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Abstract 

Background: Amyotrophic lateral sclerosis (ALS) is an invariably fatal and relatively common 

neurodegenerative disorder without effective therapy. Identified genetic variants cluster in 

biological pathways including RNA processing, axonal transport, and protein homeostasis. 

Discovery of new genetic variants within new biological pathways highlights new disease 

biology, and can lead to novel therapeutic targets. This project will focus on the development 

of cell and animal models to characterise novel ALS-associated mutations associated with 

GLT8D1, CAV1 and CAV2.  

Aims and objectives: i) To evaluate the relative toxicity of ALS-associated GLT8D1 

mutations in neuronal and non-neuronal cell lines via MTT and lactate dehydrogenase assays. 

ii) To investigate the effect of mutations on the enzyme activity of GLT8D1 using a UDP-GloTM 

glycosyltransferase assay. iii) To test whether mutant GLT8D1 causes fragmentation of the 

Golgi network using immunocytochemistry. iv) To model GLT8D1 mutations in zebrafish 

larvae via RNA microinjection. v) To model CAV1/CAV2 enhancer mutations in neuronal and 

non-neuronal cells via CRISPR/Cas9 genome editing. vi) To measure ganglioside expression 

in human cells expressing GLT8D1, CAV1 and CAV2 mutations using live cell imaging. 

Results: I studied in detail two ALS-associated GLT8D1 mutations: R92C and G78W. The 

relative toxicity of the mutations in model systems mirrors the clinical severity. Mutated 

GLT8D1 exhibits in vitro cytotoxicity and induces motor deficits in zebrafish larvae consistent 

with ALS. Identified GLT8D1 mutations are proximal to the substrate-binding site; both R92C 

and G78W mutations impair GLT8D1 enzyme activity. An R92C mutation reduces membrane 

ganglioside expression, which is indicative of dysregulated neurotrophic signalling. 

Ganglioside biosynthesis occurs in the Golgi; GLT8D1 localises to the Golgi in neuronal and 

non-neuronal cells, and preliminary data suggests an R92C mutation causes Golgi 

fragmentation. The second stage of this project follows the identification of ALS-associated 

variation within an enhancer linked to expression of CAV1/CAV2. CAV1 and CAV2 encode 

major components of caveolae, which organise membrane lipid rafts (MLR) important for 

neurotrophic signalling. Gangliosides are a key component of MLR. Discovered enhancer 

mutations reduce CAV1/CAV2 expression and disrupt ganglioside expression within MLR in 

patient-derived cells; and CRISPR/Cas9 perturbation proximate to a patient-mutation is 

sufficient to reduce CAV1/CAV2 expression in neurons.  

Conclusions: These results place dysregulated ganglioside metabolism upstream in the 

pathogenesis of ALS. I propose that GLT8D1 and CAV1/CAV2 share a common pathway of 

pathogenesis in ALS via disruption of ganglioside recruitment to MLR and impaired 

neurotrophic signalling. 
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Chapter 1. Introduction  
 

 

1.1. Introduction to amyotrophic lateral sclerosis  

 

Amyotrophic lateral sclerosis (ALS) is the most common form of motor neuron disease, 

accounting for roughly 66% of all cases (Gordon, 2013). It is a relentlessly progressive and 

incurable neurodegenerative disorder characterised by the loss of both upper and lower motor 

neurons within the brainstem and spinal cord. Death and injury to motor neurons leads to a 

breakdown of neuromuscular junctions resulting in muscular atrophy, paralysis, and death 

usually by respiratory failure within 2-5 years of the first symptom (Yang et al., 2014, Renton 

et al., 2014). ALS is a multifactorial disorder with a number of described genetic and 

environmental risk factors. Although phenotypically indistinguishable from one another, 10% 

of cases are familial (fALS), usually with an autosomal dominant inheritance pattern, whilst 

the remaining 90% are sporadic (sALS), defined as having no family history of the disease 

(Renton et al., 2014). It is notable that even sALS is significantly heritable; twin studies 

estimate the broad sense heritability of sALS to be as high as 61% (Al-Chalabi et al., 2010).  

 

ALS is an age-related disorder with an incidence of 1-2 per 100,000 people worldwide and an 

estimated lifetime risk of 1 in 400 (Barber et al., 2006, Ingre et al., 2015), although some 

estimates are as high as 1 in 350 (Alonso et al., 2009, Al-Chalabi and Hardiman, 2013). There 

are geographical variations in the number of ALS cases, with prevalence rates significantly 

lower in non-European countries; however, this may be due to a lack of reliable 

epidemiological data (Chio et al., 2013).   

 

 

1.2. Clinical presentation and disease management 

 
The presentation of ALS varies greatly between individuals depending on the population of 

neurons first affected: disease can be limb- or bulbar-onset and may affect upper or lower 

motor neurons to differing degrees (Hardiman et al., 2017). While traditionally regarded as a 

pure motor system disease, cognitive decline and behavioural disturbance are increasingly 

recognised as cardinal features of ALS. Indeed, as many as 30% of ALS patients meet the 

diagnostic criteria for frontotemporal dementia (FTD) (Hinz and Geschwind, 2017). There is a 

significant genetic overlap between ALS and FTD, and both disorders are heterogeneous at 

the clinical, neuropathological, and genetic levels (Ferrari et al., 2011). FTD is a collection of 
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neurocognitive syndromes characterised by the impairment of executive functioning, 

behavioural changes, and reduced language proficiency (Young et al., 2018). Diagnosis of 

ALS is clinical and is based on the El Escorial criteria. Neurophysiology and laboratory studies 

are used to exclude alternative diagnoses, particularly reversible ALS mimics such as 

entrapment neuropathies and multifocal motor neuropathy with conduction block (Hardiman 

et al., 2017). 

There is currently no cure for ALS; therefore, clinical management is largely supportive and 

requires a multidisciplinary approach. Symptoms such as dysphagia, spasticity, cramping, and 

sialorrhea are managed on an individual basis. Two disease-modifying medications are 

currently licensed by the Food and Drugs Administration. Riluzole, a sodium channel blocking 

agent, has been shown to modestly prolong survival by approximately three months, and has 

been used for many years (Hardiman et al., 2017). The more recent, Edaravone, is an 

antioxidant that has been shown to mildly prolong functional independence in selected 

patients (Abe et al., 2014, Hardiman and van den Berg, 2017). It is expected that significant 

advancements in the treatment of the disease will require personalised approaches to target 

specific causative genes and proteins. For example, Tofersen, an antisense oligonucleotide 

for SOD1 fALS, is currently undergoing phase III trials having shown promise in phase I and 

II studies (NCT02623699). 

 

 

1.3. Genetics of ALS  
 

The first discovered ALS-associated gene, SOD1, was first identified almost three decades 

ago, and since then over 50 ALS-associated genes have been described (Taylor et al., 2016). 

Despite this, a genetic cause still cannot be identified in many families; the search for new 

ALS genes is ongoing. The cause of sALS is not fully elucidated, but genetic and 

environmental factors are both predicted to be important. Indeed, a genetic cause can be 

observed in many sporadic patients, although genetic screening of these patients is not in 

widespread clinical practice at present. Environmental factors including diet, physical activity 

and toxins have been postulated as risk factors, but definitive proof for these has yet to emerge 

(Hardiman et al., 2017). Described genetic variants are associated with >68% fALS and >11% 

sALS cases (Renton et al., 2014). Whilst more than 50 potentially causative or disease-

modifying genes have been identified, mutations in SOD1, TARDBP, FUS, and C9ORF72 are 

most frequently associated with ALS (Boylan, 2015). The discovery and characterisation of 

new genetic risk factors for ALS helps to illuminate the upstream mechanisms leading to 

neuronal death and can identify new therapeutic targets. 
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1.3.1. SOD1 
 

The first ALS-causative mutation was identified in 1993 in the Cu/Zn superoxide dismutase 

gene (SOD1). Due to the role of SOD1 in converting superoxide radicals into oxygen and 

hydrogen peroxide, it was initially thought that mutations within this gene caused ALS via a 

loss-of-function mechanism resulting in a decrease in radical scavenging activity (Rosen, 

1993). However, this was soon disputed as different SOD1 mutants show varying degrees of 

enzyme activity, and SOD1 knockout mice do not develop ALS (Reaume et al., 1996, Yim et 

al., 1996, Al-Chalabi et al., 2012, Saccon et al., 2013). Moreover, correlations were not found 

between SOD1 dismutase activity and the aggressiveness of clinical phenotypes (Ratovitski 

et al., 1999). The fact that SOD1 mutations are autosomal dominant is most consistent with a 

gain-of-function mechanism. ALS-causing SOD1 mutations increase the protein’s propensity 

to misfold, which leads to the accumulation of SOD1 protein aggregates that induce 

neurotoxicity through mechanisms including oxidative stress and mitochondrial dysfunction 

(Rakhit et al., 2004, Vassall et al., 2006, Stathopulos et al., 2006, Joyce et al., 2011, Magrane 

et al., 2012). Since its discovery, SOD1 mutations have been shown to account for 15-20% of 

fALS cases and ~2% sALS cases, although there is significant variability between populations 

with the highest incidence in Scandinavia. More than 170 missense mutations have been 

identified which affect each of the five exons of SOD1 (Da Cruz et al., 2017). It is notable that 

SOD1-ALS is clinically and pathologically distinct from the majority of ALS cases. Familial 

SOD1-ALS patients lack TDP-43 pathology and are less likely to have significant cognitive 

changes (Mackenzie et al., 2007, Wicks et al., 2009), which may explain the failure to translate 

findings from SOD1-ALS mice into clinical treatments.  

 

1.3.2. TARDBP 
 

In 2008, it was demonstrated that mutations within transactive response DNA binding protein 

43kDa (TARDBP), which encodes the TDP-43 protein (Sreedharan et al., 2008), are a cause 

of ALS. TDP-43 is a ubiquitously expressed ribonucleoprotein that is predominantly localised 

in the nucleus, where it performs a range of functions linked to RNA metabolism including 

transcription, mRNA splicing, mRNA stability, RNA transport, miRNA biogenesis, and stress 

granule dynamics (Buratti and Baralle, 2012). There are over 50 known ALS-causing 

mutations in TARDBP, which contribute to 4-5% of fALS cases and 1% of sALS cases 

(Millecamps et al., 2010, Buratti, 2015). The mislocalisation of TDP-43 from the nucleus to the 

cytoplasm and the formation of TDP-43-positive cytoplasmic inclusions is recognised as the 

pathological hallmark of ~97% of ALS cases, including patients with mutated TARDBP 

(Neumann et al., 2006). The discovery that mutations within this protein are a cause of ALS 
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was a powerful argument that this almost universal pathology is an upstream cause of disease 

and not simply a downstream consequence.    

 

It is unclear whether TDP-43 aggregates cause toxicity through gain-of-function and/or loss-

of-function mechanisms. Several lines of evidence have shown that loss of nuclear TDP-43 

causes splicing defects in cellular and animal models, as well as in motor neurons from 

TARDBP-ALS patients (De Conti et al., 2015, Highley et al., 2014, Ling et al., 2015). However, 

other lines of evidence suggest that the key change is loss of autoregulation leading to 

overexpression (White et al., 2018). 

 

1.3.3. FUS 
 

The following year, in 2009, ALS-causing mutations were identified within fused in sarcoma 

(FUS) (Kwiatkowski et al., 2009, Vance et al., 2009). FUS has a functional role in a range of 

metabolic processes including transcription, mRNA splicing, mRNA transport, stress granule 

formation, miRNA biogenesis, and genome integrity (Deng et al., 2014b). Similar to TDP-43, 

FUS is predominantly localised in the nucleus, but also shuttles between the nucleus and 

cytoplasm (Zinszner et al., 1997). Cytoplasmic aggregations of FUS are described; however, 

like TDP-43, it is unknown how these aggregates cause motor neuron toxicity. Although, there 

is strong evidence for a dominant negative mechanism of FUS mislocalisation, misfolding and 

aggregation, leading to depleted nuclear function (Deng et al., 2014a). Currently, there are 

more than 50 FUS mutations associated with 4-5% fALS and <1% sALS cases, and the 

majority of these mutations present with an autosomal dominant mode of inheritance. Clinically 

FUS-ALS patients are younger than most, and importantly TDP-43 pathology is absent from 

degenerating neurons (Deng et al., 2014a). 

 

1.3.4. C9ORF72 
 

At 39% of fALS cases and 8% of sALS cases, the most common genetic cause of ALS was 

identified in 2011 as a (G4C2)n hexanucleotide repeat expansion in intron 1 of chromosome 9 

open reading frame 72 (C9ORF72) (DeJesus-Hernandez et al., 2011, Renton et al., 2011, 

Majounie et al., 2012). Whilst >30 (G4C2)n repeats are considered pathogenic (Byrne et al., 

2014, Beer et al., 2015), expansions of 500-2000 repeats are common in ALS patients 

(Cooper-Knock et al., 2014). It remains unclear as to how the (G4C2)n repeat expansion 

causes ALS, although it is thought to be a result of three mutually-inclusive mechanisms: 

C9ORF72 haploinsufficiency, dipeptide repeat protein toxicity, and RNA toxicity (Donnelly et 

al., 2013, Waite et al., 2014, Mori et al., 2013, Zu et al., 2013). The weight of evidence 
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suggests C9ORF72 repeat expansions cause ALS via a gain-of-function mechanism, whilst 

loss-of-function mechanisms are more likely to modulate the disease phenotype through 

dysregulated autophagy (Zhu et al., 2020). Patients with hexanucleotide-repeat expansions in 

the C9ORF72 gene tend to have aggressive disease and a higher prevalence of cognitive 

involvement and overlap with FTD (Hardiman et al., 2017). Crucially, C9ORF72-ALS overlaps 

clinically and pathologically with the more common sporadic disease (Cooper-Knock et al., 

2012), suggesting that study of C9ORF72-ALS may lead to discoveries applicable for the vast 

majority of ALS patients. This fact together with the relative frequency of C9ORF72-ALS 

cases, made this discovery a landmark in the ALS literature. 

 

 

 

1.4. ALS pathological mechanisms  
 

ALS is a multifactorial disorder with various mechanisms implicated in the disease 

pathogenesis. In most cases of ALS, it is difficult to separate the initial toxic insult and 

exacerbating secondary pathways that drive disease progression. Associated pathological 

mechanisms include oxidative stress, mitochondrial dysfunction, dysregulated axonal 

transport, aberrant RNA processing, and impaired protein homeostasis, as well as a non-cell 

autonomous toxicity.  

 

1.4.1. Oxidative stress 
 

Oxidative stress is a result of an imbalance in the production and removal of reactive oxygen 

species (ROS), and/or the inability to repair oxidative damage. Oxidative stress promotes 

tissue damage by interacting with other pathological mechanisms that promote the 

degeneration of motor neurons (Pollari et al., 2014). Oxidative stress in the form of free radical 

damage and abnormal free radical metabolism is well described in ALS patients (Shaw et al., 

1995, Ferrante et al., 1997, Smith et al., 1998, Chang et al., 2008). In certain SOD1-ALS 

mouse models, oxidative stress is shown to originate from the distal muscles in advance of 

disease onset (Kraft et al., 2007). ROS are shown to inhibit the release of neurotransmitters, 

thus interfering with synaptic transmission. Moreover, a rise in the level of ROS is 

demonstrated to inhibit the function of neuromuscular junctions (Naumenko et al., 2011), 

suggesting that oxidative damage may originate in peripheral tissues and progress in a 

retrograde manner to neurons. Indeed, the ALS gene most commonly associated with 

oxidative damage is SOD1 (Wiedau-Pazos et al., 1996, Crow et al., 1997), although mutant 

TDP-43 has also been implicated in this pathway (Duan et al., 2010).   
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1.4.2. Mitochondrial dysfunction 
 

The mitochondrion is a membrane-bound organelle that functions as the major hub to convert 

energy for cellular processes (Liu et al., 2020b). Impaired mitochondrial morphology and 

function are well-known phenomena of ALS and neurodegeneration more broadly (Johri and 

Beal, 2012). Mitochondrial dysfunction has been described in ALS patient spinal motor 

neurons and in various cell and animal models of the disease. These models have identified 

impaired ATP production, calcium buffering, redox balance, respiratory complexes and 

mitochondria-dependent apoptosis (Bowling et al., 1993, Dal Canto and Gurney, 1994, Fujita 

et al., 1996, Menzies et al., 2002, Ferri et al., 2006, Sasaki et al., 2007, Grosskreutz et al., 

2010, Shi et al., 2010, Cozzolino and Carri, 2012). Indeed, motor neurons have a high 

metabolic demand, making them particularly susceptible to dysregulated ATP production 

(Menzies et al., 2002). Moreover, impaired mitochondrial function has been shown to increase 

ROS production, resulting in a positive feedback loop characterised by enhanced oxidative 

damage to mitochondrial components and greater mitochondrial dysfunction. This process 

could be central to motor neuron degeneration in ALS (Kaal et al., 2000, Robberecht, 2000). 

 

1.4.3. Impaired axonal transport 
 

Motor neurons have extremely long axons extending from the CNS to the muscles in which 

they innervate. Any hypothesis to explain ALS needs to account for the specific vulnerability 

of motor neurons, and their anatomy is the most obvious candidate. These axons rely on the 

efficient transport of protein, lipids, RNA and organelles via the cytoskeleton and associated 

motor proteins. Various genes implicated in ALS including FUS, TARBP, and C9ORF72, are 

associated with axonal transport and the cytoskeleton, suggesting impaired axonal transport 

is a feature of ALS pathogenesis. Impaired axonal transport has been described in several 

different genetic models of ALS (Alami et al., 2014, De Vos et al., 2007, Morotz et al., 2012), 

and is proposed to occur early in the disease pathogenesis (De Vos et al., 2008). Indeed, 

axonal transport defects have been reported in pre-symptomatic SOD1G93A ALS mice (Bilsland 

et al., 2010).   

 

1.4.4. Dysregulated RNA metabolism 
 

It has become increasingly clear that aberrant RNA metabolism is central 

to ALS pathogenesis. The four major ALS genes: SOD1, TARDBP, FUS, and C9ORF72, have 

functional roles in aspects of RNA metabolism including mRNA transcription, alternative 

splicing, RNA transport, mRNA stabilization, and miRNA biogenesis (Butti and Patten, 2018). 
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In particular, TDP-43, which forms the characteristic cytoplasmic inclusions seen in the 

majority of ALS patients, is reported to regulate the expression of hundreds of mRNAs and 

the splicing of >1000 mRNAs (Polymenidou et al., 2011). Moreover, TDP-43 is transported 

along axons and co-localises with axonal mRNA binding proteins at synaptic terminals (Wang 

et al., 2008, Narayanan et al., 2013). TDP-43-mediated regulation of cytoplasmic mRNA in 

motor neurons is shown to influence axonal outgrowth (Fallini et al., 2012). Similarly, FUS is 

crucial for mRNA transport within axons and this function is disrupted in ALS (Butti and Patten, 

2018). Furthermore, the (G4C2)n repeat expansion in C9ORF72 is thought to directly exert 

RNA toxicity by disrupting RNA metabolism. Transcription of the repeat expansion leads to 

accumulations of RNA foci, which facilitate the recruitment, mislocalisation, and impaired 

function of RNA binding proteins (Gendron et al., 2013, Simon-Sanchez et al., 2012, Donnelly 

et al., 2013, Lee et al., 2013).  

 

1.4.5. Impaired protein homeostasis 

 

Insoluble protein aggregates are a hallmark neuropathological feature of ALS (Webster et al., 

2017). Protein inclusions have been identified in degenerating neurons and glial cells of the 

brainstem, spinal cord, cerebellum, hippocampus, as well as the frontal and temporal lobes 

(Piao et al., 2003, Nishihira et al., 2008, Zhang et al., 2008, Al-Chalabi et al., 2012). These 

inclusions are ubiquitinated, implying that the ubiquitin-proteasome and autophagy systems 

are impaired, which is suggestive of defects in protein turnover (Neumann et al., 2006, 

Blokhuis et al., 2013). Multiple lines of evidence implicate ER stress in ALS pathogenesis, 

suggesting an inability to manage misfolded proteins (Matus et al., 2013). A large number of 

ALS associated genes including VCP, OPTN, SOD1, TARDBP, FUS and C9ORF72, directly 

or indirectly regulate protein trafficking or degradation via the ubiquitin-proteasome or 

autophagy pathways (Webster et al., 2017), which strongly implicates impaired protein 

homeostasis in ALS pathogenesis.  

 

1.4.6. Non-cell autonomous toxicity and neuroinflammation  

 

Various studies have implicated glial cells in the pathogenesis of ALS. Astrocytes derived from 

the direct reprogramming of SOD1-ALS, C9ORF72-ALS, and sALS patient fibroblasts are 

selectively toxic to wild-type (WT) neurons in co-culture (Meyer et al., 2014, Nagai et al., 2007, 

Di Giorgio et al., 2007). It has been demonstrated that astrocyte-derived extracellular vesicles 

and associated miRNA cargo are responsible for astrocyte-mediated toxicity in C9ORF72-

ALS (Varcianna et al., 2019). In support of the non-cell autonomous nature of ALS, deletion 

of mutant-SOD1 exclusively from mouse astrocytes slowed late-stage disease progression 
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(Yamanaka et al., 2008). Moreover, astrocytes derived from fALS and sALS patient post-

mortem neural progenitor cells (NPCs) induce motor neuron death in vitro, irrespective of the 

mutation they carry (Haidet-Phillips et al., 2011).  

 

 

1.5. Animal models of ALS 
 

1.5.1. Mouse models 
 

The first animal model of ALS was the SOD1G93A mouse (Gurney et al., 1994), which harbours 

mutant human SOD1 cDNA randomly inserted into its genome. This transgenic line remains 

the most widely used animal model of human ALS. SOD1G93A mice present with hind limb 

weakness at ~90 days, concurrent with neurodegeneration that closely resembles human ALS 

pathology (Synofzik et al., 2010). Death occurs by ∼135 days; however, this is dependent on 

the genetic background. Despite its widespread use, the SOD1G93A mouse may display 

phenotypic traits that arise from overexpression of the SOD1 protein, as opposed to being an 

effect of the SOD1G93A mutation itself (Shibata, 2001). Indeed, overexpression of human WT 

SOD1 in mice causes an abnormal phenotype (Jaarsma et al., 2001).  

 

The discovery of the C9ORF72 hexanucleotide (G4C2)n repeat expansion (DeJesus-

Hernandez et al., 2011, Renton et al., 2011) has led to the generation of various ALS/FTD 

animal models. Some of the first ALS/FTD transgenic mouse models were developed using a 

bacterial artificial chromosome (BAC) to express the G4C2 expansion. Whilst these models 

displayed molecular phenotypes similar to human C9ORF72-associated ALS/FTD, the mice 

were clinically unaffected with no evidence of neurodegeneration (O'Rourke et al., 2015, 

Peters et al., 2015). Conversely, other BAC transgenic mouse models expressing a similar 

number of repeats have since been shown to present with an age-dependent development of 

cognitive and behavioural dysfunction (Liu et al., 2016, Jiang et al., 2016). Notably, the Liu 

model included much more of the original human genomic context for the repeat expansion, 

suggesting that the surrounding regulatory genome is necessary to drive pathogenesis. 

Coincident with this was a much higher level of antisense transcription, which the authors 

linked to neuronal loss. However, there is some ongoing debate as to the validity of this model 

as it demonstrates inconsistent behavioural phenotypes and TDP-43 pathology (Alrafiah, 

2018). Finally, when researchers utilised a viral-mediated delivery system to express the 

repeat expansion, mice not only displayed histopathological features, but also developed 

neurodegeneration and behavioural deficits comparable to those seen in patients (Chew et 

al., 2015). 
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Whilst these models show contrasting results, they do all provide evidence for gain-of-function 

toxicity associated with the G4C2 expansion. Observed pathological effects are generally all 

characteristic of ALS/FTD. In contrast, pathogenic mechanisms associated with C9ORF72 

loss-of-function in transgenic mice appear to extend beyond the characteristic features of 

ALS/FTD. One of the earlier loss-of-function models generated by selective knockout of the 

C9ORF72 ortholog in mouse neurons and glia was shown to be insufficient to cause disease 

(Koppers et al., 2015). Conversely, mice harbouring loss-of-function mutations in the 

orthologue of C9ORF72 were shown to develop an array of complications in the 

haematopoietic system including splenomegaly, neutrophilia, thrombocytopenia, increased 

expression of inflammatory cytokines, and severe autoimmunity, which ultimately led to a high 

mortality rate (Burberry et al., 2016). A similar result was observed by Jiang and colleagues, 

who reported that a chronic 50% reduction in C9ORF72 led to splenomegaly and enlarged 

lymph nodes (Jiang et al., 2016). Whilst ALS/FTD are not considered autoimmune disorders, 

it is evident that C9ORF72 is a multifactorial gene that operates in pathways extending beyond 

the CNS. This is evidence that the function of the actual C9ORF72 protein may not be 

important for the development of ALS-FTD, although this does not explain why ALS has not 

been linked to similar GC-rich expansions at other sites within the genome.    

 

The identification of ALS-causing TARDBP mutations has led to the generation of a wide range 

of TDP-43 ALS/FTD mouse models. A limitation of these models is that observed phenotypes 

may be artefacts of TDP-43 overexpression. Indeed, overexpression of WT TDP-43 has been 

shown to cause an ALS phenotype (Xu et al., 2010). Recently, issues regarding 

overexpression were circumvented through the use of CRISPR/Cas9 genome editing; 

however, this model did not display a robust phenotype nor show signs of TDP-43 

mislocalisation (White et al., 2018). Interestingly, TDP-43 was overexpressed in this model 

due to a circumventing of the normal autoregulation mechanism responsible for precise control 

of TDP-43 levels. The model developed by Wegorzewska and colleagues in 2009 accurately 

recapitulated clinical hallmarks of ALS/FTD, but lacked typical TDP-43-positive pathology 

(Wegorzewska et al., 2009). 

 

 

1.5.2. Zebrafish models 
 

Contrary to previous findings in mice (Koppers et al., 2015), haploinsufficiency 

of C9orf72 orthologues in zebrafish cause motor axon and behaviour deficits (Ciura et al., 

2013). Furthermore, expression of the G4C2 repeat expansion in zebrafish recapitulated key 

pathological hallmarks associated with ALS/FTD, commensurate with motor and cognitive 
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impairment as well as premature death (Shaw et al., 2018). Similar results were observed in 

a study of the same year, which showed that the expression of a comparable number of G4C2 

repeats correlated with motor neuron toxicity; however, behavioural effects were not reported 

(Swinnen et al., 2018). 

 

The zebrafish genome contains two orthologues of human TDP-43: tardbp and tardbpl. 

Transient knockdown of tardbp using morpholino oligonucleotides was shown to induce a 

motor phenotype concurrent with the shortening of motor neuron axons. In the same study, 

microinjection of human mRNA encoding known TDP-43 mutations (A315T, G348C and 

A382T) led to a similar phenotype (Kabashi et al., 2010). However, subsequent studies 

observed more profound effects associated with mutant TDP-43. Whilst tardbp-mutants 

showed no phenotype, Schmid et al. reported that double mutants for tardbp and its 

paralogue displayed muscle degeneration, strongly reduced blood circulation, mispatterning 

of vessels, impaired axon outgrowth, and premature death (Schmid et al., 2013). These results 

were reflected in a study of the same year; however, there was no report of circulatory defects 

(Hewamadduma et al., 2013). A more detailed discussion of zebrafish models of ALS is 

presented in chapter 4.  
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1.6. A literature review in the context of the present study: disrupted 

glycosyltransferase function is a cause of neurodegeneration  

 
 
This following sections of this chapter are an extended version of work which I published 

during my PhD (Moll et al., 2020). It is evident that the pathophysiological mechanisms 

underpinning ALS are multifactorial, and there is complex interplay between genetic factors 

and molecular pathways. The main focus of my project was to experimentally evaluate a novel 

glycosyltransferase enzyme implicated in ALS. Therefore, the following sections of this 

introductory chapter will review dysregulated glycosyltransferase function as a cause of 

neurodegeneration in the context of Alzheimer’s disease (AD), Parkinson’s disease (PD), 

Huntington’s disease (HD), and ALS.   

 

Glycosyltransferases represent a large family of enzymes that catalyse biosynthesis of 

oligosaccharides, polysaccharides, and glycoconjugates. Sugar moieties are transferred from 

activated sugar donors to specific acceptor molecules via the formation of glycosidic bonds 

(Chuh et al., 2016). Acceptor molecules include other sugars, nucleic acids, lipids, and 

proteins. Glycosyltransferases reside predominantly within the Golgi apparatus of eukaryotes 

as type II transmembrane proteins. Over 90 glycosyltransferase families have been described 

(www.cazy.org/GlycosylTransferases.html). Sequence alignment tools have been useful for 

predicting glycosyltransferase function, including a metal-binding motif important for 

configuration of substrate within the active site (Lairson et al., 2008). However, even closely 

related sequences have been shown to exhibit different catalytic activity (Breton et al., 2006).  

Glycosyltransferases are classified as either ‘retaining’ or ‘inverting’ enzymes according to 

whether the anomeric bond within the donor substrate is retained or inverted during the sugar 

transfer.  

 

 

1.6.1. Genetic mutations in glycosyltransferases are associated with 

neurodegeneration 

 

Changes in expression levels of glycosyltransferases have been strongly linked with 

neurodegeneration (Ludemann et al., 2005, Desplats et al., 2007, Schneider, 2018), but 

determining whether these effects are upstream of neurotoxicity is difficult. Two distinct 

glycosyltransferase-associated mechanisms are prominent in the neurodegeneration 

literature: ganglioside synthesis and the addition of O-linked β-N-acetyl glucosamine to 

proteins (O-GlcNAcylation). Genetic mutations in the development of an age-associated 
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neurodegenerative disease are, by definition, upstream causes or risk factors rather than 

secondary to the disease process. Mutations discovered within glycosyltransferases and their 

implication in neurodegenerative diseases are summarised (Table 1.1).  

 

 

Glycosyl-
transferase 

Functional 
consequence 

Neurodegenerative 
disorder 

Defect observed Reference 

ST6GAL1 
Disrupted cell surface 

signalling 
Alzheimer’s disease DNA mutations 

(Lee et al., 
2017) 

B3GALT4 
Reduced ganglioside 
biosynthesis (GD1b) 

Parkinson’s disease 
Reduced gene 

expression 
(Schneider, 

2018) 

ST3GAL2 
Reduced ganglioside 
biosynthesis (GT1b) 

Parkinson’s disease 
 

Huntington’s disease 
 

Reduced gene 
expression 

(Schneider, 
2018) 

(Desplats et 
al., 2007) 

 

B4GALNT1 
Reduced ganglioside 

biosynthesis 
Huntington’s disease 

Reduced gene 
expression 

(Desplats et 
al., 2007) 

ST8SIA3 

Implicated in 
ganglioside 

biosynthesis but 
described role in N-

glycosylation 

Huntington’s disease 
Reduced gene 

expression 
(Desplats et 

al., 2007) 

ST3GAL5 
Reduced ganglioside 

biosynthesis 
Huntington’s disease 

Reduced gene 
expression 

(Desplats et 
al., 2007) 

GLT8D1 
Reduced membrane 

expression of 
glycosphingolipids 

ALS DNA mutations 
(Cooper-

Knock et al., 
2019) 

UGT8 
Disruption of myelin 

synthesis 
ALS DNA mutations 

(Pamphlett 
et al., 2011) 

EOGT 
Disruption of O-
GlcNAcylation 

ALS DNA mutations 
(Moll et al., 

2020) 

OGT 
Impaired O-

GlcNAcylation 

Alzheimer’s disease 
 

ALS 
 

Reduced 
concentration 

of O-
GlcNAcylated 

proteins 

(Liu et al., 
2004) 

(Ludemann 
et al., 2005) 

 

OGT 
Excessive O-
GlcNAcylation 

Parkinson’s disease 

Increased 
concentration 

of O-
GlcNAcylated 

proteins 

(Wani et al., 
2017) 

 

Table 1.1. Defects affecting specific glycosyltransferase enzymes observed in 

neurodegenerative disease. Glycosyltransferase genes, functional consequences, 

associated neurodegenerative disorders, observed defects, and references are shown. Table 

taken from (Moll et al., 2020).  
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1.6.1.1. UDP glycosyltransferase 8 (UGT8)  
 

UGT8 is a member of glycosyltransferase family 8. UGT8 functions in the biosynthesis of 

galactocerebroside, a sphingolipid that forms the myelin membrane in the central and 

peripheral nervous systems. Rare and potentially pathogenic copy number variants have been 

identified in the promotor region of UGT8 following an unbiased genome-wide screen for de 

novo DNA mutations in twelve trios, including sALS patients and unaffected parents 

(Pamphlett et al., 2011). Abnormal lipid biosynthesis and metabolism is a pathological 

hallmark of ALS (Dupuis et al., 2008, Dorst et al., 2011); therefore, it is possible that UGT8 

plays a role in the hypolipidemia observed in ALS patients and the SOD1G93A ALS mouse 

model (Kim et al., 2011, Yang et al., 2013). Mice lacking ugt8a, the ortholog of UGT8, exhibit 

impaired locomotor activity and disruption in nerve conduction, followed by degeneration of 

the myelin sheath (Bosio et al., 1996, Coetzee et al., 1996), which is rescued following 

transgenic expression of ugt8a (Zoller et al., 2005). Interestingly the rescue occurred with 

expression of ugt8a under a promoter exclusively expressed within oligodendrocytes, which 

is consistent with other evidence implicating these cells in ALS-associated neurodegeneration 

(Morrison et al., 2013).  

 

 

1.6.1.2. ST6 Beta-Galactoside Alpha-2,6-Sialyltransferase 1 (ST6GAL1)  
 

ST6GAL1 is an ‘inverting’ enzyme and a member of glycosyltransferase family 29. ST6GAL1 

catalyses the transfer of sialic acid onto galactose-containing substrates including cell-surface 

signalling lipids and proteins (Garnham et al., 2019). A genome-wide association study 

implicated polymorphisms within ST6GAL1 in the conversion of mild cognitive impairment into 

clinical AD (Lee et al., 2017).  Interestingly, ST6GAL1 is cleaved and occurs in a soluble form; 

this cleavage is mediated by BACE1 (Kitazume et al., 2001), which is also involved in the 

cleavage of APP to form β-amyloid. Indeed, overexpression of ST6GAL1 increases APP 

secretion (Nakagawa et al., 2006), suggesting that the activity of ST6GAL1 can directly modify 

the central pathway in the development of AD pathology.   

 

 

 

1.6.2. Glycosyltransferases regulate ganglioside synthesis 
 

Major gangliosides are sialic acid-containing glycosphingolipids. Within the mammalian brain 

they are synthesized in the endoplasmic reticulum from a lactosylceramide precursor before 
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remodelling during transit from the cis- to the trans-Golgi network by a series of 

glycosyltransferase enzymes (Figure 1.1). Mature gangliosides are expressed on the plasma 

membrane of most vertebrate cells and within bodily fluids. They are particularly abundant on 

neuronal and glial cells within the CNS where they are thought to function prominently in cell 

signalling (Vajn et al., 2013).  

 

 

1.6.3. Gangliosides are differentially distributed in the mammalian CNS 
 

Mapping ganglioside distribution patterns in the CNS may be crucial to understanding the 

functional properties of the various ganglioside sub-species. Ganglioside-monosialic acid 1 

(GM1), ganglioside-di-sialic acid 1a (GD1a), ganglioside-di-sialic acid 1b (GD1b), and 

ganglioside-tri-sialic acid 1b (GT1b) are all derived from a common precursor (GM3) and 

constitute over 90% of total gangliosides within the typical mammalian brain. Their abundance 

is attributed to the high activity of the synthesising enzyme, β-1,4-N-acetylegalactosaminyl 

transferase 1 (B4GALNT1). Synthesis occurs via two primary pathways, designated a-series 

and b-series (Figure 1.1) (Ledeen, 1966, Yao et al., 2014).   

 

Rodent-based studies have revealed cell type-specific expression of major CNS gangliosides 

during adulthood. By way of illustration, GD1b is specific to granule neurons throughout all 

layers of the cerebellar cortex, whilst GD1a is localised exclusively to the molecular layer 

(Kotani et al., 1993, Kawashima et al., 1996, Vajn et al., 2013). Immuno-labelling of GD1a, 

GD1b, and GT1b in the adult mouse CNS revealed high expression across all layers of the 

cerebral cortex. Conversely, GM1 was restricted to myelinated fibres within the lower layers 

(Vajn et al., 2013). The variability of ganglioside composition throughout nervous tissue is 

consistent with an important role in the formation and function of the CNS.   

 

Region-specific alterations in ganglioside distribution within the mammalian brain are known 

to occur during development and ageing, with ganglioside composition changing from simple 

(e.g. GM3) to complex (e.g. GM1), compliant with the degree of neurogenesis, 

synaptogenesis, and axonal branching. Knowledge of how such alterations are regulated is 

limited, but it is thought to be modulated at the level of glycosyltransferase gene expression 

(Kracun et al., 1991, Ngamukote et al., 2007). 
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1.6.4. Gangliosides regulate neuroinflammation and neurotrophic action 
 

Studies using genetically modified mice have shed light on the biological importance of 

gangliosides to nervous system function. A double knockout of genes encoding key 

glycosyltransferase enzymes involved in ganglioside biosynthesis, GM2- and GD3-synthase, 

displayed up-regulation of complement genes and their receptors in mouse cerebellum (Ohmi 

et al., 2009). This infers that gangliosides prevent the destruction of nervous tissue through 

complement-mediated neurodegeneration. The rise in complement activity coincided with 

impairments in the structure and function of lipid rafts, which anchor complement proteins to 

membrane bilayers. A follow-up study confirmed that maintenance of lipid rafts is key to the 

neuroprotective properties of gangliosides (Ohmi et al., 2011).   

 

Gangliosides have also been shown to exhibit neurotrophic properties by enhancing neurite 

outgrowth and alleviating the deterioration of nervous tissue following injury (Kittaka et al., 

2008, Ohmi et al., 2009). For example, GD3 synthase-deficient mice lacking b-series 

gangliosides showed a reduction in the regenerative capacity of axotomised hypoglossal 

nerves (Okada et al., 2002). A study of GM2 synthase-deficient mice has suggested that this 

is also true of a-series gangliosides, concurrent with a decrease in the expression of known 

neurotrophic factors compared to WT controls, supporting the notion that gangliosides 

regulate neuronal integrity (Kittaka et al., 2008).   

 

Ganglioside function has been investigated in axon-glial junctions at the nodes of Ranvier in 

myelinated central and peripheral motor nerve fibres of GM2 synthase-deficient mice. Mutant 

mice presented with mislocalisation of ion channels and a reduction in motor nerve conduction, 

suggesting a role for gangliosides in stabilising the interactions between neurons and glia at 

paranodal junctions (Susuki et al., 2007). It has been suggested that gangliosides indirectly 

perpetuate nerve integrity by increasing the neuroprotective properties of astrocytes, the most 

abundant glial cell type within the CNS. In support of the knockout mouse models, a study 

found that ganglioside-depleted astrocytes were less able to augment the survival of 

hippocampal neurons in vitro. In the same study, neurotrophic activity was rescued following 

treatment with ganglioside GM3, suggesting it is involved in glial cell-mediated neuronal 

maintenance (Akasako et al., 2011). However, a more recent study argued that glial 

gangliosides are less significant to the age-related maintenance of neuronal integrity; a rescue 

experiment on GM2 synthase-deficient mice was performed by driving GalNAcT expression 

in a cell-restricted manner. Neuronal-specific expression of GalNAcT in these mice led to a 

lasting WT phenotype, whereas mice with glial-specific GalNAcT expression exhibited 

progressive tremor, weakness, and ataxia with ageing (Yao et al., 2014). Irrespective of this, 
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these studies form a compelling argument to support the various mechanisms through which 

gangliosides regulate neuroinflammation, neuronal plasticity, and synaptic function (Figure 

1.1). 

 

 

 

 

Figure 1.1. Schematic overview of the biosynthesis and function of major gangliosides 

within the mammalian brain. Lactosylceramide is synthesised at the cytoplasmic leaflet of 

the ER membrane from its ceramide precursor. De novo ceramide is transported to the Golgi 

apparatus and is converted to glycosphingolipids and sphingomyelin through the addition of 

saccharides and phosphocholine, respectively. Glycosphingolipids are transported in vesicles 

to the outer leaflet of the plasma membrane. Sialic acid-enriched glycosphingolipids form 

gangliosides, which are anchored to the membrane via their ceramide-lipid moiety. Four major 

gangliosides comprise >90% of total gangliosides within the brain. A-series gangliosides (red) 

are derived from GM3. B-series gangliosides (purple) are synthesised from GM3 by GD3 

synthase (St8sia1). Nomenclature: the letter G denotes the “ganglioside” core; the second 

letter designates the quantity of sialic acid residues (M - mono; D - di; T - tri). Gangliosides 

are essential to maintaining neuronal integrity with functions including, but not limited to, 

increasing the neuroprotective properties of astrocytes, stabilising interactions between 

neurons and glia, enhancing neurite outgrowth, and negatively regulating neuroinflammation 

through activation of the complement pathway. Figure taken from (Moll et al., 2020).  
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1.6.5. Impaired ganglioside synthesis is linked to neurodegeneration 
 

Altered levels of gangliosides have been reported in animal models of ALS and in post-mortem 

CNS tissue from ALS patients (Ariga, 2014, Dodge et al., 2015); similar findings have been 

reported in PD (Wu et al., 2012), HD (Desplats et al., 2007), and AD (Gylys et al., 2007).  

 

 

1.6.5.1. Parkinson’s disease  
 

Reduced glycosyltransferase function with subsequent reduction in ganglioside synthesis has 

been implicated in the pathogenesis of PD. A recent report described a reduction in gene 

expression of the glycosyltransferases B3GALT4 and ST3GAL2 in neuromelanin-containing 

neurons in the substantia nigra pars compacta (SNpc) of PD patients, compared to controls 

(Schneider, 2018). These genes are key players in the ganglioside biosynthesis pathway 

(Figure 1.1). It is proposed that reduced B3GALT4 and ST3GAL2 expression leads to 

vulnerability of dopaminergic neurons via aberrant ganglioside synthesis. Consistent with this 

hypothesis, the number of GM1 ganglioside-expressing cells in the PD SNpc are reduced (Wu 

et al., 2012), and levels of the major brain gangliosides - GM1, GD1a, GD1b and GT1b - are 

decreased in whole SN homogenates from PD patients (Seyfried et al., 2018). Model systems 

provide evidence that dysfunction of ganglioside synthesis is a cause and not just an 

association of typical PD pathology. Genetically engineered mice lacking major brain 

gangliosides display overt motor impairment with increasing age, which is accompanied by 

loss of dopaminergic neurons from the SNpc and aggregation of α-synuclein (Wu et al., 2012).  

 

1.6.5.2. Huntington’s disease 
 

In a similar manner to PD, reduced expression of glycosyltransferases involved in ganglioside 

synthesis has also been described in the R6/1 mouse model of HD and in human HD patients 

(Desplats et al., 2007). In this study >80% of gene expression changes observed in the 

striatum of R6/1 mice were also observed in the post-mortem caudate of human HD subjects. 

Overlapping genes were significantly enriched with glycosyltransferases involved in 

ganglioside synthesis including ST3GAL5, ST8SIA3, B4GALNT1 and ST3GAL2 (Figure 1.1).  

Consistent with impaired ganglioside synthesis, the same study reported reduced ganglioside 

concentrations within both the diseased human caudate and the mouse striatum.  
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1.6.5.3. Alzheimer’s disease  
 

There is good evidence for perturbed ganglioside metabolism in patients with AD, and in the 

development of β-amyloid pathology in particular (Barrier et al., 2007). In contrast to the 

findings in PD and HD, the key observation appears to be increased ganglioside synthesis.  

Elevated GM1, GM2 and GM3 levels have been reported in the cerebral cortices of AD brains 

(Kracun et al., 1992, Gylys et al., 2007). Development of β-amyloid deposition is the defining 

pathology of AD and within brains exhibiting early AD pathology, a significant proportion of β-

amyloid is bound to ganglioside species (Yanagisawa and Ihara, 1998). It has even been 

suggested that insoluble GM1-bound β-amyloid is the key toxin leading to neuronal death 

(Hayashi et al., 2004), as a result of high affinity binding between GM1 and β-amyloid, which 

facilitates formation of insoluble β-pleated sheets (Yamamoto et al., 2007). With increasing 

age, GM1 is localised to pre-synaptic nerve terminals and this may have a role in directing β-

amyloid deposition to the same locations (Yamamoto et al., 2008). Unlike evidence regarding 

gangliosides, reports of altered glycosyltransferase expression in AD are more limited. There 

is evidence that glycosyltransferase activity may modify AD pathology. Overexpression of the 

glycosyltransferase, B4GALNT1, leads to increased ganglioside expression but also 

increases APP cleavage to form β-amyloid pathology through suppression of lysosomal 

degradation of BACE1 (Yamaguchi et al., 2016). Currently, transgenic mouse models of AD 

do not mirror changes in ganglioside distribution seen in human post-mortem tissue (Barrier 

et al., 2007).  

 

1.6.5.4. Amyotrophic lateral sclerosis  
 

ALS has been linked to abnormal lipid metabolism (Desport et al., 2005) and in particular, 

gangliosides and their ceramide precursors are thought to be modulators of disease 

progression (Salazar-Grueso et al., 1990, Stevens et al., 1993). Whether ganglioside 

production is increased or decreased is controversial. As early as 1985, a 10% reduction in b-

series gangliosides was identified within the motor cortex of ALS brains compared to non-ALS 

controls (Rapport et al., 1985). More recently, elevated levels of gangliosides GM1 and GM3 

were reported within ALS post-mortem spinal cords compared to age-matched controls; 

findings were corroborated in the SOD1G93A transgenic ALS mouse model (Dodge et al., 2015). 

Interestingly, autoantibodies against specific gangliosides produce an inflammatory disease 

of spinal motor neurons known as multifocal motor neuropathy with conduction block 

(Harschnitz et al., 2014), which is a frequent differential diagnosis of ALS. ALS specifically 

inflicts pathology on the upper and lower motor neurons within the corticospinal tract, the 

neuromuscular junction, and muscle. The accessibility of this system in disease models 
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facilitates the differentiation of up- and downstream disease associations. For example, 

increased expression of glycosphingolipids is observed in muscle tissue from end-stage 

mutant SOD1-ALS mice compared to controls, but similar changes were observed in response 

to surgically induced muscle denervation suggesting a downstream effect (Henriques et al., 

2015). Moreover, neurotransmission at the neuromuscular junction is unchanged in aged GM2 

and GD3-deficient mice, compared to controls (Zitman et al., 2011). The recent discovery that 

mutations in the glycosyltransferase GLT8D1 are associated with fALS is a step forward that 

places glycosyltransferase activity irrefutably upstream in the development of disease 

(Cooper-Knock et al., 2019).  

 

 

1.6.6. Gangliosides as a therapeutic target  
 

A growing body of evidence supports the role of gangliosides in the pathogenesis of 

neurodegenerative disease. With this came the realisation that gangliosides may offer a 

potential new class of therapeutic targets, although it is unclear whether they should be added 

or removed and in what context. The pharmacological use of gangliosides for targeting 

neurodegenerative disease processes is becoming increasingly well-documented (Schneider 

et al., 2015a, Schneider et al., 2015b, Knight et al., 2015, Henriques et al., 2015). The following 

sections of this introductory chapter will discuss the use of gangliosides for the treatment of 

AD, PD and ALS.   

 

1.6.6.1. Alzheimer’s disease  
 

In 1994, a double-blind placebo-controlled trial of intramuscularly administered GM1 for the 

treatment of AD patients, found that GM1 did not significantly affect cognitive performance. 

This suggested it was not a viable approach for targeting cognitive deficits in AD (Flicker et 

al., 1994). However, a later study tested the effects of intracerebroventricular administration 

of GM1 to 5 early-onset AD patients, and identified improvements in the patients’ ability to 

perform routine daily activities (Augustinsson et al., 1997). This was supported by a 

subsequent study of 5 early-onset AD patients, reporting that a continuous injection of GM1 

into the frontal horns of the lateral ventricles for a twelve-month period improved motor function 

and neuropsychological ability (Svennerholm et al., 2002). All studies are limited by the low 

number of participants, but the positive effects observed in the latter two studies suggest that 

the route of administration affects the therapeutic potential of gangliosides.   
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The therapeutic value of gangliosides to AD is difficult to determine, due to conflicting reports 

coupled with reported studies having enrolled a relatively low number of participants. That 

said, a recent study reported symptomatic improvements in a Dutch APPE693Q mouse model 

of AD following targeted depletion of ganglioside GM2. Based on the hypothesis that GM2 

accelerates the aggregation and accumulation of amyloid-β in AD (Yamamoto et al., 2005), 

Knight and colleagues increased the activity of a known GM2 catabolising enzyme, β-

hexosaminidase. They observed a reduction in the level of ganglioside-bound amyloid-β, as 

well as improvements in learning behaviour and a reduction in anxiety (Knight et al., 2015). 

 

1.6.6.2. Parkinson’s disease  
 

Having shown promise in preclinical animal models of PD through the rescue of SNpc neurons 

and an increase in dopamine synthesis (Schneider et al., 1995), the therapeutic potential of 

ganglioside GM1 has since been tested in human subjects. In 1995, Schneider and colleagues 

confirmed the safety and efficacy of GM1 treatment in PD patients (Schneider et al., 1995). 

This led to a randomised double-blind placebo-controlled study in 1998, during which 

significant improvements in the motor performance of PD patients were observed following 

GM1 treatment (Schneider et al., 1998). Since then, positron emission tomography scans of 

PD patients receiving GM1 treatment coincided with improvement in the efficacy of the PD 

drug, Ritalin, in striatal regions compared to controls. Correspondingly, the GM1-treated 

cohort displayed symptomatic improvement and a reduction in symptomatic progression over 

the course of the study. Although limited by the low number of participants (n=40), this pilot 

study provides additional data to support the therapeutic potential of GM1 in PD (Schneider et 

al., 2015a). However, the disease modifying potential of GM1 is limited by its lack of blood-

brain barrier penetrability following systemic administration, indicating the need for membrane-

permeable analogues. A previous study has addressed this issue, and the treatment of PD 

mice with a membrane-permeable analogue of GM1 was shown to attenuate prior 

manifestations of Parkinsonism (Wu et al., 2012).   

 

Due to limits in bioavailability, methods of enhancing endogenous levels of GM1 in the brain 

have been explored. Sialidase enzymes were injected into the dorsal third ventricle in a mouse 

model of PD to catalyse the conversion of GD1a, GD1b and GT1b gangliosides into GM1. A 

significant increase in ganglioside expression levels was subsequently observed, marked with 

a reduction in the loss of dopaminergic neurons (Schneider et al., 2015b). With clinical trials 

still ongoing, research into the use of gangliosides to treat PD is showing more promise than 

in AD to date.   
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1.6.6.3. Amyotrophic lateral sclerosis  
 

Studies on the therapeutic potential of gangliosides in ALS have been ongoing for decades, 

yet with inconsistent results. In 1984, a 6-month double-blind controlled trial of intramuscularly 

administered gangliosides was conducted in ALS patients. No differences were observed in 

the progression of muscle weakness between the group receiving ganglioside treatment 

compared to those receiving placebo, suggesting gangliosides are an ineffective treatment 

option (Harrington et al., 1984). These findings may have been limited by the route of 

administration, as observed in the AD studies. However, some years later, a patient that also 

underwent intramuscularly administered ganglioside therapy displayed a high anti-GM2 titre 

and developed ALS-like disorder. A subsequent decrease in anti-GM2 titre saw symptoms 

improve, suggesting the anti-GM2 was particularly reactive with motor neurons in the patient, 

potentially causing motor neuron-specific impairment (Yuki et al., 1991). However, this was 

an isolated case and it is not conclusive that ganglioside therapy caused ALS. In 1995, 

Matsumoto and colleagues identified GM2 as a major ganglioside in a neuroblastoma-spinal 

cord hybrid cell line, suggesting GM2 displays motor neuron specificity. Based on these 

reports, GM2 might serve as a potential target antigen in ALS (Matsumoto et al., 1995). An 

interesting follow-up study would be to analyse the presence of GM2 in the serum of a motor 

neuron disease patient cohort.   

 

A potentially pathogenic role for anti-GM2 antibodies in ALS is inconsistent with reports on 

other anti-ganglioside antibodies. In 1988, a moderate increase in IgM anti-GM1 antibody titre 

was reported in the sera of ALS patients. These findings were replicated by the same research 

group a year later (Pestronk et al., 1988, Pestronk et al., 1989). However, when this concept 

was revisited in 2015, similar anti-GM1 antibody levels were identified between ALS patients 

and healthy controls (Kollewe et al., 2015), suggesting the expression of anti-ganglioside 

antibodies may not bear an impact on disease progression.   

 

In recent years, gangliosides have shown promise as a therapeutic target in murine models of 

human ALS. rHIgM12 is a recombinant human immunoglobulin M, shown to bind with high 

affinity to gangliosides GD1a and GT1b. Administration of rHIgM12 in two SOD1 ALS mouse 

models (G93A and G86R) coincided with a 16-day delay in the onset of neurological deficits 

and a 5-day delay in weight loss compared to untreated controls (Xu et al., 2015). The 

therapeutic potential of gangliosides is supported by another study of the same SOD1 ALS 

mouse model (G93A). The disease course in this model was initially accelerated by inhibiting 

the synthesis of a complex ganglioside precursor, glucosylceramide. Subsequent infusion of 

exogenous ganglioside, GM3, delayed the onset of motor deficits and increased viability of 
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the mice (Dodge et al., 2015). Following on from these reports, a recent study sought to treat 

SOD1G86R ALS mice with Conduritol B epoxide to increase the concentration of 

glucosylceramide, the precursor for all complex glycosphingolipids. Ganglioside distribution at 

neuromuscular junctions was maintained at a level that coincided with a reduction in motor 

neuron degeneration and a delay in disease onset. Whilst this study supports a role for 

complex glycosphingolipids in muscle innervation, it also suggests that the targeting of 

ganglioside precursors is a viable therapeutic approach for ALS (Henriques et al., 2017).   

 

The efficacy of gangliosides as a treatment option has differed between neurodegenerative 

diseases and is likely influenced by factors such as the route of administration and 

bioavailability. However, attempts to overcome these limitations have proven successful and 

the recent targeting of a major ganglioside precursor in ALS is an exciting leap towards 

preventing the detrimental effects of perturbed ganglioside metabolism. Studies such as this 

highlight the considerable progress that has been made since the discovery of gangliosides 

85 years ago (Figure 1.2). The future is likely to see more nuanced manipulation of 

ganglioside function to alter disease-associated changes in specific cell types at specific times.  
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1.6.7. Glycosyltransferase O-GlcNAcylation: a key regulator of 

neurodegeneration? 

 

1.6.7.1. O-GlcNAcylation is implicated in neurodegenerative disease 
 

O-GlcNAcylation occurs predominantly in the brain and is regulated by the 

glycosyltransferases O-Linked N-Acetylglucosamine Transferase (OGT) and EGF Domain 

Specific O-Linked N-Acetylglucosamine Transferase (EOGT), which attach the GlcNAc moiety 

to acceptor proteins at specific serine/threonine residues via an O-linked glycosidic bond; the 

reverse reaction is catalysed by O-GlcNAcase (OGA). OGT acts intracellularly whereas EOGT 

acts extracellularly on secreted and membrane proteins. Together these reactions constitute 

a dynamic and reversible process (Figure 1.3).  

 

Protein glycosylation, and more specifically the addition of O-GlcNAc groups to CNS proteins 

important for axonal and synaptic function, is significantly reduced in animal models of 

neurodegenerative diseases and in patient tissue from diseases including PD, HD, AD, and 

ALS (Liu et al., 2004, Ludemann et al., 2005, Kumar et al., 2014, Frenkel-Pinter et al., 2017, 

Wani et al., 2017) (Table 1.1). O-GlcNAcylation is reported to negatively regulate tau 

phosphorylation (Liu et al., 2004), which is key in the pathogenesis of a number of 

neurodegenerative diseases including AD. In contrast, an increase in O-GlcNAcylation is 

observed in the post-mortem temporal cortex of PD patients and is postulated to contribute to 

neurodegeneration through the inhibition of autophagy, leading to an increase in α-synuclein 

accumulation (Wani et al., 2017).  

 

Neurofilaments are critical components of the neuronal cytoskeleton that can undergo O-

GlcNAcylation (Yuan et al., 2012). Neurofilament levels are significantly higher in the serum 

and cerebrospinal fluid of ALS patients compared to controls (Benatar et al., 2018). This 

increase is thought to be a consequence of axonal damage. However, there is evidence that 

neurofilament damage may be upstream in the pathogenesis of ALS, including the observation 

that increased phosphorylation of neurofilaments is associated with neurotoxicity (Julien, 

1997). It is thought that phosphorylation and O-GlcNAcylation are reciprocal, meaning that 

reduced O-GlcNAcylation could precipitate harmful phosphorylation; indeed, this has been 

observed in a transgenic rat model of SOD1-ALS (Ludemann et al., 2005).  

 

OGT is an inverting enzyme and a member of glycosyltransferase family 41. OGT is highly 

enriched in the brain, where it is ten times more active than in peripheral tissue (Okuyama and 



25 
 

Marshall, 2003). OGT is localised to the nucleus, soma, dendrites, and pre-synaptic terminals 

of neurons (Akimoto et al., 2003). Removal of post-synaptic OGT from primary neurons inhibits 

both synapse formation and the development of dendritic spines (Lagerlof et al., 2017). This 

highlights the importance of OGT in maintaining synaptic stability, and notably loss of synaptic 

stability is a unifying feature of neurodegenerative disease. EOGT is an inverting enzyme and 

a member of glycosyltransferase family 61. Despite distinct sites of action, OGT and EOGT 

are both regulated via the hexosamine biosynthetic pathway (Ogawa et al., 2015). EOGT 

activity is involved in Notch signalling, which is important for neurodevelopment. Indeed, 

homozygous loss-of-function mutations in EOGT produce Adams-Oliver syndrome, a 

congenital developmental disorder associated with actin cytoskeleton defects (Schroder et al., 

2019).  
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Figure 1.3. O-GlcNAcylation is implicated the pathophysiology of neurodegenerative 

disease. An overview of O-GlcNAcylation, a post-translational modification of O-GlcNAc, 

which has been implicated in neurodegenerative diseases: HD, AD, PD, and ALS. O-

GlcNAcylation occurs predominantly in the brain and is regulated by the glycosyltransferases 

OGT and EOGT, which attach the O-GlcNAc moiety to acceptor proteins at specific serine / 

threonine residues via an O-linked glycosidic bond. OGT acts intracellularly whereas EOGT 

acts extracellularly on secreted and membrane proteins. Figure taken from (Moll et al., 2020). 
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1.6.7.2. ALS-associated genetic variants within O-GlcNAcylation pathway enzymes  
 

As part of this literature review, we investigated EOGT mutations in the context of ALS. While 

homozygous EOGT mutations affect neurodevelopment, we hypothesised that heterozygous 

mutations within EOGT might negatively impact on the maintenance of axon integrity and 

increase the risk of developing ALS. To test this hypothesis, we performed rare-variant burden 

testing (Cirulli et al., 2015) within EOGT to check for a genetic association with ALS (Moll et 

al., 2020). We used whole genome sequencing data from 4493 sALS patients and 1924 

control subjects (van der Spek et al., 2019), and identified 32 missense rare (MAF <1%) 

variants within EOGT that were exclusively or predominantly found in ALS cases (see 

appendix 1). When considering all rare missense variants found in cases and controls across 

all exons of EOGT, there was a significant enrichment of such mutations in ALS patients (Firth 

logistic regression, p=0.007). Similar testing did not identify an enrichment of ALS-associated 

mutations within OGT; indeed, we only identified two rare missense mutations within OGT in 

4493 sALS patients. It should be noted that OGT is encoded on the X chromosome and 

therefore males are necessarily hemizygous, which may predispose to a neurodevelopmental 

phenotype rather than a late age-of-onset disease; for example, mutations within N terminal 

tetratricopeptide repeats of OGT are associated with X-linked intellectual disability (Gundogdu 

et al., 2018). There was no significant burden of ALS-associated mutations within OGA 

(p=0.91) (Moll et al., 2020). 

 

 

1.6.8. Summary 
 

Overall there is substantial evidence for dysfunction of glycosyltransferases in 

neurodegenerative diseases including ALS, AD, HD, and PD. There are diverse functions 

associated with glycosyltransferase activity and for many of the enzymes the biological 

pathway associated with their activity is not yet clear. However, in our analysis, dysfunction 

associated with neurodegenerative disease can be seen to converge on the ganglioside 

synthesis pathway and altered O-GlcNAcylation. The exact nature of the defect appears to be 

variable in different diseases; for example, ganglioside concentrations are reduced in PD and 

HD, increased in AD, and there is evidence for change in both directions in ALS. Similarly, 

increased O-GlcNAcylation is associated with the development of PD pathology but reduced 

O-GlcNAcylation is associated with the development of tau pathology. We suggest that 

consensus will arise via efforts to position glycosyltransferase dysfunction within the cascade 

of pathogenesis leading to neuronal death. It is not glycosyltransferase dysfunction per se that 

is interesting, but rather upstream changes in glycosyltransferase function that initiate toxicity. 
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With this in mind, we have highlighted genetic associations between mutations in 

glycosyltransferases and neurodegenerative disease, and we have revealed a new 

association between ALS and mutations in EOGT. Glycosyltransferases are likely to be an 

important therapeutic target in the effort to develop disease-modifying therapies for 

neurodegenerative disease.  
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1.7. Work leading up to this study: GLT8D1 
 
 

1.7.1. Exome sequencing in an autosomal dominant ALS pedigree identifies candidate 

deleterious variants 

 
The following sections are adapted from work published as part of my PhD (Cooper-Knock et 

al., 2019). Exome sequencing in two related individuals with autosomal dominant ALS 

(Figure 1.4a) identified five potential causal variants. Candidate monogenic causal variants 

were shared by both affected individuals, rare, and predicted deleterious. Variants were 

selected for further analysis if the Exome Aggregation Consortium (ExAC) frequency was 

<1/10,000 controls (Lek et al., 2016) and the Phred-scaled Combined Annotation Dependent 

Depletion (CADD) score was >25 (Kircher et al., 2014). Heterozygous variants in five genes 

met the filtering criteria: p.R92C (GenBank: NM_018446: c.274C>T) in GLT8D1, p.P529L 

(GenBank: NM_001267619: c.1586C>T) in ARPP21, p.A266T (GenBank: NM_003848: 

c.796G>A) in SUCLG2, p.R1252H (GenBank: NM_173689: c.3755G>A) in CRB2, and 

p.C116R (GenBank: NM_052837: c.346T>C) in SCAMP3. Subsequently, another family 

member developed unilateral weakness and upper motor neuron dysfunction suggestive of 

ALS. Detailed neurological investigation did not fulfil El-Escorial diagnostic criteria, but no 

alternative cause was identified. Screening this individual for the five candidate mutations 

revealed only p.R92C in GLT8D1 and p.P529L in ARPP21 (Cooper-Knock et al., 2019). 

 

 

1.7.2. Targeted sequencing supports pathogenicity of variants within exon 4 of 

GLT8D1 

 

Targeted DNA sequencing of the five candidate genes was performed in a cohort of 103 fALS 

and young sALS cases from the North of England. The cohort included 34 fALS patients in 

whom a genetic cause had not been identified, despite screening for ALS-associated 

mutations in SOD1, C9ORF72, TARDBP, and FUS; 61 young-onset sALS patients; and 13 

C9ORF72-ALS patients. SUCLG2, CRB2, and SCAMP3 were not mutated in any additional 

cases and were excluded from further analysis. In addition to the two individuals from the 

index pedigree, four of the screened patients also carried p.R92C (GenBank: NM_018446: 

c.274C>T) within GLT8D1 exon 4 (Tables 1.2, 1.3). Another patient carried a rare deleterious 

p.G78W (GenBank: NM_018446: c.232C>A) change within the same exon of GLT8D1, 

suggesting a common pathogenic effect (Figure 1.4b, Table 1.2). Mutations were confirmed 

by Sanger sequencing by using independent DNA samples. In addition to an ExAC frequency 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/exome-sequencing
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/autosomal-dominant-inheritance
https://www.sciencedirect.com/science/article/pii/S2211124719301688#fig1
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/exome
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=nucleotide&doptcmdl=genbank&term=NM_018446
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=nucleotide&doptcmdl=genbank&term=NM_001267619
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=nucleotide&doptcmdl=genbank&term=NM_003848
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=nucleotide&doptcmdl=genbank&term=NM_173689
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=nucleotide&doptcmdl=genbank&term=NM_052837
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/motor-neurons
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/dna-sequence
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/candidate-gene
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/sod1
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/tardbp
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/fus
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/pedigree
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=nucleotide&doptcmdl=genbank&term=NM_018446
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/exon
https://www.sciencedirect.com/science/article/pii/S2211124719301688#fig1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=nucleotide&doptcmdl=genbank&term=NM_018446
https://www.sciencedirect.com/science/article/pii/S2211124719301688#fig1
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/sanger-sequencing
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of <1/10,000 controls, similar mutations are absent from North of England controls (n = 220) 

and from unaffected family members within the index pedigree (Figure 1.4a). No patient with 

a mutation in GLT8D1 carried an additional ALS-associated mutation, as determined from the 

ALS Online Genetics Database (Abel et al., 2012). No additional patients were identified with 

a mutation in ARPP21 (Cooper-Knock et al., 2019).  

 

GLT8D1 encodes a glycosyltransferase enzyme of unknown function, which is widely 

expressed (http://www.gtexportal.org/home/). Importantly, this class of proteins has not 

previously been associated with neurodegeneration, although GLT8D1 has been identified as 

a schizophrenia risk gene (Sasayama et al., 2014, Yang et al., 2018). It is noteworthy that ALS 

and schizophrenia share common genetic risk (McLaughlin et al., 2017). Four of five identified 

GLT8D1 mutations affect amino acids that show high evolutionary conservation, as 

determined by relative entropy using the NCBI “Conserved Domains Tool” 

(https://www.ncbi.nlm.nih.gov/Structure/cdd/cddsrv.cgi) (Figure 1.4c). All mutations are 

closely associated with the proposed GLT8D1 ligand-binding site involving amino acid 

residues 71–76 (Bourne and Henrissat, 2001), suggesting that the discovered mutations may 

modify this activity (Cooper-Knock et al., 2019). 

 

 

 

https://www.sciencedirect.com/science/article/pii/S2211124719301688#fig1
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/genetic-database
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/genetic-conservation
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/entropy
https://www.ncbi.nlm.nih.gov/Structure/cdd/cddsrv.cgi
https://www.sciencedirect.com/science/article/pii/S2211124719301688#fig1
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/ligand-binding
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Figure 1.4. Discovery of ALS-Associated Mutations within Exon 4 of GLT8D1 in Close 

Proximity to the Putative Substrate Binding Site. (A) Original pedigree in which p.R92C 

mutations were discovered. Exome sequencing was performed in two related individuals with 

ALS (*). Sanger sequencing (of red shapes) confirmed the p.R92C mutation is carried by ALS 

patients (shaded grey) and absent from unaffected individuals. (B) Identified structural and 

topological domains within GLT8D1, including the site of identified mutations within exon 4. 

(C) Sequence homology analysis within exon 4 localises ALS-associated mutations to close 

proximity with the substrate binding site of GLT8D1. ALS-associated amino acid changes 

(yellow highlight) affect evolutionary conserved bases (red text) with one exception. Amino 

acids which form the putative substrate binding site are indicated (blue highlight). Displayed 

sequence is glycosyltransferase domain encoded by exon 4 (amino acid [aa] 66–aa116). 

Figure adapted from (Cooper-Knock et al., 2019).  
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Of the six cases carrying the p.R92C mutation in GLT8D1, five cases including the two index 

cases also carried a p.P529L change (GenBank: NM_001267619: c.1586C>T) within cyclic 

AMP (cAMP)-regulated phosphoprotein 21 (ARPP21). In support of pathogenicity of the 

p.R92C GLT8D1 mutation in the absence of the ARPP21 variant, one patient carried only the 

GLT8D1 mutation without an ARPP21 change. Subsequent analysis of Project MinE whole-

genome sequencing data from 4,493 ALS patients (Project MinE ALS Sequencing 

Consortium, 2018) identified two additional patients carrying the p.R92C mutation without a 

variant in ARPP21. Comparison between the 4,493 Project MinE patients and 60,706 controls 

sequenced by the ExAC (http://exac.broadinstitute.org/) revealed that the p.R92C change is 

significantly associated with ALS (Fisher exact test, odds ratio [OR] = 54.1, p = 2.03E-08), and 

this association remains significant when cases carrying a variant in ARPP21 are excluded 

(Fisher exact test, OR = 20.3, p = 0.0029) (Cooper-Knock et al., 2019).  

 

 

1.7.3. Exon 4 of GLT8D1 is significantly enriched with ALS-associated rare deleterious 

variants affecting conserved amino acids 

 
Burden analysis was performed using Sequence Kernal Association Test-Optimal Unified Test 

(SKAT-O) (Lee et al., 2012) to compare rate of genetic variation within exon 4 of GLT8D1 in 

a cohort of 1,138 fALS patients and 19,450 controls (as described in (Kenna et al., 2016)). 

Rare deleterious variants are significantly enriched in exon 4 in the fALS cohort (SKAT-O, 

p=0.0025); there is no significant ALS-association within GLT8D1 when exon 4 is excluded 

(see appendix 2). Across all cohorts, five distinct rare deleterious mutations of GLT8D1 exon 

4 were identified in fourteen ALS patients (Table 1.2). Identification of additional fALS cases 

from an independent population with similar mutations in GLT8D1 strongly suggests that 

GLT8D1 is an ALS gene (Cooper-Knock et al., 2019).  

 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=nucleotide&doptcmdl=genbank&term=NM_001267619
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/cyclic-adenosine-monophosphate
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/cyclic-adenosine-monophosphate
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/phosphoprotein
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/pathogenicity
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/whole-genome-sequencing
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/whole-genome-sequencing
https://www.sciencedirect.com/science/article/pii/S2211124719301688#bib21
https://www.sciencedirect.com/science/article/pii/S2211124719301688#bib21
http://exac.broadinstitute.org/
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/genetic-variation
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Table 1.2. Mutations identified with exon 4 of GLT8D1. DNA change, protein change, 

number of ALS patients, ExAC frequency, CADD score, average disease duration, disease 

characterisation, and population, are shown. Table adapted from (Cooper-Knock et al., 2019). 

 

 

 

1.7.4. Clinical characteristics of patients with mutated GLT8D1 

 
Clinical characteristics of cases carrying a mutation in GLT8D1 are summarised in Table 1.3. 

Overall, disease characteristics are within the expected spectrum of ALS (Cooper-Knock et 

al., 2012). Phenotype data were not available from all cases; however, eight patients with 

p.R92C mutations suffered a particularly aggressive disease course with average survival of 

21 months, but patients with p.G78W or p.I70T mutations lived >5 years. Average age of onset 

across all patients was 49.3 years, and three patients developed symptoms in their fourth 

decade; early onset is consistent with monogenic disease (Cooper-Knock et al., 2019). 
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Table 1.3. Phenotype information for patients carrying ALS-associated mutations in 

GLT8D1. Case number, disease characterisation, sex, age of onset, average disease 

duration, site of disease onset, GLT8D1 mutation, and population cohort, are shown. # 

denotes patients that underwent exome sequencing. Table adapted from (Cooper-Knock et 

al., 2019).  
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1.8. Work leading up to this study: CAV1 and CAV2 
 

 

1.8.1. Discovery of ALS-linked CAV1/CAV2 enhancer mutations 
 

The following sections are adapted from work currently submitted for publication as part of my 

PhD (available at: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3606796). Non-

coding regulatory sequence includes enhancers, which are cis-acting DNA sequences that 

modulate expression of target genes primarily through binding of transcription factors (TFs) 

(Koch et al., 2011). Physical interaction between an enhancer and the promoter of the target 

gene is mediated by DNA looping (Pennacchio et al., 2013). A novel pipeline was designed 

for the identification of disease-associated variation within enhancers (Figure 1.5a).  

 

Sets of enhancers which regulate a common coding gene were aggregated. As previously 

described (Fishilevich et al., 2017), high quality manually curated links were identified between 

enhancers and coding genes based on corroboration between: correlated expression between 

genes, enhancer-RNAs (eRNAs), and TFs; expression quantitative trait loci (eQTL) within 

enhancers; capture Hi-C; and gene–enhancer genomic distances.  

 

Following the aggregation of enhancers linked to individual coding genes, enhancer variants 

were filtered to remove those unlikely to be pathogenic prior to association testing. Enhancer 

variants were included if minor allele frequency (MAF) was <0.01 (Lek et al., 2016, van 

Rheenen et al., 2016), and LINSIGHT (Huang et al., 2017) score was >0.8. A LINSIGHT 

score >0.8 is consistent with strong evolutionary selection (Huang et al., 2017). Following 

filtering, case and control variant frequencies for each set of enhancers were collapsed into a 

single SKAT burden test (Lee et al., 2012). 

 

The pipeline was tested using whole genome sequencing (WGS) data from 4,495 ALS cases 

and 1,925 controls (Project MinE, Data-Freeze-1). Firstly, it was hypothesised correctly that 

aggregated enhancers linked to all genes within the ‘amyotrophic lateral sclerosis’ KEGG 

(Kyoto Encyclopaedia of Genes and Genomes) pathway (Kanehisa et al., 2017) would be 

enriched with ALS-associated genetic variation (SKAT-O, p=0.02, 377 variants, see appendix 

3). Secondly, it was hypothesised that pathogenic enhancer variants are likely to cause 

reduced transcription of their target coding gene, which might be expected to mimic a 

haploinsufficiency mechanism. Therefore, variants were examined within enhancers linked to 

expression of TBK1, which is known to cause ALS via haploinsufficiency (Freischmidt et al., 

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3606796
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2015). Consistent with this hypothesis, genetic variation within TBK1 enhancers is significantly 

associated with ALS (p=0.003, SKAT-O, 12 variants, see appendix 4). 

 

The pipeline was applied to test for genetic association within enhancers linked to CAV1 and 

CAV2 expression. A significant enrichment of ALS-associated genetic variation was 

discovered within enhancers linked to CAV1 (p=3.88E-05, SKAT-O, 40 variants) and CAV2 

(p=1.52E- 05, 57 variants). In total, 56 (1.2%) sALS patients carry one or more ALS-associated 

variants within CAV1/CAV2 enhancers compared to 2 (0.1%) of controls. There is significant 

overlap between enhancers and ALS-associated variants linked to CAV1 and CAV2 (see 

appendix 5), which reflects shared function between the two proteins. 

 

 

1.8.2. Genetic variation within CAV1 coding sequence is associated with ALS 
 

It is likely that genetic variation within linked enhancer and coding regions can produce similar 

phenotypes. ALS-associated genetic variation within CAV1 and CAV2 exons was assessed 

by rare-variant burden testing using WGS data from 4,495 ALS cases and 1,925 controls 

(Project MinE Data-Freeze-1). In addition to filtering by MAF<0.01 (van Rheenen et al., 2016), 

a functional filter was introduced to identify variants which alter protein function (Cingolani et 

al., 2012). In CAV1, but not CAV2, coding sequence a significant enrichment of functional 

genetic variation in ALS patients was identified (p=0.03, 12 variants, Firth logistic regression, 

beta=1.47, Figure 1.5). Coding and enhancer mutations occurred in independent individuals, 

which excludes the possibility that the observed convergence is a consequence of linkage 

disequilibrium. 

 

 

1.8.3. CAV1/CAV2 function and association with ALS 
 

Caveolin 1 (CAV1) and caveolin 2 (CAV2) are scaffolding proteins and the main component 

of the caveolae plasma membranes. CAV1 and CAV2 are expressed in most cell types, 

except striated muscle cells, where caveolin 3 is predominant. In motor neurons, CAV1 and 

CAV2 are expressed together in a hetero-oligomeric complex (de Almeida, 2017) within 

membrane lipid rafts (MLRs) on the cell surface and have a key role in organization of 

intercellular signalling (Sawada et al., 2019; Schmick and Bastiaens, 2014). CAV1 activity 

promotes neurotrophic signalling, leading to enhanced neuronal survival (Head et al., 

2011; Mandyam et al., 2017). In contrast, loss of CAV1 accelerates neurodegeneration (Head 

et al., 2010, 2011). Abnormal neurotrophic signalling is well documented in ALS (Mutoh et al., 
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2000; Turner et al., 2004), and in particular, deficient neurotrophic signalling is associated with 

an increased vulnerability to neuronal injury (Bemelmans et al., 2006; Ghavami et al., 

2014; Kowiański et al., 2018; Tooze and Schiavo, 2008).  

 

 
 

 

Figure 1.5. Significant enrichment of ALS genetic-risk within enhancers and coding 

regions linked to CAV1 and CAV2. (A) Pipeline for variant filtering and burden testing; 

enhancers are first associated with genes based on epigenetic and transcriptome data 

(Fishilevich et al., 2017); enhancer variants are prioritised for further analysis if they are rare 

(MAF<0.01, (Lek et al., 2016) and evolutionary conserved (LINSIGHT score >0.8, (Huang et 

al., 2017). (B) Quantity of genetic material (bp) relative to CNS enhancers derived from Hi-C 

data (Rhie et al., 2018); CNS enhancers = 100. Upper two bars denote total genetic material; 

lower two bars denote ALS-associated genetic variants only. Grey shading denotes material 

unique to CNS or tissue-agnostic enhancers versus material shared by both (white). (C, D) 

CAV1-coding variants passing filtering criteria are depicted in the table and figure. One variant 

is present at higher frequency in controls (orange arrow) and one variant is present in multiple 

ALS patients (bold arrow); all other variants were discovered in a single ALS patient and zero 

controls. 
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1.9. Overall objectives and hypotheses 
 

 

1.9.1. Hypotheses: 
 

1. Mutations in the glycosyltransferase domain of GLT8D1 cause ALS via dysregulated 

ganglioside biosynthesis.  

2. ALS-associated enhancer mutations linked to CAV1 and CAV2 cause downregulation 

of CAV1 and CAV2 expression and disrupt membrane lipid rafts. 

 

 

1.9.2. Overall objectives: 
 

1. Investigate the relative toxicity caused by overexpressing ALS-associated GLT8D1 

mutations in neuronal and non-neuronal cells. 

2. Measure the effect of ALS-associated GLT8D1 mutations on the glycosyltransferase 

activity of the enzyme. 

3. Assess motor function in zebrafish larvae following targeted knockdown of the 

endogenous glt8d1 orthologue using antisense morpholino oligonucleotides, and 

following overexpression of mutant human GLT8D1 mRNA. 

4. Evaluate the effect of an ALS-linked R92C mutation on membrane lipid raft integrity. 

5. Investigate whether an ALS-linked R92C mutation causes fragmentation of the Golgi 

network. 

6. Assess the relative expression of CAV1/CAV2 mRNA and protein in patient-derived 

cells carrying an ALS-associated CAV1/CAV2 enhancer variant. 

7. Use CRISPR/Cas9 genome editing to disrupt the WT CAV1/CAV2 enhancer sequence 

in a human neuronal cell model, and evaluate the effect on CAV1/CAV2 mRNA 

expression. 

8. Evaluate the effect of ALS-associated CAV1/CAV2 enhancer variants on membrane 

lipid raft integrity. 
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Chapter 2. Materials and Methods 
 

2.1. Materials 

2.1.1. General materials 

Bromophenol blue powder, glycerol, sodium chloride (NaCl) analytical grade, 

dimethylformamide (DMF), sodium dodecyl sulphate (SDS), Ethylenediaminetetraacetic acid 

(EDTA), Oxoid™ Phosphate Buffered Saline (PBS) Tablets (Dulbecco A), Hanks Balanced 

Salt Solution (HBSS) and nitrocellulose membranes were all purchased from ThermoFisher 

Scientific. SDS [Lauryl Sulphate] and HEPES free acid and Tris (molecular grade) were 

purchased from Melford. Acetic acid; Ammonium Persulphate (APS); β-Mercaptoethanol; 

Dithiothreitol (DTT); TEMED; Triton™ X-100; Trizma® base; and Tween® 20 were all 

purchased from Sigma-Aldrich.    

 

2.1.2. General buffers and solutions  

 PBS: 137mM NaCl, 3mM KCl, 8mM Na2HPO4, and 1.5mM KH2PO4, at pH 7.3. 

Oxoid™ PBS tablets were dissolved in 1L dH2O, and the solution was autoclaved.  

 1x Tris Acetate EDTA (TAE) buffer: 40mM Tris, 40mM acetate, 1mM EDTA, at pH 8.0.  

 1x Tris-Buffered saline, 0.1% Tween® 20 Detergent (TBST): 20mM Tris, 137mM NaCl, 

0.2% (v/v) Tween® 20, at pH 7.6.  

 

Solutions for RNA work were pre-treated with (Diethylpyrocarbonate) DEPC to inhibit RNase 

activity. 0.001 volumes of DEPC was added to the appropriate solution and mixed for 1 hour. 

The solution was subsequently autoclaved to degrade the DEPC. For sterilisation, solutions 

were autoclaved in an MP25 autoclave (Rodwell) at 121°C, 15psi for 15 minutes. 

 

2.1.3. Cell culture materials 

Dulbecco’s Modified Eagle Medium (DMEM), RPMI 1640, DMEM/F-12 GlutaMAXTM, 

Penicillin/Streptomycin and 10x Trypsin were all purchased from Lonza. Neurobasal medium, 

foetal bovine serum (FBS), L-glutamine, sodium pyruvate, N-2 supplement, B-27 supplement, 

and Opti-MEMⓇ Reduced Serum Medium were all purchased from ThermoFisher Scientific. 

Tetracycline-free FBS was purchased from Biosera. Flp-InTM T-RExTM Core Kit, Flp-InTM T-

RExTM HEK293 cells, Blasticidin-S and Hygromycin-B, ZeocinTM and Tetracycline were all 
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purchased from Invitrogen. Plasma fibronectin was purchased from Merck. Gelatin powder 

was purchased from BDH Biochemical. Polyethylenimine (PEI) was purchased from Sigma-

Aldrich. Epidermal growth factor (EGF), Heparin and fibroblast growth factor (FGF) were 

purchased from PeproTech. Smoothened agonist (SAG) was purchased from Millipore. All-

trans retinoic acid (RA) and forskolin were purchased from Sigma-Aldrich.  

  

2.1.4. Molecular biology materials  

HyperLadder™ I, II, III, IV and V molecular weight markers, and accuzyme were purchased 

from Bioline. Pre-stained protein ladder (broad molecular weight) was purchased from Abcam. 

Agarose (molecular grade) was purchased from Melford. LB Broth, Miller (molecular genetics 

granular); and LB Agar, Miller (powder) were purchased from Fisher Scientific. DNA 

Polymerase I was purchased from Invitrogen. DH5-α Competent E.coli was purchased from 

New England BioLabs. T4 DNA Ligase and 10x Ligase Buffer were purchased from Promega. 

Ethidium bromide, phenol-chloroform and ampicillin were purchased from Sigma-Aldrich.  

BamHI, XbaI, NheI, HindIII, BcII, and XhoI FastDigest restriction enzymes were purchased 

from ThermoFisher Scientific. 10x FastDigest green buffer, M-MLV reverse transcriptase, 5x 

first strand buffer, 0.1M dithiothreitol, random hexamer primer and DNTP mix were all 

purchased from ThermoFisher Scientific. Ethidium bromide was purchased from Sigma-

Aldrich. 2x Brilliant III qPCR Master Mix; and 2x Brilliant III SYBR Green qPCR Master Mix 

were purchased from Agilent Technologies. Protein Assay Dye Reagent Concentrate 

(Bradford Reagent) was purchased from Bio-Rad. Bovine serum albumin (BSA) powder was 

purchased from Fisher Scientific. FLAGⓇ Magnetic Beads were purchased from Sigma-

Aldrich. Ultra-Pure ProtoGel® 30% (w/v) Acrylamide, 0.8% (w/v) Bis-Acrylamide Stock 

Solution (37.5:1) and EZ-ECL Kit were purchased from Geneflow. Original dried skimmed milk 

powder was purchased from Marvel. Paraformaldehyde (PFA), SIGMAFAST™ EDTA-free 

Protease Inhibitor Cocktail (PIC) tablets, Sodium Azide and Thiozolyl Blue Tetrazolium 

Bromide (MTT) powder were purchased from Sigma-Aldrich. PMSF protease inhibitor and 

TRIzol® LS Reagent were purchased from ThermoFisher Scientific. Fluorescent mounting 

medium (DAKO) was purchased from Aligent. Hoechst (33342) was purchased from 

ThermoFisher Scientific. Alt-R® S.p. Cas9 Nuclease V3, Alt-R® Cas9 Electroporation 

Enhancer and TracrRNA were purchased from Integrated DNA Technologies. VeriFi mix red 

was purchased from PCRBio. Normal horse serum was purchased from Vector.  
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Table 2.2. Primary antibodies used for immunoblotting (WB) and 

immunocytochemistry (ICC). Antibody specificity, molecular weight (kDa), source, 

species, type, dilution (in 5% (w/v) BSA/PBS) and application are shown.  

Antibody 

specificity 

Molecular 

weight 

(kDa) 

Source/product 

number 
Species/type 

Dilution 

used/application 

GLT8D1 42 GeneTex/GTX123636 Rabbit/polyclonal 1:1000 for WB 

GLT8D1 42 
Sigma-

Aldrich/HPA010588 
Rabbit/polyclonal 1:200 for ICC 

TGN-46 47 Abcam/ab50595 Mouse/monoclonal 1:500 for ICC 

GM130 112 Abcam/ab52649 Rabbit/monoclonal 1:250 for ICC 

α-Tubulin 50 Sigma-Aldrich/T9026 Mouse/monoclonal 
1:5000 for 

WB/ICC 

Table 2.1. Molecular biology kit product details. Name, source and assay ID are shown. 

Kit Source Identifier 

mMESSAGE mMACHINETM 

SP6 Transcription Kit 
ThermoFisher Scientific #AM1340 

PierceTM LDH Cytotoxicity Assay 

Kit 
ThermoFisher Scientific #88953 

Plasmid Mini Kit QIAGEN #12125 

Plasmid Midi Kit QIAGEN #12145 

UDP-GloTM Glycosyltransferase 

Assay Kit 
Promega #V6961 

PierceTM BCA Protein Assay Kit ThermoFisher Scientific #23225 

NeonTM Transfection System 

Starter Pack Kit 
Invitrogen #MPK5000S 

4D NucleofectorTM System Lonza 
#AAF-1002B  

#AAF-1002X 

GenElute Mammalian Genomic 

DNA Miniprep Kit 
Sigma-Aldrich #G1N350 

Direct-zol RNA Miniprep Kit Zymo Research #R2050 

Alt-R CRISPR-Cas9 Control Kit, 

Human, 2 nmol 
Integrated DNA technologies #1072554 
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JL-8 32 Takara Bio/632380 Mouse/monoclonal 
1:5000 for 

ICC/WB 

FLAG M2 - Sigma-Aldrich/F3165 Mouse/monoclonal 1:500 for WB 

Caveolin1 22 GeneTex/GTX100205 Rabbit/polyclonal 1:1000 for WB 

Caveolin1 22 Abcam/ab2910 Rabbit/polyclonal 1:500 for ICC 

Caveolin2 21 Abcam/ab3417 Rabbit/polyclonal 1:500 for WB 

Pax6 47 Abcam/ab5790 Rabbit/polyclonal 1:50 for ICC 

 
 
 
 
Table 2.3. Secondary antibodies and molecular probes. Antibody specificity, source, 

dilution (in 5% (w/v) BSA/PBS) and application are shown. 

Antibody 
Source/product 

number 
Dilution/application 

Donkey anti-mouse (AlexaFluorTM 

568)  
Life Technologies 1:1000 for ICC 

Donkey anti-rabbit (AlexaFluorTM 

488) 
Life Technologies 1:1000 for ICC 

Goat anti-mouse (AlexaFluorTM 

568) 
Life Technologies 1:1000 for ICC 

Goat anti-rabbit (AlexaFluorTM 488) Life Technologies 1:1000 for ICC 

Wheat Germ Agglutinin, 

AlexaFluorTM 488 Conjugate, 

fluorescent probe 

Invitrogen/11261 2µg/mL for live imaging 

Cholera Toxin Subunit B 

(Recombinant) AlexaFluorTM 555 

Conjugate, fluorescent probe 

Invitrogen/C22843 1µg/mL for live imaging 

Anti-mouse-IgG HRP conjugate Promega/W4021 1:5000 for WB 

Anti-rabbit-IgG HRP conjugate Promega/W4011 1:5000 for WB 
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Table 2.4. PCR primer sequences for molecular cloning and site-directed 

mutagenesis. Gene and reference ID, plasmid type, restriction endonuclease and primer 

sequences are shown. All oligonucleotides were purchased from Sigma-Aldrich.  

Oligonucleotides for molecular cloning.  

Gene / 

reference 
Plasmid 

Restriction 

endonuclease 

Oligonucleotide sequence for 

amplification of DNA fragment (5’-3’) 

GLT8D1 

IMAGE: 

40116197 

pEGFP-

N1 

_GLT8D1-

eGFP 

GLT8D1-1-koz-

NheI5 

GGCGGGGCTAGCGCCACCATGTCATTC

CGTAAAGTAAAC 

GLT8D1-371-

XhoI3 

CCCGCCCTCGAGCTTTATGTTTGAGATC

TCGGTATA 

GLT8D1 

IMAGE: 

40116197 

pcDNA5/F

RT/TO_3x

FLAG-

GLT8D1 

GLT8D1-1-BclI5 
GGCGGGTGATCAATGTCATTCCGTAAA

GTAAAC 

GLT8D1-371stp-

XhoI3 

CCCGCCCTCGAGTCACTTTATGTTTGAG

ATCTCGG 

Oligonucleotides for site-directed mutagenesis. 

Mutation 
Forward / 

reverse 
Sequence (5’-3’) 

GLT8D1 

p.G78W 

F GCATCTGAAGACAGGCTTTGGGGGGCCATTGCAGCTA 

R AGCTGCAATGGCCCCCCAAAGCCTGTCTTCAGATGC 

GLT8D1 

p.R92C 

F AGCATTCAGCACAACACTTGCTCCAATGTGATTTTCT 

R AGAAAATCACATTGGAGCAAGTGTTGTGCTGAATGCT 

 
 
 
 
Table 2.5. Media compositions. Cell lines, media and supplements are shown.  

Cell line Media/source Supplements 

HEK293 / SH-SY5Y DMEM, Lonza 10% (v/v) FBS and 50 U/mL Pen/Strep 

N2A DMEM, Lonza 
10% (v/v) FBS, 50 U/mL Pen/Strep, 

500mM sodium pyruvate 

HEK293 stable DMEM, Lonza 

10% (v/v) tetracycline-free FBS, 50 

U/mL Pen/Strep, 150ug/mL Hygromycin 

B, and 15ug/mL Blasticidin S 

Fibroblast DMEM, Lonza 10% (v/v) FBS and 50 U/mL Pen/Strep 

Lymphoblast RPMI 1640, Lonza 10% (v/v) FBS and 2mM L-glutamine 

Pre-iNPC  
DMEM/F-12 

GlutaMAXTM, Lonza 

1% (v/v) B-27, 1% (v/v) N-2, 20ng/mL 

FGFb, 20ng/mL EGF, 5ng/mL Heparin 
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iNPC 
DMEM/F-12 

GlutaMAXTM, Lonza 

1% (v/v) B-27, 1% (v/v) N-2, and 

40ng/mL FGFb 

iNeuron 
DMEM/F-12 

GlutaMAXTM, Lonza 
2% (v/v) B-27, 1% (v/v N-2) 

iAstrocyte DMEM, Lonza 
10% (v/v) FBS, 0.3% (v/v) N-2, 50 U/mL 

Pen/Strep 

Mouse primary  
NeurobasalTM, 

ThermoFisher Scientific 

1X B27-supplement, 1X GlutaMax, 50 

U/mL Pen/Strep 

 
 
 
 
Table 2.6. Plasmid manipulations and origins. Plasmid ID, manipulations and the source 

are shown. The individuals who provided the plasmid or performed the manipulation are 

referred to by their initials: Dr Guillaume Hautbergue (GH); Dr Tennore Ramesh (TR); 

Tobias Moll (TM).  

Plasmid Manipulation Company/origin 

pcDNA5/FRT/TO_GFP N/A Addgene 

pEGFP-N1 N/A Clontech 

PCS2+ N/A Addgene 

pEGFP-N1_GLT8D1 

GLT8D1 (IMAGE: 

40116197) inserted into 

NheI and XhoI 

restriction sites of 

pEGFP-N1. 

Generated by GH/TM 

pEGFP-N1_GLT8D1-G78W 

G78W mutation inserted 

into pEGFP-

N1_GLT8D1 via site-

directed mutagenesis. 

Generated by GH/TM 

pEGFP-N1_GLT8D1-R92C 

R92C mutation inserted 

into pEGFP-

N1_GLT8D1 via site-

directed mutagenesis. 

Generated by GH/TM 

pcDNA5/FRT/TO_3xFLAG 

3xFLAG-M2 tag cloned 

into HindIII/BamHI sites 

of 

pcDNA5/FRT/TO_GFP. 

Generated by GH/TM 
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pcDNA5/FRT/TO_3xFLAG-

GLT8D1 

GLT8D1 (IMAGE: 

40116197) cloned into 

BamHI/XhoI restriction 

sites. 

Generated by GH/TM 

pcDNA5/FRT/TO_3xFLAG-

GLT8D1-G78W 

G78W mutation inserted 

into pcDNA5/FRT/TO_ 

3xFLAG-GLT8D1 via 

site-directed 

mutagenesis. 

Generated by GH/TM 

pcDNA5/FRT/TO_3xFLAG-

GLT8D1-R92C 

R92C mutation inserted 

into pcDNA5/FRT/TO_ 

3xFLAG-GLT8D1 via 

site-directed 

mutagenesis. 

Generated by GH/TM 

PCS2+_GLT8D1 

GLT8D1 cloned into 

BcII/XbaI restriction 

sites of PCS2+. 

Generated by TR/TM 

PCS2+_GLT8D1-G78W 

GLT8D1-G78W cloned 

into BcII/XbaI restriction 

sites of PCS2+. 

Generated by TR/TM 

PCS2+_GLT8D1-R92C 

GLT8D1-R92C cloned 

into BcII/XbaI restriction 

sites of PCS2+. 

Generated by TR/TM 

 

 

 

 

Table 2.7. Oligonucleotide sequences for GLT8D1 cloning and knockdown in 

zebrafish. Label, relevant procedure and nucleotide sequence are shown. 

Label Relevant procedure Sequence 

GLT8D1-koz-NheI5 Generation of GFP-

tagged GLT8D1 

GGCGGGGCTAGCGCCACCA

TGTCATTCCGTAAAGTAAAC 

GLT8D1-371-XhoI3 Generation of GFP-

tagged GLT8D1 

CCCGCCCTCGAGCTTTATGT

TTGAGATCTCGGTATA 

FLAG HindIII Fwd Generation of FLAG-

tagged GLT8D1 

AGCTTGCCACCATGGACTAC

AAAGACCATGACGGTGATTA
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TAAAGATCATGACATCGATTA

CAAGGATGACGATGACA 

AGG 

FLAG BamHI Rvs Generation of FLAG-

tagged GLT8D1 

GATCCCTTGTCATCGTCATC

CTTGTAATCGATGTCATGATC

TTTATAATCACCGTCATGGTC

TTTGTAGTCCATGGTGGC 

A 

GLT8D1-1-BclI5 Generation of FLAG-

tagged GLT8D1 

GGCGGGTGATCAATGTCATT

CCGTAAAGTAAAC 

GLT8D1-371stp-XhoI3 Generation of FLAG-

tagged GLT8D1 

CCCGCCCTCGAGTCACTTTA

TGTTTGAGATCTCGG 

GLT8D1-G78W_QC_Fwd GLT8D1 site-directed 

mutagenesis 

GCATCTGAAGACAGGCTTTG

GGGGGCCATTGCAGCTA 

GLT8D1-G78W_QC_Rvs GLT8D1 site-directed 

mutagenesis 

AGCTGCAATGGCCCCCCAAA

GCCTGTCTTCAGATGC 

GLT8D1-R92C_QC_Fwd GLT8D1 site-directed 

mutagenesis 

AGCATTCAGCACAACACTTG

CTCCAATGTGATTTTCT 

GLT8D1-R92C_QC_Fwd GLT8D1 site-directed 

mutagenesis 

AGAAAATCACATTGGAGCAA

GTGTTGTGCTGAATGCT 

MO_GLT8D1 GLT8D1 splice blocking 

morpholino 

CCTCTTACCTCAGTTACAATT

TATA 

GLT8D1_RT_Fwd RT-PCR primers for 

GLT8D1 

ACTGGGATTGTTGATGTTGA

G 

GLT8D1_RT_Rvs RT-PCR primers for 

GLT8D1 

TAACCACATTCACTCTGCGT 

GLT8D1_Fwd RT-PCR primers for 

assessing Glt8d1 

knockdown in zebrafish 

AGCCGGAGAGAGTCCAGTTT 

GLT8D1_Rvs RT-PCR primers for 

assessing Glt8d1 

knockdown in zebrafish 

TTGCATCGAAATCTGCTGAA 

GLT8D1_miRNA1 top 

strand 

miRNA against human 

GLT8D1 

TGCTGTATAGGTTGAGGCCC

TACAATGTTTTGGCCACTGA

CTGACATTGTAGGCTCAACC

TATA 
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GLT8D1_miRNA1 bottom 

strand 

miRNA against human 

GLT8D1 

CCTGTATAGGTTGAGCCTAC

AATGTCAGTCAGTGGCCAAA

ACATTGTAGGGCCTCAACCT

ATAC 

GLT8D1_miRNA2 top 

strand 

miRNA against human 

GLT8D1 

TGCTGAATTGTACTGGTTTC

CTGCTCGTTTTGGCCACTGA

CTGACGAGCAGGACCAGTAC

AATT 

GLT8D1_miRNA2 bottom 

strand 

miRNA against human 

GLT8D1 

CCTGAATTGTACTGGTCCTG

CTCGTCAGTCAGTGGCCAAA

ACGAGCAGGAAACCAGTACA

ATTC 

GLT8D1_miRNA3 top 

strand 

miRNA against human 

GLT8D1 

TGCTGTAACTTGGCAGCCTT

TACAAAGTTTTGGCCACTGA

CTGACTTTGTAAACTGCCAA

GTTA 

GLT8D1_miRNA3 bottom 

strand 

miRNA against human 

GLT8D1 

CCTGTAACTTGGCAGTTTAC

AAAGTCAGTCAGTGGCCAAA

ACTTTGTAAAGGCTGCCAAG

TTAC 
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2.2. Methods 
 

2.2.1. Cell culture  

2.2.1.1. HEK293, Neuro-2A and SH-SY5Y cell line maintenance 

Human embryonic kidney 293 (HEK293) and human neuroblastoma SH-SY5Y cell lines used 

in this project were cultured in 10mL Dulbecco's Modified Eagle’s Medium (DMEM) 

supplemented with 10% (v/v) foetal bovine serum (FBS) and 50 U/mL Penicillin/Streptomycin 

in T75 culture flasks. Neuro-2A (N2A) cell medium was supplemented with an additional 

500mM sodium pyruvate. Cell lines were maintained at 37°C, 5% CO2 and split every 3-4 

days. For sub-culturing, media was removed and the cells were washed with sterile phosphate 

buffered saline (PBS). 2mL 1x trypsin was added to the adherent cells in a T75 and incubated 

for 3 minutes at 37°C. Flasks were tapped to dislodge trypsinized cells and 10mL of 

supplemented DMEM was added. Cells were centrifuged at 400xg for 4 minutes at room 

temperature (RT) and the supernatant was discarded. The cell pellet was re-suspended in 

fresh DMEM and ~1x106 cells were transferred to a fresh T75 flask. Supplemented DMEM 

was added to create a final volume of 10mL. All adherent cell lines were seeded at ~20% 

confluency and sub-cultured when ~90% confluent. All experimental work was performed 

using HEK-293, N2A, and SH-SY5Y cells within the range of 7-32 passages. 

 

2.2.1.2. HEK293 Sham and HEK293_GLT8D1-WT/R92C cell line generation   

Stable HEK293 cells exhibiting tetracycline-inducible expression of wild type (WT) and mutant 

(p.R92C) GLT8D1 were generated using the Flp-InTM T-RExTM system. The pGKFLPobpA 

vector (Addgene) encoding a recombinase was co-transfected with either pcDNA5/FRT/TO, 

pcDNA5/FRT/TO_3xFLAG-GLT8D1, or pcDNA5/FRT/TO_3xFLAG-GLT8D1-R92C plasmids 

into the HEK293 Flp-InTM T-RExTM CVCL_U427 line in a ratio of 4:6 using polyethylenimine 

(PEI). Resulting clones were screened for ZeocinTM sensitivity, and Blasticidin-S/Hygromycin-

B resistance, to ensure isogenic. Clones that were Blasticidin-S/Hygromycin-B-resistant but 

ZeocinTM-sensitive were expanded and cryopreserved (see section 2.2.1.9.). HEK293 Sham 

and HEK293_GLT8D1-WT/R92C stable cell lines were generated by Dr Adrian Higginbottom.  

 

 

 

 



49 
 

2.2.1.3. HEK293 Sham and HEK293_GLT8D1-WT/R92C stable cell line maintenance  

HEK293 Sham and HEK293_GLT8D1-WT/R92C stable cell lines were cultured in 10mL 

DMEM supplemented with 10% (v/v) tetracycline-free FBS, 50 U/mL Penicillin/Streptomycin, 

100µg/mL Hygromycin B and 15µg/mL Blasticidin S in 10cm plates at 37°C, 5% CO2 and split 

every 3-4 days as previously described (see section 2.2.1.1).   

 

2.2.1.4. Fibroblast cell maintenance 

Human fibroblasts were initially cultured in 10mL Eagle’s Minimum Essential Medium (EMEM) 

supplemented with 10% FBS, 1% MEM non-essential amino acids (Lonza), 1% MEM vitamins 

(Lonza), 1% Penicillin-Streptomycin, 1% Sodium Pyruvate and 1% Uridine (Sigma) in T75 

culture flasks at 37°C, 5% CO2, prior to cryopreservation (see section 2.2.1.11). Cells 

underwent a medium change every 2 days and were split when approaching confluence. Cells 

were split as previously described (see section 2.2.1.1) aside from centrifugation which was 

performed at 550xg for 4 minutes at RT. The cell pellet was re-suspended in fresh EMEM and 

1/3 of the cell suspension was transferred to a fresh T75 flask. Supplemented EMEM was 

added to create a final volume of 10mL. 

 

2.2.1.5. Lymphoblastoid cell maintenance 

 

Human lymphoblastoid cell lines (LCLs) derived from Caucasian ALS patients (n=5) and 

neurologically normal controls (n=3), all of Northern European descent, were obtained from 

the UK Motor Neurone Disease Association (MNDA) DNA Bank. LCLs were cultured in 

suspension in 30mL RPMI 1640 medium (Lonza) supplemented with 2mM L-glutamine and 

10% (v/v) FBS (Table 2.5) in T175 culture flasks at 37°C, 5% CO2. Cells were seeded at a 

concentration of 2x105 viable cells/mL and split every 3-4 days. For splitting, cells were 

centrifuged at 400xg for 4 minutes at RT and the supernatant was discarded. The cell pellet 

was re-suspended in fresh supplemented RPMI 1640 medium and ~6x106 cells were 

transferred to a fresh T175 culture flask. Supplemented RPMI 1640 media was added to 

create a final volume of 30mL.   

 

2.2.1.6. Generation of induced neural progenitor cells (iNPCs) from human fibroblasts 

Prior to transduction, fibroblasts were cultured in 10mL DMEM supplemented with 10% (v/v) 

FBS and 50 U/mL Penicillin/Streptomycin in T75 culture flasks at 37°C, 5% CO2 for a minimum 

of 1 week. Fibroblasts underwent a medium change every 2 days, and were split as previously 



50 
 

described (see section 2.2.1.4). 6-well culture plates were coated in plasma fibronectin 

(5µg/mL in PBS) for 5-30 minutes prior to seeding. Excess fibronectin was removed 

immediately before seeding ~2x105 fibroblasts per well. Fibroblasts were incubated for 24 

hours at 37°C, 5% CO2. Fibroblasts were transduced using retroviral vectors (MOI 5-10) 

expressing Kruppel-like factor 4 (Klf4), POU transcription factor Oct-3/4 (Oct3/4), SRY-related 

HMG-Box Gene 2 (Sox2), and a c-Myc substitute (Dr Laura Ferraiuolo personal 

communication). Culture media was changed 16 hours post-transduction to fibroblast media 

(see Table 2.5). After 24 hours, the media was changed to pre-iNPC media (see Table 2.5) 

containing epidermal growth factor (EGF, 20ng/mL), heparin (5ng/mL) and fibroblast growth 

factor (FGF, 20ng/mL). Media changes were performed every 2 days; EGF and heparin were 

removed 10 days post-transduction, and the concentration of FGF was increased to 40ng/mL. 

iNPCs were generated in collaboration with Dr Laura Ferraiuolo and Allan Shaw.    

 

2.2.1.7. iNPC maintenance 
 

iNPCs were cultured in DMEM/F-12 GlutaMAXTM supplemented with 1% (v/v) B-27, 1% (v/v) 

N-2, and FGF (20ng/mL) (see Table 2.5) at 37oC, 5% CO2 in 10cm petri-dishes. 10cm dishes 

were pre-coated using plasma fibronectin (5µg/mL in PBS) for 30 minutes at RT prior to 

seeding. iNPCs underwent media changes every two days and were split when ~90% 

confluent. For splitting, media was removed and cells were incubated in 1mL accutase until 

they dislodged. Cells were re-suspended in iNPC-conditioned medium and centrifuged at 

200xg for 4 minutes at RT. The supernatant was discarded and cells were re-suspended in 

fresh iNPC media. Excess fibronectin was removed from a fresh, pre-coated 10cm plate and 

iNPCs were re-plated at a suitable density to encourage contact-mediated recovery.  

 

2.2.1.8. Differentiation of iNPCs into iNeurons 

6-well culture plates were coated in fibronectin (5ug/mL in PBS) for 5-30 minutes prior to 

seeding. Excess fibronectin was removed and iNPCs were seeded into 6-well plates at a 

density of 2x105 cells per well. iNPCs were cultured in 2mL supplemented DMEM/F-12 

GlutaMAXTM (see Table 2.5). Media was changed to a FGF-free iNeuron media (DMEM/F-12 

GlutaMAXTM, 1% (v/v) B-27, 1% (v/v) N-2) (see Table 2.5) 24 hours after seeding. After 48 

hours, the media was changed to iNeuron media + γ-secretase inhibitor IX (DAPT, 2.5µM; 

Tocris). After 48 hours, media was changed to iNeuron media + smoothened agonist (SAG, 

0.5µM) + all-trans retinoic acid (RA, 1µM) + forskolin (2.5µM) for 6 days with a media change 

every 2 days. At day 11, cells were cultured in iNeuron media + SAG (0.5µM) + RA (1µM) + 

forskolin (2.5µM) + growth factors: brain-derived neurotrophic factor (BDNF, 20ng/mL), ciliary 
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neurotrophic factor (CNTF, 20ng/mL) and glial cell-line derived neurotrophic factor (GDNF, 

10ng/mL) for 4 days. iNeurons were fully differentiated at day 16.   

 

2.2.1.9. Differentiation of iNPCs into iAstrocytes 

For iAstrocyte differentiation, iNPCs were seeded as previously described (see section 

2.2.1.7) but at a lower density of ~1x105 cells per well in iNPC media (see Table 2.5). The 

following day, the media was changed to iAstrocyte media (DMEM supplemented with 10% 

(v/v) FBS, 0.3% (v/v) N-2) (see Table 2.5). iAstrocytes were allowed to mature for a minimum 

of 7 days until fully differentiated.  

 

2.2.1.10. SH-SY5Y neuronal differentiation 

Human SH-SY5Y neuroblastoma cells were seeded at densities of either 5x104 cells per well 

of a 6-well culture plate, or 2x103 cells per well of a 96-well culture plate in DMEM 

supplemented with 10% (v/v) FBS, 50 units/mL penicillin and 50μg/mL of streptomycin. 24 

hours after seeding the media was changed to DMEM supplemented with 5% (v/v) FBS, 50 

units/mL penicillin, 50μg/mL of streptomycin, 4mM L-glutamine, and 10μM retinoic acid. After 

72 hours, the medium was switched to neurobasal media containing 1% (v/v) N-2 supplement 

100x, 50 units/mL penicillin, 50μg/mL of streptomycin, 1% L-glutamine and 50ng/mL human 

BDNF. Cells were cultured for an additional 3 days until fully differentiated.  

 

To confirm neuronal differentiation blinded, semi-automated analysis of neurite length was 

performed using the SimpleNeuriteTracer plugin for FIJI (Longair et al., 2011). 2D images 

were converted to 8-bit grayscale and successive points along the midline of a neural process 

were selected. The software automatically identified the path between the two points. Tracing 

accuracy was improved using Hessian-based analysis of image curvatures. The 

AnalyzeSkeleton plugin (Arganda-Carreras et al., 2010) was used to quantify the morphology 

of the traces. 

   

2.2.1.11. Cryopreservation of Cell Lines 

Unless stated otherwise, all cell lines were cryopreserved in freezing medium containing 90% 

(v/v) FBS + 10% (v/v) dimethyl sulfoxide (DMSO). Cells were pelleted as previously described 

(see section 2.2.1), and ~5x106 cells were re-suspended in 1mL freezing medium. iNPCs were 

re-suspended in 1mL 90% (v/v) supplemented DMEM/F-12 GlutaMAXTM + 10% DMSO. Cells 
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were transferred to a cryogenic vial and were slowly frozen at -80oC in a CoolCell® SV2 

(BioCision) overnight, then transferred to liquid nitrogen for long-term storage.  

 

2.2.1.12. Tetracycline induction of stable HEK293 cell lines  
 

To induce expression of the pcDNA5/FRT/TO_3xFLAG-GLT8D1-WT/R92C construct, cells 

were cultured in Blasticidin-S-free supplemented DMEM for 24 hours (refer to section 2.2.1.3), 

after which, tetracycline (stock concentration: 10µg/mL in 70% ETOH) was added to the 

culture media to create a final concentration of 10mg/mL. Induction pressure was stable for at 

least 48 hours.      

 

2.2.1.13. Preparation and maintenance of dissociated primary mouse cortical neurons 

 
The following protocol was performed under a Home Office project licence (I5BBF6E32) and 

in accordance with the Animals (Scientific Procedures) Act of 1986 (ASPA). Initially, culture 

plates were coated in an appropriate volume of poly-D-lysine (50µg/mL in dH2O) overnight at 

37°C, 5% CO2. C57BL/6 mice were bred at the University of Sheffield Biological Services Unit 

and females were sacrificed by cervical dislocation. Cerebral cortices were isolated from 

embryonic day 14 embryos whilst submersed in cold HBSS-/-. Meninges were manually 

removed using dissecting forceps and the tissue was washed 1x in 10mL HBSS-/-, then 

resuspended in 5mL HBSS. Trypsin was added to a final concentration of 0.025% and 

incubated for 13 minutes at 37°C to encourage tissue dissociation. 5mL DNAse (10μg/mL 

DNAse in HBSS+/+) was added for 2 minutes and the supernatant was aspirated. Tissue was 

resuspended in 1mL triturating solution (1% albumax, 25mg trypsin inhibitor, 10μg/mL DNAse) 

and triturated through flame-polished glass Pasteur pipettes with progressively smaller 

openings to obtain a single cell suspension. Cells were re-suspended in supplemented 

neurobasal media (1x B27-supplement, 1x GlutaMax, 50 U/mL Penicillin/Streptomycin) and 

maintained at 37°C, 5% CO2. A half media change was performed every 3-4 days until the 

day of experiment. Mouse primary cortical neurons were harvested by David Burrows and Dr 

Agnieszka Urbanek. 

 

2.2.1.14. CRISPR editing of mammalian cell lines  

 
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 technology was 

utilised for genome editing in HEK293 and SH-SY5Y cell lines. gRNA duplexes were 

assembled from tracrRNA and crRNA in a thermocycler according to the manufacturer’s 

instructions under RNAse-free conditions. Cells were cultured to 70-90% confluent on the day 
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of transfection. 1mL antibiotic-free DMEM was prepared and incubated in 24-well plates at 

37°C. CRISPR/Cas9 Ribonucleoproteins were formed by complexing 240ng gRNA duplex 

with 1250ng Alt-R V3 Cas9 Protein (IDT) in 10μL buffer R (from 10μL Neon transfection kit) - 

a 1:1 molar ratio - for 10 minutes. 1x105 viable cells were aliquoted per transfection and 

centrifuged at 400xg for 4 minutes. Cells were washed in Ca2+ and Mg2+-free PBS (Sigma) 

and centrifuged at 400xg for 4 minutes. Cell pellets were resuspended in the 10μL buffer R 

containing Cas9 protein and gRNA duplexes. 2μL of 10.8μM electroporation enhancer (IDT) 

was added and the solution mixed thoroughly to ensure a suspension of single cells. 10μL of 

this mixture was loaded into a Neon transfection system and electroporated according to 

manufacturer’s instructions (refer to section 2.2.3.2). Cells were then transferred to pre-

warmed media in 24-well plates.   

 

2.2.1.15. Determining CRISPR editing efficiency 

 
Genomic DNA was isolated from CRISPR-edited and control cells using a GenElute 

Mammalian DNA Miniprep Kit (Sigma) according to manufacturer’s instructions.  A ~400bp 

region around the expected cas9 cut site was amplified by PCR using VeriFi mix (PCRbio).  

Expected amplification was confirmed using gel electrophoresis, and the products were 

Sanger-sequenced (Core Genomic Facility, University of Sheffield). Sequencing trace files 

were uploaded to TIDE (available at: https://tide.deskgen.com/) and an indel efficiency was 

calculated.  

 

2.2.1.16. Liposome-mediated cell transfection 

HEK293 and N2A cells were transfected 24 hours after seeding. Transection conditions were 

adjusted according to the plate size, experiment, cell type, and cell density (see Table 2.8). 

Plasmid DNA was mixed with polyethylenimine (PEI) to promote endocytosis. The reaction 

mixture was diluted using Gibco™ Opti-MEM® I Reduced Serum Media and the samples were 

vortexed 14-16 times and incubated for 10 minutes at RT to allow DNA-liposome complexes 

to form. The reaction mixture was added to the culture media in a dropwise manner and cells 

were incubated at 37°C, 5% CO2.  

 

 

 

 

 

https://tide.deskgen.com/
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Table 2.8. Transfection conditions according to plate size, experiment, cell type and 

cell density. (MTT = MTT cell viability assay; ICC = immunocytochemistry).   

Plate/flask/cell line 
Number 

of cells 

Amount of 

DNA (µg) 

Amount of 

PEI (µg) 

Amount of Opti-

MEM® 

T75 1x106 10 35 333µL 

T175 5x106 30 105 1mL 

10cm plate 2x106 15 52 500µL 

6-well plate (HEK) 2x105 2 7 200µL 

6-well plate (N2A) 3x105 2 6 200µL 

24-well plate (HEK) 

immunoblotting 
5x104 0.7 1.75 50µL 

24-well plate (N2A) 

immunoblotting 
7.5x104 0.7 2.1 50µL 

24-well plate (HEK) 

MTT / ICC 
2.5x104 0.5 1.75 50µL 

24-well plate (N2A) 

MTT / ICC 
3x104 0.5 1.75 50µL 

 

 

2.2.1.17. Electroporation-mediated cell transfection   

2.2.1.17.1. Neon® Transfection System  

 

Electroporation was performed using a Neon® Transfection System (Invitrogen) according to 

the manufacturers’ guidelines. In brief, a Neon® Tube was filled with 3mL of Electrolytic Buffer 

and inserted into a Neon® Pipette Station. Cells were harvested as previously described (see 

section 2.2.1.1). Cells were centrifuged at 400xg for 4 minutes at RT and the media was 

removed. Cells were washed with Ca2+ and Mg2+-free PBS and re-centrifuged at 400xg for 4 

minutes at RT. The PBS was aspirated and the cells were re-suspended in Resuspension 

Buffer R at a final density of 1×107 cells/mL. The amount of DNA used for transfection was 

dependent on cell concentration and the size of the culture plate used for subsequent seeding 

(see Table 2.9). DNA was gently mixed with the cell suspension and 10µL was aspirated into 

a Neon® Tip using a Neon® Pipette, avoiding the formation of air bubbles. The Neon® Pipette 

containing the sample was inserted vertically into the Neon® Tube and electroporation was 

performed at 3 pulses of 1200V with a pulse width of 20ms. Following electroporation, cells 

were seeded into an appropriate culture plate and incubated at 37°C, 5% CO2.  
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Table 2.9. Nucleofection conditions using the Neon® Transfection System (adapted 

from Invitrogen). 

Plate DNA (µg) 
Volume of plating 

medium 
Cell number 

96-well 0.25 - 0.5 100µL 1-2 x 104 

48-well 0.25 – 1.0 250µL 2.5-5 x 104 

24-well 0.5 – 2.0 500µL 0.5-1 x 105 

12-well 0.5 – 3.0 1mL 1-2 x 105 

6-well 0.5 – 3.0 2mL 2-4 x 105 

10cm 5.0 – 30.0 10mL 1-2 x 106 

 

 

2.2.1.17.2. 4D NucleofectorTM System  

 

Nucleofection was performed following the dissociation of primary mouse cortical neurons 

(refer to section 2.2.1.13). Excess poly-D-lysine was removed from the culture plate, and the 

wells were washed 2x in dH2O and 1x in sterile PBS. An appropriate volume of pre-warmed 

neurobasal media was added to the wells and the plates were incubated at 37°C, 5% CO2. 

Fresh, dissociated cortical neurons were electroporated using a 4D NucleofectorTM System 

(Lonza) according to the manufacturer’s instructions. In brief, 100µL reactions were 

assembled by mixing 82µL NucleofectorTM Solution with 18µL Supplement (sample contents 

confidential) to create the NucleofectorTM X Solution. 4-5x106 cells were centrifuged at 80xg at 

RT, and the pellet was resuspended in 90µL NucleofectorTM X Solution. 10µL of plasmid DNA 

(2µg) was added and the reaction was mixed gently. Samples were transferred to a single 

NucleovetteTM and electroporated using a randomly selected pre-programmed setting 

recommended by the manufacturer (voltage and pulse width were encrypted). The sample 

was incubated at RT for 10 minutes post-nucleofection, resuspended in pre-warmed 

neurobasal medium, and transferred to the culture plate which was pre-coated using poly-D-

lysine (see section 2.2.1.13).  
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2.2.2. Molecular cloning 

2.2.2.1. Plasmid cloning by polymerase chain reaction (PCR) 

PCR reactions (50µL total) for the amplification of I.M.A.G.E. clones were assembled 

accordingly: 

- 1µL DNA I.M.A.G.E. clone (100ng/µL) 

- 34.5µL Milli-Q H2O 

- 5µL 10x Accuzyme™ reaction buffer  

- 1µL Accuzyme™ DNA Polymerase  

- 1µL DMSO 

- 5µL 10x DNTP Mix (each at 10mM)  

- 1.25µL forward primer (10µM) 

- 1.25µL reverse primer (10µM) 

 

PCR reactions were performed in a thermocycler according to the following parameters 

outlined in Table 2.10: 

Table 2.10. PCR programme for I.M.A.G.E clone amplification. 

Stage  Temperature Time 

Heated lid 110 oC - 

Pre-cycle step 95 oC 1 minute 

Start cycle 30x 

Temperature step 1 95 oC 20 seconds 

Temperature step 2 53 oC 20 seconds 

Temperature step 3 72 oC 3 minutes 

End cycle 

Post-cycle step 68 oC 4 minutes 

Hold 10 oC Infinite 

 

 

2.2.2.2. Agarose gel electrophoresis  

Agarose gel electrophoresis was used to separate linear DNA fragments produced by PCR or 

restriction digest. 1% agarose gels were prepared by dissolving 1g agarose powder in 100mL 

1x Tris-acetate-EDTA (TAE) buffer (40mM Tris; 20mM NaOAc; 1mM EDTA; pH8.0) (w/v). The 

agarose solution was heated until fully dissolved, cooled, and 100ng/mL of ethidium bromide 



57 
 

was added to enable visualisation of the nucleic acid under ultraviolet (UV) light. The mixture 

was cooled slightly and poured onto a casting tray containing 30-well combs. The gel was left 

for 30 minutes to cool and set, then transferred to an electrophoresis tank and submerged in 

1x TAE buffer. Combs were removed and samples were loaded consecutively alongside 5µL 

of a HyperLadder™ molecular weight marker. Electrophoresis was performed at 80V for 45-

60 minutes, and gels were imaged using the GENI UV light imaging system (Syngene). For 

DNA extraction, bands were visualised on a UV-trans illuminator, excised using a scalpel and 

transferred to an Eppendorf tube.  

 

2.2.2.3. DNA extraction from agarose gels 

DNA was extracted from agarose gels using a QIAquick Gel Extraction Kit (QIAGEN), 

according to the manufacturers’ instructions. In brief, 100μL Buffer QG (solubilisation and 

binding buffer) was added per 100mg gel and incubated at 50°C for 10 minutes with vortexing 

every 2-3 minutes until the gel completely dissolved. One gel volume of isopropanol was 

added to the sample and mixed. The sample was then transferred to a QIAquick spin column 

and drawn through via vacuum suction. 750μL Buffer PE (wash buffer) was applied to and 

drawn through the column. Excess Buffer PE was removed via centrifugation at 13,300xg for 

1 minute at RT. 50μL Buffer EB (elution buffer) was added to the column and left to stand for 

3 minutes at RT. DNA was eluted into an Eppendorf tube via centrifugation at 13,300xg for 1 

minute at RT.   

 

2.2.2.4. Restriction digests for PCR insert  

Restriction digests were assembled accordingly: 

- 50μL DNA (500ng/μL) 

- 30μL Milli-Q H2O 

- 10μL 10x restriction buffer (NEB) 

- 50 units of each restriction enzyme (see Table 2.6) 

Reactions were incubated on a heat block overnight at 37°C.  

 

2.2.2.5. Phenol-chloroform extraction for DNA purification 

100μL of phenol-chloroform was added to the restriction digest reaction and vortexed for 1 

minute at RT. Samples were centrifuged at 13,300xg for 3 minutes at RT and the supernatant 

was transferred to a fresh Eppendorf tube. 3M NaOAc was added (10% of total volume) and 

the sample was vortexed briefly. Twice the volume of 100% ETOH was added and the sample 
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was incubated at -20°C for 2-3 hours to precipitate the DNA. Samples were centrifuged at 

13,300xg for 20 minutes at RT and the supernatant was discarded. The DNA pellet was 

washed in 70% ETOH to remove excess salts and left to air-dry for 1 hour at RT, then re-

suspended in 16μL Milli-Q H2O.  

 

2.2.2.6. Plasmid ligation   

Digestion reactions for the linearization of plasmids were assembled accordingly: 2μL plasmid 

DNA (500ng/μL); 2μL 10x restriction buffer; 1μL of each restriction enzyme (10 units / μg DNA) 

(see Table 2.6); 14μL Milli-Q H2O. Reactions were incubated at 37°C for 2 hours. During the 

final 10 minutes of the digest, 1 unit of calf intestinal alkaline phosphatase (CIP) was added 

for every 1 pmol of DNA ends, to dephosphorylate DNA 5’-ends and ensure the vector did not 

re-circularise during ligation. A ligation reaction was then assembled accordingly: 

- 16μL DNA (500ng/μL)  

- 0.5μg pre-cut vector  

- 5μL 5x ligation buffer  

- 1μL T4 DNA ligase 

- 2μL Milli-Q H2O 

Ligation reactions were incubated overnight at 16°C in a thermocycler.   

 

2.2.2.7. Site-directed mutagenesis 

50μL PCR reactions for site-directed mutagenesis were assembled accordingly: 

- 0.5μL plasmid DNA (100ng/μL) 

- 1.25μL forward oligonucleotide (125ng) 

- 1.25μL reverse oligonucleotide (125ng)  

- 5μL 10x dNTPs (each at 10mM) 

- 5μL 10x PFU turbo buffer (2mM) 

- 36μL Milli-Q H2O 

- 1μL PfuTurbo DNA polymerase 

  

PCR reactions were run in a thermocycler according to the following parameters outlined in 

Table 2.11: 

Table 2.11. PCR programme for site-directed mutagenesis. 

Stage  Temperature Time 

Heated lid 110 oC - 
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Pre-cycle step 95 oC 30 seconds 

Start cycle 26x 

Temperature step 1 95 oC 10 seconds 

Temperature step 2 53 oC 1 minute 

Temperature step 3 72 oC 15 seconds 

End cycle 

Post-cycle step 72 oC 10 minutes 

Hold 10 oC Infinite 

 

Mutated inserts were subsequently validated by Sanger sequencing (Core Genomic Facility, 

University of Sheffield).  

 

 

2.2.2.8. LB agar plates 

Lysogeny broth (LB) agar (10g/L Tryptone, 5g/L Yeast extract, 10g/L NaCl, 15g/L Agar) was 

prepared by re-suspending 40g LB agar powder in 1L dH2O, and autoclaving. The following 

steps were performed aseptically to avoid contamination. LB agar was heated until completely 

melted and left to cool for 15 minutes at RT. 50μg/mL ampicillin or 50μg/mL kanamycin 

selection antibiotic was added to the melted LB agar. The LB agar solution was then mixed, 

poured onto 10cm petri dishes, left to set at RT, and stored at 4°C. 

 

2.2.2.9. Plasmid transformation into competent E. coli  

The following steps were performed aseptically to avoid contamination: DH5-α competent 

Escherichia coli (E. coli) cells and plasmid DNA were thawed on ice. 1μL of plasmid DNA 

(500ng/μL) was added to 50μL of DH5- α cells and incubated on ice for 10 minutes. Samples 

were then heated for 5 minutes at 37°C before adding 1mL Lysogeny broth (LB) to stimulate 

bacterial growth. Samples were then incubated at 37°C for 1 hour, during which agar plates 

containing 50μg/mL of ampicillin were dried at 37°C. 100μL of each sample was transferred 

to an agar plate, streaked using a sterile cell spreader, and incubated overnight at 37°C. The 

following day, a single bacterial colony was selected and transferred to either 100mL (for 

Midiprep) or 2mL (for Miniprep) of liquid LB containing 50μg/mL of appropriate antibiotic 

(depending on the antibiotic resistance gene in the plasmid of interest) and incubated 

overnight at 37°C on a shaker.  
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2.2.2.10. DNA extraction and purification from bacterial cultures 

2.2.2.10.1. Plasmid Miniprep 
 

Minipreps were performed using a QIAGEN® Plasmid Mini Kit, according to the 

manufacturer’s instructions. In brief, 1.5mL of bacterial cultures were harvested by 

centrifugation at 10,000xg for 1 minute at RT. The supernatant was discarded and the bacterial 

pellet was re-suspended in 200µL buffer P1. 200µL buffer P2 was added, the sample was 

gently inverted 5 times and incubated for 5 minutes at RT. 300µL Buffer S3 was added and 

inverted 10 times, then centrifuged at 10,000xg for 1 minute at RT. The supernatant was 

transferred to a fresh Eppendorf tube, mixed with 700µL isopropanol and incubated at RT for 

10 minutes. Samples were centrifuged at 10,000xg for 10 minutes at RT and the supernatant 

was completely removed. The pellet was air dried for 10 minutes then re-suspended in 50µL 

buffer EB.      

 

2.2.2.10.2. Plasmid Midiprep 
 

Bacterial cultures were harvested by centrifugation at 6000xg for 15 minutes at 4°C. Plasmid 

purification was performed using the QIAGEN® Plasmid Plus Midi Kit, according to the 

manufacturer’s instructions. For maximum DNA yield, pelleted bacteria was re-suspended in 

4mL resuspension buffer (buffer P1) (50mM Tris·Cl, pH 8.0; 10mM EDTA; 100 µg/ml RNase 

A). 4mL lysis buffer (buffer P2) (200mM NaOH, 1% SDS) was added and mixed by inversion 

until a viscous lysate formed, and was incubated at RT for 3 minutes. 4mL neutralisation buffer 

(buffer P3) (3.0 M potassium acetate, pH 5.5) was added to the lysate, mixed 4-6 times by 

inversion and incubated at RT for 10 minutes. 2mL binding buffer (buffer BB) was added, 

mixed by inversion, and incubated at -20°C for 15 minutes to increase the yield of DNA further. 

The lysate was transferred to a QIAGEN Plasmid Plus spin column and drawn through via 

vacuum suction at ~300 mbar. 700µL endotoxin removal buffer (buffer ETR) was applied to 

the column and centrifuged at 10,000xg for 1 minute at RT. 700µL wash buffer (buffer PE) 

(10mM Tris-HCl pH 7.5, 80% ETOH) was subsequently applied to the column and centrifuged 

at 10,000xg for 1 minute at RT. Any residual wash buffer was removed by centrifugation at 

10,000xg for 1 minute. To elute the DNA, 200µL elution buffer (buffer EB) (10mM Tris-Cl, pH 

8.5) was applied to the columns, incubated at RT for 2 minutes, and centrifuged at 10,000xg 

for 1 minute. DNA was quantified using a NanoDropTM 1000 Spectrophotometer 

(ThermoFisher Scientific) and sequence identity was confirmed via Sanger sequencing (Core 

Genomic Facility, University of Sheffield).  
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2.2.2.11. Restriction digests for plasmid characterisation 

The following components were added to a clean Eppendorf tube in the order shown: 1µg 

digested DNA; 10 units of each restriction enzyme (see Table 2.6); 1µL 10x FastDigest Green 

Buffer. Volumes were adjusted to create a 10µL reaction by adding an appropriate volume of 

Milli-Q H2O. The reaction mix was incubated at 37°C for 1 hour, after which the DNA fragments 

were separated via agarose gel electrophoresis (see section 2.2.2.2). 

 

2.2.2.12. Quantitative Real-Time PCR (qRT-PCR) 

 

Cells were cultured until at least 70% confluent, lysed on ice using an appropriate volume of 

Tri Reagent (Sigma) for 5 minutes and transferred to 1.5mL RNAse-free tubes. Total RNA was 

extracted using a Direct-zol RNA Miniprep Kit (Zymo) according to manufacturer’s instructions. 

During RNA purification, samples were treated with DNase (6 U/μL) to degrade genomic DNA 

prior to reverse transcription. RNA concentration was confirmed using a NanoDropTM 1000 

Spectrophotometer (ThermoFisher Scientific). 2μg of total RNA was then converted to cDNA 

by adding 1μL dNTPs (2mM each), 1μL 40μM random hexamer primer (ThermoFisher 

Scientific), and DNAse/RNAse-free water to a total volume of 14μL. This mixture was heated 

for 5 minutes at 70°C then incubated on ice for 5 minutes. 4μL of 5x FS buffer, 2μL 0.1M DTT, 

and 1μL M-MLV reverse transcriptase (ThermoFisher Scientific) were then added and the 

cDNA conversion was performed in a PCR thermocycler (37°C for 50 minutes, 70°C for 10 

minutes). cDNA was amplified using RT-PCR with Brilliant III SYBR Green (Agilent) as per the 

manufacturer’s instructions. CT analysis was performed using CFX Maestro software 

(BioRad).  

 

2.2.3. Biochemical methods  

 

2.2.3.1. Sodium dodecyl sulphate-polyacrylamide gel preparation  

Spacer plates were assembled onto Mini-PROTEAN® Tetra Cell Casting Modules (BioRad). 

Resolving gels containing 12% polyacrylamide were prepared (w/v) (see Table 2.12) and 

transferred into the 1mm space separating the two spacer plates. Resolving gels were sealed 

with a layer of isopropanol for 15 minutes, which was subsequently removed before pouring a 

5% stacking gel (see table 2.12) onto the surface. Mini-PROTEAN® Combs were inserted 

into the surface of the stacking gels and left to set for 15 minutes at RT.  
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Table 2.12. Composition of 12% resolving and 5% stacking polyacrylamide gels. 

Reagent  5% stacking 12% resolving 

dH2O 5.8mL 3.5mL 

30% (w/v) Acrylamide 1.7mL 4.0mL 

Resolving buffer (1.5M Trizma®, 

13.9mM sodium dodecyl 

sulphate (SDS), pH 8.8, filtered) 

- 2.5mL 

Stacking buffer (0.5 M Trizma®, 

13.9mM SDS, pH6.8, filtered) 
2.5mL - 

10% (w/v) APS 50uL 50uL 

TEMED 20uL 20uL 

 

 

2.2.3.2. Cell lysis for immunoblotting 

2.2.3.2.1. IP lysis buffer 
 

HEK293 and N2A cell lysis was performed on ice to minimise protein degradation. DMEM was 

removed from cultured cells, and cells were washed with ice-cold PBS. PBS was aspirated 

and replaced with ice-cold IP lysis buffer (150mM NaCl, 50mM HEPES, 1mM EDTA, 1mM 

DTT, 0.5% (v/v) Triton™ X-100, pH 8.0) containing an EDTA-free protease inhibitor cocktail 

(PIC) (SIGMAFASTTM Sigma-Aldrich) at 1% of the total volume (20µL/mL). 50µL IP lysis buffer 

was added per well of a 24-well plate, 200µL per well of a 6-well plate, and 500µL per 10cm 

plate. Cells were scraped into the IP lysis buffer and incubated on ice for 15 minutes. The 

lysate was transferred to pre-cooled micro-centrifuge tubes and centrifuged at 17,000xg for 5 

minutes at 4°C. The supernatant was transferred to fresh pre-cooled Eppendorf tubes and the 

cell debris pellet was discarded.  

 

2.2.3.2.2. Bradford protein assay  

A Bradford assay was used to quantify total protein levels within cells lysed in IP lysis buffer. 

1µL cell lysate was mixed with 1mL Bradford reagent (Bio-Rad) (pre-diluted 1:5 in dH2O) and 

incubated at RT for 2 minutes. The sample was transferred to an optically clear polystyrene 

cuvette and the absorbance was read at 595nm, relative to a blank control, using a WPA 

S1200 Diode Array Spectrophotometer (Biochrom Ltd.). Protein concentrations were 

calculated using the Beer-Lambert law (OD595nm = ε×l×c; where ε = 1/15, and l = 1cm) and 
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normalised to the least concentrated sample by adding the necessary volumes of complete IP 

lysis buffer. 

 

2.2.3.2.3. Urea lysis buffer 
 

Lymphoblastoid cell lysis was performed using urea lysis buffer [8M urea; 1% (w/v) DTT; 20% 

(w/v) SDS; 1.5M Tris pH 6.8; + dH2O) (+ PIC [20µL/mL] + 1mM phenylmethylsulfonyl fluoride 

(PMSF) at RT to avoid precipitation of the urea out of solution. Media was removed from 

pelleted lymphoblastoid cells and the pellet was re-suspended in an appropriate volume of 

urea lysis buffer. Samples were syringed 10x using 25-guage needles and incubated at RT 

for 15 minutes. Samples were further lysed by sonication (Soniprep 150, MSE) for 10 seconds 

at 50% amplitude followed by a 30-second incubation at RT; this process was repeated 3 

times. Lysates were then centrifuged at 13,000xg for 5 minutes at RT, the supernatant was 

transferred to a fresh Eppendorf tube, and the pellet of debris was discarded.   

 

 

2.2.3.2.4. Bicinchoninic acid (BCA) assay  

BCA assays were used to quantify total protein levels within lymphoblastoid cell lysates. BCA 

assays were performed using a Pierce™ BCA Protein Assay Kit (ThermoFisher Scientific), 

according to the manufacturers’ instructions. In short, a standard curve was created by diluting 

albumin standards in PBS at RT. A working reagent (WR) was then prepared by mixing BCA 

Reagent A with BCA Reagent B (50:1, Reagent A:B). Protein lysates were mixed thoroughly 

then diluted in PBS (1:10). 25µL of each standard or unknown sample was added per well of 

an optically clear 96-well plate, in triplicate. 200µL of the WR was added to each well and the 

plate was mixed thoroughly on a plate shaker for 30 seconds at RT. The plate was then 

incubated in the dark at 37°C for 30 minutes. The plate was cooled to RT and the absorbance 

was measured at 562nm on a PHERAstar® FS spectrophotometer (BMG Labtech). 

Absorbance data from the unknown samples were plotted against a standard curve and the 

concentrations were calculated.  

 

2.2.3.3. SDS-polyacrylamide gel electrophoresis    

Cell lysates were mixed with 4x Laemmli buffer (277.8mM Tris-HCl; 44.4% (v/v) glycerol; 4.4% 

SDS; 0.02% bromophenol blue; 355mM 2-mercaptoethanol; pH 6.8) and heated at 95°C for 5 

minutes to denature the proteins. 12% SDS polyacrylamide gels were assembled into a Mini-

PROTEAN® Tetra Vertical Electrophoresis Cell (Bio-Rad) and submerged in running buffer 
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(25mM Tris, 3.5mM SDS, 20mM glycine). 25µg of each denatured protein sample was loaded 

per well, alongside 2µL of a pre-stained protein ladder (ab116028, Abcam) to serve as a 

molecular weight marker. Gel electrophoresis was performed at 120V for approximately 1 

hour, or until the dye front had reached the bottom of the gel. For immunoblotting of 

nitrocellulose membranes, gels were moved to a semi-dry transfer apparatus and assembled 

with nitrocellulose membranes (Bio-Rad) and transfer buffer (47.9mM Tris, 38.6mM glycine, 

1.38mM SDS, 20% (v/v) methanol)-saturated Whatman® filter paper (Sigma-Aldrich). Protein 

within the gel was electrophoretically transferred to the nitrocellulose membranes at 0.15A per 

gel for 1 hour.   

 

2.2.3.4. Immunoblotting  

Nitrocellulose membranes were stained with Ponceau stain (0.1% (w/v) Ponceau S, 5% (v/v) 

acetic acid) for the rapid detection of protein bands. Membranes were blocked in 5% (w/v) milk 

(Marvel)/Tris Buffered Saline, with Tween® 20 (TBST) (20mM Tris, 137mM NaCl, 0.2% (v/v) 

Tween® 20, pH 7.6) overnight at 4°C. Membranes were then incubated with primary antibody 

(see Table 2.2) in 5% milk/TBST for 1 hour at RT. Membranes were washed 3x in TBST (10 

minutes per wash) at RT, then incubated with a secondary antibody (see Table 2.3) 

conjugated to horseradish peroxidase (HRP) in 5% milk/TBST for 1 hour at RT. The 

membranes were washed 3x in TBST (10 minutes per wash) at RT and incubated with a 

chemiluminescent substrate and oxidising agent (1:1) (PierceTM ECL, ThermoFisher Scientific) 

for 1 minute. The chemiluminescence signal was imaged using a G:BOX (Syngene).  

 

2.2.3.5. Coomassie blue staining 

12% polyacrylamide gels were prepared as previously described (see section 2.2.3.1). 

Following electrophoresis (see section 2.2.3.3), gels were submerged in 100mL Coomassie® 

Blue R-250 (ThermoFisher Scientific) staining solution (0.1% (v/v) Coomassie® R-250, 40% 

(v/v) ETOH, 10% (v/v) acetic acid) for 1 hour at RT on an orbital shaker. The staining solution 

was decanted and gels were rinsed 1x in dH2O. Gels were submerged in 100mL destain 

solution (10% (v/v) ETOH, 7.5% (v/v) acetic acid) overnight at RT and imaged the following 

day using a white light illuminator.   

 

2.2.3.6. Immunoprecipitation (IP) of FLAG-tagged GLT8D1 

HEK293 cells were seeded at a density of 1x106 cells per 10cm petri dish and cultured for 24 

hours. Cells were subsequently transfected with pcDNA/FRT/TO_3xFLAG-GLT8D1 wild-type 
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and mutant vectors as previously described (see section 2.2.1.16). For the 

immunoprecipitation of GLT8D1 from stable HEK293 lines, cells were cultured in Blasticidin 

S-free supplemented DMEM for 24 hours prior to induction with 10mg/mL tetracycline for 48 

hours (refer to section 2.2.1.12). 25x 10cm dishes were assembled for each condition to 

maximise protein yield. Prior to cell lysis, 300µL anti-FLAG® M2 magnetic beads 

(ThermoFisher) were blocked in BSA (1% in PBS) in 1.5mL Eppendorf tubes at 4°C on a 

rotating mixer. 48 hours post-transfection, media was removed, cells were washed in ice-cold 

PBS, and lysed in 500µL ice-cold IP lysis buffer (+ PIC [20µL/mL] + 1mM PMSF) for 3 minutes. 

Cells were removed using a cell scraper, transferred to pre-cooled Eppendorf tubes, and 

syringed 10x using 25-guage needles. Lysates were centrifuged at 13,300xg for 5 minutes at 

4°C. 50µL of the supernatant was retained as a reference for protein input. Total protein 

concentration within cell lysates was determined using a Bradford assay (see section 

2.2.3.2.2). 1% BSA was separated from the anti-FLAG® M2 magnetic beads using a 

DynaMag™-2 Magnet (ThermoFisher) and replaced with the protein lysate. Samples were 

then incubated for 2-3 hours on a rotating mixer at 4°C. Protein lysate was separated from the 

magnetic beads using a DynaMag™-2 Magnet, and the supernatant was retained as a 

reference for flow-through. The magnetic beads were washed 3x in 1M NaCl (diluted in an 

appropriate volume of IP lysis buffer) followed by 2x washes in IP lysis buffer. Anti-FLAG® M2 

magnetic beads were incubated with a FLAG® peptide (100µg/mL in lysis buffer) (Millipore) 

overnight at 4°C on a rotating mixer to purify FLAG-tagged products via competitive elution. 

Anti-FLAG® M2 magnetic beads were removed and the purified protein was fractionated on 

12% polyacrylamide gels (see section 2.2.3.3) alongside the input and flow-through for either 

Coomassie blue staining (see section 2.2.3.5) or immunoblotting (see section 2.2.3.4). Purified 

protein was stored at -80°C.   

 

2.2.3.7. Glycosyltransferase activity assay   

Glycosyltransferase assays were performed in opaque, white 96-well plates using a UDP-

Glo™ Glycosyltransferase Assay kit (Promega) according to the manufacturers’ guidelines. In 

brief, a required volume of Nucleotide Detection Reagent was equilibrated to RT. 300µL UDP-

Glo™ working solution was prepared by mixing 4µL UDP-Glo™ Enzyme with 296µL Enzyme 

Dilution Buffer. 10µL of UDP-Glo™ working solution was added per 1mL Nucleotide Detection 

Reagent and mixed to homogeneity immediately before use. A standard curve of 0-25µM UDP 

was generated to estimate the amount of UDP produced in the glycosyltransferase reaction. 

To create the standard curve, 25µM UDP solution was prepared in 1x glycosyltransferase 

reaction buffer (50mM Tris pH 7.5, 5mM MnCl2) and serially diluted (1:2) with 25µL per well of 

a 96-well plate. A no-UDP served as a negative control. 25µL glycosyltransferase reactions 
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were assembled on ice accordingly: 

- 1.5µL 0.1M MnCl2  

- 1.25µL 1M Tris  

- 12.5µL UDP sugar substrate (serially diluted: 40mM-0.15625mM) 

- Purified enzyme (serially diluted: 28mg/mL-0.109375mg/mL) in lysis buffer (see 

section 2.2.3.6)  

- 8µL dH2O.  

To determine the kinetic parameters of the glycosyltransferase enzyme, multiple reactions 

with varying concentrations of either enzyme or substrate were carried out simultaneously in 

the presence of fixed volumes of all other components. Glycosyltransferase reactions were 

run at 37°C for 60 minutes and terminated through the addition 25µL nucleotide detection 

reagent to each well of the assay plate. Plates were mixed on a plate shaker for 30 seconds 

and incubated for 60 minutes in the dark at RT. Luminescence was recorded using a 

PHERAstar FS System (BMG Labtech). Statistical analysis was performed using GraphPad 

Prism (see section 2.2.6).       

 

2.2.3.8. Immunocytochemistry  

For Nikon Eclipse Ni-U fluorescence microscopy and SP5 confocal microscopy, cells were 

seeded at a density of 3x104 cells per well of a 24-well plate onto glass coverslips and cultured 

for 3 days prior to immunocytochemistry. For imaging using an Opera PhenixTM High Content 

Screening System (PerkinElmer), cells were seeded into black Greiner 96-well plates 

(ThermoFisher Scientific). The volumes of solutions used in this section were relative to the 

size of the well. Media was removed from cells in culture, and cells were washed 2x with PBS. 

Cells were fixed in 4% paraformaldehyde (PFA) at RT for 20 minutes, and then washed 

another 2x with PBS. Cells were blocked using 5% normal goat serum (NGS) (v/v) in PBS, 

and were incubated at RT for 45 minutes. Blocking buffer was removed and cells were 

incubated in 0.01% Triton™ X-100 (+ PBS) for 30 minutes at RT. Triton™ X-100 was removed 

and cells were incubated in primary antibody (see Table 2.2), diluted in 5% NGS (v/v), at RT 

for 1 hour or overnight at 4°C. Cells were washed 3x in PBS (5 minutes per wash), then 

incubated in an appropriate fluorescent secondary antibody (see Table 2.3), diluted in 5% 

NGS (v/v), in a dark environment at RT for 1 hour. The secondary antibody was removed and 

cells were incubated with a nuclear counterstain (Hoechst 33342) (1μg/mL in PBS) in the dark 

for 5 minutes at RT and washed 3x with PBS (5 minutes per wash). Cell-containing glass 

coverslips were mounted onto microscope slides using fluorescence mounting medium 

(DAKO) and stored in a dark environment at 4°C overnight to dry.   
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2.2.3.9. Multiphoton and confocal microscopy imaging and image analysis 

Cells were imaged using either a Nikon Eclipse Ni-U microscope and Nikon DS-Ri1 camera 

with Nikon NIS- Elements Viewer software, or an SP5 confocal microscope system (Leica) 

with an X63/1.4 oil immersion objective lens. For confocal imaging, a z-stack was made up of 

images at 0.13μm intervals through the entire nuclear volume of the cell under consideration.  

Pixel intensity spatial correlation analysis was performed using ImageJ (NIH). The JACoP 

plugin was used for co-localisation analysis. Colour channels were split to create separate 

images, thresholds were automatically determined, and the M1/M2 and Pearson’s coefficients 

were calculated (Manders et al., 1993). 

 

2.2.3.10. Live-cell imaging using fluorescent molecular probes   
 

Greiner 96-well culture plates were coated in sterile 0.5% (w/v) gelatin (100µL/well) overnight 

at 4°C prior to cell seeding. Cells were seeded at densities of 1x104 cells per well and cultured 

for 2 days prior to imaging. For live-cell imaging, fluorescent probe solutions of 1mg/mL 

(Molecular Probes®) were prepared by dissolving 5mg of lyophilized conjugate in 5mL of 

sterile PBS (Table 2.3). 1mg/mL conjugate stock solutions were diluted in Hanks Balanced 

Salt Solution (HBSS) to create a working concentration of 5µg/mL of labelling solution. Media 

was removed and 100µL of labelling solution was added to cell-containing wells and incubated 

for 45 minutes at 37°C, 5% CO2. The labelling solution was removed, and cells were incubated 

with a nuclear counterstain (Hoechst 33342) (1μg/mL in HBSS) for 5 minutes at 37°C, 5% 

CO2. Nuclear counterstain was removed and cells were washed 2x in PBS, then incubated in 

200µL pre-warmed HBSS for confocal imaging. Live imaging was performed via confocal 

microscopy using an Opera PhenixTM High-Content Screening System (PerkinElmer) at 37°C, 

5% CO2. Cells were visualised within a high-resolution z-stack consisting of images at 0.5µm 

intervals through the entire nuclear volume of the cell. Images were analysed using Harmony 

High-Content Imaging and Analysis Software (PerkinElmer).   

 

2.2.3.11. MTT cell viability assay  

HEK293 and N2A cells were seeded at a density of 3x104 cells per well of a 24-well culture 

plate. Cell viability was assessed 2 and 3 days post transfection in N2A and HEK293 cells, 

respectively (see section 2.2.1.16). 55µL of 5mg/mL MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5-

diphenyltetrazolium bromide] reagent was added per well of the 24-well culture plate and 

incubated at 37°C, 5% CO2 for 1 hour. 550µL of un-precipitated SDS/DMF lysis buffer (20% 

(v/v) SDS [Melford]; 50% (v/v) di-methyl formamide (DMF); pH 4.7) was added per well and 
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mixed thoroughly to lyse the cells. Cells were incubated in a dark environment on an orbital 

shaker at RT for 1 hour. The colorimetric change was measured using a PHERAstar FS 

spectrophotometer (BMG Biotech), and absorbance readings taken at 590nm were 

normalised to media-only wells. Statistical analysis was performed using GraphPad Prism 

(GraphPad Software, Inc.) (see section 2.2.6).   

 

2.2.3.12. Lactate dehydrogenase assay   

A PierceTM Lactate Dehydrogenase (LDH) Cytotoxicity Assay Kit (ThermoFisher Scientific) 

was used according to the manufacturers’ instructions. Initially, HEK293 and N2A cells were 

seeded into white 96-well culture plates at a density of 2000 cells per well. Cytotoxicity was 

measured 2 and 3 days post transfection (see section 2.2.1.16) in N2A and HEK293 cells, 

respectively. Sterile, ultra-pure H2O was added to one set of triplicate cell-containing wells 

(10% v/v) as a measure of spontaneous LDH activity. 10x lysis buffer was added to another 

set of triplicate cell-containing wells (10% v/v) to determine the maximum LDH activity. Cells 

were incubated at 37°C in 5% CO2 for 45 minutes. 50µL of each sample medium was 

transferred to an optically clear 96-well plate in triplicate wells. 50µL of reaction mixture 

(lyophilizate, 11.4mL ultra-pure H2O, 0.6mL assay buffer) was added to each sample well and 

plates were incubated in a dark environment for 30 minutes at RT. 50µL of stop solution was 

added to each sample well and the absorbance was measured at 490nm and 680nm on a 

PHERAstar FS spectrophotometer (BMG Biotech). The 680nm absorbance value was 

subtracted from the 490nm absorbance value to determine LDH activity. Statistical analysis 

was performed using GraphPad Prism (see section 2.2.6). 

 
 

 
 

2.2.4. Modelling in zebrafish (Danio rerio)  

 
All zebrafish work was performed in collaboration with Dr Tennore Ramesh. Dr Ramesh is a 

registered project licence holder (70/8058) under the Animals (Scientific Procedures) Act, 

1986. I hold a Home Office approved personal licence (I5BBF6E32) to carry out regulated 

procedures on zebrafish, as specified on the project licence. However, all experimentation 

was performed using zebrafish larvae <5.2 days post-fertilisation, at a time when zebrafish 

are not protected by European law (EU Directive 2010/63/EU).   

2.2.4.1. RNA Synthesis for zebrafish embryo microinjection  

 

Capped RNA was synthesised using a mMESSAGE mMACHINE® SP6 Transcription Kit 
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(ThermoFisher Scientific), according to the manufacturers’ instructions, using DNA templates 

harbouring an SP6 promotor site downstream of the target sequence. Circular DNA fragments 

within PCS2+ vectors (Table 2.6) were linearized via a restriction digest (see section 2.2.2.11). 

20µL of transcription reactions were assembled at RT accordingly: 10µL 2X NTP/CAP (10mM 

ATP; 10mM CTP; 10mM UTP; 2mM GTP; 8mM cap analog); 2µL 10X reaction buffer; 0.5µg 

linearized template DNA; 2µL enzyme mix (buffered 50% glycerol containing RNA 

polymerase, RNase Inhibitor, and other components). Nuclease-free water was added to 

create total reaction volume of 20µL. The reaction mixture was mixed thoroughly and 

incubated at 37°C for 2 hours to account for slower SP6 reactions and achieve maximum 

possible yield of RNA. RNA was recovered via Lithium Chloride (LiCl) precipitation by adding 

30µL nuclease-free water and 30µL LiCl precipitation solution. Samples were mixed 

thoroughly, incubated at -20°C for 30 minutes and then centrifuged at 16,000xg for 15 minutes 

at 4°C. The supernatant was removed and the RNA pellet was washed with 1mL of 70% 

ETOH. Samples were re-centrifuged to maximise the removal of unincorporated nucleotides. 

The 70% ETOH was removed and the RNA pellet was air dried at RT for 10 minutes. RNA 

was diluted in 20µL of injection buffer (0.5% Fast Green, 200mM Tris–Cl pH 7.0, 20mM 

EDTA). RNA concentration was estimated using a NanoDropTM 1000 Spectrophotometer 

(ThermoFisher Scientific® Inc.), and diluted in RNAse-free water to achieve a final 

concentration of 200ng/µL. RNA stocks were stored in RNase-free Eppendorf tubes (3µL per 

tube to avoid repeated freeze-thaw cycles) at -80°C to prevent degradation. The quality of the 

transcription was assessed using a NanoDropTM 1000 spectrophotometer and agarose gel 

electrophoresis (see section 2.2.2.2). 

 

2.2.4.2. Generation of a morpholino for zebrafish embryo microinjection 

 

Splice-blocking morpholino antisense oligonucleotides were designed and provided by Gene 

Tools, LLC, for the targeted knockdown of endogenous glt8d1 in zebrafish embryos. The 

glt8d1 start codon lies within exon 2, therefore skipping this exon was considered likely to alter 

expression of the gene. The morpholino sequence complementary to the splice junction target 

from 5’ - 3’ is shown below; brackets have been inserted either side of the pre-mRNA (sense 

strand) target to illustrate its position in the sequence: 

 

5’-ACATCAGAGTCTGCATACCTGAAGT[ACGCAGAGgtaactatattttacac]gactttca-3’ 

Morpholino powder was reconstituted in sterile Milli-Q water and 1% phenol red to create a 

1mM stock.  
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2.2.4.3. Zebrafish maintenance and breeding  

Zebrafish of the AB strain were raised in recirculating systems (Tecniplast) at a density of 1 

zebrafish per 0.25 litres of water. Water was maintained at pH 7.4, a temperature of 28°C, and 

electrolytic conductivity of 500µS/cm. Zebrafish were exposed to 14-hour light and 10-hour 

dark cycles. The night before breeding, adult male and female zebrafish were transferred to 

breeding tanks, separated by a clear plastic divider. At the start of the light cycle the following 

day, the dividers were removed and eggs were collected. Zebrafish embryos were transferred 

to petri dishes containing fresh E3 media (34.8g NaCl; 1.6g KCl; 5.8g CaCl2·2H2O; 9.78g 

MgCl2·6H2O) and incubated at 28°C.  

 

2.2.4.4. Zebrafish embryo microinjection 

Glass capillaries with an outside diameter of 1.0mm were pulled to form microinjection needles 

with an inner tip diameter of 10µm. Needles were back-loaded with 3µL of injection material 

using a micro loader pipette and inserted into the micro injector attached to a PV 820 

Pneumatic PicoPump (World Precision Instruments). Needle tips were broken using forceps 

to allow ejection of the splice-blocking morpholino or RNA, leaving the needle narrow enough 

to pierce the chorion but deliver a consistent bead size. In order to calibrate the volume of 

each injection, a drop of oil was added to a graticule and the morpholino or RNA was injected 

into it, where 0.125mm contained approximately 1nL of injection material; the injection time 

was adjusted as required to obtain a 0.5nL, 1.0nL or 2.0nL volume of liquid. Embryos were 

lined up alongside a microscope slide, E3 media was removed, and oocytes were injected into 

the yolk at the one-cell stage with either 0.5nL, 1.0nL or 2.0nL of injection material. Embryos 

were transferred to petri dishes containing E3 media. Any unfertilised embryos, or embryos 

damaged during the injection process, were discarded into bleach. To increase the reliability 

of the data, zebrafish embryos from 3 separate clutch mates underwent the same injection 

process for each biological repeat where possible.   

 

2.2.4.5. Behavioural analysis   

The Zebralab screening tool (ViewPoint) was used to record the activity of individual larva in 

an optically clear 96-well plate at 5 days post-fertilisation (dpf). Zebrafish embryos were 

washed in fresh E3 media (approximately 50 embryos per group) and transferred to a 96-well 

plate, one fish per well in 200µL E3 medium. 100µL of E3 media was removed from one 

column and replaced with 100µL of Tricaine (MS222) (400mg Tricaine powder; 97.9mL dH2O; 

2.1mL 1M Tris; pH 7) (Sigma-Aldrich) (164 mg/L) to create a non-motile control group. Fish 
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were left to acclimatise to the 96-well plate for 30 minutes. Zebrafish were then placed inside 

the Zebrabox observation chamber and were habituated at 10% light intensity for 30 minutes 

prior to behavioural testing. Zebrafish were exposed to a 10-minute light (10% intensity) cycle 

followed by a 10-minute dark (0% intensity) cycle. These cycles were then repeated to equal 

40 minutes of tracking. Motor function was analysed according to the mean distance travelled 

and the average velocity of the zebrafish embryos. Statistical analysis was performed using 

GraphPad Prism (see section 2.2.6). 

 

2.2.4.6. Zebrafish RT-PCR 

 

Twenty zebrafish embryos (2dpf) were transferred to Eppendorf tubes containing 1mL E3 

media, for each condition. Tricaine (164 mg/L) was added and the zebrafish were incubated 

at RT for 5 minutes. E3 media was removed and 500µL TRIzol reagent was added per tube. 

Samples were incubated at RT for 5 minutes. 100µL chloroform was added and the samples 

were mixed by inversion for 15 seconds. Samples were incubated for 10 minutes at RT, then 

centrifuged at 12,000xg for 15 minutes at 4°C. The top aqueous phase was transferred to a 

fresh Eppendorf tube and mixed with 250µL isopropanol to precipitate the RNA. Samples were 

incubated for 15 minutes at RT, then centrifuged at 12,000xg for 10 minutes at 4°C. The 

isopropanol was removed and the pellet was left to air dry for 10 minutes, then resuspended 

in 50µL RNAse-free H2O. RNA quality was assessed using a NanoDropTM 1000 

spectrophotometer (ThermoFisher Scientific). 2μg of total RNA was converted to cDNA as 

previously described (see section 2.2.2.12). PCR reactions were assembled accordingly:   

 

- 4µL of 5x FIREPol® (Solis Biodyne)  

- 1µM forward primer (see table 2.7) 

- 1µM reverse primer (see table 2.7) 

- 1µL template DNA  

- Nuclease-free H2O to create overall reaction volume of 20µL 

 

The template was amplified using the following PCR programme outlined in Table 2.13: 
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Table 2.13. PCR programme for zebrafish RT-PCR. 

Step Temperature (°C) Time  Cycles 

Initial denaturation 94 3 minutes - 

Denaturation 94 30 seconds 

35x Primer annealing 60 45 seconds 

Elongation 72 2 minutes 

Final elongation 72 7 minutes - 

Hold 10 Infinite - 

 

PCR products were evaluated via agarose gel electrophoresis (see section 2.2.2.2).  

 

 

2.2.4.7. Zebrafish immunoblotting 

Dechorionated zebrafish embryos (2dpf) were transferred to Eppendorf tubes (20 embryos 

per tube) containing 1mL E3 media. Tricaine (164 mg/L) was added and the zebrafish were 

incubated at RT for 5 minutes. E3 media was removed and replaced with 3µL/embryo 2x 

Laemmli buffer (65.8mM Tris HCl; 26.3% (w/v) glycerol; 2.1% SDS; 0.01% bromophenol blue; 

355mM 2-mercaptoethanol; pH 6.8). Zebrafish embryos were lysed by sonication (Soniprep 

150, MSE) for 10 seconds at 25% amplitude followed by a 30-second incubation on ice; this 

process was repeated 3 times for each group. Embryos were subsequently boiled at 95°C for 

10 minutes, then centrifuged at 10,000xg for 3 minutes at RT. 10µL of lysate was added per 

lane and fractionated on a 12% SDS-PAGE gel as previously described (see section 2.2.3.3).  

 

2.2.6. Statistical analysis 

Statistical analysis was conducted in GraphPad Prism 7 (La Jolla, CA). All bar graphs show 

the mean ± SD. Data comparing two variables was transformed to identify outliers and 

analysed to identify statistical differences between the treatment groups. The statistical test 

used for datasets with greater than two conditions was a non-parametric analysis of variance 

(ANOVA). Non-parametric tests were chosen when data was not normally distributed, and to 

account for smaller sample sizes. Paired t tests were used for all in vitro datasets comparing 

two conditions. Zebrafish data were analysed using either a Mann-Whitney test or, in the case 

of survival data, a paired t test to account for continuity between time points.  
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Chapter 3. ALS-linked G78W and R92C variants in GLT8D1 are 

toxic to HEK293 and N2A cells and impair enzyme activity  

 
3.1. Introduction 
 
This chapter is an extended version of work published during my PhD (Cooper-Knock et al., 

2019). I was responsible for conducting all experimental work presented within this chapter, 

and any collaborations are clearly stated. My focus was to generate cell models to characterise 

pathological mechanisms associated with ALS-linked GLT8D1-G78W and GLT8D1-R92C 

variants. The R92C mutation was chosen, as this was the most common and clinically 

aggressive mutation identified in ALS patients, affecting 10 individuals with a mean survival of 

21 months. The GLT8D1-G78W mutation was also identified in our local patient population; 

GLT8D1-G78W was associated with a disease duration of 58 months, offering a slow disease 

progression compared to the aggressive GLT8D1-R92C (Cooper-Knock et al., 2019).  

 

GLT8D1 is structurally and functionally uncharacterised; therefore, I began by identifying 

structural homologues to aid future crystallisation strategies for determining possible targets 

of interaction. In this chapter, I also describe the generation of GLT8D1 plasmid constructs 

with either a 3xFLAG- or eGFP-tag. The use of epitope tags was necessary given a lack of 

validated GLT8D1 antibodies, and generating an antibody of my own was not feasible due to 

time constraints. All overexpression experiments included an un-tagged control plasmid 

containing the same backbone, which was important, as GFP-tags have previously been 

shown to induce apoptosis in vitro (Liu et al., 1999, Coumans et al., 2014). eGFP-tags were 

useful for evaluating transfection efficiency under ultraviolet (UV) light. 3xFLAG-tags enabled 

the immunoprecipitation of recombinant GLT8D1 protein for the assessment of 

glycosyltransferase activity, using methods previously developed by our lab. In order to 

confirm the validity of the signal following the immunoprecipitation of GLT8D1, miRNA 

constructs targeting overexpressed and endogenous GLT8D1 were generated.  

 

GLT8D1-3xFLAG constructs were also used to engineer stable isogenic Flp-InTM T-RExTM 

HEK293_GLT8D1WT/R92C-3xFLAG cell models. Hereafter, these cell models will be referred to 

as isogenic HEK293-WT and isogenic HEK293-R92C. These cell lines utilise the Flp-In™ 

system which allows genomic site specific insertion of WT and mutant GLT8D1 into HEK293 

cells; and the T-REx™ system, which allows for tetracycline-inducible expression of WT and 

mutant GLT8D1. The isogenic nature of HEK293-WT and HEK293-R92C cells was desirable 

to reduce variability not linked to the GLT8D1 mutation.         
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Given the difference in disease severity between patients with GLT8D1-G78W and GLT8D1-

R92C mutations, I tested the relative toxicity of these two mutations in vitro via a combination 

of MTT and lactate dehydrogenase (LDH) assays. The MTT assay is a widely used measure 

of cell proliferation (Mosmann, 1983, van Tonder et al., 2015) and provides a useful indication 

of mitochondrial dysfunction. LDH assays (Chan et al., 2013) were subsequently performed 

to determine whether observed differences in the MTT signal were a result of growth inhibition 

or cytotoxicity.  

 

 

3.2. Aims and objectives for characterising ALS-linked G78W and R92C 

mutations in GLT8D1  

 

1. Generate pEGFP-N1-eGFP and pcDNA5/FRT/TO_3xFLAG plasmid constructs 

expressing GLT8D1-WT, GLT8D1-G78W and GLT8D1-R92C. 

2. Integrate pcDNA5/FRT/TO_3xFLAG-GLT8D1-WT and pcDNA5/FRT/TO_3xFLAG-

GLT8D1-R92C plasmids into the commercially available Flp-InTM HEK293 T-RExTM cell 

line and characterise cells for tetracycline-inducible expression of GLT8D1-WT and 

GLT8D1-R92C.  

3. Generate microRNA plasmids for the targeted knockdown of endogenous and 

overexpressed GLT8D1 in HEK293 cells.  

4. Identify structural homologues of GLT8D1 to aid future crystallisation strategies.  

5. Assess the relative toxicity of GLT8D1-G78W and GLT8D1-R92C mutations in 

neuronal and non-neuronal cell lines via a combination of MTT and LDH assays. 

6. Investigate the effect of GLT8D1-G78W and GLT8D1-R92C mutations on the 

enzymatic activity of GLT8D1.  

 
 

 
 

3.3. Results  
 

3.3.1. Generation and characterisation of pEGFP-N1_GLT8D1-eGFP and 

pcDNA5/FRT/TO_3xFLAG-GLT8D1 expression vectors 

 
Plasmids utilised in this section were generated in collaboration with Dr Guillaume 

Hautbergue. For GFP-tagged fusions to the C-terminus of GLT8D1, pEGFP-N1 expression 

vectors (Figure 3.1a) were digested using NheI and XhoI restriction enzymes and purified via 

agarose gel electrophoresis and gel extraction. The GLT8D1 open reading frame (I.M.A.G.E. 
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40116197) was amplified using oligonucleotides GLT8D1-1-Kozak-NheI5 and GLT8D1-371-

XhoI3 (see Table 2.7), and subsequently cloned as a PCR fragment into the NheI/XhoI 

restriction sites of pEGFP-N1 to create pEGFP-N1_GLT8D1-eGFP. The Kozak sequence in 

the forward primer was necessary due to the absence of an ATG codon for the initiation of 

translation (Kozak, 1990). GLT8D1-G78W and GLT8D1-R92C mutations were introduced via 

site-directed mutagenesis; PCR reactions were assembled using the following 

oligonucleotides: GLT8D1-G78W_QC_fwd and GLT8D1-G78W_QC_rev; or GLT8D1-

R92C_QC_fwd and GLT8D1-R92C_QC_rev (Table 2.7). pEGFP-N1_GLT8D1-eGFP 

plasmids were validated via restriction digest (Figure 3.1b) and Sanger sequencing (see 

appendix 6).   

 

For FLAG-tagged fusions, the GLT8D1 open reading frame (I.M.A.G.E. 40116197) was 

amplified using oligonucleotides GLT8D1-1-BclI5 and GLT8D1-371stp-XhoI3 (Table 2.7) and 

cloned as a BclI/XhoI PCR fragment into the BamHI/XhoI restriction sites of the 

pcDNA5/FRT/TO_3xFLAG vector to generate pcDNA5/FRT/TO_3xFLAG-GLT8D1 (see 

appendix 7). GLT8D1-G78W and GLT8D1-R92C mutations were introduced via site-directed 

mutagenesis; PCR reactions were assembled using the following oligonucleotides: GLT8D1-

G78W_QC_fwd and GLT8D1-G78W_QC_rev; or GLT8D1-R92C_QC_fwd and GLT8D1-

R92C_QC_rev (Table 2.7). pcDNA5/FRT/TO_3xFLAG-GLT8D1 plasmids were validated via 

restriction digest (Figure 3.1b) and Sanger sequencing (see appendix 8). 

 

3.3.2. Flp-InTM T-RExTM GLT8D1 isogenic HEK293 cell line generation 
 

Isogenic HEK293 cells stably expressing GLT8D1 were engineered for the production of 

recombinant enzyme for subsequent analysis of glycosyltransferase function. Therefore, it 

was important to generate a robust and highly proliferative cell model to achieve maximal 

biomass; hence, a neuronal line with stable expression of GLT8D1 was not deemed necessary 

at this stage of the project.  

 

Isogenic HEK293-WT and HEK293-R92C cell lines utilised in this project were generated in 

collaboration with Dr Adrian Higginbottom. pcDNA5/FRT/TO_3xFLAG-GLT8D1 and 

pcDNA5/FRT/TO_3xFLAG-GLT8D1-R92C (see section 3.3.1) were stably transfected into the 

Flp-InTM T-RExTM  (RRID: CVCL_U427) HEK293 cell line. pPGKFLPobpA (which expresses a 

codon optimised FLP DNA-recombinase) was co-transfected with each of the GLT8D1 

plasmids separately. The FLP DNA recombinase catalysed recombination between the FRT 

site on the pcDNA5/FRT/TO_3xFLAG-GLT8D1 plasmids and the genomic FRT site in the Flp-

In™ T-REx™ HEK293 cells, stably inserting the tetracycline-inducible GLT8D1 constructs 
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(Figure 3.2). Cells were screened for Zeocin™ sensitivity and Blasticidin-S/Hygromycin-B 

resistance to ensure isogenic, then expanded and cryopreserved. Zeocin™ resistance would 

suggest random integration of the pcDNA5/FRT/TO_GLT8D1 plasmid into the host cell 

genome, and not at the genomic FRT site. Blasticidin-S/Hygromycin-B selection antibiotics 

were added to the media to select for cells with pcDNA5/FRT/TO_3xFLAG-GLT8D1 stably 

integrated into the genomic FRT site. Tetracycline-inducible expression of GLT8D1-3xFLAG 

was confirmed via immunoblotting (Figure 3.6).  

3.3.3. Generation of microRNA plasmids targeting human GLT8D1 

 
MicroRNA (miRNA) knockdown of over-expressed and endogenous GLT8D1 was used to 

validate the specificity of GLT8D1 immunoblot bands. This was necessary because validated 

GLT8D1 antibodies were not available. miRNA sequences against human GLT8D1 (NCBI 

Reference Sequence: NM_152932.2, transcript variant 1) were designed using the ‘miR RNAi’ 

Block-IT RNAi designer tool (ThermoFisher). The target sequences are as follows: 

 

 GLT8D1_miR1 target: ATTGTAGGGCCTCAACCTATA starts at 241nt  

 GLT8D1_miR2 target: GAGCAGGAAACCAGTACAATT starts at 749nt  

 GLT8D1_miR3 target: TTTGTAAAGGCTGCCAAGTTA starts at 1075nt.  

 

Synthesized oligonucleotides (see Table 2.7) were annealed and ligated into pcDNA6.2-

GW/EmGFP vectors. HEK293 cells were co-transfected with pcDNA5/FRT/TO_3xFLAG 

vectors expressing GLT8D1-WT with and without pcDNA6.2-GW/EmGFP vectors expressing 

miRNA sequences (miR1-3 – see above). Knockdown was confirmed at two days post 

transfection via immunoblotting (Figure 3.9).   



77 
 

 

 

 

 

Figure 3.1. Construction and validation of pEGFP-N1_GLT8D1 and 

pcDNA5/FRT/TO_3xFLAG_GLT8D1 plasmids. (A) pEGFP-N1 plasmid map showing 

integration of WT GLT8D1 into the multiple cloning site under the control of a CMV promotor. 

GLT8D1 was cloned as a NheI / XhoI PCR fragment into the NheI and XhoI sites of pEGFP-

N1. GLT8D1-G78W and GLT8D1-R92C mutations were subsequently introduced via site-

directed mutagenesis and confirmed via Sanger sequencing (see appendix 6). See appendix 

7 for pcDNA5/FRT/TO_3xFLAG_GLT8D1 plasmid maps, or refer to Figure 3.2 for a structural 

overview. (B) Restriction digest of pEGFP-N1 and pcDNA5/FRT/TO_3xFLAG plasmids to size 

the GLT8D1 inserts; pEGFP-N1_GLT8D1 plasmids were cut using NheI and XhoI restriction 

enzymes. pcDNA5/FRT/TO_3xFLAG plasmids were cut using BamHI and XhoI restriction 

enzymes. Agarose gel electrophoresis was performed to size the 1.1kb GLT8D1 inserts. The 

empty peGFP-N1 and pcDNA5/FRT vectors show no insert present. Molecular weight markers 

are indicated (bp). 
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Figure 3.2. Flp-In™ and T-REx™ systems used to generate isogenic HEK293 cell lines 

with tetracycline-inducible expression of WT and mutated GLT8D1. 

pcDNA5/FRT/TO_3xFLAG vectors expressing WT GLT8D1 and GLT8D1-R92C were 

separately co-transfected with a FLP recombinase into the Flp-In™ T-REx™ mammalian cell 

line in a ratio of 6:4 using polyethylenimine. FLP recombinase catalyses homologous 

recombination between the genomic FRT site and the FRT site within the pcDNA5/FRT/TO 

vector. Successful integration of the pcDN5/FRT/TO_3XxFLAG-GLT8D1 plasmid is 

demonstrated through the Hygromycin-B resistant and Zeocin™ sensitive nature of the host 

cell line. GLT8D1 expression is repressed by the Tet repressor element (tetR). Expression of 

GLT8D1 is initiated through the addition of tetracycline, which de-represses the CMV/TetO2 

promoter. (G8 – GLT8D1; FRT – flippase recognition target; AmpR – ampicillin resistant 

promotor; pA – polyadenylated tail). This figure was adapted from Invitrogen™.  
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3.3.4. Structural-based sequence alignment identifies 5GVV (S. pneumonia 

glycosyltransferase glyE) as a structural homologue of GLT8D1  

 
Structural characterisation of GLT8D1 was performed in collaboration with Dr Sam Dix. The 

majority of proteins must fold to their active native state when they are released from 

ribosomes in order to perform their biological function. Proteins repeatedly unfold and refold 

during their lifetime (Englander and Mayne, 2014). The crystal structure for GLT8D1 is 

currently undefined. A well-established method of assigning protein fold, and therefore 

possibly function, is to identify a closely related homologue with a known structure. Sequence 

comparison tools such as BLAST (Altschul et al., 1990) are capable of assigning folds for up 

to 30% of genes in microbial genomes (Wang et al., 2000, Ginalski et al., 2005). To identify a 

structural homologue, the translated protein sequence of GLT8D1 was inputted into PDB-

BLAST and aligned against all members of the Protein Data Bank (available at: 

https://www.rcsb.org/), which is comprised of all known protein structures to date. This 

identified 5GVV (S. pneumoniae glycosyltranferase glyE) as a potentially related homologue. 

Using Clustal Omega Multiple Sequence Alignment (available at: 

https://www.ebi.ac.uk/Tools/msa/clustalo/), the sequence identity between GLT8D1 and 

5GVV was calculated to be only ~27% across the entire protein, which coincides with the N-

terminal domain of 5GVV. The N-terminal domain contains core secondary structure features 

as well as the proposed GLT8D1 ligand-binding pocket (Bourne and Henrissat, 2001); 

therefore, the fold will likely be conserved (Figure 3.3). Of note, sequence similarity is not 

necessary for structural similarity. Therefore, seemingly unrelated proteins based on protein 

sequence alone are capable of adopting the same fold (Ginalski et al., 2005). Due to this 

predicted structural conservation, it is likely that GLT8D1 will adopt a similar fold to that of the 

N-terminal domain in 5GVV. The implication of the conserved fold for future experimentation 

is discussed in section 3.4.3. 

 

The protein sequence encoding the C-terminal domain of 5GVV does not align closely with 

GLT8D1. Due to this breakdown in alignment, I propose truncation of the linker region 

connecting the two domains at protein position 266 leading to loss of the C-terminal domain. 

Finally, the lack of sequence complementarity at the beginning of the trace (Figure 3.3a) may 

represent a GLT8D1 Golgi-localisation signal, which is not present in prokaryotic cells; 

however, this is purely speculative and warrants functional characterisation. GLT8D1-Golgi 

localisation was subsequently investigated (see Chapter 5).  

 

 

 

https://www.rcsb.org/
https://www.ebi.ac.uk/Tools/msa/clustalo/
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Figure 3.3. Structural-based sequence alignment identifies 5GVV (S. pneumoniae 

glycosyltranferase glyE) as a related homologue of GLT8D1. (A) Protein sequence 

alignment showing degree of conservation between 5GVV and GLT8D1. The residue-

enriched N-terminal domain is highly conserved between 5GVV and GLT8D1, suggesting 

GLT8D1 will adopt a similar fold to 5GVV. (B) Structural representation of aligned sequences 

showing two distinct protein domains separated by a linker sequence (yellow). The highly-

conserved N-terminal domain contains the binding pocket and is enriched with amino acid 

residues that determine protein folding. The less conserved C-terminal domain is also shown. 

(C) Structure of the highly-conserved N-terminal domain with a truncated linker region to more 

closely resemble of the structure of GLT8D1. Structures were generated using PyMOL.  

(Figure kindly provided by Dr Sam Dix).   
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3.3.5. A GLT8D1-R92C mutation reduces viability and increases cytotoxicity of 

HEK293 and N2A cells 

 

My next aim was to characterise the relative toxicity of GLT8D1-G78W and GLT8D1-R92C 

mutations via a combination of MTT proliferation and LDH cytotoxicity assays. MTT [3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] is a yellow tetrazolium dye which is 

metabolised in the mitochondria by mitochondrial succinate dehydrogenase into an insoluble 

purple-coloured formazan product, measurable via spectrophotometry. Viable cells with an 

active metabolism exhibit high levels of MTT reduction to produce an absorbance maximum 

close to 570nm (Riss et al., 2004). WT and mutant GLT8D1 were transiently overexpressed 

in HEK293 and N2A cells via liposome-mediated transfection with pEGFP-N1_GLT8D1-eGFP 

plasmids (see section 3.3.1). MTT assays were used to indirectly assess the viability of 

HEK293 and N2A cells at two and three days post transfection, respectively. Mutation-specific 

reductions in absorbance were observed across six biological repeats of the MTT assay in 

HEK293 cells, relative to over-expression of GLT8D1-WT (n=6, ANOVA p=0.0281) (Figure 

3.4a). A similar reduction was seen in N2A cells, with GLT8D1-R92C producing a greater 

effect than GLT8D1-G78W (n=6, ANOVA p=0.0281) (Figure 3.4b).  

 

To validate the observed MTT signal, LDH assays were performed to measure LDH in 

HEK293 and N2A extracellular growth medium, following transient overexpression of 

GLT8D1-WT-eGFP, GLT8D1-G78W-eGFP and GLT8D1-R92C-eGFP. This colorimetric 

assay quantitatively measures the release of the cytoplasmic enzyme, LDH, from necrotic 

cells with reduced plasma membrane integrity. LDH is a stable cytoplasmic enzyme present 

in all cells (Kumar et al., 2018) and is released into the extracellular space when the plasma 

membrane is damaged. The assay is based on the principle that LDH reduces nicotinamide 

adenine dinucleotide to its reduced form through the oxidation of lactate to pyruvate. The 

reaction products then interact with a tetrazolium salt to form a red formazan dye, which is 

quantifiable through measuring absorbance at 490nm and 680nm. The absorbance reading is 

proportional to the number of damaged cells (i.e.  apoptotic or necrotic) within the culture. This 

assay was chosen based on its reliability, speed, and ease of evaluation (Chan et al., 2013, 

Fotakis and Timbrell, 2006). Expression of GLT8D1-R92C correlated with an increase in 

cytotoxicity across six biological repeats in HEK293 (n=6, ANOVA p=0.0117, Figure 3.4c) and 

N2A (n=6, ANOVA p=0.0117, Figure 3.4d) cells, compared to over-expression of GLT8D1-

WT. GLT8D1-G78W produced a similar trend but this did not reach statistical significance 

(n=6, p=0.4467). R92C was the more cytotoxic of the two substitution mutations in both cell 

lines, which is in line with the observed clinical severity. Indeed, overexpressing any WT gene 
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in a model system can cause mutant phenotypes (Prelich, 2012), therefore it was important to 

include a WT transfection alongside a negative control in order to observe a defined mutation-

specific effect.    

 

 

 

 

  

 

 

Figure 3.4. Overexpression of mutated GLT8D1 causes cytotoxicity and reduces 

viability in HEK293 and N2A cells compared to overexpression of the WT protein. Cell 

viability was indirectly measured using MTT assays (A, B) and cytotoxicity was measured 

using LDH assays (C, D). All experiments included six biological replicates and either two 

(MTT assays) or four (LDH assays) technical replicates were included per biological replicate. 

*p < 0.05; one-way ANOVA. Each data point is expressed as a percentage of a control 

transfection with an empty peGFP-N1 vector. Error bars represent mean and SD. Figure taken 

from (Cooper-Knock et al., 2019).  
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To confirm that observed differences in cell viability and cytotoxicity (Figure 3.4) were 

mutation-specific and not due to increased expression of the mutant protein, immunoblotting 

was used to quantify the relative expression level of GLT8D1-WT, GLT8D1-G78W and 

GLT8D1-R92C in HEK293 and N2A cells for each biological repeat of the MTT and LDH 

assays. No significant differences were observed in the level of protein expression in between 

the transfection groups in either cell line (n=6, ANOVA p>0.05, Figure 3.5). The band at 

~70kDa is indicative of the GLT8D1-eGFP fusion protein (Figure 3.5a, 3.5b). Densitometry 

was performed on the bands representing the fusion product (Figure 3.5c, 3.5d). 
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Figure 3.5. Immunoblotting shows similar expression levels of WT and mutant GLT8D1 

in HEK293 and N2A cells. (A) Representative images showing overexpression of GFP-

tagged WT and mutant GLT8D1 in HEK293 cells (left panel) and (B) N2A cells (right panel). 

Densitometry demonstrates non-significant differences between WT and mutant GLT8D1 

expression in (C) HEK293 and (D) N2A cells (n=6, one-way ANOVA p>0.05). Error bars 

represent SD. Immunoblotting suggests that observed phenotypes were not a result of relative 

overexpression of mutated protein. Molecular weight markers are indicated (kDa). (CTRL - 

control; WT – wild-type; UT - un-transfected; G8 – GLT8D1). Figure adapted from (Cooper-

Knock et al., 2019).        
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3.3.6. An ALS-linked R92C mutation impairs the glycosyltransferase activity of 

GLT8D1 

 

Based on sequence homology, GLT8D1 is a member of glycosyltransferase family 8, and 

exon 4 contains ALS-associated mutations and encodes the substrate-binding site within the 

glycosyltransferase domain (Figure 1.4). To assess the impact of discovered mutations on 

glycosyltransferase activity, a uridine diphosphate (UDP)-GloTM glycosyltransferase assay kit 

(Promega) with five commercially available UDP-sugar substrates was used.  

 

GLT8D1-WT clone 2B1 and GLT8D1-R92C clone 2B1 were selected from my isogenic screen 

as they demonstrated a similar expression level after normalising for total protein 

concentration (Figure 3.6). 3xFLAG-tagged GLT8D1-WT and GLT8D1-R92C proteins were 

immunopurified from isogenic HEK293 cells in stringent conditions prior to competitive elution 

under a native form with a 3xFLAG peptide to preserve enzyme activity. Coomassie blue 

staining and immunoblotting were used to confirm that both proteins were purified in equivalent 

amounts (Figure 3.7).  
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Figure 3.6. Immunoblotting confirms tetracycline-inducible expression of GLT8D1-WT 

and GLT8D1-R92C in isogenic HEK293 cells. Representative isogenic screen of selected 

(A) GLT8D1-WT and (B) GLT8D1-R92C clones showing tetracycline-induced expression of 

3xFLAG-tagged GLT8D1. GLT8D1-WT clone 2B1 and GLT8D1-R92C clone 2B1 were 

selected for GLT8D1 immunoprecipitation (red arrows) as they demonstrated a similar level 

of expression between the WT and mutant form after normalising for total protein 

concentration. (C) Representative blot showing tetracycline-induced expression of GLT8D1-

WT and GLT8D1-R92C in isogenic HEK293 cells. Relative GLT8D1 expression was detected 

using an anti-FLAG antibody; ɑ-Tubulin served as a loading control. Molecular weight markers 

are indicated (kDa). (TET – tetracycline; CTRL – control (Sham)-transfected; WT – wild-type; 

-ve – negative; +ve – positive). 
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Figure 3.7. Immunopurification of GLT8D1-WT and GLT8D1-R92C from tetracycline-

induced isogenic HEK293 cells. (A) Coomassie blue gel and (B) immunoblot showing 

purified GLT8D1-WT and GLT8D1-R92C in equivalent amounts (red arrows). Input represents 

~0.1% of whole-cell protein extracts loaded onto anti-FLAG® M2 coated magnetic beads. FT 

indicates total remaining protein following incubation with a 3xFLAG peptide. Purified indicates 

3xFLAG-GLT8D1 proteins. Molecular weight markers are indicated (kDa). (WT – wild-type; 

FT – flow-through). 

 

 

The linear range for determination of accurate UDP concentration measurements was 

validated for the UDP-GloTM glycosyltransferase assay (Figure 3.8). Initial reaction velocity 

was measured at fixed enzyme concentration with increasing substrate concentrations. Initial 

reaction velocity is defined as the amount of product produced per unit time at the start of the 

reaction when the product concentration increases in a linear fashion. This is important for 

determining the rate of reaction before substrate levels are depleted (Choi et al., 2017). Data 

were fitted to a standard Michaelis-Menten equation by nonlinear regression to enable 

determination of maximal enzyme velocity (Vmax) and the Michaelis constant (Km). Purified 

GLT8D1 proteins behaved as expected for enzymes of this class (Sethi et al., 2010), and were 

purified in their active forms.  
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Figure 3.8. Validating the linear range for determination of accurate UDP concentration 

measurements for the UDP-GloTM glycosyltransferase assay. Standard curve for the UDP-

Glo assay illustrates linear correlation for <500 mmol/min UDP (RFU – relative fluorescence 

units; UDP – uridine diphosphate). Figure adapted from (Cooper-Knock et al., 2019). 

 

 

Five commercially available UDP sugar substrates were tested: GalNAc, GlcNAc, Glucose, 

Galactose and Glucuronic acid. GLT8D1 only demonstrated sufficient affinity for UDP-

Galactose. With UDP-Galactose as the target substrate, Vmax was reduced ~25% (GLT8D1-

WT: 37.79 mmol/min; GLT8D1-R92C: 30.65 mmol/min) and Km was reduced ~40% (GLT8D1-

WT: 1.226 mmol/l; GLT8D1-R92C: 0.7492 mmol/l) in the GLT8D1-R92C protein compared to 

GLT8D1-WT (Figure 3.9a). Next, I fixed substrate concentration to >10-fold higher than Km 

in order to measure enzymatic activity at maximal enzyme velocity. I plotted the activities of 

enzymes as a function of enzyme concentration. At any enzyme concentration, the GLT8D1-

R92C enzyme activity was reduced compared to GLT8D1-WT (Figure 3.9b). Enzyme 

activities measured in the linear range of the UDP-GloTM glycosyltransferase assay indicated 
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an approximately 2-fold reduction for GLT8D1-R92C compared to GLT8D1-WT. These results 

suggest that ALS-linked mutations impair the normal function of the GLT8D1 protein. 

 

 

 
 
 
 
 
Figure 3.9. ALS-linked GLT8D1-R92C mutation impairs glycosyltransferase activity. (A) 

3xFLAG-tagged GLT8D1-WT and GLT8D1-R92C proteins were immunopurified from 

tetracycline-induced isogenic HEK293 cells. Initial reaction velocity was measured at fixed 

enzyme concentration (3mg/25μL reaction) with variable substrate concentrations. Michaelis-

Menten curves were fitted with nonlinear regression. (B) Enzyme concentration was varied in 

the presence of fixed substrate concentration (20mM) (15mol/l corresponding to >10xKm). 

The curve for GLT8D1-R92C enzyme velocity is right-shifted compared to GLT8D1-WT 

indicating lower enzyme activity at any given enzyme concentration. (WT – wild-type; UDP – 

uridine diphosphate).   
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3.3.7. ALS-linked G78W and R92C mutations impair the glycosyltransferase activity 

of GLT8D1 

 

I validated my previous findings regarding glycosyltransferase function (see section 3.3.6) by 

transiently overexpressing GLT8D1 in HEK293 cells using pcDNA/FRT/TO-3xFLAG plasmids 

containing GLT8D1-WT, GLT8D1-G78W, and GLT8D1-R92C open reading frames. This also 

enabled me to investigate the effect of the GLT8D1-G78W variant on glycosyltransferase 

function, as a stable cell line expressing this mutation had not previously been engineered. 

3xFLAG-tagged GLT8D1-WT, GLT8D1-G78W and GLT8D1-R92C proteins were transiently 

overexpressed in HEK293 cells via liposome-mediated transfection. Proteins were 

immunopurified as previously described (see section 3.3.6). Coomassie blue staining and 

immunoblotting were used to confirm that all three proteins were purified in equivalent 

amounts (Figures 3.10c, 3.10d). MicroRNA knockdown of GLT8D1 in HEK293 cells was used 

to validate the specificity of the signal following immunoprecipitation. For knockdown, HEK293 

cells were co-transfected with pcDNA5/FRT/TO_3xFLAG vectors expressing GLT8D1-WT 

with and without pcDNA6.2-GW/EmGFP vectors expressing miRNA sequences targeting 

GLT8D1. All three miRNAs significantly reduced GLT8D1-3xFLAG levels (n=3, ANOVA 

p=0.0398) (Figures 3.10a, 3.10b). These results suggest that the purification signal observed 

following immunoprecipitation is representative of GLT8D1. 
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Figure 3.10. Immunopurification of GLT8D1-WT, GLT8D1-G78W and GLT8D1-R92C 

recombinant proteins from HEK293 cells. (A, B) Representative blot and densitometric 

analysis showing microRNA knockdown of GLT8D1 in HEK293 cells to validate the specificity 

of the signal following immunoprecipitation (n=3, ANOVA *p<0.05). (C, D) FLAG-tagged 

GLT8D1-WT, GLT8D1-G78W, and GLT8D1-R92C proteins were immunopurified in 1M NaCl-

containing buffer to maximize dissociation of interacting partners, and were eluted in native 

conditions prior to analysis by SDS-PAGE, Coomassie staining and immunoblotting. Input 

represents ~0.1% of whole-cell protein extracts loaded onto anti-FLAG coated beads. FT 

indicates total remaining protein following incubation with a 3xFLAG peptide. Purified indicates 

FLAG-GLT8D1 proteins. Molecular weight markers are indicated (kDa). (UT – un-transfected; 

WT – wild type). Figures 3.9a and 3.9b were adapted from (Cooper-Knock et al., 2019).  
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In order to measure glycosyltransferase activity, the linear range was determined for the 

measurement of UDP concentration by the UDP-GloTM assay (refer to figure 3.8). Initial 

reaction velocity was measured at a fixed enzyme concentration with increasing substrate 

concentrations. A similar reduction in glycosyltransferase activity was observed with UDP-

Galactose as the target substrate. Vmax was reduced ~30%–40% (GLT8D1-WT: 67.5 

mmol/min; GLT8D1-G78W: 58.6 mmol/min; GLT8D1-R92C: 51.4 mmol/min), and Km was 

reduced ~50% (GLT8D1-WT: 3.5 mmol/l; GLT8D1-G78W: 2.3 mmol/l; GLT8D1-R92C: 2.5 

mmol/l) in GLT8D1-R92C and GLT8D1-G78W compared to GLT8D1-WT (Figure 3.11a). 

Consistent with the cell-based assays (see section 3.3.5), the relative effect of the two tested 

mutations mirrored the observed clinical severity, with GLT8D1-R92C producing a more 

severe phenotype. Next, UDP-Galactose substrate concentration was fixed to ~5-fold higher 

than Km in order to measure near maximal enzymatic velocity. Enzyme activity was plotted 

as a function of enzyme concentration. At all enzyme concentrations, the activity of GLT8D1-

R92C and GLT8D1-G78W proteins was reduced compared to the WT enzyme (Figure 3.11b).  
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Figure 3.11. ALS-linked GLT8D1-G78W and GLT8D1-R92C mutations impair 

glycosyltransferase activity. (A) Initial reaction velocity at fixed enzyme concentration 

(3mg/25μL reaction) with variable substrate concentration. (B) Enzyme activity at fixed 

substrate concentration (15mM) with variable enzyme concentration; Michaelis-Menten 

curves were fitted with nonlinear regression. The curves for GLT8D1-G78W and GLT8D1-

R92C enzyme velocity are right-shifted compared to GLT8D1-WT indicating lower enzyme 

activity at any given enzyme concentration. (WT – wild-type; UDP – uridine diphosphate). 

Figure adapted from (Cooper-Knock et al., 2019).   
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3.4. Discussion 

 

Within this chapter, I describe the generation of plasmid constructs expressing GLT8D1-WT, 

GLT8D1-G78W and GLT8D1-R92C. These plasmids were essential components for all 

subsequent experimentation linked to GLT8D1-ALS. In the current chapter, these plasmids 

were used to investigate the relative toxicity of ALS-linked GLT8D1 mutations in neuronal and 

non-neuronal cell lines. They were also used for the production of recombinant GLT8D1 

protein to investigate the effect of ALS-linked mutations on glycosyltransferase function. 

Finally, these plasmids were used in the generation of an isogenic HEK293 cell model for 

studying the early biochemical effects of GLT8D1-ALS linked to an R92C mutation (see 

Chapter 5). In addition to the above, I briefly discuss the identification of a structural 

homologue for GLT8D1, which will aid future work on GLT8D1 crystallisation, which in turn 

will aid in identifying possible targets of interaction.   

 

3.4.1. Generation of pEGFP-N1_GLT8D1-eGFP and pcDNA5/FRT/TO_3xFLAG-

GLT8D1 plasmid constructs  

  

GLT8D1 DNA exhibited stable growth in E.coli, and Sanger sequencing confirmed the 

sequence integrity of the cloned fragment (see appendices 6 and 8). The generation of 

tagged constructs expressing the gene of interest are useful tools for investigating the 

expression and localisation of the protein of interest. In addition, they provide specific means 

of purifying the recombinant protein (Jarvik and Telmer, 1998); however, there are caveats to 

their use (Liu et al., 1999, Coumans et al., 2014). For example, the epitope tag may interfere 

with protein structure or function (Jarvik and Telmer, 1998), and both N- and C-terminal GFP 

tagging have been demonstrated to adversely affect protein localisation (Palmer and 

Freeman, 2004, Hanson and Ziegler, 2004). In some instances, the C-terminus can fold inside 

the protein, which would prevent detection of a fluorescent signal. This is unlikely to be the 

case for GLT8D1-eGFP, as GFP-positive cells were clearly visible under UV light for all 

conditions. Despite these limitations, epitope tagging of GLT8D1 was necessary due to a lack 

of validated GLT8D1 antibodies. Indeed, I tested various anti-GLT8D1 antibodies, but their 

specificity was masked by the presence of multiple bands through immunoblotting (see 

appendix 9). I now have a system to test the specificity of commercially available anti-GLT8D1 

antibodies through overexpression of GLT8D1-eGFP and GLT8D1-3xFLAG, followed by 

subsequent knockdown using miRNAs (Figure 3.9a). It is noteworthy that overexpression 

techniques may influence levels of the endogenous protein, which I was unable to measure. 

However, fluorescent tagging of endogenous protein is now possible using CRISPR/Cas9 
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genome editing (Ratz et al., 2015). Plasmid constructs are useful tools for studying short-term 

gene expression; however, transiently transfected cells do not integrate the plasmid into the 

genome and therefore express the gene of interest for a finite period of time, which can vary 

depending on the cell type. Gene expression is subsequently lost through factors such as cell 

division (Kim and Eberwine, 2010).  

  

 

3.4.2. Generation of the Flp-In T-RExTM GLT8D1 host cell lines 
 

Isogenic HEK293 cells with tetracycline-inducible expression of GLT8D1-WT and GLT8D1-

R92C (Figure 3.2) were initially engineered to produce recombinant protein for the 

assessment of enzymatic function. Compared to transient transfection, the amount of 

recombinant protein expressed via tetracycline induction is much lower. Therefore, in order to 

generate a sufficient yield for the assessment of enzymatic function, a larger cell biomass was 

required. The isogenic nature of these lines was desirable to reduce variability not linked to 

the GLT8D1-R92C mutation. Furthermore, overexpression of WT and mutant GLT8D1 upon 

induction would enable subsequent investigations into the early biochemical effects of an ALS-

linked R92C mutation. The inducible nature of these cell lines prevents them adapting to the 

effects of the mutation, assuming selection pressure was maintained at a sufficient level to 

minimise unintended gene expression.  

 

Isogenic HEK293 cells were characterised for tetracycline-inducible expression of GLT8D1-

WT and GLT8D1-R92C at the protein level from the FRT site (Figure 3.6). A concentration of 

10mg/mL tetracycline was sufficient to maintain induction for at least 48 hours without inducing 

cell toxicity. Basal levels of GLT8D1-WT and GLT8D1-R92C were undetectable through 

immunoblotting, even following overexposure of the image. This cell model is advantageous 

over transiently transfected models due to its isogenic nature and ability to switch on GLT8D1 

expression.  

 

The isogenic screen in HEK293-WT and HEK293-R92C cell lines suggests that an R92C 

mutation in GLT8D1 causes post-translational modification of the protein, represented by a 

double band in all blots targeting the mutant form. It is possible that the R92C mutation is 

causing GLT8D1 to misfold, which would suggest disruption of the ligand-binding pocket and 

explain why enzymatic activity in GLT8D1-R92C is reduced (Figures 3.9 and 3.11). Indeed, 

post-translational modifications such as phosphorylation are fundamental to proper enzymatic 

function. However, if these processes are not tightly regulated, they can lead to adverse 

effects such as hyper-phosphorylation, which is well described in many neurodegenerative 
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disorders. By example, hyper-phosphorylation of tau protein is implicated in Alzheimer’s (Iqbal 

et al., 2010), Parkinson’s (Zhang et al., 2018) and ALS (Strong et al., 2006). 

 

 

3.4.3. Structural-based sequence alignment identifies 5GVV as a homologue of 

GLT8D1 

 

The structure of a protein is fundamental to its function, and understanding protein fold is 

essential for curing disease (Pandey et al., 2016). Determining the crystal structure of proteins 

such as GLT8D1 is essential to understanding its enzymatic function. The Research 

Collaboratory for Structural Bioinformatics Protein Data Bank is an online resource for 

understanding the relationship between sequence, structure and function of biological 

macromolecules (available at: https://www.rcsb.org/). Using this resource, I identified 

glycosyltranferase glyE in Streptococcus pneumonia TIGR4 (Jiang et al., 2017) as a structural 

homologue of GLT8D1 (Figure 3.3). Further efforts to define the crystal structure of GLT8D1 

were not pursued due to time constraints; however, I have identified a conserved fold that 

provides useful information for future crystallisation strategies. For example, the flexibility of 

the identified linker region can interfere with crystallization (Reddy Chichili et al., 2013, Pandey 

et al., 2016); therefore, it would be important to truncate this region prior to any structural work.   

 

With more time, I would look to grow the GLT8D1 plasmids in E. coli, which is the most widely 

used expression system amongst structural biologists due to its rapid growth rate, high protein 

production, and relatively low cost (Pandey et al., 2016). The rationale for growth in E. coli is 

that mammalian cell systems do not typically yield sufficient protein for subsequent 

crystallisation, even under conditions of induced overexpression. Therefore, it is expensive to 

generate sufficient protein for structural studies (Andrell and Tate, 2013). I would then attempt 

to purify the recombinant GLT8D1 protein using techniques such as affinity chromatography 

(Vassylyeva et al., 2017), and then use macromolecular X-ray crystallography (Dessau and 

Modis, 2011) to determine its structure. Structural characterisation would aid future work in 

identifying possible targets of interaction.  

 

 

3.4.4. ALS-linked GLT8D1 mutations are toxic to HEK293 and N2A cells 

 

The next stage of this project was to examine the effects of GLT8D1-G78W and GLT8D1-

R92C mutations on the viability of HEK293 and N2A cells. HEK293 cells were chosen based 

https://www.rcsb.org/
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on their high transfection efficiency (Thomas and Smart, 2005), suggesting observed effects 

would likely be representative of the entire cell population. N2A cells were necessary to 

investigate a neuronal phenotype, which is important when modelling neurodegenerative 

diseases such as ALS. Functional characterisation of ALS-linked GLT8D1 mutations was 

addressed through a combination of MTT and LDH assays. The MTT assay was used as an 

indirect measure of growth rate. This assay does not distinguish between growth inhibition 

and cytotoxicity; therefore, LDH assays were subsequently performed to determine whether 

the reduction observed in the MTT signal was due to cytotoxicity. A mutation-specific decrease 

in cell viability and an increase in cytotoxicity was observed across six biological repeats of 

the MTT and LDH assays, respectively (Figure 3.4). In accordance with the clinical phenotype, 

GLT8D1-R92C was notably the more toxic of the mutations in both assays, despite it 

demonstrating a lower expression level than the GLT8D1-G78W protein (Figure 3.5). This is 

consistent with the phenotypic data, as ALS patients with GLT8D1-R92C mutations 

experienced a more aggressive form of the disease, with a mean survival of 21 months, 

compared to the 58-month survival observed in the single patient with a GLT8D1-G78W 

mutation (Table 1.3) (Cooper-Knock et al., 2019). In contrast, the higher expression level of 

the GLT8D1-G78W protein may suggest that observed toxicity is due to level of expression 

rather than mutation-specific. However, GLT8D1-G78W toxicity is supported by its effect on 

glycosyltransferase function (Figure 3.11). To obtain a more defined mutation-specific effect, 

RNAi technology could be used to knockdown endogenous GLT8D1. In these circumstances, 

RNAi-resistant GLT8D1 plasmids would be required to maintain a high expression level of the 

transfected gene of interest. As such, the miRNA would be designed to target a section of the 

GLT8D1 sequence that is not present in the expression vector. 

 

Two distinct protein bands were observed in all blots used to compare the relative expression 

of transiently expressed GLT8D1-eGFP protein (Figure 3.5). These bands are products of 

overexpression. The band at ~70kDa is representative of the GLT8D1-eGFP fusion product, 

but the lower band at ~27kDa may be present for various reasons. It is possible that there is 

a protease site proximal to the C-terminus that has been cleaved. Alternatively, it may be due 

to an unstable fusion. It may also suggest that the transfected plasmid contained traces of 

pEGFP-N1 minus the GLT8D1 sequence; however, this is unlikely given that single bacterial 

clones were carefully analysed via Miniprep prior to amplification using a Midiprep. Observed 

variability in the overexpression of GLT8D1 between biological repeats of the immunoblotting 

was unlikely due to inconsistent transfection efficiencies. Transfection efficiency, determined 

by the number of GFP-positive cells, was consistent at ~70-80% for HEK293 and ~30-40% for 

N2A across all three biological repeats. Rather, the variability is likely due to inconsistent 

signal intensities of the immunoblot bands between biological repeats. Indeed, it is important 
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to control for this variability to improve the accuracy and reliability of the data. However, in 

each biological repeat, the fluorescence intensity of the GLT8D1-R92C band was markedly 

lower, yet overexpression of this protein produced the more toxic phenotype in all subsequent 

experimentation, highlighting its relative pathogenicity.   

 

When performing the MTT and LDH assays, it was important to control for cellular growth rate. 

For example, the growth rate of HEK293 cells is higher compared to N2A cells; therefore, it 

was important to seed the cells at different densities (see Table 2.8). When adherent cells 

reach confluence and growth becomes contact inhibited, the amount of MTT reduction per cell 

may decrease due to attenuated cellular metabolism. Furthermore, at ~30-40%, the 

transfection efficiency of N2A cells was significantly lower than HEK293 cells (~70-80%), 

suggesting that the effects of the GLT8D1-G78W and GLT8D1-R92C mutations were masked 

by a larger population of healthy N2A cells. Transfection efficiency was determined by the 

number of GFP-positive cells. Cell passage number is likely to influence transfection efficiency 

(de Los Milagros Bassani Molinas et al., 2014); therefore, all cell lines were maintained within 

the range of 7-32 passages to overcome this potential limitation. 

 

It has been suggested that certain transfection reagents, including PEI, can cause 

fluorescence false positives, particularly when the GFP expression levels are low (Guo et al., 

2001). Therefore, my experiments included a no-GFP control transfection as a comparison; I 

did not observe any false positive signals. Given the lower transfection efficiency of N2A cells, 

the correlation between GLT8D1-R92C and cytotoxicity is encouraging, particularly as it is in 

line with the observed clinical phenotype. PEI can be toxic to certain cell types if used in 

excess, but its use is warranted, as it demonstrates high transfection efficacy (Longo et al., 

2013). The observed survival rate of N2A cells was markedly lower than HEK293 cells, 

possibly due to PEI; hence, the MTT and LDH assays were conducted in N2A cells 48 hours 

post transfection, compared to 72 hours in HEK293 cells. The shorter time scale in N2A cells 

enabled measurements of viability and toxicity to be performed before viable cells were 

reduced to a level that decreased the sensitivity of the assays. The generation of a stable 

neuronal cell line would overcome the limitation of PEI-mediated toxicity. Such lines have 

previously been generated using human neuroblastoma SH-SY5Y cells to model the 

neurodegenerative disorder, Niemann-Pick Disease Type C (Rodriguez-Pascau et al., 2012).  

 

These results support my hypothesis, indicating that ALS-linked mutations in GLT8D1 lead to 

a dominant phenotype with neurotoxicity. Whilst my results provide novel insights into the 

transient effects of GLT8D1 mutations on cellular function, I may not recognise the longitudinal 

impact, which is important given that ALS is an age-related disorder (Hardiman et al., 2017). 
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The isogenic lines would be useful for longitudinal studies through maintaining induction over 

a defined period. The toxicity data presented here are consistent with an age-of-onset 

disorder. A sudden burst in the expression of ALS-linked GLT8D1 mutations is sufficient to 

cause a toxic phenotype. However, this does not mimic the physiological expression of the 

mutations in the patients, which are expressed at a lower level, hence the development of 

symptoms after many decades.  

 

3.4.5. ALS-linked GLT8D1 mutations impair glycosyltransferase activity  

 

Glycosyltransferase assays were performed using recombinant GLT8D1-WT and GLT8D1-

R92C protein immunopurified from isogenic HEK293 cells, as well as following transient 

transfection with pcDNA5/FRT/TO_3xFLAG plasmids expressing GLT8D1-WT, GLT8D1-

G78W and GLT8D1-R92C. Protein purification was assessed via Coomassie blue staining 

and immunoblotting (Figures 3.7 and 3.10); however, these techniques are not sensitive for 

the detection of low-level impurities (<100ng) (Raynal et al., 2014). Therefore, degradation 

products can easily go unnoticed, particularly in low concentration samples. More highly 

sensitive colorimetric staining methods can be used directly after agarose gel electrophoresis. 

Such techniques include zinc-reverse staining (Fernandez-Patron et al., 1998) and silver 

staining (Chevallet et al., 2006), both of which can detect protein bands as low as 10ng and 

1ng, respectively. 

 

Based on sequence homology, GLT8D1 is a member of glycosyltransferase family 8 and is 

expected to catalyse the transfer of a glycosyl group from a donor to an acceptor via a 

“retaining” mechanism involving a glycosyl-enzyme intermediate. Although the crystal 

structure of GLT8D1 is unknown, it contains a conserved “DXD” metal ion binding site that 

indicates that it is a Leloir glycosyltransferase where donor and acceptor binding sites are 

divided by a single “GT-A” fold (Bourne and Henrissat, 2001). Discovered ALS-associated 

mutations in GLT8D1 cluster together in a short sequence of ∼20 amino acids in close 

proximity to the substrate-binding site, suggesting a common effect on this function. 

Consistent with this, I observed a significant reduction in enzyme activity in mutated GLT8D1-

R92C and GLT8D1-G78W compared to the WT protein. Measured Km was reduced in the 

mutated proteins, commensurate with an increase in substrate affinity, which could impair 

cycling of substrate through the enzyme and, thus, reduce overall velocity (Figure 3.11). This 

could also resolve an apparent paradox between the observations that discovered GLT8D1 

mutations are autosomal dominant but reduce enzyme activity suggesting a loss-of-function 

mechanism, which is often present in the case of autosomal recessive inheritance. I propose 
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that higher substrate affinity could result in a dominant-negative effect with a competitive 

antagonism of WT enzyme function. Classically, enzyme mutations are thought to be 

recessive but it is estimated that as many as 25% of enzyme mutations are autosomal 

dominant (Veitia, 2002), as in our patients. For example, dominant-negative mutations in the 

GTPase Ras increase its substrate affinity and, thus, allow it to act as a competitive antagonist 

of the WT protein (Nassar et al., 2010). I cautiously note the example of SOD1 mutations that 

were originally thought to cause ALS through loss-of-function, but were subsequently shown 

to cause gain-of-function toxicity (Boillee et al., 2006). My work awaits validation in a higher 

organism.  

 

It is noteworthy that measured Km values were relatively high compared to reports of other 

members of the glycosyltransferase 8 family (Persson et al., 2001), suggesting low substrate 

affinity. It is possible that absolute substrate affinity would be higher under physiological 

conditions, particularly as the identities of the normal donor and acceptor for GLT8D1 are 

unknown, and glycosyltransferase enzymes with a GT-A fold structure have been observed to 

show cooperation between donor and acceptor binding (Shoemaker et al., 2008). My reaction 

conditions utilized UDP-galactose and occurred without an acceptor.  

 

 

3.4.6. Clinicopathological characterisation of patients with ALS-linked GLT8D1 

mutations 

 

Clinically, patients carrying mutations in GLT8D1 are within the spectrum of sporadic ALS, 

suggesting that they may share a common disease mechanism. DNA samples (n=200, of 

which 21 have a positive family history of ALS) from the Sheffield Brain Tissue Bank were 

screened for mutations in GLT8D1 by Sanger sequencing. Unfortunately, pathological 

material was not available from any cases with identified GLT8D1 mutations and so I was not 

able to confirm the presence of TDP-43-positive neuronal inclusions, which are the hallmark 

of 97% of ALS cases (Neumann et al., 2006). GLT8D1-R92C patients all suffered limb onset 

disease which was unusually aggressive. In contrast the individual with a GLT8D1-G78W 

mutation suffered less aggressive bulbar onset disease. All patients suffered relatively young 

onset disease, which is consistent with a monogenic disorder, and all patients were within the 

spectrum of recognised ALS (Cooper-Knock et al., 2019) (Tables 1.2, 1.3). Clinical data were 

not available from patients carrying mutations other than GLT8D1-R92C and GLT8D1-G78W.  
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3.4.7. Ganglioside signalling as a GLT8D1-ALS pathological mechanism 

 

Gangliosides are sialic acid-containing glycosphingolipids which are particularly abundant 

within the CNS (Vajn et al., 2013). Gangliosides within the CNS are typically synthesised in 

the endoplasmic reticulum (ER) from a lactosylceramide precursor, and are remodelled during 

transit from the cis-Golgi to the trans-Golgi network by a series of glycosyltransferase enzymes 

which incorporate galactose and GalNAc groups. Consistent with a role in this process, I have 

shown that GLT8D1 is able to accept UDP-galactose as a substrate. Mature gangliosides are 

carried to the cell surface where they function prominently in cell signalling (Yu et al., 2012). 

Interestingly, autoantibodies against specific gangliosides produce an inflammatory disease 

of spinal motor neurons known as multifocal motor neuropathy with conduction block 

(Harschnitz et al., 2014), which is an important differential diagnosis for ALS. Altered levels of 

gangliosides have been reported in animal models of ALS and in post-mortem CNS tissue 

from ALS patients (Dodge et al., 2015, Ariga, 2014). I have shown that ALS-linked mutations 

in GLT8D1 impair its glycosyltransferase activity, which I predict will negatively impact on 

ganglioside signalling. I subsequently investigated ganglioside signalling as a possible 

GLT8D1-ALS pathological mechanism in Chapter 5.  

 

 

3.4.8. Summary 

 

In summary, I have successfully generated plasmid constructs to investigate the functional 

implications of ALS-linked GLT8D1 mutations. These constructs were used to engineer 

isogenic HEK293-WT and HEK293-R92C cells, which will enable studies into the early 

biochemical effects of a GLT8D1-R92C mutation. I have shown that GLT8D1-G78W and 

GLT8D1-R92C mutations are toxic to neuronal and non-neuronal cells, and the relative toxicity 

of the mutations mirrors the clinical severity. Observed mutation-specific effects on cell toxicity 

are consistent with an age-of-onset disease, as overexpression in my model does not reflect 

the physiological expression of mutant GLT8D1 in the patients. It is difficult to rationalise this 

dramatic toxicity with a disease in which people do not present with symptoms for several 

decades. However, patients will express relatively lower levels of the mutant protein, and 

homeostatic mechanisms will likely curtail the effects of the mutations for a period of time.  

 

I was the first to publish information regarding the substrate specificity of GLT8D1. I have 

shown that GLT8D1-G78W and GLT8D1-R92C mutations impair the glycosyltransferase 

activity of the enzyme with UDP-Galactose as the target substrate. The observed reduction in 
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reaction velocity is likely due to increased substrate affinity, which could impair cycling of the 

substrate through the enzyme. ALS-associated GLT8D1 mutations are autosomal dominant 

but the reduction in enzyme activity suggests a loss-of-function mechanism, which is often 

coincident with autosomal recessive inheritance. Indeed, misfolded SOD1 was initially 

proposed to cause ALS via a loss-of-function mechanism; however, a gain-of-function toxicity 

is now the accepted mechanism thought to arise from misfolding of the protein. It is possible 

that the R92C mutation is causing GLT8D1 to misfold. I propose that higher substrate affinity 

could result in a dominant-negative effect with a competitive antagonism of the WT enzyme 

function. The data presented here are consistent with the association of mutations in GLT8D1 

with ALS. Confirmation of the pathogenic mechanism(s) will require validation in a higher 

organism but my discovery places this pathway upstream in the pathogenesis of ALS, making 

it an attractive therapeutic target.    
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Chapter 4. Knockdown of endogenous glt8d1 and 

overexpression of mutant GLT8D1 produces motor impairment 

in zebrafish larvae  

 

4.1. Introduction 
 
This chapter is an extended version of work published during my PhD (Cooper-Knock et al., 

2019). Unless stated otherwise, I was responsible for conducting all experimental work 

presented within this chapter, and any collaborations are acknowledged. Zebrafish (Danio 

rerio) have become increasingly popular as a model organism for the investigation of 

neurodegenerative disorders (Beattie et al., 2007) due to their ease of genetic manipulation, 

robust behavioural phenotypes, rapid development, and low maintenance cost (Grunwald and 

Eisen, 2002). The use of zebrafish embryos is particularly attractive, as their optical 

transparency enables the detection of morphological abnormalities and the visualisation of 

neuronal activity using non-invasive imaging techniques. This is useful when modelling 

neurodegeneration in a multicellular and complex system (Kalueff et al., 2014). In addition, a 

major advantage of zebrafish is the high homology in relation to human genes (Howe et al., 

2013), which is important for modelling human genetic disorders such as ALS. Zebrafish have 

a fully sequenced genome, allowing for the straightforward comparison of zebrafish genes to 

human genes (Grunwald and Eisen, 2002). Zebrafish glt8d1 shares 79% homology with its 

human GLT8D1 orthologue, and the G78W and R92C mutation sites are highly conserved 

(Ensembl, 2020). These advantages influenced my decision to model GLT8D1-linked ALS in 

zebrafish.  

 

My glycosyltransferase assay data suggest that ALS-linked GLT8D1 mutations cause a loss-

of-function mechanism and a possible dominant negative effect (see sections 3.3.6 and 3.3.7). 

To investigate loss-of-function in the context of a whole organism, I assessed whether 

transient knockdown of endogenous glt8d1 in zebrafish embryos via microinjection of 

antisense morpholino oligonucleotides (AMOs) led to the onset of a motor phenotype. I 

cautiously use the term “loss-of-function”, which more accurately describes genetic mutant 

models with verified loss-of-function mutations (Schmid and Haass, 2013). AMOs are a widely 

used tool in zebrafish research for the efficient and specific knockdown of gene function (Eisen 

and Smith, 2008, Bill et al., 2009); however, there are caveats to their use, which I will discuss 

in section 4.4.2. AMOs hybridise to mRNA target sequences to either block translation or pre-

mRNA splicing. Translation blocking occurs when the AMO targets mRNA sequences 

proximal to the initiation codon. Splice blocking occurs when the AMO targets mRNA 
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sequences that span exon-intron boundaries, thus blocking the binding of splicing factors to 

the pre-mRNA (Xi et al., 2011). AMOs utilised in this project were designed to block pre-mRNA 

splicing of glt8d1, thus reducing expression of the protein.  

 

In single cell-type culture models, GLT8D1-G78W and GLT8D1-R92C mutations are 

associated with gain-of-function toxicity (see section 3.3.5). Therefore, I decided to investigate 

the effects of transiently overexpressing mutant human GLT8D1 mRNA in zebrafish to place 

these mutations in the context of motor system function. Observed reductions in motor activity 

would be consistent with a gain-of-function mechanism. Importantly, characterising a toxic 

gain-of-function usually requires a heterozygous model that is generated using a genome 

editing method (Schmid and Haass, 2013). Human mRNA encoding GLT8D1-WT, GLT8D1-

G78W, or GLT8D1-R92C was microinjected into zebrafish embryos at the one-cell stage and 

survival rates were recorded. A similar motor phenotype in both knockdown and 

overexpression models would be consistent with a proposed dominant negative effect.   

 

 

 

4.2. Aims and objectives to investigate whether knockdown of endogenous 

glt8d1, or overexpression of mutant GLT8D1 mRNA, cause motor impairment 

in zebrafish larvae 

 
1. Transiently knockdown endogenous glt8d1 in zebrafish embryos using AMOs, and 

assess knockdown via RT-PCR.  

2. Transiently overexpress synthesised GLT8D1-WT, GLT8D1-G78W and GLT8D1-

R92C human mRNA in zebrafish embryos, and assess overexpression via 

immunoblotting. 

3. Evaluate the effect of overexpressing mutant GLT8D1 on zebrafish embryo survival. 

4. Assess the effect of endogenous glt8d1 knockdown on motor function in zebrafish 

larvae. 

5. Analyse the effect of overexpressing GLT8D1-G78W and GLT8D1-R92C human 

mRNA on motor function in zebrafish larvae, compared to overexpression of GLT8D1-

WT human mRNA. 

6. Validate the sensitivity of two automated tracking platforms (Viewpoint and EthoVision 

XT) for the behavioural analysis of zebrafish larvae.  
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4.3. Results 

 

4.3.1. Knockdown of endogenous glt8d1 impairs motor function in zebrafish larvae 

 

All experimentation within this chapter was performed in collaboration with Dr Tennore 

Ramesh. Zebrafish embryos were microinjected at the one-cell stage with splice-blocking 

AMOs to transiently knockdown endogenous glt8d1. A commercially available anti-GLT8D1 

antibody did not detect endogenous glt8d1 in zebrafish embryos at 2dpf; therefore, I was 

unable to confirm knockdown via immunoblotting. However, knockdown of endogenous 

GLT8D1 RNA was confirmed at 2dpf via RT-PCR (n=1; no statistical analysis was performed) 

(Figure 4.1). Knockdown of GLT8D1 RNA was no longer present at the time of behavioural 

testing (5dpf), which is expected in transient models of this nature.  

 

 

 
 
Figure 4.1. Agarose gel electrophoresis showing a reduction in the expression of 

zebrafish GLT8D1 RNA following microinjection of ~1.5ng splice blocking AMO. RNA 

was extracted from twenty zebrafish embryos at 2dpf per cohort, and knockdown was 

evaluated via RT-PCR following 1.0ng and 1.5ng doses of AMO. A 1.0ng dose of AMO did 

not lead to an observable reduction in GLT8D1 RNA levels compared to un-injected. A 1.5ng 

dose was sufficient to reduce GLT8D1 RNA, represented by the weaker band at the expected 

height of ~149bp. Molecular weight markers are indicated (bp/kb) (RT-PCR was performed by 

Dr Johnathan Cooper-Knock).  
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All zebrafish larvae appeared morphologically normal prior to behavioural testing. Zebrafish 

larvae behaviour was analysed at 5dpf to determine whether knockdown of endogenous 

glt8d1 correlated with the onset of a motor phenotype. The distance moved by 96 zebrafish 

embryos for each condition from three separate clutch mates (~32 zebrafish per clutch) was 

evaluated via infrared tracking using a ZebraBox® apparatus with Zebralab software 

(ViewPoint) (Scott et al., 2016). This equipment is commonly used in the University of Sheffield 

CDBG aquarium. Knockdown of endogenous glt8d1 correlated with a significant reduction in 

the distance moved by zebrafish larvae at 5dpf, compared to injection with a control AMO 

(n=96, t test, p=0.0073) (Figure 4.2a).  

 

ViewPoint infrared tracking was compared to manual video observation. Observed 

inconsistencies in the automated tracking included automatically detected movements in the 

absence of observed movement, and failure to detect certain larvae. Due to these anomalies, 

I decided to validate the accuracy of the ViewPoint tracking software by trialling a commercially 

available alternative platform called EthoVision XT. EthoVision XT was chosen based on its 

precision in distinguishing between test subject and background (Noldus et al., 2001). I 

reanalysed the same videos and observed a similar reduction in the distance moved by 

zebrafish larvae injected with a GLT8D1 splice-blocking AMO compared to zebrafish injected 

with a control AMO (n=96, unpaired t test, p=0.0017) (Figure 4.2b). Using this software, I also 

measured the velocity of zebrafish larvae. Consistent with the distance moved, velocity was 

also reduced in zebrafish larvae injected with a GLT8D1 splice-blocking AMO, compared to 

larvae injected with a control AMO (n=96, unpaired t test, p=0.0016) (Figure 4.2c). This result 

gave me confidence in the accuracy of the ViewPoint software; therefore, subsequent 

behavioural analysis was performed using this platform to avoid additional costs.    
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Figure 4.2. Knockdown of endogenous glt8d1 correlates with a reduction in the velocity 

and distance moved by zebrafish larvae at 5dpf. Distance moved (mm) by 96 zebrafish 

larvae for each condition (5dpf) (~32 per clutch) during 40 minutes of automated tracking using 

(A) ViewPoint and (B) EthoVision XT. Injection with 1.5ng GLT8D1 splice blocking AMO 

correlates with a significant reduction in the distance moved by zebrafish larvae, compared to 

injection with 1.5ng control AMO (n=96, unpaired t test, **p<0.001). (C) EthoVision XT shows 

that the mean velocity (mm/s) is reduced in zebrafish larvae injected with a GLT8D1 splice-

blocking AMO, compared to zebrafish injected with a control AMO (n=96, unpaired t test, 

**p<0.01). Each data point represents a single zebrafish larva (SB – splice blocking; MO - 

morpholino). Figure adapted from (Cooper-Knock et al., 2019).    
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4.3.2. Overexpression of GLT8D1-G78W and GLT8D1-R92C mRNA impairs motor 

function in zebrafish larvae, compared to overexpression of GLT8D1-WT mRNA 

 
The observed behavioural phenotype following transient knockdown of endogenous glt8d1 in 

zebrafish larvae is consistent with a role for GLT8D1 in motor function. I then tested whether 

overexpression of GLT8D1-G78W and GLT8D1-R92C mRNA had a similar effect on motor 

activity, compared to overexpression of GLT8D1-WT mRNA. For RNA synthesis, full-length 

GLT8D1 nucleotide sequences were linearised from pEGFP-N1_GLT8D1-eGFP vectors (see 

section 3.3.1) using NheI and XhoI restriction enzymes. Cleaved sequences were cloned into 

PCS2+ vectors. PCS2+ vectors contain an SP6 promotor required for the transcription of 

capped RNA in vitro (Wang et al., 2016). Restriction digests were used to confirm successful 

integration of GLT8D1 nucleotide sequences into PCS2+ vectors (Figure 4.3a). PCS2+ 

vectors were also validated via Sanger sequencing (see appendix 10). mRNA encoding 

human GLT8D1-WT, GLT8D1-G78W and GLT8D1-R92C was synthesised from PCS2+ 

vectors using the mMESSAGE mMACHINE® SP6 Transcription Kit. The quality of the RNA 

was assessed via agarose gel electrophoresis (Figure 4.3b) and NanoDropTM 1000 

spectrophotometry.  
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Figure 4.3. Generation of GLT8D1-WT, GLT8D1-G78W and GLT8D1-R92C mRNA for 

zebrafish embryo microinjection. (A) GLT8D1 sequences were cleaved from pEGFP-N1 

expression vectors (see section 3.3.1) using NheI and XhoI restriction endonucleases and 

cloned into PCS2+ vectors. Restriction digests using BcII and XbaI restriction enzymes were 

performed to confirm the size of GLT8D1 inserts. PCS2+ plasmids were also validated via 

Sanger sequencing (see appendix 10). (B) PCS2+ vectors were linearized for SP6 RNA 

transcription in vitro. RNA quality was assessed using agarose gel electrophoresis and 

NanoDropTM spectrophotometry. DNA ladder molecular weight markers are indicated (bp).   

 
 

 

Synthesised mRNA did not contain an eGFP-tag; therefore, I aimed to confirm overexpression 

of GLT8D1 in zebrafish embryos using a commercially available anti-GLT8D1 antibody. To 

validate the anti-GLT8D1 antibody, I compared the relative expression level of GLT8D1 in 

embryos injected with 350pg and 700pg doses of mRNA encoding both GLT8D1-WT and 

GLT8D1-R92C. I observed stronger bands at the expected height of ~42kDa in zebrafish 

injected with 700pg mRNA, compared to those injected with 350pg mRNA, for both GLT8D1-

WT and GLT8D1-R92C cohorts. I did not observe a protein band in the un-injected cohort 

(n=2, no statistical analysis was performed) (Figure 4.4). This suggests that endogenous 

levels of glt8d1 are not detectable using this anti-GLT8D1 antibody. The molecular weight of 

the GLT8D1 bands were sized at 41.46kDa using GeneTools (Syngene).   
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Figure 4.4. Overexpression of GLT8D1-WT and GLT8D1-R92C in zebrafish embryos is 

confirmed via immunoblotting at 2dpf. Representative blot used to validate the anti-

GLT8D1 antibody, showing the relative expression level of GLT8D1 following injection with 

350pg and 700pg doses of synthesised GLT8D1-WT and GLT8D1-R92C human mRNA (red 

arrows). Stronger bands are present at the high dose (700pg). The molecular weight of the 

GLT8D1 bands was sized at 41.46kDa using GeneTools (Syngene). The entire lysate of 

twenty zebrafish embryos was fractionated per lane (n=2, no statistical analysis was 

performed). 
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High quality human mRNA encoding GLT8D1-WT, GLT8D1-G78W or GLT8D1-R92C was 

microinjected into a fresh batch of zebrafish embryos at the one-cell stage to characterise the 

effect of overexpressing mutant GLT8D1 mRNA on survival. Two doses of mRNA were 

administered for each condition: 350pg and 700pg. Percentage embryo survival was recorded 

at 8-, 24-, and 48-hour time intervals post injection to compare the toxicity of GLT8D1-WT, 

GLT8D1-G78W and GLT8D1-R92C. Zebrafish from three separate clutch mates were injected 

for each condition.  

   

I did not observe significant reductions in the survival rate between GLT8D1-WT and GLT8D1-

G78W at doses of 350pg mRNA (24 hours: n=3, paired t test, p= 0.501776; 48 hours: n=3, 

paired t test, p=0.694731) or 700pg mRNA (24 hours: n=3; paired t test, p=0.678639; 48 hours: 

n=3, paired t test, p= 0.850333). Neither did I observe a significant reduction in the survival 

rate between GLT8D1-WT and GLT8D1-R92C at doses of 350pg mRNA (24 hours: n=3, 

paired t test, p= 0.727215; 48 hours: n=3, paired t test, p= 0.292042) or 700pg mRNA (24 

hours: n=3, paired t test, p= 0.146395; 48 hours: n=3, paired t test, p=0.0652) (Figure 4.5). 

Data are also presented in the form of Kaplan-Meier survival curves (see appendix 11).  
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Figure 4.5. Survival of zebrafish embryos following microinjection of human mRNA 

encoding GLT8D1-WT, GLT8D1-G78W and GLT8D1-R92C. Injection of (A) ~350pg and (B) 

~700pg mature mRNA encoding human GLT8D1-G78W or GLT8D1-R92C does not 

significantly reduce the survival of zebrafish embryos at 24- and 48-hours compared to mature 

mRNA encoding human GLT8D1-WT (n=3; paired t-test, p>0.05 for 350pg and 700pg doses). 

Turquoise line = un-injected; blue line = GLT8D1-WT mRNA; purple line = GLT8D1-G78W 

mRNA; red line = GLT8D1-R92C mRNA. Figure adapted from (Cooper-Knock et al., 2019).   
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Twenty zebrafish embryos from each cohort were selected at 2dpf to evaluate the 

overexpression of GLT8D1-WT, GLT8D1-G78W and GLT8D1-R92C via immunoblotting. All 

twenty selected embryos from each cohort were fractionated per lane. The molecular weight 

of the GLT8D1 bands were sized at 41.98kDa using GeneTools (Syngene). Protein bands 

appeared stronger in the GLT8D1-WT, GLT8D1-G78W and GLT8D1-R92C cohorts compared 

to the un-injected group, suggesting overexpression of GLT8D1 (n=2, no statistical analysis 

was performed) (Figure 4.6a). I performed only two biological repeats of the immunoblotting 

in order to maximise the number of zebrafish embryos for behavioural testing.   

 

All zebrafish appeared morphologically normal prior to behavioural testing. Behavioural 

analysis was conducted in zebrafish larvae at 5dpf to assess the effects of overexpressing 

GLT8D1-WT, GLT8D1-G78W and GLT8D1-R92C human mRNA on zebrafish locomotion. I 

observed mutation-specific reductions in the distanced moved by zebrafish injected with 

GLT8D1-G78W (23 embryos from 1 clutch; t test, p=0.0044) and GLT8D1-R92C (49 embryos 

from 2 clutches; t test, p=0.0315) mRNA, following 40 minutes of behavioural tracking using 

ZebraBox® apparatus with Zebralab software (ViewPoint) (Scott et al., 2016) (Figures 4.6b, 

4.6c).  
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Figure 4.6. Overexpression of GLT8D1-G78W and GLT8D1-R92C mRNA produces motor 

impairment in zebrafish larvae, compared to overexpression of GLT8D1-WT. (A) 

Representative blot showing the relative expression of GLT8D1-WT, GLT8D1-G78W and 

GLT8D1-R92C protein (red arrows) in zebrafish larvae at 2dpf. Twenty embryos were 

fractionated per lane (n=2, no statistical analysis was performed). Molecular weight markers 

are indicated (kDa). Distance moved (mm/40 min) during two light-dark cycles (10 minutes per 

cycle) at 5dpf is reduced following injection with ~700pg mRNA encoding human (B) GLT8D1-

G78W (23 embryos from 1 clutch) or (C) GLT8D1-R92C (49 embryos from 2 clutches) 

compared to ~700pg mRNA encoding human GLT8D1-WT. Each data point represents a 

single zebrafish larva. Un-paired t-test to compare the two injection groups * p<0.05; ** p<0.01. 

Figure adapted from (Cooper-Knock et al., 2019).  
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4.4. Discussion 
 

4.4.1. Zebrafish as a neurodegenerative disease model 
 

I chose zebrafish (Danio rerio) as the organism to initially model ALS-linked GLT8D1 

mutations in vivo due to their fecundity, rapid development, and ease of genetic manipulation 

(Bradford et al., 2017). The zebrafish genome has been fully sequenced, and approximately 

71% of the 20,479 human protein-coding genes have orthologues within the zebrafish 

genome. Moreover, 69% of the 26,206 protein-coding zebrafish genes have orthologues 

within the human genome (Howe et al., 2013). This makes zebrafish a useful model for the 

study of human genetic diseases. GLT8D1 shares 79% homology between zebrafish and 

humans, and the mutation sites are highly conserved (Ensembl, 2020). Zebrafish exhibit a 

wide range of complex behaviours such as social, anxiety, learning, and memory, which are 

useful for modelling neurological diseases (Basnet et al., 2019). Furthermore, high-throughput 

tracking of zebrafish embryos and larvae has greatly enhanced behavioural research in the 

zebrafish field (Kalueff et al., 2013). The development of software for tracking larval 

movements at high resolution enables experimenter-independent, high-throughput screening 

for motor activity deficits (Fontaine et al., 2008, Mirat et al., 2013). Finally, in contrast with 

mammals, the development of zebrafish larvae occurs externally, which makes them 

accessible for experimental manipulation (Schmidt et al., 2013). 

 

There are limitations to the use of zebrafish as a model for ALS. ALS is characterised by the 

degeneration of upper and lower motor neurons; however, the relevance of zebrafish in 

modelling upper motor neuron disorders is limited due to the absence of corticospinal and 

rubrospinal tracts in their CNS (Babin et al., 2014). In contrast to mammals, zebrafish have a 

remarkable ability to regenerate damaged neurons leading to functional recovery. Indeed, 

most studies focus on axonal regeneration in adult zebrafish, which usually takes weeks to 

occur; however, there is also evidence of motor neuron regeneration in zebrafish at the larval 

stage, which is detectable within 48 hours (Ohnmacht et al., 2016). Whilst the regenerative 

capacity of adult and larval zebrafish neurons is apparent, it is usually studied in response to 

mechanical lesions or motor neuron ablation, which is inconsistent with my models. 

Furthermore, many studies take advantage of the optical transparency by analysing zebrafish 

at embryonic or early developmental stages, which is inconsistent with an age-related disorder 

such as ALS (Kabashi et al., 2010, Sukardi et al., 2011, Ciura et al., 2013, Schmid et al., 2013, 

Morrice et al., 2018, Svahn et al., 2018).  
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Reproducibility is a major concern with transient zebrafish models, or any transient model for 

that matter. Multiple studies in the ALS field have highlighted this. For example, AMO-

mediated knockdown of zebrafish C9orf72 resulted in behavioural deficits concurrent with 

reduced axonal length (Ciura et al., 2013). However, depletion of C9orf72 transcripts in iPSC-

derived neurons and the mouse CNS did not lead to any adverse effects (Donnelly et al., 2013, 

Sareen et al., 2013, Lagier-Tourenne et al., 2013). Therefore, stable mutants are critical to 

ensure that observed phenotypes in transient models are reliable. Stable, transgenic mutant 

zebrafish lines can be generated using CRISPR/Cas9 genome editing (Burket et al., 2008). 

However, when I was performing the zebrafish work, CRISPR/Cas9 genome editing was 

reported to cause numerous off-target mutations in vivo due to poor specificity of the single 

guide RNAs (Schaefer et al., 2017). The specificity of this technology has since improved 

dramatically (Anzalone et al., 2019, Kocak et al., 2019). 

Various studies have used zebrafish as an in vivo model for investigating ALS pathogenesis; 

however, these models vary pathologically and phenotypically depending on the method of 

genetic manipulation (Table 4.1). Both of my models demonstrate an early-onset and dramatic 

effect compared to the human phenotype. This is similar to the early-onset phenotype seen in 

the SODG93A ALS mouse model (Gurney et al., 1994). Much like the SOD1G93A model, this 

observed embryonic phenotype is not representative of the human disease. However, my 

models are transient, and do not reflect the physiological expression of GLT8D1 in the 

patients. Despite this, my models are useful as they provide evidence for motor system 

dysfunction linked to GLT8D1-ALS.   
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ALS 
gene 

Genetic 
manipulation 

Pathology Phenotype Reference 

C9ORF72 

Expression of 89 
G4C2 repeats 

Accumulation of 
RNA foci and 
dipeptide repeat 
proteins; muscle 
atrophy; motor 
neuron loss 

Motor deficits; 
cognitive 
impairment; 
premature 
death 

(Shaw et al., 
2018) 

Expression of ~70 
G4C2 repeats 

Motor neuron toxicity 
None 
recorded 

(Swinnen et al., 
2018) 

AMO-mediated 
knockdown 

Axonal degeneration 
of motor neurons 

Locomotion 
deficits 

(Ciura et al., 
2013) 

SOD1 

Expression of 
SOD1G93R 
mutation 

Neuromuscular 
junction defects; 
motor neuron loss; 
muscle atrophy 

Decreased 
endurance in 
swim tunnel 
test; 
paralysis; 
premature 
death 

(Ramesh et al., 
2010) 

Expression of 
SOD1G93A 
mutation 

Defective motor 
neuron outgrowth 
and axonal 
branching; loss of 
neuromuscular 
junctions; alterations 
in motor neuron 
innervations 
patterns; motor 
neuron cell loss 

Motor 
dysfunction; 
decreased 
activity 

(Sakowski et al., 
2012) 

Expression of 
SOD1T70I mutation 

Neuromuscular 
junction defects; 
susceptibility to 
oxidative stress 

Adult-onset 
motor neuron 
disease 
phenotype 

(Da Costa et al., 
2014) 

TARDBP 

 

Knockout of both 
tardbp orthologues 
by genome editing 
with zinc finger 
nucleases 

Muscle 
degeneration; 
reduced blood 
circulation; 
mispatterning of 
vessels; impaired 
spinal motor neuron 
axon outgrowth 

Premature 
death 

(Schmid et al., 
2013) 

AMO-mediated 
knockdown; 
expression of 
TARDBPA315T / 

G348C / A382T 

mutations 

Shorter motor 
neuronal axons, 
premature and 
excessive branching 

Swimming 
deficits 

(Kabashi et al., 
2010) 
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Knockout of both 
tardbp orthologues 
via targeted 
induced local 
lesions in genome 

Shortened motor 
axons 

Locomotion 
defects; 
premature 
death 

(Hewamadduma 
et al., 2013) 

FUS 

CRISPR-mediated 
knockout 

No pathology 
No abnormal 
phenotype 

(Lebedeva et 
al., 2017) 

AMO-mediated 
knockdown; 
expression of 
FUSR521H mutation 

Reduced NMJ 
synaptic fidelity with 
reduced quantal 
transmission; 
enhanced motor 
neuron excitability 

Impaired 
motor activity 

(Armstrong and 
Drapeau, 2013) 

Table 4.1. Zebrafish ALS models recapitulate pathological and phenotypic disease 

traits. Common ALS genes, genetic alterations, observed pathological and phenotypic traits, 

and references are shown.     

 

4.4.2. Advantages and limitations concerning the use of AMOs   
 

AMOs are useful tools for the functional characterisation of gene activity in vivo. The use of 

AMOs in zebrafish have been shown to be sequence specific and extremely potent in cells 

during the initial fifty hours of development; therefore, resulting phenotypes can be rapidly 

observed using a relatively inexpensive method (Corey and Abrams, 2001). Moreover, AMOs 

are water soluble and immune to nucleases (Summerton and Weller, 1997). Indeed, there are 

caveats to the use of AMOs, such as off-target effects not associated with loss-of-function of 

the target locus. Underlying off-target mechanisms are not fully understood, although p53-

dependent neural toxicity is a well-described and consistent phenotype. Therefore, it may be 

justifiable to co-inject with an AMO targeting p53, although this approach should mask the 

effects of gene-specific p53-dependent phenotypes (Xi et al., 2011, Bedell et al., 2011).  

 

Dose curves are often generated to overcome AMO-induced off-target toxicity. Increasing the 

AMO dosage will enhance phenotypic penetrance and subsequently increase phenotypic 

severity (Nasevicius and Ekker, 2000), but it may also increase the likelihood of off-target 

toxicity (Robu et al., 2007). A dose curve would provide information as to the upper limit for 

subsequent testing, as well as determine the lethal dose 50 (the dose at which ≥50% of 

injected embryos die) for each tested AMO (Bedell et al., 2011). In the present study, I tested 

AMOs at doses of 1.0ng, 1.5ng and 2.0ng. 1.0ng and 1.5ng doses were well tolerated and 

larvae appeared morphologically normal; however, 2.0ng doses caused morphological 
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abnormalities and led to a higher rate of premature death. Therefore, in order to obtain 

maximal phenotypic penetrance without inducing high rates of morphological abnormality or 

fatality, 1.5ng AMO doses were administered to zebrafish embryos for subsequent 

behavioural testing. As a result, observed phenotypes were more likely to be knockdown 

specific.  

 

Numerous other groups have performed AMO-mediated knockdown in zebrafish to model 

ALS-causing mutations. Knockdown of C9orf72 (Ciura et al., 2013), tardbp (Kabashi et al., 

2010) and fus (Armstrong and Drapeau, 2013) using AMOs have all been shown to correlate 

with the onset of a motor phenotype. However, it is noteworthy that the study by Kabashi and 

colleagues only reported knockdown of one tardbp orthologue, whereas a more recent study 

reported that two tardbp orthologues are present in zebrafish (Schmid et al., 2013). Much of 

the published work concerning transient knockdown of target genes in zebrafish using AMOs 

has been performed during the early developmental stages. Therefore, it is difficult to detect 

potential direct or indirect interactions between developmental and neurodegeneration 

processes, particularly in the context of late-onset diseases such as ALS (Schmid and Haass, 

2013).  

 

Due to controversies in the field pertaining to the non-specific effects of AMOs, future work 

should consider CRISPR/Cas9 genome editing to create a knockout zebrafish model to study 

GLT8D1 loss-of-function. This approach has already been applied in zebrafish to investigate 

other ALS-associated genes. For example, CRISPR-mediated knockout of FUS was not 

shown to cause an ALS-like phenotype (Lebedeva et al., 2017), contrary to previous reports 

using AMOs (Armstrong and Drapeau, 2013) (Table 4.1). Despite the aforementioned 

limitations, the use of AMOs in vivo is advantageous over knockdown using miRNAs, which 

may undergo nuclease-mediated degradation before obtaining modulation of the target gene 

(Rupaimoole et al., 2011). RNAi technology has been reported to work in zebrafish but with 

highly variable and controversial results (Wargelius et al., 1999, Li et al., 2000, Oates et al., 

2000).  

 

 

4.4.3. Transient knockdown of endogenous glt8d1 causes motor impairment in 

zebrafish larvae 

 

Transient knockdown of endogenous glt8d1 using splice-blocking AMOs was performed to 

test for a potential loss-of-function mechanism, and to indirectly assess whether GLT8D1 is 



120 
 

involved in motor system function. This is a transient model and therefore most resulting 

phenotypes are identified within the first 3 days of embryonic development, but sometimes 

persist to 5dpf. Observed effects rarely continue beyond 5dpf, possibly due to high rates of 

protein turnover (Bill et al., 2009). This is advantageous from an ethical standpoint as 

modelling can be performed at a stage in embryonic development when zebrafish are not 

protected by UK and EU legislation (ASPA, 1986).  

 

Evaluation of glt8d1 knockdown at 2dpf was not possible via immunoblotting because the anti-

GLT8D1 antibody was only able to detect GLT8D1 when overexpressed (Figure 4.4). 

However, my AMO was designed to remove exon 2, which would lead to a frameshift allowing 

for easy assessment via RT-PCR (Bill et al., 2009). Therefore, knockdown was evaluated at 

the RNA level via RT-PCR at 2dpf, following 1.0ng and 1.5ng doses of AMO. I observed 

knockdown at the higher dose of 1.5ng, which was the same dose zebrafish received prior to 

behavioural testing. I performed behavioural analysis at 5dpf because zebrafish larvae are at 

a stage in their development when they exhibit robust locomotor activity. Moreover, they show 

responsiveness to light, and they are sufficiently developed to enable tracking technology to 

distinguish between zebrafish and background with higher precision (Colwill and Creton, 

2011). Therefore, behavioural testing at an earlier time point may have reduced the accuracy 

of the tracking software. A recent study investigated the effects of C9ORF72-related dipeptide 

expression on zebrafish locomotion at 2dpf using a touch-evoked escape response. In this 

assay, the tail of the embryo is lightly touched with forceps. Healthy embryos responded by 

swimming away, whilst embryos with motor neuron impairment swam a shorter distance 

(Swaminathan et al., 2018). Whilst this technique can provide detailed measurements of force 

in the zebrafish embryos, I did not consider it to be suitable for higher throughput experiments 

such as my own.  

 

The reduction in motor activity that I observed at 5dpf following knockdown of GLT8D1 RNA 

(Figure 4.1) may suggest a loss-of-function mechanism. Initially, behavioural analysis was 

performed using ViewPoint software (Scott et al., 2016). Observed anomalies during manual 

video observation led me to evaluate motor activity using an alternative tracking platform 

called EthoVision XT (Noldus et al., 2001). Both platforms showed similar trends and degrees 

of significance (ViewPoint: p=0.0073; EthoVision XT: p=0.0017) (Figure 4.2). This result gave 

me confidence in the ViewPoint software, which I subsequently used for the behavioural 

analysis of zebrafish larvae injected with human GLT8D1 mRNA.      
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4.4.4. Overexpression of mutant human GLT8D1 mRNA produces motor impairment 

in zebrafish larvae  

 

ALS-linked GLT8D1 mutations are toxic to cells in vitro (see section 3.3.5); therefore, I decided 

to investigate the effects of mutant GLT8D1 in a zebrafish model to place these mutations in 

the context of motor system function. Microinjection of synthetic capped mRNA leads to global 

expression throughout the early zebrafish embryo, unlike injection of a zebrafish-compatible 

expression plasmid, which distributes in a mosaic manner. The use of such plasmids would 

suggest a limited number of cells in the multicellular embryo would express the protein of 

interest (Koster and Fraser, 2001). 

 

Overexpression of GLT8D1-G78W and GLT8D1-R92C mRNA in zebrafish larvae did not 

significantly affect survival, compared to overexpression of GLT8D1-WT mRNA during the first 

48 hours of embryogenesis (Figure 4.5). To determine overexpression, I evaluated the 

specificity of a commercially available anti-GLT8D1 antibody following injection with 350pg 

and 700pg doses of human mRNA encoding GLT8D1-WT and GLT8D1-R92C. I observed 

stronger protein bands at the expected height of ~42kDa following the higher dose of 700pg 

mRNA (Figure 4.4). Therefore, my immunoblotting is consistent with overexpression of 

GLT8D1-WT, GLT8D1-G78W, and GLT8D1-R92C at 2dpf (Figure 4.6a). The same antibody 

was unable to detect endogenous GLT8D1 in HEK293 and N2A cells; however, in the context 

of zebrafish, I have tentatively shown it is able to detect GLT8D1 when overexpressed.  

 

Behavioural tests were conducted at 5dpf, a stage in development when zebrafish larvae use 

light to independently hunt for food (Clift et al., 2014). My data show that overexpression of 

GLT8D1-G78W and GLT8D1-R92C correlates with a reduction in the motor activity of 

zebrafish larvae, compared to overexpression of GLT8D1-WT (GLT8D1-G78W: 23 embryos 

from one clutch, t test, p=0.0044; GLT8D1-R92C: 49 embryos from two clutches, t test, 

p=0.0315) (Figure 4.6b, 4.6c). My focus was to utilise high-throughput behavioural testing to 

evaluate motor impairment in the zebrafish models; therefore, I did not perform 

neuropathological analysis. However, the optical transparency of zebrafish larvae makes it 

possible to visualize the soma and axons of the Mauthner cells, which are a large pair of easily 

identifiable neurons located in the brainstem of zebrafish. Mauthner cells are activated during 

escape behaviour (Korn and Faber, 2005), making them a useful tool for measuring neuronal 

activity during the aforementioned touch-evoked escape response (Swaminathan et al., 2018). 

These cells can be visualised through confocal imaging of calcium using fluorescent dyes 

(Feng et al., 2010) as a measure of neuronal activity.   
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4.4.5. Summary 
 

To investigate whether GLT8D1 mutations are toxic within a whole organism, I overexpressed 

human mutated and WT GLT8D1 mRNA in zebrafish embryos. At the high dose (700pg), 

motor function was specifically impaired in zebrafish injected with either the GLT8D1-R92C or 

GLT8D1-G78W mRNA, compared to injection with GLT8D1-WT mRNA. This is consistent with 

a specific effect on the motor system. Further supporting a role for GLT8D1 in motor function, 

knockdown of endogenous glt8d1 in zebrafish embryos produced a specific deficit of motor 

function without observable morphological abnormalities. Overlap between the effects of 

glt8d1 knockdown and overexpression of mutated GLT8D1 is consistent with a dominant-

negative mechanism.  

 

Precedence exists for dominant-negative mutations in other ALS-associated genes, notably 

TARDBP and OPTN. Mutant cytoplasmic TDP-43 has been shown to reduce DNA repair 

through preventing the nuclear translocation of XRCC4-DNA ligase 4. This finding was 

concurrent with elevated levels of reactive oxygen species, suggesting both dominant-

negative and loss-of-function effects of the mutation (Guerrero et al., 2019). Moreover, OPTN 

mutations are inherited in an autosomal recessive manner, and OPTN has been demonstrated 

to cause neurotoxicity through a loss-of-function mechanism. However, in heterozygous 

mutations with autosomal dominant inheritance, a dominant negative effect may play a role 

(Maruyama et al., 2010, Sakaguchi et al., 2011, Turner et al., 2013).  OPTN has been shown 

to co-localise with inclusion bodies formed through the truncation of TDP-43. This co-

localisation was dependent on the ubiquitin-binding domain of OPTN. Ubiquitin-binding 

domain mutants were shown to act as dominant-negative traps through the formation of WT-

mutant hybrid complexes, which compromised the maturation of autophagosomes. This 

subsequently interfered with OPTN-mediated autophagy and the clearance of inclusion bodies 

(Shen et al., 2015).  

 

In summary, my data suggest both GLT8D1 haploinsufficiency and gain-of-function toxicity 

may contribute to a behavioural phenotype in zebrafish larvae, which is consistent with 

previous reports on ALS genes TARDBP, C9ORF72, and OPTN. To fully characterise the 

effect of mutant GLT8D1 in the context of ALS, neuropathological analysis should be 

performed to assess hallmarks of the disease including degeneration of motor neurons, 

breakdown of neuromuscular junctions, and muscle atrophy. Finally, future work should aim 

to generate a stable transgenic zebrafish model using CRISPR/Cas9 genome editing to 

validate my observed phenotypes, but also to model GLT8D1 in the context of an age-related 

disorder.  
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Chapter 5. Membrane ganglioside concentration is dependent 

on GLT8D1 enzyme activity  

 
5.1. Introduction 
 
Glycosyltransferases function prominently in the biosynthesis of gangliosides, which are sialic 

acid-containing glycosphingolipids that are expressed ubiquitously, but most prominently on 

the surface of neuronal cells (Vajn et al., 2013). Therefore, the next stage of this project was 

to investigate whether an R92C mutation in GLT8D1 affects the expression of gangliosides. I 

imaged ganglioside expression in isogenic GLT8D1-WT and GLT8D1-R92C cell models using 

the same isogenic clones described previously (2B1) (see section 3.3.6). Ganglioside 

expression was assessed in two separate live imaging assays. Initial investigations utilised a 

Wheat Germ Agglutinin (WGA) Alexa-conjugated molecular probe, which selectively binds to 

sialic acid and N-Acetylglucosamine (GlcNAc) sugar residues. Gangliosides contain one or 

more sialic acids in their glyco-chain; therefore, I utilised WGA as an indirect indicator of 

membrane ganglioside expression. Secondly, a Cholera Toxin Subunit B (CTxB) Alexa-

conjugated molecular probe was used to label the monosialoganglioside, GM1, both in the 

membrane and cytoplasmic regions. Ganglioside GM1 is highly abundant in the nervous 

system (Vajn et al., 2013) and localises to membrane lipid rafts (MLR). Disrupted MLR are 

associated with impaired neurotrophic signalling and consequent neurodegeneration (Sawada 

et al., 2019). Ganglioside expression was also evaluated in GLT8D1-ALS patient fibroblasts. 

I aimed to replicate my live imaging data in a neuronal model to place my findings in the 

context of the CNS, by re-programming GLT8D1-ALS patient and control fibroblasts into 

induced neurons (iNeurons) using a previously established method (Meyer et al., 2014).  

 

GLT8D1 contains an arginine-lysine motif in its cytoplasmic domain, which likely represents a 

Golgi localisation signal (Uemura et al., 2015). To test for this, I utilised the previously 

engineered GLT8D1-eGFP constructs (see section 3.3.1) to investigate the intracellular 

localisation of GLT8D1 in HEK293 and N2A cells via immunocytochemistry, and assessed 

whether the localisation signal was affected by the presence of GLT8D1 mutations. 

Glycosyltransferase-mediated Golgi fragmentation has previously been described (Petrosyan 

and Cheng, 2013); therefore, I investigated whether the presence of an R92C mutation in 

GLT8D1 causes fragmentation of the network. Importantly, fragmentation of the Golgi is a 

well-described feature of ALS pathogenesis (Sundaramoorthy et al., 2015).   
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5.2. Aims and objectives for investigating the effects of an R92C variant in 

GLT8D1 on ganglioside expression and Golgi fragmentation  

 

1. Confirm tetracycline-inducible expression of GLT8D1 in isogenic HEK293-GLT8D1 

cells. 

2. Examine the effect of an R92C variant in GLT8D1 on the expression of sialic acid 

residues and N-Acetylglucosamine in isogenic HEK293-GLT8D1 cell membranes. 

3. Test whether the expression of sialic acid residues and N-Acetylglucosamine is 

reduced in GLT8D1-ALS patient fibroblasts compared to non-ALS controls.  

4. Examine the effect of an R92C variant in GLT8D1 on the expression of ganglioside 

GM1 in membrane and cytoplasmic regions of isogenic HEK293-GLT8D1 cells. 

5. Generate a neuronal cell model from GLT8D1-ALS patient and control fibroblasts for 

the live imaging of ganglioside dynamics. 

6. Examine the intracellular localisation of GLT8D1 in neuronal and non-neuronal cell 

lines via transient transfection.  

7. Investigate whether an R92C variant in GLT8D1 causes Golgi fragmentation in 

isogenic HEK293-GLT8D1 cells. 

 
 

5.3. Results 

 

5.3.1. An R92C variant in GLT8D1 reduces the expression of sialic acid and N-

Acetylglucosamine (GlcNAc) residues in isogenic HEK293-GLT8D1 cell membranes  

 

The following sections of this chapter utilised isogenic HEK293-GLT8D1 cells (see section 

3.3.2) to test whether an R92C mutation affects membrane ganglioside expression. Isogenic 

HEK293-GLT8D1 cells were induced with tetracycline for 24 hours prior to live cell imaging 

with a WGA Alexa-conjugated molecular probe. The relative expression of WT and mutant 

GLT8D1 was assessed via immunoblotting for each biological repeat of the live imaging assay. 

Immunoblotting revealed a ~50% increase in the level of the mutant protein compared to the 

WT (n=3, t-test p=0.0197) (Figure 5.1). The selection pressure was sufficient to control gene 

transcription as basal levels of GLT8D1 were not within dynamic range of detectability in the 

un-induced (tetracycline-free) cells via immunoblotting. Protein bands in the un-induced cohort 

were only made visible following overexposure of the image (see appendix 12). 

Transcriptional control is important as leakiness (uncontrolled expression of the gene of 

interest) in the system may alter the cellular biochemistry. I observed a mutation-specific 
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reduction in the fluorescence intensity of WGA in isogenic HEK293-GLT8D1 plasma 

membranes across 3 biological repeats of the live imaging assay (n=3, unpaired t-test 

p=0.0145).  

 

In addition, overexpression of WT GLT8D1 modestly enhanced the membrane fluorescence 

intensity of WGA compared to Sham-transfected control lines. All fluorescence intensity 

values were plotted as a percentage of cell area and normalised to Sham-transfected controls 

(Figure 5.2). Cells were co-labelled with a CellMaskTM plasma membrane stain for accurate 

quantification of cell area (see appendix 14). WGA fluorescence intensity was also measured 

in the absence of tetracycline, showing a modest but non-significant decline in fluorescence 

intensity in the mutant line compared to WT (n=3, unpaired t-test p>0.05) (see appendix 13).  
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Figure 5.1. GLT8D1-R92C expression is enhanced in isogenic HEK293-GLT8D1 cell 

lines compared to WT. (A) Representative blot showing tetracycline-induced expression of 

WT and mutant GLT8D1 in isogenic HEK293-GLT8D1 cells. Relative GLT8D1 expression was 

detected using an anti-FLAG antibody; ɑ-Tubulin was used as a loading control. Molecular 

weight markers are indicated (kDa). (B) Densitometric analysis shows enhanced levels of 

GLT8D1_R92C compared to GLT8D1-WT (unpaired t-test, p<0.05; n=3). Error bars represent 

mean ±SD. (TET – tetracycline; SHAM – sham-transfected; WT – wild-type; -ve – negative; 

+ve – positive).  
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Figure 5.2. ALS-linked R92C mutation in GLT8D1 reduces membrane sialic acid and N-

Acetylglucosamine (GlcNAc) expression in isogenic HEK293-GLT8D1 cells. 

Representative staining of sialic acid residues in isogenic HEK293-GLT8D1 cells 

overexpressing WT (A) and mutant (B) GLT8D1. Sialic acids were labelled using a WGA 

molecular probe (green). Nuclear counterstain (Hoechst 33342) is shown in blue. Scale bar = 

50μm. (WT – wild type). (C) Fluorescence intensity of sialic acid residues at membrane of 

isogenic HEK293-GLT8D1 cells (white arrows) is reduced by ~20% when mutant (R92C) 

GLT8D1 is overexpressed compared to overexpression of WT GLT8D1. Each data point is 

expressed as a percentage of control (sham-transfected) (n=3, unpaired t-test, * p<0.05). Error 

bars represent mean ±SD.   
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5.3.2. Overexpression of mutant GLT8D1 reduces membrane and cytoplasmic GM1 

expression in isogenic HEK293-GLT8D1 cells 

 
Cholera Toxin Subunit B (CTxB) has been used as a neuroanatomical tracer for the retrograde 

labelling of ganglioside GM1. Specifically, the larger B-subunit of CTxB contains 

choleragenoid, which binds to the GM1 receptor with high affinity, facilitating entry into the cell 

via endocytosis (Singh et al., 2003, Iglesias-Bartolome et al., 2009). Isogenic HEK293-

GLT8D1 cells were labelled with a CTxB Alexa-conjugated molecular probe for measuring 

membrane and cytoplasmic GM1 expression. The relative expression of WT and mutant 

GLT8D1 was assessed via immunoblotting for each biological repeat of the live imaging assay 

and again, mutant GLT8D1 expression was modestly enhanced compared to WT. I observed 

a mutation-specific reduction in the relative fluorescence intensity of membrane GM1 in the 

mutant (R92C) line compared to the WT line across 5 biological repeats of the assay (n=5, 

paired t-test p=0.0477). I observed a similar trend in cytoplasmic GM1 expression; however, 

these were data from 4 biological repeats and did not reach statistical significance (n=4, paired 

t-test p=0.12). All fluorescence intensity values were plotted as a percentage of cell area and 

normalised to Sham-transfected controls (Figure 5.3). As previously mentioned, cells were 

co-labelled with a CellMaskTM plasma membrane stain to identify cell regions and for accurate 

quantification of cell area (see appendix 14). The additional biological repeats were 

performed in order to analyse a similar number of cells to those analysed in the WGA live 

imaging assay (~30,000 cells).  
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Figure 5.3. ALS-linked R92C mutation reduces membrane GM1 expression in isogenic 

HEK293-GLT8D1 cells. Representative staining of ganglioside GM1 (white arrows) in (A) WT 

and (B) mutant cells. GM1 was labelled using a CTxB molecular probe (red). Nuclear 

counterstain (Hoechst 33342) is shown in blue. Scale bar = 50μM. (WT – wild type). (C) 

Fluorescence intensity of membrane CTxB is reduced in mutant compared to WT (~10% 

reduction), (D) but unchanged in the cytoplasmic region. Each data point is expressed as a 

percentage of control (sham-transfected) (n=5, t-test, * p<0.05). Error bars represent mean 

±SD. (ns – not significant).  
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5.3.3. GLT8D1-ALS patient fibroblasts did not successfully re-programme into induced 

neural progenitor cells 

 
My next aim was to replicate my live imaging data in a neuronal model to place my findings in 

the context of the CNS, which is relevant to ALS. This would be achieved by the re-

programming of GLT8D1-ALS patient fibroblasts into induced neurons (iNeurons) using a 

previously established protocol (Meyer et al., 2014). I had only one GLT8D1 patient-derived 

fibroblast line available, which did not successfully re-programme. The retroviral transduction 

of fibroblasts did produce cells representative of a pre-iNPC state; however, they immediately 

reached senescence before fully differentiating into iNPCs. Slowly dividing fibroblasts do not 

usually re-programme well; therefore, I cultured the fibroblasts in EMEM as opposed to DMEM 

to test whether their growth rate improved, however this slowed the rate of division further 

(Figure 5.4). In summary, I was unable to generate iNPCs from GLT8D1-ALS patient 

fibroblasts.  

 

 

 

Figure 5.4. Poor growth rate was possibly a key factor preventing the direct conversion 

of GLT8D1-ALS patient fibroblasts into iNeurons. The growth rate of GLT8D1-ALS patient 

fibroblasts was evaluated in EMEM and DMEM. Cells were counted once per week over three 

consecutive weeks to compare the growth rate. Cells were split twice per week and re-seeded 

at the same density. Cells cultured in EMEM (blue line) displayed a reduction in growth rate 

compared to those cultured in DMEM (red line). Neither culture media improved the rate of 

cell division to a level required for successful re-programming. No statistical analysis was 

performed.   
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5.3.4. Membrane GlcNAc and sialic acid residue expression is unchanged in GLT8D1-

ALS patient fibroblasts compared to an age- and sex-matched control  

 

Due to the inability to generate a patient-derived neuronal model of GLT8D1, I designed tools 

for the CRISPR-mediated mutagenesis of a single age- and sex-matched control fibroblast 

line, which had been successfully re-programmed previously. Efforts to introduce the GLT8D1-

R92C mutation in these cells were deferred due to the ongoing coronavirus pandemic. Instead, 

I performed live imaging of sialic acid and N-Acetylglucosamine (GlcNAc) sugar residues using 

the WGA Alexa-conjugate molecular probe, as previously described, in GLT8D1-ALS patient 

and control fibroblasts. I did not observe a significant difference in the fluorescence intensity 

between the two groups, although there was a possible trend towards reduced membrane 

sialic acid expression in the single patient line (n=3, paired t-test p>0.05) (Figure 5.5).   
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Figure 5.5. Membrane sialic acid and N-Acetylglucosamine (GlcNAc) expression is 

unchanged in GLT8D1-ALS patient fibroblasts compared to an age- and sex-matched 

control. Representative staining of sialic acid residues GLT8D1-ALS patient (A) and control 

(B) fibroblasts. Sialic acids were labelled using a WGA molecular probe (green). Nuclear 

counterstain (Hoechst) is shown in blue. Scale bar = 50μm. (C) Fluorescence intensity of 

membrane sialic acid residues is unchanged in patient cells compared to controls. Each data 

point in the patient group is expressed as a percentage of control (n=3, unpaired t-test, 

p>0.05). Error bars represent mean ±SD.   
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5.3.5. GLT8D1 is localised to the Golgi network when transiently overexpressed in 

HEK293 and N2A cells 

 

GLT8D1 is reported to be a type II Golgi glycosyltransferase and contains an arginine-lysine 

motif in its cytoplasmic domain, which likely represents a Golgi localisation signal (Uemura et 

al., 2015). To investigate localisation to the Golgi apparatus, neuronal (N2A) and non-neuronal 

(HEK293) cells were transfected with pEGFP-N1_GLT8D1-eGFP expression vectors (see 

section 3.3.1). GLT8D1-Golgi localisation was investigated prior to the generation of isogenic 

HEK293-GLT8D1 cell lines. Cells were fixed and co-stained using JL-8 to label GFP-tagged 

proteins, and TGN-46 that usually localises to the trans-Golgi network membrane. These 

antibodies were chosen based on their previously reviewed applications in 

immunofluorescence microscopy (van Galen et al., 2014, Mukai et al., 2005). Initial imaging 

was performed using a Nikon Eclipse Ni-U microscope and this revealed possible localisation 

between GLT8D1 and the Golgi network in N2A cells (Figure 5.6a, 5.6b). This signal was 

subsequently confirmed in HEK293 and N2A cells using confocal microscopy (Figure 5.6c, 

5.6d) to look at defined focal planes and eliminate out-of-focus signals to improve reliability 

(Nichols and Evans, 2011). The images shown (Figure 5.6) were acquired following 

transfection with a pEGFP-N1_GLT8D1-WT plasmid. The presence of an R92C mutation (as 

well as the G78W mutation presented in Chapter 3) in GLT8D1 did not affect the localisation 

signal (see appendix 15).  
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Figure 5.6. When transiently over-expressed in HEK293 and N2A cells, GLT8D1 is 

localised to the Golgi network. (A, B) The intracellular localisation of GLT8D1 was initially 

investigated in N2A cells via multiphoton fluorescence microscopy (top panel), and (C, D) 

subsequently confirmed in HEK293 and N2A cells using confocal microscopy (bottom panel). 

In both instances, the Golgi network was imaged using anti-TGN46 (red); GLT8D1-GFP fusion 

protein was imaged using JL8 (green). Nuclear counterstain (DAPI) is shown in blue. Scale 

bars are 50µM. (UT – un-transfected; T – transfected). Figure adapted from (Cooper-Knock 

et al., 2019). 
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5.3.6. Overexpression of an R92C variant in GLT8D1 causes fragmentation of the 

Golgi network in isogenic HEK293-GLT8D1 cells 

 

Fragmentation of the Golgi network is a well-documented molecular consequence of ALS 

pathophysiology, yet the underlying mechanism remains unclear. Golgi fragmentation may 

result from inhibition of vesicular trafficking between the ER and Golgi, or from the Golgi to the 

plasma membrane (Sundaramoorthy et al., 2015). I have shown that GLT8D1 is localised to 

the Golgi network in neuronal and non-neuronal cell lines, and that the presence of either a 

G78W or an R92C mutation does not affect this localisation signal (see section 5.3.5). 

Glycosyltransferases are an essential component of the Golgi trafficking machinery (Martina 

et al., 2000); therefore, I hypothesise that mutant GLT8D1 may disrupt this trafficking, leading 

to fragmentation of the network.  

 

I investigated Golgi fragmentation in isogenic HEK293-GLT8D1 cells using two antibodies that 

target different regions of the network: TGN46 that localises to the trans-Golgi, and GM130 

that localises to the cis-Golgi. My preliminary data suggest enhanced fragmentation of both 

the trans- and cis-Golgi networks in isogenic HEK293-GLT8D1 cells overexpressing an R92C 

mutation compared to WT (Figures 5.7, 5.8). Overexpression of GLT8D1-WT caused a 

modest increase in Golgi fragmentation compared to sham-transfected control cells, but this 

was more profound following overexpression of GLT8D1-R92C. Overexpressing any WT gene 

can cause a mutant phenotype (Prelich, 2012) and my data are consistent with a mutation-

specific effect. Due to the ongoing coronavirus pandemic, only two biological repeats of the 

Golgi fragmentation analysis were performed; therefore, the data presented here do not 

contain any statistical analysis. ~2000 cells were analysed for each condition per biological 

repeat.    
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Figure 5.7. Preliminary data suggest that overexpression of GLT8D1-R92C causes 

fragmentation of the trans-Golgi network in isogenic HEK293 cells. Representative 

staining of the trans-Golgi network using a TGN46 antibody (red) in (A) HEK293-SHAM, (B) 

HEK293-GLT8D1-WT, and (C) HEK293-GLT8D1-R92C isogenic cell lines. The image 

segments outlined with a white box (upper) are magnified to delineate Golgi morphology 

(bottom). (D) The distance between the nearest neighbouring spot (μM) was measured for 

each condition. (E) Corrected spot intensity (568nm) was plotted for each condition. Each data 

point represents a technical repeat. Nuclear counterstain (Hoechst 33342) is shown in blue. 

Scale bar is 50μM. (No statistical analysis was performed; n=2).  
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Figure 5.8. Preliminary data suggest that overexpression of GLT8D1-R92C causes 

fragmentation of the cis-Golgi network in isogenic HEK293 cells. Representative staining 

of the cis-Golgi network using a GM130 antibody (red) in (A) HEK293-SHAM, (B) HEK293-

GLT8D1-WT, and (C) HEK293-GLT8D1-R92C isogenic cell lines. The image segments 

outlined with a white box (upper) are magnified to delineate Golgi morphology (bottom). (D) 

The distance between the nearest neighbouring spot (μM) was measured for each condition. 

(E) Corrected spot intensity (568nm) was plotted for each condition. Each data point 

represents a technical repeat. Nuclear counterstain (Hoechst 33342) is shown in blue. Scale 

bar is 50μM. (No statistical analysis was performed; n=2).  
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5.4. Discussion  

 

The overarching aim of the work described in this chapter was to place GLT8D1 mutations in 

the context of an ALS disease pathway. As discussed in the introductory chapter, two distinct 

glycosyltransferase-associated mechanisms are prominent in neurodegenerative disorders: 

ganglioside synthesis and O-GlcNAcylation (Moll et al., 2020). I focused on the dysregulation 

of ganglioside biosynthesis, as this pathway encompasses a broader range of 

glycosyltransferase enzymes compared to O-GlcNAcylation, which is a well-characterised 

post-translational modification mechanism involving glycosyltransferases OGT and EOGT 

(Yang and Qian, 2017). To place GLT8D1 mutations in the context of an ALS disease 

pathway, live imaging of gangliosides was performed in isogenic HEK293 cell lines 

overexpressing WT and mutant GLT8D1. To replicate my findings into a neuronal model, I 

attempted to re-programme GLT8D1-ALS patient fibroblasts into induced neurons (iNeurons) 

using a previously established method (Meyer et al., 2014). Ganglioside biosynthesis occurs 

predominantly in the Golgi network (Maccioni et al., 2011); therefore, I investigated whether 

GLT8D1 localises to the Golgi in HEK293 and N2A cells. I subsequently investigated 

glycosyltransferase-mediated Golgi fragmentation in isogenic HEK293-GLT8D1 lines as a 

potential mechanism for perturbed ganglioside biosynthesis.   

 

 

5.4.1. An R92C variant in GLT8D1 reduces the expression of sialic acid and N-

Acetylglucosamine (GlcNAc) residues in isogenic HEK293 cell membranes  

 

Isogenic HEK293-GLT8D1 cells were used to characterise the early biochemical effects of the 

R92C variant in GLT8D1 through live cell imaging. In order to determine whether these early 

effects were mutation-specific and not due to enhanced levels of the mutant protein, 

immunoblotting was used to evaluate the relative expression of WT and mutant GLT8D1. 

Immunoblotting revealed that mutant GLT8D1 was expressed at a higher level than the WT, 

which may present a significant limitation. It might suggest that observed effects are due to 

enhanced expression of the mutant protein compared to WT (~50% increase). The double 

band in the mutant blot likely represents post-translational modification of GLT8D1 (Figure 

5.1). Post-translational modifications are essential to the regulation of protein folding, their 

interaction with ligands and, in the case of enzymes, their catalytic activity. Common forms of 

post-translational modifications are phosphorylation and glycosylation (see Chapter 1), both 

of which are essential for regulating the activity of enzymes. I have previously shown that a 

GLT8D1-R92C mutation reduces enzymatic activity, which was expected given that the 
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mutation is proximal to the substrate binding site (Cooper-Knock et al., 2019) (see Chapter 3). 

Therefore, it is possible that the GLT8D1-R92C protein is not undergoing the necessary 

phosphorylation or glycosylation required for proper enzymatic function, which may also cause 

protein misfolding, hence the observed double band in the blot. In the future, I plan to test for 

post-translational modification by treating the GLT8D1-R92C cell lysates with enzymes prior 

to immunoblotting. Such enzymes include alkaline phosphatase to remove phosphates (Seo 

and Lee, 2004), or PNGase F to remove N-linked oligosaccharides (Suzuki et al., 1995). 

Furthermore, my immunoblotting shows that selection pressure was maintained to a high 

standard, suggesting a limited effect on the cellular biochemistry, which was consistent 

between all isogenic HEK293-GLT8D1 cell lines prior to performing the live imaging assays. 

 

Lectins are carbohydrate- and glycoconjugate-binding proteins that are widely distributed 

throughout nature, whose primary function is to facilitate cell-to-cell contact. In vertebrates, 

there are two main classes of lectins: integral lectins of membranes, and soluble lectins 

present in intra and intercellular fluids. Lectins have a plethora of roles in animals including 

endocytosis, intracellular translocation of glycoproteins (Yamashita et al., 1999), 

glycoconjugate binding, apoptotic processes (Kilpatrick, 2002), defence mechanisms against 

microorganisms, as well as regulating the processes of cell adhesion and migration. In 

vertebrates, integral lectins facilitate the binding of glycoconjugates to cell membranes or 

vesicles, resulting in endocytosis or intracellular translocation (Sharon and Lis, 2004). WGA 

is a widely used lectin that binds specifically to N-acetyl-D-glucosamine and N-

acetylneuraminic acid (sialic acid) residues, both of which are ubiquitously expressed in 

neuronal cell membranes. WGA has also been demonstrated to interact with sialic acid 

residues on glyconjugates and oligosaccharides (Iqbal et al., 2019). The neuronal specificity 

of WGA makes it a useful tracer for the tracking of neural connections in all regions of the 

brain (Yoshihara, 2002).  

 

In the present study, WGA provided an indirect measure of plasma membrane integrity of 

isogenic HEK293 cells overexpressing WT and mutant GLT8D1. Membrane WGA expression 

was significantly reduced through overexpression of mutant GLT8D1 compared to WT, 

indicating a mutation-specific effect on the integrity of the plasma membrane (Figure 5.2). 

This was expected given that I previously observed enhanced levels of LDH in the culture 

media of cells transfected with GLT8D1-R92C plasmids compared to WT, which was indicative 

of reduced plasma membrane integrity (see section 3.3.6). It would be important to confirm 

this result via immunoblotting. These results suggest that an R92C mutation may alter the 

glycosylation profile of isogenic HEK293-GLT8D1 cells. However, to fully answer this 

question, lectin blotting could be used for the proteomic analysis of glycosylation patterns 
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within whole cell extracts (Cao et al., 2013) following overexpression of WT and mutant 

GLT8D1. Future work could utilise a panel of lectins including Maackia amurensis II and 

Sambucus nigra, both of which interact with N-Acetylneuraminic acid, the most prominently 

expressed sialic acid in mammalian cells (Wang and Brand-Miller, 2003).  

 

WGA may also provide an indirect measure of membrane ganglioside expression, as 

gangliosides contain a variable number of negatively charged sialic acid residues (Frey and 

Lee, 2013). However, to my knowledge, WGA has not previously been used as a ganglioside 

marker. Assuming the role of WGA as an indirect marker for ganglioside expression, I 

subsequently tested whether expression levels of ganglioside GM1 were affected in a similar 

way. GM1 was chosen based on its association with membrane lipid rafts, which are key 

determinants of neurotrophic signalling (see section 5.4.2). Moreover, this ganglioside is 

essential to maintaining neuronal function to prevent neurodegeneration (Chiricozzi et al., 

2020) and is strongly associated with neurodegenerative disorders (see Chapter 1).       

 

 

5.4.2. Overexpression of mutant GLT8D1 reduces membrane and cytoplasmic GM1 

expression in isogenic HEK293 cells 

 

Whilst ALS is not considered an autoimmune disorder, immunological phenomena are 

suggested to be involved. Over the past few decades, numerous studies have described the 

detection of antibodies against a variety of gangliosides in ALS patients, but with widely 

differing frequencies and titres (Pestronk et al., 1989, Lamb and Patten, 1991, Yuki et al., 

2014). As previously mentioned, it is noteworthy that autoantibodies against specific 

gangliosides produce an inflammatory disease of spinal motor neurons known as multifocal 

motor neuropathy with conduction block (Harschnitz et al., 2014), which is an important 

differential diagnosis for ALS (Cooper-Knock et al., 2019). However, a more recent study 

reported no statistically significant difference in the frequency of anti-ganglioside antibodies in 

ALS patients compared to controls (Kollewe et al., 2015). Although the role of anti-ganglioside 

antibodies in ALS is a controversial topic of debate, altered levels of gangliosides are widely 

reported in animal models of ALS and in post-mortem CNS tissue from ALS patients (Dodge 

et al., 2015, Ariga, 2014).  

 

Ganglioside GM1 is highly abundant in the nervous system and is localised to MLR, which are 

membrane micro-domains enriched in cholesterol and sphingolipids, with important roles in 
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cell signalling (Vajn et al., 2013). GM1 is internalised via caveolae, which are a type of lipid 

raft domain in the plasma membrane (Crespo et al., 2008). Gangliosides, particularly GM1, 

are shown to be responsible for the trafficking and maintenance of these caveolae domains 

(Singh et al., 2010). The association of GM1 with MLR makes this ganglioside a useful target 

for measuring lipid raft integrity. Disrupted MLR are associated with impaired neurotrophic 

signalling and consequent neurodegeneration (Sawada et al., 2019). Cholera toxin is a protein 

enterotoxin that belongs to the family of AB5 toxins and is capable of binding up to five 

molecules of GM1 at a time via its B-subunits. The CTxB-GM1 complex undergoes retrograde 

trafficking from the plasma membrane to the trans-Golgi network. It is then transported through 

the Golgi and delivered to the ER (Fujinaga et al., 2003). Once in the ER, the A-subunit 

dissociates from the B-subunit, unfolding the toxin and enabling retro-translocation to the 

cytosol to induce disease (Chinnapen et al., 2007). The CTxB molecular probe utilised in my 

study was completely free of the toxic A-subunit.  

 

In the present study, I observed a mutation-specific reduction in the fluorescence intensity of 

CTxB in the membrane of isogenic HEK293-GLT8D1 cells (Figure 5.3). Given the 

aforementioned role of ganglioside GM1 in the intracellular trafficking of cholera toxin, I also 

measured the relative expression of CTxB in cytoplasmic cell regions. Whilst a similar trend 

in fluorescence intensity was apparent, I did not observe a significant mutation-specific effect. 

I was unaware of the mechanisms regarding the internalisation of CTxB when performing the 

initial live imaging assay, hence the fewer biological repeats in cytoplasmic staining compared 

to membrane staining.  

 

CTxB and WGA have previously been used as probes for gangliosides GM1 and GM3, 

respectively; however, they have been shown to form cross-links with gangliosides, thus 

modifying ganglioside distribution and behaviour in the plasma membrane (Hammond et al., 

2005, Lingwood et al., 2008, Kaiser et al., 2009). Moreover, the specificity of these probes is 

under debate. A study using mouse embryonic neuroepithelial cells found that GM1 levels 

were barely detectable through thin-layer chromatography and immunoblotting. However, flow 

cytometry revealed that 80% of these cells were CTxB positive, indicating that the high affinity 

interaction between CTxB and GM1 in these cells may overestimate GM1 expression 

(Yanagisawa et al., 2006). Therefore, biochemical analysis such as immunoblotting should be 

performed in conjunction with CTxB cell staining to avoid mischaracterisation of the 

ganglioside species. This perhaps is not a limitation of my study, as I compared relative GM1 

levels rather than attempting to quantify GM1 expression exactly. My data indicate that GM1 

is expressed in HEK293 cells, which is inconsistent with a previous report that used high-

performance thin layer chromatography and indirect immunofluorescence to conclude that 
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GM1 is not expressed in this cell line (Cho, 2010). However, more recent studies using similar 

CTxB molecular probes have shown GM1 to be expressed in HEK293 cells (Sano et al., 2014, 

Fernandez-Perez et al., 2017), supporting the validity of my data. Recently, fluorescent 

analogues of GM1 and GM3, which were shown to behave similarly to their native 

counterparts, were synthesised to measure the dynamic behaviour of these gangliosides in 

living cells (Komura et al., 2016). Future use of these fluorescent analogues may enable more 

sensitive studies into the effect of ALS-linked GLT8D1 mutations on ganglioside trafficking.  

 

 

5.4.3. GLT8D1-ALS patient fibroblasts did not successfully re-programme into induced 

neural progenitor cells 

 

The next aim of my project was to replicate live cell imaging data in a neuronal model to place 

my findings in the context of the CNS. Induced neurons (iNeurons) can be generated from the 

direct re-programming of human fibroblasts. Examples include the work of Deng and 

colleagues who transformed somatic fibroblasts into a chemically induced intermediate XEN-

like state (a state that resembles extra-embryonic endoderm), bypassing the pluripotent stage 

(Li et al., 2017). This is a new and relatively untested re-programming method with narrow 

concentration windows and specific application durations required for small molecules to be 

effective. Therefore, I did not explore this method, but rather utilised methods previously 

developed by a member of our lab (Meyer et al., 2014).  

 

iNeuron technology can provide a fast and simple method for the generation of specific 

neuronal subtypes. Moreover, this technology may circumvent problems such as uncontrolled 

cell differentiation and tumour formation, which are associated with human induced pluripotent 

stem cells (hiPSCs) (Li et al., 2017). I had fibroblasts available from a single ALS patient with 

an R92C mutation; however, attempts to generate a patient-derived neuronal model were 

unsuccessful. Following retroviral transduction, a small proportion of cells successfully 

converted to a pre-iNPC state, but their growth rate soon declined and they reached relatively 

premature senescence. I was therefore unable to generate a pure population of cells 

resembling an iNPC lineage. When cultured in DMEM, the GLT8D1-ALS patient fibroblasts 

demonstrated a relatively slow rate of cell division for cells of this type, which usually suggests 

that they will not re-programme well. Almost all fibroblasts grow more quickly in DMEM, as 

this media contains almost twice the concentration of amino acids and four times the amount 

of vitamins as EMEM. By example, the amino acid arginine has been shown to enhance 

fibroblast proliferation and reduce apoptosis in vitro (Fujiwara et al., 2014). However, some 



143 
 

fibroblasts do exhibit a higher growth rate in EMEM, possibly due to the metabolic signature 

of the cells. Therefore, I tested the growth rate of the fibroblasts in DMEM vs EMEM over a 

period of three consecutive weeks, hypothesising that if the growth rate improved, they may 

re-programme successfully. Unfortunately, the growth rate declined further in EMEM (Figure 

5.4). It is possible that the R92C mutation is driving metabolic dysfunction; therefore, it would 

be interesting to investigate defective energy metabolism in this fibroblast line (Zhang et al., 

2012).  

 

Ageing is a leading risk factor for the development of neurodegenerative diseases such as 

ALS (Niccoli et al., 2017). It is important to recapitulate age-related characteristics by using 

motor neurons at relevant ages. Directly converted motor neurons have the advantage of 

preserving ageing-associated features from fibroblast donors, such as extensive DNA 

damage, loss of heterochromatin, and nuclear organization. An alternative method of 

generating motor neurons is via a pluripotent stem cell lineage, which resets the ageing 

phenotype (Tang et al., 2017). Therefore, directly reprogrammed motor neurons may be more 

suitable for modelling the late-onset pathogenesis of diseases such as ALS. Moreover, 

iAstrocytes derived from the direct conversion of ALS patient fibroblasts are selectively toxic 

to motor neurons (Haidet-Phillips et al., 2011, Meyer et al., 2014). This astrocyte-mediated 

motor neuron toxicity is lost when using the iPSC model. Due to these complications, I was 

unable to investigate whether iAstrocytes carrying a GLT8D1 mutation are selectively toxic to 

motor neurons. I do, however, have an age- and sex-matched control fibroblast line available, 

which has successfully been re-programmed into iNPCs previously. Fibroblasts were not 

available from additional patients with GLT8D1-ALS. I have additional fibroblasts from an 

individual with an R92C mutation; however, this patient has not been diagnosed with ALS, 

therefore was not included for experimentation. Future work will aim to utilise CRISPR/Cas9 

genome editing to introduce the R92C mutation into the single age- and sex-matched control 

fibroblast line. I have designed gRNAs to target regions proximal to the R92C mutation, but 

experiments were postponed due to the ongoing coronavirus pandemic.  

 

 

5.4.4. Membrane GlcNAc and sialic acid residue expression is unchanged in GLT8D1-

ALS patient fibroblasts compared to an age- and sex-matched control  

 
Due to the inability to directly convert GLT8D1-ALS patient fibroblasts into iNeurons, I decided 

to investigate sialic acid expression in the fibroblasts and compare with age- and sex-matched 

controls to place my findings in the context of the patients. Whilst I did observe a trend towards 

decreased sialic acid expression in the patient line, this experiment was limited by the lack of 
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available age- and sex-matched controls (Figure 5.5). Future experiments should include 

fibroblasts from at least three non-ALS controls, as well as from patients with mutations in 

other known ALS genes.  

 

Following on from my unsuccessful attempts to generate an iNeuron model, I attempted 

overexpressing WT and mutant GLT8D1 in mouse primary cortical neurons via nucleofection 

using a Lonza 4D NucleofectorTM System. The aim of this experiment was to test whether 

ALS-linked GLT8D1 mutations impair neurotrophic signalling via the disruption of MLR in the 

context of the CNS. Unfortunately, the neurons did not survive the transfection process and 

subsequently failed to adhere or develop neurites. For future work, the manufacturer 

recommends a recovery step immediately after nucleofection, if the observed mortality rate is 

high. This requires adding pre-equilibrated recovery medium to the cuvette (as opposed to the 

standard culture media), followed by a 5-10-minute incubation at 37°C, 5% CO2 prior to 

seeding (AmaxaTM 4D-NucleofectorTM Protocol for Primary Mammalian Neurons). I chose to 

use primary neurons because they are not tumour-derived, and therefore more accurately 

recapitulate the properties of neuronal cells in vivo (Gordon et al., 2013). I planned to confirm 

overexpression of mutant and WT GLT8D1 via immunoblotting, and assess the integrity of 

MLR using the live imaging techniques previously described in this chapter. I then planned to 

measure neurotrophic signalling by initially treating the neurons with neurotrophic factors such 

as BDNF, followed by an expression profile analysis of neurotrophin-mediated signalling 

targets including: P-TrkB, P-Akt, and P-ERK1/2 (Head et al., 2011). This would identify 

whether mutant GLT8D1 alters the expression of key receptors required for neurotrophic 

signalling, which may help to identify pathological mechanisms linking GLT8D1 mutations to 

the loss of motor neurons in ALS.  

 

 

5.4.5. GLT8D1 is localised to the Golgi network when overexpressed in HEK293 and 

N2A cells 

 

I observed localisation of GLT8D1 to the Golgi network in HEK293 and N2A cells (Figure 5.6); 

the presence of G78W and R92C mutations in GLT8D1 did not affect the observed localisation 

signal (see appendix 15). This suggests that the G78W and R92C mutation sites are not 

necessary for Golgi retention, which was expected given that the mutations are not localised 

to the cytoplasmic domain that contains the arginine-lysine motif representative of a Golgi 

localisation signal (Uemura et al., 2015) (Figure 1.4). Attempts to investigate GLT8D1-Golgi 

localisation via live-cell imaging were unsuccessful due to an undetectable eGFP signal. A 
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limitation of GFP is that it may lose its fluorescence during fixation (Swenson et al., 2007), 

hence the need for the JL-8 antibody. As previously discussed, GFP-tagging at either the N- 

or C-terminal domain can influence co-localisation (see section 3.4.1). Therefore, it is 

important to check the localisation of the endogenous protein with an antibody directed against 

the protein of interest. However, none of the available GLT8D1 antibodies demonstrated 

specificity in vitro (see appendix 16). Understanding protein subcellular localisation is 

essential to investigating protein function, cellular organisation, and identifying new disease 

pathways. For example, in the case of GLT8D1, the mutated forms of the protein may lead to 

dysfunction and/or fragmentation of the Golgi network, which is already proposed to be an 

early event in ALS (Sundaramoorthy et al., 2015, Gonatas et al., 1992). Golgi fragmentation 

was subsequently investigated as a potential GLT8D1-linked ALS pathogenic mechanism and 

is discussed in the following section.  

 

5.4.6. Overexpression of an R92C variant in GLT8D1 may cause fragmentation of the 

Golgi network in HEK293 cells 

 

The Golgi is an essential membrane-bound organelle that functions as a protein modification 

centre in the secretory pathway. It is comprised of three functional compartments: the cis-

Golgi, which receives newly synthesised proteins and lipids from the ER; the medial-Golgi, 

which is the site of post-translational modification; and the trans-Golgi, which dispatches 

proteins and lipids to distinct subcellular destinations (Marsh and Howell, 2002, Brandizzi and 

Barlowe, 2013). Ganglioside biosynthesis is compartmentalised in the Golgi network, and is 

organised in distinct units formed by associations of particular glycosyltransferases, which 

concentrate in different Golgi sub-compartments (Petrosyan et al., 2012). The cytoplasmic tail 

of glycosyltransferases determines Golgi localisation (Uliana et al., 2006, Ali et al., 2012). 

These cytoplasmic tails also bind to the cytoskeleton to stabilise the Golgi (Yamaguchi and 

Fukuda, 1995, Wassler et al., 2001). Studies have shown that glycosyltransferases are 

involved in the maintenance of the Golgi architecture. For example, a mutation of the 

membrane-spanning domain of N-acetylglucosaminyltransferase was shown to cause a loss 

of Golgi structure in HeLa cells (Nilsson et al., 1996). More recently, a high abundance of 

glycosyltransferases in the Golgi was shown to positively correlate with fragmentation of this 

organelle (Petrosyan and Cheng, 2013). The evidence for glycosyltransferase-mediated Golgi 

fragmentation, concurrent with the pathogenic role of Golgi fragmentation in ALS, formed the 

basis of my investigation.  
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Golgi pathology is a feature of neurodegenerative disorders such as Alzheimer's (Sun et al., 

2008), Parkinson's (Fujita et al., 2006), and ALS (Sundaramoorthy et al., 2015). Importantly, 

Golgi fragmentation has been shown to occur early in the disease stage prior to apoptosis 

(Gosavi et al., 2002, Liazoghli et al., 2005, Atkin et al., 2014, van Dis et al., 2014), suggesting 

that fragmentation of the network could be a trigger for neurodegeneration rather than a 

consequence of the disease. Golgi fragmentation was first identified in ALS-patient motor 

neurons in 1992, appearing as disconnected punctate structures (Gonatas et al., 1992). Since 

then, Golgi fragmentation has been identified in up to 70% of fALS patient motor neurons 

(Fujita et al., 2000, Ito et al., 2011) and 10-50% of sALS patient motor neurons (Gonatas et 

al., 2006, van Dis et al., 2014) bearing SOD1, FUS or OPTN mutations. Larger human motor 

neurons of the cerebral cortex and anterior horn appear to undergo more prominent Golgi 

fragmentation (Fujita et al., 1999, Fujita et al., 2000). Precedent exists for a link between the 

cytoplasmic mislocalisation of TDP-43 and Golgi fragmentation (Fujita et al., 2008). Indeed, 

Golgi fragmentation has been observed in the transgenic rats expressing mutant TDP-43M337V 

(Tong et al., 2012), as well as in the SOD1G93A ALS mouse model (Mourelatos et al., 1996). 

Moreover, in the SOD1G93A model, Golgi fragmentation was shown to occur prior to the 

formation of SOD1 inclusions and neuromuscular denervation, suggesting it occurs upstream 

in the pathogenesis of ALS (van Dis et al., 2014). More recently, ALS-linked mutations in 

UBQLN2 were shown to inhibit protein transport from the ER to the Golgi in neuronal cells 

concurrent with fragmentation of both organelles (Halloran et al., 2019).  

 

The causes and consequences of Golgi fragmentation in ALS are not well understood. A 

possible cause of Golgi fragmentation is the inhibition of bi-directional protein trafficking 

between the ER and the Golgi (Nassif et al., 2010). Similarly, if vesicular trafficking from the 

Golgi to the plasma membrane is inhibited, proteins accumulate within the Golgi which, if 

prolonged, can cause fragmentation (Persson et al., 1992, Zolov and Lupashin, 2005, Zhou 

et al., 2013). Vesicular trafficking has been shown to be inhibited in cells expressing the ALS-

associated mutant proteins: SOD1, TDP-43, FUS and OPTN (Sundaramoorthy et al., 2015, 

Atkin et al., 2014, Soo et al., 2015). OPTN is involved in the maintenance of Golgi architecture, 

and functions specifically in membrane trafficking and exocytosis via interaction with myosin 

VI and Rab8 (Sahlender et al., 2005). It has also been shown to mediate post-Golgi trafficking 

to lysosomes, which is dependent on the Rab8-OPTN-htt complex (del Toro et al., 2009). 

Interestingly, FUS has been reported to interact with both myosin V1 (Takarada et al., 2009) 

and myosin V (Yoshimura et al., 2006). Therefore, impairment of intracellular trafficking of the 

complex including OPTN and/or FUS may cause pathological inclusions in ALS (Maruyama 

et al., 2010). Golgi fragmentation in ALS may also be linked to the disruption of autophagy. 

Autophagy is a natural regeneration process characterised by the proteolytic degradation of 
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cytosolic components at the lysosome (Glick et al., 2010). The roles of autophagy in ALS are 

unclear; however, multiple discovered ALS genes have been associated with dysregulated 

autophagy (Nguyen et al., 2019). That said, the association between glycosyltransferases and 

autophagy is not well founded.  

 

Brefeldin A is a fungal metabolite, which inhibits protein transport from the ER to the Golgi, 

inducing fragmentation of the Golgi cisternae. This process is reversible, making Brefeldin A 

a useful tool for the study of Golgi biogenesis (Langhans et al., 2007). Pharmacological 

induction of Golgi fragmentation with Brefeldin A has been shown to increase autophagosome 

biogenesis and induce the accumulation of autophagosomes (Naydenov et al., 2012). Finally, 

Golgi fragmentation in ALS may be associated with dysregulated axonal homeostasis 

(Sundaramoorthy et al., 2015). Motor neurons contain long axons that require biosynthetic 

output from the ER and Golgi for the maintenance of essential features, such as 

synaptogenesis, synaptic plasticity, and neurite outgrowth (Horton and Ehlers, 2004, Tuck and 

Cavalli, 2010). Proteins and lipids must travel large distances along axons; however, they are 

also synthesised locally within neurites. Brefeldin A-induced Golgi fragmentation has been 

shown to reduce synaptic potentiation (Broutman and Baudry, 2001) and axonal outgrowth 

(Jareb and Banker, 1997), highlighting the importance of the secretory pathway in neuronal 

integrity.  

 

My preliminary data indicate that an R92C mutation in GLT8D1 causes fragmentation of the 

cis- and trans-Golgi network in isogenic HEK293-GLT8D1 cell lines. These results are 

concurrent with a possible reduction in the relative fluorescence intensity of Golgi markers 

GM130 and TGN46 (Figures 5.7, 5.8). The most crucial aim moving forward is to obtain three 

biological repeats of these data, after which it would be interesting to investigate further the 

role of GLT8D1 in the stabilisation of the Golgi architecture. Golgi membranes are organised 

as stacks of multiple flat cisternae, which are further linked into a ribbon-like structure located 

in the perinuclear region (Klumperman, 2011). My images of the Golgi do not depict this 

ribbon-like structure because they were taken at 40x magnification. At a higher magnification, 

these structures would likely be more apparent. It would be interesting to test whether 

pharmacological induction of Golgi fragmentation using Brefeldin A is rescued following 

expression of WT GLT8D1 compared to its mutant form. This would help to determine whether 

GLT8D1 plays a role in the maintenance of the Golgi architecture.  

 

To my knowledge, the degree of Golgi fragmentation as a predictor for the severity of 

neurotoxicity via MLR disruption has not previously been explored. Of note, it has been 

proposed that the association of microtubules with exposed MLR could mediate fragmentation 
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of the trans-Golgi cisternae (Rodriguez-Boulan and Musch, 2005). It would be interesting to 

investigate whether the severity of Golgi fragmentation correlates with dysregulated MLR-

induced neurotoxicity. This could be tested via a dose-dependent treatment of primary neuron 

cultures with Brefeldin A to induce varying degrees of Golgi fragmentation. I would then test 

for a dose-dependent effect of Brefeldin A on the disruption of MLR using techniques 

previously described in this chapter. Neurotoxicity could be measured using techniques such 

as a multielectrode array (Bradley and Strock, 2019) or a neurite outgrowth assay (Filous and 

Silver, 2016).  

 

 

5.4.7. Summary 

 

In summary, I have shown that an ALS-linked R92C mutation correlates with a reduction in 

the MLR integrity of isogenic HEK293-GLT8D1 cell lines, evidenced by mutation-specific 

reductions in membrane WGA and GM1 expression. This discovery places ganglioside 

metabolism upstream in the pathogenesis of GLT8D1-ALS. Gangliosides are associated with 

MLR integrity, and are responsible for the maintenance of caveolae. I explore novel ALS-

associated mutations in enhancers linked to the expression of caveolins 1 and 2 in Chapter 6. 

It is possible that GLT8D1 and caveolins 1 and 2 share a common pathophysiological pathway 

in ALS. Ganglioside biosynthesis occurs in the Golgi, and dysregulated trafficking of Golgi 

secretory proteins is associated with fragmentation of the network. I have shown that GLT8D1 

localises to the Golgi when transiently overexpressed in neuronal and non-neuronal cell lines, 

and my preliminary data suggest that the GLT8D1-R92C mutation causes fragmentation of 

the cis- and trans-Golgi network in isogenic HEK293-GLT8D1 cell lines. Future work should 

focus on completing a third biological repeat of the Golgi fragmentation analysis, as well as 

comparing fragmentation with transiently transfected models to confirm the validity of my 

findings. Moreover, it would be interesting to test whether chemically induced Golgi 

fragmentation can be rescued following overexpression of WT GLT8D1.      
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Chapter 6. Characterisation of ALS-associated CAV1/CAV2 

enhancer variants 

 

6.1. Introduction 

This chapter is an extended version of work currently under review (available at: 

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3606796). Experimental work 

presented within this chapter was performed in collaboration with Dr John Franklin, Helia 

Ghahremani Nezhad, and Samantha Allen. Genome-wide association studies suggest a 

significant proportion of missing heritability is distributed throughout non-coding chromosomal 

regions (van Rheenen et al., 2016). Indeed, 98% of all sequence (Elgar and Vavouri, 2008) 

and 85% of human DNA under evolutionary constraint (Ward and Kellis, 2012) is non-coding, 

suggesting an important role in all aspects of cellular function. To date, genetic discoveries 

within the non-coding genome have been limited by a shortage of appropriate methodology.  

Non-coding regulatory sequence includes enhancers, which are cis-acting DNA sequences 

that modulate expression of target genes primarily through the binding of transcription factors 

(TFs) (Koch et al., 2011). Physical interaction between an enhancer and the promoter of the 

target gene is mediated by DNA looping (Pennacchio et al., 2013). Recently, a novel pipeline 

for the identification of disease-associated variation within enhancers was designed (see 

section 1.8). Variants were aggregated according to function, filtered based on evolutionary 

conservation (Hujoel et al., 2019), and collapsed into a single burden test (Cirulli and 

Goldstein, 2010). Application of this pipeline in an unbiased genetic screen identified 

significant ALS-associated variation within enhancers linked to the expression of caveolin 1 

(CAV1) and caveolin 2 (CAV2) (see section 1.8).  

CAV1 and CAV2 are expressed together in a hetero-oligomeric complex (de Almeida, 2017) 

within membrane lipid rafts (MLR), and have a key role in the organisation of cell signalling 

(Sawada et al., 2019, Schmick and Bastiaens, 2014). CAV1 activity promotes neurotrophic 

signalling, leading to enhanced neuronal survival (Head et al., 2011, Mandyam et al., 2017). 

In contrast, loss of CAV1 accelerates neurodegeneration (Head et al., 2011, Head et al., 

2010). Finally, neuronal-targeted overexpression of CAV1 was shown to improve survival and 

reduce motor neuron death in the SOD1G93A ALS mouse model (Sawada et al., 2019) and is 

being developed as a novel therapy for ALS (www.cavogene.com).  

Burden testing derives power from aggregating mutations into a single statistical test; 

therefore, experimental evaluation is necessary to determine which individual mutations are 

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3606796
https://paperpile.com/c/KQJH3v/nMheN
https://paperpile.com/c/KQJH3v/nMheN
https://paperpile.com/c/KQJH3v/NISQX
https://paperpile.com/c/KQJH3v/D4qgM
https://paperpile.com/c/KQJH3v/D4qgM
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pathogenic. Indeed, it is likely that a significant proportion of variants are not pathogenic (Lee 

et al., 2012). To experimentally evaluate CAV1/CAV2-enhancer mutations, I acquired patient-

derived lymphoblastoid cells (LCLs) from two patients carrying ALS-associated CAV1/CAV2-

enhancer variants: CAV-ALS 1: chr7:116222625T>C; and CAV-ALS 2: chr7:115994269:C>T. 

LCLs are generated through infecting peripheral blood lymphocytes with Epstein Barr Virus. 

This process has been shown to immortalise human resting B cells in vitro, giving rise to an 

actively proliferating B cell population (Neitzel, 1986). Using these lines, I investigated 

CAV1/CAV2 expression at the mRNA and protein level. Reduced CAV1/CAV2 function is 

proposed to be toxic via disruption of MLR, leading to impaired cell signalling (Sawada et al., 

2019). Therefore, I tested whether ALS associated enhancer variants impair MLR formation. 

MLR integrity was measured by expression of GM1 gangliosides, as labelled by CTxB (Aman 

et al., 2001) (refer to section 5.3.2). 

Enhancers often act in a cell and tissue-specific manner (Andersson et al., 2014, Heinz et al., 

2015) and therefore LCLs may not be representative of expression changes in the CNS.  

However, CAV1/CAV2-enhancers were derived in a tissue-agnostic manner; therefore, I 

hypothesised that expression changes may be replicated across multiple cell types. To 

validate my findings in a CNS relevant cell type, I subsequently investigated CAV1/CAV2 

mRNA expression in differentiated SH-SY5Y cells, following CRISPR/Cas9 perturbation 

proximate to the chr7:116222625T>C patient-mutation.  

CRISPR/Cas9 is a naturally occurring bacterial defence mechanism that has been repurposed 

as a powerful RNA-guided DNA targeting platform for genome editing (Jiang and Doudna, 

2017). This technology can be used to precisely manipulate genomic sequences and relies 

on two main components: a Cas9 endonuclease, and an associated guide RNA (gRNA). 

gRNAs are duplexes constituting a crisprRNA (crRNA), which is a nucleotide sequence 

complementary to the target DNA sequence, and a tracrRNA, which acts as a binding scaffold 

for the Cas9 nuclease (Cong et al., 2013, Mali et al., 2013). The gRNA recognises the target 

DNA sequence of interest, directing the associated Cas9 endonuclease to transiently bind and 

induce sequence-specific cleavage in the form of a double strand break (DSB). Cas9 will not 

bind to or cleave the target DNA sequence without the presence of a downstream protospacer 

adjacent motif (PAM) (Mojica et al., 2009). The most commonly used Cas9 

from Streptococcus pyogenes (spCas9) recognizes PAM sites that contain a triplet NGG 

(where ‘N’ represents any nucleotide base). PAM sites are located immediately 3’ of the target 

sequence, and Cas9 endonucleases can be changed depending on which PAM sites are 

available (Jinek et al., 2012). The binding of Cas9 promotes unwinding of the two DNA strands 

immediately upstream of the PAM site, and the spacer sequence of the crRNA then binds with 
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the unwound DNA to form an RNA-DNA heteroduplex to initiate a DSB (Sternberg et al., 

2014). This DSB can subsequently be repaired by non-homologous DNA-end joining (NHEJ) 

or via homologous recombination (HR). The majority (up to 90%) of DSBs are repaired by 

NHEJ following cleavage by Cas9 (Liu et al., 2018). The NHEJ repair process is error prone, 

and thus random indels (insertion or deletion mutations) of unpredictable length may be 

introduced, disrupting gene function (Tuladhar et al., 2019). DSB repair via HR is less error 

prone and relies on a homologous donor template DNA to repair the break. Under 

physiological conditions, this usually comes from the sister chromatid. However, in 

CRISPR/Cas9 editing, this pathway can be leveraged to introduce specific desired sequence 

changes via the introduction of a pre-designed double- or single-stranded oligonucleotide 

template (Liu et al., 2018). 

CRISPR/Cas9 editing efficiency is usually estimated by measuring the proportion of an edited 

population of cells in which an indel mutation has been introduced. There are numerous ways 

of evaluating CRISPR editing efficiency. In the current project, I utilised two similar platforms 

that rely on Sanger sequencing trace data: TIDE (Tracking of Indels by DEcomposition) and 

ICE (Inference of CRISPR Edits). Both provide a simple, rapid and cost-effective strategy that 

accurately quantifies the editing efficiency of indels in a targeted cohort of cells, and predicts 

similar editing efficiencies to that of next generation sequencing (the gold standard for 

measurement of indel efficiencies) (Sentmanat et al., 2018). Both platforms require two 

parallel PCR reactions to amplify an approximate 400bp region around the predicted Cas9 cut 

site, followed by Sanger sequencing. The two sequencing traces that are generated are 

analysed using specially designed software (TIDE: available at http://tide.nki.nl; ICE: available 

at https://ice.synthego.com/#/) (Brinkman et al., 2014). TIDE is a well-established platform that 

has been shown to be superior to gel electrophoresis based assays such as the commonly 

used T7 endonuclease 1 mismatch-detection assay, however requires careful adjustment of 

specific parameters (e.g. alignment window, p-value, decomposition window) to obtain 

meaningful results. Furthermore, it can only accurately predict indels of a limited size of up to 

10bp (Brinkman et al., 2014, Sentmanat et al., 2018). Therefore, it is important to compare 

against alternative platforms to validate CRISPR editing efficiencies. ICE is a more recently 

established online tool that does not require manual parameter adjustment. 

  

  

http://tide.nki.nl/
https://ice.synthego.com/#/
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6.2. Aims and objectives for experimentally evaluating ALS-associated 

CAV1/CAV2 enhancer variants 

1. Investigate the relative expression of CAV1 and CAV2 in patient-derived LCLs carrying 

ALS-associated CAV1/CAV2 enhancer variants via qRT-PCR and immunoblotting. 

2. Investigate the effect of identified enhancer mutations on MLR integrity in patient-derived 

LCLs via live cell imaging with CTxB. 

3. Use CRISPR/Cas9 genome editing to introduce an indel mutation proximal to the 

discovered chr7:116222625T>C (CAV-ALS 1) patient mutation site in SH-SY5Y cells. 

4. Evaluate CAV1/CAV2 expression in differentiated SH-SY5Y cells carrying a CAV1/CAV2 

enhancer perturbation via qRT-PCR.  
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6.3. Results 

6.3.1. CAV1 and CAV2 expression is reduced in patient-derived cells carrying an ALS-

associated enhancer variant 

Reduced CAV1 expression is toxic to neurons (Head et al., 2011, Head et al., 2010); therefore, 

I measured CAV1/CAV2 expression at the mRNA and protein level in LCLs derived from ALS 

patients carrying CAV1/CAV2 enhancer variants: chr7:116222625T>C (CAV-ALS 1) and 

chr7:115994269:C>T (CAV-ALS 2). Controls consisted of LCLs derived from three sALS 

patients without CAV1/CAV2 enhancer variants, and three neurologically normal controls (see 

Table 6.1).  

 

 

 
 

Table 6.1. Summary of the LCLs used for characterising the relative expression of 

CAV1/CAV2 in patients carrying ALS-associated enhancer variants. Sample ID, age upon 

sample collection, sex, affectation status, enhancer variant, diagnosis, and age of disease 

onset, are shown.   
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A former member of our group had previously assessed the specificity of an anti-CAV1 

antibody through overexpression of CAV1 using a commercially available pEGFP-N1-CAV1 

construct (Addgene, plasmid #14433) in HEK293 cells. Targeted knockdown of CAV1 was 

performed via co-transfection with pcDNA6.2-EmGFP-miRNA vectors and pENTR/H1-TO-

MCS-shRNA vectors targeting CAV1. CAV1 protein bands were sized at a molecular weight 

of ~20kDa using GeneTools (Syngene). (Figure 6.1a).     

In cells carrying chr7:116222625T>C, CAV1 protein (n=3, 89% reduction, p=0.05, Mann-

Whitney test) (Figure 6.1b, 6.1c) and mRNA (n=3, 89% reduction, p=0.003, Welch’s t-test), 

(Figure 6.2a) was significantly reduced compared to mean expression in cells derived from 

neurologically normal controls. In addition, CAV2 mRNA (n=3, 93% reduction, p=0.002, 

Welch’s t-test) (Figure 6.2b) expression was significantly reduced compared to mean 

expression in cells derived from neurologically normal controls. Unfortunately, immunoblotting 

for CAV2 was not possible due to lack of a sufficiently specific antibody (see appendix 17). 

Expression of CAV1 protein and CAV1/CAV2 mRNA was not significantly reduced compared 

to ALS patients without an enhancer mutation (n=3, p>0.05, Welch’s t-test). Cells carrying 

chr7:115994269:C>T did not show significantly reduced expression of CAV1 protein or 

CAV1/CAV2 mRNA (n=3, p>0.05, Welch’s t-test), compared to neurologically normal controls, 

or compared to ALS patients without an enhancer mutation. Expression of CAV1 and CAV2 

mRNA was normalised to the housekeeping gene, RPL13A, which is stably expressed in LCLs 

(Hruz et al., 2011).  
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Figure 6.1. An ALS-associated CAV1/CAV2-enhancer variant reduces CAV1 protein 

expression in LCLs. (A) Representative immunoblot showing reduction of CAV1 protein in 

HEK293 cells co-transfected with pEGFP-N1-CAV1 vectors, with or without pcDNA6.2-

EmGFP-miRNA and pENTR/H1-TO-MCS-shRNA vectors. The antibody used in this chapter 

detects CAV1 at a molecular weight of ~20kDa. Protein bands were sized using Gene Tools 

(Syngene). NaK ATPase served as a loading control (image kindly provided by Samantha 

Allen). (B) Representative immunoblot showing the relative expression level of CAV1 in non-

ALS controls, non-CAV-ALS controls, and CAV-ALS patient LCLs; α-tubulin served as a 

loading control. Molecular weight markers are indicated (kDa). Protein bands were sized 

between ~19-22kDa using Gene Tools (Syngene). (C) Densitometric analysis suggests CAV1 

expression is reduced in cells carrying a chr7:116222625T>C enhancer variant, compared to 

the mean CAV1 expression from neurologically normal controls (n=3, 89% reduction, p=0.05, 

Mann-Whitney test). CAV1 expression is not significantly reduced in cells carrying a 

chr7:115994269:C>T enhancer variant (n=3, p>0.05, Mann-Whitney test). Error bars 

represent mean ±SD (*p<0.05). 
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Figure 6.2. An ALS-associated CAV1/CAV2-enhancer variant reduces CAV1 and CAV2 

mRNA expression in LCLs. qPCR measurement of (A) CAV1 and (B) CAV2 mRNA 

expression, relative to mean expression in neurologically normal controls; expression was 

normalised relative to the housekeeping gene, RPL13A (Hruz et al., 2011). Relative mRNA 

expression values were calculated using the 2-ΔΔCT method (Schmittgen and Livak, 2008). 

In cells carrying chr7:116222625T>C, CAV1 mRNA was reduced by 89% (n=3, p=0.003, 

Welch’s t-test), compared to mean expression in cells derived from neurologically normal 

controls (black line). CAV2 mRNA was reduced by 93% (n=3, p=0.002, Welch’s t-test), 

compared to mean expression in cells derived from neurologically normal controls. Data are 

presented on a logarithmic scale to account for wide-ranging numerical values. Error bars 

represent mean ±SD.   
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6.3.4. An ALS-associated CAV1/CAV2 enhancer variant impairs MLR integrity in LCLs 

Reduced CAV1/CAV2 function is proposed to be toxic via disruption of MLR, leading to 

impaired cell signalling (Sawada et al., 2019). Therefore, I tested whether an ALS-associated 

enhancer variant, which reduces CAV1/CAV2 expression, also impairs MLR formation. MLR 

integrity was measured by expression of GM1 gangliosides, as labelled by CTxB (Aman et al., 

2001). I initially attempted co-labelling the cells with a CellMaskTM plasma membrane stain in 

order to quantify CTxB fluorescence intensity relative to cell area. However, LCLs grow in 

clusters, making it difficult for automated software to distinguish individual cells accurately. 

Therefore, fluorescence intensity values presented in this chapter were not calculated relative 

to cell size. Representative images of CellMaskTM and CTxB staining are shown (Figure 6.3).  

 

 

Figure 6.3. A CellMaskTM plasma membrane stain was not suitable for determining cell 

area in LCLs. Healthy LCLs grow in clusters, which is problematic for the accurate 

quantification of cell size. Cells were co-labelled with CellMaskTM plasma membrane stain 

(green) and CTxB (orange). Nuclear counterstain (Hoechst 33342) is shown in blue. Scale 

bars are 50μm. 
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Subsequent live imaging of CTxB in LCLs was performed in the absence of a plasma 

membrane marker. CTxB fluorescence was significantly reduced in LCLs carrying a 

chr7:116222625T>C (CAV-ALS 1) mutation, compared to cells derived from neurologically 

normal controls (n=6, Mann-Whitney test, p=0.008). Fluorescence intensity was not 

significantly reduced compared to ALS patients without a CAV1/CAV2 enhancer variant (n=6, 

Mann-Whitney test, p>0.05) (Figure 6.4). In all cell lines, GM1 expression and CAV1 protein 

expression are positively correlated (r=0.6246, p=0.0196, Pearson correlation) (Figure 6.5), 

which is consistent with direct dependence of MLR integrity on CAV1 function. Representative 

images of all LCLs probed with CTxB are provided (see appendix 18).  
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Figure 6.4. Patient-derived LCLs carrying an ALS-associated CAV1/CAV2 enhancer 

variant have disrupted MLR. (A) Representative images of ganglioside GM1 labelling with 

CTxB (orange) from a non-ALS control line, a non-CAV-ALS control line, and a CAV-ALS line. 

Nuclear counterstain (Hoechst 33342) is shown in blue. Scale bars are 50μm. (B) 

Fluorescence intensity of CTxB is reduced in cells carrying a chr7:116222625T>C variant 

(CAV-ALS 1), compared to cells derived from neurologically normal controls (n=6, p=0.008, 

Mann-Whitney test). Fluorescence intensity was not reduced compared to ALS patients 

without a CAV1/CAV2 enhancer variant (n=3, p>0.05, Mann-Whitney test). ~1000 cells were 

imaged per biological repeat from 15 fields of view, for each condition. Error bars represent 

mean ±SD (*p<0.05).   
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Figure 6.5. CTxB fluorescence intensity and CAV1 protein expression are positively 

correlated. Relative CAV1 protein expression (% α-tubulin) (x-axis) was plotted against the 

mean CTxB fluorescence intensity (a.u) (y-axis) in the same cell line. A linear regression line 

was fitted (r=0.6246, p=0.0196, Pearson correlation), which shows a moderate, positive 

correlation between CTxB fluorescence intensity and relative CAV1 protein expression.  
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6.3.5. CRISPR/Cas9 enhancer editing reduces CAV1/CAV2 expression in 

differentiated SH-SY5Y cells 

 

Previous results suggest that patient-derived cells carrying an ALS-associated CAV1/CAV2 

enhancer mutation display reduced CAV1/CAV2 expression and disrupted MLR, which is 

likely to lead to neurotoxicity (Sawada et al., 2019). To confirm whether the 

chr7:116222625T>C enhancer mutation is responsible for observed down-regulation of CAV1 

at the mRNA and protein level, I planned initially to use CRISPR/Cas9 with homology-directed 

repair editing in an attempt to correct the mutant allele and restore genomic enhancer integrity 

and caveolin expression. Effective correction of the enhancer sequence would demonstrate 

whether discovered mutations are directly linked to observed changes in CAV1/CAV2 

expression. This approach would be technically challenging for three reasons: i) patient-

derived LCLs are difficult to transfect and grow from single cell clones, making them broadly 

unsuited to CRISPR experiments; ii) the targeted mutation is non-coding, which adds 

difficulties to using homology-directed repair, as the repair template cannot be edited to ablate 

the PAM site, thus permitting re-cleavage; iii) the lack of an appropriate PAM site in the 

immediate vicinity of chr7:116222625 would be likely to reduce homology-directed repair in 

these cells. 

To assess the feasibility of correcting the mutation, I first used a CRISPR/Cas9 plasmid 

(PspCas9(BB)-2A-Puro PX459) (Ran et al., 2013), and subsequently a spCas9/gRNA 

ribonucleoprotein (RNP) complex to target the chr7:116222625T>C patient mutation in LCLs. 

gRNAs were designed using the CRISPOR web tool (Haeussler et al., 2016) (available at: 

http://crispor.tefor.net), and three guides were chosen based on proximity to mutation, 

predicted on- and off-target effect, and the availability of suitable PAM sites. Single stranded 

oligonucleotide donor templates for homology-directed repair were designed using the 

Benchling CRISPR web tool (available at: https://www.benchling.com). 

Using the PX459 plasmid, I was unable to detect any editing as measured via TIDE or ICE 

using three different gRNA sequences (see appendix 19). One spCas9-gRNA RNP complex 

targeting the WT enhancer sequence 16bp downstream of the chr7:116222625T>C mutation 

site (gRNA sequence: 5-UUGUAAUCAGGAAUUUUCCA-3) was electroporated into non-ALS 

control-1 LCLs. Sanger sequencing and analysis using ICE at 7-days post electroporation, 

demonstrated only 6% editing efficiency (Figure 6.6). Given the technical challenges and the 

lack of a suitable PAM site, I did not continue with my efforts to correct the 

chr7:116222625T>C enhancer mutation in LCLs. Instead, I focused on disrupting the WT 

http://crispor.tefor.net/
https://www.benchling.com/
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enhancer sequence close to the mutation site (chr7:116222625) in a neuronal cell model to 

link disrupted enhancer function to reduced caveolin expression in the context of the CNS. 

 

 

 

Figure 6.6. CRISPR-directed perturbation of a CAV-enhancer region proximate to a 

patient mutation in LCLs. (A) Sanger sequencing traces demonstrating spCas9 cut site 

adjacent to the PAM site, and subsequent waveform decomposition in enhancer-edited cells. 

The position of chr7:116222625T>C mutation is indicated. The black line indicates the gRNA 

sequence. (B) Indel distribution within the CAV-enhancer region in CRISPR-edited LCLs from 

non-ALS control-1. Editing efficiency was calculated to be 6% (ICE).  
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To disrupt enhancer function in a CNS-relevant human neuronal cell, I used the same 

CRISPR/spCas9 RNP editing strategy to introduce an indel mutation proximal to the site of 

the chr7:116222625T>C mutation in immature SH-SY5Y cells, as permitted by the availability 

of PAM sites. SH-SY5Y cells were subsequently differentiated into neurons using an 

established protocol (Forster et al., 2016). The same gRNA (5-

UUGUAAUCAGGAAUUUUCCA-3) targeting a PAM site 16bp downstream of the 

chr7:116222625T>C mutation site, was used. Sanger sequencing and analysis using TIDE 

and ICE at 7-days post electroporation revealed 72% editing efficiency (both modalities) in 

undifferentiated SH-SY5Y cells, and the majority of introduced changes were a single 

nucleotide insertion (chr7:116222638T>TT) (Figure 6.7). To investigate the relative effect on 

caveolin expression, a commercially available gRNA targeting CAV1 exon 2 was chosen (to 

induce gene knockout via induction of a nonsense mutation) to serve as a positive control. In 

addition, a commercially available control gRNA targeting the hypoxanthine 

phosphoribosyltransferase (HPRT) locus served as a negative control (Liao et al., 2015).  
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Figure 6.7. CRISPR-directed perturbation of a CAV-enhancer region proximate to a 

patient mutation in SH-SY5Y cells. (A) Sanger sequencing traces demonstrating spCas9 

cut site adjacent to the PAM site, and subsequent waveform decomposition in enhancer-edited 

cells. The position of chr7:116222625T>C mutation is indicated. The black line indicates the 

gRNA sequence. (B) Indel distribution within the CAV-enhancer region in CRISPR-edited SH-

SY5Y cells. Editing efficiency was calculated to be 72% (TIDE / ICE). 
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CRISPR/SpCas9-edited SH-SY5Y cells were differentiated into a neuronal phenotype (Forster 

et al., 2016). Differentiation was evaluated through expression of PAX6 and measurements of 

total neurite length. Preliminary immunocytochemistry data suggest that PAX6 expression is 

reduced in differentiated SH-SY5Y cells (n-2, no statistical analysis was performed) (Figure 

6.8a, 6.8b, 6.8e). qRT-PCR data show variable PAX6 mRNA expression between 

differentiated and undifferentiated cells, with a significant reduction in the enhancer-edited line 

(n=3, p=0.0001, un-paired t-test). Reductions in PAX6 mRNA were not observed in 

differentiated HPRT control or CAV1 exon 2-targeted cells, compared to undifferentiated cells 

(Figure 6.8g). Alterations in neurite length were assessed via immunostaining for α-tubulin, 

followed by semi-automated quantification using the Simple Neurite Tracer plugin for FIJI. 

Total neurite length was increased in differentiated cells, compared to undifferentiated (n=4, 

p=0.01, paired t-test) (Figure 6.8c, 6.8d, 6.8f). Differentiated cells were harvested, and RNA 

was extracted for qPCR. I confirmed reduced expression of CAV1 (n=4, >99% reduction, 

p<0.0001, Welch’s t-test) and CAV2 (n=4, >99% reduction, p<0.0001, Welch’s t-test) mRNA 

in enhancer edited cells. CAV1/CAV2 mRNA expression was normalised relative to the 

housekeeping gene, GAPDH, which has previously been used as an internal reference in SH-

SY5Y cells (Fan et al., 2016) (Figure 6.9). CAV2 mRNA expression was reduced in the 

context of enhancer editing, but also by CAV1-coding editing, which likely reflects 

interdependence between the two genes (Drab et al., 2001).  
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Figure 6.8. Increased dendrite length and altered PAX6 expression suggests successful 

neuronal differentiation of SH-SY5Y cells. Representative images of PAX6 staining in (A) 

un-differentiated and (B) differentiated SH-SY5Y cells with a CRISPR-induced enhancer 

perturbation. (C, D) Representative images of α-tubulin (green) staining in undifferentiated and 

differentiated SH-SY5Y cells carrying a CRISPR-induced enhancer perturbation. Nuclear 

counterstain (Hoechst 33342) is shown in blue. Scale bars are 50μm. (E) Quantification of 

PAX6 fluorescence intensity for the whole cell; no statistical analysis was performed (n=2). (F) 

Differentiated SH-SY5Y cells show increased total neurite length, based on α-tubulin staining 

(n=4, *p<0.05, paired t-test). (G) qRT-PCR data suggest PAX6 expression is reduced in 

differentiated enhancer-edited cells compared to undifferentiated enhancer-edited cells (n=3, 

p<0.001, un-paired t-test). Error bars represent mean ±SD (*p<0.05; ***p<0.001). 

Representative images of PAX6 and α-tubulin staining from all experimental conditions are 

available (see appendices 20 and 21).   
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Figure 6.9. qPCR measurement of CAV1 mRNA and CAV2 mRNA reveals reduced 

expression in CAV-enhancer and CAV1-exon CRISPR-edited neurons, compared to 

CRISPR editing of HPRT. CRISPR-induced CAV-enhancer and CAV1-exon mutations 

correlated with reduced expression of (A) CAV1 (n=4, >99% reduction, p<0.0001, Welch’s t-

test) and (B) CAV2 (n=4, >99% reduction, p<0.0001, Welch’s t-test) mRNA. Expression was 

normalised relative to the housekeeping gene, GAPDH (Fan et al., 2016). Relative mRNA 

expression values were calculated using the 2-ΔΔCT method (Schmittgen and Livak, 2008). 

Data are presented on a logarithmic scale to account for wide-ranging numerical values. Error 

bars represent mean ±SD. (****p<0.0001).   
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6.4. Discussion 

CAV1 and CAV2 are integral membrane proteins located in caveolae in the outer cell 

membrane. They are also present intracellularly in the ER, Golgi apparatus, and transport 

vesicles (de Almeida, 2017). CAV1 and CAV2 form a stable hetero-oligomeric complex, which 

enables CAV2 to be trafficked to the plasma membrane. In the absence of CAV1, CAV2 forms 

monomers and dimers that localise to the Golgi network and become a target for degradation. 

Therefore, whilst CAV1 and CAV2 are often co-expressed, CAV2 expression in caveolae is 

largely dependent on the formation of the hetero-oligomeric complex with CAV1 (de Almeida, 

2017).  

CAV1 functions prominently in cell signalling and in the transport of cholesterol (Quest et al., 

2008). Cell signalling mediated by CAV1 function includes neurotrophic signalling with 

important implications for neuronal cell death (Head et al., 2011, Mandyam et al., 2017). 

Indeed, premature apoptosis has been implicated in motor neuron loss in ALS (Guegan and 

Przedborski, 2003). In addition, dysregulated cholesterol metabolism is well described in ALS. 

High levels of cholesterol are toxic to neurons, and lower levels of cholesterol provide a 

neuroprotective phenotype (Abdel-Khalik et al., 2017). Interestingly, neuron-specific up-

regulation of CAV1 in the SOD1G93A ALS mouse model has been shown to extend survival 

and improve motor function (Sawada et al., 2019). Up-regulation of CAV1 is also 

demonstrated to improve cognition and hippocampal plasticity in aged mice, as well as 

promote axonal and dendritic growth in primary neurons, making it an area of interest for 

therapies targeting neurodegenerative disorders (Head et al., 2011, Mandyam et al., 2017).  

  

6.4.1. CAV1 and CAV2 expression are reduced in patient-derived cells carrying an 

ALS-associated enhancer variant 

In the present study, I hypothesised that discovered ALS-associated CAV1 enhancer 

mutations contribute to pathogenicity via downregulation of functional CAV1 protein. 

Therefore, immunoblotting was used to evaluate whether there was a difference in CAV1 

protein expression between control and patient samples. Initially, the relative expression of 

CAV1 protein was explored using LCLs, as this was the only biological material available from 

patients with ALS-associated CAV1 enhancer mutations. LCLs are relatively simple to 

maintain, they exhibit a minimal somatic mutation rate during continuous culture, and they 

provide an unlimited source of biomolecules, which makes them useful for genetic screening, 

genotype-phenotype correlation studies, and functional assays (Mohyuddin et al., 2004, 
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Hussain and Mulherkar, 2012). An important caveat to their use is the fact that they are not 

neuronal, which limits their applicability for modelling diseases such as ALS. 

LCL lysis for subsequent CAV1 immunoblotting was initially performed using IP lysis buffer; 

however, I did not detect a signal when probing with a validated anti-caveolin-1 antibody (see 

appendix 22). CAV1 is a membrane-bound protein; therefore, I hypothesised that the absence 

of the signal was due to CAV1 being expressed in an insoluble membrane fraction. I decided 

to trial urea buffer, which is capable of dramatically enhancing the solubility of membrane-

bound proteins (Molloy et al., 1998, Harris et al., 2017). Use of this buffer meant it was not 

possible to quantify total protein within cell lysates accurately using a Bradford protein assay, 

which is incompatible with urea at a concentration higher than 3.0M (Gotham et al., 1988). 

However, I found the BCA assay to be compatible, as it provided an accurate quantification of 

total protein within lysates (Krieg et al., 2005). Had I still been unable to detect a signal 

following urea-based cell lysis, I would have considered subcellular fractionation (de Araujo 

and Huber, 2007) to isolate the membrane region of LCLs in order to provide a more accurate 

detection of potentially low abundant CAV1.  

A previous member of our group had assessed the specificity of the anti-CAV1 antibody, 

following overexpression and targeted knockdown of CAV1 in HEK293 cells. The CAV1 

protein signal was detectable when overexpressed in lysates that had been generated using 

IP lysis buffer. I speculate that the CAV1 signal is not within the dynamic range at endogenous 

levels in LCLs, where expression is low relative to kidney-derived cells 

(https://www.proteinatlas.org). This antibody detected CAV1 at the predicted molecular weight 

of ~20kDa (Figure 6.1a), which gave me confidence in the use of this antibody moving 

forward. In the present study, I observed a reduction in CAV1 expression at the protein level 

in cells with a chr7:116222625T>C enhancer mutation, compared to neurologically normal 

controls (n=3, 89% reduction, p=0.05, Mann-Whitney test), but not compared to ALS patients 

without a CAV1 enhancer mutation (n=3, p>0.05, Mann-Whitney test). In contrast, cells 

carrying an ALS-associated chr7:115994269:C>T mutation did not show reduced expression 

of CAV1 protein (n=3, p>0.05, Mann-Whitney test) (Figure 6.1b, 6.1c). I speculate that the 

latter mutation may influence transcription only in CNS cells, or alternatively this variant may 

be non-functional. Attempts to evaluate CAV2 expression at the protein level were not possible 

due to lack of a validated commercially available antibody (see appendix 22).   

The observed reduction in CAV1 protein expression in the patient with a chr7:116222625T>C 

enhancer mutation does not confirm malfunction at the transcriptional level, which is a 

necessary prediction of the present model of enhancer dysfunction. Therefore, qRT-PCR was 

used to evaluate the relative expression of CAV1 and CAV2 at the mRNA level in LCLs. My 

https://www.proteinatlas.org/
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qRT-PCR data shows a similar trend in CAV1 mRNA expression compared to immunoblotting, 

concurrent with a significant reduction in cells with the chr7:116222625T>C mutation (n=3, 

p=0.003, Welch’s t-test) (Figure 6.2a). Moreover, I observed CAV2 to follow a similar 

expression pattern across the various cohorts, with reduced expression level in the cells 

harbouring a chr7:116222625T>C mutation compared to neurologically normal controls (n=3, 

p=0.002, Welch’s t-test) (Figure 6.2b). From these data, it can be inferred that CAV1/CAV2 

expression is affected at both the transcriptional and translational level, which led me to 

investigate this further using CRISPR/Cas9 genome editing. 

 

6.4.2. Patient-derived LCLs carrying an ALS-associated CAV enhancer variant have 

disrupted MLR 

Prior to genome editing, I investigated ganglioside metabolism (see Chapter 5) as a potential 

mechanism linked to ALS-associated CAV1/CAV2 enhancer variants. As previously 

mentioned, ganglioside GM1 is highly expressed in the CNS and is localised to MLR, which 

are important for transmembrane signalling (Vajn et al., 2013). GM1 is internalised via 

caveolae (Crespo et al., 2008), and is shown to be responsible for the trafficking and 

maintenance of caveolae domains (Singh et al., 2010). The association of GM1 with MLR 

makes this ganglioside a useful target for measuring MLR integrity. My data indicate that CTxB 

expression may influence CAV1 expression (Figures 6.4, 6.5) and, by extension, MLR 

integrity may be influenced by CAV1 expression. This is consistent with previous work 

demonstrating that neuron-specific upregulation of CAV1 increases CTxB expression in the 

spinal cord of the SODG93A ALS mouse model (Sawada et al., 2019).     

The use of CTxB for the labelling of ganglioside GM1 and MLR has been discussed previously 

(see section 5.4.2). Live imaging of ganglioside GM1 using a CTxB molecular probe was 

challenging, as LCLs are non-adherent. To encourage cell adherence, I tested three different 

factors used for coating culture plates prior to seeding: fish gelatin (Huang et al., 2018), type 

I collagen (Heino, 2007), and plasma fibronectin (Hsiao et al., 2017). Of these factors, plasma 

fibronectin most effectively encouraged cell adherence following a 30-minute incubation at 

5µg/mL, whereas cells were mobile when visualised under the microscope for plates pre-

coated in fish gelatin or type 1 collagen. Plasma fibronectin is an extracellular matrix 

glycoprotein present in blood plasma and is a key modulator of cellular adhesion (Hsiao et al., 

2017). When measuring the fluorescence intensity of cells, it is ideal to display the data as a 

percentage of cell area to account for variability in cell sizes between groups. Therefore, I 

attempted co-labelling the LCLs with CellMaskTM, a fluorescent lipophilic membrane dye 
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(Takov et al., 2017), to calculate cell size. However, LCLs grow in clusters, making it difficult 

for automated software to detect individual cells (Figure 6.3). This perhaps limits the reliability 

of my data, as it suggests that the mean fluorescence intensity is not representative of 

individual cells. However, my results were consistent across all biological repeats of this 

assay, despite variations between the sizes of the cell clusters. I have previously linked an 

ALS-associated GLT8D1 mutation to disrupted MLR (Chapter 5), and the results in the present 

chapter may suggest a convergence between GLT8D1- and CAV1-ALS disease pathways.  

 

6.4.3. CRISPR/Cas9 genome editing of human cells 

To determine whether the chr7:116222625T>C enhancer mutation is responsible for observed 

down-regulation of CAV1 at the mRNA and protein level, I planned to use CRISPR/Cas9 

genome editing to correct the mutation and restore genomic enhancer integrity. Effective 

correction of the enhancer sequence would demonstrate whether discovered mutations are 

directly linked to observed changes in CAV1/CAV2 expression.   

LCLs have a relatively low transfection efficiency, and to my knowledge, the highest reported 

editing efficiency in this cell line using the CRISPR system to induce homology-directed 

recombination, was ~20% (Johnston et al., 2019). This study utilised a Cas9-GFP-gRNA 

plasmid, but there are key limitations to plasmid-based approaches for CRISPR-induced 

editing. For example, cells must be amenable to transfection, plasmids may randomly 

integrate into the host genome, off-target effects can occur due to prolonged Cas9 expression, 

and plasmids demonstrate variable CRISPR editing efficiencies (Kim et al., 2014). The authors 

recommended delivering Cas9-RNP-gRNA complexes (Johnston et al., 2019), which was 

previously shown to be feasible in LCLs (Jiang et al., 2018). Delivery of Cas9-RNP complexes 

has been shown to provide more efficient on-target cleavage and reduce off-target cleavage, 

compared to plasmid transfection (Kim et al., 2014, Liang et al., 2015). Moreover, the Cas9-

gRNA-RNP complex can be electroporated into the cell and is degraded over time, which limits 

the potential for off-target effects (Schumann et al., 2015). Overall, studies that have used the 

RNP delivery system have consistently reported high editing efficiencies across a variety of 

cell lines (Hendel et al., 2015, Lin et al., 2014).   

Initially, I planned to correct the chr7:116222625T>C enhancer mutation in LCLs via 

CRISPR/Cas9-based editing. To assess the feasibility of this, I used the RNP delivery system 

to target the WT enhancer sequence, by introducing an indel mutation in LCLs from a 

neurologically normal patient. Analysis using TIDE (Brinkman et al., 2014) demonstrated only 
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achieved 6% editing efficiency (Figure 6.6). In order to generate a pure population of CRISPR-

edited cells, the LCLs would need to be serially diluted into single cell colonies, and 

subsequently expanded over several months. Unfortunately, LCLs do not readily expand from 

single cell colonies, rather they aggregate into clusters to remain healthy, and at lower 

concentrations, their death rate increases (Hussain and Mulherkar, 2012). However, a recent 

study described an efficient method of generating of a pure population of CRISPR-edited LCLs 

via fluorescent activated cell sorting, allowing for the expansion of transfected groups of cells 

in a matter of weeks (Johnston et al., 2019). This is a new approach that I may have 

considered pursuing with more time.  

Given the technical challenges and the lack of a suitable PAM site, I did not continue with my 

efforts to correct the chr7:116222625T>C enhancer mutation in LCLs. Instead, I focused on 

targeting the WT enhancer sequence 16bp downstream of the chr7:116222625T>C mutation 

site in a neuronal model to place this mutation in the context of the CNS. I chose SH-SY5Y 

cells, a human neuroblastoma line that has been extensively used in Parkinson’s and 

Alzheimer’s research (Xicoy et al., 2017, Agholme et al., 2010). There are several advantages 

to the use of SH-SY5Y cells; for example, their continuous proliferation at the undifferentiated 

stage enables the user to generate a large biomass of post-mitotic neurons with relative ease 

and minimal cost. Moreover, SH-SY5Y cells are human-derived; therefore, they express many 

human-specific proteins and protein isoforms, which are not inherently present in primary 

rodent cultures (Kovalevich and Langford, 2013). 

I used the RNP complex delivery system to introduce an indel mutation proximal (16bp 

downstream) to the patient enhancer mutation site in SH-SY5Y cells. My experiments did not 

include a DNA repair template, as I was aiming to disrupt the WT enhancer. CRISPR edits 

were evaluated through a combination of Sanger sequencing and waveform decomposition 

analysis (Brinkman et al., 2014). Both TIDE and ICE analysis platforms demonstrated similarly 

high levels of editing efficiency (~72%) in my SH-SY5Y model (Figure 6.7). Efficiently edited 

cell pools are acceptable alternatives to clonally isolated cells with specific knockouts and are 

more easily attainable (Ran et al., 2013). However, edited pools have some limitations: DNA 

double strand breaks are often associated with undesired off-target effects such as 

translocations (Kosicki et al., 2018), or the activation of p53 (Haapaniemi et al., 2018), which 

may differentially affect the properties of individual cells.  
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6.4.4. Generation of a CRISPR-edited neuronal model 

My next aim was to differentiate the CRISPR-edited SH-SY5Y cells into neurons, in order to 

model CAV1-ALS in the context of the CNS. Differentiated SH-SY5Y cells are morphologically 

similar to primary neurons, displaying extended processes, decreased proliferation rate, and 

increased expression of neuron-specific markers (Gordon et al., 2013). There are numerous 

methods of inducing SH-SY5Y neuronal differentiation, and the best characterised is through 

the addition of 10µM retinoic acid to the culture media. Retinoic acid is a vitamin A derivative 

with known growth-inhibiting and cellular differentiation-promoting properties (Melino et al., 

1997).  

In order to generate a neuronal model, CRISPR-edited human SH-SY5Y neuroblastoma cells 

were differentiated into neurons over a one-week period, as previously described (Forster et 

al., 2016). Neuronal differentiation was initiated one-week post nucleofection. Successful 

differentiation was initially evaluated via PAX6 expression. Fully differentiated neurons are 

post-mitotic, and PAX6 expression is usually discontinued in the precursor progeny following 

cell cycle exit. Therefore, post-mitotic neurons do not normally express detectable levels of 

the protein (Hsieh and Yang, 2009, Sebastian-Serrano et al., 2012). Preliminary staining for 

PAX6 suggests reduced expression in differentiated cells, compared to undifferentiated (n=2, 

no statistical analysis was performed) (Figure 6.8). However, PAX6 reduction was confirmed 

at the mRNA level in enhancer-edited cells (n=3, p<0.001, un-paired t-test) (Figure 6.9). Co-

staining for other neuronal markers such as NeuN (Gusel'nikova and Korzhevskiy, 2015) 

would have strengthened the characterisation of this model; however, additional readouts 

were investigated. Differentiated cells presented with extended neuritic processes (n=4, 

p=0.01, paired t-test) (Figure 6.8). I also observed reductions in growth rate and cell 

clustering, which is consistent with previous studies (Forster et al., 2016). An overview of the 

experimental procedure used to generate a CRISPR-edited neuronal model is shown (Figure 

6.10).  
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Figure 6.10. Schematic representation of the generation of a neuronal model of CAV-

associated ALS. Cas9-gRNA complexes targeting the CAV-WT enhancer sequence were 

electroporated into SH-SY5Y cells at day 0 and cells were subsequently expanded over a 

period of one week. At day 7, editing efficiency was evaluated via Sanger sequencing, TIDE, 

and ICE, and cells were differentiated into a neuronal phenotype as previously described 

(Forster et al., 2016). At day 14, differentiated neurons were characterised via 

immunocytochemistry and measurements of total neurite length; and CAV1/CAV2 expression 

was assessed via qRT-PCR.  

 

 

 

CAV1 has been shown to inhibit neuronal differentiation by decreasing neurite outgrowth and 

branching in PC12 cells (Gaudreault et al., 2005). In addition, CAV1 is shown to block the 

formation of neurites and phosphorylation of ERK in bFGF-treated N2A cells (Kang et al., 

2006). However, PC12 and N2A cells are derived from rat and mouse, respectively (Hu et al., 

2018, Namsi et al., 2018); therefore, to be consistent with my previous work, I chose to model 

the CAV1-enhancer variant in a human-derived neuronal cell line. CAV1 has been 

demonstrated to inhibit neuronal differentiation of neural progenitor cells via the 

downregulation of VEGF signalling and the inhibition of p-p44/42MAPK, p-Akt and p-Stat3 (Li 

et al., 2011). In the current study, CAV1 enhancer-edited SH-SY5Y cells did not display 

enhanced neurite development, compared to HPRT controls and unedited cells (n=3, p>0.05, 

paired t-test) (Figure 6.8). However, PAX6 expression was significantly reduced in the 

differentiated cells carrying a CAV1 enhancer perturbation, compared to CRISPR control cells 

with edited HPRT (n=3, p=0.0294, un-paired t-test) (Figure 6.8). This result suggests that a 

reduction in CAV1 expression improves neuronal differentiation, which is consistent with 
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previously published work (Kang et al., 2006, Li et al., 2011). It would be expected, therefore, 

that disruption of the CAV1 exon would have a similar effect on PAX6 expression; however, 

this was not the case in the present study. This may be because of unmeasured effects on 

additional genes under control of the same enhancer. 

In my neuronal model, I observed reductions in CAV1 (n=4, p<0.0001, Welch’s t-test) and 

CAV2 (n=4, >99%, p<0.0001, Welch’s t-test) mRNA, consistent with a functional effect of the 

enhancer on expression (Figure 6.7). Reductions in CAV1/CAV2 expression greater than the 

editing efficiency are notable; however, phenotypic change in excess of editing efficiency is 

well described and may be a consequence of CRISPR interference (Gaj et al., 2017). 

Importantly, this mutation does not mimic exactly the one seen in the patient, and it is possible 

that observed effects on expression are a result of an artefact. However, it is unlikely that an 

unpredictable off-target effect produced the exact changes predicted by our other lines of 

evidence. It is very difficult to determine whether there were any off-target effects resulting 

from my experiment, although use of the RNP delivery system will have helped to mitigate this 

(Lin et al., 2014). One consideration would be to utilise bulk RNA-sequencing; however, this 

usually reflects the average gene expression across thousands of cells by combining genomic 

readouts from individual cells to generate an overall representation. As such, single-cell RNA 

(scRNA) sequencing has become more favourable for studying the key biological questions 

of cell heterogeneity, although this technology is still in its developmental stage. Compared to 

bulk RNA sequencing, scRNA sequencing produces nosier and more variable data. Both 

methodologies introduce amplification errors, which often leads to imbalanced proportions or 

complete lack of variant alleles (Chen et al., 2019).  

Until recently, it was challenging to introduce or correct disease-causing genetic variants 

efficiently without causing excess by-products (Jinek et al., 2012, Cong et al., 2013, Mali et 

al., 2013, Kosicki et al., 2018). However, prime editing has since been described, which is a 

‘search-and-replace’ genome editing technology that mediates targeted indels as well as all 

12 possible base-to-base conversions in human cells without requiring double-strand breaks 

or donor DNA templates (Anzalone et al., 2019). This CRISPR technology could be applied to 

efficiently correct the chr7:116222625T>C enhancer mutation and determine whether it is 

responsible for the downregulation of CAV1. I am planning to pursue this strategy in the future.  

 

 6.4.5. Summary 

Genetic discoveries in ALS have focused on high effect variants within coding genes in 

patients with autosomal dominant inheritance. The non-coding genome is thought to contain 
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missing heritability (Pallares, 2019). A new approach was developed to discover genetic 

association within gene enhancer-elements. This new methodology successfully identified and 

validated ALS-associated genetic variation within enhancer and coding regions associated 

with CAV1, suggesting CAV1 is a new ALS gene.  

This work builds upon previous observations that CAV1 function is neuroprotective in 

neurodegenerative disease (Head et al., 2010, Head et al., 2011) and in ALS in particular 

(Sawada et al., 2019). Until now, it was not clear whether CAV1 dysfunction was a cause or 

effect of neuronal toxicity. However, discovery of genetic risk associated with CAV1/CAV2 

expression places this pathway upstream in the development of disease. Using patient-

derived cells, I have shown that ALS-associated genetic variation within CAV1/CAV2 

enhancers reduces the expression of CAV1 and CAV2 and disrupts MLR, which is consistent 

with impaired neurotrophic signalling and consequently neurodegeneration (Sawada et al., 

2019). Moreover, CRISPR/SpCas9 perturbation proximate to this mutation reduced CAV1 and 

CAV2 expression in human neuronal cells, suggesting that this enhancer-region is functional 

within the CNS. Future work should investigate CTxB expression in my CRISPR-edited 

neuronal model to validate the findings in LCLs regarding the role of CAV1/CAV2 on MLR 

integrity. Data presented in this chapter provide links with my previous work, as both CAV1 

and GLT8D1 appear to function prominently in the maintenance of MLR. Together, these 

results place perturbed ganglioside metabolism upstream in the pathogenesis of ALS (see 

Chapter 5). 

Enhancer function is thought to depend on the binding of TFs (Koch et al., 2011). Current 

understanding of function within enhancer regions is limited (Levo et al., 2015), in part because 

of a paucity of variants with validated biological impact. This incomplete understanding is 

reflected in our failure to link a TF to observed changes in CAV1/CAV2 expression (data not 

shown). The discovery of ALS-associated CAV1/CAV2 enhancer variations forms a platform 

for improved understanding of molecular function within these regions. Moreover, the 

discovery of disease-associated genetic variation is a means of overcoming a reliance on un-

physiological in vitro assays to understand enhancer biology (Gasperini et al., 2020). 

The premise of personalised medicine for complex disease is that gene-environment 

interactions leading to disease are likely to be heterogeneous (Li et al., 2019). It is possible 

that in a significant number of ALS patients, genetic mutations leading to reduced CAV1/CAV2 

function are a cause of neuronal toxicity. Upregulation of CAV1 is in development as a 

therapeutic tool (Head et al., 2011) (www.cavogene.com), and data presented here suggest 

that this could be applied to genetically selected ALS patients in a personalised medicine 

approach. 
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Chapter 7. Conclusions and future directions 
 

 

7.1. Conclusions 
 

ALS is a universally fatal and relatively common neurodegenerative disease. 

Neurodegenerative diseases exhibit late age of onset and it is therefore reasonable to assume 

that genetic mutations are upstream in disease pathogenesis. Discovery of genetic variants of 

ALS have been instrumental in elucidating pathological mechanisms that cause motor neuron 

loss (Renton et al., 2014). Here I describe the discovery and characterisation of novel ALS-

associated genes: GLT8D1, CAV1, and CAV2. This project has focused primarily on the 

generation of cell and animal models to experimentally evaluate the pathogenicity of 

discovered variants. GLT8D1 is part of a large family of proteins called glycosyltransferases, 

and members of this protein group have been previously implicated in neurodegenerative 

diseases, including ALS (Ariga, 2014, Dodge et al., 2015). Moreover, I have provided new 

evidence that genetic mutations within the glycosyltransferase, EOGT, are significantly 

associated with sALS (Moll et al., 2020). CAV1 function is already implicated in the 

pathogenesis of ALS (Sawada et al., 2019), and is currently being developed as a novel ALS 

therapy (www.cavogene.com).   

 

7.1.1. ALS-associated GLT8D1 mutations act via a dominant-negative mechanism 

 

The majority of this project focused on understanding how newly discovered ALS-associated 

G78W and R92C variants in GLT8D1 cause loss of motor neurons, and identifying potential 

therapeutic targets for neuroprotection. Initially, I engineered plasmid constructs expressing 

WT and mutant forms of GLT8D1 for transient overexpression in neuronal and non-neuronal 

cells. Overexpression of GLT8D1-R92C produced the more toxic phenotype in MTT and LDH 

assays, which is in line with the observed clinical severity. Observed in vitro cellular toxicity is 

still consistent with an age-of-onset disease because my overexpression model does not 

reflect the physiological expression of mutant GLT8D1 in the patients. Rather, GLT8D1-ALS 

patients are likely to present with lower levels of the mutant protein, which may be 

counteracted by homeostatic mechanisms for decades prior to disease onset.  

 

The plasmid constructs expressing FLAG-tagged WT and mutant GLT8D1 were used to 

engineer stable isogenic HEK293 cells with tetracycline-inducible expression of GLT8D1-WT 

and GLT8D1-R92C. These lines were initially generated for the production of purified 

http://www.cavogene.com/
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recombinant protein for the assessment of glycosyltransferase function. I hypothesised that 

the presence of either mutation would impact enzymatic activity, as ALS-linked GLT8D1 

mutations cluster proximal to the proposed ligand-binding site (Cooper-Knock et al., 2019). I 

was the first to publish information regarding the substrate specificity of GLT8D1, and in doing 

so, I observed a mutation-specific reduction in enzymatic activity with UDP-galactose as the 

target substrate. I validated my findings following immunoprecipitation of recombinant protein 

from HEK293 cells transiently transfected with FLAG-tagged GLT8D1-WT, GLT8D1-G78W, 

and GLT8D1-R92C constructs. Similarly, I observed reductions in enzyme activity for both 

mutations compared to WT with UDP-galactose as the target substrate, with R92C producing 

the greater effect. In both instances, reduced enzyme velocity was commensurate with 

increased substrate affinity, which could impair cycling of the substrate through the enzyme. I 

propose that higher substrate affinity could cause competitive antagonism of WT function and 

a dominant negative effect, which would explain why ALS-associated GLT8D1 mutations are 

autosomal dominant. 

 

Precedence exists for dominant-negative mutations in other ALS-associated genes, notably 

TARDBP and OPTN (Shen et al., 2015, Guerrero et al., 2019). I cautiously note the example 

of SOD1 mutations that were originally thought to cause ALS through loss-of-function but were 

subsequently shown to cause a gain-of-function toxicity arising from misfolding of the SOD1 

protein (Boillee et al., 2006). It is possible that G78W and R92C mutations in GLT8D1 increase 

the proteins’ propensity to misfold. My discovery implicates dysregulated glycosyltransferase 

function in the pathogenesis of ALS, making it an attractive new therapeutic target. 

 

The next stage of the project was to investigate whether GLT8D1 mutations are toxic within a 

whole organism. Using zebrafish as the model organism, I overexpressed human mutated and 

WT GLT8D1 mRNA. Whilst embryo survival was unaffected, motor function was specifically 

impaired in zebrafish larvae expressing either the GLT8D1-R92C or GLT8D1-G78W mutated 

mRNA at 5dpf. This is consistent with a specific effect on the motor system. Further supporting 

a role for GLT8D1 in motor function, knockdown of the endogenous glt8d1 orthologue in 

zebrafish embryos produced a specific deficit of motor function without observed 

morphological abnormalities at 5dpf. Overlap between the effects of glt8d1 knockdown and 

overexpression of mutated GLT8D1 mRNA is consistent with my proposed dominant-negative 

mechanism.  
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7.1.2. GLT8D1 mutations fragment the Golgi and disrupt ganglioside-containing 

membrane lipid rafts 

 

The final stages of my work on GLT8D1 focused on linking discovered mutations to a disease 

pathway. The most likely candidate was ganglioside metabolism, as various 

glycosyltransferases are shown to be key modulators of this pathway (Moll et al., 2020). 

Gangliosides are sialic acid-containing glycosphingolipids that are particularly abundant within 

the CNS (Vajn et al., 2013). Gangliosides within the CNS are typically synthesized in the ER 

from a lactosylceramide precursor and are remodelled during transit from the cis- to the trans-

Golgi network by a series of glycosyltransferase enzymes that incorporate galactose and 

GalNAc groups (Moll et al., 2020). Consistent with a role in this process, GLT8D1 shows 

prominent CNS expression; moreover, GLT8D1 carries a Golgi localisation signal and is able 

to accept galactose as a substrate. Mature gangliosides are carried to the cell surface where 

they function prominently in cell signalling (Yu et al., 2012) as well as enhance neurite 

outgrowth and survival (Kittaka et al., 2008). Interestingly, autoantibodies against specific 

gangliosides produce an inflammatory disease of spinal motor neurons known as multifocal 

motor neuropathy with conduction block (Harschnitz et al., 2014), which is a common 

differential diagnosis of ALS. Altered levels of gangliosides have been reported in animal 

models of ALS and in post-mortem CNS tissue from ALS patients (Dodge et al., 2015, Ariga, 

2014). The role of gangliosides in maintaining CNS integrity, coupled with various lines of 

evidence implicating their role in neurodegenerative disease, suggests that dysregulation of 

this pathway would likely explain the loss of motor neurons in our patient cohort.   

 

I investigated ganglioside expression in stable isogenic HEK293 cells expressing GLT8D1-

WT and GLT8D1-R92C, and showed that an R92C mutation reduced the fluorescence 

intensity of sialic acid marker, WGA, and ganglioside GM1 marker, CTxB, at the plasma 

membrane. I propose that the reduction in glycosyltransferase activity caused by the GLT8D1 

mutations negatively impacts on ganglioside signalling. Gangliosides are important 

constituents of membrane lipid rafts (MLR), which have a key role in the organisation of cell 

signalling and neuronal survival. Disrupted MLR are associated with impaired neurotrophic 

signalling and consequent neurodegeneration (Sawada et al., 2019, Schmick and Bastiaens, 

2014). My findings place dysregulated ganglioside metabolism upstream in the pathogenesis 

of GLT8D1-ALS, and provide justifiable cause to investigate gangliosides, and GM1 in 

particular, as a potential therapeutic target in patients with ALS-linked GLT8D1 mutations. 

Indeed, gangliosides have previously been explored as potential therapeutic targets in a 

variety of neurodegenerative disorders, including ALS (Knight et al., 2015, Schneider et al., 
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2015a, Henriques et al., 2017). Future work will focus on confirming whether discovered ALS-

associated GLT8D1 mutations do indeed impair neurotrophic signalling and whether this is 

key to the development of neurodegeneration.   

 

GLT8D1 contains an arginine-lysine motif in its cytoplasmic domain, which likely represents a 

Golgi localisation signal (Uemura et al., 2015). To test for this, I transiently overexpressed 

GFP-tagged constructs expressing WT GLT8D1 sequences in HEK293 and N2A cells, and 

observed localisation to the Golgi network. The presence of G78W or R92C mutations in 

GLT8D1 did not affect the localisation signal. Glycosyltransferases have previously been 

shown to influence Golgi architecture (Nilsson et al., 1996, Petrosyan and Cheng, 2013). 

Moreover, Golgi fragmentation is a well-described feature of neurodegenerative diseases, 

including ALS, and is associated with the dysregulated trafficking of Golgi secretory proteins 

(Sundaramoorthy et al., 2015). Based on these lines of evidence, I hypothesised that 

mutations within GLT8D1 would cause fragmentation of the Golgi network. To investigate this, 

I stably overexpressed GLT8D1-WT and GLT8D1-R92C in isogenic HEK293 cells and 

performed immunocytochemistry using cis- and trans-Golgi markers GM130 and TGN46, 

respectively. My preliminary data indicate that an R92C mutation causes fragmentation of both 

the cis- and trans-Golgi compartments. This result may explain the aforementioned mutation-

specific impairment of ganglioside metabolism, as ganglioside biosynthesis is 

compartmentalised in the Golgi and is organised in distinct units formed by associations of 

particular glycosyltransferases (Giraudo and Maccioni, 2003). Therefore, I propose that 

fragmentation of the Golgi network may cause dysregulated ganglioside metabolism, both of 

which may be an upstream cause of impaired glycosyltransferase function. I have summarised 

my key findings from the experimental evaluation of ALS-associated GLT8D1 mutations in 

Figure 7.1.   
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Figure 7.1. Graphical summary of key findings from the characterisation of pathogenic 

variants in GLT8D1. Exosome sequencing in an autosomal dominant ALS pedigree identified 

heterozygous p.R92C mutations in GLT8D1 that co-segregate with disease. Targeted 

sequencing in 103 familial and young sporadic ALS patients from the North of England 

identified five additional patients with two missense mutations in GLT8D1: p.R92C and 

p.G78W. Sequencing of an ALS international cohort confirmed significant ALS-association 

with genetic variation in exon 4 of GLT8D1 in familial ALS patients, including three additional 

rare deleterious missense mutations. G78W and R92C variants are toxic to HEK293 and N2A 

cells when overexpressed, and an R92C change disrupts MLR integrity. Preliminary data 

suggest an R92C mutation causes fragmentation of the Golgi network. Both G78W and R92C 

mutations in GLT8D1 impair the glycosyltransferase activity of the enzyme. Knockdown of 

endogenous glt8d1, and overexpression of mutant human GLT8D1 mRNA, produces motor 

deficits in zebrafish larvae 5dpf. These data indicate a loss of function mechanism and a 

possible dominant negative effect. Figure adapted from (Cooper-Knock et al., 2019).  
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7.1.3. CAV1/CAV2 enhancer mutations also disrupt membrane lipid rafts 
 

The final stage of my project was to investigate novel ALS-associated enhancer variants in 

CAV1 / CAV2. CAV1 and CAV2 are integral membrane-bound proteins located in the caveolae 

of the plasma membrane. Together they form a stable hetero-oligomeric complex, suggesting 

that they are often co-expressed (de Almeida, 2017). CAV1 functions prominently in 

neurotrophic signalling, and dysregulated cell signalling has important implications for 

neuronal cell death (Head et al., 2011, Head et al., 2010, Mandyam et al., 2017). The role of 

CAV2 is far less studied than CAV1 (de Almeida, 2017). Enhancers are non-coding regulatory 

sequences that modulate expression of target genes through the binding of transcription 

factors (Koch et al., 2011). Physical interaction between an enhancer and the promoter of the 

target gene is mediated by DNA looping (Pennacchio et al., 2013).  

 

I investigated two CAV1/CAV2 enhancer variants in patient-derived LCLs by evaluating the 

expression of CAV1 and CAV2 at the mRNA and protein levels. One of the enhancer 

mutations (chr7:116222625T>C) correlated with a reduction in the expression of CAV1 mRNA 

and protein, as well as a reduction in CAV2 mRNA. A second enhancer mutation 

(chr7:115994269:C>T) did not affect the expression of CAV1 or CAV2 at either the mRNA or 

protein level. I speculate that this variant may influence transcription only in CNS cells, or 

alternatively this variant may be non-functional.  

 

To validate whether the chr7:116222625T>C mutation causes a reduction in CAV1/CAV2 

expression, I utilised CRISPR/Cas9 genome editing to disrupt the WT enhancer in a human 

neuronal model to place my findings in the context of the CNS. Guide RNAs were designed to 

specifically target a region proximal to the patient mutation site (~16bp downstream) in SH-

SY5Y cells. I demonstrated 72% editing efficiency in immature SH-SY5Y cells via analysis 

using two similar platforms: TIDE and ICE. CRISPR-edited SH-SY5Y cells were subsequently 

differentiated into neurons using a previously established method (Forster et al., 2016), and 

successful differentiation was confirmed through alterations in Pax6 expression and total 

neurite length, which was quantified through staining with α-tubulin. Fully differentiated 

neurons showed reductions in CAV1 and CAV2 expression at the mRNA level, supporting the 

above correlation as possible cause that the enhancer is important for CAV1/CAV2 

expression.  

 

The discovery that an enhancer mutation within CAV1/CAV2 causes downregulation of 

CAV1/CAV2 mRNA and protein builds on previous lines of work highlighting CAV1 as potential 

therapeutic target for neurodegenerative disease. For example, neuron-specific up-regulation 
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of CAV1 in the SOD1G93A ALS mouse model has shown to extend survival and improve motor 

function (Sawada et al., 2019). Up-regulation of CAV1 is also demonstrated to improve 

cognition and hippocampal plasticity in aged mice, as well as promote axonal and dendritic 

growth in primary neurons (Head et al., 2011, Head et al., 2010, Mandyam et al., 2017).  

 

As previously mentioned, CAV1 and CAV2 are structural components of caveolae, which are 

small vesicular invaginations of MLR that are important for signal transduction (Sowa et al., 

2001). Therefore, I hypothesised that the observed mutation-specific reduction in CAV1 and 

CAV2 expression would negatively impact MLR integrity. To test for this, I performed live 

imaging of ganglioside GM1 using CTxB in patient-derived LCLs as a measure of MLR 

integrity. I observed a reduction in CTxB expression in the chr7:116222625T>C patient line 

compared to neurologically normal control patients without a CAV1/CAV2 enhancer variant. 

Strikingly, CAV1 protein expression was shown to positively correlate with the fluorescence 

intensity of CTxB, suggesting a direct dependence of CAV1 expression on MLR integrity. 

Indeed, gangliosides, particularly GM1, are shown to be responsible for the trafficking and 

maintenance of these caveolae domains (Singh et al., 2010). I propose a convergence 

between GLT8D1- and CAV-ALS disease pathways via disrupted MLR integrity and 

subsequently dysregulated neurotrophic signalling.  

 

 

7.1.4. Identified genetic risk factors converge on disruption of neurotrophic signalling  

 

Neurotrophic factors are endogenous signalling proteins that promote the survival and integrity 

of specific neuronal populations, as well as stimulating neuronal differentiation (Ekestern, 

2004). Impaired neurotrophic signalling pathways, and the brain-derived neurotrophic factor 

(BDNF) signalling pathway in particular, is a well described feature in ALS pathophysiology 

(Bronfman et al., 2007, Sleigh et al., 2019, Pradhan et al., 2019). Various neurotrophic growth 

factors are shown to promote neuronal survival and stimulate regeneration in the CNS. For 

example, co-administration of ciliary neurotrophic factor (CNTF) and BDNF in the ALS wobbler 

mouse was shown to arrest disease progression (Mitsumoto et al., 1994). Moreover, the BDNF 

agonist, 7,8-dihydroxyflavone, improved motor neuron deficits in SOD1G93A ALS mice 

(Korkmaz et al., 2014). ALS patient motor neurons express high levels of the BDNF receptor’s 

truncated isoform, TrkB.T1. Targeted deletion of TrkB.T1 has been demonstrated to slow the 

onset of motor neuron degeneration, as well as delay the development of muscle weakness 

by 33 days in SOD1G93A ALS mice (Yanpallewar et al., 2012).   
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Despite these encouraging pre-clinical studies, no neurotrophins have yet succeeded in a 

clinical phase III trial, possibly due to low blood-brain-barrier penetrance or limited biological 

half-life (Henriques et al., 2010). Interestingly, the most effective ALS treatment, Riluzole, is 

an anti-excitotoxic substance that has been demonstrated to stimulate the synthesis of 

neurotrophins BDNF and GDNF in cultured mouse astrocytes (Mizuta et al., 2001). Indeed, 

early synaptic hyper-excitability of MNs is thought to enhance BDNF-mediated signalling, thus 

causing glutamate excitotoxicity, and motor neuron death. Therefore, manipulation of BDNF 

may provide a viable therapeutic option in the future (Pradhan et al., 2019). My work suggests 

that this therapy may need to be applied in a personalised fashion to patients with relevant 

genetic risk.   

 

My work builds upon previous observations that CAV1 function is neuroprotective in 

neurodegenerative disease (Head et al., 2010) and in ALS in particular (Sawada et al., 2019). 

Until now, it was not clear whether CAV1 dysfunction was a cause or effect of neuronal toxicity. 

However, discovery of genetic risk associated with CAV1/CAV2 expression places this 

pathway upstream in the development of disease. My proposed mechanism of 

neurodegeneration resulting from ALS-associated CAV1/CAV2 enhancer variants is 

summarised in Figure 7.2. 
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Figure 7.2. Graphical summary of key findings from the characterisation of pathogenic 

enhancer variants in CAV1 and CAV2, and a proposed ALS disease pathway. A reduction 

in CAV1/CAV2 expression within neurons may cause disruption of MLR, which leads to 

impaired neurotrophic signalling and premature motor neuron death.      

 
 
 

7.2. Future directions 
 

At present, it is still not fully understood how mutations in the glycosyltransferase domain of 

GLT8D1 cause ALS. I have suggested that ALS-associated GLT8D1 variants may increase 

the propensity of the protein to misfold, thus reducing enzymatic activity. Therefore, future 

work should consider defining the crystal structure of the WT and mutant GLT8D1 protein in 

order to identify potential mutation-specific structural alterations. With more time, my main 

focus would be to complete a third biological repeat of the Golgi fragmentation analysis. 

Indeed, my GLT8D1 in vitro data was generated primarily through the use of HEK293 cells, 

which are useful tools for providing insights into potential pathogenic mechanisms; however, 

this work requires validation in a neuronal model to place these findings in the context of the 

CNS. Therefore, I would re-attempt the nucleofection of primary neurons with mutant GLT8D1 

constructs for the subsequent assessment of MLR integrity and measurements of 

neurotrophic signalling.  
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My zebrafish data suggest that GLT8D1 is involved in motor system function. However, to fully 

characterise the effect of mutant GLT8D1 within a whole organism, future work should aim to 

create a transgenic zebrafish line using CRISPR/Cas9 genome editing; this technology has 

developed considerably in the past few years alone. The generation of a transgenic line is 

important for modelling an age-related disorder such as ALS. Moreover, neuropathological 

analysis should be performed in this line in order to fully characterise GLT8D1 as a new ALS 

gene. Routine neuropathological investigations should include measurements of motor neuron 

loss, TDP-43 pathology, neuromuscular junction defects, and oxidative stress.  

 

As with any disease-associated genetic discovery, it is extremely important to scan larger 

patient cohorts to identify additional ALS-linked GLT8D1 and CAV1/CAV2 variants, as this 

would determine the true frequency of the mutations within the population. This search may 

lead to the discovery of additional patient material such as fibroblasts, which would aid in my 

previously unsuccessful attempts to generate a co-culture model to address the potential for 

astrocyte-mediated motor neuron toxicity. If additional fibroblast samples were not obtainable, 

my focus would be to genetically manipulate control fibroblast lines using CRISPR/Cas9 prior 

to direct conversion into iNPCs. Recent advancements in this technology such as the 

CRISPR-prime editing method (Anzalone et al., 2019) would suggest that mutations can be 

introduced with high precision, and may also be applicable to my proposed GLT8D1 zebrafish 

model (Liu et al., 2020a).   

 

In conclusion, ALS is a complex multifactorial disease with several known dysregulated 

biological pathways. Understanding the various mechanisms involved in the pathogenesis is 

key to the development of effective treatments. Therefore, effective treatment of the disease 

will likely require modulation of more than one target, and possibly a personalised medicine 

approach. Finally, the rapid degeneration of motor neurons in ALS patients suggests that 

successful early diagnosis is critical in treating the disease effectively, and therefore the 

development of better biomarkers will be necessary. My work on two new genetic variants 

discovered using two different methodologies is remarkable in that it converges on a single 

therapeutic target: neurotrophic signalling via MLR, as summarised in Figure 7.3.   
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Figure 7.3. ALS-associated GLT8D1 and CAV1/CAV2 enhancer variants likely converge 

on the same pathological mechanism of disrupted neurotrophic signalling. A reduction 

in CAV1/CAV2 expression within neurons causes disruption of MLR. Impaired enzyme activity 

of GLT8D1 is also linked to disruption of MLR. This proposed mechanism would lead to 

impaired neurotrophic signalling and premature motor neuron death. 
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Appendices 
 
 

Appendix 1. Mutations in EOGT found in ALS patients: 

 

ALS-associated missense changes found within EOGT in 4493 sporadic ALS patients and 

1924 controls. Mutations are listed 5’ to 3’; EOGT has 15 exons and is encoded on the reverse 

strand of chromosome 3; exons 1 to 3 are non-coding. 
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Appendix 2. There is no significant ALS-association within GLT8D1 when exon 4 is excluded. 

 

 

 

Appendix 3. Aggregated enhancers linked to all genes within the ‘amyotrophic lateral 

sclerosis’ KEGG (Kyoto Encyclopaedia of Genes and Genomes) pathway. 
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Appendix 4. Genetic variation within TBK1 enhancers is significantly associated with ALS. 
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Appendix 5. There is significant overlap between enhancers and ALS-associated variants 

linked to CAV1 and CAV2. 
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Appendix 6. Sanger sequencing traces of pEGFP-N1_GLT8D1-eGFP vectors. Sequencing 

was performed using a CMV forward primer (sequence: CGCAAATGGGCGGTAGGCGTG). 
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Appendix 7. Plasmid map of pcDNA5/FRT/TO_3xFLAG-GLT8D1. 
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Appendix 8. Sanger sequencing traces of pcDNA5/FRT/TO_3xFLAG-GLT8D1 vectors. 

Sequencing was performed using a CMV forward primer (sequence: 

CGCAAATGGGCGGTAGGCGTG).  
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Appendix 9. Representative blot using a commercially available anti-GLT8D1 antibody 

(GeneTex; #GTX123636) to assess specificity following targeted knockdown of GLT8D1 in 

HEK293 cells using miRNAs. Antibody specificity is masked by the presence of multiple 

bands.  
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Appendix 10. Sanger sequencing traces of PCS2+_GLT8D1 vectors for the in vitro synthesis 

of capped mRNA for zebrafish embryo microinjection. Sequencing was performed using a 

CMV forward primer (sequence: CGCAAATGGGCGGTAGGCGTG).   
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Appendix 11. Zebrafish survival data presented in the form of Kaplan-Meier survival curves. 
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Appendix 12. Protein bands in un-induced stable HEK293 cells expressing GLT8D1-WT and 

GLT8D1-R92C were only made visible following overexposure of the image. 

 

 

 

 

 

Appendix 13. WGA fluorescence intensity was also measured in the absence of tetracycline, 

showing a modest but non-significant decline in fluorescence intensity in the mutant line 

compared to WT (n=3, unpaired t-test p>0.05).  
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Appendix 14. Representative images of sham-transfected HEK293 cells, and stable isogenic 

HEK293 cells with tetracycline induced expression of GLT8D1-WT and GLT8D1-R92C. Cells 

were co-labelled with a CellMaskTM plasma membrane stain (red) to identify cell regions and 

for accurate quantification of cell area.  

 

 

 

 

Appendix 15. The presence of either a G78W or R92C mutation in GLT8D1 does not affect 

the Golgi localisation signal.  
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Appendix 16. Representative immunostaining of GLT8D1-ALS patient and age- and sex-

matched control fibroblasts using a commercially available anti-GLT8D1 antibody (green) 

(GeneTex; #GTX123636). A weak fluorescence signal and diffuse staining suggests lack of 

antibody specificity. 

 

 

 

 

 

Appendix 17. Representative immunoblot for CAV2. Multiple bands detecting inconsistent 

molecular weights suggests a lack of antibody specificity.  
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Appendix 18. Representative images of all LCLs probed with CTxB and WGA.  
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Appendix 19. CRISPR editing efficiency in LCLs using the PX459 plasmid. Sequencing traces 

for HPRT control and CAV1 mutant are shown. Analysis using ICE demonstrates 0% editing 

efficiency.  
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Appendix 20. Representative images of Pax6 staining in undifferentiated and differentiated 

SH-SY5Y cells. Images show unedited cells or cells with a CRISPR-mediated HPRT mutation.   
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Appendix 21. Representative images of α-tubulin staining in undifferentiated and 

differentiated SH-SY5Y cells. Images show unedited cells or cells with a CRISPR-mediated 

HPRT mutation.  
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Appendix 22. Representative blot following lysis of LCLs using IP lysis buffer. A signal was 

not detected when probed with a validated anti-caveolin-1 antibody. 
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