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Abstract

Recent years have witnessed an increase in applications such as social, transportation, and

sensor networks. The authentication and protection of these networks’ data have become a ma-

jor concern. Since these data are spread at arbitrary positions, without following a Cartesian

grid, the techniques of classical signal processing cannot be applied to these data. This thesis

explores the recently advanced signal processing of graphs for spread spectrum data hiding to

protect and authenticate data captured via these networks. In this research, we first explore

the graph Fourier domain for data hiding. Our proposed method involves two models for re-

ducing the embedding distortion in the host graph that results from hiding the secret data and

for enhancing the robustness of the embedded data against attacks namely, noise addition and

deletion of random nodes data. We consider two data hiding scenarios: non-blind and blind.

The experimental results demonstrate that the proposed methods have reduced the distortion

using MSE by an average of 94% and 80% for non-blind and blind algorithms, respectively. In

addition, the robustness of the proposed method is enhanced using the Hamming Distance (HD)

by an average of 93% and 99.8% for non-blind algorithm and by an average of 60% and 71%

for blind algorithm after the additive noise and deleting nodes data, respectively. The second

contribution focuses on proposing a new approach for reversible data hiding for unstructured

data in the graph Fourier domain. The proposed methodology includes a model to reduce em-

bedding distortion based on establishing the relationship between the value of the embedded

bits and the MSE of the modified graph; our methodology includes another model to maximise

the robustness of the embedded bits against the additive noise. The experimental results demon-

strate that the proposed method outperforms the previous methods by an average of 87% and

92% in terms of the embedding distortion, and by an average of 54% and 86% in terms of the

robustness against the additive noise, and by an average 97% and 99% in terms of reversibility

of the original graph signal compared to the previous methods, respectively. The third con-

tribution involves exploiting the Graph Wavelet Transform (GWT) properties for graph data

hiding. We explore the graph wavelet transform for proposing data hiding methods, including

irreversible and reversible data hiding, with new models that minimise distortion in the host



iv

graph (resulting from hiding the secret bits) and enhance robustness against attacks. The exper-

imental simulations show that the proposed GWT data hiding method outperforms the original

data hiding methods (without using the proposed models) by an average of 99% and 99.4% for

non-blind and blind data hiding, respectively in terms of embedding distortion. The robustness

of the GWT data hiding algorithms are enhanced by an average of 77%, 71%, 60% and 99%

for non-blind and blind algorithms after the additive noise and deleting nodes data, respectively.

Similarly, the proposed GWT reversible data hiding method has achieved better performance

compared to the previous methods by an average of 68%, 82%, 78%, 92%, 95% and 99% in

terms of the embedding distortion, robustness against additive noise and reversibility of the

original signal, respectively.
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Chapter 1

Introduction

Due to the ease of illegal data copying, tampering, and distribution, data security has become

a matter of significant concern. Encryption and data hiding are considered to be essential for

secure communication; encryption serves to encipher a message to be unreadable to all except

the receiver, who is able to decipher it, while data hiding aims to hide the existence of secret bits

in host media in a secure, robust and imperceptible manner. Therefore, data hiding is generally

considered to be the ideal technique for secure communication in many applications due to its

ability of hiding the secret data in the host in an imperceptible way [5].

There are two categories of data hiding techniques based on their applications: irreversible

data hiding (IRDH) and reversible data hiding (RDH). Irreversible data hiding approaches are

once more divided into two types: steganography and digital watermarking. Steganography

allows for covert communication by embedding messages in host media (in most of the cases

except the case of cover-less steganography) [5]; digital watermarking enables to embed the

watermark in digital host media for many applications such as digital rights management [5]. In

both of these irreversible data hiding approaches, the embedding of secret bits distorts the host

media, meaning the original host signal cannot be restored once the bits are removed. Since this

distortion is unacceptable in many circumstances, such as medical and military applications,

reversible data hiding is used on account of its ability to restore the original host data without

errors following the extraction of the hidden bits.
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1.1 Motivation

Recent years have seen a growth of using various sensors to sense and measure various data.

As these sensors are located at arbitrary locations, without following a Cartesian grid, the data

recorded using a network of sensors can be represented in a graph, with vertices (nodes) rep-

resenting the locations of sensors. The connectivity between nodes can be defined by consid-

ering the relationship among sensors. This thesis concerns the protection and authentications

of data captured via data networks. However, the ability to address the protection of irregular

data structures is still limited. The most popular methods to protect and authenticate graph

data are inserting more edges between nodes [6], adding extra vertices [7] and embedding sub-

graphs [8]. For clarifying the real world applications of the proposed work, we have considered

two scenarios, social networks and sensor networks.

We have seen an increase in sensitive data which are captured in large graphs in recent

years. These data can involve maps of autonomous systems in the Internet, social networks

which represent a lot of friendships, or records of patent citations. The main challenge is to

control access to these data. To be specific, it is often that the owners of the graph data need

to share access to them for a specific set of entities without sharing these data with the public

domain. For instance, large social networks such as Facebook or LinkedIn may require to share

portions of its sensitive data with trusted academic colleagues, but want to prevent their leak-

age into the broader research community. One option is to build strong mechanisms to access

control for preventing data leakage beyond authorized parties but the owners of the data cannot

restrict physical access to the data, and have limited control once the data are shared with the

trusted cooperators. The best option is to embed a sequence of secret bits to the graph data in

an imperceptible way and difficult to remove for the purpose of protecting and authenticating

the graph data. For example, in Intellectual Property Protection (IPP), a sequence of secret bits

are embedded in the graph data which represent the author’s signature. Another example, for

limiting data piracy by music vendors such as Apple and Walmart, user’s personal information

is embedded into a music file at the time of purchase/download. The same concept is applied

in graph data hiding based on identifying a copy of a graph with its authorized user. In the

case of leaking the shared graph data, the owner of this data can extract the secret bits from
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the leaked data and use it as proof to seek damages against the cooperator who is responsi-

ble for that. Another scenario is sensor networks. A group of sensors are located at arbitrary

locations for sensing and measuring various data. Sensor networks are used in many applica-

tions such as military surveillance, environment monitoring and healthcare. For example, in

military applications, various sensors are spread for battlefield surveillance, where intelligence

and Surveillance are important sources of information required for the military operations. In-

formation shared through military networks is very critical and must be confidential because

leakage of such information can lead to security issues. So there is a need to authenticate the

data of these sensors. Moreover, sensors installed in insecure environments make them reveal

various security risks such as eavesdropping, signal distortions and spoofing. For such sensitive

applications, security is considered one of the main concerns. Another application for sensor

networks is environment monitoring to measure environmental conditions such as temperature,

sound, pollution levels, humidity, wind, and so on. For instance, various sensors are used to

measure and monitor the temperature in several cities. These sensors can be used to build tem-

perature monitoring systems which can monitor the temperature in real time to prevent fire and

other accidents. So maintaining confidentiality of these sensitive data (without tampering or

modifying them) is an important aspect. Since these works are based on vertex domain, they

are not robust to data processing, noise removal or geometrical attacks, such as, adding new

nodes, edges or sub-graphs. Another important aspect is the computational complexity of the

existing work. As these works are based on graph colouring in other words they need to change

the nodes colours after embedding the secret bits, the computational complexity cost of these

works is high. In addition, these methods are not secure, if the original graph is available the

watermark can be detected by comparing the two graph topologies [8]. Finally, the embedding

capacity is very small due to the embedding process is depended on the graph topology, not the

correlation of its data.

On the other hand , data hiding using a spread spectrum has been proven to be a suc-

cessful method for image and video protection, largely due to developments in signal trans-

forms [9–22]. However, we cannot apply classical transforms, such as the discrete Fourier

transform (DFT) [23] and the discrete wavelet transform (DWT) [24], to graph data where the

vertices are located at arbitrary positions, as opposed to sampling on regular structures in images

3
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and other signals. Spread spectrum data hiding is one of the most secure techniques of data hid-

ing because the secret data are spread over many frequency bands so that the energy in one band

is undetectable. This thesis proposes a spread spectrum data hiding method for graph data that

takes advantage of recent developments in signal processing of graph on spectral decomposition

of the Laplacian matrix of graph that captures the node connectivity [25, 26]. Another aspect is

the graph colouring problem is a well-known hard problem, therefore using the graph spectral

domain is considered an alternative method of data hiding with a low computational complexity

cost. The computational complexity cost of the proposed methods using graph Fourier trans-

form is O(N2) for full eigendecomposition. The computational complexity cost is reduced

by using the polynomial function. For the proposed methods using graph wavelet transform,

computational complexity cost is O(p|E|), where p is the degree of polynomial function.

The main research question of this work is to explore the graph spectral domain for unstruc-

tured data hiding. We consider two graph spectral domains: graph Fourier and graph wavelet

for both irreversible and reversible data hiding. Our findings suggest that graph spectral domain

data hiding successfully protects unstructured data; additionally, embedding in the spectral do-

main results in minimal embedding distortion and high robustness against attacks.

1.2 Key contributions

The main contributions of this thesis are as follows:

1. The proposal of a new irreversible data hiding method for graph data in the graph

Fourier domain.

We propose a new irreversible data hiding approach for unstructured graph data in the

graph Fourier domain. Chapter 3 explores advancements in graph signal processing

(GSP) for spread-spectrum data hiding for unstructured data. The first contribution of

this thesis is to hide the secret bits in the graph Fourier coefficients, which are selected

based on two proposed models: the embedding distortion minimisation model and the

robustness model. In order to minimise embedding distortion, we identify the relationship

between the error distortion and the chosen graph Fourier coefficients to embed the secret

bits. In order to improve the robustness of the embedded bits against attacks, we propose
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a robustness model based on the relationship between the extraction of the embedded bits

and the effect of the attacks, namely, noise addition and nodes data deletion. This work

considers two data hiding scenarios: non-blind using a magnitude based multiplicative

data hiding method and blind using prediction-based graph data hiding. The empirical

results show that embedding distortion is minimised and robustness is enhanced by the

proposed models.

2. The proposal of a new reversible data hiding method for graph data in the graph

Fourier domain.

We propose a new reversible data hiding algorithm using histogram shifting in Chapter

4. We take advantage of developments in graph signal processing to propose a reversible

data hiding approach for data recorded on non-Cartesian grids. We embed the secret bits

through a slight modification of the graph Fourier coefficients’ magnitudes that enables

the blind extractor to extract the secret bits and the original coefficients without distortion.

In order to minimise the embedding distortion, we establish the relationship between the

error distortion metric and the value of the embedded data. In order to improve robustness

against attacks, we propose a robustness model that identifies the relationship between

data extraction and the effect of noise addition. Our experimental evaluation verifies the

successful recovery of the original graph signal and the secret bits without any errors with

high embedding rates. Using a graph spectral domain, our empirical results demonstrate

the superiority of the proposed method over the existing reversible data hiding methods in

terms of embedding distortion, original signal reversibility and robustness against additive

noise.

3. The proposal of new data hiding methods for graph data in the graph wavelet do-

main.

Discrete wavelet transform is considered a typical option for data hiding in multimedia

due to its ability to represent data in both time and frequency domain and with multi-

resolution decomposition. We propose new irreversible and reversible data hiding meth-

ods using graph wavelet transform in Chapter 5. The proposed methodology includes

new models: the embedding distortion minimisation model and the robustness model.
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Our experimental results demonstrate that the proposed data hiding methods in the graph

wavelet domain are superior to those in the graph Fourier domain.
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1.3 Publications

Part of the work in this thesis has been published in the following conference papers.

1. H. Al-khafaji and C. Abhayaratne, “Graph Spectral Domain Watermarking for Unstruc-

tured Data from Sensor Networks,” Proc. of International Conference on Digital Signal

Processing (DSP), IEEE, 2017, pp. 1–5.

2. H. Al-khafaji and C. Abhayaratne, “Graph Spectral Domain Blind Watermarking,” Proc.

of International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE,

2019, pp. 2492–2496.

Also, the following papers are being prepared currently to publish as journal articles:

1. H. Al-khafaji and C. Abhayaratne, “ Graph Spectral Domain Watermarking for Graph

Data,” to be published as journal article.

2. H. Al-khafaji and C. Abhayaratne, “Graph Spectral Domain Reversible Data Hiding for

Graph Data,” to be published as journal article.

3. H. Al-khafaji and C. Abhayaratne, “Graph Wavelet Domain Watermarking for Graph

Data,” to be published as journal article.
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1.4 Outline

The rest of the thesis include the following five chapters:

Chapter 2 serves as an overview of data hiding. Section 2.1 offers insight into the various

data hiding techniques and their applications. Previous works on irreversible and reversible data

hiding are reviewed in Section 2.2 and Section 2.3, respectively. Section 2.4 illustrates the fun-

damental concepts of graph theory and graph spectral theory while Section 2.5 and Section 2.6

review the existing work on irreversible and reversible data hiding in the graph spectral domain,

respectively. Finally, Section 2.7 serves to summarise the chapter.

Chapter 3 proposes a novel method for irreversible data hiding in the graph Fourier domain.

Section 3.1 introduces the proposed method while Section 3.2 further details the proposed mod-

els, those being the embedding distortion minimisation model and the robustness model. Sec-

tion 3.3 evaluates the performance of the proposed method. The chapter is then summarised in

Section 3.4.

Chapter 4 proposes a new method for reversible data hiding in the graph Fourier domain.

Section 4.1 introduces the proposed method while Section 4.2 discusses in more depth the

proposed models, those being the embedding distortion minimisation model and the robustness

model. Section 4.3 evaluates the performance of the proposed method and Section 4.4 serves to

conclude the chapter.

Chapter 5 proposes new methods for both irreversible and reversible data hiding using

graph wavelet transform. Section 5.1 introduces the proposed data hiding methods while Sec-

tion 5.2 details the two new models, those being the embedding distortion minimisation model

and the robustness model. Section 5.3 evaluates the performance of these proposed methods

and, finally, Section 5.4 presents a summary of the chapter.

Chapter 6 concludes this thesis by summarising the research results and describing the

future directions for data hiding in graph data.
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Chapter 2

Background and related work

This chapter serves as an overview of data hiding techniques and their applications, graph the-

ory, graph spectral theory and some relevant works on irreversible and reversible data hiding.

In this thesis, we explore the use of recent advancements in graph signal processing to pro-

tect data recorded on non-Cartesian grids, such as sensor data and 3D point clouds. This chapter

includes seven sections. First, Section 2.1 provides preliminary information about data hiding,

its various techniques and their applications. Section 2.2 and Section 2.3 review the existing

work on irreversible and reversible data hiding, respectively. Section 2.4 illustrates the con-

cepts of graph theory and graph spectral theory. Previous works on irreversible and reversible

data hiding in the graph spectral domain are then reviewed in Section 2.5 and Section 2.6,

respectively. Finally, Section 2.7 offers concluding remarks.

2.1 Data hiding techniques

Rapid development in digital communication technology has led to the ability to easily copy

and manipulate digital media. Powerful software paired with modern devices, such as digital

cameras, scanners and MP3 players, enables users to generate and tamper with data. The in-

ternet and wireless networks also simplify the process of changing and transmitting data. This

create a motivation to find techniques that enhance the security of digital media against threats.

The main techniques for secure communication are encryption and data hiding. Through en-

cryption, secret data are enciphered using a secret key that makes the data unreadable to all

9



Chapter 2 – Background and related work

except the recipient, who knows the secret key. The encryption of the host media makes the

media meaningless, so the third person (the attacker) becomes suspicious.

Alternatively, data hiding techniques are used to keep the existence of secret data unde-

tectable, as the majority of them do not degrade the host media [5]. Therefore, data hiding is

generally considered to be more confidential than encryption because most of the data hiding

techniques hide the existence of secret data rather than just protecting their content [27]. The

advantage of the majority of data hiding techniques is that the existence of a secret message is

hidden by embedding its data in the host media in a way that is imperceptible, secure and robust

against attacks [5, 27]. Data hiding has been utilised in several applications, such as ownership

protection, authentication and access control. For instance, spread spectrum modulation is used

in military communication to protect the signal from enemy interception. Other applications

include healthcare and copyright monitoring [28].

Generally, data hiding techniques are categorised into two types: irreversible and reversible.

Through irreversible data hiding, the secret bits are restored without error but the original host

media are distorted. Through reversible data hiding, the secret bits and the original host media

are both restored without error. The main types of irreversible data hiding techniques are digital

watermarking and steganography. Majority of watermarking entails hiding a watermark in host

media in an imperceptible and robust manner while steganography is essentially the science

of communicating in a manner through which the existence of secret data is undetected. This

makes steganography the preferred candidate in many applications, such as intelligence, law

enforcement and counter-intelligence agencies.

The main differences are that watermarking must be more robust against various types of

attacks and there is a relationship between the hidden data and host media in watermarking; in

other words, the host media are more important for the receiver.

Data hiding is an ancient art; there are many stories that reveal it dates back to antiquity.

The most famous story about steganography is about Herodotus (486–425 B.C), who hide a

secret message by shaving the hair of his slave [29]. Another example is a Greek man who

warned his king of an invasion by writing on a piece of wood after removing the wax from a

writing tablet, then covering it with wax [29]. In 1870–1871, messages were sent by pigeons

on microfilms during the Franco-Prussian War. In 1905, nostrils, ears and fingerprints were
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used to hide microscopic images during the Russo-Japanese War. During World War I, various

stages of photographic reduction were used to reduce messages to microdots. Additionally,

by World War I, developments in chemistry allowed for more sophisticated collections of ink.

However, this technology was abandoned following the invention of universal developers that

enabled the identification of paper pieces that had been welted. Despite China inventing the art

of paper-making over one thousand years earlier, watermarking appeared in Italy in about 1282.

By the eighteenth century, paper watermarks were used as trademarks in Europe and America.

Interest in watermarking digital media began in the mid-1990s with a focus on audio, images

and video [1].

Nowadays, watermarking research has become quite mature due to its many applications

in, for example, image processing, telecommunications, computer science, and remote sens-

ing. The majority of existing data hiding work is based on watermarking for its high level of

protection; its many applications are illustrated in Table 2.1.

Table 2.1: Applications of digital watermarking [1]

Application Description

Broadcast It can be implemented based on inserting a unique watermark in each clip of
monitoring video in order to identify when and where each clip appears.
Copyright The watermark bits are utilised as copyright data.

identification

Content To authenticate of the original data and protect them against digital forgery.
authentication
Copy control Watermarking can be used as a strong tool to prevent illegal copying of

multimedia.
Packaging Inserting watermark on packages in order to track and protect it against forged
and tracking consumable items including pharmaceutical products.
Banking document To authenticate the documents of financial like authentication banking.
authentication
Temper detection The watermark bits are embedded in the sensitive data, if the watermark data are

distorted this mean the data cannot be trusted.
Fingerprinting For each copy of data a fingerprint should be added.
Telemedicine It is the science which is used to solve the health problems.

According to the embedding domain, secret data are hidden in two different domains: spa-

tial and spectral (frequency) as shown in Figure 2.1. The frequency domain allows for better

insight into enhancing watermark robustness and decreasing embedding distortion. Digital wa-

termarking is classified by host: image, video, audio, text and graph. From a human perspective,
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Figure 2.1: Types of digital watermarking [1]

however, the methods are classified as either invisible and visible watermarking. Invisible wa-

termarking methods are divided into robust, fragile and semi-fragile [1]. The watermark bits

survive intentional attack using the robust watermarking method; using the fragile method, the

watermark bits are destroyed following any modification to or attack on the host media [30];

using the semi-fragile method, the watermark bits survive certain kinds of attacks but are de-

stroyed following other kinds [31].

An attack is defined as any process trying to remove or modify secret data in host media. The

attacks are classified into three groups: removal attacks, which aim to damage or remove the

secret data, such as noise, histogram equalization, blur and sharpen attacks; geometry attacks,

which aim to distort the secret data, such as rotation and translation; malicious attacks aim to

remove the secret data by manipulating the modified host media; protocol attacks, which aim to

add their own secret data to the data in question, such as invertible and copied attack [32].

Irreversible data hiding techniques, i.e., digital watermarking and steganography distort the

host media when hiding secret bits, meaning that the host media cannot be restored following

extraction [5]. This distortion is unacceptable in many applications, such as military intelli-

gence, as the original host media is also important [33]. Therefore, reversible data hiding tech-

niques are employed in these applications. Reversible data hiding is a technique that enables the
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blind extractor to recover both original data and hidden data without error [33]. Reversible data

hiding research dates back several decades but early works have problems. In [34], Mintzer et

al. display a form of visible reversible data hiding for applications such as on-line content distri-

bution. The image is marked with a reversible visible watermark before distribution or posting

on the Internet, and the watermarked image content serves as a teaser that users may view or

obtain for free. Then, the watermark can be removed to recreate the unmarked image by using

a vaccine program that is available for an additional fee. The first invisible reversible water-

mark was suggested in [35] and involved adding the modulo operation to the existing additive

approach. Similar work was proposed in [36] but this approach suffers from visual artefacts.

However, another work [37] overcame the artefacts problem in the reversibility process.

2.1.1 Data hiding properties

The common characteristics of the data hiding systems are presented in Table 2.2. The impor-

tance of these characteristics depends on the requirements of the application [1].

Table 2.2: Characteristics of data hiding system

Property Description

Robustness The secret data should be detected after benign signal processing.
Imperceptibility The secret data be imperceptible and without distorting the

host media.

Security It can be defined as the capability of secret bits to withstand to the

malicious attacks.

Capacity Size of secret data which can be embedded in the host

media.

2.1.2 Secret data types

The secret data can be divided into two different categories: pseudo-random sequence and

text/image/logo according to the application. The logos are classified into binary logo, gray

scale logo and colour logo. We can categorised the pseudo-random sequence into two kinds:

Natural number sequence and Binary sequence [1].
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2.1.3 Data hiding

We can define data hiding as the process of hiding the secret bits into host media like video,

image and audio or graph. Data hiding includes two main stages: embedding and extraction.

2.1.3.1 Embedding

In this stage, the secret data are embedded in the host media (in our work a graph) by using

a suitable algorithm. According to the algorithm, the secret bits can be embedded into some

or all host data (graph data) in the spatial domain (graph vertex domain) and the frequency

coefficients (spectral coefficients in the graph spectral domain) as illustrated in the following

equation:

G ′
= ζ(G,w,k), (2.1)

where G is the original host (original graph), w are the secret bits, k is the embedding key , G ′

is the modified host (modified graph) and ζ() is the embedding function, Figure 2.2 shows the

embedding process. We can divide the embedding function in the frequency (spectral) domain

Embedding 

Process

Graph

Secret data      
Modified Graph

Figure 2.2: Embedding process

into sub-processes: a) Forward transform, b) Coefficients selection, c) Embedding algorithm

and d) Inverse transform.

2.1.3.2 Extraction

The embedded bits are extracted from the modified host (modified graph). The extraction pro-

cedure includes two sub-processes: extracting the secret bits and the authentication of them. In

the extraction process, the secret bits are extracted based on reversing the embedding process.

In order to extract the secret data, some extraction algorithms require the original host (graph),

this data hiding kind is called a non-blind data hiding. While, in the case of blind data hid-

ing, the embedded bits can extract without requiring the original host (graph). The extraction

14



Chapter 2 – Background and related work

process can be defined as follows:

w
′
= ξ(G ′

,G,k), (2.2)

where G ′ is the modified host (graph), G is the original host (graph), k is the extraction key, w′

is the extracted secret bits and ξ is the extraction function. The next step is the authentication

process which compares the extracted secret bits with the original secret bits as illustrated in

Figure 2.3. For reversible data hiding, the original host data ( graph data) should be recovered

without any error after the embedded data have been extracted. There are many reversible

algorithms which are used to restore the original data without any distortion.

2.1.4 Fidelity Metrics

Many fidelity metrics can be utilised to measure the performance of data hiding methods. These

metrics are mainly classified into two types [38]:

2.1.4.1 Embedding performance

The most common metrics which are used to measure the robustness and embedding distortion

between the original media and modified media are:

2.1.4.1.1 Mean Square Error (MSE)

The Mean Square Error (MSE) is used to measure the embedding distortion between the original

graph and modified graph. The low MSE value means low embedding distortion. The MSE

Extracted

Secret data

Extraction 

Process

Original Graph

(for non-blind)

Authentication 

Process

Modified      

Graph

Original Secret data

Secret data 

detection 

decision

Figure 2.3: Extraction process
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value is calculated as given:

MSE =
1

N

N−1∑
i=0

(xw(i)− x(i))2, (2.3)

where xw is the modified graph, x is the original graph and N is the number of graph nodes.

2.1.4.1.2 Peak Signal to Noise Ratio (PSNR):

It is considered to be the most popular ways to compare the distortion between two signals such

as images and graphs according to the Root Mean Square Error (RMSE) as follows:

PSNR = 20 log10(
max

RMSE
)dB, (2.4)

RMSE =

√√√√ 1

N

N−1∑
i=0

(xw(i)− x(i))2, (2.5)

where max is represents the maximum node value of the graph. A high PSNR value means less

distortion in the modified graph. In other words, when the PSNR value is high this means the

similarity between the two graphs is high.

2.1.4.2 Extraction performance

The most popular metrics can be used to authenticate the extracted secret bits are:

2.1.4.2.1 Bit Error Rate (BER)

The most common way utilised to calculate the difference between the extracted and original

secret data for evaluation the robustness is the Hamming Distance (HD) [1]. Hamming Dis-

tance is often referred as Bit Error Rate (BER) in communication systems. Hamming distance

is widely used for a binary secret bits detection as we considered the pseudo-random binary

sequence as the secret bits. When the Hamming Distance is less than a certain threshold, the

extracted bits can survive after the attack [1]. The Hamming Distance (HD) can be calculated
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as follows:

HD(w,w
′
) =

1

K

K∑
i=1

wi ⊕w
′

i, (2.6)

where w represents the original secret bits, w′ is the extracted secret bit, K is the length of the

secret bits vector and ⊕ is the XOR operation.

2.1.4.2.2 Correlation Similarity (S)

Correlation Similarity (S) is another measurement, which is utilised to measure the similarity

between the original secret bits and extracted secret bits. The secret bits can survive after the

attack when the correlation similarity is greater than a certain threshold. This measurement can

be computed based on the equation [1]:

S(w,w
′
) =

w ·w′

√
w′ ·w′√w ·w

. (2.7)

2.2 Irreversible data hiding techniques

Different irreversible data hiding methods have been proposed over the years [39–42]. The

data hiding methods are basically classified into two categories according to the embedding

domain: spatial domain and frequency domain. The substitution technique is the most common

type of data hiding in spatial domain. The Least Significant Bits (LSB) method is the most

popular method of this technique. The secret bits are embedded by substituting insignificant

parts of the host by secret data [43]. The receiver can extract the embedded bits from the

host bits based on a secret key. Since the modifications in the host data are assumed to be

minor, the embedder expects that these modifications will be unnoticeable. LSB substitution,

however, despite its simplicity brings some drawbacks. Although it may survive transformations

such as cropping, any addition of noise or lossy compression is likely to defeat the embedding

process. Furthermore, once the algorithm is discovered, the embedded information could be

easily modified by an intermediate party pseudo-random number generator to determine the

pixels to be used for embedding based on a given key [44].

An advantage of the substitution techniques discussed above is that they can be easily ap-
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plied to any host media [45] but a disadvantage of substitution techniques is that they are not

robust to many types of attacks. The robustness and quality of the hiding process are improved

if the properties of the host image could similarly be exploited. For instance, it is generally

preferable to hide secret data in noisy regions and edges of images, rather than in smoother

regions. The benefit is that the degradation in smoother regions of an image is more notice-

able to the Human Visual System (HVS). Instead of the time domain, the transform domain is

considered an effective domain for data hiding. Discrete Cosine Transform (DCT) is the most

popular domain for image processing. The DCT allows an image to be broken up into different

frequency bands, making it much easier to embed secret data into the middle frequency bands of

an image. The middle frequency bands are chosen such that they do not affect the most visually

important parts of the image (low frequencies) and to be robust against the compression and

noise attacks [46]. Another domain is a Discrete Wavelet Transform (DWT) which is consid-

ered an optimal choose in the areas of image and video processing such as compression, noise

reduction and data hiding [47]; this is attributed to its properties in time-frequency localisation,

multi-resolution representation and superior Human Visual System (HVS) modelling [48]. The

secret data can be hidden on one sub-band or several sub-bands. One of the many advantages of

the wavelet transform is its adaptivity to the HVS as compared to the other transforms, which

allow a big embedding capacity in regions that the HVS is known to be less sensitive to, such as

the high resolution detail bands. In general, embedding the secret data in the frequency domain

will increase the robustness of the secret data against many attacks, and at the same time they

remain imperceptible to the human sensory system.

Another common technique of data hiding is Spread Spectrum (SS). It has been developed

since the 1950th to avoid interception and anti-jamming communications. In this technique,

the signal occupies a bandwidth in excess of the minimum necessary to send the informa-

tion. The band spread is accomplished by a code which is independent of the data, and a

synchronized reception with the code at the receiver is used for despreading and subsequent

data recovery [49, 50]. In data hiding, two techniques of SS are used: direct sequence and

frequency-hopping schemes. In direct-sequence schemes, the signal is spread by a constant

called chip rate, modulated with a pseudo-random signal and added to the host. On the other

hand, in frequency-hopping schemes, the frequency of the carrier signal is altered in a way
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that it hops rapidly from one frequency to another. Even if parts of the signal are removed in

several frequency bands, enough information remains in other bands that enable us to recover

the secret data. Spread spectrum techniques are robust against many attacks and can be used in

watermarking [51].

2.3 Reversible data hiding techniques

Reversible Data Hiding (RDH) is a branch of data hiding that allows for the accurate extraction

of embedded data and the recovery of the original host signal without error. In general, RDH

algorithms are classified into three categories. The first category of algorithms follow Lossless

Compression embedding framework (LC). In these algorithms, a twin feature is computed for

a pair of pixel and compressed. Secret data are embedded in the extra space left by lossless

compression. Fridrich et al. [52] propose an approach based on modifying a bit plane of the

image. This method had an occurrence of disturbing artifacts due to the varying number of

bit planes as the capacity change from image to image. Fridrich’s method work strictly for

environments where, if a modified image is lossy processed resulting in a bit modification, the

bit-plane containing the payload will disturb the entropy synchronization thus losing the hidden

data permanently. Vleeschouwer et al. [37] propose a method that overcame Fridrich’s method.

The method based on using the circular interpretation of bijective transformations. A circle

is mapped with the histograms for groups of pixels that was operated by the transform. The

relative orientation among the histograms of two groups convey one bit of information. The

reversibility process in this method does not experience artifacts and the wrapped pixels are not

altered.

The second category of algorithms are based on difference expansion (DE). The differences

between two pixels are expanded to get the least significant bits (LSBs) in order to be used for

embedding secret data. The first method of difference expansion is proposed by Tian [53]. It

is applied on a pair of pixels to develop a low distorted high-capacity reversible watermark.

In this method, the image is divided into pixel pairs that do not cause an overflow or under-

flow. Then a single bit is embedded into the difference of the pixel pair. The payload includes

a compressed location map mentioning the modified pairs. A spatial domain reversible data
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hiding method is proposed in [54] based on the contrast mapping (RCM). This method has a

high-embedding capacity without any secondary compression stage. The space occupied by the

LSBs is used for data hiding. Difference expansion transforms are concentrated for improving

RDH characteristics [55–57].

The last category of RDH algorithms are based on histogram shifting (HS). The histogram

of an image, which is uneven, can be modified for embedding data by considering the bins of

the histogram. Ni et al. [3] propose the first RDH algorithm based on slightly modifying the

gray scale value of the pixel. This method has a high embedding capacity. A different approach

for RDH is suggested in [58] based on histogram modification technique. It uses differences

between pixels thus increasing hiding capacity. A binary tree is used to remove the requisite of

communication between pairs of zero and peak points to the recipient. Jung et al. [59] propose

an algorithm using a data embedding level. It is adjusted for every pixel depending on human

visual system characteristics. For reducing the distortion, the embedding level is determined by

the estimated values based on an edge and the slightly differential values of each pixel. Zhang

et al. [60] generalised the method in [59] using a decompression algorithm. In this method, the

secret bits are embedded using a coding scheme. It aims for predefined entropy to be reached

using a compression algorithm by reaching the rate distortion bound for the generalised code.

It succeeded, using these binary codes, three RDH schemes- one for spatial images, one for

JPEG images, and a pattern substitution scheme for binary images that used binary feature

sequences as covers are improved. Prediction error expansion (PEE) for RDH is proposed

for multiple histograms [61]. Sequences of histograms are used based on multiple histograms

modification (MHM) to devise a new embedding mechanism. A prediction error histogram

(PEH) is generated based on complexity measurement for each pixel according to its context.

The result is minimised embedding distortion, fixed modification manner, and independence

of image content. [62] enhances the contrast of a host image thus improving the visual quality

keeping PSNR high. This is accomplished by histogram equalization on the highest two bins in

the histogram. With this method the original image is completely recoverable.
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2.4 Graph spectral theory concepts

This section illustrates the main concepts of spectral graph theory. The graph theory was in-

vented by Leonhard Euler to solve the Königsberg problem. The main aim of the Eulerian

graph is to connect three lands with the mainland using seven bridges in a way that crosses each

bridge once and only once [63]. Graph signal processing has received significant interest in the

past decade due to its advantages in several applications [64]. Many applications involve data

defined on complicated domains (non-Euclidean spaces). Examples include data defined on

network-like structures, data defined on manifolds or irregularly shaped domains, and data con-

sisting of point clouds, such as collections of feature vectors with associated labels.As many

traditional methods for signal processing are designed for data defined on regular Euclidean

spaces (data recorded on Cartesian grids) as images and videos, the development of methods

that are able to accommodate complicated data domains is an important demand (more details

in [25]).

As in classical signal processing, signals can stem from a variety of domains; unlike in

classical signal processing, however, the underlying graphs can tell a fair amount about those

signals through their structure (more details in [65]). Both a signal on a graph with N vertices

and a classical signal with N samples can be viewed as vectors in RN . However, a major

obstacle to the application of the classical signal processing techniques in the graph setting is

that processing the graph signal in the same ways as a classical signal processing ignores key

dependencies arising from the irregular data domain (more details in [26]), for these reasons,

the classical transforms such as KLT and DCT cannot be applied in the graph signal processing.

Graph is a generic data structure that can represent complex relationships among data and

can be used in many fields of engineering and science. It consists of nodes and edges, and each

edge is usually assigned a weight determined by the similarity of the nodes, e.g., physical or

feature space distance between nodes in the network. In graph signal processing, a sample is

placed on each node of a graph. Graph signal processing can explicitly consider the structure

of the signal, unlike traditional digital signal processing.
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2.4.1 Graph spectral theory

With the development of computer technology, there have been considerable interests for analysing

or processing irregular and high-dimensional data in many fields, including physical infras-

tructure network like sensor networks and neural networks. Graph signal processing has been

developed to respond to these demands [26].

Graph signal processing is a relatively new field that has been extensively studied since

around 2011. It has been an interesting topic in signal and information processing for both

theoretical and practical reasons. From a theoretical viewpoint, it is related to signal processing,

information theory [66] and computational harmonic analysis [25]. Moreover, from a practical

viewpoint, it has been used on an extensive amount of data with irregular structures, e.g., sensor

and brain networks [67, 68], traffic [69], learning [70–72], and images [73, 74].

The graph is considered a mathematical model and is used to represent structured data (e.g.,

regular and irregular data). We can define the graph as a set of nodes (vertices) and links (edges),

which represent the connections between the vertices. A directed graph is a graph that is made

up of a set of vertices connected by edges, where the edges have a direction associated with

them. In an undirected graph, the same edge is used between any two nodes. We call a graph

connected if there is a path between every pair of vertices. A disconnected graph is a graph with

at least one vertex that is not connected to other vertices but that is otherwise connected.

Let suppose that G = {V , E ,A}, is an undirected graph without self loops (there is no an

edge that connects a vertex to itself) and multiple edges between vertices (only one edge that

connects any two vertices), where V is the set of N vertices as V = {v0, v1, ..., vN−1}, E is the

set of edges and A is the adjacency matrix with edge weights. The entry Ai,j represents the

weight of the edge, if there is an edge connecting vertices i and j; otherwise Ai,j = 0. There

are many ways of defining the edge weight (interpreting the relationship between vertices) such

as Euclidean distance as shown [75]:

Ai,j =

εi,j, if nodes i and j are connected,

0, otherwise .
(2.8)

where εi,j is the Euclidean distance between the nodes i and j. Another way to represent the
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the relationship between vertices by considering value equal to one if there is an edge between

the vertex i and the vertex j, and zero when there is no edge as follows [76]:

Ai,j =

1, if nodes i and j are connected,

0, otherwise .
(2.9)

Another alternative way of representing the edge weight is via a threshold Gaussian kernel

weighted function as given [26]:

Ai,j =


exp(− [εi,j]

2

2θ2
), if εi,j ≤ κ,

0, otherwise .
(2.10)

where θ and κ are some parameters and εi,j is the Euclidean distance.”

A graph signal is a real-valued scalar function x : V → R defined on graph G = {V , E}

such that x(v) is the sample value of function at vertex v ∈ V . On a finite graph, the graph

signal can be viewed as a sequence or a vector x = [x(0),x(1), ...,x(N)]t , where the order of

arrangement of the samples in the vector is arbitrary and neighbourhood information is provided

separately by the adjacency matrix A. Graph-signals can, for example, be a set of measured

values by sensor network nodes [77] or traffic measurement samples on the edges of an Internet

graph [69] or information about the actors in a social network. The combinatorial Laplacian

matrix of graph, L, is defined as follows:

L = D−A, (2.11)

where D is the diagonal matrix of vertex degrees, whose diagonal components are calculated

as given:

D(i,i) =
N−1∑
j=0

A(i,j), i = 0, 1, ..., N − 1. (2.12)

Since, L, is a symmetric positive semi-definite matrix, from theorem of spectral projection,

there exists a real unitary matrix, U, that diagonalizes L, such that ULUt = Λ = diag{λ`}
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is a non negative diagonal matrix , leading to an eigenvalue decomposition of L matrix as given:

L = UΛUt =
N−1∑
`=0

λ`u`u
t
`, (2.13)

where t is a transpose operator, u`, the column vectors of U, are the set of orthonormal eigen-

vectors of L with corresponding eigenvalues, 0 = λ0 < λ1 ≤ λ2... ≤ λN−1 = λmax. [26]. The

normalised Laplacian matrix L can be defined as:

L = D−1/2 L D−1/2. (2.14)

The difference between the combinatorial graph Laplacian and the normalised graph Laplacian

is not clear in terms of which one represents the optimal version of the Laplacian matrix. How-

ever, the two versions of Laplacian matrices have a similar notion of frequency [26]. In general,

the combinatorial Laplacian matrix is utilised in the applications of image processing [25, 78]

due to the combinatorial Laplacian matrix provides useful bases for images such as the DC

component of the classical transforms. The eigenvectors have been utilised in analysing graph

spectra both algebraic and analytic wise [79]. The eigenvectors of the graph provide an effective

representation of the graph connectivity and the graph structure.

2.4.1.1 Graph Fourier Transform (GFT)

The traditional Fourier transform for regular signals is defined as the expansion of a function

x(t) in terms of the complex exponentials:

X(ω) =< x, eiωt >=

∫
R
x(t)e−iωtdt. (2.15)

In this equation, eiωt is the eigenfunction of one-dimensional Laplace operator:

− ∂2

∂t2
eiωt = ω2eiwt. (2.16)

Based on the above definitions, the graph Fourier transform is defined as the expansion of a

function x in terms of the eigenvectors of the graph variation operators by projecting the graph
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signal x onto the eigenvector u in R2 which are the basis functions. The eigenvectors of graph

Laplacian provide a harmonic analysis of signals of the graph which is a similar interpretation

of traditional Fourier transform. The basis functions are fixed in the traditional Fourier trans-

form, while the basis functions are unfixed in the graph Fourier transform, which depend on

the graph connectivity between the vertices and the type of graph Laplacian. Figure 2.4 shows

an example of a graph signal on random graph in vertex domain and its graph Fourier coeffi-

cients. The graph Fourier transform has a similar frequency concept as in the traditional Fourier

analysis, where the graph Laplacian eigenvectors are varied slowly across the graph when the

eigenvalues are close to the smallest eigenvalue λ0. While the graph Laplacian eigenvectors

are varied rapidly when the eigenvalues are close to the largest eigenvalue λmax as shown in

Figure 2.5. We show the basis functions of the sensor and swiss-roll graphs with 8 nodes as

an example in Figure 2.6 and Figure 2.7. It is important to mention that the first eigenvector of

the combinatorial graph Laplacian is a constant vector and depends on the number of nodes of

graph, which is equal to 1/
√
N at each node for all types of graphs, which is similar to the DC

component of the classical transforms. The graph Fourier transform is defined as given [25,26]:

X(`) =
N−1∑
i=0

x(i)u`(i). (2.17)

The inverse Graph Fourier Transform is defined as follows:

x(i) =
N−1∑
`=0

X(`)ut`(i), (2.18)

where t is a transpose operation.

The graph Fourier transform satisfies the condition of the Parseval’s theorem, that means the

sum of the square signals of graph is equal to the sum of the square graph Fourier coefficients

as shown in the following equation:

‖x‖2i =
N∑
i=1

|x(i)|2 =
N−1∑
`=0

|X(λ`)|2 = ‖X‖2` (2.19)

Most of the energy of the graph Fourier coefficients is concentrated in the first half; this part

represents the low-frequency coefficients, which correspond to the smaller eigenvalues (from
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(a)

(b)

Figure 2.4: Graph signal and its spectrum. (a) Signal on random network graph (vertex domain).
The black lines, red circles, and blue lines indicate the edges, nodes, and signals, respectively.
(b) Graph Fourier coefficients.

DC component to coefficient associated with the eigenvalue
λmax

2
). The second half of the

graph Fourier coefficients represents the high-frequency coefficients, which are associated with

the larger eigenvalues [26].

2.4.1.2 Graph Wavelet Transform (GWT)

Several graph wavelet transform approaches have recently been proposed [2,80–90], one being

perfect reconstruction transforms [2, 80, 81, 87]. However, some of them are only applicable

in very restricted situations; for example, those in [80, 81] can only be used in the case of the

bipartite graphs (which is a graph whose vertices can be divided into two disjoint and inde-

pendent sets V1 and V2 such that every edge connects a vertex in V1 to one in V2). In [91], an

(a) u0 (b) u1

(c) u9 (d) u29

Figure 2.5: Four graph Laplacian eigenvectors of a random graph. The signals’ component
values are represented by the blue bars coming out of the vertices. We note that u29 contains
many more zero crossings than the constant eigenvector u0 and the smooth Fiedler vector u1.
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(a) Sensor graph

0.35

(b) The basis functions of sensor graph

Figure 2.6: Sensor graph with 8 nodes and its basis function. (a) Sensor graph. (b) The basis
functions of sensor graph.

M-channel filter bank for arbitrary graphs is proposed, which requires the use of interpolation

in the synthesis side. Other perfect reconstruction approaches in the vertex domain transform

that can be applied to a specific kind of graph include [88, 92, 93]. In [2], a critically sampled

filter bank is proposed for arbitrary graphs with perfect reconstruction. The proposed method

has a symmetric structure in the analysis and synthesis sides.

In the time domain, a sampling of a signal is performed by downsampling the signal by a

factor of two before upsampling the signal by a factor of two by adding zeros. While in the

frequency domain, two components are obtained: the original frequency content of the signal

and the modulated version of the original spectrum [94–96].

For the graph signal, downsampling and upsampling in the graph vertex domain is done by

removing some nodes based on a specific condition before inserting zeros [64, 97–100]. In the

graph spectral domain, the obtained signal cannot be separated into two components, main and
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(a) Swiss-roll graph

0.35

(b) The basis functions of swiss-roll graph

Figure 2.7: Swiss-roll graph with 8 nodes and its basis function. (a) Swiss-roll graph. (b) The
basis functions of swiss-roll graph.

aliasing. Recently, a graph spectral domain sampling approach was proposed that is similar to

signal sampling in traditional signal processing [101]. Table 2.3 illustrates the properties of the

most common graph wavelet filter banks methods.

Table 2.3: Comparisons between various graph wavelet filter banks methods

Method Vertex domain sampling Spectral domain sampling Orthogonality Perfect reconstruction

[2] - X Orthogonal and Biorthogonal X

[102] X - Orthogonal X

[103] X - Biorthogonal X

[92] X - - X

[91] X - - X
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2.4.1.2.1 Sampling of signals of graph

This section presents the sampling approaches of the graph signal in the graph node domain and

the graph spectral domain.

Sampling in the graph vertex domain

The most common graph sampling method used in the graph vertex domain is [97, 98, 100]:

The process of downsampling the graph signals can be defined in as:

Definition 1: Let G1 = (V1, E1) and G2 = (V2, E2) be the original and downsampled

graphs, respectively. The original signal of graph x ∈ R|V1| and the downsampled signal xd ∈

R|V2|.

xd[n] = x[n′], if v1, n′ ∈ V1 corresponds to v2, n ∈ V2. (2.20)

In the graph node domain, the upsampling process of the signals of graph signal can be defined

as:

Definition 2: Let G1 and G2 are defined as in Definition 1. The original signal x ∈ R|V2| and

the upsampled signal xu ∈ R|V1| as follows:

xu[n] =

x[n′], if vn′ ∈ V2 corresponds to vn ∈ V1,

0, otherwise .
(2.21)

Sampling in the graph spectral domain

In the graph spectral domain, the sampling of the graph signals is as follows [101]:

The process of downsampling the graph signals can be defined in as:

Definition 3: Let L1 ∈ RN×N and L2 ∈ RN/2×N/2 be the original and downsampled graph

Laplacian matrices, respectively. The eigendecompositions of L1 and L2 are given as L1 =

U1Λ1U1 and L2 = U2Λ2U2, where Λ` = diag(λ`,0, λ`,1, ..., λ`,max). In the graph spectral

domain, the downsampled graph signal Xd ∈ RN/2 is given as follows:

Xd[i] = X[i] + X[N − i− 1], (2.22)
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where i = 0, ..., N/2− 1.

In the graph spectral domain, the Upsampling process of graph signals is defined as follows:

Definition 4: Let L1 ∈ RN×N and L3 ∈ R2N×2N be the graph Laplacian matrices of the

original and upsampled graphs. We can define the upsampled signal of the graph in the graph

spectral domain Xu as:

Xu[i] =

X[i], i = 0, ..., N − 1 ,

X[2N − i− 1], i = N, ..., 2N − 1..

(2.23)

2.4.1.2.2 Two-channels graph wavelet filter banks

The most common graph filter bank methods designed for bipartite graphs are outlined in

[81, 102]. These methods constitute perfect reconstructions in cases of bipartite graphs. Non-

bipartite graphs should be converted to bipartite graphs to get a perfect reconstruction. In [2],

a two-channel filter bank approach is proposed for all graph types. This method satisfies the

condition of perfect reconstruction for any graph type and sampling the graph signal in the

spectral domain. In addition, this method uses the same structure on both sides of the analysis

and synthesis filter banks.

A graph signal x is decomposed by two-channels wavelet filter bank {Hk, Gk}k=0,1 into two

sub-bands: low-pass graph signal and a high-pass graph-signal component. The low sub-band

captures the low frequency of the graph signals (smooth) while the high sub-band captures

the high frequency of the graph signals (detail). In this thesis, we use a structure similar to

that of the two-channel graph filter banks designed in [2] because it provides for perfect signal

reconstructions for all graph types and has properties similar to those of the classical wavelet

transform (for more details, see: [2]). Figure 2.8 illustrates the two-channels filter banks on

graphs.

where Hk and Gk are the the kth filters in the both sides of analysis and synthesis filter

banks, respectively, such that Hk = UHk(Λ)U t and Gk = UGk(Λ)U t as given:

Hk(Λ) = diag(Hk(λ0), Hk(λ1), ..., Hk(λN−1)),

30



Chapter 2 – Background and related work

x’x Analysis side Synthesis side

𝑈1
𝑡 𝐻0(Λ) 𝑈2 𝑆𝑑,𝑜

𝑈1
𝑡
𝐻1(Λ)  𝑆𝑑,1 𝑈2

𝑈2
𝑡 𝐺0(Λ) 𝑈1 𝑆𝑢,𝑜

𝑈2
𝑡 𝐺1(Λ) 𝑈1 𝑆𝑢,1

+
a
+
+

Figure 2.8: Two channels graph wavelet filter banks [2].

Gk(Λ) = diag(Gk(λ0), Gk(λ1), ..., Gk(λN−1)).

The downsampling matrix S̃d is defined as S̃d = [IN/2 JN/2], where I is the identity matrix

and J is the anti-diagonal matrix. The upsampling matrix S̃u can be defined as S̃u = [IN JN ]t,

where t is the transpose operation. Figure 2.9 shows the downsampling in the graph spectral

domain.

(a) Downsampling (b) Upsampling

Figure 2.9: Downsampling and upsampling in graph spectral domain [2]. (a) Downsampling.
(b) Upsampling.
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The GWT coefficients (low-frequency and high-frequency) are defined based on the follow-

ing equations respectively:

YL = UH0(Λ)U tx, (2.24)

YH = UH1(Λ)U tx, (2.25)

Y =

YL, Low-frequency coefficients ,

YH , High-frequency coefficients .
(2.26)

where x is the graph signal, YL and YH are the low and high frequencies GWT coefficients,

respectively.

Two kinds of graph filters have been used in this thesis:

1- GraphQMP filter [102]: This filter is an orthogonal filter. The Meyer wavelet kernel H0(λ)

is designed first then the rest filters are designed based on it as follows:

H1(λ) = H0(2− λ),

G0(λ) = H0(λ),

G1(λ) = H1(λ) = H0(2− λ),

where H0 satisfy the perfect reconstruction condition as given:

H2
0 (λ) +H2

0 (2− λ) = c2, (2.27)

Figure 2.10 (a) shows the orthogonal Meyer wavelet kernel [102].

2- GraphFC [87]: A method has been proposed for converting time domain filters H(ω) into

graph spectral filters H(λ) through a frequency mapping from ω ∈ [0, π] to λ ∈ [0, λmax]

[87]. In this approach, the perfect reconstruction conditions are always satisfied as long as the

set of time domain filters are perfect reconstruction (in the time domain). The analysis filter

characteristics based on the CDF 9/7 filters [104] are shown in Figure 2.10 (b).
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(a) (b)

Figure 2.10: Orthogonal and Bi-orthogonal GWT kernels where the blue curve is the low-pass
filter and the red curve is the high-pass filter. (a) Meyer wavelet kernel. (b) Bi-orthogonal 9/7
kernel. blue line: low-pass, red line high-pass

2.5 Graph spectral domain irreversible data hiding

Several works have proposed irreversible data hiding techniques for protecting structured data

on Cartesian grids. However, there is little work on data hiding techniques for protecting and

authenticating unstructured data such as graph data. In recent years, the most sensitive datasets

are captured in large graphs. A significant challenge facing the data owners is how to share

sensitive graphs with collaborators or authorized users, e.g. ISP’s network topology graphs

with a third party networking equipment vendor. One way to protect the graph data is to embed

an author’s signature s for intellectual property protection (IPP). Existing research on protecting

graph data is based on the graph vertex domain using graph colouring. It is a well-known that a

graph colouring problem is considered as a type of hard problems. The graph colouring problem

is to label the nodes of a graph with minimal number of colours such that nodes connected by

an edge are not labelled with the same colour. The most common approaches are: adding extra

edges [7]; Maximal Independent Set (MIS) [105]; inserting new nodes [6, 106] and hiding sub-

graphs created from the secret data [8]. The main idea of the first approach is to add an extra

edge between two nodes based on the binary message, these two nodes have to be coloured by

different colours which may not be necessary in the original graph. A maximal independent set

(MIS) of a graph is a subset of nodes such that nodes in the subset are not connected and those

not in the subset are connected to at least one node of the subset. The essence of this approach is
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to select one or more set (s) MIS according to binary message, assign each MIS with one colour

and then colour the rest of the graph. This approach takes advantage of the fact that nodes in

one MIS can all be labelled by a single colour. Another approach is inserting new nodes to

the original graph and connect them depending on the binary message. Current approaches can

provide limited node or edge privacy, but significantly modify the graph reducing its utility. An

alternative approach is proposed by Zhao et al. [8] in the form of graph watermarks. Graph

watermarks are small graphs tailor-made for a given graph dataset, a secure graph key, and a

secure user key.

The majority of graph data hiding approaches are essentially related to a mesh mostly based

on watermarking. A mesh is a specific type of graph, which is itself a mathematical structure

most simply defined as being a collection of vertices and edges together with a relationship stat-

ing that every edge of the graph connects either two vertices or a vertex to itself. More formally

a mesh is a graph that defines the shape of an object in modelling and includes polygonal faces

formed by components of the graph. Additionally, a mesh is a type of simple graph, in which

there are no edges connecting a vertex to itself. The data hiding approaches are primarily clas-

sified into two categories based on the embedding domain: vertex domain and spectral domain.

In the vertex domain, the secret data are hidden by adjusting the mesh coordinates while in the

spectral domain, the mesh coefficients are modified. Several approaches have been proposed

in the vertex domain. Based on localised geometrical changes to the selected nodes a water-

marking approach is proposed by Bors to improve robustness against noise perturbation and

object cropping [107]. In the same context, Gao et al. [108] propose a watermarking method

based on using affine invariants ratios to embed the watermark. This method provides a high

payload and robustness against the cropping noise affine transformations. Based on modifying

the distribution of the vertex norm, watermarking methods are proposed in [109,110]. In [111],

another work has made proposal based on modifying the geodesic distances. Using the distance

between the centre of the mass and the vertices of a mesh surface to embed the watermark are

proposed in [112–114]. Hou et al. [115] propose a robust approach for the 3D printing process

that depends on the node locations, which are spread cylindrically. A semi-fragile watermarking

approach is proposed by Borah et al. [116]. The approach detects tampering in mesh vertices

and manipulation in mesh topology through a bit substitution method. Robust watermarking is

34



Chapter 2 – Background and related work

also achieved by exploring the machine learning and genetic algorithm in [117]. The K-means

algorithm and particle swarm optimization are employed to choose the mesh vertices for hiding

the watermark. The results in [117] illustrate that the method improves the imperceptibility of

watermarked mesh and robustness against attack. A watermarking algorithm aimed at copyright

protection based on hiding a grey-scale image in the mesh vertices is suggested in [118]. This

method is robust against common attacks such as scaling, rotation and translation. In order to

minimize the embedding distortion, Corsini et al. [119] propose two objective metrics for wa-

termarking distortion by measuring the roughness of the mesh surface. Medimegh et al. [120]

suggest a watermarking approach to embed the watermark on extracted silent regions.

Spectral (frequency) domain data hiding has been shown to be an effective method for pro-

tecting images and videos due to developments in signal transforms [16, 18, 19, 121–124]. Ex-

isting approaches to graph data hiding in the spectral domain are essentially related to a mesh.

In general, these approaches are categorised by type of transform. The most common type

is the combinatorial Laplacian transform, with which the spectral coefficients are obtained by

projecting the mesh coordinates onto the graph Laplacian matrix according to the mesh connec-

tivity [125, 126]. Using combinatorial Laplacian transform a non-blind data hiding approach

is proposed by Ohbuchi et al. [127] wherein the secret bits are hidden by modifying the low-

frequency and medium-frequency mesh coefficients . However, the computational cost of this

approach is high (O(N3)). Additionally, the approach is sensitive to any change in mesh con-

nectivity. Ohbuchi et al. [128] expand upon [127] by splitting the mesh into patches and em-

bedding the secret bits in each patch. This method has a lower computational cost than does the

previous method and is resistant to both cropping and mesh simplification. In the same context,

Abdallah et al. [129] propose a robust watermarking approach based on embedding watermark-

ing bits in spectral coefficients. [130, 131] suggest other works based on manifold harmonics

and the Dirichlet manifold harmonic transform [132] for meshes. Feng et al. [133] present a

new algorithm that uses feature segmentation through DCT transform and redundancy informa-

tion; the method is robust against similarity transformations and signal processing attacks. For

3D point-cloud watermarking, Qi et al. [134] suggest a blind algorithm that extracts the feature

points to improve watermark transparency and noise immunity. [135] presents a new approach

to hiding watermark bits based on distance normalisation modulation; this approach is robust
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against cropping, noise, reorder and similarity transformation. Another blind algorithm using

DCT for copyright protection is presented in [136]; it demonstrates high watermark robustness.

Liu et al. [137] propose a watermarking algorithm based on embedding the watermark bits in

selected feature vertices; the algorithm is robust against geometric attacks.

The second type is a multi-resolution analysis based on the wavelet transform. The main

idea is to embed the watermark in the norm of the wavelet coefficients vector. In line with

regular wavelet decomposition, Kanai et al. [138] propose a watermarking method based on the

lazy wavelet transform. In which the watermark is embedded in the norms of the wavelet coef-

ficient vectors that are higher than a threshold determined by the user; the method is resistant

to similarity transformations. In the same context, Uccheddu et al. [139] suggest a watermark-

ing algorithm in which the embedding process depends on adjusting the norm of the wavelet

coefficient. Based on the irregular wavelet transform on mesh [140], Kim et al. [141] propose

a watermarking approach using a correlation-based scheme in which the watermark is hidden

in groups of wavelet coefficient vectors; this approach is robust against geometric attacks but is

not robust against mesh-connectivity modifications. Wang et al. [142] propose a watermarking

algorithm for embedding the watermark using various levels of resolution; the coefficients with

the lowest resolution are used for a robust watermark while the coefficients with the highest

resolution are used for a fragile watermark. Other works based on the wavelet transform, where

the watermark bits are hidden in different levels of resolution, are suggested in [142,143]. Kim

et al. [144] propose a watermarking method using the B-spline model through which the wa-

termark bits are hidden in the spectral coefficients using the spread spectrum method. Hachani

et al. [145] suggest a watermarking framework using the irregular wavelet transform. The pro-

posed embedding process entails quantizing the wavelet coefficient vector norms to hide the

watermark bits. This approach is robust against common geometric attacks and its payload is

relatively high. The other application of blind watermarking is copyright protection, which is

based on modulating the norm of the wavelet coefficients, as shown in [146]. The proposed

approach is robust against several popular attacks, including additive noise, rotation, translation

and Laplacian smoothing. Another method for copyright protection is proposed by Hamidi et al.

in [147], which uses saliency and wavelet transform on a mesh; its embedding process depends

on using the quantization index modulation algorithm.
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There is limited research on protecting and authenticating graph data by adding nodes or

edges. However, these methods are less resistant to many attacks because they depend on the

vertex domain and the computational complexity of these methods is high. Moreover, they are

insecure because the embedded data can be easily detected by comparing graph topologies. In

mesh-based data hiding, the secret data are embedded in the mesh coordinates or coefficients

without considering the graph signal. In addition, existing work on graph data hiding has a

limitation in terms of identifying the relationship between embedding distortion and the selected

coefficients for reducing embedding distortion and the relationship between the extraction of

secret bits and the effect of the attacks for improving method performance.

2.6 Graph-based reversible data hiding

Several research have been proposed in reversible data hiding. The majority of them are based

on images [148–163]; there is limited research on graph-based RDH because most RDH algo-

rithms for images cannot be applied to graphs. The main mesh-based methods for graph-based

RDH are classified into two groups: Difference Expansion (DE) and Histogram Shifting (HS).

Difference-expansion-based RDH hides the secret bits by expanding the differences be-

tween the neighbouring coordinate values of the host mesh [164]. In this context, Wang et

al. [165] propose a method for embedding secret bits based on modulating the difference be-

tween the neighbouring coordinates. Another approach is proposed by Lu et al. in [166] that

uses predictive vector quantization; this approach can recover the original mesh data after ex-

tracting the secret bits.

The first RDH method using histogram shifting was proposed by Ni et al. [3]. In this method,

the histogram of the host media is generated to identify the zero point (or minimum point) and

the peak point (or maximum point) for use in embedding the secret bits. Hong et al. [167]

propose another approach based on combining prediction and histogram shifting (PHS); this

method has a high payload and robustness against histogram analysis. For copyright protection

of a 3D model, Li et al. [168] suggest a robust RDH approach using homomorphic encryption

and histogram shifting. The proposed method is robust against Gaussian noise, translation and

scaling; additionally, it has less distortion in the decrypted models. Lee et al. [169] propose an
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approach using joint compression to generate levels of details (LoDs); the secret bits are hidden

in the regions of each level by modifying the geometry information of the mesh vertices through

histogram shifting. The reversibility of this method is not guaranteed for all vertices and the

embedding capacity depends on the number of the regions of the LoDs.

Many recent RDH schemes combine the DE or HS and the prediction error (PE) by taking

advantage of correlation among neighbouring vertices to achieve better performance. Jiang et

al. [170] propose an RDH algorithm to hide the secret bits using the optimal 3D prediction error

histogram modification combined with recursive construction coding. With this approach, the

vertices of the mesh are divided into two categories embedded and referenced before the secret

bits are hidden by adjusting the prediction error triple. Shah et al. [171] propose a two-tier

RDH-ED method based on the homomorphic Paillier cryptosystem; this method recovers both

the secret data and the original data without error and offers high embedding rates.

Based on the correlation between the neighbouring vertices, Luo et al. [172] propose an

approach to hiding the secret bits by taking advantage of the high correlation among neigh-

bouring nodes. In line with prediction-error expansion, Wu et al. [173] propose an approach

to hide the secret bits by expanding the difference between the predicted and real positions of

the mesh vertices; this prediction method is more precise when PEs are generated with smaller

values. However, the use of partial prediction contexts limits predictive accuracy [170, 173].

In order to obtain an accurate prediction, Zhang et al. [174] suggest using a ring prediction

context that predicts the position of the central vertex precisely relative to the partial prediction

context. With this approach, the central vertex is predicted based on its one-ring neighbours

before the secret bits are hidden by adjusting the central vertex; this method has a high payload

and low embedding distortion. Borah et al. [175] propose an approach based on a prediction

error histogram for mesh authentication; this method is able to restore the original mesh data

and minimize embedding distortion.

Some of the existing RDH algorithms cannot be reversed. For instance, the RDH using the

least significant bits (LSB) is a lossy method due to bits replacement. Another example is the

RDH using quantization, which is also not invertible due to the quantization error. In addition,

the RDH using prediction error is not error-free, due to truncation error and round-off error.

Most of these algorithms can easily apply when the data are positive integers. Moreover, some
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of the RDH algorithms require that some extra data be stored to precisely restore the original

signal. Other algorithms use lossless compression to compress the embedded data to reduce the

distortion in the host media.

Existing work on graph-based reversible data hiding relies primarily on mesh. In mesh-

based reversible data hiding, the mesh coordinates are used to hide secret data without consider-

ing the graph signal. In addition, there is no work on graph reversible data hiding that identifies

the relationship between embedding distortion and embedding parameters, which would help

reduce embedding distortion, or the relationship between the extraction of secret data and the

effect of the attacks on improving robustness.

2.7 Concluding remarks

This chapter presented a background of data hiding techniques and graph spectral theory. We

reviewed relevant works on spectral domain irreversible and reversible data hiding. From the

literature, we can conclude the following:

1. Most of the existing work on protecting graph data is based on the graph vertex domain,

which is not robust against many attack types and insecure because the embedding pro-

cess depends on graph topology. In order to solve this issue, we propose a data hiding

algorithm in the graph Fourier domain that is robust against many attack types and that

hides the secret bits in the graph coefficients without changing the graph topology. This

algorithm has high embedding capacity because it depends on graph size, as shown in

Chapter 3.

2. The majority of reversible data hiding approaches for graphs are related to mesh as ex-

plained previously). In these approaches, the secret bits are hidden in the mesh coor-

dinates without considering the graph signal. We propose a new reversible data hiding

algorithm in the graph spectral domain with two new models to minimise embedding

distortion and enhance robustness. The embedding process depends on the graph signal

without changing graph topology, as shown in Chapter 4.

3. The discrete wavelet transform is considered to be a powerful tool in signal processing
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because it can represent signal contents in two domains: spatial and frequency. Addition-

ally, it provides multi-scale representations of signals; therefore, the wavelet transform is

considered to be an optimal choice for multimedia data hiding. We use the advantages

of the wavelet transform to propose a new data hiding algorithm in the graph wavelet

domain, as shown in Chapter 5.

4. There is limited work addressing the embedding distortion and the robustness of data hid-

ing in terms of identifying the coefficients which can reduce the embedding distortion or

can retain the embedded data after the attacks. In Chapter 3, Chapter 4 and Chapter 5,

we identify the relationship between embedding distortion performance metrics and the

spectral coefficients selected to embed secret data in order to reduce the embedding dis-

tortion. Moreover, we propose robustness models based on establishing the relationship

between secret data extraction and the effects of attacks to enhance the robustness of data

hiding against attacks.

The next chapter introduces the graph Fourier domain irreversible data hiding for graph

data.
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Chapter 3

Graph Fourier domain irreversible data

hiding for graph data

3.1 Introduction

This chapter proposes a novel method for irreversible data hiding for graph data. Recent years

have seen an increase in the applications of social networks and sensor networks which can be

represented as a weighted graph as discussed in chapter 2. Unfortunately, the techniques of the

classical signal processing cannot be applied to those graphs that have irregular structure. In this

chapter, a spread-spectrum data hiding method is proposed for protecting and authenticating the

graph data based on exploiting the spectral decomposition of graph data. However, the majority

of the existing work interests in protecting and authenticating the data that are represented on

regular structures (with following the Cartesian grid) such as images and videos while there

is a limited work on protecting and authentication irregular structure data. The most popular

methods for authenticating the graph data are based on inserting additional vertices [7]; adding

more edges [6]; hiding sub-graphs [8] as shown in chapter 2. As these methods depend on the

vertex domain, they cannot withstand various types of attacks. The cost of the computational

complexity of these methods is high. They are also insecure because the secret bits can be

detected when the original graph is available by comparing the topologies of the graphs [7, 8].

In addition, since the embedding process is based on the topology of the graph, the embedding

capacity is small.
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On the other hand, spread-spectrum data hiding has proven to be an effective approach in

digital multimedia protection in accordance to the advances in signal transform [9–22, 176]. In

this chapter, we propose a novel spread-spectrum data hiding method for unstructured graph

data. The proposed method exploits the recently advances in graph signal processing on graph

spectral decomposition of the Laplacian matrix, which captures the nodes connectivity [25,26].

The key point of the proposed methods using graph spectral domain is to embed the secret data

in the graph coefficients (by considering the graph signal) without changing the graph topology

(which is considered in the existing work). Therefore, we consider the graph topology as a

secret key available to the receiver. If the graph is compromised the secret data cannot be

extracted, then the graph data cannot be authenticated. For example, we extract some important

information from the graph topology such as (1/
√
N), summation of the fiedler vector, the

number of zeros crossing in the last eigenvector, the maximum eigenvalue, the summation of

the eigenvalues. If the graph topology is changed, for example, if the number of the nodes is

changed this will change the basis functions (eigenvectors) and the value of the first eigenvector

(constant eigenvector) which is (1/
√
N) will change. Also, removing some edges will change

the adjacency matrix A and will generate new basis functions and eigenvalues. Therefore, these

important information are obtained from the graph structure and sent to the receiver in a separate

file to the receiver. So any change in this information means the graph is tampered and the secret

data are destroyed.

Spread spectrum data hiding is one of the most secure techniques of data hiding because the

secret data are spread over many frequency bands so that the energy in one band is undetectable.

Cox et al. [177] propose a secure algorithm for watermarking images, and a methodology for

digital watermarking that may be generalized to audio, video, and multimedia data. In this

paper, a watermark is imperceptibly inserted in a spread-spectrum like fashion into the percep-

tually most significant spectral components of the data in order to make the watermark robust

to signal processing operations (such as lossy compression, filtering, requantization, etc.), and

common geometric transformations (such as cropping, scaling, translation, and rotation) pro-

vided that the original image is available and that it can be succesfully registered against the

transformed watermarked image. Kumar et al. [178] propose a secure spread-spectrum wa-

termarking algorithm for digital images using discrete wavelet transform (DWT) domain. The
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watermark such as patient identification or doctors signature is embedded into host digital radio-

logical image for potential telemedicine applications. Simulation results show that the proposed

method achieves higher security and robustness against various attacks. Liu et al. propose a

watermarking technique using Double Random Phase Encoding spread-space spread-spectrum

(DRPE SS-SS). The watermark is encrypted using a simulation of the optical DRPE process.

This produces a random complex image, which is then processed to form a real valued random

image with a low number of quantization levels. This signal is added to the host image.This

algorithm is designed to utilize the capability of the DRPE to reversibly spread the energy of

the watermarking information in both the space and spatial frequency domains. The results

presented indicate that the DRPE SS-SS method is robust to spatial cropping and both low and

high pass filtering [179].

For any data hiding system, the main requirements are minimum embedding distortion

and high robustness. The existing vertex-domain graph data hiding methods are focused on

minimising the distortion [119, 120, 180] as well as improving the robustness against the at-

tacks [109–113, 115]. Similarly, in [21], two mathematical models have been proposed to

minimise the embedding distortion and make the watermark bits robust for scalable decoding

attacks [15, 16] for general spread spectrum watermarking.

This chapter proposes a novel data hiding algorithm in graph Fourier domain by exploring

the emerging field of graph signal processing for spread-spectrum data hiding. The proposed

data hiding methodology includes two new models, the embedding distortion minimisation

model and the robustness model. In the embedding distortion minimisation model, the rela-

tionship between the error distortion metric and the selected GFT coefficients to be modified

is established in order to minimise the embedding distortion. To enhance the robustness, we

establish the relationship between the extraction of the secret data and the effect of the attack,

namely, noise addition and deleting nodes data. Finally, the conditions of the proposed models

are combined in order to satisfy the two basic requirements of the data hiding. Two scenarios

are considered: non-blind and blind data hiding. Blind data hiding is a useful method where

the original graph signal is unavailable in the extraction process. The basic contributions of this

chapter are:

1. Proposing new models to minimise the embedding distortion for graph Fourier domain
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blind and non-blind data hiding.

2. Proposing new models to make the embedded data robust against the attacks for graph

Fourier domain blind and non-blind data hiding.

The rest of this chapter is organised as the following: Section 3.2 describes the proposed

methodology including the proposed graph Fourier domain data hiding, followed by the em-

bedding distortion minimisation and the robustness models. Section 3.3 presents the evaluation

of the proposed method performance. Finally, the concluding remarks are given in Section 3.4.

3.2 Proposed Methodology

This section presents the proposed irreversible data hiding algorithm in graph Fourier domain.

We consider two embedding scenarios: non-blind and blind data hiding. Figure 3.1 shows the

block diagram of the proposed method.

Embedding Process

Original 

secret data

IGFT

Original graph Modified graph

Extracted

Secret data

Key

Embedding 

Distortion 

model

Robustness 

model

GFT

Extraction Process
Authentication 

Process

Secret data 

Embedding Procedure

Extraction Procedure

Original graph   

(Non-blind)

GFT

Key

Figure 3.1: The block diagram of the proposed irreversible data hiding framework.
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3.2.1 Graph Fourier Transform (GFT)

We suppose that G is an undirected graph without self loops and multiple edges between nodes,

the adjacency matrix with edge weights, A, can be defined as in Eq. (2.9). The combinatorial

graph Laplacian matrix, L, is calculated as in Eq. (2.11). The Graph Fourier Transform (GFT)

and its inverse are defined as in Eq. (2.17) and Eq. (2.18).

3.2.2 GFT domain data hiding

3.2.2.1 Non-blind data hiding

The popular form of non-blind data hiding is the magnitude-based multiplicative watermarking

[13]. Firstly, we calculate the graph Fourier coefficients using Eq. (2.17), then the secret bits

are hidden in the GFT coefficients X as follows:

Xw = X(1 + αwb), (3.1)

where Xw is the modified GFT coefficient, α is the data hiding parameter and wb is the embed-

ded bit. The inverse GFT is performed on the modified GFT coefficients using Eq. (2.18) to

obtain the modified graph.

The extraction process requires the original coefficients to extract the embedded data. The

embedded bits are extracted based on the embedding key which is sent to the receiver in a

separate file. The embedding key includes N , w0, w1, length of the secret bits and α. The GFT

is performed on the modified graph, then the extracted bit is obtained as given in the following

equation:

w′b =
Xw −X

αX
, (3.2)

where w′b (b ∈ {0, 1}) is the extracted bit. Let w0 and w1 are the selected embedded bits for

embedding a 0 and 1, respectively, where w0 < w1. The extracted secret bit b′ is determined
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according to a threshold T , where T = (w0 + w1)/2, whereas:

b′ =

0 , if w′b < T,

1 , if w′b ≥ T.

(3.3)

3.2.2.2 Blind data hiding

We propose a blind method using a prediction-based graph data hiding. We first calculate the

graph Fourier coefficients using Eq. (2.17), then, we sort them in descending order, Xs(m).

Before we choose the GFT coefficients to embed the secret data, we test each three sorted

spectral coefficients, Xs(m− 1) ≥ Xs(m) ≥ Xs(m + 1), if and only if they satisfy following

condition:

Xs(m− 1) ≥
⌊Xs(m− 1) + Xs(m+ 1)

2

⌋
+ wb ≥ Xs(m+ 1). (3.4)

The spectral coefficients are used in the embedding process. Otherwise (if the condition

does not satisfy) the first coefficient is skipped. We start from the second coefficient and check

the three coefficients again and so on. We use a code (0) for no skip coefficient and (1) for

skipping coefficients followed by the locations of the coefficients. The secret key includes this

information and it is sent to the receiver separately.

For embedding the secret data, a non-overlapping 3× 1 running window is passed through the

selected graph Fourier coefficients to hide the secret bit in the median GFT coefficient at each

sliding position, as given in the following equation:

Xsw(m) =
⌊Xs(m− 1) + Xs(m+ 1)

2

⌋
+ wb, (3.5)

where Xsw is the modified coefficient, bXc refers to rounding of X to the largest integer number

smaller than X and wb > 0 is the secret bit. To obtain the modified graph, we perform the

inverse GFT on the modified GFT coefficients by using Eq. (2.18).

The secret bits are extracted based on the embedding key which is sent to the receiver in

a separate file. The embedding key includes N , w0, w1, length of the secret bits, number of

skipped coefficients and the positions of the skipped coefficients. The graph Fourier transform

is applied on the modified graph, followed by sorting in descending order to get sorted modified

46



Chapter 3 – Graph Fourier domain irreversible data hiding for graph data

graph Fourier coefficients, Xw(m). Then, the embedded bit from each 3 × 1 running window

with coefficients, Xw(m− 1) ≥ Xw(m) ≥ Xw(m+ 1), is extracted based on the secret key as

shown in the following equation:

w′b = Xw(`)−
⌊Xw(`− 1) + Xw(`+ 1)

2

⌋
. (3.6)

where w′b (b ∈ {0, 1}) is the extracted bit. Let w0 and w1 are the chosen secret bits values for

embedding a 0 and 1 , respectively. The extracted secret bit b′ is determined according to a

threshold T , where T = (w0 + w1)/2, as shown in Eq. (3.3).

3.2.3 Authentication Process

Authentication is applied based on comparing the extracted secret bits with the original secret

bits using the Hamming Distance (HD) as defined as in Eq. (2.6).

3.2.4 Embedding distortion minimisation

A model is proposed for minimising the embedding distortion in graph Fourier domain based

on establishing the relationship between the error distortion using mean square error (µ) and the

chosen graph Fourier coefficient for data hiding. We define MSE (µ) in vertex domain between

the original graph signal x and modified graph signal xw as given:

µ =
1

N

N−1∑
i=0

(x(i)− xw(i))2, (3.7)

where N is the number of graph nodes. Since the graph Fourier transform forms an orthogonal

set of eigenvectors, according to the Parseval’s Theorem, ‖x‖2 = ‖X‖2, where x is the signal of

graph in vertex domain and X is the graph Fourier coefficient [25]. Because the graph Fourier

transform is orthonormal, we can extend this to the sum of the error power in the input graph

signal, ∆x, and to the sum of the error power in the GFT domain ∆X as the following:

∑
i

|∆x(i)|2 =
∑
`

|∆X(`)|2. (3.8)
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From Eq. (3.7) and Eq. (3.8), we obtain:

µ =
1

N

∑
`

|∆X(`)|2. (3.9)

We suggest two data hiding scenarios: non-blind and blind.

Proposition 3.1 (Non-blind)

For non-blind approach, the MSE (µ) of the modified graph is proportional to the energy sum

of the chosen GFT coefficients for embedding:

µ ∝
N−1∑
`=0

|X(`)|2. (3.10)

Proof. In non-blind approach, the modified coefficients Xw(`) are calculated as follows:

∆X(`) = Xw(`)−X(`),

= X(`) + X(`)αwb −X(`),

∆X(`) = X(`)αwb,

where ∆X(`) is the modification value due to embedding the secret bit. Since the GFT is

orthonormal and from Eq. (3.9), thereby leading to the the relationship between the MSE and

the selected GFT coefficients:

µ ∝
N−1∑
`=0

|X(`)|2.

The embedding distortion is decreased when the value of ∆X is decreased, in other words,

when we choose the GFT coefficients with low values (because α and wb can be considered as

constants).
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Proposition 3.2 (Blind)

In a blind approach, for any embedding coefficient triple Xs(m− 1) ≥ Xs(m) ≥ Xs(m + 1),

the MSE (µ) of the modified graph is proportional to the gradient difference of the embedding

coefficient triple [(Xs(m− 1)−Xs(m))− (Xs(m)−Xs(m+ 1))]2 as follows:

µ ∝ [(Xs(m− 1)−Xs(m))− (Xs(m)−Xs(m+ 1))]2. (3.11)

Proof. For any three sorted spectral coefficients, Xs(m − 1) ≥ Xs(m) ≥ Xs(m + 1), the

modification value due to embedding the secret bits ∆Xs(m) using the prediction algorithm is

estimated from Eq. (3.5) as follows:

∆Xs(m) = Xsw(m)−Xs(m),

=
⌊Xs(m− 1) + Xs(m+ 1)

2

⌋
+ wb −Xs(m),

∆Xs(m) =
⌊Xs(m− 1) + Xs(m+ 1)

2

⌋
−Xs(m).

By substituting Xs(m− 1) with Xs(m) + ∆1 and Xs(m+ 1) with Xs(m)−∆2, based on the

sorted coefficients, Xs(m) + ∆1 ≥ Xs(m) ≥ Xs(m)−∆2.

∆Xs(m) =
⌊Xs(m− 1) + Xs(m+ 1)

2

⌋
−Xs(m),

∆Xs(m) =
⌊Xs(m) + ∆1 + Xs(m)−∆2

2

⌋
−Xs(m).

The minimum error distortion is obtained when the difference between Xsw(m) and Xs(m) is

close to 0:

⌊Xs(m− 1) + Xs(m+ 1)

2

⌋
−Xs(m) = 0,

⌊Xs(m) + ∆1 + Xs(m)−∆2

2

⌋
−Xs(m) = 0,

Xs(m) + ∆1 + Xs(m)−∆2 = 2Xs(m),

(Xs(m) + ∆1)−Xs(m) = Xs(m)− (Xs(m)−∆2),
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[(Xs(m) + ∆1)−Xs(m)]− [Xs(m)− (Xs(m)−∆2)] = 0.

Since the GFT is orthonormal and from Eq. (3.9) we obtain:

µ ∝
∑
|∆Xs(m)|2. (3.12)

Thereby leading to

µ ∝
∑

(
⌊Xs(m− 1) + Xs(m+ 1)

2

⌋
−Xs(m))2.

Thereby leading to the relationship between the MSE µ and the selected GFT coefficient triple:

µ ∝ (Xs(m− 1)−Xs(m))− (Xs(m)−Xs(m+ 1))2.

Therefore for minimising µ, for each hiding coefficient triple, b0.5(Xs(m − 1) + Xs(m +

1))c −Xs(m) have to be close to 0 or in other words the gradient difference, [(Xs(m − 1) −

Xs(m))− (Xs(m)−Xs(m+ 1))]2 have to be close to 0 (when the gradient difference is close

to zero this means the ∆Xs(m) is close to zero and this leads to reducing the MSE because the

modified coefficient is very close to the original coefficient).

3.2.5 On enhancing robustness

Tthe robustness model is proposed to enhance the robustness of the data hiding against the

attacks. The main idea to the proposed model is to find the GFT coefficients which are able to

retain the secret bit after the attack based on establishing the relationship between the extraction

of the secret bits and the effect of the attacks. Two data hiding scenarios are proposed to analyse

the robustness against the attacks in graph Fourier domain: non-blind and blind algorithms. We

consider two attacks types namely, noise addition and deleting nodes data on graphs. The

modified graph Fourier coefficients Xw(`) are modified based on the modification value due to

attack ∆a as the following:

X′w(`′) = Xw(`) + ∆a, (3.13)
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where X′w(`′) are the modified graph Fourier coefficients after the attack. The value of modifi-

cation due to attack ∆a can be in the range:

∆amin
≤ ∆a ≤ ∆amax , (3.14)

where ∆amin
and ∆amax are the minimum and maximum modification values. The value of

modification ∆a depends on the attack type. For instance, the value of modification due to

additive noise depends on the value of the noise variance (σ2), while the value of modification of

deleting nodes data depends on the number of the node data that are deleting and their locations

in the graph. We propose the robustness models based on adopting the robustness models which

are proposed in discrete wavelet transform [1].

3.2.5.1 The non-blind model

A model is derived to find the GFT coefficients can retain the secret bits after the attacks.

We establish the relationship between the selected coefficients to hide the secret bits and the

robustness against attacks. The basic form of the data embedding in the non-blind approach is:

Xw(`) = X(`) + ∆, (3.15)

where X(`) is the GFT coefficient to be modified, Xw(`) is the modified coefficient and ∆ is

the modification value due to data hiding.

∆ = Xw(`)−X(`), (3.16)

∆ = αX(`)wb, (3.17)

where α is the data hiding parameter and wb(b ∈ {0, 1}) is the secret bit. Based on substituting

the Eq. (3.16) in Eq. (3.15), we obtain:

Xw(`) = X(`) + αX(`)wb. (3.18)
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= X(`)(1 + αwb).

The relationship between the original graph Fourier coefficient and modified graph Fourier

coefficient is:

X(`) =
Xw(`)

1 + αwb
. (3.19)

The secret bit w′b is extracted based on the following equation:

w′b =
Xw(`)−X(`)

αX(`)
. (3.20)

At this point, we consider three cases of the secret bits: hiding only b = 0 bit, hiding only b = 1

bit and hiding b = 0 and b = 1 bit.

Proposition 3.3

The original GFT coefficients for hiding a bit with value b = 1 and retain intact after the attacks

are in the range:
X′w(`′)

1 + αw1

≤ X(`) ≤ X′w(`′)

1 + αT
. (3.21)

Proof. To obtain the embedded bit b = 1, we need to get w′b ≥ T :

Xw(`)−X(`)

αX(`)
≥ T. (3.22)

Since Xw(`) and X(`) have the same sign and |Xw(`)| > |X(`)| (the GFT coefficient can

retain secret bit accurately), then

Xw(`) ≥ X(`)(1 + αT ).

In the case of no attack, the modified coefficient Xw(`) after embedding the secret bit wb = 1

will be in the range:

X(`)(1 + αT ) ≤ Xw(`) ≤ X(`)(1 + αw1). (3.23)

The secret bit can extract accurately when the GFT coefficients in the range:

Xw(`)

1 + αw1

≤ X(`) ≤ Xw(`)

1 + αT
. (3.24)
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To extract the secret bit correctly after the attack, we need:

X′w(`′) ≥ Xw(`). (3.25)

After the attack, the modified coefficients will be in the region:

Xw(`) + ∆amin
≤ Xw(`) ≤ Xw(`) + ∆amax . (3.26)

By considering the values in this region:

Xw(`) + ∆amin
≤ Xw(`) ≤ Xw(`) + ∆amax ,

X′w(`′) = Xw(`) + ∆amax ,

⇒ X′w(`′) > Xw(`).

In terms of the original coefficients, X(`) is:

Xw(`) + ∆amin
≤ X(`)(1 + αw1) ≤ Xw(`) + ∆amax ,

Xw(`) + ∆amin

1 + αw1

≤ X(`) ≤ Xw(`) + ∆amax

1 + αw1

.

By substituting (Xw(`) + ∆amin
) and (Xw(`) + ∆amax) with X′w(`′) we get:

X′w(`′)

1 + αw1

≤ X(`) ≤ X′w(`′)

1 + αw1

.

Since w1 = 1 , w1 > T , therefore,
1

1 + αT
>

1

1 + αw1

, then we get the range of the graph

Fourier coefficients which can retain the secret bits after the attack as:

X′w(`′)

1 + αw1

≤ X(`) ≤ X′w(`′)

1 + αT
.
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Proposition 3.4

The original GFT coefficients for hiding a bit value b = 0 and retain intact after the attacks are

in the range
X′w(`′)

1 + αT
< X(`) <

X′w(`′)

1 + αw0

. (3.27)

Proof. To obtain the embedded bit b = 0, we need to get w′b < T as:

Xw(`)−X(`)

αX(`)
< T, (3.28)

Xw(`) < X(`)(1 + αT ).

In the case of no attack, the modified coefficient Xw(`) after embedding the secret bit w′b = 0

will be in the range:

X(`)(1 + αw0) < Xw(`) < X(`)(1 + αT ). (3.29)

And the secret bit can extract accurately when the GFT coefficients in the range:

Xw(`)

1 + αT
< X(`) <

Xw(`)

1 + αw0

. (3.30)

To obtain a correct extraction of the embedded bits after attack, we need:

X′w(`′) < Xw(`). (3.31)

After the attack, the modified coefficients will be in the region:

Xw(`) + ∆amin
≤ Xw(`) ≤ Xw(`) + ∆amax . (3.32)

By considering the values in the range:

Xw(`) + ∆amin
≤ Xw(`) ≤ Xw(`) + ∆amax .

In terms of the original coefficients, X(`):
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Xw(`) + ∆amin
< X(`)(1 + αw0) < Xw(`) + ∆amax ,

Xw(`) + ∆amin

1 + αw0

< X(`) <
Xw(`) + ∆amax

1 + αw0

.

By substituting (Xw(`) + ∆amin
) and (Xw(`) + ∆amax) with X′w(`′) we get:

X′w(`′)

1 + αw0

< X(`) <
X′w(`′)

1 + αw0

.

Since w0 = 0 , w0 < T , therefore,
1

1 + αT
<

1

1 + αw0

, and by substituting Xw(`)+∆amin

and Xw(`) + ∆amax with X′w(`′), then we get the range of the original GFT coefficients which

can retain the correct secret bit after the attack:

X′w(`′)

1 + αT
< X(`) <

X′w(`′)

1 + αw0

.

Finally, we have to combine the proposition 3.3 and proposition 3.4 to derive the region of

the GFT coefficients that are capable of retaining both b = 1 and b = 0 after the attacks. The

original GFT coefficients which can retain the correct secret bit after the attack should be in the

range:
X′w(`′)

1 + αw1

≤ X(`) ≤ X′w(`′)

1 + αw0

. (3.33)

In the case of no attack, the modified coefficients Xw(`) after embedding the secret bit b = 0

and b = 1 will be in the range:

X(`)(1 + αw0) ≤ Xw(`) ≤ X(`)(1 + αw1). (3.34)

And the secret bit can be extracted accurately when the GFT coefficients in the range:

Xw(`)

1 + αw1

≤ X(`) ≤ Xw(`)

1 + αw0

. (3.35)

Figure 3.2 displays the GFT coefficients range which is able to keep the secret bits after the

attacks.
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Figure 3.2: The GFT coefficients range which is able to extract the secret bits correctly. (a)
Hiding only b = 1. (b) Hiding only b = 0. (c) Hiding b = 0 and b = 1.

3.2.5.2 The Blind model

A new model is proposed to identify the GFT coefficients that are able to keep the secret bits

after the attack in the graph Fourier domain for a blind approach using a prediction-based graph

data hiding. The modified coefficients are given as:

Xw(`) =
⌊X(`− 1) + X(`+ 1)

2

⌋
+ wb. (3.36)

After the attack, to extract the secret data w′b, we have new graph Fourier coefficients values

X′w(`′ − 1),X′w(`′) and X′w(`′ + 1):

w′b = X′w(`′)−
⌊X′w(`′ − 1) + X′w(`′ + 1)

2

⌋
. (3.37)
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We consider three cases of the secret bits: embedding only b = 0 bit, embedding only b = 1 bit

and embedding b = 0 and b = 1 bit.

Proposition 3.5

The original GFT coefficients for hiding a bit value b = 1 and retain intact after the attacks are

in the range:

⌊X ′w(`′ − 1) +X ′w(`′ + 1)

2

⌋
+ T ≤ X ′w(`′) <

⌊X ′w(`′ − 1) +X ′w(`′ + 1)

2

⌋
+ w1. (3.38)

Proof. To obtain the secret bit b = 1, we need to get w′b ≥ T , that means:

Xw(`)−
⌊Xw(`− 1) + Xw(`+ 1)

2

⌋
≥ T. (3.39)

Since |Xw(`)| > |X(`)|, then

Xw(`) ≥
⌊Xw(`− 1) + Xw(`+ 1)

2

⌋
+ T. (3.40)

In the case of no attack, the modified coefficient Xw(`) after embedding the secret bit w′b = 1

will be in the range:

⌊Xw(`− 1) +Xw(`+ 1)

2

⌋
+ T ≤ Xw(`) <

⌊Xw(`− 1) +Xw(`+ 1)

2

⌋
+ w1. (3.41)

After the attack, we have only the reconstructed coefficients, X′w(`′). For correct extraction of

the secret bit, we need:

X′w(`′) ≥ Xw(`). (3.42)

The modified coefficients after the attack will be in the region:

X′w(`′) = Xw(`) + ∆a, (3.43)
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where Xw(`) + ∆a are the modified coefficients after the attack .

Xw(`) + ∆a ≥ Xw(`), (3.44)

⌊Xw(`− 1) + Xw(`+ 1)

2

⌋
+ ∆a + T ≥

⌊Xw(`− 1) + Xw(`+ 1)

2

⌋
+ T. (3.45)

Since w1 = 1 , w1 > T , from Eq. (3.36) and by considering the modified coefficients after the

attack we get:

⌊X ′w(`′ − 1) +X ′w(`′ + 1)

2

⌋
+ T ≤ X ′w(`′) <

⌊X ′w(`′ − 1) +X ′w(`′ + 1)

2

⌋
+ w1.

Proposition 3.6

The original GFT coefficients for hiding a bit value b = 0 and retain intact after the attacks are

in the range:

⌊X ′w(`′ − 1) +X ′w(`′ + 1)

2

⌋
+ w0 ≤ X ′w(`′) <

⌊X ′w(`′ − 1) +X ′w(`′ + 1)

2

⌋
+ T. (3.46)

Proof. To obtain the secret bit b = 0, we need to get w′b < T , which means:

Xw(`)−
⌊Xw(`− 1) + Xw(`+ 1)

2

⌋
< T, (3.47)

Xw(`) <
⌊Xw(`− 1) + Xw(`+ 1)

2

⌋
+ T. (3.48)

In the case of no attack, the modified coefficient Xw(`) after embedding the secret bit b = 0

will be in the range:

⌊Xw(`− 1) +Xw(`+ 1)

2

⌋
+ w0 ≤ Xw(`) <

⌊Xw(`− 1) +Xw(`+ 1)

2

⌋
+ T. (3.49)

After the attack, we have only the reconstructed coefficients, X′w. For correct extraction of the

secret bit, we need:

X′w(`′) < Xw(`). (3.50)
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The modified coefficients after the attack will be:

X′w(`′) = Xw(`) + ∆a, (3.51)

where Xw(`) + ∆a are the modified coefficients after the attack.

Xw(`) + ∆a ≤ Xw(`), (3.52)

⌊Xw(`− 1) + Xw(`+ 1)

2

⌋
+ ∆a + T ≥

⌊Xw(`− 1) + Xw(`+ 1)

2

⌋
+ w0. (3.53)

Since w0 = 0 , w0 < T , From Eq. (3.36) and by considering the modified coefficients after the

attack, we get:

⌊X ′w(`′ − 1) +X ′w(`′ + 1)

2

⌋
+ w0 ≤ X ′w(`′) <

⌊X ′w(`′ − 1) +X ′w(`′ + 1)

2

⌋
+ T.

We combine the above propositions to identify the region of GFT coefficients that are ca-

pable of retaining both b = 1 and b = 0 after the attacks. The GFT coefficients range that can

keep the secret bits is:

⌊X ′w(`′ − 1) +X ′w(`′ + 1)

2

⌋
+ w0 ≤ X ′w(`′) <

⌊X ′w(`′ − 1) +X ′w(`′ + 1)

2

⌋
+ w1. (3.54)

Figure 3.3 displays the GFT coefficients range which is able to retain the secret bits after

the attacks.

3.2.6 Joint robust-low distortion data hiding

The proposed models, embedding distortion minimisation and robustness are combined for sat-

isfying the basic requirements of the graph data hiding. Two embedding algorithms are consid-

ered. For the non-blind algorithm, in order to combine the model of the embedding distortion

minimisation with the robustness model, we select the GFT coefficients that satisfy the condi-

tion in Eq. (3.33) for satisfying the robustness condition, then, we select the GFT coefficients
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Figure 3.3: The range of the graph Fourier coefficients which is able to extract the secret bits
correctly. (a) Hiding only b = 0. (b) Hiding only b = 1. (c) Hiding b = 0 and b = 1.

(from the above GFT coefficients) that satisfy the condition in Eq. (3.10) (in other words, the

GFT coefficients have the lowest values) to minimise the embedding distortion i.e., the GFT

coefficients which satisfy the above two conditions are selected to embed the secret data. For

the blind algorithm, we combine the proposed models of the embedding distortion minimisa-

tion and the robustness based on selecting the GFT coefficients that satisfy the condition in Eq.

(3.54) to meet the robustness, then, we select the GFT coefficients which satisfy the condition

in Eq. (3.11) (in our model the GFT coefficient triple which has the gradient difference close to

0) in order to minimise the embedding distortion i.e., the GFT coefficients that satisfy the both

conditions are chosen for embedding the secret bits.
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3.3 Performance evaluation

The experimental simulations verify the proposed models using two data hiding scenarios: non-

blind and blind. The experimental simulations are divided into two types: evaluation of the

performance of the embedding distortion and evaluation of the robustness performance. The

proposed models are evaluated by comparing the performance of the data hiding methods with

using the proposed models (embedding distortion minimisation and robustness) and the data

hiding methods without using the proposed models. We would like to indicate that we have

identified many limitations regarding the comparison of the proposed methods with previous

methods. We could not find a method where a framework similar to the proposed method was

considered. None of the existing graph data hiding methods embed the secret bits into the graph

signal; instead, they embed the secret data in the mesh coordinates or the graph topology. Due

to lack of any other comparable work, it is not possible to compare our experimental results with

other works. In that context, we consider the results without the proposed models as the base-

line. Therefore, we calculate the results by using the data hiding algorithms without using the

proposed models (embedding distortion minimisation and robustness) to show improvements

when the proposed models were applied using the same data hiding algorithms.

3.3.1 Experimental set up

The proposed GFT domain data hiding algorithms with the proposed models, namely, em-

bedding distortion minimisation and robustness were tested using the dataset of graph water-

marking [181]. This dataset includes 11 types of graphs: Sensor, Spiral, Swiss-roll, Sphere,

Minnesota, Community, Cube, Torus, David-sensor-network, Air foil and Bunny. The graphs

(with specified connectivity) were generated using the Toolbox for signal processing on graphs

(GSPBox) [182]. The Toolbox for GSPBox provides the graph structure without graph signal

values. This dataset incorporates the graph signals, using a correlated input, such as, a natural

image. The graph data (signal) values are obtained from 5 standard test images data: Lena,

Barbara, Gold Hill, Baboon and Peppers to form graph signals: signal 1, signal 2, signal 3,

signal 4 and signal 5, respectively. We considered these images because they are the most

common standard images and used in data hiding methods. The dataset includes a total of 160

61



Chapter 3 – Graph Fourier domain irreversible data hiding for graph data

various graphs with a different number of nodes and various graph signals. In this dataset,

four sets of graphs are considered according to the number of the graph nodes in each set,

N = {500, 2500, 5000, 10000} nodes, where N is the number of the nodes in each graph and

each set has more than 35 different types of graphs. All the graphs have the same structure in-

cluding five fields: G = {N, Coordinates, Type,A, x}, where N is the number of the graph

nodes, Coordinates are the graph coordinates, Type is the graph type, A is the adjacency

matrix, x is the graph signal. The length of the signal depends on the number of the graph

nodes, for example, when N = 2500 nodes, the graph signal is generated from 2-D image data

with (50 × 50) pixels, then converted to 1-D signal, row by row from left to right. Figure 3.4

shows the types of graphs that are used in the graph dataset with and without the graphs edges.

The reasons of using images data are: first, the majority of the data hiding methods are

based on images. Also, we can compare the proposed methods with these methods. Second,

due to lack of datasets using the environmental conditions; in other words, graph dataset that

provides the graph structure with the graph signal in order to use it. In addition, due to lack of

other comparable work that use the environmental data.

3.3.2 Evaluation of the performance of the embedding distortion

This section presents two types of empirical results: verification of the embedding distortion

minimisation model and evaluation of the performance of the embedding distortion for non-

blind and blind data hiding. For performance metrics, MSE of the modified graphs were cal-

culated for evaluation of the embedding distortion. We chose MSE in our performance evalu-

ation of the proposed methods instead of using the Hausdorff distance for two reasons. First,

MSE calculates the differences between the graph signal values in the original and the mod-

ified graphs. Second, MSE is usually employed for evaluating changes in all values of the

graph signal as in changes in the colour intensities assigned to image samples (pixels of a

two-dimensional image or points in a 3D cloud). While the Hausdorff distance is used for eval-

uating distances in a Euclidean space (Changing the coordinates of the graph or the points in a

3D cloud).
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Torus Sphere Air foil Bunny 
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Figure 3.4: Graph dataset. (a) Graphs types. (b) Graph types with edges.

3.3.2.1 Verification of the embedding distortion minimisation model of the non-blind

data hiding

The proposition 3.1 is verified in the empirical simulations. The energy sum of the chosen

GFT coefficients and the MSE of the modified graphs are calculated using graph dataset. We
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consider pseudo-random binary sequences as the secret bits, with three scenarios (w = {1},

w = {0} and w = {0, 1}), to hide in the graph Fourier coefficients for various graphs. In these

experiments, 8 graphs types with a different number of graph nodes (500, 2500, 5000, 10000)

and five graph signals are used to embed the same number of secret bits per group. We use

different colors to represent each signal to display different types of graphs for various signals,

where blue colour for graph signal 1, red colour for graph signal 2 , magenta colour for graph

signal 3 , green colour for graph signal 4 and cyan colour for graph signal 5. We obtain two sets

of results to verify the effects of embedding three scenarios of the secret bits as given:

In the experiment Set 1, the GFT coefficients are divided into five groups based on their

values by taking into consideration all the GFT coefficients which are corresponding to the

eigenvectors from 1 to N − 1 except the first coefficient corresponding to the eigenvector 0. We

embed the same number of the secret bits in each group. For example, if we have a graph with

500 nodes, we divide its coefficients into 5 groups, each group has 100 coefficients. Then, we

embed 100 secret bits in each group. After that, the energy sum of the chosen GFT coefficients

to be modified and MSE of the modified graphs are calculated using the same α = 0.1 for all

groups separately. In these experiments, we consider the case when the secret bits w = {1}.

In the experiment Set 2, we have considered the case when the secret bits w = {0, 1}, where

the numbers of 0s and 1s are equal in w. Embedding performance is calculated in a similar way

to that mentioned in experiment Set 1 to notice the trend.

We can observe that the distortion in the experiment Set 1 is double the distortion of the

experiment Set 2 due to embedding the double number of 1s as illustrated in Figure 3.5 and

Figure 3.6 respectively. While there is no distortion in case of embedding w = {0} only.

The empirical results demonstrate that the sum of the energy of the GFT coefficients se-

lected for modification correlates strongly with the MSE of the modified graph. The relation-

ship between the MSE of the modified graph and the energy sum of the chosen graph Fourier

coefficients is a linear proportionality (where y = m1x + β,m1 is the slope of the graph, and

β is the y-intercept; in the proposed model, y-axis = MSE and x-axis = the energy sum of the

selected coefficients). This proves that the MSE of the modified graph is linearly proportional

to the energy sum of the selected GFT coefficients. The proposed model was supported by

simulation results for the graph dataset.
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Figure 3.5: Verification of embedding distortion of non-blind data hiding: MSE of the modified
graph vs. sum of energy when w = {1}, for individual graphs with different number of nodes
N = 500, 2500, 5000, 10000, respectively for 5 graph signals where the colours, blue, red,
magenta, green and cyan represent the graph signals 1, 2, 3, 4 and 5, respectively and the blue
line demonstrates the MSE is linearly proportional to the energy sum (where y = m1x+ β).

3.3.2.2 Verification of the embedding distortion minimisation model of the blind data

hiding

The proposition 3.2 is verified in the simulation results. The MSE of the modified graphs and the

gradient differences have been calculated for the test graphs. In these experiments, 4 graph types

with a different number of graph nodes N = {500, 2500, 5000, 10000}. We consider pseudo-

random number sequences as the secret data, with five scenarios (w = {0, 0.1, 0.2, 0.3, 0.4}), to

hide in the GFT coefficients of the graph dataset. Four sets of empirical results are obtained to
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Figure 3.6: Verification of embedding distortion of non-blind data hiding: MSE of the modified
vs. sum of energy when w = {0, 1}, for individual graphs with different number of nodes
N = 500, 2500, 5000, 10000, respectively for 5 graph signals where the colours, blue, red,
magenta, green and cyan represent the graph signals 1, 2, 3, 4 and 5, respectively and the blue
line demonstrates the MSE is linearly proportional to the energy sum (where y = m1x+ β).

verify the effects of embedding five scenarios of the secret bits. In these experimental simula-

tions, the sorted GFT coefficients are divided into nine groups based on based on their gradient

difference values by taking into consideration all the GFT coefficients which are corresponding

to the eigenvectors from 1 to N − 1 except the first coefficient corresponding to the eigenvector

0. We embed the same number of the secret bits in each group. For example, if we have a graph

with 500 nodes, we divide its coefficients into 9 groups, each group has 100 coefficients. Then,

we embed 50 secret bits in each group. After that, the MSE of the modified graph has been

calculated for all groups separately using different embedding scenarios. The empirical results
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demonstrate that there is a strong correlation between the MSE of the modified graph and the

gradient difference of any GFT coefficient triple. It can be observed that the minimum distor-

tion is obtained (low MSE) when the gradient difference is close to zero. The proposed model

is supported by the extensive simulation results using the graph dataset and various embedding

scenarios as shown in Figure 3.7 and Figure 3.8.

3.3.2.3 Performance evaluation of the embedding distortion of the non-blind data hiding

The performance of the embedding distortion of non-blind data hiding is evaluated at various

embedding capacities using graph dataset. In these experiments, two sets of graphs N = 5000

andN = 10000 are utilised to evaluate the performance of the proposed method, where each set

of graphs includes 35 different graph types and using the same α = 0.1. We consider pseudo-

random binary sequences as secret bits, w = {0, 1}. MSE of the modified graphs are calculated

by using the original non-blind algorithm with the embedding distortion minimisation model

by embedding the secret bits in the GFT coefficients that have the lowest values and MSE of

the modified graphs are calculated by using the same non-blind algorithm without using the

proposed model by embedding the same secret bits in the GFT coefficients which are selected

randomly (without considering their values). Figure 3.9 shows the sensor graph with N = 5000

nodes before and after embedding the secret bits with length 900 bits. We can notice that

the non-blind algorithm with the proposed model provides lower distortion over the original

algorithm without the model. As shown in Figure 3.10, the distortion is improved by an average

of 99% and 94.5% for N = 10000 and N = 5000 nodes, respectively. In addition, we can

observe that the embedding distortion is increased when the embedding capacity is increased.

3.3.2.4 Performance evaluation of the embedding distortion of the blind data hiding

We evaluate the embedding distortion performance of blind data hiding at various embedding

capacities using graph dataset. In these experiments, two sets of graphs with N = 5000 and

N = 10000 nodes, respectively are utilised for evaluating the performance of the method, where

each set of graphs has 35 different graph types. We consider pseudo-random binary sequences as

the secret bits, to represent w = {0, 1}. We calculate the MSE of the modified graphs by using

the original blind algorithm with the embedding distortion minimisation model by embedding
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Figure 3.7: Verification of embedding distortion of blind data hiding: MSE of the modified
graph vs. gradient difference, for individual graphs with number of nodes N = 500 and N =
2500 respectively.
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(c) Swiss-roll graph with N = 5000 nodes
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(d) Cube graph with N = 5000 nodes
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(e) Sensor graph with N = 10000 nodes
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(f) Spiral graph with N = 10000 nodes
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(g) Swiss-roll graph with N = 10000 nodes
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(h) Cube graph with N = 10000 nodes

Figure 3.8: Verification of embedding distortion of blind data hiding: MSE of the modified
graph vs. gradient difference, for individual graphs with number of nodes N = 5000 andN =
10000, respectively.
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(a) (b)

Figure 3.9: Sensor graph. (a) Original Sensor graph. (b) Modified Sensor graph.
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Figure 3.10: Embedding distortion performance of the non-blind algorithm using graphs with
different numbers of nodes for various embedding capacities. (a) N = 5000. (b) N = 10000.

the secret bits in the GFT coefficients triple which have gradient difference close to 0 and

MSE of the modified graphs are calculated by using the same blind algorithm without using

the proposed model by embedding the same secret bits in the GFT coefficients triple which are

selected randomly (without considering their gradient difference). Figure 3.11 shows the sphere

graph with N = 5000 nodes before and after embedding the secret bits with length 500 bits.

The empirical results show that the blind algorithm with the proposed model achieves lower

distortion over the original algorithm without the model. As shown in Figure 3.12, the distortion

is improved by an average of 80% and 99% for N = 10000 and N = 5000 nodes, respectively.

Moreover, we can see that the embedding distortion is increased when the embedding capacity

is increased. The blind data hiding has a less distortion compared to the non-blind data hiding
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because the blind algorithm has a less embedding capacity according to the embedding model.

In addition, decreasing the number of graph nodes N make a less differences between the GFT

coefficients and this leads to reduce the differences between the MSE values.

(a) (b)

Figure 3.11: Sphere graph (a) Original Sphere graph. (b) Modified Sphere graph.
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Figure 3.12: Embedding distortion performance of the blind algorithm using graphs with dif-
ferent numbers of nodes for various embedding capacities. (a) N = 5000. (b) N = 10000.

3.3.3 Evaluation of the performance of the robustness model

This section presents the performance evaluation results of the proposed robustness model for

non-blind and blind data hiding. For performance metrics, we have selected the Hamming

Distance (HD). Hamming Distance of the extracted secret data (often referred as Bit Error Rate

(BER) in communication systems) were calculated for robustness evaluation.
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3.3.3.1 Performance evaluation of the robustness model of the non-blind data hiding

The robustness model of non-blind data hiding is verified in the experimental simulations using

graph dataset with N = 2500 graph nodes.. Two sets of the expriments are obtained for verify-

ing the robustness model. In the expriments Set 1, the Hamming Distance (HD) of the extracted

secret bits has calculated after the attack using the non-blind algorithm with the proposed model

by selecting the graph Fourier coefficients that satisfy the specific conditions (in Eq. (3.21), Eq.

(3.27), and Eq. (3.33)) to embed the secret bits and the Hamming Distance (HD) of the extracted

secret bits has calculated after the attack by using the non-blind algorithm without using the pro-

posed model (by embedding the same secret bits in the GFT coefficients randomly). We con-

sider two attack types, namely, noise addition and deletion nodes data. For noise addition, we

add the noise to all signal of the modified graph using various σ2 = {0.01, 0.05, 0.1, 0.2, 0.3}

values the following equation:

x′w = xw + σ2 × randn(N). (3.55)

For deletion nodes data, we delete a different number of nodes data (5, 10, 50, 100 nodes)

randomly by modifying the GFT coefficient values to zero. Pseudo-random binary sequences

are considered as the secret bits, for three scenarios: w = {1}, w = {0} and w = {0, 1} to

hide in the graph Fourier coefficients using α = 0.5.

We can notice that the non-blind algorithm with the proposed model achieves higher robust-

ness over the original algorithm without the model. As shown in Figure 3.13, the robustness

against the additive noise is improved by an average of 99 %, 91% and 91 % for three embed-

ding scenarios, w = {1}, w = {0} and w = {0, 1}, respectively.

In addition, the robustness of the proposed method has been evaluated against deleting var-

ious numbers of nodes data randomly. Figure 3.14 illustrates improving the robustness using

the proposed model after deletion nodes data by an average of 99.8 %, for three embedding

scenarios, w = {1}, w = {0} and w = {0, 1}, respectively.

In the experiment Set 2, we calculate the Hamming Distance (HD) of the extracted secret bits

after the attacks. We have selected 5 binary logos, ieee, arrow, logo-inverse, medicine and logo-

university to embed in the GFT coefficients. The binary logos with (30 × 30) bitsw = {0, 1}
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Figure 3.13: Hamming distance (HD) of the extracted secret bits using non-blind algorithm
after noise addition for different values of σ2 using α = 0.5. (a) Hiding w = {1}. (b) Hiding
w = {0}. (c) Hiding w = {0, 1}.

(a) Hiding w = {1} (b) Hiding w = {0} (c) Hiding w = {0, 1}

Figure 3.14: Hamming distance (HD) of the extracted secret bits using the non-blind algorithm
after deleting various number of nodes data using α = 0.5. (a) Hiding w = {1}. (b) Hiding
w = {0}. (c) Hiding w = {0, 1}.

are embedded in the GFT coefficients using graph dataset with N = 2500 graph nodes. The

HD is calculated using the non-blind algorithm with using the proposed robustness model (

by embedding the secret bits in the GFT coefficients that satisfy the specific condition in Eq.

(3.33)). Also, we calculate the HD using the non-blind algorithm without using the proposed

model ( by embedding the secret bits in the GFT coefficients which are selected randomly).

We can notice that the non-blind algorithm with the proposed model achieves higher robust-

ness over the original algorithm without the model. As shown in Figure 3.15, the robustness

against the additive noise is improved by an average of 90% and 99.6% after deletion nodes
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data.

(a) (b)

Figure 3.15: Robustness performance of non-blind data hiding after the attacks. (a) Additive
noise. (b) Deleting nodes data.

3.3.3.2 Performance evaluation of robustness model of the blind data hiding

We verify the robustness model of the blind algorithm by the experimental results using a graph

dataset with N = 5000 nodes. We calculate the Hamming distance (HD) of the extracted

secret data after the attacks using the original algorithm with using the robustness model based

on selecting the graph Fourier coefficients that satisfy the specific conditions (in Eq. (3.38),

Eq. (3.46), and Eq. (3.54)) to embed the secret data and we calculate the Hamming distance

(HD) of the extracted secret data after the attacks using the original algorithm without using the

robustness model by embedding the secret bits in the GFT coefficients randomly. We consider

pseudo-random number sequences as the secret data for representing three scenarios, w = {1},

w = {0} and w = {0, 1} to embed in the graph Fourier coefficients. Two types of attacks are

considered, additive noise and deleting nodes data (as illustrated in the previous subsection).

The results show improving the robustness of the proposed method after the attacks by

using the robustness model. Figure 3.16 illustrates that the robustness against the additive noise

is enhanced by an average of 62%, 30% and 87% for three embedding scenarios, w = {1},

w = {0} and w = {0, 1}, respectively. In addition, we have evaluated the robustness of

the proposed method against deleting various numbers of nodes data randomly. Figure 3.17
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demonstrates improving the robustness using the proposed model after deletion nodes data by

an average of 95%, 54% and 64% for three embedding scenarios, w = {1}, w = {0} and

w = {0, 1}, respectively.
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Figure 3.16: Hamming distance (HD) of the extracted the secret bits using the blind algorithm
after noise addition for different values of σ2. (a) Hiding w = {1}. (b) Hiding w = {0}. (c)
Hiding w = {0, 1}.
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Figure 3.17: Hamming distance (HD) of the secret bits using the blind algorithm after deleting
various number of nodes data randomly. (a) Hiding w = {1}. (b) Hiding w = {0}. (c) Hiding
w = {0, 1}.

3.3.3.3 Robustness performance of the non-blind data hiding

The robustness performance of the non-blind algorithm against the attack is evaluated at var-

ious embedding capacities using a graph dataset with N = 5000. Two types of attacks are

considered, namely, additive noise and deletion nodes data.The Hamming Distance (HD) of

the extracted bits have been calculated after the attacks using the non-blind algorithm with the
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proposed robustness model (by embedding the secret bits in the GFT coefficients which satisfy

the robustness conditions) and using the α = 0.5. Pseudo-random binary sequences are consid-

ered as the secret bits, w = {0, 1} to embed in the GFT coefficients. The experimental results

show that the robustness of the non-blind algorithm is increased when the embedding capacity

is increased. Figure 3.18 shows enhancing the robustness of the proposed method after additive

noise for various values of σ2 and deleting different number of nodes data randomly.

(a) After additive noise (b) After deletion nodes data

Figure 3.18: Robustness performance of the non-blind algorithm using the robustness model
against attacks for various embedding capacities. (a) Additive noise. (b) Deletion nodes data.

3.3.3.4 Robustness performance of the blind data hiding

The robustness performance of the blind algorithm has evaluated against the attacks at various

embedding capacities using graph dataset with N = 2500 nodes. We calculate the Hamming

Distance (HD) of the extracted bits using the proposed method (by embedding the secret bits

in the GFT coefficients which satisfy the robustness conditions) after the additive noise for

various values of σ2 and after deletion of a various number of nodes data randomly. We consider

pseudo-random number sequences as the secret bits, to represent w = {0, 1}. The empirical

results demonstrate that the robustness is increased when increasing the embedding capacity as

shown in Figure 3.19.
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Figure 3.19: Robustness performance of the blind algorithm using the proposed model against
attacks using various embedding capacities. (a) Additive noise. (b) Deletion nodes data.

3.3.4 Joint robust-low distortion data hiding

For obtaining a data hiding approach with low distortion and high robustness to attacks, we

combine the embedding distortion minimisation model with the robustness model for blind and

non-blind approaches. We calculated the Hamming Distance (HD) of the extracted secret bits

after the additive noise and deleting nodes data by using the data hiding methods with using

the two proposed models (based on selecting the GFT coefficients that satisfy the robustness

conditions, followed by selecting GFT coefficients with low values for non-blind algorithm and

the GFT coefficients triple which have gradient differences close to 0 for blind algorithm for

minimising the embedding distortion from the above GFT coefficients to embed the secret bits)

and we calculated the Hamming Distance (HD) of the extracted secret bits after the additive

noise and deleting nodes data by using the same data hiding methods without using the pro-

posed models (by selected the GFT coefficients randomly to embed the same secret bits). We

observed that the Hamming Distance (HD) of the extracted secret bits was decreased by using

the proposed models which means the robustness of the data hiding methods is improved by

using the models. The experimental results demonstrate that the robustness of the proposed

methods are improved by an average of 93% and 99.8% for non-blind and by an average of

60% and 71% for blind after the additive noise and deletion nodes data. Figure 3.20, Figure

3.21, Figure 3.22 and Figure 3.23 illustrate the robustness performance of the proposed meth-

ods after the noise addition for various values of σ2 and deleting different number of nodes data
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for non-blind and blind data hiding, respectively.
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Figure 3.20: Hamming distance (HD) of the extracted secret bits after noise addition for dif-
ferent σ2 values using the non-blind algorithm with the two models. (a) Hiding w = {1}. (b)
Hiding w = {0}. (c) Hiding w = {0, 1}.

(a) Hiding w = {1} (b) Hiding w = {0} (c) Hiding w = {0, 1}

Figure 3.21: Hamming distance (HD) of the secret bits after deletion various number of random
nodes data using the non-blind algorithm with the two models. (a) Hiding w = {1}. (b) Hiding
w = {0}. (c) Hiding w = {0, 1}.

3.4 Concluding remarks

This chapter proposes a novel graph Fourier domain data hiding by considering two scenarios of

data hiding: non-blind and blind. Two new models have been proposed to minimise the embed-

ding distortion on the modified graph and to make the secret bits robust for two kinds of attacks,

namely, noise addition and nodes data deletion. The embedding distortion minimisation model
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Figure 3.22: Hamming distance (HD) of the secret bits after noise addition for different values
of σ2 using blind algorithm with the two models. (a) Hiding w = {1}. (b) Hiding w = {0}.
(c) Hiding w = {0, 1}.
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Figure 3.23: Hamming distance (HD) of the secret bits after deletion various of random nodes
data using the blind algorithm with the two models. (a) Hiding w = {1}. (b) Hiding w = {0}.
(c) Hiding w = {0, 1}.

of non-blind algorithm requires to choose the coefficients with low values, while the distortion

minimisation model of blind algorithm requires to select the coefficients triple with the gradient

difference close to 0 for minimising the distortion. We propose the robustness model to en-

hance the robustness against the attacks by choosing the graph Fourier coefficients that satisfy

the certain conditions for embedding the secret data. The experimental results demonstrate that

the proposed methods using the embedding distortion minimisation model have achieved lower

distortion over the original methods by more than 94% and 80% for non-blind and blind algo-

rithms, respectively. The proposed methods have compared in terms of the robustness against

the attacks. We can see that the robustness of the proposed methods are improved by an average
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of 93% and 99.8% for non-blind and by an average of 60% and 71% for blind after the additive

noise and deletion nodes data. In the next chapter, a reversible data hiding approach for graph

data is proposed using graph Fourier domain.
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Chapter 4

Graph Fourier domain reversible data

hiding for graph data

4.1 Introduction

The previous chapter proposed an irreversible data hiding algorithm in the graph Fourier do-

main. This chapter proposes a reversible data hiding algorithm in the graph Fourier domain.

Due to the increasing volumes of data recorded on non-Cartesian grids in applications such as

sensor networks, IoT applications, weather data, and medical data, the protection of these data

has become a paramount interest. The traditional data hiding methods are not acceptable in

several applications, such as military electronic data, remote sensing data, and medical images,

because of the distortion in the host media due to embedding the secret data. Alternatively, re-

versible data hiding methods are used to recover the secret data and the original host data with

error-free after extracting the secret content [183–189].

Most of the reversible data hiding algorithms on a graph rely primarily on the mesh. The

reversible data hiding algorithms are classified into four categories depending on the embedding

domain. These categories are the vertex domain, compressed domain, transform domain, and

encrypted domain. In the vertex domain, the secret data are hidden by modifying the vertex co-

ordinates [173,190] or based on the distance between the faces and the centroid [191] with low

computational complexity. Jhou et al. [192] have proposed hiding the secret data by classifying

the selected few digits of nodes according to proper conditions. In the compressed domain, the
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secret bits are hidden using predictive vector quantization [166, 193]. In the transform domain,

the transform coefficients are used to hide the secret bits [172, 194]. The encrypted domain

hides the secret bits in the encrypted mesh coordinates using an encryption key to meet the

requirements of preserving privacy [171, 195].

The graph Fourier domain data hiding technique has proven to be a very effective approach

for protecting graph data, due to advances in signal transforms, as shown in chapter 3. In

this chapter, we propose a new reversible data hiding algorithm in the graph Fourier domain

using histogram shifting for unstructured data, which are represented as a weighted graph. The

proposed approach adopts the histogram-shifting process to provide a perfect reconstruct for

both the embedded data and the original graph signal that is distortion-free, especially for the

non-integer and negative coefficients. Histogram shifting is a successful algorithm to be used

for restoring the integer and non-integer data, compared to image-based RDH algorithms that

are difficult to apply to non-integer data, such as graph data.

This chapter proposes a reversible data hiding approach in the graph Fourier domain. We

propose an embedding distortion-minimisation model to reduce embedding distortion and a

robustness model to select the embedding coefficients, which are resistance for attacks. We

identify the relationship between the error distortion metric (using MSE ) and the value of the

embedding data to minimise the embedding distortion. In addition, the relationship between

the extraction process and the effect of the attack namely, noise addition is also identified to

enhance the robustness of the proposed method. These two models are combined to satisfy the

requirements of data hiding. The proposed approach does not require the storage of additional

data to restore the original signal distortion-free; nor does it utilise compression to minimise the

embedding distortion. The primary contributions of this chapter are:

1. Proposing a new graph Fourier domain histogram-shifting algorithm for reversible data

hiding on non-integer data.

2. Proposing new models to minimise embedding distortion in the host graph signal after

embedding and to make the embedded data robust to additive noise.

The rest of the chapter is organised as the following: Section 4.2 describes the proposed

methodology including the proposed graph Fourier domain reversible data hiding algorithm,
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followed by the embedding distortion minimisation and the robustness enhancing models. The

performance evaluation is discussed in Section 4.3. The concluding remarks is presented in

Section 4.4.

4.2 Proposed Methodology

4.2.1 Graph Fourier Transform (GFT)

We consider that G is an undirected graph without self-loops and multiple edges between nodes.

We define the adjacency matrix with edge weights, A, and the combinatorial graph Laplacian

matrix, L, as in Eq. (2.9) and Eq. (2.12). The Graph Fourier Transform (GFT) and its inverse

are defined as in Eq. (2.17) and Eq. (2.18).

4.2.2 Reversible data hiding algorithm

This section presents the proposed RDH method based on histogram shifting in the graph

Fourier domain (Figure 4.1). The proposed method aims to obtain a sharpness histogram of

the coefficients by leveraging the use of the graph Fourier transform to decrease embedding dis-

tortion and increase embedding capacity. In addition, this method can increase robustness due

to advances in signal transforms. By using the graph Fourier transform, we obtain a GFT his-

togram that has several peak points with high values and many zero points, thus increasing the

embedding rates. The proposed method involves two procedures: embedding and extraction.

The primary steps of the embedding procedure are as follows:

1. The GFT coefficients are calculated using Eq. (2.17).

2. The histogram of the magnitudes of the GFT coefficients is generated.

3. All magnitudes of the GFT coefficients are scanned to determine the peak point, h(XMax),

and zero point, h(XMin), where XMax and XMin are the magnitudes of the GFT coeffi-

cients that have the largest and lowest (or zero in most cases) repetition, respectively.

4. Next, all of the coefficients’ magnitudes between XMax + q and XMin − q are shifted

toward the direction of XMin based on the value of shifting bin q, which depends on the

83



Chapter 4 – Graph Fourier domain reversible data hiding for graph data

Embedding 
Process

GFT

Secret data

IGFT

Original Minnesota graph Modified Minnesota graph

Extraction 
Process

GFT

Extracted 

Secret data

Key

Shifting 
process

Shifted   

GFT

Inverse
Shifting 
process

Original graph

signal

Recovered Minnesota graph

Key

Figure 4.1: The block diagram of the proposed reversible data hiding approach.

value of the embedding bit wb(b = {0, q}). We consider the shifting bin q = 1 based on

the embedding bit value of wb(b = {0, 1}).

5. The magnitudes of the GFT coefficients that are greater than XMin and less than XMax

remain unchanged. We discussed the case when XMax < XMin because this is the most

common case according to our GFT coefficients. The second case when XMax > XMin,

in this case the same steps are repeated. The only difference is to shift the magnitudes

of the GFT coefficients toward the direction of XMin based on the value of shifting bin q

(based on reducing the magnitudes of the GFT coefficients by q).

6. The secret bits are embedded into the GFT coefficients’ magnitudes XMax. If the bit is 0,

the GFT coefficient’s magnitude remains without change in XMax. Otherwise, the GFT

coefficient’s magnitude will be in XMax + q by adding q = 1 when the embedded bit is

1. Let X and Xw represent the original and the modified GFT coefficient’s magnitudes,

respectively. For a single embedding, we obtain:

Xw(λ) =


X(λ) + q, X(λ) ∈ [XMax + q,XMin − q],

X(λ) + wb, X(λ) = XMax,

X(λ), otherwise .

(4.1)
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where wb is the secret data to be hidden.

7. The IGFT is performed on the modified GFT coefficients to obtain the modified graph

signal.

The extraction process is the reverse process of data embedding. The embedded bits are ex-

tracted based on the embedding key which is sent to the blind extractor in a separate file. The

embedding key includes a number of shifting times, peak points, XMax, zero points, XMin, the

shifting bin, q, N , w0, w1 and length of the secret bits. The extraction process includes the

following steps:

1. The modified GFT coefficients are calculated using Eq. (2.17).

2. Scan the GFT coefficients to find the XMax and XMax + q.

3. The extracted bit is 0 when the GFT coefficient’s magnitude is XMax; the extracted bit is

1 when the GFT coefficient’s magnitude is XMax + q.

4. To recover the original coefficient’s magnitudes perfectly, all embedded bits are sub-

tracted from the modified coefficient’s magnitudes in the range [XMax, XMax + q].

5. All of the magnitudes of the coefficients in the range [XMax + 2q,XMin] are shifted back

by subtracting one unit (q = 1) for example.

For instance, assume that wb(b = {0, 1}) for the embedding bit and the shifting bin is q = 1.

We consider p and r to be the coefficient magnitudes. h(Xmax) is h(p), whereh(p) represents

the frequency of occurrence for magnitude p in the histogram of the GFT coefficients; h(Xmin)

is h(r), which refers to the frequency of occurrence for magnitude r of the GFT coefficients,

with zero frequency. At this point, all of the GFT coefficient magnitudes in the range [p+1, r−1]

are shifted (right) toward point r by one unit, while the remaining GFT coefficient magnitudes,

which are greater than r and less than p, are left without modification, as illustrated in Figure

4.2. The secret bits are hidden in the GFT coefficients, which have a magnitude of p. If the

embedded bit is 0, the GFT coefficient magnitude p remains unchanged. Otherwise, the GFT

coefficient magnitude moves to p + 1. In the extraction procedure, the embedded data are
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Figure 4.2: Histogram of the GFT coefficients of Sensor graph with 10000 nodes and shifting
bin q = 1. (a) Before the shifting process. (b) After the shifting process

extracted from the modified GFT coefficient magnitudes in the range [p, p+ 1]. The secret bit is

0 when the GFT magnitude is p; otherwise, the embedded bit is 1. To restore the original GFT

coefficient magnitudes, the embedded bits are first subtracted from the modified GFT coefficient

magnitudes in the range [p, p + 1]. Next, all GFT coefficient magnitudes in the range [p + 2, r]

are shifted to the left (back) by one unit (q = 1).

Based on our experiments using our graph data set (as illustrated in Section 4.3) for various

graph types with different graph signals, we have determined that the peak points in the his-

togram of the GFT coefficients are concentrated in the range [0, 20]. Therefore, these ranges are

selected to be XMax for embedding the secret data.

The following algorithms, i.e. algorithm 1 and algorithm 2, describe the embedding and the

extraction processes, respectively, where w = {0, q} are the embedded bits sequence.

The embedding capacity depends on the value of the shifting bin q and the number of peak

points that are used in the embedding process. For example, when the shifting bin value is

large, it causes the peak point to be high. In other words, it increases the number of the GFT

coefficient XMax. In addition, the embedding capacity can be increased by using several peak

points for embedding the data. For example, if the peak value h(XMax) is equal to the number

of bits to be hidden in this case, only one peak point is utilised in the embedding process and the

coefficients are shifted only one time. This case is referred to as a single embedding. However,
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Algorithm 1: Embedding procedure
Input = GFT coefficients magnitudes (X), secret bits(w), XMax and XMin.
Output= Modified GFT coefficients magnitudes (Xw).

1: N ← Number of GFT coefficients magnitudes X.

2: for `=1 to N do
3: if (X(`) ≥ XMax + q AND X(`) < XMin) then
4: Xw(`)← X(`) + q.

5: End if
6: End for
7: `← 1.

8: i1 ← 1.

9: While (` ≤ N AND i1 ≤ Length(w))

10: if (X(`) ≥ XMax AND X(`) < XMax + q) then
11: Xw(`)← X(`) + w(i1).

12: i1 ← i1 + 1.

13: End if
14: `← `+ 1.

15: End While

when the embedding capacity is greater than the first peak point value, more than one peak

point value is used (for example, the second peak point value and so on) and the coefficients are

shifted many times; this case is referred to as a multiple embedding.

The modification value ∆s , describing the shifting process for a single embedding, is de-

termined based on the shifting bin value q. It is defined in as:

∆s(X) =

q, X(λ) ∈ [XMax + q,XMin − q],

0, otherwise .
(4.2)

To increase the embedding capacity, multiple embeddings are utilised. In this case, we

determine several peak and zero points. The number of peak points and zero points that are

utilised depends on the embedding capacity C. For a single embedding, only one peak point

and zero point are utilised to hide the secret data when the length of the secret data is equal to
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Algorithm 2: Extraction procedure
Input = Modified GFT coefficients magnitudes, Xw XMax and XMin.
Output= Recovered GFT coefficients magnitudes (Xe) and secret bits(w′).

N ← Number of GFT coefficients magnitudes Xw.
`← 1.
i1 ← 1.
While (` ≤ N AND i1 ≤ Length(w))
if (Xw(`) ≥ XMax AND Xw(`) < XMax + q) then

w′(i1)← 0.
elseif (Xw(`) ≥ XMax + q AND Xw(`) < XMax + 2q)

w′(i1)← q.
i1 ← i1 + 1.

End if
`← `+ 1.
End While
`← 1.
i1 ← 1.
While (` ≤ N AND i1 ≤ Length(w))
if Xw(`) ≥ XMax AND Xw(`) < XMax + 2q then

Xe(`)← Xw(`)− w′(i1).
i1 ← i1 + 1.

End if
`← `+ 1.
End While
for ` = 1 to N do

if Xw(`) ≥ XMax + 2q AND Xw(`) < XMin + q then
Xe(`)← Xw(`)− q.

End if
End for
for ` = 1 to N do

if Xw(`) < XMax OR Xw(`) > XMin then
Xe(`)← Xw(`).

End if
End for

the number of the GFT coefficient magnitudes’, XMax, as follows:

C = h(XMax), (4.3)

where h(XMax) refers to the frequency of occurrence for magnitudes of the GFT coefficient

XMax in the histogram. When the secret bits’, wb(b = {0, 1}), and the number of the 0 and 1

88



Chapter 4 – Graph Fourier domain reversible data hiding for graph data

are distributed equally, only half of the GFT coefficient magnitudes’XMax are shifted by q = 1.

The average distortion due to embedding 1 is defined as follows:

δ(XMax) =
1

2
× C (4.4)

The total modification value ∆T in the GFT coefficient magnitudes using a histogram shifting

algorithm is defined as given:

∆T (X) =


δ(XMax), X(λ) = XMax,

q, X(λ) ∈ [XMax + q,XMin − q],

0, otherwise .

(4.5)

At this point, we must consider embedding distortion in the methods of reversible data hiding.

Generally, in the traditional data hiding algorithms, the embedding distortion comes only from

embedding the secret bits in the host media. In the reversible data hiding algorithms, there are

two types of distortion: embedding distortion and reversibility distortion. The first type results

from hiding the secret bits within the host media, whereas the second type results from the

reversibility process to restore the original host data as follows:

DT = DE +DR, (4.6)

DT = δ(XMax) + ∆s(X),

= ∆T (X),

where DT is the total distortion due to embedding the secret data (DE) and the reversibility

process (DR). DE is equal to the modification value in the GFT coefficients due to embedding

the secret data (δ(XMax)). DR is equal to the modification value in the GFT coefficients due to

the shifting process (∆s(X)). The embedding distortion depends on the embedding capacity of

the secret data, whereas the reversibility distortion depends on the method used to restore the

original host data. For example, in some of the reversible data hiding algorithms, extra data are

hidden in the host media to recover the original host data accurately without error.
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Our proposed algorithm uses the shifting process to recover the original graph coefficient

magnitudes. Thus, the distortion of reversibility comes from the shifting process. At this point,

we can define the shifting distortion. The shifting distortion depends on many parameters. One

parameter is the shifting bin q, which depends on the values of the embedding bits wb(b =

{0, q}); when q is a small value, the shifting distortion will be low. Another parameter is the

number of GFT coefficients to be shifted, which depends on the position of the XMin. For

instance, if the XMin is distant from the XMax, the distortion will be bigger compared to when

the XMin is near the XMax. The third parameter is the number of shifts (single shifting or

multiple shifting); this depends primarily on the embedding capacity, the original graph signal,

and the graph connectivity. For example, if the embedding capacity is not large, the GFT

coefficients are shifted only one time. In addition, if the correlation between the original graph

signal is high, this reduces the number of shifts. Finally, the graph connectivity has a large effect

on the embedding distortion. For instance, if the histogram of GFT coefficients for a Torus

graph which has a highest peak point, this increases the value of the GFT coefficients’ XMax.

In turn, this increases the embedding capacity and decreases the number of shifts, reducing

the embedding distortion. In general, the distortion produced by using multiple embedding is

higher than the distortion resulting from a single embedding. This is primarily because multiple

embedding embeds more data and shifts the coefficients several times. Distortion is minimised

when the number of shifts is decreased.

4.2.2.1 Authentication Process

We perform the authentication based on comparing the extracted secret bits with the original

secret bits using the Hamming Distance (HD) as defined as in Eq. (2.6).

4.2.3 Embedding distortion minimisation

For establishing the relationship between the error distortion using mean square error (µ) and

the value of the embedded bit, we define MSE (µ) in vertex domain between the original graph
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signal x and modified graph signal xw as follows:

µ =
1

N

N−1∑
i=0

(x(i)− xw(i))2. (4.7)

Since the GFT forms an orthogonal set of eigenvectors, according to the Parseval’s Theorem,

‖x‖2 = ‖X‖2, where x is the graph signal in vertex domain and X is the GFT coefficient [25].

Since the GFT is orthonormal, we can extend this to the sum of the error power in the input

graph signal, ∆x, and to the sum of the error power in the graph Fourier domain ∆X as follows:

∑
i

|∆x(i)|2 =
∑
`

|∆X(`)|2. (4.8)

From Eq. (4.7) and Eq. (4.8), we get

µ =
1

N

∑
`

|∆X(`)|2. (4.9)

From Eq. (4.6), we can notice that the embedding distortion comes from shifting the GFT

coefficients by q and from embedding wb(b = {0, q}). At this point, we have two cases:

When wb = 0 , in this case there is no embedding distortion.

The second case when wb = q, the embedding distortion depends on the value of wb.

by considering q = wb, we can estimate each ∆X(`) as:

∆X(`) = X(`)w −X(`), (4.10)

= X + wb −X,

= wb.

From Eq. (4.9) and we can expand Eq. (4.10), we obtain:

µ ∝
∑
`

|∆X(`)|2, (4.11)

µ ∝
∑

w2
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µ =
1

N

∑
w2,

µ =
M

N
w2,

where M is the number of modified coefficients M < N . This leading to

µ < w2. (4.12)

The relationship between the MSE of the modified graph and the secret bit value of w is estab-

lished. The MSE of the modified graph is less than the value of w2. Therefore, to minimise the

MSE, the w value should be small. A balance must be achieved between the embedding distor-

tion and the embedding capacity based on choosing a value for w. A low embedding distortion

and low embedding capacity are obtained when the w value is small, and vice versa.

4.2.4 On enhancing robustness

To improve the robustness of the proposed method, we propose a robustness model to identify

the magnitudes of the GFT coefficients which are able to retain the secret data after the attack in

the graph Fourier domain. We have considered the additive noise on test graphs. The modified

GFT coefficients magnitudes Xw(`) are changed based on the modification value due to attack

∆a as given:

X′w(`) = Xw(`) + ∆a, (4.13)

where X′w(`) are the modified graph Fourier coefficients after the attack. The value of modi-

fication ∆a depends on the attack type. For instance, the value of modification due to adding

noise depends on the noise variance value σ2.

To extract the secret bit w′b after the attack, we have new GFT coefficients magnitudes

X′w(`′), X′Max and X′Min :

w′b =

0, X′w(`′) = X′Max,

q, X′w(`′) = X′Max + q.

(4.14)

where q = 1.
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Three cases of the secret bits are considered: hiding only b = 0 bits, Hiding only b = 1 bits and

hiding b = 0, 1 bits, where w0 < w1, w0 = 0, w1 = q and q = 1.

Proposition 4.1

To extract the correct secret bit after embedding b = 1 bits, the modified graph Fourier coeffi-

cients should be in the range:

X′Max(`
′) + q ≤ X′w(`′) < X′Max(`

′) + 2q. (4.15)

where w = q and q = 1.

Proof. To obtain the secret bit b = 1, we need to get w′b ≥ q,

From embedding step, we have:

Xw(`) = XMax(`) + wb. (4.16)

This leads to:

wb = Xw(`)−XMax(`). (4.17)

We need:

Xw(`)−XMax(`) > q, (4.18)

Xw(`) > XMax(`) + q, (4.19)

In the case of no attack, the modified coefficient Xw(`) after embedding the secret bit b = 1

will be in the range:

XMax(`) + q ≤ Xw(`) < XMax(`) + 2q.

After the attack, we have only the reconstructed coefficients, X′w, and X′Max. For correct ex-

traction of the secret bit, we need:

X′Max(`
′) + q ≤ X′w(`′) < X′Max(`

′) + 2q.
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The modified coefficients after the attack will be:

X′w(`) = Xw(`) + ∆a. (4.20)

And:

X′Max(`
′) = XMax(`) + ∆a, (4.21)

where X′w(`)+∆a and X′Max(`)+∆a are the modified coefficients after the attack and the peak

point after the attack respectively, by substituting them, we obtain:

XMax(`
′) + ∆a + q ≤ X′w(`′) < XMax(`

′) + ∆a + 2q.

Since q < 2q, then we got:

X′Max(`
′) + q ≤ X′w(`′) < X′Max(`

′) + 2q.

Proposition 4.2

For embedding b = 0 bits, we can extract the correct secret bits when the modified coefficients

magnitudes are in the range:

X′Max(`
′) + w0 ≤ X′w(`′) < X′Max(`

′) + q. (4.22)

where w0 = 0 and q = 1.

Proof. To obtain the secret bit b = 0, we need to get w′b < q,

From embedding step, we have:

Xw(`) = XMax(`) + wb. (4.23)
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This leads to:

wb = Xw(`)−XMax(`). (4.24)

We need:

Xw(`)−XMax(`) < q, (4.25)

Xw(`) < XMax(`) + q. (4.26)

In the case of no attack, the modified coefficient Xw(`) after embedding the secret bit b = 0

will be in the range:

XMax(`
′) + w0 ≤ X′w(`′) < XMax(`

′) + q.

After the attack, we have only the reconstructed coefficients, X′w, and X′Max. For correct ex-

traction of the secret bit, we need:

X′Max(`
′) + w0 ≤ X′w(`′) < X′Max(`

′) + q.

The modified coefficients after the attack will be:

X′w(`) = Xw(`) + ∆a. (4.27)

And:

X′Max(`) = XMax(`) + ∆a, (4.28)

where Xw(`)+∆a and XMax(`)+∆a are the modified coefficients after the attack and the peak

point after the attack respectively, by substituting them, we obtain:

XMax(`
′) + ∆a + w0 ≤ X′w(`′) < XMax(`

′) + ∆a + q.

Since w0 < q, then we get:

X′Max(`
′) + w0 ≤ X′w(`′) < X′Max(`

′) + q.
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Proposition 4.3

We combine the two previous propositions to find the condition of correct extraction of the se-

cret bits when hiding b = 0 and b = 1. The range of the graph Fourier coefficients that able to

retain the secret data bits correctly is:

X′Max(`
′) + w0 ≤ X′w(`′) < X′Max(`

′) + 2q. (4.29)

where w0 = 0 and q = 1. Figure 4.3 displays the range of the graph Fourier coefficients which

is able of retaining the embedded bits after the attacks.

4.2.5 Joint robust-low distortion reversible data hiding

We combine the two proposed models, embedding distortion minimisation and robustness for

satisfying the main requirements of the graph reversible data hiding. We select the GFT co-

efficients that satisfy the condition in Eq. (4.29) to satisfy the robustness condition. Then, we

select a small value for w less than 1 (according to the Eq. (4.12) for minimising the embedding

distortion) to embed in the selected GFT coefficients for minimising the embedding distortion

and enhance the robustness.

4.3 Performance evaluation

This section presents the evaluation of the proposed method performance. The experimental

simulations include: verification of the embedding distortion model, evaluation the performance

of the proposed algorithm in terms of embedding distortion, withstand attacks, as well as re-

versibility of the original graph signal. In addition, the proposed method is compared with two

previous reversible data hiding methods: Ni et al. [3] using histogram shifting algorithm in pixel

domain and Dragoi et al. [4]. Based on the best of our knowledge, the proposed reversible data

hiding using graph spectral domain is unique, and due to lack of any other comparable work and

for the same reasons which are mentioned in chapter 3, we selected the reversible data hiding
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Figure 4.3: The range of graph Fourier coefficients that is able of extracting the embedded bits
correctly. (a) Hiding only b = 0. (b) Hiding only b = 1. (c) Hiding b = 0 and b = 1.

on images because both the proposed methods and the images have signal(data). For making

the comparison fairer, we used the same graph signals to apply in the proposed methods and

the comparable methods in the comparison. We selected the methods in [3] and [4] for compar-

ison to include two domains: pixel domain and encrypted domain. The following reasons are

justifying the selection of the methods in [3] and [4]:

The reason for selecting the method in [3] is that the proposed reversible data hiding is based
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on histogram shifting, therefore, for fair comparison, we have to compare the proposed method

with a reversible data hiding using the histogram shifting. The reason for selecting the histogram

shifting algorithm is because the spectral coefficients values are real values. Therefore, for

recovering the original graph signal without any error, it is very difficult to apply the other

methods such as the RDH using prediction error which is not error-free, due to truncation error

and RDH using quantization, which is also not invertible due to the quantization error. Before

selecting the histogram shifting algorithm, we first selected the RDH using prediction error to

apply on the graph data but we recovered the graph signal with an error by using this method.

After studying the most common RDH methods, we found that histogram shifting is a successful

algorithm to be used for restoring the integer and non-integer data, compared to other RDH

algorithms that are difficult to apply to non-integer data, such as graph data. In order to make

a fair comparison we applied the same algorithm in [3] using the same parameters such as the

same number of the secret bits and the same of the graph signals to demonstrate that the graph

spectral domain has provide less embedding distortion, more robustness and recover the original

signal with less error.

We selected the method in [4] for comparison with the proposed method for two reasons.

First, we would like to compare the proposed method using histogram shifting with another

RDH method using a different algorithm as in [4] RDH using a prediction algorithm. Second,

RDH in encrypted images recently appeared as a promising research domain. As for RDH

into clear images the correlation between image pixels is exploited, but the encryption makes

the domain more challenging. This method [4] provides higher embedding bit-rates at lower

distortion. Therefore, we considered this method is the best choose for comparison with the

proposed method.

4.3.1 Experimental set up

The proposed GFT reversible data hiding algorithm is tested using the graph watermarking

dataset [181]. This dataset includes 160 various types of graphs with a different number of

nodes and five graph signals as described in Section 3.3.1.
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4.3.2 Verification of the embedding distortion model

The embedding distortion model has been verified in the empirical simulations. The MSE of the

modified graph is less than the squared value of the embedded data, w2, where the shifting bin

q = wb andwb is the value of the embedded bit. The MSE of the modified graphs has been calcu-

lated for different values of w, using the graph dataset. We consider the pseudo-random number

sequences as the secret data, with nine scenarios, where w = {0, 0.1, 0.2, 0.4, 0.6, 0.8, 1, 2, 3},

to embed in the GFT coefficients of the graph dataset. In these experiments, various graph types

with several graph nodes (N = 10000 nodes) are used to embed various values of w. We have

calculated a set of results to verify the effects of embedding nine scenarios of the secret data.

In these experiments, various values of w (where w is pseudo-random sequence of number

or binary) are hidden in the peak points of the GFT coefficients. The MSE of the modified

graphs has been calculated for each value of w separately. Figure 4.4 (a) demonstrates the

relationship between the average value of the MSE of the modified various graph types for

different values of w: w = {0, 0.1, 0.2, 0.4, 0.6, 0.8, 1, 2, 3}. We consider nine scenarios of

embedding data to demonstrate the proposed embedding distortion model instead of using only

two cases (w = {0, 1}), which is insufficient to explain the proposed model. Note that the MSE

value of the modified graph is less than the squared value, w2. We can see that the value of the

MSE is zero, corresponding to the value of wb = 0. Increasing the value of wb increases the

value of the MSE of the modified graph. To minimise the MSE, we must choose a small wb

value. Figure 4.4 (b) shows that the MSE value of the modified graph for each value of w is

nearly the same for each graph; the difference is very small and cannot be distinguished.

To verify the proposed model, we plot the theoretical graph line by assuming that the x-axis

represents various values of w and that the y-axis represents the corresponding quadratic values

w2; the quadratic relationship is plotted for various values of w. The results demonstrate a

strong relationship between the proposed model and the theoretical graph line, which supports

the proposed model. Notably, there is no distortion in the case of embedding w = {0} only. The

simulation results demonstrate a strong correlation between the embedding value w2 and the

embedding distortion, using the MSE of the modified graphs. The proposed model is supported

by the simulation results for the graph dataset.
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(a) (b)

Figure 4.4: Verification of distortion minimisation model using various values ofw. (a) Average
value of the MSE of the modified various types of graphs with N = 10000 nodes. (b) MSE of
6 types of graphs with N = 10000 nodes.

4.3.3 Performance evaluation of the embedding distortion

The performance of the proposed method is evaluated in terms of the embedding distortion at

various embedding capacities using graph dataset. We test the proposed method using different

types of graphs with various types of graph signals. Three sets of results are displayed to

demonstrate the embedding distortion performance of the proposed method as following: In

the experiment Set 1, we demonstrate the effect of the graph connectivity on the embedding

distortion using various embedding capacities. In this experiments, we consider the secret data

w = {0.1, 0.2, 0.4, 0.6, 0.8, 1, 2, 3} to embed in the GFT coefficients using various graphs

types G = {Torus, Sensor, Sphere, Cube, community, Swiss − roll} and graph signal

1. The experimental results show that the graph type has an effect on the embedding distortion.

We can notice that the Torus graph has a higher embedding capacity compared to the other types

of graph in spite of using the same secret data as shown in Figure 4.5(a). This is mainly due

to different types of connectivity present in various graphs. Lowest MSE value signifies less

distortion.

In the experiment Set 2, we demonstrate the effect of using various values of w on the em-

bedding distortion. In this experiments, we consider the secret data w = {0.1, 0.2, 0.4, 0.6,

0.8, 1, 2, 3} to embed in the GFT coefficients using various graphs types G = {Torus, Sensor,

Sphere, Cube, community, Swiss−roll} and graph signal 2. The results illustrate the effect
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(a) (b)

(c)

Figure 4.5: Embedding distortion performance. (a) MSE of the modified various graphs at vari-
ous embedding capacities. (b) Relationship between the embedding capacity and the embedded
data values of w. (c) MSE of the modified various graphs using Multiple embedding.

of using different values of w on the embedding distortion for various graphs types. It can be

observed that embedding capacity is increased when the value of w is increased. Increasing

the value of w means increasing the value of the shifting bin q thus increasing the embedding

capacity. Moreover, we can see the effect of the graph type on the embedding capacity. As

shown in Figure 4.5(b) Torus graph has the highest embedding capacity compared to the other

graphs types. Lowest value of w signifies less embedding capacity.

In the experiment Set 3, we show the effect of using multiple embedding (multiple shifting)

on the performance of the proposed method. In this experiments, we consider the pseudo-

random binary sequence as the secret bits w = {0, 1} to embed in the GFT coefficients using
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various graphs types G = {Torus, Sensor, Sphere, Spiral, community, Swiss−roll} and

graph signal 5. The experimental results demonstrate the effect of using multiple embedding

on the embedding distortion. We can notice that the Torus graph has the lowest MSE value

compared to the other types of graph in spite of using the same secret bits and the same embed-

ding capacity as shown in Figure 4.5(c). This is basically due to the Torus graph needing a less

number of shifting times for GFT coefficients (two times of shifting whereas the other graphs

need more than two times of shifting).

The embedding rate is increased when histogram vacancies in the GFT coefficients are

increased. However, the distortion due to hiding the secret data is increased. The proposed

algorithm does not require to embed side information to recover the original graph data after

extracted the secret data, it depends on reversing the shifting the GFT coefficients based on the

shifting bin value.

4.3.4 Evaluation the robustness model

The robustness model is evaluated after the additive noise for various σ2 values, where σ2 =

{0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05} in the experimental simulations. We calculate the

Hamming Distance (HD) of the extracted bits using the reversible data hiding algorithm with

the proposed robustness model (based on selecting the graph Fourier coefficients that satisfy

the condition in Eq. (4.29) to embed the secret bits) and the Hamming Distance (HD) of the

extracted bits using the reversible data hiding algorithm without the proposed robustness model

(based on embedding the secret bits in any GFT coefficients randomly). Pseudo-random binary

sequences are considered as the secret bits, w = {0, 1} to hide in the GFT coefficients of 7

graphs types with N = 10000 nodes. The results show that the method robustness is enhanced

when using the proposed model. As illustrated in Figure 4.6, the proposed method has achieved

higher robustness by an average of 15% over the original algorithm without using the robustness

model.
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4.3.5 Reversibility performance

We evaluate the proposed method in terms of the reversibility of the original graph signal after

the embedded bits have been extracted for different embedding rates. The proposed method has

proved that it is able to restore the original graph signal with a free distortion for any payload

in the case when no attack. This is mainly due to shifting process which provides a lossless

recovery of the original signal without requiring any side information except for one case if

the histogram of the coefficients does not have zero points, at this case, the coefficients with the

minimum number of the repetition are used as zero points and this leads to lose these coefficients

due to the shifting process. In order to restore the original host signal without any error, these

few numbers of the coefficients are added to the embedded data as a part of payload. Usually,

this happens when the payload is big and this needs to shift the coefficients for many times,

also to use several peaks and zero points. The proposed method overcomes this problem and

the problems of the underflow and overflow of the data after the shifting process due to using

Figure 4.6: The average value of the Hamming Distance (HD) of the extracted bits for 7 graphs
types with N = 10000 nodes after the additive noise for various values of σ2.
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graph Fourier transform, also by utilising the advantages of the histogram characteristics of the

graph spectral coefficients which provides several peak points and zero points.

4.3.6 Comparison with existing methods

We compare the proposed method with two reversible data hiding methods namely, Ni et

al. [3] and Dragoi et al. [4] in terms of the embedding distortion using the MSE for various

embedding rates. We test the proposed method using various graph types (Sensor, Spiral,

Swiss-roll, Sphere, Cube, Community, and Torus) with a different number of graph nodes (

N = {5000, 10000} nodes) and various graph signals. Figure 4.7 compares the average value

of the MSE of the modified graph for the proposed method with that obtained by Ni et al. [3]

and Dragoi et al. [4] from their methods, using the same graph signals for various embedding

rates. The empirical simulations illustrate that the proposed method yields lower embedding

distortion than the method used by Ni et al. [3], although it uses the same reversible data hid-

ing algorithm based on histogram shifting for embedding the same secret bits w = {0, 1} for

the same graph signals and the same embedding rates. This is due primarily to the advantage

of using the graph Fourier domain. The embedding distortion is reduced more by using the

proposed method than by using the methods of Ni et al. [3] and Dragoi et al. [4]. Moreover,

the proposed method and Ni et al.’s [3] method can extract the embedding data accurately and

without any error for any embedding rate, whereas the Dragoi et al. [4] method cannot extract

the embedding data without error for embedding rates greater than 0.01. The results show that

the proposed method outperforms the existing work by an average of 87% and 92% over Ni et

al. [3] and Dragoi et al. [4] methods, respectively.

In addition, we test the capability of the embedded data to withstand attacks. We consider

an additive noise using various values of noise variance (σ2). In this experiment, we have

calculated the average values of the Hamming Distance of the extracted secret bits w = {0, 1}

for various σ2 values and various signals, using the proposed method and those of Ni et al. [3]

and Dragoi et al. [4]. Figure 4.8 compares the robustness of the proposed method and the

existing methods, using the average values of the Hamming Distance of extracted secret data

for different image data and various σ2values. The secret data can withstand the additive noise

when the noise variance σ2 is less than 0.05. Our proposed method is more robust to the additive
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(a) Ni et al. [3] (b) Dragoi et al. [4]

Figure 4.7: Comparison the embedding distortion of the proposed method with existing work
for various embedding rates. (a) Ni et al. [3]. (b) Dragoi et al. [4].

noise than the existing methods. The proposed method outperforms the existing work by an

average of 54% and 86% over Ni et al. [3] and Dragoi et al. [4] methods, respectively.

We have compared the reversibility of the proposed method to the reversible data hiding

algorithm [3] and the Dragoi et al. [4] method in the case of no attack. In these experiments,

we have calculated the MSE between the recovered data and the original data using various

graph signals at different embedding rates. Figure 4.9 (a) shows the average MSE values of the

Figure 4.8: Comparison the Hamming Distance (HD) of the proposed method with the Ni et
al. [3] and Dragoi et al. [4] after the additive noise for various values of σ2.
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proposed method and the existing methods in the case of no attack, using the same graph signals

data at various payloads. The proposed method recovers the original signal without any error

for any embedding rate. RDH using histogram shifting [3] can also recover the original data

error-free when the embedding rate is low. In contrast, Dragoi et al.’s method can recover the

original data with distortion when the embedding rate is greater than 0.01. Figure 4.9 (b) shows

the average MSE value of the proposed method and the existing methods after the additive noise

for various values of σ2, using the same graph signals. The proposed method outperforms the

existing work by an average of 97% and 99% over Ni et al. [3] and Dragoi et al. [4] methods,

respectively.

(a) (b)

Figure 4.9: Comparison the performance of reversibility of the proposed reversible data hiding
using GFT with Ni et al. [3] and Dragoi et al. [4]. (a) Without additive noise. (b) After the
additive noise for various values of σ2.

4.4 Concluding remarks

In this chapter, we have proposed a graph Fourier domain reversible data hiding approach based

on the histogram shifting. Two new models are proposed to minimise the embedding distortion

and to make the embedded data robust to additive noise. The embedding distortion is reduced

based on selecting the smallest value of w. Moreover, the robustness of the proposed method

is improved by selecting the GFT coefficents that satisfy spesific conditions. We have evalu-

ated the proposed method in terms of embedding distortion, reversibility of the original graph
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signal and the robustness against additive noise. The proposed method has compared with two

previous reversible data hiding, namely, Ni et al. [3] and Dragoi et al. [4] methods. The empiri-

cal simulations illustrate that the proposed approach has improved the distortion by an average

of 87% and 92% compared to [3] and Dragoi et al. [4] methods, respectively in terms of em-

bedding distortion. The robustness of the proposed method is enhanced to additive noise by

an average of 54% and 86% over the previous methods. The proposed method can restore the

original graph signal and the hidden secret data without any error for any embedding rates com-

pared to Dragoi et al. method [4] which extracts the embedded bits and the recovered images

data with errors in the case of no attacks. The proposed method retrieves the original graph

signal without any error, therefore, it does not need side information to correct the error in the

recovered signal as in existing work. In addition, the proposed method has evaluated in terms

of restoring the original host signal after the additive noise. The results show that the proposed

method provides lower distortion by an average of 97% and 99% compared to Ni et al. [3] and

Dragoi et al. [4] methods, respectively. The next chapter includes the graph wavelet domain

data hiding for graph data.
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Chapter 5

Graph wavelet domain data hiding for

graph data

5.1 Introduction

The previous two chapters proposed irreversible data hiding and reversible data hiding ap-

proaches for graph data in the graph Fourier domain. This chapter proposes data hiding ap-

proaches including irreversible data hiding and reversible data hiding using graph wavelet trans-

form. Discrete wavelet transform is considered as a powerful tool in signal processing due to

its ability to localise the contents of the signal in the time and frequency domains. It provides

multi-scale representations of the signal. These reasons make the discrete wavelet transform

a typical choice for data hiding in multimedia [21]. This chapter exploits the wavelet trans-

form advantages to propose new data hiding approaches for unstructured data in graph wavelet

domain.

Recently, we have seen an increase in applications that represent their data as weighted

graphs like sensor networks and social networks.This creates a strong need for protecting these

data. The most common approaches of graph data hiding depend on modifying the graph topol-

ogy as illustrated in chapter 3. These approaches are not robust and insecure because they are

based on the vertex domain. In reversible data hiding, the existing methods of graph reversible

data hiding relies on a mesh. In general, there are four groups based on the embedding domain:

vertex domain, compressed domain, transform domain and encrypted domain as we explained
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in chapter 4.

On the other hand, the graph Fourier domain data hiding has proven to be a very effective

approach to protect the graph data for irreversible and reversible data hiding. This is due to

advances in signal transforms as shown in chapter 3 and chapter 4, respectively. This chapter

proposes two data hiding methods in graph wavelet domain with new models, namely, an em-

bedding distortion minimisation model to minimise the embedding distortion in the modified

graph and a robustness model to make the secret data robust to attacks. Finally, the conditions

of the proposed models are combined for satisfying the basic requirements of the data hiding

system. The main contributions of this chapter are:

1. Proposing a distortion minimisation model and a robustness model for graph wavelet

domain irreversible data hiding.

2. Proposing a new graph wavelet domain histogram shifting algorithm for reversible data

hiding on non-integer data.

3. Proposing new models to minimise the embedding distortion in host graph data after

embedding and to make the embedding robust to additive noise.

The rest of this chapter is organised as the following: Section 5.2 introduces the proposed

methodology including the proposed data hiding in graph wavelet domain, followed by the pro-

posed models, embedding distortion minimisation and robustness enhancing, respectively. The

performance of the proposed methods are evaluated using experimental results in Section 5.3.

We finally present the concluding remarks in Section 5.4.

5.2 Proposed Methodology

This section presents the proposed data hiding methods using graph wavelet transform. We

consider two data hiding methods, namely, irreversible and reversible data hiding.

5.2.1 Graph Wavelet Transform (GWT)

We suppose that G is an undirected graph without self-loops and multiple edges between nodes,

the adjacency matrix with edge weights, A , is defined as in Eq. (2.9). The combinatorial graph
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Laplacian matrix, L, is calculated as in Eq. (2.11). The Graph Fourier Transform (GFT) and its

inverse are defined as in Eq. (2.17) and Eq. (2.18). The graph wavelet coefficients are calculated

using Eq. (2.26).

5.2.2 Proposed methodology of irreversible data hiding

In this section, we present the proposed irreversible data hiding method using graph wavelet

transform. We consider two embedding scenarios: non-blind and blind data hiding. Figure 5.1

shows the block diagram of the proposed method. The proposed methodology includes two

new models, i.e. embedding distortion minimisation model and robustness model to minimise

the embedding distortion and to enhance the robustness against the attacks, respectively.

5.2.2.1 GWT domain data hiding

5.2.2.1.1 Non-blind data hiding

We propose a non-blind algorithm using magnitude based multiplicative watermarking [13]. We

firstly calculate the graph wavelet coefficients using Eq. (2.26), then the low-frequency GWT

Embedding Process

Original 

secret data

IGWT

Original graph Modified graph

Extracted

secret data

Key

Embedding 

Distortion 

model

Robustness 

model

GWT

Extraction Process
Authentication 
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Embedding Procedure

Extraction Procedure

Original graph

GWT
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Figure 5.1: The block diagram of the proposed graph wavelet domain data hiding.
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coefficients Y are selected to embed the secret bits as follows:

Yw = Y(1 + αwb), (5.1)

where Yw is the modified graph wavelet coefficient, α is the data hiding parameter and wb is

the secret bit. The inverse GWT is performed on the modified GWT coefficients to obtain the

modified graph.

The extraction process requires the original coefficients to extract the secret bits. The em-

bedded bits are extracted based on the embedding key which is sent to the receiver in a separate

file. The embedding key includes w0, w1, length of the secret bits and α. Firstly, the GWT is

performed on the modified graph, then the secret bits w′b are extracted from the low-frequency

GWT coefficients as follows:

w′b =
Yw −Y

αY
, (5.2)

where w′b(b = {0, 1}) is the extracted bit. Let w0 and w1 are the selected secret bits values

for embedding a 0 and 1, respectively. The extracted secret bit b′ is determined depend on a

threshold T where T = (w0 + w1)/2, whereas:

b′ =

0 , if w′b < T,

1 , if w′b > T.

(5.3)

5.2.2.1.2 Blind data hiding

A blind algorithm is proposed using a prediction-based graph data hiding. Firstly, the graph

wavelet coefficients are calculated using Eq. (2.26). Then, the selected GWT coefficients Y

are sorted in descending order, Ys(m). After that, a non-overlapping 3 × 1 running window

is passed through the selected GWT coefficients for hiding the secret bit in the median graph

wavelet coefficient at each sliding position, as the following:

Ysw(m) =
⌊Ys(m− 1) + Ys(m+ 1)

2

⌋
+ wb, (5.4)
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where Ysw is the modified graph wavelet coefficient, bYc refers to rounding of Y to the largest

integer value smaller than Y and wb > 0 is the secret bit. For extraction the secret bits without

error, the embedding is restricted for any three GWT coefficients, if and only if they satisfy

following condition:

Ys(m− 1) ≥
⌊Ys(m− 1) + Ys(m+ 1)

2

⌋
+ w ≥ Ys(m+ 1). (5.5)

Then, the spectral coefficients are used in the embedding process; otherwise (if the condition

does not satisfy) the first coefficient is skipped. We start from the second coefficient and check

the three coefficients again and so on. We use a code (0) for no skip coefficient and (1) for

skipping coefficients followed by the locations of the coefficients. The secret key includes this

information and it is sent to the receiver separately. Finally, we perform the inverse GWT on

the modified GWT coefficients to obtain the modified graph signal.

In the extraction process, the receiver extract the embedded bits based on the embedding key.

The embedding key includes w0, w1, length of the secret bits, number of skipped coefficients

and the positions of the skipped coefficients. The GWT is applied on the modified graph signal,

followed by sorting in descending order, to get sorted modified GWT coefficients, Yw(m).

Then the secret bit from each 3×1 running window with coefficients, Yw(m−1) ≥ Yw(m) ≥

Yw(m+ 1), is extracted based on the secret key as given:

w′b = Yw(`)− bYw(`− 1) + Yw(`+ 1)

2
c. (5.6)

where w′b(b = {0, 1}) is the extracted bit. Let w0 and w1 are the selected secret bits values

for embedding a 0 and 1 , respectively. The extracted secret bit b′ is determined according to a

threshold T , where T = (w0 + w1)/2, as shown in Eq. (5.3).

5.2.2.2 Authentication Process

We perform the authentication based on comparing the extracted secret bits with the original

secret bits using the Hamming Distance (HD) as defined as in Eq. (2.6).
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5.2.2.3 Embedding distortion minimisation

A new model is proposed to minimise the embedding distortion in the graph wavelet domain.

The proposed model establishes the relationship between the error distortion using mean square

error (µ) and the chosen graph wavelet coefficients for data hiding. We consider two cases:

orthogonal wavelet bases and non-orthogonal wavelet bases. The models are proposed based

on following the models in [21].

5.2.2.3.1 Embedding distortion minimisation model for orthogonal graph wavelet filters

We propose a new model for reducing the embedding distortion in the GWT coefficients after

hiding the secret bits. The performance of the embedding distortion is measured using the MSE

(µ). We define mean square error (µ) in vertex domain between the original graph signal x and

modified graph signal xw is defined as the following:

µ =
1

N

N−1∑
i=0

(x(i)− xw(i))2, (5.7)

where N is the number of graph nodes. Since the wavelet bases are orthogonal [2], the energy

between an input graph signal and the graph wavelet coefficients is conserved according to the

Parseval’s Theorem which means:

‖x‖2 = ‖Y‖2, (5.8)

where x is the signal of graph in vertex domain and Y is the GWT coefficient. This can be

extended to the sum of the error power in the input signal of graph, ∆x, and to the sum of the

error power in the graph wavelet domain ∆Y as the following:

∑
i

|∆x(i)|2 =
∑
`

|∆Y(`)|2. (5.9)

From Eq. (5.7) and Eq. (5.9), we get

µ =
1

N

∑
`

|∆Y(`)|2. (5.10)
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We suggest two data hiding scenarios: non-blind and blind.

Proposition 5.1 (Non-blind)

For non-blind approach, the MSE (µ) of the modified graph is proportional to the energy sum

of selected GWT coefficients:

µ ∝
N−1∑
`=0

|Y(`)|2. (5.11)

Proof. In non-blind approach, the modified coefficients Yw(`) are calculated as follows:

Yw(`) = Y(`) + Y(`)αwb,

Yw(`)−Y(`) = Y(`)αwb,

∆Y(`) = Y(`)αwb,

where ∆Y(`) is the value of modification owing to hiding the secret bits. From Eq. (5.10),

thereby leading to the the relationship between the MSE of modified graph and the chosen

GWT coefficients:

µ ∝
N−1∑
`=0

|Y(`)|2. (5.12)

Proposition 5.2 (Blind)

In a blind approach, for any embedding GWT coefficient triple Ys(m − 1) ≥ Ys(m) ≥

Ys(m+ 1) , the MSE (µ) of the modified graph is proportional to the gradient difference of the

embedding coefficient triple [(Ys(m− 1)−Ys(m))− (Ys(m)−Ys(m+ 1))] as follows:

µ ∝ [(Ys(m− 1)−Ys(m))− (Ys(m)−Ys(m+ 1))]. (5.13)

Proof. For any three sorted spectral coefficients, Ys(m − 1) ≥ Ys(m) ≥ Ys(m + 1), the

modification value due to embedding the secret bits ∆Ys(m) using the prediction algorithm is
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estimated from Eq. (5.4) as follows:

∆Ys(m) = Ysw(m)−Ys(m),

=
⌊Ys(m− 1) + Ys(m+ 1)

2

⌋
+ w −Ys(m),

∆Ys(m) =
⌊Ys(m− 1) + Ys(m+ 1)

2

⌋
−Ys(m).

By substituting Ys(m− 1) with Ys(m) + ∆1 and Ys(m+ 1) with Ys(m)−∆2, based on the

sorted coefficients, Ys(m) + ∆1 ≥ Ys(m) ≥ Ys(m)−∆2.

∆Ys(m) =
⌊Ys(m− 1) + Ys(m+ 1)

2

⌋
−Ys(m),

∆Ys(m) =
⌊Ys(m) + ∆1 + Ys(m)−∆2

2

⌋
−Ys(m).

The minimum error distortion is obtained when the difference between Ysw(m) and Ys(m) is

close to 0:

⌊Ys(m− 1) + Ys(m+ 1)

2

⌋
−Ys(m) = 0,

⌊Ys(m) + ∆1 + Ys(m)−∆2

2

⌋
−Ys(m) = 0,

Ys(m) + ∆1 + Ys(m)−∆2 = 2Ys(m),

(Ys(m) + ∆1)−Ys(m) = Ys(m)− (Ys(m)−∆2),

[(Ys(m) + ∆1)−Ys(m)]− [Ys(m)− (Ys(m)−∆2)] = 0.

Since the wavelet bases are orthogonal and from Eq. (5.10) we obtain:

µ ∝
∑
|∆Ys(m)|2. (5.14)

Thereby leading to

µ ∝
∑

(bYs(m− 1) + Ys(m+ 1)

2
c −Ys(m))2.
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Thereby leading to the relationship between the MSE of modified graph (µ) and the chosen

GWT coefficient triple:

µ ∝ (Ys(m− 1)−Ys(m))− (Ys(m)−Ys(m+ 1)).

Therefore for minimizing µ, for each hiding GWT coefficient triple, b0.5(Ys(m − 1) +

Ys(m+ 1))c−Ys(m) should be close to 0 or in other words the gradient difference, [(Ys(m−

1)−Ys(m))− (Ys(m)−Ys(m+ 1))] should be close to 0.

5.2.2.3.2 Embedding distortion minimisation model for non-orthogonal graph wavelet

filters

The energy between an input graph signal and the graph wavelet coefficients is not conserved

when the wavelet bases are non-orthogonal as follows [25]:

c1
∑
`

|Y(`)|2 ≤ ‖x‖2 ≤ c2
∑
`

|Y(`)|2, (5.15)

where c1 and c2 are the orthonormality correction factor.

Since the wavelet filter is not orthogonal, in this case, the transform coefficients have to

satisfy the Eq. (5.15). This leads to:

‖x‖2 = R‖Y‖2, (5.16)

where x is the signal of graph in vertex domain, Y is the GWT coefficient and R is a

weighting factor as given:

R =
‖x‖2∑
` |Y(`)|2

. (5.17)

This can be extended to the sum of the error power in the input signal of graph, ∆x, and to the

sum of the error power in the graph wavelet domain ∆Y as the following:

∑
i

|∆x(i)|2 = R
∑
`

|∆Y(`)|2. (5.18)
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From Eq. (5.7) and Eq. (5.18), we get

µ =
1

N
(Rηγ

∑
`

|∆Y(`)|2), (5.19)

where Rηγ is the weighting parameter at η sub-band and γ decomposition level.

Proposition 5.3 (Non-blind)

For non-blind approach, the MSE (µ) of the modified graph is proportional to the weighted

energy sum of chosen GWT coefficients:

µ ∝ Rηγ

N−1∑
`=0

|Y(`)|2. (5.20)

Proof. In non-blind approach, the modified coefficients Yw(`) are calculated as follows:

Yw(`) = Y(`) + Y(`)αwb,

Yw(`)−Y(`) = Y(`)αwb,

∆Y(`) = Y(`)αwb,

where ∆Y(`) is the value of modification owing to embedding the secret data. From Eq. (5.19),

thereby leading to the the relationship between the MSE of the modified graph and the chosen

GWT coefficients:

µ ∝ Rηγ

N−1∑
`=0

|Y(`)|2.

Proposition 5.4 (Blind)

In a blind approach, for any embedding GWT coefficient triple Ys(m − 1) ≥ Ys(m) ≥

Ys(m + 1), the MSE (µ) of the modified graph is proportional to the gradient difference of

the embedding coefficient triple [(Ys(m− 1)−Ys(m))− (Ys(m)−Ys(m+ 1))] as follows:

µ ∝ Rηι[(Ys(m− 1)−Ys(m))− (Ys(m)−Ys(m+ 1))]. (5.21)
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Proof. For any three sorted spectral coefficients, Ys(m − 1) ≥ Ys(m) ≥ Ys(m + 1), the

modification value due to embedding the secret data ∆Ys(m) using the prediction algorithm is

estimated from Eq. (5.4) as follows:

∆Ys(m) = Ysw(m)−Ys(m),

=
⌊Ys(m− 1) + Ys(m+ 1)

2

⌋
+ w −Ys(m),

∆Ys(m) =
⌊Ys(m− 1) + Ys(m+ 1)

2

⌋
−Ys(m).

By substituting Ys(m− 1) with Ys(m) + ∆1 and Ys(m+ 1) with Ys(m)−∆2, based on the

sorted coefficients, Ys(m) + ∆1 ≥ Ys(m) ≥ Ys(m)−∆2.

∆Ys(m) =
⌊Ys(m− 1) + Ys(m+ 1)

2

⌋
−Ys(m),

∆Ys(m) =
⌊Ys(m) + ∆1 + Ys(m)−∆2

2

⌋
−Ys(m).

The minimum error distortion is obtained when the difference between Ysw(m) and Ys(m) is

close to 0:

⌊Ys(m− 1) + Ys(m+ 1)

2

⌋
−Ys(m) = 0,

⌊Ys(m) + ∆1 + Ys(m)−∆2

2

⌋
−Ys(m) = 0,

Ys(m) + ∆1 + Ys(m)−∆2 = 2Ys(m),

(Ys(m) + ∆1)−Ys(m) = Ys(m)− (Ys(m)−∆2),

[(Ys(m) + ∆1)−Ys(m)]− [Ys(m)− (Ys(m)−∆2)] = 0.

Since the wavelet bases are non-orthogonal bases and from Eq. (5.19) we obtain:

µ ∝ Rηγ
∑
|∆Ys(m)|2. (5.22)

119



Chapter 5 – Graph wavelet domain data hiding for graph data

Thereby leading to

µ ∝ Rηγ
∑

(bYs(m− 1) + Ys(m+ 1)

2
c −Ys(m))2.

Thereby leading to the relationship between the MSE of the modified (µ) and the chosen GWT

coefficient triple:

µ ∝ Rηγ(Ys(m− 1)−Ys(m))− (Ys(m)−Ys(m+ 1)).

Therefore for minimizing µ, for each hiding GWT coefficient triple, b0.5(Ys(m − 1) +

Ys(m+ 1))c−Ys(m) should be close to 0 or in other words the gradient difference, [(Ys(m−

1)−Ys(m))− (Ys(m)−Ys(m+ 1))] should be close to 0.

5.2.2.4 On enhancing robustness

The proposed model aims to identify the graph wavelet coefficients that are able to extract the

secret data accurately after the attack in the graph wavelet domain. We consider two data hiding

scenarios, i.e. non-blind and blind to analyse the robustness against the attacks, namely, noise

addition and deleting nodes data. The modified GWT coefficients values, Yw(`), are adjusted

based on the modification value due to attack ∆a as follows:

X′w(`) = Yw(`) + ∆a, (5.23)

where Y′w(`) are the modified graph wavelet coefficients values after the attack. The value of

modification due to attack ∆a can be in the range:

∆amin
≤ ∆a ≤ ∆amax , (5.24)

where ∆amin
and ∆amax are the minimum and maximum modifications values. The modification

value ∆a depends on the type of attack. For instance, the value of modification due to additive

noise depends on the noise variance σ2 , while the value of modification of deleting nodes data

depends on the number of the node data which are deleting.
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5.2.2.4.1 Non-blind model

A model is derived to show the relationship between the selected coefficients to hide the secret

bits and the robustness against attacks. The basic form of the data embedding in the non-blind

approach is:

Yw(`) = Y(`) + ∆, (5.25)

where Y(`) is the GWT coefficient to be modified, Yw(`) is the modified coefficient and ∆ is

the modification value due to hiding the secret data.

∆ = Yw(`)−Y(`), (5.26)

∆ = αY(`)w, (5.27)

where α is the data hiding parameter and wb(b = {0, 1}) is the secret bit. Based on substituting

the Eq. (5.26) in Eq. (5.25), we get:

Yw(`) = Y(`) + αY(`)wb, (5.28)

= Y(`)(1 + αwb).

The relationship between the original graph wavelet coefficient and modified graph Fourier

coefficient is:

Y(`) =
Yw(`)

1 + αwb
. (5.29)

The secret bit w′b is extracted as follows:

w′b =
Yw(`)−Y(`)

αY(`)
. (5.30)

Let Y′w(`) be the reconstructed modified coefficient after the attack, ∆a is the modification

value due to attack, we get:

Y′w(`) = Yw(`) + ∆a, (5.31)

∆a = Y′w(`)−Yw(`). (5.32)
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Proposition 5.5

The original GWT coefficients for hiding a bit value b = 1 and retain intact after the attacks are

in the range:
Y′w(`′)

1 + αw1

≤ Y(`) ≤ Y′w(`′)

1 + αT
. (5.33)

This proposition was proved in Chapter 3.

Proposition 5.6

The original GWT coefficients for hiding a bit value b = 0 and retain intact after the attacks are

in the range:
Y′w(`′)

1 + αT
< Y(`) <

Y′w(`′)

1 + αw0

. (5.34)

We proved this proposition in Chapter 3.

Finally, we combine proposition 5.5 and proposition 5. 6 to find the region of coefficients

that are capable of retaining both b = 1 and b = 0 after the attacks The original GWT coeffi-

cients which can retain the correct secret bit should be in the range:

Y′w(`′)

1 + αw1

≤ Y(`) ≤ Y′w(`′)

1 + αw0

. (5.35)

In the case of no attack, the modified coefficient Yw(`) after embedding the secret bit b =

0 and b = 1 will be in the range:

Y(`)(1 + αw0) ≤ Yw(`) ≤ Y(`)(1 + αw1). (5.36)

And the secret bit can be extracted accurately when the graph wavelet coefficients in the range:

Yw(`)

1 + αw1

≤ Y(`) ≤ Yw(`)

1 + αw0

. (5.37)

Figure 5.2 displays the range of the graph wavelet coefficients that is able to retain the secret

bits after the attacks.
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Figure 5.2: The range of the graph wavelet coefficients that is able to extract the secret bits
correctly. (a) Hiding b = 1. (b) Hiding b = 0. (c) Hiding b = 0 and 1.

5.2.2.4.2 Blind model

We propose a new model to identify the graph wavelet coefficients that are able to extract

the secret bits accurately after the attack in the GWT domain for a blind approach using a

prediction-based graph data hiding. The modified coefficients are given as:

Yw(`) =
⌊Y(`− 1) + Y(`+ 1)

2

⌋
+ wb. (5.38)

After the attack, to extract the secret bits w′, we have new values of graph wavelet coefficients

values Y′w(`′ − 1),Y′w(`′) and Y′w(`′ + 1):

w′b = Y′w(`′)−
⌊Y′w(`′ − 1) + Y′w(`′ + 1)

2

⌋
. (5.39)
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We consider three embedding cases: hiding only b = 0 bit, hiding only b = 1 bit and hiding

b = 0, 1 bit.

Proposition 5.7

For embedding a secret bit b=1 and to extract the correct bit after the attack, the modified

coefficients should be in the range:

⌊Y ′w(`′ − 1) + Y ′w(`′ + 1)

2

⌋
+ T ≤ Y ′w(`′) <

⌊Y ′w(`′ − 1) + Y ′w(`′ + 1)

2

⌋
+ w1. (5.40)

This proposition was proved in Chapter 3.

Proposition 5.8

For embedding b=0 bit, we can extract the correct bits when the modified graph wavelet coeffi-

cients are in the range:

⌊Y ′w(`′ − 1) + Y ′w(`′ + 1)

2

⌋
+ w0 ≤ Y ′w(`′) <

⌊Y ′w(`′ − 1) + Y ′w(`′ + 1)

2

⌋
+ T. (5.41)

We proved this proposition in Chapter 3.

We combine proposition 5.7 and proposition 5.8 to identify the condition of correct extrac-

tion of the secret bits when hiding b = 0 and b = 1. The range of the graph wavelet coefficients

that is able to extract the secret bits correctly is:

⌊Y ′w(`′ − 1) + Y ′w(`′ + 1)

2

⌋
+ w0 ≤ Y ′w(`′) <

⌊Y ′w(`′ − 1) + Y ′w(`′ + 1)

2

⌋
+ w1. (5.42)

Figure 5.3 displays the range of the graph wavelet coefficients capable of retaining the secret

bits after the attacks.

5.2.2.5 Joint robust-low distortion data hiding

The proposed models are combined for satisfying the main requirements of the graph data hid-

ing. We consider two embedding algorithms: non-blind and blind. For the non-blind algorithm,

in order to combine the model of the embedding distortion minimisation with the robustness
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Figure 5.3: The graph wavelet coefficients range which is able to extract the secret bits correctly.
(a) Hiding only b = 0. (b) Hiding only b = 1. (c) Hiding b = 0 and b = 1.

model, we select the GWT coefficients that satisfy the conditions in Eq. (5.33), Eq. (5.34), Eq.

(5.35) for satisfying the robustness conditions. Then, we select the GWT coefficients (from

the above GWT coefficients) that satisfy the condition in Eq. (5.11) for for orthogonal graph

wavelet filters and Eq. (5.20) for for non-orthogonal graph wavelet filters (in other words, the

GWT coefficients have the the lowest values) to minimise the embedding distortion i.e., the

GWT coefficients which satisfy the above conditions are selected to embed the secret data. For

the blind algorithm, we combine the proposed models of the embedding distortion minimisa-

tion and the robustness based on selecting the GWT coefficients that satisfy the conditions in

Eq. (5.40), Eq. (5.41), Eq. (5.42) to meet the robustness, then, we select the GWT coefficients

which satisfy the condition in Eq. (5.13) for for orthogonal graph wavelet filters and Eq. (5.21)

for for non-orthogonal graph wavelet filters (in our model the GWT coefficient triple which has
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the gradient difference close to 0) in order to minimise the embedding distortion i.e., the GWT

coefficients that satisfy the above conditions are chosen for embedding the secret bits.

5.2.3 Proposed methodology of reversible data hiding

5.2.3.1 Reversible data hiding algorithm

We propose a reversible data hiding algorithm based on shifting the graph wavelet coefficients.

The algorithm starts with the GWT to decompose the graph signal for n levels of decomposi-

tions to obtain the GWT coefficients using Eq. (2.26). Then, the histogram of the magnitudes

of the GWT coefficients is generated. The peak point h(YMax) and the zero point (h(YMin) are

determined in the histogram, where YMax and YMin are the GWT coefficients magnitudes that

have the largest and lowest repetition, respectively. Next, all the magnitudes of the GWT coef-

ficients in the range [YMax + q, YMin− q] are shifted towards the zero points based on the value

of the shifting bin q as illustrated in Figure 5.4. Then, the secret data are hidden in the peak

points of the histograms of the low-frequency and high-frequency of the GWT coefficients’

magnitudes YMax. All the GWT coefficients’ magnitudes that are greater than YMin and less

than YMax remain without any change. Finally, the IGWT is applied on the GWT coefficients

to obtain the modified graph.

In the extraction process, the receiver extracts the secret bits based on the embedding key.

The embedding key includes a number of shifting times, peak points, XMax, zero points, XMin,

the shifting bin, q, the level of decomposition, sub-band which is used for embedding, w0, w1

and length of the secret bits. The extraction process starts with calculating the GWT coefficients

using Eq. (2.26), then the embedded bits are extracted from the magnitudes of the low-frequency

and high-frequency of the GWT coefficients in the range [YMax, YMax + q]. Let’s consider for

example wb(b = {0, 1}) and q = 1, the extracted bit is 0 when the GWT coefficient’s magnitude

is YMax, whereas, the extracted bit is 1 when the GWT coefficient’s magnitude is YMax+q. To

recover the original coefficients magnitudes perfectly, all embedded data are subtracted from the

modified coefficients magnitudes in the range [YMax,YMax+q]. Then, all the magnitudes of the

coefficients in the range [YMax + 2q,YMin] are shifted back by q = 1 unit. Finally, the IGWT

is applied on the restored GWT coefficients to get the recovered graph signal. The embedding
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Figure 5.4: Histogram of the high-frequency GWT coefficients of Torus graph with 10000 nodes
after two levels wavelet decompositions. (a) Before the shifting process. (b) After the shifting
process.

and extracting algorithms are the same embedding and extracting algorithms in chapter 4.

The embedding capacity depends on many parameters, the value of the shifting bin q,

the graph connectivity, the level of decomposition and the number of peak points in the low-

frequency and high-frequency GWT coefficients which are used in the embedding process. For

example, when the shifting bin value is large, it causes the peak point to be high. In other

words, it increases the number of the GWT coefficient YMax. The graph connectivity has an

effect on the embedding capacity, for instance some graphs have high peak points which leads

to increase the embedding capacity. Moreover, we can increase the number of the GWT coef-

ficients in each sub-band by decreasing the number of graph decomposition levels that leads to

increase the embedding capacity. In addition, the embedding capacity can be increased by using

several peak points for embedding the data. This case is referred to as a multiple embedding.

In the reversible data hiding, the embedding distortion depends on many parameters, the

number of the secret data to be hidden, the decomposition level of GWT coefficients and the

sub-band which is used to embed. This is called the embedding distortion due to embedded

secret data. Another type of the distortion depends on the type of the process which is used

to restore the original host data. This type of distortion is called the reversibility distortion. In

the proposed method, the reversibility distortion comes from the shifting of the GWT coeffi-
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cients. This distortion depends on the number of the GWT coefficients which are shifted and

the number of the shifting times.

To satisfy the main requirements of the reversible data hiding, we have to balance between

the distortion and the robustness of the method based on selecting the GWT coefficients. The

embedding distortion of the proposed method is decreased when the secret bits are hidden in

the high-frequency GWT coefficients. We can improve the robustness of the proposed method

by embedding the secret bits in the low-frequency GWT coefficients and using multi levels of

decomposition.

5.2.3.2 Embedding distortion minimisation

For minimising the embedding distortion in the proposed method, we established the relation-

ship between the error distortion using mean square error (µ) of the modified graph and the

value of the embedding bit w in graph wavelet domain. The proposed proposition is the MSE

(µ) is less than the squared value of embedded bits w2 as follows:

µ < w2 (5.43)

For minimising the embedding distortion, we have to minimise the value of w and this leads to

decreasing the MSE value and decreasing the embedding capacity. While increasing the value

of w will increase the MSE value and increase the embedding capacity. Therefore, we have to

do a balance between the embedding distortion and the embedding capacity based on choosing

a suitable value of w. This proposition has proved in Chapter 4.

5.2.3.3 On enhancing robustness

For improving the robustness of the proposed method, we propose a robustness model to iden-

tify the GWT coefficients magnitudes that are able to extract the secret bits after the attack in

graph wavelet domain. We establish the relationship between the GWT coefficients magnitudes

and the type of attack, namely, additive noise.

We consider three cases of the secret bits: hiding only b = 0 bits, hiding only b = 1 bits and

hiding b = 0, 1 bits, where w0 < w1, w0 = 0, w1 = q and q = 1.
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Proposition 5.9

To obtain the correct secret bit after embedding b = 1 bits, the modified coefficients have to be

in the range:

Y′Max(`
′) + q ≤ Y ′w(`′) < Y′Max(`

′) + 2q. (5.44)

where wb = q and q = 1. This proposition has been proved in Chapter 4.

Proposition 5.10

To embed b = 0 bits, we can extract the correct secret bits when the modified coefficients mag-

nitudes are in the range:

Y′Max(`
′) + w0 ≤ Y ′w(`′) < Y′Max(`

′) + q. (5.45)

where w0 = 0 and q = 1. We have proved this proposition in chapter 4.

Proposition 5.11

We combine the above propositions to identify the condition of correct detection of the secret

bits when hiding b = 0 and b = 1. The range of the GWT coefficients which retain the secret

bits correctly is:

Y′Max(`
′) + w0 ≤ Y ′w(`′) < Y′Max(`

′) + 2q. (5.46)

where w0 = 0 and q = 1. Figure 5.5 demonstrates the range of the graph wavelet coefficients

which able to retain the secret bits after the attacks.
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Figure 5.5: The range of the graph wavelet coefficients that able to extract the secret bits cor-
rectly. (a) Hiding only b = 0. (b) Hiding only b = 1. (c) Hiding b = 0 and b = 1.

5.2.3.4 Joint robust-low distortion reversible data hiding

For satisfying the basic requirements of the graph data hiding, the proposed embedding distor-

tion minimisation model and robustness model are combined. We select the GWT coefficients

that satisfy the condition in Eq. (5.46) to satisfy the robustness condition. Then, we select a

small value for w (according to the Eq. (5.43) for minimising the embedding distortion) to em-
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bed in the selected GWT coefficients for minimising the embedding distortion and enhance the

robustness.

5.3 Performance evaluation

The performance of the proposed methods are evaluated using the graph watermarking dataset [181].

We have two parts of the evaluations: performance of irreversible data hiding and performance

of reversible data hiding. We would like to indicate that we have identified many limitations

regarding the comparison of the proposed irreversible data hiding methods with previous meth-

ods. We could not find a method where a framework similar to the proposed method was con-

sidered. None of the existing graph data hiding methods embed the secret bits into the graph

signal; instead, they embed the secret data in the mesh coordinates or the graph topology. Due

to lack of any other comparable work, it is not possible to compare our experimental results with

other works. In that context, we consider the results without the proposed models as the base-

line. Therefore, we calculate the results by using the data hiding algorithms without using the

proposed models (embedding distortion minimisation and robustness) to show improvements

when the proposed models were applied using the same data hiding algorithms. For reversible

data hiding, we have selected the same RDH methods which are chosen in chapter 4 for the

comparison (for the same reasons as shown in chapter 4).

5.3.1 Experimental set up

The proposed GWT data hiding algorithms with the proposed models: embedding distortion

minimisation and robustness are tested using the dataset of graph watermarking [181]. This

dataset includes 160 various types of graphs with a different number of nodes and five graph

signals as described in Section 3.3.1.

5.3.2 Performance evaluation of the irreversible data hiding using GWT

The proposed models: embedding distortion minimisation model and robustness model are ver-

ified by the experimental simulations for the non-blind and blind data hiding. The experimental

simulations are divided into two types: evaluation of the embedding distortion performance and
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evaluation of the performance of the robustness. The proposed models are evaluated based on

comparing the performance of the data hiding methods with and without using the proposed

models.

5.3.2.1 Evaluation of the embedding distortion Performance

In this section, we present two types of empirical results: verification of the embedding distor-

tion minimisation model and evaluation of the performance of the embedding distortion. We

consider two data hiding scenarios: non-blind and blind.

5.3.2.1.1 Verification of embedding distortion minimisation model for non-blind data

hiding

The propositions 5.1 and 5.3 are verified in the experimental simulations. We consider two

types of graph wavelet filters: orthogonal Meyer filter and bi-orthogonal 9/7 filter. For the

orthogonal Meyer filter, the energy sum of the chosen GWT coefficients and the MSE (µ) of

the modified graphs are calculated for the test graphs. For the bi-orthogonal 9/7 filter, the

weighted energy sum of the selected GWT coefficients and the MSE (µ) of the modified graphs

are calculated for the test graphs. The graph wavelet filter decomposes the graph signal into

n levels of decompositions, at each level there is two sub-bands, Low-frequency L and high-

frequency H , after two levels of decompositions, four sub-bands are generated, L1 and H1 at

the first level, L2 and H2 at the second level. The low-frequency GWT coefficients for second

level decomposition L2 are considered in these experiments. Four sets of graphs with a number

of nodes N = {500, 2500, 5000, 10000} for 7 graphs types with 5 kinds of graph signals are

used to verify the effects of embedding three scenarios of the secret bits. We consider the

pseudo-random binary sequences as the secret bits with three scenarios: w = {1}, w = {0}

and w = {0, 1} to embed in the low frequency GWT coefficients. The low-frequency GWT

coefficients are categorised into five groups according to their values. Then, we embed the

same number of the secret bits in each group separately using 5 types of graph signals, where

blue colour for graph signal 1, red colour for graph signal 2 , magenta colour for graph signal

3 , green colour for graph signal 4 and cyan colour for graph signal 5. We obtain two sets of

empirical results to verify the effects of embedding three scenarios of the secret bits as given:
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In the Set 1 of experiments, the low frequency of GWT coefficients at the second level of

decomposition L2 are divided into five groups based on their values by taking into consider-

ation all the low frequency of GWT coefficients using two types of graph wavelet filters, i.e.

orthogonal Meyer filter and bi-orthogonal 9/7 filter. Then, the energy sum (or weighted en-

ergy sum according to the type of wavelet filter ) of the chosen graph wavelet coefficients to be

modified and MSE of the modified graphs are calculated using the same α = 0.1 for all groups

separately. In these experiments, we consider the case when the secret bits equal to w = {1} as

shown in Figure 5.6 and Figure 5.7 respectively.

In the experiment Set 2, we consider the case when the secret bits are zero and one w =

{0, 1}, where the number of 0s and 1s are equally distributed in the binary sequence using

two types of graph wavelet filters, i.e. orthogonal Meyer filter and bi-orthogonal 9/7 filter.

Embedding performance is calculated in a similar way to that mentioned in Set 1 of experiments

to notice the trend as illustrated in Figure 5.8 and Figure 5.9, respectively.

The results demonstrate that the distortion in the experiment Set 1 is higher than the distor-

tion in the experiment Set 2 because the number of 1s which is embedded in the experiment Set

1 is double than the embedded numbers in the experiment Set 2. While there is no distortion in

case of embedding w = {0} only.

The simulation results demonstrate a strong correlation between the energy sum of the graph

wavelet coefficients which are selected for embedding and the MSE of the modified graph. We

can see that the MSE of the modified graph is a linear proportional to the energy sum of the

selected GWT coefficients using orthogonal Meyer filter and to the weighted sum of the energy

of the chosen graph wavelet coefficients using bi-orthogonal 9/7 filter (where y = m1x + β,

m1 is the slope of the graph and β is the y-intercept). The proposed model is supported by

simulation results using the graph dataset.

5.3.2.1.2 Verification of the embedding distortion minimisation model for blind data hid-

ing

The propositions 5.2 and 5.4 are verified in the simulation results. We consider two types of

graph wavelet filters: orthogonal Meyer filter and bi-orthogonal 9/7 filter. For the orthog-

onal Meyer filter, the MSE (µ) of the modified graph and the gradient difference of the se-
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(a) N = 500 (b) N = 2500

(c) N = 5000 (d) N = 10000

Figure 5.6: Verification of embedding distortion of non-blind algorithm using orthogonal Meyer
filter: MSE of the modified graph vs. energy sum of GWT coefficients when w = {1}, for indi-
vidual graphs with different number of nodes N = 500, 2500, 5000 and 10000, respectively for
5 graph signals where the colours, blue, red, magenta, green and cyan represent the graph signal
1, 2, 3, 4 and 5, respectively and the blue line demonstrate the MSE is linearly proportional to
the energy sum (where y = m1x+ β).

lected GWT coefficients to be modified have been calculated for the test graphs. For the bi-

orthogonal 9/7 filter, the MSE (µ) of the modified graph and the weighted gradient difference of

the selected GWT coefficients have been calculated. In these experiments, four sets of graphs

N = {500, 2500, 5000, 10000}, respectively for 4 graphs types with 5 kinds of graph signals are

used to verify the effects of embedding five scenarios of the secret data. We consider the pseudo-

random number sequences as the secret data with five scenarios: w = {0, 0.1, 0.2, 0.3, 0.4} to
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(a) N = 500 (b) N = 2500

(c) N = 5000 (d) N = 10000

Figure 5.7: Verification of embedding distortion of non-blind algorithm using bi-orthogonal
9/7 filter: MSE of the modified graph vs. weighted energy sum of GWT coefficients when
w = {1}, for individual graphs with different number of nodes N = 500, 2500, 5000 and
10000, respectively for 5 graph signals where the colours, blue, red, magenta, green and cyan
represent the graph signal 1, 2, 3, 4 and 5, respectively and the blue line demonstrate the MSE
is linearly proportional to the energy sum (where y = m1x+ β).

embed in the low frequency of GWT coefficients at the second level L2 of the graph dataset.

The sorted GWT coefficients are divided into four groups based on their gradient difference

values by taking into consideration all the low-frequency GWT coefficients L2. Then, the MSE

of the modified graph has been calculated for all groups separately using different embedding

scenarios. We calculate two sets of empirical results to demonstrate the effects of embedding

five scenarios of the secret data as given below:
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(a) N = 500 (b) N = 2500

(c) N = 5000 (d) N = 10000

Figure 5.8: Verification of embedding distortion of non-blind algorithm using orthogonal Meyer
filter: MSE of the modified graph vs. energy sum of GWT coefficients when w = {0, 1}, for
individual graphs with different number of nodes N = 500, 2500, 5000 and 10000, respec-
tively for 5 graph signals where the colours, blue, red, magenta, green and cyan represent the
graph signal 1, 2, 3, 4 and 5, respectively and the blue line demonstrate the MSE is linearly
proportional to the energy sum (where y = m1x+ β).

In the Set 1 of experiments, proposition 5.2 is verified using the orthogonal Meyer filter for

four sets of graphs N = {500, 2500, 5000, 10000} and for 4 graphs types as shown in Figure

5.10, Figure 5.11, Figure 5.12 and Figure 5.13, respectively.

In experiment Set 2, proposition 5.4 is verified using the bi-orthogonal 9/7 filter. In these

experiments, four sets of graphsN = {500, 2500, 5000, 10000} and for 4 graphs types as shown

in Figure 5.14, Figure 5.15, Figure 5.16 and Figure 5.17, respectively.
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(a) N = 500 (b) N = 2500

(c) N = 5000 (d) N = 10000

Figure 5.9: Verification of embedding distortion of non-blind algorithm using bi-orthogonal
9/7 filter: MSE of the modified graph vs. weighted energy sum of GWT coefficients when
w = {0, 1}, for individual graphs with different number of nodes N = 500, 2500, 5000 and
N = 10000, respectively for 5 graph signals where the colours, blue, red, magenta, green and
cyan represent the graph signal 1, 2, 3, 4 and 5, respectively and the blue line demonstrate the
MSE is linearly proportional to the energy sum (where y = m1x+ β).

The empirical simulations demonstrate that the MSE of the modified graph has a strong

correlation with the gradient difference of a GWT coefficient triple. It is observed that the

minimum distortion is obtained (low MSE) when the gradient difference of GWT coefficient

triple is close to zero. The proposed model is supported based on the extensive simulation

results using a graph dataset and various embedding scenarios.
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(a) (b)

(c) (d)

Figure 5.10: Verification of embedding distortion of blind algorithm using orthogonal Meyer
filter: MSE of the modified graph vs. gradient difference, for individual graphs with nodes
N = 500. (a) Sensor graph. (b) Swiss-roll graph. (c) Sphere graph. (d) Community graph.

5.3.2.1.3 Performance evaluation of the embedding distortion of non-blind data hiding

The performance of the embedding distortion of non-blind data hiding is evaluated for various

embedding capacities using graph dataset. In these experiments, we consider the low-frequency

GWT coefficients at the second level decomposition L2 to embed the secret bits w = {0, 1}. A

set of 35 graphs with N = 2500 nodes are used for evaluation of the method performance. We

calculate the MSE of the modified graphs using the original algorithm with using the proposed

embedding distortion minimisation model (by embedding the secret bits in the GWT coef-
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(a) (b)

(c) (d)

Figure 5.11: Verification of embedding distortion of blind algorithm using orthogonal Meyer
filter: MSEof the modified graph vs. gradient difference, for individual graphs with nodes
N = 2500. (a) Sensor graph. (b) Swiss-roll graph. (c) Sphere graph. (d) Community graph.

ficients which have low values) and MSE of the modified graphs using the original algorithm

without using the proposed model (by embedding the secret bits in any GWT coefficients which

are selected randomly). We use the same data hiding parameter α = 0.1 and bi-orthogonal 9/7

filter. Figure 5.19 shows the community graph with N = 2500 nodes before and after embed-

ding the secret bits with length 350 bits.

The empirical results show that the proposed method provides lower distortion over the

original algorithm without the model. As shown in Figure 5.18, the embedding distortion is

improved by an average of 99% compared to the original algorithm. We can notice that the
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(a) (b)

(c) (d)

Figure 5.12: Verification of embedding distortion of blind algorithm using orthogonal Meyer
filter: MSE of the modified graph vs. gradient difference, for individual graphs with nodes
N = 5000. (a) Sensor graph. (b) Swiss-roll graph. (c) Sphere graph. (d) Community graph.

embedding distortion using the MSE (µ) is increased when the embedding capacity is increased.

5.3.2.1.4 Performance evaluation of the embedding distortion of blind data hiding

The performance of the embedding distortion model of blind data hiding is evaluated at various

embedding capacities using graph dataset. In these experiments, we use two sets of graphs

with N = 2500 and N = 5000 nodes, respectively for 5 types of graph signals for evaluation

of the method performance. We consider the low-frequency GWT coefficients at the second
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(a) (b)

(c) (d)

Figure 5.13: Verification of embedding distortion of blind algorithm using orthogonal Meyer
filter: MSE of the modified graph vs. gradient difference, for individual graphs with nodes
N = 10000. (a) Sensor graph. (b) Swiss-roll graph. (c) Sphere graph. (d) Community graph.

level decomposition L2 and bi-orthogonal wavelet filter 9/7 to embed the secret data 0.1, 0.3

to represent 0, 1. We calculate the MSE of the modified graphs using the original algorithm

with the proposed embedding distortion minimisation model (by embedding the secret data in

the GWT coefficients triple which have gradient difference close to 0) and MSE of the modified

graphs using the same algorithm without using the proposed model (by embedding the same

secret data in the GWT coefficients triple which have any gradient differences). Figure 5.20

shows the spiral graph with N = 5000 nodes before and after embedding the secret bits with

length 200 bits.
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(a) (b)

(c) (d)

Figure 5.14: Verification of embedding distortion of blind algorithm using bi-orthogonal 9/7:
MSE of the modified graph vs. gradient difference, for individual graphs with nodes N = 500.
(a) Sensor graph. (b) Swiss-roll graph. (c) Sphere graph. (d) Community graph.

The experimental results demonstrate that the proposed method provides lower distortion

over the original algorithm without the model. As illustrated in Figure 5.21, the embedding dis-

tortion is improved by an average of 99.4% compared to the original algorithm. We can notice

that the embedding distortion using the MSE (µ) is increased when the embedding capacity is

increased.

5.3.2.2 Evaluation of the performance of the robustness model

In this section, we present the evaluation of the robustness performance of non-blind and blind

data hiding.
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(a) (b)

(c) (d)

Figure 5.15: Verification of embedding distortion of blind algorithm using bi-orthogonal 9/7:
MSE of the modified graph vs. gradient difference, for individual graphs with nodesN = 2500.
(a) Sensor graph. (b) Swiss-roll graph. (c) Sphere graph. (d) Community graph.

5.3.2.2.1 Performance evaluation of the robustness model of non-blind data hiding

The robustness model of non-blind algorithm is evaluated in the experimental simulations. Two

sets of the experiments are obtained for verifying the robustness model.

In the experiments Set 1, we calculate the Hamming Distance (HD) of the extracted secret

bits after the additive noise and deleting nodes data. The HD is calculated using the non-blind

algorithm with the robustness model (based on selecting the graph wavelet coefficients that

satisfy the specific conditions in Eq. (5.33), Eq. (5.34), and Eq. (5.35) to embed the secret

bits) and the HD of the extracted bits after the attack using the same algorithm without the

robustness model (by embedding the same secret bits in the GWT coefficients randomly). The

pseudo-random binary sequences are considered as the secret data to hide in the low frequency
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(a) (b)

(c)
(d)

Figure 5.16: Verification of embedding distortion of blind algorithm using bi-orthogonal 9/7:
MSE of the modified graph vs. gradient difference, for individual graphs with nodesN = 5000.
(a) Sensor graph. (b) Swiss-roll graph. (c) Sphere graph. (d) Community graph.

coefficients at the second level of decomposition L2 for three hiding scenarios: w = {1},

w = {0} and w = {0, 1} . In these experiments, a sets of graphs with N = 500 nodes for

7 graphs types is used to evaluate the robustness model using bi-orthogonal 9/7 filter and data

hiding parameter α = 0.5.

The empirical results demonstrate that the proposed method provides higher robustness over

the original algorithm without the robustness model. As shown in Figure 5.22, the robustness

against the additive noise is improved by an average of 99.9%, 99.9% and 33% for three em-

bedding scenarios, w = {1}, w = {0} and w = {0, 1}, respectively. Figure 5.23 illustrates

that the proposed method outperforms the original algorithm by an average of 60%, 99.9% and

55% for three embedding scenarios, w = {1}, w = {0} and w = {0, 1}, respectively after
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(a)
(b)

(c) (d)

Figure 5.17: Verification of embedding distortion of blind algorithm using bi-orthogonal 9/7
: MSE of the modified graph vs. gradient difference, for individual graphs with nodes N =
10000. (a) Sensor graph. (b) Swiss-roll graph. (c) Sphere graph. (d) Community graph.

deleting different number of nodes data randomly.

In the experiments Set 2, we evaluate the robustness model based on calculating the Ham-

Figure 5.18: Embedding distortion performance of the non-blind algorithm for various embed-
ding capacities using 35 graphs with N = 2500 nodes.
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(a) (b)

Figure 5.19: Community graph. (a) Original Community graph. (b) Modified Community
graph.

ming Distance (HD) of the extracted secret bits after the additive noise and deleting nodes data.

In these experiments, we embed the binary logos with (25×25) bits as the secret data w = {0, 1}

in the GWT coefficients using graph dataset with N = 5000 graph nodes. We consider the low

frequency coefficients at the second level of decomposition L2 in the experiments. The HD is

calculated using non-blind algorithm with the robustness model (based on embedding the secret

bits in the GWT coefficients that satisfy the specific condition in Eq. (5.35)). Also, we calculate

the HD using non-blind algorithm without using the proposed model (by embedding the same

secret bits in the GWT coefficients which are selected randomly).

The experiments results illustrate that the robustness of the non-blind algorithm is improved

by using the robustness model. Figure 5.24 shows the robustness is enhanced against the addi-

(a) (b)

Figure 5.20: Spiral graph. (a) Original Spiral graph. (b) Modified Spiral graph.
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tive noise and deleting nodes data by an average of 91% and 99.9% respectively.

5.3.2.2.2 Performance evaluation of the robustness model for blind data hiding

The robustness performance of the blind data hiding is evaluated based on calculating the Ham-

ming distance (HD) of the extracted bits after noise addition and deletion nodes data. The HD

of the extracted bits after the attack is computed using the blind algorithm with using the robust-

ness model (based on selecting the graph wavelet coefficients that satisfy the specific conditions

in Eq. (5.40), Eq. (5.41), and Eq. (5.42)), and the HD of the extracted bits after the attack is com-

puted using the same blind algorithm without using the robustness model (based on embedding

the same secret bits in the GWT randomly). We consider the pseudo-random number sequences

as the secret data to hide in the low frequency GWT coefficients at the second level decompo-

sition L2 using bi-orthogonal wavelet filter 9/7. We select the value 0.1 for the case 0 and 0.3

for the case 1 and 0.1 and 0.3 for the case 0 and 1. Based on the proposed method, the secret

bit should be a real value because the extraction process depends on the difference between the

modified and the predicted coefficients. In addition, the secret bit value should be a small value

in order to not change the order of the GWT coefficients after the embedding process. In these

(a) (b)

Figure 5.21: Embedding distortion performance of blind algorithm using graphs with different
number of nodes for various embedding capacities. (a) N = 2500. (b) N = 5000.
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(a) Hiding b = 0 (b) Hiding b = 1
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Figure 5.22: Robustness performance of non-blind algorithm to additive noise for various σ2

values using 7 graphs types with N = 500. (a) Hiding w = {1}. (b) Hiding w = {0}. (c)
Hiding w = {0, 1}.

(a) Hiding b = 0 (b) Hiding b = 1 (c) Hiding b = 0, 1

Figure 5.23: Robustness performance of non-blind algorithm after deleting various number of
nodes data randomly using 7 graphs types with N = 500. (a) Hiding w = {1}. (b) Hiding
w = {0}. (c) Hiding w = {0, 1}.

experiments, a set of graphs with 5000 nodes are used to evaluate the robustness model.

We can notice that the Hamming Distance (HD) of the extracted bits is decreased when using

the proposed robustness model. This means the robustness is enhanced by using the proposed

model for different values of σ2 and after deleting various numbers of nodes data randomly.

Figure 5.25 illustrates that the robustness against the additive noise is improved by an average

of 36%, 99.9% and 44% for three embedding scenarios, w = {1}, w = {0} and w = {0, 1},

respectively. It can be observed that the proposed method outperforms the original algorithm

by an average of 99.9 % for three embedding scenarios, w = {1}, w = {0} and w = {0, 1},
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(a) (b)

Figure 5.24: Robustness performance of non-blind data hiding after the attacks. (a) Additive
noise. (b) Deleting nodes data.

respectively after deleting different number of nodes data randomly as shown in Figure 5.26

(a) Hiding w = {0} (b) Hiding w = {1} (c) Hiding w = {0, 1}

Figure 5.25: Hamming distance (HD) of the extracted bits after noise addition for different
values of σ2 using the robustness models. (a) Hiding w = {0}. (b) Hiding w = {1}. (c) Hiding
w = {0, 1}.

5.3.2.2.3 Robustness performance of the non-blind data hiding

The performance of the robustness of the non-blind algorithm against the noise additive and

deletion nodes data is evaluated at various embedding capacities using graph dataset. We use 14

types of graphs with N = 2500 nodes and α = 0.5 to evaluate the method using the Hamming

149



Chapter 5 – Graph wavelet domain data hiding for graph data

(a) Hiding w = {0} (b) Hiding w = {1} (c) Hiding w = {0, 1}

Figure 5.26: Hamming distance (HD) of the extracted bits after deletion various number of
random nodes data using the robustness models. (a) Hiding w = {0}. (b) Hiding w = {1}. (c)
Hiding w = {0, 1}.

Distance (HD) of the extracted bits for the algorithm with using the proposed robustness model

(by embedding the secret bits in the GWT which satisfy the robustness conditions) after the

additive noise for various σ2 values and after deleting a different number of nodes data randomly

at various embedding capacities. We consider the low frequency GWT coefficients at the second

level decomposition L2 using bi-orthogonal wavelet filter 9/7 to embed the secret bits, w =

{0, , 1}. We can observe that the robustness performance is improved when increasing the

embedding capacity as illustrated in Figure 5.27.

5.3.2.2.4 Robustness performance for blind data hiding

The performance of the robustness of the blind algorithm against the noise addition and deletion

of node data is tested at various embedding capacities using graph dataset. In these experiments,

we consider the low frequency GWT coefficients at the second level decomposition L2 using

bi-orthogonal wavelet filter 9/7 for 14 graphs with N = 5000 nodes to embed the secret data

(w = {0.1, 0.3} to represent w = {0, 1}). The Hamming Distance (HD) of the extracted

bits are calculated using the blind algorithm with using the proposed model (by embedding

the secret data in the GWT which satisfy the robustness conditions) after the additive noise for

various σ2 values and deleting a different number of nodes data randomly at various embedding
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(a) (b)

Figure 5.27: Robustness performance of non-blind algorithm using the proposed model after
attacks for various embedding capacities using 14 graphs with N = 2500 nodes. (a) Additive
noise. (b) Deletion nodes data.

capacities. The experimental results show that the robustness using the Hamming Distance is

improved when the embedding capacity is increased as shown in Figure 5.28.

(a) (b)

Figure 5.28: Robustness performance of blind data hiding using the proposed model for various
embedding capacities N = 5000. (a) Additive noise. (b) Deletion nodes data.

151



Chapter 5 – Graph wavelet domain data hiding for graph data

5.3.2.3 Joint robust-low distortion data hiding

For obtaining a data hiding method with low distortion and high robustness to attacks, we

combine the embedding distortion minimisation model with the robustness model for non-blind

and blind data hiding. In these experiments, we use 14 graphs with a number of nodes N = 500

and 5000, respectively and with α = 0.5. We consider the low frequency GWT coefficients at

the second level decomposition L2 using bi-orthogonal wavelet filter 9/7 to embed the secret

data. We calculate the Hamming Distance of the extracted bits after the attacks using the data

hiding algorithms with the two proposed models, i.e., embedding distortion minimisation and

robustness models (based on selecting the GWT coefficients which satisfy the conditions of

the two proposed models to embed the secret bits) and the Hamming Distance of the extracted

bits after the attacks using the data hiding algorithms without the two proposed models (by

embedding the same secret bits in any GWT coefficients randomly).

We can notice that the performance of the data hiding methods is enhanced by combining

the two proposed models. The empirical results show that the robustness of non-blind algorithm

is improved by an average of 99.9%, 99.9% and 67% after the additive noise and by an average

of 99.9%, 69% and 50% after deleting nodes data for three embedding scenarios, w = {1},

w = {0} and w = {0, 1}, respectively as shown in Figure 5.29 and Figure 5.30. The results

(Figure 5.31 and Figure 5.32) demonstrate that robustness of blind algorithm is enhanced by an

average of 99.9%, 48% and 37% after the additive noise and by an average of 99.9%, 99.9%

and 99.9% after deleting nodes data for three embedding scenarios, w = {1}, w = {0} and

w = {0, 1}, respectively.

5.3.3 Performance evaluation of GWT reversible data hiding

The proposed method of reversible data hiding with two models have been evaluated by the

experimental results. Four types of the experiments are presented: performance of embedding

distortion, robustness performance, performance of reversibility of the original graph signal,

and comparison the proposed method with two reversible data hiding methods, namely, Ni et

al. [3] and Dragoi et al. [4] in terms of embedding distortion, robustness and reversibility.
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(a) Hiding w = {0} (b) Hiding w = {1} (c) Hiding w = {0, 1}

Figure 5.29: Hamming distance (HD) of extracted secret bits using the non-blind algorithm with
the two models after noise addition for different values of σ2 using 14 graphs with N = 500.
(a) Hiding w = {0}. (b) Hiding w = {1}. (c) Hiding w = {0, 1}.

(a) Hiding w = {0} (b) Hiding w = {1} (c) Hiding w = {0, 1}

Figure 5.30: Hamming distance (HD) of extracted secret bits using the non-blind algorithm
with the two models after deleting a different number of random nodes data using 14 graphs
with N = 500. (a) Hiding w = {1} . (b) Hiding w = {0}. (c) Hiding w = {0, 1} .

5.3.3.1 Evaluation of the embedding distortion performance

The experimental simulations verify the relationship between the MSE of the modified graph

and the squared value of the embedded bits w2. The MSE of the modified graphs are calculated

for different values of w using the graph dataset. We have considered the pseudo-random num-

ber sequences as the embedding data with nine scenarios: w = {0, 0.1, 0.2, 0.4, 0.6, 0.8, 1, 2, 3}

to verify the relationship. In these experiments, 14 graphs types with a number of graph nodes
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(a) Hiding w = {0} (b) Hiding w = {1} (c) Hiding w = {0, 1}

Figure 5.31: Hamming distance (HD) of extracted bits using the blind algorithm with the two
models after noise addition for different values of σ2 using 14 graphs with N = 5000. (a)
Hiding w = {1}. (b) Hiding w = {0}. (c) Hiding w = {0, 1}.

(a) Hiding w = {0} (b) Hiding w = {1} (c) Hiding w = {0, 1}

Figure 5.32: Hamming distance (HD) of the extracted bits using the blind algorithm with the
two models after deleting a different number of random nodes data using 14 graphs with N =
5000. (a) Hiding w = {1} . (b) Hiding w = {0}. (c) Hiding w = {0, 1}.

N = 5000 and two graph wavelet filters, i.e, orthogonal Meyer filter and bi-orthogonal 9/7 filter

are used to obtain the GWT coefficients for embedding various values of w. Two sets of em-

pirical results are calculated to verify the effects of embedding nine scenarios of the embedded

data w as follows:

In the experiments, we embed various values of w in a peak point of the GWT coefficients

magnitudes. We consider the low frequency and high-frequency GWT at the third level of de-
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composition L3 and H3. The MSE of the modified graph has been calculated for each value

of w separately. Figure 5.33 illustrates the relationship between the average value of the MSE of

the modified different types of graphs for different values of w = {0, 0.1, 0.2, 0.4, 0.6, 0.8, 1, 2, 3}

using two filters: orthogonal Meyer filter and bi-orthogonal 9/7 filter. We consider nine scenar-

ios of embedding in order to demonstrate the proposed embedding distortion model instead of

using only two cases, w = {0, 1}, which are not enough to verify the proposed model. We

can notice that the MSE of the modified graph is equal to zero when the value w = {0}. For

minimising the MSE of the modified graph, we have to select a small value of w.

(a) (b)

Figure 5.33: The average value of the MSE of modified graphs using various values of w =
{0, 0.1, 0.2, 0.4, 0.6, 0.8, 1, 2, 3} and the theoretical graph line . (a) Orthogonal Meyer filter. (b)
Bi-orthogonal 9/7 filter.

In order to verify the proposed model, we have plotted the theoretical graph line by assum-

ing that the x − axis represents value w and the y − axis is the corresponding value w2 by

considering various values of w. The experimental results demonstrate the correlation between

the proposed model and the theoretical graph line which support the proposed model.

5.3.3.2 Robustness performance

The robustness performance of the proposed method has been evaluated by using the Hamming

Distance (HD) of the extracted secret data after the noise addition for various values of σ2, σ2 =

{0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05}. We calculate the HD of the extracted bits after the

additive noise using the reversible data hiding algorithm with using the robustness model (by
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embedding the secret bits in the GWT coefficients that satisfy the robustness conditions) and

the HD of the extracted bits after the additive noise using the reversible data hiding algorithm

without using the robustness model (by embedding the secret bits in any GWT coefficients).

In these experiments, 14 graphs with N = 5000 nodes are utilised for evaluating the proposed

method. We consider the GWT coefficients at the third level of decomposition L3 and H3 to

hide the secret bits, w = {0, 1}, for two types of wavelet filters: orthogonal Meyer filter and

bi-orthogonal 9/7 filter.

The results demonstrate that the proposed method has achieved higher robustness over the

original algorithm without the model. As shown in Figure 5.34 and Figure 5.35, the robustness

against the additive noise is improved by an average of 63%, 48% and 51% using orthogonal

Meyer filter and by an average of 58%, 33% and 54% using bi-orthogonal 9/7 filter for three

embedding scenarios, w = {0}, w = {1} and w = {0, 1}, respectively.

(a) Hiding w = {0} (b) Hiding w = {1} (c) Hiding w = {0, 1}

Figure 5.34: Hamming distance (HD) of extracted secret bits after noise addition for different
values of σ2 using orthogonal Meyer filter. (a) Hiding w = {0}. (b) Hiding w = {1}. (c)
Hiding w = {0, 1}.

5.3.3.3 Reversibility performance

We have evaluated the proposed method in terms of reversibility of the original graph signal

based on calculating the MSE of the restored graph signal after the embedded data have been

extracted for different embedding rates. In these experiments, 14 graphs with N = 5000 nodes
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(a) Hiding w = {0} (b) Hiding w = {1} (c) Hiding w = {0, 1}

Figure 5.35: Hamming distance (HD) of extracted secret bits after noise addition for different
values of σ2 using bi-orthogonal 9/7 filter. (a) Hiding w = {0}. (b) Hiding w = {1}. (c)
Hiding w = {0, 1}.

are utilised for evaluating the proposed method. We consider the GWT coefficients at the third

level of decomposition L3 andH3 to embed the secret bits w = {0, 1} using orthogonal Meyer

filter. The proposed method has proved that it is able to restore the original graph signal with

a free distortion for any payload in the case when no attack. This is mainly due to the shifting

process which provides a lossless recovery of the original signal without requiring any side

information except for one case if the histogram of the coefficients does not have zero points. In

this case, the coefficients with the minimum number of repetition are used as zero points. This

leads to loss of these coefficients due to the shifting process. In order to restore the original data

without any error, these few numbers of the coefficients are added to the embedded data as a part

of payload. Usually, this happens when the payload is big and this needs to shift the coefficients

many times and to use several peaks and zero points. The proposed method overcomes this

problem due to using Graph Wavelet Transform (GWT) and by using the advantage of the

histogram characteristics of the graph spectral coefficients which provides several peak points

and zero points.

5.3.3.4 Comparison with existing work

The proposed method has compared in terms of the embedding distortion, robustness and re-

versibility with two reversible data hiding methods, i.e., Ni et al. [3] and Dragoi et al. [4]. We
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selected the same RDH methods for comparison in order to demonstrate the effect of using the

graph wavelet domain compared to graph Fourier domain on the performance of the proposed

method.. In these experiments, various graphs for various signals with N = 10000 nodes are

used. We consider the GWT coefficients at the second level of wavelet decomposition L2 and

H2 to embed the secret bits w = {0, 1} using orthogonal Meyer filter. The MSE of the modi-

fied graph has been calculated at various embedding capacities using graph dataset. Figure 5.36

shows that the proposed method outperforms the previous methods by an average of 68% and

82% for Ni et al. [3] and Dragoi et al. [4], respectively.

(a) (b)

Figure 5.36: Comparison the embedding distortion of the proposed method with Ni et al. [3] and
Dragoi et al. [4] methods using MSE of the modified graphs for various embedding capacities.
(a) Ni et al. [3] method. (b) Dragoi et al. [4] method.

The robustness performance of the proposed method has compared with two reversible data

hiding methods, i.e., Ni et al. [3] and Dragoi et al. [4] based on comparing the Hamming Dis-

tance (HD) of the extracted secret data after the noise addition for various values of σ2 using the

proposed model and the comparable methods. In these experiments, various graphs for various

signals with N = 5000 nodes are used. We consider the GWT coefficients at the second level

of decomposition L2 and H2 to embed the secret bits w = {0, 1} using orthogonal Meyer

filter. Figure 5.37 shows that the proposed method has achieved higher robustness to the noise

addition over the Ni et al. [3] and Dragoi et al. [4] by an average of 78% and 92%, respectively.

158



Chapter 5 – Graph wavelet domain data hiding for graph data

We compare the reversibility of the proposed method with Ni et al. [3] and Dragoi et al. [4]

methods by calculating the MSE of the recovered data after extracting the embedded bits for

different embedding rates in the case of no attack. In these experiments, various graphs for

various signals withN = 5000 nodes are used. We consider the GWT coefficients at the second

level of decomposition L2 and H2 to hide the secret bits w = {0, 1} using orthogonal Meyer

filter. The experimental results show that the proposed method and Ni et al. [3] method are able

to restore the original data with error free in the case when no attack compared to Dragoi et

al. [4]. We also compare the reversibility of the methods after the additive noise for various σ2

values. Figure 5.38 shows that the proposed method outperforms the previous methods by an

average of 95% and 99% for Ni et al. [3] and Dragoi et al. [4], respectively after the additive

noise using the same graph signals.

5.3.4 Comparison the proposed GWT data hiding with the proposed GFT

data hiding

This section presents a comparison of the proposed data hiding methods in two graph spectral

domains: graph Fourier and graph wavelet. We use the graph dataset and the same embedding

parameters such as data hiding parameter α, the number of graph nodes N and the length of the

Figure 5.37: Comparison the robustness performance of the proposed method with Ni et al. [3]
and Dragoi et al. [4] to additive noise for various σ2 values.
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(a) (b)

Figure 5.38: Comparison the reversibility performance of the proposed method with Ni et al. [3]
and Dragoi et al. [4]. (a) Without additive noise. (b) After additive noise for various σ2 values.

secret bits.

The performance of the embedding distortion of GWT data hiding with GFT data hiding has

compared using the graph dataset. The MSE of the modified graphs for non-blind data hiding

using GFT and non-blind data hiding using GWT have been calculated at various embedding

capacities. In these experiments, we use 14 graphs with (N = 2500) nodes and the pseudo-

random binary sequence is considered as the secret data, (w = {0, 1}), to hide in the spectral

coefficients using data hiding parameter (α = 0.1). The GFT coefficients are selected to hide

the secret bits based on the proposed embedding distortion minimisation model. For the GWT

coefficients, we have selected the low frequency coefficients at third level of wavelet decompo-

sitions L3 using bi-orthogonal 9/7 filter to embed the secret bits based on using the embedding

distortion minimisation model.

The embedding distortion of the proposed blind data hiding methods has evaluated for dif-

ferent embedding capacities. We calculate the MSE of the modified graphs for blind data hiding

using GFT and blind data hiding using GWT for 14 graphs with (N = 5000) nodes. We consider

the pseudo-random number sequences as the secret data to embed in the spectral coefficients,

the value 0.1 is considered to represent the bit 0 and the 0.3 represents the bit 1. The GFT

coefficients are chosen based on the proposed embedding distortion model. The low frequency

GWT coefficients at the third level of wavelet decompositions L3 using bi-orthogonal 9/7 filter
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are selected to hide the secret data.

The experimental results demonstrate that the proposed GWT data hiding methods provides

lower distortion over the GFT data hiding methods. Figure 5.39 shows that the distortion is

improved by an average of 39% and 5% for non-blind and blind algorithms in spite of using the

same proposed models and the same data hiding parameters.

(a) (b)

Figure 5.39: Comparison the embedding distortion performance using MSE of the modified
graphs with number of nodes N = 2500 and N = 5000. (a) Non-blind data hiding. (b) Blind
data hiding.

The performance of the proposed non-blind data hiding methods have evaluated in terms

of robustness against the attacks. Two attacks types are considered, namely, noise addition and

deleting random nodes data. The Hamming Distance (HD) of the extracted secret data using the

proposed GFT non-blind data hiding and GWT non-blind data hiding have been calculated. We

use (14) graphs with (N = 5000) nodes, the pseudo-random binary sequences (w = {0, 1}) are

hidden in the spectral coefficients using a data hiding parameter (α = 0.5). The low frequency

GWT coefficients at the third level of wavelet decompositions L3 using bi-orthogonal 9/7 fil-

ter and GFT coefficients are selected based on specific conditions according to the proposed

robustness models.

The robustness performance of the proposed blind data hiding has evaluated based on com-

paring the Hamming Distance (HD) of the extracted secret bits using the GFT blind data hiding

and GWT blind data hiding after two attacks types, noise addition and deletion random nodes

161



Chapter 5 – Graph wavelet domain data hiding for graph data

data. In these experiments, we use 14 graphs with (N = 5000) nodes. We consider the pseudo-

random number sequences as secret data (by using the values ({0.1, 0.3} to represent the {0, 1})

to embed in the spectral coefficients. The low frequency GWT coefficients at the third level of

wavelet decomposition L3 using bi-orthogonal 9/7 filter and GFT coefficients are selected based

on specific conditions according to the proposed robustness models.

The empirical results show that the GWT data hiding methods have achieved higher robust-

ness compared to the GFT data hiding methods by an average of 22% and 25% for non-blind

algorithm and by an average of 21% and 87% for blind algorithm as illustrated in Figure 5.40

and Figure 5.41. This is mainly due to embedding the secret bits in the low-frequency GWT co-

efficients and using multi levels of decomposition (the third level of decomposition was used).

(a) (b)

Figure 5.40: Comparison the robustness performance of non-blind data hiding using Hamming
Distance (HD) of the extracted secret bits using 14 graphs with number of nodes N = 5000. (a)
Noise addition. (b) Deleting random nodes data.

The empirical simulation shows that the performance of the proposed methods using graph

wavelet domain is better than using the graph Fourier domain data hiding in terms of the em-

bedding distortion and the robustness to the additive noise and deleting nodes data. This is

mainly due its ability for representing the graph signal in time-frequency domain with a multi-

resolution.
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(a) (b)

Figure 5.41: Comparison the robustness performance of blind data hiding using Hamming Dis-
tance (HD) of the extracted secret bits using 14 graphs with number of nodes N = 5000. (a)
Noise addition. (b) Deleting random nodes data.

5.3.5 Comparison the proposed reversible data hiding using GWT with

the proposed GFT reversible data hiding

The performance of the proposed reversible data hiding methods is evaluated in two graph

spectral domains: the graph Fourier domain and the graph wavelet domain. We use a graph

dataset and the same embedding parameters, such as the length of hidden bits and the number

of graph nodes.

Using a graph dataset, we compare the embedding distortion of the reversible data hiding

that uses GWT and the reversible data hiding that uses GFT. We have calculated the MSE of the

modified graphs for reversible data hiding using GWT and reversible data hiding using GFT for

various embedding capacities. In these experiments, we used 14 graphs withN = 10000 nodes;

we considered the pseudo-random binary sequences w = {0, 1} as embedded in the spectral

coefficients. The secret data are hidden in the peak points of the GFT coefficient magnitudes.

For the GWT coefficients, the low-frequency and high-frequency coefficients at the second

level of wavelet decomposition (L2 and H2, using orthogonal filters) are used to select the peak

points for hiding the secret bits.

We have evaluated the robustness performance of the proposed reversible data hiding meth-

ods by comparing the Hamming Distances (HDs) of the extracted secret bits, using reversible
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data hiding in GFT and GWT after the additive noise . In these experiments, we used 14 graphs

with N = 10000 nodes. The pseudo-random binary sequences w = {0, 1} are embedded in

the spectral coefficients. We used the GFT coefficients and low-frequency and high-frequency

GWT coefficients at the second level of decomposition (L2 and H2, using orthogonal filters) to

select the peak points to use for hiding the secret bits.

The empirical results show that the proposed reversible data hiding method using GWT

has achieved lower distortion and higher robustness compared to the GFT reversible data hid-

ing by an average of 44% and 30%, respectively as shown in Figure 5.42. This is essentially

due to using a graph wavelet transform, which represents the signal in a time-frequency do-

main with a multi-resolution decomposition. We hide the secret bits in the low-frequency and

high-frequency GWT coefficients to create a balance between the embedding distortion and

the robustness. Embedding in the high-frequency coefficients decreases embedding distortion,

while hiding the secret data in the low-frequency coefficients increases the robustness to noise

addition.

(a) (b)

Figure 5.42: Comparison the performance the proposed reversible data hiding using GWT with
reversible data hiding using GFT for graphs with N = 10000 nodes. (a) Embedding distortion
performance. (b) Robustness performance to additive noise.

We also evaluated the reversibility performance of the proposed reversible data hiding method

in recovering the original graph signal, using both GWT and GFT RDH. The graph dataset was

used to evaluate the proposed methods. The proposed methods using the GFT and GWT do-

mains have proven that they can recover the original graph signal error-free for any payload,
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Figure 5.43: Comparison the reversibility performance of the proposed reversible data hiding
using GWT with the proposed reversible data hiding using GFT after the additive noise using
graph dataset with N = 10000 nodes.

in the case of no attack. This is primarily due to the shifting process, which provides a loss-

less recovery of the original signal without requiring any side information. In addition, we

assessed the reversibility performance of the proposed methods after the noise addition. No-

tably, reversible data hiding using GWT can restore the original graph signal with less error

than reversible data hiding using GFT. As shown in Figure 5.43, the proposed method using

GWT has improved the reversibility of the original signal by an average of 72%. This is largely

because GWT reversible data hiding is more robust, because it uses low-frequency coefficients

and multiple levels of decompositions.

5.4 Concluding remarks

In this chapter, we have proposed data hiding methods in graph wavelet domain including irre-

versible and reversible data hiding. For irreversible data hiding, two scenarios are considered:

non-blind and blind data hiding. The proposed methods involve novel models to minimise the

embedding distortion on the graph signal and to make the secret data robust for attacks. The

experimental results show that the embedding distortion is improved by an average of 99% and

99.4% for non-blind and blind data hiding respectively. In addition, the the robustness of non-
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blind algorithm is improved by an average of 99.9%, 99.9% and 67% after the additive noise

and by an average of 99.9%, 69% and 50% after deleting nodes data for three embedding sce-

narios, (w = {1}, w = {0} and w = {0, 1}), respectively. The robustness of blind algorithm

is enhanced by an average of 99.9%, 48% and 37% after the additive noise and by an average of

99.9%, 99.9% and 99.9% after deleting nodes data for three embedding scenarios, (w = {1},

w = {0} and w = {0, 1}), respectively. The proposed GWT reversible data hiding method has

compared with two reversible data hiding methods, namely, Ni et al. [3] and Dragoi et al. [4]

in terms of embedding distortion, robustness to additive noise and the reversibility of the orig-

inal signal. The empirical results illustrate that the proposed method outperforms the existing

methods by an average of 68% and 82% in terms of the distortion. The proposed method has

improved the robustness against the additive noise and reversibility of the original data by an

average of 78%, 92%, 95% and 99% respectively compared to the existing methods. In addi-

tion, we have compared the performance of the proposed data hiding methods in graph wavelet

domain with the proposed methods in graph Fourier domain. The experimental simulations

have demonstrated that the graph wavelet domain data hiding methods superior the data hiding

methods in graph Fourier domain.

166



Chapter 6

Conclusions

6.1 Summary of achievements

In this thesis, we have explored the benefit of the graph spectral domain for data hiding. We

have utilised two graph spectral domains to embed the secret data. A new dataset has also been

generated for data hiding. We have proposed three methods to embed the secret data using the

graph spectral domain.

The first problem is protecting the data recorded on non-Cartesian grids. Unfortunately, tra-

ditional signal processing techniques cannot be applied to the irregular structure data. We have

explored recently developed graph signal processing for protecting these data. The proposed

methodology includes two new models: the embedding distortion minimisation model for min-

imising the embedding distortion resulting from embedding the secret data, and the robustness

model for enhancing the robustness of the embedded data against attacks, namely, noise addi-

tion and deletion of nodes data. Finally, we have combined the proposed models to obtain a

robust data hiding method with low embedding distortion. Two data hiding scenarios were con-

sidered: non-blind data hiding and blind data hiding in the graph Fourier domain. The original

data hiding algorithms are compared both with and without using the proposed models. The

experimental simulations demonstrate that the data hiding algorithms using the proposed mod-

els have achieved better performance (in terms of embedding distortion and robustness against

attacks) than the same algorithms without using the proposed models. The results illustrate that

the proposed methods using the embedding distortion minimisation model have achieved lower
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distortion over the original methods by more than 94% and 80% for non-blind and blind algo-

rithms, respectively. The proposed methods have compared in terms of the robustness against

the attacks. We can see that the robustness of the proposed methods are improved by an average

of 93% and 99.8% for non-blind and by an average of 60% and 71% for blind after the additive

noise and deletion nodes data.

The second problem is proposing reversible data hiding algorithms for graph data that have

irregular structure, for use when the traditional data hiding algorithms cannot recover the orig-

inal host data. We have proposed the graph Fourier domain RDH method based on a shifting

process for non-integer data. This proposed method includes two new models: the embed-

ding distortion model to minimise distortion (resulting from the embedding process) and the

robustness model to improve robustness against the attack – namely, additive noise. Finally, we

have combined the proposed models to achieve maximum robustness with the lowest embed-

ding distortion. The experimental results demonstrate that the proposed method outperforms

the previous methods by an average of 87% and 92% in terms of the embedding distortion and

by an average of 54% and 86% in terms of the robustness against the additive noise and by an

average 97% and 99% in terms of reversibility of the original graph signal compared to Ni et

al. [3] and Dragoi et al. [4] methods, respectively.

The third problem is exploring graph wavelet domain data hiding for unstructured data.

Due to the properties of discrete wavelet transform (DWT) representing the signal in the time-

frequency domain and with multi-resolution decomposition. DWT is considered an ideal option

for data hiding. We exploit the properties of graph wavelet transforms to propose data hiding

approaches, including irreversible and reversible data hiding. The proposed methodology of

data hiding involves models for minimising distortion resulting from embedding the secret bits

and for making the embedded data robust against attack. Finally, to obtain a robust approach

with low distortion, we combine the proposed models. The proposed approaches were evaluated

by comparing the original algorithms both with and without using the proposed models. The

experimental simulations show that the proposed GWT data hiding method outperforms the

original methods by an average of 99% and 99.4% for non-blind and blind data hiding in terms

of embedding distortion. The robustness of the non-blind is enhanced by an average of 77%,

71%, 60% and 99% for non-blind after and blind after the additive noise and deleting nodes
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data, respectively. The results show that the proposed GWT reversible data hiding method

outperforms the previous methods by an average of 68%, 82%, 78%, 92%, 95% and 99% in

terms of distortion, robustness and reversibility, respectively.

Finally, we have evaluated the technical methods used in this thesis by comparing the per-

formance of the proposed methods in two spectral domains: graph Fourier and graph wavelet.

The experimental evaluation shows that the proposed methods, including irreversible and re-

versible data hiding in the graph wavelet domain, are superior to the same data hiding methods

in the graph Fourier domain. This is due primarily to the properties of a wavelet transform,

which provides a multi-resolution decomposition and representation of the graph signal in the

spatial-frequency domain.

6.2 Future directions

In this section, we have expanded the proposed contributions to this thesis to include two future

directions as given:

1. Recently, the models of 3D point clouds have received a great attention in many appli-

cations such as urban centres and historical monuments. Therefore, the proposed graph

data hiding methods can be extended to 3D point clouds models.

2. The proposed approach of reversible data hiding using the histogram shifting can be

merged with the prediction error approach to enhance the performance of the proposed

approach in terms of the embedding distortion.
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