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Abstract 

Catalysts play a crucial role in much of the world’s energy, chemical processing and 

manufacturing technologies, whilst the development of more efficient, economical and 

durable catalysts is a prerequisite for the widespread introduction of future energy 

solutions such as fuel cells and biofuels.  In this thesis, aberration corrected in-situ 

electron microscopy is used to provide atomic scale insights into the structure-property 

relationships of catalytic nanoparticles, as well as the deactivation mechanisms that 

affect them under reaction conditions.  

When reduced to just a few nanometres, gold nanoparticles have been reported to 

show remarkable catalytic activity for the low temperature oxidation of carbon 

monoxide.  In this size range, one of the most energetically favourable morphologies is 

the decahedra, and through direct measurements of atomic column positions, we 

quantify the substantial inherent surface strain that results from the non-space filling 

structure.  Density functional theory calculations based on the experimentally observed 

atomic displacements predict significantly enhanced activity for CO oxidation due to 

strain induced electronic band structure modifications.  This is a new mechanism for the 

reactivity of gold nanoparticles and provides further explanation of the surprising 

activities reported. 

Exceptional catalytic properties for the water-gas shift reaction have been reported 

for cationic gold supported on ceria, although the nature of the active species and its 

interaction with the ceria support is uncertain.  Atomic resolution Z contrast images 

reveal significant intensity increases for certain atomic columns’, suggesting the 

cationic Au is in the form of highly dispersed single atoms that substitute for Ce sites. 

The activation of Ni catalysts is observed in-situ, and a size dependent defect 

reduction mechanism is suggested.  Upon reduction, the Ni particles are observed to 

sinter via an Ostwald ripening mechanism, and the effect of surface energetics is 

discussed to explain the variety of particle stabilities observed.  
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Chapter 1  

Introduction 

A recent report valued the total global demand on catalysts at US$29.5 billion [1], and it 

is estimated that around 90% of the multi trillion dollar chemical industry is 

underpinned by catalysis.  Demand in existing markets is expected to continue to grow 

in the coming years, and the increasing need for environmentally sustainable energy 

solutions requires catalysts that provide the requisite performance whilst remaining 

economically feasible; with both lower precious metal loadings and increased durability 

often needed. 

 

Many heterogeneous catalysts consist of a precious metal, distributed in the form of 

nanoparticles on a support material.  As such, the processes that govern their catalytic 

properties and subsequent deactivation occur as a result of atomic scale interactions 

between the particles, support and environment.  Through understanding these processes 

it is possible to identify the nature of the active site, as well as the subsequent 

deactivation mechanisms that lead to fewer of them being available for reactions.  

Armed with this knowledge, catalysts can be designed specifically for certain reactions, 

with the composition, size and structure of the particles, as well their interaction with 

the support, all tuneable parameters that can be modified in order to present the desired 

electronic band structure with which the reactant molecules can interact.  Through the 

optimisation of such parameters, more active, selective, durable and economical 
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catalysts can be produced; potentially enabling the commercial viability of alternative 

energy sources such as fuel cells and biofuels.   

 

Electron microscopy promises to play a critical role towards achieving this goal, and 

direct characterisation with atomic resolution of the structure and chemical composition 

of nanomaterials is routinely possible.  The recent widespread introduction of spherical 

aberration correctors has led to significantly improved resolution and interpretability of 

electron micrographs, as well as freeing up the space around the sample in the 

microscope.  This has enabled the introduction of heating holders and a controlled gas 

environment with minimal effect on performance, allowing in-situ observations of the 

nano-catalysts under simulated reaction conditions with directly interpretable atomic 

resolution images.  The work presented in this thesis is the application of this technique 

to several catalyst systems, and seeks to address questions regarding the origins of 

catalytic activity and the deactivation mechanisms that occur in the reaction 

environment.  

  

1.1 Overview of the thesis 

An introduction to the principles of heterogeneous catalysis is given in Chapter 2, 

followed by an overview of common activation and deactivation processes.  Chapter 3 

contains a literature review of the unusual case of gold catalysis, and various reported 

causes for the sudden change in gold’s chemical properties when reduced to a few 

nanometres in size are discussed.  Chapter 4 gives a brief overview of electron 

microscopy techniques, with particular emphasis on the methodologies relevant to the 

following results chapters.  Chapter 5 reports results on the structure of gold 

nanoparticles in the catalytically active size regime, and a new mechanism based on 

band structure modifications that result from common particle morphologies is 

presented to further explain the reported enhanced activity.  Chapter 6 shows results 

from in-situ studies on the effect of heating on gold nanoparticle structures, whilst the 

nature of the active site in Au/ceria catalysts is investigated using Z contrast imaging in 

Chapter 7.  Chapter 8 presents results on the activation and deactivation mechanisms 

that affect industrial Ni based catalysts provided by Johnson Matthey Plc.  Finally, 

Chapter 9 gives some concluding remarks and suggestions for further work. 
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Chapter 2  

An introduction to heterogeneous catalysis 

The term ‘catalysis’ was first coined in the 1830s by Berzelius [2], who along with 

Davy [3], Faraday [4] and others, pioneered the first experimental observations and 

understanding of the role catalytic materials can play in chemical reactions.  As these 

first observations were of decomposition reactions, the word catalysis derives its origins 

from the Greek ‘kata’- meaning ‘down’, and ‘lysis’ – meaning ‘to loosen’ or ‘to break’.  

The Oxford English Dictionary defines a catalyst in principle as: 

“A substance that increases the rate of a chemical reaction  

without itself undergoing any permanent change.” 

Unfortunately, the second half of this definition is rarely true in practice, as we shall see 

later in this chapter.  However, we first consider how the catalyst can dramatically 

increase the rate of the reaction, and therefore productivity, as well as possibly 

contributing to the selectivity of the reaction products. 

 

Perhaps the most obvious role of the catalyst is to significantly increase the probability 

of interaction between two or more reactant molecules.  By providing a localised 

surface upon which the molecules may reside for some time (known as residency time), 

the cross-section for interaction is greatly increased compared to the situation without a 

catalyst, in which the reactant molecules are highly mobile in their gas or liquid 

medium.  However, perhaps most importantly, the presence of a catalyst opens up 
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alternative reaction mechanisms involving transitional states; in which one or more of 

the reactant molecules may bond with the catalyst.  As a result of such bonding the 

adsorbed molecules have a lower associated potential energy, allowing for an alternative 

reaction pathway with reduced activation energy. 

 

This process is shown schematically in Figure 2.1.  In order for the reaction to proceed 

without a catalyst, a very large energy barrier must be overcome; and the height of this 

barrier is known as the activation energy, Ea.  This large activation energy may prevent 

the reaction from occurring, or may mean very high temperatures are needed to enable 

the reaction.  This is often impractical, expensive and likely to give little control over 

the selectivity of the reaction products. 

 

However, the introduction of a catalytic surface allows for adsorption of a reactant 

molecule; creating a transitional state with reduced potential energy.  Importantly, the 

activation energy required to overcome the energy barrier for this transitional state is 

significantly reduced from the case without a catalyst.  Depending on the nature of the 

reaction, the catalysed reaction pathway will then progress through either further 

 

Figure 2.1 Schematic energy diagrams of simple catalytic and non-catalytic reaction pathways. 
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adsorption or dissociation of one or more of the reactant molecules, followed finally by 

desorption of the final reaction product.  The reaction is energetically favourable, as the 

potential energy of the product is much less than that of the initial reactant molecules, 

and whilst each of the reaction steps has an associated activation energy, the total 

activation energy required with the catalyst is much less than in the case of the non-

catalysed reaction.  An appropriate catalyst can therefore greatly increase the rate of the 

reaction, whilst possibly allowing greater product selectivity by operating at lower 

temperatures and thereby altering the thermodynamics of the reaction.    

 

Catalysis can be divided into two categories: homogeneous catalysis – involving a 

catalyst that is in the same phase as the reactants; and heterogeneous catalysis – 

involving a catalyst in a different phase to the reactants.  Typically, a homogenous 

catalyst would be co-dissolved with the reactants into a solvent.  In contrast, 

heterogeneous catalysts usually consist of a solid catalytic material, often dispersed on a 

support material, which then offers adsorption sites for incoming reactant molecules.  

Industrial reactions involving heterogeneous catalysis are generally gas-solid and liquid-

solid, with the catalyst often consisting of a ceramic, or as is the case with the materials 

studied here, nanoparticulate metal distributed on a metal oxide or carbon support.            

 

2.1 Nanocatalysis 

The development of industrial heterogeneous catalysts has seen a trend towards smaller 

and smaller particle sizes, with the use of small nanoparticles common place in various 

applications for many years.  This reduction in size of the metallic particles was largely 

driven by economic motives, as catalysts are often made up of platinum or other 

precious metals.  If we consider the metallic particles to be spherical with radius r, the 

surface area to volume ratio is: 

      
 

 
    (2.1) 

            

      
 

 

 
 (2.2) 
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By plotting this relationship in Figure 2.2 we can clearly see the effect of particle size 

on the surface to volume ratio.  Therefore reducing the individual particle size to just a 

few nanometres, the total surface area available for a given volume (and cost) of the 

precious metal catalyst is maximised.   

 

The often complex nature of heterogeneous reactions – with many variables involved – 

makes identification of the catalysts properties with subsequent reaction mechanisms 

difficult.  However, in recent years a wealth of both academic and industrial research 

has led to an understanding of additional effects that occur in the nano regime that may 

further modify and enhance catalytic properties.  These effects are often intrinsic to the 

few nanometres size range and can go much beyond the added benefit of increasing the 

total surface area.  Such nanoscale effects include quantum size effects, the role of 

under co-ordinated corner and edge atoms, modified interactions with the support and 

alternative surfaces and particle morphologies.  All of these factors result in 

modifications to the particles electronic structure and therefore chemical properties, and 

many of these factors are considered further in this thesis.  Perhaps the most striking 

example of this nanoscale effect is the curious case of gold, which goes from being the 

noblest of all metals in bulk form to an extremely active catalyst for many reactions 

when reduced to < 5 nm in size [5]; and this phenomenon will be used as a case study 

for detailed discussion of such size related effects in Chapter 3.         

Figure 2.2. Surface to volume ratio as a function of particle size. 
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However, maintaining such small particle sizes under reaction conditions is a major 

challenge due to the inherent instability of small nanoparticles.  Additionally, the 

chemically active phase of an as-prepared catalyst may not be stable under ambient 

conditions experienced during transport.  Therefore before bringing the catalyst online, 

the catalyst must first go through an activation process to convert the precursor to 

achieve the required active and selective formulation.  

 

2.2 Activation: Formation of the active phase 

Synthesis of supported heterogeneous catalysts typically go through a catalyst precursor 

route, allowing ease of handling and transportation from point of manufacture to point 

of use, as the more robust precursor can be exposed to air and moisture.  The precursor 

will then need to go through an activation process, such as heating in a suitable 

environment, to make sure the active phase is present before the catalyst is brought 

online. 

 

Activation procedures vary depending on the nature of the reaction and catalyst.  In 

some cases, the metal-oxide may be the active phase, therefore requiring oxidation of 

the metal to the active metal oxide.  Other supported catalysts may be prepared as bulk 

alloys that then need to be transformed to the active phase.  An example of this is the 

Raney nickel catalyst, which is prepared as a bulk Ni-Al alloy, before being activated by 

leaching with sodium hydroxide [6].  This activation process acts to remove most of the 

aluminium, leaving behind the active nickel supported on highly porous and high 

surface area aluminium [7].     

 

The activation environment and temperature will help determine both the physical and 

chemical nature of the active species, and as such they play an important role in 

controlling the activity, selectivity and durability of the final catalyst.  In some cases, 

such as in gold catalysis, the active phase may be stable under atmospheric conditions 

and therefore the catalyst requires no activation, whilst other catalysts may be activated 

by the reaction conditions themselves.  However, many supported heterogeneous 

catalysts are prepared as metal-oxides, which are then activated by reduction to the 

active metal. 
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2.2.1 Reduction of metal-oxides 

The reduction of the metal-oxide present in the precursor to the active metal is done by 

heating in a reducing environment, such as hydrogen.  The temperature and mechanism 

by which this reduction takes place varies depending on the material and this can have 

significant consequences for the resulting catalyst.  Higher activation temperatures may 

lead to thermal deactivation upon reduction and possible formation of non-active 

phases, whilst the mechanism through which oxygen is removed can lead to re-

dispersion of the metal as well as determining the final particle size, morphology and 

interaction with the support.   

 

Due to its industrial importance in hydrogenation and steam reforming reactions, the 

reduction of NiO to Ni is perhaps the most widely studied of the metal oxide reduction 

processes.  Upon heating to above 300°C in hydrogen, NiO will reduce to metallic Ni 

through the following reaction: 

              (2.3) 

In contrast other oxides, such as cobalt oxide, are known to reduce through an 

intermediate phase [8]: 

Co3O4 → CoO → Co (2.4) 

Clearly the required formation of an intermediate phase will influence the kinetics of the 

reduction process as well as possibly affecting the physical form of the reduced metal 

[8].  Additionally, the significantly smaller volume of reduced metals, such as Ni and 

Co, from their metal-oxide counterparts can lead to significant contraction of the 

original particle volume upon reduction.  For catalysts that undergo several redox 

cycles, this contraction and expansion can have major consequences for both the sizes 

and shapes of the particles as well as their interactions with the support.  This was 

clearly shown through TEM analysis of reduced cobalt oxide [8] and in-situ TEM 

analysis of redox cycles in Ni catalysts [9]; both clearly showing the formation of voids 

inside the reduced metal particles. 

  

Studies of model NiO(100) surfaces [10] have shown that upon heating and exposure to 

hydrogen, the reduction process goes through an induction period, during which 
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minimal metallic Ni is produced.  In order for reduction to occur, the incoming H2 must 

first be adsorbed and dissociated, allowing for hydrogen atoms to react with the oxygen.  

However, NiO(100) has negligible activity for the dissociation of H2, meaning that the 

rate of reduction is very slow whilst little metallic Ni is present.  Once some metallic 

areas are present, these then act to dissociate the H2 and therefore enable the reaction to 

proceed more quickly.   

 

Similar studies of a defective NiO surface [10] showed that the resulting induction 

period was much shorter, indicating surface defects may play a crucial role in the 

reduction process.  The presence of oxygen vacancies results in much stronger 

adsorption of H2 and a reduced activation energy for dissociation [10].  These vacancies 

therefore quickly facilitate the production of areas of metallic Ni; allowing reduction to 

proceed with a much shorter induction period.  However, studies of nanoparticulate NiO 

[11] showed no sign of an induction period, suggesting that in more realistic catalytic 

systems, the high proportion of surface defects and under co-ordinated atoms found at 

corners, edges and surface steps may more readily dissociate the H2, meaning that this 

may no longer be the rate limiting step. 

 

In order to explain the wide range of activation energies for NiO reduction reported in 

the literature, Syed-Hassan et al [12] considered the effect of particle size on the 

resulting reduction mechanism and kinetics.  They postulate that as well as the 

dissociation of H2, the migration distance of H radicals may also be a rate determining 

step, possibly leading to different reduction mechanisms as a function of particle size.  

Upon production of an H radical at the H2-Ni adsorption site, the radical will react with 

an oxygen atom, most likely forming an OH intermediate, before further reaction and 

subsequent desorption of the H2O molecule [12].  This process will be facile at the 

particle surface, and indeed may remain so for very small particles.  However, for larger 

particles the migration of the H radical into the particle, as required to reach the Ni/NiO 

reaction interface, may not be straightforward. 

 

Although the activation energy for the breaking and reforming of Ni-H bonds is small, 

the potential large number of these steps required for the H radical to travel to the 

interior of a large particle to reach the NiO may result in a significant contribution to the 
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overall activation energy required for the reaction.  Once reaching the NiO and forming 

OH, the hydroxyl species will then need to migrate back out of the particle to the 

surface before reacting with another H radical to form H2O.  This migration of the 

reaction product out of the particle will require a similar number of Ni-OH bond 

forming and breaking steps, again possibly leading to a significant contribution towards 

the overall activation energy [12].  The migration of species inside the particle is likely 

to lead to internal restructuring of the Ni, which again comes at an energy cost, although 

this may be partially compensated for by the formation of defects.  Based on this 

reduction mechanism, we can expect very different activation energies for the reduction 

of very small NiO crystallites – for which the migration distance of H radicals is a 

significant proportion of the NiO particle radius – as opposed to much larger particles 

with a radius many times greater than the migration distance of the H or OH species.  

 

Upon reduction, the metallic Ni species may be free to migrate on the support before 

reaching a nucleation site and forming small particles [13].  This mechanism explains 

the observed dispersion of metallic Ni upon reduction [11, 14], and allows the 

production of highly dispersed metallic particles, the size of which may be controlled by 

the original NiO loading and density on the support.  However, in order to maintain the 

excellent catalytic properties of such highly dispersed small nanoparticles, they must 

remain stable in that form under reaction conditions. 

 

2.3 Deactivation mechanisms 

The deactivation of nano-catalysts is known to occur through a variety of mechanisms 

that can be mechanical, chemical or thermal in nature.  Mechanical deactivation 

processes include fouling of the catalyst, resulting in the catalyst surface becoming 

covered in reaction by-products that are deposited over time.  A well known example of 

mechanical deactivation is coking, in which carbonaceous material is deposited on the 

catalyst surface.  Poisoning is an example of chemical deactivation and may result from 

irreversible chemisorption of either the reactant molecules, products or impurities in the 

reaction feed.  When such strong chemisorption occurs, the energy barrier for 

desorption becomes too high, meaning that the active site remains blocked for 

subsequent reactions.  As well as blocking the active site, knock on effects may include 
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modifications to the surrounding surface or the electronic band structure of 

neighbouring atoms, causing a further loss of active sites.  Another example of chemical 

deactivation is the transformation of the catalyst away from the active phase.  This may 

include oxidation of the active metal, reduction of the active metal-oxide or formation 

of alternative species as a result of reactions between the catalyst and a mixture of the 

reaction feed, the reaction products, any contaminants and the catalyst support.  

Depending on the nature of the metal, support and reaction conditions, a strong metal 

support interaction (SMSI) may also exist, and the strength of this interaction may lead 

to the support enveloping the metal particle, therefore preventing adsorption of reactant 

molecules. Both poisoning and fouling can be somewhat alleviated through careful 

control of the reaction feed – such as the use of filters and additional catalysts to remove 

any contamination – as well as regeneration of the catalyst in a suitable environment.  

 

Thermal deactivation, or sintering, typically leads to an irreversible loss of catalytic 

surface area through the growth of the mean particle size, causing a loss of the surface 

to volume ratio of the catalyst.  Furthermore, for size or structure sensitive catalysts, 

such as the gold nanoparticles discussed in the following chapter, sintering not only 

leads to a loss of surface area, but can easily cause further deactivation by changes in 

the particles’ size or morphology away from the catalytically active range, and in the 

process also reduce the selectivity.  Sintering to some extent is often an inevitable 

consequence of the elevated operating temperatures required for either activation of the 

active phase of the catalyst, or for the provision of sufficient energy to overcome the 

activation energy for the reaction.  As such, sintering perhaps presents the biggest 

challenge to the manufacturing of highly active and selective catalysts that maintain the 

desired chemical properties for extended periods of time under reaction conditions.   

 

The intrinsic instability of nano-catalysts is a result of their increased Gibbs free energy 

with decreasing particle size.  This can be described by the Gibbs-Thomson relation, 

which states that the difference between the chemical potential of a metal atom in a 

particle of radius r, μ(r), and that of a metal atom in the bulk, μ(∞), is: 

       ∞  
   

 
 (2.5) 
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Where γ is the surface free energy of the metal particle, and ρ is the bulk volume per 

atom of the metal.  Therefore the chemical potential of a given particle is inversely 

proportional to its radius, and an increase in the mean particle size will lead to a 

reduction in the total surface free energy of the system.  

 

There are two main mechanisms by which the system will seek to minimise its surface 

area and therefore Gibbs free energy, and these are known as particle migration 

followed by coalescence; and Ostwald Ripening [15, 16].  These processes involve the 

diffusion of either entire particles or the inter-particle transport of atomic species across 

the support, and as such their rate and extent will be determined by the strength of the 

particle support interaction; the initial size, morphology and energetics of the particles; 

the local particle density; the support topography; and the local temperature and 

environment.   

 

2.3.1 Sintering by particle migration and coalescence 

The application of both temperature and a gas environment can induce movement of 

atoms and species on the surface of a metal particle.  Over time, random accumulations 

of adatoms on one side of the particle can cause the particle to begin a random walk, 

which, given enough energy, will lead to the migration of the particle on the support in a 

Brownian type motion.  If, as a result of this motion, two particles come into contact, 

they will coalesce in order to reduce their overall surface free energy.  This leads to a 

loss of catalytically available surface area, as well as a potentially deleterious change in 

the form of the surfaces presented for reaction.  If we consider spherical particles that do 

not wet the support, particle migration and coalescence can be thought of as being 

analogous to the motion of bubbles in a solid, allowing us to apply Gruber’s model [17], 

which expresses the ability of particles to migrate as a particle diffusion coefficient, 

which for an FCC metal is: 

           
     

 
 
 

 (2.6) 

where datom is the atomic diameter, r is the particle radius and Ds is the diffusion 

coefficient of an atom on the surface of the particle, given by: 
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 (2.7) 

where D0 is a constant, Q is the activation energy for surface diffusion, R is the gas 

constant and T is the temperature [17].  However, the assumption in Gruber’s theory 

that the particles are spherical is not generally true for small nanoparticles, as surface 

energy anisotropy will often lead to faceted surfaces.  Additionally, depending on the 

type of particle and support, there will be some degree of particle-support interaction, 

often leading to approximately hemispherical particles with a contact angle θ, as shown 

in Figure 2.3.  Therefore other models have been developed to include the effect of 

surface faceting, such as those presented by Willertz and Shewmon [18]; and Chen and 

Cost [19].  However, all of these models show the general result that the particle 

diffusivity decreases strongly with increasing particle size and particles become 

effectively immobile at larger sizes.  

 

Providing there is sufficient coverage of the support with metal particles, the random 

migration of individual particles will lead to particle collisions and subsequent 

coalescence, as shown schematically in Figure 2.3.  Coalescence between two particles 

is known to occur through the formation of a neck between the particles, which then 

facilitates  movement of the centre of mass of the two particles to eliminate the neck, 

followed finally by restructuring of the particle towards a new minimum energy 

morphology [20, 21].  When considering the effects of crystal structure and anisotropic 

surface energies, an additional stage may be needed in order for the two particles to 

align their crystal planes to facilitate the formation of a neck between the two particles.  

The driving force for each of these stages is the minimisation of the overall surface free 

energy, which occurs initially by minimising the total surface area of the particles, 

followed by restructuring towards low surface energy facets.  The time taken for each of

Figure 2.3. Schematic representation of sintering via particle migration and coalescence. 
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these stages is generally of the order of seconds or less [22], meaning that diffusion of 

the particle across the support is the rate limiting step in sintering by particle migration 

and coalescence.          

 

The resulting particle size distribution measured from a sample that has sintered via a 

particle migration and coalescence process is usually log-normal in nature [23], as 

demonstrated in Figure 2.4.  Empirical models, such as power-law expressions [24], can 

be used to empirically fit the measured data and extract values such as sintering rate 

constants and sintering order.  The dispersion, dis, is defined as the fraction of metal 

atoms of the active phase exposed to the surface, and using dispersion instead of particle 

diameter, the general power law expression [25] gives the time dependence of metal 

dispersion as: 

 
           

  
    

   

    
 

     

    
 

 

 (2.8) 

where dis0 is the initial dispersion, diseq is the dispersion at infinite time, ks is the 

sintering rate constant and m is the sintering order. 

 

Figure 2.4. The expected particle size distribution measured from a system that has sintered via 

particle migration and coalescence. 
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Whilst such empirical laws can often provide good fits with experimental data, they 

clearly lack fundamental understanding of the key parameters involved, as well as no 

adjustable parameters that can be specific to the experimental conditions.  In order to 

address this problem, Sehested et al [26] proposed an alternative model, based on 

density functional theory, to include terms related to the partial pressures of the gases 

present; sintering time; initial surface area; and metal loading.  This model was 

developed specifically for application to Ni catalysts for steam reforming, but in 

principle can be adopted for a variety of catalysts in various conditions.  However, 

fitting of experimental data to such a model can prove difficult, as it is not always 

possible to obtain accurate values for all the parameters needed.  Whilst the model has 

been shown to agree with some experimental results [26], when applying to other 

systems, different values of the constant have been needed in order to fit the 

experimental data [27].  Additional factors may further complicate accurate modelling 

of observed sintering results, such as a particle size dependency of the contact angle, θ, 

between the particle and the support.  Additionally, the inhomogeneous nature of the 

support may result in local variations of the particle-support interaction, possibly 

causing smaller particles to be anchored on defect sites.  Such factors may lead to 

particle stabilities and diffusion coefficients very different to that predicted by equations 

such as Equation 2.6 [27].        

 

2.3.2 Sintering by Ostwald ripening 

Ostwald Ripening is a sintering mechanism that leads to a minimisation of surface free 

energy through the exchange of atomic species and clusters between particles, causing 

the growth of some particles at the expense of others, as shown schematically in Figure 

2.5.   

 

+ heat and time 

Figure 2.5. Sintering by Ostwald Ripening, in which atomic or cluster transport occurs between 

particles, leading to the growth of larger particles at the expense of others. 
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In order to reduce its own surface energy, a particle may emit either single atoms or 

small clusters of atoms, particularly those that are under co-ordinated and therefore 

causing a large increase in surface energy, such as adatoms, surface steps and kinks.  

Additionally, adsorption and desorption of reactant molecules and products may cause 

further surface rearrangements, leading to an increased migration of atomic species 

from the original particle.  As we saw from the Gibbs-Thomson relation in equation 2.5, 

the free energy of the particle is inversely proportional to the particle size, meaning

the smaller that particle, the less stable the surface atoms, therefore making atomic 

migration more likely.  The result is a net transport of mass from the smaller to the 

larger particles, causing some particles to grow whilst others will shrink and may 

eventually disappear.   

 

Due to the continuously decreasing frequency of small particles, sintering through an 

Ostwald ripening mechanism is expected to result in a particle size distribution 

described by the Lifshitz-Slyozov-Wagner (L-S-W) model [28, 29], in which the 

distribution has an extended tail on the small particle diameter range, as shown in 

Figure 2.6.  Whilst simulations of sintering via Ostwald ripening do indeed result in the 

expected L-S-W distribution [30], experimental data does not always agree [31].  

Further simulations with no prior assumption as to the sintering mechanism at work 

showed the development of a bimodal particle size distribution [32], which was 

attributed to some particle migration and coalescence occurring in the small particle size 

regime, followed by Ostwald ripening at larger particle sizes.  The experimental 

observation of bimodal particle size distributions [33, 34] may therefore be a result of 

competitive sintering processes, or possible changes in the particle support interaction 

with decreasing particle size, leading to a trapping of small clusters and particles [27].  

Other work, based on model two dimensional amorphous supports, did indeed 

reproduce the L-S-W distribution after extended periods (6 hours) of sintering [35].   

 

However, a detailed study [36] of particle size distributions that result from a variety of 

sintering mechanisms on real catalyst samples showed that for all samples, the 

measured particle size distribution remained lognormal, independent of the reaction 

conditions or the sintering mechanism at work.  Datye et al therefore concluded that 

sintering mechanisms could not be reliably inferred based on the resulting particle size
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distribution [36].  Additionally, both the nature of the initial particle size distribution 

and the time dependency of the evolution of that distribution must also be carefully 

considered.         

 

If we consider the Ostwald ripening process at the atomic scale, it is clear that the main 

factors governing the onset of migration of atoms from particles will be the energy 

barrier for surface atom movement – which will be given by the strength of the atom’s 

binding energy to the particle surface – and the strength of the interaction between the 

metal and the support.  The relative importance of these parameters will determine the 

rate limiting step in the Ostwald ripening process, and as such Wynblatt and Gjostein 

[15, 22] suggest both an interface controlled model and a diffusion controlled model, 

depending on which is the more dominant.  It has been shown that for typical metal 

catalysts supported on metal-oxides, the energy barrier for diffusion of a metal atom 

from a metal particle onto the substrate is around 5-10 times greater than the subsequent 

barrier for diffusion of the metal adatom on the substrate [37, 38].  Therefore the initial 

migration of the metal atom from the particle can be thought of as the rate determining 

step, and it is the ‘interface controlled’ model that is likely to be most applicable. 

 

Figure 2.6. The expected particle size distribution measured from a system that has sintered via 

an Ostwald ripening mechanism, as predicted by the Lifshitz-Slyozov-Wagner model .    
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Wynblatt and Gjostein give the energy of a metal atom diffusing on the support as: 

                       (2.9) 

Where ΔHsub is the metal’s bulk sublimation enthalpy, Ead is the adsorption energy of a 

monomer on the support and Ediff is the diffusion activation energy of a monomer on the 

support.  By substituting the Gibbs-Thomson relation into Wynblatt and Gjostein’s 

interface controlled Ostwald ripening model [15], the rate of change of a particle’s 

radius, r, is given by: 

  

  
  

    

     
   

 
    
     

 

  
    (2.10) 

where, kB is Boltzmann’s constant, T is the temperature of the substrate and K is a 

system specific parameter to include the particle support interaction, and is defined as: 

   
          

                     
  (2.11) 

where vp is a prefactor determining the rate at which a metal atom moving on the 

surface of a particle may diffuse onto the support, a is the particle’s interatomic spacing 

and θ is the contact angle between the particle and the support, which in turn is a 

measure of the strength of the particle-support interaction.  r* is the critical radius, 

above which the particle will grow, and below which the particle will shrink.  When the 

total mass of the metal is conserved, r* can be shown to be equal to the mean particle 

diameter, which is time dependent [39].  

 

Crucially, Campbell et al [40] go on to show that in the small nanoparticle size regime, 

the metal atoms energy does not scale linearly with size, as predicted by the Gibbs-

Thomson relation.  They show experimentally that the surface energy of metal 

nanoparticles increases significantly as the particle radius decreases below a few 

nanometres, and attribute this to the non-negligible contribution of under co-ordinated 

corner and edge atoms in this size range.  Therefore, the Wynblatt-Gjostein model [15] 

will significantly over-estimate the stability of particles just a few nanometres in 

diameter, as the Gibbs-Thomson relation is no longer directly applicable.  This in part 

explains the often large discrepancies between sintering models and the experimental 
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data, and further highlights the flaws in assuming sintering mechanisms based on 

resulting particle size distributions [41].   

 

Modifying Wynblatt and Gjostein’s interface controlled model to include a non-linear 

Gibbs-Thomson relation [40], equation 2.10 becomes [41]: 

  

  
 

    

 
     

   

     
      

   

    
   (2.12) 

where Kint is: 

     
        

                
 

 
    
    (2.13) 

Challa et al [42] recently reported Ostwald ripening of Ni nanoparticles on MgAl2O4 

through in-situ TEM observations under simulated methane steam reforming conditions 

(3.6mbar of H2:H2O at 750°C).  They observed small Ni particles to be stable for 

extended periods of time, before rapidly shrinking and disappearing, and attribute the 

sudden decrease in size as occurring once the particle goes below a critical value (~ 1.5 

nm).   

 

By considering a small nanoparticle that will shrink with time, and assuming the 

number of atoms being received by the shrinking nanoparticle is negligible, Challa et al 

simplify equation 2.12 to give the rate of decay of an individual nanoparticle as [42]: 

  

  
  

    

 
    

   

    
  (2.14) 

By either assuming or fitting reasonable (but constant) values for the parameters in the 

Kint term, equation 2.14 can be shown to agree with the experimentally observed particle 

decay rate.  However, a few other particles observed did not agree with the same 

theoretical treatment, with one small particle appearing to be significantly more stable 

than its larger neighbour [42]. 

 

The observed stability of some small nanoparticles, as compared with others of a similar 

or even larger size that are less stable is yet to be explained in the literature.  Challa et al 

[42] acknowledge that the assumption of θ as being constant will not always be valid, as 
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it can be expected to vary with either particle size [43] or as a result of any local 

variations in the support.  Additionally, it can be expected that the vp term in equation 

2.11 will play a crucial role, as it will determine the rate at which a metal atom will 

leave the surface of the nanoparticle.  Clearly, this energy barrier will be equal to the 

binding energy of the atom in question, and will therefore be determined by the local 

atomic surface structure of the particle.   

 

By comparing the parameters governing sintering by both particle migration and 

coalescence and Ostwald ripening we can expect certain conditions to favour one or 

other of the sintering mechanisms.  By increasing the strength of the particle-support 

interaction, the particles can become well anchored on the support and therefore 

unlikely to sinter through particle migration and coalescence.  However, such an 

increased particle-support interaction is likely to increase the vp term in equation 2.11 

and 2.13, as there will be a stronger attraction between the particle’s surface atoms and 

the support, with the net result being more atoms migrating away from their original 

particle and therefore sintering through Ostwald Ripening.  What is abundantly clear is 

that particle radius is by no means the only variable in nanoparticle sintering, and 

insights at the atomic scale, alongside further consideration of the driving forces for 

atomic migration are needed in order to more fully explain the instability of small metal 

nanoparticles.  Such developments could lead to more stable and durable nanocatalysts 

that would not only save huge costs associated with current catalyst deactivation, but 

may also open up new possibilities for highly active catalysts that are currently too 

unstable for viable commercial use. 
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Chapter 3  

Gold nanoparticles and catalysis 

3.1 Catalysis by gold 

Whilst the catalytic properties of platinum and other transition metals have been known 

since the first concepts of catalysis were put forward in the early 1800s [4], it wasn’t for 

another 150 years that the surprising catalytic properties of gold were first reported.  

Traditionally believed to be an inert noble metal, the pioneering work of Haruta et al 

[44] and Hutchings [45] showed that when reduced to the nanoscale, gold had some 

exceptional catalytic properties, and this has since triggered a wealth of research into the 

area.  Haruta and colleagues [5, 46-49] went on to show that when reduced to less than 

5 nm in diameter, gold is in fact a more active catalyst than other metals for many 

applications.  These range from automotive and industrial emission control, chemical 

processing, use in the hydrogen economy and fuel cells.   

3.1.1 Pollution and emission control 

In the current automotive industry three way catalysts (TWC) based on platinum group 

metals (PGM), particularly platinum, palladium and rhodium, are used on a global scale 

to good effect [50].  However such catalytic systems lack low temperature start up and 

this, coupled with idling problems, causes the catalyst monolith not to operate until the 

light-off temperature of ~300°C required for oxidation of hydrocarbons is reached.  

Therefore improvements are needed to the low temperature start up performance.  The 
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work of Haruta’s group showed that gold nanoparticles less than 5 nm in diameter 

exhibited exceptional catalytic activity for CO oxidation, even at low temperatures [46].  

However, the relatively low melting point of gold (1064°C compared to 1769°C of 

platinum, with this temperature significantly reduced for nanoparticles) means that it is 

not really suitable for use in TWCs themselves as stoichiometric-burn exhaust 

temperatures typically exceed 600°C [51], causing the gold nanoparticles to sinter and 

deactivate.  One possible solution is the use of gold based catalysts in conjunction with 

PGM based TWCs to overcome the cold engine problem.  If improvements can be made 

to the stability of gold catalysts, there is further potential for use in diesel exhaust 

systems, with typical operating temperatures between 80-230°C and reaching a 

maximum of approximately 440°C [52, 53]. 

 

Conventional PGM based TWC systems are also capable of reducing NOx to N2 using 

unburnt CO, H2 or hydrocarbons.  However petrol and particularly diesel engines often 

operate under lean burn conditions, where there is 10-20% more oxygen present than is 

required to combust all the fuel.  Under such conditions the reduction of NOx by 

conventional means is less effective.  Gold based catalysts have shown activity for the 

lean burn reduction of NOx through a wide range of temperatures [51] and show a 

greater selectivity for NOx reduction to N2 than platinum based catalysts [54].    

 

The oxidation of CO and nitrogen containing odour compounds at room temperature by 

catalytic gold nanoparticles offers further applications in air purification and removal of 

malodours.  This is a use for which gold is particularly suited, due to its high activity at 

low temperatures [5]. 

 

Pollution and emission control is perhaps the greatest commercial area of interest in 

gold nanoparticle catalysis, with the comparatively lower price of gold to platinum 

providing strong economic benefits alongside the environmental ones previously 

outlined.  However the stability of gold based nano-catalysts needs to be improved 

before widespread implementation in industry is possible, and this may be achieved 

through further understanding of the active site, more sophisticated supports to prevent 

sintering and possibly alloying or use in conjunction with other metal to provide bi-

functionality. 
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3.1.2 Chemical processing 

There are many examples in which the catalytic properties of gold nanoparticles can be 

used for a wide variety of chemical processing.  One of the first demonstrations of this 

was by Hutchings, who showed gold catalysts were about three times more active than 

commercial mercuric chloride catalysts used in the conversion of acetylene (C2H2) to 

vinyl chloride (H2C:CHCl) for the production of polyvinyl chloride (PVC) [55, 56].   

 

The oxidation of methane (CH4), propane (C3H8) and propene (C3H6) can be achieved 

using gold based catalysts, with gold shown to match the activity of commercial 

platinum catalysts [57].  Also, gold catalysts have been shown to be uniquely selective 

for the partial oxidation of propene to propene oxide – used for the production of 

polyurethanes – with certain conditions giving rise to 99% selectivity to propene oxide 

[58].  It is clear that the nature of catalysis by gold is dependent on particle size, with 

further work by Haruta’s group showing oxidation to propene oxide by particles larger 

than 2 nm in diameter, whereas reduction to propane occurs below this size [59]. 

 

Production of hydrogen peroxide (H2 + O2 → H2O2) is currently achieved on a large 

scale by the sequential hydrogenation and oxidation of anthraquinone (C14H8O2) or a 

related alkyl derivative, and demands are steadily increasing as an environmentally 

friendly alternative to chlorine is sought.  However, hydrogen peroxide is a hazardous 

material, leading to high costs in transportation from point of manufacture to point of 

use.  Gold and Au/Pd alloy catalysts [60] offer a potential solution for the safe, cost 

effective local production of H2O2. 

 

Other areas of chemical processing in which the use of gold based catalysts are being 

investigated include selective hydrogenation of dienes in the presence of monoenes 

[49], the oxidation of glucose to the widely used food additive gluconic acid [61] and 

the conversion of alkynes (CnH2n-2) to alkenes (CnH2n) [62].  However, for many of the 

reactions mentioned above, further understanding of the cause of the nanoparticle’s 

activity and selectivity is needed in order to produce efficient and economical catalysts 

for a given reaction, whilst deactivation processes need further study in order to 

improve catalyst durability. 
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3.1.3 The hydrogen economy and fuel cells 

The potential use of fuel cells within a hydrogen based economy would greatly reduce 

both fossil fuel consumption and CO2 emissions from the transportation industry.  

However for this to become practical there are many remaining technical barriers, 

including the need for a vast reduction of production cost and an increase in the 

durability and performance of fuel cells.   The US Department of Energy’s Fuel Cell 

Report [63] highlighted the need for a significant reduction in the cost of fuel cell 

catalysts.  Gold nanoparticles offer several advantages over conventional catalytic 

systems, with their unique properties showing promise for greater selectivity and 

activity at lower temperatures, whilst the relatively low cost of gold compared to 

platinum would significantly reduce the current overall system cost. 

 

Hydrogen for fuel cells is typically produced by steam reforming an organic fuel such as 

methane, followed by the water gas shift (WGS) reaction: 

CH4 + H2O → 3H2 + CO (3.1) 

CO + H2O ↔ H2 + CO2 (3.2) 

The thermodynamics of this reaction means that a smaller ratio of CO to H2 will be 

produced as the temperature is reduced.  As the platinum catalysts currently used inside 

the fuel cell are easily poisoned and deactivated by CO, a low operating temperature 

during the WGS reaction is desirable.  Catalysts for the low temperature WGS reaction 

in fuel cells not only need to be highly active but also need to be able to endure repeated 

start up and shut down cycles; thus making traditional copper based catalysts used in 

industry unsuitable for fuel cell applications.  Since early work showed that catalysts of 

gold supported on Fe2O3 (Au/Fe2O3) could exceed the activity of commercial copper 

systems [52], much research has been done in the area, with the current emphasis being 

on Au/CeO2 catalysts, due to their high activity and greater stability [64-66].               

 

As gold is a highly effective catalyst for the oxidation of CO, it has great potential for 

the removal of CO impurities from the hydrogen feed in fuel cells.  In polymer 

electrolyte membrane (PEM) and other low temperature fuel cells, CO is preferentially 

adsorbed, often leading to poisoning of the Pt catalyst.  In order to counter this, small 
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amounts of oxygen are added to the hydrogen stream and passed over a catalyst to 

oxidise the CO before the stream reaches the fuel cell stacks.  As gold shows 

exceptional activity for the preferential oxidation of carbon monoxide (PROX), even at 

low temperatures, the use of gold based catalysts would allow PEM type fuel cells to 

run more efficiently whilst mid-temperature fuel cells could operate at reduced 

temperatures, leading to greater durability. 

 

Research has shown that gold based catalysts are capable of selective carbon monoxide 

oxidation (SCO) in hydrogen rich gas [67].  Kung et al went on to show that the 

presence of hydrogen during SCO actually prevented deactivation, and that deactivated 

catalysts could be regenerated by exposure to hydrogen at room temperature [68].  

These results, coupled with the low temperatures required, suggests that stability and 

sintering of the particles should not be a serious issue for SCO in hydrogen streams in 

PEM fuel cells.  However, clarification in the literature is required on the effect of the 

support and particle size in relation to activity, whilst the nature of the active site for 

such reactions is still not fully understood.              

 

A further potential application of catalytic gold nanoparticles within fuel cell systems is 

as an alloy with platinum as an electrocatalyst.  A Pt/Au alloy could potentially create 

unique bi-functional catalytic properties, with the platinum acting as the main catalyst 

for the fuel cell reaction, whilst the gold would oxidise any carbon monoxide present.  

Such a bimetallic catalyst could significantly increase the lifetime of the platinum by 

preventing poisoning by carbon monoxide, whilst the current prohibitive cost of the fuel 

cell catalyst could be reduced by a reduction in the required platinum loadings [51]. 

 

3.2 On the origin of gold’s catalytic activity 

Although supported gold nanoparticles have been one of the most widely studied 

catalytic systems in recent years, agreement is yet to be reached in the literature on what 

exactly causes the exceptional catalytic properties of gold nano-catalysts.  

Understanding exactly where the active sites are, what role the particle structure has and 

what role the support plays has proven difficult, with several conflicting theories having 
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been put forward.  However one thing that is well accepted is that particle size plays a 

crucial role. 

 

3.2.1 Particle size effects 

It has long been known that gold particles must be less than around 5 nm in size for 

them to achieve catalytic activities suitable for commercial use.  As the particle size is 

reduced down to the few nanometres range, several factors give rise to their striking 

difference in chemical properties from bulk gold.  Firstly, as the average particle size 

becomes smaller, the surface to volume ratio of the system is increased, thus providing 

more reaction sites for a given total volume of catalytic material.  However, gold’s 

surprising change in chemical properties cannot be attributed to just an increased 

surface to volume ratio, and intrinsic nanoscale effects must also be considered.  A 

particle size of just a few nanometres leads to an increased proportion of under co-

ordinated surface atoms – with fewer inter-atomic bonds – resulting in a reduced 

overlap of electron orbital’s [69].  This causes the particle’s constituent atoms, and 

particularly those at the surface, to begin to behave more as individual atoms rather than 

as part of a metallic bulk.  As a result, the introduction of a band gap and therefore a 

metal-insulator transition can be expected for particles below approximately 3 nm in 

diameter and 1 nm in height  [70].  This quantum size effect has also been shown by 

Haruta’s group [71] and similar effects have been observed in Pd and Ag particles.  

Work by Goodman’s group on the oxidation of carbon monoxide by gold catalysts (see 

Figure 3.1) showed that the activity, described as turnover frequency (TOF): 

    
                 

                        
 (3.3) 

was strongly sensitive to particle size, with a peak activity occurring at 3.2 nm [72, 73]. 

 

Due to the strong correlation in peak activity and the metal-insulator transition, it was 

proposed that quantum size effects were the cause of the strong sensitivity of activity on 

particle size, with particles that exhibit a large band gap unlike bulk metal being 

particularly active for the catalysis of CO oxidation [70].  
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However, traditional particle size analysis techniques such as conventional TEM may 

not be sensitive to detecting small clusters or single atoms present in the catalyst [74].  

In contrast, more recent work by Herzing et al [75] using aberration corrected HAADF 

STEM reported a direct correlation of activity for CO oxidation with the presence of 

bilayer clusters each containing approximately 10 atoms, supported on iron oxide.  They 

therefore suggest that these bilayer clusters, as opposed to single atoms, monolayer 

clusters or larger particles, are the key active species for CO oxidation.  The bilayer 

clusters provide an abundance of low co-ordinated surface atoms, as well as multiple 

adjacent active sites that they claim are required for the simultaneous adsorption of CO 

and O atoms, O2 or H2O molecules.  While alternative effects that may occur as a result 

of a differing supporting material or under different reaction conditions are not 

considered in their study, clearly the catalytic properties of small nanoparticles are 

strongly influenced by particle size and structure. 

   

Figure 3.1 CO oxidation turnover frequencies (TOFs) as a function of the Au cluster size 

supported on TiO2. (A) The Au/TiO2 catalysts were prepared by a precipitation method [45]. (B) 

The Au/TiO2 catalysts were prepared by vapor-deposited Au atoms on planar TiO2 films on 

Mo(100).  Reproduced from Lai et al [72]. 
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3.2.2 Low co-ordinated sites and the d band model 

Other properties that vary as a function of particle size have been proposed as the active 

site key to catalytic activity.  In particular perimeter sites [76], particle-support 

interfaces [77] and low co-ordinated edge atoms [78, 79] have all been suggested to be 

the cause of the catalytic properties of small gold nanoparticles.  Strong support for 

under co-ordinated atoms providing the key active sites comes from both theoretical and 

experimental evidence that shows CO and O2 can chemisorb on rough or stepped Au 

surfaces, but cannot on planar Au surfaces [80, 81].  Lopez et al have described the 

chemical activity of gold as being strongly dependent on the co-ordination number of 

gold atoms, and have shown that the strength of the Au-CO and Au-O bond varies with 

Au co-ordination number (see Figure 3.2) [82].   They explain this by the weak bonding 

between Au(111) and O relative to the stronger interaction between O and Au atoms of 

lower co-ordination number found at steps and corners of small particles.  The atoms in 

the Au(111) surface have d states that are too low in energy to interact with the O 2p 

valence states, and are therefore unable to dissociate O2.  In contrast, the lower co-

ordination atoms have d states that are closer to the Fermi level, resulting in a stronger 

interaction and therefore reaction.    Furthermore, Zanella et al [83] correlated a loss of 

activity as a result of increasing calcination temperature with a greater proportion of 

strongly faceted particles that exhibited fewer low co-ordination surface sites. 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 The correlation between binding energy for CO molecules and O atoms, with respect 

to the co-ordination number of Au atoms in a series of environments.   Reproduced from Lopez 

et al [82]. 
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Further work by Goodman’s group reported exceptional catalytic activities for the 

oxidation of carbon monoxide by gold films. They grew two Au films, a (1x1) 

monolayer and a (1x3) bilayer, that completely wet an ultrathin titanium dioxide 

surface, supported on a Mo (112) surface, as shown in Figure 3.3.  Their results showed 

that the bilayer produced a TOF 45 times greater than the previous most active Au/TiO2 

catalyst [84].  While they did not go on to describe the exact cause of the high activity 

of the Au bilayer, their results did show that TiOx cannot be directly involved in the 

bonding of CO or O2, as the Au overlayer precludes access to the Ti cation sites.  They 

also claimed that the co-ordination numbers of atoms in the monolayer and atoms in the 

top layer of the (1x3) bilayer structure were the same, thus arguing that a combination 

of first and second layer gold sites is required to promote activity. 

 

However Rashkeev et al [79] went on to explain that the co-ordination numbers of the 

surface atoms of the two films were in fact different, with this being the cause behind 

the vastly increased activity.  Their schematic model of such structures, seen in Figure 

3.4, shows Au atoms on a TiO2 substrate with a row of O vacancies underneath each  

 

Figure 3.3 Activity for CO oxidation at room temperature as a function of Au coverage above 

the monolayer on Mo(1 1 2)-(8 × 2)-TiOx.  Insets: schematic models for the (1 × 1) and (1 × 3)-

Au/TiOx surfaces.  Reproduced from Chen et al [84]. 
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first layer Au chain.  The top layer of gold atoms has a co-ordination number of 6, 

suggesting lower catalytic activity than was measured.  However Rashkeev et al showed 

that the Au-Au spacing dictated by the TiO2 support is ~12% longer than the spacing for 

bulk gold, causing the Au chains to be unstable against local reconstruction.  As a result 

of this local reconstruction, short chains with decreased Au-Au spacing and lower co-

ordination atoms are produced, as seen in Figure 3.4(b).  Their model is extended in 

Figure 3.4(c) to include just a single layer of TiOx supported on Mo(112).  Figure 3.4(d) 

shows that the Au chains buckle as O atoms are introduced in the Ti rows, creating 

further low co-ordination Au sites.  Their conclusion is that the exceptionally high 

catalytic activity of Goodman et al’s bilayer Au films is caused by O atoms on the 

substrate surface that lead to reconstructions of the gold layer, producing low co-

ordination surface gold atoms. 

 

The difference between catalytic Au and Pt nanoparticles was studied by Raskeev et al 

[79], as the activity of Pt nanoparticles shows no strong size dependence, in stark 

contrast to the size dependence of catalytic gold nanoparticles previously described.  

They found that the presence of low co-ordination atoms is necessary for the activity of  

Figure 3.4 Schematic model of Goodman’s bilayer Au structures on TiO2 and on a single TiOx 

layer.  (a) All Au atoms are sixfold and sevenfold co-ordinated.  (b) Low co-ordination sites are 

formed as the top Au chain is unstable against reconstruction.  (c) Au bilayer structure on single 

TiOx layer supported on Mo(112).  (d) O is introduced under the chains, causing them to buckle 

and produce further low co-ordination gold sites (indicated by blue arrows).  Reproduced from 

Rashkeev et al [79]. 
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gold but is not the reason behind the difference in activity of Au and Pt.  As shown 

earlier, the bonding of CO or O2 to Au results in a weakening of the Au-Au bond, 

whereas Pt-Pt bonds become more rigid, thus preventing the strongly absorbed 

molecules from interacting.  As the bonds become longer and weaker, the particle 

becomes more catalytically active as less energy is required for the rotation and 

stretching needed for the reaction [79]. 

 

The crossover of the reaction barrier, Er and desorption energy, Ed curves for O2 on Au 

show that reaction is only favoured over desorption when the average co-ordination 

number is less than 5, ie when Er < Ed.  At this point the time for reaction is less than 

the residence time of the adsorbed molecule.  In contrast Er is always less than Ed for Pt, 

meaning that catalysis by larger particles is always possible.  Also, the perimeter sites 

on Pt are not thought to be catalytically active, as the dissociated oxygen is bound too 

strongly, preventing desorption and blocking the site for further adsorption events.  

Therefore a decrease in particle size does not necessarily promote activity, as opposed 

to Au, where a reduction in particle size is needed to increase the proportion of low co-

ordination atoms.       

 

Although the origins of gold’s catalytic activity are still being debated, there is a large 

amount of evidence in the literature to support under co-ordinated atoms as being key 

for high activity. The effect of reducing the atoms co-ordination number is attributed to 

Figure 3.5 The desorption energy, Ed of an O2 molecule and the reaction barrier, Er as a function 

of the average coordination number for Au/TiO2 (left) and Pt/TiO2 (right). Reproduced from 

Rashkeev et al [79]. 
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a modification of the band structure, in which reducing co-ordination shifts the d states 

closer to the Fermi level.  This effect is explained by the d-band model [85], where a 

reduced overlap of the d state electron  wavefunctions leads to a narrowing of the d 

band and a subsequent increase in the bands population.  In order to preserve the degree 

of filling of the d band, its centre, εd, is shifted up towards the Fermi level (as shown in 

Figure 3.6), leading to an increase in strength of the surface-molecule interaction as 

fewer of the anti-bonding states are occupied [86].  In this model a reduction in co-

ordination number and an increase in tensile strain have the same effect on the d band of 

transition metals.      

 

Hammer et al [87] go on to quantify the effect of the shift in d band centre on the 

chemisorption strength by considering the change in electronic structure of a CO 

molecule during adsorption.  By calculating the shift in the filled d states and the lowest 

unoccupied molecular orbits after coupling, perturbation theory gives a linear 

relationship between chemisorption strength, ΔEd, and shift in the d band centre, δεd: 

     
  

        
    (3.4) 

where εa is an electronic adsorbate level and V is a coupling matrix element [88]. 

 

 

Figure 3.6. Narrowing and subsequent up-shift of the d band towards the Fermi level as a result 

of reducing co-ordination number for metallic gold. 
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3.2.3 The effect of strain 

Mavrikakis et al have used DFT calculations to confirm that inducing a strain in a metal 

surface has an effect on the d states similar to that of reducing the co-ordination number.  

Their results show that there is a considerable variation in adsorption energies with 

strain for CO and O on Ru, and that as the lattice constant is increased, the 

chemisorption bond becomes stronger.  They go on to attribute this effect to a shift in 

the centre of the metal d bands (εd) with strain [89].  Furthermore, Gsell et al provided 

direct evidence of oxygen being preferentially adsorbed on areas of Ru that have been 

strained by subsurface Ar bubbles [90], whilst later studies have shown stronger binding 

of adsorbates on layers of Pd, Pt and Ni that are strained as a result of a lattice mismatch 

with the support [91-93]. 

 

Giorgio et al [94] found that for Au supported on TiO2, the Au particle may be strained 

at the support interface by up to 12.5% due to the lattice mismatch between Au(111) 

and anatase(004).  Following this work Mavrikakis et al used DFT to investigate the 

effect of strain at the Au-support interface and found that a theoretical 10% strain 

induced by the support would significantly enhance the adsorption of O and O2 on gold 

[95].  Further DFT calculations on the adsorption energies for atomic and molecular 

oxygen on both relaxed and strained Au surfaces are summarised in table 1.  The use of 

Au(111) surfaces represents the most common surface facet present in Au nanoparticles, 

whilst (211) surfaces are used to model adsorption to an under co-ordinated atom found 

at a surface step.  

 

Surface 

 

Stretched 

(%) 

Atomic Oxygen 

Eb (eV) 

Molecular Oxygen 

Eb (eV) 

(111) 0 -2.54 n/a 

(111) 10 -3.14 -0.08 

(211) 0 -2.77 -0.15 

(211) 10 -3.07 -0.26 

Table 1. Binding energies for atomic and molecular oxygen on relaxed and strained gold 

surfaces calculated by DFT.  Based on data  from Xu et al [95] . 
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Clearly the introduction of significant surface strain enhances the adsorption energy and 

therefore catalytic activity of the Au surfaces.  Also, we can see that the adsorption 

energies on the Au(211) surface are affected less than the usually inactive Au(111) 

surface, as the d band of the (211) surface has already been shifted towards the Fermi 

level as a result of its under co-ordinated nature.  These results are shown graphically in 

Figure 3.7, in which the adsorption energy of atomic oxygen with respect to molecular 

oxygen is plotted as a function of separation between the d band centre and Fermi level 

for the Au surfaces considered.  For CO oxidation and the water-gas shift reaction, the 

adsorption energies of CO on various Au sites will perhaps be the most important step, 

as atomic oxygen may be supplied by the formation and filling of oxygen vacancies on 

reducible metal oxide supports or the presence of hydroxyl groups. 

 

 

3.2.4 Particle Morphologies 

If a material’s surface energy is isotropic, the equilibrium shape will be one that simply 

minimises surface area; resulting in a sphere.  However, as crystalline solids have 

anisotropic surface energies, the equilibrium morphology will be one that minimises the 

total free surface energy for a crystal of given volume at a given temperature.  The 

solution to this problem was first given by Wulff [96], who showed that:  

Figure 3.7 The dependence of binding energy of atomic oxygen, with respect to O2, with the 

position of the d band relative to the Fermi level for Au.  Reproduced from Lopez et al [82]. 
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          (3.5) 

where γi is the surface energy and hi the distance from the particle centre to the facet i.  

Using this principle, Wulff found that for an FCC crystal such as gold, the equilibrium 

morphology is a truncated octahedron bound by eight {111} and six {100} faces [97], 

as shown in Figure 3.8(e) [98].  Such particle morphologies, in which the particle is free 

from any internal twin boundaries, are commonly referred to as single crystals.  

However, thermodynamic effects cause the surface energy anisotropy – and therefore 

potentially the equilibrium morphology – to change, going towards a sphere near the 

melting point, as surface energy anisotropy then tends to zero.    

 

In the case of supported particles, the interfacial energy between the particle and the 

support can also play a crucial role in determining the equilibrium particle structure.  

This was considered by Winterbottom [99], leading to a modified Wulff construction to 

include the effect of the support interaction.  For nanoparticles, the increased surface to 

volume ratio and surface tension allows for minimisation of surface energy terms 

through adopting twinned and multiply twinned morphologies, even at the energy cost  

 

Figure 3.8  Various shapes exhibited by gold nanoparticles: the Mackay icosahedron (a), the Ino 

(b) and Marks (c) (truncated) decahedra, the symmetrically twinned truncated octahedron (d), 

the ideal truncated octahedron (e), and the ideal cuboctahedron (f).  Reproduced from Barnard et 

al [98]. 
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of an increase in surface area or elastic energy.  Additionally, in this size range the 

contribution of under co-ordinated corner and edge atoms is no longer negligible, whilst  

sphere packing corrections may lead to further structural deviations from those 

predicted by the Wulff model [100].  Therefore, the equilibrium shape is no longer size 

independent, and many crystal forms have been observed for small nanoparticles [101-

103].  Furthermore, in heterogeneous catalysis, the effect of the gas environment may 

cause additional modifications to both the external surfaces [104] and particle 

morphology [105]. 

 

Whilst the extremely small size of such nanoparticles can make accurate 

characterisation of the structure difficult, various particle morphologies have been both 

theoretically modelled and experimentally observed, and the more common structures 

are shown in Figure 3.8. [98].  It is clear that the energies of such configurations are 

very similar, as they become hard to differentiate and indeed transitions between 

different morphologies often occur [103].  

 

Icosahedral (Figure 3.8a) and decahedral particles (Figure 3.8b-c) have non-space 

filling, crystallographically forbidden morphologies, in which intrinsic strain must be 

incorporated into the structure.  In the case of the icosahedra a balance exists between 

surface area and packing density; whereas decahedra exhibit fivefold twinning and re-

entrant facets may further minimise surface energy [106].  Such particles are often 

referred to as multiply twinned particles (MTPs).  Perfect shapes exist only in particles 

with a ‘magic’ number of atoms, (13, 55, 147, 309… for icosahedra [107]) meaning that 

particles with slightly more or less atoms than the magic number will extend from their 

ideal structure to one of a lower order of symmetry, possibly exhibiting complex 

twinning or stepped surfaces [108].  Perfect cuboctahedral particles (Figure 3.8f) share 

the same series of magic numbers as icosahedra, whilst ideal octahedral (Figure 3.8d) 

and truncated octahedral (Figure 3.8e) FCC crystal structures occur for different sets of 

magic numbers [108].  

 

Galanakis et al [109] show that by considering the number of broken bonds between 

first neighbours, the surface energy can be expressed as: 
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     (3.6) 

where ZB is the bulk co-ordination number, Ecoh is the cohesive energy between 

neighbouring atoms and N is the number of broken bonds for a surface with Miller 

indices (hkl).  Therefore the most closely packed {111} gold surfaces are the lowest in 

energy.  Marks shows that by considering the three most common morphologies for 

small gold nanoparticles, the total particle surface energy goes in the order single crystal 

> decahedral > icosahedral, in line with the proportion of {111} surfaces present 

[106].  The reduction in total surface energy is the driving force for the adoption of 

multiply twinned morphologies.  

 

The energy cost of these MTP’s comes in the form of internal elastic strain energy that 

is required to account for the strain inherent to their non-space filling structures.  For 

example, the decahedron is made up of five crystal segments bound by {111} twin 

planes.  The angle between these {111} twin planes should be 70.53°, leaving a missing 

angle of 7.35°.  This is accounted for by a disclination (rotational dislocation) about the 

fivefold axis in order to incorporate the necessary strain.   The icosahedron is made up 

of 20 tetrahedra and exhibits exclusively {111} surface facets, whilst six disclinations 

make up for its non-space filling nature [110]. 

 

By modelling the decahedron as a cylinder with a single disclination in the centre, both 

Howie and Marks [110] and Richter et al [111] provide numerical solutions for the 

strain energy associated with the disclination through analysis of the stress tensor 

components.  This results in a strain energy of: 

   
   

       
   (3.7) 

where G is the shear modulus, ω is the strength of the disclination, ν is Poisson’s ratio 

and d is the diameter of the cylinder.  The result is tensile strain at the surface that 

decreases logarithmically and becomes compressive towards the centre.  In larger 

decahedra this therefore provides a driving force for stress relief by vacancies or climb 

dislocations migrating into the particle [110].  Richter et al go on to show that if the 
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disclination axis is moved away from the centre of the cylinder, the strain energy 

becomes: 

   
   

        
      

 

 
 
 

 
 

 (3.8) 

where x is the distance of the disclination from the centre of the cylinder and r is the 

radius of the cylinder [111].  Therefore the elastic energy associated with the 

disclination can be reduced by shifting the disclination axis towards the surface of the 

particle.  

 

Gold based catalytic systems often exhibit a relatively broad range of particle sizes, 

resulting in various particle structures, whilst even particles of a given size have shown 

a range of morphologies and internal structures [112] – proving that it is not just particle 

size that determines morphology.  The particles’ interaction with the support [113] can 

play a key role in deciding both the particles structure and orientation, whilst the surface 

properties of small nanoparticles are often dependent on the plane of the crystal facets, 

with {111} planes being the most commonly observed due to their lower energy.  

Previous research into small gold clusters and nanoparticles has shown that they are 

very rarely perfect crystals, and a high density of stacking faults, twins and other defects 

can be expected [59, 112, 114].  Also, the average co-ordination number of atoms in a 

particle has been shown to change with structure, with cuboctahedral particles giving a 

lower average co-ordination number than an icosahedral with the same number of atoms 

[115].  These factors can be expected to have a large impact on the catalytic activity of a 

particular nanoparticle.  

 

Different morphologies are adopted in order to minimise the free energy of a particle.  

Therefore the addition or removal of atoms from the particle or a change in the particles 

temperature can lead to structural transformations in order for the particle to adopt a 

more energetically favourable morphology.  Figure 3.9 [98] shows a quantitative phase 

map that predicts the most thermodynamically stable Au structure for a given particle 

size and temperature.  This phase map can be used to predict how the structure of gold 

nanoparticles will change as a function of temperature, whilst being a useful guide as to 

what structure can be expected for a given particle size.  However, as this phase map is 

based on a thermodynamical model, it does not take into account any kinetic effects on  
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the particle shape.  As it is known that the different morphologies have very similar free 

energies, a kinetic force can easily induce a structural transformation to a morphology 

that is predicted to be slightly less thermodynamically stable than the one predicted by 

the phase map.  Also, as we consider more complex systems with many particles, 

interactions between particles will occur as a function of temperature, whilst the support 

will have a large effect on the nature of these reactions and the temperature regimes at 

which they occur. 

 

3.2.5 Role of the particle support 

Earlier work on gold catalyst systems [5, 46, 48, 116] noted the large effect the particle 

support could have on activity.  Reducible metal oxide supports such as TiO2 and Fe2O3 

proved to be the most active, with differing reasons suggested as to the cause of this.  

However, it is now clear that a direct interaction with the support is not required for 

high activity, as demonstrated by Goodman et als bilayer catalysts [84].  This rules out 

the particle support interface being a necessary active site for the reaction, as had been 

previously suggested [77].  A summary by Lopez et al [82] of the activity of different 

supports as a function of particle size can be seen in Figure 3.10, where data from 

several independent studies [5, 47, 48, 82, 116-121] has been collected, indicating that 

the effect of the support is secondary to the activities dependence on particle diameter,  

Figure 3.9 A quantitative phase map of gold nanoparticles based on relativistic first principles 

calculations.  Reproduced from Barnard et al [98]. 
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d.  The curve roughly shows a 1/d
3
 relationship, showing that the activity of gold 

catalysts is approximately proportional to the number of low co-ordinated atoms at the 

corners of the gold particles.  This is further supported by more recent work from 

Williams et al [122]. 

  

Grunwaldt et al [123] showed that although they both had the same mean Au particle 

size, Au/TiO2 samples exhibited significantly higher activity for the oxidation of carbon 

monoxide than Au/ZrO2.  Further studies explained the large difference in activity was 

caused by the two different support interactions leading to a difference in the number of 

low co-ordinated gold sites present [124].  However, the regular higher activity 

measured on TiO2 and to a lesser extent on Fe2O3 suggests the partial reducibility of 

these supports opens up alternative reaction mechanisms that may directly involve the 

support, such as the creation of oxygen vacancies in the support material in order to 

provide atomic oxygen to facilitate the oxidation of the adsorbed CO.  The role of 

reducible supports is further highlighted by the remarkable catalytic activities reported 

on CeO2, as discussed in detail in the following section. 

 

As well as supplying atomic oxygen for oxidation reactions, reducible supports will also 

create oxygen vacancies, which may significantly affect the adsorption energy and 

Figure 3.10 Measured activities (in mmol CO/(gAus)) for CO oxidation at 273 K over different 

Au-based catalysts as a function of the average particle size (d, in nm). Supports are indicated by 

the symbol shape. Open symbols are used for reducible supports; solid symbols for irreducible 

supports.  Reproduced from Lopez et al [82] with data from [5, 47, 48, 82, 116-121]. 
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electronic structure of an Au adlayer, whilst it is known that gold particles will bind 

more strongly to a defective surface.  A high concentration of oxygen vacancies may 

provide trapping sites for migrating atomic species or small clusters, therefore 

stabilising small particles and preventing coalescence or acting as nucleation sites for 

cluster growth during the migration of atomic species in Ostwald ripening.  These 

factors demonstrate that the support can play a key role in determining the possible 

reaction mechanisms; the morphology of the particle – which will in turn determine the 

concentration of low co-ordination sites; as well as having a large effect on the stability 

of the nanoparticles under reaction conditions.  

 

3.2.6 CeO2 based catalysis 

Cerium dioxide is widely used as a catalyst support for three-way auto-catalysts, as its 

oxygen storage capabilities readily allow the release and capture of oxygen in the 

exhaust gas stream in either fuel rich or lean conditions.  This ability to readily store and 

donate oxygen as needed occurs through the formation and filling of oxygen vacancies, 

such that: 

            
 

 
   (3.9) 

A renewed interest in the water-gas shift reaction for hydrogen production and the 

removal of poisonous CO from hydrogen streams in fuel cells has recently triggered a 

wealth of research into ceria based catalysis.  It was found that by reducing the ceria 

crystallite size to the nanoscale, the CO oxidation rate was increased by two orders of 

magnitude for Au supported on nano-ceria compared to similar Au on bulk ceria [125].  

This result was attributed to the greatly facilitated formation of oxygen vacancies on 

nano-ceria crystals as opposed to extended CeO2 surfaces, due to the very small energy 

cost of removing oxygen atoms from low co-ordinated sites such as those found at the 

corners of the small ceria nanoparticles [126, 127].  Furthermore, the observation of 

CO2 formation during CO adsorption experiments over Au/ceria catalysts, despite the 

absence of oxygen in the gas stream, directly shows that the participating reactive 

oxygen is supplied by the supporting nano-ceria [128].  

 

The addition of dopants to ceria (such as zirconia and/or lanthanum) was also found to 

increase the reducibility and therefore activity of ceria based catalysts [129, 130], whilst 
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the presence of gold nanoparticles on nano-ceria was found to lower the reduction 

temperature of surface oxygen to ~100°C or less and as a result dramatically increase 

the low temperature activity for the water-gas shift reaction [131]. 

 

Fu et al went on to identify the active species in Au-ceria water-gas shift catalysis as 

non-metallic Au associated with the cerium-oxygen surface groups [132].  In their 

study, they take a conventional 4.4 atom % Au catalyst and leach it with sodium 

cyanide to remove the metallic gold, before drying and calcination in air at 400°C.  The 

remaining 0.44 atom % catalyst exhibited no loss of activity, with XPS showing that the 

remaining gold species were in the Au
+1

 and Au
+3

 states.  Therefore they conclude that 

it is these cationic species that are the key for activity.  Similar results were also found 

for Pt/ceria catalysts, with the remaining Pt being in the Pt
+2

 and Pt
+4

 states [132]. 

 

Following this work, theoretical studies investigated the energetics and oxidation states 

of both gold single atoms and small clusters on CeO2 in order to try and establish the 

likely nature of the active gold cations.  Liu et al use DFT calculations to study the 

oxidation of gold on ceria [133].  They state that single gold atoms will mainly occupy 

oxygen vacancy sites and find the resulting Au-Ovac to be strongly negatively charged.  

Therefore they “rule out any catalytic mechanism based upon only a gold single atom” 

and go on to find that Au atoms bound to oxygen vacancies will act as nucleation sites 

for the growth of small Au clusters.  After finding such gold clusters (4 ≤ n ≤ 6) to be 

cationic, they conclude that these are the active species in water-gas shift catalysis by 

Au/ceria.  

 

However, Fu et al speculate that Au
+δ

 may partially fill vacant Ce sites and therefore 

create further oxygen vacancies.  The resulting AuxCe1-xO2 surface has increased 

weakly bound surface oxygen [132], and this is the source of the exceptional activity. 

XPS and diffraction data from Venezia et al [134] was consistent with this hypothesis, 

whilst DFT calculations from Zhang et al [135] give the adsorption energy for a Au 

atom into a Ce vacancy as -5.68eV, making this energetically favourable, even when 

considering the 4.85eV energy cost of creating the Ce vacancy.  Similar DFT results 

from Tibiletti et al [136] give the chemisorption energies of Au on both (111) and (110) 

CeO2 as being in the order Ead(Ce-vacancy) > Ead(O-vacancy) > Ead(perfect surface). 
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Camellone and Fabris [137] provide DFT calculations to investigate both the possibility 

of single Au atoms filling vacant Ce sites; as well as conditions similar to those 

considered by Liu et al previously.  In agreement with Liu et al, they find that a single 

Au atom bound to an oxygen vacancy will become negatively charged and therefore 

deactivate after one CO oxidation cycle, with this situation being recovered for gold 

clusters as small as Au2 that maintain their Au
+
 oxidation state throughout multiple 

cycles.  For the case of Au atoms partially filling vacant Ce sites, they find that the Au
+3

 

ions are stable throughout the oxidation cycle, and predict a regenerative mechanism 

based on CO adsorption on single Au atoms. 

 

Further work by Tibiletti et al [136] and Fonseca et al [138] also correlate high activity 

with the presence of Au
+3

 in the as-prepared catalysts, with the turnover frequency 

found to be at a maximum in the sample with the lowest loading, where the Au present 

is almost exclusively found to be in the Au
+3

 state.  However, through in-situ EXAFS 

measurements under water-gas shift conditions of CO and H2O, they find that by just 

100°C there is complete reduction of Au
+3

 to metallic gold, and therefore suggest that 

metallic Au is the active phase under reaction conditions.  They go on to attribute the 

active species to approximately 50 atom clusters in ‘intimate contact’ with the support.  

This is clearly in direct contrast with the conclusions of Fu et al, and whilst the presence 

of cationic gold directly correlates with activity in the as-prepared samples, they 

conclude that the Au cations act as a precursor to small metallic cluster formation and 

this is the real active phase [136].   

 

These results are supported by Wang et al, who come to similar conclusions based on 

in-situ X-ray adsorption spectroscopy [139].  They also observe complete reduction of 

AuOx to Au under simulated WGS conditions, and therefore conclude that “cationic 

Au
δ+

 species cannot be the key sites responsible for the WGS activity, since they do not 

exist under reaction conditions.”  Photoemission spectroscopy corroborates this finding, 

showing a shift from cationic to zero-valent Au after exposure to CO/H2O and heating 

to 300°C, shown in Figure 3.11. 

 

Comparison of these reported results is not straightforward, as subtle differences in both 

sample preparation and analysis techniques used may lead to some discrepancies.   
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However, the presence of Au
+3

 is ubiquitous in the highly active as-prepared catalysts, 

and clearly plays an important role, whether it is as the active phase or a precursor.  If 

gold is reduced to metallic Au under WGS conditions, the nature of the Au/ceria 

interface seems to govern both the source of activity as well as the stability of the 

catalyst.  Cationic Au atoms in Ce vacancies are expected to act as nucleation points for 

small clusters and particles, with the strong particle-support interaction known to 

promote oxygen vacancy formation and hence activity.  Scanning transmission electron 

microscopy data [138] provides some evidence for the presence of single atoms as well 

as small clusters and nanoparticles in the as-prepared catalyst.  However, identification 

of the single atoms is ambiguous, whilst it was not possible to resolve the position and 

therefore interaction of the single atoms with the support.  Additionally, the multitude of 

Au species observed in the micrographs of the catalyst makes direct links between any 

particular form of gold and the measured catalytic activity difficult.    

 

More recent work from Flytzani-Stephanopoulos and co-workers agrees with the 

findings that Au
+δ

 is largely reduced to zero-valent Au under water gas shift conditions, 

however, instead of attributing this metallic Au to being the active species, they 

correlate the Au reduction with an observed deactivation of the catalyst [140].  They go 

on to show that the surface oxygen and hence activity is recovered after a 400°C oxygen 

treatment of the reduced Au catalyst, and claim that reduced gold in the form of metallic 

clusters is not-active, and regeneration occurs through a reversible redispersion of the 

gold in oxygen. 

Figure 3.11 XPS spectra observed before and after exposure of a AuOx/CeO2 interface to a 

CO/H2O mixture at 300°C.  Reproduced from Wang et al [139]. 
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Alternatively, similar observations of deactivation with time on stream under WGS 

conditions by Goguet et al are explained very differently [141].  They maintain that 

reduction to metallic Au clusters occurs rapidly and that this reduction of the Au
+3

 is an 

activation process to reach the active phase.  The subsequent loss of activity is attributed 

to a reduced interaction and therefore a loss of the ‘intimate contact’ between the Au 

cluster and the support.  As deactivation is also observed to directly correlate with the 

concentration of H2O in the gas stream, they propose that the particle will detach from 

the support, either through hydrolysis at < 250°C or as a result of heating at higher 

temperatures.  DFT calculations show that the presence of OH-terminated surfaces 

under water rich conditions leads to an increased Au-surface distance upon H2O 

dissociation.  The proposed removal of Au atoms from Ce vacancies and reduction in 

particle-support interaction is described schematically in Figure 3.12 [141]. 

 

Both Deng et al [140] and Goguet et al [141] find that the addition of oxygen to the gas 

stream suppresses deactivation, although this is consistent with both the suggested 

mechanisms for activity and subsequent deactivation.  Without any direct observation of 

the deactivation process or processes, the proposed mechanisms remain somewhat 

speculative. 

 

Figure 3.12 Schematic of the proposed structural deactivation mechanism as a result of a 

reduced interaction with the support.  Reproduced from Goguet et al [141]. 
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After finding that the most stable site for an Au cation is substituting for a Ce atom, 

Camellone and Fabris calculate that the oxidation of CO can occur through a three step 

mechanism, as shown in Figure 3.13 [137].  In this regenerative, or redox, mechanism, 

an adsorbed CO molecule is oxidised by an oxygen atom from the AuxCe1-xO2 surface, 

thus leaving behind an oxygen vacancy.  This oxygen vacancy is filled by an adsorbed 

O2 or H2O molecule, resulting in either an extra O adspecies that enables a second CO 

oxidation event, or the production of H2.    

 

Alternatively, an associative mechanism has been proposed, in which hydroxyl or 

carbonate groups formed after adsorption of CO are decomposed to produce H2 and 

CO2 [142-144].  As both mechanisms are supported in the literature it is clear that both 

are possible, and that the reaction conditions may govern which is more prominent.  

Burch goes on to suggest a universal reaction mechanism, involving the regenerative 

and associative mechanisms in differing proportions as a function of temperature and 

environment [65].  At lower temperatures, the formation of surface species is expected, 

with the ratio of CO to H2O in the initial gas stream determining whether carbonate 

(high CO) or formate (high H2O) decomposition will be the rate determining step.  At 

higher temperatures, the redox mechanism is expected to become dominant, although 

expected mechanism is unclear.             

 

the effect of the low temperature reducibility of nano ceria and doped nano ceria on the  
Figure 3.13 Reaction mechanism and energetics (in eV) of proposed CO oxidation promoted by 

an Au cation in an AuxCe1-xO2 catalyst.  Square indicates an O vacancy and red molecular O2.  

Reproduced from Camellone et al [137]. 

 



3. Gold nanoparticles and catalysis 

60 

The remarkable catalytic properties of such Au/ceria systems offers great potential for 

applications in the production of hydrogen and the removal of CO in hydrogen streams 

in fuel cells, whilst the reported 90% reduction in Au loading promises a significant 

advance in the economic viability of fuel cells as an alternative energy source.  In 

contrast to conventional Cu based systems, Au/ceria catalysts have shown excellent 

stability under repeated start up/shut down cycles, and require either no activation or are 

activated by the WGS conditions, making them applicable for use in fuel cells under 

realistic operating conditions [145].  However, despite the wealth of research into 

Au/ceria catalysis in recent years, there is still no consensus on the exact nature of the 

active site; namely, is it Au
+1

 or Au
+3

 cations or metallic gold, and are these small Au 

clusters, single Au atoms or a combination of both?  Furthermore, where do these single 

atoms or clusters sit on the supporting crystal, what is the resulting reaction mechanism 

and what deactivation processes affect them? 

 

Based on the work of Fu et al it seems certain that the presence of Au
+3

 in the as-

prepared catalysts is crucial for activity, whilst DFT calculations predict that such 

species are either Au single atoms substituting for Ce atoms, or small Au clusters 

nucleated on an oxygen vacancy.  Whether these single atoms or small cationic clusters 

remain stable and act as active sites by themselves, or promote the nucleation of small 

metallic clusters under reaction conditions is still unclear.  If the latter, the anchoring of 

the cluster at an Au cation can be expected not only to improve stability, but to have a 

crucial effect on the reducibility of the surrounding oxygen due to the associated charge 

transfer.  As yet, no direct experimental evidence exists to definitively resolve the 

nature of the active form of gold, whilst the stability of such single atoms and small 

clusters is uncertain.  Without direct identification at the nanoscale of the active species 

of gold and any deactivation processes that may occur, differing theories remain 

somewhat speculative and agreement in the literature is unlikely.  These systems will be 

the subject of study in Chapter 7, in which in-situ HAADF-STEM is employed to 

address some of these questions.    
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Chapter 4  

Electron Microscopy 

The development of the light microscope brought with it unprecedented insight into the 

micro-world, and discoveries such as bacteria and the structure of the cell led to 

revolutions in many areas of science.  However, the resolution of a microscope is 

fundamentally limited by the wavelength of the illuminating radiation, as shown by the 

classical Rayleigh criterion, which states that the smallest distance that can be resolved, 

δ, is: 

  
     

     
 (4.1) 

where λ is the wavelength of the radiation, n is the refractive index of the medium and β 

is the semi angle of collection of the magnifying lens.  The result is that when using 

light as the illuminating radiation, resolution is limited to ~ 200 nm, and clearly an 

alternative is needed for the observation of materials at the nanoscale. 

 

In 1924, following Einstein’s discovery that light also acted as a particle [146], de 

Broglie famously introduced the concept of particle-wave duality, meaning that the 

electron could also be thought of as a wave.  Correcting for relativity, de Broglie 

showed the wavelength of a particle of rest mass, m0, and energy, eV, is [147]: 
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(4.2) 

where h is Planck’s constant and c is the speed of light.  This means that electrons 

exhibit much shorter wavelengths than light, with an electron accelerated through 

200kV having a wavelength of just 0.00251 nm.  

 

Electrons also offer advantages over other short wavelength forms of radiation, such as 

X-rays, the most obvious of which is that they have an inherent charge.  This offers two 

key advantages: they will interact strongly with the electrostatic potential of the 

constituent protons and electrons of atoms in a sample; and their trajectory can be easily 

influenced by the application of external electric or magnetic fields.  The force, F, on an 

electron travelling through a magnetic field, B, is given by the Lorentz equation: 

            (4.3) 

where e is the charge of the electron, E is the strength of the electric field and v is the 

velocity of the electron. 

 

The combination of both the electrons short wavelength and the possibility of using 

magnetic fields to act as focussing and magnifying lenses led Ernst Ruska and Max 

Knoll to make the first electron microscope in 1931 – eventually leading to Ruska 

winning the Nobel prize in 1986.  The theoretical resolution limit of an electron 

microscope based on the Rayleigh criteria is much below the inter-atomic spacings 

found in crystalline materials, therefore opening up the possibility of atomic resolution 

microscopy.  However, as we shall see in the following chapter, other factors limit the 

resolution and interpretability of images produced by electron microscopes, and it is 

only through understanding and control of these parameters that materials can be 

studied at the atomic scale.     

 

There have been many comprehensive texts written on the subject of electron 

microscopy, including [34, 148-153].  Therefore the following chapter will not seek to 

give a broad detailed account of electron microscopy and electron scattering, but instead 

provide a brief overview of the electron microscopy techniques that will be used in 



4. Electron Microscopy 

63 

Chapters 5-8, whilst identifying some of the key parameters and imaging conditions that 

will need to be considered for analysis and interpretation of the resulting data.   

 

4.1 Transmission electron microscopy 

The transmission electron microscope uses high energy electrons (typically 100-300 

keV), generated by an electron gun through either heating (thermionic emission) or the 

application of an electric field (field emission), followed by acceleration through the 

applied accelerating voltage.  The electron beam then passes through a series of 

condenser lenses that are used to spread or collimate the beam and transmit it to the 

sample.  A condenser aperture is also typically used to provide the desired beam 

convergence angle.   

 

The electrons are then transmitted as a parallel beam through an electron transparent 

sample, with the electron-sample interaction resulting in a variety of scattering events.  

The objective lens collects the transmitted electrons and focuses them into a diffraction 

pattern in the back focal plane and an image in the image plane.  Additional 

intermediate and projector lenses provide further magnification before the electrons are 

projected on to a variety of possible detectors.  A simple schematic representation of 

this process is shown in Figure 4.1, in which the microscope can be switched between 

imaging and diffraction modes by changing the strength of the intermediate lens.  It 

should be noted that the angles depicted both here and in other ray diagrams used to 

represent the path of electrons through various lenses in this chapter are exaggerated in 

order to clearly display what are typically only small deviations from the optical axis. 

 

There are several ways in which the incoming electron may interact with the sample, as 

described in detail in [148], and these interactions produce a variety of signals which 

may be usefully detected.  If the electron interacts with the electrostatic potential of an 

atom it may undergo inelastic scattering, resulting in a change in energy of the 

transmitted electron, that can in turn be measured by a spectrometer in electron energy 

loss spectroscopy (EELS). Also, inelastic interaction between the sample and the 

electron beam will cause a transfer of energy, resulting in an atom in the specimen 

entering an excited state.  The atom will then return to its ground state via the transition 
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of an electron from a higher to a lower energy level.  In order to conserve energy, this 

transition will necessitate the emission of an X-ray with energy characteristic to the 

energy difference between electron shells for that particular element [154].  Therefore 

by detecting and measuring the energy of these X-rays, it is possible to determine the 

chemical composition of the sample; and this process known as energy dispersive X-ray 

(EDX) spectroscopy. 

 

Electrons that are forward scattered through low angles may be usefully detected for 

imaging, in which the contrast may come from incoherent elastically scattered electrons 

(mass-thickness contrast) or coherent inelastically scattered electrons.  These coherent 

electrons have a wavefunction with both amplitude and phase components, and both can 

Figure 4.1. Ray diagram of the TEM in imaging mode (left) and diffraction mode (right).  

Switching between modes is done by changing the strength of the intermediate lens. 
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be used to provide intensity in the image.  However, for atomic resolution images, it is 

the effect of the atoms’ potential on the phase of the electron beam that is measured.  

The transfer of phase information has been described in detail by Van Dyck and de Jong 

[155] and also in [151], and some of the key results are briefly summarised below. 

 

After interacting with the sample, the transmitted coherent electrons are of the form: 

                            (4.4) 

where A(x,y) is the amplitude and φt(x,y) is the phase that is dependent on the specimen 

thickness, t.  For phase contrast imaging used in atomic resolution TEM, Equation 4.4 is 

simplified by setting the amplitude of the incident wave, and therefore A(x,y) = 1.  The 

phase of the electrons will be modified as a result of interactions with the potential, 

V(x,y,z), of the sample.  Therefore when in the sample, and ignoring relativistic effects 

for simplicity, equation 4.2 becomes: 

   
 

                
 (4.5) 

The phase change that results from passing through a section of the sample, dz, can be 

written as: 

     
  

  
   

  

 
 (4.6) 

     
  

 
 
           

  
    (4.7) 

which for a thin sample can be simplified to: 

   
 

  
        (4.8) 

Therefore, the change in phase is dependent only on the projected potential of the 

specimen, Vt(x,y), where: 

                   
 

 

 (4.9) 

For a very thin specimen, in which V(x,y) << 1, Equation 4.4 can be further simplified 

by expanding the exponential term, such that: 



4. Electron Microscopy 

66 

          
 

  
        (4.10) 

This is the weak phase approximation [151, 155], and shows that for very thin 

specimens, the amplitude of the transmitted wavefunction will vary linearly with the 

projected potential.  This approximation only holds true for very thin specimens, and 

will be used for interpretation of phase contrast images of very small nanoparticles 

discussed in Chapters 5 and 6. 

 

Applying the above argument to the resulting TEM image, the wavefunction as 

measured in the image plane will be the convolution of the exit wavefunction with the 

point spread function h(x,y) : 

          
 

  
               (4.11) 

where h(x,y) describes the way a point in the object is spread into a disk in the image 

plane as a result of imperfections in the transfer of the exit wavefunction through the 

optical system, as discussed in more detail in the following section.  The resulting 

intensity in the phase contrast image is then given by: 

           (4.12) 

4.1.1 Limits to resolution 

There are several factors that have so far prevented electron microscopes from reaching 

their theoretical resolving potential, which is ultimately limited by the size of the 

electrostatic potential and thermal motion of atoms (~ 0.02 nm) [156].  These limiting 

factors include stability issues, such as stabilities in voltage supplies and lens currents, 

as well as mechanical and thermal stabilities in the microscope environment.  However, 

the most prohibitive aspect of conventional electron microscopes has been aberrations 

that are inherent to cylindrically symmetrical magnetic lenses.  In light microscopy, the 

focal length of a lens is many times greater than its aberration coefficients, and any 

aberrations can be routinely corrected by the incorporation of both convex and concave 

lenses.  However, in an electron optical system, the focal length of the lens may be 

comparable to the aberration coefficients, whilst Scherzer showed that cylindrically 

symmetrical magnetic lenses were always additive in terms of their aberrations.  This 

results in a significant limitation on the resolution of the electron microscope [157].     
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The effect of spherical aberration is shown schematically in Figure 4.2.  Here we can 

see that electrons entering the lens at higher angles are focussed more strongly than 

those that are closer to the optical axis, causing the electron wavefront to become more 

curved than the original wavefront exiting the specimen.  The result is that a point P in 

the specimen is imaged in the Gaussian image plane at P’; appearing as a disk of radius: 

        
  (4.13) 

where β is the semi angle of collection of the objective lens and Cs is the spherical 

aberration coefficient.   

 

Chromatic aberration occurs as a result of energy differences in the electrons entering 

the objective lens.  These energy differences may arise from either the energy spread of 

the source electrons or as a result of inelastic scattering upon interaction with the 

Figure 4.2. Ray diagram showing the effect of spherical aberration in the objective lens.  High 

angle electrons entering a lens with spherical aberration are focussed more strongly than lower 

angle electrons, resulting in a distorted wavefront and limited resolution.    
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sample.  Electrons with reduced energy will be focussed more strongly by the objective 

lens, again resulting in electrons from a point in the sample being imaged as a disk, the 

radius of which is: 

     

  

  
  (4.14) 

where Cc is the chromatic aberration coefficient, ΔE is the energy loss of the electrons 

and E0 is the initial beam energy.  Therefore the effect of chromatic aberration can be 

reduced by using higher beam energies, E0 or minimising power supply instabilities, 

whilst the addition of a monchromator or energy filter can reduce the energy spread of 

the electrons.      

 

Magnetic lenses can also introduce astigmatism, which occurs due to any imperfections 

in the lens and causes the electrons to experience a cylindrically non-uniform magnetic 

field, resulting is some deviation in the electrons ideal trajectory and therefore distortion 

in the image.  However, adjustable stigmators comprised of small compensating 

magnetic fields can be used to straightforwardly correct any astigmatism in the image.      

 

Therefore, despite the small wavelength of the electrons, the parameters above limit the 

resolution of the electron microscope well above the diffraction limit given by the 

Rayleigh criterion in equation 4.1.  In the case of the transmission electron microscope, 

the high beam energies used mean that the chromatic aberration will be reduced, as the 

ΔE/E ratio in equation 4.14 will be small.  This means the spherical aberration of the 

objective lens is the dominant limit to resolution, whilst in the case of the scanning 

transmission electron microscope, similar lens aberrations will be present in the probe 

forming lenses, leading to a broadening of the electron probe. 

 

The information transferred from the specimen to the image is described by the contrast 

transfer function, T(k), where k is a spatial frequency.  This transfer function can be 

expressed as the product of three parameters, such that: 

                  (4.15) 

where A(k) is a function of the aperture contribution, E(k) is an envelope function to 

describe the attenuation of the electron wave and B(k) is the aberration function that 
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results from aberrations in the lenses.  The envelope function E(k) results from the 

instabilities in the lens currents and high voltage supply; mechanical instabilities in the 

specimen; the energy spread and spatial coherence of the source; as well as the effect of 

chromatic aberration.  In modern microscopes, these stabilities can be controlled to less 

than one part per million, giving an information limit well below 0.1 nm. 

 

In the case of high resolution phase contrast imaging, the aberration function can be 

expressed as: 

                  (4.16) 

where χ(k) is the total phase shift that occurs at defocus, Δf, and can be shown to be:  

     
 

 
    

           (4.17) 

where k is spatial frequency, Cs is the spherical aberration coefficient and λ the 

wavelength of the electron beam.  Figure 4.3 shows a plot of the phase contrast transfer 

function (CTF) for a conventional TEM at optimum defocus.  The most notable result of 

this plot is that for the critical range in which the interatomic spacings lie, the CTF 

oscillates many times, with each crossing of the x axis resulting in a phase contrast 

reversal.  When T(k) is positive we are in a negative phase contrast condition, meaning 

atoms will appear as bright spots in the image.  Alternatively, when T(k)  is negative, 

the resulting positive phase contrast gives dark atoms on a bright background.  For a 

given defocus value, these contrast reversals result in complex image interpretation, 

whilst at the points where T(k) = 0, no contrast is given, resulting in blind spots in some 

spatial frequency components to the image [151].  The position and frequency of the 

CTF oscillations can be adjusted by changing the defocus value, and a through focal 

series of images is required to build up an interpretable representation of the specimen.  

 

The point at which the CTF first crosses the x axis is known as the first zero, and is 

often used to describe the point limit to which useful information can be obtained from 

the image.  As we can see from equation 4.17, the contrast transfer function is 

dependent on the defocus value, Δf, and Scherzer [158] showed that for a given value of 

Cs, there would be an optimum defocus value.  At this point, the phase will be as  
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consistent as possible out to the first zero, thus giving the image with the maximum 

amount of information for that particular optical system.  This defocus value is known 

as the optimum defocus modification of the Scherzer defocus, and is given by [158]: 

               
 

   (4.18) 

Also shown in Figure 4.3 is the phase contrast transfer function for a microscope with 

negligible spherical aberration.  The resulting plot of T(k)  shows a continuous transfer 

function that incorporates the entire range of spatial frequencies down to the 

information limit set by the envelope terms.  Additionally, correction of the spherical 

aberration allows use of minimal defocus values and delocalisation effects, with the 

combined result of interpretable single images with improved resolution.  It is only 

relatively recently that correction of the spherical aberration has become possible, 

leading to huge leap forward in the performance of electron microscopes. 

Figure 4.3. (Above) Contrast Transfer Function (CTF) of a conventional and Cs corrected TEM 

at optimum defocus. Reproduced from Gai and Boyes [188]. Examples of bright atom contrast 

(left) and dark atom contrast (right) for TEM images of CeO2 nanoparticles. 



4. Electron Microscopy 

71 

4.1.2 Spherical aberration correction 

Scherzer showed back in 1947 [157] that it would, in principle, be possible to correct 

the aberrations inherent to a symmetrical magnetic lens, and whilst a detailed design of 

such a corrector was proposed by Rose [159] in the early 1990s, it would still be several 

years until the first working Cs corrector would be built [160, 161].  This lengthy delay 

in the development of the aberration corrector was largely due to the difficulty in 

simultaneously controlling the many necessary variable parameters to the required 

precision, and it is only thanks to the increased processing power of modern computers 

that it is now possible. 

 

The basic principle of the Cs corrector is to incorporate additional lower symmetry 

lenses through the use of a double hexapole [159] (or similar) system in order to create 

non-uniform magnetic fields immediately below the objective lens.  The net effect of 

these lower-symmetry lenses is to act as a concave lens, and therefore compensate for 

the spherical aberration in the cylindrically symmetric (convex) objective lens.  This 

process is shown schematically in Figure 4.4, in which the strength of the additional 

lower symmetry lenses can be adjusted in order to compensate for the effect of spherical 

aberration, therefore focussing electrons from a wide range of scattering angles to the 

same point.  As a result, point P is imaged as a sharp point P’ in the Gaussian image 

plane, as opposed to a delocalised disk in the uncorrected objective lens, the radius of 

 

Figure 4.4. Cylindrically symmetrical lenses lead to spherical aberration (left).  This can be 

corrected by the addition of lower symmetry lenses with non-uniform magnetic fields (right). 
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which is given by equation 4.13.  A comprehensive review of the optical arrangements 

of the Rose corrector can be found in [162], and based on this design, the incorporation 

of spherical aberration correctors has become increasingly widespread in commercially 

available modern microscopes. 

 

4.1.3 Aberration corrected atomic resolution imaging 

As can be seen in Figure 4.3, in a Cs corrected instrument there are no phase contrast 

reversals, meaning the first zero – and therefore the amount of interpretable information 

in the image – is extended out to the information limit.  This results in a huge 

improvement in the interpretable resolution of the microscope.  Additionally, the 

removal of zero contrast points means that there is consistent phase contrast throughout 

the entire range of spatial frequencies, allowing for directly interpretable single images. 

 

However, perhaps the greatest advantage of Cs corrected TEMs is that the point spread 

function is greatly reduced in the absence of spherical aberration, resulting in minimal 

delocalisation effects.  This dramatically improves the interpretability of the images; as 

in a weak phase object, the intensity of the imaged atomic columns will result directly 

from phase changes induced by that particular atomic column in the sample.  This is in 

contrast to the case in an uncorrected microscope, where the atomic column intensity 

includes contributions of neighbouring columns that are imaged as a delocalised disk 

due to point spread induced by the lens aberrations.  Therefore the aberration corrected 

electron microscope can provide us with a true representation of the sufficiently thin 

sample with atomic resolution.          

 

An unforeseen but welcome effect of the aberration corrector is that it opens up new 

imaging conditions not previously accessible in conventional microscopes.  Scherzer’s 

[158] equation (4.18) was derived based on a set value for Cs.  However, with the 

addition of a Cs corrector, we can treat defocus, Δf, and Cs as adjustable parameters that 

can be used to optimise the contrast that results from equation 4.17.  This leads to very 

different optimum imaging conditions operating at close to zero defocus, as described 

by Lentzen [163].  Additionally, the strength of the Cs corrector can be increased to over 
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compensate for the spherical aberration of the objective lens, therefore creating negative 

spherical aberration imaging (NCSI) conditions [164]. 

 

Under conditions of negative spherical aberration and positive defocus, the contrast 

transfer function shown in Figure 4.3 is inverted, meaning we are in a negative phase 

contrast condition, with atoms appearing as bright spots on a dark background.  In this 

situation, Urban and co-workers have demonstrated significantly enhanced contrast 

when compared with the equivalent positive Cs and negative defocus parameters [164-

166].  It should be noted that whilst a small amount of negative Cs (not possible without 

aberration compensating lenses) is being deliberately added to the system, the 

magnitude of the spherical aberration coefficient is only a small fraction of that in an 

uncorrected microscope (typically ~ 2%), and the benefit of the resulting enhanced 

contrast far outweighs the minimal detrimental effect on resolution.   

 

The cause of the enhanced contrast through NCSI can only be understood by removing 

the weak phase approximation and instead considering a full treatment of electron 

scattering from a ‘not so weak’ object [167].  The result is that when expanding 

equation 4.10 to include non-linear terms, the phase contributions from the first and 

second order terms are additive in the case of negative phase contrast, whereas for 

positive phase contrast, the second order term detracts from the image contrast.  

Additionally, the effect of amplitude contrast should be considered.  The amplitude 

contrast results from small variations in the specimen thickness, as well as electron 

channelling by the atomic columns – in which the electrostatic potential of each atom 

acts as a mini lens.  This amplitude contribution is again additive for contrast in the 

NCSI conditions, as both the phase and amplitude components give bright atom 

contrast.  A full description of enhanced contrast with NCSI is given in [164, 167], 

whilst important effects of the improved contrast include enabling the direct imaging of 

light atoms, such as oxygen, even when surrounded by much heavier neighbours [166].   

  

4.2 Scanning transmission electron microscopy 

Scanning transmission electron microscopy (STEM) uses a small probe of electrons 

focussed on to the specimen and then raster scanned across the sample.  The resulting 
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scattered electrons are then transmitted by the image forming lenses below the specimen 

and used to build up an image of that particular beam position.  Therefore, over the 

course of a scan, the image is built up pixel by pixel as a result of each probe position.  

Additionally, the probe can be positioned on certain areas of the sample for extended 

periods in order to collect localised chemical information through either EDX or EELS 

techniques, or local crystallography through diffraction. 

 

The resolution of the STEM is limited by the size of the electron probe, and as such is 

determined by the probe forming lenses and the characteristics of the high brightness 

field emission gun (FEG).  Figure 4.5 shows this process schematically, in which 

condenser lenses and a condenser aperture are used to define the beam convergence 

angles, whilst the objective lens is again the most important lens in the imaging system,  

 
Figure 4.5. Schematic diagram showing the probe formation and scanning process in the STEM 
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as it is responsible for focussing the electrons to a spot – the size of which is determined 

by the quality of the electron-optics and the FEG.  The lens aberrations affecting the 

STEM are analogous to the case of the TEM, with the spherical aberration here causing 

a broadening of the probe as opposed to a delocalisation of an object point.  As such, 

they can be treated in much the same way as aberrations in the TEM, and a probe Cs 

corrector can be placed before the specimen in order to allow the beam to be focussed to 

a much smaller point.  As with TEM, aberration correction in the STEM has led to a 

dramatic improvement in performance, with probe sizes of less than 0.1 nm – and 

therefore considerably less than typical interatomic spacings – now possible [153].  The 

significant reduction in probe size not only gives improved resolution, but has the added 

benefit of increasing the peak intensity of the probe, resulting in a better signal to noise 

ratio and therefore contrast in the image. 

 

One major advantage of the STEM over the TEM is that the performance determining 

optics are before the specimen, meaning there is much greater flexibility in the imaging 

conditions used post interaction with the sample. Electrons undergoing low angle 

scattering can be used to build up a bright field (BF) image using a coherent phase 

contrast imaging process similar to the case of HRTEM.  However, incoherent 

elastically scattered electrons are also generated by the electron-nucleus interaction, and 

these can be collected by a High Angle Annular Dark Field (HAADF) detector.  By  

using an annular detector with an inner collection angle > ~ 50 mrad, the electrons 

undergoing Bragg diffraction can be discarded, leading to an image made up almost 

entirely of incoherent elastically scattered electrons.  This imaging technique is known 

as HAADF STEM and is the most common mode of operation of the STEM, with its 

major advantage being that the intensity in the image is strongly sensitive to atomic 

number of the atoms in the specimen.  As the electrons used for BF and HAADF 

imaging are collected by different detectors, it is possible to record both simultaneously, 

whilst the combination of HAADF imaging with EELS allows for the simultaneous 

acquisition of structural and chemical information, resulting in atomically resolved 

elemental maps [168, 169].  
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4.2.1 Z contrast imaging in HAADF STEM 

Electrons collected by the HAADF detector are the result of elastic scattering following 

interaction with the atomic nucleus, and as such can be thought of as being analogous to 

Rutherford scattering.  Geiger, Rutherford and his student Marsden famously discovered 

the atomic nucleus by measuring high angle elastic scattering from a thin gold foil.  This 

observation led Rutherford to derive the differential cross section for elastic scattering 

with a nucleus of atomic number Z as: 

     

  
 

    

            
 

 (4.19) 

where θ is the scattering angle, Ω is the solid angle of collection, e is the electron 

charge, and E0 is the energy of the incident radiation.  When applied to electron 

microscopy, this expression should be corrected for electron screening and relativistic 

effects, however the proportion of high angle electrons collected can be thought of as 

being strongly dependent on the atomic number, Z.  

 

Crewe and co-workers [170] would use this principle in their newly developed field 

emission gun (FEG) STEM to take the first high resolution ADF-STEM images.  After 

using an annular detector to collect the elastically scattered electrons resulting from 

interactions with uranium atoms on a thin carbon support, the Z contrast nature of the 

image intensity enabled Crewe to provide the first images through electron microscopy 

of single atoms [170].  In today’s aberration corrected microscopes, the incoherent 

nature of the HAADF STEM imaging process has recently seen the resolution of STEM 

overtake TEM, and resolutions of < 0.05 nm have been reported [171].      

 

For a crystalline material imaged in HAADF STEM, the intensity of a particular atomic 

column will be directly dependent on the number of protons in that column, and is 

therefore a function of both the atomic number of the element, Z, and the number of 

atoms in the column.  As such, HAADF STEM images contain information about the 

direction parallel to the beam previously inaccessible from other single transmission 

imaging techniques.  Coupled with atomic resolution in the x-y plane, the Z contrast 

nature of the image therefore opens up the possibility of quantitative analysis of the 3D 

structure of nanomaterials with atomic resolution [172].  Also, the Z dependency of the 
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contrast in HAADF STEM provides a chemical sensitivity to the image, allowing clear 

identification of the size, structure and position of highly dispersed additional elements, 

crucial for understanding the role of dopant atoms in semiconductors [173] or supported 

single atoms [174] and clusters [75] in heterogeneous catalysis.    

 

By using an annular detector with a high inner collection angle, the image intensity will 

result from electrons having undergone Rutherford scattering, and therefore should have 

a Z
2
 intensity dependence.  However, in the experimental HAADF STEM image the Z 

dependency is measured as being somewhat less than Z
2
, and this discrepancy between 

the expected and observed intensity has lead to difficulties in quantifying the Z contrast 

image, and therefore the type and number of the atoms present.    For example, recent 

results [175] of atomically resolved boron-nitride doped with carbon and oxygen found 

that the intensity of the atoms in the HAADF STEM image varied with Z
1.64

, and indeed 

this is a fairly typical reported Z dependency of the experimental image.  The difference 

between the observed experimental and theoretical intensity is known as the Stobbs 

factor [176], and its physical origins in HAADF STEM are thought to result from 

possible combinations of electron screening effects, the inclusion of some inelastic 

signal, and reduced intensity due to the signal to noise ratio of the image; whilst 

remaining intensity discrepancies are thought to originate from the nature of thermal 

diffuse scattering [177]. 

 

An additional complication comes from the observed saturation of image intensity with 

sample thickness, and this is again thought to be due to the effects of thermal diffuse 

scattering, coupled with electron channelling effects, causing both absorption and 

oscillations of the electron beam along the column [178].  The non-linear nature of 

intensity with thickness necessitates the close comparison of images with simulations 

that include the effects of thermal diffuse scattering and accurate Debye-Waller factors 

in order to obtain quantitative information from the Z contrast image.  

 

The uncertainty over the Z contrast dependence has therefore meant fully quantitative 

interpretation of intensities in HAADF STEM images has proven difficult.  

Traditionally, comparison between experimental images and simulations required the 

use of an empirical intensity scaling factor [179] used to provide semi-quantitative 
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agreement.  However, recent advances in both the simulation and imaging techniques 

have led to the reports of fully quantitative Z contrast imaging [180], leading to the 

ability to count the number of atoms in each column to ± 1 atom, as well as the 

previously discussed sub atomic resolution in the x-y plane.  

 

The most successful technique used to date has been to place the image intensity on an 

absolute scale by plotting it as a fraction of the incident probe intensity.  This then 

allows direct comparison with simulations, in which the intensity given is normalised to 

the incident beam intensity.  For this to be possible, several careful calibrations are first 

required, including knowledge of the probe width, convergence angle and current; the 

linearity of the HAADF detector response; a preamplifier with sufficient dynamic range 

to include the intensity of the incident probe; and careful control of the image 

processing conditions to ensure no saturation of the contrast with output voltage [181].  

In addition, more accurate simulations of the elastic scattering events are needed.  These 

are now provided by the frozen phonon model [182, 183], using accurate Debye-Waller 

factors that vary as a function of atomic position [184], coupled with incorporating the 

effect of spatial incoherence that results from the finite probe size [184].  Through a 

combination of these experimental and theoretical techniques, it is now possible to 

quantify the number of atoms in a column with up to single atom sensitivity [180]. 

 

4.3  In-situ electron microscopy 

The sub angstrom resolution provided by electron microscopy offers a powerful tool for 

determining the local atomic structure of materials.  However, in the case of 

heterogeneous catalysis, the nature of the atomic structure will be strongly influenced 

by the surrounding environment.  Therefore, to understand the structure-property 

relationships of a working catalyst, information at the atomic scale under simulated 

reaction conditions is needed.  This is the driving force for the development of in-situ 

environmental electron microscopy techniques under controlled conditions of gas 

atmosphere and specimen temperature.   

 

Traditionally there have been two approaches towards simulating reaction conditions 

inside what is usually a high vacuum instrument.  The first is through the use of a 



4. Electron Microscopy 

79 

specially designed holder [185], in which the sample is trapped between two electron 

transparent windows that enclose the gas environment.  One advantage of such a 

technique is that it allows for reasonably high gas pressures, as well as exposure of 

some gases or liquids to the sample which may not be possible using an alternative 

approach.  This makes such environmental cells particularly useful for high pressure 

reactions, or for study of biological specimens in which the presence of water may be a 

necessity.  However, one danger of such a technique is that the thin windows used to 

encapsulate the gas or liquid medium are liable to ruptures, leading to severe potential 

consequences for the microscope.  Thicker windows can be used to somewhat mitigate 

this risk, but will have a detrimental effect on the possible imaging resolution.   

 

The second approach is to use a differential pumping system [186, 187], in which gas is 

inserted into the sample area but then rapidly pumped out above and below the sample 

by additional gas tolerant turbomolecular pumps, quickly recovering the high vacuum 

condition in the rest of the column.  The resulting usable pressure range at the sample is 

somewhat limited in comparison with the environmental cell holder, but essentially the 

performance of the microscope can be maintained to provide clear insight at the atomic 

scale under simulated reaction conditions. 

 

4.3.1 Double aberration corrected environmental EM at York 

The development of aberration corrected microscopes has had important consequences 

for environmental transmission electron microscopy.  In a conventional TEM, the 

spherical aberration coefficient was minimised by reducing the size of the objective lens 

polepiece, meaning there was as a consequence little space to work with around the 

sample.  In order to incorporate additional gas diffusion limiting apertures, or the use of 

a regular heating holder, a sacrifice in the performance of the microscope as a result of 

increased spherical aberration was needed.  However, by subsequent correction of the 

spherical aberration, the polepiece gap can be increased with only a marginal 

detrimental increase in the chromatic aberration coefficient – providing the polepiece 

gap stays within a critical range (2-5  mm at 200kV) [188, 189] – thereby allowing 

much greater flexibility in the microscope design. 
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As well as much improved resolution, aberration correction gives minimal 

delocalisation and a complete range of contributing spatial frequencies in each image 

frame.  The resulting directly interpretable image allows for accurate studies of dynamic 

processes under a controlled environment at the atomic scale, and as such represents a 

major advance for in-situ microscopy.  Additionally, the consistent phase contrast 

means that through-focal series are no longer always necessary; allowing for minimal 

exposure of the sample to the potentially invasive electron beam. 

 

Figure 4.6 is a schematic representation of the environmental (scanning) transmission 

electron microscope, or E(S)TEM, recently developed at the University of York.  The 

design is based on the previous differentially pumped ETEM design of Boyes and Gai 

[186] (and later commercialised by FEI), modified to be compatible with a JEOL 

2200FS FEG (S)TEM equipped with both probe and image Cs correctors.  As such, this 

microscope represents the world’s first double aberration corrected E(S)TEM, with 

resolution of < 0.1 nm in both TEM and STEM modes [188].     

 

Figure 4.6. Schematic diagram of the double aberration corrected E(S)TEM at the University of 

York.  Reproduced from Gai and Boyes [190]. 
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Figure 4.7 is an example of the performance of the probe corrected HAADF ESTEM, 

showing clear atomic resolution of a gold decahedral nanoparticle, in which the nature 

of the multiply twinned structure is clearly revealed in the presence of hydrogen.  The 

exact pressure at the sample, in the range of 0.01 – 0.1 mbar, is still to be precisely 

calibrated, but typically is ~ 0.05 mbar.  This is enough to provide up to 10
5
 monolayers 

of gas per second and therefore to dominate the surface chemistry [190].   

 

Figure 4.8. Comparison of BF and HAADF ESTEM images of gold nanoparticles in hydrogen 

shows the advantage of Z contrast for imaging small particles and clusters. 

In H2 

Figure 4.7. Probe corrected atomic resolution HAADF ESTEM of a multiply twinned gold 

nanoparticle in hydrogen  

In H2 

In H2 
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Importantly, the recent modifications not only incorporate the use of a probe Cs 

corrector, but also allow collection of the full range of high angle elastically scattered 

electrons by the HAADF detector.  This therefore enables atomic resolution Z contrast 

in-situ imaging, and Figure 4.8 clearly shows the advantage of such a technique for 

identification of small particles and clusters often crucial to catalysis.  As well as 

enabling operation in a controlled gas environment, the wider gap polepiece afforded by 

aberration correction provides room for the use of a regular commercial heating holder.  

In the case of the present work, a Gatan 628 tantalum furnace type heating holder has 

been used, capable of delivering 0.1 nm resolution at controlled temperatures of up to ~ 

900°C [188, 189].   
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Chapter 5  

Structural studies of gold nanoparticles 

Studies of gold nanoparticles on two dimensional model supports through aberration 

corrected transmission electron microscopy (AC-TEM) are presented in the following 

chapter, including detailed studies of both the internal structure and external surfaces of 

gold particles in the catalytically active size regime.  Sub-angstrom resolution enables 

clear identification of previously reported active sites, as well as a new structural origin 

for the enhanced reactivity of small gold particles due to electronic band structure 

modifications that result from common particle morphologies.  The identification of 

active sites allows for subsequent studies of their stability in Chapter 6. 

 

5.1 Sample preparation 

3.5 nm thick amorphous carbon supports were deposited on to holey carbon grids in 

order to provide reduced background noise and improved resolution of weak phase 

objects such as small nanoparticles.  The thin carbon films also provide a better defined 

and more uniform support material than conventional carbon TEM grids.  Colloidal 

gold nanoparticles in the size range of 1-10nm suspended in water were then deposited 

on to the support, as shown in Figure 5.1.  Au particles supported on commercially 

available Si3N4 membranes (30 nm) were also used as a basis for comparison.   
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5.2 Gold particle structures 

The Wulff equilibrium shape [96] for FCC metals is an octahedron bound by {111} 

facets, truncated by a cube that adds additional {100} surfaces [97].  This single crystal 

structure is commonly referred to as a truncated octahedron or a cuboctahedron, and an 

example of such is shown in Figure 5.2.  However, at this small size range, surface 

energy terms provide a substantial contribution to the overall energy of the nanoparticle, 

meaning that single crystal structures with higher energy surface facets may not be 

energetically favourable [106].  The inclusion of internal twin boundaries enables 

alternative particle morphologies with reduced surface energies [110]. 

 

In the size range of 2-10 nm the most commonly observed structures of gold are the 

multiply twinned icosahedra and decahedra [191, 192].  As such structures are 

crystallographically forbidden, significant internal strain must be incorporated in order 

to make up for their non-space filling nature [110].  Icosahedra are made up of 20 

tetrahedra bound by three {111} twin planes.  Therefore interpretation of icosahedral 

Figure 5.1. Low Magnification image recorded at x10k showing gold nanoparticles on thin 

carbon film supported on a holey carbon grid. 



5. Structural studies of gold nanoparticles 

85 

images is not straight forward, as the overlap of different tetrahedra precludes a 

common zone axis to the particle.  This is demonstrated in Figure 5.3 – showing 

icosahedra orientated in or close to the 2 fold, 3 fold and 5 fold symmetry axes. 

 

Figure 5.4 is an example of a decahedron, consisting of five crystals each bound by two 

{111} twin planes, whilst {111} re-entrant facets act to further minimise the particle’s  

 

a) b) 

Figure 5.3. Icosahedral gold nanoparticles in or near the 2 fold (a), 3 fold (b), and 5 fold (c) axes. 

Figure 5.2. Gold nanoparticles in the [110] orientation exhibiting single crystal (left) and single 

twinned (right) structures. 

c) 
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surface energy [106].  Here the particle is in the [011] zone axis, meaning that each 

crystal segment is in the same zone axis, with the strain distributed around the rotational 

axis by a disclination in order to make up for the 7.35° missing angle.  A fast Fourier 

transform (FFT) gives a representation of the optical diffraction pattern (ODP) of the 

image, with the twinned structure producing several symmetry related diffraction spots. 

 

5.3 The structural origin of gold nano-catalysis 

The small energy difference between the most common particle morphologies means 

that variations in the local environment or the number of atoms present can produce a 

variety of structures.  Figure 5.5 shows an example of a possible twinning dislocation in 

a gold nanoparticle in the [011] orientation. Such defects may arise due to internal 

stresses during crystal growth or the initial crystallisation.  Tilting of the particle into 

alternative zone axes needed for full displacement vector analysis is avoided due to 

concerns over the effect of the electron beam on the particles atomic structure during the 

long exposure times needed.  However, preliminary displacement vector of the partial 

dislocation bonding the (111) twinning plane can be inferred based on measurements of  

Figure 5.4. A decahedral Au nanoparticle in the [011] orientation with re-entrant facets at the 

twin boundaries (arrowed) and corresponding FFT and structure schematic. 
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the atomic scale planar image and corresponding FFT – which is streaked in the (111) 

direction – and suggests that the Burgers vector of the partial dislocation is of the type 

1/6 [211].  Also clear from the image is the highly stepped nature of the surface.  The 

internal dislocation terminates in a partial terrace at the surface, whilst the rest of the 

surface is regulary stepped throughout the perimeter of the particle.  Such a disordered 

surface structure generates an abundance of low co-ordinated surface sites thought to be 

crucial for the catalytic activity of gold nanoparticles.  The stability of these active sites 

will be the subject of study in Chapter 6 

 

5.3.1 The effect of strain on catalytic properties 

Despite the promising reported catalytic properties of surfaces with support induced 

strain [90, 92, 93, 95], their application on a large scale is unlikely, as the strain will be 

released by the formation of dislocations or reduced by annealing at elevated operating 

temperatures.  Furthermore, the strain will be greatest at the support interface and 

therefore not easily accessible to incoming gas molecules.  However, until now, the 

effect of strain inherent to crystallographically forbidden particle morphologies has been 

largely overlooked when considering origins for the surprising catalytic activity of small 

gold nanoparticles.  As we have seen, for the size range in which gold is catalytically 

active, the most common structures are the icosahedra and decahedra, both of which are 

known to have substantial intrinsic strain.  

Figure 5.5. An as-deposited gold 

nanoparticle with internal dislocation 

(arrowed) and surface steps.  The 

dislocation results in streaking between 

the (111) diffraction spots.  
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Figure 5.6 shows an example of a gold decahedral particle in the [011] orientation 

supported on 3.5 nm thick amorphous carbon.  The directly interpretable single image 

provided by aberration correction allows for minimal exposure of the particle to the 

electron beam.  The particle is approximately 3 nm in diameter, and shows the classical 

Marks decahedral structure [106, 110].  However, truly quantitative analysis of the local 

strain in multiply twinned structures by conventional approaches, such as geometrical 

phase analysis (GPA) [193], is difficult.  The need to define a reference vector leads to 

imposed discontinuities across the crystal boundaries, as seen in Figure 5.7, whilst the 

approach also requires an unstrained reference area to be defined, within which it will 

minimise any phase gradients before comparing with other areas in the image.  This is 

not very practical for a small nanoparticle, let alone one that is internally twinned, with 

each crystal segment only a few atoms across.  The resulting analysis means that one of 

the crystals appears unstrained due to it including the reference area, whilst the strain 

map of the rest of the particle is discontinuous at the twin boundary, leading to the 

observation of apparent strain at the interface.  However, the significant internal strain 

due to the crystallographically forbidden nature of the decahedral particle can still be 

seen qualitatively when compared with the similar analysis of a single crystal particle. 

Figure 5.6.  3 nm Au decahedron with re-entrant facets. 
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5.3.2 Quantitative strain analysis through a real space approach 

In order to provide truly quantitative information on the nature of the atomic column 

displacements that result from inherently strained structures, an alternative approach 

[194] was developed in order to remove the need for a reference area and reference 

vector – and therefore any unphysical discontinuities at the crystal boundaries.  

Working in real space, an initial threshold is put on the image in order to identify the 

atomic columns, and only intensity values above this threshold are selected.  The 

threshold level was carefully adjusted for each image used and several values were tried 

in order to obtain the optimum level.  At this point each atomic column highlighted was 

checked manually in order to ensure that all peaks had been identified; no random bright 

areas had been misidentified as atomic columns; and that there were no spurious peaks 

Figure 5.7. Geometrical phase analysis of Dxy strain in both decahedral and single crystal 

structures. Scale bars indicate 2 nm. 

+8% 

-8% 
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present as a result of intensity variations across the intensity profile of the peak.  Plots 

of the peak intensity integrated across the atomic columns revealed the intensity 

distributions to be Gaussian and symmetrical about the centre of the peak.  Therefore 

the x-y co-ordinate of each atomic column was defined as the centroid of the intensity 

above the selected threshold value.   

 

In order to accurately determine the position of each atomic column a high quality 

spherical aberration free image with consistent phase contrast and minimal 

delocalisation is essential.  The particle must also be orientated in a zone axis in order 

for clear resolution of the individual columns.  The accuracy with which it is possible to 

define the atomic column co-ordinates is the largest identified source of error and 

determines the final uncertainty limits in the measured nearest neighbour distance.  This 

is a random error due to the pixel size (0.01nm) and leads to an uncertainty of ± 3.5% in 

the measured nearest neighbour distance.  Any strain resulting in a bending of the 

column is not directly observable and will lead to a slight averaging of the column 

position.   

  

From this point the x-y co-ordinates of each column are fed into code developed in-

house [194] in order to provide the corresponding nearest neighbour distances.  

Distances are measured only to the immediate neighbouring columns (6 for a bulk 

column in [011] projection), with a limit on the allowed neighbour distance preventing 

measurements to second order neighbours and beyond.  Understanding of the 

crystallography of the particle in question allows us to compare each distance measured 

to the known nearest neighbour distance of bulk gold (0.288 nm) and to analyse both the 

amount of strain with respect to the bulk value and its location.  Whilst the two 

dimensional image only allows analysis of strain in the x-y plane, it can be assumed that 

there is minimal strain in the z direction, as the disclination axis is aligned parallel to the 

direction of the electron beam [194].  For the purpose of correcting measured distances 

in the x-y projection to real nearest neighbour distances it is assumed there is no strain in 

the axis parallel to the beam, whilst no such assumption is needed for inter-atomic 

distances measured between atoms in a plane normal to the beam, as depicted by the 

black lines in Figure 5.8. 
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Using the real space approach of measuring atomic column displacements, the 

corresponding distributions of nearest neighbour distances are plotted in Figure 5.9 for 

both the decahedral (left) and single crystal (right) particles.  The measured atomic 

spacings for the decahedral structure follow a lognormal distribution, with a mean 

nearest neighbour distance (with standard error) of 0.290 ± 0.002 nm, whilst the tail of

 

Figure 5.9. Distribution of nearest neighbour distances measured for a 3nm decahedral particle 

(left) and a 4nm single crystal particle (right). 

3 nm decahedral nearest neighbour distributions Single crystal nearest neighbour distributions 

Figure 5.8.  Atomic column displacements are measured by identifying the x-y co-ordinates of 

each column and measuring the distances from one co-ordinate to the next, correcting for 

crystallographic orientation. 
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the lognormal curve shows a number of positively strained nearest neighbour distances 

measured.  In comparison, the single crystal structure shows a Gaussian distribution 

with a mean nearest neighbour distance 0.286 ± 0.001 nm, with the standard deviation 

being a result of some random error in the analysis that results from the small 

uncertainty in the column position.  However, the range of nearest neighbour distances 

measured is reduced, whilst the larger distances corresponding to areas of large 

expansive strain are missing.  

 

For the 3 nm decahedron, average strain measured as a function of distance from the 

fivefold axis is shown in Figure 5.10, whilst strain maps can be plotted from a xyz 

matrix containing the atomic column positions and the magnitude of the measured 

displacements using the OriginLab graphical software.  Figure 5.11 shows 3D surface 

plots of the measured nearest neighbour distances for both the decahedral and single 

crystal particles.  The 3 nm decahedron exhibits regular expansions of up to 15 ± 3.5%, 

and these highly strained inter-atomic distances predominantly correspond to both 

circumferential and radial strain at the surface.  Corresponding 2D strain maps are 

provided in Figure 5.12 and both these and Figure 5.11b) show that when the need to 

define a reference vector is removed, the location of the twin boundaries is not 

observed, thus showing that the strain is coherent across the twin interface. 

 
Figure 5.10 Average strain measured as a function of distance from the fivefold axis in a 3 nm 

decahedral particle. 



5. Structural studies of gold nanoparticles 

93 

From both Figure 5.10 and Figure 5.11b) some expected compression is observed near 

the crystallographic centre, whilst an average expansive strain of 5.6% is found at the 

surface.  The large error bar corresponding to the average surface strain value indicates 

the larger distribution of nearest neighbour distances measured at the surface.  The d 

band model [85] suggests that changes in the local lattice parameter of this magnitude 

will have a profound influence on the band structure of the particle and thus on their 

physical and chemical properties. These effects are attributed to the inherent strain 

associated with the crystallographically forbidden nature of the structure and are larger 

than anything previously reported due to interface strains [94].  Accordingly they may 

be amongst the more important factors in practical catalytic applications; since they are 

both the largest effects known to have been reported to date and they affect directly the  

Figure 5.11. AC-TEM images of a decahedral particle (a) and single crystal particle (c) with 

corresponding strain distributions (b and d). Scale markers indicate 2 nm. 
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free outer surfaces exposed for reactions with gas molecules. 

 

As a basis for comparison, a single crystal gold nanoparticle in the [011] orientation is 

shown in Figure 5.11c).  This particle is again as-deposited, and prepared and imaged 

under the same conditions as the decahedral particle.  Here the single crystal structure 

should have no inherent strain, and therefore any strain measured will be a consequence 

of beam induced atomic rearrangements, an artefact of the analysis or the effect of 

electronic density redistribution due to surface stress and high surface to volume ratio of 

the nanoparticle [195].  Analysis of the single crystal structure shows the particle is 

largely unstrained, whilst some small contraction relative to the bulk nearest neighbour 

distance (0.288 nm) can be expected at this size range [196]. The surfaces of the single 

crystal particle are generally unstrained or slightly compressed, whilst the few areas that 

show expansion at the surface set an upper limit on non-structure specific strain and 

apparent strain induced by the imaging or analysis process.  However, by comparing the 

Figure 5.12. 2D strain maps of both decahedral (left) and single crystal (right) structures. 
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strain maps in Figure 5.11(b) and Figure 5.11(d) it is clear that the single crystal 

structure, measured in the same way, exhibits nothing like the strain of the 

crystallographically forbidden decahedral particle, and that the surface of the decahedral 

particle is highly strained compared to the surface of the single crystal.   

 

Through similar analysis of the larger 9 nm decahedron shown in Figure 5.4, it is 

possible to study the effect of particle size on the distribution of strain throughout the 

decahedral structure.  Both GPA and real space measurements of atomic column 

displacements are shown in Figure 5.13, and again it is clear that there is compressive 

strain surrounding the fivefold axis, with expansive strain observed at the surface.  

Furthermore, in the real space analysis no strain is detected across the majority of the 

twin boundaries, with the uppermost tetrahedron exhibiting some small compression at 

each edge as a result of lattice plane alignment following partial coalescence with 

another particle.  This is in direct contrast with the GPA results, which show strain at 

the twin boundaries as a result of the reference vector changing at the interface.  

 

The mean atomic column displacements as a function of distance to the centre of the 

particle for both the 3 nm and 9 nm decahedra are shown in Figure 5.14.  Both particles 

show similar compression of nearest neighbour distances by ~2% at the centre.  

However, a gradual expansion of nearest neighbour distances is observed in the larger 9 

nm decahedron as we move towards the surface, resulting in an average expansive 

surface strain of ~3%.  In contrast, the 3 nm decahedron exhibits significantly expanded 

Figure 5.13. GPA (Dxy left) and in house (right) strain maps of a Marks decahedral nanoparticle. 
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nearest neighbour distances at the surface, with an average surface strain of ~6% and 

many surface atom column positions strained by more than 10%.  Such highly strained 

surface atoms are expected to act as initial active sites for adsorption of reactant 

molecules, meaning that the activity of inherently strained structures such as the 

decahedra will diminish with increasing particle size.  This conclusion correlates well 

with the reported catalytic properties as a function of particle size [46].  

 

5.3.3 Calculations on the effect of strain on catalysis 

In order to quantify the effect of such large surface strains intrinsic to the decahedral 

structure, density functional theory has been used
1
 to calculate the adsorption energy for 

CO on Au(111) surfaces with strain increasing up to 15% [194].  Ground state 

calculations were carried out by VASP code [197, 198] based on density functional 

theory (DFT) [199]. The electron-ion interaction was represented by the projector 

augmented wave (PAW) method [200], and the generalized gradient approximation 

(GGA) [201] is used for formalism of the exchange-correlation term. Configurations of 

valence electrons are 5d
10

 6s
1
 for Au, 2s

2
 2p

2
 for C, and 2s

2
 2p

4
 for O. Basis functions 

include plane waves up to kinetic energies of 400 eV.  All atomic configuration figures 

related to DFT calculations were produced using the visualization program VESTA 

[202]. 

                                                 

1
 DFT calculations were provided by collaborators Drs A. Kuwabara and K. Yoshida from the Japan Fine 

ceramics centre, Nagoya, Japan  

Figure 5.14.  Strain measured as a function of distance from the fivefold axis for 3nm (left) and 

9nm (right) Au decahedra. 
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Here we present an investigation of the adsorption energies of CO on both Au (111) and 

15% strained Au (111) surfaces.  Figure 5.15 shows a slab model used in the present 

study. This model is a c(48) (111) surface cell constructed from an optimized FCC unit 

cell of a bulk Au (a=0.4172 nm) obtained from preliminary calculations. The slab 

model includes 2 surfaces, 9 layers, and a vacuum layer with a thickness of 1.7 nm.  The 

mesh of k-point sampling in the Brillouin zone was 4 × 4 × 1 based on the Monkhorst-

Pack scheme [203]. This set satisfies that convergence of calculated adsorption energy 

against number of k-points becomes lower than 5 meV. Before adsorption, structural 

relaxation was carried out for a clean surface by freezing atomic positions at the centre 

of the slab model until residual forces on all atoms except those that are fixed became 

less than 0.2 eV/nm. 

 

CO adsorption energies were calculated using: 

Ead = E(surface with adsorbed CO) – E(clean surface  + free CO) (5.1) 

with the carbon atom bound to an on top site of the Au(111) surface.  The initial 

distance between C and Au atoms was 0.2 nm. Atomic positions of an adsorbed CO 

molecule and Au atoms in the 4 layers from the adsorption surface were optimized with 

the same condition as that for the clean surface. 

Figure 5.15. Au c(48) (111) surface cell used for adsorption 
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To investigate the effect of strain on adsorption of CO the Au c(48) (111) surface cell 

was expanded by 5%, 10% and 15% in each direction of the (111) plane. The pristine 

strained-surface cell was then optimized in the vertical direction to (111) plane, as 

shown in Figure 5.16.  CO adsorption energies on the strained-Au (111) slabs were 

evaluated under similar calculating conditions to the free-strain surfaces. 

 

For the unstrained Au(111) surface the CO adsorption energy was found to be -0.31eV, 

in good agreement with previous reports
 
[80].  Upon the introduction of 5% strain, the 

adsorption energy increases in magnitude to -0.58eV, whilst increasing the strain 

towards the larger amounts observed at the decahedral surface causes the magnitude of 

the adsorption energy to increase exponentially, as shown in Figure 5.17.  At 10% strain 

the adsorption energy is -2.72eV and reaches -6.40eV by 15% [194].  Upon adsorption 

on the heavily strained surfaces the calculations predict significant atomic 

rearrangement, with nearest neighbour distances contracting towards the bulk values, as 

seen in Figure 5.18. 

 

Subsequent adsorption energies calculated on these restructured surfaces are 

significantly reduced and are comparable to those calculated for 5% strain.  However, 

the calculations are performed on a model slab, effectively with infinite lateral 

dimensions and free from the structural constraints experienced by the decahedral 

particle.  Furthermore, these values are based on a surface expanded in all directions, 

whilst the expansion of inter-atomic distances observed is inhomogeneous and surface 

Figure 5.16. Initial configuration of the 15% strained gold slab used. 

C 

O 
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atoms may be heavily strained in relation to one nearest neighbour but less so to 

another.  A detailed theoretical study including the fixed twin boundaries and variable 

inter-atomic distances measured is beyond the scope of the current study.  However, 

after binding to the strained active site it can be expected that adsorption may act as a 

trigger for surface atom movement and possibly internal restructuring at higher 

temperature and pressures.   

 

Figure 5.18. Restructuring of 15% strained Au(111) surface upon CO adsorption calculated by 

DFT  

Figure 5.17. DFT calculations of the effect of strain on the adsorption energy for carbon 

monoxide. 
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5.4 Chapter conclusions 

It is clear that inducing a strain to a metal surface can significantly enhance the 

performance of a catalytic material.  Previous studies seeking to explain the surprising 

activity of small gold nanoparticles have largely overlooked the effect of strain, and the 

only strain to be considered has been the relatively small support induced strain.  The 

multiply twinned icosahedral and decahedral structures are regularly observed and are 

expected to be the most stable forms of gold nanoparticles in the size range for which 

gold is chemically active.  However, the nature of their crystallographically forbidden, 

non-space filling structure has been until now overlooked when considering the origin 

of the catalytic activity of small gold nanoparticles.   

 

The results in this chapter quantitatively describe the substantial inherent strain in a 

decahedral Au particle in the size range for which gold is chemically active.  The strain 

is found to be greatest at the surface, with an average surface strain of 5.6% and many 

instances of 10% or greater surface expansion measured for a 3 nm particle.  DFT 

calculations show that such surface strain will have a major impact on the adsorption 

energy of CO and therefore activity for carbon monoxide oxidation.  These results 

provide further explanation of the dramatic increase in the catalytic activity of gold 

nanoparticles in this size range and further highlight the structural sensitivity of their 

properties. 
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Chapter 6  

In-situ heating of model gold catalysts 

6.1 Structural deactivation mechanisms 

The inherently unstable nature of small metal nanoparticles is a major obstacle in the 

pursuit of active, selective, durable and economical catalysts; as a variety of 

deactivation mechanisms can contribute to an overall loss of catalytic performance.  

Poisoning or carbon lay-down can often be alleviated by regeneration of the catalyst in a 

suitable environment, whilst the effect of traditional sintering mechanisms, such as 

particle migration and coalescence, and of Ostwald ripening [15, 204], can be reduced 

by sophisticated supporting materials that provide anchoring sites, either by chemical or 

topographical means.  However, as the activity and selectivity of the catalyst will be 

governed by the nature and number of the active sites found on the nanoparticles, the 

evolution of such sites must also be considered at the atomic scale. 

 

6.1.1 Loss of low co-ordinated sites 

Highly stepped surfaces of as-deposited particles, such as those shown in figure 5.5, 

provide many potential active sites for catalysis.  However, the stability of such sites 

under simulated reaction conditions needs to be carefully considered.  Low co-

ordination surface atoms result in higher surface energies due to the greater number of 

broken bonds.  Whilst particle-support interactions and the presence of additional 
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surface groups undoubtedly complicate the overall particle energetics [113], on this 

model system with a weakly interacting support we consider just the contribution of the 

particles surface energy.  By rearranging the expression given in equation 3.6 [109], the 

surface energy can be described as a function of the co-ordination number of each 

surface atom i.  Summing over the surface of the particle gives: 

 
coh
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  (6.1) 

where ZB is the bulk co-ordination number (ZB  = 12 for gold), Zi is the co-ordination of 

the surface atom and Ecoh is the cohesive energy between two neighboring atoms.  For a 

gold surface atom the greatest co-ordination number, Zi, is 9 and found on a {111} 

surface facet.  Therefore it can be expected that Au surfaces will attempt to minimise 

their surface energy by removing under co-ordinated surface atoms and creating {111} 

surface facets. 

 

This process is observed in figure 6.1, where the electron beam provides enough energy 

to allow surface atoms to overcome the energy barrier associated with surface atom 

movement.  Such an energy barrier will decrease with co-ordination number, meaning 

the most catalytically active low co-ordination sites are likely to be the first to rearrange 

towards reduced energy and activity. 

 

Through the use of a heating holder this process can be studied at controlled elevated 

temperatures and over longer periods of time with minimised electron beam effects.  

Figure 6.2 is an example of a gold nanoparticle in the [011] orientation that has been 

heated to 600°C in-situ and shows the full extent of energy minimisation as a result of 

heating.  At elevated temperatures surface energy anisotropy is reduced, meaning that 

inherently strained structures bound by {111} surfaces may no longer be energetically 

favourable.  This makes transitions to single crystal particles, such as the cuboctahedral 

particle shown in Figure 6.2, more likely, as the minimal strain involved with such 

structures – shown by the corresponding GPA analysis – becomes energetically 

preferable at higher temperatures to a non-space filling structure bound predominantly 

by {111} surfaces. 
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The {111} and {100} surfaces exposed will then minimise their surface energy by 

creating almost atomically clean facets.  This removal of both strain and low co- 

ordination atoms is expected to lead to a deactivation of the nanoparticle’s catalytic 

activity without any necessarily associated significant increase in size or loss of surface 

area.   

 

The activity of catalysts is often observed to drop significantly shortly after coming 

online, before stabilising, and gradually decreasing over time through traditional 

sintering processes such as particle migration and coalescence or Ostwald ripening, 

 

Figure 6.2. A cuboctahedral nanoparticle in the [011] orientation with atomically clean facets 

observed after heating to 600°C, with GPA analysis (right) showing minimal (Dxy) strain. 

Figure 6.1. Re-arrangement of Au surface atoms towards high co-ordination planar {111} surface 

facets as a result of heating by 200kV electron beam. 
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whilst higher calcination temperatures often result in catalysts with a reduced initial 

activity [83].  This initial loss of activity may be attributed to structural deactivation 

mechanisms such as those described above, before the nanoparticles find an 

energetically favourable morphology and the performance of the nano-catalyst stabilises 

at a lower level [205].    

 

6.1.2 Relaxation of strain 

Several mechanisms through which decahedra may minimise elastic energy have been 

proposed, including the development of wedge shape stacking faults, decomposing the 

disclination into two weaker disclinations, development of a central region without a 

disclination and shifting the pentagonal axis towards the surface [206, 207].  The 

incorporation of stacking faults and multiple disclinations is known to occur in large 

decahedra; however the mechanisms by which small decahedra relevant to catalysis 

reduce their elastic energy is unclear.   

 

Equation 3.8 shows that the elastic energy of decahedra can be reduced by shifting the 

rotational axis towards the surface of the particle, with the migration of the disclination 

towards the particle surface expected to occur through the climb of an edge dislocation 

into the particle towards the rotational axis [110, 208].  Figure 6.3 shows a sequence of 

in-situ images of the same particle throughout a range of temperatures, with the particle 

exposed to the beam only for the minimum time necessary for imaging at each 

 

Figure 6.3 In-situ heating shows 

transition from icosahedral to 

decahedral structure at ~400°C, 

followed by shifting of the fivefold 

axis between 750°C and 800°C. 
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temperature step.  The particle is initially icosahedral, imaged here off its symmetry 

axis.  At between 300°C and 400°C the particle transforms to the Marks decahedral 

structure, before remaining structurally stable up to 750°C, whilst the particle has 

increased in size due to growth consistent with a ripening mechanism.  Between 750°C 

and 800°C, the fivefold axis is observed to shift towards the surface of the particle, 

allowing for a reduction in elastic stress that results from the inherently strained 

structure [205]. 

 

Higher resolution images obtained ex-situ allow more detailed analysis of decahedra 

with displaced rotational axes and measurement of the resulting atomic displacements.  

Figure 6.4 shows a decahedral particle with the fivefold axis located less than 1nm from 

the lower right corner, alongside measurements of average surface strain plotted as a 

function of distance from the disclination axis.  The surface up to 1 nm from the axis is 

found to be highly strained, with nearest neighbour distances expanded by ~6% on 

average, comparable with the surface strain previously measured in a small decahedron 

1.5 nm in radius [194].  Further from the axis, the surface strain is approximately halved 

and is similar to that of the particle in figure 5.4.  Furthermore, aberration corrected 

annular dark field (ADF) STEM, in which for small particles the contrast is dependent 

on the number of atoms in the column, indicates that the maximum thickness of the 

particle corresponds to the position of the rotational axis, even when it is displaced 

towards the surface, as seen in Figure 6.5 [205].                  

 

Figure 6.4. A decahedral particle with fivefold axis shifted close to the surface (left) with 

average surface strain as a function of distance to the axis (right). 
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6.2 Sintering of gold nanoparticles 

6.2.1 Particle migration and coalescence 

A statistical approach to determining how particle size distributions change as a 

function of temperature was carried out using in-situ HAADF-STEM images taken at 

low magnification at various positions of the sample.  The advantage of this method is 

that it negates any effects of the electron beam, as each image is obtained from an area 

of the sample that had previously not been exposed to the beam, whilst the strong Z 

contrast of the Au particles compared to the support allows for easy identification and 

analysis of the particles.  Also by taking images from various parts of the sample, more 

representative data is obtained and we ensure that the conclusions drawn are common to 

the whole sample, rather than just a given local area. 

 

Colloidal Au nanoparticles supported on Si3N4 are shown in Figure 6.6, with significant 

sintering observed between 400°C and 520°C leading to the mean particle size 

increasing from 7.51nm to 15.2 nm.  However, for details of the sintering mechanisms 

at work, or information regarding the structure of the particles throughout this process,  

Figure 6.5. ADF STEM image of a decahedral particle.  Z contrast dependent intensity reveals 

maximum thickness at the off-centre fivefold axis. 
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higher magnification studies are required of the same area throughout a range of 

temperatures.  

 

In-situ heating of the same area of Au nanoparticles supported on thin carbon is shown 

in Figure 6.7.  Sintering is observed to occur predominantly through particle migration 

and coalescence, with an increase in mean particle diameter from 3.37 nm to 5.22 nm 

and a 53% reduction in the number of particles present in the area observed.  The 

relatively weak interaction between the particle and the amorphous carbon support 

makes the particles easily mobile at these temperatures, therefore enabling coalescence.   

 

Figure 6.8 shows Au particles supported on carbon at 25°C and 700°C.  As particles 

migrate and come in to contact there is a parallel alignment of the {111} crystal planes; 

facilitating the minimisation of surface area through coalescence.  This is consistent 

with previous observations [188]. 

 

 

Figure 6.6. In-Situ ADF-STEM of Au on Si3N4 
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Figure 6.8. In-Situ TEM shows Au nanoparticles coalescence via the parallel alignment of {111} 

planes. 

Figure 6.7. In-Situ TEM of Au on carbon 
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6.2.2 Ostwald Ripening 

Ostwald ripening is a well known deactivation mechanism for nano-catalysts.  The 

atomic or small cluster transport from one particle to another causes some particles to 

grow at the expense of others that shrink and may eventually disappear – leading to an 

overall loss of surface area available for reactions.   

 

The same area of gold nanoparticles on Si3N4 membranes is shown throughout a range 

of temperatures in Figure 6.9, and from these images it appears the particles are much 

more stable than those reported earlier in figure 6.6.  This is attributed to a build up of 

contamination under the electron beam over the prolonged exposures used, which then 

prevents particle migration.  These results therefore show how the electron beam can 

influence the results obtained and highlight the importance of checking in-situ 

observations with reference areas not exposed to the beam, and inform the in-situ 

 
Figure 6.9. In-Situ TEM of 5nm Au on Si3N4. Red circles indicate clusters < 1nm. 
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methods used in Chapter 8 for studying the stability of real metal-oxide supported nano-

catalysts.  

         

Despite the stabilising effects of the contamination drawn in by the electron beam, some 

particle migration and coalescence is observed at ~180°C, followed by predominantly 

Ostwald Ripening at higher temperatures.  Between 200°C and 500°C the number of 

small particles and clusters, approximately 1nm in diameter, is significantly increased.  

This is indicative of Ostwald Ripening, resulting in an almost bimodal particle size 

distribution.  However these small particles and clusters observed are not previously 

larger particles that have reduced in size, but the build up of atoms or small clusters that 

have migrated from their original particle and become trapped on the Si3N4 surface.  

The stability of these clusters up to 500°C suggests that they are well anchored on the 

support, possibly nucleating on point defects induced by the beam.  Above 500°C, the 

trapped clusters and small particles have sufficient energy to continue to migrate across 

the surface and rejoin a larger particle, as seen in the marked reduction of 1nm particles 

present above 500°C.  From 200°C onwards the mean particle diameter is constant, 

within error, whilst the standard deviation of the particle size increases from 1.15nm to 

1.36 nm, before reducing back to 1.09 nm at 670°C, consistent with the above 

conclusions. 

 

The migration of atomic species and small clusters from their original particle can be 

understood further through atomic resolution in-situ imaging.  Figure 6.10 is an in-situ 

sequence showing two small Au nanoparticles less than 2nm in diameter, undergoing 

structural rearrangements from (a) to (c) under beam heating.  Figure 6.10(b) informs 

the intermediate stage, with disordered particle structures observed and evidence of 

single atoms migrating from the particles (appearing as black dots on the thin 

amorphous carbon film under slightly negative defocus).  The driving force for the 

removal of atoms away from the particle is proposed to be either minimisation of the 

particles surface energy, meaning surface ad-atoms and steps will be removed in order 

to create atomically clean facets, or structural transitions in which the number of atoms 

required for the new minimum energy structure may be slightly different.  The resulting 

free atoms then migrate across the support until joining another particle. 
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Whilst overall loss of surface area and hence activity is often the result of Ostwald 

ripening, the existence of single atoms and small clusters on the surface of the support 

during the intermediate stage has interesting implications for catalysis, with recent work 

attributing excellent catalytic performance to the presence of single atoms or small 

clusters [75, 132, 174].  Through the use of a support material with an abundance of 

anchoring sites, such as oxygen vacancies in reducible metal-oxide supports, migrating 

atoms may be stabilised on such defects and provide further active sites for adsorption, 

with the nanoparticles main role in this case being to act as a reservoir of potential 

atoms and clusters.   

 

6.3 Chapter conclusions 

Both expansive surface strain and low co-ordination surface atoms are known to 

enhance the catalytic activity of small gold nanoparticles.  Through in-situ aberration 

corrected electron microscopy the stability of these active sites has been studied as a 

function of temperature.  Minimisation of surface energy leads to the removal of under 

co-ordinated surface atoms in favour of atomically clean facets, and such a process is 

proposed to contribute to the often observed initial drop in activity of nano-catalysts.  

The significant elastic strain energy inherent to the non-space filling decahedral 

structure is reduced by heating, and the mechanism by which this occurs in small 

decahedra relevant to catalysis is observed to be a shifting of the disclination axis 

towards the surface.  Furthermore the reduction in surface energy anisotropy at higher 

Figure 6.10. Two small nanoparticles are observed to change structure from (a) to (c) as a result of 

heating. Image (b) informs the intermediate stage, as the removal of a few surface atoms causes a 

different particle structure to be energetically favourable.  Evidence of the migration of single 

atoms is seen in (b), with single atoms appearing as black dots in the under focussed condition. 
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temperatures may lead to structural transitions away from intrinsically strained 

morphologies.  

 

Model systems of Au particles on two dimensional supports allow for insight at the 

atomic level into both coalescence and Ostwald ripening sintering mechanisms.  These 

results also show how the electron beam can have a stabilising effect on the particles, 

either by drawing in contamination or creating a defective support surface with a greater 

density of anchoring sites for small particles, and these results will inform the studies of 

industrial catalysts in Chapter 8.  Careful consideration of the stability of the identified 

active sites, coupled with further understanding of sintering processes that result in a 

loss of catalytically active surface area, should allow for the development of more 

active, durable and economically viable catalysts.           
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Chapter 7  

Nano-ceria supported gold catalysts 

The exceptional catalytic properties of gold supported on nano-crystalline ceria offer 

great promise for the economical production of hydrogen via the water-gas shift 

reaction, as well as being an excellent low temperature CO oxidation catalyst to remove 

poisonous carbon monoxide from the hydrogen stream in fuel cells [125, 131].  The 

high activity with very low Au loadings of such catalysts may facilitate a large 

reduction in the cost of fuel cells, which is certainly needed if fuel cell technology is to 

become commercially viable [63].  As discussed in Chapter three, there is still no 

agreement in the literature on the nature of the active site of Au/CeO2 catalysts.  The 

presence of cationic gold seems to be accepted as a prerequisite for high activity, but 

whether this is in the form of single atoms [132] or clusters [136], and whether these act 

as the active species [140] or a precursor [65] for the active phase is unclear.  In the 

following chapter, aberration corrected TEM and HAADF STEM are used to 

characterise these catalysts at the atomic scale, whilst the atomic number dependent 

contrast of HAADF STEM imaging offers an insight into the nature of the Au species 

and its interaction with the supporting ceria. 

7.1 Sample preparation 

The Au/CeO2 samples discussed in the following chapter were prepared and provided 

by collaborator Dr Shiju [209].  The ceria nanocrystals were prepared by precipitation 
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of cerium nitrate, followed by deposition of the Au (~ 2 weight %) by insipient wetness 

of the ceria with an aqueous solution of HAuCl4.  The resulting material was calcined at 

400°C. 

 

XPS analysis (provided by Johnson Matthey Plc) showed a peak at ~ 86 eV, consistent 

with the presence of gold in the Au
+3

 state (see Figure 3.11 for reference).  Therefore 

the highly dispersed cationic gold supported on nano-ceria is in the same form as 

previous Au/ceria catalysts reported to have exceptional activity for the water-gas shift 

reaction. 

 

7.2 Structural analysis through electron microscopy 

As we can see from Figure 7.1, the as-prepared sample is made up of very small ceria 

crystallites, typically < 10 nm in diameter.  The small size of the ceria crystals not only 

makes for a very high surface area catalyst, but also provides a high proportion of under 

co-ordinated corner atoms.  These corner atoms, as well as low co-ordination atoms 

found at surface steps and terraces, are expected to facilitate the formation and filling of 

vacancies in the surrounding oxygen sites [126]. 

 

Analysis of a series of images in Figure 7.2, taken over the course of approximately two 

minutes, show movement of surface cerium atoms, as irradiation by the electron beam 

 Figure 7.1. TEM images showing the nano-crystalline ceria support 
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provides sufficient energy for the ceria crystal to minimise its surface energy by 

removing low co-ordination atoms in favour of atomically clean facets.  The top two 

images show that surface atom movement occurs initially on the (001) surface, which is 

higher in energy and therefore less stable, followed by removal of surface steps and 

filling of the corner atom position along the (111) surface. 

 

The observation of surface atom instability has important implications for the electron 

beam exposure times used.  Through reconstruction of the exit wavefunction of the 

electron beam, Haigh et al [210] directly showed that the ceria {111} surface is oxygen 

terminated, whereas the {001} surface is cerium terminated.  However, such a technique 

requires the acquisition of a through focal series of images, making surface atom 

movement as a result of electron beam irradiation likely on small ceria crystallites.  

Consequently, exposure to the electron beam was kept to a minimum for the following 

studies. 

Figure 7.2. Electron beam induced surface atom movement of nano-ceria. 



7. Nano-ceria supported gold catalysts 

 116    

 

Measurements of lattice parameters observed in atomic resolution TEM images reveal 

the presence of small gold nanoparticles that are already formed in the precursor 

sample, and examples of these are indicated in Figure 7.3. 

 

The use of HAADF STEM coupled with localised chemical analysis further verifies the 

presence of metallic gold particles in both the precursor (Figure 7.4) and calcined 

(Figure 7.5) samples.  The circled particle in Figure 7.4 is not only brighter in the Z  

 

Figure 7.3. TEM observations of metallic Au particles on ceria. 

Figure 7.4. HAADF STEM reveals presence of Au nanoparticles in the precursor sample. 
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 contrast image, but appears to be icosahedral in structure, imaged close to the two fold 

symmetry axis (see figure 5.3a for reference).  Furthermore, the atomic resolution 

HAADF STEM image reveals lattice spacings matching the Au(111) spacing of 0.235 

nm, whilst localised EDX analysis of the calcined sample in Figure 7.5 shows strong Au 

peaks in points 2 and 3, compared with the reference area in point 1. 

 

7.2.1 Imaging oxygen atoms in AC-HRTEM 

The recent development of negative spherical aberration imaging (NCSI) [167] made 

possible by aberration correction allows accurate observation of oxygen atom positions 

in the metal oxide support; opening up new possibilities for in-situ study of reduction 

and oxidation processes critical to many catalytic reactions.  In Figure 7.6 we can see a 

slightly over focussed image on the left, in which the cerium and oxygen atomic 

columns in [011] orientation are not perfectly resolved, appearing instead as a bright dot 

consisting of both cerium and oxygen atoms.  Through careful control of the defocus to 

marginally above zero (~+5 nm), the individual columns are now resolved, with the 

previous over focussed bright dots splitting into one cerium and two oxygen columns. 

Figure 7.5. STEM-EDX of the calcined sample reveals the presence of metallic gold particles. 
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Ceria crystals in the [001] zone axis perhaps offer clearer resolution of the oxygen 

columns due to the maximised distance between the cerium and oxygen positions in this 

projection.  This is shown in Figure 7.7, in which the oxygen columns are clearly 

resolved, whilst a HRTEM multislice simulation (inset) calculated using the JEMS 

image simulation software [211], (thickness = 12 nm, defocus = +10 nm) closely 

matches the experimental image.   

Figure 7.7. Imaging of bulk oxygen atoms in CeO2 [001] with corresponding multislice 

simulation (inset). 

 

Figure 7.6. Revealing oxygen atoms through AC-HRTEM 
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Modifications to the microscope [188] allow the introduction of small pressures of gas 

to the sample with minimal effect on the imaging performance.  A CeO2 crystal, again 

in the [001] orientation, is shown in hydrogen in Figure 7.8.  The internal structure, 

including the position of the oxygen columns, is clearly resolved and directly 

interpretable from the individual image frame.  This is key for future in-situ studies, in 

which the dynamical environment rarely allows for the acquisition of through focal 

series, whilst the extended exposure of the electron beam is generally unwanted.  This 

capability makes the direct in-situ observation of oxygen defect formation, as well as 

structural changes as a result of reduction or oxidation, possible.  However, the elevated 

temperatures such processes often require, such as bulk CeO2 ↔ Ce2O3, necessitate the 

use of a heating holder, currently adding further instabilities and limits to the resolution. 

 

Unfortunately, using this single image technique, identification of surface oxygen atoms 

has proved elusive.  This is illustrated by Figure 7.9, which again shows a small ceria 

crystal in the [011] zone axis, with bulk oxygen columns clearly visible.  However, at 

the edge of the {111} surfaces there is no evidence of the expected oxygen atoms.  It 

seems that from the single TEM image, the presence of oxygen atoms does not have a 

large enough effect on the phase of the electron wavefunction to be detectable, and that 

reconstruction of the exit wavefunction is needed.  This is largely due to the loss of 

electron channelling through the specimen at the surface, whilst the surface is likely to 

 
Figure 7.8. Bulk oxygen atoms in CeO2 observed in-situ in Hydrogen. 



7. Nano-ceria supported gold catalysts 

 120    

be the thinnest area of the crystal, and therefore have the fewest number of atoms in 

each column with which the electron wavefunction can interact.  Therefore, direct 

observation of the formation and filling of surface oxygen vacancies under a gas 

environment was not possible in the present study.  Future work may utilise exit wave 

restoration for the in-situ study of the position and stability of surface oxygen atoms.  

However careful calibration of the electron beam effects will be needed, as well as 

possible modifications to the imaging conditions – such as the energy of the electron 

beam and the number of images needed for exit wave restoration.     

 

7.2.2 Identifying the active site – single atom detection through HAADF STEM 

Whilst some small metallic gold nanoparticles are observed through HRTEM, previous 

studies have shown that the removal of metallic gold had no effect on the resulting 

catalysts activity, and therefore metallic particles were not the predominant active 

species for the water-gas shift reaction [132].  Further to this, XPS analysis indicates a 

strong presence of Au
+3

, and it is this cationic gold that can be expected to be critical for 

high catalytic activity [132, 136, 140, 141].  The dependence of image contrast on 

atomic number in HAADF STEM makes possible the identification of heavy single 

atoms [174] or small clusters [75] on a lighter support.  Despite ceria having a 

significantly higher atomic number than iron oxide or other supporting materials that 

Figure 7.9. AC-HRTEM reveals bulk oxygen atoms, but surface oxygen atoms remain elusive 

from the single image. 
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this technique has been successfully applied to in the literature, the atomic number 

difference of Au (Z=79) to Ce (Z=58) should make possible the identification of any 

small clusters or single Au atoms on thin ceria supporting crystals. 

 

As the intensity of the HAADF STEM image is dependent on the total number of 

protons in the atomic column, any local thickness variations will also lead to changes in 

intensity of the observed columns.  This can be seen in Figure 7.10, and clearly shows 

that any observed intensity increase must be in relation to a flat and therefore uniform 

intensity background in order for it to be attributable to the presence of gold.       

 

Analysis of many atomic resolution HAADF STEM images of the Au/CeO2 precursor 

sample in this case did not reveal the presence of any small Au clusters.  However, by 

carefully selecting thin areas of the supporting ceria with minimal thickness variations, 

the presence of Au single atoms can be investigated through analysis of any observed 

contrast increase.  Figure 7.11 shows an example of two such areas chosen.  Line 

profiles of the measured atomic column intensities reveal an increase in intensity of 

certain individual columns by ~ 40% in relation to their surrounding neighbours.  This 

intensity increase is relative to either a uniform intensity of neighbouring columns or at 

times a slightly decreasing intensity of the line profile that results from a small 

reduction in thickness.  Therefore the relatively large intensity increase observed in 

certain atomic columns is greater than anything that can be related to thickness 

variations, since such a large change in the number of atoms from one column to the 

next is unphysical.   

Figure 7.10. Z contrast STEM is sensitive to thickness variations as well as increasing atomic 

number, as shown by the intensity profile (right) across the ceria crystal. 
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Furthermore, each atomic column comprises several pixels in the image, with the 

intensity of each column resulting from multiple probe positions each causing many 

elastic scattering events that are detected by random parts of the annular detector.  

Therefore, the increase in intensity of certain columns cannot be attributed to a random 

error in the detector response or the image processing.  The chances of multiple pixels,

some of which are on different scanning lines (and therefore obtained 20 milliseconds 

apart), each having a random increase in measured intensity compared to the expected 

background intensity levels is very low.  Consequently, the observed increase in atomic 

column intensities can be attributed to the presence of single gold atoms, whose higher 

atomic number increases the overall atomic weight, and therefore intensity, of the 

columns in the HAADF STEM image.  It is also observed that these increased 

intensities correspond exactly to the expected position of the cerium column, as opposed 

to the oxygen column position or causing a spreading of the measured intensity profile.  

The evidence therefore suggests that the cationic gold is in the form of single gold 

atoms that substitute for Ce sites, as opposed to being anchored on oxygen vacancies or 

being in the form of Au clusters.  This observation is in agreement with theoretical 

Figure 7.11. Atomic resolution HAADF-STEM imaging reveals bright columns, indicating the 

presence of single Au atoms. 
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calculations that suggest substituting into a cerium vacancy is the most energetically 

favourable position for a single Au atom supported on CeO2 [135, 137].        

 

In the present study, the observed intensity difference between Ce columns and Ce 

columns proposed to contain a single Au atom is a relative intensity difference, with its 

magnitude a consequence of, amongst other things, the image acquisition and 

processing conditions.  The image acquisition software available as standard on current 

electron microscopes removes much of the background signal, and therefore stretches 

the observed intensity difference.  The available dynamic range is insufficient to enable 

inclusion of a full range of detected intensities, meaning the measured intensity 

differences are relative as opposed to absolute  As such, comparisons of conventionally 

acquired HAADF STEM images, such as those presented here, with simulations do not 

agree quantitatively, meaning the images can only be interpreted in a qualitative 

manner.  However, the intensity difference observed is many times larger than any 

small fluctuations between other neighbouring columns proposed to contain just Ce 

atoms, and as such cannot be attributed to local changes in thickness or any statistical 

affect of the imaging acquisition or processing conditions.     

 

Recently, the work of Lebeau et al [180, 181, 184, 212] has led to the ability to quantify 

the experimentally observed intensity in HAADF STEM images; opening up the 

possibility of quantitatively measuring atomic column composition as well as thickness 

from a single image.  By plotting the measured column intensity as a function of the 

initial probe intensity, the image is placed on an absolute scale, allowing direct 

comparison with simulations.  As discussed in Chapter 4, several experimental factors 

must first be carefully calibrated in order to apply this approach, whilst theoretical 

calculations must use the frozen-phonon model in order to accurately model the thermal 

diffuse scattering events [183].  However, future work utilising this method will be able 

to quantitatively measure the Z dependent contrast and therefore chemical composition 

of many materials, offering a powerful new tool for characterisation of single atom 

catalysts.     

 

As we know from XPS data, as well as similar previous reports [132, 136], much of the 

gold in the as-prepared sample is cationic; and the presence of cationic gold very 
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strongly correlates with high catalytic activity.  Through both aberration corrected TEM 

and HAADF STEM analysis, we saw no evidence of small Au clusters, but do provide 

strong evidence for the existence of single gold atoms that substitute for cerium atomic 

positions.  The resulting AuxCe1-xO2 surface is one of several hypotheses previously 

reported to explain the remarkable activity of Au/ceria catalysts, and here we provide 

direct evidence to support this through electron microscopy.   

 

The substitution of Au into the cerium position leads to a very strong interaction 

between the gold and ceria, and is expected to further weaken the bonding of 

surrounding oxygen species, thus enabling their involvement in oxidation reactions 

[131].  However, whilst some groups believe that the Au
+3

, shown here to be in the form 

of single atoms, remains as the key active site [132, 140], others believe that cationic 

gold is merely the precursor for the active species, which consists of larger clusters that 

are anchored on the substitutional gold site, and therefore maintain the strong 

interaction with the support [65, 141].  To resolve this, studies of the stability of the 

identified single Au atoms under reaction conditions are needed, with in-situ electron 

microscopy perhaps the most likely technique to provide a definitive answer as to the 

nature and evolution of the active site under simulated reaction conditions.       

 

7.2.3 Stability of the active site under simulated reaction conditions 

In the present study, direct simulation of the water-gas shift reaction conditions was not 

possible, as the use of carbon monoxide and water vapour were not compatible with the 

present in-situ design.  However, hydrogen is analogous to carbon monoxide in that it 

creates a strongly reducing atmosphere, and it is this which is likely to be the key factor 

in reducing surface oxygen and possibly destabilising the atomically dispersed gold 

species.  The presence of water vapour in the gas stream has been suggested to cause 

deactivation through reducing the interaction of the gold with the support [141].  

However, as the nature of the active gold is still not clear, speculating on subtle 

deactivation processes may be somewhat premature.  Therefore, we will initially 

investigate the effect of heating and a reducing environment on the stability of gold 

single atoms. 
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Following heating to 400°C in hydrogen, small metallic particles were observed, as seen 

in Figure 7.12.  However, the crystallisation of such particles was not observed in-situ, 

and similar particles were seen in the precursor and are thought to be unimportant for 

activity [132].  Whilst the formation of larger clusters and particles may be detected  

 

using TEM imaging, the presence of single atoms or very small clusters requires the 

atomic number dependent contrast of HAADF STEM.  The use of HAADF STEM as an 

in-situ imaging tool traditionally has not been common practice, and it is only recently 

in York that the first aberration corrected STEM with in-situ gas capabilities has been 

developed.  However, the resolution of STEM images is particularly susceptible to any 

mechanical or electrical instability, and at the present time the HAADF STEM 

performance possible with the use of the regular Gatan heating holder at elevated 

temperatures is insufficient to provide images of similar quality as to those discussed in 

section 7.2.2.  Therefore, after heating to 400°C in hydrogen, the sample was allowed to 

cool before imaging.  However, this was done inside the microscope, meaning the 

sample was at no point exposed to air or any other oxidising environment. 

 

HAADF STEM analysis of the cooled sample, following heating to 400°C in hydrogen, 

showed similar increases in column intensity to those observed in the precursor sample.  

Figure 7.12. Small Au particle after in-situ heating to 400°C in H2. 
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Figure 7.13 shows an example of a column that is approximately 40% brighter than its 

neighbouring columns, similar to the level of intensity increases observed in section 

7.2.2.  Without knowing the position of the gold atom before heating in hydrogen, it is 

not possible to establish the stability of the single atom with absolute certainty, but we  

 

do not observe the agglomeration of single atoms to form small clusters or even larger 

particles under these conditions.  Again, the brighter contrast appears in the position of 

the cerium column; indicating the single Au atom is substituting for a Ce atom position.  

If the single gold atoms remain stable under water-gas shift conditions, they can be 

expected to act as an active site for CO adsorption, whilst subsequent oxidation of the 

CO molecule can proceed via bonding with one of the surrounding loosely bound 

surface oxygen atoms. 

 

Further evidence of single atoms existing after heating in hydrogen is shown in Figure 

7.14, where the increase in intensity observed is relative to a decreasing intensity 

background that results from a reduction in thickness of the supporting ceria crystal. 

Therefore the observed intensity increase of one particular column is in spite of 

reducing thickness, as opposed to possibly being attributable to any local thickness 

increase.  Clearly, much further work is needed to establish the prolonged stability of 

the single Au atoms, whilst comparisons with samples reacted ex-situ in W-G-S 

Figure 7.13. Bright contrast from some columns suggests some single Au atoms remain stable 

after heating in H2 to 400°C. 
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conditions will determine the relevance of the in-situ samples heated in hydrogen.  In 

particular, the role of water vapour and possibly higher pressures may lead to very 

different stabilities and activation/deactivation mechanisms. 

 

7.3 Chapter conclusions 

In this chapter, AC-E(S)TEM has been used to characterise Au/ceria catalysts of 

significant interest for CO oxidation and hydrogen production through the water-gas 

shift reaction.  The ceria surfaces are shown to be sensitive to prolonged exposure to 

electron beam, with surface atom movement observed on both {100} and {111} 

surfaces.  The use of negative spherical aberration imaging allows for clear 

identification of oxygen atoms, and this technique has been successfully applied to 

image lattice oxygen atoms in a gas environment.  However, surface oxygen atoms 

could not be resolved in the individual image frame, and may still require reconstruction 

of the exit wave of electron beam [210].  The ability to resolve the position of oxygen 

atoms in the presence of a controlled gas environment will be particularly useful for the 

study of redox reactions, whilst insights into the formation and filling of oxygen 

vacancies at the surface of oxides such as ceria may prove critical to furthering our 

understanding of various catalytic processes.  Here, exit wave restoration may be 

particularly useful, providing the number of images required can be sufficiently reduced 

so as to minimise the invasive effects of the electron beam.            

 

The Z contrast nature of HAADF STEM imaging has been utilised to resolve the nature 

of the active site in Au/ceria W-G-S catalysts.  Small clusters of Au were not detected, 

Figure 7.14. Large intensity increase even 

with reducing crystal thickness, observed 

after heating in H2 to 400°C. 
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however significant intensity increases of individual atomic columns were observed.  

These intensity increases could not be attributed to thickness variations or imaging 

artefacts, and as such are attributed to the presence of single Au atoms that substitute for 

Ce sites.  This closely correlates with the presence of cationic Au as shown by XPS, and 

it is this cationic Au that is thought to be the cause of the reported high activities of such 

catalysts [132, 136].  However, currently it is unclear whether the single Au atoms act 

as the active site, or as a precursor for nucleation of the active phase, in which the 

substitutional Au atoms cause the surrounding oxygen surface atoms to be more weakly 

bound and therefore more reactive.   

 

The recent development of aberration corrected environmental HAADF STEM [190] 

now makes possible observations of supported single atoms in-situ.  Future 

developments, such as heating holders designed for use in ESTEM, will lead to 

improvements in the capability of the technique, and should allow definitive answers to 

questions regarding the nature and the stability of the active site under reaction 

conditions. 
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Chapter 8  

Activation and Deactivation of Ni catalysts 

The activation process required to transform the precursor into the catalytically active 

phase can play a major role in determining the final size, structure and distribution of 

catalytic nanoparticles, whilst the performance of nano-catalysts is typically observed to 

diminish over time as a result of a variety of possible deactivation mechanisms. In the 

following chapter, nickel supported on alumina catalysts provided by Johnson Matthey 

Plc (JM), as well as a model system, are used to study both the reduction process of NiO 

to the active Ni metal and the subsequent sintering that occurs upon reduction.  

Although these in-situ studies are carried out at much lower pressures than would be 

used industrially, the gas-solid interface is critical to many dynamic chemical processes.  

Atomic resolution imaging under reaction conditions in ETEM allows the direct 

observation of the dynamic structural evolution at the solid catalyst surface and provides 

insights into activation and deactivation mechanisms, including sintering.  

 

8.1 Sample preparation and initial characterisation 

In the following chapter results are presented from two Ni/alumina samples provided by 

JM, as well as a model NiO powder purchased from Aldrich for comparative studies on 

a model system.  The first sample discussed is a NiO precursor supported on a high 

surface area alumina made by co-precipitation for industrially relevant hydrogenation 

reactions.  The samples come in powder or pellet form, which are then dispersed in 
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ethanol and ground in a pestle and mortar before being deposited on to a standard TEM 

holey carbon grid.  X-ray diffraction (XRD) shown in Figure 8.1 (provided by JM) of 

the sample reveals that the alumina support is a mixed phase delta/theta alumina, and as 

such will be labelled as Ni/δ-Al2O3.  The small crystal size and porous nature of the δ-

alumina provides a very high surface area support, whilst the 2-5 nm particles present 

are clearly observed using Z contrast STEM.  Characterisation of the small particles 

using AC-TEM is shown in Figure 8.2, with particles imaged in the [011] (above) and 

[001] (below) orientations.  Analysis of the corresponding fast Fourier transforms show 

the particles are NiO and bound predominantly by {001} non-polar surfaces,  which are 

expected to be the most stable for the NiO cubic rock-salt structure [213]. 

 

Figure 8.1. XRD analysis (above) identifies the Al2O3 support as a mixed phase delta-theta 

alumina.  TEM and HAADF STEM (below) show the crystallite size of both the support and 

NiO particles present in the precursor. 
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The nature of δ-Alumina makes for an excellent high surface area catalyst support.  

However, the supports porosity and small crystal size, with many overlapping crystals 

in a variety of orientations, often makes interpretation of images of the small supported 

particles inconclusive.  Ni catalysts supported on alpha alumina (α-alumina) are often 

used for high temperature reactions, such as steam reforming, due to their excellent 

thermal stability.  Here, the supporting alumina crystals are much larger and therefore 

allow easier interpretation of the data, particularly for in-situ studies of particle 

stabilities.  XRD analysis in Figure 8.3 shows that the supporting alumina is in the alpha 

phase, whilst the large crystal size of the support can clearly be seen in the micrographs 

(below).  Also observed is the distribution of the NiO prepared using a deposition-

precipitation technique, and this sample will be referred to hereafter as Ni(DP)/α-

alumina.   

 

Figure 8.2. AC-HRTEM with analysis of the corresponding FFTs clearly reveal the small 

particles are NiO, imaged here in the [011] (above) and [001] (below) orientations.  
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High magnification AC-TEM images of the Ni(DP)/α-alumina precursor are shown in 

Figure 8.4, and analysis of the image and corresponding FFT confirm the particles are 

NiO.  Very small NiO particles (< 2 nm) are observed to be present on the surface of the 

support, as shown in Figure 8.4 (top), but not with the frequency that might be expected 

from an approximately 10% atomic weight catalyst.  This indicates that not all of the 

deposited NiO is in the form of discrete particles, but may be atomically dispersed or 

exist as layers on the support.  Evidence for this is provided in Figure 8.4, with the 

bottom left image showing a small layer of NiO on the support (arrowed), whilst on the 

bottom right we can see larger agglomerates of NiO. 

Figure 8.3. XRD analysis provided by JM (above) shows the support is alpha alumina. HRTEM 

and HAADF STEM images (below) show the large crystallite size of the α-alumina support as 

well as the distribution of the NiO. 
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8.2 Reduction of NiO to the active phase 

8.2.1 Reduction of industrial NiO/Alumina catalysts 

As the experimental work presented in this thesis was conducted concurrently with 

modifications to allow the insertion of controlled gas environments into the microscope, 

data was acquired both before and after the gas capability was implemented [190].  As 

such, experiments performed before the modifications were conducted in vacuum, with 

higher temperatures used to drive the reduction process.  Figure 8.5 shows the same 

Figure 8.4. Very small NiO particles are observed on the surface of the α-alumina by AC-

HRTEM (above), whilst other areas suggest the presence of highly dispersed layers of NiO on 

the support (below). 
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particle from the Ni/δ-Al2O3 sample over the course of 9 minutes at 600°C in vacuum.  

As the fast Fourier transforms are taken from a small selected area of the in-situ image, 

there is an approximate ±10% error in the measurements of the diffraction spots, mainly 

resulting from the large pixel size of the FFT.  Further complications occur due to the 

overlap of expected lattice spacings for NiO(200) and Ni(111) (0.209 nm and 0.203 nm 

respectively), as well as possible contributions from the support.  However, the particle 

is initially still in the NiO form, as shown by the match (within error) of the diffraction 

spots in the FFT with that expected from NiO in the [011] orientation. After 9 minutes 

at 600°C the particle has changed significantly, exhibiting both different internal 

structure and external surfaces.  Analysis of the FFT is somewhat inconclusive, as the 

 

Figure 8.5. A sequence of images (with corresponding FFT) of the same particle at 600°C in 

vacuum taken 9 minutes apart. The particle is initially NiO but is observed to undergo a 

transformation after ~ 9 mins.  Analysis of the latter FFT reveals spots consistent with the {111} 

spacing of Ni, whilst the change in structure towards {111} facets can clearly be seen. 
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diffraction spots are within error of both the Ni{111} and NiO{200} spacings, whilst 

the spatial frequencies and angles between the spots do not directly correspond to a 

consistent orientation of either Ni or NiO.  Therefore the diffraction spots may originate 

from a mixture of both Ni and NiO in different orientations.  However, the spatial 

frequencies measured are consistent with the presence of Ni{111}.  Furthermore, the 

change in surface structure can be expected from a NiO to Ni transition, as the most 

energetically stable surface facet goes from {001}(NiO) to {111}(Ni). 

 

Upon heating to the much lower temperature of 400°C in H2, metallic Ni particles are 

observed to form on the Ni(DP)/α-alumina sample.  An example of the same area at 

room temperature and 400°C in H2 is shown in Figure 8.6.  The density of Ni particles 

formed after reduction is much greater than that of the initial NiO particles observed, 

suggesting that much of the NiO is initially atomically dispersed, or exists as layers or 

agglomerates that form small particles upon reduction.  The areas in the precursor that 

appear darker in the mass-thickness contrast image correspond to more dense areas of 

Ni particles in the reduced sample, whilst the distribution of Ni particles indicates that 

when reduced, the dispersed Ni is able to migrate across the support before reaching a 

nucleation point and forming a metallic particle.  Higher magnification images shown in 

Figure 8.7 confirm the particles are reduced Ni, and show that they are approximately 

hemispherical in nature and typically 2-5 nm in diameter. 

 
Figure 8.6. The formation of discrete Ni particles is observed upon heating to 400°C in H2. 
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8.2.2 In-situ reduction of model NiO particles 

As a basis for comparison, NiO powder was used as a model system.  The wide range of 

particle sizes present enable additional studies of the effect of particle size on the 

reduction of NiO to Ni, whilst the removal of the support material provides a major 

simplification of the system, allowing direct interpretation of the lattice spacings or 

diffraction patterns experimentally observed.  Preliminary experiments done in selected 

area diffraction (SAD) mode were used to establish the temperature regime at which 

reduction occurred in H2.  The advantage of such a technique is that in the absence of 

the alumina support, the diffraction patterns give easily interpretable area averaged data 

to high spatial frequencies in the in-situ environment, negating the need for atomically 

resolved images or particles in desirable orientations.  Additionally, the experiment can 

be conducted with minimal effects of the electron beam, and can quickly provide 

structural information from a wide range of areas.  This allows much better sampling 

than an imaging approach, and provides information regarding the homogeneity of the 

sample as well as the temperature and time scales needed for reduction.       

 

The NiO powder was observed to begin to reduce in H2 at approximately 350°C, with 

complete reduction of most areas by 450°C.  An example of two SAD patterns is shown 

in Figure 8.8, with clear matches with the theoretical patterns occurring for NiO at room 

Figure 8.7. The Ni particles are ~ hemispherical with a diameter of 2-5 nm. Measurements of 

the observed lattice spacings confirm the particles are metallic Ni. 
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temperature (left) and Ni at 400°C (right).  The difference between the two patterns is 

highlighted in Figure 8.9, where at 400°C the inner most ring, corresponding to the 

NiO(111) spacing, has disappeared, whilst a ring at the expected Ni(200) spacing 

appears.  However, it should be noted that at this temperature and pressure, not all of the 

NiO was fully reduced, with some areas showing both Ni and NiO diffraction rings. 

 

Figure 8.9. In-situ selected area diffraction clearly shows the reduction of NiO to Ni at ~400°C, 

as the NiO(111) ring disappears and the Ni(200) ring appears. 

Figure 8.8. Diffraction patterns obtained at room temperature and at 400°C in H2 of NiO powder 

provide unambiguous proof of the reduction of NiO to Ni.  
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The remaining NiO corresponded to the larger particles originally present in the sample; 

and it is expected that higher temperatures, pressures or extended exposure to the 

reducing environment may be needed to fully reduce these larger crystals.  An example 

of a large particle still in the NiO phase is shown in Figure 8.10, with the FFT taken 

from the higher magnification image (right) clearly matching NiO in the [0   ] 

projection.  Also clear from the high magnification image are a high proportion of 

extended symmetry-related defects along the <111> directions, as is further evidenced 

by the streaking observed in the FFT between the {111} diffraction spots.  These 

extended defects are expected to occur in order to accommodate the growing 

concentration of oxygen vacancies in the crystal that result from interaction with the 

reducing environment.  In the present study it has not been possible to accurately 

determine the Burger’s vector of the defect from the 2D image, and future work 

utilising a double tilt heating holder (not currently available) and diffraction contrast 

imaging will seek to further determine the nature of the extended defects that occur in 

larger particles during the reduction process. 

 

A smaller particle at 600°C in vacuum is shown in Figure 8.11.  Measurements of the 

lattice spacings observed in the top and bottom part of the particle show them to match 

the Ni(111) spacing.  However, the image shows a band in the middle of the particle 

Figure 8.10. A large NiO particle after heating to 500°C in H2. The particle is still NiO, however 

symmetry related defects are observed along the <111> directions.  The defects appear to start 

from the surface, suggesting they are formed as a result of the reduction process. 
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that is clearly a different crystal to the areas above and below.  Measurements of the 

lattice spacings from this section are difficult due to its small size and instabilities 

introduced by the heating holder, however they appear to be larger than any spacings 

than those that would be present in Ni, and may therefore be explained by the residual 

presence of unreduced NiO, with the observed spacings being NiO(111). 

 

8.2.3 Towards a reduction mechanism 

From the results presented in Section 8.2, it seems that there is more than one 

mechanism by which the oxide may be reduced to form the active metallic phase.  For 

the Ni(DP)/α-alumina sample, the highly dispersed nature of the NiO precursor means 

that upon reduction, the Ni is in the form of atoms or small clusters that are free to 

migrate on the surface of the support, before reaching a nucleation point and forming 

the small hemispherical particles observed.  Therefore the size and distribution of the 

reduced Ni particles may be controlled by the initial NiO loading, as well as the density 

of likely nucleation points on the support.  The NiO on the Ni/δ-Al2O3 sample is 

deposited in the form of small nanoparticles, and these are observed to reduce directly 

Figure 8.11. Analysis of a particle heated to 600°C in vacuum shows that it is predominantly 

reduced Ni, however an internal section reveals lattice spacings greater than can be attributed to 

Ni, suggesting the presence of some remaining NiO. 
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to Ni.  However, in both cases the resulting small Ni nanoparticles appear to be free of 

any internal defects as a result of the reduction process.  In contrast, larger particles 

observed in the NiO powder require higher temperatures or pressures to fully reduce, 

with the reduction appearing to proceed via a defect mechanism.  Although further 

analysis is needed to determine the Burger’s vector of the defect, they are along the 

<111> directions and accommodate the growing number of anion vacancies in the 

crystal structure [214].   

 

Therefore, the effect of particle size seems to play a crucial role in not just the rate of 

reduction but also the mechanism by which the particle is reduced.  In order for 

complete reduction, the bulk oxygen atoms must either migrate out to the surface of the 

crystal – where they can react with the dissociated hydrogen at the particle surface to 

form H2O – or the H atoms must diffuse into the particle until they reach the remaining 

oxygen, before reacting and diffusing out of the particle, presumably as OH [12].  

Whichever of these is the case; the migration distance of the O, H or OH species from 

the particle surface to the Ni/NiO boundary will determine the ease with which the 

reduction process can proceed.   

 

NiO particles of just a few nanometres – such as those present in the JM catalysts – 

appear to reduce without the need for the formation of extended defects.  The high 

surface to volume ratio of small nanoparticles means that they have proportionately 

more atoms at the surface, whilst the migration distance of the diffusing species is a 

significant proportion of the particle radius, allowing relatively fast reduction to metallic 

Ni.  For larger NiO particles undergoing reduction, the growing number of oxygen 

vacancies diffusing into the bulk is accommodated for by the formation of extended 

anion-deficient defects.  These defects can be expected to eventually order, leading to 

Ni, but the process requires more time and possibly higher temperatures.   

 

In the case of larger NiO particles, the particle radius is much greater than the migration 

distance of the diffusing species, making it difficult for the bulk oxygen atoms to reach 

the reactive hydrogen.  The diffusion of oxygen vacancies into the crystal presents a 

path for a given bulk oxygen atom to reach the particle surface and the reactive 

hydrogen; albeit potentially one with several energy expensive bond breaking and 
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forming steps.  The formation of extended defects, such as those shown in Figure 8.10, 

may provide a path with reduced activation energy associated with the oxygen 

diffusion, thereby facilitating the removal of oxygen from the bulk of the crystal.  

 

Further work is clearly needed to more fully investigate the effect of particle size on the 

reduction mechanism.  The future use of a double tilt heating holder, coupled with 

experiments using nanobeam diffraction, diffraction contrast and atomic resolution 

imaging should allow direct characterisation of the nature of the defects formed.  

Complimentary calculations on the energetics of oxygen removal through the variety of 

proposed processes may also provide further insight when combined with the 

experimental in-situ observations.           

    

8.3 Sintering of Ni catalysts 

After the catalyst is activated and brought online, the initial activity is observed to 

decrease over time due to various possible deactivation mechanisms.  Perhaps the most 

problematic of these is thermal deactivation, or sintering, as it leads to an irreversible 

loss of surface area available for reactions.  Results of particle stabilities for the 

Ni(DP)/α-alumina sample are presented in the following section.  The larger crystal size 

of the α-alumina support allows for easier interpretation of any observed changes in the 

particle size or position, whilst the realistic nature of the metal-support interaction much 

more closely resembles that of an industrial Ni/alumina catalyst than two dimensional 

amorphous model supports often used in microscopy studies [35].     

 

As the desired lifetime of catalysts can often be several months or years, sintering 

observations would ideally replicate this time frame. Clearly this is not practical for in-

situ microscopy experiments, and can instead be studied by ex-situ observations of the 

fresh and aged catalyst.  However, as discussed in Chapter 2, ex-situ analysis – such as 

inferring sintering mechanisms based on the resulting particle size distribution – can 

lead to misleading results, and in-situ observations are needed to understand the 

mechanism by which particle growth occurs.  Constraints on available microscopy time 

mean in-situ observations are of the catalyst in its infancy.  However, such observations 
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can be used to directly observe the sintering process, and indeed the rate of deactivation 

of the catalyst is greatest immediately after activation. 

 

Figure 8.12 shows the same area of the Ni(DP)/α-alumina catalyst over the course of 4 

hours at 400°C in H2.  The images were acquired with minimal exposure to the electron 

beam, with the beam turned off between images.  Therefore any observed changes in the 

Ni particles are a direct result of continued exposure to the reaction environment.  At 

t=0, the sample is imaged as soon as is practical after the temperature of 400°C has been 

reached and reduction and formation of metallic Ni particles has occurred.  After 1.5 

hours, the Ni particles have changed substantially.  For example, in the area highlighted, 

there is approximately half the number of particles remaining, with several of the 

smaller particles having disappeared and the larger particles remaining in the same place 

on the support.  After 4 hours, little change is observed from the situation after 1.5 

hours, and therefore more detailed studies of the same area have concentrated on the 

initial 90 minutes after reduction. 

 

A further example of an area exposed to the electron beam for the minimum time 

necessary is shown in Figure 8.13, and again significant loss of Ni particles over the 

course of the 90 minutes is observed at 400°C in H2.  Again, many of the small particles 

have disappeared, whilst those that remain appear to be located at the same position on 

the support, such as those arrowed.  These observations are consistent with sintering 

through an Ostwald ripening mechanism, although could possibly be explained by 

migration of smaller particles and relative stability of the larger particles that remain 

effectively immobile.  Therefore, continuous observation of the same area throughout  

Figure 8.12. Sintering of Ni particles at 400°C over the course of 4 hours showed significant 

sintering and loss of surface area over the first 90 mins, followed by much improved stability. 
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the sintering process is needed.  However Figure 8.13 provides a reference area with 

which to compare the in-situ results, ensuring that both observations are consistent and 

that the electron beam is playing a minimally invasive role.    

 

A sequence of images taken from an in-situ movie acquired at 400°C in H2 is shown in 

Figure 8.14.  Looking at the difference between the initial distribution of Ni particles 

and those after a similar time as in Figure 8.13, we see a comparable loss of particles 

present, whilst the remaining particles appear immobile on the support, showing that 

under these imaging conditions, continued exposure to the electron beam has a minimal 

effect on both the rate and mechanism of particle sintering. 

 

From the in-situ video we directly observe sintering through an Ostwald ripening 

mechanism, with no evidence of particle migration and coalescence.  This suggests that 

there is a strong interaction between the Ni particles and the supporting alumina, 

causing the particles to be well anchored on the support.  Although the strength of this 

interaction prevents particle migration and coalescence by rendering the particles 

effectively immobile on the support, it encourages sintering via Ostwald ripening, as the 

interaction between the Ni and the alumina provides the driving force for atomic 

migration of surface atoms on to the support.  A classical example of this can be seen in 

the particles labelled A and B, where the smaller particle A shrinks and has disappeared  

Figure 8.13. A reference area only exposed to the electron beam at the start and end points 

showed significant sintering as a result of the reaction conditions. 
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after 30 minutes.  Several other small particles, typically < 2 nm, are arrowed in the 

initial image, and are observed to be the first to disappear under the sintering conditions.  

This is consistent with the classical theory of Ostwald ripening, in which the smallest 

particles have the highest potential energy (as shown by the Gibbs-Thomson 

relationship in equation 2.5) and will therefore be the least stable, as predicted by 

equation 2.12. 

 

However, one striking observation from the in-situ video is the rate at which particle 

decay occurs.  Classically, Ostwald ripening is thought of as the constant exchange of 

atoms between particles; with the net effect of atoms migrating from the smaller 

particles (with higher potential energy) to the larger particles, and therefore causing the 

less stable small particles to shrink whist the larger ones grow.  However, from the in-

situ video, small particles are observed to undergo relatively sustained periods of 

Figure 8.14. In-situ observations of the same area in H2 at 400°C reveal sintering through an 

Ostwald ripening process.  The observations do not match the simplified models of Ostwald 

ripening, as clearly more than just size determines the particle stability. 
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stability before rapidly shrinking and disappearing.  For example, the particle labelled E 

is approximately 4.5 nm and appears to remain stable for 48 minutes, with no 

measurable change in particle size.  At this point, the particle decays rapidly, and has 

disappeared completely after a further three minutes.  This is just one of several 

examples of rapid particle decay following sustained periods of stability observed, and 

indeed similar decay times for Ni on MgAl2O4 were reported by Challa et al [42].  They 

find that equation 2.14 can be used to describe the observed decay rates, with the non-

linear Gibbs-Thomson relation explaining the exponential increase in the rate of decay 

as the particle shrinks; although different values of the supposed constants in the Kint 

term given in equation 2.13 are needed when describing the decay rates of other 

particles.  However, the sudden onset of particle decay after sustained periods of 

stability is yet to be explained in the literature, with the current evidence suggesting 

there may be a trigger that causes the loss of stability of an individual particle. 

 

Further differences from the classical theory of Ostwald ripening, which describes 

particle radius as being the only variable parameter governing particle stability, are 

highlighted by the two particles circled in F.  Again the two particles remain relatively 

stable for extended periods of time, with no shrinking of either particle observed for the 

first 53 minutes.  At this point, it is actually the slightly larger particle (the lower one in 

the image), approximately 4 nm in diameter as opposed to the 3 nm particle nearby, that 

is observed to rapidly decay and disappear after a further two minutes.  According to 

theory, and expressions such as equation 2.12, the smaller particle would be expected to 

be the least stable, whilst the rapid decay after prolonged periods of stability again 

indicate that there must be a trigger for the shrinking of the particle due to atomic 

migration. 

 

Particles that remained stable throughout exposure to the sintering conditions in the 

allotted time, such as particles C and D, appear to quickly adopt a faceted morphology 

and then maintain their size and surface structure throughout the experiment.  By 

minimising surface energy through the creation of low index surface facets, the 

particle’s surface atoms will be in a minimum energy state.  This is therefore likely to 

have a major impact on the energy barrier for the migration of surface atoms required to 

facilitate Ostwald ripening.  From equations 2.12 and 2.13, we can see that the stability 
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of a particle is dependent on a prefactor, vp, that governs the rate at which a metal 

surface atom may diffuse from the particle on to the support.  In the literature, this term 

is treated as a constant for a given supported metal particle system.  However, the 

observation that the most stable particles appear to be those with minimum energy 

surface facets suggests that this parameter is dependent on the surface energy and 

therefore surface structure of the particles.  Therefore differing surface energies may 

explain the relative instability of some particles that are of a comparable or even slightly 

larger size than their more stable neighbours.                     

 

The sudden loss of particle stability may be explained by a change in surface energy, 

and therefore the vp prefactor, of a given particle.  The migration of just one or two 

atoms from a closely packed surface is likely to increase the mobility of the 

neighbouring atoms, possibly reducing the energy barrier for surface atom diffusion on 

to the support below the kinetic energy of surface atoms at the reaction temperature.  

Therefore one hypothesis for the sudden onset of particle decay is a domino type effect 

upon the loss of one or two surface atoms, causing a change in the vp term and 

facilitating the onset of large scale atomic migration.  

    

An additional complication in developing a full understanding of relative particle 

stabilities comes from the contact angle parameter, θ.  Like the vp term, this parameter is 

treated as a constant in the literature, however it is likely that θ will vary with particle 

size [43], whilst inhomogeneities in the surface of the alumina will lead to a variety of 

possible interactions between the particle and the support.  From the present results, the 

role of variable particle surface energetics and support interactions is proposed as a 

hypothesis to explain the difference in particle stabilities observed, and further 

experimental data, preferably with atomic resolution, will probe the effects of these, and 

possibly other parameters.  Acquiring such data at sufficiently high magnifications 

whilst maintaining minimal effects of the electron beam may prove challenging, and 

careful comparisons with reference experiments without the beam will be needed [190].        

 

The particle size distributions (PSD) for the images shown in Figure 8.14 of the sample 

immediately after reduction and after sintering for 1 hour at 400°C in H2 are shown in 

Figure 8.15.  Both distributions are lognormal in nature, again highlighting the danger  
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of inferring the sintering mechanism based on the resulting PSD.  The evolution of the 

PSD is clearly time dependent, and indeed after 1 hour could be thought of as being in 

the intermediate stage between the initial log normal distribution and the theoretically 

predicted Lifshitz-Slyozov-Wagner distribution [28, 29] expected as a result of Ostwald 

ripening.  The mean particle size in the region of interest increases from 3.6 nm to 5.3 

nm, whilst the total number of particles present is approximately halved. 

 

Based on the measured PSD, and assuming the particles to be hemi-spherical (as 

indicated by images such as Figure 8.7 , the total volume of Ni present in the region of 

interest is found to increase from approximately 4000 nm
3
 to 4900 nm

3
 over the course 

of sintering for an hour.  The apparent gain in mass means the measured overall surface 

area remains approximately constant, despite the mean particle size increasing.  Clearly, 

we would expect mass to be conserved in the system, suggesting that additional factors 

either not considered or observed are at play.   

 

The most obvious explanation is that there is a limit on the size of particles that are 

detected using the TEM technique at this magnification.  Certainly any small clusters or 

particles < 1nm are not observed in the image, and indeed a significant number of these 

present in the freshly reduced sample may help explain the apparent gain in Ni mass as 

they then sinter and join larger particles.  However, the large difference in volume of Ni 

before and after sintering means that it would take ~ 2000 particles of 1 nm diameter to 

conserve mass, which seems unlikely to be the case.  Therefore, whilst the lack of 

Figure 8.15. Particle size distributions of the same area as shown in figure 8.14 at t = 0 and t = 1 

hour. 
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sensitivity to particles that are 1 nm or less in diameter may contribute to the volume 

discrepancy observed, it will not be the dominant cause. 

 

A more plausible explanation comes from the reduction rate of NiO.  As we saw in the 

previous section, some NiO may require extended exposure times, or higher 

temperatures or pressures in order to reduce to the active metal.  The slow reduction rate 

of some NiO is shown in Figure 8.16, which shows the presence of small NiO crystals 

observed after the sample was heated in H2 at 400°C for 4 hours.  As reduced Ni will 

not oxidise without heating in an oxidising environment, it can be assumed that the 

observed NiO crystals remained in the NiO phase throughout the reduction and sintering 

experiment.  Therefore we can expect that not all of the NiO is initially reduced, and the 

following observations are of the combined effect of continued reduction plus sintering 

of the reduced Ni.           

 

 

8.4 Chapter conclusions 

The activation process for supported metal catalysts can have a major influence on the 

resulting particle size and morphology of the active particles. In this chapter, 

observations of the reduction process of NiO to Ni for a variety of NiO particle sizes are 

reported, with the results suggesting a size dependent reduction mechanism.  For small 

NiO crystals, such as those present in the catalysts provided by JM, the migration 

distance of the oxygen atoms is a significant proportion of the particle radius, therefore 

allowing the straightforward removal of oxygen atoms from the bulk.  However, when 

the particle size becomes sufficiently large, the particle radius is much greater than the 

Figure 8.16. AC-HRTEM images after heating reveal the presence of some NiO remaining, 

suggesting that not all the NiO was reduced. 
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migration distance of the oxygen atoms.  In this case, the formation of extended defects 

accommodates the growing number of anion vacancies in the crystal, and potentially 

provides a path with reduced activation energy for the diffusing oxygen.     

 

Thermal deactivation, or sintering, that occurs upon reduction can lead to a significant 

loss of available surface area and therefore activity of the catalyst.  For Ni/alumina 

catalysts at 400°C in H2, sintering is observed to proceed via an Ostwald ripening 

mechanism.  The lack of particle migration observed suggests that there is a strong 

particle-support interaction, anchoring the particles and therefore preventing 

coalescence.  However, this strong interaction may encourage Ostwald ripening, as it 

provides a driving force for migration of surface atoms on to the support.  The in-situ 

observations of Ostwald ripening present several results not consistent with the sintering 

models reported in the literature, and it is clear that size is not the only factor that 

governs particle stability.  The relative periods of particle stability, followed by rapid 

particle decay suggests that there may a trigger for the onset of atomic migration, whilst 

the most stable particles appear to be those with faceted surfaces and therefore 

minimised surface energy.  It is proposed that differences in the surface energetics of 

each nanoparticle will lead to a variable prefactor, vp, that will determine the energy 

barrier for diffusion of surface atoms on to the support.  Additionally, the loss of one or 

two surface atoms may cause a perturbation in the energy of the remaining surface 

atoms, and this is proposed as a mechanism to explain the sudden onset of particle 

decay observed.        
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Chapter 9  

Final Remarks and Further Work 

The discovery of the catalytic activity of small gold nanoparticles sparked a wealth of 

research in the area; both to understand the physical origins of the change in chemical 

properties and to exploit them for many possible commercial applications.  Perhaps the 

most important of these applications is gold’s exceptional activity and selectivity for the 

low temperature oxidation of carbon monoxide; and the efficient low temperature 

removal of poisonous CO from the hydrogen stream in fuel cells would overcome one 

of the current barriers to the commercial viability of fuel cell technologies.   

 

In this work, a new mechanism is introduced to further explain the sudden onset of 

catalytic activity of small gold nanoparticles.  The inherently strained decahedron is 

known to be one of the most commonly observed structures in the size range for which 

gold is catalytically active.  Through measurements of atomic column displacements 

observed in the aberration corrected TEM images, the magnitude of this strain has been 

quantified and then related to activity for CO oxidation through DFT calculation based 

on the experimental observations.  It is found that the large expansive strain observed at 

the surface of small gold decahedra significantly modifies the electronic band structure, 

shifting the d band towards the Fermi level and therefore increasing the strength of the 

surface-molecule interaction.  This mechanism offers a further explanation of the 
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exceptional catalytic activities of certain gold nanoparticles in this size range, and 

coupled with the similar effects of under co-ordinated surface atoms, can explain the 

surprising catalytic properties reported.   

 

In-situ heating studies have shown that the decahedral structure is thermally stable 

throughout a wide range of temperatures, however further work is required to study the 

combined effects of temperature and various gas environments on the structure of small 

gold nanoparticles.  Different environments are likely to significantly modify both the 

external surfaces and internal structure of catalytic particles, and therefore their catalytic 

properties.  Additionally, interactions with various possible supports may cause atomic 

displacements due to lattice mismatch, whilst potentially modifying the minimum 

energy structure in a given environment. 

 

Exceptional activities of Au/ceria catalysts for the water-gas shift reaction have been 

reported, with the presence of cationic gold thought to further reduce the strength of the 

surface oxygen binding energies, thereby increasing activity by readily donating and 

accepting atomic oxygen.  The Au species may then act as active sites for the adsorption 

of CO, with the adsorbed molecule oxidised by the surrounding oxygen from the ceria 

surface.  Z contrast HAADF STEM has been used to study the nature of the cationic Au 

species in such catalysts, with evidence presented for the substitution of single Au 

atoms for Ce sites.  The potential optimum use of precious metal loadings by supported 

single atom catalysts offers not only exceptional catalytic properties, but also a dramatic 

reduction in cost of the catalyst.  

 

In future work, the application of quantitative HAADF STEM, following the approach 

of LeBeau et al, should allow a more rigorous determination of the existence of single 

atoms on a support.  The development of new heating holders compatible with atomic 

resolution ESTEM will enable studies of the stability of single atoms in-situ.  Coupled 

with comparisons with ex-situ reacted samples under water-gas shift conditions, this 

should allow further insight as to whether single atoms remain stable and act as the 

active site, or are only present in the precursor and act as a nucleation point for the 

formation of metallic clusters with the desired particle-support interaction.  
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The reduction of NiO to the active metallic Ni is observed in-situ, and a size dependent 

defect mechanism is proposed.  For small NiO particles in a reducing environment, 

reduction to Ni is expected to be facile, resulting in the production of small, defect free 

Ni particles, whilst atomically dispersed NiO is observed to form well dispersed small 

Ni particles that nucleate upon reduction.  In contrast, larger NiO crystals are much 

more difficult to reduce, and appear to transform to Ni via a defect mechanism.  For 

such particles, the migration distance for diffusing O species is much less than the 

particle radius, and it is proposed that the formation of extended defects facilitates the 

removal of oxygen by reducing the energy involved in the bond breaking and bond 

forming steps for the diffusing species.    

 

Further studies of the reduction process, utilising a combination of nanobeam 

diffraction; diffraction contrast; and atomic resolution imaging, would allow the 

Burger’s vector of the defects to be established, and therefore a more complete 

mechanism to be formulated.  The effect of particle size on the mechanism for reduction 

needs further study, both to establish if there is a critical particle size at which extended 

defects are formed, and to further study the reduction process of very small 

nanoparticles more relevant to industrial catalysts.  The latter of these is a particular 

challenge, due to the potentially fast nature of the process; the sensitivity of the particles 

to the electron beam; and the difficulty in interpreting in-situ images of supported small 

particles.  For these reasons, time resolved in-situ experiments in nanobeam diffraction 

mode may be the most likely technique to provide clear structural information from 

individual particles. 

 

Upon reduction, catalytic Ni particles supported on alumina are observed to sinter 

through an Ostwald ripening mechanism, although several differences are observed 

from the classical sintering theory.  Particles are observed to undergo relatively 

sustained periods of stability, before rapidly decaying and disappearing, whilst particles 

that remain stable appear to exhibit clear surface facets.  Therefore, it is proposed that 

differences in local surface energies, as well as size, may govern the stability of small 

supported nanoparticles under reaction conditions, with the rapid onset of particle decay 

suggested to be triggered by the removal of one or two surface atoms – significantly 

increasing the mobility of other surrounding surface atoms.  Future work may utilise 
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higher magnification images, preferably with atomic resolution, to study the onset of 

particle decay, whilst the effect of variable contact angles is another possible cause of 

differences in particle stability that warrants further study.      

 

The recent development of aberration corrected ESTEM at the university of York opens 

up exciting opportunities to exploit the Z contrast nature of HAADF STEM images for 

in-situ study of materials.  This new technique will be particularly well suited to many 

heterogeneous catalysts that consist of a dispersed heavy metal on a lighter support.  

The current trend towards catalysis by small clusters and even single atoms make the 

identification of such small species particularly critical, and HAADF STEM is uniquely 

suited to such studies.  Atomically resolved HAADF STEM images acquired in-situ 

allow for direct observation of the nature and stability of such species under simulated 

reaction conditions.  Furthermore, the inter-particle transport of single atoms and small 

clusters plays a crucial role in the deactivation of many industrially important catalysts, 

and AC-ESTEM is the most likely tool to allow the direct visualisation of which atoms 

migrate, where they come from and where they go.  The development of ultra stable 

heating holders specifically designed for ESTEM applications may present the biggest 

challenge to enable such experiments under conditions of elevated temperature as well 

as controlled environment.     
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List of acronyms 

AC 

ADF

  BF

 CTF

 DFT

 EDX

 EELS

 E(S)TEM 

FEG 

FCC 

FFT 

GGA 

GPA 

HAADF 

HRTEM 

JM 

L-S-W 

MTP 

NCSI 

ODP 

PAW 

PEM 

PGM 

PROX 

PVC 

SAD 

SCO 

SMSI   

STEM  

Aberration corrected 

Annular dark field 

Bright Field 

Contrast transfer function 

Density functional theory 

Energy dispersive X-ray spectroscopy 

Electron energy loss spectroscopy  

Environmental (scanning) transmission electron microscopy 

Field emission gun 

Face centred cubic 

Fast Fourier Transform 

Generalised gradient approximation 

Geometrical phase analysis 

High angle annular dark field 

High resolution transmission electron microscopy 

Johnson Matthey Plc 

Lifshitz-Slyozov-Wagner model 

Multiply twinned particle 

Negative spherical aberration imaging 

Optical diffraction pattern 

Projector augmented wave method 

Polymer electrolyte membrane 

Platinum group metals 

Preferential oxidation of carbon monoxide 

Polyvinyl chloride 

Selective area diffraction 

Selective carbon monoxide oxidation 

Strong metal-support interaction 

Scanning transmission electron microscope 
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TEM 

TOF 

TWC 

WGS 

XPS 

XRD 

Transmission electron microscope 

Turnover frequency 

Three way catalyst 

Water-gas shift reaction 

X-ray photoelectron spectroscopy 

X-ray Diffraction 
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a  

A(k) 

A(x,y)  

B(k) 

β  

c 

Cc 

Cs 

χ(k) 

d  

datom 

dis  

dis0  

diseq 

Ds  

δ  

e  

E  

ΔE  

E  

E(k)  

E0  

Ea 

Ead  

Ecoh 

Ed  

Ediff  

Er  

eV  

Interatomic spacing 

Aperture function 

Amplitude 

Aberration function 

Semi angle of collection 

Speed of light 

Chromatic aberration coefficient 

Spherical aberration coefficient 

Total phase shift 

Diameter 

Atomic diameter 

dispersion - the fraction of atoms exposed to the surface 

Initial dispersion 

Dispersion at infinite time 

Surface atom diffusion coefficient 

Resolution 

Electron charge 

Energy 

Energy loss 

Electric field 

Envelope function 

Initial beam energy 

Activation energy 

Adsorption energy 

Cohesive energy between neighbouring atoms 

Desorption energy 

Diffusion activation energy 

Reaction barrier 

Electron volt 
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δεd  

εa   

εd 

F  

Δf 

G 

γ 

h  

h(x,y)  

hi   

ΔHsub  

I  

k 

kB  

ks  

λ  

m  

m0  

μ  

n 

N  

ν  

ω  

Ω  

φt(x,y) 

Ψ 

Q 

r  

r*  

R  

ρ 

σ 

T  

T(k)  

θ  

θ  

Shift in the d band centre 

Electronic adsorbate level 

Centre of d band 

Force 

Defocus 

Shear modulus 

surface free energy 

Planck’s constant 

Point spread function 

Distance from the particle centre to the facet i 

Bulk sublimation enthalpy 

Intensity 

spatial frequency 

Boltzmann’s constant 

sintering rate constant 

Wavelength 

Sintering order 

Rest mass 

Chemical potential energy 

Refractive index 

number of broken bonds 

Poisson’s ratio 

strength of the disclination 

The solid angle of collection 

Phase dependent on thickness 

Wavefunction 

activation energy for surface diffusion 

Radius 

Critical radius 

The universal gas constant 

Bulk volume per atom of the metal 

Scattering cross section 

Temperature 

Contrast transfer function 

Contact angle 

Scattering angle 
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v   

V 

V(x,y,z)  

vp                        

x 

Z  

ZB 

Zi 

 

Velocity 

coupling matrix element 

potential energy 

Pre-factor for atomic diffusion on to the support 

Distance of the disclination from the centre of the cylinder 

Atomic number 

Bulk co-ordination number 

Co-ordination number of the surface atom i
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