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Abstract

Every hour, ambient concentration data for dozens of air pollutants is collected

fromhundreds ofmonitoring sites across theUK, adding to a repository consisting

of more than 370 million observations going back 47 years. And yet, due to the

difficulty of extracting meaningful information from this data, it is principally

used for monitoring compliance with air pollution limits. This thesis aims to

develop new statistical techniques and apply them to the air quality network data

to derive additional insights concerning changes in air quality in the UK over the

last twenty years.

The rolling change method is a new way of conducting robust long term trend

analysis across multiple sites withinmonitoring networks that are subject to biases

caused by site flux. It is used to analyse the long term trends in NOG and NO2

concentration, and in NO2/ NOG ratio in London, Scotland, and the UK between

2000 and 2017. At each scale, the results are consistent, showing declines in NOG

and NO2 concentration, and a peak in NO2/ NOG around 2010, followed by a fall.

The ‘meteorological normalisation’ method using random forest is applied

to remove the effect of meteorology from air pollutant concentrations at London

sites to enable clearer visualisation of the trend due to changes in emissions. The

method is also used to evaluate the efficacy of the London Low Emission Zone

through the generation of counterfactual scenarios that are compared to the true

normalised trend. The results suggest a mild improvement in air quality.

The influence of inter-annual meteorological variation on annual average

concentrations of NOG , NO2 and O3 is estimated for a large number of UK sites

using the novel tools of heatmaps and cumulative sum plots. This influence is

shown to be considerable: the range of the annual average concentration due to

meteorological variation is 2.9 µg m
−3

(8.2%) for NO2, 9.9 µg m
−3

(12.6%) for NOG

and 3.3 µg m
−3

(7.5%) for O3. The implications of these findings for the use of the

annual average metric in compliance monitoring within the EU are considered.
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Chapter 1. Introduction

1.1 Background

Air pollution is increasingly being recognised as one of themost pressing problems

facing the world today. Its impact is felt in a wide range of contexts including

economies, agriculture, ecosystems, infrastructure and health, contributing to

an estimated 40,000 premature deaths a year in the UK alone and costing the

economy more than £20 billion per year (Royal College of Physicians, 2016).

Exposure to air pollution contributes to a myriad of health effects, including

heart disease, strokes and pulmonary disease. The exact mortality due to air

pollution is difficult to quantify, because of the complicated relationship with

other risk factors. However, air pollution is considered to be the fourth greatest

cause of mortality worldwide, killing more than six times as many people as

malaria and four times as many as HIV/AIDS every year (The World Bank and

Institute for Health Metrics and Evaluation, 2016).

Thousands of pollutants contaminate the atmosphere, but of particular concern

are the concentrations of nitrogen oxides (NOG), which are composed of NO and

NO2, particulate matter (PM), and tropospheric ozone (O3).

Nitrogen oxides (NOG) are defined as the sum of nitrogen monoxide (NO)

and nitrogen dioxide (NO2) (Schultz et al., 2015). NOG is emitted by both

natural sources, such as bacterial production, volcanic activity and lightening,

and anthropogenic sources, primarily fossil fuel and biofuel combustion (e.g.

vehicle exhausts, power stations, etc.) (Schultz et al., 2015). Natural sources

and secondary production generate a background NO2 concentration, while

primary anthropogenic emissions cause spikes in NOG and NO2 concentration

above the background near sources. While NO typically dominates overall NOG

concentrations in anthropogenic emissions, in the atmosphere NO reacts quickly

with O3 to form NO2, therefore in well-mixed background air (distant from an

anthropogenic source), the ratio of NO to NO2 concentration (NO/NO2) is lower

(Carslaw et al., 2016).

Particulate matter is a broad categorisation describing all airborne particles.

Composition and size vary widely, with particles made up of a complex mixture

of organic and inorganic species and ranging in diameter from less than 0.1 µg
to 100 µg. Two main components of PM are currently measured at monitoring

stations for compliance monitoring. PM10 refers to particles with a diameter of

< 10 µg, which are small enough to be inhaled through the nose to enter the

body. PM2.5 (the ‘fine fraction’) includes particles with a diameter of < 2.5 µg
(Anderson et al., 2012; Adams et al., 2015). These fine particles are small enough
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to penetrate to the lungs and into the bloodstream. Particles larger than 10 µg
are not regulated because they do not enter the lungs. On the other hand, fine

particles that can enter the lungs and bloodstream can cause adverse health

effects (Adams et al., 2015). Background PM comes from natural sources, such as

volcanic activity and dust storms, dispersion, mixing and secondary production

(Anderson et al., 2012). Anthropogenic sources include fossil fuel combustion,

biomass combustion, agriculture, industrial processes and uplifting of dust into

the atmosphere (Adams et al., 2015; Anderson et al., 2012).

Ozone is a secondarypollutant, and ismostly produced throughphotochemical

reactions in the atmosphere (Wang et al., 2019). O3 exists in a photochemical

equilibrium with NO and NO2, and volatile organic compounds (VOCs) or

hydroxyl radicals. The position of the equilibrium depends on the relative

concentrations of the precursors NOG and VOCs. Higher and lower ratios can

favour ozone depletion, therefore the relationship between O3 concentration

and anthropogenic emissions is complex (Wang et al., 2019; Monks, 2005). O3

concentration is highly dependent on dispersion conditions and long-range

transport. High concentrations of O3 are damaging to human health, agriculture

and environments (Schultz et al., 2015; Wang et al., 2019).

An understanding of the sources and the atmospheric chemistry of these air

pollutants is vital to interpreting the results of air quality data analysis. The

following sections describe the emission sources of the major air pollutants and

the reactions they undergo once emitted into the atmosphere.

1.1.1 Sources of air pollutants

Nitrogen oxides (NOG) are defined as the sum of nitrogen monoxide (NO) and

nitrogen dioxide (NO2) (Schultz et al., 2015). Most NOG is emitted from the

combustion of fuels, with other sources making up just 3% of total emissions in

2018 (NAEI, 2020). Emissions of NOG from combustion come from a variety of

fuels and sectors. In 2018, 31% of NOG emissions came from road transport, 21%

from other forms of transport, 20% from energy production (e.g. power stations)

and 8% from other industrial activity (NAEI, 2020).

NOG is mainly emitted as NO, which is rapidly converted to NO2 through the

reaction with O3 (see Section 1.1.2), however some NO2 is emitted from primary

sources, particularly road vehicles (AQEG, 2004).

During fuel combustion, NOG is produced either by the high temperature

oxidation of nitrogen from the air, or from nitrogen chemically present in the fuels

themselves. NOG formation is favoured by high temperature and oxidation rich
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conditions (AQEG, 2004).

The main mechanism by which NO is formed is known as the Zel’dovich

mechanism (the thermal-NO mechanism) which is shown in Equation 1.1 (AQEG,

2004).

$ + #2 
 # + #$
# + $2 
 $ + #$
# + $� 
 � + #$

(1.1)

Only an estimated 5% of NOG emitted from combustion is released as NO2,

but the ratio of NO2/NO emitted from diesel engines is higher than from gasoline.

NO2 production is favoured in poorly mixed systems and by low temperatures.

NO is converted to NO2 via the reaction shown in Equation 1.2 (AQEG, 2004).

#$ + �$2→ #$2 + $� (1.2)

Some NO2 is also converted back to NO according to Equation 1.3 (AQEG,

2004).

#$2 + $ → #$ + $2 (1.3)

The total concentration of particulate matter (PM) is made up of a primary

component, which is directly emitted from primary sources, as well as a large

secondary component, which is formed from the chemical reactions of gases and

other aerosols in the atmosphere.

PM10 is particulate matter with a diameter of less than 10 µg (Anderson et al.,

2012; Adams et al., 2015). In 2018, in the UK, 40% of PM10 emissions came

from industrial, commercial or residential combustion, 32.5% from production

processes, 12% from agriculture, 11% from road transport, 3% fromother transport

and 1.5% from public electricity and heat production (NAEI, 2020).

PM2.5 is particulate matter with a diameter of less than 2.5 µg (Anderson et al.,

2012; Adams et al., 2015). In 2018, in the UK, 64% of PM2.5 emissions came from

industrial, commercial or residential combustion, 12% from production processes,

11% from road transport, 6% from agriculture, 5% from other transport, and 2%

from public electricity and heat production (NAEI, 2020).

Vehicles produce exhaust PM, from fuel combustion, and non-exhaust PM,

which is generated by mechanical abrasion and corrosion from tyre, brake, clutch

and road surface wear and from vehicle component corrosion. Road transport
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also causes suspension or re-suspension of road dust (AQEG, 2005, 2019).

Natural sources also contribute to primary PM emissions. These include wind-

suspended dust, sea spray, forest fires, volcanic activity and biogenic emission

(AQEG, 2012; Anderson et al., 2012).

Unlike the other air pollutants discussed here, ozone (O3) is a secondary

pollutant formed by photochemical oxidation of volatile organic compounds

(VOCs) in the presence of nitrogen oxides (NOG) (Wang et al., 2019). The details

of this reaction are discussed further in Section 1.1.2.

Although it is not emitted directly, the production of ozone depends on the

concentration of its precursors, which are primary pollutants. The sources of

NOG have already been described. In 2018 in the UK, the largest contribution

to anthropogenic NMVOC (non-methane VOC) emissions came from industrial

processes and product use, which accounted for 53% of total emissions. Extraction

and distribution of fossil fuels accounted for 19%, and agriculture for 12%. 7% of

emissions came from transport and other mobile sources (exhaust emissions and

evaporative losses of fuel vapour), and 9% from stationary combustion sources

(NAEI, 2020).

VOCs are also emitted from vegetation and the soil. Emissions from natural

sources are dependent on temperature, light levels and plant species and therefore

have strong seasonal variation. Most biogenic VOC sources are not normally

co-located with major urban NOG sources, whereas anthropogenic sources of

VOCs are more often co-located with NOG sources in urban areas. Therefore, in

urban areas where high concentrations of the precursors result in high ozone

production, anthropogenic sources of VOCs may be relatively more important.

However, over recent years, as anthropogenic VOC emissions have been reduced,

the relative importance of biogenic VOCs has increased, a trend that is expected

to continue in the future (AQEG, 2020).

1.1.2 Key chemistry of air pollutants

Once emitted into the atmosphere, air pollutants are subject to dispersion and

reaction with other atmospheric species. Since both of these processes are highly

dependent on meteorology, the meteorological conditions exert a strong influence

on ambient air quality (AQEG, 2004).

The ambient concentration of air pollutants is dependent on the combination

of (i) emissions, (ii) chemistry, and (iii) meteorology (AQEG, 2004). It is therefore

crucial during interpretation of results to understand all three factors and their
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effects on the ambient concentrations of the air pollutant under investigation.

In particular, the interconversion between NO and NO2 is crucial to an

understanding of both NOG and ozone concentrations.

While most NOG is emitted as NO, once in the atmosphere NO reacts rapidly

with ozone to form NO2 via the reaction shown in Equation 1.4.

#$ + $3→ #$2 + $2 (1.4)

In locations with high concentrations of NO, such as polluted roadside

locations, the timescale for conversion of NO to NO2 via this mechanism can be

as little as 2 seconds (AQEG, 2004).

During the day, NO is regenerated from the photolysis of NO2 via the reaction

shown in Equation 1.5 (AQEG, 2004).

#$2 + BD=;86ℎC → #$ + $
$ + $2 (+") → $3 (+")

(1.5)

The rate of NO2 photolysis varies with season, time of day and latitude, but

is slower than the conversion of NO to NO2. The average lifetime of NO2 in the

summer is about 3 minutes, and two or three times longer in winter (AQEG, 2004).

Even so, the daytime interconversion of NO andNO2 is so efficient that the species

are usually referred to in combination as NOG .

As previously mentioned, the majority of NOG is emitted as NO, but once in

the atmosphere the NO reacts rapidly with ozone to form NO2. The two species

subsequently interconvert. The result of this is that the NO2/NOG ratio is at a

minimum close to the emission source, and increases with distance until a stable

background NO2/NOG ratio is reached in well-mixed air. The NO2/NOG ratio,

therefore, can be used as a proxy for the degree of contribution to the pollutant

concentration at a particular location, and can be used to distinguish betweeen

‘traffic’ locations (close to road traffic sources) and ‘background’ locations. This

utility is applied in Chapter 4.

The main loss mechanism for NOG is conversion of NOG to nitrate, followed

by wet or dry deposition or further reaction. The reaction is shown in Equation

1.6 (AQEG, 2004).

$� + #$2 (+") → �#$3 (+") (1.6)

During the night, nitrate is also generated from NOG via the route shown in
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Equation 1.7

#$2 + $3→ #$3 + $2

#$3 + #$2 (+")
 #2$5 (+")
#2$5 + �2$ (+04A>B>;) → 2�#$3 (03B)

(1.7)

In addition to deposition, nitrate is also removed via formation of nitrate

aerosol, or by reaction with gaseous ammonia to form ammonium nitrate aerosol.

NOG is also removed temporarily by formation of the reservoirs nitrous acid

(HONO) and PAN. These reactions are shown in Equations 1.8 and 1.9 (AQEG,

2004).

$� + #$ (+") → �$#$ (+") (1.8)

��3�($)$2 + #$2 (+")
 ��3�($)$2#$2 (+") (1.9)

During the day, NO is regenerated from photolysis of HONO. PAN exists in an

equilibrium with NO2, and undergoes thermal decomposition under conditions

characterised by high temperatures and high levels of organic radicals (AQEG,

2004).

Ozone is formed photochemically by the sunlight-initiated oxidation of VOCs

in the presence of NOG . As previously shown in Equation 1.5, photolysis of NO2

produces NO and O3. Since, as shown in Equation 1.4, NO and O3 react to re-form

NO2, these reactions consitute a cycle with no net ozone produced. However, in

the presence of volatile organic compounds, the oxidation of the organic species

catalysed by OH radical consumes NO and produces NO2. The NO2 photolyses to

re-form the NO, which is used in further VOC oxidation. Ozone is produced as a

by-product of the cycle (Monks, 2005). The reactions involved in ozone formation

are shown in Equation 1.10 (PORG, 1997).

$� + '� → ' + �2$

' + $2 (+") → '$2 (+")
'$2 + #$ → '$ + #$2

'$ + $2→ '−�$ + �$2

�$2 + #$ → $� + #$2

(1.10)
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#$2 + BD=;86ℎC → #$ + $
$ + $2 (+") → $3 (+")

(1.5)

The series of reactions is perhaps more clearly visualised diagrammatically as

a cycle, as shown in Figure 1.1 (PORG, 1997).

Figure 1.1: Schematic representation of the OH catalysed oxidation of organic compounds,

with ozone produced as a by-product. Image taken from the fourth report of the PORG

(1997).

The relationship between the production of ozone and the ambient concen-

trations of NOG and VOCs is not linear, but rather depends upon the relative

concentrations of each precursor. In VOC-limited environments, where the rela-

tive concentrations [NOG ]/[VOC] is high, an increase in VOC emissions would

lead to increased ozone production, but an increase in NOG emissions would

decrease the rate of ozone production. The reverse situation presents itself in

NOG-limited environments, where [NOG ]/[VOC] is low. Here, an increase in NOG

emissions will increase ozone production, while an increase in VOC emissions

will cause decreased ozone production (Monks, 2005; PORG, 1997).

The reason behind this lies in the cyclical nature of the process. The rate of

ozone production is proportional to the chain length, which is the number of

VOC-oxidation cycles (as shown in Figure 1.1) which occur before radical removal.

Changes in NOG and VOC concentrations affect the rate of the chain terminating
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reactions relative to the competing reactions (Monks, 2005; PORG, 1997).

Secondary PM is formed by gas-to-particle conversion of the lower volatility

or soluble products or intermediates that arise from oxidation of higher volatility

emitted gases, or by the reaction of gases with aerosols or aqueous droplets.

One example of this is the formation of sulfate aerosol from SO2. SO2 can be

oxidised to sulfate in the gaseous phase or the aerosol phase. Another important

primary pollutant, NOG , is also oxidised in the atmosphere to form nitrate aerosol.

Nitrate is formed through the oxidation of NO2, as shown in Equation 1.6 (AQEG,

2005).

$� + #$2 (+")
 �#$3 (+") (1.6)

Sulfate and nitrate are often present in PM as ammonium sulfate and ammo-

nium nitrate, which can from ammonia emitted mainly from agricultural sources

(AQEG, 2005; Adams et al., 2015). Oxidation of volatile organic compounds

(VOCs) produces secondary organic aerosol (SOA) via a hugely complex variety

of species and mechanisms (AQEG, 2005).

Because a considerable component of the total atmospheric PM comes from

secondary sources, regional chemistry and transport exerts a powerful influence

on the ambient concentration of PM. For example, while some PM in UK urban

areas comes from primary particle emissions, it is frequently the case that

the bulk comes from regional chemistry and European transport. For this

reason, caution must be exerted during analysis not to misattribute changes in

background PM concentrations to changes in the emission source. This becomes

particularly relevant in Chapter 3, which deals explicitly with the identification of

the background component of ambient PM concentration.

1.2 Measurement of ambient air quality in UKmoni-
toring networks

Many techniques and instruments have been used to measure the ambient

concentrations of air pollutants. Here, the methods used within the Automatic

Urban and Rural Network (AURN) for continuous air quality monitoring are

described. The majority of the data used in this thesis to analyse UK ambient

air quality was sourced from AURN sites. However, it is important to note that

the data within this thesis was sourced from multiple independent monitoring
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networks and, in some cases, was measured using different instruments. This has

implications for the interpretation of the results, as will be discussed.

1.2.1 NOG measurement

NOG andNO2 aremeasured at AURN sites using chemilumiscent analysis. Within

the sampler, NO reacts with O3 to produce an excited state of NO2 (see Equation

1.11). When the excited molecule of NO2 returns to the ground state, radiation

is emitted. The intensity of the radiation (fluorescence) is proportional to the

concentration of NO present (AQEG, 2004).

#$ + $3→ #$∗
2
+ $2

#$∗
2
→ #$2 + ℎ�

(1.11)

The analyser does not directly measure NO2. Instead, the NO2 in the ambient

air is reduced to NO in the NO2-to-NO converter (usually a heated molybdenum

converter in the UK) (Schultz et al., 2015). The analyser then independently

measures the concentrations of NO and NOG , and calculates the concentration

of NO2 that was originally present by subtracting NO from total NOG (Equation

1.12). Some instruments achieve this by measuring NOG and NO simultaneously

in dual chambers (AQEG, 2004).

[#$2] = [#$G] − [#$] (1.12)

Typically, chemiluminescent analysers have a lower detection limit of < 2

µg m
−3
. This is much lower than the alternative NO2 measurement methods, such

as diffusive samplers, electrochemical sensors, thick film sensors and differential

optical absorption spectroscopy (DOAS), which have detection limits on the order

of several µg m
−3

(AQEG, 2004).

One problem with chemilumiscent analysis is interference from other reactive

nitrogen species (Schultz et al., 2015). In the molybdenum NO2-to-NO converter,

some oxidised nitrogen species, such as HNO3, HONO, PAN and alkyl nitrates,

are converted to NO, therefore contributing to the measured NO2 concentration.

Only HONO and PAN are considered to interfere significantly under ambient

conditions present in the UK. Under typical urban background conditions, the

interference from HONO and PAN has been estimated to account for ≤ 2% and ≤
5% of the measured NO2 concentration respectively (AQEG, 2004).

In the UK, the Air Quality Directive specifies an upper limit for the uncertainty

with which air quality measurements are made (European Union, 2008). The
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upper limit uncertainty for continuous measurements of NOG and NO2 is 15%.

This uncertainty may proceed from many factors related to the instrument

itself, instrument calibration and instrument operation. It is important, when

interpreting the analysis of data collected from these instruments, to recognise

that the measurement are subject to this degree of uncertainty and avoid over-

interpretation (AQEG, 2004).

1.2.2 PM measurement

In the UK, PM is typically measured as a mass concentration. There are a wide

variety of methods in use for this.

Filter-based gravimetric samplers are the reference method of measurement

defined in the EU First Air Quality Daughter Directive. A sampling inlet is

connected to a filter substrate and a flow controller. PM10 is collected on the

filter during the sampling period, then the mass determined gravimetrically.

However, the time resolution of the measurements is limited to 24 hours, which

limits its utility in detailed statistical analysis. It also has high operating costs,

and cannot be used for continuous monitoring due to the high degree of human

operation required (for example, daily filter exchange and weighing of filters).

Human error leads to more potential pathways for error, and there is always a

delay between sample collection and reporting, while the samples are transferred,

stored and weighed. Consequently, the AURN monitoring sites use methods

with demonstrated equivalence to gravimetric sampling to provide continuous

real-time hourly monitoring data (AQEG, 2005).

TEOM (Tapered Element Oscillating Microbalance) analysers are widely used

to measure continuous concentrations of PM in the UK. Air enters a tapered glass

tube and is deposited onto a small filter at one end. The frequency of oscillation of

such tubes is directly proportional to the mass of the tube, so the change in mass

of the tube is proportional to the additional mass of the deposited PM (AQEG,

2005).

TEOM analysers not only impart greater precision than the reference method,

but also provide real-time data with hourly resolution, which has greater utility

in statistical analysis. Differences in moisture equilibration between TEOM and

gravimetric samplers means that an adjustment factor must be applied to the

measured data in order for the measurements to be equivalent (AQEG, 2005).

The FDMS (Filter DynamicMeasurement System) instrument is a development

of the TEOM analyser which can account for semi-volatile PM. Data is collected

hourly and daily. Water is removed from the air sample before it is passed into
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the sampling unit, and the operating temperature is lower. After the air is passed

through the filter to collect non-volatile PM, the air is diverted into a cooled

chamber which is maintained at 4
o
C and passed over a filter. The air is then

returned to the first sensor unit to provide a baseline measurement (AQEG, 2012).

While TEOMandFDMS samplers are themost commonmethod for continuous

PM measurement in the UK, �-attenuation analysers are more widely used in

Europe. This method measures the reduction in intensity of � particles passing

through a filter, which is proportional to the mass of PM collected on the filter.

Data is measured at hourly resolution, but the method has lower precision than

the TEOM analyser (AQEG, 2005).

Less widely used methods for PM measurement include optical analysers, the

black smoke method, and personal samplers (AQEG, 2005).

Measurement of particulate matter is particularly challenging and the choice

of measurement method often has a considerable effect on the results. This is

because different instruments may treat the air stream in different ways. For

example, TEOM analysers preheat the air stream, while filter-based gravimetric

samplers do not, which results in the greater loss of semi-volatiles from the former.

Empirically determined adjustment factors are applied to make the data measured

using each method equivalent, but for this reason, data measured using different

methods may not be comparable (AQEG, 2005). There is also variation between

instruments of the same type. The filter material can influence the measured data,

because the filter mass changes in response to humidity and the accumulation of

water or other material. The mass change can vary by the type of filter material,

and even by difference batches of the same material, so this uncertainty is very

difficult to control or account for (AQEG, 2012). Other reactive gases may also

absorb onto the filter or the PM, contributing to further measurement uncertainty

(AQEG, 2012).

All of these methods can be adapted to measure PM2.5 as well as PM10, for

example, by changing the size of the fractioning inlet. However, there is a

smaller amount of PM2.5 in the ambient air than PM10, which makes accurate

PM2.5 measurement more challenging than measurement of the coarser fractions

(AQEG, 2005). In addition, the PM2.5 particles generally contain a larger proportion

of semi-volatile and hygroscopic material, which are more difficult to capture

(AQEG, 2012).

Accurate measurement of PM has become more challenging as PM concentra-

tions have decreased. Well known problems such as changes in mass of the filter

due to water collection or loss of fibres become more significant when attempting
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to measure smaller masses (AQEG, 2012).

1.2.3 O3 measurement

UV spectroscopy is used to measure ambient ozone concentration at UK mon-

itoring sites. The air sample passes through a cell of length ; and the intensity

of UV light at 254 nm (�1) is measured by a detector. A zero reference intensity

(i.e. the intensity of the air with no ozone present), �0, is calculated using air that

has been passed through an ozone-removing scrubber. The concentration is then

calculated using the Beer-Lambert law shown in Equation 1.13, where � is the

absorption coefficient at 254 nm (AQEG, 2009).

�0 = �14
−�2;

(1.13)

Thepresence of other species that are optically active at 254nmcouldpotentially

interfere with the ozone measurement, but in practise this is minimal, since the

same species are present in both the reference and the non-reference air samples,

and so any potential interference is cancelled out (AQEG, 2009).

The ozone analysers are calibrated on-site using ozone photometers, with an

uncertainty of 3.5%. The ozone photometers are themselves calibrated against

the UK ozone standard with an uncertainty of 3.0%, which is calibrated against

other national measurements’ standards. Overall, the maximum uncertainty of

the ozone data is 12% (AQEG, 2009). While this is below the directive of 15%, it

still merits consideration during data analysis and interpretation.

1.3 Air quality legislation and limits

Many governing bodies have attempted to improve air quality by reducing

anthropogenic emissions of air pollutants. The European Union imposes limits

on the concentrations of various air pollutants based on the World Health

Organisation’s ambient air quality guidelines. A selection of the EU limits

are shown in Table 1.1. However, the limits are regularly breached in many

of the member states, including the UK. In fact, in May 2018 the EU referred

France, Germany and the UK to the Court of Justice of the EU for their repeated

exceedances of the NO2 concentration limit values and their failure to take

appropriate measures to reduce the frequency and duration of these exceedances

(Airqualitynews.com, 2018).
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Table 1.1: European Directive air quality limit values for selected air pollutants for the

United Kingdom (Defra, 2019).

Pollutant Limit Concentration
measured

as
NO2 200 µg m

−3
not to be exceeded more than 18 times a year 1 hour mean

NO2 40 µg m
−3

annual mean

PM10 50 µg m
−3

not to be exceeded more than 35 times a year 24 hour mean

PM10 40 µg m
−3

annual mean

PM2.5 25 µg m
−3

annual mean

In order to control the air pollution, it is important to study how the con-

centrations of air pollutants have changed in the past, and consider the factors

that drove the change. Only by evaluating changes and trends in air pollutant

concentrations and their drivers can the effectiveness of interventions aimed at

improving air quality be quantified. In this context, it is clear that accurate analysis

of air pollution is vital, not merely to evaluate compliance with legislation, but to

preserve economies, ecosystems and human health.

1.4 Statistical analysis of ambient air quality data

Historically, atmospheric modelling based on detailed emissions inventories has

been the primary technique for predicting and analysing air pollution. This has

many limitations however, namely, the reliance on the use of emissions factors and

flux estimates, which may be inaccurate and have high uncertainty. Modelling

also requires detailed understanding of all of the processes and interactions of

the system which, in the case of the atmosphere, are often complex or poorly

understood. The complex nature of atmospheric processes and local conditions

means that emissions data are not necessarily an accurate indicator of pollutant

concentration or exposure.

In contrast, ambient data from monitoring networks, subject to rigorous

analysis, can reveal the actual pollutant concentrations, correlations and trends at

measurement locations. Such information is invaluable for determining the actual

effects of social and infrastructure changes and policy interventions on air quality.

The direct quantification of the actual effects of interventions using statistical

analysis of ambient air quality data is very attractive to policy makers, though

many factors conspire to make it a complex undertaking, as shall be discussed in

Section 1.4.1. Air quality data analysis aims to identify sources of air pollutants,
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which enables targeting of the most relevant sources in policy interventions, as

well as identifying trends in pollutant concentrations, and interpreting them in

terms of events e.g. interventions.

The UK air quality monitoring network has been in place since 1973, and has

collected more than 370 million observations from hundreds of sites. This vast

amount of data is currently under-utilised, with its main use being compliance

monitoring, where a simple annual average is calculated and compared to the EU

limits. More sophisticated analysis is hindered by the complexity of statistical

analysis of air quality data, as will be discussed later. However, recent advances

in the field of machine learning have resulting in an explosion of techniques for

extracting patterns from large amounts of data, which have been applied in almost

every field imaginable. These techniques offer the potential for extracting greater

insight from the huge repository of air pollutant concentration data available for

the UK.

1.4.1 Challenges associated with statistical analysis of ambient
air quality data

Ambient air quality data has several unique characteristics that make its analysis

challenging. Firstly, pollution events often result in spikes in pollutant concen-

trations in the time series that, while often acting as outliers with the potential

to exert disproportionate leverage on the results, do not result from instrument

errors, and should not be removed. As such, it is important to choose techniques

that are robust to such outliers.

Autocorrelation is another characteristic of time series that should be consid-

ered, wherein error terms can be correlated over time, violating an assumption

of many models, including the linear regression model, that the error terms be

independent.

Additionally techniques must also be robust to missing data, which is a

common problem in air quality data due to instrument faults etc.

However, the above problems are quite common in all time series data, andhave

been adequately solved elsewhere. The main difficulty with analysing a change in

ambient concentration of an air pollutant, whether a long term trend or the effect of

an intervention, is distinguishing that change from the background concentration

and the effects of confounding factors. Meteorology almost invariably exerts the

largest influence over pollutant concentrations, and variations in meteorology

cause corresponding variations in concentration that can completely obscure the
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much subtler long term trends. This frequently frustrates attempts to analyse

the effects of interventions by comparing pollutant concentrations before and

after its implementation, as was the case for the London Congestion Charge Zone

(CSS), which was implemented in February 2003, unfortunately coinciding with a

period of unusual meteorology in London that rendered any temporal comparison

meaningless. (Beevers and Carslaw, 2005)

Other confounding factors, including temporal variation in the formof seasonal,

weekly or diurnal cycles, long range transport, interactions with other pollutants,

extreme events such as pollution episodes, concurrent changes in other emission

sources/overlap in the implementation of other policy interventions, and changes

in the instrumentation or methodology used to measure the pollutant add to the

complexity of the time series. The nature and impact of these confounding factors

are variable and depend on the location and pollutant under investigation. The

first task of an analysis is often, therefore, disentangling the effects of various

confounding factors, including meteorology and seasonality, on the time series in

order to reveal the underlying trend.

Traditionally, methods such as calculating urban increments (Harrison et al.,

2012; Kassomenos et al., 2014), applying seasonal trend decomposition (Carslaw,

2005; Bigi and Harrison, 2010), or training statistical models which include the

confounder as predictors (Dĳkema et al., 2008; Fensterer et al., 2014) have been

applied to try and control for confounding variables.

However,modern statistical techniques in the field ofmachine learning offer the

possibility for much greater accuracy and flexibility in accounting for confounders.

This is because many machine learning models, such as ensemble trees like

boosted regression trees and random forest, are non-linear, highly flexible and

are intrinsically capable of including interactions between variables.

Boosted regression trees (BRT) were used by Carslaw and Taylor (2009) to

infer the source characteristics of NOG at Heathrow Airport, after controlling for

meteorological factors, aircraft activity patterns and temporal factors by including

them as variables in their models.

Grange et al. (2018) recently demonstrated that random forestmodels combined

with bootstrapping could be used to ‘meteorologically normalise’ air pollutant

concentration data (i.e. remove the influence of meteorological variables) to

estimate the trend in concentrations under ‘average’ meteorological conditions.

These methods offer enormous potential for ameliorating one of the most

difficult problems in air quality data analysis: that of distinguishing between

changes in concentration driven by changes in emissions, and those driven by
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other factors, such as meteorology. Chapters 3 and 4 explore this potential, as will

be discussed later.

Finally, the data used in air quality data analysis is sourced from monitoring

sites situated at particular locations. This data provides information about the

local air quality at that location. The size of the area which the monitoring site

can represent depends on the location: from just a single street for some urban

road traffic sites, to a larger area for background sites. But it is sometimes useful

to analyse air quality on a larger scale, such as over an entire network of sites,

rather than a single monitoring site. For example, a detailed analysis of data from

the London Marylebone site may provide a great deal of insight into changes in

air quality on Marylebone Road, but what about air quality in London? In the

UK? In Europe? Analysis of networks of sites offers the ability to answer these

questions, and is discussed further in Sections 1.4.2 and 1.5.2, and in Chapter 2.

Within the field of air quality analysis, the following questions are of particular

importance:

• How does air quality change over time?

• What effect do policy interventions, such as low emission zones, have on

the concentrations of air pollutants?

• Is the level of air pollution in an area compliant with the legal limits? And if

not, what factors are responsible for the non-compliance?

The methods for obtaining answers to each of these questions are examined in

turn in the sections below.

1.4.2 Trend Analysis

Trend analysis involves examining the changes in pollutant concentration over

time (Anttila and Tuovinen, 2010; Guerreiro et al., 2014). It can be used to track

the effects of emission changes on the ambient air quality, and as evidence of the

efficacy (or lack thereof) of policy interventions (Font and Fuller, 2016).

In its simplest aspect, the pollutant concentration as a function of time at

a single monitoring site is analysed, either as a raw time series, or as a daily,

monthly, or annual average.

However, the advantage of monitoring networks containing many - sometimes

hundreds - of monitoring sites, is the ability to carry out trend analysis over a

wider area or a longer time frame than may be represented by a single site.
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Changes in air pollutant concentration at an individual monitoring site are

affected by many factors in addition to emissions, such as meteorology, changes in

the urban environment and dispersion. These confounding factors, as discussed

in Section 1.4, impede an evaluation of the long term changes in air quality.

By including data from multiple sites over a wider area, the variation in

concentration driven by site-specific factors cancel out, so that the changes driven

by larger scale factors, such as changes in vehicle emissions or the results of

interventions, can be seen.

In cases where the area under investigation contains a limited number of

monitoring sites, a common approach is to compare the trends at each individual

monitoring site to yield an overall impression of changes in air quality in the

area. This way, the changes in concentration common across many sites may be

attributed to larger scale changes, while the changes only seen at a few sites, or sites

geographically close together, might be interpreted as due to local confounders.

Mavroidis and Chaloulakou (2011) used this approach to estimate trends in

particulate matter (PM) and ozone concentrations in Santiago, Chile 1989-1998

using data from four monitoring sites. The authors compared the trends at each

site to establish a consensus and the differences between monitoring sites were

rationalised using contextual information about each site. Other studies have

attempted to replicate this approach with larger numbers of monitoring sites, such

as the study by Masiol et al. (2017), which analysed the trends in concentration of

a range of pollutants at 43 monitoring sites in the Veneto region of Italy.

However, in the case of large regions or areas with an extensive monitoring

network of sites available, this approach can be unwieldy, and, with such a large

number of comparables, it may be difficult to fully capture the patterns and

anomalies (although cluster analysis has been used to ameliorate this problem

(Malley et al., 2018)). It may be beneficial to aggregate data from multiple

monitoring sites to gain a representative view of the average air quality.

Another method is to aggregate the data from multiple monitoring sites, then

analyse the trend in the average concentration across many sites. Font and Fuller

(2016) examined the trends in roadside increments of various pollutants between

2005-2009 and 2010-2014 by averaging data from 65 Londonmonitoring sites. Data

capture filters and linear interpolation were employed to ensure all individual

time series from separate sites were of equal length.

The problem with this approach is that data filtering necessarily excludes

some information from the analysis. In many monitoring networks, the time

series at many sites may only span a few years, or sites may move so that time

34



Chapter 1. Introduction

series have little overlap. As a consequence, in areas with sparser monitoring

site coverage, or for trend analysis of long time periods, there may not be many,

or even any, sites that fulfill the data filtering requirements and therefore this

approach may not be practical.

In such cases, itwouldbe tempting to simply calculate the average concentration

across all available monitoring sites to obtain a long term trend. However, if the

monitoring sites have time series of various lengths and durations, the resulting

trend is sensitive to biases in the monitoring network. Frequently, air pollution

monitoring sites are moved to more polluted locations, closed in locations with

low pollution levels, or new sites are opened in highly polluted locations that

require more careful observation. The cumulative effect of site flux is often

therefore that a monitoring network is increasingly biased towards monitoring

sites with higher pollutant concentrations.

In Chapter 2, a new method is presented that enables robust long term trends

to be visualised using data from multiple monitoring sites with variable length

time series. This rolling changemethod therefore ameliorates the disadvantages of

both methods discussed previously: averaging the concentration across multiple

sites reduces the impact of site specific confounders, while preserving more data

in the analysis than data filtering allows. The method opens up the possibility of

carrying out robust long term trend analysis for sparse monitoring networks with

few, or no, long term monitoring sites.

The development of the rolling change method is timely given that low cost

sensor networks are increasingly being used to monitor air quality. These sensors

tend to be less reliable than traditional monitoring sites, as well as being more

portable, and therefore such networks are even more vulnerable to the problems

associated with site flux. As such, the rolling change method could be valuable in

analysis of trends using data from these networks.

Moreover, the issue of aggregating data from time series of differing lengths is

not exclusive to the analysis of air quality data. The method could find application

in any discipline dealing with multiple time series of differing lengths.

To facilitate the use of the rolling change method, an open source R package

named aqtrendswas developed. The package contains a function that outputs

the rolling trend for a given data set input. More details about aqtrends is given

in Appendix III.
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1.4.3 Intervention Analysis

1.4.3.1 Air quality interventions

In response to dangerously high levels of air pollution in urban areas across

the world, governments have implemented a range of interventions aimed at

controlling emissions.

Many of these interventions focus on reducing emissions from road traffic. At

the national level, increasingly stringent limits on the emissions ofmajor pollutants,

such as particulate matter and NO2, have been placed on vehicle manufacturers.

For instance, the EU has imposed a series of emission standards, from Euro 1 to

Euro 6, in order to encourage technological innovation and implementation in

reducing emissions from manufacturers.

At the other end of the scale, interventions have also been applied within

individual cities and highways to control emissions in particularly polluted areas.

These interventions include low emission zones (LEZ) and clean air zones (CAZ),

variable speed limits, and reduction in speed limits, as well as other mechanisms

for reducing congestion and stop-start traffic flows.

Low emission zones and clean air zones are areas where vehicles not meeting

certain emission standards are prohibited from entering, and, failing this, are

subject to fines. As of 2019, there were about 250 active LEZs across Europe,

including in London, Paris, Brussels, Lisbon, Madrid, Barcelona, Berlin, Munich,

Amsterdam, Oslo, Stockholm and Athens. The LEZs vary widely in size, the

severity of the restriction and whether they are permanent, seasonal or emergency

(activated only during periods of high pollution) (McGrath, 2019).

The London LEZ is an intervention aimed at reducing air pollution in London.

Figure 1.2 shows the area covered by the London LEZ. Its staged implementation

began in February 2008 with Phase 1, which mandated that heavy goods vehicles

(HGVs) over 12 tonnes in weight must meet the Euro III emission standard. Phase

2, which began in July 2008, extended this to all lorries over 3.5 tonnes, as well as

buses and coaches. Phase 3 activated in October 2010, and specified that larger

light goods vehicles (LGVs) and minibuses would also be covered by the scheme.

The final Phase 4 began in January 2012, and tightened the minimum standard to

Euro IV for PM for lorries over 3.5 tonnes, buses and coaches (TfL, 2008).

1.4.3.2 Analysing the impact of interventions

Studies investigating the impacts of policy interventions on air quality (and,

sometimes, human health) are called ’accountability studies’. These studies
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Figure 1.2: Extent of the London LEZ. Taken from Ellison et al. (2013)

formulate the problem as a chain, and trace the changes from the initial regulation

to the emissions of air pollutants, to the ambient air quality, to the exposure, to the

health impacts, as shown in Figure 1.3 (Henneman et al., 2017). An accountability

study may investigate part or all of the chain.

Figure 1.3: The accountability chain (Henneman et al., 2017). Confounding factors that

may affect each link of the chain are shown in red. This diagram is from the paper by

Henneman et al. (2017).
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Analysis and quantification of the response of a target variable (e.g. ambient

concentration of an air pollutant) to changes in a causal driver (e.g. implementation

of a policy intervention) can be ascertained by comparison with an appropriate

control scenario (Greenbaum and Org, 2017; Henneman et al., 2017). In order to

establish what changes have been brought about by an intervention, there must

be information on what would have happened if the intervention had not been in

place to compare it to. In scientific laboratory experiments, the experiment is often

performed twice, with and without the intervention, but with all other conditions

kept the same. In this way, the effect of the intervention can be distinguished from

the effects of changes in other factors (confounders). The situation ismore complex

for studies of air quality interventions: it is impossible, for example, to measure

the pollutant concentrations that would have occurred had a low emission zone

not been in force if, indeed, a low emission zone has been implemented at a

particular site. Consequently, such studies have historically made use of two

methods for estimating a counterfactual (or control) scenario. A temporal control

uses the period of time before the intervention was implemented as the control

scenario. Alternatively, the air quality at a similar location where the intervention

was not implemented can provide a spatial control scenario.

Unfortunately, both temporal and spatial controls are vulnerable to the effects

of confounders.

One of the main challenges associated with air quality research, including

accountability studies, is distinguishing the effects of causal drivers of changes

in air quality (e.g. an intervention) from confounding variables which may

also change over the period of analysis. Each link in the accountability chain

is vulnerable to confounding by variation in factors that impact air quality.

For example, the relationship between the regulation and emissions may be

confounded by other concurrent factors that affected vehicle use over the same

period, such as changes in fuel price or the implementation of other traffic

policies, or by changes in vehicle emission technologies. The relationship between

emissions and ambient air quality is confounded by seasonal variation, local

meteorology, long range transport and other atmospheric processes (Henneman

et al., 2017).

A comparison of the datawith temporal and spatial controlswill be confounded

respectively by temporal and spatial variation of the confounding variables. For

example, changes in ambient air quality before and after an intervention was

implemented will be driven not only by the effect of the intervention, but also

by variation in meteorology, long-range transport, road-user behaviour, emission
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technologies, and any other variables impacting on air quality that vary over

the time period. Similarly, comparison with a spatial control will be influenced

by confounders that vary spatially between the two locations: for example,

local meteorology and dispersion, or differences in the urban environment,

demographics and road-user behaviour.

The effect of the confounders on air quality are difficult to distinguish from the

effect of the intervention, and therefore it is challenging to attribute changes in air

quality to any single driver. Any attempt to analyse or quantify the impact of a

single variable, such as the presence of the intervention, on the ambient air quality

must find a way of removing the influence of such confounders, otherwise there

is no way to determine whether the observed changes are driven by the presence

of the intervention, or by variation of one or more of the confounding variables.

One method for removing the effect of confounders is by modelling the

ambient concentration as a function of the confounders and the intervention

(often represented by an indicator variable, that takes the value 0 when the

intervention is inactive, and 1 when it is active). The modelled relationship

between the intervention and the ambient concentration can then be analysed,

for example, in a linear model, the effect of the intervention is estimated by the

coefficient of the intervention variable (Dĳkema et al., 2008; Fensterer et al., 2014;

Wolff, 2014).

Dĳkema et al. (2008) analysed the effect of a speed limit intervention on the

Amsterdam ring highway on NOG , PM and black carbon concentrations using

a linear model with the predictor variables traffic flow, traffic congestion, wind

direction and an indicator variable representing the intervention (whether or not

it was in effect). The authors’ estimation of the effect of the intervention was

represented by the coefficient of the indicator variable. (Dĳkema et al., 2008)

The study by Fensterer et al. (2014) demonstrated an interesting extension of

the standard linear model, where PM10 concentrations in Munich were modelled

using semi-parametric regression. Meteorological conditions, background con-

centrations, public holidays, wind direction and diurnal variation were used as

input variables in a linearmodel alongwith the indicator, but the coefficients of the

wind direction and diurnal variation were non-linear non-parametric functions

(P-splines and cyclic P-splines, respectively). This enabled highly non-linear

relationships to be modelled with greater accuracy and flexibility.

However, a weakness of these studies was that the relationships between ambi-

ent air pollutant concentrations and the confounding variables are often complex,

interdependent and highly non-linear. Even the use of non-linear functions as
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coefficients in the model, as in Fensterer et al. (2014), make assumptions about

the relationships between variables that may not be true, and may vary widely

across different locations and pollutants. Furthermore, air quality data rarely

satisfied the assumptions of the linear model, being interdependent, non-normal

(a long tail is common due to the presence of extreme data points caused by

pollution events), heteroscedastic and autocorrelated. For these reasons, the

most commonly used method for modelling these systems, multivariate linear

regression, is not ideal. The accuracy of the models, and therefore the ability

to make causal inferences about ambient air quality, can be improved by the

use of more sophisticated models that are robust to the properties of air quality

monitoring data, and capable of incorporating non-linearities and interactions.

Ensemble decision tree methods, such as random forest models, have been

found to perform well in air quality domains (Grange et al., 2018; Suleiman et al.,

2016). The advantages of these ensemble decision trees make them particularly

well suited to air quality applications. The models are capable of modelling non-

linear relationships and interactions between the variables which are common

in air quality data. Additionally, any type of predictor variable can be used as

inputs. The model is unaffected by transformations or differences in scale among

the predictors and automatically ignores irrelevant predictors, simplifying the

pre-treatment of data prior to modelling as scaling and feature reducing are

unnecessary. Decision trees can be used to model step changes, are robust to

missing data and outliers and automatically model interactions between variables.

Crucially, they are among the most interpretable of all machine learning models,

offering the ability to infer a great deal of information from the fitted model as

well as making accurate predictions. (Carslaw and Taylor, 2009).

Carslaw et al. (2012) used boosted regression trees to quantify the impact of

the closure of Heathrow airport following the eruption of Eyjafjallajökull in 2010

on NOG and NO2 concentrations at London sites. A boosted regression tree model

of NOG and NO2 concentration was built using pre-airport closure data, then

used to model NOG and NO2 concentrations under a business-as-usual scenario

during the closure, and compared to the actual measured concentrations over

that time period. From this, the authors were able to detect a significant change

in concentration over the short time period for which the airport was closed at

some sites, and noted the potential for the method’s application to other, longer

term interventions. (Carslaw et al., 2012)

In another study, Lana et al. (2016) used random forest models to measure the

relative contributions of traffic emissions, meteorological factors, and background
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concentrations to air quality in Madrid, in order to establish the potential efficacy

of proposed traffic restrictions on air quality. The relative importance of input

variables was quantified by fitting the model with different combinations of input

features and comparing the error rates. The authors concluded that, at most sites,

traffic emissions were not very significant as a source relative to meteorology and

had very little impact on the regional background, leading to the recommendation

of permanent low emission zones as an alternative to traffic restrictions as an air

quality intervention. (Lana et al., 2016)

Despite the urgency of the issue, the efficacy of interventions such as low

emission zones on the ambient air quality remains an open question. Numerous

studies have reached different conclusions on the matter (Malina and Scheffler,

2015; Ferreira et al., 2015; Cyrys et al., 2014; Boogaard et al., 2012; Panteliadis et al.,

2014). While the unique circumstances of the studied area and the robustness of

the policy’s implementation are important factors, one reason for this ambiguity

is the difficulty of such analyses, as discussed previously. Both the impact of

confounding variables on the air pollutant concentration, and the challenge of

establishing a control scenario hinder the ability of these studies to reach definitive

conclusions.

In Chapter 3, an intervention analysis of the London LEZ is presented. The

method uses non-linear random forest models to model the PM10 concentration

to account for the confounding variables. An indicator variable is included

representing the stages of the LEZ, and used to estimate ’business as usual’ control

scenarios for comparison with the meteorologically normalised real data.

1.4.4 Compliance Monitoring

The most common use of ambient air quality monitoring data is for monitoring

compliance with the European Union’s air quality limits. The EU imposes limits

on the concentrations of various air pollutants and requires all member states

to annually report the annual (and sometimes daily) average concentrations.

Imposing limits on the concentrations of air pollutants incentivises governments

to prioritise policies aimed at improving air quality.

The limit values are based on theWorldHealthOrganisation (WHO) guidelines

which estimate the maximum level of pollution above which adverse health

effects may be experienced. Given the scale and complexity of the problem of

reducing emissions, many of the EU limit values are set higher than the WHO

recommendation in order to set more realistic targets. For example, based on

its most recent evaluation of the scientific evidence, WHO recommend that the

41



Chapter 1. Introduction

annual mean concentrations of PM2.5 and PM10 not exceed 10 µg m
−3

and 20

µg m
−3

respectively, and that the O3 8-hour mean not exceed 100 µg m
−3
, all of

which are lower than the EU limits shown in Table 1.2 (WHO, 2006; European

Commission, 2019). Despite this, exceedences of the limit values are frequently

reported in many member states. In 2018, six countries, including the UK, were

referred to the European Court of Justice for consistent failure to meet the air

quality limits (Carrington, 2018).

Table 1.2 shows the limit values and metrics of each air pollutant legislated by

the EU. It can be seen that while for some species, such as O3, the concentration

is reported as the daily maximum of the running 8-hour mean concentration

1, for others, such as NO2, only a simple annual average is required (European

Commission, 2019; AQEG, 2009)..

Table 1.2: European Directive limit values of the concentration of selected air pollutants

(European Commission, 2019)

Pollutant Concentration
(µg m−3)

Averaging
period

Permitted
yearly ex-
ceedences

Fine particles (PM2.5) 25 1 year n/a

SO2 350 1 hour 24

SO2 125 24 hours 3

NO2 200 1 hour 18

NO2 40 1 year n/a

PM10 50 24 hours 35

PM10 40 1 year n/a

Benzene 5 1 year n/a

O3 120

Maximum daily

8 hour mean

25 days averaged

over 3 years

As discussed previously, the ambient concentrations of air pollutants are

influenced by many confounding factors other than emissions, in particular,

meteorology. Since meteorology varies from year to year, some variation in the

annual average concentration of air pollutants will be due to these interannual

variations in meteorology, rather than variations in emissions. This means

that changes in the annual average concentration cannot be directly attributed

to changes in emissions. More importantly, compliance with the EU limits

could depend on the meteorology of that year. For example, during a year

with meteorology that drives high concentrations of air pollutants - such as a

particularly cold winter characterised by prolonged periods of low dispersion

1The running 8-hour mean is assigned the date of the last hour of the running mean
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conditions - the reported annual average concentrations of primary pollutants

such as NO2 may be very high even if the emissions of this species are not

unusually high. In such cases, exceedence of the air quality limits may be a

consequence of meteorology rather than emissions.

It can therefore be seen that the issue of the extent to which interannual

meteorological variation affects the annual average concentration of air pollutants

is very important, but it is largely ignored. The difficulty of separating the

influence of meteorology (or other confounding factors) from the influence of

emissionswhen analysing ambientmonitoring data has been discussed previously.

For this reason, quantitatively determining the variation in average concentration

due to meteorological variation is challenging. Chapter 4 aims to address this

by quantifying that variation, and therefore evaluating the degree to which

compliance is affected by meteorology.

In Chapter 4 , a new method is presented to quantitatively estimate the vari-

ation in the ambient concentration due to meteorological variation, involving

a novel application of the random forest meteorological normalisation method

described in Chapter 3. Novel visualisation tools using heatmaps and cumula-

tive sum plots are shown to enable detailed investigation of which years were

characterised by ’good’ meteorology (that which drove better-than-usual air

quality) or ’bad’ meteorology, as well as the underlying reasons for this. Based on

this quantification, the effect of meteorological variation on site compliance or

exceedence in a given year can be estimated.

1.5 Structure and Content of this Thesis

1.5.1 Objectives

The purpose of this thesis is to develop new methods for analysing air pollutant

concentration data, using modern machine learning techniques to overcome some

of the traditional problems associated with such analyses. Subsequently, these

new methods are applied to the vast amount of ambient air quality data routinely

collected in the UK to derive new insights about changes in air quality in the UK.

Chapter 2 describes a new technique that enables data from multiple mon-

itoring sites in a network to be used in trend analysis, even in the presence of

bias due to site flux. The efficacy of the technique is demonstrated through a case

study of air quality trends at roadside in London, and applied to analyse trends

in roadside air quality in Scotland and the UK.
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Chapters 3 and 4 attempt to extract more information from ambient air quality

monitoring data by using random forest to remove the influence of confounding

factors such as meteorology. Chapter 3 uses this meteorological normalisation

technique alongside a simulated counterfactual scenario (as demonstrated in

Carslaw et al. (2012)) to attempt to evaluate the efficacy of the London LEZ in

reducing air pollution. Chapter 4 combines the random forest meteorological

normalisation method with bootstrapping techniques and novel visualisation

methods to calculate the interannual meteorological variation and evaluate its

effect on the annual average concentration of air pollutants.

Sophisticated statistical analysis of air quality data enables rigorous trend

analysis that can be used to draw conclusions about the drivers of trends. In

Chapters 2 and 3, changes in air quality are compared with the implementation of

policies aimed at reducing air pollution, such as low emission zones and vehicle

emission technologies, and used to make cautious inferences about the efficacy of

such policies.

Chapter 4 also applies the new methods to critically evaluate current method-

ologies for compliance monitoring of air quality. Currently, ambient air quality

data is used to calculate annual averages (or rolling averages for some pollutants

e.g. O3) which are compared with a numeric limit. In Chapter 4, the disadvantage

of this approach is demonstrated through an analysis of the impact of interannual

meteorological variation on the annual average concentration of common air

pollutants.

The following sections provide a brief description of each chapter, with a more

detailed introduction given at the beginnings of the chapters themselves.

1.5.2 A new method for trend analysis in biased monitoring
networks

Trend analysis is an important tool for examining the changes in pollutant

concentration over time (Anttila andTuovinen, 2010;Guerreiro et al., 2014), and can

beused as evidence of the efficacy (or lack thereof) of policy interventions (Font and

Fuller, 2016). While the data from a singlemonitoring station provides information

about the local variation in air quality at a specific location, aggregation of data

from multiple monitoring stations enables the effects of local variability to be

‘averaged out’, leaving a better indication of the large-scale trend.

However, simply calculating the average concentration across everymonitoring

site can result in a biased trend that does not represent the changes in air pollutant
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concentration at the individual monitoring sites due to biases in the monitoring

network caused by site flux (movement of monitoring sites) during the period of

analysis. In Chapter 2, this biasing effect is demonstrated using simulated data,

and new techniques to identify and mitigate the biasing effect of variation in time

series length on the trend in average concentration are developed. The efficacy of

the method is demonstrated using simulated data and a trend analysis of NOG

and NO2 concentrations in London between 2000-2017 using data from the entire

London monitoring network.

1.5.3 Robust analysis of trends and policy interventions using
random forest

Governments are under pressure from both legislative bodies and the public to

improve air quality in urban areas. The policies used to do this usually focus on

traffic control, such as establishing low emission zones, clean air zones, variable

speed limits and reduction of speed limits.

The potential efficacy of these interventions are evaluated using atmospheric

modelling during the planning stages, but there is a paucity of methods capable

of analysing their actual effect on ambient air pollution after their introduction.

One such method is presented in Chapter 3. The method uses the ‘meteoro-

logical normalisation’ method developed by Grange et al. (2018) with an indicator

variable for the presence of the intervention to generate pollutant concentration

trends for different counterfactual scenarios, which can be compared.

1.5.4 Quantification of the effect of interannual meteorological
variation on air pollutant concentration, and the implica-
tions for compliance metrics

Meteorological variation has a huge influence on air pollutant concentration.

There is therefore a concern that variation in meteorology from year-to-year could

influence the annual average pollutant concentration: the metric that is used to

measure compliance with limits for many air pollutants. If this is the case, then

there is a risk that compliance or exceedance with the limit values could be driven

by interannual meteorological variation, rather than an increase in emissions.

Chapter 4 investigates this possibility by attempting to quantify the effect of

interannual meteorological on concentrations of air pollutants at monitoring sites

in the UK between 2008 and 2017. Techniques involving the use of heatmaps and
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CUSUM plots are developed for this purpose, and the results of the analysis are

used to assess whether variations inmeteorology are responsible for concentration

limit exceedances from year to year.
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Chapter 2. A new trend analysis approach for air quality

network data

2.1 Introduction

2.1.1 Background

Air quality monitoring networks are instrumental in the evaluation and man-

agement of air pollution by governments, policy makers and regulatory bodies.

While other tools, such as emission inventories, are often used to track changes

in emissions, the complex nature of atmospheric processes and local conditions

means that emissions data are not necessarily an accurate indicator of pollutant

concentration or exposure. In contrast, ambient data from monitoring networks,

subject to rigorous analysis, can reveal the pollutant concentrations, correlations

and trends at measurement locations. Such information is invaluable for estimat-

ing the actual effects of social and infrastructure changes, and policy interventions

on air quality.

Trend analysis is an important tool for examining the changes in pollutant

concentration over time (Anttila and Tuovinen, 2010; Guerreiro et al., 2014), and

can be used as evidence of the efficacy (or lack thereof) of policy interventions

(Font and Fuller, 2016). In cases where the area under investigation contains a

limited number of monitoring sites, a common approach is to compare the trends

at each individual monitoring site to yield an overall impression of changes in air

quality in the area. For example, Mavroidis and Chaloulakou (2011) used this

approach to estimate trends in particulate matter (PM) and ozone concentrations

in Santiago, Chile 1989-1998 using data from four monitoring sites. The trends

at each site were compared in order to establish a consensus, while differences

between monitoring sites were rationalised using contextual information about

each site. Some studies have attempted to replicate this approach with larger

numbers of monitoring sites, such as the study by Masiol et al. (2017), which

analysed the trends in concentration of a range of pollutants at 43 monitoring sites

in the Veneto region of Italy. However, in the case of large regions or areas with

an extensive monitoring network of sites available, this approach can be unwieldy

and as such it may be beneficial to aggregate data from multiple monitoring sites

to gain a representative view of the average air quality. Cluster analysis has been

used to look at trends across a large number of sites allowing potential drivers for

observed changes to be investigated and differences within and across regions to

be explored (Malley et al., 2018).

Font and Fuller (2016) employed a different method to examine the trends in

roadside increments of various pollutants between 2005-2009 and 2010-2014 by
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averaging data from 65 London monitoring sites. Font and Fuller (2016) applied

data capture filters and linear interpolation to ensure all individual time series

from separate sites were of equal length. The problem with this approach is that

data filtering excludes some information from the analysis. Fleming et al. (2018)

in their analysis of ozone trends for the Total Ozone Assessment Report highlight

that, particularly in developing countries, time series only span a few years and

due to data capture requirements this limits the number of sites available for

trend analysis. In this case the study is global and so there are still sufficient sites

to provide the necessary data for robust trend analysis, but the distribution of the

data across the globe is limited, with sparser sites in developing countries being

more likely to be removed. For areas with sparser monitoring site coverage, or

for trend analysis of long time periods, filtering the data may not be practicable,

and therefore it may be necessary to average over all available monitoring sites to

obtain a trend.

However, the trend in average concentration (the average trend) over moni-

toring sites of differing duration is sensitive to biases in the monitoring network.

Air pollution monitoring sites are frequently moved to more polluted locations,

closed in locations with low pollution levels, or new sites are opened in highly

polluted locations that require more careful observation. The cumulative effect

of site flux1 is often therefore that a monitoring network is increasingly biased

towards monitoring sites with higher pollutant concentrations.

Duyzer et al. (2015) state that in their dual use for compliance monitoring and

assessing population exposure, the choice of monitoring site location is made

such as to provide data from the following: (i) the locations where the highest

concentrations occur, and (ii) locations representative of the regional average.

Typically, a distinction is made between roadside monitoring sites, which provide

highly localised data from (i), and urban background monitoring sites, which

are chosen to represent (ii). For this reason, movement of roadside monitoring

sites to more polluted locations is not unexpected, but nonetheless has significant

effects on the average trend. This issue was demonstrated in a 2014 report for

the Department for Environment, Food & Rural Affairs (Defra, 2014). The long

term trends in NO2 and PM10 concentration were calculated using data from all

monitoring sites in the AURN network, and compared to those derived using data

from long term sites only. While the trends at urban background sites differed

slightly, those from roadside sites displayed considerable differences, which were

attributed to changes in monitoring site quantity and distribution over time.

1Defined as the change in number of sites over time.
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In this chapter, a range of techniques for identifying and mitigating the biasing

effect of variation in time series length due to monitoring site flux on the average

trend are developed. The efficacy and robustness of the methods are tested

using simulated data. The methods are illustrated by a trend analysis of NOG

concentration, NO2 concentration and NO2/NOG concentration ratio in London

between 2000-2017 using data from roadside monitoring sites in the London air

quality network.

London was chosen as a case study because of its unusual abundance of

monitoring sites, including long term sites. However this situation is rare, giving

rise to the need for methods that allow for the evaluation of the unbiased trend

(i.e. the overall change in concentration across the network of monitoring sites) in

the absence of long term monitoring sites.

The methods were then applied to an analysis of the trends in roadside air

quality on a larger scale. The long term trends in NOG , NO2 and PM10 roadside

concentration, and in the NO2/NOG ratio at the roadside in Scotland and across

the entire UK between 2000 and 2017 were analysed. This monitoring network has

experienced considerable growth over this period, therefore the rolling change

method is an appropriate choice for the analysis.

2.2 Method

2.2.1 Identification of bias effects on the trend

Evidence of a bias in trends from themonitoring networkwas sought by comparing

trends averaged over (i) time series of differing lengths and (ii) time series of the

same length. To this end, the trend in annual median concentration using data

from (i) all monitoring sites and (ii) long term sites open for the entire duration of

the period of study were compared. In all cases, the average concentration was

calculated using the median, as it is more robust to skewed data and the presence

of extreme values.

This comparison is possible only if sufficient data is available from long term

sites for the period of interest. In many cases, there may not be any reliable long

term sites available as a basis of comparison. Additionally, any conclusions drawn

from this comparison rely on the validity of the assumption that the trend from

long term sites is representative of the true trend, and is not unduly affected by

external influences.

In response to these limitations, a robust approach for observing andmitigating
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the effect of opening sites with high concentrations on the average trend was

developed.

Rolling window regression (also known as rolling regression) is a technique

most commonly used in time series analysis of financial data to examine variation

in the output of a linear regression, such as the regression coefficient, over time

(Wang and Zivot, 2006). The technique uses the same principle as a rolling average,

except that a linear regression is applied to each time period (window) rather than

an average. First, a rolling window width, =, is chosen. The data is partitioned

into # − = subsets, where # is the total number of observations in the time series.

Each subset is rolled one observation ahead from the previous subset, resulting

in a set of rolling windows of width =, each offset from the consecutive windows

by one observation, and where the 8th rolling window contains the observations

8, . . . , 8 + (= − 1). Linear regression is then applied to each rolling window.

A modification of traditional rolling regression was applied to the data, where

each rolling window of width = contained data only from sites with measurements
during every month within the period of the window (i.e. open and operational for all

years within the window), ensuring that all time series within the window were

of identical length.

Rolling trends in the concentration of the pollutant of interest for each window

were plotted, resulting in a series of overlapping = year trends.

Comparison of the rolling trend and average trend using different values of =

reveals a ‘frame-by-frame’ view of the potential bias. Each rolling trend overlaps

with its neighbours for all years but one, and thus excludes data from monitoring

sites opening in that year. In this way, by comparing trends in consecutive years,

the effect of sites opening in that year can be visualised.

2.2.2 Extraction of the underlying trend

An optimal method to counter the influence of monitoring site flux on the average

trend would aim to minimise the effect of the bias while retaining as much of the

data as possible.

The simplest solution would be the exclusion of all sites not measuring

continuously over the period of interest from the trend analysis via the application

of a data capture filter. However, this approach would inevitably result in the

sacrifice of a considerable amount of available data, and in study areas with

low numbers of sites could result in the conclusion that trend calculation was

not possible. Furthermore, this method is predicated on the assumption that

the long term sites are representative of the true trend in the location studied.
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Depending on the abundance (or lack thereof) of long-term sites, as well as other

location-dependent external influences, this assumption may not be accurate.

An alternative method has been developed as an approach to this problem,

with the advantage of retaining virtually all of the available data.

The method, which we shall refer to as the ‘rolling change method’, recursively

calculates a concentration change, which approximates the trend in pollutant

concentration. The concentration change in the first time point (e.g. the first

year) is set as the median concentration over all monitoring sites in the first year.

Next, the first moving window is defined as the period between time points 1,

. . . , 1 + (= − 1). Data is drawn from the monitoring sites measuring throughout

the duration of the window, and a linear regression is fit to the data, as described

in Section 2.2.1. The sum of the coefficient of the linear regression and the

concentration change of the previous time point is assigned as the concentration

change of the middle year of the moving window. The moving window is shifted

down the time axis by one time unit (e.g. one year) and the process is repeated

until the end of the time period of interest is reached.

For example, suppose the rolling change trend between 2000–2017 was cal-

culated using a window width of three years. The starting point is the average

of the annual average concentrations of all monitoring sites in 2000. The first

moving window would select data from monitoring sites measuring continuously

during 2000–2002, and fit a linear regression to the data. The sum of the regres-

sion coefficient and the concentration change in 2000 would be assigned as the

concentration change for 2001. The moving windowwould then shift to 2001-2003

and repeat the process. The final moving window would use data from 2015-2017

to calculate the concentration change in 2016.

Similarly to the data filtering method described in Section 2.1.1, the rolling

change method involves filtering monitoring sites by their data capture. However,

unlike established methods, data filtering is applied over short windows of only

2-3 years, rather than the entire period of the trend analysis, therefore more data

is retained during filtering.

Figure 2.1 showsa schematic of theprocess,while Equations 2.1 and2.2describe

the rolling regression and the recursive concentration calculation respectively. A

more detailed algorithm can be found in Appendix I.

The terms in Equations 2.1 and 2.2 are defined as follows: .8 is the variable of

average concentration from all sites with sufficient data capture over the rolling

window, 8; -8 is the variable of time points within the moving window, 8; G8 is the

median year of -8 ; �8 is the coefficient of the rolling regression over the window,
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8; &8 is the irreducible error of the rolling regression, and ΔH8 is the change in

concentration assigned to the year G8 .

Equation 2.3 represents the rolling change trend itself. The trend is the

concentration change (ΔH8) as a function of the median year of the rolling window

(G8).

.8 = �0 + �8-8 + &8 (2.1)

ΔH8 = ΔH8−1 + �8 (2.2)

ΔH8 = 5 (G8) + &8 (2.3)

60



Chapter 2. A new trend analysis approach for air quality

network data

START

Initialise ?yi

?y1 = y1

Select moving window, 
i

Filter data - only sites 
with > 90% data capture 

over moving window

Apply rolling 
regression to obtain 

?i

?yi

Calculate 
concentration 

change
?yi = ?yi-1 + ?i 

?yi-1 = ?yi

i = i + 1

Figure 2.1: Schematic of the rolling change method. The output for the process as a

whole (the concentration change for the rolling window, 8,) is highlighted in red.

The rolling change trend acts as a proxy for the trend in pollutant concentration,

retaining information about the relative changes in concentration while discarding

information regarding the relative magnitudes. The rolling change trend is

constituted of rolling trends over = rolling windows, each fit to a set of time series

of identical length. In this way, the leveraging effect induced by the inclusion of

high magnitude time series does not affect the trend, so data from all sites with a

duration of at least = years can be included in the analysis. The choice of = dictates

the criteria for inclusion of monitoring sites into the analysis. Larger values of

= impose more stringent requirements for site duration, and thus exclude more

monitoring sites.
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The functions used for the trend analysis in the paper, including the calculation

of rolling trends and rolling change trends, are available in the aqtrends R package

(Lang, 2018).

2.2.3 Description of data

The data used in both the London and the UK case studies were sourced from the

Automatic Urban and Rural Network (AURN) maintained by Defra, the London

Air Quality Network (LAQN) run by King’s College London, and the Air Quality

England database collected by Ricardo Energy & Environment.

Each of these networks contains a number of monitoring sites, which record

hourly observations of air pollutant concentrations. The concentrations of NOG

and NO2 were measured using the European Commission reference method of

chemiluminescence with molybdenum converter.

For each monitoring site, data more than 10 times the interquartile range from

the upper quartile was considered to be an outlier and removed from the data

set. Monitoring sites with less than 75% data capture over the period during

which they were measuring data were not included in the London trend analysis.

The mean and the standard deviation of the hourly NOG and NO2 concentrations

measured at each London monitoring site is given in Appendix II (Table B.1).

The hourly data was used to calculate annual average concentrations using

three different methods of trend analysis. For the average trend (all sites), all

available data from all monitoring sites measuring during the period of analysis

was included in the average (median). The average trend (using data from long

term sites only) was calculated using data only from sites measuring throughout

theduration of the period of analysis. Thiswasdefined as recordingmeasurements

during every month within the period of analysis. Additionally, a data capture

criterion was applied to ensure that all long term sites had at least 90% data

capture over the period of analysis. Finally, for the rolling change method, within

each moving window, only data from sites with measurements during every

month within the period of the window was included in the calculation for that

window.

London monitoring sites were selected as all sites within a bounding box of

coordinates 51.25
o
N, 51.71

o
N, -0.54

o
E, 0.28

o
E. This box was roughly equivalent

to the boundary of the M25 orbital motorway. The data included 121 roadside

sites and 99 urban background sites measuring over the period 2000-2017. Of the

121 roadside sites, 102 sites measuring NOG and 105 sites measuring NO2 met

the data capture requirements for the trend analysis. Of these, 9 sites measuring
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NOG and 10 measuring NO2 were open for the entire duration of the period of

trend analysis (long term sites). More information about individual sites is given

in Appendix II (Table B.1).

All data importing, cleaning, transformation and analysis was carried out in R.

0 10 20km

Figure 2.2: Map showing the locations of the London roadsidemonitoring sitesmeasuring

NOG and NO2 used in the analysis. More information on individual sites can be found in

Appendix II (Table B.1).

2.3 Results and Discussion

2.3.1 Testing the rolling change method through simulations

Simulations were carried out to compare the effectiveness of the average trend

and the rolling change trend to display the true change in pollutant concentration

over time. Data were simulated to mimic the properties of the real monitoring

data, but with the true trend known. To reflect the various possible properties of

a monitoring network, data were generated from four scenarios:

(a) Long term monitoring sites. All of the time series had the same true

trend (with noise added) and the same length (equal to the length of the

entire time period (2000-2017)). Variation in the concentrations of different

time series was simulated by sampling the concentration in the first year

of the time series from a normal distribution with a mean equal to the

concentration of the true trend in that year and a standard deviation of 10

(- ∼ N(true trend concentration, 10
2)).
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(b) Short term monitoring sites without a time-dependent bias in concentration.

All of the time series had the same underlying trend, but different lengths.

The startingyear of each time serieswas randomly sampled from the standard

uniform distribution, constrained between 2000-2015. The time series length

was also randomly sampled from the standard uniform distribution,*(0, 1).
Variation in the concentration of different time series was simulated using

the same method as described in (a) above.

(c) Short term monitoring sites with a time-dependent bias. Each time series

had the same underlying trend, but different lengths. Additionally, in order

to simulate the effect of increasing bias towards more polluted locations

over time, the simulated concentration in the first year of the time series was

randomly drawn from the standard uniform distribution, and multiplied by

a bias factor proportional to the starting year of the time series. The result

was that the concentration in latter years was more likely to be higher than

in former years. The bias factor took the form H8 = 1 + 0.08G8 + &8 where H

was the value of the bias factor, G was the index of the starting year of the

time series (between 1 and 18), and & was the random error. The error for

each value of the bias factor, &8 , was randomly sampled from the normal

distribution #(0, 0.5).

(d) A combination of time series generated according to the ‘long term’ scenario

and the ‘short term with bias’ scenario. The method of generating each

time series was determined by random selection, where the probability of

generating a short term site was ten times as likely as that of generating a

long term site, in line with the observed proportions of long term and short

term sites in the London roadside monitoring network.

For each scenario, 100 sets of simulated data, each consisting of 100 simulated

time series, were randomly sampled. The rolling change trend and the average

trend were calculated for each sample of simulated data, and their similarity to

the ‘true trend’ (the function used to create the simulated data) was evaluated

using normalised cross-correlation (NCC). The normalised cross-correlation of

two time series is a value between 1 and -1, where 1 means the two time series are

perfectly correlated, while -1 corresponds to perfect anti-correlation. The results

are shown in Figure 2.3.

The average trend in Scenarios (c) and (d) was considerably biased relative

to the known true trend, as was observed in the real data, but in each case the

rolling change trend provided a more accurate representation of the true trend.
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Furthermore, the slope of the rolling change trend was shown to be more

accurate than that of the average trend. The slopes of each sampled rolling

change trend and average trend were calculated using the Theil-Sen estimator,

and compared to the slope of the true trend from which the data were simulated

to derive the percentage error. For the combined scenario, the median error of the

rolling change trend was 15%, while for the average trend the error was 293%.
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Figure 2.3: Comparison of the average trend and rolling change trend (= = 3) with the true

trend of simulated data for four different scenarios. In each case, the trends are derived

from 100 random samples, each of 100 simulated time series. The lines correspond to the

trends with NCC equal to the 50th, 10th and 1th percentile of the NCC distribution over

all 100 sampled trends — in other words, the median trend, the 10th worst trend and the

worst trend, with respect to the similarity to the true trend.

The suitability of the technique for situations with limited data available was

also evaluated by applying the trend analyses to 100 samples of 4 time series

simulated using the ‘combined’ scenario, as shown in Figure 2.4. As before, the

rolling change trend represented the true trend with greater accuracy than the

average trend, indicating that the method extends well to situations with a very

limited number of monitoring sites.
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Figure 2.4: Comparison of the average trend and rolling change trend (= = 3) with the

true trend of data from 4 time series simulated using the ‘combined’ scenario. The trends

are derived from 100 random samples of simulated data. The lines correspond to the

trends with NCC equal to the 50th, 10th and 1th percentile of the NCC distribution over

all 100 sampled trends — in other words, the median trend, the 10th worst trend and the

worst trend, with respect to the similarity to the true trend.

Simulated data was also used to demonstrate that the rolling change method

is robust to the use of different values of the moving window width, =, as shown

in Appendix II (Figure B.1). The accuracy of the rolling change method increases

slightly as the window width increases, however the amount of data filtered out

also increases. To achieve a reasonable balance between maximising the accuracy

of the rolling change trend, while maximising the amount of data retained in the

analysis, a window width of = = 3 was used in the following applications of the

method.

2.3.2 Long term trends in London ambient air quality

2.3.2.1 Identification of the bias effect on the trend

Comparison of the average trend over all London roadside sites during the period

2000-2017 with the average trend over long term sites (those measuring constantly

over the same time period) reveals a dramatic difference in trend, as shown in the

two left-hand plots in Figure 2.5. The trend of the long term sites is constituted

of data from between nine and eleven monitoring sites. Therefore the disparity

is unlikely to be the result of lack of representativeness due to local influences.

A more likely explanation is a bias towards opening new monitoring sites in

increasingly polluted locations, resulting in the sudden introduction of high
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concentration time series causing abrupt increases in the average concentration

despite no commensurate increase in the trends at individual sites.

The increase in bias in site location towards more polluted sites over time was

affirmed by comparing the median annual ambient concentrations at roadside

monitoring sites opening and sites closing in a given year across the period studied

(see Appendix II, Figure B.2). The difference between the average concentration

at sites that are opening and those that are closing is positive (i.e. concentrations

are higher at sites that are opening) over almost all years for NOG and NO2.

The effect of the bias in site location on the trend in average roadside NOG and

NO2 concentrations can be observed through a comparison of the rolling trends

over rolling windows of different widths (=), as shown in Appendix II (Figures

B.3 - B.5).

When the same trend analysis was applied to monitoring data from London

urban background sites, however, no bias in the average trend was observed

(see Appendix II, Figures B.6 - B.8), in corroboration of the findings of the Defra

report discussed in Section 2.1.1 (Defra, 2014). This is, in part, because the

bias towards opening sites in more polluted locations is far less pronounced for

urban background sites, which also move less frequently than do roadside sites.

Moreover, any bias in site location is likely to have a smaller effect on the average

trend at urban background sites, because the NOG and NO2 concentrations are

dominated by non-local background sources rather than local traffic sources,

which constitute the major source at roadside sites.

2.3.2.2 Extraction of the underlying trend

Having established the existence of a bias effect on the average trend by the short

term sites, the next step is to mitigate this bias effect in order to reveal the true

underlying trend. The rolling change method described in Section 2.2.2 was

applied to the London roadside monitoring data.

The rolling change trends in NOG concentration, NO2 concentration and

NO2/NOG ratio are shown in Figure 2.5 (right). In all cases, these derived trends

bear a far closer similaritywith the trend for the long-term site (Figure 2.5 (middle))

than with the biased average trend (Figure 2.5 (left)), offering further evidence in

support of the technique’s efficacy.
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Figure 2.5: Comparison of the rolling change trends in NOG concentration, NO2 concen-

tration, and NO2/NOG ratio at London roadside sites 2000-2017, using = = 3 (’Rolling

change method’) with the trend in the average concentration using data from (i) all

available monitoring sites sites (’Average trend (all sites)’) and (ii) long term sites only

(’Data filtering method’). The lines represent a loess smooth fit to the data, and the shaded

bands represent the 95% confidence interval around the smooth fit. The numbers at each

data point correspond to the number of monitoring sites contributing to the data point.

The rolling change technique reveals a more optimistic trend from 2000–2017

in NOG concentration at London roadside sites than that implied by the average

trend. Table 2.1 shows the Theil-Sen slopes of the trends derived using the three

different methods (the trend in average concentration using data from (i) all sites

and (ii) long term sites only, and (iii) the trend derived using the rolling change

method).

Application of the Theil-Sen estimator to the NOG concentration trends in

Figure 2.5 yielded a slope of -2.5 [-3.3, -2.0] µg m
−3

year
-1
for the rolling change

trend. In contrast, the gradient of the average trend was -0.2 [-1.2, 1.0] µg m
−3

year
-1
. The rolling change trend is a highly monotonic, almost linear decrease,

while the average trend indicates a fluctuation with initial decrease to 2007,

followed by a period of increase to 2013-14, with little overall change in NOG

concentration.
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Table 2.1: Theil-Sen slope and 95% confidence intervals of the trend in average concentra-

tion (all sites), the trend in average concentration (long term sites) and the rolling change

trend in NOG , NO2 and NO2/NOG concentration at roadside in London 2000-2017.

Pollutant Method Theil-
Sen
slope
(µgm−3

year-1)

95% confidence
interval

NOG Average trend (all sites) -0.2 [-1.2, 1.0]

NOG Average trend (longterm sites) -2.6 [-3.3, -1.4]

NOG Rolling change method -2.5 [-3.3, -2.0]

NO2 Average trend (all sites) -0.1 [-0.5, 0.2]

NO2 Average trend (longterm sites) -1.0 [-1.2, -0.6]

NO2 Rolling change method -0.9 [-1.1, -0.7]

NO2/NOG Average trend (all sites) 0.0 [0.0, 0.0]

NO2/NOG Average trend (longterm sites) 0.0 [0.0, 0.0]

NO2/NOG Rolling change method 0.0 [0.0, 0.0]

The differences between the average and rolling change trends in NO2 con-

centration were less extreme, but nonetheless notable. Theil-Sen slope of the

rolling change trend was -0.9 [-1.1, -0.7] µg m
−3

year
-1
in comparison to -0.1 [-0.5,

0.2] µg m
−3

year
-1
for the average trend. The rolling change trend revealed a

monotonic downwards trend since 2003-4, with an increasingly steep gradient

in later years, while the average trend does not show any downward inclination

until 2012-13, and even shows a slight increase between 2008-2012.

The effectiveness with which the rolling change trend represents the ‘true

trend’ was evaluated by comparison with trends in NOG and NO2 from emissions

data, satellite data and previous studies of London air quality.

The rolling change trend incorporates information from more monitoring

sites than would be possible using only long term sites or individual sites. As

such, it is more likely to be reflective of overall trends in traffic emissions across

London, and therefore more comparable with trends estimated by emissions

inventories. The UK trend in NOG emissions from urban driving sources (NAEI,

2020) is shown in Figure 2.6. The emissions data shows a monotonic, almost linear

downward trend between 2000-2016, similar to the rolling change trend in NOG

concentration from the London data (see Figure 2.5). The emissions trend shows

a -56% change from 2000 to 2016, which is not dissimilar to the -43% change in

the rolling change trend in NOG concentration over the same period. A smaller

slope is expected for the ambient concentration trend than the emissions trend

because concentrations at roadside are dominated by traffic sources but other
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Figure 2.6: Trend in UK NOG emissions from road transport (urban driving) sectors

between 2000-2016 (left) compared to the rolling change trend in NOG concentration over

the same period (right). The lines represent a loess smooth fit to the data, and the shaded

bands represent the 95% confidence interval around the smooth fit.

sources also contribute. One such source is natural gas combustion for domestic

heating, from which NOG emissions have decreased less between 2000-2017 than

emissions from road transport sources, effectively depressing the slope of the

trend in ambient NOG concentration relative to the trend in NOG emissions from

transport sources (NAEI, 2020; Wakeling et al., 2018).

A recent study of London air quality using satellite data estimated a trend in

NO2 concentration of -0.23 x 10
5
molecules cm

-2
year

-1
between 2005-2015, which

is approximately -1.76 µg m
−3

year
-1
, assuming a column height of 10 km (Pope

et al., 2018). The slope of the rolling change trend (with 95% confidence intervals

given in brackets) in NO2 concentration over the same period from roadside

monitoring sites was -1.0 [-1.5, -0.7] µg m
−3

year
-1
, compared to the average trend

slope of -0.02 [-0.4, 0.3] µg m
−3

year
-1
. While neither trend indicates as large a

downward trend as that from the satellite data, the rolling change trend provides

concordant evidence of a negative trend in NO2 over this period. Some disparity

between the satellite data and monitoring data is expected, because the satellite

measurements integrate concentrations across the entirety of London, while the

ambient concentration data were measured exclusively at roadside monitoring

sites. As a result, the long term trends in the satellite data will be driven by

multiple sources, including domestic activity and power station emissions, in

contrast to the trends in ambient concentration which are heavily dominated by

traffic sources.

The rolling change trends also corroborate the findings of Grange et al. (2017)

that theNO2/NOG vehicle emission ratio across Europe follows a pattern of increase

from 1995-2008 then decrease between 2009-2015. This pattern is replicated in the
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NO2/NOG rolling change trend shown in Figure 2.5 and reflects changes to the

direct emission of NO2 from diesel vehicles.

A comparison of the results of the study by Font and Fuller (2016) examining

trends in roadside increments of NOG and NO2 concentration in London between

2005-2009 and 2010-2014 with those obtained from the rolling change trend and

the average trend are shown in Figure 2.7. As mentioned in Section 2.1.1, Font

and Fuller (2016) applied data capture filters and linear interpolation to include

only time series of similar length in the analysis. As a result, some data were

excluded, leaving data from 47 monitoring sites from which to derive trends. In

contrast, the use of the rolling change technique allowed for inclusion of data

from all available monitoring sites, which for 2005-2009 was 91 and 93 sites for

NOG and NO2 respectively, and for 2010-2014, 85 and 86 sites respectively.

The roadside increments were calculated using the same background moni-

toring site as was used in the study by Font and Fuller (2016). There, the North

Kensington site was chosen as it had a long time series that was representative of

the trends seen in the time series’ of other London background sites.

As can be seen in Figure 2.7, for the period 2010-2014, the slope of the rolling

change trend was more similar to the trend calculated by Font and Fuller (2016)

than that of the average trend, although for the period 2005-2009, the rolling

change trend differed considerably from that calculated by Font and Fuller (2016).

Positive trends were observed for both NOG and NO2 between 2005-2009 by

Font and Fuller (2016), while negative trends were observed using the rolling

change method. However, negative slopes were observed for both NOG and NO2

concentrations between 2010-2014, in corroboration of the findings of Font and

Fuller (2016).
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Figure 2.7: Comparison of the Theil-Sen slope calculated by Font and Fuller (2016) with

the rolling change trend and the average trend in NOG and NO2 roadside increments

at London roadside monitoring sites between 2005-2009 and 2010-2014. The error bars

represent 95% confidence intervals.

Font and Fuller (2016) took advantage of the unusual abundance of monitoring

sites in London to implement a filtering method while retaining enough data to

robustly represent the overall trend in concentration. However, the applicability

of this approach is limited to situations with a similar abundance of monitoring

sites available, excluding most urban areas. In these cases, the rolling trend

method may be the only robust method of calculating an overall long term trend

in ambient concentration.

Additionally, the data filtering method implemented by Font and Fuller (2016)

limits the time period over which the long term trend can be analysed to periods

over which a sufficient number of monitoring sites are measuring constantly. For

example, in an eighteen year trend analysis of NOG or NO2 concentrations, such as

the one demonstrated in Section 2.3, the application of the data filtering method

would constrain the analysis to data from only nine or ten monitoring sites. In

other locations, it is unlikely that any monitoring sites have been measuring

constantly for eighteen years, and such a long term analysis would be impossible.

Finally, as alluded to previously, data filtering methods are wasteful. By

excluding monitoring sites which are not measuring constantly over the period

of interest, a great deal of potentially important data is not considered. The

rolling change method’s advantage over traditional techniques is that it does not

automatically exclude data from short term monitoring sites, and so retains far

72



Chapter 2. A new trend analysis approach for air quality

network data

more of the data in the analysis.

2.3.3 Long term trends in ambient air quality in Scotland and
the UK

The number of monitoring sites measuring NOG , NO2, and PM10 concentration in

the Scottish network in each year between 2000 and 2017 is shown in Figure 2.8. It

can be seen that the number of sites increases over time for all pollutants and, as

a result, the trend in average concentration over all available data would be an

inappropriate method to visualise the long term trends in ambient concentration

for the reasons outlined in Section 2.1.1.
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Figure 2.8: The number of roadside monitoring sites measuring NOG , NO2 and PM10

concentration in Scotland by year between 2000 and 2017.

Furthermore, Figure 2.9 demonstrates the problems inherent in the application

of data filtering methods to derive a long term trend that is unaffected by site flux

within themonitoring network. Themap on the left shows all roadsidemonitoring

sites measuring NO2 concentration at any time between 2000 and 2017, while the

map on the right shows the sites measuring NO2 concentration constantly over

the duration of the period (‘long term sites’). By using data filtering to resolve

problem of site flux, the data that can be included in the trend analysis is limited

to that measured at only one monitoring site, and therefore subject to the same

problems discussed in Section 2.1.1 when conducting trend analysis on data from
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a single site: namely, that the trend is unlikely to be representative of air quality

at a regional or national scale, as well as strongly influenced by local variations.

Figure 2.9: The spatial distribution of roadside monitoring sites measuring roadside NO2

concentration in Scotland (a) at any point between between 2000 and 2017 (left), and (b)

constantly throughout the duration of the period 2000-2017 (right).

Figure 2.10 shows the trends in roadside NO2 concentration in Scotland

between 2000 and 2017, calculated using the three methods mentioned previously.

The top-left plot shows the trend in the average concentration using data from

all available monitoring sites, the top-right plot shows the trend using data from

the single long term monitoring site (as shown in Figure 2.9), and the bottom

plot shows the trend calculated using the rolling change method. In each plot,

the numbers beside each data point represent the number of monitoring sites

contributing data to the average.
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Figure 2.10: The trends in roadside concentration of NO2 in Scotland between 2000 and

2017 calculated using three different methods: (i) the average concentration across all

available data (top left), (ii) the average concentration using data only from sitesmeasuring

constantly throughout the analysis period (top right), and (iii) the rolling change method

(bottom). The smoothed lines are loess (local regression) fits, with the 95% confidence

interval represented by the shaded band. The numbers signify the number of monitoring

sites contributing to each annual data point.

It is clear that each method results in a very different trend, and therefore the

conclusions drawn regarding the changes in air quality over this period would

differ considerably depending on the choice of method for calculating the trend.

While the trend in the average concentration suggests that after an initial decline

in NO2 concentrations until 2004, the rate of decrease in concentration slowed

and has changed little since 2004, the rolling change method trend reveals that, in

actuality, roadside NO2 concentrations changed little between 2000 and 2010, and
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since then have declined monotonically. A more comprehensive exploration of

the ability of the rolling change method to more accurately represent the trend

is provided in Lang et al. (2019). Figure 2.10 also demonstrates that the rolling

change method enables the retention of more data in the trend analysis than is

possible using the data filtering method, as can be seen from the numbers beside

the data points.

The rolling change method was applied to data from the Scottish monitoring

network to calculate the national-scale trends in roadside NOG , NO2, and PM10

concentrations, as well as the NO2/NOG ratio, in Scotland between 2000 and 2017.

These trends are shown in Figure 2.11.
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Figure 2.11: Annual rolling change trends in NOG , NO2, NO2/NOG and PM10 concen-

trations in Scotland 2003-2018. The numbers indicate the number of monitoring sites

contributing to each (annual) data point.

The roadside NOG concentration is observed to have decreased monotonically

since 2002. As mentioned previously, the NO2 concentration was initially stable,

until it began to decrease monotonically in 2010. These changes can be attributed

to the introduction of vehicle exhaust technologies aimed at reducing emissions

of these species, such as three-way catalysts used on petrol vehicles and the more

recent use of Lean NOx Traps (LNT) and Selective Catalytic Reduction (SCR) on

diesel vehicles over this period.

The NO2/NOG ratio was observed to increase between 2003 and 2011, before
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reaching a turning point, and decreasing thereafter. The initial increase in the

NO2/NOG ratio stems from the introduction of vehicle emission after-treatment

technologies, such as Diesel Oxidation Catalysts (DOC) and Diesel Particulate

Filters (DPF), which deliberately oxidise NO to NO2 for use in the oxidation of

other pollutants, such as CO, hydrocarbons and particulate matter. While Figure

2.11 demonstrates that the ambient concentration of NOG has decreased since 2002,

the introduction of these vehicle emission technologies resulted in an increase

in the proportion of NOG emitted as NO2 from vehicle exhaust, resulting in an

increase in the NO2/NOG ratio.

The reasons for the observed decline in NO2/NOG ratio since 2011 are less

clear, and several factors have likely contributed. Vehicle emission remote sensing

measurements have found that the NO2/NOG ratio decreases for diesel passenger

vehicles as the mileage increases Carslaw et al. (2019). Additionally, it is likely

that vehicle emission after-treatment systems have been modified to no longer

over-produce NO2.

The PM10 concentration was relatively constant between 2000 and 2006, before

declining monotonically for the rest of the period analysed. This decline can be

linked to the fitting of many Euro 4 vehicles, and all post-Euro 5 vehicles, with

diesel particulate filters (DPF).

The trends in air quality in Scotland (Figure 2.11) were compared to the trends

calculated using the same methodology for the UK and Europe over the same

period. These trends are shown in Figures 2.12 and 2.13 respectively.
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Figure 2.12: Annual rolling change trends in NOG and NO2 concentration and NO2/NOG

ratio at roadside in the UK 2000-2017. The numbers indicate the number of monitoring

sites contributing to each (annual) data point.
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Figure 2.13: Annual rolling change trends in NOG and NO2 concentration and NO2/NOG

ratio at roadside in Europe 2000-2017. The numbers indicate the number of monitoring

sites contributing to each (annual) data point.
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The trends in Figures 2.12 and 2.13 share similar shapes to the trends in

Scotland, corroborating the supposition that these aggregate trends represent the

large-scale (i.e. national) changes in air quality. The drivers of these national-scale

changes, for example, changes in vehicle emission technologies, are likely to be

common to both Scotland and Europe, while the aggregation of the data on a

national scale eliminates the influence of more local factors, such as local policy

changes and urban/environmental changes, that may otherwise obscure these

effects. It is noticeable that the turning points in the trends in NO2 and PM10

concentrations and the NO2/NOG ratio in Scotland lag several years behind their

counterparts in Europe.

The observed trends in NOG and NO2 concentrations, and NO2/NOG ratio

are consistent with the findings of other studies. A study by Grange et al. (2017)

found that, in Europe, NOG concentrations decreased between 1998 and 2015,

and that NO2 concentrations increased between 1997 and 2009, before decreasing

until 2015. Grange et al. (2017) also showed that the NO2/NOG ratio in Europe

had increased between 1995 and 2008, and then decreased between 2009 to 2015.

These results corroborate the trends calculated using the rolling change method,

although it is not clear why the trends in Scotland appear to lag behind those

in Europe by a couple of years. Plausible explanations include differences in

the composition of the vehicle fleet (for example, a greater proportion of diesel

vehicles), or an older vehicle fleet, however we lack the high resolution vehicle

fleet data for Scotland and Europe to investigate further.

2.3.4 Potential applications

The rolling change method offers the following advantages over traditional

methods of trend analysis:

• Robust long term trend analysis across monitoring networks which may be

subject to time-dependent biases

• Enables long term trend analysis to be undertaken for areas with few/no

long term monitoring sites

A lack of long term roadside monitoring sites is a major barrier to the analysis

of long term trends in roadside pollutant concentrations. As previouslymentioned

in Section 2.1.1, roadside monitoring sites are frequently re-located to locations

deemed more critical for compliance monitoring, resulting in short time series.

To illustrate this difficulty, suppose the trend analysis of roadside NOG and NO2
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concentrations between 2000-2017 was carried out for other UK cities (excluding

London). In the UK, there are 4 functional urban areas (FUA) and 4 towns

(excluding London) with long term roadside monitoring sites measuring NOG

and NO2 concentration over the period 2000-2017, none of which has more than

1 monitoring site. The scarcity of long term roadside monitoring sites poses a

serious problem for comprehensive long term trend analysis. However, use of the

rolling change method allows the relaxation of the constraint limiting the usable

data to that from long term monitoring sites. As a consequence, the range of

locations in which long term trend analysis is possible can be expanded to areas

which would be inaccessible using the established methods, such as data filtering.

Moreover, the technique is broadly applicable to any situation requiring the

aggregation of multiple, concurrent time series of differing lengths into a single,

overall trend. For example, such a situation may arise in other environmental

sciences where continuous monitoring is carried out over a network of sites, such

as water quality monitoring, soil monitoring or oceanography.

Even outside the environmental sciences, trend analysis of multiple time series

is routinely carried out in finance, quality control and the social sciences. In

these fields, as in environmental monitoring, it is more usual for analysis to be

limited to time series of the same length. However, with the rapid growth of

sensor technologies and the commensurate increase in the automatic collection

of time series data, the ability to analyse variable length time series could be

advantageous.

2.4 Conclusions

Long term trend analysis is an important tool for measuring changes in air quality

over time, and evaluating the effects of policy interventions on ambient air quality.

In order to evaluate the changes in air quality on a large-scale (for example, a

regional, national, or continental scale), it is necessary to aggregate data from

multiple monitoring sites to ‘average out’ the effects of local variability.

Air quality monitoring networks offer the potential to visualise and quantify

long-term trends over large regions through aggregation of data from multiple

monitoring sites. However, analysis of roadside monitoring site data from

the London network suggests caution is required when averaging data from a

monitoring network containing time series with different durations. Site flux, that

is, movement, opening and closing of monitoring sites, introduce biases into the

average trend, resulting in a misleading view of the changes in air quality.
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Techniques were developed with the aim of identifying and mitigating these

influences in order to robustly represent the true long term trend. In particular,

a method involving the calculation of a change in concentration using rolling

window regression was developed as an effective alternative to simple averaging.

This technique, which we call the ‘rolling change method’, was demonstrated to

estimate the true trend in pollutant concentration with far greater accuracy than

the simple average trend when applied to a set of time series of disparate lengths.

The rolling change method was applied to an analysis of the long term trends

in air quality at the roadside in London, Scotland, the UK and Europe. These

trends provided a generally positive view of changes in air quality. In each case,

concentrations of NOG have decreased monotonically. In London and the UK,

NO2 concentrations have also decreased monotonically over the entire period,

while in Scotland and Europe were stable until 2010, in the case of the former,

and 2003 in the case of the latter, before declining. In each case, the NO2/NOG

ratio increased to a peak before declining. These changes were explained in terms

of changes in vehicle emission technologies that have occurred over the period,

notably, the introduction of DOC and DPF. PM10 concentrations in Scotland, the

UK and Europe were also shown to have decreased monotonically since 2006,

and this was attributed to the introduction of DPF to most Euro 4 vehicles, and to

all Euro 5 vehicles. The similarity in the shape of the trends on different scales

indicated that they shared common drivers, and therefore were attributable to

large-scale changes rather than local variation.

The ability to usemultiple time series of differing lengths in trend analysis offers

potential advantages for air quality and environmental monitoring applications,

as well as time series analysis in other fields. An important advantage of the

technique is that it maximises the use of the information available and is suited

to situations where a large number of monitoring sites may not be available but

where an aggregate view of overall changes in concentrations is still valuable.
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3.1 Introduction

3.1.1 Background

In response to frequent exceedances of WHO and EU limits on ambient concentra-

tions of major air pollutants, particularly NO2 and PM, many European countries

have implemented policy interventions aimed at reducing air pollution in urban

areas. These interventions typically target the road traffic source, and include low

emission zones (LEZ), clean air zones (CAZ), variable speed limits, and reduction

in speed limits, as well as othermechanisms for reducing congestion and stop-start

traffic flows.

Such policies are not without their costs, both to the road user in terms of

the costs in time, money and convenience, and to the government. It is therefore

important to estimate the effectiveness of the intervention in achieving its goals

in order to justify its existence to the public. During the planning stage of the

intervention, the benefits of the measure are estimated using models, however

these estimates only predict the potential benefits of a perfectly implemented

system. To evaluate the actual effects of the intervention on ambient air quality, it

is necessary to analyse real-world monitoring data.

3.1.2 Intervention and Accountability Studies

Intervention analysis was previously discussed in Chapter 1. It concerns the

investigation of the effect of policy interventions on air pollutant emissions, air

quality, exposure and, ultimately, human health. The main challenges faced by

accountability studies are the establishment of an appropriate control scenario,

and the problem of distinguishing the changes in air pollutant concentration

resulting from the policy intervention from the changes due to confounding

factors such as meteorology.

This chapter presents a method that addresses both of these issues. Random

forest models, with an indicator variable that represents the phase of the LEZ,

are used to remove the effects of confounding factors, and to generate a control

scenario for comparison.

3.1.3 Random Forest Modelling

Random forest is an ensemble decision tree model, which has gained popularity

recently due to its accuracy in a range of domains combined with its excellent
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interpretability (Donges, 2019; Sarica et al., 2017).

Decision trees are a powerful method for modelling non-linear relationships.

However, a single decision tree suffers from a common dichotomy in machine

learning: the bias-variance trade-off. Adecision tree is a non-parametric technique,

meaning that it learns the distribution of the data directly from the data, rather

than relying on over-simplistic a priori assumptions, such as linearity. Non-

parametric methods provide increased flexibility to the model, often resulting in

improved accuracy, however it also introduces the risk of ‘overfitting’. Overfitting

is a common problem in machine learning applications, and refers to the situation

where an over-complex model is fit to the noise in the training data, rather than

the signal. The trained model, therefore, describes the training data very well,

but performs poorly when generalising to new cases. If the decision tree is grown

too deep, it risks overfitting to the data, even to the extreme case where each

node of the tree contains only a single data point (high variance). However,

too shallow a tree sacrifices accuracy, particularly in data sets containing many

predictors (high bias). Ensemble methods, such as random forest, ameliorate the

effects of overfitting in order to improve the accuracy of the model predictions by

aggregating the predictions of many small models.

The ensemble method used in random forest is bagging, which is short for

‘bootstrap aggregation’. Bagging improves the accuracy of the ensemble by

bootstrapping (generating a new data set by drawing samples from the original

data set with replacement) the training data, and using each sample to train a

shallow decision tree. Additionally, for each tree the features themselves are

also bootstrapped - typically a sample of < = ?/3 for regression trees (where

? is the total number of features) is used to train each tree. This has the effect

of de-correlating individual trees, which reduces the variance of the individual

model and makes the ensemble robust to correlated predictors. Once all of these

small, independent trees are trained, they predict the response of new input data

by voting, i.e. the average of the predictions of all the trees is the overall outcome.

By using ensemble methods to combine the advantages of decision trees with

a robustness to overfitting, the random forest inherits an unmatched ability to

model non-linear relationships, and a robustness to correlations between predictor

variables from the decision tree method. This makes it very useful for problems

involving non-linear relationships and interaction effects, such as are common

in air quality data. Additionally, random forest is robust to the presence of

uninformative features, and handles missing values and outliers well.

In the context of the application to air pollutant concentrations, these methods

87



Chapter 3. Development and Application of Random Forest

Models to Air Pollutant Time Series

help to capture important characteristics. For example, it is well-established

that the relationship between a variable such as wind speed and pollutant

concentration is non-linear. Furthermore, different meteorological variables do

not act independently of one another i.e. there is an interaction between them. For

example, the relationship between a pollutant concentration and wind speed is

not the same for all wind directions or ambient temperatures. Tree-basedmethods

can account for both non-linearity and interactions in a way that requires no prior

knowledge of their functional relationships. Moreover, for changes that occur

abruptly, tree-based approaches are able to deal with these situations, which

might prove more challenging for other techniques that use smoothing, such as

Generalized Additive Models. In this respect, they are potentially well-suited to

intervention analysis where changes might occur over short time periods.

3.1.4 Model Interpretation

The uptake of complexmachine learningmodels, such as artificial neural networks,

has been impeded in large part due to their lack of interpretability, leading them

to be labelled ‘black boxes’. An attractive feature of random forests is that it is

more interpretable than most machine learning models. The model produces

estimates of the relative importance of the predictor variables, partial dependence

plots and interaction plots. The interpretability of the model is important because

it helps to establish whether the relationships between variables are chemically

and physically plausible.

3.1.4.1 Variable Importance

The variable importance is calculated using two methods (in most implementa-

tions):

1. Accuracy-based — the decrease in the accuracy of the model when the

variable is removed is estimated. For each tree, there is an out-of-bag subset

of data that the model was not trained on that is used for evaluating the

model performance. First, the predictive accuracy of the model is calculated

using the out-of-bag data set, then the values of the variable are randomly

shuffled and the accuracy is re-calculated. The randomly shuffled variable

is assumed to have no predictive power, so the shuffling is equivalent to

removing the variable. The variable importance is estimated as the mean

decrease in predictive accuracy across all trees.
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2. Gini-based — The Gini index is used in node splitting as a measure of node

purity. It can also be used to measure variable importance, by calculating

the sum of the Gini decrease (how much the Gini index decreased from

the parent node to the sub-node) at all nodes where the variable was used

to split the data, across all trees in the forest. The sum is divided by the

number of trees in the forest to give an average (Hoare, 2019; Lee, 2017).

3.1.4.2 Partial Dependence Plots

Partial dependence plots can be considered as analogous to variable coefficients

in multiple linear regression. They are functions that describe the relationship

between each variable and the response (dependent variable) if all other variables

in the model are kept the same. However, unlike linear regression variable

coefficients, partial dependence plots can describe a non-linear relationship

between variables. Partial dependence plots are extremely useful in practise,

because it gives the user insight into how the model is making its predictions,

as well as ascertaining the relationship between the response variable and a

predictor (for example, the intervention indicator) in the absence of effects from

other predictors in the model (e.g. the confounders).

The partial dependence function is computed using the following algorithm:

1. Find the unique values of the variable of interest in the training data set.

2. Create one replicate of the training data set for each unique value of the

variable of interest. Fix the value of the variable of interest to a single unique

value for each replicate.

3. For each replicate, predict the value of the response for each observation

using the model.

4. For each replicate, average the predicted values of the response. This average

is the value of the response mapped from the unique value of the variable of

interest for this replicate in the partial dependence function (Wright, 2018).

Partial dependence plots are particularly useful for understanding whether

the dependent variable varies in ways that can be understood by the underlying

processes of dispersion and atmospheric chemistry. For example, for a primary

pollutant ground-level source, it would generally be expected the concentration

would decrease with increasing wind speed. Similarly, as ambient temperature

increases, it would be expected that concentrations of pollutants would decrease
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owing to the enhanced thermal turbulence. Clearly, the actual variations would

depend on the situation in question, but the ability to critically evaluate the

responses in this way is a valuable characteristic of tree-based models.

3.1.5 Meteorological Normalisation

Meteorological normalisation is a process whereby the effects of meteorology on

the ambient concentration are removed in order to more clearly quantify changes

resulting from other factors such as changes in emission source strength. This is

done by calculating a ‘normalised trend’: the trend under ‘average’ conditions of

all predictor variables other than the date (which represents the long term trend).

The ultimate result is that the effects of variation in the model predictors (e.g.

meteorology and seasonality) are removed from the time series, leaving only the

long term variation (i.e. the long term trend) (Grange et al., 2018).

The calculation of the normalised trend is similar to that of the more familiar

partial dependence plots. A previously trained random forest model is used to

predict each pollutant concentration (i.e. each value of the response) 500 times.

Each time, the values of the predictors other than date are randomly sampled with

replacement from the data set. The arithmetic mean of the 500 predictions is then

calculated, and assumed to represent the concentration of the pollutant under

‘average’ conditions of the modelled variables. The full details of the method are

described by Grange et al. (2018) in their original paper.

3.1.6 Chapter Summary

The analysis of the use of random forest models and the meteorological nor-

malisation methodology to conduct intervention analyses followed three main

themes:

• Method validation — testing the efficacy of the method by modelling

pollutants with well-known long term trends.

• Method analysis — investigation of variations of the method to achieve

optimal performance

• Method application — application of the method to real-world air quality

problems (primarily intervention analyses)
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3.2 Methods

All analysis was carried out in R. The code used for the random forest modelling

can be found in the rfmodels package (Lang, 2018). The code used to carry out

meteorological normalisation is based on the normalisation functions in the

rmweather package (Grange, 2018).

3.2.1 Data Preparation

Routine ambient monitoring data were collected from the Automatic Urban

and Rural Network (AURN) maintained by Defra, the London Air Quality

Network (LAQN) run by King’s College London, the Air Quality England (AQE)

database collected by Ricardo Energy & Environment, the Scottish Air Quality

Network (SAQN), and the Welsh Air Quality Network (WAQN) (Department

for Environment, Food and Rural Affairs (Defra), 2019; Kings College London,

2019; Ricardo Energy & Environment, 2019). The AQE, SAQN and WAQN

databases store data collected by local authorities in England, Scotland andWales,

respectively. The raw data consisted of hourly observations of air pollutant

concentrations.

The hourly concentration of the pollutant of interest measured at the mon-

itoring site under analysis were used as the response variable in the model.

The explanatory predictor variables included background concentrations of the

pollutant of interest, surface meteorology, traffic counts and temporal variables.

The background concentrations were the data measured at the nearest urban

background site to the monitoring site of interest which measured the pollutant of

interest with sufficient data capture (in this case, 80%) over the period of interest.

Surface meteorological measurements (air temperature, wind direction, wind

speed, atmospheric pressure, relative humidity, dew point and visibility) were

sourced from the IntegratedSurfaceDatabase (ISD) (NOAA, 2016). Themonitoring

site from which to join the meteorological measurements was chosen in the same

way as the background site: the closest meteorological station with sufficient data

capture for the selected meteorological variables was chosen.

Traffic count data was sourced from the Department for Transport’s annual

road traffic counts (Department for Transport, 2010). Data was collected from the

road link on which the monitoring site was located. The annual count data was

joined to the hourly monitoring and meteorological data by assigning the annual

count to every observation within that year.
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Missing values in all variables were interpolated with the median concentra-

tion.

3.2.2 Model Optimisation, Training and Evaluation

Random forest requires several parameters to be set by the user prior to model

training. The optimal values of the parameters were ascertained by grid search

over a range of possible values. The parameter combination with the lowest OOB

RMSE (out-of-bag root mean squared error) was selected. The tuned parameters

were:

• The number of variables to randomly sample at each split (i.e. the number

of variables each tree is trained on) was set to 7.

• The number of observations to train on was set to 85%. This is key to the

bias-variance trade-off of the model: lower values reduce training time but

introduce more bias, and lower values increase variance and risk overfitting

to the training data.

• The minimum number of observations in the terminal nodes (the node size)

was set to 3. This parameter represents the minimum depth of the trees,

and controls the complexity of the trees. Smaller values lead to deeper,

more complex trees, while larger values lead to shallow trees. It also affects

bias-variance trade-off: shallow trees introduce more bias, while deeper

trees introduce more variance and risk overfitting.

The random forest model was trained on the hourly ambient air pollutant

concentration (at the roadside monitoring site) as the response, and the predictors:

meteorological data (e.g. air temperature, wind speed, wind direction, relative

humidity, atmospheric pressure, dewpoint, visibility), background concentrations

(hourly air pollutant concentration measurements from a nearby representative

urban background monitoring site), traffic flow data (annual traffic counts),

temporal variables (hour of day, day of week, Julian day) and the long term trend

(Unix date). Additional predictor variables may also be included as required. For

example, in the intervention analysis in Section 3.3.4, an intervention indicator

variable is often included to model the presence/absence of the intervention.

In the context of an intervention analysis, a temporal control can be established

by training the model using data from before and after the implementation of the

intervention. An indicator variable is included in the model, taking the value 0

for data measured when the intervention is not in effect, and 1 when it is in effect.
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Three metrics were used to evaluate the performance of the trained models.

The R-squared value and the RMSE (Root Mean Squared Error) were calculated

using the out-of-bag (OOB) data, and the RMSE was also calculated using the

held-out test data set. ‘Held-out data’ refers to data that was not used to train the

model, and is therefore unseen by the model. This data is used to evaluate the

accuracy of the model in preference to the training data, as it tests the model’s

ability to generalise to unseen cases, and potentially enables overfitting to be

identified (James et al., 2013).

R-squared is defined as the proportion of the total variation in the response

variable that is explained by the model. RMSE is the square root of the variance of

the model residuals, and is a measure of the similarity of the predicted values to

the observed values of the response (see Equation 3.1) (James et al., 2013; Swalin,

2018).
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3.2.3 Trend Normalisation and Analysis

The trained model was used to calculate the normalised trend in the air pollutant

concentration, using the normalisation methodology described in Section 3.1.5.

Trend analysis was conducted on the normalised trend to measure the long-

term changes in air pollutant concentration, without the obscuring effects of

meteorology, transport and dispersion. Break point analysis was applied to

detect change points and, where possible, additional information (e.g. dates of

implementation of policy interventions, and the dates from which new vehicle

emission standards were applied to new registrations) was considered to inform

speculation about their possible drivers (Bai, 1994).

For intervention analyses which included an indicator variable, the effect of

the intervention was quantified by calculating partial dependence plots for the

indicator variable, or by setting the indicator to different values and comparing

the normalised trends.
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3.3 Results and Discussion

3.3.1 Method Validation

In order to test whether or not the model is generating an ‘accurate’ normalised

trend (i.e. truly representing the trend in concentration with the influence of

confounders removed), the analysis was conducted at a location and for a pollutant

with a very well understood long term trend: black carbon (BC) at Marylebone

Road in London (MY1) between 2000 and 2017. It would be expected that black

carbon concentrations at this busy roadside location would be strongly influenced

by the vehicles using Marylebone Road, with only minor contributions from other

sources, such as wood burning.

The monitoring station at Marylebone Road is situated unusually close to a

busy road, and the air quality at the site is therefore overwhelmingly dominated

by primary emissions from road traffic. The major drivers of changes in black

carbon over this period are understood to be reductions in vehicle exhaust particle

emissions as a result of fitting particulate filters. Most post-Euro 4 vehicles, and

all post-Euro 5 vehicles are fitted with particulate filters, therefore we would

expect to observe reductions in black carbon concentration around 2011 (Euro 5

standards apply to all new vehicle registration).

The normalised trend in black carbon concentration at Marylebone Road in

London (MY1) between 2000 and 2018 is shown in Figure 3.1.
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Figure 3.1: Monthly average normalised trend in black carbon concentration at Maryle-

bone Road, London 2008-2018. The vertical dashed lines indicate the break points (as

calculated using the regression model break point analysis described by Bai (1994)).

Break point analysis indicated that the trend exhibited change points in 2011

and 2015. The change point in 2011, which marks the beginning of a monotonic

decline in theblack carbon concentration, coincideswith the applicationof theEuro

5/V emission standard to all new vehicle registrations which, crucially, included

the fitting of particle filters to all new vehicles. The monotonic decrease between

2011 and 2015 was likely driven by fleet turnover resulting in penetration of Euro

5/V vehicles fitted with particulate filters into the vehicle fleet, replacing more

polluting older models. This decrease in black carbon ends at the change point in

2015, and is followed by a period of no change in black carbon concentration. While

this change point is coincident with the introduction of the Euro 6/VI emission

standard in 2015, the limits on particulate emissions for passenger vehicles and

light-duty vehicles did not change between the Euro 5 and Euro 6 standards (since

the use of particle filters had reduced these emissions to near-zero) (Williams and

Minjares, 2016). Furthermore by 2015 it is probable that most on-road vehicles

were Euro 4 standard or higher, and therefore fitted with particle filters, therefore

further fleet turnover yields little improvement in air quality.

The normalised trend in black carbon concentration at London Marylebone

Road is consistent with expectation, based on the changes in vehicle emission

technologies over the period of analysis. This suggests that the method was

successful in extracting the long-term trend from the effects of the confounding

variables, since if these influences had not been removed, it is likely that the
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relatively small changes described here would have been obscured by the much

greater variation due to meteorology and dispersion. Further application of the

methodology to other air pollutants and locations can therefore be made with

greater confidence in the validity of the results.

3.3.2 Method Analysis

The goal of the random forest normalisation method is to produce a normalised

trend in the pollutant concentration, where the variation in concentration resulting

from variation in meteorology and dispersion (the noise) is minimised, in order to

resolve the long term variation in concentration (the signal). One way of achieving

this aim is to maximise the accuracy of the model: a more accurate model can

account for, and therefore remove, more of the variation due to meteorology from

the normalised trend. However, when handling large volumes of data (e.g. hourly

monitoring data) and iterative tasks (e.g. sampling during normalisation), the

computational demand of the task must also be considered and, if necessary,

balanced against model performance.

The random forest methodology comprises a workflow: from data collection,

preparation, model training and evaluation, trend normalisation and, finally, trend

analysis. Here, two modifications to the workflow are presented. The first aims to

maximise the model accuracy by evaluating the relative performance of random

forest models trained using meteorological data from different sources. The

second aims to minimise the computational demand of the process by estimating

the normalised trend using partial dependence plots, rather than carrying out the

computationally expensive normalisation procedure.

3.3.2.1 Choice of meteorological data source

In order to evaluate the relative performance of RF models trained using meteoro-

logical data from different sources, meteorological data was collected from the

following sources:

• Surface measurements of air temperature, wind direction, wind speed,

atmospheric pressure, relative humidity, dew point and visibility from the

Integrated Surface Database (ISD) (NOAA, 2016)

• Hourly ethane concentration data measured at the London Marylebone

Road monitoring site (as a tracer of atmospheric dispersion)
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Surface meteorological measurements are the standard data source for mod-

elling ambient air pollutant concentrations (Grange et al., 2018; Dĳkema et al.,

2008). Its use as a source of meteorological data is self-explanatory.

Ambient ethane concentration was investigated as an alternative source of

meteorological information, as it was hypothesised that it would behave as a tracer

of atmospheric dispersion. London is built upon a network of natural gas pipelines,

which supply the energy needs of the city. This network contains many tiny leaks,

which produce a continuous and relatively spatially homogeneous leakage of

ethane across the city. As one of the few atmospheric species without a traffic

source, the ethane concentration is therefore strongly indicative of atmospheric

dispersion. Indeed, this characteristic of ethane is easily confirmed by plotting

the diurnal and seasonal variation which shows highest concentrations at night

and during the winter months i.e. when the atmoshere tends to be more stable.

Because much of the information value of the surface meteorological variables

relates indirectly to the atmospheric dispersion, it was posited that much of

the information from surface measurements could be obtained from the ethane

concentration. If this was found to be the case, it would, where measurements

of ethane are available, enable six explanatory variables to be replaced by one

within the air quality model, leading to a reduction of complexity and therefore

improvements in interpretability, as well as reductions in computational demand.

Additionally, it would eliminate the need to arbitrarily choose a meteorological

monitoring site from which to collect the measurements, a choice that can, in

the absence of discriminating information or detailed site knowledge, be highly

subjective.

PM10 concentrations at three different London monitoring sites, London

Marylebone Road (MY1), Cromwell Road (KC2) and Camden Swiss Cottage

(CD1) between 2000 and 2017 were modelled using random forest. For each

site, three models were trained: one using surface meteorological data from

NOAA (2016), one using ethane concentration measurements from MY1, and a

control model, which contained no meteorological data at all. The input data for

all other variables (the response i.e. PM10 concentration, the background PM10

concentration, traffic counts, and temporal variables) were identical for all three

models. A normalised trend in PM10 concentration was calculated using each

model, as shown in Figure 3.2.
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Figure 3.2: Comparison of the normalised trend in PM10 concentration at (a) London

Marylebone Road (MY1), (b) Cromwell Road (KC2), and (c) Camden Swiss Cottage

(CD1) 2000-2017, calculated using models trained on NOAA surface meteorological

measurement data ’noaa’, hourly ethane concentration measured at MY1 (’ethane’), and

on no meteorological data at all (’none’).
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For all three sites there was little observable difference in the normalised trends

generated using models trained using meteorological data from the different

sources. This is an unexpected result, but even more unexpected is the finding

that neither of these trends differed significantly from the trend produced by the

model trained on no meteorological data at all. This result implies that virtually

all of the information contained within the meteorological data is redundant in

explaining variation in PM10 concentrations, in the presence of the other predictors

in the model. Since PM10 concentrations are known to be strongly influenced by

the background concentration, it is likely that this variable provides the majority

of the model’s explanatory power. The strong inter-dependence of the predictors

may also be a factor: meteorology and background concentrations are strongly

inter-related, and therefore the information encoded within the meteorological

datamay, in the absence of such data, also be provided by the background variable.

These hypotheses could be investigated in future work by comparing models

trained without the background variable.

It is worth noting that the redundancy of the meteorological data has been

observed only when modelling PM10 concentration. Other air pollutants of

interest, such as NOG and NO2, are more strongly influenced by local emissions,

andmodels that predict these pollutants may therefore display different responses

to the input of differentmeteorological data. Futurework could repeat this analysis

for these pollutants, to determine whether the same conclusions hold true.

3.3.2.2 Normalised Trend Estimation using Partial Dependence Plots

Partial dependence plots and the ‘meteorological normalisation’ method devel-

oped by Grange et al. (2018) rely on the same principle: removal the effect of

all but a single predictor through the use of the trained model to predict the

value of the outcome for each observation using many (or all) values of the other

predictors. The average prediction for the observation represents the value of

the outcome under ‘average conditions’ of all other predictors (more detailed

descriptions of the partial dependence calculation and the random forest normal-

isation method are given in Section 3.1.4.2 and Section 3.1.5 respectively). The

meteorological normalisation framework can be viewed as a specific case of the

partial dependence function, where the predictor of interest is always the date

(i.e. the long term trend term). Additionally, there are minor differences in the

algorithms used to produce the outputs: the calculation of the partial dependence

function involves calculating the average prediction given all values of the other
predictors, whereas the meteorological normalisation algorithm draws a random
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sample of user-specified size of predictor data with replacement (in this analysis,

a sample size of 500 was used).

Another noteworthy difference between the two methods is their relative

computational efficiency. The calculation of partial dependence plots in R (pdp
package) is optimised, and can therefore be executed far more quickly than

normalisation. It therefore offers the advantage of a faster execution speed, which

is valuable when many normalised trends must be calculated many times (e.g.

for multiple monitoring sites).

The similarity in the partial dependence and meteorological normalisation

methods led to the conjecture that the two methods may generate similar outputs,

but one may offer advantages in terms of execution speed over the other. PM10

concentrations at London Marylebone Road 2000-2017 were modelled using

random forest, and the long term trend component was estimated using the

normalised trend (from the meteorological normalisation method) and the partial

dependence plot for the Unix date predictor. A comparison of the two trends is

shown in Figure 3.3.
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Figure 3.3: Comparison of the normalised trend and the partial dependence plot for

the Unix date (long term trend trend) variable from the random forest model of PM10

concentration at Marylebone Road, London 2000-2017.

Figure 3.3 shows that the features of the normalised trend are represented

accurately by the partial dependence plot. The partial dependence plot is smoother

than the normalised trend, and lacks much of the shorter term variation, most

likely due to the use of a greater number of observations in the calculation of the
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average prediction for each observation. Thus, for tasks where conservation of

computational resource is a crucial factor, the long term trend component could

be represented by the partial dependence plot for the date variable, rather than

the normalised trend.

However, the normalisation methodology offers advantages in terms of the

flexibility of the method, and the level of detail it provides. For example, the

meteorological normalisation method enables the user to filter the data from

which the values of the predictors are sampled during normalisation. This allows

the normalised trend to be calculated for specific conditions, rather than the

‘average’ conditions of the entire data set. In Chapter 4, for instance, this capability

is leveraged to sample data from a single year, for each of the years in the data

set in turn, in order to estimate the variation in pollutant concentration resulting

from inter-annual meteorological variation.

In conclusion, the long term trend in air pollutant concentration can be

represented either by the normalised trend, or by the date partial dependence plot.

The choice of method for calculating the trend must be made on a case-by-case

basis, according to the requirements of the analysis.

3.3.3 Long Term Normalised Trends in London

The normalised trends in NOG , NO2 and PM10 concentration at three sites in

London between 2000 to 2017 were estimated using random forest models of

hourly ambient monitoring data, as described in Section 3.2. These trends are

shown in Figure 3.4.
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Figure 3.4: Long term trends in (a) PM10, (b) NOG , and (c) NO2 concentration at, from left

to right, Marylebone Road (MY1), Camden Kerbside (CA1), and Cromwell Road (KC2) in

London between 2000 and 2017. The purple line is the partial dependence plot of the

date variable calculated from the random forest model trained using monitoring data

from the specified site. The vertical dashed lines indicate the break points.

Several common patterns can be observed in the long term normalised trends

in Figure 3.4. All three sites exhibit a change point in 2007 where the PM10 concen-

tration begins to decrease monotonically. This date is ahead of the introduction

of Phase 1 of the London LEZ that focussed on reducing PM emissions on 4th

February 2008. The observed decline in PM10 concentration could be driven by

the gradual penetration of Euro 4/IV, and eventually Euro 5/V, vehicles into

the fleet. PM10 concentrations then level off, and then start to increase again at

Camden Kerbside after 2013. It is possible that saturation of the vehicle fleet
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with Euro 4-6 vehicles occurred at this point, and so further fleet turnover did

not result in further decreases in emissions of PM. The reasons for the increase

in PM10 concentration after 2013 at Camden Kerbside are unknown, but may be

the result of site-specific changes not included in the model (e.g. changes in road

structure, congestion or the urban environment).

The long term trends inNOG differ between all three sites. AtMarylebone Road

NOG concentrations decrease sharply until 2002, followed by a gentle increase

to 2013, then level off. At Camden Kerbside, NOG concentrations increase until

2007, then plateau. At Cromwell Road, the trend is relatively constant except

for step decreases in 2006/7 and a decrease after 2013. Other studies by Grange

et al. (2017) and Lang et al. (2019) analysed the long term trends in ambient

NOG concentration in Europe, and consistently found that NOG concentrations

decreased monotonically between 2000 and 2017. Lang et al. (2019) also studied

the long term trends in NOG concentration in 18 individual European cities,

concluding that the shape of the trend was remarkably consistent across a wide

range of locations, once the effects of local variation were averaged out through

aggregation of data from multiple monitoring sites. The marked difference in the

shape of the trends at the Marylebone Road and Camden Kerbside sites from

those expected based on literature findings suggests that the trends are strongly

influenced by local effects, and could be interpreted through consideration of the

history of the sites. It is likely therefore, to characterise the concentration changes

in an area requires the consideration of many sites (as considered in Chapter 2),

even if the meteorological variation can effectively be removed.

Marylebone Road and Camden Kerbside show similar trends in NO2 concen-

tration. Initially, the NO2 concentration is observed to decrease until 2002/2004,

before increasing between 2002/4 and 2010, and then decreasing. At Marylebone

Road this is followed by a period of no change. This is consistent with the

findings of Grange et al. (2017), who found that average NO2 concentrations

in Europe increased between 2000 and 2009, then decreased between 2010 and

2015. The initial increase in NO2 concentration can be attributed to an increase

in the number of diesel passenger vehicles over this period. Another driver of

the observed increase could be increased primary emissions of NO2 from vehicle

exhaust in compliance with Euro 3 and 4 emission standards, brought about by

the introduction of emission technologies such as DPF (diesel particulate filters)

and DOC (diesel oxidation catalysts). These post-exhaust treatments deliberately

oxidise NO to NO2 in order to oxidise other combustion products, such as CO

and particulate matter.
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At Cromwell Road, the NO2 concentration follows an overall pattern of

decrease, with sharp step changes in 2007 and 2013 interspersed with period

of little change. The step changes could be the result of changes in emissions

resulting in the introduction of the emission technologies discussed previously,

however the other monitoring sites’ trends indicated that the changes in pollutant

concentration due to these drivers typically occurred more gradually, as new

vehicles penetrated the fleet. The sudden nature of the changes observed at

Cromwell Road might suggest a different fleet composition, or an unusually

fast rate of fleet turnover. More information would be necessary to draw firm

conclusions.

It was suggested that many of the observed changes in air pollutant concen-

tration were driven by changes in vehicle emission technology, and the gradual

penetration of these newer vehicles into the fleet. To test this hypothesis, data

on the UK vehicle fleet composition by emission class was compared to the

normalised trends in PM10, NOG and NO2 concentration at London roadside sites,

as shown in Figure 3.5 for PM10 concentrations.
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Figure 3.5: Comparison of the normalised trend in PM10 concentration (purple line) at

(a) Marylebone Road, (b) Camden Kerbside, and (c) Cromwell Road 2000-2017 with the

proportion of the UK vehicle fleet composed of post-Euro 5 vehicles over the same period

(yellow bars). The vertical dashed lines indicate the break points.105
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Figure 3.5 shows that break points occur around 2007-10 at all three sites,

corresponding to the introduction of Euro 5 vehicles. Further break points occur

in 2012, 2013 and 2015 as PM10 concentrations decrease further, and the vehicle

fleet moves increasingly towards Euro 5 and 6 vehicles.

It should be noted that the trends in PM10, NOG and NO2 concentration all

exhibit too much variability for the results of the break point analysis to be

statistically significant. There is therefore a risk of over-interpreting the results of

the break point analysis. In reality, clear, sharp change points in the trends would

not be expected, since turnover of the vehicle fleet, and therefore changes in the

proportion of vehicles equipped with better emission technologies, are gradual

and occur slowly over time. The subsequent reductions in roadside emissions

of air pollutants would also be gradual, and therefore the concentrations at the

roadside would also be expected to decrease gradually. This implies that in future

work, break point analysis may not be the most appropriate method by which to

analyse the changes in pollutant concentrations observed in the trends.

3.3.4 Intervention analysis of the London Low Emission Zone

The normalised trends in PM10 concentration were calculated for nine roadside

London sites. The break points of these trends were calculated, and compared

to the dates of the LEZ implementation phases. An intervention variable was

included in the random forest model (taking values 0, 1, 2, 3 for the different

phases of the LEZ). Normalised trends were generated with the indicator variable

set to each of these values, and the trends were compared. An example of these

normalised trends is shown for the Marylebone Road site in Figure 3.6.
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Figure 3.6: Comparison of the normalised trends in PM10 concentration at Marylebone

Road, London 2008-2017 with the intervention indicator variable set to the values for

Phases 0-3. These trends represent different counterfactual scenarios (i.e. the observed

trend had each phase of the LEZ been in place for the entire time period).

In Figure 3.6, similar trends were observed for each counterfactual (i.e. for

every phase): PM10 concentrations decreased until 2015, then rose slightly and

levelled off. However, the PM10 concentration in the presence of the LEZ was

lower than in its absence. For Phase 1, this difference was small, reflecting perhaps

the relatively small amount of data associated with this phase, as well as the less

ambitious restrictions it imposed. The PM10 concentration associated with Phase

2 was lower than for Phase 1, and the PM10 concentration for Phase 3 lower still.

This is consistent with the expectation that the successive phases of the LEZ were

responsible for successively lower emissions of PM10 because fewer high-emitting

vehicles entered the area encapsulated by the LEZ.

The average difference in PM10 concentration between each combination of

phases over the entire period of analysis (2010–17) for each monitoring site is

shown in Figure 3.7. The error bars represent the uncertainty in the average. A

paired t-test was applied to determine whether the differences in average PM10

concentration estimated for different phases was statistically significant. The

results of the paired t-test are shown in Figure 3.7 by the different colours. Blue

indicates a significantly lower concentration in the higher phase, red indicates a

significantly higher concentration in the higher phase, and green indicates that
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the difference between the two phases was not statistically significant.
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Figure 3.7: Summary of the results of the London LEZ intervention analysis (the effect of

the LondonLEZon ambient PM10 concentrations) carried out usingdata fromnine London

monitoring sites. The segments indicate the average difference in PM10 concentration

between normalised trends for two different phases (values of the intervention indicator

variable), with red indicating a higher PM10 concentration for the higher phase, blue

indicating a lower concentration, and green indicating no significant change (paired

t-test).
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Most sites showed significantly lower average PM10 concentrations in Phase 3

of the LEZ relative to the control scenario (no LEZ/Phase 0). The sites Hackney

Old Street (HK6), Lewisham New Cross (LW2) and Greenwich Blackheath (GR7)

showed slightly higher PM10 concentrations in Phase 3 of the LEZ, but these were

not statistically significant. Similarly, most sites had lower PM10 concentrations

for Phase 2 compared to Phase 1, with the exception of Camden (CD1), Lewisham

New Cross (LW2) and Hackney Old Street (HK6), which showed statistically

insignificant higher concentrations for Phase 2.

However, comparisons between other combinations of phases revealed a more

ambiguous picture. The changes in average PM10 concentration between Phases 0

and 1, Phases 0 and 2, and Phases 2 and 3 showed higher concentrations for some

sites and lower concentrations for others, with no clear consensus.

Overall, even the largest differences in average PM10 concentration between

different scenarioswereminor. The largest differencewasobserved forMarylebone

Road (MY1), which showed that the average PM10 concentration in the Phase

3 scenario was 2.4 µg m
−3

lower than in the no LEZ (Phase 0) scenario. Even

the comparison between the no LEZ (Phase 0) scenario and the most restrictive

LEZ scenario (Phase 3) showed that 3 out of the 9 sites studied, or 33% of the

sites, showed no statistically significant difference in average PM10 concentration

between the two scenarios. In summary, despite the sensitivity and proven

accuracy of the technique, the evidence for whether the implementation of the

LEZ has reduced air pollution in London was inconclusive. Any changes in PM10

concentration resulting from the London LEZ in the areas studied over this period

were either small or insignificant.

3.4 Conclusions & Next Steps

3.4.1 Conclusions

This chapter has explored the use of random forest to produce meteorologically

normalised ambient trends in considerable detail, including investigation of the

method by its application towell-known changes (for example, changes in ambient

black carbon concentrations at London Marylebone Road), comparison of the

model performance and outputs under different modes of use (for example, with

different sources of input meteorological data), and application of the method to

intervention analyses (for example, analysis of the impact of the London LEZ on

ambient air quality in London).
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The method produced a normalised trend in black carbon concentration

consistentwith the expectations based onwell known changes in vehicle emissions.

This confirmed the effectiveness of themethod in removing the obscuring influence

of meteorology from the time series to reveal the comparatively small changes

due to changes in emissions.

Similar normalised trends were produced using models trained using different

meteorological data inputs, as well as a model trained using no meteorological

data at all. This implies that for PM10 at least, the information represented by the

meteorological data is redundant with information provided by other predictors,

such as background PM10 concentration. The underlying reason for this behaviour

is the dominant contribution from regional sources, which are well-captured

by the use of urban background sites in the model. Alternatively it could be

useful in the future to focus only on increments above background concentration.

However, such an approach is prone to local influences at background sites and

the generally very small concentration increment that exists between roadside

and background sites.

The results of the investigation into the effectiveness of the London LEZ were

not definitive. Different monitoring sites showed a range of different results,

with the unexciting consensus view that later stages of the LEZ had probably

resulted in small improvements in ambient air quality at most sites, however

these proved to be only in the range of a few µg m
−3
. Furthermore, while the

majority of sites showed slightly, but significantly, lower concentrations of PM10

in the presence of the LEZ, the differences at 33% of the studied sites proved

not to be statistically significant. Further analysis may be able to reveal more

information, or improve our confidence in the existing conclusions. Replacing the

absolute concentrations with the increment above the background concentration

may provide more definitive results and could form the focus of future work.
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4.1 Introduction

One of the main uses of air quality monitoring data is for monitoring compliance

with EU limits on air pollutant concentrations. For somepollutants, these limits are

defined by the annual mean metric, for example, the EU limit on the concentration

of NO2, a pollutant of considerable concern for regulators, is defined by two

metrics: a 1-hour mean value of 200 µg m
−3

not to be exceeded more than 18 times

a year, and an annual mean value of 40 µg m
−3

(Defra, 2019). It is well known,

however, that meteorology exerts a powerful influence over ambient pollutant

concentrations, and year-on-year variations in meteorology can exert considerable

effects on the annual average concentration of air pollutants in any given year.

This raises the question: if the value of the annual average concentration can

depend on variations in meteorology throughout the year, how appropriate is it

as a metric for measuring compliance? For example, suppose that the average

concentration of NO2 at a monitoring site complies with EU limits in one year, but

exceeds the limits in the next. Is this elevation in ambient concentration the result

of a genuine increase in ambient concentration driven by an increase in emissions,

or is it a consequence of abnormal meteorology in the latter year resulting in

extended pollution episodes? How much does normal inter-annual variation in

meteorology affect whether or not a monitoring site is ‘compliant’ with regulatory

limits from year-to-year?

While it is understood that inter-annual meteorological variation affects the

annual mean concentrations of pollutants, the degree to which it does so is not

well understood. In order to provide an answer to the afore-stated question, the

effect of inter-annual meteorological variation on the annual average concentration

should be quantified, to enable the confidence with which annual averages can be

used in compliance monitoring to be ascertained.

In this chapter, the magnitude of the effect of meteorology on ambient concen-

trations of air pollutants is determined and quantified to apply an uncertainty to

the annual mean concentration. Using this approach, an assessment is carried out

for each monitoring site of whether the inter-annual variations in meteorology af-

fect whether or not a site is compliant from year to year. The recent years in which

the meteorology resulted in higher concentrations of pollutants, years in which it

resulted in lower concentrations, and years in which it had little/no significant

effect are identified. The implications this has in terms of identifying appropriate

years for use as baseline years in air quality modelling are discussed. The specific

meteorological conditions responsible for the variations in ambient concentration,
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and the physical and chemical mechanisms that drive these relationships are

described. Finally, the implications of these findings on the appropriateness of

current metrics used for compliance monitoring within the EU are discussed.

4.1.1 Meteorology and Air Quality

An assessment of the effects of meteorology on ambient concentrations of air

pollutants must depend on a knowledge of the relationships betweenmeteorology

and air quality, as well as the physical and chemical mechanisms that drive these

relationships.

Jiang et al. (2014) noted that a number of studies investigating the effects of

meteorology on ambient NO2 concentrations had shown that stable (anticyclonic

or high pressure) systems were characterised by higher concentrations of NO2,

while NO2 concentrations were lower under unstable (cyclonic or low pressure)

systems. Surface meteorological measurements provide information about the

weather system by describing its effects:

Under stable, anticyclonic conditions, sinking air causes a subsistence in-

version, which is characterised by clear skies, lower wind speeds, and lower

relative humidity. In summer, these conditions will result in instability during

the day marked by high temperatures, and instability during the night with

cooling temperatures during which vapour condenses as mist/dew. This leads to

frequent inversions. In winter the clear skies can result in very cold temperatures.

Anticyclonic conditions result in low dispersion, where pollution is trapped at

low levels, and can build up, causing pollution episodes, particularly in the winter

(Wayne, 2000; AQEG, 2004).

In contrast, unstable cyclonic conditions are characterised by low pressure,

higher wind speeds and lower temperatures. Cloudy skies and potentially higher

levels of precipitation result in higher relative humidity. These are high dispersion

conditions, under which pollution disperses more rapidly, leading to lower

ambient concentrations (Wayne, 2000).

The presence of these weather systems can be identified from surface meteoro-

logical measurements. Periods of low wind speed, high temperature (in summer)

or low temperature (in winter), low relative humidity, and high atmospheric

pressure indicate the presence of a high pressure anticyclonic weather system.

These systems are stable, resulting in low dispersion, and therefore might be

expected to be observed in conjunction with elevated concentrations of primary

pollutants.

In contrast, periods of high wind speed, lower temperature (in summer), high
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relative humidity and lower atmospheric pressure indicate the presence of low

pressure cyclonic weather systems, which are unstable, leading to high dispersion.

Consequently, emissions of air pollutants (e.g. from vehicle exhausts at roadside)

are quickly dispersed, leading to lower concentrations of air pollutants (Wayne,

2000).

Air pollution events, which can have a considerable influence over the annual

average pollutant concentration in any given year, are oftenmarked by anticyclonic

weather systems.

4.2 Methods and Data

4.2.1 Description of Data

The data used were sourced from the Automatic Urban and Rural Network

(AURN) maintained by Defra, the London Air Quality Network (LAQN) run by

King’s College London, the Air Quality England database collected by Ricardo

Energy & Environment, and the Scottish and Welsh air quality networks (SAQN,

WAQN). They consisted of hourly observations of ambient NO2, NOG and O3

concentrations, measured at monitoring sites distributed throughout the UK. The

concentrations of NOG and NO2 were measured using the European Commission

reference method of chemiluminescence with molybdenum converter.

In this analysis, data from all monitoring sites that had co-located measure-

ments ofNOG andNO2 concentrations, and thatmet the data capture requirements

(at least 80% data capture between 2008 and 2017) were included. This set of

monitoring sites included 173 sites measuring NO2 concentration, 161 sites mea-

suring NOG concentration, and 77 sites measuring O3 concentration. Due to

the requirement that all sites must measure NOG and NO2, only a subset of the

available O3 monitoring sites were included in the analysis. Therefore it should

be noted that the sites used may be biased towards locations where NOG is more

influential on O3, and the trends in O3 and its relationship with meteorology

may be influenced accordingly. Very different results and relationships may be

highlighted in an analysis which included all sites measuring O3, which include

remote rural sites. The geographical distribution of these sites is shown in Figure

4.1. More information about the sites is given in Appendix V.
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(a) NO2 sites

(b) NOG sites
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(c) O3 sites

Figure 4.1: Distribution of monitoring sites measuring (4.1a) NO2, (4.1b) NOG , and (4.1c)

O3 concentrations with at least 80% data capture between 2008 and 2017 in the UK.

Surface meteorological measurements were used as explanatory variables

for predicting the ambient concentrations during random forest model training.

These data were collected from the Integrated Surface Database (ISD) using the

worldmet R package (NOAA, 2016; Carslaw, 2017). The variables included in the

model were air temperature, air pressure, relative humidity, dew point, wind

speed, wind direction and visibility. The meteorological data was obtained from

the nearest meteorological site meeting the data capture requirements (at least

80% data capture between 2008 and 2017 for all seven of the aforementioned

meteorological variables) to the monitoring site.

4.2.2 Modelling the Effect of Meteorology on Air Quality

The air pollutant concentration was modelled as a function of meteorology and

temporal factors (Julian day, Unix date, hour of day) using random forest models.

Meteorological normalisation was applied to the concentration time series,

using the trained model and the methodology described by Grange et al. (2018),

with a modification. Grange et al. (2018) simulated the concentration under
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‘average conditions’ by sampling a number of observations (e.g. 500) of all

predictors except the date (which represents the long-term trend) from the data

set, and predicting the value of the response (i.e. the pollutant concentration)

for each sampled observation. The predicted data was then averaged by date,

resulting in a data set of predicted values for = values of the date, which represent

the values of the pollutant concentration under ‘average’ conditions. However, in

this analysis, the normalisation process was carried out < times, where < is the

number of years in the input data set. Each of the < normalised time series were

generated according to the process above, but using only meteorological data

from a single year. For example, the normalised data for the meteorological year

2008 was generated by repeatedly sampling meteorological data from the set of
meteorological data measured during the year 2008 in order to predict the response. In

this way, the normalised time series of each meteorological year represented the

pollutant concentration under the average meteorological conditions of that year.

Since the long-term (normalised) trend should be independent of inter-annual

meteorology, we expect all < normalised trends to exhibit the same shape,

however the absolute concentration of the trends should vary, depending on the

meteorology of the year its data was sampled from.

By quantifying the variation in concentration among the < time series, the

effect of the inter-annual meteorological variation over this period of time on the

pollutant concentration was estimated.

4.2.3 Quantification of Variation

The effect ofmeteorology on ambient concentrationwas quantified by first calculat-

ing the average normalised concentration of the pollutant for each meteorological

year (averaged over the normalised concentrations for the entire period of analysis).

The uncertainty was then calculated as the range (maximum - minimum) of the

distribution of annual mean normalised concentrations for the < meteorological

years.

4.2.4 Visualisation of The Effect of Inter-annual Meteorological
Variation on Air Quality Across the Monitoring Network

While the normalised trends can be directly visualised and compared for a single

site, for the analysis of multiple monitoring sites across the UK, two methods

were used to summarise and compare the normalised concentrations as a function

of the meteorological year. These methods were heatmaps and cumulative
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sums (CUSUM), a method for analysing network data developed by Manly and

Mackenzie (2000).

4.2.4.1 Heatmaps

The heatmaps visualise the difference between the average predicted concentration

in a given meteorological year, and the average predicted concentration from all

meteorological years across the network of UK monitoring sites, as formalised in

Equation 4.1.

5 (G) = G8 9 − Ḡ8 (4.1)

where G8 9 is the mean predicted concentration of the normalised trend at site

8 calculated using data sampled from meteorological year 9, and Ḡ8 is the mean

predicted concentration of the normalised trends across all meteorological years

at site 8.

For the purposes of comparability between sites with different absolute

concentrations of the pollutant, the values on the colour scale were standardised

as shown in Equation 4.2, where G8 is the observation, Ḡ is the mean of the

observations for a given site, and B is the standard deviation of the observations

at a site.

I8 =
G8 − Ḡ
B

(4.2)

4.2.4.2 Cumulative Sums

Cumulative sum (CUSUM) plots are a useful tool for showing how measured

concentrations deviate from the ‘business as usual’ scenario (i.e. concentration

under ‘average’ meteorological conditions). The accumulated difference between

a variable and ‘business as usual’ is plotted. In this way, it indicates change-

points even when those changes are small. If the CUSUM is zero, the measured

concentration has not deviated from ‘business as usual’ (Carslaw, 2020).

In this case, the CUSUM is the cumulative sum of the difference between the

predicted concentration of the normalised trends for a given meteorological year

and the average predictedNO2 concentration across allmeteorological years, for all

UK sites. The CUSUM approach used in the current context considers a network of
monitoring siteswith the aim of showing both whether a particular meteorological

year differs significantly from average conditions and the behaviour of individual
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site responses. The cumulative sum was calculated as shown in Equation 4.3.

(8 9 = (G19 − Ḡ1) + (G29 − Ḡ2) + · · · + (G8 9 − Ḡ8) (4.3)

where (8 9 is the CUSUM at site 8 for meteorological year 9, G8 9 is the mean

normalised concentration at site 8 for meteorological year 9, and Ḡ8 is the mean

normalised concentration across all meteorological years at site 8. The CUSUM

plot visualises (8 9 as a function of 8 (the site).

A randomisation process was used to calculate the statistical significance of

the difference between the concentration in a given meteorological year and the

average concentration across allmeteorological years, over themonitoring network.

This involves comparing the observed CUSUM plots to the CUSUMs predicted by

the null hypothesis (that there is no difference in concentration between different

meteorological years). A large number of CUSUMs are generated, where the

observations from each site are randomly permuted. Themaximumandminimum

values of (8 9 for each of the sets of permutations are plotted as an envelope on the

CUSUM plot, and represent the bounds for which the null hypothesis could hold

true (i.e. differences from 0 could be due to random variation within real data).

Randomisation is also used to derive p-values for the statistical significance of

the difference between the concentration in a given meteorological year and the

average concentration over all met years. The detail of this calculation is described

in Manly and Mackenzie (2000) and Manly and Mackenzie (2003).

CUSUM plots were calculated for all UK sites, based on four different site

orderings. Applying different ways of ordering the monitoring sites enables

more information about the variation in the effect of meteorology on pollutant

concentration across the monitoring sites to be ascertained. While ordering the

sites by latitude and longitude indicated the north-south and east-west spatial

variation, ordering by the average pollutant concentration revealed the variation

by the level of pollution at the monitoring site, and ordering by the average

NO2/NOG ratio of the monitoring site showed how the effect of meteorology

varied based on the contribution of the traffic source to air pollution at the site.1

In terms of the interpretation of the CUSUM plots, a positive slope indicates

that, on average, the concentration in a given meteorological year is higher than

the average concentration over all meteorological years. A negative slope indicates

1The average NO2/NOG ratio at a monitoring site provides a proxy for the degree of influence

of the traffic source on air quality at the monitoring site. Sites with lower NO2/NOG ratios indicate

a stronger influence from traffic sources (perhaps due to being close to a busier road), while

sites with lower NO2/NOG ratios indicate sites where air quality is more representative of the

background.
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that, on average, the concentration in a given meteorological year is lower than

the average concentration over all meteorological years. A change in the gradient

of the CUSUM plot indicates a change in the magnitude of the deviation in

concentration for that meteorological year between two groups of sites.

The average deviation from the mean concentration, in a given meteorological

year, can be calculated as the slope of the CUSUM plot in that year. The p-value

for a CUSUM plot indicates the statistical significance of the deviation from the

average concentration in that year: i.e. the probability that the observed difference

from the average concentration is due to random chance. The overall p-value (for

all CUSUM plots) indicates whether the CUSUM plots at all times between them

differ from the average i.e. the probability that the observed differences overall

differ from the average.

4.3 Results and Discussion

Random forest models were trained to predict NO2, NOG and O3 concentrations

as a function of meteorology between 2008 and 2017 for each UK sites measuring

the pollutant with sufficient data capture over this period.

The average performances of the models are given in Table 4.1.

Table 4.1: Random forest model performance metrics (averaged over all monitoring sites).

The root mean squared errors (RMSE) are given in µg m
−3
.

Pollutant R-squared OOB RMSE Test RMSE

NO2 0.6 13.6 8.2

NOG 0.6 49.4 30.0

O3 0.7 11.3 6.7

For each site, the normalised concentration for each meteorological year 2008–

2017 was predicted using the trained model and meteorological data from the

given meteorological year. As an example, Figure 4.2 shows the normalised

trends in NO2, NOG and O3 concentration for each meteorological year for the

Marylebone Road site (left-hand plot), as well as the variation in the absolute

concentration of the trend in different meteorological years over this period (right-

hand plot). The variation is shown as an envelope representing the maximum

and minimum values of the trends over all meteorological years.

Figure 4.2 indicates that meteorology exerts a large influence over the ambient

concentrations of all three pollutants. It would, therefore, be valuable to quantify

the variation in ambient concentration that can be attributed to variations in
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meteorology, to avoid over-confidence in the interpretation of long term trends,

or mis-attribution of this variation to other factors.
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Figure 4.2: Meteorologically normalised time series for (4.2a) NO2, (4.2b) NOG , and

(4.2c) O3 concentration 2008-2017 at Marylebone Road, for each meteorological year.

The plot on the left shows the trends for each meteorological year 2008-2017, and the

plot on the right shows the range resulting from meteorological variation (the range of

predicted concentrations over all meteorological years) as an envelope around the average

normalised trend.

4.3.1 Quantifying theEffect of Inter-annualMeteorologicalVari-
ation

The effect of inter-annual variations in meteorology between 2008 and 2017 on the

annual mean concentrations of NOG , NO2 and O3 was quantified to provide some

measure of the range in the mean concentration. The range was calculated as the

range (maximum −minimum) of the concentration values predicted using data

from the meteorological years 2008–2017.

The range in the value of the average concentration due to variations in

meteorology for each pollutant is visualised as error bars on the data points

representing the annual mean concentration. This was done for each monitoring

site individually, as shown in Figures 4.3, 4.6, and 4.8, as well as averaged over all

the monitoring sites in the networks for each pollutant, as shown in Figures 4.5,

4.7 and 4.9.

4.3.1.1 NO2

Each row of Figure 4.3 represents the mean concentration and range due to

inter-annual meteorological variation at each monitoring site in a given year. The

dashed line marks the EU annual average limit value for NO2 concentrations of
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40 µg m
−3
. The plot on the left shows the data for all monitoring sites in the UK

network, while the plot on the right is a zoomed in view that shows only those

sites where the EU annual mean limit value for NO2 concentrations lies within

the range due to meteorological variation (subsequently referred to as ‘marginal’

sites). In other words, the right-hand plot focuses on the sites where the effects of

meteorological variation could affect whether or not the site is compliant with the

EU limits in that year.
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Figure 4.3: Range in the annual average NO2 concentration at all UK sites in each year

due to meteorology. The data points show the mean NO2 concentration in that year at an

individual monitoring site, while the error bars represent the range in the mean value

resulting from meteorological variation. The range was calculated as the range in the

predicted concentration for that year over normalised data from all meteorological years.

The plot on the right is a zoomed in view of the plot of the left, showing the ‘marginal’

sites (those whose compliance with the EU limit values falls within the range due to

meteorological variation) in more detail.

Over the entire period analysed (2008–2017), there were 44 ‘marginal’ moni-

toring sites for which the EU limit value for annual mean NO2 concentration lay

within the range resulting from meteorological variation in at least one year. The

geographical distribution of these marginal sites is shown in Figure 4.4. Since a

total of 173 sites were included in the analysis, this represents 25% of the total site
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coverage. The average number of sites which exceeded the EU limit value in a

given year between 2008 and 2017 was 54.8. The average number of sites which

were marginal in a given year was 12.1, therefore the average number of marginal

sites as a proportion of the exceeding sites in any given year was 22%.

Figure 4.4: Spatial distribution of the sites which are ‘marginal’ for NO2 (i.e. their

compliance with EU limit values falls within the range (min to max) due to inter-annual

meteorological variation in at least one year between 2008 and 2017).

Figure 4.5 shows the range (min tomax) in the annual meanNO2 concentration

due to meteorological variation averaged over all UK sites. This range was

calculated as the range of concentration values predicted using data from the

meteorological years 2008–2017. On average, the annual range in the NO2

concentration due to inter-annual meteorological variation was 2.9 µg m
−3

(8.2%).
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Figure 4.5: Annual average NO2 concentrations, and range (min to max) due to meteo-

rological variation (represented by the error bars), averaged across all UK sites over the

period 2008 to 2017.

4.3.1.2 NOG

The previous analysis of the range in annual concentration due to meteorological

variation was repeated for the NOG concentration data. As for Figure 4.3, each

row of Figure 4.6 represents the mean concentration and range due to inter-annual

meteorological variation at each monitoring site in a given year. However, the EU

does not enforce limits on the NOG concentration using the annual average metric,

as it does with NO2 concentration, therefore the limit values are not shown.
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Figure 4.6: Range in the annual average NOG concentration at all UK sites in each year

due to meteorology. The data points show the mean NOG concentration in that year

at an individual monitoring site, while the error bars represent the range (min to max)

in the mean value resulting from meteorological variation. The range was calculated

as the range in the predicted concentration for that year over normalised data from all

meteorological years.

The range in NOG concentrations resulting from meteorological variations,

averaged over all UK sites, is shown in Figure 4.7.
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Figure 4.7: Annual average NOG concentrations, and ranges due to meteorological

variation (represented by the error bars), averaged across all UK sites over the period 2008

to 2017.

On average, the range in the NOG concentration due to inter-annual meteoro-

logical variation over the period 2008-2017 was 9.93 µg m
−3

(12.6%).

4.3.1.3 O3

The previous analysis of the range in annual concentration due to meteorological

variation was repeated for the O3 concentration data. However, the EU limits

on ozone concentration are measured as an 8-hour rolling average, rather than

the annual average concentration, therefore for ozone, the eight-hour rolling

mean, and the associated range in the rolling mean resulting from meteorological

variation was calculated, rather than the average concentration. Each data point in

Figure 4.8 represents the annual average of the 8-hour rolling mean concentration

in the specified year, while the error bars represent the range in the annual

average of the 8-hour rolling mean due to inter-annual meteorological variation

at each monitoring site in the given year. The EU Directive specifies that the daily

maximum 8-hour rolling mean concentration must not exceed 120 µg m
−3

for

more than 25 days averaged over a 3 year period. Since this analysis considered

the effects of meteorological variation on the annual average of the 8-hour rolling
mean, rather than the daily maximum of the 8-hour rolling mean, the effect of

meteorological variation on site compliance according to the EU Directive was not

directly assessed, however the large magnitude of the percentage range implies

that it may have a considerable effect. Further work might quantify the effect of

interannual meteorological variability on the daily maximum of the 8-hour rolling
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mean concentration in order to directly evaluate its effect on site compliance

with the EU Directive. By examining this metric, more detail regarding the

daily influence of meteorology on ozone concentration would be provided - and

therefore the results might be quite different- however it would likely be necessary

to consider each monitoring site one-by-one and therefore comparing the results

across the entire network would be more challenging.
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Figure 4.8: Range in the annual average O3 concentration at all UK sites in each year

due to meteorology. The data points show the mean O3 concentration in that year at an

individual monitoring site, while the error bars represent the range of the mean value

resulting from meteorological variation. The range was calculated as the range in the

predicted concentration for that year over normalised data from all meteorological years.

The range in O3 concentrations resulting from meteorological variations,

averaged over all UK sites, is shown in Figure 4.9.
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Figure 4.9: Annual average O3 concentrations, and ranges due to meteorological variation

(represented by the error bars), averaged across all UK sites over the period 2008 to 2017.

On average, the range in the O3 concentration due to inter-annual meteorolog-

ical variation over the period 2008-2017 was 3.3 µg m
−3

(7.5%). This variation is

similar to that for NO2 (2.9 µgm
−3
), which might be expected from the perspective

of the inter-conversion between NO2 and O3 (See Section 1.1.2 for more detail).

4.3.2 The Effect of Inter-annualMeteorological Variation on Air
Quality across the UKMonitoring Network

To evaluate the by-site effect of meteorology on annual average concentrations

across the UK in more detail, the heatmap and CUSUM methodologies described

in Section 4.2.4 were applied to the normalised NOG , NO2 and O3 concentrations

from each UK site in the monitoring network.

The heatmaps in Figure 4.10 are ordered by the mean concentration of the

pollutant at each monitoring site.
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Figure 4.10: Heatmaps showing the difference between the mean concentration in each

meteorological year and the average concentration over all meteorological years for (4.10a)

NO2, (4.10b) NOG , and (4.10c) O3, for each UKmonitoring site, as predicted by the random

forest model.

A visual inspection of Figures 4.10a and 4.10b clearly indicates that 2010 stands

out as a particularly ‘bad’ year for NOG and NO2, with the concentrations of these

pollutants considerably elevated due to meteorology at almost all monitoring

sites. Other (although less obvious) years with meteorology that was responsible

for elevated NO2 and NOG concentrations at many sites are 2012, 2013 and 2016.

On the other hand, the meteorology in 2015 was responsible for much lower-than-

average concentrations of these pollutants at most sites, as, to a lesser extent, was

the meteorology of 2008, 2014 and 2017.

In almost direct contrast, Figure 4.10c shows that the meteorology in 2010

was responsible for particularly low concentrations of O3 at most sites, with

less extreme reductions in concentration driven by meteorology in 2009, 2012,

2016 and 2017, while 2015 was characterised by meteorology that resulted in

strongly elevated O3 concentrations at most sites, with less extreme elevations

in concentration also observed for 2008, 2011, 2013 and 2014. This behaviour
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is expected based on the chemistry involved e.g. increased NO concentrations

would tend to reduce O3 (see reaction given by Equation 1.4).

Generally, there was good consensus among the monitoring sites regarding

whether the meteorology in a given year was responsibly for higher or lower

than average concentrations of each pollutant. However, there were some notable

exceptions.

For example, at Hull Freetown (HUL2), meteorology caused elevated concen-

trations of NO2 in 2009, 2011 and 2015, and lowered concentrations of NOG in

2010 and 2016, in disagreement with the majority of sites.

Another notable site was Cambridge Roadside (CAM),which exhibits a distinct

relationship between both NO2 and NOG concentrations and meteorology, with

elevations of NO2 and NOG in 2011, 2013, 2015 and 2017, and lowered NOG and

NO2 in 2009 and 2010.

Several of the most polluted sites (e.g. City of London Walbrook Wharf,

Marylebone Road and Ealing Hanger Lane Gyratory) also differed strongly from

the majority of sites in the effects of annual meteorology on NOG and NO2

concentration. This may be due to the strong influence of traffic emissions on

concentrations at these sites (meaning that meteorology is less predictive of

concentrations), as well as the type of environment. Often, these highly polluted

sites are located at the roadside in highly built-up urban areas, such as street

canyons, where the meteorology (in particular wind speed and wind direction)

can be highly localised and complex, and possibly not well described by the

regional meteorological information measured at the meteorological sites, which

are often located at open locations (e.g. airports and airfields) some distance away.

Other sites with unusual effects of annual meteorology on NOG or NO2

concentrations include Islington Holloway Road (IS2), Cromwell Road (KC2),

London Hillingdon (HIL), Hillingdon Keats Way (HI0), London Hillingdon

Oxford Avenue (HI3), Chepstow A48 (CHEP, CHP), Chichester A27 Chichester

Bypass (CI1), Aberdeen (ABD), High Muffles in Yorkshire (HM). Site information

and geographical locations of all of the monitoring sites mentioned above are

shown in Figure 4.11.
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Figure 4.11: Distribution of monitoring sites with unusual NOG and NO2 heatmap

results (unusual variation in NOG and NO2 concentration as a result of inter-annual

meteorological variation).

Table 4.2: Number of sites with unusual heatmap results for NOG and NO2, by region

and site type.

Region Site type Frequency

London Urban traffic 5

London Urban background 3

Eastern Urban traffic 1

North East Scotland Urban background 1

South East Urban traffic 1

South Wales Unknown 1

South Wales Urban traffic 1

Yorkshire & Humberside Rural background 1

Yorkshire & Humberside Urban background 1

Table 4.2 summarises the information in Figure 4.11: it shows the number

of monitoring sites, by region and site type, that show unusual NOG and NO2

heatmap results (i.e. which exhibit variations in NOG and NO2 concentration

in response to inter-annual variations in meteorology that appear considerably

different from most other UK sites). It can be seen from Table 4.2 and Figure

4.11 that the majority of the sites are located in London and the south-east. This
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may be due to this region experiencing different meteorology from the rest of

the UK, or, more likely, a greater proportion of sites located in street canyons

or built-up areas with hyper-local meteorological conditions that are not well-

represented by the regional meteorology. On the other hand, it may simply be due

to the heterogeneity of monitoring site distribution in the UK: most of the total

monitoring sites are located in London and the south-east, therefore most of the

sites with unusual results are likely to be there too. There is no clear dependence

on site type, with the proportion of traffic, urban background and rural sites

roughly similar to their overall proportions among the total number of monitoring

sites.

Figure 4.12 shows the CUSUMs of the difference in NOG , NO2 and O3 annual

concentration between each meteorological year and the average over all mete-

orological years for the meteorological years 2008–2017, with the sites ordered

by mean concentration, NO2/NOG ratio, latitude and longitude. Each CUSUM

plot is annotated with the p-value calculated using the randomisation process,

which represents the statistical significance of the difference from the average

concentration due to annual meteorology in that year (more precisely, it represents

the probability that the observed difference from the average in that year is due to

random chance, rather than the effects of meteorology).

The results shown by the CUSUM plots in Figure 4.12 match those identified

earlier in the heatmaps (Figure 4.10). The CUSUM plots indicate that the most

statistically significant deviation from normal meteorology (the null hypothesis)

occurred in 2010 - a year inwhich concentrations ofNOG andNO2 were abnormally

high, and concentrations of O3 abnormally low. Significantly lower-than-normal

concentrations of NOG and NO2 and higher concentrations of O3 were also seen in

2012, 2013, 2016 and 2009. The second-greatest deviation from the null hypothesis

(i.e. ‘normal’ meteorology), was seen for 2015, which, in contrast to 2010, had

higher than average concentrations of NOG and NO2, and lower concentrations

of O3. Similar, but less extreme, deviations were shown for 2014, 2017, 2011 and

2008.

In general, the CUSUM plots for NO2 and NOG tend to mirror each other

fairly closely, and will therefore generally be discussed together. The CUSUM

plots for O3 are often distinct (presumably because the concentrations of NOG and

O3 are less strongly correlated, as the relationship is complicated by secondary

chemistry).
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Figure 4.12: Cumulative sum (CUSUM) plots of the difference between the mean

concentration in a given meteorological year and the average concentration over all

meteorological years for NO2, NOG and O3 (columns 1-3 of each grid). The sites are

ordered by (4.12a) mean pollutant concentration, (4.12b) NO2/NOG ratio, (4.12c) latitude

(north to south from left to right), and (4.12d) longitude (east to west from left to right).

Note: In the case of the O3 CUSUM plots ordered by NO2/NOG ratio, only sites also

measuring NO2 and NOG are used, and they are ordered by the NO2/NOG ratio derived

from their measurements.

With the exception of the years 2017 and 2013, in all years the meteorology

produces opposite effects on the concentrations of NO2 and NOG to that of O3.

For example, a year in which meteorology resulted in elevated NOG and NO2

concentrations generally also resulted in decreased O3 concentrations, and vice

versa. In 2017, however, the meteorology caused decreased concentrations of all

pollutants, while in 2013 it drove elevated concentrations of all pollutants. One

possible explanation for this is that meteorological conditions that are responsible

for most NO2 and NOG pollution episodes, i.e. cold, dry, stable (low dispersion)

winter weather would likely result in slower than normal ozone production.

Ozone production is positively correlated with solar radiation and temperature,

so in years with particularly low temperatures, ozone production, and therefore

ambient concentration is observed to be lower.

For the most part, the effect of meteorology on pollutant concentrations was

relatively consistent across monitoring sites with varying levels of pollution and

contribution from traffic sources. The exceptions were a handful of sites with

the very highest concentrations and the very lowest NO2/NOG ratios (i.e. the

most polluted traffic sites — these included sites at London Marylebone Road,

Knightsbridge, Chelsea, Earls Court Road, City of London (WalbrookWharf), and

Ealing (Hanger Lane Gyratory)), which sometimes displayed effects that differed

from the consensus. For example, in 2011, 2014 and 2017, while the majority of

sites experienced decreased NO2 and NOG concentrations due to meteorology,

these sites were affected less. In 2016, while the majority of sites experienced

increased NO2 concentrations, these sites showed decreased NO2 concentrations

due to meteorology. As previously discussed, this is likely due to the relatively

weaker influence of meteorology compared to emissions at these highly polluted

roadside locations, as well as hyper-localised meteorology and street canyon

effects.

For O3, in 2008, 2010 and 2012, sites with low concentrations were less affected

by meteorology (shallower slope). In contrast, in 2011 and 2017, sites with low

concentrations were more affected by meteorology. For all other years, the slopes
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were almost linear, indicating a similar influence of meteorology on all sites,

regardless of their level of pollution.

The mean concentrations of NOG and NO2 at a site are (negatively) correlated

with the NO2/NOG ratio (because sites with low NO2/NOG ratios tend to be

characterised by strong traffic sources, which tend to result in high emissions and

therefore high ambient concentrations of NOG and NO2), and therefore the results

of the CUSUM analysis ordered by NO2/NOG ratio are similar to those of the

analysis ordered by mean concentration for NO2 and NOG .

For O3, several of the CUSUM plots (2011, 2012, 2013, 2014, 2015) exhibit a

curved shape, with the slope of the plot generally (except for 2013) greater for

sites with high NO2/NOG ratio than low NO2/NOG . This indicates that the effect

of meteorology on O3 concentration is greater for sites with less influence from

traffic sources (more ‘background’ sites).

More variation in the effect of meteorology was observed when the sites were

ordered geographically. As with previous orderings, the CUSUM plots for NO2

and NOG tend to mirror each other fairly closely, and will therefore generally be

discussed together.

In 2008, the meteorology had little effect on sites in the north and south of the

UK, however it caused strong decreases in the concentrations at sites in the middle

of the UK. O3 concentrations were elevated across most sites, with the exception

of several sites in the centre of the UK, which showed decreased concentrations.

NO2 and NOG concentrations were elevated in the east, and depressed in the

centre and west. O3 concentrations were elevated across most of the UK, with the

exception of a few sites in the centre, which showed reduced O3.

In 2009, elevated NOG and NO2 concentrations were observed at all sites, but

particularly pronounced effects were observed for sites in the north and south,

with less effect on central sites. O3 concentrations were consistently lowered, with

little variation either with latitude or longitude.

2010 was marked by highly elevated concentrations of NOG and NO2 at all

sites, although the effect seemed to be slightly stronger at sites in the north and

the west. Stronger effects of meteorology on O3 were seen at sites in the east and

west, with reduced effect in the centre. The Met Office described 2010 as “a year

that was colder, drier and sunnier than average in most areas, particularly in the

west.” (Met Office, 2019) More extreme meteorology in the west of the country

resulted in a greater effect on ambient concentrations.

In 2011, the decrease in NO2 and NOG concentrations, as well as the increased
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O3 concentrations, were observed at all sites, but were stronger in the south and

east. O3 concentrations were elevated at most sites, except a few sites in the east.

The Met Office observed that in 2011, there was “a pronounced north-west to

south-east gradient in rainfall with higher rainfall in the north-west, while drier

than average in central, eastern and southern England” (Met Office, 2019).

An s-shapewas observed for the 2012CUSUMs,with the strongest effects ofme-

teorology observed in the centre of the UK (both latitudinally and longitudinally)

for all pollutants.

In 2013, meteorology had little effect on NO2 concentrations in northern sites,

while NOG concentrations were decreased. In contrast, central and southern

sites exhibited elevated concentrations of NO2. Central sites, as well as the most

southern sites showed little effect on NOG , while centre-southern sites showed

that meteorology caused increased NOG concentrations. O3 concentrations were

most increased in the north, with smaller effects observed in the south. Sites in

the east showed the strongest elevating effects of meteorology on NOG and NO2.

Sites in central and western UK showed lowered NOG concentrations. Generally,

however, the meteorology in 2013 had a limited effect on concentrations. This is

corroborated by the Met Office, which describes the meteorology as “generally

near average and unremarkable” (Met Office, 2019).

In 2014, most sites showed decreased NO2 and NOG concentrations, with the

greatest decreases at northern and western sites (and far eastern sites), however, a

few central sites showed increasedNO2 concentrations. O3 concentrationswere rel-

atively average at northern sites, with elevatedO3 at central and southern/western

sites.

In 2015, the effects on meteorology on all pollutant concentrations were

relatively consistent. A slightly greater effect on NO2 and NOG concentration was

observed for southern sites than northern.

In 2016, greater elevations of NO2 and NOG concentration, as well as greater

depressions in O3 concentration were observed for southern sites, with a levelling

off observed for the very most southern sites. The Met Office records that rainfall

was lower than average in the south of the UK in 2016, possibly indicating the

presence of anticyclonic conditions that led to build up of primary pollutants (Met

Office, 2019).

In 2017, northern and western sites showed greater effects of meteorology on

NOG and NO2 concentrations, while O3 concentrations were relatively average

at northern and western sites, and depressed in central/southern and eastern

locations. The Met Office notes that the “north-east England sunniest relative
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to average . . . it was rather drier across central and northern Scotland and many

central and southern parts of England, but somewhat wetter in west Wales and

north-west England. Sunshine was above average in the north and east, but

slightly below average in some western fringes” (Met Office, 2019). The high

rainfall in the north-west could have contributed to the greater decreases in NOG

and NO2.

Figure 4.13 summarises the results of the CUSUM analysis (with sites ordered

by mean NO2 concentration) for all three pollutants. The slope of the CUSUM

plot represents the average per-site deviation from the average concentration, due

to the meteorology experienced in that year. A positive slope indicates that the

meteorology experienced in that year resulted in a higher-than-average ambient

concentration of the pollutant in that year, while a negative slope indicates the

reverse. The years on the x-axis are ordered by increasing slope of the NO2

CUSUMs for clarity.
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Figure 4.13: Summary of the results of the CUSUM analysis for NO2, NOG and O3- the

Theil-Sen slope of the CUSUM plot (ordered by mean pollutant concentration), which

represents the average by-site deviation of the concentration due to meteorology from the

average concentration 2008-2017. The meteorological years are ordered by their effect

on the ambient NO2 concentration, from the year which caused the largest decrease in

NO2 concentration on the left, to the year whose meteorology resulted in the greatest

elevations of NO2 concentration on the right.
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Figure 4.13 makes three points apparent. First, that the meteorology in 2015,

2011, 2014, 2017 and 2008 resulted in decreased concentrations of NO2 and NOG ,

while that in 2009, 2013, 2016, 2012 and 2010 resulted in elevated concentrations

of these pollutants. The meteorology caused decreased concentrations of ozone in

2017, 2009, 2016, 2012 and 2010 and increased concentrations in 2015, 2011, 2014,

2008 and 2013.

Second, that with the exception of the years 2017 and 2013, in all years the

meteorology produces opposite effects on the concentrations of NO2 and NOG to

that of O3. For example, a year inwhichmeteorology resulted in elevatedNOG and

NO2 concentrations generally also resulted in decreased O3 concentrations, and

vice versa. In 2017, however, the meteorology caused decreased concentrations of

all pollutants, while in 2013 it drove elevated concentrations of all pollutants.

Third, that 2010 stands out as a year inwhich themeteorology had a particularly

dramatic effect on ambient concentrations of air pollutants, resulting in an average

increase of 1.8 µg m
−3

in NO2, an average increase of 6.85 µg m
−3

in NOG , and an

average decrease of 2.2 µg m
−3

at each monitoring site.

4.3.3 TheRelationshipbetweenAmbientConcentration andAn-
nual Meteorology

The year-to-year variations in air pollutant concentrations can be interpreted

in terms of the inter-annual variations in meteorology. For this purpose, the

relationships between meteorology and pollutant concentration were investigated

inmore detail, in order to ascertain the specificmeteorological patterns responsible

for driving the observed variation in the annual average concentrations of the

pollutants. Figure 4.14 shows the values of each of the meteorological variables

used inmodel training, as a function of the Julianday, for each year analysed. These

annual distributions are compared to the average daily values of themeteorological

variables over all years in the analysis (i.e. the ‘average’ meteorological conditions),

which are shown by the yellow lines in Figure 4.14. The information in Figure

4.14 was supplemented with information from the Met Office annual climate

summaries (Met Office, 2019).
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Figure 4.14: A comparison of the average UK meteorological conditions (air temperature,

air pressure, relative humidity, dew point, wind speed, wind direction and visibility) as a

function of the Julian day in each year 2008–2017 (purple smooth lines) and the average

UK meteorological conditions over the entire ten-year period (yellow smooth lines). All

hourly data used as predictors during random forest model training were averaged to

daily data, and the line represents a loess smooth through the daily averages. The shaded

band represents the 95% confidence interval around the loess smooth.

2010 and 2012 exhibited significantly elevated concentrations of NO2 and

NOG due to the meteorology in those years. 2010 was described by the Met

Office as exhibiting “Prolonged periods with blocked weather patterns, and an

associated absence of westerly airstreams, resulted in a year that was colder,

drier and sunnier than average in most areas, particularly in the west.” 2012 was

described as having an “exceptionally wet period for most of the country from

April lasting through much of the summer.” The Met Office also mentions that

“It is worth noting that only 2 years (2010 and 2012) of the last 16 have had annual

temperatures below this average.” (Met Office, 2019) From this, as well as from

Figure 4.14, it can be seen that both 2010 and 2012 were characterised by cold
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temperatures and low dispersion conditions in the winter. This resulted in higher

concentrations of primary pollutants and pollution episodes, due to the lack of

mixing. The low temperatures were also likely responsible for slower production

of secondary ozone, resulting in the observed decreased ozone concentration due

to meteorology in these years.

In contrast, the years 2011, 2014 and 2015 showed lowered NOG and NO2

concentrations, and elevated O3 concentrations due to meteorology. These years

were characterised by warmer than average temperatures, high rainfall and high

dispersion conditions (wet and windy) in the winter. The Met Office records

that 2011 was “the second warmest year in the series from 1910”, in 2014 “all

months except August were warmer than average, and this was the warmest year

on record for the UK. It was also wetter than average for many locations, . . . the

winter storms of January and February, which brought damaging winds, with

inland and coastal flooding.” 2015 was described as “The summer was rather

cool and wet, but early autumn provided fine, sunny weather as compensation.

However from late autumn a succession of Atlantic storms brought exceptional

rainfall to the north and west, causing widespread severe flooding to many towns

and cities . . . The UK mean temperature was 9.2 °C, 0.4 °C above the 1981–2010

long term average . . . The UK rainfall total was 1272 mm, 110% of the 1981–2010

average and seventh-wettest in the UK series” (Met Office, 2019). The wet and

windy weather indicates that low pressure cyclonic conditions dominated in these

years, leading to increased dispersion of atmospheric pollution.

The Met Office described 2013 as “A late winter and exceptionally cold spring,

with unseasonably late snowfalls, lead into a warm and sunny summer. October

and December sawAtlantic storms that brought rain and at times very high winds,

causing widespread disruption.” (Met Office, 2019) This is corroborated by Figure

4.14, which shows lower-than-average temperatures in the spring and higher

than average temperatures in summer, as well as high wind speeds in spring and

winter (November - December). This mix of high and low dispersion conditions

throughout the year likely contributed to the mixed effects on air quality observed

in the CUSUM plots for 2013 (p-values were often >0.05, especially for NOG ,

indicating no significant effect of meteorology on concentrations).

The meteorology in 2017 resulted in lowered concentrations of NOG , NO2 and

O3. This year was marked by warmer than average temperatures, and average

rainfall. It was sunnier than average, with a weather event characterised by

particularly high temperatures and sunshine in June. The Met Office described it

as “The year as a whole was rather warmer than average for the UK . . . 2017 was
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a slightly sunnier than average year for the UK as a whole . . . Notable extreme

weather events during the year included Storm Doris in February and flash

flooding in Coverack, Cornwall in July; autumn and early winter saw occasional

notable storm systems . . . The hot spell in June saw the highest temperatures in

that month for over 40 years, and, unusually, brought temperatures above 30 °C
somewhere in the UK five days in a row.” (Met Office, 2019) The weather events

could have contributed to the lowered concentrations of primary pollutants, as they

may have resulted in increased dispersion. The warm temperatures may also have

prevented winter blocking episodes from causing pollution episodes. However,

since warm, sunny conditions increase the rate of secondary ozone production, it

is unexpected that the year would exhibit lowered ozone concentrations.

4.4 Conclusions and Future Directions

Inter-annual variations in meteorology were found to have a considerable effect

on ambient concentrations of NO2, NOG and O3. On average, the range of the

annual average concentrations of these species due to meteorological variation

was 2.9 µg m
−3

(8.2%) for NO2, 9.9 µg m
−3

(12.6%) for NOG and 3.3 µg m
−3

(7.5%)

for O3.

This uncertainty caused by meteorological variation has implications for the

evaluation of compliance with EU limit values. The EU limit value for the annual

average NO2 concentration is 40 µg m
−3
. Of the 173 monitoring sites included in

the analysis, an average of 54.8 sites exceeded this value in any given year. The

average number of ‘marginal’ sites for which the EU limit value for annual mean

NO2 concentration lay within the range resulting from meteorological variation

was 12.1, or 22% of the number of sites exceeding the limit value. In total, 44

monitoring sites were ‘marginal’ in at least one year over the period of analysis, or

25% of the total number of sites. In other words, in any given year, the compliance

of around 22% of the monitoring sites was dependent on the meteorology in

that year. For example, a marginal site may be ‘compliant’ with the EU limits in

a year in which meteorology acts to reduce the concentration of NO2, while it

may exceed the limit value in a year in which meteorology has the reverse effect.

Whether or not the site exceeds the limit value is, under these circumstances,

dependent on variations in the local weather, which is clearly counter to the aim

of compliance monitoring.

The heatmaps and CUSUM analysis showed that the meteorology in 2015,

2011, 2014, 2017 and 2008 resulted in decreased concentrations of NO2 and NOG
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for the majority of UK monitoring sites, while that in 2009, 2013, 2016, 2012

and 2010 resulted in elevated concentrations of these pollutants. In most years,

meteorology produced opposite effects on the concentration of O3 to that of NO2

and NOG , with decreased concentrations of ozone in 2017, 2009, 2016, 2012 and

2010 and increased concentrations in 2015, 2011, 2014, 2008 and 2013.

2010 stands out as a year in which the meteorology had a particularly dramatic

effect on ambient concentrations of air pollutants, resulting in an average increase

of 1.8 µg m
−3

in NO2, an average increase of 6.9 µg m
−3

in NOG , and an average

decrease of 2.2 µg m
−3

at each monitoring site.

Low dispersion, anticyclonic conditions characterised by cold temperatures

and low dispersion conditions in the winter were responsible for driving elevated

concentrations of NOG and NO2, and lowered concentrations of O3, as a result of

a lack of mixing of primary pollutants (with long periods of stability sometimes

resulting in pollution episodes), and slower production of secondary ozone.

High dispersion, cyclonic conditions characterised by warmer than average

temperatures, high rainfall and high dispersion conditions (wet and windy) in

the winter, on the other hand, resulted in decreased concentrations of NO2 and

NOG , and usually elevated concentrations of ozone.

In general, different monitoring sites exhibited similar dependencies on

meteorology. However, some of the most polluted roadside monitoring sites

exhibited slightly different effects from meteorology, possibly due to the weaker

dependence of the ambient concentration on meteorology, or the inability of the

meteorologicalmeasurements to represent the hyper-local conditions oftenpresent

at such sites. In addition, the CUSUM plots were able to reveal geographical

differences in the effects of meteorology on ambient concentrations, resulting

from differences in local meteorology across the UK. The detailed interpretation

of these spatial differences may be the target of future work.

4.4.1 Implications for Compliance Monitoring and Air Quality
Modelling

The results of the analysis, and the considerable influence that meteorology was

found to have upon the annual average concentrations of NO2, NOG and O3,

suggest that the annual mean is not a robust means of assessing compliance.

A more robust metric would be able to provide information about the level of

pollution at the monitoring site without being sensitive to inter-annual variations

in local meteorology. One possible method could involve the use of the random
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forest methodology to ‘de-weather’ the ambient data. The annual average de-

weathered concentration, or the three-year rolling mean, could then be assessed

against a limit value. Alternatively, the trend in the ambient concentration, rather

than the annual mean, could be assessed.

However the use of these methods would necessitate greater computational

resource and specialist knowledge than a simple average. Furthermore, a greater

amount of data would be required – ideally the model would be trained using at

least three years of data.

Meteorology appears to have exerted the most extreme effects on ambient

concentrations of NO2, NOG and O3 in 2010, 2015, 2011, 2014, 2012, 2016 and 2017.

These years are therefore likely to lead to biased results if used as baseline years

in air quality modelling. For example, the use of 2015 as the baseline year would

yield an overly-optimistic view of air quality. A more appropriate choice for a

baseline year would be one of the years in which meteorology exerted the smallest

influence on concentrations, such as 2008, 2009, or 2013.

4.4.2 Future Directions

In addition to analysis of spatial differences in the effects of meteorology on air

quality, and the identification of more robust methods for assessing compliance,

future work may also focus on quantifying the range imposed by inter-annual

variations in meteorology on the concentrations of other important regulated

species, such as PM10 and PM2.5. Like NO2, annual mean concentrations are

used to measure compliance with limit values for both of these pollutants, and

therefore may also be sensitive to these effects.

Futureworkmay also focus on the development and application of the CUSUM

methodology. For example, different monitoring site orderings of the CUSUM

plots, such as altitude for ozone, may also reveal additional information. The

method, combined with a geographical ordering, also has the potential to reveal

patterns in the spatial distributions of pollutant concentration, and changes in the

concentration, which may otherwise not be easy to visualise.
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5. Conclusions & Future Directions

Air pollution is arguably the world’s largest environmental health threat. In 2016,

91% of the global population were living in places where air pollution exceeded

the World Health Organisation’s guidelines (WHO, 2020b). In Europe alone,

exposure to PM decreases the life expectancy of each person, on average, by

almost 1 year (WHO, 2020a).

Clearly, it is vitally important to implement technologies, policies and be-

havioural changes that reduce the emissions of air pollutants. But emissions are

only part of the story. The complexity of atmospheric chemistry, the unpredictable

influence of meteorology, and the potential for error in accounting for emissions

(as emphasised by the recent Volkswagen emissions scandal (Lewis et al., 2015))

means that it is equally important to carefully monitor and analyse ambient air

quality and human exposure.

In this thesis, several statistical techniques have been developed and applied

to routine ambient monitoring data collected in the UK to overcome some of the

difficulties associated with the data set and to extract further insight. In particular,

these techniques have focused on the analysis of data from networks of monitoring

sites, in order to obtain information about large-scale influences on air quality

such as the effects of changes in vehicle emissions.

The problems associated with conducting trend analysis on a large scale using

networks of multiple monitoring sites with time series of differing lengths were

examined in Chapter 2, and the rolling change method was developed in response

to these issues. The efficacy of the method was established using simulated data,

and by comparing its results with those obtained using standard methods and

the results of other studies.

The rolling change method was used to analyse the long term trends in the

roadside concentrations of NOG , NO2 and PM10, as well as the NO2/NOG ratio,

between 2000 and 2017 across Scotland and the UK. Similarly shaped trends were

observed at each scale. NOG concentrations decreased monotonically throughout
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the period of study, and after an initial period of stability or slight increase,

NO2 concentrations also declined monotonically. These changes are most likely

the result of the introduction of vehicle exhaust technologies aimed at reducing

emissions of these species, such as three-way catalysts on petrol vehicles, and

Lean NOG Traps (LNT) and Selective Catalytic Reduction (SCR) on diesel vehicles.

The initial increase in NO2 concentration was probably the result of increased

vehicular emissions of NO2, due to the introduction of Diesel Oxidation Catalysts

(DOC) and Diesel Particulate Filters (DPF) to diesel vehicles, which deliberately

oxidise NO to NO2 for use in the oxidation of other pollutants, such as CO,

hydrocarbons and particulate matter. The increase in the proportion of diesel

vehicles in the vehicle fleet during this time could also have been a contributing

factor.

The NO2/NOG ratio increased until around 2010, before decreasing. This

initial increase can be explained by slower decline in the NO2 concentration than

in the NOG concentration, resulting from the introduction of DOC and DPF, as

previously described. The decrease in NO2/NOG ratio observed since around

2010 is likely the result of a combination of factors, including the modification of

vehicle emission after-treatment systems to no longer over-produce NO2, and a

decrease in the NO2/NOG ratio of diesel vehicle emissions as the vehicle mileage

increases, an effect that has recently been observed in vehicle emission remote

sensing measurements (Carslaw et al., 2019).

The PM10 concentration was initially relatively constant, before declining. This

decline can be linked to the fitting of many Euro 4 vehicles, and all post-Euro 5

vehicles, with diesel particulate filters (DPF).

While the shapes of these trends were very consistent across different scales

and locations, the timing of the turning points occasionally differed. The turning

points in Scotland generally occurred later than those across the whole UK,

indicating that the decline in the vehicular emissions of these species began later

than average. This could be due to differences in the vehicle fleet in Scotland

compared with London and the UK.

The development of the rolling change method is timely given that low cost

sensor networks are increasingly being used to monitor air quality. These sensors

tend to be less reliable than traditional monitoring sites, as well as being more

portable, and therefore such networks are even more vulnerable to the problems

associated with site flux. As such, the rolling change method could be valuable

in analysis of trends using data from these networks. Moreover, the issue of

aggregating data from time series of differing lengths is not exclusive to the
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analysis of air quality data. The method could find application in any discipline

dealing with multiple time series of differing lengths.

To facilitate the use of the rolling change method, an open source R package

named aqtrendswas developed. The package contains a function that outputs

the rolling trend for a given data set input. More details about aqtrends is given

in Appendix III.

In Chapter 3, random forest models were used tomodel ambient air quality as a

function of background concentrations, local meteorology and temporal variables

was investigated. The models were used to remove the influence of confounding

factors enabling a clearer view of the trends in air pollutant concentration. The

de-weathered trends in the concentrations of NOG , NO2 and PM10 at three London

monitoring sites (Marylebone Road, Camden Kerbside and Cromwell Road)

between 2000 and 2017 were calculated.

At all three sites, PM10 concentrations decreased from 2007, coincidingwith the

penetration of Euro 4 vehicles (which were the first to be fitted with DPF) into the

fleet. The eventual levelling off of the PM10 concentration observed at one site was

possibly due to saturation of the fleet with Euro 4 and above vehicles. However,

any interpretation must consider the difficulty of analysing PM10 concentrations,

even when meteorology is accounted for, due to the numerous other sources that

may affect the concentration. For this reason, it may be advantageous to focus on

specific PM components, such as black carbon or particle number, in future work.

The trends in NOG concentration differed between the sites, possibly due

to local influences. NO2 concentrations were found to generally decrease, in

consistency with decreases in vehicle emissions from the introduction of Euro 4

and 5 vehicles.

An investigation of the effects of the implementation of the London LEZ on

the ambient roadside concentration of PM10 at a number of London monitoring

sites was also conducted, using the random forest models to model air pollutant

concentrations as a function of local conditions, as well as an additional indicator

variable representing the stage of the intervention (Phase 0 indicating the period

prior to the implementation of the LEZ, through to Phase 3, the final and most

restrictive phase of the LEZ). De-weathered trends were calculated for each value

of the indicator variable (i.e. for each stage of the intervention), in order to

generate counter-factual scenarios representing the trends that would have been

observed had a single phase of the intervention been in force throughout the

duration of the period. The resulting trends indicated that, while all sites showed
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a decrease in PM10 concentration between the ‘no LEZ’ and ‘final phase LEZ’

scenarios, the results of the consecutive phases were more mixed, with some sites

showing increases in PM10 concentration for Phases 1 and 2. The fact that no clear

evidence of any impact on air quality due to the LEZ despite the sensitivity of the

method suggested that the raw data used in this analysis is insufficient to detect

the changes. Inclusion of further data in future analyses, as well as considering

the increment about background concentration rather than raw concentration,

may produce more definitive insights in future work. Additionally, the earlier

comments regarding the advantages of using specific PM components also apply

here.

Similar methodologies could be used in the future to analyse other interven-

tions and drivers of changes in air quality. For example, much has been made

recently of the improvements in air quality in urban areas that accompanied

the Covid-19 lockdown (He et al., 2020). The methods described in Chapter 3

would be well-suited to assessment and quantification of the ‘true’ impact of the

lockdown, independent of the effects of other confounding factors.

In Chapter 4, the effects of inter-annual meteorological variation on the annual

mean concentrations of NOG , NO2 and O3 were estimated and quantified using

a variation of the de-weathering method described in Chapter 3. Inter-annual

variations in meteorology were found to have a considerable effect on ambient

concentrations of NO2, NOG and O3. On average, the range of the annual average

concentration due to meteorological variation was 2.9 µg m
−3

(8.2%) for NO2, 9.9

µg m
−3

(12.6%) for NOG and 3.3 µg m
−3

(7.5%) for O3.

These results have implications for compliance monitoring. Compliance

with EU limit values for some pollutants, such as NO2, is evaluated using the

annual mean metric. For example, the EU limit value for the annual average NO2

concentration is 40 µgm
−3
. Of the 173monitoring sites included in the analysis, an

average of 54.8 sites exceeded this value in any given year. The average number of

‘marginal’ sites for which the EU limit value for annual mean NO2 concentration

lay within the uncertainty resulting from meteorological variation was 12.1, or

23% of the number of sites exceeding the limit value. In total, 44 monitoring sites

were marginal in at least one year over the period of analysis, or 25% of the total

number of sites. In other words, in any given year, the compliance of around 23%

of the monitoring sites was dependent on the meteorology in that year. These

findings suggest that the annual mean metric is not a robust way for measuring

compliance, as whether or not a site is found to be compliant in any given year is
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often dependent on the weather experienced during that year.

CUSUM plots and heatmaps proved to be an effective way of visualising

differences in the effects of meteorology on air pollutant concentration across

a monitoring network of sites. These tools enabled both the visualisation of

differences in the effects on concentration between meteorological years, and

differences in the effects on concentration within years across the network based

on the ordering variable, e.g. latitude or longitude.

A useful feature of the CUSUM analysis is the ability to order the monitoring

sites by different variables, such as the mean concentration, NO2/NOG ratio,

latitude and longitude, revealing subtleties in the relationships between meteo-

rology and air quality across the individual sites. In general, most monitoring

sites exhibited similar dependencies on meteorology, however, some of the most

polluted roadside monitoring sites exhibited slightly different effects from meteo-

rology, possibly due to the weaker dependence of the ambient concentration on

meteorology, or the inability of the meteorological measurements to represent

the hyper-local conditions often present at such sites. In addition, the CUSUM

plots were able to reveal geographical differences in the effects of meteorology on

ambient concentrations, resulting from differences in local meteorology across

the UK. These tools may be useful in conducting or interpreting future analyses

of monitoring networks.

5.1 Future Directions

The work described in this thesis could be developed in several ways.

In the future, the rolling change method may be applied to extract insight

regarding large scale trends in air pollution at many different scales, and in

different locations. The problem of site flux is common in air quality monitoring

networks worldwide, and the rolling change method could enable long term trend

analysis in sparse monitoring networks without many, or any, long running sites.

The aqtrends R package was created to facilitate the use of the method in future

work (Lang, 2018).

Additionally, future work might extend the rolling change method to include

estimates of uncertainty in the trend.

In Chapter 4, the range imposed by the inter-annual meteorological variation

on the concentrations of air pollutants was only calculated for NOG , NO2 and

O3. Future work may extend the analysis by also considering other important

regulated species, such as PM10 and PM2.5. Since annual mean concentrations are
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also used to measure compliance with limit values for both of these pollutants, it

would be important to quantify the sensitivity of their mean values to inter-annual

variations in meteorology.

Further development and application of the CUSUM methodology might

also be a promising avenue for future studies. For instance, when ordering

monitoring sites by geographical location, it could be a valuable visualisation

tool for revealing patterns and changes in the spatial distributions of pollutant

concentrations. Furthermore, the method offers great flexibility in the choice

of variables by which to order the monitoring sites. In the work conducted in

Chapter 4, variations in concentration across the network of monitoring sites were

only considered as a function of mean concentration at the site, average NO2/

NOG ratio (relative contribution from the traffic source), latitude and longitude.

However, the use of different variables, such as altitude, by which to order the

sites, could reveal more insights.

Given the conclusions of the work in Chapter 4, that inter-annual variations

in meteorology exert a considerable influence on compliance or exceedance

with annual mean concentration limits at many UK monitoring sites, more

thought should be given to alternative ways of measuring compliance. For

example, using a rolling mean to measure NO2 concentration. Future work could

attempt to ascertain whether different metrics reduce the influence of inter-annual

meteorological variation.
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A. Appendix I: Algorithm for
Chapter 2

The algorithm for the rolling change method described in Section 2.2.2 is as

follows:

1. Choose the time range over which to calculate the trend, and the value of

the rolling window width, =.

2. Initialise ΔH1 as the average of the annual average concentrations of all

monitoring sites in the first year, H1.

3. Identify the moving window, 8, as the time period G1, ..., G1+(=−1).

4. Select the vector of dates encapsulated by the moving window, -8 .

5. Filter the concentration data to include only data from sites with ≥ 90% data

capture over themovingwindow. The result will be a vector of concentration

values of length =, .8 .

6. Fit a linear regression model to the filtered concentration data, (-8 , .8), as in

Equation 2.1.

7. Calculate the concentration change over the moving window using the

regression coefficient, �8 , and the concentration change of the previous

window, ΔH8−1 using Equation 2.2.

8. Assign the concentration change, ΔH8 , to the median date of the rolling

window, G8 .

9. Slide the moving window by one time point towards the end of the time

range.

10. Repeat Steps 4-9 until the moving window reaches the end of the time range.
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11. The rolling change trend is ΔH8 as a function of G8 over all 8 (i.e. the entire

time range), as shown in Equation 2.3.
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B. Appendix II: Supplementary
material for Chapter 2

Table B.1 contains information about the London roadside monitoring sites

measuring NOG and NO2 between 2000 and 2017 that were used in the trend

analysis described in Section 3.2.
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Table B.1: Metadata for London roadside monitoring sites used in the analysis. The mean

and standard deviation of the hourly NOG and NO2 concentration data measured by each

site during the period of 2000 to 2017 is also shown. Monitoring sites were selected as

those within the bounding box of coordinates 51.25
o
N, 51.71

o
N, -0.54

o
E, 0.28

o
E. The data

was sourced from the AURN, LAQN and AQE networks.

site code site name latitude longitude altitude network id [NOG ] (µg m
−3

) [NO
2
] (µg m

−3
)

mean SD mean SD

A3 London A3 Roadside 51.37 -0.29 32.00 aun 173.00 144.00 60.70 30.90

A30 Kingston - Kingston Bypass A3 51.37 -0.29 27.89 laqn 173.00 144.00 60.60 30.80

BG3 Barking and Dagenham - North Street 51.54 0.07 6.29 laqn 102.00 106.00 49.70 29.00

BN1 Tally Ho 51.61 -0.18 aqe 167.00 113.00

BN2 London Barnet Chalgrove School 51.59 -0.21 aqe 62.70 87.90 33.50 22.70

BRN Brentford Roadside 51.49 -0.31 15.00 aun 151.00 133.00 53.80 29.60

BT2 Brent - Ikea Car Park 51.55 -0.26 31.69 laqn 296.00 205.00 67.30 28.80

BT3 Brent - Harlesden 51.54 -0.25 48.64 laqn 118.00 99.10 52.50 27.10

BX7 Bexley - Thames Road North 51.46 0.20 8.25 laqn 101.00 106.00 42.40 23.30

BX8 Bexley - Thames Road South 51.46 0.19 9.02 laqn 84.50 94.70 39.10 25.40

BY2 London Bromley 51.41 0.02 50.00 aun 105.00 89.10 49.40 24.80

BY7 Bromley - Harwood Avenue 51.41 0.02 65.19 laqn 98.60 84.10 48.60 24.80

CA1 Camden Kerbside 51.54 -0.18 50.00 aun 182.00 148.00 69.80 37.20

CD1 Camden - Swiss Cottage 51.54 -0.18 57.25 laqn 182.00 148.00 69.50 37.20

CD2 Camden API 51.54 -0.18 57.13 laqn 96.70 83.00 54.80 38.60

CD3 Camden Shaftesbury Avenue 51.51 -0.13 aqe 169.00 109.00 76.60 29.40

CD9 Camden - Euston Road 51.53 -0.13 22.55 laqn 325.00 210.00 100.00 46.30

CR2 Croydon - Purley Way 51.36 -0.12 52.85 laqn 141.00 109.00 45.40 24.10

CR4 Croydon - George Street 51.37 -0.10 58.38 laqn 108.00 87.00 51.50 26.80

CR5 Croydon - Norbury 51.41 -0.12 36.46 laqn 184.00 157.00 64.70 39.10

CR7 Croydon - Purley Way A23 51.36 -0.12 54.95 laqn 84.20 72.90 33.40 19.40

CR9 Croydon - Park Lane 51.37 -0.10 58.60 laqn 137.00 114.00 49.80 29.40

CRD2 London Cromwell Road 2 51.50 -0.18 20.00 aun 181.00 111.00 75.10 28.40

CT6 City of London - Walbrook Wharf 51.51 -0.09 21.08 laqn 343.00 281.00 112.00 49.70

CY1 Crystal Palace - Crystal Palace Parade 51.42 -0.08 109.46 laqn 122.00 99.40 48.40 25.00

EA2 Ealing - Acton Town Hall 51.51 -0.27 17.71 laqn 143.00 131.00 57.00 30.70

EA6 Ealing - Hanger Lane Gyratory 51.53 -0.29 37.51 laqn 301.00 235.00 86.10 44.30

EI1 Ealing - Western Avenue 51.52 -0.27 30.09 laqn 159.00 132.00 62.80 31.00

EI2 Ealing - Southall Railway 51.51 -0.38 31.49 laqn 84.30 83.90 34.80 20.10

EL2 Elmbridge - Esher High Street 51.37 -0.36 31.78 laqn 114.00 97.20 47.70 25.70

EL3 Elmbridge - Hampton Court Parade 51.40 -0.34 8.92 laqn 155.00 124.00 55.60 27.40

EN2 Enfield - Church Street 51.65 -0.08 29.51 laqn 85.60 87.20 42.60 23.10

EN4 Enfield - Derby Road 51.61 -0.05 10.97 laqn 104.00 101.00 46.20 21.50

EWE2 Ewell High Street 51.35 -0.25 aqe 44.80 26.90

FA1 Team London Bridge - Tooley Street FASQ 51.50 -0.08 4.17 laqn 62.60 33.70

GB6 Greenwich and Bexley - Falconwood 51.46 0.09 64.45 laqn 120.00 123.00 46.00 31.50

GN0 Greenwich - A206 Burrage Grove 51.49 0.07 8.76 laqn 89.80 96.60 45.80 27.60

GN3 Greenwich - Plumstead High Street 51.49 0.10 12.20 laqn 80.90 76.80 39.70 25.20

GN4 Greenwich - Fiveways Sidcup Rd A20 51.43 0.06 55.69 laqn 128.00 114.00 48.90 29.40

GR5 Greenwich - Trafalgar Road 51.48 -0.00 7.01 laqn 96.60 82.10 47.30 25.10

GR7 Greenwich - Blackheath 51.47 -0.01 21.73 laqn 113.00 92.50 46.40 24.60

GR8 Greenwich - Woolwich Flyover 51.49 0.02 3.82 laqn 221.00 176.00 70.90 36.70

GR9 Greenwich - Westhorne Avenue 51.46 0.04 30.26 laqn 102.00 114.00 43.40 26.80

HB102 Broxbourne 51.68 -0.03 aqe 46.30 26.10

HB126 Watford Roadside 51.66 -0.40 aqe 40.40 22.20

HF1 Broadway 51.49 -0.22 aqe 221.00 156.00 76.80 37.70

HF4 Shepherd’s Bush 51.50 -0.22 aqe 80.00 36.30

HFY Hammersmith and Fulham - Talgarth Road B 51.50 -0.08 4.17 laqn 61.20 35.00

HG1 Haringey Roadside 51.60 -0.07 10.00 aun 96.20 90.90 44.00 22.10

HG3 Haringey - Bounds Green 51.61 -0.12 47.90 laqn 125.00 131.00 51.50 26.60

HI1 Hillingdon 1 - South Ruislip 51.55 -0.40 aqe 121.00 117.00 46.00 26.40

HIL5 London Hillingdon Hayes 51.50 -0.41 30.00 aqe 47.30 26.10

HK6 Hackney - Old Street 51.53 -0.08 16.98 laqn 147.00 86.60 62.80 24.40

HR2 Harrow - Pinner Road 51.59 -0.36 52.40 laqn 111.00 107.00 46.10 27.40

HS1 Hounslow Roadside 51.49 -0.31 15.00 aun 144.00 137.00 54.50 25.70

HS2 Hounslow Cranford 51.48 -0.41 aqe 68.30 86.80 35.90 22.30

HS6 Hounslow Heston 51.48 -0.36 aqe 123.00 108.00

HS8 Hounslow Gunnersbury 51.50 -0.28 2.00 aqe 172.00 136.00 57.20 31.40

HV1 Havering - Rainham 51.52 0.21 8.10 laqn 83.00 88.20 39.40 23.40

HV3 Havering - Romford 51.57 0.18 14.37 laqn 88.70 92.10 39.70 22.00

IM1 Camden - Holborn (Bee Midtown) 51.52 -0.12 27.28 laqn 235.00 178.00 83.90 39.70

IS2 Islington - Holloway Road 51.56 -0.12 28.94 laqn 163.00 109.00 62.60 27.20

KC2 Cromwell Road 51.50 -0.18 aqe 167.00 108.00 70.30 28.60

KC3 Knightsbridge 51.50 -0.16 aqe 214.00 185.00 85.20 50.00

KC4 Chelsea 51.49 -0.17 aqe 219.00 144.00 86.60 38.70

KC5 Earls Court Road 51.49 -0.19 aqe 277.00 187.00 96.70 50.40
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site code site name latitude longitude altitude network id [NOG ] (µg m
−3

) [NO
2
] (µg m

−3
)

mean SD mean SD

KT4 Kingston Upon Thames - Tolworth Broadway 51.38 -0.28 25.17 laqn 127.00 120.00 51.20 28.10

LB1 Lambeth - Christchurch Road 51.44 -0.12 55.01 laqn 124.00 90.40 57.70 24.90

LB2 Lambeth - Vauxhall Cross 51.48 -0.13 5.44 laqn 131.00 90.10 59.70 22.00

LB4 Lambeth - Brixton Road 51.46 -0.11 12.67 laqn 478.00 298.00 171.00 98.40

LH7 T5 - Oaks Road 51.46 -0.48 22.48 laqn 67.00 84.80 35.50 25.10

LW2 Lewisham - New Cross 51.48 -0.04 13.02 laqn 133.00 106.00 55.40 32.00

LW4 Lewisham - Loampit Vale 51.46 -0.02 7.35 laqn 143.00 118.00 56.10 31.10

MY1 London Marylebone Road 51.52 -0.15 35.00 aun 309.00 219.00 97.30 48.60

MY3 Marylebone Road 51.52 -0.15 27.46 laqn 276.00 169.00 94.20 36.70

NB1 Westminster - Strand (Northbank BID) 51.51 -0.12 14.97 laqn 320.00 207.00 102.00 45.70

NM2 Newham - Cam Road 51.54 -0.00 6.23 laqn 107.00 101.00 51.30 24.20

RB2 Redbridge - Ilford Broadway 51.56 0.07 13.80 laqn 349.00 262.00 122.00 62.50

RB3 Redbridge - Fullwell Cross 51.59 0.09 29.20 laqn 147.00 122.00 60.00 33.60

RB4 Redbridge - Gardner Close 51.58 0.03 23.67 laqn 101.00 103.00 46.50 26.10

RB5 Redbridge - South Woodford 51.60 0.02 44.93 laqn 121.00 99.00 54.50 26.20

RHG Richmond Upon Thames - Chertsey Road 51.45 -0.34 9.53 laqn 95.00 111.00 39.50 26.00

RI1 Richmond Upon Thames - Castelnau 51.48 -0.24 5.59 laqn 80.90 82.70 40.50 23.80

SK2 Southwark Roadside 51.48 -0.06 10.00 aun 159.00 106.00 62.70 23.20

SK5 Southwark A2 Old Kent Road 51.48 -0.06 10.00 aun 121.00 128.00 49.40 34.00

ST1 Sutton - Robin Hood School 51.37 -0.20 41.85 laqn 108.00 100.00 40.90 24.80

ST4 Sutton - Wallington 51.36 -0.15 61.31 laqn 171.00 141.00 72.90 45.70

ST6 Sutton - Worcester Park 51.38 -0.24 30.84 laqn 136.00 124.00 54.60 33.00

SUT1 Sutton Roadside 51.37 -0.18 40.00 aun 108.00 100.00 41.10 24.90

TH2 Tower Hamlets Roadside 51.52 -0.04 20.00 aun 149.00 117.00 60.80 28.30

TH4 Tower Hamlets - Blackwall 51.52 -0.01 2.88 laqn 155.00 120.00 61.80 27.40

TK2 Thurrock - Purfleet 51.48 0.26 5.84 laqn 192.00 169.00 71.50 35.90

TK8 Thurrock - London Road (Purfleet) 51.48 0.26 6.18 laqn 176.00 166.00 59.90 30.50

VS1 Westminster - Victoria Street 51.50 -0.13 3.80 laqn 189.00 124.00 33.80 17.40

WA4 Wandsworth - High Street 51.46 -0.19 6.50 laqn 98.90 98.80 47.20 27.80

WA7 Wandsworth - Putney High Street 51.46 -0.22 10.23 laqn 330.00 254.00 133.00 89.30

WA8 Wandsworth - Putney High Street Facade 51.46 -0.22 9.73 laqn 255.00 192.00 104.00 64.30

WAA Wandsworth - Battersea 51.48 -0.14 4.25 laqn 88.30 76.90 41.70 21.90

WAB Wandsworth - Tooting High Street 51.43 -0.17 16.84 laqn 136.00 101.00 56.80 27.90

WAC Wandsworth - Lavender Hill (Clapham Jct) 51.46 -0.17 12.53 laqn 108.00 88.50 43.40 24.00

WF1 Watford (Roadside) 51.66 -0.40 76.15 laqn 80.40 79.60 40.20 22.20

WF2 Watford - Watford Town Hall 51.66 -0.40 75.98 laqn 69.10 62.90 37.10 21.40

WL3 Waltham Forest - Chingford 51.63 -0.02 18.40 laqn 63.50 76.80 32.20 20.20

WL4 Waltham Crooked Billet 51.60 -0.02 aqe 193.00 143.00

WL5 Waltham Forest Leyton 51.56 -0.01 aqe 96.50 118.00

WM4 Westminster - Charing Cross Library 51.51 -0.13 18.28 laqn 208.00 125.00 84.40 33.00

WM6 Westminster - Oxford Street 51.51 -0.15 24.78 laqn 353.00 266.00 112.00 69.10

ZR2 Dartford Roadside 2 - Town Centre 51.44 0.22 5.64 laqn 103.00 96.10 46.50 27.10

ZY2 Canterbury Roadside - St Dunstans 51.37 -0.29 27.40 laqn 82.90 76.40 36.70 24.70
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The robustness of the rolling change trend to different values of the moving

windowwidth, =was evaluated using data simulated using themethods described

in Section 3.1.

Figure B.1 compares the median, 10th worst and worst rolling change trends

from a sample of 100 trends to the ‘true trend’ for different values of the window

width, =. The percentage errors in the Theil-Sen slope were 26%, 15% and 8% for

= = 2, 3 and 5 respectively. The accuracy of the rolling change method increases

as the window width increases, however the amount of data filtered out also

increases. To achieve a reasonable balance between maximising the accuracy of

the rolling change trend, while maximising the amount of data retained in the

analysis, a window width of = = 3 was used in the following applications of the

method.
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Figure B.1: Comparison of the rolling change trend of simulated data calculated using

window widths = = 2, 3, and 5. The trend was calculated from 100 simulated time

series, which were randomly sampled 100 times from the ‘combined’ scenario.The lines

correspond to the trends with NCC equal to the 50th, 10th and 1th percentile of the NCC

distribution over all 100 sampled trends — in other words, the median trend, the 10th

worst trend and the worst trend, with respect to the similarity to the true trend.
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The increase in bias in site location towards more polluted sites over time in

the London roadside monitoring network was affirmed by comparing the median

annual ambient concentrations at roadside monitoring sites opening and sites

closing in a given year across the period studied, as shown in Figure B.2. The

difference between the average concentration at sites that are opening and those

that are closing is positive (i.e. greater in sites that are opening) over almost all

years for NOG and NO2. The cumulative sum of differences in concentration

between opening and closing sites demonstrates the compounding effect of the

bias over time. Weighting the cumulative sum of differences by the numbers of

sites opening and closing gives a further indication of the effect of the bias on the

average trend.
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Figure B.2: Difference (left), cumulative sum of differences (centre) and cumulative sum

of differences weighted by the number of sites opening and closing (right) in between the

average concentration of opening sites and closing sites in each year for (a) NOG , (b) NO2,

and (c) NO2/NOG at London roadside sites 2000-2017. The lines represent a loess smooth

fit to the data, and the shaded bands represent the 95% confidence interval around the

smooth.
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The effect of the bias in site location on the trends in the average roadside NOG

and NO2 concentrations, and the average NO2/NOG ratio (using data from all

monitoring sites) can be observed through comparison of the rolling trends over

rolling windows of different widths (=), as shown in Figures B.3, B.4 and B.5.

The effect on the trend in average NOG concentration (Figure B.3) is particularly

clear: the rolling trends reveal that, for small windows which include data from

most of the short term sites, an increase in the average trend (right hand plot) is

observed between 2008-2013 despite the majority of the rolling trends (left hand

plot) having negative gradients. This seems to be an consequence of the changes

in magnitude between adjacent rolling trends, presumably due to the inclusion of

data from sites opening in the latter years. A similar pattern can be seen in the

rolling trends in NO2 concentration and NO2/NOG ratio (Figures B.4 and B.5).
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Figure B.3: Rolling trends (left) and average trends (right) in NOG concentration for = =

(a) 3, (b) 5, (c) 10, and (d) 12 at London roadside sites 2000-2017. The average trend (right)

was calculated using data from the same sites as the rolling trends, which are filtered by

site duration based on the value of =. The black lines in the right hand plots represent a

loess smooth fit to the data, and the shaded bands represent the 95% confidence interval

around the smooth.
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Figure B.4: Rolling trends (left) and average trends (right) in NO2 concentration for = =

(a) 3, (b) 5, (c) 10, and (d) 12 at London roadside sites 2000-2017. The average trend (right)

was calculated using data from the same sites as the rolling trends, which are filtered by

site duration based on the value of =. The black lines in the right hand plots represent a

loess smooth fit to the data, and the shaded bands represent the 95% confidence interval

around the smooth.
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Figure B.5: Rolling trends (left) and average trends (right) in NO2/NOG concentration

for = = (a) 3, (b) 5, (c) 10, and (d) 12 at London roadside sites 2000-2017. The average

trend (right) was calculated using data from the same sites as the rolling trends, which

are filtered by site duration based on the value of =. The black lines in the right hand

plots represent a loess smooth fit to the data, and the shaded bands represent the 95%

confidence interval around the smooth.
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Section 3.2 justified the use of the rolling change method for analysis of long

term trends in NOG concentration, NO2 concentration and the NO2/NOG ratio

across the London roadside monitoring sites 2000-2017 on the basis that a bias was

present in the monitoring networks that influenced the average concentrations.

The presence of this biaswas demonstrated by comparison of the average long term

trend over all sites and over long term sites only, examination of the differences in

concentration between opening and closing sites over time, and through the use

of rolling trends.

Figures B.6 - B.8 repeat this analysis using data from the London urban

background monitoring sites in order to show that the bias does not have as large

an effect on these sites, and therefore the rolling change method is unnecessary

for analysis of the long term trend.
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Figure B.6: Trends in NOG at London urban background sites 2000-2017 using data from

all available monitoring sites (left) and data from long term monitoring sites only (right).

The lines represent a loess smooth fit to the data, and the shaded bands represent the 95%

confidence interval around the smooth. The numbers at each data point correspond to

the number of monitoring sites contributing to the average.
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Figure B.7: Difference (left), cumulative sum of differences (centre) and cumulative sum

of differences weighted by the number of sites opening and closing (right) in between the

average concentration of opening sites and closing sites in each year for NOG at London

urban background sites 2000-2017. The lines represent a loess smooth fit to the data, and

the shaded bands represent the 95% confidence interval around the smooth.
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Figure B.8: Rolling trends (left) and average trends (right) in NOG concentration for = = (a)

3, (b) 7, and (c) 12 at London urban background sites 2000-2017. The average trend (right)

was calculated using data from the same sites as the rolling trends, which are filtered by

site duration based on the value of =. The black lines in the right hand plots represent a

loess smooth fit to the data, and the shaded bands represent the 95% confidence interval

around the smooth.
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C. Appendix III: aqtrends: An open
source R package for air quality
trend analysis

aqtrends is an open source R package containing tools for trend analysis of time

series data, where the time series are of different lengths. It can be downloaded

from the following GitHub page:

https://github.com/pollylang/aqtrends

The page also provides a tutorial explaining how to use the functions within

the package, illustrated with an example of the usage using London air quality

monitoring data. This is shown below.
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View code

README.md

Introduction

aqtrends is an R package for conducting trend analysis of time series with different lengths.

It is a often useful, in air quality as well as in other fields, to aggregate multiple time series
into a single representative trend. In air quality monitoring networks, simply averaging the
individual time series often misrepresents the true trend due to biases in the monitoring
network. Movement of roadside monitoring sites to more polluted locations is common, as a
consequence of legislative requirements to monitor air quality at the most polluted locations.
Consequently, opening sites (i.e. starting time series) in later years can leverage the
average trend upwards, causing an increase in the average trend that is not necessarily a
reflection of trends of individual time series.

Tools for trend analysis of air quality network data

 0 stars  0 forks

Code Issues Pull requests Actions Projects Security Insights

pollylang / aqtrends

 Star  Watch

Join GitHub today
GitHub is home to over 50 million developers

working together to host and review code, manage
projects, and build software together.

Dismiss

Sign up

 master 

Polly committed on 11 Mar 2019
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The aqtrends  functions are designed to identify and mitigate the biasing effects of
monitoring site flux on trends in air pollutant concentrations in air quality monitoring
networks.

More details on the methods applied in this package, as well as a detailed case study using
London air quality monitoring data, are given in a paper which is currently in preparation.

   

Installation

To install aqtrends from GitHub, the devtools package must first be installed. Then copy the
following code into R:

# Load devtools package 
library(devtools) 
 
# Install aqtrends from GitHub 
install_github("pollylang/aqtrends")

   

How to use aqtrends

1. Identify the effect of potential biases on the long term trend.
Use average_trends  to compare the average trends of all time series with the
average trend for the long term time series only (i.e. time series with equal
duration). Also returns average trends of individual sites which can be examined
and compared to the average trend to identify biases.

Use site_flux_bias  to visualise the bias due to differences in pollutant
concentration between time series that are starting and time series that are ending
as a function of time.

Use rolling_trends  to compare rolling trends in pollutant concentration with the
average trend.

2. Remove the effect of variable time series length and bias on the long term trend
Use rolling_change_trend  to compute the rolling change trend, which
represents the true trend in pollutant concentration.

   

Example
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The aqtrends  functions are demonstrated below by a trend analysis of monthly NO
concentration data at 115 roadside monitoring sites in London between 2000-2017. During
this period, 9 monitoring sites were constantly open over the duration (long term sites). The
data were sourced from the Automatic Urban and Rural Network, the London Air Quality
Network and Air Quality England.

The differences between the average trend (left) and the long term trend (right) in NO ,
plotted using the average_trends  function, suggest a biasing effect may be influencing the
average trend.

The presence of a biasing effect can be confirmed by plotting the differences in
concentration between opening sites and closing sites as a function of year using the
site_flux_bias  function (see below). In this case, it is clear that opening sites have a

consistently higher average NO  concentration than closing sites. Taking into account the
relative frequency of opening and closing sites (as shown in the plot of the weighted
cumulative sum of differences in concentration as a function of time on the far right), a bias
towards more polluted locations is evident.

site_flux_bias(london_nox_data, pollutant = "nox", stat = "median")$all

nox.av.trends <- average_trends(london_nox_data, pollutant = "nox", stat = "me
                                start.date = "2000-01-01", end.date = "2017-12
 
cowplot::plot_grid(nox.av.trends$average.trend, nox.av.trends$longterm.trend, 

x

x

x

185



Appendix C. Appendix III: aqtrends: An open source R package for

air quality trend analysis

16/07/2020 GitHub - pollylang/aqtrends: Tools for trend analysis of air quality network data

https://github.com/pollylang/aqtrends 4/7

 

Further evidence of the effect of the bias on the average trend can be visualised using the
rolling_trends  function, as demonstrated below. The plots on the left shows rolling

trends over a short moving window, each offset from its neighbours by a single year. The
plot on the right shows the average trend over all data included in the rolling trend plots.
The larger the width of the moving window, the more constraining the data capture filters on
the data. Comparison of the rolling trends and average trends over different moving window
widths (i.e. data capture filters - in this case moving window widths = 2, 5, 7, 10, 12, 15
years) demonstrates that some of the features of the average trend, most notably in this
case the increase in concentration between 2008-2013, are artefacts of bias in the
monitoring network rather than features of the true trend.

##  
## $`moving_window_width=5` 

rolling_trends(london_nox_data, pollutant = "nox", window.width = c(2, 5, 7, 1
## $`moving_window_width=2`
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##  
## $`moving_window_width=7` 

##  
## $`moving_window_width=10` 

##  
## $`moving_window_width=12` 
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##  
## $`moving_window_width=15` 

 

Having identified the effect of bias on the average trend, the rolling_change_trend
function can be used to extract the true trend from the data, as shown below.

rolling_change_trend(london_nox_data, "nox", window.width = 3, avg.ts = "year"
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Releases

No releases published

Languages

R 100.0%

The code for the rolling_change_method function is shown below.
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aqtrends / R / rolling_change_trend.R

Polly correct rolling change trend 'date' variable to format YYYY-01-01 Latest commit b442722 on 11 Mar 2019  History

 1 contributor

Code Issues Pull requests Actions Projects Security Insights

pollylang / aqtrends

Join GitHub today
GitHub is home to over 50 million developers working together to host and

review code, manage projects, and build software together.

Dismiss

Sign up

 master Go to file

182 lines (152 sloc)  7.7 KB  
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47

Raw Blame

#' @title Rolling change trends (extract true trend)

#'

#' @description Removal of distorting effect of site movement to reveal underlying trend by using changes in

#' concentration as a function of year as a proxy for the average trend. This method retains information about the

#' shape of the trend, while ignoring differences in magnitude, thus removing the leveraging effect of opening and

#' closing sites with extreme magnitudes.

#'

#' @param obs A data frame of ambient pollutant concentration data. Must contain the columns: site_code, date,

#' value. If 'pollutant' is a pollutant ratio, the data frames of the corresponding pollutants

#' must be supplied as a list of data frames in the order they are given in the ratio. E.g. for

#' \code{pollutant = "no2/nox"}, \code{obs = list(obs.no2, obs.nox)}.

#'

#' @param pollutant The pollutant of interest (character string). To calculate rolling change trend for a pollutant ratio,

#' separate the two pollutants with a forward slash e.g. \code{pollutant = "no2/nox"}.

#'

#' @param window.width The width of the moving window, n, over which the change in concentration is calculated (in years).

#'

#' @param avg.ts The resolution to which to average each time series, upon which the rolling regression is carried out.

#' For example, setting \code{avg.ts = "day"} means the rolling regression will be carried out on the daily average concentrations

#' from each time series (monitoring site). Options are: "year", "month", "week", and "day".

#'

#' @param stat The metric (character string) used to average the ambient concentration data by year. Options: "median", "mean".

#'

#' @param start.date,end.date The starting and ending dates (character string) of the period of interest over which

#' to calculate and plot the change trend.

#'

#' @param parallel Logical indicating whether the rolling changes should be computed in parallel. If \code{TRUE}, the

#' parallelisation will be implemented using the \code{foreach} function. The number of cores used will be the total

#' number of cores - 1.

#'

#' @param verbose Logical indicating whether to print the date range of the rolling window over which the calculation is

#' being applied.

#'

#' @return A plot of the rolling change trend.

#'

#' @import dplyr

#'

#' @examples

#' \dontrun{

#' rolling_change_trend(london_nox_data,

#' pollutant = "nox",

#' window.width = 3,

#' avg.ts = "year",

#' stat = "median",

#' start.date = "2000-01-01", end.date = "2017-12-31")

#' }

#'
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#' @export

 

 

rolling_change_trend <- function(obs,

                                 pollutant,

                                 window.width,

                                 avg.ts = "year",

                                 stat = "median",

                                 start.date = "2000-01-01",

                                 end.date = "2017-12-31",

                                 parallel = FALSE,

                                 verbose = FALSE){

 

 

  ## Check arguments

  check_arguments(obs = obs,

                  pollutant = pollutant,

                  window.width = window.width,

                  stat = stat,

                  start.date = start.date,

                  end.date = end.date,

                  parallel = parallel,

                  avg.ts = avg.ts)

 

 

  # Function to calculate data frame with row for difference between initial conc and trend for each moving window

  trend_difference <- function(rolling.x){

 

    # Initialise delta y_1 (concentration change value in the first year = raw annual average concentration in first year)

    first.row <- rolling.x[1, ] %>% dplyr::mutate(trend = av_value) # copy the first row to the data frame (initialise delta y1)

 

    rolling.x <- rolling.x %>%

      tibble::add_row(date = first.row$date, av_value = first.row$av_value, n = first.row$n,

              moving_window = paste0(first.row$moving_window, ".1"), window_width = first.row$window_width,

              trend = first.row$trend, .before = 1) %>% # add first row (initialise - delta y1)

      dplyr::mutate(moving_window = ifelse(moving_window == first.row$moving_window,

                                           paste0(first.row$moving_window, ".2"),

                                           moving_window)) %>%

      dplyr::group_by(moving_window) %>%

      dplyr::summarise(trend = unique(trend),

                       n = unique(n),

                       date = (min(date) + floor((max(date)-min(date))/2)),

                       window_width = unique(window_width)) %>%

      dplyr::ungroup() %>%

      dplyr::arrange(date) %>%

      dplyr::mutate(trend_difference = ifelse(moving_window == paste0(first.row$moving_window, ".1"),

                                              trend, NA))

 

    # Calculate concentration change: delta y_i = delta y_{i-1} + beta_i

    for(i in 2:nrow(rolling.x)){

 

      rolling.x[i, "trend_difference"] <- rolling.x[i-1, "trend_difference"] + rolling.x[i, "trend"]

 

    }

 

    return(rolling.x)

  }

 

 

  # Plot rolling change trend (concentration change as a function of the year)

  period_plot <- function(df){

 

    plot.colour <- viridis::inferno(1, begin=0.3, end=0.8)

 

    p <- df %>%

      ggplot2::ggplot(ggplot2::aes(x = date, y = trend_difference)) +

      ggplot2::geom_point(color = plot.colour) +

      ggplot2::geom_smooth(method = "loess",

                  color =  plot.colour,

                  fill =  plot.colour,

                  alpha=0.25) +

      ggplot2::xlab("Year") +

      ggplot2::ylab(openair::quickText(paste0(pollutant, " concentration (ug m-3)"))) +

      ggplot2::geom_text(ggplot2::aes(label = n), vjust = 1.3, size = 3) +

      ggplot2::theme_minimal()
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    return(p)

 

  }

 

  # Define the start and end dates

  window1 <- define_moving_windows(window.width, obs, start.date, end.date, avg.ts)

 

  # For each moving window, compute rolling regression

  if(parallel == TRUE){

    no_cores <- parallel::detectCores() - 1

    cl <- parallel::makeCluster(no_cores)

    doParallel::registerDoParallel(cl)

 

    rolling.df <- foreach::foreach(d1 = window1, .combine = "rbind", .packages = c("dplyr", "ggplot2", "lubridate"),

                          .export = c("average_data", "sites_open_throughout_window", "calculate_pollutant_ratio", "rolling_worker

      try(rolling_worker(d1, obs = obs, pollutant = pollutant, window.width = window.width, stat = stat, avg.ts = avg.ts,

                         verbose = verbose))

 

    doParallel::stopImplicitCluster()

  } else{

    rolling.df <- tryCatch({purrr::map_dfr(window1, rolling_worker,

                                           obs = obs,

                                           pollutant = pollutant,

                                           window.width = window.width,

                                           stat = stat, avg.ts = avg.ts,

                                           verbose = verbose)

    }, error = function(e){

      print("Error message: ")

      print(e)

      data.frame("date" = as.POSIXct(character()),

                 "av_value" = numeric(),

                 "n" = numeric())

    })

  }

 

 

  if(nrow(rolling.df) < 1){

    print("Error in rolling trend calculation. Possibly insufficient data.")

    return(NULL)

  } else{

 

    # Calculate concentration change for each year (moving window)

    rolling.out <- trend_difference(rolling.df)

 

    # Correct the 'date' variable to always be in the form YYYY-01-01 (where YYYY is the middle year of the moving window)

    rolling.out <- rolling.out %>%

      mutate(year = case_when(lubridate::month(date) == 1 ~ lubridate::year(date),

                              lubridate::month(date) == 12 ~ lubridate::year(date)+1,

                              TRUE ~ lubridate::year(date))) %>%

      mutate(date = lubridate::ymd(paste0(year, "-01-01")))

 

    # Plot rolling change trend

    plots <- period_plot(rolling.out)

 

    return(plots)

  }

 

}
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1. Introduction1

Air pollution is one of the most important problems facing Europe, re-2

sponsible for an estimated 400,000 premature deaths a year (EEA, 2018b). Of3

particular concern are the concentrations of nitrogen oxides (NOx), composed4

of NO and NO2, and particulate matter (PM).5

Frequent and widespread exceedances of the European Union limits6

on NO2 and PM concentration have motivated policies aimed at reducing7

the concentration of these air pollutants. These policies have included the8

reduction of vehicle emissions through European Directives (Euro Standards)9

that have set increasingly stringent limits on the emissions from road vehicles.10

To meet these emission limits, vehicle manufacturers have adopted exhaust11

technologies such as three-way catalysts on petrol vehicles, diesel particulate12

filters (DPF) and diesel oxidation catalysts (DOC) (EEA, 2016). The impact13

of these changes on ambient air quality in Europe is difficult to establish14

but can potentially be evaluated through analysis of the long term trends15

in ambient roadside concentrations of air pollutants using data from the16

extensive European monitoring network. Such an evaluation also has the17

potential to provide information on the effectiveness of different policies to18

reduce air pollution.19

The vast amount of ambient monitoring data measured at thousands of20

monitoring stations across Europe provides the ability to directly analyse21

∗Corresponding author
Email address: pl746@york.ac.uk (Polly E. Lang)

Preprint submitted to Elsevier June 17, 2020



the large-scale changes in roadside air quality in Europe over time. While22

the data from a single monitoring station provides information about the23

local variation in air quality at a specific location, aggregation of data from24

multiple monitoring stations enables the effects of local variability to be25

averaged out, leaving a better indication of the large-scale trend.26

However, there are several limitations inherent in the established methods27

for calculating aggregate trends using data from air quality monitoring28

networks. One approach is to compare individual time series from different29

monitoring stations (e.g. Masiol et al. (2017); Mavroidis and Chaloulakou30

(2011)), however this becomes impractical in very large monitoring networks,31

such as the European network.32

Another method involves evaluating the trend in the average concentration33

across all the available monitoring sites. This trend can be biased due to the34

leveraging effects of site flux (i.e. sites opening and closing during the period35

of interest) on the average concentration, as demonstrated by Lang et al.36

(2019) in a trend analysis using data from the London monitoring network.37

For example, in a given year, the opening or closing of monitoring stations38

cause new data to be included in the average concentration, potentially39

resulting in abrupt changes in the average concentration that are driven,40

not by changes in source emissions strength, but by the sudden inclusion or41

exclusion of data. Many monitoring networks, particularly those composed42

of roadside stations, experience considerable site flux, which can have a43

substantial effect on the calculated trend in average concentration.44

To mitigate this issue, data filtering can be applied to ensure that only45

data from monitoring stations with a complete time series (i.e. measuring46

constantly over the period of the trend analysis) are included in the analysis47

(e.g. Font and Fuller (2016)). This approach inevitably results in the48

exclusion of much of the available data and therefore a considerable loss of49

information. The rolling change method is a technique designed to address50

the above issues, and enable the calculation of aggregate trends in ambient51

air quality using data from monitoring networks that evolve over time. The52

method is robust to the biasing effects of site flux, while preserving more53

data in the trend analysis than data filtering methods (Lang et al., 2019).54

This approach enables better investigation of the large scale air pollution55

trends across an area of interest providing the ability to produce trends that56

are more representative, due to the inclusion of more sites, and driven by57

genuine concentration changes.58

This study uses the rolling change method to calculate large-scale trends59

in roadside concentrations of NOx, NO2, PM10 and PM2.5 in Europe between60

2000 and 2017. The trends in roadside air quality are also calculated in 4461

2



individual European functional urban areas (FUAs), and compared with the62

European-wide trends. The reasons for the observed changes in air pollutant63

concentrations are discussed in the context of changes in vehicle emissions,64

and possible explanations for the deviations from the overall trend pattern65

observed in some FUAs are proposed.66

2. Methods and Data67

The long term trends for Europe and for each European FUA were68

calculated using the rolling change method (Lang et al., 2019). The method69

involves splitting the period of interest into short moving windows, each70

offset from the adjacent window by a time step, in this case one year. The71

data within each window is filtered to exclude data from monitoring sites72

with an incomplete time series over the period of the moving window (i.e.73

sites which open or close during the window), to ensure that all time series74

within the moving window are the same length. The change in concentration75

over the window is calculated by fitting a linear regression to this filtered76

data. By shifting the moving window along the period of analysis, and77

calculating the concentration change at each step, a trend can be estimated.78

This aggregate trend represents the average change in concentration over79

all monitoring sites, unaffected by the leveraging effects of changes in the80

average concentration caused by site flux during the period of analysis. In81

effect, the method relaxes the data capture requirement to short time periods82

rather than the whole time series, which increases the amount of data that83

can be used in trend analysis.84

The rolling change method was applied using annual median data, re-85

sulting in median trends for each FUA. The advantage of an annual trend,86

as opposed to a trend with more granular resolution, is to ‘average out’87

the effects of confounders which vary on a shorter time scale, for example,88

seasonal variation.89

All ambient concentration data were obtained from the smonitor Europe90

database (Grange, 2016), which stores data collected from the European91

Environment Agency AirBase and air quality e-Reporting data repositories92

(EEA, 2018a, 2019). Only data from roadside monitoring sites were con-93

sidered. The distribution of monitoring sites contributing to the aggregate94

trends over the whole of Europe is displayed in Figures 1-2. In each case,95

the ‘number of sites’ corresponds to the total number of unique sites that96

contributed to the trend over the entire period of analysis (2000-2017).97

Figures 1 and 2 indicate that the distribution of monitoring sites in the98

European network is highly heterogeneous, with several countries (Italy,99

3



Germany, Spain, France and the UK) dominating the network. Consequently,100

these countries will dominate the shape of the overall European trends. This101

provides an additional motivation for examining the trends at a city-scale102

in complement to the European-scale, as it allows closer analysis of regions103

which are underrepresented in the European-wide trend.104
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Figure 1: The total number of unique roadside monitoring sites contributing to the rolling
change trends in NOx, NO2, PM10 and PM2.5 concentration over the period 2000-2017, by
country and pollutant.
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Figure 2: Distribution of roadside monitoring sites contributing to the rolling change trends
in NOx, NO2, PM10 and PM2.5 concentration across Europe. The colours represent the
total number of unique roadside monitoring sites contributing to the rolling change trend
in each country between 2000 and 2017.

The European city in which each monitoring sites was located was105

determined using spatial data on the European functional urban areas (FUA).106

The FUA spatial data were obtained from the European Commission Joint107

Research Centre (JRC) (Lavalle et al., 2015). The criteria for an FUA to108

be included in the analysis was that the FUA must (i) contain at least109

one monitoring site measuring the pollutant of interest, and (ii) not have110

a period equal to or greater than the width of the moving window (three111

years) during which there are no measurements of the pollutant of interest112

available. The FUAs for which trend analysis was conducted, according to113

these criteria, are shown in Table 1, along with the total number of distinct114

roadside monitoring sites that contributed to the trend in each FUA (over115

the entire time period of the analysis).116

The analysis was carried out in R, using the aqtrends R package for the117

calculation of the rolling change trend (Lang, 2018).118

Table 1: Total number of unique roadside monitoring sites measuring NOx, NO2, PM10

and PM2.5 concentration in each European functional urban area analysed.
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FUA NO2 NOx PM10 PM2.5

Amsterdam 4 0 0 0
Athina 3 0 0 0
Barcelona 10 10 13 0
Berlin 8 8 7 3
Bilbao 4 3 0 0
Bologna 3 0 0 0
Bruxelles / Brussel 5 0 0 0
Frankfurt am Main 4 0 3 0
Genova 3 0 0 0
Gijn 2 2 2 0
Hamburg 5 0 3 0
Helsinki 3 3 3 0
Innsbruck 4 0 3 0
Karlsruhe 0 0 3 0
La Spezia 2 0 0 0
Lille 2 0 0 0
Linz 3 0 0 0
Lisboa 3 3 3 0
London 25 25 20 3
Lyon 5 0 3 0
Madrid 11 10 8 3
Mainz 4 4 0 0
Mannheim-Ludwigshafen 6 4 4 2
Marseille 3 0 0 0
Milano 7 0 0 0
Mnchen 3 3 3 0
Nrnberg 3 3 3 0
Paris 6 0 4 0
Pescara 3 0 0 0
Porto 5 5 4 0
Praha 7 7 6 3
Roma 7 7 5 0
Rotterdam 0 0 0 2
Ruhrgebiet 7 4 0 0
Salzburg 4 0 3 0
Stockholm 3 3 4 0
Stuttgart 6 0 5 0
Torino 3 0 0 0
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Toulouse 3 0 0 0
Udine 2 0 0 0
Utrecht 3 3 0 0
Valencia 3 3 0 0
Valladolid 0 0 2 0
Wien 12 0 0 0

3. Results and discussion119

Figure 3 shows the long term trends in roadside NOx, NO2, PM10 and120

PM2.5 concentrations, as well as the NO2/NOx, PM10/NOx and PM2.5/NOx121

ratios between 2000 and 2017 across the entirety of Europe. It can be seen122

that, on average, in Europe the concentrations of NOx and PM2.5 have123

been decreasing monotonically since 2000. NO2 and PM10 concentrations124

increased slightly to 2003, and decreased monotonically subsequently.125

The observed decrease in NOx and NO2 concentrations in Europe since126

2000 and 2002 respectively can be attributed to the introduction of vehicle127

exhaust technologies aimed at reducing emissions of these species, such as128

three-way catalysts used on petrol vehicles and the more recent use of Lean129

NOx Traps (LNT) and Selective Catalytic Reduction (SCR) on diesel vehicles130

over this period. Indeed, the rolling trend analysis of roadside NOx and131

NO2 concentrations provide compelling evidence that emissions of NOx have132

strongly decreased across Europe as a whole. These conclusions are robust in133

the sense the rolling trend analysis maximises the use of the large amounts134

of measurement data available across Europe while largely eliminating any135

bias introduced due to differing numbers of sites available in each year.136

The increase in NO2 concentration prior to 2002 was most likely due to137

the increase in the number of diesel passenger vehicles over this period. As138

shown in Figure 4, the proportion of the new vehicle registrations in Europe139

composed of diesel vehicles increased from 36% in 2001 to 48% in 2005, then140

increased more slowly to a peak in 2011/12 of 55%, before starting to decrease141

(The International Council on Clean Transportation, 2018). This period also142

coincided with the introduction of DOCs to new vehicles in compliance with143

the Euro 3 and Euro 4 emission standards, leading to the emission of more144

NO2 from vehicle exhaust (Carslaw et al., 2019).145

A study by Grange et al. (2017) considered the trends in average NOx and146

NO2 concentrations in Europe, and found that NOx concentrations decreased147

between 1998 and 2015, in corroboration with the findings of this study.148

The principal finding of Grange et al. (2017) was that the emissions ratio of149

NO2/NOx from road vehicles increased from 2000 to about 2009 and then150
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started to decrease. A consideration of the ambient roadside concentration151

NO2/NOx ratios also shows a clear increase from 2000 to about 2009 and152

then a decreasing trend. This behaviour is entirely consistent with Grange153

et al. (2017) and is related to increased ratio of NO2/NOx in vehicle exhaust154

due to DOC and DPF. In DOC and DPF, the deliberate production of NO2155

through oxidation of NO is used to help oxidise other pollutants such as CO,156

hydrocarbons and particulate matter.157

The more recent decrease in the ambient NO2/NOx ratio likely has several158

origins. Recent vehicle emission remote sensing measurements show that159

as the vehicle mileage increases for diesel passenger cars, the NO2/NOx160

ratio decreases Carslaw et al. (2019). This deterioration effect is unlikely161

to be the only factor affecting the recent decreasing NO2/NOx ratio. It is162

also likely that vehicle emission after-treatment systems have been better163

optimised so as not over-produce NO2. These other factors require further164

emission measurements and analysis to confirm their contribution. However,165

given the timing of the change shown in Figure 3, there is consistency166

with the introduction of Euro 5/V Standards around 2009. It should also167

be noted that as NOx and NO2 concentrations continue to decrease, the168

ambient concentration ratio of NO2/NOx will eventually increase due to the169

increased availability of O3 to convert NO to NO2, which can be readily170

confirmed by plotting the NO2/NOx ratio against NOx. For example, at171

urban background sites, the ratio of NO2/NOx is typically around 0.6 to 0.7,172

which is considerably higher than the peak ratio seen in Figure 3. There173

might be some indication of this increase shown in Figure 3, although more174

data are required to confirm whether an increasing trend continues. Such175

an increase will also be dominated by the increased role of O3 rather than176

primary NO2 emissions from vehicles.177

The trend plots for PM10 and PM2.5 both show substantial reductions in178

concentration since 2000. While the data shown in Figure 3 are for roadside179

sites, the concentrations of both species will be strongly influenced by non180

road sources including secondary particulate matter (principally sulphate181

and nitrate). A more informative analysis is to consider the ratio of PM to182

NOx, where NOx acts as a local combustion tracer. For PM10 and PM2.5,183

the ratio to NOx has decreased in recent years, which likely reflects the184

increased use of DPF on heavy and light duty vehicles. The trends in the185

ratios shown in Figure 3 show that there has been a greater reduction in186

the ratio of PM2.5/NOx than PM10/NOx. This behaviour is consistent with187

the more effective reduction in PM2.5 exhaust emissions than total PM10,188

the latter of which will also include a stronger influence of coarse fraction189

(PM2.5 to PM10) tyre, brake and road abrasion sources, which have not been190
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mitigated.191
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Figure 3: Rolling change trends in NOx, NO2, PM10 and PM2.5 roadside concentration, and
the NO2/NOx, PM10/NOx, and PM2.5/NOx ratios across Europe between 2000-2017. The
smoothed lines are loess (local regression) fits, with the 95% confidence interval represented
by the shaded band. The numbers signify the number of monitoring sites contributing to
each annual data point. Annual pollutant ratios were calculated as the slope of a regression
of the hourly concentration of one pollutant against the other (for each year of data).10
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Figure 4: Proportion of new registrations composed of diesel vehicles in Europe by year
between 2001 and 2017 (The International Council on Clean Transportation, 2018). The
smoothed line is a loess (local regression) fit, with the 95% confidence interval represented
by the shaded band.

The long term trends in the ambient roadside concentrations of NOx,192

NO2, PM10 and PM2.5 in individual functional urban areas (FUAs) are shown193

in Figure 5. The trends in the majority of FUAs closely resemble the whole-194

European trends (Figure 3), however a visual inspection of the individual195

trends revealed that some FUAs exhibit trends that differ considerably from196

the consensus pattern. These outliers are highlighted in bold in Figure 5,197

and shown individually in Figure 6.198
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individual European FUAs between 2000-2017. The FUAs with trends differing considerably
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European trends. The smoothed lines are loess (local regression) fits.

At the city resolution, while the majority of FUAs display a similar199

pattern in the NO2 and NOx concentration trends, the precise nature and200

location of the turning point in the NO2 concentration trend varies, with201

the concentration in some FUAs increasing to a peak, before starting to202

decrease. It is possible that these differences in the shape of the trends are203

due to differences in the position of the NO2 concentration peak resulting204
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from variations in the composition and age of the vehicle fleet between cities.205

The exceptions to the pattern of monotonic decrease in NOx concentration206

are Roma and Lisboa, where the NOx concentration initially increases until207

around 2004-2005, then decreases. One possible explanation for this is a208

slower than average rate of vehicle turnover and an older vehicle fleet in209

Italy and Portugal compared with the rest of Europe (as shown in Table 2),210

resulting in a delay in the widespread presence of vehicles fitted with NOx211

reducing emission technologies in these cities.212

Table 2: The age of the vehicle fleet in Italy and Portugal, compared with the entire
European Union vehicle fleet (ACEA, 2017).

Country Vehicle type Average age (years) Proportion >10 years

EU Passenger 10.7 0.49
EU Light commercial 10.7 0.49
EU Medium/heavy commercial 11.7 0.53
Italy Passenger 10.7 0.52
Italy Light commercial 11.9 0.59
Italy Medium/heavy commercial 13.2 0.69
Portugal Passenger 12.6 0.62
Portugal Light commercial 14.0 0.79
Portugal Medium/heavy commercial 14.0 0.79

Three FUAs possess trends in NO2 concentration that differ considerably213

from the European-wide trend. As shown in Figure 6, in Madrid and Marseille214

NO2 concentration increased to a peak in 2005-2006, then decreased before215

beginning to increase again around 2013. As with the FUAs exhibiting216

outlying NOx trends, these trends can be interpreted as lagged versions of217

the common European trends due to variations in the composition of the218

vehicle fleet in these FUAs. However, the NO2 concentration trend in Udine219

is distinct from that in any other FUA, with constant NO2 concentration220

until 2007, decreasing to 2010, then increasing to a plateau in 2014. The221

reason for this is unclear.222

As can be seen in Figure 5, the trends in PM10 concentration in all 24223

individual FUAs resemble the European-wide trend of monotonic decrease,224

with the single exception of Madrid, where PM10 concentrations increased225

to a maximum in 2005, before declining, as shown in Figure 6.226

The initial increases in both NO2 and PM10 concentration in Madrid227

could result from rapid growth in the number of diesel vehicles outstripping228

improvements in emission technologies. Between 1999 and 2008, the vehicle229

fleet in Madrid increased by 34%, with the proportion of the fleet composed230
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of diesel vehicles growing from 28% to 53% (Salvador et al., 2012). Compared231

with the increase in the total number of vehicles in Europe of 14% between232

2000 and 2008 (EEA, 2018), this represents a large increase in vehicles, and a233

large increase in the number of diesel vehicles specifically. It is likely to have234

led to an increase in vehicular NOx and PM10 emissions which overwhelmed235

the concurrent decreases in per-vehicle emissions.236

Only six FUAs contained more than one monitoring site measuring PM2.5237

concentration that met the data capture requirements for the trend analysis.238

In all six FUAs, PM2.5 concentrations decreased over the period analysed.239

4. Conclusions240

A new trend evaluation approach has been applied to European roadside241

ambient air pollution data that maximises data usage while minimising poten-242

tially important biasing effects. Long term trends in roadside concentrations243

of NOx, NO2, PM10 and PM2.5 in Europe and in 44 European functional244

urban areas between 2000 and 2017 were evaluated using the rolling change245

method. The city-scale trends for the most part displayed a strong consis-246

tency with the overall European trends, namely monotonic decreases in NOx247

and PM2.5 concentrations since 2000, and initial increases in NO2 and PM10248

concentrations until 2002, followed by monotonic decreases. Reductions in249

vehicle emissions resulting from improvements in vehicle exhaust technologies,250

such as three-way catalysts, diesel particulate filters and diesel oxidation251

catalysts are likely responsible for the observed declines in concentration.252

In almost all cases where the city-scale trends differed considerably from253

these patterns, the anomalous trends seemed to be lagged versions of the254

same trend, possibly caused by variations in the traffic fleet composition. For255

example, an older vehicle fleet, slower rate of vehicle turnover, or increases256

in the number of vehicles (particularly diesel vehicles) may contribute to a257

delay in the turning point of the trends in NOx, NO2 and PM10 roadside258

concentration.259
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