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Abstract

Every hour, ambient concentration data for dozens of air pollutants is collected
from hundreds of monitoring sites across the UK, adding to a repository consisting
of more than 370 million observations going back 47 years. And yet, due to the
difficulty of extracting meaningful information from this data, it is principally
used for monitoring compliance with air pollution limits. This thesis aims to
develop new statistical techniques and apply them to the air quality network data
to derive additional insights concerning changes in air quality in the UK over the
last twenty years.

The rolling change method is a new way of conducting robust long term trend
analysis across multiple sites within monitoring networks that are subject to biases
caused by site flux. It is used to analyse the long term trends in NO, and NO,
concentration, and in NO,/ NO, ratio in London, Scotland, and the UK between
2000 and 2017. At each scale, the results are consistent, showing declines in NOy
and NO; concentration, and a peak in NO,/ NO, around 2010, followed by a fall.

The ‘meteorological normalisation” method using random forest is applied
to remove the effect of meteorology from air pollutant concentrations at London
sites to enable clearer visualisation of the trend due to changes in emissions. The
method is also used to evaluate the efficacy of the London Low Emission Zone
through the generation of counterfactual scenarios that are compared to the true
normalised trend. The results suggest a mild improvement in air quality.

The influence of inter-annual meteorological variation on annual average
concentrations of NOy, NO, and O3 is estimated for a large number of UK sites
using the novel tools of heatmaps and cumulative sum plots. This influence is
shown to be considerable: the range of the annual average concentration due to
meteorological variation is 2.9 ig m™ (8.2%) for NOy, 9.9 ng m=2 (12.6%) for NO,
and 3.3 1g m~2 (7.5%) for O3. The implications of these findings for the use of the

annual average metric in compliance monitoring within the EU are considered.
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CHAPTER 1. INTRODUCTION

1.1 Background

Air pollution is increasingly being recognised as one of the most pressing problems
facing the world today. Its impact is felt in a wide range of contexts including
economies, agriculture, ecosystems, infrastructure and health, contributing to
an estimated 40,000 premature deaths a year in the UK alone and costing the
economy more than £20 billion per year (Royal College of Physicians, 2016).

Exposure to air pollution contributes to a myriad of health effects, including
heart disease, strokes and pulmonary disease. The exact mortality due to air
pollution is difficult to quantify, because of the complicated relationship with
other risk factors. However, air pollution is considered to be the fourth greatest
cause of mortality worldwide, killing more than six times as many people as
malaria and four times as many as HIV/AIDS every year (The World Bank and
Institute for Health Metrics and Evaluation, 2016).

Thousands of pollutants contaminate the atmosphere, but of particular concern
are the concentrations of nitrogen oxides (NOy), which are composed of NO and
NO,, particulate matter (PM), and tropospheric ozone (O3z).

Nitrogen oxides (NOy) are defined as the sum of nitrogen monoxide (NO)
and nitrogen dioxide (NO») (Schultz et al., 2015). NOy is emitted by both
natural sources, such as bacterial production, volcanic activity and lightening,
and anthropogenic sources, primarily fossil fuel and biofuel combustion (e.g.
vehicle exhausts, power stations, etc.) (Schultz et al., 2015). Natural sources
and secondary production generate a background NO, concentration, while
primary anthropogenic emissions cause spikes in NO, and NO; concentration
above the background near sources. While NO typically dominates overall NO,
concentrations in anthropogenic emissions, in the atmosphere NO reacts quickly
with O3 to form NO,, therefore in well-mixed background air (distant from an
anthropogenic source), the ratio of NO to NO, concentration (NO/NO) is lower
(Carslaw et al., 2016).

Particulate matter is a broad categorisation describing all airborne particles.
Composition and size vary widely, with particles made up of a complex mixture
of organic and inorganic species and ranging in diameter from less than 0.1 pg
to 100 pg. Two main components of PM are currently measured at monitoring
stations for compliance monitoring. PMj refers to particles with a diameter of
< 10 pg, which are small enough to be inhaled through the nose to enter the
body. PM; 5 (the ‘fine fraction’) includes particles with a diameter of < 2.5 ng
(Anderson et al., 2012; Adams et al., 2015). These fine particles are small enough
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CHAPTER 1. INTRODUCTION

to penetrate to the lungs and into the bloodstream. Particles larger than 10 pg
are not regulated because they do not enter the lungs. On the other hand, fine
particles that can enter the lungs and bloodstream can cause adverse health
effects (Adams et al., 2015). Background PM comes from natural sources, such as
volcanic activity and dust storms, dispersion, mixing and secondary production
(Anderson et al., 2012). Anthropogenic sources include fossil fuel combustion,
biomass combustion, agriculture, industrial processes and uplifting of dust into
the atmosphere (Adams et al., 2015; Anderson et al., 2012).

Ozoneis a secondary pollutant, and is mostly produced through photochemical
reactions in the atmosphere (Wang et al., 2019). O3 exists in a photochemical
equilibrium with NO and NO;, and volatile organic compounds (VOCs) or
hydroxyl radicals. The position of the equilibrium depends on the relative
concentrations of the precursors NO, and VOCs. Higher and lower ratios can
favour ozone depletion, therefore the relationship between O3 concentration
and anthropogenic emissions is complex (Wang et al., 2019; Monks, 2005). Os
concentration is highly dependent on dispersion conditions and long-range
transport. High concentrations of O3 are damaging to human health, agriculture
and environments (Schultz et al., 2015; Wang et al., 2019).

An understanding of the sources and the atmospheric chemistry of these air
pollutants is vital to interpreting the results of air quality data analysis. The
following sections describe the emission sources of the major air pollutants and
the reactions they undergo once emitted into the atmosphere.

1.1.1 Sources of air pollutants

Nitrogen oxides (NOy) are defined as the sum of nitrogen monoxide (NO) and
nitrogen dioxide (NO,) (Schultz et al., 2015). Most NOy is emitted from the
combustion of fuels, with other sources making up just 3% of total emissions in
2018 (NAEI, 2020). Emissions of NO, from combustion come from a variety of
fuels and sectors. In 2018, 31% of NO, emissions came from road transport, 21%
from other forms of transport, 20% from energy production (e.g. power stations)
and 8% from other industrial activity (NAEI, 2020).

NOy is mainly emitted as NO, which is rapidly converted to NO, through the
reaction with O3 (see Section 1.1.2), however some NO; is emitted from primary
sources, particularly road vehicles (AQEG, 2004).

During fuel combustion, NO, is produced either by the high temperature
oxidation of nitrogen from the air, or from nitrogen chemically present in the fuels
themselves. NO, formation is favoured by high temperature and oxidation rich
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conditions (AQEG, 2004).
The main mechanism by which NO is formed is known as the Zel'dovich

mechanism (the thermal-NO mechanism) which is shown in Equation 1.1 (AQEG,
2004).

O+N,=N+NO
N+O,=0+NO (1.1)
N+OH=H+NO

Only an estimated 5% of NO, emitted from combustion is released as NO,,
but the ratio of NO, /NO emitted from diesel engines is higher than from gasoline.
NO; production is favoured in poorly mixed systems and by low temperatures.
NO is converted to NO; via the reaction shown in Equation 1.2 (AQEG, 2004).

NO + HOy — NO, + OH (1.2)

Some NO is also converted back to NO according to Equation 1.3 (AQEG,
2004).

NO;+0 — NO + O, (1.3)

The total concentration of particulate matter (PM) is made up of a primary
component, which is directly emitted from primary sources, as well as a large
secondary component, which is formed from the chemical reactions of gases and
other aerosols in the atmosphere.

PMyg is particulate matter with a diameter of less than 10 ng (Anderson et al.,
2012; Adams et al., 2015). In 2018, in the UK, 40% of PMiy emissions came
from industrial, commercial or residential combustion, 32.5% from production
processes, 12% from agriculture, 11% from road transport, 3% from other transport
and 1.5% from public electricity and heat production (NAEI, 2020).

PM, 5 is particulate matter with a diameter of less than 2.5 ng (Anderson et al.,
2012; Adams et al., 2015). In 2018, in the UK, 64% of PM; 5 emissions came from
industrial, commercial or residential combustion, 12% from production processes,
11% from road transport, 6% from agriculture, 5% from other transport, and 2%
from public electricity and heat production (NAEI, 2020).

Vehicles produce exhaust PM, from fuel combustion, and non-exhaust PM,
which is generated by mechanical abrasion and corrosion from tyre, brake, clutch

and road surface wear and from vehicle component corrosion. Road transport
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also causes suspension or re-suspension of road dust (AQEG, 2005, 2019).

Natural sources also contribute to primary PM emissions. These include wind-
suspended dust, sea spray, forest fires, volcanic activity and biogenic emission
(AQEG, 2012; Anderson et al., 2012).

Unlike the other air pollutants discussed here, ozone (O3) is a secondary
pollutant formed by photochemical oxidation of volatile organic compounds
(VOCs) in the presence of nitrogen oxides (NOy) (Wang et al., 2019). The details
of this reaction are discussed further in Section 1.1.2.

Although it is not emitted directly, the production of ozone depends on the
concentration of its precursors, which are primary pollutants. The sources of
NOy have already been described. In 2018 in the UK, the largest contribution
to anthropogenic NMVOC (non-methane VOC) emissions came from industrial
processes and product use, which accounted for 53% of total emissions. Extraction
and distribution of fossil fuels accounted for 19%, and agriculture for 12%. 7% of
emissions came from transport and other mobile sources (exhaust emissions and
evaporative losses of fuel vapour), and 9% from stationary combustion sources
(NAEIL, 2020).

VOC:s are also emitted from vegetation and the soil. Emissions from natural
sources are dependent on temperature, light levels and plant species and therefore
have strong seasonal variation. Most biogenic VOC sources are not normally
co-located with major urban NO, sources, whereas anthropogenic sources of
VOCs are more often co-located with NO, sources in urban areas. Therefore, in
urban areas where high concentrations of the precursors result in high ozone
production, anthropogenic sources of VOCs may be relatively more important.
However, over recent years, as anthropogenic VOC emissions have been reduced,
the relative importance of biogenic VOCs has increased, a trend that is expected
to continue in the future (AQEG, 2020).

1.1.2 Key chemistry of air pollutants

Once emitted into the atmosphere, air pollutants are subject to dispersion and
reaction with other atmospheric species. Since both of these processes are highly
dependent on meteorology, the meteorological conditions exert a strong influence
on ambient air quality (AQEG, 2004).

The ambient concentration of air pollutants is dependent on the combination
of (i) emissions, (ii) chemistry, and (iii) meteorology (AQEG, 2004). It is therefore
crucial during interpretation of results to understand all three factors and their
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effects on the ambient concentrations of the air pollutant under investigation.

In particular, the interconversion between NO and NO; is crucial to an
understanding of both NO, and ozone concentrations.

While most NOy is emitted as NO, once in the atmosphere NO reacts rapidly
with ozone to form NO, via the reaction shown in Equation 1.4.

NO +0O3 > NOy + Oy (1.4)

In locations with high concentrations of NO, such as polluted roadside
locations, the timescale for conversion of NO to NO; via this mechanism can be
as little as 2 seconds (AQEG, 2004).

During the day, NO is regenerated from the photolysis of NO, via the reaction
shown in Equation 1.5 (AQEG, 2004).

NO;y +sunlight - NO + O

(1.5)
O+ Oy (+M) — O3 (+M)

The rate of NO, photolysis varies with season, time of day and latitude, but
is slower than the conversion of NO to NO;. The average lifetime of NO; in the
summer is about 3 minutes, and two or three times longer in winter (AQEG, 2004).
Even so, the daytime interconversion of NO and NO; is so efficient that the species
are usually referred to in combination as NO,.

As previously mentioned, the majority of NO, is emitted as NO, but once in
the atmosphere the NO reacts rapidly with ozone to form NO;. The two species
subsequently interconvert. The result of this is that the NO,/NOy ratio is at a
minimum close to the emission source, and increases with distance until a stable
background NO, /NOy ratio is reached in well-mixed air. The NO, /NOy ratio,
therefore, can be used as a proxy for the degree of contribution to the pollutant
concentration at a particular location, and can be used to distinguish betweeen
‘traffic” locations (close to road traffic sources) and ‘background’ locations. This
utility is applied in Chapter 4.

The main loss mechanism for NO, is conversion of NO, to nitrate, followed
by wet or dry deposition or further reaction. The reaction is shown in Equation
1.6 (AQEG, 2004).

OH + NO, (+M) — HNO3 (+M) (1.6)

During the night, nitrate is also generated from NO, via the route shown in
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Equation 1.7

NO;+ O3 - NO3 + O
NOsz + NOy (+M) = N7Os5 (+M) (1.7)
N,Os + HyO (+aerosol) — 2HN O3 (ads)

In addition to deposition, nitrate is also removed via formation of nitrate
aerosol, or by reaction with gaseous ammonia to form ammonium nitrate aerosol.

NOy is also removed temporarily by formation of the reservoirs nitrous acid
(HONO) and PAN. These reactions are shown in Equations 1.8 and 1.9 (AQEG,
2004).

OH + NO (+M) — HONO (+M) (1.8)

CH3C(0)0; + NO; (+M) = CH3C(0)0,N O (+M) (1.9)

During the day, NO is regenerated from photolysis of HONO. PAN exists in an
equilibrium with NO», and undergoes thermal decomposition under conditions
characterised by high temperatures and high levels of organic radicals (AQEG,
2004).

Ozone is formed photochemically by the sunlight-initiated oxidation of VOCs
in the presence of NO,. As previously shown in Equation 1.5, photolysis of NO,
produces NO and Os3. Since, as shown in Equation 1.4, NO and Oz react to re-form
NO,, these reactions consitute a cycle with no net ozone produced. However, in
the presence of volatile organic compounds, the oxidation of the organic species
catalysed by OH radical consumes NO and produces NO,. The NO, photolyses to
re-form the NO, which is used in further VOC oxidation. Ozone is produced as a
by-product of the cycle (Monks, 2005). The reactions involved in ozone formation
are shown in Equation 1.10 (PORG, 1997).

OH +RH — R + H,O

R+ Oy (+M) — RO, (+M)
RO+ NO — RO + NO» (1.10)

RO + 0Oy - R_.gO + HOy

HO;+ NO — OH + NO;
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NOy +sunlight - NO + O

(1.5)
O+ Oy (+M) — O3 (+M)

The series of reactions is perhaps more clearly visualised diagrammatically as
a cycle, as shown in Figure 1.1 (PORG, 1997).

0. " RO
ROOH“”

Noz O3

Figure 1.1: Schematic representation of the OH catalysed oxidation of organic compounds,
with ozone produced as a by-product. Image taken from the fourth report of the PORG
(1997).

The relationship between the production of ozone and the ambient concen-
trations of NO, and VOCs is not linear, but rather depends upon the relative
concentrations of each precursor. In VOC-limited environments, where the rela-
tive concentrations [NO, ]/[VOC] is high, an increase in VOC emissions would
lead to increased ozone production, but an increase in NO, emissions would
decrease the rate of ozone production. The reverse situation presents itself in
NO,-limited environments, where [NO, ]/[VOC] is low. Here, an increase in NO,
emissions will increase ozone production, while an increase in VOC emissions
will cause decreased ozone production (Monks, 2005; PORG, 1997).

The reason behind this lies in the cyclical nature of the process. The rate of
ozone production is proportional to the chain length, which is the number of
VOC-oxidation cycles (as shown in Figure 1.1) which occur before radical removal.
Changes in NO, and VOC concentrations affect the rate of the chain terminating
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reactions relative to the competing reactions (Monks, 2005; PORG, 1997).

Secondary PM is formed by gas-to-particle conversion of the lower volatility
or soluble products or intermediates that arise from oxidation of higher volatility
emitted gases, or by the reaction of gases with aerosols or aqueous droplets.

One example of this is the formation of sulfate aerosol from SO,. SO, can be
oxidised to sulfate in the gaseous phase or the aerosol phase. Another important
primary pollutant, NO,, is also oxidised in the atmosphere to form nitrate aerosol.
Nitrate is formed through the oxidation of NO;, as shown in Equation 1.6 (AQEG,
2005).

OH + NO, (+M) = HNOs (+M) (1.6)

Sulfate and nitrate are often present in PM as ammonium sulfate and ammo-
nium nitrate, which can from ammonia emitted mainly from agricultural sources
(AQEG, 2005; Adams et al., 2015). Oxidation of volatile organic compounds
(VOCs) produces secondary organic aerosol (SOA) via a hugely complex variety
of species and mechanisms (AQEG, 2005).

Because a considerable component of the total atmospheric PM comes from
secondary sources, regional chemistry and transport exerts a powerful influence
on the ambient concentration of PM. For example, while some PM in UK urban
areas comes from primary particle emissions, it is frequently the case that
the bulk comes from regional chemistry and European transport. For this
reason, caution must be exerted during analysis not to misattribute changes in
background PM concentrations to changes in the emission source. This becomes
particularly relevant in Chapter 3, which deals explicitly with the identification of

the background component of ambient PM concentration.

1.2 Measurement of ambient air quality in UK moni-

toring networks

Many techniques and instruments have been used to measure the ambient
concentrations of air pollutants. Here, the methods used within the Automatic
Urban and Rural Network (AURN) for continuous air quality monitoring are
described. The majority of the data used in this thesis to analyse UK ambient
air quality was sourced from AURN sites. However, it is important to note that
the data within this thesis was sourced from multiple independent monitoring
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networks and, in some cases, was measured using different instruments. This has
implications for the interpretation of the results, as will be discussed.

1.2.1 NO, measurement

NOy and NO; are measured at AURN sites using chemilumiscent analysis. Within
the sampler, NO reacts with O3 to produce an excited state of NO, (see Equation
1.11). When the excited molecule of NO; returns to the ground state, radiation
is emitted. The intensity of the radiation (fluorescence) is proportional to the
concentration of NO present (AQEG, 2004).

NO + 03 — NO} + O,

(1.11)
NO; — NOy + hv

The analyser does not directly measure NO,. Instead, the NO; in the ambient
air is reduced to NO in the NO,-to-NO converter (usually a heated molybdenum
converter in the UK) (Schultz et al., 2015). The analyser then independently
measures the concentrations of NO and NO,, and calculates the concentration
of NO; that was originally present by subtracting NO from total NO, (Equation
1.12). Some instruments achieve this by measuring NO, and NO simultaneously
in dual chambers (AQEG, 2004).

[NO2] = [NOx] = [NO] (1.12)

Typically, chemiluminescent analysers have a lower detection limit of < 2
ng m~3. This is much lower than the alternative NO, measurement methods, such
as diffusive samplers, electrochemical sensors, thick film sensors and differential
optical absorption spectroscopy (DOAS), which have detection limits on the order
of several ig m~> (AQEG, 2004).

One problem with chemilumiscent analysis is interference from other reactive
nitrogen species (Schultz et al., 2015). In the molybdenum NO;-to-NO converter,
some oxidised nitrogen species, such as HNO3;, HONO, PAN and alkyl nitrates,
are converted to NO, therefore contributing to the measured NO, concentration.
Only HONO and PAN are considered to interfere significantly under ambient
conditions present in the UK. Under typical urban background conditions, the
interference from HONO and PAN has been estimated to account for < 2% and <
5% of the measured NO; concentration respectively (AQEG, 2004).

In the UK, the Air Quality Directive specifies an upper limit for the uncertainty
with which air quality measurements are made (European Union, 2008). The
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upper limit uncertainty for continuous measurements of NO, and NO; is 15%.
This uncertainty may proceed from many factors related to the instrument
itself, instrument calibration and instrument operation. It is important, when
interpreting the analysis of data collected from these instruments, to recognise
that the measurement are subject to this degree of uncertainty and avoid over-
interpretation (AQEG, 2004).

1.2.2 PM measurement

In the UK, PM is typically measured as a mass concentration. There are a wide
variety of methods in use for this.

Filter-based gravimetric samplers are the reference method of measurement
defined in the EU First Air Quality Daughter Directive. A sampling inlet is
connected to a filter substrate and a flow controller. PM;jy is collected on the
filter during the sampling period, then the mass determined gravimetrically.
However, the time resolution of the measurements is limited to 24 hours, which
limits its utility in detailed statistical analysis. It also has high operating costs,
and cannot be used for continuous monitoring due to the high degree of human
operation required (for example, daily filter exchange and weighing of filters).
Human error leads to more potential pathways for error, and there is always a
delay between sample collection and reporting, while the samples are transferred,
stored and weighed. Consequently, the AURN monitoring sites use methods
with demonstrated equivalence to gravimetric sampling to provide continuous
real-time hourly monitoring data (AQEG, 2005).

TEOM (Tapered Element Oscillating Microbalance) analysers are widely used
to measure continuous concentrations of PM in the UK. Air enters a tapered glass
tube and is deposited onto a small filter at one end. The frequency of oscillation of
such tubes is directly proportional to the mass of the tube, so the change in mass
of the tube is proportional to the additional mass of the deposited PM (AQEG,
2005).

TEOM analysers not only impart greater precision than the reference method,
but also provide real-time data with hourly resolution, which has greater utility
in statistical analysis. Differences in moisture equilibration between TEOM and
gravimetric samplers means that an adjustment factor must be applied to the
measured data in order for the measurements to be equivalent (AQEG, 2005).

The FDMS (Filter Dynamic Measurement System) instrument is a development
of the TEOM analyser which can account for semi-volatile PM. Data is collected
hourly and daily. Water is removed from the air sample before it is passed into
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the sampling unit, and the operating temperature is lower. After the air is passed
through the filter to collect non-volatile PM, the air is diverted into a cooled
chamber which is maintained at 4 °C and passed over a filter. The air is then
returned to the first sensor unit to provide a baseline measurement (AQEG, 2012).

While TEOM and FDMS samplers are the most common method for continuous
PM measurement in the UK, f-attenuation analysers are more widely used in
Europe. This method measures the reduction in intensity of  particles passing
through a filter, which is proportional to the mass of PM collected on the filter.
Data is measured at hourly resolution, but the method has lower precision than
the TEOM analyser (AQEG, 2005).

Less widely used methods for PM measurement include optical analysers, the
black smoke method, and personal samplers (AQEG, 2005).

Measurement of particulate matter is particularly challenging and the choice
of measurement method often has a considerable effect on the results. This is
because different instruments may treat the air stream in different ways. For
example, TEOM analysers preheat the air stream, while filter-based gravimetric
samplers do not, which results in the greater loss of semi-volatiles from the former.
Empirically determined adjustment factors are applied to make the data measured
using each method equivalent, but for this reason, data measured using different
methods may not be comparable (AQEG, 2005). There is also variation between
instruments of the same type. The filter material can influence the measured data,
because the filter mass changes in response to humidity and the accumulation of
water or other material. The mass change can vary by the type of filter material,
and even by difference batches of the same material, so this uncertainty is very
difficult to control or account for (AQEG, 2012). Other reactive gases may also
absorb onto the filter or the PM, contributing to further measurement uncertainty
(AQEG, 2012).

All of these methods can be adapted to measure PM; 5 as well as PM;y, for
example, by changing the size of the fractioning inlet. However, there is a
smaller amount of PM; 5 in the ambient air than PMjy, which makes accurate
PM, 5 measurement more challenging than measurement of the coarser fractions
(AQEG, 2005). In addition, the PM 5 particles generally contain a larger proportion
of semi-volatile and hygroscopic material, which are more difficult to capture
(AQEG, 2012).

Accurate measurement of PM has become more challenging as PM concentra-
tions have decreased. Well known problems such as changes in mass of the filter

due to water collection or loss of fibres become more significant when attempting
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to measure smaller masses (AQEG, 2012).

1.2.3 O3 measurement

UV spectroscopy is used to measure ambient ozone concentration at UK mon-
itoring sites. The air sample passes through a cell of length [ and the intensity
of UV light at 254 nm (I;) is measured by a detector. A zero reference intensity
(i.e. the intensity of the air with no ozone present), Iy, is calculated using air that
has been passed through an ozone-removing scrubber. The concentration is then
calculated using the Beer-Lambert law shown in Equation 1.13, where ¢ is the
absorption coefficient at 254 nm (AQEG, 2009).

Io = Le™¢ (1.13)

The presence of other species that are optically active at 254 nm could potentially
interfere with the ozone measurement, but in practise this is minimal, since the
same species are present in both the reference and the non-reference air samples,
and so any potential interference is cancelled out (AQEG, 2009).

The ozone analysers are calibrated on-site using ozone photometers, with an
uncertainty of 3.5%. The ozone photometers are themselves calibrated against
the UK ozone standard with an uncertainty of 3.0%, which is calibrated against
other national measurements’ standards. Overall, the maximum uncertainty of
the ozone data is 12% (AQEG, 2009). While this is below the directive of 15%, it

still merits consideration during data analysis and interpretation.

1.3 Air quality legislation and limits

Many governing bodies have attempted to improve air quality by reducing
anthropogenic emissions of air pollutants. The European Union imposes limits
on the concentrations of various air pollutants based on the World Health
Organisation’s ambient air quality guidelines. A selection of the EU limits
are shown in Table 1.1. However, the limits are regularly breached in many
of the member states, including the UK. In fact, in May 2018 the EU referred
France, Germany and the UK to the Court of Justice of the EU for their repeated
exceedances of the NO, concentration limit values and their failure to take
appropriate measures to reduce the frequency and duration of these exceedances
(Airqualitynews.com, 2018).
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Table 1.1: European Directive air quality limit values for selected air pollutants for the
United Kingdom (Defra, 2019).

Pollutant Limit Concentration
measured
as

NO, 200 pg m~2 not to be exceeded more than 18 times a year 1hour mean
NO,; 40ng m™ annual mean
PMjy 50 ig m~ not to be exceeded more than 35 times a year 24 hour mean
PMijp 40ng m™3 annual mean
PM,s 25ng m™3 annual mean

In order to control the air pollution, it is important to study how the con-
centrations of air pollutants have changed in the past, and consider the factors
that drove the change. Only by evaluating changes and trends in air pollutant
concentrations and their drivers can the effectiveness of interventions aimed at
improving air quality be quantified. In this context, it is clear that accurate analysis
of air pollution is vital, not merely to evaluate compliance with legislation, but to

preserve economies, ecosystems and human health.

1.4 Statistical analysis of ambient air quality data

Historically, atmospheric modelling based on detailed emissions inventories has
been the primary technique for predicting and analysing air pollution. This has
many limitations however, namely, the reliance on the use of emissions factors and
flux estimates, which may be inaccurate and have high uncertainty. Modelling
also requires detailed understanding of all of the processes and interactions of
the system which, in the case of the atmosphere, are often complex or poorly
understood. The complex nature of atmospheric processes and local conditions
means that emissions data are not necessarily an accurate indicator of pollutant
concentration or exposure.

In contrast, ambient data from monitoring networks, subject to rigorous
analysis, can reveal the actual pollutant concentrations, correlations and trends at
measurement locations. Such information is invaluable for determining the actual
effects of social and infrastructure changes and policy interventions on air quality.

The direct quantification of the actual effects of interventions using statistical
analysis of ambient air quality data is very attractive to policy makers, though
many factors conspire to make it a complex undertaking, as shall be discussed in

Section 1.4.1. Air quality data analysis aims to identify sources of air pollutants,
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which enables targeting of the most relevant sources in policy interventions, as
well as identifying trends in pollutant concentrations, and interpreting them in
terms of events e.g. interventions.

The UK air quality monitoring network has been in place since 1973, and has
collected more than 370 million observations from hundreds of sites. This vast
amount of data is currently under-utilised, with its main use being compliance
monitoring, where a simple annual average is calculated and compared to the EU
limits. More sophisticated analysis is hindered by the complexity of statistical
analysis of air quality data, as will be discussed later. However, recent advances
in the field of machine learning have resulting in an explosion of techniques for
extracting patterns from large amounts of data, which have been applied in almost
every field imaginable. These techniques offer the potential for extracting greater
insight from the huge repository of air pollutant concentration data available for
the UK.

1.4.1 Challenges associated with statistical analysis of ambient
air quality data

Ambient air quality data has several unique characteristics that make its analysis
challenging. Firstly, pollution events often result in spikes in pollutant concen-
trations in the time series that, while often acting as outliers with the potential
to exert disproportionate leverage on the results, do not result from instrument
errors, and should not be removed. As such, it is important to choose techniques
that are robust to such outliers.

Autocorrelation is another characteristic of time series that should be consid-
ered, wherein error terms can be correlated over time, violating an assumption
of many models, including the linear regression model, that the error terms be
independent.

Additionally techniques must also be robust to missing data, which is a
common problem in air quality data due to instrument faults etc.

However, the above problems are quite common in all time series data, and have
been adequately solved elsewhere. The main difficulty with analysing a change in
ambient concentration of an air pollutant, whether a long term trend or the effect of
an intervention, is distinguishing that change from the background concentration
and the effects of confounding factors. Meteorology almost invariably exerts the
largest influence over pollutant concentrations, and variations in meteorology

cause corresponding variations in concentration that can completely obscure the
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much subtler long term trends. This frequently frustrates attempts to analyse
the effects of interventions by comparing pollutant concentrations before and
after its implementation, as was the case for the London Congestion Charge Zone
(CSS), which was implemented in February 2003, unfortunately coinciding with a
period of unusual meteorology in London that rendered any temporal comparison
meaningless. (Beevers and Carslaw, 2005)

Other confounding factors, including temporal variation in the form of seasonal,
weekly or diurnal cycles, long range transport, interactions with other pollutants,
extreme events such as pollution episodes, concurrent changes in other emission
sources/overlap in the implementation of other policy interventions, and changes
in the instrumentation or methodology used to measure the pollutant add to the
complexity of the time series. The nature and impact of these confounding factors
are variable and depend on the location and pollutant under investigation. The
first task of an analysis is often, therefore, disentangling the effects of various
confounding factors, including meteorology and seasonality, on the time series in
order to reveal the underlying trend.

Traditionally, methods such as calculating urban increments (Harrison et al.,
2012; Kassomenos et al., 2014), applying seasonal trend decomposition (Carslaw,
2005; Bigi and Harrison, 2010), or training statistical models which include the
confounder as predictors (Dijkema et al., 2008; Fensterer et al., 2014) have been
applied to try and control for confounding variables.

However, modern statistical techniques in the field of machine learning offer the
possibility for much greater accuracy and flexibility in accounting for confounders.
This is because many machine learning models, such as ensemble trees like
boosted regression trees and random forest, are non-linear, highly flexible and
are intrinsically capable of including interactions between variables.

Boosted regression trees (BRT) were used by Carslaw and Taylor (2009) to
infer the source characteristics of NO, at Heathrow Airport, after controlling for
meteorological factors, aircraft activity patterns and temporal factors by including
them as variables in their models.

Grange et al. (2018) recently demonstrated that random forest models combined
with bootstrapping could be used to ‘meteorologically normalise” air pollutant
concentration data (i.e. remove the influence of meteorological variables) to
estimate the trend in concentrations under ‘average’ meteorological conditions.

These methods offer enormous potential for ameliorating one of the most
difficult problems in air quality data analysis: that of distinguishing between

changes in concentration driven by changes in emissions, and those driven by
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other factors, such as meteorology. Chapters 3 and 4 explore this potential, as will
be discussed later.

Finally, the data used in air quality data analysis is sourced from monitoring
sites situated at particular locations. This data provides information about the
local air quality at that location. The size of the area which the monitoring site
can represent depends on the location: from just a single street for some urban
road traffic sites, to a larger area for background sites. But it is sometimes useful
to analyse air quality on a larger scale, such as over an entire network of sites,
rather than a single monitoring site. For example, a detailed analysis of data from
the London Marylebone site may provide a great deal of insight into changes in
air quality on Marylebone Road, but what about air quality in London? In the
UK? In Europe? Analysis of networks of sites offers the ability to answer these
questions, and is discussed further in Sections 1.4.2 and 1.5.2, and in Chapter 2.

Within the field of air quality analysis, the following questions are of particular

importance:

e How does air quality change over time?

e What effect do policy interventions, such as low emission zones, have on

the concentrations of air pollutants?

o Is the level of air pollution in an area compliant with the legal limits? And if
not, what factors are responsible for the non-compliance?

The methods for obtaining answers to each of these questions are examined in

turn in the sections below.

1.4.2 Trend Analysis

Trend analysis involves examining the changes in pollutant concentration over
time (Anttila and Tuovinen, 2010; Guerreiro et al., 2014). It can be used to track
the effects of emission changes on the ambient air quality, and as evidence of the
efficacy (or lack thereof) of policy interventions (Font and Fuller, 2016).

In its simplest aspect, the pollutant concentration as a function of time at
a single monitoring site is analysed, either as a raw time series, or as a daily,
monthly, or annual average.

However, the advantage of monitoring networks containing many - sometimes
hundreds - of monitoring sites, is the ability to carry out trend analysis over a

wider area or a longer time frame than may be represented by a single site.
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Changes in air pollutant concentration at an individual monitoring site are
affected by many factors in addition to emissions, such as meteorology, changes in
the urban environment and dispersion. These confounding factors, as discussed
in Section 1.4, impede an evaluation of the long term changes in air quality.

By including data from multiple sites over a wider area, the variation in
concentration driven by site-specific factors cancel out, so that the changes driven
by larger scale factors, such as changes in vehicle emissions or the results of
interventions, can be seen.

In cases where the area under investigation contains a limited number of
monitoring sites, a common approach is to compare the trends at each individual
monitoring site to yield an overall impression of changes in air quality in the
area. This way, the changes in concentration common across many sites may be
attributed to larger scale changes, while the changes only seen at a few sites, or sites
geographically close together, might be interpreted as due to local confounders.

Mavroidis and Chaloulakou (2011) used this approach to estimate trends in
particulate matter (PM) and ozone concentrations in Santiago, Chile 1989-1998
using data from four monitoring sites. The authors compared the trends at each
site to establish a consensus and the differences between monitoring sites were
rationalised using contextual information about each site. Other studies have
attempted to replicate this approach with larger numbers of monitoring sites, such
as the study by Masiol et al. (2017), which analysed the trends in concentration of
a range of pollutants at 43 monitoring sites in the Veneto region of Italy.

However, in the case of large regions or areas with an extensive monitoring
network of sites available, this approach can be unwieldy, and, with such a large
number of comparables, it may be difficult to fully capture the patterns and
anomalies (although cluster analysis has been used to ameliorate this problem
(Malley et al., 2018)). It may be beneficial to aggregate data from multiple
monitoring sites to gain a representative view of the average air quality.

Another method is to aggregate the data from multiple monitoring sites, then
analyse the trend in the average concentration across many sites. Font and Fuller
(2016) examined the trends in roadside increments of various pollutants between
2005-2009 and 2010-2014 by averaging data from 65 London monitoring sites. Data
capture filters and linear interpolation were employed to ensure all individual
time series from separate sites were of equal length.

The problem with this approach is that data filtering necessarily excludes
some information from the analysis. In many monitoring networks, the time

series at many sites may only span a few years, or sites may move so that time
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series have little overlap. As a consequence, in areas with sparser monitoring
site coverage, or for trend analysis of long time periods, there may not be many,
or even any, sites that fulfill the data filtering requirements and therefore this
approach may not be practical.

In such cases, it would be tempting to simply calculate the average concentration
across all available monitoring sites to obtain a long term trend. However, if the
monitoring sites have time series of various lengths and durations, the resulting
trend is sensitive to biases in the monitoring network. Frequently, air pollution
monitoring sites are moved to more polluted locations, closed in locations with
low pollution levels, or new sites are opened in highly polluted locations that
require more careful observation. The cumulative effect of site flux is often
therefore that a monitoring network is increasingly biased towards monitoring
sites with higher pollutant concentrations.

In Chapter 2, a new method is presented that enables robust long term trends
to be visualised using data from multiple monitoring sites with variable length
time series. This rolling change method therefore ameliorates the disadvantages of
both methods discussed previously: averaging the concentration across multiple
sites reduces the impact of site specific confounders, while preserving more data
in the analysis than data filtering allows. The method opens up the possibility of
carrying out robust long term trend analysis for sparse monitoring networks with
few, or no, long term monitoring sites.

The development of the rolling change method is timely given that low cost
sensor networks are increasingly being used to monitor air quality. These sensors
tend to be less reliable than traditional monitoring sites, as well as being more
portable, and therefore such networks are even more vulnerable to the problems
associated with site flux. As such, the rolling change method could be valuable in
analysis of trends using data from these networks.

Moreover, the issue of aggregating data from time series of differing lengths is
not exclusive to the analysis of air quality data. The method could find application
in any discipline dealing with multiple time series of differing lengths.

To facilitate the use of the rolling change method, an open source R package
named aqtrends was developed. The package contains a function that outputs
the rolling trend for a given data set input. More details about aqtrends is given

in Appendix III.
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1.4.3 Intervention Analysis

1.4.3.1 Air quality interventions

In response to dangerously high levels of air pollution in urban areas across
the world, governments have implemented a range of interventions aimed at
controlling emissions.

Many of these interventions focus on reducing emissions from road traffic. At
the national level, increasingly stringent limits on the emissions of major pollutants,
such as particulate matter and NO,, have been placed on vehicle manufacturers.
For instance, the EU has imposed a series of emission standards, from Euro 1 to
Euro 6, in order to encourage technological innovation and implementation in
reducing emissions from manufacturers.

At the other end of the scale, interventions have also been applied within
individual cities and highways to control emissions in particularly polluted areas.
These interventions include low emission zones (LEZ) and clean air zones (CAZ),
variable speed limits, and reduction in speed limits, as well as other mechanisms
for reducing congestion and stop-start traffic flows.

Low emission zones and clean air zones are areas where vehicles not meeting
certain emission standards are prohibited from entering, and, failing this, are
subject to fines. As of 2019, there were about 250 active LEZs across Europe,
including in London, Paris, Brussels, Lisbon, Madrid, Barcelona, Berlin, Munich,
Amsterdam, Oslo, Stockholm and Athens. The LEZs vary widely in size, the
severity of the restriction and whether they are permanent, seasonal or emergency
(activated only during periods of high pollution) (McGrath, 2019).

The London LEZ is an intervention aimed at reducing air pollution in London.
Figure 1.2 shows the area covered by the London LEZ. Its staged implementation
began in February 2008 with Phase 1, which mandated that heavy goods vehicles
(HGVs) over 12 tonnes in weight must meet the Euro III emission standard. Phase
2, which began in July 2008, extended this to all lorries over 3.5 tonnes, as well as
buses and coaches. Phase 3 activated in October 2010, and specified that larger
light goods vehicles (LGVs) and minibuses would also be covered by the scheme.
The final Phase 4 began in January 2012, and tightened the minimum standard to
Euro IV for PM for lorries over 3.5 tonnes, buses and coaches (TfL, 2008).

1.4.3.2 Analysing the impact of interventions

Studies investigating the impacts of policy interventions on air quality (and,
sometimes, human health) are called "accountability studies’. These studies
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Figure 1.2: Extent of the London LEZ. Taken from Ellison et al. (2013)

formulate the problem as a chain, and trace the changes from the initial regulation
to the emissions of air pollutants, to the ambient air quality, to the exposure, to the
health impacts, as shown in Figure 1.3 (Henneman et al., 2017). An accountability
study may investigate part or all of the chain.

Regulation Sonpoun Regulation

Emissions

Air Quality Air Quality

Exposure/Dose

Comparison with proposed benefits / improved action

Comparison with proposed benefits / improved action

Ld ] Health Outcome Health Outcomes

Figure 1.3: The accountability chain (Henneman et al., 2017). Confounding factors that
may affect each link of the chain are shown in red. This diagram is from the paper by
Henneman et al. (2017).
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Analysis and quantification of the response of a target variable (e.g. ambient
concentration of an air pollutant) to changes in a causal driver (e.g. implementation
of a policy intervention) can be ascertained by comparison with an appropriate
control scenario (Greenbaum and Org, 2017; Henneman et al., 2017). In order to
establish what changes have been brought about by an intervention, there must
be information on what would have happened if the intervention had not been in
place to compare it to. In scientific laboratory experiments, the experiment is often
performed twice, with and without the intervention, but with all other conditions
kept the same. In this way, the effect of the intervention can be distinguished from
the effects of changes in other factors (confounders). The situation is more complex
for studies of air quality interventions: it is impossible, for example, to measure
the pollutant concentrations that would have occurred had a low emission zone
not been in force if, indeed, a low emission zone has been implemented at a
particular site. Consequently, such studies have historically made use of two
methods for estimating a counterfactual (or control) scenario. A temporal control
uses the period of time before the intervention was implemented as the control
scenario. Alternatively, the air quality at a similar location where the intervention
was not implemented can provide a spatial control scenario.

Unfortunately, both temporal and spatial controls are vulnerable to the effects
of confounders.

One of the main challenges associated with air quality research, including
accountability studies, is distinguishing the effects of causal drivers of changes
in air quality (e.g. an intervention) from confounding variables which may
also change over the period of analysis. Each link in the accountability chain
is vulnerable to confounding by variation in factors that impact air quality.
For example, the relationship between the regulation and emissions may be
confounded by other concurrent factors that affected vehicle use over the same
period, such as changes in fuel price or the implementation of other traffic
policies, or by changes in vehicle emission technologies. The relationship between
emissions and ambient air quality is confounded by seasonal variation, local
meteorology, long range transport and other atmospheric processes (Henneman
et al., 2017).

A comparison of the data with temporal and spatial controls will be confounded
respectively by temporal and spatial variation of the confounding variables. For
example, changes in ambient air quality before and after an intervention was
implemented will be driven not only by the effect of the intervention, but also

by variation in meteorology, long-range transport, road-user behaviour, emission
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technologies, and any other variables impacting on air quality that vary over
the time period. Similarly, comparison with a spatial control will be influenced
by confounders that vary spatially between the two locations: for example,
local meteorology and dispersion, or differences in the urban environment,
demographics and road-user behaviour.

The effect of the confounders on air quality are difficult to distinguish from the
effect of the intervention, and therefore it is challenging to attribute changes in air
quality to any single driver. Any attempt to analyse or quantify the impact of a
single variable, such as the presence of the intervention, on the ambient air quality
must find a way of removing the influence of such confounders, otherwise there
is no way to determine whether the observed changes are driven by the presence
of the intervention, or by variation of one or more of the confounding variables.

One method for removing the effect of confounders is by modelling the
ambient concentration as a function of the confounders and the intervention
(often represented by an indicator variable, that takes the value 0 when the
intervention is inactive, and 1 when it is active). The modelled relationship
between the intervention and the ambient concentration can then be analysed,
for example, in a linear model, the effect of the intervention is estimated by the
coefficient of the intervention variable (Dijkema et al., 2008; Fensterer et al., 2014;
Wolff, 2014).

Dijkema et al. (2008) analysed the effect of a speed limit intervention on the
Amsterdam ring highway on NO,, PM and black carbon concentrations using
a linear model with the predictor variables traffic flow, traffic congestion, wind
direction and an indicator variable representing the intervention (whether or not
it was in effect). The authors’ estimation of the effect of the intervention was
represented by the coefficient of the indicator variable. (Dijkema et al., 2008)

The study by Fensterer et al. (2014) demonstrated an interesting extension of
the standard linear model, where PM;y concentrations in Munich were modelled
using semi-parametric regression. Meteorological conditions, background con-
centrations, public holidays, wind direction and diurnal variation were used as
input variables in a linear model along with the indicator, but the coefficients of the
wind direction and diurnal variation were non-linear non-parametric functions
(P-splines and cyclic P-splines, respectively). This enabled highly non-linear
relationships to be modelled with greater accuracy and flexibility.

However, a weakness of these studies was that the relationships between ambi-
ent air pollutant concentrations and the confounding variables are often complex,

interdependent and highly non-linear. Even the use of non-linear functions as
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coefficients in the model, as in Fensterer et al. (2014), make assumptions about
the relationships between variables that may not be true, and may vary widely
across different locations and pollutants. Furthermore, air quality data rarely
satisfied the assumptions of the linear model, being interdependent, non-normal
(a long tail is common due to the presence of extreme data points caused by
pollution events), heteroscedastic and autocorrelated. For these reasons, the
most commonly used method for modelling these systems, multivariate linear
regression, is not ideal. The accuracy of the models, and therefore the ability
to make causal inferences about ambient air quality, can be improved by the
use of more sophisticated models that are robust to the properties of air quality
monitoring data, and capable of incorporating non-linearities and interactions.

Ensemble decision tree methods, such as random forest models, have been
found to perform well in air quality domains (Grange et al., 2018; Suleiman et al.,
2016). The advantages of these ensemble decision trees make them particularly
well suited to air quality applications. The models are capable of modelling non-
linear relationships and interactions between the variables which are common
in air quality data. Additionally, any type of predictor variable can be used as
inputs. The model is unaffected by transformations or differences in scale among
the predictors and automatically ignores irrelevant predictors, simplifying the
pre-treatment of data prior to modelling as scaling and feature reducing are
unnecessary. Decision trees can be used to model step changes, are robust to
missing data and outliers and automatically model interactions between variables.
Crucially, they are among the most interpretable of all machine learning models,
offering the ability to infer a great deal of information from the fitted model as
well as making accurate predictions. (Carslaw and Taylor, 2009).

Carslaw et al. (2012) used boosted regression trees to quantify the impact of
the closure of Heathrow airport following the eruption of Eyjafjallajokull in 2010
on NO, and NO; concentrations at London sites. A boosted regression tree model
of NO, and NO; concentration was built using pre-airport closure data, then
used to model NO, and NO, concentrations under a business-as-usual scenario
during the closure, and compared to the actual measured concentrations over
that time period. From this, the authors were able to detect a significant change
in concentration over the short time period for which the airport was closed at
some sites, and noted the potential for the method’s application to other, longer
term interventions. (Carslaw et al., 2012)

In another study, Lana et al. (2016) used random forest models to measure the

relative contributions of traffic emissions, meteorological factors, and background
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concentrations to air quality in Madrid, in order to establish the potential efficacy
of proposed traffic restrictions on air quality. The relative importance of input
variables was quantified by fitting the model with different combinations of input
features and comparing the error rates. The authors concluded that, at most sites,
traffic emissions were not very significant as a source relative to meteorology and
had very little impact on the regional background, leading to the recommendation
of permanent low emission zones as an alternative to traffic restrictions as an air
quality intervention. (Lana et al., 2016)

Despite the urgency of the issue, the efficacy of interventions such as low
emission zones on the ambient air quality remains an open question. Numerous
studies have reached different conclusions on the matter (Malina and Scheffler,
2015; Ferreira et al., 2015; Cyrys et al., 2014; Boogaard et al., 2012; Panteliadis et al.,
2014). While the unique circumstances of the studied area and the robustness of
the policy’s implementation are important factors, one reason for this ambiguity
is the difficulty of such analyses, as discussed previously. Both the impact of
confounding variables on the air pollutant concentration, and the challenge of
establishing a control scenario hinder the ability of these studies to reach definitive
conclusions.

In Chapter 3, an intervention analysis of the London LEZ is presented. The
method uses non-linear random forest models to model the PM;, concentration
to account for the confounding variables. An indicator variable is included
representing the stages of the LEZ, and used to estimate "business as usual” control

scenarios for comparison with the meteorologically normalised real data.

1.4.4 Compliance Monitoring

The most common use of ambient air quality monitoring data is for monitoring
compliance with the European Union’s air quality limits. The EU imposes limits
on the concentrations of various air pollutants and requires all member states
to annually report the annual (and sometimes daily) average concentrations.
Imposing limits on the concentrations of air pollutants incentivises governments
to prioritise policies aimed at improving air quality.

The limit values are based on the World Health Organisation (WHO) guidelines
which estimate the maximum level of pollution above which adverse health
effects may be experienced. Given the scale and complexity of the problem of
reducing emissions, many of the EU limit values are set higher than the WHO
recommendation in order to set more realistic targets. For example, based on

its most recent evaluation of the scientific evidence, WHO recommend that the
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annual mean concentrations of PM, 5 and PMjg not exceed 10 pg m~ and 20
ng m™ respectively, and that the O3 8-hour mean not exceed 100 pg m~3, all of
which are lower than the EU limits shown in Table 1.2 (WHO, 2006; European
Commission, 2019). Despite this, exceedences of the limit values are frequently
reported in many member states. In 2018, six countries, including the UK, were
referred to the European Court of Justice for consistent failure to meet the air
quality limits (Carrington, 2018).

Table 1.2 shows the limit values and metrics of each air pollutant legislated by
the EU. It can be seen that while for some species, such as Oz, the concentration
is reported as the daily maximum of the running 8-hour mean concentration
1, for others, such as NO,, only a simple annual average is required (European
Commission, 2019; AQEG, 2009)..

Table 1.2: European Directive limit values of the concentration of selected air pollutants
(European Commission, 2019)

Pollutant Concentration Averaging Permitted
(ng m=3) period yearly ex-
ceedences
Fine particles (PMy5) 25 1 year n/a
SO, 350 1 hour 24
SO, 125 24 hours 3
NO, 200 1 hour 18
NO, 40 1 year n/a
PMio 50 24 hours 35
PMio 40 1 year n/a
Benzene 5 1 year n/a
o Maximum daily 25 days averaged
3 120
8 hour mean over 3 years

As discussed previously, the ambient concentrations of air pollutants are
influenced by many confounding factors other than emissions, in particular,
meteorology. Since meteorology varies from year to year, some variation in the
annual average concentration of air pollutants will be due to these interannual
variations in meteorology, rather than variations in emissions. This means
that changes in the annual average concentration cannot be directly attributed
to changes in emissions. More importantly, compliance with the EU limits
could depend on the meteorology of that year. For example, during a year
with meteorology that drives high concentrations of air pollutants - such as a
particularly cold winter characterised by prolonged periods of low dispersion

1The running 8-hour mean is assigned the date of the last hour of the running mean
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conditions - the reported annual average concentrations of primary pollutants
such as NO; may be very high even if the emissions of this species are not
unusually high. In such cases, exceedence of the air quality limits may be a
consequence of meteorology rather than emissions.

It can therefore be seen that the issue of the extent to which interannual
meteorological variation affects the annual average concentration of air pollutants
is very important, but it is largely ignored. The difficulty of separating the
influence of meteorology (or other confounding factors) from the influence of
emissions when analysing ambient monitoring data has been discussed previously.
For this reason, quantitatively determining the variation in average concentration
due to meteorological variation is challenging. Chapter 4 aims to address this
by quantifying that variation, and therefore evaluating the degree to which
compliance is affected by meteorology.

In Chapter 4 , a new method is presented to quantitatively estimate the vari-
ation in the ambient concentration due to meteorological variation, involving
a novel application of the random forest meteorological normalisation method
described in Chapter 3. Novel visualisation tools using heatmaps and cumula-
tive sum plots are shown to enable detailed investigation of which years were
characterised by ‘'good” meteorology (that which drove better-than-usual air
quality) or ‘bad” meteorology, as well as the underlying reasons for this. Based on
this quantification, the effect of meteorological variation on site compliance or

exceedence in a given year can be estimated.

1.5 Structure and Content of this Thesis

1.5.1 Objectives

The purpose of this thesis is to develop new methods for analysing air pollutant
concentration data, using modern machine learning techniques to overcome some
of the traditional problems associated with such analyses. Subsequently, these
new methods are applied to the vast amount of ambient air quality data routinely
collected in the UK to derive new insights about changes in air quality in the UK.

Chapter 2 describes a new technique that enables data from multiple mon-
itoring sites in a network to be used in trend analysis, even in the presence of
bias due to site flux. The efficacy of the technique is demonstrated through a case
study of air quality trends at roadside in London, and applied to analyse trends
in roadside air quality in Scotland and the UK.
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Chapters 3 and 4 attempt to extract more information from ambient air quality
monitoring data by using random forest to remove the influence of confounding
factors such as meteorology. Chapter 3 uses this meteorological normalisation
technique alongside a simulated counterfactual scenario (as demonstrated in
Carslaw et al. (2012)) to attempt to evaluate the efficacy of the London LEZ in
reducing air pollution. Chapter 4 combines the random forest meteorological
normalisation method with bootstrapping techniques and novel visualisation
methods to calculate the interannual meteorological variation and evaluate its
effect on the annual average concentration of air pollutants.

Sophisticated statistical analysis of air quality data enables rigorous trend
analysis that can be used to draw conclusions about the drivers of trends. In
Chapters 2 and 3, changes in air quality are compared with the implementation of
policies aimed at reducing air pollution, such as low emission zones and vehicle
emission technologies, and used to make cautious inferences about the efficacy of
such policies.

Chapter 4 also applies the new methods to critically evaluate current method-
ologies for compliance monitoring of air quality. Currently, ambient air quality
data is used to calculate annual averages (or rolling averages for some pollutants
e.g. O3) which are compared with a numeric limit. In Chapter 4, the disadvantage
of this approach is demonstrated through an analysis of the impact of interannual
meteorological variation on the annual average concentration of common air
pollutants.

The following sections provide a brief description of each chapter, with a more

detailed introduction given at the beginnings of the chapters themselves.

1.5.2 A new method for trend analysis in biased monitoring

networks

Trend analysis is an important tool for examining the changes in pollutant
concentration over time (Anttila and Tuovinen, 2010; Guerreiro et al., 2014), and can
be used as evidence of the efficacy (or lack thereof) of policy interventions (Font and
Fuller, 2016). While the data from a single monitoring station provides information
about the local variation in air quality at a specific location, aggregation of data
from multiple monitoring stations enables the effects of local variability to be
‘averaged out’, leaving a better indication of the large-scale trend.

However, simply calculating the average concentration across every monitoring

site can result in a biased trend that does not represent the changes in air pollutant
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concentration at the individual monitoring sites due to biases in the monitoring
network caused by site flux (movement of monitoring sites) during the period of
analysis. In Chapter 2, this biasing effect is demonstrated using simulated data,
and new techniques to identify and mitigate the biasing effect of variation in time
series length on the trend in average concentration are developed. The efficacy of
the method is demonstrated using simulated data and a trend analysis of NO,
and NO; concentrations in London between 2000-2017 using data from the entire

London monitoring network.

1.5.3 Robust analysis of trends and policy interventions using

random forest

Governments are under pressure from both legislative bodies and the public to
improve air quality in urban areas. The policies used to do this usually focus on
traffic control, such as establishing low emission zones, clean air zones, variable
speed limits and reduction of speed limits.

The potential efficacy of these interventions are evaluated using atmospheric
modelling during the planning stages, but there is a paucity of methods capable
of analysing their actual effect on ambient air pollution after their introduction.

One such method is presented in Chapter 3. The method uses the ‘meteoro-
logical normalisation” method developed by Grange et al. (2018) with an indicator
variable for the presence of the intervention to generate pollutant concentration

trends for different counterfactual scenarios, which can be compared.

1.5.4 Quantification of the effect of interannual meteorological
variation on air pollutant concentration, and the implica-

tions for compliance metrics

Meteorological variation has a huge influence on air pollutant concentration.
There is therefore a concern that variation in meteorology from year-to-year could
influence the annual average pollutant concentration: the metric that is used to
measure compliance with limits for many air pollutants. If this is the case, then
there is a risk that compliance or exceedance with the limit values could be driven
by interannual meteorological variation, rather than an increase in emissions.
Chapter 4 investigates this possibility by attempting to quantify the effect of
interannual meteorological on concentrations of air pollutants at monitoring sites

in the UK between 2008 and 2017. Techniques involving the use of heatmaps and
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CUSUM plots are developed for this purpose, and the results of the analysis are
used to assess whether variations in meteorology are responsible for concentration

limit exceedances from year to year.
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CHAPTER 2. A NEW TREND ANALYSIS APPROACH FOR AIR QUALITY
NETWORK DATA

2.1 Introduction

2.1.1 Background

Air quality monitoring networks are instrumental in the evaluation and man-
agement of air pollution by governments, policy makers and regulatory bodies.
While other tools, such as emission inventories, are often used to track changes
in emissions, the complex nature of atmospheric processes and local conditions
means that emissions data are not necessarily an accurate indicator of pollutant
concentration or exposure. In contrast, ambient data from monitoring networks,
subject to rigorous analysis, can reveal the pollutant concentrations, correlations
and trends at measurement locations. Such information is invaluable for estimat-
ing the actual effects of social and infrastructure changes, and policy interventions
on air quality.

Trend analysis is an important tool for examining the changes in pollutant
concentration over time (Anttila and Tuovinen, 2010; Guerreiro et al., 2014), and
can be used as evidence of the efficacy (or lack thereof) of policy interventions
(Font and Fuller, 2016). In cases where the area under investigation contains a
limited number of monitoring sites, a common approach is to compare the trends
at each individual monitoring site to yield an overall impression of changes in air
quality in the area. For example, Mavroidis and Chaloulakou (2011) used this
approach to estimate trends in particulate matter (PM) and ozone concentrations
in Santiago, Chile 1989-1998 using data from four monitoring sites. The trends
at each site were compared in order to establish a consensus, while differences
between monitoring sites were rationalised using contextual information about
each site. Some studies have attempted to replicate this approach with larger
numbers of monitoring sites, such as the study by Masiol et al. (2017), which
analysed the trends in concentration of a range of pollutants at 43 monitoring sites
in the Veneto region of Italy. However, in the case of large regions or areas with
an extensive monitoring network of sites available, this approach can be unwieldy
and as such it may be beneficial to aggregate data from multiple monitoring sites
to gain a representative view of the average air quality. Cluster analysis has been
used to look at trends across a large number of sites allowing potential drivers for
observed changes to be investigated and differences within and across regions to
be explored (Malley et al., 2018).

Font and Fuller (2016) employed a different method to examine the trends in
roadside increments of various pollutants between 2005-2009 and 2010-2014 by
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averaging data from 65 London monitoring sites. Font and Fuller (2016) applied
data capture filters and linear interpolation to ensure all individual time series
from separate sites were of equal length. The problem with this approach is that
data filtering excludes some information from the analysis. Fleming et al. (2018)
in their analysis of ozone trends for the Total Ozone Assessment Report highlight
that, particularly in developing countries, time series only span a few years and
due to data capture requirements this limits the number of sites available for
trend analysis. In this case the study is global and so there are still sufficient sites
to provide the necessary data for robust trend analysis, but the distribution of the
data across the globe is limited, with sparser sites in developing countries being
more likely to be removed. For areas with sparser monitoring site coverage, or
for trend analysis of long time periods, filtering the data may not be practicable,
and therefore it may be necessary to average over all available monitoring sites to
obtain a trend.

However, the trend in average concentration (the average trend) over moni-
toring sites of differing duration is sensitive to biases in the monitoring network.
Air pollution monitoring sites are frequently moved to more polluted locations,
closed in locations with low pollution levels, or new sites are opened in highly
polluted locations that require more careful observation. The cumulative effect
of site flux! is often therefore that a monitoring network is increasingly biased
towards monitoring sites with higher pollutant concentrations.

Duyzer et al. (2015) state that in their dual use for compliance monitoring and
assessing population exposure, the choice of monitoring site location is made
such as to provide data from the following: (i) the locations where the highest
concentrations occur, and (ii) locations representative of the regional average.
Typically, a distinction is made between roadside monitoring sites, which provide
highly localised data from (i), and urban background monitoring sites, which
are chosen to represent (ii). For this reason, movement of roadside monitoring
sites to more polluted locations is not unexpected, but nonetheless has significant
effects on the average trend. This issue was demonstrated in a 2014 report for
the Department for Environment, Food & Rural Affairs (Defra, 2014). The long
term trends in NO, and PMjg concentration were calculated using data from all
monitoring sites in the AURN network, and compared to those derived using data
from long term sites only. While the trends at urban background sites differed
slightly, those from roadside sites displayed considerable differences, which were
attributed to changes in monitoring site quantity and distribution over time.

1Defined as the change in number of sites over time.
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In this chapter, a range of techniques for identifying and mitigating the biasing
effect of variation in time series length due to monitoring site flux on the average
trend are developed. The efficacy and robustness of the methods are tested
using simulated data. The methods are illustrated by a trend analysis of NO
concentration, NO, concentration and NO, /NO, concentration ratio in London
between 2000-2017 using data from roadside monitoring sites in the London air
quality network.

London was chosen as a case study because of its unusual abundance of
monitoring sites, including long term sites. However this situation is rare, giving
rise to the need for methods that allow for the evaluation of the unbiased trend
(i.e. the overall change in concentration across the network of monitoring sites) in
the absence of long term monitoring sites.

The methods were then applied to an analysis of the trends in roadside air
quality on a larger scale. The long term trends in NO,, NO, and PM;g roadside
concentration, and in the NO, /NO, ratio at the roadside in Scotland and across
the entire UK between 2000 and 2017 were analysed. This monitoring network has
experienced considerable growth over this period, therefore the rolling change

method is an appropriate choice for the analysis.

2.2 Method

2.2.1 Identification of bias effects on the trend

Evidence of a bias in trends from the monitoring network was sought by comparing
trends averaged over (i) time series of differing lengths and (ii) time series of the
same length. To this end, the trend in annual median concentration using data
from (i) all monitoring sites and (ii) long term sites open for the entire duration of
the period of study were compared. In all cases, the average concentration was
calculated using the median, as it is more robust to skewed data and the presence
of extreme values.

This comparison is possible only if sufficient data is available from long term
sites for the period of interest. In many cases, there may not be any reliable long
term sites available as a basis of comparison. Additionally, any conclusions drawn
from this comparison rely on the validity of the assumption that the trend from
long term sites is representative of the true trend, and is not unduly affected by
external influences.

In response to these limitations, a robust approach for observing and mitigating
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the effect of opening sites with high concentrations on the average trend was
developed.

Rolling window regression (also known as rolling regression) is a technique
most commonly used in time series analysis of financial data to examine variation
in the output of a linear regression, such as the regression coefficient, over time
(Wang and Zivot, 2006). The technique uses the same principle as a rolling average,
except that a linear regression is applied to each time period (window) rather than
an average. First, a rolling window width, 7, is chosen. The data is partitioned
into N — n subsets, where N is the total number of observations in the time series.
Each subset is rolled one observation ahead from the previous subset, resulting
in a set of rolling windows of width 7, each offset from the consecutive windows
by one observation, and where the ith rolling window contains the observations
i,...,1+ (n —1). Linear regression is then applied to each rolling window.

A modification of traditional rolling regression was applied to the data, where
each rolling window of width n contained data only from sites with measurements
during every month within the period of the window (i.e. open and operational for all
years within the window), ensuring that all time series within the window were
of identical length.

Rolling trends in the concentration of the pollutant of interest for each window
were plotted, resulting in a series of overlapping n year trends.

Comparison of the rolling trend and average trend using different values of n
reveals a ‘frame-by-frame’ view of the potential bias. Each rolling trend overlaps
with its neighbours for all years but one, and thus excludes data from monitoring
sites opening in that year. In this way, by comparing trends in consecutive years,
the effect of sites opening in that year can be visualised.

2.2.2 Extraction of the underlying trend

An optimal method to counter the influence of monitoring site flux on the average
trend would aim to minimise the effect of the bias while retaining as much of the
data as possible.

The simplest solution would be the exclusion of all sites not measuring
continuously over the period of interest from the trend analysis via the application
of a data capture filter. However, this approach would inevitably result in the
sacrifice of a considerable amount of available data, and in study areas with
low numbers of sites could result in the conclusion that trend calculation was
not possible. Furthermore, this method is predicated on the assumption that
the long term sites are representative of the true trend in the location studied.
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Depending on the abundance (or lack thereof) of long-term sites, as well as other
location-dependent external influences, this assumption may not be accurate.

An alternative method has been developed as an approach to this problem,
with the advantage of retaining virtually all of the available data.

The method, which we shall refer to as the ‘rolling change method’, recursively
calculates a concentration change, which approximates the trend in pollutant
concentration. The concentration change in the first time point (e.g. the first
year) is set as the median concentration over all monitoring sites in the first year.
Next, the first moving window is defined as the period between time points 1,
..., 14 (n —1). Data is drawn from the monitoring sites measuring throughout
the duration of the window, and a linear regression is fit to the data, as described
in Section 2.2.1. The sum of the coefficient of the linear regression and the
concentration change of the previous time point is assigned as the concentration
change of the middle year of the moving window. The moving window is shifted
down the time axis by one time unit (e.g. one year) and the process is repeated
until the end of the time period of interest is reached.

For example, suppose the rolling change trend between 2000-2017 was cal-
culated using a window width of three years. The starting point is the average
of the annual average concentrations of all monitoring sites in 2000. The first
moving window would select data from monitoring sites measuring continuously
during 2000-2002, and fit a linear regression to the data. The sum of the regres-
sion coefficient and the concentration change in 2000 would be assigned as the
concentration change for 2001. The moving window would then shift to 2001-2003
and repeat the process. The final moving window would use data from 2015-2017
to calculate the concentration change in 2016.

Similarly to the data filtering method described in Section 2.1.1, the rolling
change method involves filtering monitoring sites by their data capture. However,
unlike established methods, data filtering is applied over short windows of only
2-3 years, rather than the entire period of the trend analysis, therefore more data
is retained during filtering.

Figure 2.1 shows a schematic of the process, while Equations 2.1 and 2.2 describe
the rolling regression and the recursive concentration calculation respectively. A
more detailed algorithm can be found in Appendix .

The terms in Equations 2.1 and 2.2 are defined as follows: Y; is the variable of
average concentration from all sites with sufficient data capture over the rolling
window, i; X; is the variable of time points within the moving window, i; x; is the

median year of X;; f; is the coefficient of the rolling regression over the window,
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i; €; is the irreducible error of the rolling regression, and Ay; is the change in
concentration assigned to the year x;.

Equation 2.3 represents the rolling change trend itself. The trend is the
concentration change (Ay;) as a function of the median year of the rolling window

(x7)-

Yi = ﬁo + ,BiXi + € (2.1)
A]/i = A]/i—l + ﬁ,’ (2.2)
Ayi = f(xz-) + €5 (2.3)
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Figure 2.1: Schematic of the rolling change method. The output for the process as a
whole (the concentration change for the rolling window, i,) is highlighted in red.

The rolling change trend acts as a proxy for the trend in pollutant concentration,
retaining information about the relative changes in concentration while discarding
information regarding the relative magnitudes. The rolling change trend is
constituted of rolling trends over n rolling windows, each fit to a set of time series
of identical length. In this way, the leveraging effect induced by the inclusion of
high magnitude time series does not affect the trend, so data from all sites with a
duration of at least n years can be included in the analysis. The choice of n dictates
the criteria for inclusion of monitoring sites into the analysis. Larger values of
n impose more stringent requirements for site duration, and thus exclude more

monitoring sites.
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The functions used for the trend analysis in the paper, including the calculation
of rolling trends and rolling change trends, are available in the agtrends R package
(Lang, 2018).

2.2.3 Description of data

The data used in both the London and the UK case studies were sourced from the
Automatic Urban and Rural Network (AURN) maintained by Defra, the London
Air Quality Network (LAQN) run by King’s College London, and the Air Quality
England database collected by Ricardo Energy & Environment.

Each of these networks contains a number of monitoring sites, which record
hourly observations of air pollutant concentrations. The concentrations of NO,
and NO, were measured using the European Commission reference method of
chemiluminescence with molybdenum converter.

For each monitoring site, data more than 10 times the interquartile range from
the upper quartile was considered to be an outlier and removed from the data
set. Monitoring sites with less than 75% data capture over the period during
which they were measuring data were not included in the London trend analysis.
The mean and the standard deviation of the hourly NO, and NO, concentrations
measured at each London monitoring site is given in Appendix II (Table B.1).

The hourly data was used to calculate annual average concentrations using
three different methods of trend analysis. For the average trend (all sites), all
available data from all monitoring sites measuring during the period of analysis
was included in the average (median). The average trend (using data from long
term sites only) was calculated using data only from sites measuring throughout
the duration of the period of analysis. This was defined as recording measurements
during every month within the period of analysis. Additionally, a data capture
criterion was applied to ensure that all long term sites had at least 90% data
capture over the period of analysis. Finally, for the rolling change method, within
each moving window, only data from sites with measurements during every
month within the period of the window was included in the calculation for that
window.

London monitoring sites were selected as all sites within a bounding box of
coordinates 51.25°N, 51.71°N, -0.54°E, 0.28°E. This box was roughly equivalent
to the boundary of the M25 orbital motorway. The data included 121 roadside
sites and 99 urban background sites measuring over the period 2000-2017. Of the
121 roadside sites, 102 sites measuring NO, and 105 sites measuring NO, met

the data capture requirements for the trend analysis. Of these, 9 sites measuring
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NOy and 10 measuring NO, were open for the entire duration of the period of
trend analysis (long term sites). More information about individual sites is given
in Appendix II (Table B.1).

All data importing, cleaning, transformation and analysis was carried out in R.
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Figure 2.2: Map showing the locations of the London roadside monitoring sites measuring
NOy and NO; used in the analysis. More information on individual sites can be found in
Appendix II (Table B.1).

2.3 Results and Discussion

2.3.1 Testing the rolling change method through simulations

Simulations were carried out to compare the effectiveness of the average trend
and the rolling change trend to display the true change in pollutant concentration
over time. Data were simulated to mimic the properties of the real monitoring
data, but with the true trend known. To reflect the various possible properties of

a monitoring network, data were generated from four scenarios:

(a) Long term monitoring sites. All of the time series had the same true
trend (with noise added) and the same length (equal to the length of the
entire time period (2000-2017)). Variation in the concentrations of different
time series was simulated by sampling the concentration in the first year
of the time series from a normal distribution with a mean equal to the
concentration of the true trend in that year and a standard deviation of 10
(X ~ N(true trend concentration, 10?)).
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(b)

()

(d)

Short term monitoring sites without a time-dependent bias in concentration.
All of the time series had the same underlying trend, but different lengths.
The starting year of each time series was randomly sampled from the standard
uniform distribution, constrained between 2000-2015. The time series length
was also randomly sampled from the standard uniform distribution, U(0, 1).
Variation in the concentration of different time series was simulated using

the same method as described in (a) above.

Short term monitoring sites with a time-dependent bias. Each time series
had the same underlying trend, but different lengths. Additionally, in order
to simulate the effect of increasing bias towards more polluted locations
over time, the simulated concentration in the first year of the time series was
randomly drawn from the standard uniform distribution, and multiplied by
a bias factor proportional to the starting year of the time series. The result
was that the concentration in latter years was more likely to be higher than
in former years. The bias factor took the form y; = 1 4+ 0.08x; + €; where y
was the value of the bias factor, x was the index of the starting year of the
time series (between 1 and 18), and € was the random error. The error for
each value of the bias factor, €;, was randomly sampled from the normal
distribution N (0, 0.5).

A combination of time series generated according to the ‘long term’ scenario
and the ‘short term with bias” scenario. The method of generating each
time series was determined by random selection, where the probability of
generating a short term site was ten times as likely as that of generating a
long term site, in line with the observed proportions of long term and short

term sites in the London roadside monitoring network.

For each scenario, 100 sets of simulated data, each consisting of 100 simulated

time series, were randomly sampled. The rolling change trend and the average

trend were calculated for each sample of simulated data, and their similarity to

the ‘true trend’ (the function used to create the simulated data) was evaluated

using normalised cross-correlation (NCC). The normalised cross-correlation of

two time series is a value between 1 and -1, where 1 means the two time series are

perfectly correlated, while -1 corresponds to perfect anti-correlation. The results

are shown in Figure 2.3.

The average trend in Scenarios (c) and (d) was considerably biased relative

to the known true trend, as was observed in the real data, but in each case the

rolling change trend provided a more accurate representation of the true trend.
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Furthermore, the slope of the rolling change trend was shown to be more
accurate than that of the average trend. The slopes of each sampled rolling
change trend and average trend were calculated using the Theil-Sen estimator,
and compared to the slope of the true trend from which the data were simulated
to derive the percentage error. For the combined scenario, the median error of the
rolling change trend was 15%, while for the average trend the error was 293%.
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Figure 2.3: Comparison of the average trend and rolling change trend (n = 3) with the true
trend of simulated data for four different scenarios. In each case, the trends are derived
from 100 random samples, each of 100 simulated time series. The lines correspond to the
trends with NCC equal to the 50th, 10th and 1th percentile of the NCC distribution over
all 100 sampled trends — in other words, the median trend, the 10th worst trend and the
worst trend, with respect to the similarity to the true trend.

The suitability of the technique for situations with limited data available was
also evaluated by applying the trend analyses to 100 samples of 4 time series
simulated using the ‘combined’ scenario, as shown in Figure 2.4. As before, the
rolling change trend represented the true trend with greater accuracy than the
average trend, indicating that the method extends well to situations with a very

limited number of monitoring sites.
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Figure 2.4: Comparison of the average trend and rolling change trend (n = 3) with the
true trend of data from 4 time series simulated using the ‘combined” scenario. The trends
are derived from 100 random samples of simulated data. The lines correspond to the
trends with NCC equal to the 50th, 10th and 1th percentile of the NCC distribution over
all 100 sampled trends — in other words, the median trend, the 10th worst trend and the
worst trend, with respect to the similarity to the true trend.

Simulated data was also used to demonstrate that the rolling change method
is robust to the use of different values of the moving window width, n, as shown
in Appendix II (Figure B.1). The accuracy of the rolling change method increases
slightly as the window width increases, however the amount of data filtered out
also increases. To achieve a reasonable balance between maximising the accuracy
of the rolling change trend, while maximising the amount of data retained in the
analysis, a window width of n = 3 was used in the following applications of the
method.

2.3.2 Long term trends in London ambient air quality

2.3.2.1 Identification of the bias effect on the trend

Comparison of the average trend over all London roadside sites during the period
2000-2017 with the average trend over long term sites (those measuring constantly
over the same time period) reveals a dramatic difference in trend, as shown in the
two left-hand plots in Figure 2.5. The trend of the long term sites is constituted
of data from between nine and eleven monitoring sites. Therefore the disparity
is unlikely to be the result of lack of representativeness due to local influences.
A more likely explanation is a bias towards opening new monitoring sites in

increasingly polluted locations, resulting in the sudden introduction of high
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concentration time series causing abrupt increases in the average concentration
despite no commensurate increase in the trends at individual sites.

The increase in bias in site location towards more polluted sites over time was
affirmed by comparing the median annual ambient concentrations at roadside
monitoring sites opening and sites closing in a given year across the period studied
(see Appendix II, Figure B.2). The difference between the average concentration
at sites that are opening and those that are closing is positive (i.e. concentrations
are higher at sites that are opening) over almost all years for NO, and NO,.

The effect of the bias in site location on the trend in average roadside NO, and
NO; concentrations can be observed through a comparison of the rolling trends
over rolling windows of different widths (1), as shown in Appendix II (Figures
B.3 - B.5).

When the same trend analysis was applied to monitoring data from London
urban background sites, however, no bias in the average trend was observed
(see Appendix II, Figures B.6 - B.8), in corroboration of the findings of the Defra
report discussed in Section 2.1.1 (Defra, 2014). This is, in part, because the
bias towards opening sites in more polluted locations is far less pronounced for
urban background sites, which also move less frequently than do roadside sites.
Moreover, any bias in site location is likely to have a smaller effect on the average
trend at urban background sites, because the NO, and NO; concentrations are
dominated by non-local background sources rather than local traffic sources,

which constitute the major source at roadside sites.

2.3.2.2 Extraction of the underlying trend

Having established the existence of a bias effect on the average trend by the short
term sites, the next step is to mitigate this bias effect in order to reveal the true
underlying trend. The rolling change method described in Section 2.2.2 was
applied to the London roadside monitoring data.

The rolling change trends in NO, concentration, NO; concentration and
NO,/NOy ratio are shown in Figure 2.5 (right). In all cases, these derived trends
bear a far closer similarity with the trend for the long-term site (Figure 2.5 (middle))
than with the biased average trend (Figure 2.5 (left)), offering further evidence in
support of the technique’s efficacy.
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Figure 2.5: Comparison of the rolling change trends in NO, concentration, NO; concen-
tration, and NO, /NO, ratio at London roadside sites 2000-2017, using n = 3 ('Rolling
change method’) with the trend in the average concentration using data from (i) all
available monitoring sites sites ("Average trend (all sites)’) and (ii) long term sites only
('Data filtering method’). The lines represent a loess smooth fit to the data, and the shaded
bands represent the 95% confidence interval around the smooth fit. The numbers at each
data point correspond to the number of monitoring sites contributing to the data point.

The rolling change technique reveals a more optimistic trend from 2000-2017
in NOy concentration at London roadside sites than that implied by the average
trend. Table 2.1 shows the Theil-Sen slopes of the trends derived using the three
different methods (the trend in average concentration using data from (i) all sites
and (ii) long term sites only, and (iii) the trend derived using the rolling change
method).

Application of the Theil-Sen estimator to the NO, concentration trends in
Figure 2.5 yielded a slope of -2.5 [-3.3, -2.0] ng m~2 year! for the rolling change
trend. In contrast, the gradient of the average trend was -0.2 [-1.2, 1.0] pg m™3
year'!. The rolling change trend is a highly monotonic, almost linear decrease,
while the average trend indicates a fluctuation with initial decrease to 2007,
followed by a period of increase to 2013-14, with little overall change in NO

concentration.
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Table 2.1: Theil-Sen slope and 95% confidence intervals of the trend in average concentra-
tion (all sites), the trend in average concentration (long term sites) and the rolling change
trend in NOy, NO;, and NO,/NO, concentration at roadside in London 2000-2017.

Pollutant Method Theil- 95% confidence
Sen interval

slope

(pgm™3

yearl)
NO, Average trend (all sites) -0.2 [-1.2, 1.0]
NO, Average trend (longterm sites) -2.6 [-3.3,-1.4]
NO, Rolling change method -2.5 [-3.3,-2.0]
NO; Average trend (all sites) -0.1 [-0.5,0.2]
NO, Average trend (longterm sites) -1.0 [-1.2,-0.6]
NO, Rolling change method -0.9 [-1.1,-0.7]
NO,/NO, Average trend (all sites) 0.0 [0.0, 0.0]
NO,/NO, Average trend (longterm sites) 0.0 [0.0, 0.0]
NO,/NO, Rolling change method 0.0 [0.0, 0.0]

The differences between the average and rolling change trends in NO, con-
centration were less extreme, but nonetheless notable. Theil-Sen slope of the
rolling change trend was -0.9 [-1.1, -0.7] ng m™ year™! in comparison to -0.1 [-0.5,
0.2] pg m™~ year™ for the average trend. The rolling change trend revealed a
monotonic downwards trend since 2003-4, with an increasingly steep gradient
in later years, while the average trend does not show any downward inclination
until 2012-13, and even shows a slight increase between 2008-2012.

The effectiveness with which the rolling change trend represents the “true
trend” was evaluated by comparison with trends in NO, and NO; from emissions
data, satellite data and previous studies of London air quality.

The rolling change trend incorporates information from more monitoring
sites than would be possible using only long term sites or individual sites. As
such, it is more likely to be reflective of overall trends in traffic emissions across
London, and therefore more comparable with trends estimated by emissions
inventories. The UK trend in NO, emissions from urban driving sources (NAEI,
2020) is shown in Figure 2.6. The emissions data shows a monotonic, almost linear
downward trend between 2000-2016, similar to the rolling change trend in NOy
concentration from the London data (see Figure 2.5). The emissions trend shows
a -56% change from 2000 to 2016, which is not dissimilar to the -43% change in
the rolling change trend in NO, concentration over the same period. A smaller
slope is expected for the ambient concentration trend than the emissions trend

because concentrations at roadside are dominated by traffic sources but other
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Figure 2.6: Trend in UK NO, emissions from road transport (urban driving) sectors
between 2000-2016 (left) compared to the rolling change trend in NO, concentration over
the same period (right). The lines represent a loess smooth fit to the data, and the shaded
bands represent the 95% confidence interval around the smooth fit.

sources also contribute. One such source is natural gas combustion for domestic
heating, from which NO, emissions have decreased less between 2000-2017 than
emissions from road transport sources, effectively depressing the slope of the
trend in ambient NO, concentration relative to the trend in NO, emissions from
transport sources (NAEI, 2020; Wakeling et al., 2018).

A recent study of London air quality using satellite data estimated a trend in
NO; concentration of -0.23 x 10° molecules cm™ year™ between 2005-2015, which
is approximately -1.76 1g m ™ year™!, assuming a column height of 10 km (Pope
et al., 2018). The slope of the rolling change trend (with 95% confidence intervals
given in brackets) in NO, concentration over the same period from roadside
monitoring sites was -1.0 [-1.5, -0.7] pg m~ year™!, compared to the average trend
slope of -0.02 [-0.4, 0.3] ng m ™2 year!. While neither trend indicates as large a
downward trend as that from the satellite data, the rolling change trend provides
concordant evidence of a negative trend in NO, over this period. Some disparity
between the satellite data and monitoring data is expected, because the satellite
measurements integrate concentrations across the entirety of London, while the
ambient concentration data were measured exclusively at roadside monitoring
sites. As a result, the long term trends in the satellite data will be driven by
multiple sources, including domestic activity and power station emissions, in
contrast to the trends in ambient concentration which are heavily dominated by
traffic sources.

The rolling change trends also corroborate the findings of Grange et al. (2017)
that the NO, /NOy vehicle emission ratio across Europe follows a pattern of increase
from 1995-2008 then decrease between 2009-2015. This pattern is replicated in the
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NO,/NO; rolling change trend shown in Figure 2.5 and reflects changes to the
direct emission of NO, from diesel vehicles.

A comparison of the results of the study by Font and Fuller (2016) examining
trends in roadside increments of NO, and NO» concentration in London between
2005-2009 and 2010-2014 with those obtained from the rolling change trend and
the average trend are shown in Figure 2.7. As mentioned in Section 2.1.1, Font
and Fuller (2016) applied data capture filters and linear interpolation to include
only time series of similar length in the analysis. As a result, some data were
excluded, leaving data from 47 monitoring sites from which to derive trends. In
contrast, the use of the rolling change technique allowed for inclusion of data
from all available monitoring sites, which for 2005-2009 was 91 and 93 sites for
NO, and NO; respectively, and for 2010-2014, 85 and 86 sites respectively.

The roadside increments were calculated using the same background moni-
toring site as was used in the study by Font and Fuller (2016). There, the North
Kensington site was chosen as it had a long time series that was representative of
the trends seen in the time series” of other London background sites.

As can be seen in Figure 2.7, for the period 2010-2014, the slope of the rolling
change trend was more similar to the trend calculated by Font and Fuller (2016)
than that of the average trend, although for the period 2005-2009, the rolling
change trend differed considerably from that calculated by Font and Fuller (2016).
Positive trends were observed for both NO, and NO, between 2005-2009 by
Font and Fuller (2016), while negative trends were observed using the rolling
change method. However, negative slopes were observed for both NO, and NO»
concentrations between 2010-2014, in corroboration of the findings of Font and
Fuller (2016).
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Figure 2.7: Comparison of the Theil-Sen slope calculated by Font and Fuller (2016) with
the rolling change trend and the average trend in NO, and NO, roadside increments
at London roadside monitoring sites between 2005-2009 and 2010-2014. The error bars
represent 95% confidence intervals.

Font and Fuller (2016) took advantage of the unusual abundance of monitoring
sites in London to implement a filtering method while retaining enough data to
robustly represent the overall trend in concentration. However, the applicability
of this approach is limited to situations with a similar abundance of monitoring
sites available, excluding most urban areas. In these cases, the rolling trend
method may be the only robust method of calculating an overall long term trend
in ambient concentration.

Additionally, the data filtering method implemented by Font and Fuller (2016)
limits the time period over which the long term trend can be analysed to periods
over which a sufficient number of monitoring sites are measuring constantly. For
example, in an eighteen year trend analysis of NO, or NO, concentrations, such as
the one demonstrated in Section 2.3, the application of the data filtering method
would constrain the analysis to data from only nine or ten monitoring sites. In
other locations, it is unlikely that any monitoring sites have been measuring
constantly for eighteen years, and such a long term analysis would be impossible.

Finally, as alluded to previously, data filtering methods are wasteful. By
excluding monitoring sites which are not measuring constantly over the period
of interest, a great deal of potentially important data is not considered. The
rolling change method’s advantage over traditional techniques is that it does not
automatically exclude data from short term monitoring sites, and so retains far
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more of the data in the analysis.

2.3.3 Long term trends in ambient air quality in Scotland and
the UK

The number of monitoring sites measuring NO,, NO,, and PMjg concentration in
the Scottish network in each year between 2000 and 2017 is shown in Figure 2.8. It
can be seen that the number of sites increases over time for all pollutants and, as
a result, the trend in average concentration over all available data would be an
inappropriate method to visualise the long term trends in ambient concentration

for the reasons outlined in Section 2.1.1.
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Figure 2.8: The number of roadside monitoring sites measuring NO,, NO, and PM;j
concentration in Scotland by year between 2000 and 2017.

Furthermore, Figure 2.9 demonstrates the problems inherent in the application
of data filtering methods to derive a long term trend that is unaffected by site flux
within the monitoring network. The map on the left shows all roadside monitoring
sites measuring NO, concentration at any time between 2000 and 2017, while the
map on the right shows the sites measuring NO, concentration constantly over
the duration of the period (‘long term sites’). By using data filtering to resolve
problem of site flux, the data that can be included in the trend analysis is limited
to that measured at only one monitoring site, and therefore subject to the same
problems discussed in Section 2.1.1 when conducting trend analysis on data from
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a single site: namely, that the trend is unlikely to be representative of air quality

at a regional or national scale, as well as strongly influenced by local variations.
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Figure 2.9: The spatial distribution of roadside monitoring sites measuring roadside NO,
concentration in Scotland (a) at any point between between 2000 and 2017 (left), and (b)
constantly throughout the duration of the period 2000-2017 (right).

Figure 2.10 shows the trends in roadside NO, concentration in Scotland
between 2000 and 2017, calculated using the three methods mentioned previously.
The top-left plot shows the trend in the average concentration using data from
all available monitoring sites, the top-right plot shows the trend using data from
the single long term monitoring site (as shown in Figure 2.9), and the bottom
plot shows the trend calculated using the rolling change method. In each plot,
the numbers beside each data point represent the number of monitoring sites
contributing data to the average.
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Figure 2.10: The trends in roadside concentration of NO, in Scotland between 2000 and
2017 calculated using three different methods: (i) the average concentration across all
available data (top left), (ii) the average concentration using data only from sites measuring
constantly throughout the analysis period (top right), and (iii) the rolling change method
(bottom). The smoothed lines are loess (local regression) fits, with the 95% confidence
interval represented by the shaded band. The numbers signify the number of monitoring
sites contributing to each annual data point.

It is clear that each method results in a very different trend, and therefore the
conclusions drawn regarding the changes in air quality over this period would
differ considerably depending on the choice of method for calculating the trend.
While the trend in the average concentration suggests that after an initial decline
in NO;, concentrations until 2004, the rate of decrease in concentration slowed
and has changed little since 2004, the rolling change method trend reveals that, in
actuality, roadside NO, concentrations changed little between 2000 and 2010, and
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since then have declined monotonically. A more comprehensive exploration of
the ability of the rolling change method to more accurately represent the trend
is provided in Lang et al. (2019). Figure 2.10 also demonstrates that the rolling
change method enables the retention of more data in the trend analysis than is
possible using the data filtering method, as can be seen from the numbers beside
the data points.

The rolling change method was applied to data from the Scottish monitoring
network to calculate the national-scale trends in roadside NO,, NO,, and PM;
concentrations, as well as the NO, /NO, ratio, in Scotland between 2000 and 2017.
These trends are shown in Figure 2.11.
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Figure 2.11: Annual rolling change trends in NO,, NO,, NO,/NO, and PM;g concen-
trations in Scotland 2003-2018. The numbers indicate the number of monitoring sites
contributing to each (annual) data point.

The roadside NO, concentration is observed to have decreased monotonically
since 2002. As mentioned previously, the NO, concentration was initially stable,
until it began to decrease monotonically in 2010. These changes can be attributed
to the introduction of vehicle exhaust technologies aimed at reducing emissions
of these species, such as three-way catalysts used on petrol vehicles and the more
recent use of Lean NOx Traps (LNT) and Selective Catalytic Reduction (SCR) on
diesel vehicles over this period.

The NO, /NO, ratio was observed to increase between 2003 and 2011, before

76



CHAPTER 2. A NEW TREND ANALYSIS APPROACH FOR AIR QUALITY
NETWORK DATA

reaching a turning point, and decreasing thereafter. The initial increase in the
NO,/NOj ratio stems from the introduction of vehicle emission after-treatment
technologies, such as Diesel Oxidation Catalysts (DOC) and Diesel Particulate
Filters (DPF), which deliberately oxidise NO to NO, for use in the oxidation of
other pollutants, such as CO, hydrocarbons and particulate matter. While Figure
2.11 demonstrates that the ambient concentration of NO, has decreased since 2002,
the introduction of these vehicle emission technologies resulted in an increase
in the proportion of NO, emitted as NO, from vehicle exhaust, resulting in an
increase in the NO, /NOj ratio.

The reasons for the observed decline in NO, /NO, ratio since 2011 are less
clear, and several factors have likely contributed. Vehicle emission remote sensing
measurements have found that the NO, /NOy ratio decreases for diesel passenger
vehicles as the mileage increases Carslaw et al. (2019). Additionally, it is likely
that vehicle emission after-treatment systems have been modified to no longer
over-produce NO,.

The PMjg concentration was relatively constant between 2000 and 2006, before
declining monotonically for the rest of the period analysed. This decline can be
linked to the fitting of many Euro 4 vehicles, and all post-Euro 5 vehicles, with
diesel particulate filters (DPF).

The trends in air quality in Scotland (Figure 2.11) were compared to the trends
calculated using the same methodology for the UK and Europe over the same
period. These trends are shown in Figures 2.12 and 2.13 respectively.
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Figure 2.12: Annual rolling change trends in NO, and NO, concentration and NO, /NOy
ratio at roadside in the UK 2000-2017. The numbers indicate the number of monitoring
sites contributing to each (annual) data point.
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Figure 2.13: Annual rolling change trends in NO, and NO, concentration and NO, /NOy
ratio at roadside in Europe 2000-2017. The numbers indicate the number of monitoring
sites contributing to each (annual) data point.
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The trends in Figures 2.12 and 2.13 share similar shapes to the trends in
Scotland, corroborating the supposition that these aggregate trends represent the
large-scale (i.e. national) changes in air quality. The drivers of these national-scale
changes, for example, changes in vehicle emission technologies, are likely to be
common to both Scotland and Europe, while the aggregation of the data on a
national scale eliminates the influence of more local factors, such as local policy
changes and urban/environmental changes, that may otherwise obscure these
effects. It is noticeable that the turning points in the trends in NO; and PM;j
concentrations and the NO, /NOj, ratio in Scotland lag several years behind their
counterparts in Europe.

The observed trends in NO,, and NO, concentrations, and NO, /NO,, ratio
are consistent with the findings of other studies. A study by Grange et al. (2017)
found that, in Europe, NO, concentrations decreased between 1998 and 2015,
and that NO; concentrations increased between 1997 and 2009, before decreasing
until 2015. Grange et al. (2017) also showed that the NO, /NO, ratio in Europe
had increased between 1995 and 2008, and then decreased between 2009 to 2015.
These results corroborate the trends calculated using the rolling change method,
although it is not clear why the trends in Scotland appear to lag behind those
in Europe by a couple of years. Plausible explanations include differences in
the composition of the vehicle fleet (for example, a greater proportion of diesel
vehicles), or an older vehicle fleet, however we lack the high resolution vehicle
fleet data for Scotland and Europe to investigate further.

2.3.4 Potential applications

The rolling change method offers the following advantages over traditional

methods of trend analysis:

e Robust long term trend analysis across monitoring networks which may be

subject to time-dependent biases

e Enables long term trend analysis to be undertaken for areas with few/no

long term monitoring sites

A lack of long term roadside monitoring sites is a major barrier to the analysis
of long term trends in roadside pollutant concentrations. As previously mentioned
in Section 2.1.1, roadside monitoring sites are frequently re-located to locations
deemed more critical for compliance monitoring, resulting in short time series.

To illustrate this difficulty, suppose the trend analysis of roadside NO, and NO,
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concentrations between 2000-2017 was carried out for other UK cities (excluding
London). In the UK, there are 4 functional urban areas (FUA) and 4 towns
(excluding London) with long term roadside monitoring sites measuring NO,
and NO; concentration over the period 2000-2017, none of which has more than
1 monitoring site. The scarcity of long term roadside monitoring sites poses a
serious problem for comprehensive long term trend analysis. However, use of the
rolling change method allows the relaxation of the constraint limiting the usable
data to that from long term monitoring sites. As a consequence, the range of
locations in which long term trend analysis is possible can be expanded to areas
which would be inaccessible using the established methods, such as data filtering.

Moreover, the technique is broadly applicable to any situation requiring the
aggregation of multiple, concurrent time series of differing lengths into a single,
overall trend. For example, such a situation may arise in other environmental
sciences where continuous monitoring is carried out over a network of sites, such
as water quality monitoring, soil monitoring or oceanography.

Even outside the environmental sciences, trend analysis of multiple time series
is routinely carried out in finance, quality control and the social sciences. In
these fields, as in environmental monitoring, it is more usual for analysis to be
limited to time series of the same length. However, with the rapid growth of
sensor technologies and the commensurate increase in the automatic collection
of time series data, the ability to analyse variable length time series could be

advantageous.

2.4 Conclusions

Long term trend analysis is an important tool for measuring changes in air quality
over time, and evaluating the effects of policy interventions on ambient air quality.
In order to evaluate the changes in air quality on a large-scale (for example, a
regional, national, or continental scale), it is necessary to aggregate data from
multiple monitoring sites to ‘average out” the effects of local variability.

Air quality monitoring networks offer the potential to visualise and quantify
long-term trends over large regions through aggregation of data from multiple
monitoring sites. However, analysis of roadside monitoring site data from
the London network suggests caution is required when averaging data from a
monitoring network containing time series with different durations. Site flux, that
is, movement, opening and closing of monitoring sites, introduce biases into the

average trend, resulting in a misleading view of the changes in air quality.
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Techniques were developed with the aim of identifying and mitigating these
influences in order to robustly represent the true long term trend. In particular,
a method involving the calculation of a change in concentration using rolling
window regression was developed as an effective alternative to simple averaging.
This technique, which we call the ‘rolling change method’, was demonstrated to
estimate the true trend in pollutant concentration with far greater accuracy than
the simple average trend when applied to a set of time series of disparate lengths.

The rolling change method was applied to an analysis of the long term trends
in air quality at the roadside in London, Scotland, the UK and Europe. These
trends provided a generally positive view of changes in air quality. In each case,
concentrations of NO, have decreased monotonically. In London and the UK,
NO; concentrations have also decreased monotonically over the entire period,
while in Scotland and Europe were stable until 2010, in the case of the former,
and 2003 in the case of the latter, before declining. In each case, the NO,/NO,
ratio increased to a peak before declining. These changes were explained in terms
of changes in vehicle emission technologies that have occurred over the period,
notably, the introduction of DOC and DPFE. PM;( concentrations in Scotland, the
UK and Europe were also shown to have decreased monotonically since 2006,
and this was attributed to the introduction of DPF to most Euro 4 vehicles, and to
all Euro 5 vehicles. The similarity in the shape of the trends on different scales
indicated that they shared common drivers, and therefore were attributable to
large-scale changes rather than local variation.

The ability to use multiple time series of differing lengths in trend analysis offers
potential advantages for air quality and environmental monitoring applications,
as well as time series analysis in other fields. An important advantage of the
technique is that it maximises the use of the information available and is suited
to situations where a large number of monitoring sites may not be available but
where an aggregate view of overall changes in concentrations is still valuable.
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CHAPTER 3. DEVELOPMENT AND APPLICATION OF RANDOM FOREST
MobELSs TO AIR POLLUTANT TIME SERIES

3.1 Introduction

3.1.1 Background

In response to frequent exceedances of WHO and EU limits on ambient concentra-
tions of major air pollutants, particularly NO, and PM, many European countries
have implemented policy interventions aimed at reducing air pollution in urban
areas. These interventions typically target the road traffic source, and include low
emission zones (LEZ), clean air zones (CAZ), variable speed limits, and reduction
in speed limits, as well as other mechanisms for reducing congestion and stop-start
traffic flows.

Such policies are not without their costs, both to the road user in terms of
the costs in time, money and convenience, and to the government. It is therefore
important to estimate the effectiveness of the intervention in achieving its goals
in order to justify its existence to the public. During the planning stage of the
intervention, the benefits of the measure are estimated using models, however
these estimates only predict the potential benefits of a perfectly implemented
system. To evaluate the actual effects of the intervention on ambient air quality, it

is necessary to analyse real-world monitoring data.

3.1.2 Intervention and Accountability Studies

Intervention analysis was previously discussed in Chapter 1. It concerns the
investigation of the effect of policy interventions on air pollutant emissions, air
quality, exposure and, ultimately, human health. The main challenges faced by
accountability studies are the establishment of an appropriate control scenario,
and the problem of distinguishing the changes in air pollutant concentration
resulting from the policy intervention from the changes due to confounding
factors such as meteorology.

This chapter presents a method that addresses both of these issues. Random
forest models, with an indicator variable that represents the phase of the LEZ,
are used to remove the effects of confounding factors, and to generate a control

scenario for comparison.

3.1.3 Random Forest Modelling

Random forest is an ensemble decision tree model, which has gained popularity

recently due to its accuracy in a range of domains combined with its excellent
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interpretability (Donges, 2019; Sarica et al., 2017).

Decision trees are a powerful method for modelling non-linear relationships.
However, a single decision tree suffers from a common dichotomy in machine
learning: the bias-variance trade-off. A decision tree is a non-parametric technique,
meaning that it learns the distribution of the data directly from the data, rather
than relying on over-simplistic a priori assumptions, such as linearity. Non-
parametric methods provide increased flexibility to the model, often resulting in
improved accuracy, however it also introduces the risk of ‘overfitting’. Overfitting
is a common problem in machine learning applications, and refers to the situation
where an over-complex model is fit to the noise in the training data, rather than
the signal. The trained model, therefore, describes the training data very well,
but performs poorly when generalising to new cases. If the decision tree is grown
too deep, it risks overfitting to the data, even to the extreme case where each
node of the tree contains only a single data point (high variance). However,
too shallow a tree sacrifices accuracy, particularly in data sets containing many
predictors (high bias). Ensemble methods, such as random forest, ameliorate the
effects of overfitting in order to improve the accuracy of the model predictions by
aggregating the predictions of many small models.

The ensemble method used in random forest is bagging, which is short for
‘bootstrap aggregation’. Bagging improves the accuracy of the ensemble by
bootstrapping (generating a new data set by drawing samples from the original
data set with replacement) the training data, and using each sample to train a
shallow decision tree. Additionally, for each tree the features themselves are
also bootstrapped - typically a sample of m = p/3 for regression trees (where
p is the total number of features) is used to train each tree. This has the effect
of de-correlating individual trees, which reduces the variance of the individual
model and makes the ensemble robust to correlated predictors. Once all of these
small, independent trees are trained, they predict the response of new input data
by voting, i.e. the average of the predictions of all the trees is the overall outcome.

By using ensemble methods to combine the advantages of decision trees with
a robustness to overfitting, the random forest inherits an unmatched ability to
model non-linear relationships, and a robustness to correlations between predictor
variables from the decision tree method. This makes it very useful for problems
involving non-linear relationships and interaction effects, such as are common
in air quality data. Additionally, random forest is robust to the presence of
uninformative features, and handles missing values and outliers well.

In the context of the application to air pollutant concentrations, these methods
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help to capture important characteristics. For example, it is well-established
that the relationship between a variable such as wind speed and pollutant
concentration is non-linear. Furthermore, different meteorological variables do
not act independently of one another i.e. there is an interaction between them. For
example, the relationship between a pollutant concentration and wind speed is
not the same for all wind directions or ambient temperatures. Tree-based methods
can account for both non-linearity and interactions in a way that requires no prior
knowledge of their functional relationships. Moreover, for changes that occur
abruptly, tree-based approaches are able to deal with these situations, which
might prove more challenging for other techniques that use smoothing, such as
Generalized Additive Models. In this respect, they are potentially well-suited to

intervention analysis where changes might occur over short time periods.

3.1.4 Model Interpretation

The uptake of complex machine learning models, such as artificial neural networks,
has been impeded in large part due to their lack of interpretability, leading them
to be labelled ‘black boxes’. An attractive feature of random forests is that it is
more interpretable than most machine learning models. The model produces
estimates of the relative importance of the predictor variables, partial dependence
plots and interaction plots. The interpretability of the model is important because
it helps to establish whether the relationships between variables are chemically
and physically plausible.

3.1.4.1 Variable Importance

The variable importance is calculated using two methods (in most implementa-
tions):

1. Accuracy-based — the decrease in the accuracy of the model when the
variable is removed is estimated. For each tree, there is an out-of-bag subset
of data that the model was not trained on that is used for evaluating the
model performance. First, the predictive accuracy of the model is calculated
using the out-of-bag data set, then the values of the variable are randomly
shuffled and the accuracy is re-calculated. The randomly shuffled variable
is assumed to have no predictive power, so the shuffling is equivalent to
removing the variable. The variable importance is estimated as the mean

decrease in predictive accuracy across all trees.
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2. Gini-based — The Gini index is used in node splitting as a measure of node
purity. It can also be used to measure variable importance, by calculating
the sum of the Gini decrease (how much the Gini index decreased from
the parent node to the sub-node) at all nodes where the variable was used
to split the data, across all trees in the forest. The sum is divided by the
number of trees in the forest to give an average (Hoare, 2019; Lee, 2017).

3.1.4.2 Partial Dependence Plots

Partial dependence plots can be considered as analogous to variable coefficients
in multiple linear regression. They are functions that describe the relationship
between each variable and the response (dependent variable) if all other variables
in the model are kept the same. However, unlike linear regression variable
coefficients, partial dependence plots can describe a non-linear relationship
between variables. Partial dependence plots are extremely useful in practise,
because it gives the user insight into how the model is making its predictions,
as well as ascertaining the relationship between the response variable and a
predictor (for example, the intervention indicator) in the absence of effects from
other predictors in the model (e.g. the confounders).

The partial dependence function is computed using the following algorithm:

1. Find the unique values of the variable of interest in the training data set.

2. Create one replicate of the training data set for each unique value of the
variable of interest. Fix the value of the variable of interest to a single unique

value for each replicate.

3. For each replicate, predict the value of the response for each observation
using the model.

4. For each replicate, average the predicted values of the response. This average
is the value of the response mapped from the unique value of the variable of
interest for this replicate in the partial dependence function (Wright, 2018).

Partial dependence plots are particularly useful for understanding whether
the dependent variable varies in ways that can be understood by the underlying
processes of dispersion and atmospheric chemistry. For example, for a primary
pollutant ground-level source, it would generally be expected the concentration
would decrease with increasing wind speed. Similarly, as ambient temperature

increases, it would be expected that concentrations of pollutants would decrease
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owing to the enhanced thermal turbulence. Clearly, the actual variations would
depend on the situation in question, but the ability to critically evaluate the

responses in this way is a valuable characteristic of tree-based models.

3.1.5 Meteorological Normalisation

Meteorological normalisation is a process whereby the effects of meteorology on
the ambient concentration are removed in order to more clearly quantify changes
resulting from other factors such as changes in emission source strength. This is
done by calculating a ‘normalised trend”: the trend under ‘average’ conditions of
all predictor variables other than the date (which represents the long term trend).
The ultimate result is that the effects of variation in the model predictors (e.g.
meteorology and seasonality) are removed from the time series, leaving only the
long term variation (i.e. the long term trend) (Grange et al., 2018).

The calculation of the normalised trend is similar to that of the more familiar
partial dependence plots. A previously trained random forest model is used to
predict each pollutant concentration (i.e. each value of the response) 500 times.
Each time, the values of the predictors other than date are randomly sampled with
replacement from the data set. The arithmetic mean of the 500 predictions is then
calculated, and assumed to represent the concentration of the pollutant under
‘average’ conditions of the modelled variables. The full details of the method are
described by Grange et al. (2018) in their original paper.

3.1.6 Chapter Summary

The analysis of the use of random forest models and the meteorological nor-
malisation methodology to conduct intervention analyses followed three main
themes:

e Method validation — testing the efficacy of the method by modelling

pollutants with well-known long term trends.

e Method analysis — investigation of variations of the method to achieve

optimal performance

e Method application — application of the method to real-world air quality

problems (primarily intervention analyses)
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3.2 Methods

All analysis was carried out in R. The code used for the random forest modelling
can be found in the rfmodels package (Lang, 2018). The code used to carry out
meteorological normalisation is based on the normalisation functions in the

rmweather package (Grange, 2018).

3.2.1 Data Preparation

Routine ambient monitoring data were collected from the Automatic Urban
and Rural Network (AURN) maintained by Defra, the London Air Quality
Network (LAQN) run by King’s College London, the Air Quality England (AQE)
database collected by Ricardo Energy & Environment, the Scottish Air Quality
Network (SAQN), and the Welsh Air Quality Network (WAQN) (Department
for Environment, Food and Rural Affairs (Defra), 2019; Kings College London,
2019; Ricardo Energy & Environment, 2019). The AQE, SAQN and WAQN
databases store data collected by local authorities in England, Scotland and Wales,
respectively. The raw data consisted of hourly observations of air pollutant
concentrations.

The hourly concentration of the pollutant of interest measured at the mon-
itoring site under analysis were used as the response variable in the model.
The explanatory predictor variables included background concentrations of the
pollutant of interest, surface meteorology, traffic counts and temporal variables.

The background concentrations were the data measured at the nearest urban
background site to the monitoring site of interest which measured the pollutant of
interest with sufficient data capture (in this case, 80%) over the period of interest.

Surface meteorological measurements (air temperature, wind direction, wind
speed, atmospheric pressure, relative humidity, dew point and visibility) were
sourced from the Integrated Surface Database (ISD) (NOAA, 2016). The monitoring
site from which to join the meteorological measurements was chosen in the same
way as the background site: the closest meteorological station with sufficient data
capture for the selected meteorological variables was chosen.

Traffic count data was sourced from the Department for Transport’s annual
road traffic counts (Department for Transport, 2010). Data was collected from the
road link on which the monitoring site was located. The annual count data was
joined to the hourly monitoring and meteorological data by assigning the annual

count to every observation within that year.
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Missing values in all variables were interpolated with the median concentra-

tion.

3.2.2 Model Optimisation, Training and Evaluation

Random forest requires several parameters to be set by the user prior to model
training. The optimal values of the parameters were ascertained by grid search
over a range of possible values. The parameter combination with the lowest OOB
RMSE (out-of-bag root mean squared error) was selected. The tuned parameters

were:

e The number of variables to randomly sample at each split (i.e. the number

of variables each tree is trained on) was set to 7.

e The number of observations to train on was set to 85%. This is key to the
bias-variance trade-off of the model: lower values reduce training time but
introduce more bias, and lower values increase variance and risk overfitting

to the training data.

e The minimum number of observations in the terminal nodes (the node size)
was set to 3. This parameter represents the minimum depth of the trees,
and controls the complexity of the trees. Smaller values lead to deeper,
more complex trees, while larger values lead to shallow trees. It also affects
bias-variance trade-off: shallow trees introduce more bias, while deeper

trees introduce more variance and risk overfitting.

The random forest model was trained on the hourly ambient air pollutant
concentration (at the roadside monitoring site) as the response, and the predictors:
meteorological data (e.g. air temperature, wind speed, wind direction, relative
humidity, atmospheric pressure, dew point, visibility), background concentrations
(hourly air pollutant concentration measurements from a nearby representative
urban background monitoring site), traffic flow data (annual traffic counts),
temporal variables (hour of day, day of week, Julian day) and the long term trend
(Unix date). Additional predictor variables may also be included as required. For
example, in the intervention analysis in Section 3.3.4, an intervention indicator
variable is often included to model the presence/absence of the intervention.

In the context of an intervention analysis, a temporal control can be established
by training the model using data from before and after the implementation of the
intervention. An indicator variable is included in the model, taking the value 0

for data measured when the intervention is not in effect, and 1 when it is in effect.
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Three metrics were used to evaluate the performance of the trained models.
The R-squared value and the RMSE (Root Mean Squared Error) were calculated
using the out-of-bag (OOB) data, and the RMSE was also calculated using the
held-out test data set. ‘Held-out data’ refers to data that was not used to train the
model, and is therefore unseen by the model. This data is used to evaluate the
accuracy of the model in preference to the training data, as it tests the model’s
ability to generalise to unseen cases, and potentially enables overfitting to be
identified (James et al., 2013).

R-squared is defined as the proportion of the total variation in the response
variable that is explained by the model. RMSE is the square root of the variance of
the model residuals, and is a measure of the similarity of the predicted values to
the observed values of the response (see Equation 3.1) (James et al., 2013; Swalin,
2018).

1 n
- | = E 02
RMSE j:1(y] 7) (3.1)

3.2.3 Trend Normalisation and Analysis

The trained model was used to calculate the normalised trend in the air pollutant
concentration, using the normalisation methodology described in Section 3.1.5.

Trend analysis was conducted on the normalised trend to measure the long-
term changes in air pollutant concentration, without the obscuring effects of
meteorology, transport and dispersion. Break point analysis was applied to
detect change points and, where possible, additional information (e.g. dates of
implementation of policy interventions, and the dates from which new vehicle
emission standards were applied to new registrations) was considered to inform
speculation about their possible drivers (Bai, 1994).

For intervention analyses which included an indicator variable, the effect of
the intervention was quantified by calculating partial dependence plots for the
indicator variable, or by setting the indicator to different values and comparing

the normalised trends.
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3.3 Results and Discussion

3.3.1 Method Validation

In order to test whether or not the model is generating an ‘accurate’ normalised
trend (i.e. truly representing the trend in concentration with the influence of
confounders removed), the analysis was conducted at a location and for a pollutant
with a very well understood long term trend: black carbon (BC) at Marylebone
Road in London (MY1) between 2000 and 2017. It would be expected that black
carbon concentrations at this busy roadside location would be strongly influenced
by the vehicles using Marylebone Road, with only minor contributions from other
sources, such as wood burning.

The monitoring station at Marylebone Road is situated unusually close to a
busy road, and the air quality at the site is therefore overwhelmingly dominated
by primary emissions from road traffic. The major drivers of changes in black
carbon over this period are understood to be reductions in vehicle exhaust particle
emissions as a result of fitting particulate filters. Most post-Euro 4 vehicles, and
all post-Euro 5 vehicles are fitted with particulate filters, therefore we would
expect to observe reductions in black carbon concentration around 2011 (Euro 5
standards apply to all new vehicle registration).

The normalised trend in black carbon concentration at Marylebone Road in
London (MY1) between 2000 and 2018 is shown in Figure 3.1.
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Figure 3.1: Monthly average normalised trend in black carbon concentration at Maryle-
bone Road, London 2008-2018. The vertical dashed lines indicate the break points (as
calculated using the regression model break point analysis described by Bai (1994)).

Break point analysis indicated that the trend exhibited change points in 2011
and 2015. The change point in 2011, which marks the beginning of a monotonic
decline in the black carbon concentration, coincides with the application of the Euro
5/V emission standard to all new vehicle registrations which, crucially, included
the fitting of particle filters to all new vehicles. The monotonic decrease between
2011 and 2015 was likely driven by fleet turnover resulting in penetration of Euro
5/V vehicles fitted with particulate filters into the vehicle fleet, replacing more
polluting older models. This decrease in black carbon ends at the change point in
2015, and is followed by a period of no change in black carbon concentration. While
this change point is coincident with the introduction of the Euro 6/VI emission
standard in 2015, the limits on particulate emissions for passenger vehicles and
light-duty vehicles did not change between the Euro 5 and Euro 6 standards (since
the use of particle filters had reduced these emissions to near-zero) (Williams and
Minjares, 2016). Furthermore by 2015 it is probable that most on-road vehicles
were Euro 4 standard or higher, and therefore fitted with particle filters, therefore
turther fleet turnover yields little improvement in air quality.

The normalised trend in black carbon concentration at London Marylebone
Road is consistent with expectation, based on the changes in vehicle emission
technologies over the period of analysis. This suggests that the method was
successful in extracting the long-term trend from the effects of the confounding
variables, since if these influences had not been removed, it is likely that the
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relatively small changes described here would have been obscured by the much
greater variation due to meteorology and dispersion. Further application of the
methodology to other air pollutants and locations can therefore be made with
greater confidence in the validity of the results.

3.3.2 Method Analysis

The goal of the random forest normalisation method is to produce a normalised
trend in the pollutant concentration, where the variation in concentration resulting
from variation in meteorology and dispersion (the noise) is minimised, in order to
resolve the long term variation in concentration (the signal). One way of achieving
this aim is to maximise the accuracy of the model: a more accurate model can
account for, and therefore remove, more of the variation due to meteorology from
the normalised trend. However, when handling large volumes of data (e.g. hourly
monitoring data) and iterative tasks (e.g. sampling during normalisation), the
computational demand of the task must also be considered and, if necessary,
balanced against model performance.

The random forest methodology comprises a workflow: from data collection,
preparation, model training and evaluation, trend normalisation and, finally, trend
analysis. Here, two modifications to the workflow are presented. The first aims to
maximise the model accuracy by evaluating the relative performance of random
forest models trained using meteorological data from different sources. The
second aims to minimise the computational demand of the process by estimating
the normalised trend using partial dependence plots, rather than carrying out the
computationally expensive normalisation procedure.

3.3.2.1 Choice of meteorological data source

In order to evaluate the relative performance of RF models trained using meteoro-
logical data from different sources, meteorological data was collected from the
following sources:

e Surface measurements of air temperature, wind direction, wind speed,
atmospheric pressure, relative humidity, dew point and visibility from the
Integrated Surface Database (ISD) (NOAA, 2016)

e Hourly ethane concentration data measured at the London Marylebone

Road monitoring site (as a tracer of atmospheric dispersion)
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Surface meteorological measurements are the standard data source for mod-
elling ambient air pollutant concentrations (Grange et al., 2018; Dijkema et al.,
2008). Its use as a source of meteorological data is self-explanatory.

Ambient ethane concentration was investigated as an alternative source of
meteorological information, as it was hypothesised that it would behave as a tracer
of atmospheric dispersion. London is built upon a network of natural gas pipelines,
which supply the energy needs of the city. This network contains many tiny leaks,
which produce a continuous and relatively spatially homogeneous leakage of
ethane across the city. As one of the few atmospheric species without a traffic
source, the ethane concentration is therefore strongly indicative of atmospheric
dispersion. Indeed, this characteristic of ethane is easily confirmed by plotting
the diurnal and seasonal variation which shows highest concentrations at night
and during the winter months i.e. when the atmoshere tends to be more stable.
Because much of the information value of the surface meteorological variables
relates indirectly to the atmospheric dispersion, it was posited that much of
the information from surface measurements could be obtained from the ethane
concentration. If this was found to be the case, it would, where measurements
of ethane are available, enable six explanatory variables to be replaced by one
within the air quality model, leading to a reduction of complexity and therefore
improvements in interpretability, as well as reductions in computational demand.
Additionally, it would eliminate the need to arbitrarily choose a meteorological
monitoring site from which to collect the measurements, a choice that can, in
the absence of discriminating information or detailed site knowledge, be highly
subjective.

PM;o concentrations at three different London monitoring sites, London
Marylebone Road (MY1), Cromwell Road (KC2) and Camden Swiss Cottage
(CD1) between 2000 and 2017 were modelled using random forest. For each
site, three models were trained: one using surface meteorological data from
NOAA (2016), one using ethane concentration measurements from MY1, and a
control model, which contained no meteorological data at all. The input data for
all other variables (the response i.e. PM;g concentration, the background PM;j
concentration, traffic counts, and temporal variables) were identical for all three
models. A normalised trend in PMjp concentration was calculated using each

model, as shown in Figure 3.2.
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Figure 3.2: Comparison of the normalised trend in PM;o concentration at (a) London
Marylebone Road (MY1), (b) Cromwell Road (KC2), and (c) Camden Swiss Cottage
(CD1) 2000-2017, calculated using models trained on NOAA surface meteorological
measurement data ‘'noaa’, hourly ethane concentration measured at MY1 (‘ethane’), and
on no meteorological data at all ('none”).
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For all three sites there was little observable difference in the normalised trends
generated using models trained using meteorological data from the different
sources. This is an unexpected result, but even more unexpected is the finding
that neither of these trends differed significantly from the trend produced by the
model trained on no meteorological data at all. This result implies that virtually
all of the information contained within the meteorological data is redundant in
explaining variation in PMg concentrations, in the presence of the other predictors
in the model. Since PM;g concentrations are known to be strongly influenced by
the background concentration, it is likely that this variable provides the majority
of the model’s explanatory power. The strong inter-dependence of the predictors
may also be a factor: meteorology and background concentrations are strongly
inter-related, and therefore the information encoded within the meteorological
data may, in the absence of such data, also be provided by the background variable.
These hypotheses could be investigated in future work by comparing models
trained without the background variable.

It is worth noting that the redundancy of the meteorological data has been
observed only when modelling PM;jy concentration. Other air pollutants of
interest, such as NO, and NO,, are more strongly influenced by local emissions,
and models that predict these pollutants may therefore display different responses
to the input of different meteorological data. Future work could repeat this analysis

for these pollutants, to determine whether the same conclusions hold true.

3.3.2.2 Normalised Trend Estimation using Partial Dependence Plots

Partial dependence plots and the “‘meteorological normalisation” method devel-
oped by Grange et al. (2018) rely on the same principle: removal the effect of
all but a single predictor through the use of the trained model to predict the
value of the outcome for each observation using many (or all) values of the other
predictors. The average prediction for the observation represents the value of
the outcome under ‘average conditions’ of all other predictors (more detailed
descriptions of the partial dependence calculation and the random forest normal-
isation method are given in Section 3.1.4.2 and Section 3.1.5 respectively). The
meteorological normalisation framework can be viewed as a specific case of the
partial dependence function, where the predictor of interest is always the date
(i.e. the long term trend term). Additionally, there are minor differences in the
algorithms used to produce the outputs: the calculation of the partial dependence
function involves calculating the average prediction given all values of the other
predictors, whereas the meteorological normalisation algorithm draws a random
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sample of user-specified size of predictor data with replacement (in this analysis,
a sample size of 500 was used).

Another noteworthy difference between the two methods is their relative
computational efficiency. The calculation of partial dependence plots in R (pdp
package) is optimised, and can therefore be executed far more quickly than
normalisation. It therefore offers the advantage of a faster execution speed, which
is valuable when many normalised trends must be calculated many times (e.g.
for multiple monitoring sites).

The similarity in the partial dependence and meteorological normalisation
methods led to the conjecture that the two methods may generate similar outputs,
but one may offer advantages in terms of execution speed over the other. PMjg
concentrations at London Marylebone Road 2000-2017 were modelled using
random forest, and the long term trend component was estimated using the
normalised trend (from the meteorological normalisation method) and the partial
dependence plot for the Unix date predictor. A comparison of the two trends is
shown in Figure 3.3.
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Figure 3.3: Comparison of the normalised trend and the partial dependence plot for
the Unix date (long term trend trend) variable from the random forest model of PM;j
concentration at Marylebone Road, London 2000-2017.

Figure 3.3 shows that the features of the normalised trend are represented
accurately by the partial dependence plot. The partial dependence plot is smoother
than the normalised trend, and lacks much of the shorter term variation, most

likely due to the use of a greater number of observations in the calculation of the
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average prediction for each observation. Thus, for tasks where conservation of
computational resource is a crucial factor, the long term trend component could
be represented by the partial dependence plot for the date variable, rather than
the normalised trend.

However, the normalisation methodology offers advantages in terms of the
flexibility of the method, and the level of detail it provides. For example, the
meteorological normalisation method enables the user to filter the data from
which the values of the predictors are sampled during normalisation. This allows
the normalised trend to be calculated for specific conditions, rather than the
‘average’ conditions of the entire data set. In Chapter 4, for instance, this capability
is leveraged to sample data from a single year, for each of the years in the data
set in turn, in order to estimate the variation in pollutant concentration resulting
from inter-annual meteorological variation.

In conclusion, the long term trend in air pollutant concentration can be
represented either by the normalised trend, or by the date partial dependence plot.
The choice of method for calculating the trend must be made on a case-by-case
basis, according to the requirements of the analysis.

3.3.3 Long Term Normalised Trends in London

The normalised trends in NO,, NO; and PM;y concentration at three sites in
London between 2000 to 2017 were estimated using random forest models of
hourly ambient monitoring data, as described in Section 3.2. These trends are

shown in Figure 3.4.
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Figure 3.4: Long term trends in (a) PMjg, (b) NOy, and (c) NO, concentration at, from left
to right, Marylebone Road (MY1), Camden Kerbside (CA1), and Cromwell Road (KC2) in
London between 2000 and 2017. The purple line is the partial dependence plot of the
date variable calculated from the random forest model trained using monitoring data
from the specified site. The vertical dashed lines indicate the break points.

Several common patterns can be observed in the long term normalised trends
in Figure 3.4. All three sites exhibit a change point in 2007 where the PM;( concen-
tration begins to decrease monotonically. This date is ahead of the introduction
of Phase 1 of the London LEZ that focussed on reducing PM emissions on 4th
February 2008. The observed decline in PM;g concentration could be driven by
the gradual penetration of Euro 4/1V, and eventually Euro 5/V, vehicles into
the fleet. PM;g concentrations then level off, and then start to increase again at
Camden Kerbside after 2013. It is possible that saturation of the vehicle fleet
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with Euro 4-6 vehicles occurred at this point, and so further fleet turnover did
not result in further decreases in emissions of PM. The reasons for the increase
in PMjo concentration after 2013 at Camden Kerbside are unknown, but may be
the result of site-specific changes not included in the model (e.g. changes in road
structure, congestion or the urban environment).

The long term trends in NO, differ between all three sites. At Marylebone Road
NOy concentrations decrease sharply until 2002, followed by a gentle increase
to 2013, then level off. At Camden Kerbside, NO, concentrations increase until
2007, then plateau. At Cromwell Road, the trend is relatively constant except
for step decreases in 2006/7 and a decrease after 2013. Other studies by Grange
et al. (2017) and Lang et al. (2019) analysed the long term trends in ambient
NO, concentration in Europe, and consistently found that NO, concentrations
decreased monotonically between 2000 and 2017. Lang et al. (2019) also studied
the long term trends in NO, concentration in 18 individual European cities,
concluding that the shape of the trend was remarkably consistent across a wide
range of locations, once the effects of local variation were averaged out through
aggregation of data from multiple monitoring sites. The marked difference in the
shape of the trends at the Marylebone Road and Camden Kerbside sites from
those expected based on literature findings suggests that the trends are strongly
influenced by local effects, and could be interpreted through consideration of the
history of the sites. It is likely therefore, to characterise the concentration changes
in an area requires the consideration of many sites (as considered in Chapter 2),
even if the meteorological variation can effectively be removed.

Marylebone Road and Camden Kerbside show similar trends in NO, concen-
tration. Initially, the NO; concentration is observed to decrease until 2002/2004,
before increasing between 2002/4 and 2010, and then decreasing. At Marylebone
Road this is followed by a period of no change. This is consistent with the
findings of Grange et al. (2017), who found that average NO, concentrations
in Europe increased between 2000 and 2009, then decreased between 2010 and
2015. The initial increase in NO, concentration can be attributed to an increase
in the number of diesel passenger vehicles over this period. Another driver of
the observed increase could be increased primary emissions of NO, from vehicle
exhaust in compliance with Euro 3 and 4 emission standards, brought about by
the introduction of emission technologies such as DPF (diesel particulate filters)
and DOC (diesel oxidation catalysts). These post-exhaust treatments deliberately
oxidise NO to NO; in order to oxidise other combustion products, such as CO
and particulate matter.
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At Cromwell Road, the NO, concentration follows an overall pattern of
decrease, with sharp step changes in 2007 and 2013 interspersed with period
of little change. The step changes could be the result of changes in emissions
resulting in the introduction of the emission technologies discussed previously,
however the other monitoring sites’ trends indicated that the changes in pollutant
concentration due to these drivers typically occurred more gradually, as new
vehicles penetrated the fleet. The sudden nature of the changes observed at
Cromwell Road might suggest a different fleet composition, or an unusually
fast rate of fleet turnover. More information would be necessary to draw firm
conclusions.

It was suggested that many of the observed changes in air pollutant concen-
tration were driven by changes in vehicle emission technology, and the gradual
penetration of these newer vehicles into the fleet. To test this hypothesis, data
on the UK vehicle fleet composition by emission class was compared to the
normalised trends in PMio, NO, and NO, concentration at London roadside sites,
as shown in Figure 3.5 for PM;( concentrations.
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Figure 3.5: Comparison of the normalised trend in PM;( concentration (purple line) at
(a) Marylebone Road, (b) Camden Kerbside, and (c) Cromwell Road 2000-2017 with the
proportion of the UK vehicle fleet composed of post-Euro 5 vehicles over the same period
(yellow bars). The vertical dashed lines ind@fate the break points.
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Figure 3.5 shows that break points occur around 2007-10 at all three sites,
corresponding to the introduction of Euro 5 vehicles. Further break points occur
in 2012, 2013 and 2015 as PMjg concentrations decrease further, and the vehicle
fleet moves increasingly towards Euro 5 and 6 vehicles.

It should be noted that the trends in PM;y, NO, and NO, concentration all
exhibit too much variability for the results of the break point analysis to be
statistically significant. There is therefore a risk of over-interpreting the results of
the break point analysis. In reality, clear, sharp change points in the trends would
not be expected, since turnover of the vehicle fleet, and therefore changes in the
proportion of vehicles equipped with better emission technologies, are gradual
and occur slowly over time. The subsequent reductions in roadside emissions
of air pollutants would also be gradual, and therefore the concentrations at the
roadside would also be expected to decrease gradually. This implies that in future
work, break point analysis may not be the most appropriate method by which to

analyse the changes in pollutant concentrations observed in the trends.

3.3.4 Intervention analysis of the London Low Emission Zone

The normalised trends in PMjy concentration were calculated for nine roadside
London sites. The break points of these trends were calculated, and compared
to the dates of the LEZ implementation phases. An intervention variable was
included in the random forest model (taking values 0, 1, 2, 3 for the different
phases of the LEZ). Normalised trends were generated with the indicator variable
set to each of these values, and the trends were compared. An example of these
normalised trends is shown for the Marylebone Road site in Figure 3.6.
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Figure 3.6: Comparison of the normalised trends in PM;o concentration at Marylebone
Road, London 2008-2017 with the intervention indicator variable set to the values for
Phases 0-3. These trends represent different counterfactual scenarios (i.e. the observed
trend had each phase of the LEZ been in place for the entire time period).

In Figure 3.6, similar trends were observed for each counterfactual (i.e. for
every phase): PMjy concentrations decreased until 2015, then rose slightly and
levelled off. However, the PM;o concentration in the presence of the LEZ was
lower than in its absence. For Phase 1, this difference was small, reflecting perhaps
the relatively small amount of data associated with this phase, as well as the less
ambitious restrictions it imposed. The PM1y concentration associated with Phase
2 was lower than for Phase 1, and the PM;y concentration for Phase 3 lower still.
This is consistent with the expectation that the successive phases of the LEZ were
responsible for successively lower emissions of PMg because fewer high-emitting
vehicles entered the area encapsulated by the LEZ.

The average difference in PM;g concentration between each combination of
phases over the entire period of analysis (2010-17) for each monitoring site is
shown in Figure 3.7. The error bars represent the uncertainty in the average. A
paired t-test was applied to determine whether the differences in average PMjg
concentration estimated for different phases was statistically significant. The
results of the paired t-test are shown in Figure 3.7 by the different colours. Blue
indicates a significantly lower concentration in the higher phase, red indicates a

significantly higher concentration in the higher phase, and green indicates that
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the difference between the two phases was not statistically significant.
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Figure 3.7: Summary of the results of the London LEZ intervention analysis (the effect of
the London LEZ on ambient PM;o concentrations) carried out using data from nine London
monitoring sites. The segments indicate the average difference in PM;o concentration
between normalised trends for two different phases (values of the intervention indicator
variable), with red indicating a higher PM;o concentration for the higher phase, blue
indicating a lower concentration, and green indicating no significant change (paired
t-test).
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Most sites showed significantly lower average PM;g concentrations in Phase 3
of the LEZ relative to the control scenario (no LEZ/Phase 0). The sites Hackney
Old Street (HK6), Lewisham New Cross (LW2) and Greenwich Blackheath (GR?7)
showed slightly higher PMj( concentrations in Phase 3 of the LEZ, but these were
not statistically significant. Similarly, most sites had lower PM;o concentrations
for Phase 2 compared to Phase 1, with the exception of Camden (CD1), Lewisham
New Cross (LW2) and Hackney Old Street (HK6), which showed statistically
insignificant higher concentrations for Phase 2.

However, comparisons between other combinations of phases revealed a more
ambiguous picture. The changes in average PM1g concentration between Phases 0
and 1, Phases 0 and 2, and Phases 2 and 3 showed higher concentrations for some
sites and lower concentrations for others, with no clear consensus.

Overall, even the largest differences in average PMg concentration between
different scenarios were minor. The largest difference was observed for Marylebone
Road (MY1), which showed that the average PM;jy concentration in the Phase
3 scenario was 2.4 ng m~> lower than in the no LEZ (Phase 0) scenario. Even
the comparison between the no LEZ (Phase 0) scenario and the most restrictive
LEZ scenario (Phase 3) showed that 3 out of the 9 sites studied, or 33% of the
sites, showed no statistically significant difference in average PM;j( concentration
between the two scenarios. In summary, despite the sensitivity and proven
accuracy of the technique, the evidence for whether the implementation of the
LEZ has reduced air pollution in London was inconclusive. Any changes in PM;
concentration resulting from the London LEZ in the areas studied over this period

were either small or insignificant.

3.4 Conclusions & Next Steps

3.4.1 Conclusions

This chapter has explored the use of random forest to produce meteorologically
normalised ambient trends in considerable detail, including investigation of the
method by its application to well-known changes (for example, changes in ambient
black carbon concentrations at London Marylebone Road), comparison of the
model performance and outputs under different modes of use (for example, with
different sources of input meteorological data), and application of the method to
intervention analyses (for example, analysis of the impact of the London LEZ on
ambient air quality in London).
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The method produced a normalised trend in black carbon concentration
consistent with the expectations based on well known changes in vehicle emissions.
This confirmed the effectiveness of the method in removing the obscuring influence
of meteorology from the time series to reveal the comparatively small changes
due to changes in emissions.

Similar normalised trends were produced using models trained using different
meteorological data inputs, as well as a model trained using no meteorological
data at all. This implies that for PMjg at least, the information represented by the
meteorological data is redundant with information provided by other predictors,
such as background PM;y concentration. The underlying reason for this behaviour
is the dominant contribution from regional sources, which are well-captured
by the use of urban background sites in the model. Alternatively it could be
useful in the future to focus only on increments above background concentration.
However, such an approach is prone to local influences at background sites and
the generally very small concentration increment that exists between roadside
and background sites.

The results of the investigation into the effectiveness of the London LEZ were
not definitive. Different monitoring sites showed a range of different results,
with the unexciting consensus view that later stages of the LEZ had probably
resulted in small improvements in ambient air quality at most sites, however
these proved to be only in the range of a few ng m=2. Furthermore, while the
majority of sites showed slightly, but significantly, lower concentrations of PMj
in the presence of the LEZ, the differences at 33% of the studied sites proved
not to be statistically significant. Further analysis may be able to reveal more
information, or improve our confidence in the existing conclusions. Replacing the
absolute concentrations with the increment above the background concentration

may provide more definitive results and could form the focus of future work.
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41 Introduction

One of the main uses of air quality monitoring data is for monitoring compliance
with EU limits on air pollutant concentrations. For some pollutants, these limits are
defined by the annual mean metric, for example, the EU limit on the concentration
of NO,, a pollutant of considerable concern for regulators, is defined by two
metrics: a 1-hour mean value of 200 1g m ™~ not to be exceeded more than 18 times
a year, and an annual mean value of 40 ng m~ (Defra, 2019). It is well known,
however, that meteorology exerts a powerful influence over ambient pollutant
concentrations, and year-on-year variations in meteorology can exert considerable
effects on the annual average concentration of air pollutants in any given year.
This raises the question: if the value of the annual average concentration can
depend on variations in meteorology throughout the year, how appropriate is it
as a metric for measuring compliance? For example, suppose that the average
concentration of NO; at a monitoring site complies with EU limits in one year, but
exceeds the limits in the next. Is this elevation in ambient concentration the result
of a genuine increase in ambient concentration driven by an increase in emissions,
or is it a consequence of abnormal meteorology in the latter year resulting in
extended pollution episodes? How much does normal inter-annual variation in
meteorology affect whether or not a monitoring site is ‘compliant” with regulatory
limits from year-to-year?

While it is understood that inter-annual meteorological variation affects the
annual mean concentrations of pollutants, the degree to which it does so is not
well understood. In order to provide an answer to the afore-stated question, the
effect of inter-annual meteorological variation on the annual average concentration
should be quantified, to enable the confidence with which annual averages can be
used in compliance monitoring to be ascertained.

In this chapter, the magnitude of the effect of meteorology on ambient concen-
trations of air pollutants is determined and quantified to apply an uncertainty to
the annual mean concentration. Using this approach, an assessment is carried out
for each monitoring site of whether the inter-annual variations in meteorology af-
tect whether or not a site is compliant from year to year. The recent years in which
the meteorology resulted in higher concentrations of pollutants, years in which it
resulted in lower concentrations, and years in which it had little/no significant
effect are identified. The implications this has in terms of identifying appropriate
years for use as baseline years in air quality modelling are discussed. The specific

meteorological conditions responsible for the variations in ambient concentration,
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and the physical and chemical mechanisms that drive these relationships are
described. Finally, the implications of these findings on the appropriateness of

current metrics used for compliance monitoring within the EU are discussed.

4.1.1 Meteorology and Air Quality

An assessment of the effects of meteorology on ambient concentrations of air
pollutants must depend on a knowledge of the relationships between meteorology
and air quality, as well as the physical and chemical mechanisms that drive these
relationships.

Jiang et al. (2014) noted that a number of studies investigating the effects of
meteorology on ambient NO, concentrations had shown that stable (anticyclonic
or high pressure) systems were characterised by higher concentrations of NO,,
while NO; concentrations were lower under unstable (cyclonic or low pressure)
systems. Surface meteorological measurements provide information about the
weather system by describing its effects:

Under stable, anticyclonic conditions, sinking air causes a subsistence in-
version, which is characterised by clear skies, lower wind speeds, and lower
relative humidity. In summer, these conditions will result in instability during
the day marked by high temperatures, and instability during the night with
cooling temperatures during which vapour condenses as mist/dew. This leads to
frequent inversions. In winter the clear skies can result in very cold temperatures.
Anticyclonic conditions result in low dispersion, where pollution is trapped at
low levels, and can build up, causing pollution episodes, particularly in the winter
(Wayne, 2000; AQEG, 2004).

In contrast, unstable cyclonic conditions are characterised by low pressure,
higher wind speeds and lower temperatures. Cloudy skies and potentially higher
levels of precipitation result in higher relative humidity. These are high dispersion
conditions, under which pollution disperses more rapidly, leading to lower
ambient concentrations (Wayne, 2000).

The presence of these weather systems can be identified from surface meteoro-
logical measurements. Periods of low wind speed, high temperature (in summer)
or low temperature (in winter), low relative humidity, and high atmospheric
pressure indicate the presence of a high pressure anticyclonic weather system.
These systems are stable, resulting in low dispersion, and therefore might be
expected to be observed in conjunction with elevated concentrations of primary
pollutants.

In contrast, periods of high wind speed, lower temperature (in summer), high
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relative humidity and lower atmospheric pressure indicate the presence of low
pressure cyclonic weather systems, which are unstable, leading to high dispersion.
Consequently, emissions of air pollutants (e.g. from vehicle exhausts at roadside)
are quickly dispersed, leading to lower concentrations of air pollutants (Wayne,
2000).

Air pollution events, which can have a considerable influence over the annual
average pollutant concentration in any given year, are often marked by anticyclonic

weather systems.

4.2 Methods and Data

4.2.1 Description of Data

The data used were sourced from the Automatic Urban and Rural Network
(AURN) maintained by Defra, the London Air Quality Network (LAQN) run by
King’s College London, the Air Quality England database collected by Ricardo
Energy & Environment, and the Scottish and Welsh air quality networks (SAQN,
WAQN). They consisted of hourly observations of ambient NO,, NO, and O3
concentrations, measured at monitoring sites distributed throughout the UK. The
concentrations of NO, and NO, were measured using the European Commission
reference method of chemiluminescence with molybdenum converter.

In this analysis, data from all monitoring sites that had co-located measure-
ments of NO, and NO, concentrations, and that met the data capture requirements
(at least 80% data capture between 2008 and 2017) were included. This set of
monitoring sites included 173 sites measuring NO» concentration, 161 sites mea-
suring NO, concentration, and 77 sites measuring O3 concentration. Due to
the requirement that all sites must measure NO, and NO,, only a subset of the
available O3 monitoring sites were included in the analysis. Therefore it should
be noted that the sites used may be biased towards locations where NO, is more
influential on O3, and the trends in O3 and its relationship with meteorology
may be influenced accordingly. Very different results and relationships may be
highlighted in an analysis which included all sites measuring O3, which include
remote rural sites. The geographical distribution of these sites is shown in Figure

4.1. More information about the sites is given in Appendix V.
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(c) O3 sites

Figure 4.1: Distribution of monitoring sites measuring (4.1a) NO», (4.1b) NOy, and (4.1c)
O3 concentrations with at least 80% data capture between 2008 and 2017 in the UK.

Surface meteorological measurements were used as explanatory variables
for predicting the ambient concentrations during random forest model training.
These data were collected from the Integrated Surface Database (ISD) using the
worldmet R package (NOAA, 2016; Carslaw, 2017). The variables included in the
model were air temperature, air pressure, relative humidity, dew point, wind
speed, wind direction and visibility. The meteorological data was obtained from
the nearest meteorological site meeting the data capture requirements (at least
80% data capture between 2008 and 2017 for all seven of the aforementioned

meteorological variables) to the monitoring site.

4.2.2 Modelling the Effect of Meteorology on Air Quality

The air pollutant concentration was modelled as a function of meteorology and
temporal factors (Julian day, Unix date, hour of day) using random forest models.

Meteorological normalisation was applied to the concentration time series,
using the trained model and the methodology described by Grange et al. (2018),

with a modification. Grange et al. (2018) simulated the concentration under
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‘average conditions’ by sampling a number of observations (e.g. 500) of all
predictors except the date (which represents the long-term trend) from the data
set, and predicting the value of the response (i.e. the pollutant concentration)
for each sampled observation. The predicted data was then averaged by date,
resulting in a data set of predicted values for n values of the date, which represent
the values of the pollutant concentration under ‘average” conditions. However, in
this analysis, the normalisation process was carried out m times, where m is the
number of years in the input data set. Each of the m normalised time series were
generated according to the process above, but using only meteorological data
from a single year. For example, the normalised data for the meteorological year
2008 was generated by repeatedly sampling meteorological data from the set of
meteorological data measured during the year 2008 in order to predict the response. In
this way, the normalised time series of each meteorological year represented the
pollutant concentration under the average meteorological conditions of that year.

Since the long-term (normalised) trend should be independent of inter-annual
meteorology, we expect all m normalised trends to exhibit the same shape,
however the absolute concentration of the trends should vary, depending on the
meteorology of the year its data was sampled from.

By quantifying the variation in concentration among the m time series, the
effect of the inter-annual meteorological variation over this period of time on the

pollutant concentration was estimated.

4.2.3 Quantification of Variation

The effect of meteorology on ambient concentration was quantified by first calculat-
ing the average normalised concentration of the pollutant for each meteorological
year (averaged over the normalised concentrations for the entire period of analysis).
The uncertainty was then calculated as the range (maximum - minimum) of the
distribution of annual mean normalised concentrations for the m meteorological

years.

4.2.4 Visualisation of The Effect of Inter-annual Meteorological
Variation on Air Quality Across the Monitoring Network

While the normalised trends can be directly visualised and compared for a single

site, for the analysis of multiple monitoring sites across the UK, two methods

were used to summarise and compare the normalised concentrations as a function
of the meteorological year. These methods were heatmaps and cumulative
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sums (CUSUM), a method for analysing network data developed by Manly and
Mackenzie (2000).

4.2.4.1 Heatmaps

The heatmaps visualise the difference between the average predicted concentration
in a given meteorological year, and the average predicted concentration from all
meteorological years across the network of UK monitoring sites, as formalised in
Equation 4.1.

fx) = xijj — X; (4.1)

where x;; is the mean predicted concentration of the normalised trend at site
i calculated using data sampled from meteorological year j, and ¥; is the mean
predicted concentration of the normalised trends across all meteorological years
at site 1.

For the purposes of comparability between sites with different absolute
concentrations of the pollutant, the values on the colour scale were standardised
as shown in Equation 4.2, where x; is the observation, X is the mean of the
observations for a given site, and s is the standard deviation of the observations

at a site.

(4.2)

4.2.4.2 Cumulative Sums

Cumulative sum (CUSUM) plots are a useful tool for showing how measured
concentrations deviate from the ‘business as usual” scenario (i.e. concentration
under ‘average’ meteorological conditions). The accumulated difference between
a variable and ‘business as usual’ is plotted. In this way, it indicates change-
points even when those changes are small. If the CUSUM is zero, the measured
concentration has not deviated from ‘business as usual” (Carslaw, 2020).

In this case, the CUSUM is the cumulative sum of the difference between the
predicted concentration of the normalised trends for a given meteorological year
and the average predicted NO, concentration across all meteorological years, for all
UK sites. The CUSUM approach used in the current context considers a network of
monitoring sites with the aim of showing both whether a particular meteorological

year differs significantly from average conditions and the behaviour of individual
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site responses. The cumulative sum was calculated as shown in Equation 4.3.

Sij = (x1j — X1) + (x2j — X2) + -+ - + (x;5 — %) (4.3)

where §;; is the CUSUM at site i for meteorological year j, xjj is the mean
normalised concentration at site i for meteorological year j, and x; is the mean
normalised concentration across all meteorological years at site i. The CUSUM
plot visualises S;; as a function of 7 (the site).

A randomisation process was used to calculate the statistical significance of
the difference between the concentration in a given meteorological year and the
average concentration across all meteorological years, over the monitoring network.
This involves comparing the observed CUSUM plots to the CUSUMs predicted by
the null hypothesis (that there is no difference in concentration between different
meteorological years). A large number of CUSUMs are generated, where the
observations from each site are randomly permuted. The maximum and minimum
values of S;; for each of the sets of permutations are plotted as an envelope on the
CUSUM plot, and represent the bounds for which the null hypothesis could hold
true (i.e. differences from 0 could be due to random variation within real data).
Randomisation is also used to derive p-values for the statistical significance of
the difference between the concentration in a given meteorological year and the
average concentration over all met years. The detail of this calculation is described
in Manly and Mackenzie (2000) and Manly and Mackenzie (2003).

CUSUM plots were calculated for all UK sites, based on four different site
orderings. Applying different ways of ordering the monitoring sites enables
more information about the variation in the effect of meteorology on pollutant
concentration across the monitoring sites to be ascertained. While ordering the
sites by latitude and longitude indicated the north-south and east-west spatial
variation, ordering by the average pollutant concentration revealed the variation
by the level of pollution at the monitoring site, and ordering by the average
NO,/NOy ratio of the monitoring site showed how the effect of meteorology
varied based on the contribution of the traffic source to air pollution at the site.!

In terms of the interpretation of the CUSUM plots, a positive slope indicates
that, on average, the concentration in a given meteorological year is higher than

the average concentration over all meteorological years. A negative slope indicates

1The average NO, /NOj ratio at a monitoring site provides a proxy for the degree of influence
of the traffic source on air quality at the monitoring site. Sites with lower NO, /NOy ratios indicate
a stronger influence from traffic sources (perhaps due to being close to a busier road), while
sites with lower NO, /NOj ratios indicate sites where air quality is more representative of the
background.
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that, on average, the concentration in a given meteorological year is lower than
the average concentration over all meteorological years. A change in the gradient
of the CUSUM plot indicates a change in the magnitude of the deviation in
concentration for that meteorological year between two groups of sites.

The average deviation from the mean concentration, in a given meteorological
year, can be calculated as the slope of the CUSUM plot in that year. The p-value
for a CUSUM plot indicates the statistical significance of the deviation from the
average concentration in that year: i.e. the probability that the observed difference
from the average concentration is due to random chance. The overall p-value (for
all CUSUM plots) indicates whether the CUSUM plots at all times between them
differ from the average i.e. the probability that the observed differences overall

differ from the average.

4.3 Results and Discussion

Random forest models were trained to predict NO,, NO, and O3 concentrations
as a function of meteorology between 2008 and 2017 for each UK sites measuring
the pollutant with sufficient data capture over this period.

The average performances of the models are given in Table 4.1.

Table 4.1: Random forest model performance metrics (averaged over all monitoring sites).
The root mean squared errors (RMSE) are given in ng m™.

Pollutant R-squared OOBRMSE Test RMSE

NO, 0.6 13.6 8.2
NO, 0.6 49.4 30.0
O3 0.7 11.3 6.7

For each site, the normalised concentration for each meteorological year 2008
2017 was predicted using the trained model and meteorological data from the
given meteorological year. As an example, Figure 4.2 shows the normalised
trends in NO;, NO, and O3 concentration for each meteorological year for the
Marylebone Road site (left-hand plot), as well as the variation in the absolute
concentration of the trend in different meteorological years over this period (right-
hand plot). The variation is shown as an envelope representing the maximum
and minimum values of the trends over all meteorological years.

Figure 4.2 indicates that meteorology exerts a large influence over the ambient
concentrations of all three pollutants. It would, therefore, be valuable to quantify

the variation in ambient concentration that can be attributed to variations in
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meteorology, to avoid over-confidence in the interpretation of long term trends,
or mis-attribution of this variation to other factors.
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Figure 4.2: Meteorologically normalised time series for (4.2a) NO,, (4.2b) NOy, and
(4.2c) O3 concentration 2008-2017 at Marylebone Road, for each meteorological year.
The plot on the left shows the trends for each meteorological year 2008-2017, and the
plot on the right shows the range resulting from meteorological variation (the range of
predicted concentrations over all meteorological years) as an envelope around the average
normalised trend.

4.3.1 Quantifying the Effect of Inter-annual Meteorological Vari-
ation

The effect of inter-annual variations in meteorology between 2008 and 2017 on the
annual mean concentrations of NO,, NO; and O3 was quantified to provide some
measure of the range in the mean concentration. The range was calculated as the
range (maximum — minimum) of the concentration values predicted using data
from the meteorological years 2008-2017.

The range in the value of the average concentration due to variations in
meteorology for each pollutant is visualised as error bars on the data points
representing the annual mean concentration. This was done for each monitoring
site individually, as shown in Figures 4.3, 4.6, and 4.8, as well as averaged over all
the monitoring sites in the networks for each pollutant, as shown in Figures 4.5,
4.7 and 4.9.

43.1.1 NO;

Each row of Figure 4.3 represents the mean concentration and range due to
inter-annual meteorological variation at each monitoring site in a given year. The
dashed line marks the EU annual average limit value for NO, concentrations of
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40 pg m~3. The plot on the left shows the data for all monitoring sites in the UK
network, while the plot on the right is a zoomed in view that shows only those
sites where the EU annual mean limit value for NO, concentrations lies within
the range due to meteorological variation (subsequently referred to as ‘marginal’
sites). In other words, the right-hand plot focuses on the sites where the effects of
meteorological variation could affect whether or not the site is compliant with the
EU limits in that year.
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Figure 4.3: Range in the annual average NO» concentration at all UK sites in each year
due to meteorology. The data points show the mean NO, concentration in that year at an
individual monitoring site, while the error bars represent the range in the mean value
resulting from meteorological variation. The range was calculated as the range in the
predicted concentration for that year over normalised data from all meteorological years.
The plot on the right is a zoomed in view of the plot of the left, showing the ‘marginal’
sites (those whose compliance with the EU limit values falls within the range due to
meteorological variation) in more detail.

Over the entire period analysed (2008-2017), there were 44 ‘marginal” moni-
toring sites for which the EU limit value for annual mean NO, concentration lay
within the range resulting from meteorological variation in at least one year. The
geographical distribution of these marginal sites is shown in Figure 4.4. Since a
total of 173 sites were included in the analysis, this represents 25% of the total site
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coverage. The average number of sites which exceeded the EU limit value in a
given year between 2008 and 2017 was 54.8. The average number of sites which
were marginal in a given year was 12.1, therefore the average number of marginal

sites as a proportion of the exceeding sites in any given year was 22%.
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Figure 4.4: Spatial distribution of the sites which are ‘marginal’ for NO; (i.e. their
compliance with EU limit values falls within the range (min to max) due to inter-annual
meteorological variation in at least one year between 2008 and 2017).

Figure 4.5 shows the range (min to max) in the annual mean NO, concentration
due to meteorological variation averaged over all UK sites. This range was
calculated as the range of concentration values predicted using data from the
meteorological years 2008-2017. On average, the annual range in the NO,

concentration due to inter-annual meteorological variation was 2.9 ng m=> (8.2%).
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Figure 4.5: Annual average NO> concentrations, and range (min to max) due to meteo-
rological variation (represented by the error bars), averaged across all UK sites over the
period 2008 to 2017.

4.3.1.2 NO;

The previous analysis of the range in annual concentration due to meteorological
variation was repeated for the NO, concentration data. As for Figure 4.3, each
row of Figure 4.6 represents the mean concentration and range due to inter-annual
meteorological variation at each monitoring site in a given year. However, the EU
does not enforce limits on the NO, concentration using the annual average metric,
as it does with NO, concentration, therefore the limit values are not shown.
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Figure 4.6: Range in the annual average NO, concentration at all UK sites in each year
due to meteorology. The data points show the mean NO, concentration in that year
at an individual monitoring site, while the error bars represent the range (min to max)
in the mean value resulting from meteorological variation. The range was calculated
as the range in the predicted concentration for that year over normalised data from all
meteorological years.

The range in NO, concentrations resulting from meteorological variations,

averaged over all UK sites, is shown in Figure 4.7.
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Figure 4.7: Annual average NO, concentrations, and ranges due to meteorological
variation (represented by the error bars), averaged across all UK sites over the period 2008
to 2017.

On average, the range in the NO, concentration due to inter-annual meteoro-
logical variation over the period 2008-2017 was 9.93 ng m~3 (12.6%).

4313 O3

The previous analysis of the range in annual concentration due to meteorological
variation was repeated for the O3 concentration data. However, the EU limits
on ozone concentration are measured as an 8-hour rolling average, rather than
the annual average concentration, therefore for ozone, the eight-hour rolling
mean, and the associated range in the rolling mean resulting from meteorological
variation was calculated, rather than the average concentration. Each data point in
Figure 4.8 represents the annual average of the 8-hour rolling mean concentration
in the specified year, while the error bars represent the range in the annual
average of the 8-hour rolling mean due to inter-annual meteorological variation
at each monitoring site in the given year. The EU Directive specifies that the daily
maximum 8-hour rolling mean concentration must not exceed 120 pg m=2 for
more than 25 days averaged over a 3 year period. Since this analysis considered
the effects of meteorological variation on the annual average of the 8-hour rolling
mean, rather than the daily maximum of the 8-hour rolling mean, the effect of
meteorological variation on site compliance according to the EU Directive was not
directly assessed, however the large magnitude of the percentage range implies
that it may have a considerable effect. Further work might quantify the effect of

interannual meteorological variability on the daily maximum of the 8-hour rolling
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mean concentration in order to directly evaluate its effect on site compliance
with the EU Directive. By examining this metric, more detail regarding the
daily influence of meteorology on ozone concentration would be provided - and
therefore the results might be quite different- however it would likely be necessary
to consider each monitoring site one-by-one and therefore comparing the results

across the entire network would be more challenging.
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Figure 4.8: Range in the annual average O3 concentration at all UK sites in each year
due to meteorology. The data points show the mean O3 concentration in that year at an
individual monitoring site, while the error bars represent the range of the mean value
resulting from meteorological variation. The range was calculated as the range in the
predicted concentration for that year over normalised data from all meteorological years.

The range in O3 concentrations resulting from meteorological variations,

averaged over all UK sites, is shown in Figure 4.9.
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Figure 4.9: Annual average O3 concentrations, and ranges due to meteorological variation
(represented by the error bars), averaged across all UK sites over the period 2008 to 2017.

On average, the range in the O3 concentration due to inter-annual meteorolog-
ical variation over the period 2008-2017 was 3.3 pg m= (7.5%). This variation is
similar to that for NO, (2.9 pg m~3), which might be expected from the perspective
of the inter-conversion between NO, and O3 (See Section 1.1.2 for more detail).

4.3.2 The Effect of Inter-annual Meteorological Variation on Air

Quality across the UK Monitoring Network

To evaluate the by-site effect of meteorology on annual average concentrations
across the UK in more detail, the heatmap and CUSUM methodologies described
in Section 4.2.4 were applied to the normalised NO,, NO, and O3 concentrations
from each UK site in the monitoring network.

The heatmaps in Figure 4.10 are ordered by the mean concentration of the
pollutant at each monitoring site.
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Figure 4.10: Heatmaps showing the difference between the mean concentration in each
meteorological year and the average concentration over all meteorological years for (4.10a)

NO,, (4.10b) NOy, and (4.10c) O3z, for each UK monitoring site, as predicted by the random
forest model.

A visual inspection of Figures 4.10a and 4.10b clearly indicates that 2010 stands
out as a particularly ‘bad” year for NO, and NO,, with the concentrations of these
pollutants considerably elevated due to meteorology at almost all monitoring
sites. Other (although less obvious) years with meteorology that was responsible
for elevated NO; and NO, concentrations at many sites are 2012, 2013 and 2016.
On the other hand, the meteorology in 2015 was responsible for much lower-than-
average concentrations of these pollutants at most sites, as, to a lesser extent, was
the meteorology of 2008, 2014 and 2017.

In almost direct contrast, Figure 4.10c shows that the meteorology in 2010
was responsible for particularly low concentrations of Oz at most sites, with
less extreme reductions in concentration driven by meteorology in 2009, 2012,
2016 and 2017, while 2015 was characterised by meteorology that resulted in
strongly elevated O3 concentrations at most sites, with less extreme elevations
in concentration also observed for 2008, 2011, 2013 and 2014. This behaviour

140



CHAPTER 4. QUANTIFYING THE EFFECT OF INTER-ANNUAL
METEOROLOGICAL VARIATION ON POLLUTANT CONCENTRATIONS

is expected based on the chemistry involved e.g. increased NO concentrations
would tend to reduce O3 (see reaction given by Equation 1.4).

Generally, there was good consensus among the monitoring sites regarding
whether the meteorology in a given year was responsibly for higher or lower
than average concentrations of each pollutant. However, there were some notable
exceptions.

For example, at Hull Freetown (HUL2), meteorology caused elevated concen-
trations of NO, in 2009, 2011 and 2015, and lowered concentrations of NO, in
2010 and 2016, in disagreement with the majority of sites.

Another notable site was Cambridge Roadside (CAM), which exhibits a distinct
relationship between both NO, and NO, concentrations and meteorology, with
elevations of NO, and NO, in 2011, 2013, 2015 and 2017, and lowered NO, and
NO; in 2009 and 2010.

Several of the most polluted sites (e.g. City of London Walbrook Wharf,
Marylebone Road and Ealing Hanger Lane Gyratory) also differed strongly from
the majority of sites in the effects of annual meteorology on NO, and NO,
concentration. This may be due to the strong influence of traffic emissions on
concentrations at these sites (meaning that meteorology is less predictive of
concentrations), as well as the type of environment. Often, these highly polluted
sites are located at the roadside in highly built-up urban areas, such as street
canyons, where the meteorology (in particular wind speed and wind direction)
can be highly localised and complex, and possibly not well described by the
regional meteorological information measured at the meteorological sites, which
are often located at open locations (e.g. airports and airfields) some distance away.

Other sites with unusual effects of annual meteorology on NO, or NO,
concentrations include Islington Holloway Road (IS2), Cromwell Road (KC2),
London Hillingdon (HIL), Hillingdon Keats Way (HIO), London Hillingdon
Oxford Avenue (HI3), Chepstow A48 (CHEP, CHP), Chichester A27 Chichester
Bypass (CI1), Aberdeen (ABD), High Muffles in Yorkshire (HM). Site information
and geographical locations of all of the monitoring sites mentioned above are
shown in Figure 4.11.
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Figure 4.11: Distribution of monitoring sites with unusual NO, and NO, heatmap
results (unusual variation in NO, and NO, concentration as a result of inter-annual
meteorological variation).

Table 4.2: Number of sites with unusual heatmap results for NO, and NO,, by region
and site type.

Region Site type Frequency
London Urban traffic 5
London Urban background 3
Eastern Urban traffic 1
North East Scotland Urban background 1
South East Urban traffic 1
South Wales Unknown 1
South Wales Urban traffic 1
Yorkshire & Humberside Rural background 1
Yorkshire & Humberside Urban background 1

Table 4.2 summarises the information in Figure 4.11: it shows the number
of monitoring sites, by region and site type, that show unusual NO, and NO,
heatmap results (i.e. which exhibit variations in NO, and NO; concentration
in response to inter-annual variations in meteorology that appear considerably
different from most other UK sites). It can be seen from Table 4.2 and Figure

4.11 that the majority of the sites are located in London and the south-east. This
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may be due to this region experiencing different meteorology from the rest of
the UK, or, more likely, a greater proportion of sites located in street canyons
or built-up areas with hyper-local meteorological conditions that are not well-
represented by the regional meteorology. On the other hand, it may simply be due
to the heterogeneity of monitoring site distribution in the UK: most of the total
monitoring sites are located in London and the south-east, therefore most of the
sites with unusual results are likely to be there too. There is no clear dependence
on site type, with the proportion of traffic, urban background and rural sites
roughly similar to their overall proportions among the total number of monitoring

sites.

Figure 4.12 shows the CUSUMs of the difference in NO,, NO, and O3 annual
concentration between each meteorological year and the average over all mete-
orological years for the meteorological years 20082017, with the sites ordered
by mean concentration, NO, /NOy ratio, latitude and longitude. Each CUSUM
plot is annotated with the p-value calculated using the randomisation process,
which represents the statistical significance of the difference from the average
concentration due to annual meteorology in that year (more precisely, it represents
the probability that the observed difference from the average in that year is due to
random chance, rather than the effects of meteorology).

The results shown by the CUSUM plots in Figure 4.12 match those identified
earlier in the heatmaps (Figure 4.10). The CUSUM plots indicate that the most
statistically significant deviation from normal meteorology (the null hypothesis)
occurred in 2010 - a year in which concentrations of NO, and NO, were abnormally
high, and concentrations of O3 abnormally low. Significantly lower-than-normal
concentrations of NO, and NO; and higher concentrations of O3 were also seen in
2012, 2013, 2016 and 2009. The second-greatest deviation from the null hypothesis
(i.e. ‘normal” meteorology), was seen for 2015, which, in contrast to 2010, had
higher than average concentrations of NO, and NO,, and lower concentrations
of O3. Similar, but less extreme, deviations were shown for 2014, 2017, 2011 and
2008.

In general, the CUSUM plots for NO, and NO, tend to mirror each other
fairly closely, and will therefore generally be discussed together. The CUSUM
plots for O are often distinct (presumably because the concentrations of NO, and
Os are less strongly correlated, as the relationship is complicated by secondary
chemistry).
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Figure 4.12: Cumulative sum (CUSUM) plots of the difference between the mean
concentration in a given meteorological year and the average concentration over all
meteorological years for NO,, NO, and O3 (columns 1-3 of each grid). The sites are
ordered by (4.12a) mean pollutant concentration, (4.12b) NO, /NOy ratio, (4.12¢) latitude
(north to south from left to right), and (4.12d) longitude (east to west from left to right).
Note: In the case of the O3 CUSUM plots ordered by NO,/NO, ratio, only sites also
measuring NO, and NOy are used, and they are ordered by the NO,/NO, ratio derived
from their measurements.

With the exception of the years 2017 and 2013, in all years the meteorology
produces opposite effects on the concentrations of NO, and NOy to that of O3.
For example, a year in which meteorology resulted in elevated NO, and NO,
concentrations generally also resulted in decreased O3 concentrations, and vice
versa. In 2017, however, the meteorology caused decreased concentrations of all
pollutants, while in 2013 it drove elevated concentrations of all pollutants. One
possible explanation for this is that meteorological conditions that are responsible
for most NO, and NO, pollution episodes, i.e. cold, dry, stable (low dispersion)
winter weather would likely result in slower than normal ozone production.
Ozone production is positively correlated with solar radiation and temperature,
so in years with particularly low temperatures, ozone production, and therefore
ambient concentration is observed to be lower.

For the most part, the effect of meteorology on pollutant concentrations was
relatively consistent across monitoring sites with varying levels of pollution and
contribution from traffic sources. The exceptions were a handful of sites with
the very highest concentrations and the very lowest NO,/NOy ratios (i.e. the
most polluted traffic sites — these included sites at London Marylebone Road,
Knightsbridge, Chelsea, Earls Court Road, City of London (Walbrook Wharf), and
Ealing (Hanger Lane Gyratory)), which sometimes displayed effects that differed
from the consensus. For example, in 2011, 2014 and 2017, while the majority of
sites experienced decreased NO, and NO, concentrations due to meteorology,
these sites were affected less. In 2016, while the majority of sites experienced
increased NO> concentrations, these sites showed decreased NO, concentrations
due to meteorology. As previously discussed, this is likely due to the relatively
weaker influence of meteorology compared to emissions at these highly polluted
roadside locations, as well as hyper-localised meteorology and street canyon
effects.

For O3, in 2008, 2010 and 2012, sites with low concentrations were less affected
by meteorology (shallower slope). In contrast, in 2011 and 2017, sites with low
concentrations were more affected by meteorology. For all other years, the slopes
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were almost linear, indicating a similar influence of meteorology on all sites,
regardless of their level of pollution.

The mean concentrations of NO, and NO; at a site are (negatively) correlated
with the NO,/NO, ratio (because sites with low NO,/NO, ratios tend to be
characterised by strong traffic sources, which tend to result in high emissions and
therefore high ambient concentrations of NO, and NO,), and therefore the results
of the CUSUM analysis ordered by NO,/NOj ratio are similar to those of the
analysis ordered by mean concentration for NO, and NOy.

For O3, several of the CUSUM plots (2011, 2012, 2013, 2014, 2015) exhibit a
curved shape, with the slope of the plot generally (except for 2013) greater for
sites with high NO, /NOy ratio than low NO,/NO,. This indicates that the effect
of meteorology on O3 concentration is greater for sites with less influence from

traffic sources (more ‘background’ sites).

More variation in the effect of meteorology was observed when the sites were
ordered geographically. As with previous orderings, the CUSUM plots for NO»
and NO, tend to mirror each other fairly closely, and will therefore generally be
discussed together.

In 2008, the meteorology had little effect on sites in the north and south of the
UK, however it caused strong decreases in the concentrations at sites in the middle
of the UK. O3 concentrations were elevated across most sites, with the exception
of several sites in the centre of the UK, which showed decreased concentrations.
NO; and NO, concentrations were elevated in the east, and depressed in the
centre and west. O3 concentrations were elevated across most of the UK, with the
exception of a few sites in the centre, which showed reduced O3.

In 2009, elevated NO, and NO> concentrations were observed at all sites, but
particularly pronounced effects were observed for sites in the north and south,
with less effect on central sites. O3 concentrations were consistently lowered, with
little variation either with latitude or longitude.

2010 was marked by highly elevated concentrations of NO, and NO; at all
sites, although the effect seemed to be slightly stronger at sites in the north and
the west. Stronger effects of meteorology on O3 were seen at sites in the east and
west, with reduced effect in the centre. The Met Office described 2010 as “a year
that was colder, drier and sunnier than average in most areas, particularly in the
west.” (Met Office, 2019) More extreme meteorology in the west of the country
resulted in a greater effect on ambient concentrations.

In 2011, the decrease in NO, and NO, concentrations, as well as the increased
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O3 concentrations, were observed at all sites, but were stronger in the south and
east. O3 concentrations were elevated at most sites, except a few sites in the east.
The Met Office observed that in 2011, there was “a pronounced north-west to
south-east gradient in rainfall with higher rainfall in the north-west, while drier
than average in central, eastern and southern England” (Met Office, 2019).

An s-shape was observed for the 2012 CUSUMs, with the strongest effects of me-
teorology observed in the centre of the UK (both latitudinally and longitudinally)
for all pollutants.

In 2013, meteorology had little effect on NO, concentrations in northern sites,
while NO, concentrations were decreased. In contrast, central and southern
sites exhibited elevated concentrations of NO,. Central sites, as well as the most
southern sites showed little effect on NO,, while centre-southern sites showed
that meteorology caused increased NO, concentrations. O3 concentrations were
most increased in the north, with smaller effects observed in the south. Sites in
the east showed the strongest elevating effects of meteorology on NO, and NO,.
Sites in central and western UK showed lowered NO, concentrations. Generally,
however, the meteorology in 2013 had a limited effect on concentrations. This is
corroborated by the Met Office, which describes the meteorology as “generally
near average and unremarkable” (Met Office, 2019).

In 2014, most sites showed decreased NO, and NO, concentrations, with the
greatest decreases at northern and western sites (and far eastern sites), however, a
few central sites showed increased NO, concentrations. O3 concentrations were rel-
atively average at northern sites, with elevated O3 at central and southern/western
sites.

In 2015, the effects on meteorology on all pollutant concentrations were
relatively consistent. A slightly greater effect on NO, and NO, concentration was
observed for southern sites than northern.

In 2016, greater elevations of NO, and NO, concentration, as well as greater
depressions in O3 concentration were observed for southern sites, with a levelling
off observed for the very most southern sites. The Met Office records that rainfall
was lower than average in the south of the UK in 2016, possibly indicating the
presence of anticyclonic conditions that led to build up of primary pollutants (Met
Office, 2019).

In 2017, northern and western sites showed greater effects of meteorology on
NO; and NO, concentrations, while O3 concentrations were relatively average
at northern and western sites, and depressed in central/southern and eastern

locations. The Met Office notes that the “north-east England sunniest relative
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to average . . . it was rather drier across central and northern Scotland and many
central and southern parts of England, but somewhat wetter in west Wales and
north-west England. Sunshine was above average in the north and east, but
slightly below average in some western fringes” (Met Office, 2019). The high
rainfall in the north-west could have contributed to the greater decreases in NOy
and NOs,.

Figure 4.13 summarises the results of the CUSUM analysis (with sites ordered
by mean NO, concentration) for all three pollutants. The slope of the CUSUM
plot represents the average per-site deviation from the average concentration, due
to the meteorology experienced in that year. A positive slope indicates that the
meteorology experienced in that year resulted in a higher-than-average ambient
concentration of the pollutant in that year, while a negative slope indicates the
reverse. The years on the x-axis are ordered by increasing slope of the NO,
CUSUMs for clarity.
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Figure 4.13: Summary of the results of the CUSUM analysis for NO,, NO, and Ogz- the
Theil-Sen slope of the CUSUM plot (ordered by mean pollutant concentration), which
represents the average by-site deviation of the concentration due to meteorology from the
average concentration 2008-2017. The meteorological years are ordered by their effect
on the ambient NO; concentration, from the year which caused the largest decrease in
NO; concentration on the left, to the year whose meteorology resulted in the greatest
elevations of NO, concentration on the right.
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Figure 4.13 makes three points apparent. First, that the meteorology in 2015,
2011, 2014, 2017 and 2008 resulted in decreased concentrations of NO, and NO,,
while that in 2009, 2013, 2016, 2012 and 2010 resulted in elevated concentrations
of these pollutants. The meteorology caused decreased concentrations of ozone in
2017, 2009, 2016, 2012 and 2010 and increased concentrations in 2015, 2011, 2014,
2008 and 2013.

Second, that with the exception of the years 2017 and 2013, in all years the
meteorology produces opposite effects on the concentrations of NO, and NO, to
that of O3. For example, a year in which meteorology resulted in elevated NO, and
NO; concentrations generally also resulted in decreased O3 concentrations, and
vice versa. In 2017, however, the meteorology caused decreased concentrations of
all pollutants, while in 2013 it drove elevated concentrations of all pollutants.

Third, that 2010 stands out as a year in which the meteorology had a particularly
dramatic effect on ambient concentrations of air pollutants, resulting in an average
increase of 1.8 pg m= in NO,, an average increase of 6.85 ig m~2 in NO,, and an

average decrease of 2.2 ijg m~> at each monitoring site.

4.3.3 The Relationship between Ambient Concentration and An-

nual Meteorology

The year-to-year variations in air pollutant concentrations can be interpreted
in terms of the inter-annual variations in meteorology. For this purpose, the
relationships between meteorology and pollutant concentration were investigated
in more detail, in order to ascertain the specific meteorological patterns responsible
for driving the observed variation in the annual average concentrations of the
pollutants. Figure 4.14 shows the values of each of the meteorological variables
used in model training, as a function of the Julian day, for each year analysed. These
annual distributions are compared to the average daily values of the meteorological
variables over all years in the analysis (i.e. the ‘average’ meteorological conditions),
which are shown by the yellow lines in Figure 4.14. The information in Figure
4.14 was supplemented with information from the Met Office annual climate
summaries (Met Office, 2019).
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Figure 4.14: A comparison of the average UK meteorological conditions (air temperature,
air pressure, relative humidity, dew point, wind speed, wind direction and visibility) as a
function of the Julian day in each year 20082017 (purple smooth lines) and the average
UK meteorological conditions over the entire ten-year period (yellow smooth lines). All
hourly data used as predictors during random forest model training were averaged to
daily data, and the line represents a loess smooth through the daily averages. The shaded
band represents the 95% confidence interval around the loess smooth.

2010 and 2012 exhibited significantly elevated concentrations of NO;, and
NO, due to the meteorology in those years. 2010 was described by the Met
Office as exhibiting “Prolonged periods with blocked weather patterns, and an
associated absence of westerly airstreams, resulted in a year that was colder,
drier and sunnier than average in most areas, particularly in the west.” 2012 was
described as having an “exceptionally wet period for most of the country from
April lasting through much of the summer.” The Met Office also mentions that
“It is worth noting that only 2 years (2010 and 2012) of the last 16 have had annual
temperatures below this average.” (Met Office, 2019) From this, as well as from
Figure 4.14, it can be seen that both 2010 and 2012 were characterised by cold
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temperatures and low dispersion conditions in the winter. This resulted in higher
concentrations of primary pollutants and pollution episodes, due to the lack of
mixing. The low temperatures were also likely responsible for slower production
of secondary ozone, resulting in the observed decreased ozone concentration due
to meteorology in these years.

In contrast, the years 2011, 2014 and 2015 showed lowered NO, and NO,
concentrations, and elevated O3 concentrations due to meteorology. These years
were characterised by warmer than average temperatures, high rainfall and high
dispersion conditions (wet and windy) in the winter. The Met Office records
that 2011 was “the second warmest year in the series from 1910”7, in 2014 “all
months except August were warmer than average, and this was the warmest year
on record for the UK. It was also wetter than average for many locations, ... the
winter storms of January and February, which brought damaging winds, with
inland and coastal flooding.” 2015 was described as “The summer was rather
cool and wet, but early autumn provided fine, sunny weather as compensation.
However from late autumn a succession of Atlantic storms brought exceptional
rainfall to the north and west, causing widespread severe flooding to many towns
and cities . .. The UK mean temperature was 9.2 °C, 0.4 °C above the 1981-2010
long term average . .. The UK rainfall total was 1272 mm, 110% of the 1981-2010
average and seventh-wettest in the UK series” (Met Office, 2019). The wet and
windy weather indicates that low pressure cyclonic conditions dominated in these
years, leading to increased dispersion of atmospheric pollution.

The Met Office described 2013 as “A late winter and exceptionally cold spring,
with unseasonably late snowfalls, lead into a warm and sunny summer. October
and December saw Atlantic storms that brought rain and at times very high winds,
causing widespread disruption.” (Met Office, 2019) This is corroborated by Figure
4.14, which shows lower-than-average temperatures in the spring and higher
than average temperatures in summer, as well as high wind speeds in spring and
winter (November - December). This mix of high and low dispersion conditions
throughout the year likely contributed to the mixed effects on air quality observed
in the CUSUM plots for 2013 (p-values were often >0.05, especially for NOy,
indicating no significant effect of meteorology on concentrations).

The meteorology in 2017 resulted in lowered concentrations of NO,, NO, and
O3. This year was marked by warmer than average temperatures, and average
rainfall. It was sunnier than average, with a weather event characterised by
particularly high temperatures and sunshine in June. The Met Office described it

as “The year as a whole was rather warmer than average for the UK . ..2017 was
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a slightly sunnier than average year for the UK as a whole . .. Notable extreme
weather events during the year included Storm Doris in February and flash
flooding in Coverack, Cornwall in July; autumn and early winter saw occasional
notable storm systems . .. The hot spell in June saw the highest temperatures in
that month for over 40 years, and, unusually, brought temperatures above 30 °C
somewhere in the UK five days in a row.” (Met Office, 2019) The weather events
could have contributed to the lowered concentrations of primary pollutants, as they
may have resulted in increased dispersion. The warm temperatures may also have
prevented winter blocking episodes from causing pollution episodes. However,
since warm, sunny conditions increase the rate of secondary ozone production, it

is unexpected that the year would exhibit lowered ozone concentrations.

4.4 Conclusions and Future Directions

Inter-annual variations in meteorology were found to have a considerable effect
on ambient concentrations of NO,, NO, and O3z. On average, the range of the
annual average concentrations of these species due to meteorological variation
was 2.9 g m~ (8.2%) for NOy, 9.9 ng m™2 (12.6%) for NO, and 3.3 ng m™2 (7.5%)
for Os.

This uncertainty caused by meteorological variation has implications for the
evaluation of compliance with EU limit values. The EU limit value for the annual
average NO, concentration is 40 pg m=>. Of the 173 monitoring sites included in
the analysis, an average of 54.8 sites exceeded this value in any given year. The
average number of ‘marginal’ sites for which the EU limit value for annual mean
NO; concentration lay within the range resulting from meteorological variation
was 12.1, or 22% of the number of sites exceeding the limit value. In total, 44
monitoring sites were ‘marginal’ in at least one year over the period of analysis, or
25% of the total number of sites. In other words, in any given year, the compliance
of around 22% of the monitoring sites was dependent on the meteorology in
that year. For example, a marginal site may be ‘compliant” with the EU limits in
a year in which meteorology acts to reduce the concentration of NO;, while it
may exceed the limit value in a year in which meteorology has the reverse effect.
Whether or not the site exceeds the limit value is, under these circumstances,
dependent on variations in the local weather, which is clearly counter to the aim
of compliance monitoring.

The heatmaps and CUSUM analysis showed that the meteorology in 2015,
2011, 2014, 2017 and 2008 resulted in decreased concentrations of NO, and NO,
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for the majority of UK monitoring sites, while that in 2009, 2013, 2016, 2012
and 2010 resulted in elevated concentrations of these pollutants. In most years,
meteorology produced opposite effects on the concentration of Os to that of NO,
and NO,, with decreased concentrations of ozone in 2017, 2009, 2016, 2012 and
2010 and increased concentrations in 2015, 2011, 2014, 2008 and 2013.

2010 stands out as a year in which the meteorology had a particularly dramatic
effect on ambient concentrations of air pollutants, resulting in an average increase
of 1.8 ng m~2 in NO,, an average increase of 6.9 ng m~2 in NO,, and an average
decrease of 2.2 ng m~2 at each monitoring site.

Low dispersion, anticyclonic conditions characterised by cold temperatures
and low dispersion conditions in the winter were responsible for driving elevated
concentrations of NO, and NO,, and lowered concentrations of O3, as a result of
a lack of mixing of primary pollutants (with long periods of stability sometimes
resulting in pollution episodes), and slower production of secondary ozone.

High dispersion, cyclonic conditions characterised by warmer than average
temperatures, high rainfall and high dispersion conditions (wet and windy) in
the winter, on the other hand, resulted in decreased concentrations of NO, and
NOy, and usually elevated concentrations of ozone.

In general, different monitoring sites exhibited similar dependencies on
meteorology. However, some of the most polluted roadside monitoring sites
exhibited slightly different effects from meteorology, possibly due to the weaker
dependence of the ambient concentration on meteorology, or the inability of the
meteorological measurements to represent the hyper-local conditions often present
at such sites. In addition, the CUSUM plots were able to reveal geographical
differences in the effects of meteorology on ambient concentrations, resulting
from differences in local meteorology across the UK. The detailed interpretation

of these spatial differences may be the target of future work.

4.4.1 Implications for Compliance Monitoring and Air Quality
Modelling

The results of the analysis, and the considerable influence that meteorology was
found to have upon the annual average concentrations of NO,, NO, and O3,
suggest that the annual mean is not a robust means of assessing compliance.
A more robust metric would be able to provide information about the level of
pollution at the monitoring site without being sensitive to inter-annual variations

in local meteorology. One possible method could involve the use of the random
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forest methodology to ‘de-weather’ the ambient data. The annual average de-
weathered concentration, or the three-year rolling mean, could then be assessed
against a limit value. Alternatively, the trend in the ambient concentration, rather
than the annual mean, could be assessed.

However the use of these methods would necessitate greater computational
resource and specialist knowledge than a simple average. Furthermore, a greater
amount of data would be required — ideally the model would be trained using at
least three years of data.

Meteorology appears to have exerted the most extreme effects on ambient
concentrations of NO,, NO, and O3 in 2010, 2015, 2011, 2014, 2012, 2016 and 2017.
These years are therefore likely to lead to biased results if used as baseline years
in air quality modelling. For example, the use of 2015 as the baseline year would
yield an overly-optimistic view of air quality. A more appropriate choice for a
baseline year would be one of the years in which meteorology exerted the smallest
influence on concentrations, such as 2008, 2009, or 2013.

4.4.2 Future Directions

In addition to analysis of spatial differences in the effects of meteorology on air
quality, and the identification of more robust methods for assessing compliance,
future work may also focus on quantifying the range imposed by inter-annual
variations in meteorology on the concentrations of other important regulated
species, such as PMjp and PM5. Like NO,, annual mean concentrations are
used to measure compliance with limit values for both of these pollutants, and
therefore may also be sensitive to these effects.

Future work may also focus on the development and application of the CUSUM
methodology. For example, different monitoring site orderings of the CUSUM
plots, such as altitude for ozone, may also reveal additional information. The
method, combined with a geographical ordering, also has the potential to reveal
patterns in the spatial distributions of pollutant concentration, and changes in the

concentration, which may otherwise not be easy to visualise.
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5. Conclusions & Future Directions

Air pollution is arguably the world’s largest environmental health threat. In 2016,
91% of the global population were living in places where air pollution exceeded
the World Health Organisation’s guidelines (WHO, 2020b). In Europe alone,
exposure to PM decreases the life expectancy of each person, on average, by
almost 1 year (WHO, 2020a).

Clearly, it is vitally important to implement technologies, policies and be-
havioural changes that reduce the emissions of air pollutants. But emissions are
only part of the story. The complexity of atmospheric chemistry, the unpredictable
influence of meteorology, and the potential for error in accounting for emissions
(as emphasised by the recent Volkswagen emissions scandal (Lewis et al., 2015))
means that it is equally important to carefully monitor and analyse ambient air
quality and human exposure.

In this thesis, several statistical techniques have been developed and applied
to routine ambient monitoring data collected in the UK to overcome some of the
difficulties associated with the data set and to extract further insight. In particular,
these techniques have focused on the analysis of data from networks of monitoring
sites, in order to obtain information about large-scale influences on air quality
such as the effects of changes in vehicle emissions.

The problems associated with conducting trend analysis on a large scale using
networks of multiple monitoring sites with time series of differing lengths were
examined in Chapter 2, and the rolling change method was developed in response
to these issues. The efficacy of the method was established using simulated data,
and by comparing its results with those obtained using standard methods and
the results of other studies.

The rolling change method was used to analyse the long term trends in the
roadside concentrations of NO,, NO, and PM;, as well as the NO, /NO,, ratio,
between 2000 and 2017 across Scotland and the UK. Similarly shaped trends were
observed at each scale. NO, concentrations decreased monotonically throughout
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the period of study, and after an initial period of stability or slight increase,
NO; concentrations also declined monotonically. These changes are most likely
the result of the introduction of vehicle exhaust technologies aimed at reducing
emissions of these species, such as three-way catalysts on petrol vehicles, and
Lean NO, Traps (LNT) and Selective Catalytic Reduction (SCR) on diesel vehicles.
The initial increase in NO; concentration was probably the result of increased
vehicular emissions of NO;, due to the introduction of Diesel Oxidation Catalysts
(DOC) and Diesel Particulate Filters (DPF) to diesel vehicles, which deliberately
oxidise NO to NO, for use in the oxidation of other pollutants, such as CO,
hydrocarbons and particulate matter. The increase in the proportion of diesel
vehicles in the vehicle fleet during this time could also have been a contributing
factor.

The NO,/NOy ratio increased until around 2010, before decreasing. This
initial increase can be explained by slower decline in the NO, concentration than
in the NO, concentration, resulting from the introduction of DOC and DPF, as
previously described. The decrease in NO,/NO, ratio observed since around
2010 is likely the result of a combination of factors, including the modification of
vehicle emission after-treatment systems to no longer over-produce NO,, and a
decrease in the NO, /NO,, ratio of diesel vehicle emissions as the vehicle mileage
increases, an effect that has recently been observed in vehicle emission remote
sensing measurements (Carslaw et al., 2019).

The PM;o concentration was initially relatively constant, before declining. This
decline can be linked to the fitting of many Euro 4 vehicles, and all post-Euro 5
vehicles, with diesel particulate filters (DPF).

While the shapes of these trends were very consistent across different scales
and locations, the timing of the turning points occasionally differed. The turning
points in Scotland generally occurred later than those across the whole UK,
indicating that the decline in the vehicular emissions of these species began later
than average. This could be due to differences in the vehicle fleet in Scotland
compared with London and the UK.

The development of the rolling change method is timely given that low cost
sensor networks are increasingly being used to monitor air quality. These sensors
tend to be less reliable than traditional monitoring sites, as well as being more
portable, and therefore such networks are even more vulnerable to the problems
associated with site flux. As such, the rolling change method could be valuable
in analysis of trends using data from these networks. Moreover, the issue of

aggregating data from time series of differing lengths is not exclusive to the
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analysis of air quality data. The method could find application in any discipline
dealing with multiple time series of differing lengths.

To facilitate the use of the rolling change method, an open source R package
named aqtrends was developed. The package contains a function that outputs
the rolling trend for a given data set input. More details about agtrends is given
in Appendix III.

In Chapter 3, random forest models were used to model ambient air quality as a
tunction of background concentrations, local meteorology and temporal variables
was investigated. The models were used to remove the influence of confounding
factors enabling a clearer view of the trends in air pollutant concentration. The
de-weathered trends in the concentrations of NOy, NO, and PMj at three London
monitoring sites (Marylebone Road, Camden Kerbside and Cromwell Road)
between 2000 and 2017 were calculated.

At all three sites, PM1g concentrations decreased from 2007, coinciding with the
penetration of Euro 4 vehicles (which were the first to be fitted with DPF) into the
fleet. The eventual levelling off of the PM1y concentration observed at one site was
possibly due to saturation of the fleet with Euro 4 and above vehicles. However,
any interpretation must consider the difficulty of analysing PM;o concentrations,
even when meteorology is accounted for, due to the numerous other sources that
may affect the concentration. For this reason, it may be advantageous to focus on
specific PM components, such as black carbon or particle number, in future work.

The trends in NO, concentration differed between the sites, possibly due
to local influences. NO, concentrations were found to generally decrease, in
consistency with decreases in vehicle emissions from the introduction of Euro 4
and 5 vehicles.

An investigation of the effects of the implementation of the London LEZ on
the ambient roadside concentration of PM;g at a number of London monitoring
sites was also conducted, using the random forest models to model air pollutant
concentrations as a function of local conditions, as well as an additional indicator
variable representing the stage of the intervention (Phase 0 indicating the period
prior to the implementation of the LEZ, through to Phase 3, the final and most
restrictive phase of the LEZ). De-weathered trends were calculated for each value
of the indicator variable (i.e. for each stage of the intervention), in order to
generate counter-factual scenarios representing the trends that would have been
observed had a single phase of the intervention been in force throughout the
duration of the period. The resulting trends indicated that, while all sites showed
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a decrease in PMjj concentration between the ‘no LEZ" and ‘final phase LEZ’
scenarios, the results of the consecutive phases were more mixed, with some sites
showing increases in PM1g concentration for Phases 1 and 2. The fact that no clear
evidence of any impact on air quality due to the LEZ despite the sensitivity of the
method suggested that the raw data used in this analysis is insufficient to detect
the changes. Inclusion of further data in future analyses, as well as considering
the increment about background concentration rather than raw concentration,
may produce more definitive insights in future work. Additionally, the earlier
comments regarding the advantages of using specific PM components also apply
here.

Similar methodologies could be used in the future to analyse other interven-
tions and drivers of changes in air quality. For example, much has been made
recently of the improvements in air quality in urban areas that accompanied
the Covid-19 lockdown (He et al., 2020). The methods described in Chapter 3
would be well-suited to assessment and quantification of the ‘true’” impact of the
lockdown, independent of the effects of other confounding factors.

In Chapter 4, the effects of inter-annual meteorological variation on the annual
mean concentrations of NO,, NO, and O3z were estimated and quantified using
a variation of the de-weathering method described in Chapter 3. Inter-annual
variations in meteorology were found to have a considerable effect on ambient
concentrations of NO,, NO, and Oz. On average, the range of the annual average
concentration due to meteorological variation was 2.9 pg m3 (8.2%) for NO», 9.9
ng m= (12.6%) for NOy and 3.3 ng m= (7.5%) for Os.

These results have implications for compliance monitoring. Compliance
with EU limit values for some pollutants, such as NO,, is evaluated using the
annual mean metric. For example, the EU limit value for the annual average NO»
concentration is 40 ng m~>. Of the 173 monitoring sites included in the analysis, an
average of 54.8 sites exceeded this value in any given year. The average number of
‘marginal’ sites for which the EU limit value for annual mean NO, concentration
lay within the uncertainty resulting from meteorological variation was 12.1, or
23% of the number of sites exceeding the limit value. In total, 44 monitoring sites
were marginal in at least one year over the period of analysis, or 25% of the total
number of sites. In other words, in any given year, the compliance of around 23%
of the monitoring sites was dependent on the meteorology in that year. These
findings suggest that the annual mean metric is not a robust way for measuring

compliance, as whether or not a site is found to be compliant in any given year is
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often dependent on the weather experienced during that year.

CUSUM plots and heatmaps proved to be an effective way of visualising
differences in the effects of meteorology on air pollutant concentration across
a monitoring network of sites. These tools enabled both the visualisation of
differences in the effects on concentration between meteorological years, and
differences in the effects on concentration within years across the network based
on the ordering variable, e.g. latitude or longitude.

A useful feature of the CUSUM analysis is the ability to order the monitoring
sites by different variables, such as the mean concentration, NO,/NOy ratio,
latitude and longitude, revealing subtleties in the relationships between meteo-
rology and air quality across the individual sites. In general, most monitoring
sites exhibited similar dependencies on meteorology, however, some of the most
polluted roadside monitoring sites exhibited slightly different effects from meteo-
rology, possibly due to the weaker dependence of the ambient concentration on
meteorology, or the inability of the meteorological measurements to represent
the hyper-local conditions often present at such sites. In addition, the CUSUM
plots were able to reveal geographical differences in the effects of meteorology on
ambient concentrations, resulting from differences in local meteorology across
the UK. These tools may be useful in conducting or interpreting future analyses

of monitoring networks.

5.1 Future Directions

The work described in this thesis could be developed in several ways.

In the future, the rolling change method may be applied to extract insight
regarding large scale trends in air pollution at many different scales, and in
different locations. The problem of site flux is common in air quality monitoring
networks worldwide, and the rolling change method could enable long term trend
analysis in sparse monitoring networks without many, or any, long running sites.
The agtrends R package was created to facilitate the use of the method in future
work (Lang, 2018).

Additionally, future work might extend the rolling change method to include

estimates of uncertainty in the trend.

In Chapter 4, the range imposed by the inter-annual meteorological variation
on the concentrations of air pollutants was only calculated for NO,, NO, and
O3. Future work may extend the analysis by also considering other important
regulated species, such as PMjg and PM, 5. Since annual mean concentrations are
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also used to measure compliance with limit values for both of these pollutants, it
would be important to quantify the sensitivity of their mean values to inter-annual
variations in meteorology.

Further development and application of the CUSUM methodology might
also be a promising avenue for future studies. For instance, when ordering
monitoring sites by geographical location, it could be a valuable visualisation
tool for revealing patterns and changes in the spatial distributions of pollutant
concentrations. Furthermore, the method offers great flexibility in the choice
of variables by which to order the monitoring sites. In the work conducted in
Chapter 4, variations in concentration across the network of monitoring sites were
only considered as a function of mean concentration at the site, average NO,/
NOy ratio (relative contribution from the traffic source), latitude and longitude.
However, the use of different variables, such as altitude, by which to order the
sites, could reveal more insights.

Given the conclusions of the work in Chapter 4, that inter-annual variations
in meteorology exert a considerable influence on compliance or exceedance
with annual mean concentration limits at many UK monitoring sites, more
thought should be given to alternative ways of measuring compliance. For
example, using a rolling mean to measure NO, concentration. Future work could
attempt to ascertain whether different metrics reduce the influence of inter-annual

meteorological variation.
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A.

Appendix I: Algorithm for

Chapter 2

The algorithm for the rolling change method described in Section 2.2.2 is as

follows:

10.

. Choose the time range over which to calculate the trend, and the value of

the rolling window width, n.

Initialise Ay; as the average of the annual average concentrations of all

monitoring sites in the first year, y;.
Identify the moving window, i, as the time period x1, ..., X14(;-1)-

Select the vector of dates encapsulated by the moving window, X;.

. Filter the concentration data to include only data from sites with > 90% data

capture over the moving window. The result will be a vector of concentration

values of length n, Y;.

Fit a linear regression model to the filtered concentration data, (X, Y;), as in

Equation 2.1.

Calculate the concentration change over the moving window using the
regression coefficient, ;, and the concentration change of the previous
window, Ay;_1 using Equation 2.2.

Assign the concentration change, Ay;, to the median date of the rolling

window, x;.

. Slide the moving window by one time point towards the end of the time

range.

Repeat Steps 4-9 until the moving window reaches the end of the time range.
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11. The rolling change trend is Ay; as a function of x; over all i (i.e. the entire

time range), as shown in Equation 2.3.
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B. Appendix II: Supplementary
material for Chapter 2

Table B.1 contains information about the London roadside monitoring sites
measuring NO, and NO, between 2000 and 2017 that were used in the trend
analysis described in Section 3.2.
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Table B.1: Metadata for London roadside monitoring sites used in the analysis. The mean
and standard deviation of the hourly NO, and NO, concentration data measured by each
site during the period of 2000 to 2017 is also shown. Monitoring sites were selected as
those within the bounding box of coordinates 51.25°N, 51.71°N, -0.54°E, 0.28°E. The data
was sourced from the AURN, LAQN and AQE networks.

‘ ‘ site code ‘ site name ‘ latitude ‘ longitude ‘ altitude ‘ network id ‘ [NOy ] (ng m73) [NO2 ] (ng m73)
mean SD mean SD
A3 London A3 Roadside 51.37 -0.29 32.00 aun 173.00 144.00 60.70 30.90
A30 Kingston - Kingston Bypass A3 51.37 -0.29 27.89 lagn 173.00 144.00 60.60 30.80
BG3 Barking and Dagenham - North Street 51.54 0.07 6.29 lagn 102.00 106.00 49.70 29.00
BN1 Tally Ho 51.61 -0.18 age 167.00 113.00
BN2 London Barnet Chalgrove School 51.59 -0.21 aqge 62.70 87.90 33.50 22.70
BRN Brentford Roadside 51.49 -0.31 15.00 aun 151.00 133.00 53.80 29.60
BT2 Brent - Ikea Car Park 51.55 -0.26 31.69 lagn 296.00 205.00 67.30 28.80
BT3 Brent - Harlesden 51.54 -0.25 48.64 lagn 118.00 99.10 52.50 27.10
BX7 Bexley - Thames Road North 51.46 0.20 8.25 lagn 101.00 106.00 4240 23.30
BX8 Bexley - Thames Road South 51.46 0.19 9.02 lagn 84.50 94.70 39.10 25.40
BY2 London Bromley 51.41 0.02 50.00 aun 105.00 89.10 49.40 24.80
BY7 Bromley - Harwood Avenue 51.41 0.02 65.19 lagn 98.60 84.10 48.60 24.80
CA1l Camden Kerbside 51.54 -0.18 50.00 aun 182.00 148.00 69.80 37.20
CD1 Camden - Swiss Cottage 51.54 -0.18 57.25 lagn 182.00 148.00 69.50 37.20
CD2 Camden APT 51.54 -0.18 57.13 lagn 96.70 83.00 54.80 38.60
CD3 Camden Shaftesbury Avenue 51.51 -0.13 age 169.00 109.00 76.60 29.40
CD9 Camden - Euston Road 51.53 -0.13 22.55 lagn 325.00 210.00 100.00 46.30
CR2 Croydon - Purley Way 51.36 -0.12 52.85 lagn 141.00 109.00 45.40 24.10
CR4 Croydon - George Street 51.37 -0.10 58.38 lagn 108.00 87.00 51.50 26.80
CR5 Croydon - Norbury 51.41 -0.12 36.46 lagn 184.00 157.00 64.70 39.10
CR7 Croydon - Purley Way A23 51.36 -0.12 54.95 lagn 84.20 72.90 33.40 19.40
CR9 Croydon - Park Lane 51.37 -0.10 58.60 lagn 137.00 114.00 49.80 29.40
CRD2 London Cromwell Road 2 51.50 -0.18 20.00 aun 181.00 111.00 75.10 28.40
CTé City of London - Walbrook Wharf 51.51 -0.09 21.08 lagn 343.00 281.00 112.00 49.70
Cy1 Crystal Palace - Crystal Palace Parade 51.42 -0.08 109.46 lagn 122.00 99.40 48.40 25.00
EA2 Ealing - Acton Town Hall 51.51 -0.27 17.71 lagn 143.00 131.00 57.00 30.70
EA6 Ealing - Hanger Lane Gyratory 51.53 -0.29 37.51 lagn 301.00 235.00 86.10 44.30
EIl Ealing - Western Avenue 51.52 -0.27 30.09 lagn 159.00 132.00 62.80 31.00
EI2 Ealing - Southall Railway 51.51 -0.38 31.49 lagn 84.30 83.90 34.80 20.10
EL2 Elmbridge - Esher High Street 51.37 -0.36 31.78 lagn 114.00 97.20 47.70 25.70
EL3 Elmbridge - Hampton Court Parade 51.40 -0.34 8.92 lagn 155.00 124.00 55.60 27.40
EN2 Enfield - Church Street 51.65 -0.08 29.51 lagn 85.60 87.20 42.60 23.10
EN4 Enfield - Derby Road 51.61 -0.05 10.97 lagn 104.00 101.00 46.20 21.50
EWE2 Ewell High Street 51.35 -0.25 age 44.80 26.90
FA1 Team London Bridge - Tooley Street FASQ 51.50 -0.08 4.17 lagn 62.60 33.70
GB6 Greenwich and Bexley - Falconwood 51.46 0.09 64.45 lagn 120.00 123.00 46.00 31.50
GNO Greenwich - A206 Burrage Grove 51.49 0.07 8.76 lagn 89.80 96.60 45.80 27.60
GN3 Greenwich - Plumstead High Street 51.49 0.10 12.20 lagn 80.90 76.80 39.70 25.20
GN4 Greenwich - Fiveways Sidcup Rd A20 51.43 0.06 55.69 lagn 128.00 114.00 48.90 29.40
GR5 Greenwich - Trafalgar Road 51.48 -0.00 7.01 lagn 96.60 82.10 47.30 25.10
GR7 Greenwich - Blackheath 51.47 -0.01 21.73 lagn 113.00 92.50 46.40 24.60
GR8 Greenwich - Woolwich Flyover 51.49 0.02 3.82 lagn 221.00 176.00 70.90 36.70
GR9 Greenwich - Westhorne Avenue 51.46 0.04 30.26 lagn 102.00 114.00 43.40 26.80
HB102 Broxbourne 51.68 -0.03 aqe 46.30 26.10
HB126 Watford Roadside 51.66 -0.40 age 40.40 2220
HF1 Broadway 51.49 -0.22 aqe 221.00 156.00 76.80 37.70
HF4 Shepherd’s Bush 51.50 -0.22 aqge 80.00 36.30
HFY Hammersmith and Fulham - Talgarth Road B 51.50 -0.08 4.17 lagn 61.20 35.00
HG1 Haringey Roadside 51.60 -0.07 10.00 aun 96.20 90.90 44.00 22.10
HG3 Haringey - Bounds Green 51.61 -0.12 47.90 lagn 125.00 131.00 51.50 26.60
HIl Hillingdon 1 - South Ruislip 51.55 -0.40 age 121.00 117.00 46.00 26.40
HIL5 London Hillingdon Hayes 51.50 -0.41 30.00 age 47.30 26.10
HKeé Hackney - Old Street 51.53 -0.08 16.98 lagn 147.00 86.60 62.80 24.40
HR2 Harrow - Pinner Road 51.59 -0.36 52.40 lagn 111.00 107.00 46.10 27.40
HS1 Hounslow Roadside 51.49 -0.31 15.00 aun 144.00 137.00 54.50 25.70
HS2 Hounslow Cranford 51.48 -0.41 age 68.30 86.80 35.90 22.30
HS6 Hounslow Heston 51.48 -0.36 age 123.00 108.00
HS8 Hounslow Gunnersbury 51.50 -0.28 2.00 aqge 172.00 136.00 57.20 31.40
HV1 Havering - Rainham 51.52 0.21 8.10 lagn 83.00 88.20 39.40 23.40
HV3 Havering - Romford 51.57 0.18 14.37 lagn 88.70 92.10 39.70 22.00
™1 Camden - Holborn (Bee Midtown) 51.52 -0.12 27.28 lagn 235.00 178.00 83.90 39.70
152 Islington - Holloway Road 51.56 -0.12 28.94 lagn 163.00 109.00 62.60 27.20
KC2 Cromwell Road 51.50 -0.18 aqe 167.00 108.00 70.30 28.60
KC3 Knightsbridge 51.50 -0.16 aqe 214.00 185.00 85.20 50.00
KC4 Chelsea 51.49 -0.17 aqe 219.00 144.00 86.60 38.70
KC5 Earls Court Road 51.49 -0.19 aqe 277.00 187.00 96.70 50.40
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‘ ‘ site code site name latitude longitude altitude network id ‘ [NOx ] (ng m73) [NO7 | (ng m73)
mean SD mean SD
KT4 Kingston Upon Thames - Tolworth Broadway 51.38 -0.28 25.17 lagn 127.00 120.00 51.20 28.10
LB1 Lambeth - Christchurch Road 51.44 -0.12 55.01 lagn 124.00 90.40 57.70 24.90
LB2 Lambeth - Vauxhall Cross 51.48 -0.13 544 lagn 131.00 90.10 59.70 22.00
LB4 Lambeth - Brixton Road 51.46 -0.11 12.67 lagn 478.00 298.00 171.00 98.40
LH7 T5 - Oaks Road 51.46 -0.48 2248 lagn 67.00 84.80 35.50 25.10
w2 Lewisham - New Cross 51.48 -0.04 13.02 lagn 133.00 106.00 55.40 32.00
Lw4 Lewisham - Loampit Vale 51.46 -0.02 7.35 lagn 143.00 118.00 56.10 31.10
MY1 London Marylebone Road 51.52 -0.15 35.00 aun 309.00 219.00 97.30 48.60
MY3 Marylebone Road 51.52 -0.15 27.46 lagn 276.00 169.00 94.20 36.70
NB1 Westminster - Strand (Northbank BID) 51.51 -0.12 14.97 lagn 320.00 207.00 102.00 45.70
NM2 Newham - Cam Road 51.54 -0.00 6.23 lagn 107.00 101.00 51.30 24.20
RB2 Redbridge - Ilford Broadway 51.56 0.07 13.80 lagn 349.00 262.00 122.00 62.50
RB3 Redbridge - Fullwell Cross 51.59 0.09 29.20 lagn 147.00 122.00 60.00 33.60
RB4 Redbridge - Gardner Close 51.58 0.03 23.67 lagn 101.00 103.00 46.50 26.10
RB5 Redbridge - South Woodford 51.60 0.02 44.93 lagn 121.00 99.00 54.50 26.20
RHG Richmond Upon Thames - Chertsey Road 51.45 -0.34 9.53 lagn 95.00 111.00 39.50 26.00
RI1 Richmond Upon Thames - Castelnau 51.48 -0.24 5.59 lagn 80.90 82.70 40.50 23.80
SK2 Southwark Roadside 51.48 -0.06 10.00 aun 159.00 106.00 62.70 23.20
SK5 Southwark A2 Old Kent Road 51.48 -0.06 10.00 aun 121.00 128.00 49.40 34.00
ST1 Sutton - Robin Hood School 51.37 -0.20 41.85 lagn 108.00 100.00 40.90 24.80
ST4 Sutton - Wallington 51.36 -0.15 61.31 lagn 171.00 141.00 72.90 45.70
STé Sutton - Worcester Park 51.38 -0.24 30.84 lagn 136.00 124.00 54.60 33.00
SUT1 Sutton Roadside 51.37 -0.18 40.00 aun 108.00 100.00 41.10 24.90
TH2 Tower Hamlets Roadside 51.52 -0.04 20.00 aun 149.00 117.00 60.80 28.30
TH4 Tower Hamlets - Blackwall 51.52 -0.01 2.88 lagn 155.00 120.00 61.80 27.40
TK2 Thurrock - Purfleet 51.48 0.26 5.84 lagn 192.00 169.00 71.50 35.90
TK8 Thurrock - London Road (Purfleet) 51.48 0.26 6.18 lagn 176.00 166.00 59.90 30.50
VS1 Westminster - Victoria Street 51.50 -0.13 3.80 lagn 189.00 124.00 33.80 17.40
WA4 Wandsworth - High Street 51.46 -0.19 6.50 lagn 98.90 98.80 47.20 27.80
WA7 Wandsworth - Putney High Street 51.46 -0.22 10.23 lagn 330.00 254.00 133.00 89.30
WAS Wandsworth - Putney High Street Facade 51.46 -0.22 9.73 lagn 255.00 192.00 104.00 64.30
WAA Wandsworth - Battersea 51.48 -0.14 4.25 lagn 88.30 76.90 41.70 21.90
WAB Wandsworth - Tooting High Street 51.43 -0.17 16.84 lagn 136.00 101.00 56.80 27.90
WAC Wandsworth - Lavender Hill (Clapham Jct) 51.46 -0.17 12.53 lagn 108.00 88.50 43.40 24.00
WF1 Watford (Roadside) 51.66 -0.40 76.15 lagn 80.40 79.60 40.20 22.20
WE2 Watford - Watford Town Hall 51.66 -0.40 75.98 lagn 69.10 62.90 37.10 21.40
WL3 Waltham Forest - Chingford 51.63 -0.02 18.40 lagn 63.50 76.80 32.20 20.20
WL4 Waltham Crooked Billet 51.60 -0.02 age 193.00 143.00
WL5 Waltham Forest Leyton 51.56 -0.01 age 96.50 118.00
WM4 Westminster - Charing Cross Library 51.51 -0.13 18.28 lagn 208.00 125.00 84.40 33.00
WMé6 Westminster - Oxford Street 51.51 -0.15 24.78 lagn 353.00 266.00 112.00 69.10
ZR2 Dartford Roadside 2 - Town Centre 51.44 0.22 5.64 lagn 103.00 96.10 46.50 27.10
zY2 Canterbury Roadside - St Dunstans 51.37 -0.29 27.40 lagn 82.90 76.40 36.70 24.70
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The robustness of the rolling change trend to different values of the moving
window width, n was evaluated using data simulated using the methods described
in Section 3.1.

Figure B.1 compares the median, 10th worst and worst rolling change trends
from a sample of 100 trends to the ‘true trend” for different values of the window
width, n. The percentage errors in the Theil-Sen slope were 26%, 15% and 8% for
n =2, 3 and 5 respectively. The accuracy of the rolling change method increases
as the window width increases, however the amount of data filtered out also
increases. To achieve a reasonable balance between maximising the accuracy of
the rolling change trend, while maximising the amount of data retained in the
analysis, a window width of n = 3 was used in the following applications of the
method.

Window width = 2 ‘ Window width = 3 ‘
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Figure B.1: Comparison of the rolling change trend of simulated data calculated using
window widths n = 2, 3, and 5. The trend was calculated from 100 simulated time
series, which were randomly sampled 100 times from the ‘combined” scenario.The lines
correspond to the trends with NCC equal to the 50th, 10th and 1th percentile of the NCC
distribution over all 100 sampled trends — in other words, the median trend, the 10th
worst trend and the worst trend, with respect to the similarity to the true trend.
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The increase in bias in site location towards more polluted sites over time in
the London roadside monitoring network was affirmed by comparing the median
annual ambient concentrations at roadside monitoring sites opening and sites
closing in a given year across the period studied, as shown in Figure B.2. The
difference between the average concentration at sites that are opening and those
that are closing is positive (i.e. greater in sites that are opening) over almost all
years for NO, and NO,. The cumulative sum of differences in concentration
between opening and closing sites demonstrates the compounding effect of the
bias over time. Weighting the cumulative sum of differences by the numbers of
sites opening and closing gives a further indication of the effect of the bias on the
average trend.
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Figure B.2: Difference (left), cumulative sum of differences (centre) and cumulative sum
of differences weighted by the number of sites opening and closing (right) in between the
average concentration of opening sites and closing sites in each year for (a) NOy, (b) NO,,
and (c) NO, /NOy at London roadside sites 2000-2017. The lines represent a loess smooth
fit to the data, and the shaded bands represent the 95% confidence interval around the
smooth.
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The effect of the bias in site location on the trends in the average roadside NO
and NO; concentrations, and the average NO,/NOj ratio (using data from all
monitoring sites) can be observed through comparison of the rolling trends over
rolling windows of different widths (1), as shown in Figures B.3, B.4 and B.5.

The effect on the trend in average NO, concentration (Figure B.3) is particularly
clear: the rolling trends reveal that, for small windows which include data from
most of the short term sites, an increase in the average trend (right hand plot) is
observed between 2008-2013 despite the majority of the rolling trends (left hand
plot) having negative gradients. This seems to be an consequence of the changes
in magnitude between adjacent rolling trends, presumably due to the inclusion of
data from sites opening in the latter years. A similar pattern can be seen in the
rolling trends in NO; concentration and NO, /NOj, ratio (Figures B.4 and B.5).
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Figure B.3: Rolling trends (left) and average trends (right) in NO, concentration for n =
(@) 3, (b) 5, (c) 10, and (d) 12 at London roadside sites 2000-2017. The average trend (right)
was calculated using data from the same sites as the rolling trends, which are filtered by
site duration based on the value of n. The black lines in the right hand plots represent a
loess smooth fit to the data, and the shaded bands represent the 95% confidence interval
around the smooth.
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Figure B.4: Rolling trends (left) and average trends (right) in NO, concentration for n =
(@) 3, (b) 5, (c) 10, and (d) 12 at London roadside sites 2000-2017. The average trend (right)
was calculated using data from the same sites as the rolling trends, which are filtered by
site duration based on the value of n. The black lines in the right hand plots represent a
loess smooth fit to the data, and the shaded bands represent the 95% confidence interval
around the smooth.
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Figure B.5: Rolling trends (left) and average trends (right) in NO, /NO, concentration
for n = (a) 3, (b) 5, (c) 10, and (d) 12 at London roadside sites 2000-2017. The average
trend (right) was calculated using data from the same sites as the rolling trends, which
are filtered by site duration based on the value of n. The black lines in the right hand
plots represent a loess smooth fit to the data, and the shaded bands represent the 95%
confidence interval around the smooth.
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Section 3.2 justified the use of the rolling change method for analysis of long
term trends in NO, concentration, NO, concentration and the NO, /NO,, ratio
across the London roadside monitoring sites 2000-2017 on the basis that a bias was
present in the monitoring networks that influenced the average concentrations.
The presence of this bias was demonstrated by comparison of the average long term
trend over all sites and over long term sites only, examination of the differences in
concentration between opening and closing sites over time, and through the use
of rolling trends.

Figures B.6 - B.8 repeat this analysis using data from the London urban
background monitoring sites in order to show that the bias does not have as large
an effect on these sites, and therefore the rolling change method is unnecessary
for analysis of the long term trend.
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Figure B.6: Trends in NO, at London urban background sites 2000-2017 using data from
all available monitoring sites (left) and data from long term monitoring sites only (right).
The lines represent a loess smooth fit to the data, and the shaded bands represent the 95%
confidence interval around the smooth. The numbers at each data point correspond to
the number of monitoring sites contributing to the average.
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Figure B.7: Difference (left), cumulative sum of differences (centre) and cumulative sum
of differences weighted by the number of sites opening and closing (right) in between the
average concentration of opening sites and closing sites in each year for NO, at London
urban background sites 2000-2017. The lines represent a loess smooth fit to the data, and
the shaded bands represent the 95% confidence interval around the smooth.
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Figure B.8: Rolling trends (left) and average trends (right) in NO, concentration for n = (a)
3, (b) 7, and (c) 12 at London urban background sites 2000-2017. The average trend (right)
was calculated using data from the same sites as the rolling trends, which are filtered by
site duration based on the value of n. The black lines in the right hand plots represent a
loess smooth fit to the data, and the shaded bands represent the 95% confidence interval
around the smooth.
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C. Appendix III: aqtrends: An open
source R package for air quality

trend analysis

aqtrends is an open source R package containing tools for trend analysis of time
series data, where the time series are of different lengths. It can be downloaded
from the following GitHub page:

https://github.com/pollylang/aqtrends

The page also provides a tutorial explaining how to use the functions within
the package, illustrated with an example of the usage using London air quality

monitoring data. This is shown below.
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AprPENDIX C. AprPENDIX III: AQTRENDS: AN OPEN SOURCE R PACKAGE FOR
AIR QUALITY TREND ANALYSIS

16/07/2020 GitHub - pollylang/aqtrends: Tools for trend analysis of air quality network data
pollylang / aqtrends

Tools for trend analysis of air quality network data
¥% Ostars % 0 forks

7 Star (& Watch

Code Issues Pull requests Actions Projects Security Insights

Dismiss

Join GitHub today

GitHub is home to over 50 million developers
working together to host and review code, manage
projects, and build software together.

Sign up

¥ master ~

Polly committed on 11 Mar 2019 O]

View code

README.md

Introduction

aqgtrends is an R package for conducting trend analysis of time series with different lengths.

It is a often useful, in air quality as well as in other fields, to aggregate multiple time series
into a single representative trend. In air quality monitoring networks, simply averaging the
individual time series often misrepresents the true trend due to biases in the monitoring
network. Movement of roadside monitoring sites to more polluted locations is common, as a
consequence of legislative requirements to monitor air quality at the most polluted locations.
Consequently, opening sites (i.e. starting time series) in later years can leverage the
average trend upwards, causing an increase in the average trend that is not necessarily a
reflection of trends of individual time series.

https://github.com/pollylang/agtrends 1/7
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16/07/2020 GitHub - pollylang/aqtrends: Tools for trend analysis of air quality network data
The aqtrends functions are designed to identify and mitigate the biasing effects of
monitoring site flux on trends in air pollutant concentrations in air quality monitoring
networks.

More details on the methods applied in this package, as well as a detailed case study using
London air quality monitoring data, are given in a paper which is currently in preparation.

Installation

To install agtrends from GitHub, the devtools package must first be installed. Then copy the
following code into R:

# Load devtools package
library(devtools)

# Install aqtrends from GitHub
install github("pollylang/aqtrends")

How to use aqtrends

1. Identify the effect of potential biases on the long term trend.

o Use average_trends to compare the average trends of all time series with the
average trend for the long term time series only (i.e. time series with equal
duration). Also returns average trends of individual sites which can be examined
and compared to the average trend to identify biases.

o Use site_flux_bias to visualise the bias due to differences in pollutant
concentration between time series that are starting and time series that are ending
as a function of time.

o Use rolling_trends to compare rolling trends in pollutant concentration with the
average trend.

2. Remove the effect of variable time series length and bias on the long term trend
o Use rolling_change_trend to compute the rolling change trend, which
represents the true trend in pollutant concentration.

Example

https://github.com/pollylang/agtrends 2/7
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16/07/2020 GitHub - pollylang/aqtrends: Tools for trend analysis of air quality network data
The aqtrends functions are demonstrated below by a trend analysis of monthly NOy
concentration data at 115 roadside monitoring sites in London between 2000-2017. During
this period, 9 monitoring sites were constantly open over the duration (long term sites). The
data were sourced from the Automatic Urban and Rural Network, the London Air Quality
Network and Air Quality England.

The differences between the average trend (left) and the long term trend (right) in NO,
plotted using the average_trends function, suggest a biasing effect may be influencing the
average trend.

nox.av.trends <- average_trends(london_nox_data, pollutant = "nox", stat = "me
start.date = "2000-01-01", end.date = "2017-12

cowplot::plot_grid(nox.av.trends$average.trend, nox.av.trends$longterm.trend,
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The presence of a biasing effect can be confirmed by plotting the differences in
concentration between opening sites and closing sites as a function of year using the
site_flux_bias function (see below). In this case, it is clear that opening sites have a
consistently higher average NO, concentration than closing sites. Taking into account the
relative frequency of opening and closing sites (as shown in the plot of the weighted
cumulative sum of differences in concentration as a function of time on the far right), a bias
towards more polluted locations is evident.

site_flux_bias(london_nox_data, pollutant = "nox", stat = "median")$all

https://github.com/pollylang/agtrends 3/7
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300
5000

T 200 4000

2000

'
|
-
'
'
.

Difference In NO, concentration (ug m™2)
.
é l
o
Cumulative difference In NO, concentration (ug m™%)

1000

Cumulative weighted difference in NO, concentration (ug m™2)

2000 2005 2010 2015 2000 2005 2010 2015 2000 2005 2010 2015
Year Year Year

Further evidence of the effect of the bias on the average trend can be visualised using the
rolling_trends function, as demonstrated below. The plots on the left shows rolling
trends over a short moving window, each offset from its neighbours by a single year. The
plot on the right shows the average trend over all data included in the rolling trend plots.
The larger the width of the moving window, the more constraining the data capture filters on
the data. Comparison of the rolling trends and average trends over different moving window
widths (i.e. data capture filters - in this case moving window widths = 2, 5, 7, 10, 12, 15
years) demonstrates that some of the features of the average trend, most notably in this
case the increase in concentration between 2008-2013, are artefacts of bias in the
monitoring network rather than features of the true trend.

rolling_trends(london_nox_data, pollutant = "nox", window.width = c(2, 5, 7, 1
## $ moving_window_width=2"
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https://github.com/pollylang/agtrends 4/7

186



AprPENDIX C. AprPENDIX III: AQTRENDS: AN OPEN SOURCE R PACKAGE FOR
AIR QUALITY TREND ANALYSIS

16/07/2020 GitHub - pollylang/aqtrends: Tools for trend analysis of air quality network data

' i
E 160 E 160 Slope
= =
8 5 25
8 8 50
‘% 140 ‘% 140 ’
§ § 75
Z 1w Z
L] -
2000 2005 2010 2015 2000 2005 2010 2015
Year Year
HHt
## $ moving_window_width=7"
170
180
‘A '
£ 18D E Slope
@ >
= = 160 2
5 150 5 -3
£ £ -
= =
§ v § 140 5
8 130 3 *
= =
120 120
2000 2005 2010 2015 2000 2005 2010 2015
Year Year
HH#
## $ moving_window_width=10"
200
7 @ 200
£ E Slope
= 175 = "
= = 178
8 8 N
S 1m0 g 4
§ § 150
: : .
-6
& 125 g 125
= =
. L]
2000 2005 2010 2015 2000 2005 2010 2015
Year Year
H#Hit
## $ moving_window_width=12"
https://github.com/pollylang/agtrends 5/7

187



AprPENDIX C. AprPENDIX III: AQTRENDS: AN OPEN SOURCE R PACKAGE FOR
AIR QUALITY TREND ANALYSIS

16/07/2020 GitHub - pollylang/aqtrends: Tools for trend analysis of air quality network data
L]
250
' i
E E Slope
@ 200 =
= = 200 -3
=] =]
= =
= =
3 ] 5
£ 150 S 150
‘:8;< §< N
= =
L]
° 100
2000 2005 2010 2015 2000 2005 2010 2015
Year Year
i
## $ moving_window_width=15"
300 e g
nli" cf" 300
£ E Slope
o 250 o
= = 250 -3.0
5 5 35
® ®
£ zo0 fd -4.0
= £ 200
g g -45
= = 50
(:8§< 150 g 150 ’
= =
.
100
2000 2005 2010 2015 2000 2005 2010 2015
Year Year

Having identified the effect of bias on the average trend, the rolling_change_trend
function can be used to extract the true trend from the data, as shown below.

rolling_change_trend(london_nox_data, "nox", window.width = 3, avg.ts = "year"

»

https://github.com/pollylang/agtrends 6/7
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https://github.com/pollylang/agtrends 7/7

The code for the rolling_change_method function is shown below.
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16/07/2020

agtrends/rolling_change_trend.R at master - pollylang/agtrends - GitHub

I pollylang / agtrends

<> Code () Issues 11 Pull requests () Actions [7]] Projects ) Security |~ Insights
. . Dismiss
Join GitHub today
GitHub is home to over 50 million developers working together to host and
review code, manage projects, and build software together.
Sign up
¥ master ~ aqtrends / R/ rolling_change_trend.R Go to file

Polly correct rolling change trend 'date’ variable to format YYYY-01-01

Latest commit b442722 on 11 Mar 2019 <O History

A 1 contributor

182 lines (152 sloc) 7.7 KB Raw Blame VA
#' @title Rolling change trends (extract true trend)
#
#' @description Removal of distorting effect of site movement to reveal underlying trend by using changes in
#' concentration as a function of year as a proxy for the average trend. This method retains information about the
#' shape of the trend, while ignoring differences in magnitude, thus removing the leveraging effect of opening and
#' closing sites with extreme magnitudes.
#
#' @param obs A data frame of ambient pollutant concentration data. Must contain the columns: site_code, date,
#' value. If 'pollutant' is a pollutant ratio, the data frames of the corresponding pollutants
#' must be supplied as a list of data frames in the order they are given in the ratio. E.g. for
#' \code{pollutant = "no2/nox"}, \code{obs = list(obs.no2, obs.nox)}.
#
#' @param pollutant The pollutant of interest (character string). To calculate rolling change trend for a pollutant ratio,
#' separate the two pollutants with a forward slash e.g. \code{pollutant = "no2/nox"}.
w
#' @param window.width The width of the moving window, n, over which the change in concentration is calculated (in years).
#
#' @param avg.ts The resolution to which to average each time series, upon which the rolling regression is carried out.
#' For example, setting \code{avg.ts = "day"} means the rolling regression will be carried out on the daily average concentrations
#' from each time series (monitoring site). Options are: "year", "month", "week", and "day".
#
#' @param stat The metric (character string) used to average the ambient concentration data by year. Options: "median", "mean".
#
#' @param start.date,end.date The starting and ending dates (character string) of the period of interest over which
#' to calculate and plot the change trend.
#
#' @param parallel Logical indicating whether the rolling changes should be computed in parallel. If \code{TRUE}, the
#' parallelisation will be implemented using the \code{foreach} function. The number of cores used will be the total
#' number of cores - 1.
w
#' @param verbose Logical indicating whether to print the date range of the rolling window over which the calculation is
#' being applied.
#
#' @return A plot of the rolling change trend.
#
#' @import dplyr
w
#' @examples
#' \dontrun{
#' rolling_change_trend(london_nox_data,
#' pollutant = "nox",
#' window.width = 3,
#' avg.ts = "year",
#' stat = "median",
#' start.date = "2000-01-01", end.date = "2017-12-31")
#'}
#
https://github.com/pollylang/aqt b/master/R/rolling_change_trend.R 13
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#' @export

rolling_change_trend <- function(obs,
pollutant,
window.width,
avg.ts = "year",
stat = "median",
start.date = "2000-01-01",
end.date = "2017-12-31",
parallel = FALSE,
verbose = FALSE){

## Check arguments

check_arguments(obs = obs,
pollutant = pollutant,
window.width = window.width,
stat = stat,
start.date = start.date,
end.date = end.date,
parallel = parallel,
avg.ts = avg.ts)

# Function to calculate data frame with row for difference between initial conc and trend for each moving window
trend_difference <- function(rolling.x){

# Initialise delta y 1 (concentration change value in the first year = raw annual average concentration in first year)
first.row <- rolling.x[1, ] %>% dplyr::mutate(trend = av_value) # copy the first row to the data frame (initialise delta y1)

rolling.x <- rolling.x %>%
tibble::add_row(date = first.row$date, av value = first.row$av_value, n = first.row$n,
moving window = pasteO(first.row$moving window, ".1"), window width = first.row$window_width,
trend = first.row$trend, .before = 1) %>% # add first row (initialise - delta y1)
dplyr::mutate(moving window = ifelse(moving window == first.row$moving_ window,
paste@(first.row$moving_window, ".2"),
moving_window)) %>%
dplyr: :group_by(moving_window) %>%
dplyr::summarise(trend = unique(trend),
n = unique(n),
date = (min(date) + floor((max(date)-min(date))/2)),
window width = unique(window_width)) %>%
dplyr::ungroup() %>%
dplyr::arrange(date) %>%
dplyr::mutate(trend difference = ifelse(moving window == paste@(first.row$moving_window, ".1"),
trend, NA))

# Calculate concentration change: delta y_i = delta y {i-1} + beta_i
for(i in 2:nrow(rolling.x)){

rolling.x[i, "trend_difference"] <- rolling.x[i-1, "trend_difference"] + rolling.x[i, "trend"]

return(rolling.x)

# Plot rolling change trend (concentration change as a function of the year)
period_plot <- function(df){

plot.colour <- viridis::inferno(1, begin=0.3, end=0.8)

p <- df %%
ggplot2::ggplot(ggplot2::aes(x = date, y = trend_difference)) +
ggplot2::geom_point(color = plot.colour) +
ggplot2::geom_smooth(method = "loess",
color = plot.colour,
fill = plot.colour,
alpha=0.25) +
ggplot2::xlab("Year") +
ggplot2::ylab(openair::quickText(paste®@(pollutant, "
ggplot2::geom_text(ggplot2::aes(label = n), vjust = 1.3, size = 3) +
ggplot2::theme_minimal()

concentration (ug m-3)"))) +

https://github.com/pollylang/aq b/master/R/rolling_change_trend.R 23
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AprPENDIX C. AprPENDIX III: AQTRENDS: AN OPEN SOURCE R PACKAGE FOR
AIR QUALITY TREND ANALYSIS

16/07/2020 agtrends/rolling_change_trend.R at master - pollylang/agtrends - GitHub

return(p)

# Define the start and end dates
windowl <- define_moving_windows(window.width, obs, start.date, end.date, avg.ts)

# For each moving window, compute rolling regression
if(parallel == TRUE){
no_cores <- parallel::detectCores() - 1
cl <- parallel::makeCluster(no_cores)
doParallel::registerDoParallel(cl)

rolling.df <- foreach::foreach(di = windowl, .combine = "rbind", .packages = c("dplyr", "ggplot2", "lubridate"),
export = c("average_data", "sites_open_throughout_window", "calculate_pollutant_ratio", "rolling_worker
try(rolling_worker(di, obs = obs, pollutant = pollutant, window.width = window.width, stat = stat, avg.ts = avg.ts,
verbose = verbose))

doParallel::stopImplicitCluster()

} else{
rolling.df <- tryCatch({purrr::map_dfr(windowl, rolling_worker,
obs = obs,
pollutant = pollutant,
window.width = window.width,
stat = stat, avg.ts = avg.ts,
verbose = verbose)
}, error = function(e){
print("Error message: ")
print(e)
data.frame("date" = as.POSIXct(character()),
v_value" = numeric(),
= numeric())
)
}

if(nrow(rolling.df) < 1){
print("Error in rolling trend calculation. Possibly insufficient data.")

return(NULL)
} else{
# Calculate concentration change for each year (moving window)
rolling.out <- trend_difference(rolling.df)
# Correct the 'date' variable to always be in the form YYYY-01-01 (where YYYY is the middle year of the moving window)
rolling.out <- rolling.out %>%
mutate(year = case_when(lubridate::month(date) == 1 ~ lubridate::year(date),
lubridate::month(date) == 12 ~ lubridate::year(date)+1,
TRUE ~ lubridate::year(date))) %>%
mutate(date = lubridate::ymd(paste®(year, "-01-01")))
# Plot rolling change trend
plots <- period_plot(rolling.out)
return(plots)
}
}
“ >
https://github.com/pollylang/aqt b/master/R/rolling_change_trend.R 33
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D. Appendix IV: Publication

This appendix contains the paper presented alongside a talk at the 2019 Interna-
tional Transport and Air Pollution Conference.

Lang, P. E., Carslaw, D. C., & Moller, S. J. (2019). Analysis of long term roadside
air pollution trends in European cities using ambient data from sparse monitoring
networks. In 23rd International Transport and Air Pollution Conference.
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1. Introduction

Air pollution is one of the most important problems facing Europe, re-
sponsible for an estimated 400,000 premature deaths a year (EEA, 2018b). Of
particular concern are the concentrations of nitrogen oxides (NO, ), composed
of NO and NOg, and particulate matter (PM).

Frequent and widespread exceedances of the European Union limits
on NO2 and PM concentration have motivated policies aimed at reducing
the concentration of these air pollutants. These policies have included the
reduction of vehicle emissions through European Directives (Euro Standards)
that have set increasingly stringent limits on the emissions from road vehicles.
To meet these emission limits, vehicle manufacturers have adopted exhaust
technologies such as three-way catalysts on petrol vehicles, diesel particulate
filters (DPF) and diesel oxidation catalysts (DOC) (EEA, 2016). The impact
of these changes on ambient air quality in Europe is difficult to establish
but can potentially be evaluated through analysis of the long term trends
in ambient roadside concentrations of air pollutants using data from the
extensive European monitoring network. Such an evaluation also has the
potential to provide information on the effectiveness of different policies to
reduce air pollution.

The vast amount of ambient monitoring data measured at thousands of
monitoring stations across Europe provides the ability to directly analyse

*Corresponding author
Email address: pl746@york.ac.uk (Polly E. Lang)
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the large-scale changes in roadside air quality in Europe over time. While
the data from a single monitoring station provides information about the
local variation in air quality at a specific location, aggregation of data from
multiple monitoring stations enables the effects of local variability to be
averaged out, leaving a better indication of the large-scale trend.

However, there are several limitations inherent in the established methods
for calculating aggregate trends using data from air quality monitoring
networks. One approach is to compare individual time series from different
monitoring stations (e.g. Masiol et al. (2017); Mavroidis and Chaloulakou
(2011)), however this becomes impractical in very large monitoring networks,
such as the European network.

Another method involves evaluating the trend in the average concentration
across all the available monitoring sites. This trend can be biased due to the
leveraging effects of site flux (i.e. sites opening and closing during the period
of interest) on the average concentration, as demonstrated by Lang et al.
(2019) in a trend analysis using data from the London monitoring network.
For example, in a given year, the opening or closing of monitoring stations
cause new data to be included in the average concentration, potentially
resulting in abrupt changes in the average concentration that are driven,
not by changes in source emissions strength, but by the sudden inclusion or
exclusion of data. Many monitoring networks, particularly those composed
of roadside stations, experience considerable site flux, which can have a
substantial effect on the calculated trend in average concentration.

To mitigate this issue, data filtering can be applied to ensure that only
data from monitoring stations with a complete time series (i.e. measuring
constantly over the period of the trend analysis) are included in the analysis
(e.g. Font and Fuller (2016)). This approach inevitably results in the
exclusion of much of the available data and therefore a considerable loss of
information. The rolling change method is a technique designed to address
the above issues, and enable the calculation of aggregate trends in ambient
air quality using data from monitoring networks that evolve over time. The
method is robust to the biasing effects of site flux, while preserving more
data in the trend analysis than data filtering methods (Lang et al., 2019).
This approach enables better investigation of the large scale air pollution
trends across an area of interest providing the ability to produce trends that
are more representative, due to the inclusion of more sites, and driven by
genuine concentration changes.

This study uses the rolling change method to calculate large-scale trends
in roadside concentrations of NO,, NOs, PM;y and PMs 5 in Europe between
2000 and 2017. The trends in roadside air quality are also calculated in 44
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individual European functional urban areas (FUAs), and compared with the
European-wide trends. The reasons for the observed changes in air pollutant
concentrations are discussed in the context of changes in vehicle emissions,
and possible explanations for the deviations from the overall trend pattern
observed in some FUAs are proposed.

2. Methods and Data

The long term trends for Europe and for each European FUA were
calculated using the rolling change method (Lang et al., 2019). The method
involves splitting the period of interest into short moving windows, each
offset from the adjacent window by a time step, in this case one year. The
data within each window is filtered to exclude data from monitoring sites
with an incomplete time series over the period of the moving window (i.e.
sites which open or close during the window), to ensure that all time series
within the moving window are the same length. The change in concentration
over the window is calculated by fitting a linear regression to this filtered
data. By shifting the moving window along the period of analysis, and
calculating the concentration change at each step, a trend can be estimated.
This aggregate trend represents the average change in concentration over
all monitoring sites, unaffected by the leveraging effects of changes in the
average concentration caused by site flux during the period of analysis. In
effect, the method relaxes the data capture requirement to short time periods
rather than the whole time series, which increases the amount of data that
can be used in trend analysis.

The rolling change method was applied using annual median data, re-
sulting in median trends for each FUA. The advantage of an annual trend,
as opposed to a trend with more granular resolution, is to ‘average out’
the effects of confounders which vary on a shorter time scale, for example,
seasonal variation.

All ambient concentration data were obtained from the smonitor Europe
database (Grange, 2016), which stores data collected from the European
Environment Agency AirBase and air quality e-Reporting data repositories
(EEA, 2018a, 2019). Only data from roadside monitoring sites were con-
sidered. The distribution of monitoring sites contributing to the aggregate
trends over the whole of Europe is displayed in Figures 1-2. In each case,
the ‘number of sites’ corresponds to the total number of unique sites that
contributed to the trend over the entire period of analysis (2000-2017).

Figures 1 and 2 indicate that the distribution of monitoring sites in the
European network is highly heterogeneous, with several countries (Italy,
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Germany, Spain, France and the UK) dominating the network. Consequently,
these countries will dominate the shape of the overall European trends. This
provides an additional motivation for examining the trends at a city-scale
in complement to the European-scale, as it allows closer analysis of regions
which are underrepresented in the European-wide trend.

300

200
100
0 — ._ﬂa_lj_i [ "N I J-_-_._-__......l_.._

Number of unique sites

TS ESSTLLESTYPY LT PS2LCETDPSEOY PTTSS ST g
S52s 838598583 c388as33882L853582c:2839528%580
S2982e52E2cgeEefge S23588=228552E8833800¢8
T TRRPFO0CowWwiI L g0 3 2= g £ E g3z g sP28 73

N [t o T £33 ¢ € £ 14 n »

O Ny [5] >3<§ S o

2 S & 3 s 2

o N -

<c( ]

s

c

[

o

A

Figure 1: The total number of unique roadside monitoring sites contributing to the rolling
change trends in NOg, NO2, PM1o and PM3 5 concentration over the period 2000-2017, by
country and pollutant.
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Figure 2: Distribution of roadside monitoring sites contributing to the rolling change trends
in NOg, NOg2, PMig and PM2 5 concentration across Europe. The colours represent the
total number of unique roadside monitoring sites contributing to the rolling change trend
in each country between 2000 and 2017.
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determined using spatial data on the European functional urban areas (FUA).

The FUA spatial data were obtained from the European Commission Joint
Research Centre (JRC) (Lavalle et al., 2015). The criteria for an FUA to
be included in the analysis was that the FUA must (i) contain at least
one monitoring site measuring the pollutant of interest, and (ii) not have
a period equal to or greater than the width of the moving window (three
years) during which there are no measurements of the pollutant of interest
available. The FUAs for which trend analysis was conducted, according to
these criteria, are shown in Table 1, along with the total number of distinct
roadside monitoring sites that contributed to the trend in each FUA (over
the entire time period of the analysis).

The analysis was carried out in R, using the aqtrends R package for the
calculation of the rolling change trend (Lang, 2018).

Table 1: Total number of unique roadside monitoring sites measuring NO,,
and PMas 5 concentration in each European functional urban area analysed.
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London
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Toulouse 3 0 0 0
Udine 2 0 0 0
Utrecht 3 3 0 0
Valencia 3 3 0 0
Valladolid 0 0 2 0
Wien 12 0 0 0

3. Results and discussion

Figure 3 shows the long term trends in roadside NO,, NOg, PM;(y and
PMa 5 concentrations, as well as the NOy/NO,, PM;o/NO, and PMs 5/NO,
ratios between 2000 and 2017 across the entirety of Europe. It can be seen
that, on average, in Europe the concentrations of NO, and PMs 5 have
been decreasing monotonically since 2000. NOs and PM;y concentrations
increased slightly to 2003, and decreased monotonically subsequently.

The observed decrease in NO,, and NOs concentrations in Europe since
2000 and 2002 respectively can be attributed to the introduction of vehicle
exhaust technologies aimed at reducing emissions of these species, such as
three-way catalysts used on petrol vehicles and the more recent use of Lean
NO, Traps (LNT) and Selective Catalytic Reduction (SCR) on diesel vehicles
over this period. Indeed, the rolling trend analysis of roadside NO, and
NO; concentrations provide compelling evidence that emissions of NO, have
strongly decreased across Europe as a whole. These conclusions are robust in
the sense the rolling trend analysis maximises the use of the large amounts
of measurement data available across Europe while largely eliminating any
bias introduced due to differing numbers of sites available in each year.

The increase in NOs concentration prior to 2002 was most likely due to
the increase in the number of diesel passenger vehicles over this period. As
shown in Figure 4, the proportion of the new vehicle registrations in Europe
composed of diesel vehicles increased from 36% in 2001 to 48% in 2005, then
increased more slowly to a peak in 2011/12 of 55%, before starting to decrease
(The International Council on Clean Transportation, 2018). This period also
coincided with the introduction of DOCs to new vehicles in compliance with
the Euro 3 and Euro 4 emission standards, leading to the emission of more
NO; from vehicle exhaust (Carslaw et al., 2019).

A study by Grange et al. (2017) considered the trends in average NO, and
NO; concentrations in Europe, and found that NO,, concentrations decreased
between 1998 and 2015, in corroboration with the findings of this study.
The principal finding of Grange et al. (2017) was that the emissions ratio of
NO2/NO, from road vehicles increased from 2000 to about 2009 and then
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started to decrease. A consideration of the ambient roadside concentration
NO2/NO, ratios also shows a clear increase from 2000 to about 2009 and
then a decreasing trend. This behaviour is entirely consistent with Grange
et al. (2017) and is related to increased ratio of NO2/NO,, in vehicle exhaust
due to DOC and DPF. In DOC and DPF, the deliberate production of NOo
through oxidation of NO is used to help oxidise other pollutants such as CO,
hydrocarbons and particulate matter.

The more recent decrease in the ambient NOg /NO,, ratio likely has several
origins. Recent vehicle emission remote sensing measurements show that
as the vehicle mileage increases for diesel passenger cars, the NOy/NO,
ratio decreases Carslaw et al. (2019). This deterioration effect is unlikely
to be the only factor affecting the recent decreasing NOy/NO,, ratio. It is
also likely that vehicle emission after-treatment systems have been better
optimised so as not over-produce NOs. These other factors require further
emission measurements and analysis to confirm their contribution. However,
given the timing of the change shown in Figure 3, there is consistency
with the introduction of Euro 5/V Standards around 2009. It should also
be noted that as NO, and NOy concentrations continue to decrease, the
ambient concentration ratio of NOy/NO,, will eventually increase due to the
increased availability of O3 to convert NO to NOsg, which can be readily
confirmed by plotting the NO2/NO,, ratio against NO,. For example, at
urban background sites, the ratio of NO2/NO, is typically around 0.6 to 0.7,
which is considerably higher than the peak ratio seen in Figure 3. There
might be some indication of this increase shown in Figure 3, although more
data are required to confirm whether an increasing trend continues. Such
an increase will also be dominated by the increased role of O3 rather than
primary NOg emissions from vehicles.

The trend plots for PM;g and PMs 5 both show substantial reductions in
concentration since 2000. While the data shown in Figure 3 are for roadside
sites, the concentrations of both species will be strongly influenced by non
road sources including secondary particulate matter (principally sulphate
and nitrate). A more informative analysis is to consider the ratio of PM to
NO,, where NO, acts as a local combustion tracer. For PMy and PMy 5,
the ratio to NO, has decreased in recent years, which likely reflects the
increased use of DPF on heavy and light duty vehicles. The trends in the
ratios shown in Figure 3 show that there has been a greater reduction in
the ratio of PMy5/NO, than PM;o/NO,. This behaviour is consistent with
the more effective reduction in PMs 5 exhaust emissions than total PMjg,
the latter of which will also include a stronger influence of coarse fraction
(PMy5 to PMyg) tyre, brake and road abrasion sources, which have not been
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Figure 3: Rolling change trends in NO,, NO2, PM1o and PMs 5 roadside concentration, and
the NO2/NOgy, PM19/NOg, and PMs.5/NO, ratios across Europe between 2000-2017. The
smoothed lines are loess (local regression) fits, with the 95% confidence interval represented
by the shaded band. The numbers signify the number of monitoring sites contributing to
each annual data point. Annual pollutant ratios were calculated as the slope of a regression
of the hourly concentration of one pollutanfl @gainst the other (for each year of data).
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smoothed line is a loess (local regression) fit, with the 95% confidence interval represented
by the shaded band.

The long term trends in the ambient roadside concentrations of NO,,
NOg, PM;p and PMjy 5 in individual functional urban areas (FUAs) are shown
in Figure 5. The trends in the majority of FUAs closely resemble the whole-
European trends (Figure 3), however a visual inspection of the individual
trends revealed that some FUAs exhibit trends that differ considerably from
the consensus pattern. These outliers are highlighted in bold in Figure 5,
and shown individually in Figure 6.
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Figure 5: Rolling change trends in NO,, NO2, PM1o and PM2 5 roadside concentration in
individual European FUAs between 2000-2017. The FUAs with trends differing considerably
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European trends. The smoothed lines are loess (local regression) fits.

At the city resolution, while the majority of FUAs display a similar
pattern in the NOs and NO, concentration trends, the precise nature and
location of the turning point in the NOs concentration trend varies, with
the concentration in some FUAs increasing to a peak, before starting to
decrease. It is possible that these differences in the shape of the trends are
due to differences in the position of the NOs concentration peak resulting
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from variations in the composition and age of the vehicle fleet between cities.

The exceptions to the pattern of monotonic decrease in NO, concentration
are Roma and Lisboa, where the NO, concentration initially increases until
around 2004-2005, then decreases. One possible explanation for this is a
slower than average rate of vehicle turnover and an older vehicle fleet in
Italy and Portugal compared with the rest of Europe (as shown in Table 2),
resulting in a delay in the widespread presence of vehicles fitted with NO,
reducing emission technologies in these cities.

Table 2: The age of the vehicle fleet in Italy and Portugal, compared with the entire
European Union vehicle fleet (ACEA, 2017).

Country  Vehicle type Average age (years) Proportion >10 years
EU Passenger 10.7 0.49
EU Light commercial 10.7 0.49
EU Medium/heavy commercial 11.7 0.53
Ttaly Passenger 10.7 0.52
Ttaly Light commercial 11.9 0.59
Ttaly Medium/heavy commercial 13.2 0.69
Portugal Passenger 12.6 0.62
Portugal Light commercial 14.0 0.79
Portugal Medium/heavy commercial 14.0 0.79
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Three FUAs possess trends in NOg concentration that differ considerably
from the European-wide trend. As shown in Figure 6, in Madrid and Marseille
NO3 concentration increased to a peak in 2005-2006, then decreased before
beginning to increase again around 2013. As with the FUAs exhibiting
outlying NO,, trends, these trends can be interpreted as lagged versions of
the common European trends due to variations in the composition of the
vehicle fleet in these FUAs. However, the NOgy concentration trend in Udine
is distinct from that in any other FUA, with constant NOy concentration
until 2007, decreasing to 2010, then increasing to a plateau in 2014. The
reason for this is unclear.

As can be seen in Figure 5, the trends in PM7g concentration in all 24
individual FUAs resemble the European-wide trend of monotonic decrease,
with the single exception of Madrid, where PMiy concentrations increased
to a maximum in 2005, before declining, as shown in Figure 6.

The initial increases in both NOy and PM;y concentration in Madrid
could result from rapid growth in the number of diesel vehicles outstripping
improvements in emission technologies. Between 1999 and 2008, the vehicle
fleet in Madrid increased by 34%, with the proportion of the fleet composed
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of diesel vehicles growing from 28% to 53% (Salvador et al., 2012). Compared
with the increase in the total number of vehicles in Europe of 14% between
2000 and 2008 (EEA, 2018), this represents a large increase in vehicles, and a
large increase in the number of diesel vehicles specifically. It is likely to have
led to an increase in vehicular NO, and PM;g emissions which overwhelmed
the concurrent decreases in per-vehicle emissions.

Only six FUAs contained more than one monitoring site measuring PMs 5
concentration that met the data capture requirements for the trend analysis.
In all six FUAs, PMs 5 concentrations decreased over the period analysed.

4. Conclusions

A new trend evaluation approach has been applied to European roadside
ambient air pollution data that maximises data usage while minimising poten-
tially important biasing effects. Long term trends in roadside concentrations
of NO,, NOy, PMyy and PMs 5 in Europe and in 44 European functional
urban areas between 2000 and 2017 were evaluated using the rolling change
method. The city-scale trends for the most part displayed a strong consis-
tency with the overall European trends, namely monotonic decreases in NO,,
and PMs 5 concentrations since 2000, and initial increases in NOs and PMiq
concentrations until 2002, followed by monotonic decreases. Reductions in
vehicle emissions resulting from improvements in vehicle exhaust technologies,
such as three-way catalysts, diesel particulate filters and diesel oxidation
catalysts are likely responsible for the observed declines in concentration.
In almost all cases where the city-scale trends differed considerably from
these patterns, the anomalous trends seemed to be lagged versions of the
same trend, possibly caused by variations in the traffic fleet composition. For
example, an older vehicle fleet, slower rate of vehicle turnover, or increases
in the number of vehicles (particularly diesel vehicles) may contribute to a
delay in the turning point of the trends in NO,, NOs and PMjg roadside
concentration.
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