drug
signatures, leading to unreliable performance scores. This highlighted another weakness
of the current gold-standard approach to benchmarking for diseases with few approved
treatments.

The sample numbers were limited in both AD and PD collaborator datasets. However,
we estimate that the cell culture and animal model heterogeneity was lower compared to
that in human samples. Thus, we expected that our results included lower signal-to-noise
ratio in lysosomal and mitochondrial dysfunction results compared to that in 3D culture
models and the GCH1 zebrafish dataset. We could implement several publicly available
sPD datasets to increase the signal-to-noise ratio in the sPD datasets. We could thus
increase the confidence in the quality of lysosomal and mitochondrial dysfunction results.
Due to the low number of samples available in both case studies as well as the low number
of TP drugs approved for AD and PD case studies we did not compare the PDxN method’s
performance in AD and PD with an alternative drug repositioning method.

In addition to ambiguity in selecting the most appropriate TP list, there are several
limitations to the current benchmarking design. The TP drugs from a large-scale screen,
used in AD benchmarking, may not include all the drugs that could have a beneficial
effect on the 3D cell model. Although 1200 were tested, the screen was done at one
concentration for one exposure time in one cell line, thus potentially missing effective drugs.
We did not investigate whether some drug–cell line pairs were consistently performing
poorly. However, anecdotal evidence (not shown) suggested that certain drug–cell line
combinations performed better than if the drug was tested on a different cell line. We could
therefore construct a benchmark that investigates drug signature feature combinations and
their accumulative effect. The major drawback of the current benchmarking approach is
that all predicted drugs are marked as TN. We could partially overcome this by using the
toxicity data from the 3DDS; Drugs with increased toxicity in the 3D model could be used
as TNs.

We observed that shorter TP lists indicated better performance. This could be due to
those lists including a highly selective range of TP drugs compared to larger lists where
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drugs with mixed effects and mechanism of action are combined. In the previous chapter,
we have demonstrated that the method was sensitive to the differences in anti-inflammatory
and immunosuppressive drug classes. Benchmarking with ATC classes or drug groups
with similar MOAs would have provided additional insight into the sensitivity of our
system as well as into potential key drug and disease mechanisms. We observed that
the performance was highly dependent on the direction of the signature used for drug
prioritisation. The down-regulated clusters performed better than the up-regulated clusters
in AD cell cultures and mitochondrial datasets. Prioritising drugs for directional clusters
provides a unique opportunity to consider combination therapy where the top drugs from
the up- and down-regulated clusters could be considered in pairs targeting independent
mechanisms contributing to disease severity.

In addition to using our method to prioritise drug candidates, it could be used to validate
preclinical models. We could investigate the concordance of drugs predicted by an in vitro

model and drugs predicted in the human data. It would allow us to assess the suitability
of the model system as a preclinical model and prioritise them when multiple models are
available.

We demonstrated that our drug repositioning pipeline was able to prioritise drug candi-
dates with disease-relevant MOAs. We applied the method to three distinct case studies and
characterised its weaknesses and strengths. We are optimistic of the translational potential
of this newly developed drug repositioning pipeline as well as its role in increasing insight
into the causal basis of disease.



Chapter 8

Conclusions

8.1 Summary

In this thesis, we described the development of a drug synonym database, and a novel
drug repositioning pipeline as well as its application to three case studies. We supported
the pipeline development results with extensive characterisation of the method features. In
addition, we explored the properties of the current gold standard benchmarking approaches.

In Chapter 2: Background we introduced the drug repositioning field and evaluated
the current computational methods. We identified the opportunity for a novel pathway-
based correlation network drug repositioning method. In addition, we evaluated the current
benchmarking practices in the field, identifying their lack of consistency.

In Chapter 3: Materials and Methods we described concise, detailed and repro-
ducible materials and methods that powered the development of the work described in the
subsequent chapters.

In Chapter 4: KATdb, the Drug Synonym Database we provided a novel database
that can be utilised in drug discovery, development of new drug repositioning methods and
benchmarking. We proposed a systematic method to evaluate the correctness of extracted
relationships, which carries important implications for data quality and curation in other
semantic-databases and knowledge-graphs based on public databases. We developed a user-
friendly visual interface that facilitates the translation and exploration of drug synonym
relationships. We have demonstrated increased translation rates between different drug
name types by using KATdb.
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In Chapter 5: The Drug Repositioning Pipeline we described the drug repositioning
pipeline in detail and characterised the underlying Pathway-Drug coexpression Network
(PDxN) that powers the prioritisation of drug candidates for in vitro and in vivo testing.
We have computationally improved the original Pathway Correlation Network (PCxN)
method (Pita-Juárez et al., 2018) and thus increased its potential for further applications
and development. We evaluated the biological significance of PDxN based on bipartite
clustering of the whole network and enrichment with pathway groups and drug classifi-
cation terms. We demonstrated that PDxN clusters functionally enrich with pathway and
drug annotations, pointing to its ability to capture biologically meaningful relationships. In
addition, we describe the remaining drug repositioning pipeline components: the disease
signature generation, signature processing and drug prioritisation, and benchmarking.

In Chapter 6: Evaluation of the System: Application to juvenile idiopathic arthri-
tis (JIA) we applied the pipeline to JIA and explored the strengths and weaknesses of our
repositioning method and the current benchmarking approaches. We identified several
biologically relevant pathways and, more importantly, several promising drug candidates.
We demonstrated that the differential pathway expression could overcome platform effect
and that it yielded pathway expression profiles that clustered based on underlying biologi-
cal differences and similarities. We compared our pathway-level approach to a standard
gene-level differential expression and demonstrated that the pathway-level results were
more comparable across platforms. We investigated the top prioritised drug candidates and
successfully linked the majority to established rheumatoid arthritis and JIA treatments or
processes. We benchmarked the method’s performance with three different true positive
(TP) lists: an approved list, a list of anti-inflammatory and antirheumatic drugs, and a list
of immunosuppressant drugs. We have shown that our method prioritises drugs offering
disease-modifying treatments over drugs offering symptomatic relief. We have compared
the pipeline’s performance to an alternative well-established method LINCS (Subramanian
et al., 2017) and showed the increased sensitivity of our method to current treatment trends
in JIA.

In Chapter 7: Case Studies: Neurodegenerative Diseases we applied the pipeline
to two additional case studies: Alzheimer’s and Parkinson’s disease (AD and PD, re-
spectively), where we analysed collaborator-provided RNA-Seq datasets. We identified
several biologically relevant pathways for each disease and, as in the previous chapter, we
prioritised several promising drug candidates that have the potential to be tested in vitro

and in vivo as part of our established collaborations. We benchmarked AD with results
from a large drug screen performed on 3D cell culture models similar to those analysed in
the chapter. While the overall performance indicated randomness of the prioritised list, the
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initial increased steepness of the ROC curve slope suggested that the top prioritised drugs
showed greater specificity and selectivity than the remainder of the prioritised drug list.
We benchmarked PD with an expert-curated list of 6 neuroprotective drugs and a list of
PD-approved drugs. We showed that our method’s recall of neuroprotective drugs is better
than those of current symptomatic PD-approved drugs.

8.2 Scope and Limitations

The drug repositioning pipeline presented in this thesis was aimed at novel drug can-
didate identification and hypotheses generation, and thus, comes with some substantial
limitations. The current pipeline did not consider dose, toxicity and disease tissue bioavail-
ability of the prioritised drugs. Any further translational steps would therefore require
including these into consideration throughout extensive in vitro and in vivo testing, before
this work could begin to make beneficial impacts in general clinical practice.

Before in vitro testing, the in silico prioritised drug candidates would first be manually
assessed for their translation potential using existing literature. The findings from the
literature review would be used and the most promising drug candidates and drugs related
to those would be further theoretically evaluated for their solubility, bioavailability, and
toxicity. In particular, an important consideration in neurodegenerative diseases that the
PDxN method did not account for is the drug’s ability to penetrate the blood-brain barrier.
The top candidates with beneficial pharmacokinetic profiles would then be tested in an in

vitro disease model to assess its efficacy and to optimise their dose and exposure times,
before any further in vitro and in vivo tests would be carried out. The assessment of
pharmacokinetic profiles for top prioritised drugs could be automated in the future by
integrating a weighted approach to scoring the final prioritised list that would be promoting
drugs with beneficial pharmacokinetic features. Only drugs with promising in vitro,
followed by promising in vivo results have the potential progress into clinical trials, thus it
is also important to assess the suitability of preclinical disease models.

There were several overlapping drugs identified in the top prioritised candidates in all
three case studies, highlighting a potential method bias towards those drugs that could be
further investigated with a negative control using the non-diseased liver study. However,
the drug overlap could be explained by the overlap in the pathway signatures. All three case
studies had several transcriptional pathways in the top differentially expressed pathways.
Therefore the similarity in the disease signatures could have driven the similarities in
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the top prioritised drugs. As all three case studies: JIA, AD, and PD have an immune
response component in the disease mechanism the concordance in top pathways and top
drug candidates might be due to disease similarities. Further investigation of non immune
response-related diseases would help determine whether the overlap is due to method bias
or common disease mechanisms.

An underlying limitation of the JIA case study is that due to the disease presentation
and treatment protocol, several samples were from treated patients. These samples have
likely biased the resulting disease signatures and consequently also the drug prioritisation.
To overcome this limitation, we could use the drug signatures from the confounding
medications to correct the patient expression signatures or employ further study curation
to include data only from untreated patients. However, the latter could significantly reduce
the number of studies and samples and thus reduce the reliability of the results.

In the AD case study, we focused on prioritising drug candidates from preclinical
models, because the human data comes with considerable limitations. In AD, the human
data represents the disease end stage due to the inaccessibility of the diseased tissue during
the disease progression. While in PD, the disease tissue availability is circumvented by
analysing a more readily available tissue, fibroblasts, as proxy. However, it is unlikely
that fibroblasts encompass all mechanisms involved in PD progression. Another limitation
of human data is that it is more heterogeneous and often harder to obtain than cell or
animal models, which leads to decreased statistical power unless well-designed large
cohort studies are conducted. Nevertheless, human data is more representative of human
disease compared to any in vitro or in vivo disease model, but the models allow more
extensive tests e.g. large drug screens as well as detailed characterisation of specific disease
mechanisms.

Despite these important considerations, we provided a tool which has the potential
to speed-up the novel drug repositioning candidate discovery and guide in delivering
disease-modifying treatments to patients.

8.3 Future Work

KATdb. We are aiming to establish KATdb as an online resource available for use
and exploration. In addition, further work into increasing correctness would benefit not
only our resource, but also other semantic databases and knowledge graphs. Methods and
approaches to resolving individual drugs from drug combinations will be explored.
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The Drug Repositioning Pipeline. Further interrogation of PDxN correlation rela-
tionships has the potential to increase insight into poorly characterised drugs and their
mechanisms of action. Additionally, interrogation of network topology with disease sig-
nature pathway clusters could yield causal disease mechanisms. Rather than employing
a summarisation-based signature processing, we could exploit network topology-based
approaches such as seeded random walks. The current network approach was based on a
background of mixed tissues. In order to increase the sensitivity for tissue-specific disease
dysregulation, tissue-specific networks could be explored. Tissue-specific networks could
assess the coexpression of drug signatures from cell lines representing that tissue on a
background of tissue-specific gene expression data. The drug signatures were generated
predominantly on cancer data. Thus, whilst these signatures may be more suitable for drug
repositioning for cancer treatments, they will be less predictive of drug success in other
disease areas (Paranjpe et al., 2019).

Case Studies. In addition to using our method to prioritise drug candidates, it could
be used to validate preclinical models. We could investigate the concordance of disease
signatures and drugs predicted by an in vitro or in vivo model compared to those defined
from the human data. It would allow us to assess the suitability of the model systems as
preclinical models and prioritise the most suitable when multiple models are available.

Benchmarking. Current benchmarking trends, which largely focus on using approved
drug-disease pairs, are limited in their evaluation of, and application to poorly characterised
diseases that are scarce in available treatments. Furthermore, approved treatments often
only alleviate symptoms, as opposed to targeting the causal basis of the disease. We have
shown that benchmarking with specific Anatomical Therapeutic Chemical (ATC) classifi-
cation classes might yield differential estimations of the method’s performance. Assessing
sensitivity and specificity for individual drug classes might even lead to the identification
of more successful treatment groups, and hence also improve our understanding of key
disease mechanisms.

Validation of identified drug candidates. Top drug candidates prioritised for AD and
PD will move to in vitro and in vivo testing, providing validation of the work described here
as well as, more importantly, identifying possible treatments for the diseases in question.
In collaboration with the drug testing facilities at the Tanzi and Kim labs, we will explore
our system’s utilisation of prioritising drug combinations.
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8.4 Impact

The importance of rapid drug repositioning is being demonstrated during the current
coronavirus disease 2019 (COVID-19) pandemic. The immediate need for accessible
treatments has been recognised globally, with cheap approved treatments primarily investi-
gated for their efficacy against COVID-19. The PDxN methodology could be applied to
either cell models of COVID-19 or to patient data in order to rapidly prioritise promising
treatments. At the same time, KATdb could be used to assess the current COVID-19
clinical trials to provide an overview of most promising treatments and therapeutic classes.

This thesis provides a well-characterised drug repositioning method with potential
for high translational impact. We have developed a systems biology approach to drug
repositioning, by exploiting functional relationships between pathways and drug signatures.
In the process, we have improved the usability of a published method by decreasing its
computational requirements, making it suitable for further applications and development.
Our method is based on a pathway-drug coexpression network that can be interrogated
with disease-specific signatures for prioritising drug candidates, providing insight into
mechanisms of disease. We have identified several promising drug candidates for juvenile
idiopathic arthritis, Alzheimer’s and Parkinson’s disease. We showed that our method
prioritises the disease-modifying treatments over drugs offering symptomatic relief. We
compared the method’s performance to an alternative well-established method and show
the increased sensitivity of our method to current treatment trends when applied to the JIA
case study. The successful translation of drug candidates identified as part of this project
can speed up the drug-discovery pipeline and thus more rapidly and efficiently deliver
disease-modifying treatments to patients.
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Table (A.1) Summary of drug synonyms extracted from source databases. Summary of synonym contribution from individual databases with specified
unique identifiers and synonym types extracted for the development of the drug synonym database. ATC — Anatomical Therapeutic Chemical; BRD —
Broad ID; CasRN — CAS Registry Number; ChEBI — Chemical Entities of Biological Interest; ChEMBL — Chemicals database by European Molecular
Biology Laboratory; CID — Compound ID; CMap — Connectivity Map; CTD — Comparative Toxicogenomics Database; DB — database; DPD — Drugs
Product Database; EINECS — European Inventory of Existing Commercial Chemical Substances; EMA — European Medicines Agency; FDA — the US
Food and Drug Administration; InChI — the IUPAC International Chemical Identifier; IUPAC — International Union of Pure and Applied Chemistry;
KEGG — Kyoto Encyclopedia of Genes and Genomes; L1000CDS2 — LINCS L1000 characteristic direction signature search engine; LINCS — Library of
Integrated Network-based Cellular Signatures; MESH — Medical Subject Headings; NDFRT — National Drug File - Reference Terminology; PharmGKB —
Pharmacogenomics Knowledge Base; SMILES — Simplified molecular-input line-entry system; TTD — Therapeutic Target Database; UMLS — Unified
Medical Language System; UNII — Unique Ingredient Identifier; URL — Uniform Resource Locator; WHO — World Health Organisation.

Database Unique
Identifier Extracted name types Used name types (after curation)

ATC ATC RxNorm, Synonym, WHO Name RxNorm, Synonym, WHO Name

BindingDB BindingDB ChEBI, ChEMBL, PubChem CID, PubChem SID ChEBI, ChEMBL, PubChem CID

ChEMBL ChEMBL ATC, ChEMBL Name, WHO Name ChEMBL Name, WHO Name

CMap CMap Name Catalog Name, CMap Instance Id CMap Instance Id, synonym

CMaptoATC CMap
Instance ATC, CMap Name CMap Name

CTD CTD Name CasRN, CTD Name, DrugBank, Synonym CasRN, CTD Name, DrugBank, MESH, PubChem
CID, synonym

DNI Drug name CasRN CasRN

DrugBank DrugBank

ATC, BindingDB, CasRN, ChEBI, ChEMBL, ChemSpider, Drug-
Bank Name, Drugs Product Database (DPD), GenAtlas, GenBank,
GenBank Gene Database, GenBank Protein Database, Guide to
Pharmacology, HUGO Gene Nomenclature Committee (HGNC),
IUPHAR, KEGG Compound, KEGG Drug, PDB, PharmGKB,
PubChem Compound, PubChem Substance, Therapeutic Targets
Database, UniProt Accession, UniProtKB, Wikipedia

BindingDB, CasRN, ChEBI, ChEMBL, ChemSpider,
DrugBank Name, Drugs Product Database (DPD),
KEGG, PharmGKB, PubChem CID, Wikipedia

continues on the next page
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Table A.1 continued

Database Unique
Identifier Extracted name types Used name types (after curation)

DrugCentral DrugCentral CasRN, InChI, InChIKey, SMILES, Synonym CasRN, InChI, InChIKey, SMILES, synonym

EMA EMA Active substance, ATC, EMA Name, Synonym Active substance, EMA, EMA Name, synonym

KEGG KEGG
ATC code, CAS, ChEBI, ChEMBL, Chemical structure group,
DrugBank, KEGG Drug, LigandBox, NIKKAJI, PDB-CCD, Pub-
Chem, Same as, Synonym, Therapeutic category

CasRN, ChEBI, C

LINCS LINCS
ChEBI, ChEMBL, DrugCentral, InChI, InChI Key, LINCS,
MESH, PubChem CID, SMILES, Synonym, Target, IUPAC InChI,
LINCS, LINCS Center Id

ChEBI, ChEMBL, DrugCentral, InChI, InChI Key,
LINCS, MESH, PubChem CID, SMILES, synonym,
LINCS Name, LINCS Center Id

PharmGKB PharmGKB

ATC, BindingDB, ChEBI, Chemical Abstracts Service, ChemSpi-
der, ClinicalTrials.gov, DrugBank, Drugs Product Database (DPD),
FDA Drug Label at DailyMed, GenBank, HET, HMDB, InChI,
IUPHAR Ligand, KEGG Compound, KEGG Drug, MedDRA,
MeSH, National Drug Code Directory, NDFRT, PDB, PharmGKB
Generic Name, PharmGKB Name, PharmGKB Trade Name, Pub-
Chem Compound, PubChem Substance, RxNorm, SMILES, Ther-
apeutic Targets Database, UMLS, UniProtKB, URL

BindingDB, CasRN, ChEBI, ChemSpider, DrugBank,
Drugs Product Database (DPD), FDA Drug Label at
DailyMed, InChI, KEGG, MESH, National Drug Code
Directory, NDFRT, PharmGKB, PharmGKB Name,
PubChem CID, RxNorm, SMILES, synonym, UMLS,
URL

RepoDB DrugBank DrugBank, RepoDB Name DrugBank, RepoDB Name

RepurposeDB RepurposeDB
ATC, CasRN, ChEBI, ChEMBL, DrugBank, InChI, KEGG,
MESH, PubChem, RepurposeDB, SMILES, Synonym, Target
entrez, Target entrez SEA, Target entrez Union, Target names,
Target names SEA, Target names Union

CasRN, ChEBI, ChEMBL, DrugBank, InChI, KEGG,
MESH, PubChem CID, RepurposeDB, SMILES, syn-
onym

TTD TTD CAS Number, ChEBI, DrugName, Formular, PubChem CID, Pub-
Chem SID, SuperDrug ATC, SuperDrug CAS, TTD CasRN, ChEBI, PubChem CID, synonym, TTD

continues on the next page
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Table A.1 continued

Database Unique
Identifier Extracted name types Used name types (after curation)

Wikipedia Wikipedia

CASnumber, CASNo, ChEBI, ChEMBL, ChemSpiderID, Drug-
Bank, InChI, KEGG, StdInChI, StdInChIKey, UNII, Wikipedia,
ATCprefix, CASnumber, EINECS, IUPACname, IUPACName,
MeSHName, OtherNames, PubChem, SMILES, synonyms, trade-
name

CasRN, ChEBI, ChEMBL, ChemSpider, DrugBank,
InChI, InChI Key, KEGG, UNII, Wikipedia, EINECS,
IUPAC, KEGG, MESH, PubChem CID, SMILES, syn-
onym
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Table (A.2) Test case details for KATdb versus manual translation. The search parameters (search input name type, search goal name type) used in
the KATdb visual interface (Supplementary Fig. B.3) are listed for each test case. Results from each test case are summarised in Chapter 4 Table 4.2. All
translations were performed ignoring the letter case. * — unique perturbagen IDs from drug signatures below significance threshold p-value < 0.05 in
L1000CDS2 signature database. ATC — Anatomical Therapeutic Chemical; BRD ID — Broad ID; CMap — Connectivity Map; CTD — Comparative
Toxicogenomics Database; EMA — European Medicines Agency; L1000CDS2 — LINCS L1000 characteristic direction signature search engine; LINCS —
Library of Integrated Network-based Cellular Signatures; PharmGKB — Pharmacogenomics Knowledge Base.

Test case Method Input name
source

Input name
type

Goal name
type

Search input
name type Search goal name type

A manual L1000CDS2 BRD ID name n/a n/a

B KATdb L1000CDS2 BRD ID name any
Active substance, ChEMBL Name, CMap Name, CTD
Name, DrugBank Name, EMA Name, L1000CDS2,
LINCS Name, PharmGKB Name, RepoDB Name, syn-
onym, WHO Name, Wikipedia

C KATdb L1000CDS2 BRD ID ATC any ATC
D KATdb L1000CDS2 BRD ID* ATC any ATC
E manual RepoDB RepoDB name LINCS name n/a n/a
F manual RepoDB RepoDB name BRD ID n/a n/a
G KATdb RepoDB RepoDB name BRD ID any BRD, LINCS center ID, LINCS ID
H KATdb RepoDB RepoDB DB BRD ID any BRD, LINCS center ID, LINCS ID
I KATdb EMA EMA name BRD ID any BRD, LINCS center ID, LINCS ID
J KATdb EMA EMA INN BRD ID any BRD, LINCS center ID, LINCS ID

K KATdb RepoDB,
EMA

RepoDB +
EMA name BRD ID any BRD, LINCS center ID, LINCS ID
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Table (A.3) Summary of Gene Expression Omnibus (GEO) DataSet search results for juve-
nile idiopathic arthritis (JIA). Reasons for not being included are listed in the last column. 18
studies with less than 20 samples were not considered due to low sample numbers. Six studies were
excluded because of no control samples. Two studies were excluded because they did not include
any JIA samples. Three studies were excluded because they only included treated JIA samples.
Five were analysed on not commonly used arrays and thus excluded due to their platform. One
was excluded because of the study design, it investigated monozygotic twins. One study was a
duplicate of another study and one was removed because it represented a super series, from which
the individual series were already included in the search results. The remaining 16 studies were
then curated by Lester Kobzik. Ten studies were selected based on having untreated systemic or
polyarticular JIA with control samples in either PBMC or whole blood (Table 3.2). In addition,
GSE79970 was removed, because the data was identified to be unsuitable to study JIA by the
authors (Wong et al., 2016).

Accession Control Samples Disease Samples Included Reason
GSE20307 56 20 yes y
GSE112057 12 26 yes y
GSE21521 29 18 yes y
GSE7753 30 17 yes y
GSE80060 22 33 yes y
GSE8650 21 16 yes y
GSE15645 13 14 yes not sJIA
GSE26554 23 3, 38 yes mixed JIA
GSE17590 21 22 no treated, platform
GSE54629 46 48 no treated
GSE80325 5 7 no superseries
GSE24060 6 6 no study design
GSE66896 3 0 no sample no, platform
E-MEXP-987 0 17 no sample no
GSE103170 3 3 no sample no
GSE103501 5 7 no sample no
GSE122552 5 4 no sample no
GSE38849 0 11 no sample no
GSE57183 7 7 no sample no
GSE58667 4 11 no sample no
E-MTAB-3201 5 5 no sample no
GSE15083 0 21 no sample no
GSE23687 0 11 no sample no
GSE71595 4 3 no sample no
GSE83415 0 11 no sample no
GSE92293 2 3 no sample no
GSE41744 0 12 no sample no
GSE66895 3 0 no sample no
GSE66898 3 0 no sample no
GSE37107 8 6 no sample no
GSE8361 8 51 no platform
GSE17755 8 51 no platform
GSE29536 19 67 no platform
GSE71010 43+40 35+38 no platform
GSE13849 59 61 no not sJIA, treated
GSE41831 15 14 no not sjIA, treated
GSE79970 16 85 no not sJIA, platform
GSE61281 12 20 no not sJIA
GSE67596 15 14 no not sJIA
GSE11083 15 14 no not sJIA
GSE55319 19 26 no not sJIA
GSE93777 43 202 no not JIA, treated
GSE43553 43 17 no not JIA
GSE103500 0 0 no no controls

continues on the next page
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Table A.3 continued
Accession Control Samples Disease Samples Included Reason
GSE11907 0 47 no no controls
GSE11908 0 46 no no controls
GSE89252 0 68 no no controls
GSE26112 0 17 no no controls
GSE94354 0 0 no no controls
GSE13501 59 21 no duplicate
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Table (B.1) KATdb synonym name types, aspirin example. At least one synonym result from
searching "aspirin" for each name type in KATdb. * — the values were not found in KATdb, but with
a manual online search. ** — related term, not fully correct. There are more synonyms, than listed
here in KATdb for the aspirin connected component. ATC — Anatomical Therapeutic Chemical;
BRD — Broad ID; CasRN — CAS Registry Number; ChEBI — Chemical Entities of Biological
Interest; ChEMBL — Chemicals database by European Molecular Biology Laboratory; CID —
Compound ID; CMap — Connectivity Map; CTD — Comparative Toxicogenomics Database; DB
— database; DPD — Drugs Product Database; ECHA — European Chemicals Agency; EINECS —
European Inventory of Existing Commercial Chemical Substances; EMA — European Medicines
Agency; FDA — the US Food and Drug Administration; GSRS — Global Substance Registration
System; InChI — the IUPAC International Chemical Identifier; IUPAC — International Union of
Pure and Applied Chemistry; KEGG — Kyoto Encyclopedia of Genes and Genomes; L1000CDS2

— LINCS L1000 characteristic direction signature search engine; LINCS — Library of Integrated
Network-based Cellular Signatures; MESH — Medical Subject Headings; NDFRT — National
Drug File - Reference Terminology; PharmGKB — Pharmacogenomics Knowledge Base; SMILES
— Simplified molecular-input line-entry system; TTD — Therapeutic Target Database; UMLS
— Unified Medical Language System; UNII — Unique Ingredient Identifier; URL — Uniform
Resource Locator; VHA — Veterans Health Administration; WHO — World Health Organisation;
WHOCC — WHO Collaborating Centre.

Name type Value Governing body

ATC A01AD05 WHOCC

RxNorm C0004057 National Library of
Medicine

WHO Name acetylsalicylic acid WHO
synonym aspirin various
BindingDB BDBM22360 BindingDB
ChEBI CHEBI15365 ChEBI

continues on the next page
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Table B.1 continued

Name type Value Governing body

ChEMBL CHEMBL25 ChEMBL
PubChem CID CID2244 PubChem

ChEMBL Name
ASPIRIN, Aspirin, aspirin, acetylsalicylic
acid, Acetylsalicylic acid, Acetyl salicyclic
acid

ChEMBL

CMap Name acetylsalicylic acid CMap

CMap Instance ID 25, 506, 513, 602, 603, 626, 650, 727, 725,
757, 750, 767, 765 CMap

CTD Name Aspirin CTD

MESH D001241 National Library
of Medicine

CasRN 50-78-2 Chemical Abstracts Ser-
vice

DrugBank DB00945 DrugBank
DrugBank Name Acetylsalicylic acid DrugBank
Drugs Product Database
(DPD) 150 Health Canada

KEGG D00109 KEGG
PharmGKB PA448497 PharmGKB

ChemSpider 2157 Royal Society of Chem-
istry

DrugCentral 74 DrugCentral

InChI 1S/C9H8O4/c1-6(10)13-8-5-3-2-4-
7(8)9(11)12/h2-5H,1H3,(H,11,12) IUPAC

InChI Key BSYNRYMUTXBXSQ-UHFFFAOYSA-
N IUPAC

SMILES CC(=O)OC1=CC=CC=C1C(O)=O,
CC(=O)Oc1ccccc1C(=O)O various

EMA Name **Clopidogrel Qualimed EMA

Active substance *Clopidogrel/Acetylsalicylic acid Zentiva
(previously DuoCover) various

EMA ID **EMEA/H/C/001135 EMA
BRD BRD-K11433652 LINCS
L1000CDS2 *-666 LINCS
LINCS ID LSM-5288 LINCS
LINCS Center ID 184 LINCS
LINCS Name Aspirin LINCS
FDA Drug Label at Dai-
lyMed *82cc404b-fcf5-4e48-ab1a-09d8c47f9e04 FDA

National Drug Code Di-
rectory *49348-980-23 FDA

NDFRT N0000145918(ASPIRIN) U.S. Department of Vet-
erans Affairs, VHA

PharmGKB Name aspirin PharmGKB

UMLS C0004057(Aspirin) National Library
of Medicine

URL //en.wikipedia.org/wiki/Aspirin various
RepoDB Name Acetylsalicylic acid FDA

continues on the next page
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Table B.1 continued

Name type Value Governing body

TTD D0GY5Z TTD
Wikipedia Aspirin Wikipedia contributors
RepurposeDB acetylsalicylic acid RepurposeDB
IUPAC 2-acetoxybenzoic acid IUPAC
UNII R16CO5Y76E GSRS of the FDA
EINECS O-acetylsalicylic acid ECHA

Table (B.2) Summary of individual source database contributions to the KATdb drug
graph. NB: The node % add up to >100%, because some nodes are shared between databases. ATC
— Anatomical Therapeutic Chemical; ChEMBL — Chemicals database by European Molecular
Biology Laboratory; CMap — Connectivity Map; CTD — Comparative Toxicogenomics Database;
DB — database; DNI — Drugs of New Indications (Liu et al., 2013); EMA — European Medicines
Agency; KEGG — Kyoto Encyclopedia of Genes and Genomes; L1000CDS2 — LINCS L1000
characteristic direction signature search engine; LINCS — Library of Integrated Network-based
Cellular Signatures; PharmGKB — Pharmacogenomics Knowledge Base; TTD — Therapeutic
Target Database.

Database name Nodes Edges

total 3305952 (100%) 2851870 (100%)
total with RepurposeDB 3309159 (100.1%) 2863598 (100.4%)
ATC 16886 (0.51%) 11418 (0.4%)
BindingDB 1912493 (58%) 1167919 (41%)
ChEMBL 27597 (0.83%) 24388 (0.86%)
CMap 8793 (0.27%) 7484 (0.26%)
CMAPtoATC 8420 (0.25%) 7135 (0.25%)
CTD 513435 (16%) 342479 (12%)
CTD-katkoler 159 (0.0048%) 82 (0.0029%)
DrugBank 87842 (2.7%) 74503 (2.6%)
DrugCentral 23892 (0.72%) 19910 (0.7%)
EMA 5248 (0.16%) 3873 (0.14%)
katkoler 174823 (5.3%) 111797 (3.9%)
KEGG 51548 (1.6%) 40991 (1.4%)
L1000CDS2 9575 (0.29%) 5183 (0.18%)
LINCS 434403 (13%) 793034 (28%)
Liu2013 426 (0.013%) 213 (0.0075%)
PharmGKB 34635 (1%) 31325 (1.1%)
RepoDB 1974 (0.06%) 987 (0.035%)
RepurposeDB 13036 (n/a) 11728 (n/a)
TTD 96879 (2.9%) 61841 (2.2%)
Wikipedia 163510 (4.9%) 145414 (5.1%)
Wikipedia-katkoler 2482 (0.075%) 1894 (0.066%)
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Fig. (B.1) KATdb synonym relationship correctness per source database. Correctness esti-
mation using four different iterations. From the initial synonym database, the largest (A1) and
ten largest (A10) components were assessed, and then reassessed (B1, B10, respectively) after
removing RepurposeDB as a source database and reconstructing KATdb. We assigned one of 4
different levels of correctness to each manually checked synonym relationship. The correctness
levels were summarised per source database. The ten largest components (A10, B10), representing
the manually curated top 2% of edges with highest edge betweenness, are summarised. The
labels on this plot match the experiment name on Fig.4.6 (page 75). NB: the y-axes are different
on each plot. ATC — Anatomical Therapeutic Chemical; CMap — Connectivity Map; CTD —
Comparative Toxicogenomics Database; DB — database; KEGG — Kyoto Encyclopedia of Genes
and Genomes; LINCS — Library of Integrated Network-based Cellular Signatures; Liu2013 — Liu
et al. (2013); PharmGKB — Pharmacogenomics Knowledge Base; TTD — Therapeutic Target
Database.
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Fig. (B.2) KATdb visual interface part 1 — landing page. The landing page introduces the
main aim of the database and provides the database summary statistics.
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Fig. (B.3) KATdb visual interface part 2 — translate your list. The main feature of KATdb
can be accessed on the "translate your list" tab, where a user drug list can be translated into
synonyms from specified or unspecified name types.
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Fig. (B.4) KATdb visual interface part 3 — plotting components. Plotting components tab
allows exploration of connections between synonyms. It can be used to estimate the "correctness"
of the relationships (edges), highlighting any edges with high edge betweenness score (edge width).
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Table (C.1) Alzheimer’s disease (AD) curated list used in Pita-Juárez et al. (2018) case
study. Domain expert-curated (Professor Rudolph Tanzi, Harvard Medical School) list of genes
associated with Alzheimer’s disease identified via genome wide association studies (GWAS). This
gene set was used in the AD case study in Pita-Juárez et al. (2018). Taken from Pita-Juárez et al.
(2018) Supplementary Table S4. DOI: https://doi.org/10.1371/journal.pcbi.1006042.s007.

Association Genes

Early Onset Linked APP, PSEN1, PSEN2
Frontotemporal Lobar

Degeneration
Associated Genes

MAPT, GRN, CHMP2B, VCP, C9orf72, FUS, TARDBP, CTNND2,
PTN, HAVCR1, NYAP2, RNASEL

Late Onset Genome-
Wide Associated

Highly Suggestive

ZNF3, NDUFS3, MTCH2, IGHV1-67, TP53INP1, ACE, ATXN1,
HLA-DRA, HLA-DRB4, HLA-DQ-A1, HLA-DQB, HLA-DQB1,
HLA-DQA1, DPYSL2, AX747894, RIN3, LGMN, GOLGA5,
HS3ST1, SQSTM1, TREML2, NDUFAF6, ECHDC3, AP2A2,
ADAMST20, IGH, SPPL2A, TRIP4, SCIMP

Late Onset
Genome-Wide

Significant

APOE, CD33, BIN1, PTK2B, CLU, ABCA7, CR1, PICALM,
MS4A6A, MS4A4E, CD2AP, SORL1, SLC24A4, DSG2, INPP5D,
MEF2C, NME8, ZCWPW1, CELF1, FERMT2, CASS4, ADAM10,
TREM2, HLA-DRB5, HLA-DRB1

https://doi.org/10.1371/journal.pcbi.1006042.s007
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Table (C.2) Pathway membership to KEGG and Reactome pathway groups. Pathways used
for annotating PCxN and PDxN. The PDxN and PCxN column indicate whether the pathway
is present in PDxN or PCxN (q-value < 0.05). The pathway group entry applies to all member
pathways in the following lines until a new pathway group is listed. Only pathways in either PDxN
or PCxN are listed. The letter case has been lost in data processing, so some acronyms and capital
letters are now in lowercase. KEGG — Kyoto Encyclopedia of Genes and Genomes; PCxN —
Pathway Coexpression Network; PDxN — Pathway Drug Coexpression Network.

Pathway group Member pathway PDxN PCxN
Amino acid metabolism

(KEGG) Alanine aspartate and glutamate metabolism y y
Arginine and proline metabolism y y
Cysteine and methionine metabolism y y
Glycine serine and threonine metabolism y y
Histidine metabolism y y
Lysine degradation y y
Phenylalanine metabolism y y
Tryptophan metabolism y y
Tyrosine metabolism n y
Valine leucine and isoleucine biosynthesis n y
Valine leucine and isoleucine degradation y y

Apoptosis (Reactome) Apoptosis y y
Apoptosis induced dna fragmentation y y
Apoptotic cleavage of cellular proteins y y
Apoptotic execution phase y y
Intrinsic pathway for apoptosis y y
Regulation of apoptosis y y

Cancer: overview (KEGG) Pathways in cancer y y

Cancer: specific types
(KEGG) Acute myeloid leukemia y y

Basal cell carcinoma y y
Bladder cancer y y
Chronic myeloid leukemia y y
Colorectal cancer y y
Endometrial cancer y y
Glioma y y
Melanoma y y
Pancreatic cancer y y
Prostate cancer y y
Renal cell carcinoma y y
Small cell lung cancer y y
Thyroid cancer y y

Carbohydrate metabolism
(KEGG) Amino sugar and nucleotide sugar metabolism y y

Ascorbate and aldarate metabolism y y
Butanoate metabolism y y
Citrate cycle tca cycle y y
Fructose and mannose metabolism y y
Galactose metabolism y y
Glycolysis gluconeogenesis y y
Glyoxylate and dicarboxylate metabolism y y
Inositol phosphate metabolism y y
Pentose and glucuronate interconversions y y
Pentose phosphate pathway y y
Propanoate metabolism y y
Pyruvate metabolism y y
Starch and sucrose metabolism y y

continues on the next page
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Table C.2 continued
Pathway group Member pathway PDxN PCxN

Cardiovascular disease
(KEGG)

Arrhythmogenic right ventricular cardiomyopa-
thy arvc y y
Hypertrophic cardiomyopathy hcm y y
Viral myocarditis y y

Cell cell communication
(Reactome) Adherens junctions interactions y y

Cell junction organization y y
Tight junction interactions y y

Cell cycle (Reactome) Activation of atr in response to replication
stress y y
Autodegradation of the e3 ubiquitin ligase cop1 y y
Cell cycle y y
Cell cycle checkpoints y y
Chromosome maintenance y y
Dna strand elongation y y
E2f mediated regulation of dna replication y y
Extension of telomeres y y
G0 and early g1 y y
G1 phase y y
Lagging strand synthesis y y
Loss of nlp from mitotic centrosomes y y
Mitotic prometaphase y y
Orc1 removal from chromatin y y
Packaging of telomere ends y y
Processive synthesis on the lagging strand y y
Recruitment of mitotic centrosome proteins
and complexes y y
Recruitment of numa to mitotic centrosomes y y
Regulation of mitotic cell cycle y y
S phase y y
Telomere maintenance y y
Unwinding of dna y y

Cell growth and death
(KEGG) Apoptosis y y

Cell cycle y y
Oocyte meiosis y y
P53 signaling pathway y y

Cell motility (KEGG) Regulation of actin cytoskeleton y y

Cellular community -
eukaryotes (KEGG) Adherens junction y y

Focal adhesion y y
Gap junction y y
Tight junction y y

Circadian clock (Reactome) Circadian clock y y

Circulatory system (KEGG) Cardiac muscle contraction y y
Vascular smooth muscle contraction y y

Development and
regeneration (KEGG) Axon guidance y y

Developmental biology
(Reactome) Axon guidance y y

Crmps in sema3a signaling y y
Dcc mediated attractive signaling y y
Developmental biology y y

continues on the next page
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Table C.2 continued
Pathway group Member pathway PDxN PCxN

Dscam interactions y y
Interaction between l1 and ankyrins y y
L1cam interactions y y
Myogenesis y y
Ncam1 interactions y y
Other semaphorin interactions y y
Recycling pathway of l1 y y
Regulation of gene expression in beta cells y y
Sema3a pak dependent axon repulsion y y
Sema4d in semaphorin signaling y y
Semaphorin interactions y y
Signal transduction by l1 y y
Transcriptional regulation of white adipocyte
differentiation y y

Digestion absorption
(Reactome) Digestion of dietary carbohydrate y n

Disease (Reactome) Activated point mutants of fgfr2 n y
Binding and entry of hiv virion y y
Early phase of hiv life cycle y y
Hiv infection y y
Hiv life cycle y y
Host interactions of hiv factors y y
Influenza life cycle y y
Influenza viral rna transcription and replication y y
Integration of provirus y y
Interactions of vpr with host cellular proteins y y
Late phase of hiv life cycle y y
Membrane binding and targetting of gag pro-
teins y y
Nef mediated downregulation of mhc class i
complex cell surface expression y y
Signaling by activated point mutants of fgfr1 n y
Signaling by egfr in cancer y y
Signaling by fgfr in disease y y
Transport of ribonucleoproteins into the host
nucleus y y
Viral messenger rna synthesis y y

DNA repair (Reactome) Base excision repair y y
Dna repair y y
Fanconi anemia pathway y y
Nucleotide excision repair y y

DNA replication (Reactome) Dna replication y y
Synthesis of dna y y

Endocrine and metabolic
disease (KEGG) Maturity onset diabetes of the young y y

Type i diabetes mellitus y y
Type ii diabetes mellitus y y

Endocrine system (KEGG) Adipocytokine signaling pathway y y
Gnrh signaling pathway y y
Insulin signaling pathway y y
Melanogenesis y y
Ppar signaling pathway y y

Energy metabolism (KEGG) Nitrogen metabolism y y
Oxidative phosphorylation y y
Sulfur metabolism y y

continues on the next page
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Table C.2 continued
Pathway group Member pathway PDxN PCxN

Excretory system (KEGG) Proximal tubule bicarbonate reclamation y y

Extracellular matrix
organisation (Reactome) Collagen formation y y

Degradation of the extracellular matrix y y
Extracellular matrix organization y y
Integrin cell surface interactions y y

Folding, sorting and
degradation (KEGG) Proteasome y y

Protein export y y
Rna degradation y y
Snare interactions in vesicular transport n y
Ubiquitin mediated proteolysis y y

Glycan biosynthesis and
metabolism (KEGG)

Glycosaminoglycan biosynthesis keratan sul-
fate y y
Glycosaminoglycan degradation y y
Glycosphingolipid biosynthesis ganglio series y y
Glycosphingolipid biosynthesis lacto and neo-
lacto series y y
Other glycan degradation y y

Hemostasis (Reactome) Basigin interactions y y
Cell surface interactions at the vascular wall y y
Cgmp effects y y
Factors involved in megakaryocyte develop-
ment and platelet production y y
Hemostasis y y
Kinesins y y
Nitric oxide stimulates guanylate cyclase y y
P130cas linkage to mapk signaling for integrins y y
Pecam1 interactions y y
Platelet adhesion to exposed collagen y y
Platelet calcium homeostasis n y
Platelet homeostasis y y
Platelet sensitization by ldl y y
Prostacyclin signalling through prostacyclin re-
ceptor y y
Signal amplification y y
Thromboxane signalling through tp receptor y y
Tie2 signaling y y

Immune disease (KEGG) Allograft rejection y y
Asthma y y
Autoimmune thyroid disease y y
Primary immunodeficiency y y
Systemic lupus erythematosus y y

Immune system (KEGG) Antigen processing and presentation y y
B cell receptor signaling pathway y y
Chemokine signaling pathway y y
Complement and coagulation cascades y y
Fc epsilon ri signaling pathway y y
Hematopoietic cell lineage y y
Intestinal immune network for iga production y y
Leukocyte transendothelial migration y y
Natural killer cell mediated cytotoxicity y y
T cell receptor signaling pathway y y

Immune system (Reactome) Activated tak1 mediates p38 mapk activation y y

continues on the next page
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Table C.2 continued
Pathway group Member pathway PDxN PCxN

Adaptive immune system y y
Advanced glycosylation endproduct receptor
signaling y y
Beta defensins y y
Cd28 dependent vav1 pathway y y
Complement cascade y y
Costimulation by the cd28 family y y
Creation of c4 and c2 activators y y
Ctla4 inhibitory signaling y y
Cytokine signaling in immune system y y
Defensins y y
Downstream tcr signaling y y
Erks are inactivated y y
Generation of second messenger molecules y y
Growth hormone receptor signaling y y
Ikk complex recruitment mediated by rip1 y y
Immune system y y
Inflammasomes y y
Initial triggering of complement y y
Innate immune system y y
Interferon gamma signaling y y
Interferon signaling y y
Irak1 recruits ikk complex y y
Mhc class ii antigen presentation y y
Phosphorylation of cd3 and tcr zeta chains y y
Pi3k cascade y y
Rap1 signalling n y
Regulation of complement cascade y y
Regulation of ifna signaling y y
Regulation of ifng signaling y y
Regulation of signaling by cbl y y
Tak1 activates nfkb by phosphorylation and
activation of ikks complex y y
Tcr signaling y y
The nlrp3 inflammasome y y
Traf6 mediated irf7 activation y y
Trafficking and processing of endosomal tlr y y

Infectious disease: bacterial
(KEGG)

Epithelial cell signaling in helicobacter pylori
infection y y
Pathogenic escherichia coli infection y y
Vibrio cholerae infection y y

Lipid metabolism (KEGG) Arachidonic acid metabolism y y
Biosynthesis of unsaturated fatty acids y y
Ether lipid metabolism y y
Glycerolipid metabolism y y
Glycerophospholipid metabolism y y
Linoleic acid metabolism y y
Primary bile acid biosynthesis y y
Sphingolipid metabolism y y
Steroid biosynthesis y y
Steroid hormone biosynthesis y y

Meiosis (Reactome) Meiosis y y
Meiotic recombination y y
Meiotic synapsis y y

Membrane transport
(KEGG) Abc transporters n y

continues on the next page
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Table C.2 continued
Pathway group Member pathway PDxN PCxN

Metabolism (Reactome) A tetrasaccharide linker sequence is required
for gag synthesis y y
Acyl chain remodelling of pc y y
Acyl chain remodelling of pe n y
Acyl chain remodelling of pg n y
Acyl chain remodelling of pi y y
Acyl chain remodelling of ps n y
Androgen biosynthesis n y
Bile acid and bile salt metabolism y y
Biological oxidations y y
Cholesterol biosynthesis y y
Chondroitin sulfate biosynthesis y y
Cytosolic sulfonation of small molecules y y
Endogenous sterols y y
Ethanol oxidation y y
Formation of atp by chemiosmotic coupling y y
Glucagon signaling in metabolic regulation y y
Gluconeogenesis y y
Glucose metabolism y y
Glucuronidation y y
Glutathione conjugation y y
Glycerophospholipid biosynthesis y y
Glycolysis y y
Glycosaminoglycan metabolism y y
Glycosphingolipid metabolism y y
Hyaluronan metabolism y y
Hyaluronan uptake and degradation y y
Integration of energy metabolism y y
Keratan sulfate biosynthesis y y
Keratan sulfate degradation y y
Metabolism of amino acids and derivatives y y
Metabolism of carbohydrates y y
Metabolism of nucleotides y y
Metabolism of polyamines y y
Metabolism of porphyrins y y
Metabolism of vitamins and cofactors y y
Peroxisomal lipid metabolism y y
Phospholipid metabolism y y
Pi metabolism y y
Ppara activates gene expression y y
Purine catabolism y n
Purine ribonucleoside monophosphate biosyn-
thesis y y
Purine salvage y y
Pyrimidine catabolism y y
Pyruvate metabolism y y
Recycling of bile acids and salts y n
Regulation of glucokinase by glucokinase reg-
ulatory protein y y
Regulation of insulin secretion y y
Respiratory electron transport y y
Reversible hydration of carbon dioxide y y
Sphingolipid de novo biosynthesis y y
Sphingolipid metabolism y y
Sulfur amino acid metabolism y y
Synthesis of bile acids and bile salts y y
Synthesis of pa n y
Synthesis of pc n y
Synthesis of pe y y
Synthesis of pips at the early endosome mem-
brane y y

continues on the next page
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Table C.2 continued
Pathway group Member pathway PDxN PCxN

Synthesis of pips at the golgi membrane y y
Synthesis of pips at the late endosome mem-
brane y y
Synthesis of pips at the plasma membrane y y
Triglyceride biosynthesis y y
Tryptophan catabolism y n
Xenobiotics y y

Metabolism of cofactors and
vitamins (KEGG) Folate biosynthesis y y

Nicotinate and nicotinamide metabolism y n
One carbon pool by folate y y
Pantothenate and coa biosynthesis y y
Porphyrin and chlorophyll metabolism y y
Retinol metabolism y y

Metabolism of other amino
acids (KEGG) Glutathione metabolism y y

Metabolism of proteins
(Reactome) Cytosolic trna aminoacylation y y

Glycoprotein hormones y y
Metabolism of proteins y y
Mitochondrial trna aminoacylation y y
Peptide chain elongation y y
Peptide hormone biosynthesis y y
Protein folding y y
Translation y y
Transport to the golgi and subsequent modifi-
cation y y
Trna aminoacylation y y

Metabolism of RNA
(Reactome) Deadenylation of mrna y y

Metabolism of rna y y
Mrna capping y y
Mrna splicing y y
Transport of mature mrna derived from an in-
tronless transcript y y
Transport of mature transcript to cytoplasm y y

Metabolism of terpenoids
and polyketides (KEGG) Limonene and pinene degradation n y

Terpenoid backbone biosynthesis y y

Muscle contraction
(Reactome) Muscle contraction y y

Smooth muscle contraction y y
Striated muscle contraction y y

Nervous system (KEGG) Neurotrophin signaling pathway y y

Neurodegenerative disease
(KEGG) Amyotrophic lateral sclerosis als y y

Prion diseases y y

Neuronal system (Reactome) Acetylcholine binding and downstream events y y
Acetylcholine neurotransmitter release cycle y y
Activation of kainate receptors upon glutamate
binding y y
Adenylate cyclase inhibitory pathway y y
Dopamine neurotransmitter release cycle y y
Gaba b receptor activation y y

continues on the next page
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Table C.2 continued
Pathway group Member pathway PDxN PCxN

Gaba receptor activation y y
Glutamate neurotransmitter release cycle y y
Highly calcium permeable postsynaptic nico-
tinic acetylcholine receptors y y
Ionotropic activity of kainate receptors y y
Neuronal system y y
Neurotransmitter release cycle y y
Norepinephrine neurotransmitter release cycle y y
Post nmda receptor activation events y y
Potassium channels y y
Presynaptic nicotinic acetylcholine receptors y y
Tandem pore domain potassium channels y y
Trafficking of ampa receptors y y
Transmission across chemical synapses y y
Voltage gated potassium channels y y

Nucleotide metabolism
(KEGG) Purine metabolism y y

Pyrimidine metabolism y y

Protein families: genetic
information processing

(KEGG)
Proteasome y y

Ribosome y y
Spliceosome y y

Protein localisation
(Reactome) Mitochondrial protein import y y

Replication and repair
(KEGG) Base excision repair y y

Dna replication y y
Homologous recombination y y
Mismatch repair y y
Nucleotide excision repair y y

Sensory system (KEGG) Olfactory transduction y y
Taste transduction y y

Signal transduction (KEGG) Calcium signaling pathway y y
Erbb signaling pathway y y
Hedgehog signaling pathway y y
Mapk signaling pathway y y
Mtor signaling pathway y y
Notch signaling pathway y y
Phosphatidylinositol signaling system y y
Vegf signaling pathway y y
Wnt signaling pathway y y

Signaling molecules and
interaction (KEGG) Cell adhesion molecules cams y y

Signalling (Reactome) Activated notch1 transmits signal to the nu-
cleus n y
Adenylate cyclase activating pathway y y
Akt phosphorylates targets in the cytosol y y
Chemokine receptors bind chemokines y y
Dag and ip3 signaling y y
Downstream signal transduction y y
Effects of pip2 hydrolysis y y
Egfr downregulation y y
Fgfr1 ligand binding and activation y y

continues on the next page
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Table C.2 continued
Pathway group Member pathway PDxN PCxN

Fgfr2c ligand binding and activation n y
Fgfr4 ligand binding and activation n y
Gab1 signalosome y y
Gpcr ligand binding y y
Grb2 events in erbb2 signaling y y
Insulin receptor recycling n y
Insulin receptor signalling cascade y y
Integrin alphaiib beta3 signaling y y
Notch1 intracellular domain regulates transcrip-
tion y y
Nrage signals death through jnk y y
Nrif signals cell death from the nucleus n y
Nuclear signaling by erbb4 y y
Olfactory signaling pathway y y
Opioid signalling y y
Opsins y n
P2y receptors y y
P38mapk events y y
P75ntr recruits signalling complexes y y
Pi3k events in erbb2 signaling y y
Pi3k events in erbb4 signaling y y
Pip3 activates akt signaling y y
Plc beta mediated events y y
Prolonged erk activation events y y
Prostanoid ligand receptors y y
Regulated proteolysis of p75ntr y y
Regulation of kit signaling y y
Retrograde neurotrophin signalling y y
Serotonin receptors y y
Shc1 events in egfr signaling y y
Shc1 events in erbb4 signaling y y
Signal attenuation y y
Signaling by bmp y y
Signaling by erbb2 y y
Signaling by erbb4 y y
Signaling by fgfr y y
Signaling by gpcr y y
Signaling by hippo y y
Signaling by insulin receptor y y
Signaling by notch y y
Signaling by notch1 y y
Signaling by notch2 y y
Signaling by notch3 y y
Signaling by notch4 y y
Signaling by pdgf y y
Signaling by rho gtpases y y
Signaling by wnt y y
Signalling to erks y y
Signalling to p38 via rit and rin y y
Signalling to ras y y
Spry regulation of fgf signaling y y

Transcription (KEGG) Basal transcription factors y y
Rna polymerase y y
Spliceosome y y

Transcription (Reactome) Formation of rna pol ii elongation complex y y
Generic transcription pathway y y
Nuclear receptor transcription pathway y y

Translation (KEGG) Ribosome y y

continues on the next page
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Table C.2 continued
Pathway group Member pathway PDxN PCxN

Transport and catabolism
(KEGG) Endocytosis y y

Lysosome y y
Peroxisome y y

Transport of small molecules
(Reactome)

Amino acid transport across the plasma mem-
brane y y
Ion channel transport n y
Iron uptake and transport y y
Metal ion slc transporters y y
Passive transport by aquaporins y y
Transferrin endocytosis and recycling y y
Zinc transporters y y

Vesicle mediated transport
(Reactome) Gap junction assembly y y

Gap junction degradation y y
Gap junction trafficking y y
Golgi associated vesicle biogenesis y y
Lysosome vesicle biogenesis y y
Membrane trafficking y y

Xenobiotics biodegradation
and metabolism (KEGG) Drug metabolism cytochrome p450 y y

Drug metabolism other enzymes y y
Metabolism of xenobiotics by cytochrome
p450 y y
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Table (C.3) Anatomical Therapeutic Chemical (ATC) level 1 and level 2 classification
present in PDxN. Relationships between ATC level 1 and level 2 labels are presented. Only
labels present in PDxN (q-value < 0.05) are listed. ATC — Anatomical Therapeutic Chemical; Lvl
— level; PDxN — Pathway Drug Coexpression Network.

Lvl 1
code Lvl 1 label Lvl 2

code Lvl 2 label

A Alimentary tract and
metabolism drugs A01 Stomatological preparations

A02 Drugs for acid related disorders
A03 Drugs for functional gastrointestinal disorders
A04 Antiemetics and antinauseants
A05 Bile and liver therapy drugs
A06 Drugs for constipation
A07 Antidiarrheals, intestinal antiinflamma-

tory/antiinfective agents
A08 Antiobesity preparations, excl. diet products
A10 Drugs used in diabetes
A11 Vitamins
A14 Anabolic agents for systemic use
A16 Other alimentary tract and metabolism prod-

ucts

B Blood and blood forming organ
drugs B01 Antithrombotic agents

B02 Antihemorrhagics
B03 Antianemic preparations
B05 Blood substitutes and perfusion solutions

C Cardiovascular system drugs C01 Cardiac therapy drugs
C02 Antihypertensives
C03 Diuretics
C04 Peripheral vasodilators
C05 Vasoprotectives
C07 Beta-adrenergic blocking agents
C08 Calcium channel blockers
C09 Agents acting on the renin-angiotensin system
C10 Lipid modifying agents

D Dermatologicals D01 Antifungals for dermatological use
D04 Antipruritics, incl. antihistamines, anesthetics,

etc.
D05 Antipsoriatics
D06 Antibiotics and chemotherapeutics for derma-

tological use
D07 Corticosteroids, dermatological preparations
D08 Antiseptics and disinfectants
D09 Medicated dressings
D10 Anti-acne preparations
D11 Other dermatological preparations

G Genito urinary system and sex
hormones G01 Gynecological antiinfectives and antiseptics

G02 Other gynecologicals
G03 Sex hormones and modulators of the genital

system
G04 Urologicals

H
Systemic hormonal prepara-
tions, excl. sex hormones and
insulins

H01 Pituitary and hypothalamic hormones and ana-
logues

continues on the next page
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Table C.3 continued
Lvl 1
code Lvl 1 label Lvl 2

code Lvl 2 label

H02 Corticosteroids for systemic use
H03 Thyroid therapy drugs
H05 Calcium homeostasis

J Antiinfectives for systemic use J01 Antibacterials for systemic use
J02 Antimycotics for systemic use
J04 Antimycobacterials
J05 Antivirals for systemic use

L Antineoplastic and im-
munomodulating agents L01 Antineoplastic agents

L02 Endocrine therapy antineoplastic and im-
munomodulating agents

L03 Immunostimulants
L04 Immunosuppressants

M Musculo-skeletal system drugs M01 Antiinflammatory and antirheumatic products
M02 Topical products for joint and muscular pain
M03 Muscle relaxants
M04 Antigout preparations
M05 Drugs for treatment of bone diseases
M09 Other drugs for disorders of the musculo-

skeletal system

N Nervous system drugs N01 Anesthetics
N02 Analgesics
N03 Antiepileptics
N04 Anti-parkinson drugs
N05 Psycholeptics
N06 Psychoanaleptics
N07 Other nervous system drugs

P Antiparasitic products, insecti-
cides and repellents P01 Antiprotozoals

P02 Anthelmintics
P03 Ectoparasiticides, incl. scabicides, insecti-

cides and repellents

R Respiratory system drugs R01 Nasal preparations
R02 Throat preparations
R03 Drugs for obstructive airway diseases
R05 Cough and cold preparations
R06 Antihistamines for systemic use
R07 Other respiratory system products

S Sensory organ drugs S01 Ophthalmologicals
S02 Otologicals
S03 Ophthalmological and otological preparations

V Various drug classes V03 All other therapeutic products
V04 Diagnostic agents
V08 Contrast media
V09 Diagnostic radiopharmaceuticals
V10 Therapeutic radiopharmaceuticals
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PDxN down−regulated drugs

cough and cold preparations
antineoplastic agents
endocrine therapy antineoplastic and immunomodulating age*
antihistamines for systemic use
drugs for constipation
sex hormones and modulators of the genital system
drugs used in diabetes
antiinflammatory and antirheumatic products
other gynecologicals
antiobesity preparations, excl. diet products
antimycotics for systemic use
bile and liver therapy drugs
antibacterials for systemic use
analgesics
antithrombotic agents
muscle relaxants
other drugs for disorders of the musculo−skeletal system
throat preparations
anti−parkinson drugs
psychoanaleptics
antipruritics, incl. antihistamines, anesthetics, etc.
urologicals
agents acting on the renin−angiotensin system
anesthetics
lipid modifying agents
calcium channel blockers
psycholeptics
other respiratory system products
thyroid therapy drugs
contrast media
antiemetics and antinauseants
antigout preparations
anabolic agents for systemic use
pituitary and hypothalamic hormones and analogues
vitamins
antiepileptics
drugs for acid related disorders
diuretics
antifungals for dermatological use
gynecological antiinfectives and antiseptics
antihypertensives
antimycobacterials
corticosteroids, dermatological preparations
otologicals
stomatological preparations
antipsoriatics
topical products for joint and muscular pain
vasoprotectives
beta−adrenergic blocking agents
antihemorrhagics
antiprotozoals
digestives, incl. enzymes
blood substitutes and perfusion solutions
corticosteroids for systemic use
antidiarrheals, intestinal antiinflammatory/antiinfective*
nasal preparations
cardiac therapy drugs
antibiotics and chemotherapeutics for dermatological use
ophthalmological and otological preparations
anthelmintics
diagnostic agents
immunosuppressants
all other therapeutic products
drugs for functional gastrointestinal disorders
other nervous system drugs
antiseptics and disinfectants
medicated dressings
ectoparasiticides, incl. scabicides, insecticides and rep*
other alimentary tract and metabolism products
drugs for obstructive airway diseases
antivirals for systemic use
peripheral vasodilators
anti−acne preparations
other dermatological preparations
ophthalmologicals
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Fig. (C.1) ATC level 2 drug annotation enrichment of PDxN bipartite clusters. The heatmap
summarises enrichment (pink) or depletion (teal) scores for drug nodes consisting of either up-
or down-regulated genes. Absolute enrichment values of 0 or above 1.5 and below significance
threshold p-value < 0.05 are displayed. The first number displayed is the enrichment or depletion
score, while the number in () is the observed number. When the observed number is 0, the depletion
score cannot be calculated, thus we displayed number-of-observed : number-of-expected terms in ().
Row names are ATC level 2 drug annotation terms. Only clusters with at least one pathway group
annotation are shown. ATC level 1 clustering can be seen in Chapter 5 Fig. 5.11. * — ATC term
was shortened, full terms are listed in Supplementary Table C.3; ATC — Anatomical Therapeutic
Chemical; PDxN — Pathway Drug Coexpression Network.
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Metabolism (Reactome)
Translation (KEGG)
Transcription (Reactome)
Transcription (KEGG)
Sensory system (KEGG)
Replication and repair (KEGG)
Protein localisation (Reactome)
Nucleotide metabolism (KEGG)
Metabolism of terpenoids and polyketides (KEGG)
Metabolism of RNA (Reactome)
Metabolism of other amino acids (KEGG)
Meiosis (Reactome)
Folding, sorting and degradation (KEGG)
DNA replication (Reactome)
DNA repair (Reactome)
Digestion absorption (Reactome)
Development and regeneration (KEGG)
Apoptosis (Reactome)
Cell cycle (Reactome)
Lipid metabolism (KEGG)
Cell cell communication (Reactome)
Vesicle mediated transport (Reactome)
Cell growth and death (KEGG)
Amino acid metabolism (KEGG)
Metabolism of proteins (Reactome)
Transport of small molecules (Reactome)
Neuronal system (Reactome)
Carbohydrate metabolism (KEGG)
Disease (Reactome)
Signaling molecules and interaction (KEGG)
Nervous system (KEGG)
Immune system (KEGG)
Immune disease (KEGG)
Extracellular matrix organisation (Reactome)
Excretory system (KEGG)
Circadian clock (Reactome)
Cellular community − eukaryotes (KEGG)
Cancer: overview (KEGG)
Cell motility (KEGG)
Xenobiotics biodegradation and metabolism (KEGG)
Cardiovascular disease (KEGG)
Muscle contraction (Reactome)
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Fig. (C.2) KEGG and Reactome pathway annotation enrichment of PDxN pathway pro-
jection. The heatmap summarises enrichment (pink) or depletion (teal) scores for drug nodes
consisting of either up- or down-regulated genes. Absolute enrichment values of 0 or above 1.5 and
below significance threshold p-value < 0.05 are displayed. The first number displayed is the enrich-
ment or depletion score, while the number in () is the observed number. When the observed number
is 0, the depletion score cannot be calculated, thus we displayed number-of-observed : number-
of-expected terms in (). Cluster numbers are not corresponding to PDxN bipartite clusters. Row
names are KEGG and Reactome pathway group names. Only clusters with at least one pathway
group annotation are shown. KEGG — Kyoto Encyclopedia of Genes and Genomes; PDxN —
Pathway Drug Coexpression Network.
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Appendix D

Supplementary material to Chapter 6
Evaluation of the System: Application
to juvenile idiopathic arthritis (JIA)

Table (D.1) GSE7753 sJIA disease signature genes. The top 20 most up- (rank: 1 to 20) and
down- (rank: -1 to -20) regulated genes (q-value < 0.05). Drugs were prioritised with LINCS
clue.io for up- and down-regulated gene sets at: the top 20, 50, 100, 150 genes by decreasing
log fold change (LogFC) for up- and decreasing for down-regulated genes. LINCS — Library of
Integrated Network-based Cellular Signatures; sJIA — systemic juvenile idiopathic arthritis.
Rank Gene Description LogFC q-value

1 SLC25A37 solute carrier family 25 member 37 14.10 1.02e-06
2 HBA2 hemoglobin subunit alpha 2 13.70 1.95e-04
3 SNCA synuclein alpha 9.91 1.83e-04
4 HBG2 hemoglobin subunit gamma 2 8.13 1.75e-04
5 GYPA glycophorin A (MNS blood group) 7.32 9.21e-05
6 GYPB glycophorin B (MNS blood group) 7.28 1.37e-04
7 TNS1 tensin 1 6.64 1.94e-04
8 ANK1 ankyrin 1 6.05 1.40e-04
9 FAM20A FAM20A golgi associated secretory pathway pseu-

dokinase 6.02 2.85e-11
10 MYL4 myosin light chain 4 5.77 5.37e-05
11 HBB hemoglobin subunit beta 5.63 7.40e-04
12 SLC6A8 solute carrier family 6 member 8 5.55 6.36e-05
13 SESN3 sestrin 3 5.46 1.54e-03
14 SOX6 SRY-box 6 5.43 4.38e-04
15 CEACAM1 carcinoembryonic antigen related cell adhesion

molecule 1 5.38 2.87e-05
16 MS4A4A membrane spanning 4-domains A4A 5.38 3.81e-07
17 CR1 complement C3b/C4b receptor 1 (Knops blood

group) 5.16 3.81e-07

18 SLC4A1 solute carrier family 4 member 1 (Diego blood
group) 4.16 6.84e-05

19 RHD Rh blood group D antigen 3.93 1.52e-03
20 ALAS2 5’-aminolevulinate synthase 2 3.78 1.63e-06

continues on the next page
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Table D.1 continued
Rank Gene Description LogFC q-value
-1 BNC2 basonuclin 2 -3.64 2.07e-04
-2 ADAMTS5 ADAM metallopeptidase with thrombospondin

type 1 motif 5 -3.48 9.75e-05
-3 BMPR1A bone morphogenetic protein receptor type 1A -3.16 3.15e-05
-4 RORA RAR related orphan receptor A -3.00 9.37e-05
-5 CAMTA1 calmodulin binding transcription activator 1 -2.44 2.11e-04
-6 SLC4A4 solute carrier family 4 member 4 -2.40 1.51e-04
-7 PRSS23 serine protease 23 -2.36 2.57e-04
-8 NKTR natural killer cell triggering receptor -2.28 3.94e-02
-9 DST dystonin -2.22 9.22e-04
-10 GPM6B glycoprotein M6B -2.16 7.49e-04
-11 KLRD1 killer cell lectin like receptor D1 -2.11 1.20e-03
-12 CLEC4C C-type lectin domain family 4 member C -2.07 2.27e-04
-13 PTGDR prostaglandin D2 receptor -1.96 1.25e-06
-14 PHLDB2 pleckstrin homology like domain family B member

2 -1.96 1.05e-05
-15 NEFL neurofilament light -1.95 2.24e-02
-16 TTC3 tetratricopeptide repeat domain 3 -1.95 1.99e-02
-17 AKT3 AKT serine/threonine kinase 3 -1.92 5.28e-04
-18 TPD52 tumor protein D52 -1.91 3.28e-02
-19 SYTL2 synaptotagmin like 2 -1.89 4.53e-05
-20 CCDC65 coiled-coil domain containing 65 -1.87 1.72e-04

Table (D.2) GSE112057 sJIA disease signature genes. The top 20 most up- (rank: 1 to 20)
and down- (rank: -1 to -20) regulated genes (q-value < 0.05). Drugs were prioritised with LINCS
clue.io for up- and down-regulated gene sets at: the top 20, 50, 100, 150 genes by decreasing
log fold change (LogFC) for up- and decreasing for down-regulated genes. LINCS — Library of
Integrated Network-based Cellular Signatures; sJIA — systemic juvenile idiopathic arthritis.
Rank Gene Description LogFC q-value

1 DAAM2 dishevelled associated activator of morphogenesis 2 1.250 0.03650
2 CD177 CD177 molecule 1.150 0.03850
3 C4BPA complement component 4 binding protein alpha 1.080 0.02510
4 RAP1GAP RAP1 GTPase activating protein 0.863 0.02310
5 ANKRD22 ankyrin repeat domain 22 0.833 0.01900
6 AOC1 amine oxidase copper containing 1 0.767 0.04490
7 SPATC1 spermatogenesis and centriole associated 1 0.670 0.03000
8 GPR84 G protein-coupled receptor 84 0.669 0.04870
9 KREMEN1 kringle containing transmembrane protein 1 0.620 0.01760
10 CD274 CD274 molecule 0.603 0.01090
11 HP haptoglobin 0.573 0.03270
12 SLC1A3 solute carrier family 1 member 3 0.570 0.04960
13 SLC26A8 solute carrier family 26 member 8 0.563 0.01960
14 LRRN1 leucine rich repeat neuronal 1 0.555 0.01680
15 NSUN7 NOP2/Sun RNA methyltransferase family member

7 0.553 0.02230
16 ETV7 ETS variant 7 0.533 0.02290
17 KCNH7 potassium voltage-gated channel subfamily H mem-

ber 7 0.527 0.03330

18 ST6GALNAC3 ST6 N-acetylgalactosaminide alpha-2,6-
sialyltransferase 3 0.526 0.01750

19 FCGR1B Fc fragment of IgG receptor Ib 0.510 0.02030
20 TRPM6 transient receptor potential cation channel subfamily

M member 6 0.485 0.01180

-1 LGR6 leucine rich repeat containing G protein-coupled
receptor 6 -0.886 0.00123

continues on the next page
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Table D.1 continued
Rank Gene Description LogFC q-value
-2 KRT72 keratin 72 -0.831 0.02210
-3 IGFBP3 insulin like growth factor binding protein 3 -0.810 0.01160
-4 LTK leukocyte receptor tyrosine kinase -0.777 0.00123
-5 SLC4A10 solute carrier family 4 member 10 -0.731 0.01090
-6 NSG1 neuronal vesicle trafficking associated 1 -0.712 0.01180
-7 RORC RAR related orphan receptor C -0.709 0.00229
-8 B3GAT1 beta-1,3-glucuronyltransferase 1 -0.706 0.00527
-9 NR4A1 nuclear receptor subfamily 4 group A member 1 -0.693 0.01740
-10 LGALS9B galectin 9B -0.634 0.04110
-11 DLG5 discs large MAGUK scaffold protein 5 -0.625 0.00123
-12 KRT73 keratin 73 -0.616 0.02080
-13 NEO1 neogenin 1 -0.606 0.00147
-14 DCANP1 dendritic cell associated nuclear protein -0.604 0.01180
-15 BOK BCL2 family apoptosis regulator BOK -0.598 0.01480
-16 CLDND2 claudin domain containing 2 -0.597 0.00431
-17 FXYD7 FXYD domain containing ion transport regulator 7 -0.594 0.01950
-18 FEZ1 fasciculation and elongation protein zeta 1 -0.589 0.00248
-19 B3GALT2 beta-1,3-galactosyltransferase 2 -0.587 0.00660
-20 NMUR1 neuromedin U receptor 1 -0.584 0.00227
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Fig. (D.1) JIA differential pathway expression profiles. Log2 fold changes for differentially
expressed pathways in 10 JIA and one non-JIA study. Columns represent studies, rows represent
pathways from the PDxN pathway set. logFC values not meeting significance threshold p-value
< 0.05 were assigned logFC = 0 (white). Note that logFC values > 2 or < -2 are coloured with
colours for 2 (pink) and -2 (teal), respectively. DEPs — differentially expressed pathways, JIA —
juvenile idiopathic arthritis; logFC — log2 fold change; n/a — not applicable; PBMC — peripheral
blood mononuclear cells; polyJIA — polyarticular JIA; pval — adjusted p-value, q-value; sJIA —
systemic JIA.
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Fig. (D.2) Distribution of expected and observed size of overlap between sJIA differentially
expressed pathways. We investigated the size of overlap from 5 PBMC sJIA studies. The expected
range of intersect size from a random permutation test (number of permutations = 10,000) was
54-113 pathways (expected mean = 82.8), with the observed overlap size of 208 (p-value = 1e-04).
Distribution of expected size of intersect by random permutation in blue. Pink line indicates the
observed intersect size. JIA — juvenile idiopathic arthritis; PBMC — peripheral blood mononuclear
cells; sJIA — systemic JIA.



310 Supplementary material to Chapter 6

Table (D.3) Number of drug signatures prioritised by sJIA disease pathway signatures.
Cluster direction and size refer to direction and number of pathways in the disease signature used
for drug prioritisation. sJIA — systemic juvenile idiopathic arthritis.
Cluster
direction

Cluster
size GSE7753 GSE20307 GSE21521 GSE8650

(GPL96)
GSE8650
(GPL97)

sJIA
overlap

up 5 3584 3467 3584 11150 12663 13263
up 10 4634 4523 5672 12252 14031 14112
up 15 7970 4667 12113 12326 14124 14113
up 20 12761 7151 14035 12477 14170 14542
down 5 3615 4380 2740 2811 2860 3966
down 10 5617 7057 5227 3380 3662 5170
down 15 7321 8150 6889 7114 6879 6613
down 20 8487 8645 9810 8888 7936 8516

Table (D.4) The top 10 drugs prioritised for GSE7753 pathway clusters. Results for top
drugs prioritised based on top 5, 10, 15 and 20 up- and down-regulated pathways. * — drug name
was mapped with KATdb.
Pathway
cluster RankDrug Name Drug ID Batch Cell

Type Dose Pert
time

up 5 1 SERTRALINE HY-
DROCHLORIDE BRD-K82036761 CPC015 MCF7 10.00 24

up 5 2 serdemetan BRD-K60219430 CPC006 HT29 10.00 6
up 5 3 gemcitabine BRD-K15108141 CPC006 VCAP 0.08 6
up 5 4 2-chloro-2-

deoxyadenosine BRD-K93034159 CPC020 MCF7 10.00 6
up 5 5 Clofarabine BRD-A82371568 CPC016 MCF7 10.00 6
up 5 6 cytarabine* BRD-K33106058 CPC011 A549 10.00 6
up 5 7 cytarabine* BRD-K33106058 CPC011 PC3 10.00 6
up 5 8 wortmannin BRD-A75409952 CPC005 HT29 10.00 24
up 5 9 2-chloro-2-

deoxyadenosine BRD-K93034159 CPC010 PC3 10.00 6
up 5 10 MLS002729057* BRD-K78385490 CPC010 PC3 10.00 24
up 10 1 cytarabine* BRD-K33106058 CPC011 A549 10.00 6
up 10 2 cytarabine* BRD-K33106058 CPC011 PC3 10.00 6

up 10 3
4-
Demethoxydaunorubicin
hydrochloride (65)

BRD-A71390734 CPC006 A549 0.08 6

up 10 4 2-chloro-2-
deoxyadenosine BRD-K93034159 CPC010 A375 10.00 6

up 10 5 BML-259 BRD-K71799778 CPC006 MCF7 80.00 6
up 10 6 TW 37 BRD-K28360340 CPC006 HT29 10.00 6
up 10 7 PF 750 BRD-K83213911 CPC006 VCAP 80.00 6
up 10 8 BML-259 BRD-K71799778 CPC006 HCC515 80.00 6

up 10 9
4-
Demethoxydaunorubicin
hydrochloride (65)

BRD-A71390734 CPC006 VCAP 0.08 6

up 10 10 PIK-90 BRD-K99818283 CPC006 MCF7 10.00 24
up 15 1 SUGA1_008424* BRD-K33164466 CPC013 HEPG2 10.00 6
up 15 2 Cytarabine BRD-K33106058 CPC011 PC3 10.00 6
up 15 3 gemcitabine BRD-K15108141 CPC006 SW620 0.08 6
up 15 4 cobaltous chloride* BRD-K90864987 CPC020 HA1E 10.00 6
up 15 5 ALW-II-38-3 BRD-K68191783 CPC013 HEPG2 10.00 6
up 15 6 2541665-P1 BRD-K79382620 CPC006 SW620 11.10 6
up 15 7 FPA1_000240* BRD-K37340241 CPC013 HEPG2 10.00 6
up 15 8 Lylamine hydrochlo-

ride BRD-K62289640 CPC017 A549 10.00 6
up 15 9 10162 BRD-A67438293 CPC012 HA1E 10.00 6
up 15 10 wortmannin BRD-A75409952 CPC007 HT29 10.00 24

continues on the next page
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Table D.4 continued
Pathway
cluster RankDrug Name Drug ID Batch Cell

Type Dose Pert
time

up 20 1 SUGA1_008424* BRD-K33164466 CPC013 HEPG2 10.00 6
up 20 2 gemcitabine BRD-K15108141 CPC006 SW620 0.08 6
up 20 3 S1018 BRD-K85402309 CPC014 HA1E 10.00 6
up 20 4 ALW-II-38-3 BRD-K68191783 CPC013 HEPG2 10.00 6
up 20 5 NVP-BEZ235 BRD-K12184916 CPC006 A673 0.63 6
up 20 6 2541665-P1 BRD-K79382620 CPC006 SW620 11.10 6
up 20 7 cobaltous chloride* BRD-K90864987 CPC020 HA1E 10.00 6
up 20 8 FPA1_000240* BRD-K37340241 CPC013 HEPG2 10.00 6
up 20 9 wortmannin BRD-A75409952 CPC007 HT29 10.00 24
up 20 10 7910663 BRD-K03176945 CPC013 HEPG2 10.00 6
down 5 1 CP466722 BRD-K15592317 LJP005 A375 10.00 24
down 5 2 YM-201636 BRD-K48488978 LJP005 A549 0.37 24
down 5 3 ALW-II-38-3 BRD-K68191783 CPC013 HEPG2 10.00 6
down 5 4 withaferin-a BRD-K88378636 LJP006 PC3 10.00 24
down 5 5 QL-XII-47 BRD-K99252563 LJP006 SKBR3 10.00 3
down 5 6 AZD-7762 BRD-K46056750 LJP006 HT29 3.33 24
down 5 7 gemcitabine BRD-K15108141 CPC006 HA1E 0.08 6
down 5 8 BRL 54443 BRD-K17868609 CPC002 HA1E 10.00 6
down 5 9 GDC-0980 BRD-A18328003 LJP005 MDAMB2311.11 24
down 5 10 Pepstatin A BRD-K13571841 CPC005 A549 10.00 6
down 10 1 DIETHYLSTILBESTROLBRD-K45330754 CPC004 VCAP 10.00 24
down 10 2 GDC-0980 BRD-A18328003 LJP005 MDAMB2311.11 24
down 10 3 H5902 BRD-K15402119 CPC012 VCAP 10.00 24
down 10 4 MK-2206 BRD-K68065987 LJP006 BT20 0.12 3
down 10 5 SPECTRUM_000090* BRD-A80151636 CPC015 MCF7 10.00 6
down 10 6 NCGC00182371-01 BRD-K44366801 CPC008 PC3 10.00 6
down 10 7 SPB02303 BRD-K99532291 CPC012 PC3 10.00 6
down 10 8 geldanamycin BRD-A19500257 CPD001 MCF7 10.00 6
down 10 9 N-Benzylnaltrindole

hydrochloride BRD-A06276885 CPC016 HT29 10.00 6
down 10 10 amlodipine base BRD-A64297288 CPC011 VCAP 10.00 6
down 15 1 H5902 BRD-K15402119 CPC012 VCAP 10.00 24
down 15 2 DIETHYLSTILBESTROLBRD-K45330754 CPC004 VCAP 10.00 24
down 15 3 GDC-0980 BRD-A18328003 LJP005 MDAMB2311.11 24
down 15 4 MK-2206 BRD-K68065987 LJP006 BT20 0.12 3
down 15 5 SPECTRUM_000090* BRD-A80151636 CPC015 MCF7 10.00 6
down 15 6 amlodipine base BRD-A64297288 CPC011 VCAP 10.00 6
down 15 7 SPB02303 BRD-K99532291 CPC012 PC3 10.00 6
down 15 8 geldanamycin BRD-A19500257 CPD001 MCF7 10.00 6
down 15 9 NCGC00182371-01 BRD-K44366801 CPC008 PC3 10.00 6
down 15 10 NP-004527 BRD-K97951054 CPC012 VCAP 10.00 24
down 20 1 GDC-0980 BRD-A18328003 LJP005 MDAMB2311.11 24
down 20 2 H5902 BRD-K15402119 CPC012 VCAP 10.00 24
down 20 3 DIETHYLSTILBESTROLBRD-K45330754 CPC004 VCAP 10.00 24
down 20 4 MK-2206 BRD-K68065987 LJP006 BT20 0.12 3
down 20 5 SPECTRUM_000090* BRD-A80151636 CPC015 MCF7 10.00 6
down 20 6 amlodipine base BRD-A64297288 CPC011 VCAP 10.00 6
down 20 7 SPB02303 BRD-K99532291 CPC012 PC3 10.00 6
down 20 8 geldanamycin BRD-A19500257 CPD001 MCF7 10.00 6
down 20 9 Doconexent* BRD-K39965020 CPC018 A375 10.00 6
down 20 10 Compound 58 BRD-K80672993 CPC009 VCAP 10.00 24
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Table (D.5) List of approved drugs for JIA. EMA and FDA approved list of drugs for treatment
of JIA. Each drug can be present in multiple disease signatures under different experimental
conditions (various combinations of drug id, concentration, cell line, perturbation time, and batch).
One drug name can be mapped to many BRD IDs. Drug synonyms can be mapped to one BRD ID.
Mapping from drug name to BRD ID was done with the KATdb app. BRD ID — Broad ID; EMA
— European Medicines Agency; FDA — the US Food and Drug Administration; JIA — juvenile
idiopathic arthritis

Drug name BRD ID Number of signatures
nordimet BRD-K59456551 4
methotrexate BRD-K59456551 4
jylamvo BRD-K59456551 4
nordimet BRD-A55424491 1
methotrexate BRD-A55424491 1
jylamvo BRD-A55424491 1
matever BRD-K49404994 n/a
levetiracetam BRD-K49404994 n/a
keppra BRD-K49404994 n/a
stiripentol BRD-A72441487 n/a
diacomit BRD-A72441487 n/a
tocilizumab n/a n/a
simponi n/a n/a
roactemra n/a n/a
orencia n/a n/a
matever n/a n/a
lifmior n/a n/a
levetiracetam teva n/a n/a
levetiracetam sun n/a n/a
levetiracetam ratiopharm n/a n/a
levetiracetam hospira n/a n/a
levetiracetam actavis group n/a n/a
levetiracetam actavis n/a n/a
levetiracetam accord n/a n/a
kromeya n/a n/a
imraldi n/a n/a
ilaris n/a n/a
idacio n/a n/a
hyrimoz n/a n/a
humira n/a n/a
hefiya n/a n/a
halimatoz n/a n/a
golimumab n/a n/a
golimumab n/a n/a
etanercept n/a n/a
erelzi n/a n/a
enbrel n/a n/a
enbrel n/a n/a
canakinumab n/a n/a
benepali n/a n/a
amgevita n/a n/a
adalimumab n/a n/a
abatacept n/a n/a
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Table (D.6) List of approved drugs for JIA and rheumatoid arthritis. EMA and FDA ap-
proved list of drugs for treatment of JIA or rheumatoid arthritis. Each drug can be present in
multiple disease signatures under different experimental conditions (various combinations of drug
id, concentration, cell line, perturbation time, and batch). One drug name can be mapped to many
BRD IDs. Drug synonyms can be mapped to one BRD ID. Mapping from drug name to BRD ID
was done with the KATdb app. BRD ID — Broad ID; EMA — European Medicines Agency; FDA
— the US Food and Drug Administration; JIA — juvenile idiopathic arthritis.
Drug name BRD ID Number of signatures
auranofin BRD-A79465854 31
cyclosporine BRD-A38030642 30
cyclosporine BRD-A69815203 14
cyclosporine BRD-K80970344 9
cyclosporine BRD-K13533483 9
dexamethasone BRD-A35108200 7
betamethasone BRD-A35108200 7
dexamethasone BRD-A69951442 6
azathioprine BRD-K32821942 5
prednisolone BRD-A27887842 5
betamethasone BRD-A02180903 5
nordimet BRD-K59456551 4
methotrexate BRD-K59456551 4
jylamvo BRD-K59456551 4
dexamethasone BRD-K38775274 4
meloxicam BRD-A84174393 4
etodolac BRD-A16998493 4
dexamethasone BRD-A10188456 4
triamcinolone BRD-K77554836 3
betamethasone BRD-K39188321 3
diclofenac BRD-K08252256 3
piroxicam BRD-A57382968 3
triamcinolone BRD-A37780065 3
leflunomide BRD-K78692225 2
arava BRD-K78692225 2
cortisone acetate BRD-K43736954 2
methylprednisolone BRD-K35240538 2
diflunisal BRD-K22031190 2
celecoxib BRD-K02637541 2
hydrocortisone BRD-A75172220 2
hydrocortisone BRD-A23290232 2
hydrocortisone BRD-K93568044 1
cimzia BRD-K88358234 1
certolizumab pegol BRD-K88358234 1
cortisone acetate BRD-K86161929 1
hydrocortisone BRD-K73978287 1
nabumetone BRD-K65146499 1
indomethacin BRD-K57222227 1
hydrocortisone BRD-K53342282 1
oxaprozin BRD-K25394294 1
ketoprofen BRD-A97739905 1
naproxen BRD-A87719232 1
etodolac BRD-A74667430 1
tiaprofenic acid BRD-A72988804 1
nordimet BRD-A55424491 1
methotrexate BRD-A55424491 1
jylamvo BRD-A55424491 1
fenoprofen BRD-M61246020 n/a
prednisolone BRD-K98039984 n/a
salicylic acid BRD-K93632104 n/a

continues on the next page
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Table D.6 continued
Drug name BRD ID Number of signatures
prednisone BRD-K85883481 n/a
prednisone BRD-K82624463 n/a
tolmetin BRD-K82562631 n/a
prednisolone BRD-K70504303 n/a
naproxen BRD-K59197931 n/a
penicillamine BRD-K58676198 n/a
olumiant BRD-K53581288 n/a
baricitinib BRD-K53581288 n/a
meclofenamic acid BRD-K50398167 n/a
matever BRD-K49404994 n/a
levetiracetam BRD-K49404994 n/a
keppra BRD-K49404994 n/a
salsalate BRD-K48892307 n/a
auranofin BRD-K45995181 n/a
xeljanz BRD-K31283835 n/a
tofacitinib BRD-K31283835 n/a
triamcinolone BRD-K23714869 n/a
dexibuprofen BRD-K14965640 n/a
meclofenamic acid BRD-K13296708 n/a
hydrocortisone BRD-K11612998 n/a
acetylsalicylic acid BRD-K11433652 n/a
sulfasalazine BRD-K10670311 n/a
acetylsalicylic acid BRD-K07753030 n/a
betamethasone BRD-K00835182 n/a
hydroxychloroquine BRD-A99117172 n/a
chloroquine BRD-A91699651 n/a
flurbiprofen BRD-A86044036 n/a
fenoprofen BRD-A81129465 n/a
stiripentol BRD-A72441487 n/a
diacomit BRD-A72441487 n/a
dexamethasone BRD-A69951442-001-01-3 n/a
prednisone BRD-A62525898 n/a
cortisone acetate BRD-A54487287 n/a
loxoprofen BRD-A43082555 n/a
teriflunomide BRD-A42699921 n/a
ibuprofen BRD-A17655518 n/a
sulindac BRD-A13946108 n/a
sulindac BRD-A03427350 n/a
zessly n/a n/a
truxima n/a n/a
tocilizumab n/a n/a
sodium aurothiomalate n/a n/a
simponi n/a n/a
sarilumab n/a n/a
sarilumab n/a n/a
roactemra n/a n/a
riximyo n/a n/a
rixathon n/a n/a
rituximab n/a n/a
remsima n/a n/a
remicade n/a n/a
orencia n/a n/a
matever n/a n/a
magnesium salicylate n/a n/a
mabthera n/a n/a
lithium n/a n/a
lithium n/a n/a
lifmior n/a n/a

continues on the next page
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Table D.6 continued
Drug name BRD ID Number of signatures
levetiracetam teva n/a n/a
levetiracetam sun n/a n/a
levetiracetam ratiopharm n/a n/a
levetiracetam hospira n/a n/a
levetiracetam actavis group n/a n/a
levetiracetam actavis n/a n/a
levetiracetam accord n/a n/a
leflunomide zentiva (previ-
ously leflunomide winthrop) n/a n/a
leflunomide ratiopharm n/a n/a
leflunomide medac n/a n/a
kromeya n/a n/a
kineret n/a n/a
kevzara n/a n/a
infliximab n/a n/a
inflectra n/a n/a
imraldi n/a n/a
ilaris n/a n/a
idacio n/a n/a
hyrimoz n/a n/a
humira n/a n/a
hulio n/a n/a
hefiya n/a n/a
halimatoz n/a n/a
golimumab n/a n/a
golimumab n/a n/a
flixabi n/a n/a
etanercept n/a n/a
erelzi n/a n/a
enbrel n/a n/a
enbrel n/a n/a
certolizumab pegol n/a n/a
canakinumab n/a n/a
benepali n/a n/a
anakinra n/a n/a
amgevita n/a n/a
adalimumab n/a n/a
abatacept n/a n/a

Table (D.7) List of drugs in ATC class M01: Anti-inflammatory and antirheumatic prod-
ucts. Each drug can be present in multiple disease signatures under different experimental condi-
tions (various combinations of drug id, concentration, cell line, perturbation time, and batch). One
drug name can be mapped to many BRD IDs. Drug synonyms can be mapped to one BRD ID. ATC
code can be mapped to BRD ID without also being mapped to the drug name. Only ATC codes
that were mapped to a BRD ID are listed. Mapping from drug name to BRD ID was done with the
KATdb app. ATC — Anatomical Therapeutic Chemical; BRD ID — Broad ID.

ATC code Drug name BRD ID Number of
signatures

M01CB03 auranofin BRD-A79465854 31
M01AH03 valdecoxib BRD-K12994359 21
M01AG03 n/a BRD-K44067360 4
M01AC06 meloxicam BRD-A84174393 4
M01AB15 ketorolac BRD-A40639672 4
M01AB08 etodolac BRD-A16998493 4

continues on the next page
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Table D.7 continued

ATC code Drug name BRD ID Number of
signatures

M01AB05 diclofenac BRD-K08252256 3
M01AC01 piroxicam BRD-A57382968 3
M01AE17 n/a BRD-K43764301 2
M01AH01 celecoxib BRD-K02637541 2
M01AX01 nabumetone BRD-K65146499 1
M01AB01 indometacin BRD-K57222227 1
M01AE12 oxaprozin BRD-K25394294 1
M01AH02 rofecoxib BRD-K21733600 1
M01AB10 n/a BRD-K16077845 1
M01AE05 n/a BRD-K12513978 1
M01AE03 ketoprofen BRD-A97739905 1
M01AE56 naproxen and misoprostol BRD-A87719232 1
M01AE52 naproxen and esomeprazole BRD-A87719232 1
M01AE02 naproxen BRD-A87719232 1
M01AB08 etodolac BRD-A74667430 1
M01AE11 n/a BRD-A72988804 1
M01AE04 fenoprofen BRD-M61246020 n/a
M01AX02 niflumic acid BRD-K98763141 n/a
M01AG01 mefenamic acid BRD-K92778217 n/a
M01AB03 tolmetin BRD-K82562631 n/a
M01AX17 nimesulide BRD-K76775527 n/a
M01AX07 n/a BRD-K76133116 n/a
M01AX21 n/a BRD-K69122748 n/a
M01AB16 n/a BRD-K68538666 n/a
M01AB11 n/a BRD-K67563174 n/a
M01AE56 naproxen and misoprostol BRD-K59197931 n/a
M01AE52 naproxen and esomeprazole BRD-K59197931 n/a
M01AE02 naproxen BRD-K59197931 n/a
M01AH05 etoricoxib BRD-K54770957 n/a
M01AG04 M02AA18 rimonabant BRD-K50398167 n/a
M01AG04 meclofenamic acid BRD-K50398167 n/a
M01AG02 n/a BRD-K50133271 n/a
M01CB03 auranofin BRD-K45995181 n/a
M01AB17 n/a BRD-K36660044 n/a
M01AX07 n/a BRD-K28542495 n/a
M01AE14 dexibuprofen BRD-K14965640 n/a
M01AE Propionic acid derivatives BRD-K14965640 n/a
M01AH03 valdecoxib BRD-K13800121 n/a
M01BA03 acetylsalicylic acid and corticos-

teroids BRD-K11433652 n/a
M01AA01 phenylbutazone BRD-K10843433 n/a
M01AE09 flurbiprofen BRD-A86044036 n/a
M01AX04 n/a BRD-A70182876 n/a
M01AE10 n/a BRD-A44090213 n/a
M01AE07 suprofen BRD-A34006693 n/a
M01AA03 oxyphenbutazone BRD-A33749298 n/a
M01AC02 tenoxicam BRD-A22844106 n/a
M01AE01 ibuprofen BRD-A17655518 n/a
M01AB02 sulindac BRD-A13946108 n/a
M01AB02 sulindac BRD-A03427350 n/a
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Table (D.8) List of drugs in ATC class L04A: Immunosuppressants. Each drug can be
present in multiple disease signatures under different experimental conditions (various combinations
of drug id, concentration, cell line, perturbation time, and batch). One drug name can be mapped to
many BRD IDs. Drug synonyms can be mapped to one BRD ID. ATC code can be mapped to BRD
ID without also being mapped to the drug name. Mapping from drug name to BRD ID was done
with the KATdb app. ATC — Anatomical Therapeutic Chemical; BRD ID — Broad ID.

ATC code Drug name BRD ID Number of signatures
L04AD01 ciclosporin BRD-A38030642 30
L04AA40 n/a BRD-K93034159 15
L04AA18 everolimus BRD-K13514097 15
L04AD01 ciclosporin BRD-A69815203 14
L04AD01 ciclosporin BRD-K80970344 9
L04AD01 ciclosporin BRD-K13533483 9
L04AA06 mycophenolic acid BRD-K92428153 6
L04AA10 sirolimus BRD-K84937637 6
L04AX02 thalidomide BRD-A93255169 6
L04AX01 azathioprine BRD-K32821942 5
L04AX03 methotrexate BRD-K59456551 4
L04AD02 tacrolimus BRD-K69608737 3
L04AA13 leflunomide BRD-K78692225 2
L04AD02 tacrolimus BRD-K44094599 2
L04AX04 lenalidomide BRD-A17883755 2
L04AB05 n/a BRD-K88358234 1
L04AX03 methotrexate BRD-A55424491 1
L04AX05 n/a BRD-K96862998 n/a
L04AA29 n/a BRD-K31283835 n/a
L04AX04 lenalidomide BRD-K05926469 n/a

Table (D.9) Number of drug signatures in PDxN (q-value < 0.05) per cell type with cell
annotations. PDxN — Pathway Drug Coexpression Network.

Cell ID
Number
of signa-
tures

Tissue extraction site Tissue type

A375 2048 skin malignant melanoma
A549 1902 lung non-small cell lung carcinoma
A673 96 bone/soft tissue around bone Ewing sarcoma
AGS 82 stomach gastric adenocarcinoma
ASC 315 adipose adipose-derived mesenchymal stem cell
BT20 593 breast invasive ductal carcinoma
CL34 31 colon colon adenocarcinoma
CORL23 9 lung/pleural effusion large cell lung carcinoma
COV644 18 ovary ovarian carcinoma
DV90 25 lung/pleural effusion lung adenocarcinoma
EFO27 55 omentum ovarian mucinous adenocarcinoma
H1299 31 lymph node large cell lung carcinoma
HA1E 2109 embryonic kidney kidney epithelial immortalized
HCC15 47 lung squamous cell lung carcinoma
HCC515 1774 lung non-small cell lung adenocarcinoma
HCT116 74 colon colon carcinoma
HEC108 44 uterus Endometrial adenocarcinoma
HEPG2 1348 liver hepatocellular carcinoma cell line,

shown to be hepatoblastoma
HME1 394 breast breast mammary immortalized
HS578T 603 breast invasive ductal carcinoma
HT115 58 colon colon carcinoma
HT29 1634 colon/large intestine colorectal adenocarci-

noma/rectosigmoid adenocarcinoma
continues on the next page
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Table D.9 continued

Cell ID
Number
of signa-
tures

Tissue extraction site Tissue type

JHUEM2 17 uterus endometrial adenocarcinoma
LNCAP 250 prostate/left supraclavicular

lymph node prostate carcinoma

LOVO 81 colon/left supraclavicular
lymph node colon adenocarcinoma

MCF10A 556 breast breast adenocarcinoma, immortalised
line

MCF7 3177 breast breast adenocarcinoma, invasive ductal
carcinoma

MDAMB231 491 breast/pleural effusion triple negative breast adenocarcinoma
MDST8 101 colon colon carcinoma
NCIH1694 27 lung/ascites small cell lung carcinoma
NCIH1836 29 lung small cell lung carcinoma
NCIH2073 78 lung lung adenocarcinoma
NCIH508 14 cecum/abdominal wall cecum adenocarcinoma
NCIH596 73 lung adenosquamous lung carcinoma
NEU 42 neuron neuron cells primary terminally differen-

tiated in-plate from NPC
NOMO1 19 blood adult acute monocytic leukaemia
NPC 280 neuron primary human iPS-derived neural pro-

genitor cell line
OV7 34 ovary ovarian carcinoma
PC3 2605 prostate prostate adenocarcinoma
PHH 100 liver primary human hepatocyte cells co-

cultured with 3T3J2 mouse fibroblasts
PL21 102 blood acute myeloid leukaemia
RKO 37 colon colon carcinoma
RMGI 38 ovary/ascites ovarian clear cell adenocarcinoma
RMUGS 73 ovary ovarian mucinous cystadenocarcinoma
SKB 295 n/a skeletal myoblast cells
SKBR3 583 breast breast adenocarcinoma
SKLU1 60 lung lung adenocarcinoma
SKM1 89 blood adult acute myeloid leukaemia
SKMEL1 24 skin/thoracic lymph duct melanoma
SKMEL28 58 skin cutaneous melanoma
SNGM 50 uterus/obturator lymph node endometrial adenocarcinoma
SNU1040 1 colon colon adenocarcinoma
SNUC4 35 colon colon adenocarcinoma
SNUC5 8 cecum cecum adenocarcinoma
SW480 30 colon colon adenocarcinoma
SW620 168 colon/lymph node colon adenocarcinoma
SW948 136 colon colon adenocarcinoma
T3M10 13 lung large cell lung carcinoma
THP1 112 blood acute monocytic leukaemia
TYKNU 17 ovary high grade ovarian serous adenocarci-

noma
U937 107 blood adult acute monocytic leukaemia
VCAP 2131 prostate/vertebra metastatic prostate cancer
WSUDLCL2 79 blood diffuse large B-cell lymphoma
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Table (E.1) Number of drug signatures prioritised by neurodegenerative disease pathway
signatures. Cluster direction and size refer to direction and number of pathways in the disease
signature used for drug prioritisation. Lyso dysfun — lysosomal dysfunction; Mito dysfun —
mitochondrial dysfunction.
Cluster
direction

Cluster
size A5 H10 I47F I45F Mayo Lyso

dysfun
Mito
dysfun GCH1

up 5 8325 1620 4209 209 5660 6609 10139 1186
up 10 8678 3881 4330 822 11042 6644 10277 1958
up 15 9216 4080 4727 2794 11746 7638 12870 7980
up 20 11612 5699 12419 3175 15546 8987 12981 8950
down 5 4065 1554 2027 2271 710 3768 2872 4740
down 10 5012 6702 2233 5198 2281 4530 4437 4778
down 15 6938 7204 4493 7977 2937 5712 7133 5260
down 20 7364 10831 9815 8122 3174 10087 7348 6092
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Table (E.2) The top 10 drugs prioritised for A5 3D cell model pathway clusters. Results for
top drugs prioritised based on top 10 and 20 up- and down-regulated pathways. * — drug name
was mapped with KATdb.
Pathway
cluster RankDrug Name Drug ID Batch Cell

Type Dose Pert
time

up 10 1 BI 2536 BRD-K64890080 CPC006 SKM1 10.0 6
up 10 2 CARBAMAZEPINE BRD-K71799949 CPC004 VCAP 10.0 6
up 10 3 TG101348 BRD-K12502280 CPC006 SKM1 11.1 6
up 10 4 torin-1 BRD-K40175214 CPC014 HEPG2 10.0 6
up 10 5 TG101348 BRD-K12502280 CPC006 U937 11.1 6
up 10 6 KU 0060648 trihy-

drochloride BRD-K09499853 CPC006WSUDLCL210.0 6
up 10 7 ISOLIQUIRITIGENIN BRD-K33583600 CPC006 THP1 10.0 6
up 10 8 CAM-9-027-3 BRD-K45399554 CPC006 LOVO 10.0 6
up 10 9 S1042 BRD-M64432851 CPC014 VCAP 10.0 6
up 10 10 L-sulforophane BRD-A58955223 CPC006 THP1 10.0 6
up 20 1 S-8599 BRD-K49810818 CPC013 A549 10.0 24
up 20 2 2-chloro-2-

deoxyadenosine BRD-K93034159 CPC010 MCF7 10.0 24
up 20 3 VU0410183-2 BRD-K74710236 CPC008 PC3 10.0 24
up 20 4 evista BRD-K63828191 CPC020 MCF7 10.0 24
up 20 5 Hinokitiol BRD-K37691127 CPC003 PC3 10.0 24
up 20 6 QL-X-138* BRD-U33728988 CPC014 MCF7 10.0 24
up 20 7 AS-601245 BRD-A60245366 CPC014 MCF7 10.0 6
up 20 8 GR-103 BRD-K89085489 CPC014 PC3 10.0 24
up 20 9 BRD-K04695623* BRD-K04695623 CPC019 PC3 10.0 24
up 20 10 Nutlin-3 BRD-A12230535 CPC006 HT29 44.4 24
down 10 1 H5902 BRD-K15402119 CPC012 VCAP 10.0 24
down 10 2 DIETHYLSTILBESTROLBRD-K45330754 CPC004 VCAP 10.0 24
down 10 3 SPECTRUM_000090* BRD-A80151636 CPC015 MCF7 10.0 6
down 10 4 MLS002607805* BRD-A42737819 CPC009 VCAP 10.0 24
down 10 5 SCHEMBL2560033* BRD-K17739445 CPC009 VCAP 10.0 24
down 10 6 SPB02303 BRD-K99532291 CPC012 PC3 10.0 6
down 10 7 geldanamycin BRD-A19500257 CPD001 MCF7 10.0 6
down 10 8 OXIBENDAZOLE BRD-K52075715 CPC004 VCAP 10.0 24
down 10 9 Triazolothiadiazine,

28* BRD-K96704648 CPC009 A549 10.0 6
down 10 10 amlodipine base BRD-A64297288 CPC011 VCAP 10.0 6
down 20 1 H5902 BRD-K15402119 CPC012 VCAP 10.0 24
down 20 2 DIETHYLSTILBESTROLBRD-K45330754 CPC004 VCAP 10.0 24
down 20 3 SPECTRUM_000090* BRD-A80151636 CPC015 MCF7 10.0 6

down 20 4
3,5-dichloro-
2-hydroxy-N-
(2-methoxy-5-
phenylphenyl)benzenesulfonamide

BRD-K43620258 CPC006 THP1 80.0 6

down 20 5 SPB02303 BRD-K99532291 CPC012 PC3 10.0 6
down 20 6 geldanamycin BRD-A19500257 CPD001 MCF7 10.0 6
down 20 7 Daunorubicin hy-

drochloride BRD-A68009927 CPC015 A375 10.0 6
down 20 8 amlodipine base BRD-A64297288 CPC011 VCAP 10.0 6
down 20 9 Methapyrilene hy-

drochloride BRD-K47323024 CPD001 MCF7 10.0 6
down 20 10 SCHEMBL2560033* BRD-K17739445 CPC009 VCAP 10.0 24
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Table (E.3) The top 10 drugs prioritised for AD Mayo dataset pathway clusters. Results
for top drugs prioritised based on top 10 and 20 up- and down-regulated pathways. * — drug name
was mapped with KATdb.
Pathway
cluster RankDrug Name Drug ID Batch Cell

Type Dose Pert
time

up 10 1 MLS002264465* BRD-K42499654 CPC009 MCF7 10.00 6
up 10 2 L-6307 BRD-K23192422 CPC014 SKB 10.00 24
up 10 3 FCCP BRD-K14821540 CPC017 HEPG2 10.00 6
up 10 4 LUPANINE PER-

CHLORATE BRD-A92826379 CPC004 VCAP 10.00 24
up 10 5 nadolol BRD-A87606379 CPC020 A549 10.00 6
up 10 6 Proscillaridin A BRD-A34806832 CPC015 ASC 10.00 24
up 10 7 NP-004102 BRD-A14178283 CPC013 SKB 10.00 24
up 10 8 penfluridol BRD-K15409150 CPC006 H1299 30.00 6
up 10 9 NCGC00183401-01 BRD-K95080525 CPC007 HA1E 10.00 6
up 10 10 BAS 02002358* BRD-A83255679 CPC006 HA1E 20.00 6
up 20 1 PENFLURIDOL BRD-K15409150 CPC015 A549 10.00 24
up 20 2 JNK-9L BRD-K19220233 CPC014 A549 10.00 6
up 20 3 GBR 13069 dihy-

drochloride BRD-K11634954 CPC001 HA1E 10.00 24
up 20 4 JAK3 Inhibitor II BRD-K52850071 CPC017 A549 10.00 24
up 20 5 PROMAZINE HY-

DROCHLORIDE BRD-K06980535 CPC006 HA1E 10.00 24

up 20 6 Mibefradil dihy-
drochloride BRD-K09549677 CPC001 VCAP 10.00 24

up 20 7 BAS 02002358* BRD-A83255679 CPC006 HA1E 20.00 6
up 20 8 dibenzyline BRD-A67799922 CPC020 A549 10.00 6
up 20 9 MLS002264403* BRD-A75301702 CPC009 VCAP 10.00 6
up 20 10 CHEMBL2135524* BRD-K98834634 CPC019 VCAP 10.00 6
down 10 1 GSK-461364 BRD-K92428232 LJP008 HT29 0.12 24

down 10 2
Hoechst 33342 (cell
permeable) (BisBenz-
imide)

BRD-K08554278 CPC003 HA1E 10.00 6

down 10 3 NCGC00241726-01 BRD-K05979026 CPC008 A549 10.00 6
down 10 4 NCGC00182609-01 BRD-K95858622 CPC008 A549 10.00 6

down 10 5
"3-cyclohexyl-6-4-[3-
(trifluoromethyl)phenyl]piperazin-
1-ylpyrimidine-
2,4(1H,3H)-dione"

BRD-K77547509 CPC008 HEPG2 10.00 6

down 10 6 MLS003530001* BRD-K05549170 CPC008 A549 10.00 6
down 10 7 528116.cdx BRD-K49371609 CPC006 VCAP 0.09 6

down 10 8

"4-[(1-methyl-2-oxo-
1,2-dihydroquinolin-
4-yl)oxy]-N-(4-
methylpyridin-2-
yl)butanamide"

BRD-K84203638 CPC007 A549 10.00 6

down 10 9 AG14361 BRD-K00615600 CPC006 HT29 25.00 6
down 10 10 cercosporin BRD-A78360835 CPC005 HT29 10.00 24
down 20 1 GSK-461364 BRD-K92428232 LJP008 HT29 0.12 24
down 20 2 MGCD-265 BRD-K56277358 LJP009 A549 10.00 24
down 20 3 mitoxantrone BRD-K21680192 LJP006 HCC515 1.11 24
down 20 4 YM-155 BRD-K76703230 CPC006 PC3 0.31 24
down 20 5 NCGC00241077-01 BRD-A31946439 CPC008 A375 10.00 6
down 20 6 SCHEMBL15444220* BRD-K83336168 CPC013 MCF7 10.00 24
down 20 7 MLS003329219* BRD-K26304855 CPC009 HCC515 10.00 6
down 20 8 gefitinib BRD-K64052750 LJP006 MCF10A 1.11 3
down 20 9 auranofin BRD-A79465854 CPC006 A375 10.00 6
down 20 10 prucalopride* BRD-A36630025 CPC006 SKM1 0.35 6
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Table (E.4) List of approved drugs for AD. EMA and FDA approved list of drugs for treatment
of AD. Each drug can be present in multiple disease signatures under different experimental
conditions (various combinations of drug id, concentration, cell line, perturbation time, and batch).
One drug name can be mapped to many BRD IDs. Drug synonyms can be mapped to one BRD ID.
Mapping from drug name to BRD ID was done with the KATdb app. AD — Alzheimer’s disease;
BRD ID — Broad ID; EMA — European Medicines Agency; FDA — the US Food and Drug
Administration.

Drug name BRD ID Number of signatures
donepezil BRD-A49160188 3
nemdatine BRD-A79803969 2
memantine hydrochloride BRD-A79803969 2
memantine BRD-A79803969 2
ebixa BRD-A79803969 2
axura BRD-A79803969 2
nemdatine BRD-K91938660 n/a
memantine hydrochloride BRD-K91938660 n/a
memantine BRD-K91938660 n/a
ebixa BRD-K91938660 n/a
axura BRD-K91938660 n/a
galantamine BRD-K49481516 n/a
rivastigmine BRD-K10706131 n/a
prometax BRD-K10706131 n/a
nimvastid BRD-K10706131 n/a
exelon BRD-K10706131 n/a
vizamyl n/a n/a
rivastigmine sandoz n/a n/a
rivastigmine hexal n/a n/a
rivastigmine actavis n/a n/a
rivastigmine 1 a pharma n/a n/a
prometax n/a n/a
nimvastid n/a n/a
neuraceq n/a n/a
nemdatine n/a n/a
memantine ratiopharm n/a n/a
memantine mylan n/a n/a
memantine merz n/a n/a
memantine lek n/a n/a
memantine hydrochloride n/a n/a
memantine accord n/a n/a
memantine n/a n/a
marixino (previously maruxa) n/a n/a
ioflupane (123l) n/a n/a
flutemetamol (18f) n/a n/a
florbetapir (18f) n/a n/a
florbetaben (18f) n/a n/a
ebixa n/a n/a
datscan n/a n/a
amyvid n/a n/a
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Table (E.5) The top 10 drugs prioritised for sporadic Parkinson’s disease lysosomal dys-
function pathway clusters. Results for top drugs prioritised based on top 10 and 20 up- and
down-regulated pathways. * — drug name was mapped with KATdb.
Pathway
cluster RankDrug Name Drug ID Batch Cell

Type Dose Pert
time

up 10 1 HYDROQUINIDINE BRD-A06390036 CPC015 A375 10.00 6
up 10 2 CGP-60474 BRD-K79090631 LJP006 LNCAP 1.11 3
up 10 3 EI-346 BRD-U08759356 CPC014 SKB 10.00 24
up 10 4 HY-11001 BRD-K64800655 CPC014 SKB 10.00 24
up 10 5 5284616 BRD-K89626439 CPC012 MCF7 10.00 6
up 10 6 MENADIONE BRD-K78126613 CPC006 PC3 10.00 24
up 10 7 BRD-K60067222* BRD-K60067222 CPC019 PC3 10.00 6
up 10 8 U 18666A BRD-A81795050 CPC016 SKB 10.00 24
up 10 9 1-benzylimidazole BRD-K32795028 CPC010 VCAP 10.00 6
up 10 10 Metergoline BRD-A30435184 CPC005 MCF7 10.00 6
up 20 1 cephaeline* BRD-K80348542 CPC002 HA1E 10.00 24
up 20 2 Homoharringtonine BRD-K76674262 CPC001 HA1E 10.00 24
up 20 3 EMETINE BRD-A25687296 CPC004 HA1E 10.00 24
up 20 4 HYDROQUINIDINE BRD-A06390036 CPC015 A375 10.00 6
up 20 5 CGP-60474 BRD-K79090631 LJP006 LNCAP 1.11 3
up 20 6 HY-11001 BRD-K64800655 CPC014 SKB 10.00 24
up 20 7 5284616 BRD-K89626439 CPC012 MCF7 10.00 6
up 20 8 MENADIONE BRD-K78126613 CPC006 PC3 10.00 24
up 20 9 BRD-K60067222* BRD-K60067222 CPC019 PC3 10.00 6
up 20 10 U 18666A BRD-A81795050 CPC016 SKB 10.00 24
down 10 1 DIETHYLSTILBESTROLBRD-K45330754 CPC004 VCAP 10.00 24
down 10 2 H5902 BRD-K15402119 CPC012 VCAP 10.00 24
down 10 3 SPECTRUM_000090* BRD-A80151636 CPC015 MCF7 10.00 6
down 10 4 geldanamycin BRD-A19500257 CPD001 MCF7 10.00 6
down 10 5 SPB02303 BRD-K99532291 CPC012 PC3 10.00 6
down 10 6 Doconexent* BRD-K39965020 CPC018 A375 10.00 6
down 10 7 amlodipine base BRD-A64297288 CPC011 VCAP 10.00 6
down 10 8 Triazolothiadiazine,

28* BRD-K96704648 CPC009 A549 10.00 6
down 10 9 Akt inhibitor X BRD-K70792160 CPC006 HCC515 24.00 6
down 10 10 NP-004527 BRD-K97951054 CPC012 VCAP 10.00 24
down 20 1 H5902 BRD-K15402119 CPC012 VCAP 10.00 24
down 20 2 DIETHYLSTILBESTROLBRD-K45330754 CPC004 VCAP 10.00 24
down 20 3 SPECTRUM_000090* BRD-A80151636 CPC015 MCF7 10.00 6
down 20 4 trichostatin A BRD-A19037878 CPC015 MCF7 10.00 6
down 20 5 amlodipine base BRD-A64297288 CPC011 VCAP 10.00 6
down 20 6 SPB02303 BRD-K99532291 CPC012 PC3 10.00 6
down 20 7 ST019366 BRD-A38275906 CPC013 SKB 10.00 24
down 20 8 vorinostat BRD-K81418486 CPC006 RMGI 11.10 6
down 20 9 geldanamycin BRD-A19500257 CPD001 MCF7 10.00 6
down 20 10 8-[2-oxo-2-(1-

pyrrolidinyl)ethyl]thioquinolineBRD-K36772364 CPC010 HCC515 10.00 6
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Table (E.6) List of approved drugs for PD. EMA and FDA approved list of drugs for treatment
of PD. Each drug can be present in multiple disease signatures under different experimental
conditions (various combinations of drug id, concentration, cell line, perturbation time, and batch).
One drug name can be mapped to many BRD IDs. Drug synonyms can be mapped to one BRD ID.
Mapping from drug name to BRD ID was done with the KATdb app. BRD ID — Broad ID; EMA
— European Medicines Agency; FDA — the US Food and Drug Administration; PD — Parkinson’s
disease.
Drug name BRD ID Number of signatures
carbidopa BRD-A69512159 4
metixene BRD-A33711280 2
selegiline BRD-K86434416 1
carbidopa BRD-K78712176 1
ropinirole BRD-K15933101 1
procyclidine BRD-A31800922 1
biperiden BRD-A00546892 1
entacapone BRD-K92977333 n/a
comtess BRD-K92977333 n/a
comtan BRD-K92977333 n/a
xadago BRD-K92613113 n/a
safinamide BRD-K92613113 n/a
rotigotine BRD-K91111634 n/a
neupro BRD-K91111634 n/a
leganto BRD-K91111634 n/a
entacapone BRD-K83636919 n/a
comtess BRD-K83636919 n/a
comtan BRD-K83636919 n/a
apomorphine BRD-K76022557 n/a
amantadine BRD-K70330367 n/a
benzatropine BRD-K68804560 n/a
pergolide BRD-K60770992 n/a
rasagiline BRD-K58114536 n/a
azilect BRD-K58114536 n/a
dopamine BRD-K43887077 n/a
stalevo BRD-K34730807 n/a
levodopa / carbidopa / entacapone BRD-K34730807 n/a
levodopa BRD-K34730807 n/a
corbilta (previously lev-
odopa/carbidopa/entacapone
sandoz)

BRD-K34730807 n/a

bromocriptine BRD-K14496212 n/a
tolcapone BRD-K10852020 n/a
tasmar BRD-K10852020 n/a
rivastigmine BRD-K10706131 n/a
prometax BRD-K10706131 n/a
nimvastid BRD-K10706131 n/a
exelon BRD-K10706131 n/a
pramipexole BRD-K06388322 n/a
oprymea BRD-K06388322 n/a
mirapexin BRD-K06388322 n/a
norepinephrine BRD-A91555231 n/a
orphenadrine BRD-A53576514 n/a
trihexyphenidyl BRD-A48180038 n/a
selegiline BRD-A28545468 n/a
benzatropine BRD-A04322457 n/a
stalevo n/a n/a

continues on the next page
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Table E.6 continued
Drug name BRD ID Number of signatures
stalevo n/a n/a
sifrol n/a n/a
rivastigmine sandoz n/a n/a
rivastigmine hexal n/a n/a
rivastigmine actavis n/a n/a
rivastigmine 1 a pharma n/a n/a
rasagiline ratiopharm n/a n/a
rasagiline mylan n/a n/a
prometax n/a n/a
pramipexole teva n/a n/a
pramipexole accord n/a n/a
oprymea n/a n/a
opicapone n/a n/a
ongentys n/a n/a
numient n/a n/a
nimvastid n/a n/a
neupro n/a n/a
mirapexin n/a n/a
levodopa/carbidopa/entacapone
orion n/a n/a
levodopa / carbidopa n/a n/a
ioflupane (123l) n/a n/a
entacapone teva n/a n/a
entacapone orion n/a n/a
droxidopa n/a n/a
datscan n/a n/a
cycrimine n/a n/a
comtess n/a n/a
benzatropine n/a n/a

Table (E.7) List of neuroprotective drugs for PD. Expert-curated (Professor Oliver Bandmann,
University of Sheffield) list of predicted neuroprotective drugs. Each drug can be present in
multiple disease signatures under different experimental conditions (various combinations of drug
id, concentration, cell line, perturbation time, and batch). One drug name can be mapped to many
BRD IDs. Drug synonyms can be mapped to one BRD ID. Mapping from drug name to BRD ID
was done with the KATdb app. BRD ID — Broad ID; PD — Parkinson’s disease.

Drug name BRD ID Number of signatures
nilotinib BRD-K81528515 25
atorvastatin BRD-U88459701 7
azathioprine BRD-K32821942 5
nifedipine BRD-K96354014 4
atorvastatin BRD-K69726342 1
ambroxol BRD-K56558538 1
atorvastatin BRD-A82307304 1
nifedipine BRD-A30977374 n/a
exenatide n/a n/a
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