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Abstract 

Explosive volcanic eruptions can inject huge quantities of ash and sulfur dioxide (SO2) 

into the stratosphere, which can significantly enhance the stratospheric aerosol layer 

leading to complex effects on the Earth’s climate.  One key effect is the oxidation of 

SO2 into highly scattering sulfate aerosol, which can cool the Earth’s surface globally.   

The 1991 Mount Pinatubo eruption is the largest of the past century with many aspects 

of the aerosol cloud not understood.  This eruption is an important case study for 

understanding the climate impacts of eruptions, especially in aerosol-climate models.  

Injection height, the erupted mass of SO2 and the phase of the quasi-biennial oscillation 

(QBO) are all important factors that impact the subsequent dispersion and climate 

impact of a volcanic aerosol cloud.  However, the importance of these factors, as well as 

their associated values, is disputed across the aerosol modelling community.  Ash 

particles are usually disregarded in climate modelling studies, assumed to fall out within 

days of the eruption, however recent studies have found that they may impact the global 

dispersion of major volcanic eruptions.   

The aim of this thesis is to investigate the initial dispersion of the Mount Pinatubo 

eruption cloud, focusing on the vertical extinction profiles from ground-based lidars to 

analyse the vertical dispersion of the volcanic aerosol cloud.  Using an interactive 

stratospheric aerosol model, the impact of varying initial conditions is assessed, also 

differing injection heights and initial mass of SO2 for a simulated Mount Pinatubo 

eruption.  Finally, this thesis aims to analyse the role of ultra-fine ash in the stratosphere 

following the Mount Pinatubo eruption.    

The results demonstrate the vertical profile of extinction is strongly dependent on the 

QBO-phase, with an injection height of 21-23 km producing the closest variation in 

extinction with time to observations.  Injection height has a significant impact on the 

vertical dispersion of extinction, stratospheric aerosol optical depth (SAOD) and sulfate 

burden, with an injection height of 18-20 km preferentially removing aerosol from the 

cloud.  An injection height of 21-23 agrees best with vertical extinction, sulfur burden 

and SAOD observations.  An injection of 10-14 Tg SO2 is, found to produce the best 

comparison to observations, with modelled SAOD values for 10 Tg and sulfate burdens 

of 14 Tg aligning best with observations.  Ultra-fine ash is found to decrease tropical 

sulfate burdens up to 0.6 Tg and decrease tropical SAOD up to 0.06, due to increased 

dispersion to the northern hemisphere from increased heating and then lofting of aerosol 

out of the tropics into the northern hemisphere.   
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Chapter 1 Introduction 

1.1 Motivation 

Explosive volcanic eruptions are capable of injecting huge quantities (10s of teragrams) 

of sulfur dioxide (SO2) and ash into the stratosphere, which can cause significant 

enhancement to the stratospheric aerosol layer and have complex effects on Earth’s 

climate (Figure 1-1) (Robock, 2000; Kremser et al., 2016).  Volcanic material has a 

longer residence time in the stratosphere than in the troposphere, lasting ~2-3 years for 

major eruptions in the tropics, compared to 1-3 weeks residence time for tropospheric 

aerosol (Robock, 2000).  One primary effect of increased SO2 and a longer residence 

time is the ability for SO2 to oxidise into sulfuric acid (H2SO4) vapour that then 

condenses onto existing particles, such as ash particles, or nucleates, creating highly 

scattering sulfate aerosol particles in the stratosphere (Hamill et al., 1997).  Ash 

particles were confirmed to be present in the stratosphere 3 months after the 2014 Kelud 

eruption (Vernier et al., 2016), with ash particles coated in sulfuric acid observed up to 

9 months following the 1991 Mount Pinatubo eruption (Pueschel et al., 1994).  These 

ash-sulfuric particles may act as a removal pathway for both ash and sulfate aerosol 

following major volcanic eruptions (Turco et al., 1983; Kremser et al., 2016; Deshler, 

2016) potentially reducing the overall climate impact of an eruption.   

Sulfate aerosols can have a significant impact on the Earth’s radiation budget as they are 

highly efficient at scattering incoming shortwave radiation (SW) and also absorb 

outgoing longwave radiation (LW) (Labitzke and McCormick, 1992).  The solar, near 

infra-red (LW) heating is most relevant in the stratosphere as there is substantial heating 

in the tropics which increases the temperature gradient between the poles and the 

equator, particularly in winter, strengthening the polar vortex and leading to warmer 

northern hemisphere winters (Robock, 2000).  The more dominant scattering of sulfate 

aerosols leads to a net surface cooling effect, as occurred around a year after the June 

1991 Mount Pinatubo eruption, estimated to have been around -0.4 to -0.6 °C globally 

(McCormick et al., 1995; Hansen et al., 1996).  Internal climate variability, arising 

primarily from the El Nino Southern Oscillation (ENSO), means observed surface 

temperature anomalies are not a direct constraint for surface cooling following a major 

volcanic eruption and the magnitude of the climate impact of a volcanic eruption is 
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usually communicated by its net radiative forcing.  Satellite measurements show that 2 

years after the Mount Pinatubo eruption an additional 2.5 Wm-2 of the 341 Wm-2 

incoming solar radiation was reflected back to space (Wielicki et al, 1995).  The 

magnitude of this volcanic forcing for other major eruption clouds is determined 

primarily by the mass of SO2 reaching the stratosphere (Robock, 2000; Niemeier et al., 

2009), the latitude and the injection height of the eruption determining the timescale for 

decay (Dyer, 1974; Marshall et al., 2019) and season also affecting the subsequent 

dispersion of the cloud (Toohey et al., 2011).  The global volcanic cloud from major 

tropical eruptions also cause a strong and abrupt increase in aerosol surface area, which 

cause substantial perturbation to stratospheric chemistry, most importantly the depletion 

of polar ozone due to activation of chlorine on sulfate aerosol surfaces (Tie and 

Brasseur, 1995; Tabazadeh et al., 2002; Dhomse et al., 2015; Solomon et al., 2016) 

(discussed further in section 2.2.2).   

There is a significant variation in the size of aerosols throughout the atmosphere 

(Seinfeld and Pandis, 2006) and the degree of scattering and absorbing of different 

aerosol types depends on the aerosol size distribution (Lacis et al., 1992).   

 

Figure 1-1 Updated from Robock (2000), a schematic diagram of quiescent and explosive volcanic 

effects on the radiative balance of the Earth (Fischer et al., 2006). 
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Gravitational sorting of different sized aerosol particles occurs within the volcanic 

cloud, for example particles growing to larger sizes then descend towards the 

tropopause and are removed from the stratosphere more readily than smaller particles 

(Pinto et al., 1989).   

The residence time and scattering efficiency of volcanic aerosol particles are strongly 

size-dependent.  Coagulation and condensation grow particles from nanometre sizes to 

hundreds of nanometres, these microphysical processes strongly influencing the climate 

impact of a volcanic cloud (Lacis et al, 1992; Timmreck, 2012).   

Large injections of SO2 can also lead to self-limiting chemical effects, as the larger the 

mass of SO2 emitted, the slower it oxidises to sulfate aerosol (Pinto et al., 1989).  This 

occurs because in the stratosphere SO2 is oxidised in the gas-phase by hydroxyl radicals 

(OH) and OH can become depleted if a large mass of SO2 is emitted by an eruption, 

therefore slowing the production of sulfate aerosol (Bekki, 1995; Bekki et al., 1996).   

The climate impact of an explosive volcanic eruption is dependent on a number of 

factors.  As already mentioned, injection into the stratosphere means aerosols have a 

much longer residence time than in the troposphere, prolonging the climate impact.   

Volcanic aerosol clouds also absorb outgoing LW radiation from the Earth, causing a 

heating of the stratosphere (Angell, 1993), which further lofts the aerosol in altitude and 

can increase lifetime and resultant transport timescales (Young et al.,1994; Graf and 

Kirchner, 1999;  Niemeier et al., 2009; Aquila et al., 2012; Timmreck, 2012).  The 

displacement of a volcanic cloud can sometimes result in greater transport through the 

lower branch of the Brewer-Dobson Circulation (BDC), therefore decreasing the 

lifetime of the aerosol cloud with more transport to either hemisphere (Young et al., 

1994; Aquila et al., 2012; Marshall et al., 2019).  The quasi-biennial oscillation (QBO) 

phase, which defines easterly or westerly tropical zonal winds in the stratosphere 

(Baldwin et al., 2001), also has important impacts on the dispersal and climate effects 

from a major eruption cloud (Trepte and Hitchman, 1993).  Mid-latitude to high-latitude 

eruptions mostly result in aerosol dispersed within the hemisphere of the eruption 

(Jones et al., 2017), whereas volcanic aerosol from tropical eruptions can disperse to 

both hemispheres, with stronger transport towards the winter pole (Holton et al., 1995).  

An easterly QBO phase, such as that at the time of the June 1991 Mount Pinatubo 

eruption (Hitchman et al., 1994; Punge et al., 2009), acted to confine the Mount 

Pinatubo cloud to the tropical reservoir, delaying its subsequent transport to the 
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midlatitudes (Trepte and Hitchman, 1992).  These effects are discussed in more detail in 

Section 2.2.2.   

Other indirect consequences for extremely large major eruptions, such as 1815 

Tambora, are environmental and subsequent socioeconomic impacts, such as crop 

failure, famine and pandemics (Sigl et al., 2015; Puma et al., 2015; Toohey et al., 2016).  

If the eruption is confined to one hemisphere, the eruption may influence the position of 

the Intertropical Convergence Zone (ITCZ) (Haywood et al., 2013; Iles and Hegerl, 

2014).  Surface cooling can reduce Asian monsoons (Zambri et al., 2017) and 

precipitation has been found to decrease on a global scale (Schneider et al., 2009; Iles 

and Hegerl, 2014).   

With recent increases in research into geoengineering as a possible way to mitigate the 

consequences of climate change due to increasing anthropogenic greenhouse gases 

(GHGs) (Crutzen, 2006; Irvine et al., 2016; Jones et al., 2017), understanding how large 

increases in sulfate aerosol disperse and affect our climate is important, for which large 

explosive eruptions are a natural analogue.   

As with SO2, ash can have a longer residence time (months to years) in the atmosphere 

if injected into the stratosphere, as opposed to being rapidly washed out in the 

troposphere (Niemeier et al., 2009).  Ash is usually disregarded in climate model studies 

of volcanic eruptions, due to the assumption that particles are large and therefore 

sediment out of the atmosphere within a few days of the eruption, therefore not residing 

in the atmosphere long enough to have an impact on climate (Pinto et al., 1989; 

Niemeier et al., 2009; Vernier et al., 2016).  However, ash is an important product of an 

eruption as it can impact on aviation and geochemical cycles (Niemeier et al., 2009; 

Langmann, 2014).  A modelling study using a coupled aerosol-climate model found that 

including ash in simulations of the 1991 Mount Pinatubo eruption can have a localised 

heating effect, lofting ash and surrounding aerosol to higher altitudes (Niemeier et al., 

2009), therefore increasing the lifetime of both ash and sulfate aerosol particles.  

Niemeier et al. (2009) found that ash particles 1-15 µm in radius were short-lived.  

Nevertheless, the inclusion of ash induced lofting of surrounding aerosol and enhanced 

subsequent dispersion of volcanic aerosol to the northern hemisphere.  Studies of more 

recent eruptions, such as Kelud in 2014, have also shown that ash with a radius of 0.3 

µm can persist in the atmosphere for 3 months and account for optical depth (AOD) by 

up to 28% (Vernier et al., 2016).  Vernier et al. (2016) assessed radiative forcing values 
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calculated for sulfate alone and for sulfate and ash and found that including ash 

increased the cooling effect by ~20%.  The effects of longer lasting <1 µm sized ash 

within the 1991 Mount Pinatubo eruption have not been investigated and are therefore 

examined in this thesis.   

The 1991 Mount Pinatubo eruption, though well studied, is still the largest, explosive 

eruption in recent history, with a range of observations including evidence for volcanic 

ash persisting for up to 9 months after the eruption (Deshler et al., 1992; Vaughan et al., 

1994; Pueschel et al., 1994; Deshler, 2016), discussed further in Section 2.3.3.  The 

eruption is therefore an excellent case study for investigating the role of fine ash and 

input parameters such as QBO phase, injection height and mass of SO2 in how these 

parameters impact vertical dispersion of extinction, AOD, sulfate burden and 

anomalous heating.   

Climate modelling studies of the 1991 Mount Pinatubo eruption have large variations in 

values used for injection height and initial mass of SO2.  Values for the mass of SO2 

injected from the eruption are usually based around the 14-23 Tg suggested by Guo et 

al. (2004) based on satellite observations, however, other observational studies suggest 

20-30 Tg of SO2  (McCormick and Veiga, 1992; McCormick et al., 1995).  Model 

simulations of the Mount Pinatubo eruption generally vary values of injected SO2 

between 10-20 Tg (Aquila et al., 2012; Dhomse et al., 2014; Sukhodolov et al., 2018).   

As mentioned previously, depletion of OH with increased levels of SO2 in the 

stratosphere can lead to self-limiting effects, outlining the importance of representing 

both chemical and aerosol microphysical processes in climate models for studies of the 

climate effects of volcanic eruptions.  Model estimates of the climatic impact of a 

volcanic eruption may be considerably overestimated when aerosol microphysics is not 

included.  For example, for the Toba eruption ~74,000 years ago, the surface cooling is 

estimated at over three times as large for a model without microphysics (Zielinski et al., 

1996) than with microphysics (Timmreck et al., 2010).  Understanding how variations 

in injection height and mass of SO2 (and subsequently ash) with a coupled aerosol-

climate model, affect the vertical distribution of volcanic aerosol, sulfate burden and 

SAOD is, therefore, necessary in order to understand and infer any resultant dispersion 

and climatic impact from a major eruption.  Assessing how uncertainty in these 

parameters affects, for instance, sulfate aerosol properties may also enable us to put 

further constraints on the eruption source parameters of the 1991 Mount Pinatubo 



24                      Introduction 

 

 

 

eruption as well as aiding our understanding of future explosive eruptions and possible 

impacts of geoengineering.   

The next section outlines the research rationale for this thesis and thesis aims (Section 

1.2 and 1.3) and the following chapters henceforth are as follows: Methodologies used 

throughout this thesis and a description of UM-UKCA and GLOMAP-mode are 

described in Chapter 2.  Results related to the thesis aims below are discussed in 

Chapters 3, 4 and 5.  Lastly, Chapter 6 outlines conclusions and potential future work.   

 

1.2 Research rationale and thesis aims 

Major volcanic eruptions that inject into SO2 and ash into the stratosphere can have a 

dramatic impact on the atmosphere and climate (Robock, 2000).  These impacts are 

dependent on many factors including QBO phase, latitude, injection height and the 

amount of SO2 injected (e.g. Marshall et al., 2019).   

In the last 10 years, many national climate modelling centres have developed interactive 

stratospheric aerosol models (Timmreck et a., 2018).  The international Stratospheric 

Sulfur and its Role in Climate activity (SSiRC), is coordinating research towards the 

next generation of climate models that will apply aerosol schemes to interactively 

simulate aerosol in the stratosphere as well as the troposphere.  The UK composition-

climate model was adapted for stratosphere-troposphere aerosol by Dhomse et al. 

(2014), the resulting interactive stratospheric aerosol configuration of UM-UKCA 

model validated to accurately represent the 1991 Mount Pinatubo eruption cloud.  The 

model was developed to enact the effects of radiative heating on the global dispersion of 

the volcanic cloud from Mount Pinatubo (Mann et al., 2015).  One important finding 

from the Dhomse et al. (2014) study was that the Mount Pinatubo case studies achieve 

agreement with stratospheric aerosol measurements when using the lowermost end of 

the observed 14-23 Tg range for SO2.  This was also found to be the case for several 

other interactive stratospheric aerosol model simulations of the Mount Pinatubo 

eruption (Sheng et al., 2015; Mills et al., 2016; Kleinschmitt et al., 2017).  These results 

have indicated that the models do not currently represent an important loss pathway for 

the SO2 and resultant sulfate aerosol in the initial weeks and months after the eruption.  

The most plausible mechanism suggested, was that of uptake of sulfate aerosol onto ash 
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acting to scavenge sulfate aerosol, causing that fraction of the cloud to be removed more 

effectively.   

The overall aim of the research conducted in this thesis is to understand the dispersion 

of volcanic sulfate aerosol and ash following the 1991 Mount Pinatubo eruption and 

evaluate the use of different initial QBO conditions and the role of injection height, 

mass of SO2 and the role of fine ash (super micron, 1-10 µm diameter) and ultra-fine 

ash (sub-micron, <1 µm diameter).  This work uses the Met Office Unified Model (UM) 

coupled with the United Kingdom Chemistry and Aerosol sub-model (UKCA).   

1.3 Thesis aims 

1. The first research aim of this thesis is to investigate the initial dispersion (June 

1991 – February 1992) of the Mount Pinatubo volcanic sulfate aerosol cloud 

using lidar data and comparing to UM-UKCA simulations.  The following 

questions are addressed: 

a) What do lidar sites at the time of the Mount Pinatubo eruption tell us about 

the timing of the initial dispersion of the volcanic cloud? 

b) How well does the global aerosol-climate model reproduce the vertical 

distribution of extinction seen in the lidar observations? 

c) How does varying initial QBO conditions in the model impact comparisons 

to observations? 

 

2. The second research aim of this thesis is to investigate how varying injection 

height and SO2 emission impacts the vertical dispersion of sulfate aerosol, the 

optical depth and the sulfate burden.  The following questions are addressed: 

a) How does varying SO2 mass and injection height alter the vertical dispersion 

and overall height of the eruption cloud? 

b) Which injection height scenario recreates the closest match to vertical 

extinction profiles seen in lidar observations? 

c) How does varying SO2 mass and injection height increase or reduce resultant 

sulfate burden and SAOD? 

 

3. The third and final research aim in this thesis is to investigate the role of fine ash 

during the Mount Pinatubo eruption, following development of the model to 

include fine ash.  The following research questions are addressed: 
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a) What is the lifetime of fine ash sizes in the atmosphere in UM-UKCA? 

b) What is the lifetime of ultra-fine ash (<0.1 µm) sizes in the atmosphere in 

UM-UKCA? 

c) How does the inclusion of ash impact on the vertical dispersion of sulfate 

aerosol and how does this compare to depolarisation data from 

Aberystwyth? 

d) Does ash alter the results for variations in injection height and mass of SO2 

for a purely sulfate aerosol cloud? 

e) Does including ash decrease aerosol optical depth and sulfate burden 

compared to when ash is not included? 
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Chapter 2 Background and literature review 

This chapter provides background information on the stratospheric aerosol layer, 

including sulfate aerosol and ash, outlining relevant chemical and microphysical 

processes.  The second half of this chapter discusses measurements and modelling 

studies for the 1991 Mount Pinatubo eruption.   

The following sections are: The vertical structure of the atmosphere (Section 2.1); an in-

depth description of the stratospheric aerosol layer (Section 2.2) including the formation 

of sulfate (Section 2.2.1); stratospheric chemistry (Section 2.2.2) and transport (Section 

2.2.3); ash in the stratosphere (Section 2.2.4) and a detailed description of our 

knowledge of the Mount Pinatubo eruption to date, for both observations and modelling 

studies relevant to this thesis (Section 2.3).   

2.1 Vertical structure of the atmosphere 

The different layers of the atmosphere are usually explained through their thermal 

characteristics (Figure 2-1).  The troposphere is defined through decreasing 

temperatures with height up to a minimum point, defined as the tropopause, which 

varies depending on latitude and season (Brasseur and Solomon, 2005).  The 

stratosphere is located above the tropopause and varies between 8-16 km depending on 

latitude, up to ~50 km (Brasseur and Solomon, 2005). 

The stratosphere is an area of the atmosphere where temperature increases with height 

due to absorption of ultraviolet radiation from the sun by chemical species, such as 

ozone, which is abundant in the stratosphere (e.g. Brusseau et al., 2019).  The 

stratosphere is a highly stable area of the atmosphere in terms of the layers of air, due to 

this increase in temperature with height, meaning vertical mixing is slow in this layer.   
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Figure 2-1 Schematic of the thermal structure of the atmosphere from Brasseur and Solomon 

(2005). 

 

2.2 Stratospheric aerosol layer 

Aerosols in the atmosphere are defined as solid or liquid particles suspended in the air 

and vary greatly in size from nanometres to ~100 µm (Whitby, 1978; Seinfeld and 

Pandis, 2006), discussed further in Section 2.2.5.  Sources of aerosol are both natural 

(e.g. volcanic aerosol and dust) and anthropogenic, (e.g. sulfate and soot particles from 

pollutants) in origin.   

The stratosphere has a distinct layer of aerosol particles, often referred to as the ‘Junge’ 

layer after Christian Junge, whose high-altitude balloon observations in the late 1950s 

demonstrated the existence of the layer, composed of predominantly liquid sulfate 

particles  (Junge et al., 1961).  This layer is more commonly referred to as the 

stratospheric sulfate layer, which plays an important role in the radiation and chemical 

balance of the atmosphere, primarily the abrupt increase in the optical thickness of the 

layer following major eruptions (McCormick et al., 1995) and impacts on the ozone 

layer (e.g. Solomon, 1999).   

The primary sources of sulfur in the volcanically quiescent stratosphere are carbonyl 

sulfide (OCS), tropospheric SO2 and dimethyl sulfide (DMS) from the ocean, which 
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enter the stratosphere via the tropical tropopause (SPARC, 2006; Kremser et al., 2016).  

Background levels of sulfur in the stratosphere are 115-130 Gg (Sheng et al., 2015) and 

can increase by up to 60 times following a major volcanic eruption (Dhomse et al., 

2014; Kremser et al., 2016).   

Research into the sulfate aerosol layer has helped to further our understanding of the 

circulation patterns in the stratosphere, as well as the sources of sulfate and their 

chemical and microphysical processes, along with their ultimate removal from the 

stratosphere (Kremser et al., 2016).  An important distinction from gas-phase species in 

the stratosphere is that aerosol particles are continually sedimenting out of their host air 

masses, and so their chemical and microphysical processes play a first-order role in 

determining the rate of their ultimate removal from the stratosphere (Kremser et al., 

2016).   

The vertical distribution of stratospheric particles is controlled by the complex interplay 

of chemical reactions, global circulation and the associated growth by condensation and 

coagulation, microphysical processes being a key determinant for sedimentation rate 

(SPARC, 2006; Kremser et al., 2016).  Therefore, to have an understanding of sulfate 

aerosol in the stratosphere we need to understand the formation processes, microphysics 

and the general circulation of the stratosphere, discussed in the following sections.   

2.2.1 Sulfate aerosol formation and microphysics 

The main source of aerosol particles in the stratosphere is their formation in the upper 

troposphere via binary homogenous nucleation of sulfuric acid and water (Kulmala et 

al., 1998).  Binary homogenous nucleation occurs when the equilibrium vapour pressure 

is exceeded (supersaturated) (Kulmala et al., 1998; Vehkamäki et al., 2002).  With the 

slow, but continual, source of SO2 from OCS, the vapour partial pressure of H2SO4 is 

usually supersaturated and the condensation of H2SO4 steadily provides additional mass 

to existing particles (Seinfeld and Pandis, 2006; Kremser et al., 2016).  The primary 

regions for nucleation are in the tropical tropopause layer (TTL), which are then 

transported upwards into the stratosphere (Brock et al., 1995) and can also form 

seasonally at high-latitudes in late winter into early spring (Campbell et al., 2014).   

An increasingly recognised stratospheric particle formation pathway, in addition to 

homogenous nucleation, is heterogenous nucleation, which forms sulfate aerosol 

particles by co-condensation of H2SO4 vapour and H2O vapour onto existing non-sulfate 
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particles such as meteoritic smoke particles or ash (Pueschel et al., 1994; Langmann, 

2014; Kremser et al., 2016).   

Newly forming particles grow rapidly from an initial nm size up to ~30-50 nm in 

diameter in a few hours via condensation and coagulation with particles of a similar size 

(Seinfeld and Pandis, 2006).  Coagulation of these newly formed particles also occurs 

through the collision with particles of larger sizes, which may vary in size and 

composition, to form larger, single particles, also acting as a sink of these newly formed 

particles by sticking to larger particles (Jacob, 1999).  As particles grow larger to ~50-

100 nm, the (Brownian) collision rate reduces, and the contribution coagulation makes 

to the overall particle is reduced (Seinfeld and Pandis, 2006).  Nucleation and 

coagulation processes occur rapidly at high number concentrations, such as following a 

large volcanic eruption (Deshler, 2008). Condensational, growth and evaporative 

processes occur throughout the lifetime of stratospheric aerosol and are more dependent 

on concentrations of H2SO4 (Kremser et al., 2016).   

Sulfate aerosol particles transported within the stratospheric circulation may either be 

lost through transport across the tropopause (including the sedimentation effect) or by 

evaporation if transported to higher altitudes within the stratosphere.  Whilst 

evaporation removes sulfate to the gas-phase between 32-35 km in altitude (Turco et al., 

1979; Weisenstein et al., 1997), heterogeneously nucleated particles will remain at the 

size of their involatile core, whereas homogenously nucleation pure sulfuric particles 

will evaporate completely.  The gas-phase sulfuric acid that results from evaporation 

may be re-condensed onto other particles or form new particles at higher latitudes 

(Hofmann et al., 1985; Mills et al., 2005; Campbell and Deshler, 2014), whereas 

sedimentation removes aerosol permanently from the stratosphere, as it is moved 

downwards through the tropopause.   

2.2.2 Stratospheric sulfur chemistry 

Explosive volcanic eruptions are the largest source of SO2 to the stratosphere (SPARC, 

2006; Kremser et al., 2016).  Volcanic sulfate aerosols are both primary (found near the 

vent) and secondary volcanic products (Allen et al., 2002), formed when the SO2 

emitted from the volcano is oxidised to gas phase sulfuric acid (H2SO4) (Seinfeld and 

Pandis, 2006).  Oxidation to sulfate aerosols occurs with an e-folding time (time for the 

cloud to decrease to 1/e of its original mass) of roughly one-month (Bluth and Rose, 

2004; Timmreck, 2012).  The abrupt increase in H2SO4 vapour due to explosive 
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volcanic eruptions creates new sulfate aerosol particles (nucleation) which can then 

condense onto particles, such as ash and existing stratospheric aerosol (Korhonen et al., 

2003), growing them to larger sizes (e.g. Hamill et al., 1997), as described in Section 

1.2.1.   

The main sulfur chemistry reaction-set producing the sulfuric acid vapour that drives 

these particle changes is shown below (Seinfeld and Pandis, 2006): 

𝑆𝑂2 +  𝑂𝐻 + 𝑀 →  𝐻𝑆𝑂3 + 𝑀, (R1) 

𝐻𝑆𝑂3 + 𝑂2 →  𝑆𝑂3 + 𝐻𝑂2, (R2) 

𝑆𝑂3 +  𝐻2𝑂 →  𝐻2𝑆𝑂4 (R3) 

An additional, smaller volcanic source of SO2 is from the oxidation of hydrogen sulfide 

(H2S).  There is also a continual background source of SO2 from the photo-dissociation 

of carbonyl sulfide (OCS) (Crutzen, 1976; Brühl et al., 2012).  In both cases, the 

additional source of stratospheric SO2 subsequently oxidises to form stratospheric 

sulfate aerosol:  

2𝐻2𝑆 +  3𝑂2  →  2𝑆𝑂2 + 2𝐻2𝑂, (R4) 

𝑂𝐶𝑆 + ℎ𝑣 → 𝐶𝑂 + 𝑆𝑂2. (R5) 

At altitudes >35 km, where the equilibrium vapour pressure of sulfuric acid becomes 

sufficiently high, meaning that condensation and nucleation cannot occur (Hamill et al., 

1997; Seinfeld and Pandis, 2006), an important sink of H2SO4 vapour is its subsequent 

photodissociation to sulfur trioxide: 

𝐻2𝑆𝑂4 + ℎ𝑣 → 𝑆𝑂3 + 𝐻2𝑂, (R6)

𝑆𝑂3 + ℎ𝑣 → 𝑆𝑂2 + 𝑂(3P). (R7)
 

The source of sulfur trioxide from the H2SO4 photolysis is then further photolyzed to re-

form SO2, with this process occurring particularly in the downwelling branch of the 

BDC (Mills et al., 2005).   

The presence of a major volcanic aerosol cloud in the stratosphere greatly perturbs a 

range of different trace gases, both via heterogenous chemistry on particles and also 

from circulation-driven changes from tropical stratospheric heating.  For example, 

hydrolysis of di-nitrogen pentoxide (N2O5) to nitric acid (HNO3) occurs on stratospheric 

sulfate particles, volcanic clouds thereby reducing NOx within the overall reactive 
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nitrogen family (NOy) (Fahey et al., 1993; Aquila et al., 2013).  The reaction of di-

nitrogen pentoxide to nitric acid is: 

𝑁2𝑂5 +  𝐻2𝑂 →  2𝐻𝑁𝑂3 (R8) 

On the surface of sulfate aerosols, reaction R8 is assumed to occur with rate constant: 

𝑘𝑅8 =  
𝛾

4
 (

8𝑘𝑇

𝜋𝑚𝑁2𝑂5

)

1/2

𝐴𝑝 

Where γ is reaction efficiency, mN2O5 is the molecular mass of N2O5, (8kT/πmN2O5)
1/2 

is the mean molecular speed of an N2O5 molecule and Ap is the surface area per unit 

volume (cm2 cm-3) of the aerosol (Seinfeld and Pandis, 2006).   

Activation of chlorine nitrate (ClONO2) on volcanic aerosol particles leads to ozone 

destruction, as observed following the 1982 El Chichón eruption (Hofmann and 

Solomon, 1989), outlined by the following reaction and schematic (Figure 2-2): 

𝐶𝑙𝑂𝑁𝑂2 + 𝐻2𝑂 →  𝐻𝑂𝐶𝑙 + 𝐻𝑁𝑂3 (R9) 

𝐶𝑙𝑂𝑁𝑂2 +  𝐻𝐶𝑙 →  𝐶𝑙2 + 𝐻𝑁𝑂3 (R10) 

 𝐶𝑙2 + ℎ𝑣 → 2𝐶𝑙 (R11) 

 

 

Figure 2-2 Simplified schematic of the cycle of ClOx ozone depletion. 

The rates of these heterogenous reactions are roughly proportional to the aerosol surface 

area, with a saturation effect observed from the N2O5 hydrolysis following the 1991 

Mount Pinatubo eruption (Fahey et al., 1993).  Also in the Mount Pinatubo case, ozone 

decreased during 1992 by 5-10%, observed by the Total Ozone Mapping Spectrometer 

(TOMS) in the northern hemisphere, whilst increased ozone was detected at southern 

mid to high latitudes (Zerefos et al., 1994; Randel et al., 1995).  The effects on trace 
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gases by circulation are largely due to the heating of the tropical stratosphere after major 

tropical eruption, with a tropical ozone decrease occurring as a results of increased 

upwelling bringing ozone-poor air up into the stratosphere (Kinne et al., 1992) and 

strengthened circulation then causing greater transport to mid-latitudes (e.g. Dhomse et 

al., 2015).   

2.2.3 Stratospheric circulation and transport 

Aerosol is able to spread globally in latitude within weeks due to the presence of strong 

zonal winds (~35 m/s) in the stratosphere (Bluth et al., 1992).  The large-scale transport 

of aerosol in the stratosphere is dominated by the BDC (Figure 2-3), which is a wave-

driven circulation that involves tropical upwelling, transport through the mid-latitudes 

and downwelling at the poles (Brewer, 1949; Holton et al., 1995; Bönisch et al., 2011; 

Butchart, 2014).  The BDC is driven by breaking Rossby waves and, to a lesser extent, 

gravity waves with preferential transport of aerosol to the winter hemisphere creating a 

strong poleward downwelling (Holton et al., 1995).  Mixing and transport within the 

stratospheric midlatitudes also occurs most prominently in the winter hemisphere, 

through isentropic surfaces (Figure 2-3) (Holton et al., 1995; Butchart, 2014).   

A “tropical pipe” exists in the stratosphere at ~21-30 km which weakens mixing 

between the tropics and the midlatitudes (Trepte and Hitchman, 1992; Plumb, 1996).  A 

restriction in mixing allows stratospheric aerosol to build up and form a “tropical 

aerosol reservoir” following tropical and near-tropical eruptions (Trepte and Hitchman, 

1992; Grant et al., 1996).  In volcanically quiescent periods, the tropical tropopause is 

the main source of material to the tropical aerosol reservoir (Brewer, 1949; Grant et al., 

1996).  Material is transported to midlatitudes sporadically during events such as 

hurricanes, which can disturb the tropopause region (Trepte and Hitchman, 1992; Trepte 

et al., 1993; Grant et al., 1996).   

Another phenomenon that exists in the stratosphere is the QBO which is an oscillation 

of downward propagating winds in the stratosphere that vary between easterly and 

westerly roughly every 28 months (Baldwin et al., 2001).   
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Figure 2-3 Schematic of stratospheric circulation for a Northern hemisphere summer, adapted 

from Bönisch et al. (2011) and Holton et al. (1995).  The solid blue line denotes the tropopause.  The 

dotted black line marks the 380 K potential temperature, above which is entirely stratospheric.  

Arrows indicate overall transport with arrow widths corresponding to relative circulation strength.  

Lines either side of the tropics and in the winter hemisphere show the tropical pipe and the edge of 

the polar vortex, respectively.  Green arrows indicate lower stratospheric transport below the 

tropical pipe and wiggly red arrows denote isentropic transport.   

 

During the westerly QBO phase, the tropical pipe is wider than in the easterly phase, 

allowing aerosol ~15-22 km in altitude to be more readily transported to the poles 

(Trepte et al., 1993; Grant et al., 1996), whereas during the easterly phase transport is 

inhibited as the tropical pipe is narrower (Hitchman et al., 1994; Punge et al., 2009) and 

material above ~22 km is confined to the tropics (Trepte et al., 1993).  The width of the 

tropical pipe can also be found to vary seasonally, as Grant et al. (1996) found when 

analysing satellite and airborne lidar data following the Mount Pinatubo eruption.  They 

observed a narrower tropical pipe (~1° latitude in width) in the winter hemisphere and 

wider (up to 20° in width) in the summer hemisphere during an easterly QBO.  The 
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phase of the QBO, therefore, has a large effect on the meridional transport of aerosol 

from a tropical eruption and the movement of aerosol out of the tropical reservoir.  

Largest areas of circulation occur through and out of the tropical pipe, however, 

shallower branches below the tropical pipe at approximately 20 km allows year-round 

transport of aerosol to both hemispheres.   

Aerosol can be removed through tropopause folds (Shapiro, 1980), areas where 

stratospheric air intrudes into the troposphere, inducing rapid mixing and rapid 

poleward movement (e.g. Kremser et al., 2016) and understood to be the dominant 

process for stratospheric aerosol removal (SPARC, 2006).  Aerosol confined within the 

tropical pipe and moved through the larger, overarching branches of the BDC, however, 

may stay in the stratosphere for a number of years and be transported around the globe.   

2.2.4 Ash in the stratosphere 

Ash is defined as very small ejected rock particles (<2 mm), with very fine ash 

expressed as particles <30 µm in diameter, and sub-classes classified as super-micron 

(>1 µm in diameter) and sub-micron (<1 µm in diameter) (Rose and Durant, 2009).  

Volcanic ash is primarily formed due to explosive eruptions, measured as >4 on the 

Volcanic Explosivity Index (VEI), but can be found from more effusive eruptions 

(Newhall and Self, 1982).  As magma rises, bubbles form where dissolved volatiles 

(e.g. H2O and SO2) become separated from the magma under decompression.  The 

faster the decompression, the less time bubbles have to be released resulting in more 

fragmentation of the magma and surrounding rock and, therefore, smaller rock 

fragments (e.g. Cashman and Scheu, 2015).   

Ash particles are heavier and typically larger than sulfuric acid droplets, with coarse ash 

(larger than 1 µm) sedimenting out of the plume during the first week post-eruption 

(Bluth and Rose, 2004).  Nevertheless, due to the nature of these particles, they absorb 

solar radiation and thus heat their surroundings on a short-term, localised scale (up to 20 

K/day) (Niemeier et al., 2009).  This local heating adds to the long-wave absorption 

from sulfuric acid particles (1.5-2 K/day) (R.E. Young et al., 1994; Niemeier et al., 

2009; Jones et al., 2016).   

2.2.4.1 Ash core particles 

Ash-core particles occur when the co-existence of ash and SO2 causes some ash 

particles to become coated in sulfuric material, consequently becoming a sulfate particle 
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with a fine-ash inclusion (Deshler, 2016).  These particles have been observed for up to 

3 months after the Kelud 2014 eruption (Vernier et al., 2016), but may potentially 

persist for longer in the atmosphere for an explosive eruption such as Mount Pinatubo 

1991 (Pueschel et al., 1994; Deshler, 2016).   

A recent re-examination of balloon measurements after the 1991 Mount Pinatubo 

eruption (discussed in Section 2.3.3) shows that the finest ash particles (smaller than 1 

µm diameter) were measured in the atmosphere up to a year following the eruption as 

ash-core sulfuric particles, which are larger and sediment faster than typical non-ash 

included sulfuric particles (Deshler, 2016).   

2.2.5 Residence time and aerosol size modes 

When volcanoes inject ash and SO2 into the stratosphere, the abrupt enhancement to the 

stratospheric sulfate aerosol layer can remain elevated for several years due to the long 

(1-3 years) residence time of air masses within the stratosphere (Kremser et al., 2016).  

Residence time is also related to particle size, as discussed here and outlined in Pinto et 

al. (1989).   

Aerosol size distributions vary from 0.001 to 2000 µm size particles, spanning aerosols 

of varying size, composition and number concentrations (Seinfeld and Pandis, 2006).  

Size distributions are typically represented by “modes” with log-normal distributions 

(Figure 2-4).   

Nucleation mode is the first stage of aerosol growth and is defined as the smallest 

particle diameter mode, with aerosols forming at 1-10 nm in diameter (e.g. Kulmala et 

al., 2004).  Once formed, they can be categorised into other modes depending on their 

size.  Fine particles can be categorised under Aitken and Accumulation mode, with 

Aitken mode ranging from particles 0.001 – 0.1 µm (1-100 nm) in diameter and 

Accumulation mode ranging from 0.1 - 1 µm (100-1000 nm) in diameter (Willeke and 

Whitby, 1975; Kulmala et al., 2004; Seinfeld and Pandis, 2006).  During volcanically 

perturbed periods, growth from Nucleation and Aitken modes occurs much faster, 

leading to Accumulation mode particles becoming abundant in the stratosphere (e.g. 

Timmreck, 2012; Kremser et al., 2016).  
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Figure 2-4 Aerosol size distribution and modes for atmospheric aerosol particles, adapted from 

Durant et al. (2010). 

 

Coagulation and Condensation are the main mechanisms by which aerosol particles 

grow and move between size modes (e.g. English et al., 2013).  Condensational growth 

is based on water and H2SO4 uptake, and hence is mostly controlled by temperature and 

the thermodynamic elements of H2SO4.   

Larger particles at ~1 – 100 µm in diameter are defined as Coarse particles, primarily 

consisting of sea salt, volcanic ash particles, dust and plant particles.  Directly emitted 

fine ash is the main source of coarse mode particles in the stratosphere, as sulfuric 

particles sediment out before growing into the coarse size range.   

Aerosols are removed through the processes of wet and dry deposition.  Wet deposition, 

also referred to as “washout”, occurs when aerosols condense onto cloud condensation 

nuclei (CCN) and are rained out in clouds.  Dry deposition usually occurs when 

particles grow large enough and sediment out of the atmosphere due to gravity (Bluth 

and Rose, 2004).  Bluth and Rose (2004) outline the effect of size on fallout rates for 

particles from 1-50 µm in diameter from an altitude of 10 km, indicating that <1 µm 

particles can persist for years in the atmosphere.   

Fall speeds increase in the stratosphere, with spherical 0.1 µm in radius (0.2 µm in 

diameter) size particles of density 1000 kg m-3 increasing in speed from ~ 10-4 cm s-1 at 

the surface to ~10-2 cm s-1 at 30 km (Junge et al., 1961; Kasten, 1968).  Figure 2-5 

outlines the differences between fall speeds for different sized particles with densities of 

1000 and 2000 kg m-3, respectively.  
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Figure 2-5 Fall speeds between the surface and 40 km for particles ranging in size from 0.003 and 

10 µm with density a) 1000 kg m-3 (Kasten et al. (1968)) and b) 2000 kg m-3 (Junge et al. (1961).  

Figures are recreations of Figure 1 from Kasten et al. (1968) and Figure 2 from Junge et al. (1961), 

respectively.   

 

Ash sizes ~100 µm in diameter have densities closer to 1000 kg m-3 and ash particles 

<10 µm in diameter have densities closer to 2000 kg m-3 (2000-2700 kg m-3) (Beckett et 

al., 2015).   

Langmann (2014) outlined how modelled ash particles (>1 µm in diameter) influence 

the microphysical evolution of sulfate aerosol for the 1991 Mount Hudson eruption.  

Without ash present, nucleation mode is dominant in the first day following the 

eruption, closely followed by the Aitken mode after 2 days and then the Accumulation 

mode ~6 days after the eruption (Figure 2-6a).  When ash is present, the coarse mode is 

most dominant at first, diminishing  
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nucleation mode by ~20% (Figure 2-6b).  Fast sedimentation of larger ash particles in as 

little as a few hours (Textor et al., 2003) means the Accumulation and Aitken modes 

take over in a comparable size distribution to the non-ash scenario.   

Langmann (2014) does not account for sub-micron sized ash particles, however.  Ash 

may influence climate through these sub-micron diameter sized particles (~100 nm) as 

an inclusion within sulfuric particles, as observed from aircraft (Pueschel et al., 1994) 

and balloon-measurements (Deshler, 2016) (Section 2.2.4.1).   

These ash-core sulfuric particles are larger, with faster sedimentation which may cause 

a larger proportion of the emitted sulfur to be removed in the first few months after 

major eruptions, when ash is present.  Therefore, climate models that do not account for 

volcanic ash may be creating an unrealistic size distribution in the first few weeks 

following an eruption and may be missing a crucial sulfur removal mechanism.   

 

Figure 2-6 Size distributions from Langmann (2014) of modelled aerosol modes for the 1991 Mount 

Hudson eruption for a) without ash and b) with ash.  Line represent modes, nucleation (red), 

Aitken (yellow), accumulation (green) and coarse (brown). 

 

2.2.6 Aerosol extinction and optical depth 

Aerosols scatter and absorb radiation, depending on refractive index, particle size and 

the incident radiation wavelength (Seinfeld and Pandis, 2006).  When aerosols are 

assumed spherical, Mie theory can be used to calculate aerosol scattering and absorption 

(Seinfeld and Pandis, 2006).  Extinction is defined as the sum of the scattering and 

absorption of an aerosol and is most efficient when the wavelength of radiation is 

similar to the size of the atmospheric particle itself (Seinfeld and Pandis, 2006).  

Aerosol optical depth (AOD) is the vertical sum of extinction and is a commonly used 

metric for determining the amount of aerosol in the atmosphere.  Stratospheric aerosol 
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optical depth (SAOD) is commonly used in volcanic modelling studies to determine the 

optical depth associated with stratospheric aerosol (e.g. Schmidt et al., 2018).  Both 

extinction and SAOD are used throughout the results chapters in this thesis.   

2.3 Mount Pinatubo 1991 

This thesis focuses on the 1991 Mount Pinatubo eruption, as it is still the largest 

explosive eruption in recent history and was the first major (VEI=6) explosive eruption 

to be recorded by multiple types of satellite instruments as well as ground-based lidar, 

balloon-borne particle counters and surface radiation instruments (Kremser et al., 2016; 

Jones et al., 2016).   

Mount Pinatubo is situated at 15°N in the Philippines and on the 12-14th June 1991, a 

series of small eruptions were noted with associated pyroclastic flows before it erupted 

explosively on June 15th 1991 (Wolfe and Hoblitt, 1996).  One eruption on 14th June 

reached ~21 km altitude before the most explosive eruption for more than 50 years 

occurred on 15th June with around 9 hours of continuous, explosive activity (Lynch and 

Stephens, 1996).  Self et al. (1996) suggest an ash-related column above 17 km was 

observed using temperature measurements in the early hours of 16th June, along with 

ash layers ~ 11 km in altitude noted due to plane engine failures.   

2.3.1 Measurements 

The main eruption sent approximately 14-23 Tg of SO2 (estimated 20 Tg (Guo et al. , 

2004)) into the atmosphere more than 25 km in altitude (Bluth et al., 1992; Hansen et 

al., 1992).  These values were deduced by comparing the ultraviolet satellite data from 

TOMS instrument on board the Nimbus-7 satellite and infrared SO2 data from the High-

resolution Infrared Radiation Sounder/2 (HIRS) on board NOAA’s Television Infrared 

Radiation Sounder (TIROS) Operational Vertical Sounder (TOVS).  TOMS observes 

the whole Earth each day, crossing the equator at every 26 degrees of longitude.  Guo et 

al. (2004) estimate 50 Tg of fine ash (1-15 µm) was emitted from the eruption, 

compared to just 3 Tg from Cerro Hudson which erupted in August of the same year, by 

comparing satellite measurements from TOVS and Advanced Very High Resolution 

Radiometer (AVHRR).  The aerosol from this eruption circled the globe within 2 

weeks, as shown by Bluth et al. (1992) using TOMS.  The Stratospheric Aerosol and 

Gas Experiment II (SAGE II) satellite measurements suggested a peak in global aerosol 

mass burden of 30 Tg (McCormick and Veiga, 1992), including sulfuric acid and water, 
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with the enhanced aerosol residing between 20 and 27 km in altitude, mean tropical 

altitude of 22 km (McCormick et al., 1995).  The SAGE II measurements have large 

errors associated with the initial months following the eruption, as instrument ranges 

were exceeded in the tropics during June-August 1991 (e.g. Antuña et al., 2002) with no 

other truly tropical measurements in June 1991 (Thomason et al., 2018).   

Considering the transport of the Mount Pinatubo cloud, although the volcano is situated 

at 15ᴼN, SAGE II and AVHRR (on board the NOAA-11 satellite) measurements 

suggest the large volume of injected material initially moved south during its 

longitudinal transport over the first few weeks, centred at around 10ᴼS, with little 

meridional transport, leading to the cloud being confined to 20°S to 30°N for the first 

month (McCormick and Veiga, 1992; Long and Stowe, 1994).  The initial phase of 

southward transport, and the subsequent transport to both hemispheres was unusual, 

with previous major tropical eruptions seen to disperse mostly within their original 

hemisphere (McCormick et al., 1995).  SAGE II measurements indicated maximum 

AOD of 0.2 at 10°S, with tropospheric weather systems, the QBO and localised heating 

causing enhanced upwelling or “self-lofting” of the plume caused by the absorption of 

infrared radiation by the aerosol (Trepte et al., 1993; R.E. Young et al., 1994; 

McCormick et al., 1995).   

Trepte et al. (1993) outline two atmospheric regimes seen to have occurred during the 

10 months after Mount Pinatubo erupted.  The first “lower regime” occurring just above 

the tropopause sending aerosol to lower altitudes and polewards and the second “upper 

regime” transporting aerosol out of the aerosol reservoir (20°S-30°N) through planetary 

wave activity, particularly when winter circulation became more prominent.   

The initial southward transport in the first phase is thought to be due to anticyclonic 

tropospheric weather circulation.  However, during the second phase, Mount Pinatubo 

was also unusual with much more southern hemisphere transport than following the 

1982 El Chichόn eruption, despite their similar latitudes (Trepte and Hitchman, 1992).  

This second phase effect of southern hemisphere transport is thought to be due to 

stronger westerly winds in the tropics during 1982 (westerly QBO phase) encouraging 

northward transport compared to the easterlies which occurred during 1991 (Trepte and 

Hitchman, 1992; Jones et al., 2016).   

The radiative effects of Mount Pinatubo were measured by the Earth Radiation Budget 

Satellite (ERBS) instrument (Minnis et al., 1993; Wong et al., 2006) and clearly indicate 
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the short-wave cooling effect.  A peak of 8 W m-2 higher tropical-mean (20ᴼS-20ᴼN) 

outgoing short-wave flux at the top of the atmosphere (TOA) was measured (Wong et 

al., 2006) and a global radiative flux anomaly of -3 W m-2 (Minnis et al., 1993), 

compared to the 1985-1989 mean.   

The Mount Pinatubo eruption impacted stratospheric ozone (Solomon, 1999) with 

unprecedented reductions in stratospheric ozone measured in mid-latitudes such as a 

25% reduction in winter 1992-1993 (Hofmann et al., 1994).  6-8% ozone reduction at 

the equator was also noted and was dynamically driven, as a result of the heated aerosol 

layer bringing lower-ozone air from below (McCormick et al., 1995).  The effect offsets 

some of the temperature increase in the tropical stratosphere (McCormick et al., 1995) 

and also lifted ozone-rich air to mid-latitudes (Kinne et al., 1992; Dhomse et al., 2015).   

The 1991 Mount Pinatubo eruption is the best characterised VEI 6 eruption to date, as a 

result of the increased volume of measurements available from that time compared to 

the other large eruptions such as El Chichón (1982) and Mount Agung (1963) (Arfeuille 

et al., 2013a).  The aerosol cloud was observed by SAGE II and AVHRR, although the 

eruption was so intense that some measurements, such as SAGE II, could not receive 

signals as the eruption cloud had values greater than the upper signal range of the 

instruments (Antuña et al., 2002).  Antuña et al. (2002) discuss the use of lidar 

measurements from Mauna Loa, Hawaii and Hampton, Virginia to fill the data gaps, 

which they found to agree relatively well, with the gap-fill now used to compare with 

model simulations, such as in Dhomse et al. (2014).     

From June-October 1991, the Japanese lidar network (26-45°N) noted the Mount 

Pinatubo cloud signal with a slight increase (background is ~1) in backscatter ratio of 2 

as early as June 28th 1991, then observing the signal above 20 km with a cloud depth of 

2 km on July 15th 1991 (Akiyoshi et al., 1993).  The volcanic cloud was not seen again 

until August 6th 1991 and subsequently rapidly increased in backscatter ratio value to a 

peak of 12.9, with a deeper cloud of 7 km, coincident with the change to a westerly 

QBO (Akiyoshi et al., 1993).  Winker and Osborne (1992a) outline NASA Electra lidar 

observations showing layering that occurred in the stratosphere shortly after the 1991 

Mount Pinatubo eruption between 17 and 26 km in altitude.  These observations showed 

that 3-4 weeks after the eruption the cloud was spatially inhomogeneous and well 

layered.  Winker and Osborn (1992b) also show depolarisation over 10% at 23.5 km, 

indicative of non-spherical particles or differing chemistry in particles within the layer.  
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Ship-borne lidar data covering latitudes of 8°S-60°N from July 1991 – April 1992 show 

AOD values up to 0.2, with maximum extinction values of 0.08/km at 18°N (Avdyushin 

et al., 1993).  Ansmann et al. (1997) observed similar AOD values of 0.25 in Spring 

1992 with a calculated 1.9 km/year decrease in aerosol and increase from 0.2 µm 

effective radius particles in August 1991 to 0.5 µm in October 1991 - February 1992.  

At a latitude of 52°N, Vaughan et al. (1994) noted an increase in AOD of 0.02 to 0.2 

between August 1991 and March 1992, values which concur with those seen in 

Ansmann et al. (1997) and Avdyushin et al. (1993).   

Investigations into stratospheric aerosols have become increasingly prominent over 

recent years, with enhanced observational and modelling capability allowing more in-

depth knowledge of our atmosphere and the processes that occur within it (Kremser et 

al., 2016).  Much of the observational data before 1980 consisted of estimates taken 

from volcanic evidence (1850-1882), solar irradiance at northern mid latitudes (1883-

1959), solar eclipse and direct solar radiation measurements in both hemispheres (1960-

1978) (Sato et al., 1993).  The first in-situ measurements were in the form of balloon-

borne measurements (e.g. Junge and Manson (1961)) and before 1960 only ground-

based remote sending observations were available.   

Satellite observations that can specifically measure volcanic gas species are more 

prominent today, with 19 currently in use (Carn et al., 2016), however, before 1980 

there were only three (Carn et al., 2016).  Global vertical profiles of stratospheric 

aerosol can now be measured using comparisons and combinations of different 

observational data, for example space-borne lidar, such as Cloud Aerosol Lidar with 

Orthogonal Polarisation (CALIOP) and solar occultation, such as SAGE II (Vernier et 

al., 2011).  Aerosol Robotic Network (AERONET) observations using ground-based 

sun photometer measurements (Ridley and Solomon, 2014) are another demonstration 

of the relatively recent expansion in atmospheric observational measurement capability, 

useful both for more recent observations and to help validate previous datasets.   

The use of Light Detection and Ranging (lidar) for observing aerosol patterns in the 

atmosphere dates back to the 1960s, with Fiocco and Grams (1964) observing the 

previously sampled 20 km aerosol layer using lidar analysis.  Lidar has since been a 

vital tool used to measured volcanic signals, observing the occurrences of eruptions and 

the transport of resulting clouds, as well as observing background conditions when not 

perturbed by eruptions (Jäger, 2005).   Lidar instruments emit laser light and detect the 
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light backscattered by objects, such as atmospheric particles, towards the instrument.  

From these useful observations variables such as backscatter ratio (aerosol + molecular 

backscatter/molecular backscatter) can be calculated (e.g. DeFoor et al., 1992).   

2.3.2 Mount Pinatubo model simulations - SO2 emission and injection height 

Following the Stratospheric Processes And their Role in Climate (SPARC) report 

(SPARC, 2006), there have been large advances in and development of global 

stratospheric models.  Interests in geoengineering and the climatic impact of volcanic 

eruptions increased these advances and over 15 aerosol-climate models with 3D 

stratospheric capabilities are currently active (Kremser et al., 2016).  The models 

outlined in Kremser et al. (2016) vary depending on whether they use sectional or 

modal size distributions, are radiatively coupled and the stratospheric compounds 

included (e.g. just sulfate or sulfate, organics and meteoritic dust, for example.)   

Climate modelling studies of large volcanic eruptions have previously used prescribed 

AOD values, such as in Jones et al. (2005) and in studies using CMIP5 data (e.g. 

Driscoll et al., 2012).  That said, these studies have been found to be limited by a lack of 

aerosol microphysics, an example being a prediction of surface cooling from the super 

eruption of Toba around 74,000 years ago being 3 times smaller when aerosol 

microphysics were included in a model (Timmreck et al., 2010) compared to without 

(Jones et al., 2005).   

While global-mean SAOD and its relationship with radiative forcing is used as a key 

parameter in deducing volcanic forcing (Sato et al., 1993; Schmidt et al., 2018), and 

deducing volcanic forcing from other climate-influencing factors (Hansen et al., 2005), 

it has been found that the same SAOD can be achieved from a variety of contrasting 

eruption source parameters (Marshall et al., 2019).  Investigating the variation of 

extinction with altitude, which is consequently integrated to derive SAOD, can therefore 

give an indication of which eruption source parameters also closely match vertical 

profiles from, for example, ground-based lidar.   

Eruption source parameters usually have fairly broad estimates, such as 14-32 Tg SO2 

by Guo et al. (2004) for the Mount Pinatubo eruption (Table 2-1).  Using an interactive 

microphysical-climate model to investigate different variations on parameters and 

comparing to available observations can, potentially, help constrain the estimates.  
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As the Mount Pinatubo eruption was such a well observed, large eruption it has been 

widely used as a case study within the modelling community (Table 2-1).  Estimates of 

SO2 and its injection height are still uncertain, hence varying values for injection height 

and mass of SO2 have been used or suggested across the modelling community.   

Table 2-1 Eruption source parameters (mass of SO2 and injection height) as inferred based on 

observations and as used in climate modelling studies of the 1991 Mount Pinatubo eruption. 

 

 

Values used are based on predictions from observations and sometimes to account for 

lacking removal of SO2 on ash or ice (Mills et al., 2017) or resultant lofting from the 

aerosol cloud (Aquila et al., 2012).  Sheng et al. (2015) for example, suggest optimum 

injection height is 18-20 km and mass of SO2 is 14 Tg.  Mills et al. (2016; 2017) and 

Schmidt et al. (2018) also agree with 18-20 km, but use 10 Tg of SO2 to account for 

SO2 removed on ash and ice in the first few days of the eruption.  Aquila et al. (2012), 

however, inject 20 Tg over a lower injection height of 16-18 km, also testing a higher 

injection height of 17-27 km.  English et al. (2013) use 10 Tg SO2 and inject between 

15.1 and 28.5 km, peaking at 21 km, whilst Dhomse et al. (2014) use 10 and 20 Tg and 

have an injection height of 19-27 km.   
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Modelling studies that have included aerosol microphysics have found self-limiting 

responses of explosive eruptions (Pinto et al., 1989; Timmreck et al., 2010; English et 

al., 2013; Arfeuille et al., 2014).  As discussed in Section 1.1, there is a non-linear effect 

of increased SO2 emission and resulting radiative forcing due to the effects of 

condensation and coagulation increasing particle size and, therefore, sedimentation.  

Metzner et al. (2014) furthered this research, finding that there is a linear relationship 

between mass of SO2 injected and peak AOD for SO2 masses < 5 Tg and non-linear 

above 5 Tg.  Comparatively, English et al. (2013) found that global AOD was only 20 

times larger for a value 100 times that of the Mount Pinatubo eruption (assuming 10 Tg 

for Mount Pinatubo).  Scaling values for Metzner et al. (2014), an eruption of ~7 Tg 

compared to ~700 Tg produced AOD values of 0.09 and 2.37, respectively, meaning the 

700 Tg SO2 injection produced an AOD 26 times higher than the 7 Tg injection, similar 

to English et al. (2013).  A study by Timmreck et al. (2010) using a similar 100 Tg SO2 

injection mass also found these self-limiting effects, yet, their maximum global AOD 

value is 4 in comparison to a value of 2.5 calculated by English et al. (2013).  These two 

studies differed, as English et al. (2013) used a sectional scheme and included van der 

Waals forces which act to increases particle size, but did not include aerosol radiative 

heating, whereas Timmreck et al. (2010) use a modal scheme and include aerosol 

radiative heating.  Sectional schemes divide aerosol sizes into discrete bins, whereas a 

modal scheme uses log-normal size distributions and fixed mode widths for each.  The 

use of each of these types of schemes can affect resultant size distributions and its 

evolution during model simulations (e.g. Kokkola et al., 2009; Mann et al., 2012).  

Sectional schemes, although more complex, can be highly expensive computationally.  

Mann et al. (2012) for example, have shown that modal schemes are capable of 

matching aerosol results from sectional schemes and many Mount Pinatubo studies 

using modal schemes compare closely with observations (Niemeier et al., 2009; 

Dhomse et al., 2014; Mills et al., 2016; Mills et al., 2017; Schmidt et al., 2018).   

Dhomse et al. (2014) outlined the first use of the composition-climate model (Unified-

Model – United Kingdom Chemistry and Aerosol (UM-UKCA)) with interactive 

troposphere-stratosphere aerosol microphysics and chemistry in simulating the Mount 

Pinatubo eruption.  Overall, using an injection of 10 Tg SO2 is more comparable to 

observations than 20 Tg, as the aerosol mass burden is predicted to be twice as high 

with 20 Tg when compared to satellite measurements.  Satellite measurements also 

indicate a large reduction in aerosol burden in the initial months following the eruption 
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that is not simulated in the model, possibly due to a lack of removal pathway by ash or 

ice that is not simulated.   

Arfeuille et al. (2014) mention how small differences in injection height can lead to 

large differences in transport following tropical volcanic eruptions.  Aquila et al. (2012) 

attempted different injection heights, identifying variations in vertical profiles of aerosol 

and finding overall that higher injection heights lead to longer lasting aerosol.  Toohey 

et al. (2016) similarly find that a higher injection height of 24 km leads to aerosol 

persisting for longer in the stratosphere than heights of 13 or 16 km.  The reason for 

longer lasting aerosol is the confinement of aerosol to the tropical pipe, as noted in 

Niemeier et al. (2011) and Niemeier and Timmreck (2015).  Some modelling studies 

also suggest that above ~25 km there may be over spilling of aerosol into the mid-

latitudes (Arfeuille et al., 2014; Stoffel et al., 2015) with these higher injection heights 

then leading to greater hemispheric asymmetry in aerosol transport and subsequent 

cooling (Stoffel et al., 2015).  Furthermore, this effect of confined aerosol may act to 

reduce subsequent radiative effects, as aerosols may coagulate, grow and sediment more 

quickly, also indicating that a higher mass of SO2 does not equate to a higher radiative 

forcing (Niemeier and Schmidt, 2017; Kleinschmitt et al., 2018; Tilmes et al., 2018).   

Aquila et al. (2012) advise that radiative heating is required for successful aerosol 

lofting and suggest that the mass of SO2 injected determines subsequent lofting.  

Additionally, Aquila et al. (2012) indicate that changes in QBO were more important in 

controlling aerosol distribution than meteorology, with their model simulating constant 

easterlies as opposed to a varying QBO throughout.  

2.3.3 Observations and model simulations of volcanic ash 

The theory that sulfuric acid may condense onto ash particles was noted before the 

Mount Pinatubo eruption by Pinto et al. (1989), who used a 1D aerosol model to 

examine volcanic stratospheric clouds and specifically treat mixed particles of ash and 

sulfate.  Turco et al. (1983) also found evidence for sulfuric acid coated ash particles 

following the 1980 Mount St Helens eruption, with 0.1-3 µm radius ash particles 

persisting for up to a month.  Measurements of ash and sulfur aerosols with non-

sulfurous cores in the stratosphere were taken as early as 1963 following the Mount 

Agung eruption up to 20 km (Mossop, 1964; Mossop, 1965).  Ash particles were noted 

after the April 1982 El Chichón eruption from 16.8-19.2 km altitude as late as October 

of the same year, with some visibly in liquid droplets (Gooding et al., 1983).   
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Deshler (2016) shows measurements of balloon-borne particle counters at Laramie, 

Wyoming, indicating that ash-core particles existed following the Mount Pinatubo 

eruption, the ash accounted for ~20% of the particle mass and that these particles 

persisted for ~1 year.  Impactor measurements also show evidence for ash particles 

coated in sulphuric acid as late as February 1992 (Pueschel et al., 1994), 8 months after 

the eruption.  Additionally, lidar data from Aberystwyth (52°N) (Vaughan et al., 1994) 

show a depolarising layer at 19 km in October 1991.  A higher depolarisation value 

indicates non-spherical particles, which are usually determined to be ash or ice (Prata et 

al., 2017).  Vernier et al. (2016) further suggested the persistence of ash particles 

following the 2014 Kelud eruption, finding ash particles contributed ~24% of the 

volcanic cloud and persisted for 3 months after the eruption.  These ash particles were 

also found to increase volcanic radiative forcing by 20% more than if calculated solely 

for sulfate, suggesting ash may have more of an impact on radiative forcing than 

previously thought and that further climate simulations should include ash (Vernier et 

al., 2016).  Modelling by Niemeier et al. (2009) indicate that ash has a short-term, 

localised effect, but may affect local radiative heating and winds, impacting transport 

direction of volcanic aerosol.   

Although a number of modelling studies have investigated the Mount Pinatubo 

eruption, these studies have tended to focus on global properties such AOD and sulfur 

burden rather than more localised effects.  The importance of aerosol microphysics, 

injection height, SO2 magnitude, QBO and radiative heating have been noted, with 

many studies not including one, or a number of these.  For example, Aquila et al. (2012) 

and Jones et al. (2017) do not include aerosol microphysics, English et al. (2013) do not 

generate a QBO and Arfeuille et al. (2014) do not include radiative heating.  Almost all 

modelling studies have regarded ash as being sedimented too quickly to be important 

for climatically relevant eruptions, yet ash has been found to impact radiative heating 

and aerosol transport (Niemeier et al., 2009).  No study has thus far investigated the 

longer lasting, sub-micron ash particles seen to persist for months following explosive 

eruptions (Vernier et al., 2016; Deshler, 2016).   

2.4 Summary 

This chapter summarises background information on the stratospheric aerosol layer, the 

1991 Mount Pinatubo eruption outlining associated measurements and modelling 

studies.  The literature review has outlined the variation in eruption source parameters 
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between modelling studies of the 1991 Mount Pinatubo eruption and a lack of 

observations around the equator at the time of the eruption.  Volcanic ash has also been 

observed up to 9 months following the Mount Pinatubo eruption, but largely ignored in 

modelling studies due to an assumption that ash is quickly removed from the 

atmosphere following an eruption.   

The aims of this thesis are to: 1) Investigate the initial dispersion of the Mount Pinatubo 

eruption using ground-based lidar and UM-UKCA, 2) Examine how varying eruption 

source parameters affects the vertical profile of extinction as simulated in the model, 

SAOD and sulfate burden and 3) Assess how sensitive the results from (1) are to the 

inclusion of ultra-fine ash.  Having summarised the background of the stratospheric 

aerosol layer and the 1991 Mount Pinatubo eruption, the next chapter (Chapter 3) will 

outline the methods used to address the aims of this thesis.   
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Chapter 3 Data and Methods  

3.1 Introduction  

This thesis is aimed at understanding the stages in the formation and global dispersion 

of the volcanic aerosol cloud from major tropical eruptions.  The research involves 

analysing observations of the 1991 Mount Pinatubo aerosol cloud and interactive 

stratospheric aerosol model experiments to explore how alternative representations of 

the volcanic cloud affect its progression.  The main research tool for the volcanic 

aerosol experiments is the Unified Model (UM) coupled to the United Kingdom 

Chemistry and Aerosol (UKCA) sub-model (Brown et al., 2012; Abraham et al., 2012) 

(from here on described as UM-UKCA), as configured for interactive stratospheric 

aerosol (Dhomse et al., 2014).  The UM-UKCA Mount Pinatubo aerosol cloud 

simulations are analysed in conjunction with ground-based lidar observations from the 

first 9 months after the 15th June 1991 Mount Pinatubo eruption.  A detailed description 

of the model and the observations utilised are given in this chapter.   

The Mount Pinatubo aerosol cloud observations analysed are mainly from ground-based 

lidar measurements from one near-tropical (Mauna Loa) and three northern hemisphere 

lidar sites (Table Mountain, Toronto and Haute Provence), with a recently recovered 

dataset from shipborne lidar (Avdyushin et al., 1993).  Monthly global composite 

datasets from two satellite measurement datasets of the Mount Pinatubo cloud are also 

used, the Advanced Very-High-Resolution Radiometer (AVHRR) nadir-sounding 

instrument on the NOAA-11 satellite (Long and Stowe, 1994) and the Global Space-

based Stratospheric Aerosol Climatology (GloSSAC) dataset (Thomason et al., 2018; 

Damadeo et al., 2018) which consists primarily of solar occultation measurements from 

the SAGE II instrument on the ERBS satellite (McCormick and Veiga, 1992; 

Thomason, 1992).  Errors associated with the AVHRR AOD data are in the range 0.03-

0.05 (Stowe et al., 1992).  GloSSAC uncertainties for the lower stratosphere are <5% on 

average following the Mount Pinatubo eruption with other uncertainties primarily from 

the uncertainty of the combined measurements (Thomason et al., 2018).   

Chapter 4 focuses on the lidar measurement analysis, exploring the initial progression of 

the Mount Pinatubo aerosol cloud and how the vertical structures seen within the data 

change with the continuing wind shear during the progression from a concentrated 
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volcanic plume to a well-mixed cloud throughout the tropical reservoir.  The interactive 

stratospheric aerosol model experiments further explore how the volcanic cloud evolves 

using a “pre-nudging” to improve on “approximate-QBO” simulations in previous UM-

UKCA studies (Dhomse et al., 2014; Dhomse et al., 2020).  Free-running simulations 

then represent the QBO accurately and allow the progression of the aerosol cloud 

including radiative heating.  Chapter 5 analyses how the Mount Pinatubo cloud would 

have evolved for different eruption source parameters, exploring how changing the 

injection height and injected mass of SO2 influences the simulated vertical distribution 

and global dispersion of the volcanic cloud.  Chapter 6 assesses how ultra-fine ash 

particles impact the dispersion of the volcanic cloud, applying a new configuration of 

the model adapted specifically to explore these effects.    

3.2 UM-UKCA model description 

The model used throughout this thesis is version 8.4 of the interactive stratospheric 

aerosol configuration of the UM-UKCA composition-climate model.  This is the UM 

general circulation model extended for stratosphere-troposphere chemistry (UKCA).  

The configuration of UM-UKCA used is Release job 4.0 of the UK community 

composition-climate model (Abraham, 2017), based around atmosphere-only 

simulations with the UM Global Atmosphere 4.0 (GA4.0) configuration (Walters et al., 

2014).  GA4.0 is an interim configuration of the atmospheric component of the Hadley 

Centre Global Environment Model version 3 (HadGEM3) climate model, but with 

interactive aerosol microphysics from the Global Model of Aerosol Processes 

(GLOMAP) mode aerosol scheme (Section 3.3) and whole-atmosphere chemistry 

(Mann et al., 2010).  Tropospheric and stratospheric chemistry schemes are used, with 

extension for aerosol-precursor chemistry suitable for interactively simulating the 

stratospheric aerosol layer (Section 3.3.2).   

The GLOMAP-mode module within UM-UKCA simulates aerosol mass and number 

within 7 lognormal modes (4 soluble and 3 insoluble) to track particle sizes, which 

contain sulfate (SU), black carbon (BC), organic carbon (OC), dust (DU) and sea salt 

(SS), a detailed description of which can be found in Mann et al. (2010) and is further 

discussed in Section 3.3.  This model setup has also been used previously in Turnock et 

al. (2015) with adaptations for interactive stratospheric aerosol as in Dhomse et al. 

(2014), Marshall et al. (2018), Timmreck et al. (2018) and Marshall et al. (2019).   
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Davies et al. (2005) outline the dynamical core used in the GA4.0 atmosphere model, 

which is based on the atmospheric equations of motion using semi-implicit, semi-

Lagrangian methods.  The GA4.0 model was designed to have well-resolve 

stratospheric dynamics, with a model top at 85 km and 85 vertical hybrid height levels 

with a horizontal grid of 1.875° longitude by 1.25° latitude (N96 resolution) and the 

model can be run with an internally generated QBO (Morgenstern et al. 2009).   

All simulations were free-running, atmosphere-only simulations with time-varying sea 

ice, sea surface temperature, greenhouse gases and ozone-depleting substance values set 

for the period 1991-1992, which is the timeframe of interest in this study.  The default 

set-up of GLOMAP-mode is implemented for Chapters 4 and 5, but adapted for Chapter 

6 to incorporate ash, the process for which is outlined in Section 3.3.  

3.3 GLOMAP-mode 

3.3.1 Introduction 

GLOMAP-mode is an aerosol microphysics module, developed specifically for the UM-

UKCA composition climate model, to predict the particle size distribution interactively.  

The size-resolved aerosol properties simulated and tracked in GLOMAP-mode are 7 

lognormal modes, soluble modes for nucleation, Aitken, accumulation sized aerosol, a 

coarse soluble mode for super-micron sea-salt aerosol, and insoluble modes to simulate 

carbonaceous and dust particles (Table 3-1).  The following processes are simulated 

within GLOMAP-mode: new particle formation (i.e. nucleation), coagulation, 

condensation and cloud processing.   

Table 3-1 Each mode within GLOMAP-mode with associated size range, composition, solubility 

and mode width.  
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The aerosol microphysics is mainly designed to simulate how particles grow during 

their residence time through condensation and coagulation and how they form from 

homogenous and heterogenous sulfate nucleation.  The two-moment microphysics in 

GLOMAP-mode means it predicts particle mass and number as separate prognostic 

variables in each mode.  This is important to enable the model to conserve particle 

number whilst increasing mass concentrations when particles grow (e.g. via 

condensation), and to decrease particle number whilst conserving total mass (during 

coagulation).  GLOMAP-mode also simulates removal processes in a size-resolved 

manner, including sedimentation, dry deposition and wet removal from tropospheric 

clouds via nucleation scavenging (rainout) and impaction scavenging (washout).   

The growth of particles larger than the upper range of the mode radius (see Table 3-1 

size range for values) is resolved through mode-merging, whereby a proportion of the 

mass concentrations and the number concentration from the donor (grown) mode are 

transferred across to the adjacent mode of the next highest size, as described in (Mann et 

al., 2010).  Note that this mode-merging process only needs to be applied for the soluble 

nucleation and Aitken modes, as growth becomes much slower in the accumulation 

mode and the process does not need to be applied for the insoluble modes.  A process 

known as condensation-ageing was originally applied for all 3 of the insoluble modes, 

separating carbonaceous and dust particles either into uncoated insoluble particles or 

internally-mixed soluble modes.  These internally mixed particles become soluble 

following condensation of H2SO4 or organic vapours or from coagulation of soluble 

particles.  However, to allow meteoritic smoke particles (MSPs) to heterogeneously 

nucleate sulfate aerosol particles in the stratosphere (Brooke et al., 2017), this 

condensation-ageing was de-activated for the accumulation insoluble mode and used 

instead to track condensed sulfate on the accumulation insoluble mode.   

Sedimentation of aerosols occurs throughout the atmosphere and they are removed 

through wet and dry deposition.  Wet deposition of aerosol occurs in UM-UKCA via 

both the convective and large-scale precipitation schemes (Kipling et al., 2013), based 

on the GLOMAP-mode schemes for below-cloud (impaction) and in-cloud (nucleation) 

scavenging (Pringle, 2006; Spracklen et al., 2007), also referred to as washout and 

rainout, respectively.  Below-cloud scavenging occurs when raindrops collide with 

aerosols and is treated in the model using aerosol and raindrop collision efficiencies 

from Slinn (2004).  In-cloud scavenging takes place when particles are activated to form 
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cloud droplets by acting as cloud condensation nuclei (CCN) and are eventually 

removed through rainout.  For in-cloud scavenging through convective precipitation, the 

convective precipitation rate by Kipling et al. (2013) assumes all mass from soluble 

accumulation and coarse modes plus half of the soluble Aitken mode are assumed 

dissolved and therefore removed.  In-cloud scavenging by large-scale precipitation uses 

the assumption from Spracklen et al. (2005) of the dissolution of soluble particles with 

> 103 nm wet radius can be removed by precipitation depending on precipitation rate.   

Dry deposition in GLOMAP-mode is described in Mann et al. (2010) with dry 

deposition velocity (Vd), calculated for each mode based on Slinn (1982).  Vd is 

dependent on aerodynamic and surface resistance, which depend on surface roughness, 

surface friction velocity and collection coefficients for Brownian diffusion, impaction 

and interception (Zhang et al., 2001).  It is also dependent on gravitational settling 

velocity, which in turn depends on particle density, size, air viscosity and gravitational 

acceleration.   

The formation of sulfate aerosol via binary homogenous nucleation of H2SO4-H2O is 

represented using the parameterised from Vehkämaki et al. (2002), updated from 

Kulmala et al. (1998), to include nucleation rates in the upper tropical troposphere at 

~200 K.  In-cloud formation of sulfate via oxidation of SO2 is also accounted for (Mann 

et al., 2010).  Hygroscopic growth of particles is described in Mann et al. (2010), which 

was applicable for tropospheric conditions, but was later adapted for the stratosphere 

using calculations from Carslaw et al. (1995).  Sulfuric acid aerosol particles have a 

composition of 74.5% H2SO4 and 25.5% H2O for 225 K and 101 hPa.  H2SO4 

condensation and evaporation were also applicable to the troposphere in Mann et al. 

(2010), and depend on the vapour pressure and gas phase partial pressure of H2SO4 

(Dhomse et al., 2014), so that above ~35 km evaporation of H2SO4 droplets occurs 

rapidly whereas at ~25-30 km increasing temperatures equally increase the significance 

of the H2SO4 vapour pressure.  The model also includes MSPs, which can also act as 

nucleation cores for heterogenous formation of sulfate particles (Brooke et al., 2017).  

As mentioned above, the amount of sulfate condensed onto MSPs is now tracked in the 

accumulation-insoluble mode, as with condensation-ageing to the accumulation-soluble 

is switched off (Brooke et al., 2017).   
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3.3.2 Stratospheric chemistry scheme 

The Chemistry of the Stratosphere and Troposphere (CheST) scheme is used for 

atmospheric chemistry in the model, combining tropospheric (O’Connor et al., 2014) 

and stratospheric (Morgenstern et al., 2009) chemistry schemes.  Added aerosol 

chemistry is included for GLOMAP-mode, which results in ~300 reactions between 86 

species.   

UM-UKCA was adapted to also simulate the stratospheric aerosol layer interactively in 

Dhomse et al. (2014), an sulfur chemistry was extended, based on the reactions shown 

in Table 3-2.  In background (volcanically quiescent) conditions, the stratospheric 

aerosol layer is maintained primarily from sulfur from OCS, as outlined in Section 2.2.2 

of Chapter 2, with minor contributions from tropospheric SO2 and DMS.  The key 

oxidation pathway for the production of sulfuric acid aerosol particles by SO2 is with 

OH, with intermediate species SO3 and H2SO4 also important for the fate of particles 

evaporating during transport within the upper branch of the BDC.   

Table 3-2 Sulfur chemistry reactions in UM-UKCA for stratospheric aerosol. Table modified from 

Dhomse et al. (2014), W = Weisenstein et al. (1997); S = Sander et al. (2006); K = Kreidenweis et al. 

(2003). 

 

3.3.3 Fine ash mode 

To facilitate the simulation of volcanic ash particles in the model, GLOMAP-mode was 

adapted by Graham Mann to use mode 7 (coarse insoluble) as a “fine-ash” mode, as 

mode 7 contained only dust (Table 3-1).  This process is outlined as follows: 
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The first change was to allow mode 7 to internally mix ash and sulfate, to allow sulfate 

particles to be removed via condensation of sulfate aerosol onto the ash particles.  A 

similar process was used for adapting mode 6 for MSPs (Brooke et al., 2017).   

The second change was to edit the volcanic SO2 emissions routine to enable co-

emissions of volcanic ash and SO2.  The UKCA_VOLCANIC_SO2.F90 subroutine 

already does 3D emissions of SO2 according to parameters “AEROS_SO2KG_VOLC”, 

“AEROS_HTTOP_VOLC” and “AEROS_HTBOT_VOLC”, accounting for the mass of 

SO2 injected (kg), the upper injection height (m) and the lower injection height (m), 

respectively.  Further details on the ash specifications are outlined in Section 3.3.4.   

Editing this file was necessary to input the amount of ash injected (kg) and the injection 

height top and bottom (m).   

The final change was coding a logical on/off switch for the condensation of H2SO4 onto 

the mode 7 mass mixing ratio for sulfate.  The UKCA_CONDEN.F90 subroutine 

already condenses H2SO4 onto the other 6 modes, but for 5 (Aitken insoluble) and 7 

(coarse insoluble) the subroutine condensation-ages condensed-H2SO4 over to the 

respective soluble mode (e.g. coarse insoluble to coarse soluble) (Mann et al., 2010).  

Thus, sulfate in mode 5 and 7 were previously moved into modes 2 and 4, respectively.  

Prior to changes to mode 6 for MSPs, the accumulation insoluble mode also 

condensation-aged over to the accumulation soluble mode (mode 3), but this was 

recoded to instead track mixed MSP-sulfate to stay in mode 6 (accumulation insoluble 

mode).  This is then the same for mode 7, so it will not age to mode 4 but will track 

mixed dust/ash-sulfate particles in mode 7, therefore tracking SO4 mass mixing ratio 

and SO4 in this mode.   

As described in Section 3.2, mode 7 now allows condensed sulfate into the coarse 

soluble mode (mode 4) so that sulfate aerosol can condense onto volcanic ash particles.  

This step 3 is necessary, as studies such as Pueschel et al (1994) and Chuan and Woods 

(1984) have shown evidence for sulfate coated ash particles in the stratosphere up to a 

year after the 1991 Mount Pinatubo and 1982 El Chichón eruptions, respectively.  

Therefore, it is important to allow ash particles to be coated in H2SO4 in the model 

simulations carried out in this study.   

 

 



57                  Data and Methods 

 

 

3.3.4 Ash specifics – density, optical properties and size 

The density of the ash is 2650 kg m-3, as this value applies to andesitic tephra, which 

represent the andesitic/dacitic chemical composition and thus density of the 1991 Mount 

Pinatubo ash well.  A density of 2650 kg m-3 lies in the ranges outlined in Beckett et al. 

(2015) where densities of ash with similar chemical compositions ranged from 2300-

2750 kg/m3 in the size range of 1-10 µm.  An ash density of 2650 kg m-3 is also similar 

to Niemeier et al. (2009) who used a density of 2400 kg m-3 for their ash particles to 

simulate the 1991 Mount Pinatubo eruption.  Beckett et al. (2015) also show that 

particle density decreases with particle size (particles 1-10 µm diameter having densities 

2300-2700 kg m-3 and 100-1000 µm diameter particles with densities ~400-1000 kg m-

3) indicating that the smaller size fractions have the higher densities, but this process is 

not accounted for in UM-UKCA.  Ash mass concentrations and number concentrations 

are tracked within each size mode, as with the other components of the other 6 modes.  

At present the ash has the same optical properties as mineral dust.   

With regards to sizes of particles, in Chapter 6, sizes between 0.1 – 10 µm are tested, 

specifically looking at sizes with mean radius 0.1, 0.316, 1, 3.16 and 10 µm.  Initial 

simulations with 50 Tg of ash were performed for the larger size fractions, as this was 

the estimated mass of ash from the Mount Pinatubo eruption by satellites (S. Guo et al., 

2004).  As discussed in the Methods section of Chapter 6 (Section 6.2), a smaller mass 

of 0.05 Tg was injected to account for the smaller ash particles that remained after the 

initial fallout of larger ash particles.  In all simulations ash was emitted equally across 

all injection height grid boxes at the same latitude, longitude and height levels as the 

SO2.  Dispersion models such as the Numerical Atmospheric-dispersion Modelling 

Environment (NAME) that is used by the Met Office Volcanic Ash Advisory Centre 

(VAAC), use a size range between 0.1 – 100 µm, however, a sectional approach is used 

whereby differing amounts of each size fraction can be simulated.   

3.4 Radiation scheme RADAER 

The radiation scheme within the UM uses six shortwave and nine longwave wavebands, 

following the Edwards-Slingo scheme (Edwards and Slingo, 1996; Abraham et al., 

2012).  GLOMAP-mode interacts with radiation through UKCA_RADAER, which is a 

specific routine within the UKCA code framework.  Carrying out Mie calculations 

during runtime would be too computationally expensive, therefore, UKCA_RADAER 

relies on pre-calculated look-up tables for optical properties.  These look-up tables 
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contain scattering and extinction coefficients (m-1), volume fractions (dimensionless) 

and asymmetry parameters (dimensionless) of aerosols in each mode.  Particle radius, 

complex refractive index and wavelength are used to calculate these optical properties.  

These values vary between the modes due to variation in composition and solubility.  

The offline Mie calculations performed for the lookup tables are monochromatic, 

therefore integration over each waveband, as well as over the size distribution, is needed 

for use by the radiation scheme (Bellouin et al., 2013).  RADAER also calculates the 

first and second indirect effects of aerosols and the model allows calculation of all-sky 

and clear-sky radiative fluxes.   

The RADAER module calculates optical properties for each of the modes (Bellouin et 

al., 2013).  The ash is based on dust within the coarse-insoluble mode, therefore look-up 

table values for dust are used for calculating resultant refractive index (Johnson and 

Osborne, 2011), the optical properties for mineral dust from Balkanski et al. (2007).   

3.5 Model configurations and eruption source parameters 

Volcanic aerosol simulations, including sulfate or sulfate and ash, can be carried out 

within interactive stratospheric composition-climate models either in free-running mode 

or with specified dynamics (nudged mode).   

In nudged mode, the winds and temperatures simulated by UM-UKCA are “nudged” 

every 6 hours to follow best-estimate fields from ERA-interim meteorological re-

analysis (Dee et al., 2011).  Using the nudged mode, therefore “nudges” the winds in the 

model to observed winds values, however, other aspects such as aerosols cannot 

feedback via aerosol heating, for example.  This nudged configuration of UM-UKCA 

was developed by Telford et al. (2008) and has been used for interactive tropospheric 

aerosol UM-UKCA simulations (e.g. Turnock et al. (2015); Butt et al.(2017)).   

In Chapter 4 we compare free-running UM-UKCA mid-altitude, mid-SO2 (Timmreck et 

al., 2018) “best-estimate Pinatubo” volcanic sulfate aerosol simulations with equivalent 

specified-dynamics runs.  These specified-dynamics runs nudge the winds and 

temperature for the period prior to the 15th June 1991 Mount Pinatubo eruption in order 

to simulate the exact stratospheric winds that occurred at the time of the eruption.  

Although it is possible to nudge winds and temperature also during the eruption, this 

would suppress any dynamical changes induced by the aerosol heating, thus from 1st 

June onwards the simulations are run in a free-running configuration.  However, 
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nudging to two months prior to the eruption allows accurate wind and temperature fields 

to be in place and allows a settling period prior to the eruption.   

The model simulations used in Chapter 4 are henceforth described as “pre-nudged“ and 

“approximate QBO” and have respective start dates of a) 01/04/1991 and b) 01/02/1996.  

a) started with initial conditions that were nudged until 01/04/1991 and was then free-

running in order to have an initial two month settling period before the eruption.  b) has 

a start date of 01/02/1996 as this particular setup in the model simulates a QBO similar 

to the time of the Mount Pinatubo eruption.  For the volcanically-perturbed Mount 

Pinatubo simulations in this chapter, the volcanic SO2 injection occurred for 1 day with 

the model parameters for both simulations set out in Table 3-3.   

14 Tg SO2 was chosen according to middle SO2 values from Timmreck et al. (2018) and 

in order to compare with recent Mount Pinatubo climate modelling studies (Dhomse et 

al., 2014; Sheng et al., 2015; Mills et al., 2016).  21-23 km was chosen as a median 

level altitude range as stated by Timmreck et al. (2018), as a range of observations show 

the initial cloud was located here (e.g. McCormick, 1992; Antuña et al., 2002).  The 

injection across 12 grid boxes (5°S-15°N) was used to account for spatial distribution of 

the resultant volcanic cloud.  As found in Dhomse et al (2014) it is necessary to spread 

the injection over multiple grid boxes in order to capture the spread of the eruption to 

the southern hemisphere, therefore the injection is between 15°N-5°S.   

Table 3-3 Model parameter setup for approximate-QBO and pre-nudged Mount Pinatubo 

simulations. 
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3.6 Lidar measurements 

Ground-based lidar (light detection and ranging) measurements from the time of the 

Mount Pinatubo eruption are a valuable tool for understanding the vertical dispersion of 

the volcanic cloud (Russell et al., 1979).  The lidar data used for this study were chosen 

based on the availability of observations during the first year following the Mount 

Pinatubo eruption, as the aim was to investigate the initial dispersion.  Many more lidars 

were installed following the eruption, as they were found to be increasingly useful for 

observing potential injection heights of the cloud along with its vertical structure 

(Kremser et al., 2016).  The Lauder, New Zealand lidar was installed in November 1992 

(Sakai et al., 2016), allowing an assessment of the well-developed Mount Pinatubo 

cloud in the southern hemisphere.  However, lidar data from Lauder is not used in this 

thesis, as this thesis is focussed on the early development of the aerosol cloud and data 

for this time for the southern hemisphere was not available.  A description of the 

different lidars used in this thesis and their locations is below.   

In general, lidars consist of a transmitter, receiver and detector (McCormick and Fuller, 

1973).  The transmitter pulses a laser of monochromatic light and the backscatter 

signals are then collected by a telescope within the receiver and these signals are 

counted by the detector (McGill, 2002; Ansmann and Müller, 2005).  As the laser 

interacts with molecules and aerosols, some light is backscattered, with these signals 

indicating the amount of material in the atmosphere, with a higher signal suggesting a 

larger amount of material is present (Northam et al., 1974).  This metric is important 

and extremely useful in the instance of a volcanic eruption and for tracking the 

stratospheric sulfate layer, as the position and relative amount of aerosol in the 

atmosphere can be detected using lidars (Fiocco and Grams, 1964; Fernald et al., 1972).   

The Network for the Detection of Atmospheric Composition Change (NDACC, 2019) 

lidar working group is an international network of lidar research stations providing long 

term, standardised high-quality observational data.  From as early as 1974 to present 

day this group has observed aerosols, stratospheric and tropospheric ozone, temperature 

and water vapour around the globe.  All lidar backscatter ratio (BSR) data used here 

were obtained from NDACC (2019).   

The BSR data from lidar stations used within this research are located at Mauna Loa, 

USA (MLO), Table Mountain, USA (TAB), Toronto, Canada (TOR) and Haute 
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Provence, France (OHP).  Figure 3-1 is a map of these sites in relation to the location of 

Mount Pinatubo and  

 

 

 

 

 

 

Table 3-4 has information on each of the lidar instruments at the time of the eruption.    

 

 

 

 

 

 

Table 3-4 outlines the location of each lidar, where and when each lidar operated (or 

still operates), wavelength and altitudinal range.  Each site has good altitudinal range for 

observing stratospheric aerosols (between 8 and 32 km), whereby they all measure 

backscatter from aerosols from the tropopause and into the stratosphere.   

As each site’s observations have variable start and end altitude and resolution, a 

standardised altitude range of 15-30 km with 300 m resolution was used in order to 

compare these sites directly and in order to assess changes within the stratosphere.  A 

15-30 km range was chosen as all lidars measured within this range and it includes the 

stratosphere, with a 300 m interval chosen as this was the altitudinal interval for all the 

lidar measurements.   
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Figure 3-1 Map locations for each lidar site location (yellow dots) and Mount Pinatubo for 

reference (red triangle). 

 

 

 

 

 

 

 

Table 3-4 Details about the lidar locations, types, operational times and references to 

measurements. 

 

An initial qualitative analysis was performed to note when the aerosol was received at 

each site and any particular patterns in the data.  In order to quantitatively compare 

cloud depth between the model and lidar data, an algorithm for picking out individual 
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layers within the MLO data was used (described in Section 3.6.2).  A linear regression 

was then performed on each half of each layer to determine the change in slope within 

the layers. Using the layer-finding method and regression analysis, the cloud thickness, 

cloud top height and regression of the layers can be calculated.  These metrics allow an 

analysis of the speed of the descent of the layers and of the aerosol cloud thickness 

through time to assess the progression of the aerosol cloud.  In order to gain a further 

quantitative comparison, using methods outlined in Section a.a.i, the BSR was 

converted to 532 nm for all lidar sites and then converted to extinction in order to 

directly compare with extinction values from the model.  BSRs from each of the sites 

were plotted against time for the period June 1991 – February 1992.   

UM-UKCA extinction values are output on a daily timescale between 0-85 km, whereas 

the lidar measurements vary in altitude and time.  It was therefore necessary to 

interpolate the model extinction onto the lidar measurements times and altitudes for the 

same lidar sites within the model for the same time period, in order to directly compare 

between the observations and model extinction.  This was to enable a more direct 

comparison between the observational data collection days and those same days in the 

model data.   

3.6.1 Zubov shipborne lidar data 

In Chapter 4, a comparison of the ground based lidar with shipborne lidar (Avdyushin et 

al., 1993) from July 11th – September 21st 1991 is made.  The Zubov ship took 

measurements of extinction (539.5 nm) between 8-40°N, starting from the West coast of 

Spain, travelling towards Cuba, down towards the West coast of Africa and then back 

North towards Spain (Figure 3-2).   

The timing and latitudes of this ship journey complement the study of the ground-based 

lidar well, as they cover the evolution of the aerosol in the tropical band in these first 

few months following the eruption.   
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Figure 3-2 Map of the course taken by the Professor Zubov ship from the 11th July to the 21st 

September 1991, as outlined in Avdyushin et al. (1993).  Red dots show the direction the ship took 

southwards, with the majority of the journey spent around 20°N (purple) then progressing towards 

the equator and then back towards Spain past the west coast of Africa (blue dots).   

 

3.6.2 Layer analysis algorithm description 

As mentioned previously, the layer analysis algorithm picks out the top and bottom of 

the aerosol layer each day in order to assess the descent and depth of the aerosol cloud 

over time, to assess how the aerosol cloud is progressing.  Figure 3-3 outlines the 

overall picture for how this is achieved, with the method outlined in Appendix A.  The 

code works by finding the top and the bottom of the aerosol layer, accounting for any 

noise (i.e. small peaks above the BSR value for the top and bottom of the layer) using 

the ‘delta’ (Δ) value of 0.01 (dimensionless) and applying this in a loop for each day in 

the model and lidar data for MLO.  Δ = 0.01 was chosen based on finding the average 

increase in BSR above background levels deemed to be noise as opposed to volcanic 

signal.   
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Figure 3-3 Schematic for the layer finding algorithm with backscatter ratio against altitude.  Red 

dots show the points where it would find the top and bottom of a layer, delta shows where the data 

must exceed above the first peak point to avoid areas of noise that may be picked out as layers. 

The use of the Δ value accounts for small increases in the data above the background 

value that are not part of the main aerosol cloud (areas where there are small peaks 

above the “background” values in Figure 3-3).  Systematic bias in the altitudes found 

for the top and bottom of the aerosol cloud are on the order of 300 m, i.e. the altitudinal 

interval, as the value for the top and the bottom of the layer correspond to the first point 

above the background level and the first point where the data goes below the 

background value.   

3.6.3 Backscatter ratio to extinction 

Molecular backscatter may be estimated (Vega and Antuña Marrero, 2017) as follows: 

𝛽𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ (𝜆, 𝑧, 𝜃 =  𝜋) =  2.938 × 10−32
𝑃(𝑧)

𝑇(𝑧)
∙

1

𝜆4.0117
(𝑚−1𝑠𝑟−1), (1) 

where P is pressure (mbar), T is temperature (K), z is altitude (m), λ is wavelength (m), 

and 𝛽Rayleigh is the backscatter coefficient (angular).   

Backscatter ratio is defined (Ansmann and Müller, 2005) as: 

𝑏𝑎𝑐𝑘𝑠𝑐𝑎𝑡𝑡𝑒𝑟 𝑟𝑎𝑡𝑖𝑜 (𝐵𝑆𝑅) =  
𝛽𝑚𝑜𝑙 +  𝛽𝑎𝑒𝑟

𝛽𝑚𝑜𝑙
, (2) 

where 𝛽𝑚𝑜𝑙 is molecular backscatter and 𝛽𝑎𝑒𝑟 is aerosol backscatter.  In order to 

quantitatively compare values between the lidar and the model, BSR needs to be 

converted to extinction.  Conversion from BSR to extinction was chosen due to all 
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model data being measured in extinction and conversion factors from Jäger and Deshler 

(2002; 2003) tested for the period following the Mount Pinatubo eruption, accounting 

for variation in size distribution.  The steps used to convert the lidar backscatter ratio to 

extinction are as follows.   

Molecular backscatter is calculated for each lidar site using the 𝛽𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ equation 

with values of pressure, temperature and altitude from the 12 UTC atmospheric 

soundings from the University of Wyoming soundings website 

(http://weather.uwyo.edu/upperair/sounding.html) for each of the measurement days.   

Aerosol backscatter (𝛽𝑎𝑒𝑟) is calculated using: 

𝛽𝑎𝑒𝑟𝜆 = (𝐵𝑆𝑅 − 1) ×  𝛽𝑚𝑜𝑙𝜆, (3) 

where 𝛽𝑎𝑒𝑟𝜆 is aerosol backscatter at wavelength λ, BSR is backscatter ratio and 

𝛽𝑚𝑜𝑙𝜆 is molecular backscatter at wavelength λ.   

Wavelength conversion from X nm wavelength to 532 nm is calculated using: 

𝛽𝜆1 = (
𝜆1

𝜆2
)

𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡

 ×  𝛽𝜆2, (4) 

where 𝜆1 is the wavelength of the aerosol backscatter to convert to (i.e. the model 

wavelength) and 𝜆2 is the wavelength of the aerosol backscatter to convert from.   

Wavelength exponents to allow for conversion of extinction within wavelength range 

355-1064 nm are obtained from Figure 4 in Jäger and Deshler (2002) (0).   

Extinction at 532 nm is calculated using: 

𝐸𝑋𝑇532 =  𝛽𝑎𝑒𝑟532 × 𝑎𝑒𝑟𝑜𝑠𝑜𝑙 𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 

where EXT532 is extinction at 532 nm and 𝛽𝑎𝑒𝑟532 is aerosol backscatter at 532 nm.  

The aerosol extinction factor, the coefficient calculated to convert from BSR to EXT, is 

taken from Figure 2 in Jäger and Deshler (2003) (0).  The conversion factors used are 

calculated based on wavelength, particle radius, Mie extinction efficiency and particle 

size distribution, accounting for the change in size distribution during the time 

following the Mount Pinatubo eruption.  Calculations were done for height ranges 

tropopause-15 km, 15-20 km, 20-25 km and 25-30 km, refractive indices between 1.4-

1.45 and gravity values of 1.65-1.8.   A single conversion factor (usually 40-50) is often 

used to convert between backscatter and extinction, however the conversion factors 

above vary based on size distribution, discussed further in Section 3.6.4.  The 

http://weather.uwyo.edu/upperair/sounding.html
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conversion of backscatter ratio to extinction was also used as part of the jointly authored 

paper by Dhomse et al. (2020).   

3.6.4 Uncertainties within lidar data 

Retrieval uncertainties primarily occur from the lidar signal due to photon counting, 

molecular density and the size distributions assumed (McGill, 2002).  Uncertainty due 

to photon counting is the largest source of error in lidar analysis and can be explained 

due to the Poisson distribution that is applied to distinguish number of photons collected 

(McGill, 2002).  As signal-to-noise ratio is defined as:  

𝑁

√𝑁
=  √𝑁 

where N is number of photons, a larger number of photons will have a smaller amount 

of relative noise.  This therefore shows that a larger photon count due to increased 

backscattering from volcanic material will have a smaller relative noise ratio.   

Molecular density can have an error of 1% if measured from a radiosonde, increasing to 

~3% if modelled or interpolated (Russell et al., 1979).  If incorrectly interpolated or 

modelled larger errors can occur.   

Size distributions and respective refractive indices within lidar analysis create 

uncertainty as they are often assumed.  For non-volcanic conditions an assumed size 

distribution can be used, as in Russell et al. (1979).  Large changes in size distributions 

and refractive indices caused by volcanic eruptions can, therefore, cause uncertainties in 

lidar analysis.  Overall, however, total relative error decreases with increased aerosol 

loading, such as following a volcanic eruption (Russell et al., 1979).   

The conversion varying technique used in Section 3.6.3 is seen as a more accurate 

technique as it accounts for size distribution variation over time, rather than assuming 

this constant conversion factor as applied by Vaughan et al. (1994), for example.  Size 

distribution is an important factor to account for, as this can vary dramatically following 

a volcanic eruption, due to the increase in both smaller and much larger particle sizes 

(Jäger and Deshler, 2002).  Conversion factors used and a comparison of using varying 

extinction conversion factors through time and a blanket conversion factor of 40 is 

discussed in 0.   

Errors with BSR-EXT are acknowledged in Jäger and Deshler (2002) including particle 

counter error of ~10% and standard deviation from averaging within 5 km times in 4 
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monthly intervals which indicates both measurement error and variability associated 

with changing air masses.  The impact of aerosol concentrations on the derived size 

distribution has a maximum error of 30%, though has an average error of less than 10% 

(Deshler et al., 1993).  Error in aerosol concentration increases with decreasing number 

of particles (Deshler et al., 1993), however, this is not applicable to the period of time 

studied during this thesis due to the large number concentrations following the Mount 

Pinatubo eruption in the first 9 months.   

In summary, the largest errors occur within the conversion of BSR to EXT, though the 

method by Jäger and Deshler (2002) is seen as more accurate than a blanket conversion 

factor of 40, as it accounts for varying size distribution following the Mount Pinatubo.  

Other errors include instrument error and incorrect photo counting, with overall total 

relative errors assumed to be decreased during this period due to increased aerosol 

loading following the Mount Pinatubo eruption.   
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Chapter 4  

Initial dispersion of the 1991 Mount Pinatubo 

aerosol cloud – a ground-based lidar and interactive 

composition climate model comparison 

4.1  Introduction 

Volcanic eruptions are capable of injecting tens to hundreds of teragrams of ash, sulfur 

dioxide (SO2) and other chemical species into the atmosphere (e.g. McCormick et al., 

1995; Stenchikov et al., 1998; Ramachandran et al., 2000; Timmreck, 2012).  When 

explosive enough, eruptions can inject ash and SO2 into the stratosphere and cause 

significant enhancement to the stratospheric aerosol layer (Deshler, 2008; Vernier et al, 

2011).  Scattering of solar radiation from the volcanically enhanced stratospheric 

aerosol layer cools the surface (~0.25°C for the 1991 Mount Pinatubo eruption (Hansen 

et al., 1992; Hansen et al., 1996; Stenchikov et al., 1998), and causes changes to 

circulation and other stratospheric trace species leading to complex indirect effects on 

Earth’s climate (Stenchikov et al., 1998; Robock, 2000; Ramachandran et al., 2000; 

Timmreck, 2012; Kremser et al., 2016).  For major tropical eruptions (defined as VEI 

>5, (Newhall and Self, 1982), the continued upwelling into the stratosphere causes a 

long-lived “tropical reservoir” of volcanic aerosol (e.g. Grant et al., 1996).  The 

confinement of this reservoir results in slow dispersion to the mid-latitudes, which, in 

turn, leads to global dimming reducing below 1 Wm-2 in the two years after the eruption 

(e.g. Hansen et al., 1996).   

The dispersion of volcanic aerosol clouds from major tropical eruptions is linked to the 

initial confinement of aerosol within the tropical reservoir (e.g. Grant et al., 1996), 

determining, to a large extent, where volcanic aerosol is dispersed and over what 

timescale (Trepte and Hitchman, 1992).  The more we understand about the initial 

dispersion of past eruption clouds, the better we can constrain interactive stratospheric 

aerosol models to fit observations and the more confidently climate models can then 

attribute the impacts from past eruptions.  Future climate models with interactive 



70      Initial dispersion of the 1991 Mount Pinatubo eruption  

 

 

volcanic aerosol will be better equipped to predict the effects for a future eruption of a 

similar magnitude.   

Mount Pinatubo is situated at 15°N in the Philippines and, after a series of smaller 

eruptions from 7-12th June, on June 15th 1991 it progressed to a cataclysmic eruption, 

injecting approximately 20 Tg of SO2 (estimated 14-23 Tg (S Guo et al., 2004)) 

between 25-31 km into the atmosphere (Bluth et al., 1992; Hansen et al., 1992; Read et 

al., 1993).  This eruption is still the only widely observed Volcanic Explosivity Index 

(VEI) 6 eruption with in-situ measurements from high-altitude aircraft (e.g. Pueschel et 

al., 1994) as well as satellite and ground-based lidar observations of SO2, sulfate aerosol 

particles and ash particles (e.g. McCormick et al., 1995; Arfeuille et al., 2013; Kremser 

et al., 2016).  Additionally, this is the largest eruption observed to date with ground-

based lidars located around the world (Ansmann et al., 1997; Antuña et al., 2002).   

In the tropics, the volcanic sulfate aerosol particles were so reflective that space borne 

passive instruments, such as SAGE II, became saturated and were only able to measure 

the upper part of the aerosol cloud (e.g. Thomason and Osborn, 1992).  Globally located 

ground-based lidar has been used for many years in atmospheric science (Wandinger, 

2005) and at the time of the Mount Pinatubo eruption they were invaluable in observing 

the global dispersion of a thick cloud of stratospheric ash and sulfate aerosol.  Ground-

based lidar allows the stratospheric column to be observed at the same location over 

time, with the Mauna Loa observatory measuring both the 1982 El Chichόn and 1991 

Mount Pinatubo major volcanic aerosol clouds (Barnes and Hofmann, 1997).   

In contrast to the SAGE-II measurements, the laser profiling lidar instrument penetrates 

the full depth of the Mount Pinatubo aerosol cloud (including both ash and sulfate 

aerosol particles) and provides detailed, high-resolution information on the progression 

of the tropical reservoir of volcanic aerosol after the eruption.  Lidars provide an 

accurate vertical analysis with many extending up into the stratosphere.  Analysing lidar 

measurements at different latitudes allows a constraint on model predictions of the 

volcanic cloud dispersion.   

Although this means observations are only from one location, ground-based lidars are 

applied to observe the temporal development of clouds and other atmospheric 

structures.  Ship-borne (Avdyushin et al., 1993; Stevens et al., 1994) and aircraft-borne 

lidar measurements (e.g. Winker and Osborn, 1992; Browell et al., 1993) of the Mount 

Pinatubo aerosol cloud were also made, measuring a broader latitude range of the 
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structure and spatial variability of the volcanic cloud.  These were deployed only for 

limited time-periods (July 1991 and January-March 1992 for Winker and Osborn 

(1992a) and Browell et al. (1993), respectively), essentially sampling the volcanic cloud 

progression at different points.   

While instruments such as SAGE II could not be used to examine the vertical 

distribution of much of the tropical aerosol cloud, it still provided observations of the 

spatial coverage of the upper extent of the Mount Pinatubo aerosol cloud and was able 

to measure the full extent of the cloud in mid-latitudes.  The measurements show that 

the Mount Pinatubo cloud took three weeks to cross the equator and disperse globally 

(Bluth et al., 1992; McCormick and Veiga, 1992; Robock, 2000; Guo et al., 2004).   

The 1991 Mount Pinatubo eruption has been studied extensively; however, most model 

studies have tended to focus on the long-term trends (a year or more) following the 

eruption (Ansmann et al., 1997; Stenchikov et al., 1998; Arfeuille et al., 2013b; Schmidt 

et al., 2018).  This study focuses on the initial dispersion following the eruption, 

specifically June 1991-February 1992, in order to see how the tropical volcanic aerosol 

cloud evolved in the first nine months on a near-daily timescale.  An assessment of the 

altitude and timing of the dispersion to mid-latitudes is also conducted, together with a 

comparison of ground-based and ship-borne lidar measurements to interactive 

stratospheric aerosol simulations with a coupled chemistry and aerosol model.   

The Historical Eruptions SO2 Emission Assessment (HErSEA) Pinatubo interactive 

stratospheric aerosol simulations are one of the co-ordinated multi-modelled 

experiments in the Interactive Stratospheric Aerosol Model Intercomparison Project 

(ISA-MIP) (Timmreck et al., 2018).  This analysis tests the accuracy of the UM-UKCA 

mid-altitude (21-23 km), mid-SO2 mass (14 Tg) HErSEA simulations.  Moreover, the 

analysis will aid our understanding of the impact that nudging to meteorological re-

analysis fields has on interactive volcanic aerosol simulations.  The evaluation also 

relates to the UKCA aerosol module use in the European “IFS-GLOMAP” system, 

which has been applied to simulate other eruption clouds (Remy et al., 2018; Remy et 

al., 2019) and to understand similarities and differences between models that conducted 

in the Model Intercomparison Project on the climatic response to Volcanic forcing 

(VolMIP) multi-model interactive stratospheric aerosol Tambora experiment 

(Zanchettin et al., 2016; Marshall et al., 2018) which showed a large range in sulfate 

deposition, for example (Marshall et al., 2018).   



72      Initial dispersion of the 1991 Mount Pinatubo eruption  

 

 

Lidar observations from the Mauna Loa Observatory, USA (MLO), Table Mountain, 

CA, USA (TAB), Toronto, ON, Canada (TOR) and Observatoire de Haute Provence, 

France (OHP) are used to investigate the initial dispersion of the Mount Pinatubo sulfate 

and ash cloud in the stratosphere.  Analysis of the initial dispersion allows us to see how 

the cloud evolves in the first weeks and months after the eruption.  The progression of 

the volcanic cloud was significantly affected by the nature of the vertical wind shear in 

the tropics at this time.  As explained in Section 2.2.3 the QBO represents a slowly 

descending quasi-periodic oscillation between easterly and westerly winds and is the 

leading mode of dynamic variability in the tropical stratosphere.  Within the tropical 

upwelling inherent with the BDC (e.g. Butchart, 2014) the initial transport of volcanic 

aerosol from tropical eruptions is essentially driven by the prevailing phase of the QBO, 

which was transitioning into strongly easterly in June 1991 (Dee et al., 2011; Dhomse et 

al., 2014).  This phase involved the easterly winds strengthening with altitude (easterly 

shear), causing the upper edge of the volcanic cloud to be transported fastest.  As 

mentioned in Section 2.2.3, the easterly QBO phase tends to restrict meridional 

transport via its effects on the sub-tropical barrier, with the Mount Pinatubo cloud 

remaining confined in the tropical region until the seasonal cycle of the BDC shifts into 

predominantly northern hemisphere transport from September 1991 into early 1992.   

Comparing the lidar measurements at MLO to those from northern mid-latitude sites 

(Table Mountain (TAB), Toronto (TOR), Haute Provence (OHP)) allows a detailed 

assessment of the temporal progression of the volcanic cloud, including both ash and 

sulfate aerosols, from a near-tropical site to northern mid-latitude sites.  By comparing 

the observations to simulations from UM-UKCA it is possible to see how well the 

model (simulating just sulfate aerosols in this chapter) represents observations, both 

qualitatively and quantitatively.  Comparisons within this chapter are of extinction (km-

1) in the mid-visible (550 nm), the wavelength of maximum solar radiation, over time 

and altitude, in order to obtain a quantitative comparison between the lidar observations 

and the model simulations.   

Another test for the model is to assess the impact of an approximate QBO, whereby the 

initial conditions of the model are set to a time when winds are close to reality and a 

pre-nudged QBO, where winds are nudged to 2 months before the eruption.  Accurately 

producing the wind and temperature patterns for the initial conditions at the time of the 

Mount Pinatubo eruption is important, as these conditions have a large impact on the 
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progression of the volcanic aerosol cloud.  Testing the impact of different initial 

conditions at the time of the Mount Pinatubo eruption allows an assessment of how 

different initial conditions may affect the progression of the volcanic aerosol cloud.   

Overall the aims of this chapter are to:  

1) Compare ground-based lidar observations from the near tropics and northern 

hemisphere sites against one another in order to understand when the volcanic cloud 

was observed at different locations around the globe.   

2) Compare ground-based lidar observations to the UM-UKCA to understand how the 

specification of the QBO (approximate-QBO or pre-nudged) influences the volcanic 

sulfate cloud at these sites.   

These comparisons allow for an improved understanding of the progression of the 

volcanic cloud from the initial sheared plume structure, when the cloud stretched from 

the Philippines to Caribbean at the end of June (S Guo et al., 2004) to then becoming a 

confined tropical reservoir of volcanic aerosol (Grant et al., 1996) and the stages of the 

subsequent transport of the aerosol cloud to the northern hemisphere mid-latitudes.  In 

further analysing the Mount Pinatubo cloud from its transition from a concentrated 

plume through the stages of global dispersion (specifically June 1991-February 1992), 

the aim is to better understand how these major tropical eruptions ultimately impact on 

climate.   

4.2 Data and Methods 

As outlined in Section 3.6 this chapter focuses on the lidar sites at MLO, TAB, TOR 

and OHP with a comparison to model data from UM-UKCA.  Shipborne extinction data 

from Avdyushin et al. (1993) is also investigated in this chapter, as this ship passed 

close to the equator (8°N) and through the near-tropics and mid-latitudes.  The 

shipborne data is from the Russian lidar that was on board the “Professor Zubov” ship 

(herein referred to as “Zubov”).  This lidar operated at a wavelength of 539.5 nm and 

took measurements between the 11th July 1991 and 21st September 1991 on 48 nights, 

traversing between latitudes of 40°N in the Atlantic Ocean down to the west coast of 

Africa before returning to the northwest of Spain, as shown in Chapter 3.  The journey 

largely traversed an area within the latitudes of 8-22°N.  The timing and the latitudes of 

this ship journey complement this study well, as they show the evolution of the aerosol 

in the tropical band following the eruption in these first few months.   
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As explained in Chapter 3, the modelling research tool used in this thesis is the 

interactive stratospheric aerosol configuration of the UM-UKCA composition-climate 

model (Dhomse et al., 2014; Mann et al., 2014; Marshall et al., 2018; Marshall et al., 

2019), with comparisons to the lidar based on the aerosol extinction profiles at 550 nm 

diagnosed by the model.  When comparing the model to observations, the backscatter 

ratio (BSR) measured by the lidars (ground-based and shipborne) is converted to 

extinction using the methods outlined in Section 3.6.3.  In order to compare more 

directly between lidar measurements and model simulated extinction, model data is 

converted onto the same altitudinal range (15-30 km, 300 m resolution) and temporal 

range, i.e. the days when measurements were taken.  As the model simulated extinction 

is interpolated onto the same time and altitude resolution as the lidar measurements, a 

direct comparison is possible.   

As described in Chapter 3, the test cases for the model use the mid-range values of 14 

Tg SO2 and 21-23 km injection height from Timmreck et al. (2018).  In order to 

investigate the importance of stratospheric winds on the dispersion of the cloud, the 

initial conditions were varied between an approximate-QBO and a pre-nudged QBO 

(outlined in Chapter 3).   

The approximate-QBO simulation analysed here is one of 3 ensemble members in the 

Mount Pinatubo simulations shown in Dhomse et al. (2014), where all 3 runs are 

initialised from June 1st in different years within a 15-year control TimeSlice 

integration, the years selected to produce a similar wind pattern to the time of the Mount 

Pinatubo eruption.  The ensemble member in this study has a start date of 01/02/1996 

from the TimeSlice 2000 (TS2000) control, however, the TimeSlice run has repeating 

year-2000 conditions, hence the point of re-initialisation does not represent 1996 

conditions.  In contrast, in the pre-nudged QBO case, the initialisation continues from 

the free-running with an “interim nudged control run” for at least 2 years until 2 months 

prior to the eruption, allowing some time to progress into the free-running mode of the 

model.  Both of the model simulations are free-running, which ensures that the transport 

of the aerosol cloud is fully consistent with the effects from the radiative heating from 

the aerosol.   

Given the pattern noted in the observations at MLO (Section 4.3.1), a regression 

analysis is performed on the descending layers of aerosol that are found, both in the 

observations and in the model, to provide a further quantitative comparison between the 



75      Initial dispersion of the 1991 Mount Pinatubo eruption  

 

 

observations and the model.  The regression is split between the first and second half of 

the descending pattern that is seen ( 

Figure 4-1), as they show a steep initial descent before flattening nearer the tropopause.  

A regression line is fitted for each slope (slope denoted as downward red arrows in 

Figure 4-1) in each descending layer, with the resulting value demonstrating the extent 

of the slope (where 0 = flat line, 1 or -1 = vertical line) to quantify the steepness in 

descent of the layers.  The output of this regression is to determine changes in slope, 

with negative values indicating the downward trend of the data.  Larger values indicate 

a steeper gradient on the layers with smaller values indicating a “trailing off” of the 

layers.  The purpose of this analysis is to compare quantitatively the descent of the 

volcanic cloud between the observations and the model simulated vertical profiles, as an 

assessment of the cloud structure as it descends towards the tropopause.   

 

Figure 4-1 Schematic for how the regression analysis is performed. Orange cloud depicts the 

aerosol cloud pattern noted at MLO, red arrows indicate each slope analysed. 

 

4.3 Results and Discussion 

The results shown in this section begin with a description of how the Mount Pinatubo 

aerosol progressed in the tropics, comparing the signals in the near-tropical ground-

based lidar data from Mauna Loa and ship-borne lidar data from the Zubov cruise 

through the North Atlantic (see Section 3.6.1).  This comparison allows an assessment 

of early tropical measurements (Zubov) with a near-tropical site (MLO) to establish a 

more detailed analysis of the movement of volcanic aerosol out of the tropical reservoir.  
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This is followed by discussion regarding the detection of the volcanic cloud at each of 

the northern hemisphere sites, in relation to the timing of the dispersion from the 

tropical reservoir, providing a conceptual basis for comparisons to the model 

simulations.  The model analysis is primarily focused on the differences between the 

approximate-QBO and the pre-nudged simulations.   

4.3.1 Tropical lidar signal – Phases of the cloud dispersion and comparison 

of ground-based and ship-borne lidar with model simulations 

Figure 4-2 shows the BSR profiles measured by the ground-based lidar at MLO from 

June 1991-February 1992.  The volcanic aerosol cloud is first detected at MLO on July 

1st 1991, travelling 16,140 km in two weeks.  During the first 2 months after this initial 

signal of the cloud, the measurements show there are three descending structures, from 

here on described as “layer 1, 2 and 3” (outlined in Figure 4-2).  Although the structure 

of each layer is descending, because of the steep vertical gradient in the easterly winds, 

the cloud is effectively being stretched, with air masses in the upper extent of the 

volcanic cloud transported faster than in the lower part of the cloud (see also discussion 

in Section 2.2.3).  The regression analysis mentioned in Section 4.2 also allows an 

assessment of this cloud stretching.  As part of this analysis, we define the period where 

these layers are apparent (July 1st – September 15th 1991) as the “first phase” of the 

global dispersion of the Mount Pinatubo cloud, where the structure is highly 

inhomogeneous.   

The first of the 3 layers above MLO is detectable in the measurements for 24 days (1st-

25th July 1991), beginning as a small 900 m deep signal between 22.3 and 23.2 km 

before increasing to ~3km deep from 21-25 km within 2 days of the initial signal being 

received.  The upper portion from 23-24 km has the strongest signal, with extremely 

high backscatter (BSR >102) with the lower 21-23 km showing BSR values ~ 101.  This 

trend of the highest signal being in the upper part continues for the duration of this first 

MLO layer detection, with values in the upper part staying above 20 (101.3) throughout 

and lower part values staying around 10 (101).  When considering the full vertical extent 

of this first layer, the overall depth is 7.5 km (17.5-25 km), but with an average “layer-

thickness” of 2.4 km.   
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Figure 4-2 Ground-based lidar backscatter ratio at MLO, initial layers are denoted with red 

arrows and different phases with greyed boxes. 

 

The second MLO layer appears on 22nd July, whilst the lower extent of the first MLO 

layer is still present, again showing significant BSR values above 100 between 22-26 

km.  This second MLO layer ends on 25th August with a slightly deeper layer-thickness 

than the first layer (~4 km).  The high BSR values are also more consistent throughout 

this second layer with a deeper extent of values > 25 (101.4) through the middle of the 

layer, whereas values in this mid-layer stay ~ 10 (101), as in layer 1.  The overall depth 

of this second layer is 17.5-26.5 km, with the highest values again appearing at the 

beginning of the layer.  The conversion of volcanic SO2 to sulfate aerosol taking 30-45 

days and layer 2 having higher BSR values in the lower half of the cloud than seen in 

layer 1 may be due in part to the SO2 still being oxidised in July, when the first layer 

was detected over MLO.  As discussed by Bluth et al. (1992), ~60% of the erupted SO2 

still remained in the volcanic aerosol cloud by July 1st 1991, thus these higher values 

during layer 2 are likely areas of increased sulfate aerosol.   

The third layer first appears on 9th August at 26.5 km with a similar initial thickness to 

layer 2 (4km) before deepening with an average depth of ~5 km in mid-August 1991.  

This gradual increase in layer thickness may be indicating the fall speed of the largest 

particles in the cloud slowly sedimenting whilst smaller particles remain at the upper 

extent of the layer.  Note that a 100 nm particle sediments ~1 km in 6 months whilst a 

500 nm particle sediments ~1 km in around 1 month (Junge et al., 1961 and Section 

2.2.5).  As with the other two layers, the initial, higher altitude values have the highest 

BSR values 64-100 (101.8 - 102) with values lessening throughout the layer, but 

remaining mostly >10 (101), still at significantly high values.  The period of these initial 



78      Initial dispersion of the 1991 Mount Pinatubo eruption  

 

 

three MLO layers is defined in Figure 4-1 as Phase 1, when the cloud still has BSR 

values in excess of 100 (red values) within the distinct, inhomogeneous layered 

structures.   

Since there are still some similar areas of these very high BSR values (>102) at 24.5-

25.5 km in mid-September, this is defined as the end point for Phase 1 of the dispersion 

of the Mount Pinatubo cloud.  After Phase 1 showing very defined layers begins Phase 

2 of the volcanic cloud, when the cloud is becoming more homogenous and well-mixed.  

Phase 2 is a transition phase that is defined visually, beginning with a fourth layer that is 

noticeable within the MLO lidar profiles at the end of August 1991, showing the highest 

BSR values at the lower portion of the cloud.  Potentially, this could indicate a further 

progression of the size distribution of the particles, with slow sedimentation, and the 

associated size-sorting effect gradually changing the vertical profile of the backscatter 

signal, from initially the highest values at the upper extent of the cloud, to then this 

decreasing profile in the 4th layer.  The head of the 5th layer is then mixed with the 

middle and tail of the cloud, the stirring of the wind shear causing more cloud mixing 

with some periods of ~2 km deep regions of larger BSR values (orange, BSR>25).  

After mid-November 1991 there are only thinner regions of larger BSR values, defined 

in this study to be “Phase 3”, when the cloud is more uniform and well-mixed.  Some 

variability can be seen in January-February 1992, though BSR values and altitudes are 

similar to values at the end of 1991.   

The three phases following the eruption are shown in Figure 4-2 in the form of grey 

boxes.  In summary, the first phase spans from July 1st – September 9th 1991 with the 

three descending layers in this phase that start at 25, 25.5 and 26 km, respectively, and 

descend to 18, 19 and 20 km, respectively.  The second phase occurs from August 23rd – 

November 28th 1991, as the cloud is evolving into becoming a fully mixed aerosol 

cloud.  Phase 2 shows some indication of a fourth layer, but much less distinct in both 

shape and gradient than the layers seen in Phase 1.  Phase 2 then begins to become more 

homogeneous, a potential transitional phase between the highly inhomogeneous first 

phase and comparatively more homogeneous later phases.  The third phase indicates 

when the volcanic aerosol is fully mixed within the tropical reservoir, with the lidar 

measurements showing a more homogeneous signal, no obvious layer structures and an 

altitudinal span that extends to an 8.5 km depth, between 18.5-27 km.   
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The phases seen in this analysis are primarily driven by the nature of the vertical wind 

shear, but may also be related to the microphysical sorting of the cloud itself, with 

different sized particles falling at different speeds, potentially impacted by volcanic ash.  

Phase 1 indicates the inhomogeneous stage in the cloud dispersion, when the cloud is 

still plume-like, becoming increasingly stretched by the wind shear.  The signal appears 

disordered in the lidar signal, as the volcanic material is still circling the globe, with a 

composition which is likely to still contain sulfate and ash from the initial eruption.  

When comparing to the model simulated global SAOD plots (section 4.3.9) it is 

important to consider that whereas the easterly wind shear is the primary reason for the 

layered structure seen in the measurements, MLO is at 19°N, therefore on the edge of 

the tropical reservoir (Barnes and Hofmann, 1997).  The location of MLO means the 

layers could potentially indicate in part filaments of the Mount Pinatubo cloud being 

exported towards the midlatitudes on the edge of the developing tropical reservoir 

(Trepte et al., (1993).  The successive layers and phases of transition are occurring as 

the cloud is wrapped around the Earth, with the upper edge of each new layer becoming 

further ahead of the lower edge.  In this analysis, the second phase is defined as the end 

of these layers and the start of the cloud becoming more homogeneous, plus the timing 

of the tropical reservoir spilling over into the northern hemisphere.  The third and final 

phase by mid-late November 1991 is the stage at which the cloud begins to become 

homogeneous, the point at which the cloud stabilises into a fully mixed cloud of 

volcanic aerosol in the tropical reservoir of the stratosphere (e.g. Grant et al., 1996).    

4.3.2 MLO backscatter to extinction comparison to Zubov shipborne lidar 

data  

This section explores the initial progression of the Mount Pinatubo cloud further, 

comparing the signal seen in the MLO observations with the shipborne lidar 

observations (section 4.2) that measured the tropical stratosphere above the Caribbean 

in July/August (Phase 1) and in a transect across the tropical North Atlantic in late 

August and early September (Phase 2).  

Figure 4-3 shows a comparison between shipborne lidar data from the Zubov ship 

(Avdyushin et al., 1993) and the MLO ground-based lidar during the period spanning 

July 12th 1991 – September 20th 1991.  The Zubov shipborne lidar data spans between 

8-40°N, the majority of this period between 8-20°N.  The initial phase in the 2nd half of 

July (17th-31st July) was towards Cuban waters (19-21°N, 58 to 74°W), with a wider 
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loop around the Caribbean in the first half of August (2nd-22nd August) a southward 

portion reaching 10-14°N on 9th-12th August, and a trans-Atlantic leg (25th August to 9th 

September) towards North Africa at 15-20°N in late August, progressing to measure in 

the core of the tropical reservoir (8-15°N) in early September.   

The majority of these measurements are in the latitude range 18-22°N, with the 

observations from the Caribbean showing obvious similarities to layers noted in the first 

phase of the MLO measurements.  However, the Zubov shipborne lidar had two periods 

that sampled the Mount Pinatubo volcanic cloud at ~10°N (first 9-12th August and then 

again in early September), giving an opportunity to understand how far into the tropical 

reservoir the layers observed at MLO progressed.   

The first layer is not detected at all in these first days when the ship was at higher 

latitudes but the second is detected strongly when the ship reached latitudes closer to the 

equator (~19⁰N), suggesting this pattern was only detectable around the equator region.   

The earliest Zubov measurements of the volcanic cloud (18th July) detected the trailing 

end of the first MLO layer at 16-18 km, then with the second and third MLO layers seen 

in the Zubov data slightly earlier as the ship began measuring on 12th July and did not 

reach 20⁰N until 18th July, but the second and third layers can be seen clearly in both.  

 

Figure 4-3 - Extinction values for (A) Zubov shipborne lidar and (B) MLO (expansion of Figure 

4-2) from 12th July - 21st September 1991. 
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With the Zubov measuring from the North Atlantic, around 10,000 km to the west of 

MLO, the expected lag (based on the global circulation of the volcanic aerosol cloud) in 

detecting the cloud between the two datasets can be seen, with the Zubov data showing 

the second and third of these 3 and 7 days earlier than they are detected at MLO 

(detected from Zubov on 19th July and 2nd August and at MLO on 22nd July and 9th 

August, respectively).  Both sets of measurements show detection of the second layer at 

26 km descending to 19 km within a month (19th July – 18th September and 22nd July – 

19th September, respectively).   

The maximum extinction values for each observational dataset was at the leading edge 

of layer 3 for Zubov and the leading edge of layer 2 for MLO at 0.4 for Zubov and 0.2 

for MLO on 2nd August and 24th July, respectively.  The layer values for each site are 

similar.  The layers themselves range from 0.08-0.13 with surrounding values of 0.001 

and below, signifying a factor increase of 80-130 between background extinction values 

and the extinction values of the volcanic layers.   

4.3.3 Northern hemisphere mid-latitude lidar measurements 

In this section, we explore the timing of the dispersion of the Mount Pinatubo cloud to 

the northern hemisphere mid-latitudes (Table Mountain (TAB), Toronto (TOR), Haute 

Provence (OHP)), and the nature and variability of the BSR profile of the volcanic 

cloud measured by lidar sites in Europe and North America.  The purpose is to 

understand better the timing of the hemispheric dispersion in relation to the phases of 

the progression of the cloud in the tropics.   

Figure 4-4 also shows BSR values for MLO, the 3 layers and phases defined in the 

previous section, alongside the TAB, TOR, OHP, mid-latitude lidar profiles.  All three 

mid-latitude lidars show that during July to mid-August, when MLO had two very 

strong layers at BSR>100, there was some early dispersion of the volcanic cloud in the 

lowermost stratosphere (15-17 km), with BSR enhanced by a factor of 2 to 3 over 

background (BSR ~2-3), as discussed for example by Deshler et al. (1992) and Dhomse 

et al. (2014).  The much higher BSR values (>7, pale green) occurred later within 

deeper layers only two months after the eruption at TAB (21st August 1991), three 

months after at OHP (20th September 1991) and four and a half months after at TOR 

(29th October 1991) with values > 3 (100.5).   
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Figure 4-4 Ground based lidar backscatter ratio plots for a) MLO, b) TAB, c) TOR and d) OHP 

from June 1991 - February 1992.  Blue diamonds at 30 km show measurement dates.  Red triangle 

shows eruption date and red arrows show layer duration. 

 

Whereas the MLO signal was organised into distinct structures, the Mount Pinatubo 

signal at TAB and TOR is much more variable with the height of maximum BSR at 25 

km on occasion, and other times at 20 or 22 km, particularly during September 1991.  

The higher frequency of the OHP data confirms this variability continued into October 

1991 before a far more homogenous profile is evident in November, with BSR values 

above 101 confined between 20-22 km, descending to 18-20 km in January 1992.  At 

TOR, there were only a limited number of measurements in November 1991 to 

February 1992, with only 12 soundings at TAB after November 1991.  The initial strong 

variability in the detection of the volcanic cloud at the different lidar sites indicates the 

initial filamentary structure of the cloud as it dispersed globally.   

This disordered structure in the mid-latitude ground based lidar observations are 

consistent with those observed at Garmisch (Germany) and Tsukuba (Japan) (Jager et 

al., 1995).   Comparing to high latitude sites such as Thule (Greenland, 76.5°N, di Sarra 

et al., (1998)), there the cloud had a longer initial transport in a shallow and variable 

layer, a much deeper cloud transported in the spring.  BSR values continuing to exceed 
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6 in April 1992 show that the polar stratosphere contained a large amount of volcanic 

aerosol only after the polar vortex broke up (di Sarra et al., 1998).   

The mid-latitude BSR values are much lower than at MLO in the first months following 

the eruption, due to the structure of the tropical reservoir and related to the phase of the 

QBO.  Issues such as instrument error are possible, however, so values should be 

considered with some caution, with exact errors difficult to quantify.  At MLO, the 

maximum backscatter stayed at ~25 km throughout the 2nd and 3rd phase.  This persisted 

as a result of tropical upwelling from the BDC, with aerosol heating also leading to 

stronger upwelling, promoting greater transport to higher northern hemisphere latitudes 

(Trepte et al., 1993).  The initial detection seen at TAB at 25 km is indicative of a 

filament from this highest backscatter altitude, with the relative strength of the filaments 

at the different sites consistent with the BSR gradient in the tropical reservoir.   

This analysis indicates how the volcanic aerosol from the Mount Pinatubo cloud 

progressed in the first 8 months following the eruption in both ground-based and ship-

borne lidar observations.  The pattern at MLO has been differentiated into three separate 

phases that occurred following the eruption, the first of which has distinct descending 

layer structures.  The sites at mid-latitude show a significantly varied structure, as 

filaments of volcanic aerosol are transported at different altitudes from the tropical 

reservoir, with the relative strength of these filaments consistent with the BSR profile of 

the tropical reservoir.   

4.3.4 Model comparison to MLO, TAB, TOR and OHP 

The following section outlines a comparison between the modelled extinction values at 

550 nm from UM-UKCA and the ground-based lidar measurements discussed in the 

previous sections.  Conversion factors for converting between backscatter and 

extinction are varied through time to account for changes in size distribution, as in Jäger 

and Deshler (2003).  The lidar in extinction (550 nm) is then compared with model 

simulated extinction from the two different initial condition methods.   

The maximum extinction at MLO from the lidar, pre-nudged model run and 

approximate-QBO model run is 0.2, 0.11 and 0.18, respectively, with the observations 

and pre-nudged conditions showing maximum extinction values on July 21st 1991 and 

the approximate-QBO simulation 4 days prior to this date.  With reference to the layers, 

Figure 4-5 shows that the model layers are thicker and less distinct with a higher cloud 
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top than the observations (by 2.5 km in layer 2 and 3) in both simulations.  

Nevertheless, both the lidar and the model do show descending layer structures.   

The shape and thickness of the layers and timings of the occurrence of the layers are 

closer to observations in the pre-nudged conditions simulation than in the approximate 

QBO simulation, with the second and third layers appearing a week before the 

observations in the approximate-QBO simulation.  A closer match to observations 

suggests that the pre-nudged conditions allow accurate wind shear and, therefore, 

dispersion closer to what was seen in reality.  Initially, the first layer matches well 

(Figure 4-5d), as it is the thinnest of the three (2 km thick).  The layer top is marginally 

above 24 km and the bottom of the second and third layers are also between 18-19 km.  

The second and third layers thicken over time as in the observations, however, they 

appear thicker (4.6 and 6.3 km, respectively) than those in the observations (3.1 and 3.7 

km, respectively) and their layer top is far higher (27.8 and 28.6 km in the model 

simulations, 23.2 and 25.6 in the observations).  The timings of the phases in the pre-

nudged model are more spread out than in the observations, though still showing a 

distinct Phase 1, less homogenous Phase 2 that develops into a more homogeneous 

Phase 3.  The biggest differences are seen between the timing of cloud detection and 

height of the layers, outlined in Table 4-1.   

At TAB (Figure 4-6) the lidar shows a stronger signal from the beginning of September 

1991 onwards (10-2 and greater) whereas this is closer to 10-3 in the model before 

having a stronger signal than the observations from mid-September onwards.  The TAB 

data shows values around 10-2 at 17 km resemble observations from Boulder, Colorado 

(Post et al., 1992) at the same latitude.   

At TOR (Figure 4-7) the approximate-QBO model simulation corresponds with 

observations slightly better, though neither model run matches observations as closely 

as the other lidar sites.  The sparseness of the data at this lidar site also means that the 

altitude and strength of the volcanic signal is difficult to distinguish.  Observations 

indicate that the volcanic aerosol was seen at lower altitudes (15-17 km) at the end of 

July, although values >10-2 were not seen until November 1991.   

The overall pattern seen at OHP (Figure 4-8) is similar between the observations and 

the model, notably a strong signal (10-2) ~20 km at the beginning of November that is 

fairly continuous until February 1992.  There also appears to be a greater signal closer 
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to the tropopause (~15 km) at each of the northern hemisphere sites in the lidar 

extinction.   

Table 4-1 - MLO layer comparison between lidar and model, model altitude range in brackets 

denotes pre-nudged model run 

 

Layer Lidar period 

covered 

Observed vertical 

extent of volcanic 

cloud (km) 

Model period 

covered 

Modelled vertical 

extent of volcanic 

cloud (km) 

1 July 1st – July 25th 

1991 

18-25 June 30th – July 24th 

1991 

17-24.5 (17-25)  

2 July 22nd – August 

19th 1991 

18-25.5 July 15th – August 

13th 1991 

17.5-28 (17-27) 

3 August 9th – 

September 12th 1991 

19-26 July 28th – August 

30th 1991 

18-30 (19-28.5) 
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Figure 4-5 Extinction (/km) values for Mauna Loa (MLO) from June 1991 - February 1992.  a) Lidar with varying BSR-EXT values over time, b) Model 

simulation with approximate-QBO, c) Model simulation with pre-nudged conditions, black diamonds in  (a) show days when measurements were taken.  
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Figure 4-6 Extinction (/km) values for Table Mountain (TAB) from June 1991 - February 1992.  a) Lidar with varying BSR-EXT values over time, b) Model 

simulation with approximate-QBO, c) Model simulation with pre-nudged conditions, black diamonds in  (a) show days when measurements were taken.  
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Figure 4-7 Extinction (/km) values for Toronto (TOR) from June 1991 - February 1992.  a) Lidar with varying BSR-EXT values over time, b) Model 

simulation with approximate-QBO, c) Model simulation with pre-nudged conditions, black diamonds in  (a) show days when measurements were taken.  
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Figure 4-8 Extinction (/km) values for Haute Provence (OHP) from June 1991 - February 1992.  a) Lidar with varying BSR-EXT values over time, b) Model 

simulation with approximate-QBO, c) Model simulation with pre-nudged conditions, black diamonds in  (a) show days when measurements were taken.  
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4.3.5 Wind profiles for June 1991 

In order to justify the selection of the pre-nudged model simulation as the choice of 

initial conditions for this study and future chapters, Figure 4-9 shows a wind plot 

comparison between Trepte et al. (1993) and the pre-nudged and approximate-QBO 

model simulations.  As this figure shows, there is a good spatial comparison between 

the observed meteorology and that in the model simulation using pre-nudged 

conditions, with the wind patterns in the two figures matching almost identically.  The 

10 m/s wind speeds are the same, around 15 km altitude for 30°N and S and areas of 0 

m/s are broadly located in the same regions.  The higher wind speed values of 60 m/s 

are located in the same locations in both figures at 30 km for 60°S.  For the negative 

values, the -30 m/s values descend to around 26 km in the model compared to 27 km for 

Trepte et al. (1993), however -20 m/s values come down to 23 km in both cases.   

In Figure 4-9c there is good agreement between the approximate-QBO simulation and 

the observations for the southern hemisphere, however, there are significant 

discrepancies from around 15°S into the equator and across the northern hemisphere 

latitudes.  Values of -10 m/s at around 15°N and 10-20 m/s at 30-60°N in the 

approximate-QBO simulation are similar to observations, but otherwise the pre-nudged 

simulation (Figure 4-9b) matches much more closely with observations.   

 

Figure 4-9 u-wind (m/s) profile comparison over the period 16-30th June, for a) ERA-interim, b) 

The pre-nudged UM-UKCA simulation and c) The approximate-QBO simulation. 
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4.3.6 Volcanic cloud depth  

The layer finding algorithm (Section 3.6.2) was employed in order to compare the 

layers detected by the MLO lidar (Figure 4-4) with those simulated in the model, thus 

identifying the upper and lower margins where the extinction reached above a 

representative background level.  This technique is useful to identify where the top of 

the observed layers are, their timings and their general progression through time.  Figure 

4-10 shows that the observed layers are at 25, 26 and 26.5 km and begin on July 1st, 

progressing until the end of August.  Figure 4-11 shows September onwards when the 

cloud appears more homogenous and confined between ~17.5 and 27 km until early 

1992.   

 

Figure 4-10 Cloud depth plots for Observations (left), approximate-QBO simulations (middle) and 

pre-nudged simulations (right) for June - September 1991 at MLO. Each line represents the depth 

of the cloud, as calculated using the layer finding algorithm. 

 

 

Figure 4-11 Cloud depth plots for Observations (left), approximate-QBO simulations (middle) and 

pre-nudged simulations (right) for October 1991 - March 1992 at MLO. Each line represents the 

depth of the cloud, as calculated using the layer finding algorithm. 
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In the approximate-QBO case, the first layer is visible at the correct time, however, it is 

slightly too low (24 km) and lacks the distinct shape seen in the observations.  The later 

layers are subsequently wider and lost by the beginning of August.   

Furthermore, the cloud is far higher by 5 km in October, decreasing steadily towards the 

beginning of 1992 (Figure 4-11).  In the pre-nudged case, three distinct layers are 

clearly visible with a more distinct shape similar to those seen in the observations.  The 

upper layer cloud heights are still slightly lower for the first and too high for the others.  

During September 1991 the upper cloud limit is lower than in the approximate QBO 

case.  The October 1991-February 1992 period is broadly similar in both model cases 

with fairly poor agreement with observations, closer in shape and height to observations 

in the pre-nudged case, yet still too deep and tall.  

This analysis allows a more noticeable comparison between the layers produced during 

the approximate-QBO and pre-nudged simulations, clearly indicating the thinner (closer 

to observations) simulated layers by the pre-nudged simulation and the thicker overall 

cloud produced by the approximate QBO simulation.  26-27 km is noted as the peak 

altitude at MLO, which agrees with the 17-26 km and 17-28 km ranges noted by other 

lidar measurements (DeFoor et al., 1992; Jäger, 1992) and 26 km estimation from 

satellite measurements (Read et al., 1993).  Thus, the higher altitudes reached in the 

model simulations can be more confidently attributed to excess heating by the aerosol in 

the model.   

4.3.7 Regression analysis 

Given the interesting signal noted in the observations at MLO with the descending 

layers and evolutionary phases of the volcanic aerosol cloud, it was decided to 

investigate further.  An assessment was made, comparing average cloud depth, upper 

cloud extent and a regression analysis for the first, steeper and second, shallower half of 

the layers in the phases within the lidar and the model (Section 4.2, Figure 4-1).  

Considering the descending nature of the volcanic signal seen in both the lidar and the 

model, the regression analysis here refers to the slope of these layers to assess how 

quickly they descend in the observations compared to the model.   This analysis allows 

an assessment of the cloud descent in the model simulations and whether the model is 

potentially simulating wind shear that is too strong and/or strong sedimentation.   
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The pre-nudged simulation allows more accurate initial conditions than the 

approximate-QBO simulation, which will ultimately impact on the later progression of 

the cloud.  Table 4-2 outlines the results for the cloud depth, upper extent and regression 

analysis performed on the layers within the first phase, as well as Phases 2 and 3 for 

MLO.  In both the lidar and the model data, the average cloud depth increases over time 

between the layers, with differences of 0.6-0.7 km between layer 1-2 (July to mid-

August 1991) and 2-3 (mid-August to mid-September 1991), respectively, in the lidar.  

An increase in cloud depth of 1.3 km (from 10.2-11.5 km) can also be seen between 

Phases 2-3.  The model simulations, however, show much deeper layers, with the 

approximate-QBO case predicting layer depths three times as large as in the 

observations (layer 1 6.1 km depth compared to 2.44 km depth in observations), 

whereas the pre-nudged case predicts layers 1.5 to 2 times higher on average (3.11 km 

in the first layer).   

For all of the layers in the observations, the upper extent of the cloud in both model 

cases is higher by 1.1 km for the first layer.  In the observations, the upper extent of the 

cloud is at 25.6 km and 26.8 km for layers 2 and 3, respectively, whereas it is 2.2 km 

and 1.8 km higher in the pre-nudged case and 2.4 km and 4.5 km higher in the 

approximate-QBO case.  During the regression analysis, it is worth noting that both the 

lidar and the pre-nudged model simulation showed a similar gradient for layer 1 (-0.38 

and -0.44 respectively), yet the gradient is much steeper in layer 2 in the pre-nudged 

model (-0.55 vs -0.22) and steeper in layer 3 in the lidar (-0.39 vs -0.15).  This suggests 

that more aerosol sediments out at higher altitudes within layer 2 than layer 3 in the pre-

nudged model simulation.  The overall values were steeper in the model simulations, 

showing a steeper descent of the layers within the model data, particularly in the 

approximate-QBO case.  Furthermore, the differences in slope values suggest wind 

shear is stronger in the model between ~20-25 km during the progression of layer 2 and 

not as strong as reality in layer 3.   

On the whole, the lidar and model simulation data show a similarly increasing upper 

cloud extent and two steeper layers, with the overall depth and gradient being higher 

within the model simulations.  When comparing the observations to the model 

simulation, it is clear that UM-UKCA simulates the spatio-temporal pattern of 

dispersion well, including the layers and phases noted in the observations.  The overall 

pattern of dispersion is consistent between the near-tropics and the northern hemisphere 
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mid-latitudes and the rate of descent between the layers.  The model is, however, 

predicting an upper cloud extent that is higher than seen in observations by 1-2 km in 

the layers and up to 3 km in Phase 3, as well as simulating thicker (by ~1 km), less 

defined layers.  This is possibly a results of too much radiative heating, known to have a 

strong impact on the behaviour of the cloud (Stenchikov et al., 1998; Aquila et al., 

2012) and/or possibly a lack of ash acting as a sedimentation factor (e.g. Deshler, 2016) 

in the model, which will be investigated and discussed further in Section 4.3.8 and 

Chapter 6.  When comparing the pre-nudged and approximate-QBO model simulations, 

the pre-nudged simulation shows cloud heights and depths closer to observations, plus a 

similar overall shape and regression values of the first layer similar to those obtained for 

the lidar measurements.  The pre-nudged simulation allows more accurate initial 

conditions than the approximate-QBO simulation, which will ultimately impact on the 

later progression of the cloud.   
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Table 4-2 Regression analysis of the depth of the volcanic cloud and cloud top height for the lidar and model simulations with pre-nudged and approximate-

QBO at MLO. 

  MLO Lidar Model (pre-nudged)  Model (approximate-QBO) 

Phase/Layer 

Average 

depth of the 

cloud (km) 

Upper 

extent of 

the cloud 

(km) 

Upper 

half of 

layer 

Lower 

half of 

layer 

Average 

depth of 

the cloud 

(km) 

Upper 

extent of 

the cloud 

(km) 

Upper 

half of 

layer 

Lower 

half of 

layer 

Average 

depth of 

the cloud 

(km) 

Upper 

extent of 

the cloud 

(km) 

Upper 

half of 

layer 

Lower 

half of 

layer 

Phase 1 – 

Layer 1 
2.44 23.19 -0.38 -0.04 3.11 24.27 -0.44 -0.03 6.10 24.27 -0.75 -0.1 

Phase 1 – 

Layer 2 
3.12 25.59 -0.22 -0.05 4.60 27.80 -0.55 -0.15 8.23 28.02 -0.37 -0.12 

Phase 1 – 

Layer 3 
3.70 26.79 -0.39 -0.06 6.28 28.60 -0.15 -0.39 7.68 31.30 -0.74 -0.29 

Phase 2 10.16 30.00   12.51 32.90   16.06 35.19   

Phase 3 11.46 30.00   14.32 32.60   13.82 33.81   
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4.3.8 Aerosol induced heating 

 

Figure 4-12 Tropical (20°S-20°N) radiative heating difference for the period June 1991-February 

1992 between (a) modelled (14 Tg SO2, injected 21-23 km) and control (no eruption) and (b) ERA-

interim reanalysis temperature anomalies. 

It was important to assess whether high cloud top heights, as noted in the model, may 

have been a result of radiative heating.  Figure 4-12 plots the simulated anomalous 

temperatures in comparison to ERA-interim reanalysis data, suggesting the model has a 

positive anomaly that is double that observed, however, the location and spatio-

temporal spread of the increased temperature anomalies throughout 1991 is represented 

well in the model.  A larger period of positive anomalies in August and September and 

at the beginning of 1992 characterised well, with slight negative values (~0.5 K) shown 

at ~100 hPa in both the model and observations.  It must be noted that ERA-interim 

temperature anomalies include changes related to shifts in the QBO phase during this 

period, for example (e.g. Dhomse et al., 2020) whereas the model anomalies do not.  

Also, comparisons of multiple models in the SPARC (2010) report show that most 

models produced temperature anomalies that were higher than observations, even with 

those comparisons being made with deviations from the mean of 5 years (as opposed to 

the simulation minus the control run shown here).  Revell et al. (2017) also show that 

simulations using the aerosol dataset from SAGE-4λ found ~3K positive anomalies for 

the tropical stratospheric warming following the Mount Pinatubo eruption.  

Comparisons here provide a spatio-temporal constraint, with the pre-nudged simulation 

comparing well but exact temperature anomaly value comparisons should be assessed 

with caution.   
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4.3.9 Model simulated global-mean stratospheric aerosol optical depth 

(SAOD) 

The following section is a brief analysis of the monthly global SAOD to illustrate the 

model simulated global dispersion of the volcanic sulfate aerosol cloud following the 

Mount Pinatubo eruption from June 1991-February 1992.   

Figure 4-13a shows monthly mean model SAOD between June 1991 and February 1992 

for the pre-nudged model simulation.  Low SAOD values ~ 0.1 are seen in June 

dispersing in a band from 0-15⁰N.   

 

Figure 4-13 Modelled a) Monthly averaged 550 nm SAOD from June 1991 to February 1992 b) 

Zonally averaged monthly mean for the pre-nudged QBO simulation. 
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Values increase up to 0.65 in July when a zonal band around the equator is clearly 

visible, remaining so until November 1991.  In July this band of higher SAOD values is 

tightly confined to 5⁰S-5⁰N with the highest values appearing over the Pacific Ocean.  

The highest SAOD values between 0.725 and 1 are noticeable from July-September 

1991, with peak values between 0-10⁰N in August.   

The first dispersion to the Southern hemisphere below 30⁰S is seen between mid-

August - September 1991, steadily spreading to higher latitudes in both hemispheres in 

October and November.  Trepte et al. (1993) found increased extinction levels ~30-50°S 

by the end of July 1991, suggesting dispersion to the southern hemisphere is weaker 

than reality in UM-UKCA.  SAOD values up to 0.5 are visible from 10⁰S - 70⁰N 

between December 1991 and February 1992.  Figure 4-13b highlights these patterns, 

showing this tropical band and eventual dispersion to either hemisphere with high 

SAOD values lasting to the end of 1991.   

The SAOD plots highlight that MLO is on the edge of the tropical reservoir of volcanic 

aerosol that was formed by the eruption.  This tropical reservoir is filled when an 

eruption at lower latitudes creates a reservoir of volcanic aerosol that tends to stay 

confined to the tropics in a tropical pipe before the Brewer-Dobson Circulation (BDC) 

transports aerosol towards the winter pole (e.g. Plumb, 1996; Grant et al., 1996).  

Hence, MLO was in, or at least on the edge of, this tropical reservoir before winds in 

the higher branches of the BDC transported aerosol into the northern hemisphere mid-

latitudes and reached the other lidar sites. 

4.4 Discussion and Conclusions 

Ground-based lidars are a useful tool to investigate the evolving vertical structure 

during the progression of a major volcanic aerosol cloud.  For the Mount Pinatubo 

aerosol cloud, the Mauna Loa lidar at 19°N was the only tropical ground-based lidar 

that measured the volcanic aerosol throughout the different stages of its progression in 

the first 6 months after the eruption.  The MLO and Reunion Island (21°S) lidars 

provide improved ground-based coverage of the edge of the tropics than was the case 

after the Mount Pinatubo eruption (NDACC, 2020), with the Reunion Island lidar 

operating since March 1994 (Bencherif et al., 1997).  Since 2006, the Cloud‐Aerosol 

Lidar with Orthogonal Polarization (CALIOP) lidar on the Cloud‐Aerosol Lidar and 

Infrared Pathfinder Satellite Observations (CALIPSO) satellite (e.g. Winker et al., 
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2007) provides global coverage and, in the event of a major eruption, would also be 

monitored by SAGE III (e.g. Bourassa et al., 2019).  Several other initiatives have also 

expanded lidar sites across latin America (Antuña et al., 2017).  In addition to greater 

coverage in a zonal direction, the substantial variation in wind shear (Section 4.3.5) 

within the tropical reservoir shows the value of having a continuous record from 

ground-based lidar at additional locations.  One recommendation from this thesis is to 

suggest the international VolRes activity develop a co-ordinated plan for deploying 

further lidars at several additional sites within the tropical band 20⁰S-20⁰N.  This is 

assessed further in Chapter 5.   

The analysis of lidar measurements from Mauna Loa and the 3 mid-latitude sites 

confirms that the majority of the volcanic aerosol cloud from Mount Pinatubo remained 

confined to the tropical aerosol reservoir between 20°N and 20°S for the first 3 months 

after the eruption.  Although the lower portion of the cloud was dispersed to both 

latitudes earlier, it was only after September 1991 that the mid-latitude sites measured 

the full depth of the dispersed cloud observed at Mauna Loa.  Although Mauna Loa was 

on the edge of the tropical reservoir, the lidar observations are able to profile the full 

depth of the Mount Pinatubo cloud, and provide a unique record of the progression of 

the cloud, the increasing easterly winds shearing the cloud as it circled the globe.  These 

measurements also provide additional data to the measurements from SAGE II which 

could only profile the upper portion of the cloud (McCormick and Veiga, 1992).   

The analysis of this thesis has identified three stages in the record from Mauna Loa, 

progressing from the highly heterogenous cloud into a dispersed tropical reservoir of 

volcanic aerosol.  Analysis of the northern hemisphere mid-latitudes has given 

additional insight into the likely progression of the cloud within the tropical reservoir 

after a future major tropical eruption and the likely timings for when it might reach the 

northern hemisphere (Trepte et al., 1993).  After the Mount Pinatubo eruption, the 

northern hemisphere sites showed increased aerosol only in the 15-20 km altitude 

region between June - August 1991, followed later by increased aerosol ~25 km from 

mid-August onwards, consistent with SAGE II data presented in Trepte et al. (1993).  

Mauna Loa is a useful observational site for examining the vertical profile through the 

atmosphere at the edge of the tropical reservoir (Antuña et al., 2002).  The layers seen at 

Mauna Loa in the first few months after the 1991 Mount Pinatubo eruption illustrate 

how relatively minor differences in the the horizontal wind structure, within the same 
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phase of the QBO, would have a significant effect on the subsequent progression of the 

volcanic aerosol cloud.  Furthermore, the layers clearly show the inhomogeneous stage 

of the volcanic aerosol cloud (Antuña et al., 2002), when the cloud was beginning to 

disperse globally following the Mount Pinatubo eruption and had not yet spread a band 

of volcanic aerosol around the globe.   

The analysis confirms UM-UKCA can represent the timing of the phases detected at 

MLO and the northern hemisphere mid-latitudes well, both with an approximate-QBO 

and pre-nudged initialisation.  The main differences seen between the observations and 

the model simulations are the thickness (1-2 km thicker than observations) and height of 

the volcanic layer (~1-3 km higher) and the steeper descent, -0.55 compared to -0.22 for 

layer 2 in the pre-nudged simulation and observations, respectively.  This is potentially 

a result of not including ash in the model which could act to remove aerosol from the 

cloud, reducing the height of the cloud.  This may also allow sedimentation of aerosol 

particles from the lower altitudes, reducing the steepness of the descent of the layers.  

When comparing extinction values, the lidar values are higher overall at all sites 

compared to modelled values, possibly indicating a larger mass of SO2 was injected at 

the time of the eruption than the 14 Tg tested in this chapter.   

This study finds that a model run pre-nudged to the conditions before the eruption and 

allowed to relax into free-running mode 2 months prior to the eruption gives a closer 

spatio-temporal match to observations than an approximate-QBO simulation.  Although 

UM-UKCA has an internally generated QBO, Dhomse et al. (2014) found that the QBO 

has easterlies lasting slightly longer than ERA-interim reanalysis for 1991, prolonging 

QBO in the model than is seen in reality.  Using these pre-nudged conditions allows the 

initial conditions to be closer to reality and, therefore, enables the model to simulate a 

more accurate dispersion of the Mount Pinatubo aerosol cloud on a scale closer to 

reality.  Consequently, this model configuration is used for further analysis in the next 

two results chapters (Chapters 5 and 6).  
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Chapter 5  

Exploring varying eruption source parameters: a 

Pinatubo case study 

5.1 Introduction 

In the previous chapter, ground-based lidar measurements from Mauna Loa (MLO) 

were shown to be an effective tool to understand the progression of the vertical 

dispersion of the 1991 Mount Pinatubo volcanic aerosol cloud in the tropics, and a good 

test case for the model.  The layered structures of each detection of the Mount Pinatubo 

cloud seen at MLO were explained to be primarily caused by wind shear, with 

additional disturbance from convective upwelling near the tropopause.  The stages of 

this initial dispersion of the Mount Pinatubo cloud were also outlined, with three 

distinct phases identified as the cloud progressed from the initial sheared plume 

structure into a dispersed tropical reservoir, and its subsequent transport to mid-

latitudes.   

Interactive stratospheric aerosol simulations with the UM-UKCA model were shown to 

represent the timing of these layers and phases well, with some minor differences being 

the cloud top altitude with the first 3 MLO layers being 1.0, 2.2 and 1.8 km higher, 

respectively, than in the measurements, and with extinction values biased slightly low.  

A new technique to “pre-nudge” interactive stratospheric aerosol simulations was 

shown to retain the benefits of free-running simulations whilst better matching the 

particular QBO transition from 1991.  The timing of the MLO layers then matched more 

closely with observations than in the approximate-QBO free-running simulations.   

In this chapter, the MLO-layer analysis from Section 3.6.2 is applied to additional 

interactive stratospheric aerosol simulations of the Mount Pinatubo sulfate aerosol 

cloud, assessing the effects of varying the mass of SO2 and the injection heights (from 

here on referred to as “eruption source parameters”).  Specifically, the model 

experiments use the eruption source parameter values specified for the 1991 Mount 

Pinatubo experiment with the coordinated “Historical Eruptions SO2 Emission 

Assessment” (HerSEA) activity within the international multi-model International 

Stratospheric Aerosol Model Intercomparison Project (ISA-MIP) activity (Timmreck et 
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al., 2018).  The analysis presented in this chapter explores how the Mount Pinatubo 

aerosol cloud would have dispersed differently had the volcano injected SO2 closer to 

the tropopause, also assessing the impacts of assumptions about the spread of the 

injection over a deeper altitude range, (i.e. to ensure the model captures well the depth 

of the progressed cloud) in order to assess the effect of these parameters on the vertical 

cloud distribution.  The analysis is an important first step towards understanding more 

generally how varying the SO2 mass and injection height changes the dispersion and 

microphysical evolution of the cloud.   

Interactive stratospheric aerosol model studies of the 1991 Mount Pinatubo aerosol 

cloud vary widely in their eruption source parameters (Aquila et al., 2012; English et 

al., 2013; Dhomse et al., 2014; Jones et al., 2016; Mills et al., 2016) and primarily focus 

on ensuring the model simulations capture the total aerosol extinction through the full 

depth of the cloud (i.e. the stratospheric AOD (SAOD)), compared with satellite 

observations from SAGE II and AVHRR.  Using the GEOS-5 model (coupled to the 

GOCART aerosol transport module), Aquila et al. (2012) illustrated the importance of 

injection height differences with radiatively coupled simulations, showing that various 

injection heights between 17-27 km led to aerosol being lofted too high and that an 

injection height of 16-18 km in their model agreed best with observations.  Using the 

UM-UKCA vn 7.3 model, Dhomse et al. (2014) found a deeper injection height of 19-

27 km was required for radiatively uncoupled simulations to match SAGE II and 

AVHRR SAOD observations.  Sheng et al. (2015) explored a broad range of injection 

height simulations in the ETH-Zurich 2D-AER model, comparing initial simulations in 

the 3D SOCOL-AER model.  Sukhodolov et al. (2018) specify the same injection 

heights in a series of SOCOL-AER Mount Pinatubo simulations, with their injections 

heights between 16-30 km and the majority of the SO2 injected between 18-21 km.   

In addition to exploring variations in injection height, and co-variations in the SO2 

mass, UM-UKCA is applied here to explore how the observations of the Mount 

Pinatubo cloud at MLO, at the northern edge of the tropical reservoir, compare to the 

morphology of the cloud closer to the equator.  Although a lidar was operating at 

Bandung, Indonesia (6°S) at the time of the Mount Pinatubo eruption (NDACC, 2020), 

the measurements there were exceptionally hindered by extreme wet weather 

conditions, and although the Camaguey lidar in Cuba (21°N) began measuring in 

January 1992 (Antuña, 1996), there were no ground-based lidars making stratospheric 

observations between 23°S-19°N at that time (Antuña et al., 2002).   
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The analysis here uses the HErSEA Mount Pinatubo eruption source parameters in UM-

UKCA to assess the daily progression of the initial phase of the Mount Pinatubo cloud, 

exploring whether the sheared-plume structure observed at MLO is also seen within the 

core of the tropical reservoir.  The analysis also seeks to understand the progression of 

aerosols from this tropical volcanic eruption as simulated with an interactive 

stratospheric model, in relation to how a hypothetical tropical lidar station would have 

observed the Mount Pinatubo volcanic aerosol cloud.  This allows for a further 

assessment of the evolution of the volcanic aerosol cloud in the tropical reservoir and 

provides more detail on its dispersion.   

Interactive stratospheric aerosol modelling groups tend to use the Mount Pinatubo case 

study as their test for validating their model predictions.  However, whilst the models 

are all able to achieve good comparisons to observations, for example comparing 

simulated SAOD with AVHRR and SAGE II data for the Mount Pinatubo case 

(Niemeier et al., 2009; Aquila et al., 2012; Dhomse et al., 2014), the differences in the 

specified injection heights suggests there are important structural differences among the 

models.  Also, although the models achieve good comparisons to global variation in 

SAOD, the simulations may not be producing the correct vertical dispersion.  The 

residence time of a tropical volcanic aerosol cloud is strongly dependent on the height 

of SO2 injection as well as season and QBO phase  (Thomas et al., 2009; Timmreck, 

2012; Marshall et al., 2019).    Understanding how perturbing these eruption source 

parameters impacts the initial progression of the Mount Pinatubo volcanic aerosol cloud 

is, therefore, important for understanding the subsequent global dispersion and climatic 

impacts from a major tropical eruption.  Although not a key aim of this chapter, 

assessing these different parameters will also potentially help constrain the actual 

eruption parameters for the 1991 eruption of Mount Pinatubo and present a test case for 

other aerosol-climate models in future studies.  In summary, the key aim of this chapter 

is to understand how co-varying eruption source parameters affects the vertical profile 

of extinction, SAOD and sulfate burden following the Mount Pinatubo eruption.   

This chapter is structured as follows: The model experiments are described in Section 

5.2.  The results of the model experiments to vary injection height and mass of SO2 on 

vertical dispersion are described in Section 5.3.1, with sulfur burden and SAOD 

analysis outlined in Sections 5.3.2 and 5.3.4.  The analysis of a hypothetical tropical 

lidar is described in Section 5.4.  A discussion of the results is in Section 5.3 and 

conclusions in Section 5.6.   
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5.2 Methods 

5.2.1 Model setup 

The initial conditions in each simulation were the same as those outlined in Chapter 4 

with either mass of SO2 or injection height changed.  These parameters are 10, 14 and 

20 Tg of SO2 and injections heights of 18-20, 21-23 and 18-25 km, denoted as the SO2 

mass and “lowalt”, “midalt”, or “deepalt” (e.g. “10_lowalt” for 10 Tg SO2 injected at 

18-20 km).   

The eruption source parameters for these experiments were chosen based on Timmreck 

et al. (2018).  The upper value (20 Tg) for SO2 mass emitted is based on TOMS/TOVS 

observations (S Guo et al., 2004).  The mid (14 Tg) and low (10 Tg) values are based on 

recent climate model studies of the Mount Pinatubo eruption (Dhomse et al., 2014; 

Sheng et al., 2015; Mills et al., 2016; Sukhodolov et al., 2018) where lower estimates of 

SO2 emission agreed with HIRS/ISAMS peak sulfate burden values (Baran and Foot, 

1994).  The injection heights are based on Timmreck et al. (2018) and Antuña et al. 

(2002) with the idea of a lower, shallow injection (18-20 km), a middle level, shallow 

injection height (21-23 km) and a deep injection height (18-25 km).   

Model simulated sulfate burden is compared to measurements from Baran and Foot 

(1994) in this chapter (Section 5.3.3) with an error of 10% associated with these 

measurements (Baran and Foot, 1994).  Stratospheric aerosol optical depth (SAOD) 

(550 nm), is used to evaluate the interactive Mount Pinatubo aerosol simulations in this 

chapter (Section 5.3.4).  The two datasets for SAOD following the eruption are the 

GloSSAC dataset (Thomason et al., 2018) and AVHRR (Long and Stowe, 1994).  

SAOD from GloSSAC (Thomason et al., 2018), incorporates the latest version 7.0 

SAGE II dataset (Damadeo et al., 2018).  The sulfate burden and AVHRR observational 

measurements are widely used in the modelling community for simulating the Mount 

Pinatubo eruption, with the GloSSAC data providing a more up-to-date dataset of the 

SAGE II data (Dhomse et al., 2020) that was super-saturated at the time of the Mount 

Pinatubo eruption (e.g. Antuña et al., 2002).   

5.2.1.1 Hypothetical lidar site 

Observational measurements were either saturated or highly uncertain for the tropics 

following the eruption of Mount Pinatubo (e.g. Antuña et al., 2002) and no genuinely 

tropical observational data was available following the eruption (Thomason et al., 
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2018), therefore the model can be used to indicate the progression of the tropical 

reservoir.   

Model output from the simulations described in Chapter 4 was analysed at hypothetical 

lidar sites (10°S, equator and 10°N) in order to investigate the model simulated 

progression of aerosol from the tropical reservoir.  14 Tg of SO2 was emitted on 15th 

June 1991 at an injection height between 21-23 km.  Hypothetical lidar sites at 10°N, 

the equator and 10°S, can be represented by the model and the vertical dispersion of 

these locations are assessed for the same June 1991 – February 1992 period as the other 

simulations.   

5.3 Results 

5.3.1 Vertical structure of the volcanic cloud 

As outlined in Chapter 4, there are distinct layers noticeable in the MLO lidar data in 

the vertical profile of extinction (Figure 4-5).  The first of these begins on July 1st 1991, 

the second on July 22nd and the third on August 9th.  These layers are key structures in 

the observations and the model captures these relatively well in the simulations 

performed in Chapter 4, however, the altitude of the simulated aerosol layer is too high 

at these sites, reaching up to 30 km, where the observations show cloud top maximum 

height of 26 km (Figure 4-5).  Although satellite observations show a cloud top height 

up to 30 km elsewhere (S Guo et al., 2004), this is not the case in these lidar 

observations.  In order to attempt to understand and rectify this discrepancy, mass of 

SO2 and injection height are varied.   

Overall, the largest effect on the vertical extinction profile results from varying the 

injection height of SO2 as expected.  An injection of 18-20 km in all simulations keeps 

the aerosol confined to a region between 15-25 km with no noticeable layers or structure 

(Figure 5-1).   

The appearance of the aerosol cloud at MLO is 2 days later in the 18-20 km case than in 

the observations.  The overall height of the aerosol layer is reduced with this injection 

height, however over time the aerosol cloud reaches higher altitudes than the lidar 

observations suggest, for example at the end of November 1991 the cloud is ~28 km 

whereas the observations are closer to 26 km (Figure 5-1).  The highest extinction value 

occurs for the 20_lowalt simulation (0.181), which is the closest to observations 
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(0.202).  Values for 10_low alt and 14_lowalt are 0.109 and 0.161, respectively, 

therefore doubling the injection of SO2 does not double the resulting extinction value.   

Injecting SO2 between 18 – 25 km creates some form of layers; however, the second 

and third layers appear slightly too early, they are all too steep and their top height is 

too high (25 km, 29 km and 30.5 km, respectively) when compared to observations 

(Figure 5-2).  A lower section of aerosol between 15 – 22 km is also created in these 

cases, similarly to the 18 – 20 km simulations.  The maximum values of extinction are 

again lower than those from the observations with values of 0.093, 0.126 and 0.135 for 

10, 14 and 20 Tg, respectively.  As mentioned in Chapter 3, errors associated with the 

conversion of BSR to EXT are <10%, with higher aerosol loads decreasing this error, 

suggesting that the maximum values for the observations at MLO are distinctly higher 

than those seen in the model.  

 

Figure 5-1 Extinction profiles for MLO lidar observations (top) and the 14 Tg SO2, 18-20 km 

injection height model simulation (bottom).  Black dots represent the top and bottom of the sulfate 

aerosol cloud, calculated by the layer finding algorithm.   
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Figure 5-2 Extinction profiles for MLO lidar observations (top) and the 14 Tg SO2, 18-25 km 

injection height model simulation (bottom). 

 

Figure 5-3 shows the closest matching injection height for these simulations is the 21-23 

km case, with the 14_midalt simulation giving the correct layer timing.  Model layer 

heights of the second and third layers (28 and 30 km, respectively) along with the 

subsequent evolution of the cloud with time are still higher than those seen in 

observations and the descent of the cloud much steeper than seen in the observations.   

In all the simulations the peak extinction values are all too low relative to values seen in 

the observations at all sites with the 10 Tg model simulations being a factor of 2 lower 

on average.  The closest match of model-simulated and observed extinction values is 

achieved with the 20_lowalt simulation, which has a maximum extinction of 0.18 

compared to 0.20 in the observations.  
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 Figure 5-3 Extinction profiles for MLO lidar observations (top) and the 14 Tg SO2, 21-23 km 

injection height model simulation (bottom). 

 

Increasing the mass of SO2 emitted for the 18-20 km simulations leads to maximum 

extinction values of 0.109, 0.161 and 0.181 for 10, 14 and 20 Tg, respectively.  Across 

all model simulations the maximum extinction values are highest for the 18-20 km 

simulations, followed by the 18-25 km and then the 21-23 km simulations.  Extinction 

values at the leading edges of the observational layers are always greater than 0.1 km-1, 

whereas these values are only reached in the second layer in the model (Figure 5-3).  

First layer values are ~0.01 km-1 in both the 14 Tg and 20 Tg 21 – 23 km simulations, 

suggesting the observational values are not due to differences in SO2 mass.   

5.3.2 Tropical radiative heating 

The following section assesses how differing eruption source parameters affects the 

radiative heating in the stratosphere following the 1991 Mount Pinatubo eruption.  This 

section allows another set of independent observations to be used to assess which 

eruption source parameters best represent the Mount Pinatubo eruption.  ERA-interim 

temperature anomalies are composed of tropical radiosonde measurements (Dee et al., 

2011) and can be compared to model simulated tropical radiative heating as an 

independent test.  Uncertainties with this comparison are primarily due to ERA-interim 

data including temperature fluxes from all dynamical and chemical changes (e.g. shifts 
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in QBO phase).  The model will not account for QBO changes, for example as 

temperature anomalies are calculated by removing the control run from the volcanic 

simulations, removing any QBO influences.   

Figure 5-4 to Figure 5-6 show the model simulated tropical stratospheric warming 

anomaly induced by the Mount Pinatubo volcanic sulfate aerosol cloud and a 

comparison to the ERA-interim temperature-anomaly.  The purpose of this analysis is to 

assess the levels of radiative heating in the model caused by the sulfate aerosol cloud in 

response to differing the SO2 injection mass and injection height.  The 21-23 km 

simulations (Figure 5-4) show a similar vertical pattern to the observations, with the 

main region of positive temperatures seen around 10-100 hPa (0 to >5 K) and a second 

region with negative temperature anomalies (-2 to 0 K) below 100 hPa.  The 14_midalt 

simulation (Figure 5-4b) shows the closest match to the ERA-interim data, with positive 

anomalies noted in July to September 1991, before a small region of positive values (~2 

K in ERA-interim and 4 K in the model simulation) emerges from October to December 

1991.  Further positive values are then seen at the beginning of 1992 of ~3 K in the 

observations and up to 5 K in the model simulation.  The 20_deepalt simulation (Figure 

5-6c) shows a similar spatial distribution to ERA-interim, however, also showing the 

highest differences, up to 7.2 K.   

 

Figure 5-4 Tropical (20°S-20°N) aerosol-induced stratospheric heating anomalies for model 

simulations (a-c) with injection height 21-23 km for June 1991 – February 1992, a) 10 Tg, b) 14 Tg 

and c) 20 Tg SO2.  (d) ERA-interim tropical (20°S-20°N) stratospheric temperature anomalies for 

June 1991–February 1992.   
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Figure 5-5 Tropical (20°S-20°N) aerosol-induced stratospheric heating anomalies for model 

simulations (a-c) with injection height 18-20 km for June 1991 – February 1992, a) 10 Tg, b) 14 Tg 

and c) 20 Tg SO2.  (d) ERA-interim tropical (20°S-20°N) stratospheric temperature anomalies for 

June 1991–February 1992.   

 

 

Figure 5-6 Tropical (20°S-20°N) aerosol-induced stratospheric heating anomalies for model 

simulations (a-c) with injection height 18-25 km for June 1991 – February 1992, a) 10 Tg, b) 14 Tg 

and c) 20 Tg SO2.  (d) ERA-interim tropical (20°S-20°N) stratospheric temperature anomalies for 

June 1991–February 1992.   
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The 10_midalt simulation (Figure 5-4a) is the weakest match with observations spatio-

temporally, reaching largest differences (2K and 5 K differences between ERA-interim 

and the model simulation, respectively) in the October to December 1991 period.   

All other model simulations also show positive temperature anomalies than suggested 

by the re-analysis data, with the model showing values a factor of 2 higher than the 

ERA-interim temperature anomalies.  Both 18-20 km (Figure 5-5) and 18-25 km 

(Figure 5-6) simulations show the highest anomalously high values, 3 times that of 

ERA-interim at altitudes ~10 hPa lower than the ERA-interim data in the 18-20 km 

simulation.  The 10_deepalt simulation (Figure 5-6a) shows values closest values to 

observations (maximum 3.6 K).  Although confidence in the magnitude of stratospheric 

heating following major volcanic eruptions has increased, uncertainties associated with 

observational data remain, particularly there is a lack of as high-quality data from the 

tropics for the 1991 Mount Pinatubo eruption (Dee et al., 2011).   

5.3.3 Sulfate burden 

The following section explores the evolution of sulfate burden between June 1991 and 

February 1992, assessing the differences for the different eruption source parameters.  

The first part of this analysis focuses on changes seen in the tropics (20°S-20°N) where 

the majority of the aerosol initially resided, with the second part focussing on the global 

changes and differences in sulfate burden (80°S-80°N).  This analysis explores how 

differing these injection parameters impacts on sulfate burden, the main climatically 

significant product following a volcanic eruption.   

Comparing the evolution of the tropical aerosol sulfate burden for these model 

simulations reveals a number of interesting features.  Firstly, the 21-23 km simulation 

consistently shows the highest sulfate burden of the three simulations within each SO2 

injection, followed by the 18-25 km injection and then the 18-20 km injection height 

(Figure 5-7).  The evolution over time of the modelled sulfate burden compares very 

well to HIRS satellite measurements of sulfuric acid shown in Baran and Foot (1994), 

with a similar increase in sulfate burden between June and July to the 14 Tg simulations 

(Figure 5-7).  The observations match closely to the 14_deepalt model simulation until 

December 1991 where the 14_midalt simulation matches best (Figure 5-7), although 

both 14_deepalt and 14_midalt both lie within the observational error.  20_lowalt also 

fits within the observational error in July 1991 and into 1992.  All the simulations and 
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the observations show a peak in September 1991 before the tropical sulfate burden 

begins to decrease.  These peak values are outlined in Table 5-1.   

The observations show a less rapid decrease in sulfate burden at the beginning of 1992, 

with an e-folding time of 9.9 months.  The model simulations have an average e-folding 

time of 7.3 months, with 21-23 km injection height simulations showing the highest e-

folding times for an injection of 10, 14 and 20 Tg (7.9, 7.6 and 8.5 months, 

respectively).   

 

Figure 5-7 Tropical (20°N-20°S) sulfur burden (Tg) for SO2 (left) and SO4 (right) for all model 

simulations.  Black lines indicate observations with 10% error bars. 

Table 5-1 Peak tropical sulfate burden values (Tg) as observed (Baran and Foot, 1994) and 

simulated. 

Name 
Peak tropical 

sulfate burden (Tg) 

Baran and Foot 

(1994) 
4.48 

10_lowalt 2.59 

10_midalt 3.61 

10_deepalt 3.27 

14_lowalt 3.75 

14_midalt 5.02 

14_deepalt 4.50 

20_lowalt 5.37 

20_midalt 6.80 

20_deepalt 6.25 
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The global comparison of model-simulated sulfate burden with Baran and Foot (1994) 

shows a relatively good agreement with the time evolution of sulfate over time (Figure 

5-8).  The model shows a much smoother curve in all simulations, whereas the 

observations fluctuate around August and September.   

The observations appear to fall between the 14 and 20 Tg model simulation values with 

a close match in September 1991 and January-February 1992 with the 14_midalt 

simulation.  The global sulfate burden in the 20 Tg simulations closely match observed 

values in July and August 1991, however, values in September 1991 are 5.3 Tg sulfur in 

the observations which matches within the range of all 14 Tg simulations.   

 

Figure 5-8 Global sulfur burden (Tg) for SO2 (left) and SO4 (right) for all model simulations.  Black 

lines indicate observations with 10% error bars. 

 

5.3.4 Stratospheric aerosol optical depth (SAOD) 

The following section outlines the daily-mean SAOD values for all injection heights 

and SO2 masses for the period June 1991-February 1992 for the tropics and globally, 

with a comparison to GloSSAC and AVHRR measurements.   

In the tropics, the model data for all simulations show the characteristic signature of 

initial production up to the maximum SAOD, followed by a decay phase.  It is clear that 

the model has approximately the same timescale decay as in the AVHRR observations, 

with the GloSSAC dataset having a different temporal variation.  The peak SAOD 

depends primarily on the magnitude of the injected mass of SO2 (Figure 6-5), with 0.27-

0.34, 0.39-0.45 and 0.55-0.62 for the 10 Tg, 14 Tg and 20 Tg simulations, respectively.  

To quantify the decay timescale difference apparent in the model simulations, and the 
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GloSSAC and AVHRR datasets, an e-folding time is derived based on the period after 

the peak SAOD.   

The GloSSAC data peaks and decays more smoothly in the tropics than AVHRR, with 

an e-folding time of 20.2 months.  The GloSSAC data has lower values than AVHRR 

until December 1991-March 1992, with AVHRR showing a peak AOD value of 0.32 

and GloSSAC peaking at 0.17.  From September 1991 to March 1992 GloSSAC SAOD 

values decrease from 0.17 to 0.14 and AVHRR values decrease from 0.32 to 0.15.   

In comparison to the sulfate burden, the 18-20 km simulations also consistently show 

the lowest optical depths of the different injection heights across all latitude 

comparisons.  20 Tg has the highest SAOD values, followed by 14 Tg and 10 Tg, 

respectively.   

AVHRR has peak values of 0.32 in September 1991 in the tropics, peaking in 

September 1991 (Figure 5-9).  The GloSSAC data peaks in October 1991 at 0.17, 

almost half that of the AVHRR peak.  The GloSSAC SAOD values are lower than all 

model simulated SAOD values, except for in February 1992 when GloSSAC SAOD 

0.14 match with 10_lowalt.  Highest values of SAOD in the model are 0.62 in the 

tropics compared with 0.32 for AVHRR and 0.17 for GloSSAC.  All model simulations 

show the shape of the AVHRR measurements with 10 Tg simulations lying closest to 

AVHRR values.  In the tropics (Figure 5-9) the 18-20 km simulations have consistently 

lower SAOD values than their 21-23 and 18-25 km equivalents for each amount of SO2 

injected.  The 10_midalt and 10_deepalt simulations are both in good agreement with 

the AVHRR measurement values.   
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Figure 5-9 Tropical (20°S-20°N) optical depth for all simulations, compared to AVHRR and 

GloSSAC.  Different colours denote different amounts of SO2 and linestyles denote different 

injection heights. 

 

The 21-23 km and 18-25 km simulations show fairly similar peak values of SAOD for 

each mass of SO2, except for the 20 Tg case where the 20_deepalt shows a much higher 

peak of 0.63, where the 20_midalt simulation has an SAOD of 0.55.   

The 80°S – 80°N SAOD comparison to AVHRR indicates a peak period in mid-August 

to mid-September 1991 that compares best with 10_deepalt and 14_midalt (Figure 

5-10).   
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Figure 5-10 Global (80°S-80°N) optical depth for all simulations, compared to AVHRR and 

GloSSAC measurements.  Different colours denote different amounts of SO2 and linestyles denote 

different injection heights. 

 

The 10 Tg simulations then compare well with AVHRR from October 1991, matching 

closest with 10_deepalt (Figure 5-10).  The shape of all the model SAOD matches well 

with the AVHRR data, however.  The GloSSAC data is again lower than AVHRR and 

model simulated SAOD in all simulations until December 1991.  10_midalt SAOD 

values align with GloSSAC SAOD from December 1991-February 1992 with values 

~0.12.  



117      Explorying varying eruption source parameters: a Pinatubo case study 

 

 

In comparison to the tropics, where the 18-20 km simulations had the lowest SAOD 

values, the 21-23 km simulations show the lowest SAOD values on average when 

looking at the global pattern (Figure 5-10).  All 21-23 km simulations change in pattern 

from December 1991 onwards, however, showing highest SAOD values from this point 

in the 14 Tg simulations and increasing in the 10 Tg simulations.  All simulations show 

a trend closer to the AVHRR measurements than the GloSSAC measurements.   

Results for the northern and southern mid-latitudes (0) show a less obvious pattern for 

the SO2 injections, however, still broadly show 10 Tg simulations producing the lowest 

SAOD values on average, followed by 14 and then 20 Tg.  In the northern hemisphere, 

the 21-23 km simulations produce the lowest SAOD values for each amount of SO2 and 

it takes until November 1991 before the 21-23 km simulations overtake the 18-20 and 

18-25 km simulations.  The southern hemisphere shows the opposite trend, whereby the 

21-23 km simulations produce the highest SAOD values for each injected SO2 mass.  

All model simulations show SAOD values <0.1 apart from the 20_midalt simulation.   

5.3.5 Aerosol effective radius 

Aerosol effective radii (Reff) are calculated for each model simulation in order to 

understand the temporal evolution of the size of aerosol particles in each simulation.  

This is important in order to establish any periods of distinctly increased aerosol sizes, 

which would suggest relative differences in coagulation rates between the simulations.  

A comparison to measurements (Deshler, 2008) and a SOCOL-AER Mount Pinatubo 

study (Sukhodolov et al., 2018) also allow an assessment of how UM-UKCA compares 

to observations and another modelling study.  Sukhodolov et al. (2018) use a 

stratospheric aerosol-climate model with key differences in their study being the use of 

nudged QBO conditions and a bin-resolved aerosol scheme, as well as an injection 

height between 16 and 30 km, centred around 18-21 km.   

Figure 5-11 shows that effective radius increases over the period June 1991 to February 

1992 as expected, with maximum values of 314 nm, 348 nm and 395 nm for 10 Tg, 14 

Tg and 20 Tg, respectively, indicating a slight increase in particle size with injected SO2 

magnitude.  Injection height variations also affect Reff but to a lesser extent than 

variations in SO2 mass, with an injection height of 18-20 km showing the lowest 

particle sizes (263 nm, 295 nm and 334 nm, respectively for each mass of SO2 injected), 

followed by 18-25 km (278 nm, 314 nm 
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and 354 nm, respectively for each mass of SO2 injected) and the highest values seen 

with an injection height of 21-23 km (maximum values mentioned previously).   

In order to assess the accuracy of the model simulated Reff values, a comparison to in-

situ measurements (Deshler, 2008) and previously modelled values for a 14 Tg injection 

with and without radiative heating (Sukhodolov_14Tg and 

Sukhodolov_14Tg_NORAD, respectively) (Sukhodolov et al., 2018) at Laramie, 

Wyoming are presented (Figure 5-12).  All UM-UKCA simulations lie within the error 

of the observations, except for August 1991 when there is a spike in the observational 

dataset (which is, however, associated with large errors ± 110 nm compared to an 

average error of ±50 nm).  Broadly, all simulations agree with the Sukhodolov et al. 

(2018) data from October 1991 onwards, with initial UM-UKCA values indicating a 

bias by ~100 nm towards smaller particles between June and October 1991.   

 

 

Figure 5-11 Model effective radius (Reff) for each model simulation for the period June 1991 - 

February 1992.  Line colour indicates mass of SO2 injected and linestyle denotes injection height. 
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Figure 5-12 Comparison of model simulated Reff values (averaged for 14-30km) against in-situ 

measurements and previously modelled Reff for for Wyoming, Laramie for June 1991 to February 

1992. 

 

5.4 Hypothetical lidar site near the centre of the tropical reservoir 

Figure 5-13 shows a daily comparison of extinction at 550 nm at 10°N, the equator and 

10°S as simulated in the model.  The purpose of exploring the equator and 10° in 

latitude north and south of the equator is to show what a tropical lidar may have 

observed and explore the value of, and need for, a tropical lidar station.  The most 

striking feature when looking at this figure is what additional information on the 

dispersion a tropical lidar could reveal, as well as how MLO ties into the dispersion 

from the tropical reservoir.  At 10°N (Figure 5-13a) detection of the cloud is 2 days 

sooner than was seen at MLO on June 28th 1991.  The cloud appears to have 

descending layer structures at the beginning, middle and end of July in the upper 

altitudes (27, 30 and 31 km, respectively).  The 10°N plot shows the highest extinction 

value is 0.20, close to the observed value at MLO (0.22).  Exploring these sites within 

the model allows a closer assessment of how the Mount Pinatubo aerosol cloud may 

have developed out of the tropical reservoir that was not visible with observations.   

The hypothetical equatorial lidar site (Figure 5-13b) captures the aerosol cloud first at 

24 km on June 20th 1991 with extinction values steadily increasing into July 1991.  At 

this site, the cloud is fairly homogenous increasing from 4 km thick initially to 12 km 

thick by September 1991.  Both the 10°N and equatorial lidar sites show extinction 
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values beginning to decrease around October 1991, though high extinction values are 

seen throughout this time period.   

The site at 10°S (Figure 5-13c) indicates the volcanic cloud reaching the southern 

hemisphere around the same time as at 10°N, just before July when it is noted at MLO.  

The cloud here resides at higher altitudes between 23 and 30 km throughout this time 

period.   

In showing the differences between the equator and 10°N and the equator and 10°S 

(Figure 5-14), it is possible to understand more about how the cloud may have 

developed from the tropical reservoir.  Figure 5-14 shows that the values at higher 

altitudes, between 22.5 and 30 km are higher in the equator than in the northern extra-

tropics (10°N), but values at lower altitudes around 20 to 22.5 km are higher in at 10°N.  

There are three noticeable small areas (in blue) above the higher equator values (in red) 

at ~26, 27.5 and 29 km showing values of higher extinction at 10°N than at the equator.   

In the case of comparing to 10°S (Figure 5-14), it is clear that the values of extinction at 

the equator are higher, almost consistently throughout this period.  A few areas around 

25 km in August and September are noticeable, although on a much smaller scale than 

seen in the comparison to 10°N.   

 

Figure 5-13 Model-simulated extinction (550 nm) values for (A) 10°N, (B) the equator and (C) 10°S 

from June 1991 - March 1992. 
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Figure 5-14 Absolute difference in extinction at 550 nm between the equator and 10°N (top) and the 

equator and 10°S.  Red values indicate areas where the equator values are higher, blue indicate 

where equator values are lower. 

 

5.5 Discussion 

As stated in Section 5.3.1, the injection height has the largest effect on the vertical 

profile of extinction, with 18-20 km, out of those considered, showing the most obvious 

difference qualitatively and highest extinction values for all SO2 mass injections.  These 

large extinction values are likely due to the aerosol being confined to this layer resulting 

in more numerous particles in close proximity.  This in turn results in maximum 

extinction values in regions with large clusters of aerosol.  Relating this to SAOD, the 

18-20 km simulations have the lowest SAOD values in the tropics, but exceed the 21-23 

km injection height values on the global (80°S-80°N) scale before rapidly decreasing 

from November 1991 onwards.  Sulfate burden is lowest in all SO2 mass injection 

scenarios for an 18-20 km injection height for the tropics (2.6, 3.7 and 5.4 Tg, 

respectively) and globally (3.9, 5.4, 7.7 Tg, respectively).  As the eruption occurred at 

15°N, this appears to be consistent with findings of Marshall et al. (2018), whereby 

injection height has a larger effect on peak SAOD for tropical eruptions than those at 

higher latitudes.   

The faster decrease of the 18-20 km SAOD and sulfate burden values (e-folding time of 

5.9 months for 14 Tg of SO2) are potentially due to the regional confinement of the 

aerosol seen in the vertical profiles causing more coagulation, therefore, growing sulfate 
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aerosol to larger sizes and sedimenting out faster than for the other injection heights 

where the aerosol is more spread out and thus coagulation rates are reduced.  Per unit 

mass, larger-sized particles have a smaller optical depth than a large number of smaller-

sized particles (Pinto et al., 1989; Lacis et al., 1992), therefore the 18-20 km simulations 

may show lower SAOD values in the tropics due to these larger-sized (i.e. due to 

coagulation) particles, which also explains the lower sulfate burden values as particles 

sediment out faster.  Monthly-mean effective radii values for each of the model 

simulations indicate that the largest-sized particles occur in the 21-23 km simulations 

with no significant difference seen when the injection height is varied, therefore 

suggesting that the aerosol closer to the tropopause is being removed more efficiently in 

the 18-20 km and 18-25 km simulations, as opposed to coagulation driving this process.  

Injecting SO2 at around 18 km altitude in UM-UKCA, therefore leads to increased 

transport out of the lower branches of the BDC (discussed in Section 2.2.3) illustrating 

the effects of stratospheric dynamics on the longevity and properties of the volcanic 

aerosol cloud.  Initially higher values of global SAOD for the 18-20 km and 18-25 km 

simulations are likely a result of this lower branch, as aerosol is preferentially 

transported to the midlatitudes (Holton et al., 1995; Marshall et al., 2019).  Peak global 

SAOD values for the 18-20 km simulations occur before the peak SAOD in the 21-23 

km simulations, suggesting that the majority of the volcanic aerosol in the 21-23 km 

simulation is confined in the tropics for longer before spreading to the mid-latitudes.   

The faster decreasing SAOD values along with the fact that maximum extinction for 10 

Tg SO2 is not half that of 20 Tg SO2 is likely linked to the self-limiting effects created 

as the amount of SO2 emitted increases, as particles grow to larger sizes (e.g. Pinto et 

al., 1989; Timmreck et al., 2009).  Another reason for the self-limiting effects is the 

effect of an increase in SO2 leading to a decrease in OH, as OH levels are decreased by 

gas-phase reactions of SO2 with OH (Bekki, 1995; Bekki et al., 1996).  As these 18-20 

km injection height simulations do not indicate that rapid coagulation is occurring and 

decreasing the mass of aerosol in the stratosphere by sedimentation, the impact of 

decreased OH by SO2 scavenging is seemingly having more of an impact as SO2 

emission increases than the effects of coagulation.   

There is a distinct difference between the sulfate burden and SAOD when varying the 

initial injection of SO2.  For SAOD values, the 10 Tg SO2 injection matches most 

closely with AVHRR measurements, whereas sulfate burden values for 14 Tg SO2 most 

closely match the HIRS observations.  A possible reason for the observed SAOD 
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matching the 10 Tg simulation and sulfate burden observations matching 14 Tg 

simulation is the differences in the observations.  The HIRS observations (Baran and 

Foot, 1994) for global and tropical sulfate burden were taken at 0.8 µm wavelength and 

therefore are likely to be underestimating the sulfate burden from smaller particles, 

potentially meaning the observations are actually closer to the 20 Tg injection or 

between 14 and 20 Tg.  Sukhodolov et al. (2018) found a similar result, whereby their 

14 Tg injection of SO2 matched well with HIRS data initially, but later agreed with 

other observations such as SAGE 3λ, suggesting that the HIRS data is more reliable in 

this first year following the eruption than in later years.  They assume their 14 Tg 

simulation is a good estimate for their model but comment that their vertical distribution 

may be preferentially shifted to lower altitudes.  Given that their injection height is 

preferentially set between 18-21 km, this indicates that injection heights around 18 km 

for the Mount Pinatubo eruption may be too low with preferential removal of aerosol 

from these lower altitudes.  Some uncertainties also lie in the AVHRR and GloSSAC 

data, found similarly in Sukhodolov et al. (2018), whereby the observations differed by 

±30% in SAOD and ±15% in global aerosol burden.  Saturation of the SAGE II 

instrument (Antuña et al., 2002; Thomason et al., 2018) led to large uncertainties in the 

tropical optical depth following the Mount Pinatubo eruption.  The GloSSAC data is a 

combination of multiple observations into one dataset and has been found to show peak 

values close to, but slightly lower than, sun photometer measurements with AVHRR 

data assumed too high (Thomason et al., 2018).  It is reasonable to therefore assume that 

the correct values lie somewhere between these two datasets, as GloSSAC data does not 

include data from the upper troposphere/lower stratosphere whereas AVHRR does 

(Thomason et al., 2018).  If this is assumed for this study then tropical SAOD still lies 

closest to 10 Tg SO2, whereas globally somewhere between 10 and 14 Tg would fit 

better.   

AVHRR data indicate SAOD values match closest with the 10 Tg model simulations 

here.  In this particular comparison, this could suggest a lower estimated mass of SO2 

was emitted at the time of the Mount Pinatubo eruption, consistent with findings from 

Dhomse et al. (2014).  It may also be that not simulating ash and other particles in the 

model simulations creates a shift whereby 14 Tg with ash included more closely 

matches with observations due to early SO2 and sulfate aerosol being remove by 

condensation and coagulation and subsequent sedimentation (e.g. Deshler, 2016).  Early 

GloSSAC values for the peak SAOD after the Mount Pinatubo eruption were 0.22 
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(Thomason et al., 2018), however, values shown in this chapter are based on newer 

calculations and account for the theorised underprediction of SAOD for this eruption 

(Thomason et al., 2018).   

With regards to MLO, the layers are only visible when the injection height is 21-23 km 

and injection heights below this appear to pool the volcanic aerosol into a confined 

feature that has a steadily rising upper limit to the aerosol cloud.  This rising feature is 

seen in all the model simulations and is due to the radiative heating created from the 

aerosol, lofting aerosol higher in altitude.  This effect can also be seen in other aerosol-

climate model studies  (e.g. Vernier et al., 2011; Aquila et al., 2012; Dhomse et al., 

2014) and is an important radiative effect in the model, though this is seen to be too 

strong by a factor of 2 across all simulations within UM-UKCA for this eruption 

causing the volcanic cloud to loft to heights higher than seen in observations.  Another 

possibility is that models not accounting for ash produce higher volcanic clouds as they 

do not account for the potential scavenging mechanism of ash.  The possibility of ash 

will be addressed in Chapter 6.   

21-23 km daily-mean SAOD and sulfate burden is highest for the southern hemisphere 

in all cases, whereas the 18-20 km injection heights have highest SAOD and sulfate 

burden values in the northern hemisphere.  This potentially shows preferential pathways 

exist to transport aerosol northwards with lower injection heights whilst mid-level 

heights transport aerosol more easily to the southern hemisphere.  These pathways are 

also stronger for the 21-23 km injection height in the northern hemisphere as time 

progresses into the northern hemisphere winter.  The opposite is true for the southern 

hemisphere as the aerosol is preferentially transferred in the 18-20 km injection height 

simulations during the southern hemisphere winter before plateauing from December 

1991 onwards.   

SAOD, along with satellite measurements, is usually seen as a key testing point for 

models against observations in order to decipher whether the model is capturing the 

global dispersion from a volcanic cloud well.  However, it can be seen here that though 

some model simulations are in good agreement with observations, when examining the 

details of the volcanic cloud in the vertical stark differences become apparent even for 

those simulations in which SAOD matches observations well.  For example, where the 

observations for tropical SAOD match with the 10_deepalt simulation, the same 

injection height does not match the vertical extinction observations.  This is the same 
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for the SAOD comparison with AVHRR, whereby the 10_lowalt for SAOD tracks 

closely with the observations from November 1991 onwards, but the vertical extinction 

does not match with lidar observations.  One possibility is that the integrative nature of 

calculating SAOD causes details seen in the vertical profiles to be lost.   

With regards to a hypothetical tropical lidar station, testing this within the model 

indicates that the model depicts the tropical reservoir well.  Indications by Robock and 

Antuña (2001) were that a tropical lidar station in Latin America would significantly aid 

our understanding of the vertical and global dispersion of volcanic aerosol.  The vertical 

profile of aerosols is important for observing the climatic effects of volcanic eruptions 

and, although satellites can produce global coverage, ground-based lidars are needed for 

filling gaps where satellites are saturated and for calibrating satellite observations 

(Robock and Antuña, 2001).  As no lidars existed at the tropics during the time of 

Mount Pinatubo we can only use models to infer the potential dispersion, however, the 

understanding of future Mount Pinatubo-magnitude eruptions in the tropics would be 

greatly benefited by more tropical lidar stations, as we would gain a better 

understanding of the SAOD values and vertical profiles of stratospheric aerosols in the 

tropics.  A major step forward from Robock and Antuña (2001) is the Latin America 

Lidar Network (LALINET) (Antuña-Marrero et al., 2017) creating a substantial 

southern hemisphere and cross tropical lidar network which will be imperative to 

understanding volcanic clouds from future eruptions.  There used to be a lidar active on 

Kiribati (1.4°N) and stations such as that in Paramaribo, Suriname (5.8°N) and Natal, 

Brazil (5.8°S) and San Jose, Costa Rica (9.6°N) are active, but measure water vapour 

and ozone (NDACC, 2020).  Studying the effects of water vapour and ozone after 

volcanic eruptions is important, but direct backscatter ratio, depolarisation and particle 

mass concentration measurements would give a better understanding for the radiative 

forcing and potential ash measurements from an eruption (e.g. Ansmann et al., 2011; 

Vernier et al., 2016).  A study using Cloud-Aerosol Lidar and Infrared Pathfinder 

Satellite Observation (CALIPSO) found that adjustments were needed in the tropics to 

account for increased scattering from particles at ~30-35 km in altitude (Vernier et al., 

2009), further indicating that ground-based tropical instruments would be integral to 

furthering our understanding of aerosol levels and transport that occurs within and out 

of the tropical stratospheric reservoir following a future major tropical or near-tropical 

eruption.   
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5.6 Conclusions 

Within this chapter an analysis of an ensemble of interactive stratospheric aerosol 

simulations of the Mount Pinatubo cloud was performed, varying the emitted mass of 

SO2 and injection heights of SO2.  The analysis, following the design of the HErSEA 

experiment within the international ISA-MIP initiative (Timmreck et al., 2018), 

effectively assesses how the Mount Pinatubo cloud would have progressed under 

different eruption source parameter scenarios, such as a deeper SO2 injection range or 

an injection closer to the tropopause.   

Specifically, the effect varying these eruption source parameters has on the vertical 

extinction, sulfate burden and SAOD were analysed.  These simulations help to 

understand the variation in SO2 emission amount interactive stratospheric aerosol 

models find is needed to represent the same reference Mount Pinatubo observational 

datasets.  The research in this chapter has also applied the model to consider how a 

hypothetical equatorial lidar station would have observed the Mount Pinatubo aerosol 

cloud, also considering how this differs from the only tropical aerosol record from the 

Mauna Loa lidar.   

In addition to assessing how the different eruption source parameters influence the 

optical properties of the cloud, the chapter has analysed the progress of radiative heating 

and effective radius within the volcanic aerosol cloud.  The analysis seeks to understand 

how the volcanic aerosol cloud from different Mount Pinatubo-like eruptions would 

influence the radiative and microphysical progression of the cloud.  With the radiative 

heating driving important changes in several other trace species (primarily stratospheric 

ozone and water vapour), performing this analysis also allows an assessment of the 

broader effects of future Mount Pinatubo-like aerosol clouds.   

Overall, the results from the HerSEA ensemble confirms the results from Dhomse et al. 

(2020), that a model adjustment is required to reduce the SO2 emission to the lower 

limit of the observed 14-23 Tg range (Guo et al., 2004).  The analysis also illustrates 

how the injection height of SO2 resulted in large differences in vertical extinction, but 

evaluating the lidar observations shows that whereas a higher SO2 injection closer to the 

tropopause (20_lowalt) can bring SAOD values closer to observations, this would have 

a very different vertical structure and therefore influence other species quite differently.  

As in Dhomse et al. (2020), the aerosol extinction from the 10-14 Tg SO2, 21-23 km 

injection height simulation matches best with the lidar observations, reproducing well 
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the layers seen in observations.  However, the aerosol cloud top in this simulation 

remains too high compared to the observations.  Although the heating in the 

stratosphere following the eruption show a similar pattern to ERA-interim, the radiative 

heating in the model is too high, on average by a factor of 2, which may be lofting 

aerosol to altitudes higher than observed.  These biases are consistent with the model 

missing a sedimentation-enhancing pathway, such as via condensation of sulfate aerosol 

on ash, may also lead to a greater lofting of aerosol to higher than observed altitudes.  

The potential for sedimentation of sulfate on ash to explain this effect will be explored 

in an additional HErSEA ensemble of UM-UKCA simulations in Chapter 6.   

Previously, SAOD has justifiably been used as the primary diagnostic to assess model 

performance against observations (e.g. Niemeier et al., 2009; Aquila et al., 2012; 

Dhomse et al., 2014).  Assessing the skill of a model based only on SAOD does not 

account for the potential for bias in the vertical dispersion of the aerosol, for example 

this analysis shows that whereas 10 Tg SO2 may match well with SAOD, 14 Tg SO2 

matches more closely with sulfate burden.  Therefore, based on these UM-UKCA 

simulations SO2 mass emissions of more than 14 Tg are unlikely for the 1991 Mount 

Pinatubo eruption.  SO2 mass injections in the range between 10 and 14 Tg may be most 

likely due to the large uncertainties in observational data with AVHRR potentially 

overpredicting and GloSSAC underpredicting from a lack of upper tropopause data.   

Results from this chapter also highlighted that more ground-based lidar around the 

tropics and sub-tropics would significantly aid our understanding in the dispersion of 

volcanic material from the tropical reservoir to the northern and southern hemispheres 

and allow the retrieval of SAOD and vertical profiles of aerosols following another 

Pinatubo-scale eruption.   

The SAGE II satellite observations from the time of the 1991 Mount Pinatubo eruption 

were limited to only measure the upper part of the tropical part of the volcanic cloud 

because of extremely high optical thickness of the volcanic aerosol (Antuña et al., 

2002).  This gap in the SAGE II record highlights a difficulty to constrain a specific 

initial SO2 mass and injection height and further indicates the value for more 

observational capability, such as ground-based lidars or sun-photometers, around the 

equator and highlights the value of the ship-borne lidar analysed in Chapter 4.  This 

study indicates that, in this model, an injection height closer to 21-23 km and SO2 mass 

between 10-14 Tg agrees best with observations of extinction, SAOD and sulfate 
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burden.  An SO2 mass of 10-14 Tg is in agreement with studies such as Dhomse et al. 

(2014), Mills et al. (2016) and Sukhodolov et al. (2018), however Mills et al. (2016) and 

Sukhodolov et al. (2018) find a better agreement with observations when using an 

injection height of 18-20 km.  Due to recent advances in modelling and observational 

capabilities (Kremser et al., 2016), our understanding of underlying transport processes 

and microphysics would likely drastically improve if another major, powerful eruption 

like 1991 Mount Pinatubo were to occur.   

  



 

129 

 

Chapter 6  

The role of ultra-fine ash in the global dispersion of 

the 1991 Mount Pinatubo aerosol cloud 

6.1 Introduction 

Volcanic ash is an important eruptive product, due to the potential imminent danger to 

local communities from its deposition (Newhall et al., 1997; Wilson et al., 2012), and 

the hazard to aviation (Prata and Rose, 2015) and geochemical cycles (Niemeier et al., 

2009; Langmann, 2014).  Ash is rarely considered when predicting the climatic impact 

of a volcanic eruption, as the radiative forcing is known to depend primarily on how 

much SO2 reaches the stratosphere, the latitude of the volcano, height of the eruptive 

plume and the season of an eruption (Dyer, 1974; Toohey et al., 2011; Marshall et al., 

2019).  The reason ash is rarely considered when simulating the climate impact of 

volcanic eruptions is due to the assumption that ash particles sediment out of the 

stratosphere in the first few days after an eruption (Bluth and Rose, 2004; Niemeier et 

al., 2009; Langmann, 2014).   

An interactive stratospheric aerosol modelling study by Niemeier et al. (2009) 

investigated the effects of the co-emitted volcanic ash and SO2 from the 1991 Mount 

Pinatubo eruption, with one ash mode representing ash particle sizes between 1-15 µm 

in radius.  Their study found these super-micron radius particles remained in the 

stratosphere for no longer than 1 week, but showed that the radiative heating effects 

from the ash increased global dispersion of the volcanic sulfate cloud slightly with a 

deeper cloud and greater southward transport in the first 20 days after the eruption.  

Muser et al. (2020) showed that, even for the much smaller June 2019 Raikoke eruption, 

both radiative heating and particle-aging have important effects on the dispersion of the 

volcanic cloud.  Although only simulating the volcanic cloud for the first few days after 

the eruption, Muser et al. (2020) show how the co-emitted ash changes its progression, 

illustrating the importance of radiative heating and particle-aging for the vertical 

transport of aerosol and subsequent cloud altitude.  The Niemeier et al. (2009) study 

only explored the radiative heating effects of the ash on the volcanic sulfate aerosol, the 

simulations not resolving microphysical effects from the uptake of sulfate onto the ash.  
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This thesis chapter explores the possibility that the longer stratospheric residence time 

of ash particles <1 µm geometric mean diameter (hereon referred to as “ultra-fine ash”) 

may have a substantial impact on the progression of the volcanic aerosol cloud, even 

though these particles represent less than 1% of the overall mass of ash emitted.   

Observational evidence for the presence of volcanic ash within the Mount Pinatubo 

cloud by initial balloon soundings from Laramie, Wyoming (41°N) (Sheridan et al., 

1992; Deshler et al., 1992) showed no obvious signature of ash.  The balloon soundings 

on July 16th and 26th 1991 contained heated-inlet particle counters, which measured 

ambient air on balloon ascent, with the inlet heated on descent to measure non-volatile 

particles (those surviving 150°C).  The initial flights were also equipped with cascade 

impactors to sample aerosol particles for later composition analysis.  The refractory 

particle concentrations on these flights showed little enhancement ~15 km in the initial 

volcanic layers, with compositional analysis finding that 99% of measured particles did 

not contain ash (Sheridan et al., 1992) and heated impactors finding 95-98% of particles 

were also purely sulfuric aerosol particles.  However, a recent re-analysis of the balloon 

measurements (Deshler, 2016) shows that heated-inlet particle counter on the July 30th 

1991 in Deshler et al. (1992) and later analysed August 2nd 1991 sounding (Deshler, 

2016) both showed enhanced refractory particle concentrations in higher altitude layers 

(at 21-24 km).  Analysis of total particles to refractory particles also revealed a 

signature of very rapid particle size sorting in all 4 of the early flights, consistent with 

the potential earlier sedimentation of much larger ash particles.  The analysis concluded 

that the involatile particles are the ash cores within internally mixed ash-sulfuric 

particles.   

The two later balloon flights from Laramie that detected the non-volatile (ash) 

components were 44 and 47 days after the eruption, the earlier flights showing no 

volcanic ash detected at 30 and 40 days after the eruption, suggesting ash arrived at least 

2 weeks later than the initially detected volcanic cloud which was comprised entirely of 

sulfate (Deshler, 2016). A significant ash component was found at 22-23.5 km with the 

re-analysis from Deshler (Deshler, 2016) concluding the non-volatile cores were ash 

particles at ~0.25 µm radius, within overall ash-sulfuric particles at around 0.48 µm 

radius.   

In addition to the balloon measurements, in-situ sampling aircraft-borne impactor 

measurements (Pueschel et al., 1994) also give mixed evidence for ash particles in the 
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volcanic aerosol cloud, with analysis of the impactor samples of the ER-2 flights (at 16-

20 km) no volcanic ash, whereas the analysis of impactor samples on the DC-8 flights 

(at 9.5-12.6 km) clearly show ash coated with sulfuric acid.  The DC-8 flights with the 

cascade impactors were primarily between 50-66°N and measured during January-

March 1992 (7-9 months after the Mount Pinatubo eruption) and are consistent with 

lidar depolarisation measurements from Aberystwyth (52°N) (Vaughan et al., 1994) (as 

outlined in Chapter 3).  The Aberystwyth lidar measurements show that whereas the 

majority of the volcanic cloud was non-depolarising (spherical particles), the 

backscatter from the base of the Mount Pinatubo aerosol cloud continued to be 

moderately depolarising throughout August 1991 to March 1992, indicating non-

spherical particles were present in the lower portion of the volcanic cloud.  The altitude 

of the >1% depolarising layer was initially in the lower portion of the cloud, descending 

to only be below 18 km from December 1991 before residing between 10 and 17 km 

during January and March 1992, broadly consistent with the difference between the DC-

8 and ER-2 airborne impactor measurements.   

In the previous chapter, interactive stratospheric aerosol simulations investigated the 

effect of different injection heights and mass of SO2 on the progression of the initial 

tropical confinement of the Mount Pinatubo eruption aerosol cloud.  In this chapter, 

additional model experiments that emit both SO2 and volcanic ash particles are 

investigated, with one of the 7 modes in the aerosol module having been adapted to also 

track an internally mixed sulfate component of the ash mode.  The same set of injection 

parameters from the HErSEA-Pinatubo experiment with ISA-MIP (Timmreck et al., 

2018) is also used in this chapter to assess the effect ultra-fine ash had on the 

progression of the Mount Pinatubo aerosol cloud with the equivalent set of model 

simulations.   

Firstly, model simulations using ash particles greater than 1 µm geometric mean 

diameter (hereon referred to as “fine ash”) are assessed (Section 6.3), investigating the 

residence time of different emission sizes for these particles.  The ultra-fine ash particles 

are then investigated (Section 6.4.1) to evaluate the simulated vertical distribution of 

this ultra-fine ash within the Mount Pinatubo aerosol cloud.   

The experiments align with the Mount Pinatubo experiment in Niemeier et al. (2009), 

but here the effect of the ultra-fine ash to potentially scavenge some proportion of the 

volcanic sulfur is explored.  The impact of the co-emitted ash on SAOD (Section 6.5) 
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and sulfate burden (section 6.6) are first assessed, with the focus first on the changes to 

the monthly progression of the tropical reservoir.  The vertical profiles of ash and 

sulfate is then explored, also with the daily-timescale variation in extinction compared 

to the MLO lidar, as in the first two results chapters (Section 6.7).   

The tropical and global sulfate burden is compared to that derived from the HIRS/2 

satellite observations (Baran and Foot, 1994), with these infrared satellite measurements 

detecting the volcanic sulfuric acid aerosol from the 8.2 µm water vapour channel.  

Model simulated SAOD is compared to the GloSSAC volcanic forcing dataset used for 

CMIP6 and also that measured from the nadir sounding AVHRR measurements.  For 

the Mount Pinatubo period, GloSSAC is based on the SAGE II measurements, and 

includes the period where the solar occultation instrument could only measure the upper 

part of the volcanic aerosol cloud due to the extremely high AOD.  The dataset is based 

on the latest version 7.0 of the SAGE II aerosol extinction retrieval algorithm (Damadeo 

et al., 2018) and used an improved gap-filling method for the saturation period 

combining with infra-red Cryogenic Limb Array Etalon Spectrometer (CLAES) 

measurements in mid-latitudes (Thomason et al., 2018), but still uses the original gap-

filled dataset in the tropics, combining with lidar measurements from Mauna Loa 

(Hawaii), Hampton (Virginia) and Camaguey (Cuba) (SPARC, 2006).   

The chapter is concluded by suggesting future work related to ash research in both UM-

UKCA and other models.  A potentially missing important removal pathway for major 

tropical volcanic aerosol clouds is suggested by Dhomse et al. (2014) and other 

interactive stratospheric models (see Timmreck et al., 2018), with Mills et al. (2016) 

reducing their injection estimates of SO2 to account for a lack of ash and ice in their 

model.  In Chapter 5 there was a discrepancy with the height of the volcanic aerosol 

cloud, noted to be due in part to radiative heating being too high in the model, however 

there may also be a lacking reduction pathway which we hope to resolve in this chapter 

by including ash in these simulations.  The model experiments were designed to test the 

following two science questions: 

a) With ultra-fine ash particles persisting longer in the atmosphere than fine ash 

particles, how does their presence influence the global dispersion of major volcanic 

clouds? 
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b) Does the ultra-fine ash mainly impact the cloud sulfate through scavenging sulfate 

aerosol via condensation or by acting the self-lofting effect of increased absorption of 

solar radiation? 

6.2 Data and methods 

The model experiments in Chapters 4 and 5 simulated the Mount Pinatubo aerosol cloud 

as being composed entirely of aqueous sulfuric acid aerosol particles with subsequent 

global dispersion and microphysical progression of the cloud.  In order to address the 

impact of ultra-fine ash on the aerosol cloud, a new version of the model was applied to 

allow co-emission of volcanic ash and volcanic SO2 at a specified particle size.  The 

approach tracks the ash mass equivalently to simulations with desert dust in the modal 

scheme (Yoshioka et al., 2019) with the coarse-insoluble mode used exclusively to track 

volcanic ash.   

As explained in Section 3.3.3, in order to explore the scavenging effect of the sulfate 

uptake onto the ash, the GLOMAP aerosol module was adjusted to track also an extra 

sulfate aerosol component in that coarse-insoluble mode.  These particles are then 

tracked as internally mixed ash-sulfuric particles.  It should also be noted that although 

a single emission size is given, the sedimentation method within the model accounts for 

internal variation in particle size, since it sediments both number and mass with the 

corresponding fall speed (Mann et al., 2010).  The ash-sulfuric particles are transported 

within the coarse-insoluble mode, which has a geometric standard deviation of 2.0, 

corresponding to particle size range of around a factor of 10 in radius (Mann et al., 

2012).   

Before carrying out the full HErSEA-Pinatubo ensemble of model experiments with ash 

(Table 6-1), an initial set of short, 10-day simulations emitting ash at a number of 

different ash sizes were carried out, using the mid-altitude emission height.  These 

initial simulations were aimed at determining how the ash residence time in the 

stratosphere varies with particle size.  Simulations with emission sizes of 1, 3.16 and 10 

µm diameter were used to investigate the smaller to larger fine ash size ranges (Section 

6.3), for 50 Tg of ash emitted, as 50 Tg is the upper end of the 34-50 Tg best-estimate 

range from the HIRS and AVHRR satellite observations (S. Guo et al., 2004).  The 

upper value is thought to be more likely due to signal decrease from clouds upon 

retrieval (S. Guo et al., 2004).  Then, 3-month simulations were carried out to 
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investigate the effects of the longer lasting ultra-fine ash, using sizes 0.1, 0.316 and 1 

µm (Section 6.4).   

Table 6-1 List of performed experiments, with "_ash" indicating model simulations with ash 

injected and "non-ash equivalent" outlined in Chapter 5. 

Name Non-ash equivalent Injected SO2 (Tg) Injection height (km) 

10_lowalt_ash 10_lowalt 10 18-20 

10_midalt_ash 10_midalt 10 21-23 

10_deepalt_ash 10_deepalt 10 18-25 

14_lowalt_ash 14_lowalt 14 18-20 

14_midalt_ash 14_midalt 14 21-23 

14_deepalt_ash 14_deepalt 14 18-25 

20_lowalt_ash 20_lowalt 20 18-20 

20_midalt_ash 20_midalt 20 21-23 

20_deepalt_ash 20_deepalt 20 18-25 

For these longer ultra-fine ash experiments 1% and 10% of the estimated 50 Tg ash was 

injected (0.05 Tg and 0.5 Tg), as studies have estimated that smaller ash sizes made up 

0.9-9% of the total fine-ash mass (Bluth and Rose, 2004; Niemeier et al., 2009).   

To evaluate the progression of ultra-fine ash in altitude, the ash co-emission equivalent 

of the HErSEA simulations (Chapter 5) are compared to depolarisation measurements 

from the Aberystwyth lidar (Vaughan et al., 1994), as no other Mount Pinatubo study 

has compared to this dataset.   

The first metric, stratospheric AOD (SAOD) at 550 nm wavelength, is the primary 

metric used to evaluate interactive Mount Pinatubo aerosol simulations.  Two 

benchmark datasets for SAOD following the eruption are from SAGE II measurements 

(Thomason and Osborn, 1992) and AVHRR (Long and Stowe, 1994).  Here, SAOD 

from GloSSAC (Thomason et al., 2018) and AVHRR are used to compare to the model 

simulated SAOD.  Sulfate measurements from Baran and Foot (1994) are also 

compared to model-simulated sulfate burden.  These observational measurements are 

widely used in the modelling community for simulating the Mount Pinatubo eruption, 

with the GloSSAC data providing a more up to date dataset of the SAGE II data that 
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was super-saturated at the time of the Mount Pinatubo eruption (e.g. Antuña et al., 

2002).  Table 6-1 outlines the different model experiments in this chapter.   

6.3 Stratospheric residence time of fine ash (super-micron) 

In this section the 10-day model experiments with fine ash (1,3.16, 10 µm diameter) are 

analysed.  All simulations use the 14_midalt_ash HErSEA setup and 50 Tg of ash 

emitted.  For these initial experiments, the rationale it to assess how the ash mass 

burden progresses and to track how different sized particles are removed.   

For the 10 µm mean diameter model simulation, the ash particles are almost completely 

removed from the stratosphere within 8 days of the eruption, the mass burden in the 

stratosphere reduced to just 0.65% of the 50 Tg ash initially emitted (0.001 Tg) (Figure 

6-1).  The model represents the SO2 and ash emission as a 24-hour emission on June 

15th 1991 with a model timestep of 20 minutes.  The 50 Tg ash emission is then 0.69 Tg 

on each of the 72 timesteps.  It is important to note that the points of the graph are each 

1-day means and maximum burden on the 15th June is 25 Tg, so where the 10 µm peak 

shows 20% it should be taken as double that value.   

The subsequent daily means can be considered representative however, and within 2 

days of the eruption the 3 µm mean emissions diameter case sees ~30% of emitted ash 

mass removed from the stratosphere.  The 3.16 µm and 1 µm retain 15% and 58% of the 

original ash mass injected, respectively, one week after the eruption (Figure 6-1).  The 

decline of the 1 µm particles is steadier, losing ~5% of the total mass on average per 

day.  Overall, the e-folding times (calculated after the peak) for each particle size are 2 

days, 4 days and 13 days for 10 µm, 3.16 µm and 1 µm, respectively.   

According to Junge et al. (1961) (as mentioned in Section 2.2.5) a particle with density 

2000 kg m-3 at ~22 km should fall at ~2.6 km/day for a particle with diameter 10 µm, at 

0.35 km/day for a particle with diameter 3 µm and 0.07 km/day for a particle with 

diameter 1 µm.  All particles in Figure 6-1 fall at slightly faster speeds than shown by 

Junge et al. (1961), however, since the model simulated particles are heavier (density of 

2650 kg m-3), their terminal velocities are higher than particles with a density of 2000 

kg m-3. 

An exponential decay in ash burden is seen in the HIRS/2 satellite observations (S. Guo 

et al., 2004) following the Mount Pinatubo eruption and these data show a removal of 

ash to ~10% of the original mass within 3 days, in line with the reduction in ash burden 
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between the 1 µm and 3.16 µm mean diameter two-moment modal sedimentation cases 

(Figure 6-1).   

 

   

Figure 6-1 Percentage mass of ash over a one-week period following the eruption for 1, 3.16 and 10 

µm ash sizes. 

 

6.4 Stratospheric residence time and vertical distribution of ultra-fine 

ash (sub-micron) 

In this section, longer (90-day) ash co-emission experiments were simulated for ultra-

fine ash sizes (0.1 µm, 0.316 µm and 1 µm geometric mean emission diameter).  In 

these simulations more realistic ash emission fluxes of 0.05 Tg and 0.5 Tg of ash were 

investigated (1% and 10% of the estimated 50 Tg ash injected, as mentioned in Section 

6.2).    

With this reduced emission flux, the 1 µm ash experiment retains 40% of the original 

ash mass (Figure 6-2), in comparison to the 58% retained with a 50 Tg injection mass 

(Figure 6-1).  This comparison suggests that the 50 Tg simulations have a substantial 



137           The role of ultra-fine ash in the global dispersion of the Mt Pinatubo aerosol cloud 

137 

 

radiative heating effect, lofting the ash particles to higher altitudes and extending their 

stratospheric lifetime.   

 

 

Figure 6-2 Percentage mass of ash in the first 3 months following the 1991 Mount Pinatubo 

eruption, for 3 different ash sizes (0.1, 0.316 and 1 µm) for 0.05 and 0.5 Tg of ash injected.  Straight 

lines denote 0.05 Tg, dashed denote 0.5 Tg ash.   

 

For the 0.05 Tg and 0.5 Tg ash emissions, 80% of the total ash is removed within 2 

weeks of the eruption and the stratosphere is almost entirely depleted of ash after 3 

months (Figure 6-2).  The 0.316 µm diameter ash decreases by 60% after 3 months in 

the 0.5 Tg case and 55% in the 0.05 Tg case.   

For the 0.1 µm mean emission size experiments, the stratospheric ash burden decreases 

slightly more after 3 months in the 0.5 Tg case (92%) than in the 0.05 Tg case, where 

98% of the ash burden remains (Figure 6-2).  Niemeier et al. (2009) found that ash sizes 

in the range 1-15 µm were short-lived, which agrees with what is found here with the 

>1 µm mean diameter ash simulations analysed in Section 6.3.  These simulations 

suggest that 0.1 to 1 µm diameter ash particles may play a more important role than 

suggested by Niemeier et al. (2009).  The M7/HAM aerosol scheme used in the 

ECHAM simulations in that study represent particles from 1-15 µm using a similar two-
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moment modal scheme, however their peak diameter was ~4 µm, therefore not 

exploring the effect of peak emission sizes ≤1 µm.   

Research to assess the optical properties of ash within the 2014 Kelud (Indonesia) 

eruption cloud estimated that ash particles <0.3 µm in size accounted for 20-25% of the 

overall volcanic cloud AOD at altitudes between 18 and 23 km (Vernier et al., 2016).  

This suggests that the ultra-fine diameter sized ash particles in this study may have 

more of an effect on AOD and climate than previously thought due to their persistence 

in the atmosphere.   

Based on these initial model tests it was decided that 0.05 Tg as the mass of ash and 0.1 

µm as the mean emission size were to be studied for the HErSEA ensemble of 

simulations in Table 6-1.  These are the longest lasting particles, as seen in Figure 6-2, 

and therefore have the potential to impact the stratospheric cloud over the whole time 

period studied.  These particles also have a long enough residence time to be consistent 

with DC-8 cascade impactor samples (Pueschel et al., 1994) and lidar measurements 

from Aberystwyth (Vaughan et al., 1994).  The hypothesis posed here is that the ultra-

fine (specifically 0.03 to 0.3 µm diameter: mean of 0.1 µm) ash particles have the 4-9-

month residence time shown in the observations.  Therefore, these ash particles are 

present and have the potential to impact upon the SAOD and sulfate burden, acting also 

as a faster sedimentation pathway and/or source of increased radiative heating in the 

stratosphere.   

6.4.1 Ultra-fine ash burden for June 1991 - February 1992 

Following on from the previous section, additional simulations with the 0.1 µm mean 

diameter ash was performed to analyse how the ash burden change in the model 

depends on injection height and mass of SO2 (Figure 6-3).  In all simulations (Figure 

6-3) at least 40% of the ultra-fine ash is still in the stratosphere by February 1992, with 

66% of it still remaining in the case of the 18-25 km injection height simulations.  A 

variation is seen between the different injection heights throughout this period, with 18-

20 km simulations retaining the least amount of ash.  In the 18-20 km simulations the 

ash is injected closer to the tropopause and sees the quickest removal of ash of all 

injection heights from August, showing a fairly steady reduction to 45% in February 

1992.   
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As with Section 5.3.1, where injection height had a greater impact on the vertical profile 

of extinction than the mass of SO2 injected, here the same is true for the global ash 

burden (Figure 6-3), except for the 20_midalt_ash simulation where the ash burden 

reduces more rapidly than 10_midalt_ash or 14_midalt_ash around the beginning of 

November 1991.  The longest lasting particles initially are those with an injection height 

of 21-23 km for all 3 SO2 emissions.  A sudden decline in ash burden is seen at the end 

of October 1991, reaching 58-60% of the original 0.05 Tg mass by the end of February 

1992.   

By February 1992 the 18-25 km injection height simulations show the largest remaining 

amount of ash (68%) and the 18-20 km injection height simulations show the least 

amount of remaining ash (45%).  Understanding how the ash burden varies over time is 

important in order to identify the residence time of the different particle sizes.   

 

Figure 6-3 Ash burden percentages for model simulation with 10, 14 and 20 Tg of SO2 and 18-20, 

21-23 and 18-25 km injection heights. 
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As well as the overall remaining burden of ash, it is important to know where the ash 

resides in relation to the sulfate aerosol in the vertical.  Firstly, to investigate the co-

location of the sulfate aerosol and ash and therefore the potential for condensation and 

coagulation of sulfate onto the ash.  Secondly, assessing the vertical profiles of ash and 

sulfate burden also establishes where the majority of each constituent is located in 

altitude (i.e. the peak) for these different 0.1 µm mean emission size cases.   

Figure 6-4 shows the ash (red) and sulfate (blue) burden for the tropics for all injection 

heights with a 14 Tg SO2 emission and different line styles indicating different injection 

heights.  At all latitudes, the simulations show a clear layer of ultra-fine ash at a slightly 

lower altitude (~1 km) than the main sulfate layer.  The upper part of the ash layer is at 

the same altitude range as the sulfate layer.  This slightly lower, but overlapping ash 

layer is broadly consistent with later mid-latitude observations from the Aberystwyth 

lidar (Vaughan et al., 1994) and cascade impactors on the DC-8 and ER-2 flights 

(Pueschel et al., 1994).  Analysis of the 2014 Kelud plume also showed this partial 

overlap (Vernier et al., 2016).   

Figure 6-4 also shows that whereas the sulfate aerosol layer is increasing in altitude 

slightly over time, continued upwelling from the tropics allows the ash layer to remain 

at around the same altitude.  This suggests the slow sedimentation is offsetting the uplift 

from the slow tropical upwelling of the BDC.   

The 30-day average per panel presented in Figure 6-4 allows an analysis of the changes 

in vertical distribution of the sulfate and ash.  For the most part, the locations of the 

peak ash and sulfate burdens are seen at the same altitudes for all injection heights, 

overlapping primarily in the first month following the eruption.  An average of 1 km 

difference in altitude for the peak ash and sulfate values is noticeable for the 18-20 km 

and 21-23 km injection heights (solid and dashed lines, respectively), with the 18-25 km 

(dot-dashed line) showing a slightly larger difference of 2-3 km between the peak ash 

and sulfate burden.  A comparison of the northern and southern hemispheres also 

suggests that more of the sulfate and ash enters the northern hemisphere faster through 

lower injection heights, whereas the largest burdens appear from the 21-23 km 

injections in the southern hemisphere (0).  
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Figure 6-4 Monthly average ash (red) and sulfate (blue) burden for the tropics (20°S-20°N) for a 14 

Tg SO2 and 0.05 Tg ash injection mass at 18-20 km (solid lines), 21-23 km (dashed lines) and 18-25 

km (dot-dashed line).   

6.5 Impact of ultra-fine ash on optical depth from the Mount Pinatubo 

cloud 

This section explores the impact the co-emitted ultra-fine ash particles have on the 

Mount Pinatubo cloud, focussing on differences in mid-visible SAOD (550 nm) from 

the Chapter 5 simulations that did not include ash.  The analysis compares model 

simulated SAOD values with monthly mean datasets of measurements from the 

AVHRR instrument on the NOAA-11 satellite and the GloSSAC dataset, used to enact 

Mount Pinatubo forcing in CMIP6.  Figures of SAOD are organised based on mass of 

SO2 and latitudinal variation, focussing on the tropical (20°S-20°N), midlatitude (60°S-
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60°N) and northern (20-60°N) and southern (20-60°S) hemisphere midlatitudes.  The 

solid lines in the figures denote ash-interactive simulations and the dotted lines denote 

simulations without ash (i.e. the HErSEA ensemble of simulations analysed in Chapter 

5).  Black lines denote the monthly-mean AVHRR observations and black lines with 

yellow stars denote monthly-mean GloSSAC data.   

For this analysis, the focus is primarily on the difference between the new ash-

interacting simulations and the no-ash simulations from Chapter 5, across the Mount 

Pinatubo HErSEA ensemble.  Changes caused by ultra-fine ash in the tropics will 

impact what is predicted in the mid-latitudes, for example if ultra-fine ash causes a 

reduction from scavenging in the tropical SAOD, this will reduce SAOD values in the 

mid-latitudes.  If the ultra-fine ash introduced a heating effect, however, greater export 

from the tropics to mid-latitudes may occur, therefore decreasing tropical SAOD and 

increasing mid-latitude SAOD.  Hence, an assessment of the impact of ultra-fine ash on 

the tropics (20°S-20°N), mid-latitudes (60°S-60°N) and the mid-latitudes of each 

hemisphere (20-60°S and 20-60°N) is presented.   

6.5.1 Tropical SAOD variation 

In the tropics, as with Chapter 5, the model data for all simulations show an initial 

increase in SAOD up to the maximum SAOD, followed by a decay phase.  All model 

simulations have roughly the same timescale decay as in the AVHRR observations, the 

GloSSAC dataset showing a different variation temporally.  The peak SAOD again 

depends primarily on the magnitude of the injected mass of SO2 (Figure 6-5), as in 

Chapter 5.  A more in-depth description of the comparison between the no-ash 

simulations and the measurements is given in Chapter 5, with this section focussing on 

differences between the no-ash and ash-interactive simulations.   

The 10_lowalt_ash and 10_lowalt model data agree with the GloSSAC data in early 

1992, but overall agree best with AVHRR data.  The GloSSAC data has a far greater e-

folding time than AVHRR (20.2 and 6.6 months, respectively).  The model simulated 

SAOD e-folding timescale for the 10-20 Tg eruption clouds vary between 5.50 and 

8.63, in all cases agreeing with tropical AVHRR values, much lower than those derived 

from GloSSAC.   

Of the three injection masses of SO2, the 10 Tg model simulations either with or 

without ash agree best with observations, with the 10_midalt_ash matching the peak 
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almost identically with SAOD of ~0.325 (Figure 6-5a).  All 14 Tg and 20 Tg cases 

agree with observational values until August 1991; however, they generally produce 

SAOD values that are too large in comparison to observations from August 1991 

onwards (maximum values of 0.45 and 0.63 for 14_deepalt_ash and 20_deepalt_ash, 

respectively).  The 14_lowalt_ash and 14_lowalt (Figure 6-5b) also agree with AVHRR 

from December 1991 onwards (0.21, 0.19 and 0.15 for December 1991, January and 

February 1992, respectively).  GloSSAC values are lower than model SAOD from June 

1991-February 1992 in all 14 Tg and 20 Tg simulations, particularly in the 20 Tg case 

where GloSSAC values are lower by up to 0.45.   

When comparing between injection heights, irrespective of ash or no ash, the 10 Tg and 

20 Tg simulations show 18-20 km with lowest SAOD values, followed by 21-23 km 

and 18-25 km (Figure 6-5a and c), however, in the 14 Tg case the 21-23 km injection 

height simulations overtake the 18-25 km from November 1991 onwards (Figure 6-5b).  

The 21-23 km and 18-25 km simulations also show similar peak values for the 10 Tg 

and 14 Tg cases, but 21-23 km simulations have 0.05 lower SAOD values in the 20 Tg 

case.   

Considering the 10 Tg Mount Pinatubo cloud simulations (Figure 6-5a) the model 

predicts the ultra-fine ash has a significant effect on peak SAOD values only in the low-

altitude injection cases.  The 10_lowalt_ash simulation shows peak SAOD values ~10% 

lower than in the 10_lowalt simulation (0.18 compared to 0.2 in November 1991).  In 

contrast, the ultra-fine ash has no effect on the peak SAOD for the 10_deepalt case.  It is 

interesting to note, however, that the ultra-fine ash does have a substantial effect on 

10_deepalt later in the simulation, with the influence being to increase the tropical 

SAOD rather than decrease it, with 25% higher SAOD values - 0.17 compared to 0.14 

in February 1992.  A lower peak SAOD occurs most significantly when SO2 is injected 

near the tropopause, likely due to the sub-tropical pipe being weaker in the lowermost 

stratosphere (Holton et al., 1995) with significant potential to export aerosol to mid-

latitudes (see discussion in Chapter 5 and Chapter 2).   
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Figure 6-5 SAOD for the tropics in all injection height scenarios for (left) 10 Tg, (middle) 14 Tg and (right) 20 Tg.  Solid lines are ash simulations and dashed 

are non-ash simulations, note the difference in scale on the y-axis.
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Whereas the lower peak SAOD values for the ash-interactive simulations was only 

occurring for the case injecting closer to the tropopause in the 10 Tg simulations 

(10_lowalt), a more consistent picture emerges for the 14 Tg and 20 Tg cases.  The 

ultra-fine ash causes substantially lower peak SAOD values in all cases, the magnitude 

increasing proportionally with the increased injection of SO2 mass (Table 6-2).  Smaller 

relative increases are seen for the 21-23 km injection height simulations (green lines), 

consistent with altitude sensitivity seen in the 10 Tg simulations.  For example, from 

October to mid November 1991 14_lowalt_ash, 14_midalt_ash and 14_deepalt_ash 

show higher (by 0.01-0.02) or equal values of SAOD compared to the non-ash 

simulations.  Prior to November 1991 14_lowalt_ash, 14_midalt_ash and 

14_deepalt_ash have consistently lower SAOD values than their non-ash equivalents 

(Figure 6-5b).   

The effect the ultra-fine ash has on extending the lifetime of 10_deepalt_ash does not 

occur in any of the higher SO2 emission cases (Figure 6-5b and Figure 6-5c).  This 

single model simulation indicates that SO2 oxidation proceeds quickly enough to 

interact with the ash before it separates from the sulfate cloud.  In the other injection 

height cases the injection is more concentrated (2 km) and limited oxidation occurs.   

Overall, these modest effects from the ultra-fine ash mean that each of the 10 Tg model 

simulations continue to agree well with the temporal variation of the AVHRR 

measurements, but are too high compared to GloSSAC, whereas 14 and 20 Tg model 

simulations produce higher SAOD values than observations suggest.     

18-20 km injection heights show ash simulations having a lower SAOD in the tropics 

than their non-ash counterparts, whereas 21-23 km and 18-25 km injection heights 

produce different results depending on the mass of SO2 emitted.  The peak in the 21-23 

km injection heights seems least consistent, particularly in the 10 and 20 Tg cases which 

both indicate a difference in the peak time of the ash and non-ash cases.   

Table 6-2 Reduction in peak SAOD between ash and non-ash simulations. 

 10 Tg 14 Tg 20 Tg 

18-20 km 0.02 0.05 0.06 

21-23 km 0.02 0.01 0.02 

18-25 km 0 0.01 0.04 
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Peak differences of 0.01 are equivalent to variations in SAOD seen following the 2008 

Kasatochi eruption (Andersson et al., 2015), for example, with differences from 0.02 -

0.04 equivalent to values seen in 1994 following the Rabaul eruption and differences of 

0.05-0.06 equating to differences seen across the midlatitudes following the Mount 

Pinatubo eruption (Mills et al., 2016, Figure.4).  The most significant differences in 

SAOD when including ash are for 14 Tg and 20 Tg with injection height 18-20 km, 

however all the differences seen indicate significant differences.   

For this analysis of the influence of the ultra-fine ash particles on the Mount Pinatubo 

cloud, the focus is primarily on the difference between the new ash-interacting runs and 

the no-ash simulations from Chapter 5, across the different Pinatubo realisations in the 

HErSEA ensemble. Comparisons to the GloSSAC and AVHRR observations are 

discussed in chapter 5.  One thing to take into consideration in the subsequent 

discussion, is that any change the ultra-fine ash causes in the tropics, will affect what is 

predicted in the mid-latitudes.  For example, if the ash causes more removal of aerosol 

in the tropics, then less will be available to transport to mid-latitudes, the reduction in 

the tropics reducing mid-latitude SAOD.  SAOD at 550 nm values reflect both aerosol 

mass and size distribution, therefore a modest SAOD change could also be caused by a 

change in size distribution (e.g. modified particle growth).  If the ash enacts a 

substantial heating effect, then there could also be an increase of fresh (non-volcanic) 

air from the tropical troposphere, which would cause a change of opposite sign, with a 

decrease in tropical SAOD effecting an increase in mid-latitude SAOD due to greater 

export from the tropical reservoir.    

6.5.2 Mid-latitude SAOD variation 

In the mid-latitudes the maximum model simulated SAOD is around half the values 

seen in the tropics (0.16 and 0.35 for 10 Tg; 0.23 and 0.45 for 14 Tg; 0.30 to 0.62 for 20 

Tg) (Figure 6-6).  There is a similar pattern as in the tropics (Figure 6-5), whereby in 

both the ash and non-ash simulations, the 10 Tg (Figure 6-6a) simulations match closely 

with observations and the 14 and 20 Tg simulations give SAOD values that are mostly 

too high (Figure 6-6b and c).  For example, peak SAOD for AVHRR is 0.18 in 

September 1991, whereas peak model SAOD is 0.23 and 0.30 for 14 and 20 Tg, 

respectively.   

20 Tg has SAOD values far higher (0.3) than AVHRR values, though has a similar 

shape to AVHRR (Figure 6-6c).  The 10 Tg simulations match AVHRR data closely 
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until September 1991.  The GloSSAC data then shows lower values than all model 

simulations, with the exception of January 1992 where 10_lowalt has similar values 

~0.12.  GloSSAC peaks at 0.12 in the midlatitudes, whereas AVHRR has an AOD of 

0.18 in September 1991, which is higher than all 10 Tg model simulations.   

As with the tropics, the 18-25 km simulation shows the highest SAOD values in the 10 

Tg injection case, followed by the 21-23 km and 18-20 km simulations, respectively 

(Figure 6-6a).  However, for the 14 and 20 Tg cases the peak 18-20 km SAOD values 

are higher (0.21 and 0.28, respectively) than those for the 21-23 km SAOD values (0.20 

and 0.27, respectively), with the 18-20 km SAOD values matching the shape of the 

AVHRR data best in both cases (Figure 6-6b and c).   

Differences between the ash and non-ash cases are again non-linear following the peak 

of the SAOD.  In the 10 and 20 Tg injections of SO2 the 18-20 km and 18-25 km 

simulations peak and then decline, whereas the 21-23 km cases decline steeply after the 

peak and then plateau (Figure 6-6a and c).  In the 14 Tg cases it appears that the 18-20 

and 18-25 km injections heights decline more steeply than their 10 and 20 Tg 

counterparts and the 21-23 km simulation has a much more gradual decline (Figure 

6-6b).   

The injection heights themselves show interesting differences for ash and non-ash cases.  

10_lowalt_ash and 20_lowalt_ash have higher SAOD values initially, but by November 

1991 have lower SAOD values than their non-ash counterparts.  In 10_deepalt_ash 

SAOD is lower at the peak and then by November has higher SAOD values than 

10_deepalt, whereas 20_deepalt_ash is largely equal to 20_deepalt.  21-23 km 

simulations are variable between injection amounts.   
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Figure 6-6 SAOD for the midlatitudes (inclusive of the tropics) (60°S-60°N) in all injection height scenarios for a) 10 Tg, b) 14 Tg and c) 20 Tg.  Solid lines are 

ash simulations and dashed are non-ash simulations, note the difference in scale on the y-axis.
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For 10 and 14 Tg SO2, 10_midalt_ash and 14_midalt_ash have generally higher SAOD 

values between September and December 1991 before converging or showing values 

lower than 10_midalt and 14_midalt.  In the 20 Tg case the 20_midalt_ash values are 

lower between September and December 1991 before showing higher values than 

20_midalt into the beginning of 1992.   

Overall, the 10 Tg cases again match closely with AVHRR observations, however 14 

Tg matches the AVHRR shape and agrees with AVHRR values until August 1991.  The 

20 Tg cases are all higher than observed values.  There are differences between the ash 

and non-ash cases, however these all vary depending on the injection of SO2.  18-20 km 

injection heights show higher peak SAOD values than 21-23 km injection heights for 14 

and 20 Tg SO2.   

6.5.2.1 Northern and southern hemisphere midlatitudes SAOD variation 

For the northern hemisphere, the trend of the SAOD data most closely matches with the 

GloSSAC data, with the AVHRR SAOD values lower than all model data from October 

1991 onwards.  The GloSSAC data matches closest with the 10_midalt and 

10_midalt_ash.  

For 10 and 20 Tg SO2 (Figure 6-7a and c) the ash inclusive simulations all have SAOD 

values higher than their non-ash counterparts by 0.03 on average, whereas for 14 Tg this 

is true for 18-20 km and most of 18-25 km, but the non-ash case shows higher SAOD 

from November onwards in the 21-23 km case by up to 0.04 in January 1992.   

In the northern hemisphere, there is an noticeable contrast to the tropics and total 

midlatitudes, whereby the 18-20 km simulations have the highest SAOD values for the 

majority of the time period, followed by the 18-25 km and then the 21-23 km (Figure 

6-7).  The GloSSAC data for the northern hemisphere matches well with model data for 

10 Tg simulations and AVHRR is broadly lower than model data in contrast to the 

tropics and mid-latitudes.  Large differences between AVHRR and GloSSAC here are 

from no overpasses of AVHRR from 40-60°N from September 1991 to early 1992 

(Long and Stowe, 1994).   

In the southern hemisphere, the observed SAOD is much higher than the 10 and 14 Tg 

model SAOD, with observed peak values of 0.12 and 0.10 for AVHRR and GloSSAC, 

respectively and the highest model values peaking at 0.075 and 0.08 for 10_midalt and 
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14_midalt simulations, respectively.  20_midalt broadly follows GloSSAC data and 

AVHRR values compare closely with 20_midalt_ash and 20_deepalt_ash (Figure 6-8c).   

In contrast with the northern hemisphere, the southern hemisphere shows 21-23 km 

injection height SAOD values are highest, followed by 18-25 km and then 18-20 km.  

For 10 Tg and 14 Tg all non-ash simulations are higher than ash simulations, though 14 

Tg at 21-23 km shows ash SAOD values higher by 0.01 in August and October 1991.  

20 Tg cases are closest to observations in the southern hemisphere.  In the 20 Tg 

simulations (Figure 6-8c) 20_midalt is much higher with peak values of 0.14 and 0.17 

for 20_midalt_ash and 20_midalt, respectively.  In contrast, 20_deepalt_ash is much 

higher than 20_deepalt from September onwards by an average of 0.03.  20_low alt and 

20_lowalt_ash broadly match throughout the 20 Tg case, peaking at 0.07 in comparison 

to 0.12 and 0.10 for AVHRR and GloSSAC, respectively.   

Overall, there are large differences in SAOD seen based on differences in amount of 

SO2, injection height, whether ash is included or not and latitude.  14_midalt and 

14_midalt_ash cases in the tropics and midlatitudes all show the largest SAOD from 

December 1991 until March 1992, but not in the 10 Tg or 20 Tg cases.  Generally, the 

10 Tg cases appear to match observations best, unless looking in either hemisphere 

separately, when some 10 Tg and 14 Tg cases match the GloSSAC data best.  20 Tg 

consistently appears too high in comparison to observations, except when looking in 

either hemisphere where specific times match either AVHRR or GloSSAC data.  There 

does not appear to be a linear trend when adding ash to these particular model 

simulations, but ash does appear to impact SAOD values in all cases, primarily at the 

peaks in the tropics and in the mid-latitudes.  The extent to which ash impacts on SAOD 

is small overall, however the largest differences can be seen when comparing between 

the northern and southern hemisphere midlatitudes, where SAOD appears to decrease in 

the southern hemisphere and increase in the northern hemisphere.   

Errors associated with the observations should be noted, for example the lacking 

overpass for AVHRR from 40-60°N during September-December 1991 (Long and 

Stowe, 1994) and a random error of ~0.04 (Stowe et al., 1992).  The GloSSAC data was 

produced in part as a gap-filling exercise for when SAGE II measurements were 

saturated during the Mount Pinatubo eruption, therefore underestimating SAOD values.  

GloSSAC is, therefore, a product of multiple instruments which all have their own 

associated errors and, particularly early months following the eruption should be viewed 
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with the potential for substantial error (Thomason et al., 2018).  Sun photometers from 

the time, such as from America Samoa, do suggest a peak SAOD of 0.2 to as high as 

0.3, though these will include tropospheric data (Dutton and Christy, 1992; Dutton et 

al., 1994; Russell et al., 1996).  
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Figure 6-7 SAOD for the northern hemisphere midlatitudes (20-60°N) in all injection height scenarios for a) 10 Tg, b) 14 Tg and c) 20 Tg.  Solid lines are ash 

simulations and dashed are non-ash simulations, note the difference in scale on the y-axis.
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Figure 6-8 SAOD for the southern hemisphere midlatitudes (20-60°S) in all injection height scenarios for a) 10 Tg, b) 14 Tg and c) 20 Tg.  Solid lines are ash 

simulations and dashed are non-ash simulations, note the difference in scale on the y-axis.
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6.6 Sulfur burden 

In order to present the differences in sulfur burden between Chapter 5 where there was 

no ash included in the simulations and this chapter where ash has been included, the 

sulfur burden has been presented in three separate plots to represent each different 

amount of SO2 injected, with a dashed line representing Chapter 5 results and a solid 

line for the current results including ash (Figure 6-9 to Figure 6-11).  The left-hand plot 

in each case indicates the burdens (in Tg of sulfur) for SO2 (sulfur in the gas phase) and 

the right-hand plot for sulfate aerosol burden (particle phase) in each case, henceforth 

referred to as SO2 burden and sulfate burden, respectively.   

6.6.1 Tropical sulfur burden 

Overall, the model captures the shape of the tropical sulfate burden during this time 

period (June 1991-February 1992) well in all cases.  Baran and Foot (1994) 

measurements also clearly coincide with multiple model simulations at particular times, 

primarily 14_deepalt and 14_deepalt_ash, with sulfate measurements too low in all the 

10 Tg cases.  The largest difference can be seen between the 20_lowalt and 

20_lowalt_ash simulations with a maximum difference of 0.6 Tg sulfur (Figure 6-11).   

The highest sulfate burden values of 3.5 Tg, 5 Tg and 6.5 Tg are seen in the 21-23 km 

10 Tg, 14 Tg and 20 Tg cases, respectively, followed by the 18-25 km and 18-20 km 

injection heights for all SO2 injections, respectively.  In the tropics, all simulations that 

include ash show a clear decrease in peak sulfate burden from a minimum difference of 

0.1 Tg to a maximum difference of 0.6 Tg at the peak burden (Figure 6-11), especially 

in the 14 and 20 Tg cases (Figure 6-10 to Figure 6-11).  The SO2 burden differences are 

less apparent; however, all ash-interactive cases show lower SO2 burdens than their 

non-ash counterparts.   

All model simulations follow a similar increase up towards the peak until August 1991 

when the differences become apparent.  In the 10 Tg case, the differences are less than 

for the other injections of SO2.  The sulfate burden for 10_midalt and 10_midalt_ash is 

almost identical.  For the 18-25 km case 10_deepalt_ash shows a noticeable increase in 

the sulfate burden after the peak, which can also be seen in the 14_midalt_ash case.  10 

Tg at 21-23 km, 14 Tg at 18-25 km and 20 Tg at 21-23 km all show the least differences 

between the inclusion and exclusion of ash.  Table 6-3 outlines the maximum 

differences between all the model simulations in order of highest to lowest, showing 
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that the largest differences were mostly in the 20 Tg simulations and the smallest were 

in the 10 Tg simulations, with no real pattern seen with regards to injection height.   

 

 

Figure 6-9 Tropical (Left) SO2 burden and (Right) SO4 burden for 10 Tg ash (solid line) and non-

ash (dashed) simulations. 

 

 

Figure 6-10 Tropical (Left) SO2 burden and (Right) SO4 burden for 14 Tg ash (solid line) and non-

ash (dashed) simulations. 
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Figure 6-11 Tropical (Left) SO2 burden and (Right) SO4 burden for 20 Tg ash (solid line) and non-

ash (dashed) simulations. 

 

6.6.2 Global sulfur burden 

On the global scale the differences in sulfate burden between model simulations with 

and without ash appear much smaller and the biggest differences can be seen in the 18-

20 km cases then the 21-23 km and finally the 18-25 km cases (Figure 6-12 - Figure 

6-14).  The 18-20 km model simulations show the lowest sulfate values, followed by 

21-23 km and then 18-25 km for all amounts of SO2 injected.   

When comparing to the measurements, the 10 Tg model simulations have far lower 

sulfate values than Baran and Foot (1994), with a maximum difference of 3.4 Tg.  The 

14 Tg values match well early on and into 1992, but have a maximum difference of 2.0 

Tg at the peak seen in the measurements.  In the 20 Tg case, again the early July-August 

1991 values match well but then appear much higher than the observed values by 3.1 Tg 

in comparison with the 21-23 km case.   

10_lowalt_ash, 14_lowalt_ash and 20_lowalt_ash all show a decrease in sulfate burden 

compared to their non-ash counterparts, with the smallest difference seen in the 10 Tg 

injection.  In contrast, 18-25 km cases show the inclusion of ash yields slightly higher 

sulfate values (Figure 6-12 - Figure 6-14).  In the 21-23 km cases, both including and 

excluding ash simulations equate to almost equal sulfate values in both cases, besides 

the 10 Tg case where the ash-inclusive sulfur burden is slightly higher (Figure 6-12).   
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Table 6-3  Maximum differences in Tg of sulfur in the tropical and global sulfate burden between 

non-ash and ash simulations in order of highest to lowest difference 

Model simulation Tropics 

Maximum difference in SO4 

between simulations with and 

without ash (Tg sulfur) 

20 Tg, 18-20 km 0.60 

20 Tg, 18-25 km 0.42 

14 Tg, 18-20 km 0.38 

14 Tg, 21-23 km 0.35 

20 Tg, 21-23 km 0.32 

10 Tg, 18-20 km 0.21 

14 Tg, 18-25 km 0.20 

10 Tg, 21-23 km 0.18 

10 Tg, 18-25 km 0.10 

Model simulation Globally 

Maximum difference in SO4 

between simulations with and 

without ash (Tg sulfur) 

20 Tg, 18-20km 0.36 

14 Tg, 18-20 km 0.26 

14 Tg, 21-23 km 0.13 

20 Tg, 21-23 km 0.09 

10 Tg, 18-20 km 0.05 

14 Tg, 18-25 km 0.01 

10 Tg, 18-25 km 0.01 

20 Tg, 18-25 km -0.0002 

10 Tg, 21-23 km -0.0002 

 

Investigating the northern and southern hemisphere burdens consistently shows higher 

sulfate burdens when ash is included for the northern hemisphere, and the opposite for 

the southern hemisphere.   

The differences outlined in Table 6-3 show that changes in sulfate aerosol burden 

indicate that the largest differences in the tropics are broadly seen in the same 

simulations globally (i.e. for the same mass of SO2 injected and injection height.), with 

the exception of the 20 Tg 18-25 km simulations, as this shows the second highest 

difference in the tropics and the second lowest globally.  The values seen in Table 6-3 

are most significant in the tropics, as shown by the larger differences between the 

simulations with and without ash, with values between 0.3 and 0.5 Tg equating to 
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similar increases in simulated sulfate aerosol mass following the Kasatochi eruption in 

2008 (0.5 Tg), Redoubt eruption in 2009 (0.4 Tg) and Nabro in 2011 (0.3 Tg) (Mills et 

al., 2016).   

 

 

Figure 6-12 Global sulfur burden for (left) SO2 gas-phase sulfur and (right) sulfate aerosol for 10 

Tg injected SO2 at all injection heights comparing with and without ash. 

 

 

Figure 6-13 Global sulfur burden for (left) SO2 gas-phase sulfur and (right) sulfate aerosol for 14 

Tg injected SO2 at all injection heights comparing with and without ash. 
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Figure 6-14 Global sulfur burden for (left) SO2 gas-phase sulfur and (right) sulfate aerosol for 20 

Tg injected SO2 at all injection heights comparing with and without ash. 

 

6.7 Vertical profile of aerosol extinction  

This section outlines the changes in vertical dispersion of extinction over time caused 

by the inclusion of ash in all cases outlined in Chapter 5.  14 Tg injection height 

comparisons with observations are shown in this chapter.  All other comparisons with 

10 Tg of SO2 are outlined in 0, as 20 Tg simulations all produce clouds 11-13 km higher 

than observations and the 14 Tg simulations all follow the same spatio-temporal 

patterns of the 10 Tg simulations (0) with slightly higher extinction values (1.5-2 times 

higher on average).   

In the case for 14_midalt there are distinct layers seen at MLO (Figure 6-15b), with a 

tail in the first layer, as well as the second and third layers similar to those seen in the 

lidar observations.  The peak of the first layer is at 25 km which is also the same as seen 

in the lidar, however, the second and third layers reach 27 and 29 km which is 2-3 km 

higher than those in the observations.  The bulk of the cloud in the later months is 

between 19 and 28 km, similar to the observations, though the upper part of the aerosol 

cloud is still too high, with a shallowing cloud is noticeable in the model from 

December 1991 onwards, also noted in the observations.  The addition of ash brings the 

model extinction values closer to the observational extinction values, which are >0.05, 

especially at the beginning of the first layer.  More obvious trailing tails on each of the 

layers are also seen in the ash-interactive simulations in all cases, reaching altitudes ~18 

km which is closer to observations than the simulations without ash.  Slightly thicker 
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layers by ~0.5 km can be seen with the addition of ash, but no significant additional 

height to the overall cloud aside from a slight increase in the height of the third layer 

from 29.5 km to 30 km.   

As seen in Chapter 5, 14_lowalt_ash shows a very different pattern to those seen in the 

observations and the cloud remains confined to lower altitudes between tropopause 

values and a maximum of ~25 km for all SO2 injection masses (Figure 6-16).  In the 

ash-interactive cases, a noticeable minor layer structure is seen at the beginning of July, 

the end of July and the latter part of August at altitudes of 22, 24 and 25 km, 

respectively, similar to the timings of the layers for the lidar observations (Figure 6-16).   

The 14_deepalt_ash simulation also shows a difference to the patterns seen in Chapter 5 

(Figure 6-17).  In Chapter 5 there was a structure ~18-20 km noted with layers 

noticeable above these, however, with ash there seem to be more noticeable layers that 

are longer and thicker than those seen before with the first layer from July 1st to 28th 

August 1991 at 24.5 km to 17 km matching almost identically with that seen at MLO 

(Figure 6-16).  Largely, values of extinction in the 14 and 20 Tg simulations are around 

the same as those seen in the observations, but the 10 Tg simulation are slightly lower.  

 

Figure 6-15 Extinction plots for MLO with 14 Tg SO2 and 21-23 km injection height.  Plots show 

observations (top), no ash (middle) and with ash (bottom). Black dots denote where layers are 

picked out from the layer finding algorithm. 
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Figure 6-16 Extinction plots for MLO with 14 Tg SO2 and 18-20 km injection height.  Plots show 

observations (top), no ash (middle) and with ash (bottom). Black dots denote where layers are 

picked out from the layer finding algorithm.

 

Figure 6-17 Extinction plots for MLO with 14 Tg SO2 and 18-25 km injection height.  Plots show 

observations (top), no ash (middle) and with ash (bottom). Black dots denote where layers are 

picked out from the layer finding algorithm.
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The upper parts of the cloud are still too high in the model (by ~2km compared to the 

lidar) in the 21-23 km and 18-25 km cases both with and without ash, but broadly the 

correct height in the 18-20 km cases.   

At the mid-latitude sites, the 14_midalt_ash simulation matches well with the timings of 

the cloud being seen at these lidar sites and shows only minor differences in extinction 

values (Figure 6-18).  A direct comparison between the ash and non-ash simulation, 

however, show minor differences, for example at TAB the inclusion of ash shows an 

earlier detection of the volcanic aerosol in late August 1991, at the same time as the 

observations (Figure 6-18).  The same is true for OHP (Figure 6-19), however the 

overall cloud in the later months is thicker than in the observations, with the area of the 

cloud with the highest extinction values showing a deeper cloud by 4 km in the model 

simulation (9 km in the model simulation, 5 km in the observations).  TOR shows little 

difference between non-ash and ash, besides a slight increase in extinction values in 

October-November 1991 (not shown here).   

 

 

Figure 6-18 Extinction plots for TAB with 14 Tg SO2 and 21-23 km injection height.  Plots show 

observations (top), no ash (middle) and with ash (bottom). 
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In the 21-23 km instance for the northern hemisphere, the 10 Tg simulation has slightly 

delayed timings, for example the bulk of the cloud does not reach OHP until December 

1991, a month later than seen in observations, though modelled extinction values are 

closer to observed values.  The 20 Tg comparison shows fairly well-matched initial 

values of extinction for MLO (>0.1 ~25 km in the layers), but a cloud ~5 km too high 

from late September onwards and values too high for all the other sites, ~0.09 at all 

northern hemisphere sites from December 1991 onwards.  In all 18-20 and 18-25 km 

cases the timing for the northern hemisphere is too early, with the earliest detection at 

OHP seen before that at MLO (0).   

As noted in Chapter 3 there is ~10% error associated with converting between 

backscatter ratio and extinction plus any error associated with averaging over 5 km 

intervals and general instrument error (Jäger and Deshler, 2002; 2003), therefore these 

errors should be considered when noting changes in extinction values due to ash and 

subsequent comparisons to observations.   

 

 

Figure 6-19 Extinction plots for OHP with 14 Tg SO2 and 21-23 km injection height.  Plots show 

observations (top), no ash (middle) and with ash (bottom). 
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In summary, the 21-23 km injection height best matches the timing of the aerosol 

detection at each of the sites from near-tropics to the mid-latitudes, as the 18-20 km and 

18-25 km injection heights both create a low-altitude area of aerosol at much higher 

extinction values at each of the mid-latitude sites than seen in the observations.  The 

inclusion of ash for the 21-23 km injection height brings extinction values from the 

model and the overall shapes of the vertical cloud closer to those seen in the 

observations.  The ash appears to cause a slightly earlier dispersion to the northern 

hemisphere in the 21-23 km cases creating a better match with observations.  Earlier 

northern hemisphere detection occurs too in the 18-20 km cases, mostly at TOR and 

OHP and in all cases the northern hemisphere sees higher extinction values and the top 

of the aerosol cloud is lifted in the ash-containing cases.    

6.7.1 Aberystwyth depolarisation and model data comparison 

Depolarisation data from Aberystwyth (52.4°N) from September 1991 until March 1992 

(Vaughan et al., 1994) is a useful test case for this study as it lies directly in the time 

period looked at and allows the investigation of ash in the midlatitudes.  As the model 

does not output depolarisation data a proxy, termed “ash ratio”, was created by dividing 

the total amount of ash burden by the sum of the ash and the sulfate burden.  The layer 

finding algorithm was also applied here in order to assess the cloud depth of the ash 

ratios found in each of the model simulations.  Error associated with these 

depolarisation ratios is ~7% before October 1991 and ~5% after October 1991, 

primarily associated with vertical density profiles, assessed using ozonesonde and 

radiosonde measurements (Vaughan et al., 1994).   

Figure 6-20 shows the backscatter ratio and depolarisation data, as presented in 

Vaughan et al. (1994), by denoting depolarisation values >1.4% as non-spherical with 

each colour denoting a 0.5% interval increase, whereby lighter colours show higher 

depolarisation values and, therefore, an increase in non-spherical particles relative to 

background levels and spherical particles.  The top row of Figure 6-20 shows that the 

10_lowalt_ash simulation has a similar pattern to that seen in the Aberystwyth 

observations.  The highest ash ratios are centred around 15 km, whereas they lie 

between 17.5 and 21 km in the observations, however the overall decreasing trend of the 

model data shows a good match.  The right-hand plot shows a contrasting model 

simulation for 14_midalt_ash which indicates the highest levels of ash are between 10 

and 17 km and there is no evidence for the higher ash layers ~20 km as seen in 
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observations around the middle of September 1991.  The cloud layer plots below these 

contour plots outline these features, as the 10_lowalt_ash plot shows evidence for the 

correct timing and overall depth of the observations, but lower overall heights.  The 

14_midalt_ash plot indicates later values of high ash ratio and much deeper layers of 

these higher ratios.  The pattern seen in all model simulations indicates that the model 

shows the ash at lower heights over Aberystwyth than seen in observations.  It should 

be acknowledged that 4% depolarisation is still very small and may not be conclusive of 

an ash layer, as this may be related to instrument error and leakage between channels in 

the lidar (Russell et al., 1979; Vaughan et al., 1994).   

 

Figure 6-20 (Top) Contour plots of backscatter ratio and depolarisation data from Aberystwyth 

compared to ash ratio model data in 2 scenarios, (bottom) depth of cloud from the layer finding 

algorithm for observations and the same 2 model scenarios from the top row. 

 

6.8 Ash-core sulfate particles 

The following section outlines the amount of condensation that occurred of sulfate 

aerosol onto ash particles and an assessment of the effective radius for each model 

simulation.   

Figure 6-21 shows the values of condensed sulfate aerosol condensed onto ash for every 

model simulation containing ash.  There is a clear pattern with injection height, whereby 

the 21-23 km injection height has highest levels of condensation, followed by an 

injection height of 18-25 km, with the lowest values evident for an injection height of 

18-20 km.  This pattern can equally be seen with the amount of SO2 emitted, as 20 Tg 

produces the highest values for all injection heights, followed by 14 Tg and then 10 Tg.   
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In total the values for condensed ash are low, peaking at 0.001 Tg for 20_midalt_ash 

with the lowest peak at 0.004 Tg for 10_lowalt_ash.  The peak values are all ~1 week 

following the eruption and by October 1991 all values have tended towards zero, with 

an e-folding time between 43 (20_lowalt_ash) and 111 days (20_midalt_ash).   

 

Figure 6-21 Mass of sulfate aerosol condensed onto ash from June 1992 to October 1991 for all 

amounts of injected SO2 and injection height.   

 

6.9 Discussion 

The analysis in this chapter has explored how major volcanic clouds are influenced by 

ultra-fine ash.  Specifically, this chapter has focused on the volcanic aerosol cloud from 

the 1991 Mount Pinatubo eruption, known to have had ash particles present up to 9 

months following the eruption (Pueschel et al., 1994).  When major volcanic aerosol 

clouds are simulated within interactive stratospheric aerosol models, the influence from 

volcanic ash is often neglected because super-micron ash particles have a residence time 

of only ~10 days in the stratosphere and are therefore, usually thought to have an 

insignificant effect on climate (Niemeier et al., 2009; Langmann, 2014).  Super-micron 

ash from the 1991 Mount Pinatubo eruption has been simulated using the interactive 

stratospheric aerosol model MAECHAM5 and showed that the radiative effects of these 

short-lived ash particles still affected winds locally (Niemeier et al., 2009).  A recent 

study of the Raikoke ash plume (Muser et al., 2020) showed that even for smaller 

eruptions the uptake of sulfur on ash can have significant effects.   
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Lidar observations from the initial NASA aircraft mission to measure the Mount 

Pinatubo aerosol cloud (Winker and Osborn, 1992a), show that 3 weeks after the 

eruption there were highly depolarising layers at ~23 km with modest depolarisation 

throughout the cloud.  Whereas the first two mid-latitude balloon flights sampling initial 

layers of the Mount Pinatubo aerosol cloud at 16-17 km showed no presence of ash 

(Sheridan et al., 1992; Deshler et al., 1992), ash was found to be present in the higher 

volcanic aerosol layers (22-23km) in the third and fourth Laramie flights, 40 and 44 

days after the eruption (Deshler, 2016), although still not in the lower layer at 15-18 km.  

The re-analysis of the data from Deshler et al. (1992) now interprets the refractory 

particles within the 22-23 km layers as being ash particles at ~0.25 µm radius, within 

internally mixed ash-sulfuric particles ~0.48 µm radius (Deshler, 2016).   

Mid-latitude ground-based lidar measurements from Aberystwyth (Vaughan et al., 

1994) show the base of the Mount Pinatubo cloud was moderately depolarising 

throughout August 1991 to February 1992, initially at 17-21 km and descending to 12-

17 km after November 1991.  Similarly, SEM analysis of DC-8 impactor samples of the 

aerosol cloud 8 months after the eruption proved ash-sulfuric particles with radii up to 

0.8 µm (Pueschel et al., 1994) in the base of the cloud.  These measurements firmly 

attributed the Aberystwyth depolarisation measurements and those from aircraft 

(Browell et al., 1993) and in the southern hemisphere (Young et al., 1994) must have 

been caused by ash.  Ground based lidars in Japan have also found depolarising layers 

and evidence for long lasting ash in both the 1982 El Chichón and 1991 Mount Pinatubo 

clouds (Hayashida et al., 1984; Nagai et al., 1993).  All these observations suggest a 

longer lifetime for ash in the Mount Pinatubo cloud than is often presumed.  Vernier et 

al. (2016) show that ash following the 2014 Kelud eruption persisted for at least 3 

months and ash < 0.3 µm in size represented up to 28% of the total AOD and, therefore, 

ash may affect surface cooling following eruptions and should be accounted for in 

climate simulations.   

Interactive stratospheric aerosol model experiments simulating the mixed sulfate aerosol 

and ultra-fine ash in the Mount Pinatubo aerosol cloud show that these smaller ash 

particles (~100-300 nm) can remain in the stratosphere for 9 months, much longer than 

ash is often assumed to persist.  These simulations show that even ash particles at ~1 

µm diameter will have remained in the Mount Pinatubo cloud for ~2 weeks, but were 

completely removed from the stratosphere after ~90 days.  For 0.3 µm sized particles, 

their burden in the stratosphere reduced by half in 90 days, but likely still had a 
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substantial effect on the SAOD and how the cloud subsequently dispersed to the mid-

latitudes.  The very finest 0.1 µm ash particles retain 98% of their mass in the first 90 

days following the eruption and are prevalent for the first 9-month period after the 

eruption.  Bluth and Rose (2004) found that ash particles of <1 µm diameter were found 

to remain for a number of years and 10 µm particles fell out within ~12 days.  Our 

findings here account for increased fall velocity from the longer mean free path in the 

stratosphere.  The results from the UM-UKCA simulations for >1 µm particles are 

similar to those in Bluth and Rose (2004), although 10 µm particles fall out faster in 

UM-UKCA within ~3 days.  Bluth and Rose (2004) results are based on a simple 

laminar flow to calculate the fallout values and physical characteristics such as shape 

and density will likely affect the fall speed of these particles.  Saxby et al. (2018), for 

example, suggest that particle shape is more important for sizes >1 µm whilst Beckett et 

al. (2015) maintain particle size distribution is more important for determining particle 

fall speeds than shape and density.  The simulations here only account for condensation 

of sulfuric acid vapour on the ash particles, with initial results from additional 10-day 

simulations suggesting coagulation increases scavenging by ~30%.  Simulating the 

reactive uptake of SO2 onto ash potentially has more of a scavenging effect (Ayris et al., 

2013), as heterogenous oxidation can occur for the full time the air is in contact with 

ash, whereas condensation and coagulation of H2SO4 can only occur after SO2 has 

oxidised.  The initial condensation-only results do confirm however that the ash is 

acting as a successful removal mechanism for the sulfur within Mount Pinatubo 

magnitude major eruption clouds.     

Injection height was found in Chapter 5 to be a very strong determinant of the early-

phase dispersion to mid-latitudes, and here is shown to also impact residence time of the 

ultra-fine ash, again with the fastest removal with the nearest-tropopause 18-20 km 

injection height cases.  The 21-23 km injection height simulations had the highest ash 

burden until November 1991 when the mass rapidly decreases whereas the 18-25 km 

injections steadily decline, retaining 65% of their original ash mass by February 1992.  

These differences seen between injection heights along with the initial very slow 

decrease in an ash particle with 0.1 µm diameter suggests that these very fine ash 

particles may survive for longer in the atmosphere than previously thought and/or 

modelled, in agreement with findings from Vernier et al. (2016).   

SAOD varies the most in the tropics and when looking at the dispersion to the 

midlatitudes.  For all of the injection height settings within the HErSEA ensemble, the 



169           The role of ultra-fine ash in the global dispersion of the Mt Pinatubo aerosol cloud 

 

 

majority of the volcanic material is transported to the northern hemisphere, particularly 

in the simulations including ash suggesting that the inclusion of ash also causes more 

effective transport of volcanic material to disperse to the northern hemisphere mid-

latitudes.  These simulations show that the increased dispersion is very likely caused by 

the increased radiative heating from the ash, consistent with the findings in Niemeier et 

al. (2009).  A number of modelling studies have found it necessary to disperse volcanic 

material over a number of grid boxes in order to simulate the dispersion to both 

hemispheres correctly (Timmreck, Graf and Feichter, 1999; Timmreck, Graf and 

Kirchner, 1999; Dhomse et al., 2014; Sheng et al., 2015; Mills et al., 2016; Mills et al., 

2017).  This study suggests that fewer grid boxes may be necessary if ash is included in 

model simulations and that ash may influence volcanic cloud dispersion more than 

previously considered.  The effect is that ash heats the air surrounding it, sending more 

aerosol into higher branches of the BDC, leading to less aerosol loss through lower 

branches of the BDC and increased transport to the winter hemisphere (northern 

hemisphere for Mount Pinatubo).  This is potentially consistent with model simulations 

that are missing an early-phase heating effect or incorrectly dispersing the Mount 

Pinatubo eruption, and could be important for aerosol microphysics model predictions 

of the aerosol clouds from a future major eruption.   

These simulations also indicate that the 18-20 km simulations, followed by the 18-25 

km simulations have the highest SAOD values in the northern hemisphere, suggesting a 

lower injection height leads to a more likely injection to the northern hemisphere and an 

injection height over 20 km is more likely to reach the southern hemisphere in UM-

UKCA.  This has been seen previously in Jones et al. (2017) whereby their 16-23 km 

injection height almost exclusively transported to the northern hemisphere, whereas 

injecting between 23-28 km led to a higher dispersion to the southern hemisphere.   

The impact of injection height is understandably mirrored in the sulfate and SO2 burden, 

where the lower injection height leads to more sulfate and SO2 in the northern 

hemisphere.  In the peak of both midlatitude areas the northern hemisphere has 1.3, 1.6 

and 2.4 Tg more sulfate aerosol in the 10, 14 and 20 Tg injections, than the southern 

hemisphere, respectively.  The inclusion of ash does have an effect on sulfate burden, 

again particularly in the tropics, whereby the ash simulations have a lower sulfate 

burden at the peak of the sulfate production in September 1991.  This was hypothesized 

to be due to the removal of sulfate on ash particles, when the ash acts as a sulfate core 

that the sulfate coagulates with, growing the particle to a larger size and therefore 
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making it sediment out of the atmosphere faster (Sheridan et al., 1992; Deshler et al., 

1993; Pueschel et al., 1994; Deshler, 2016).  An investigation of the amount of sulfate 

condensed onto to ash particles, however, revealed this only accounted for 0.001 Tg at 

most in the 20_midalt_ash simulation, indicating that removal processes through lower 

branches of the BDC in the model are more prevalent.  The differences seen in sulfate 

burden and SAOD can be roughly compared to the sulfate burden and SAOD produced 

by low to medium sized eruptions, such as Kasatochi in 2008 (0.5 difference in sulfate) 

(Mills et al., 2016) indicating a significant impact of including ash.   

When comparing the vertical profiles of extinction at the near-tropical and mid-latitude 

lidar sites in the model, it is clear that ash is having an impact in the vertical and in the 

dispersion of the aerosol globally.  Ash appears to increase the appearance of layers in 

the 18-20 km simulations, likely due to the increased upward lofting induced by the 

absorbent properties of the ash in comparison to purely higher scattering sulfate.  As 

discussed in Niemeier et al. (2009), ash strongly absorbs SW and LW radiation and 

increases heating rates locally, lofting material to higher altitudes and advecting 

material preferentially northwards.  The effect of ash on lofting aerosol and creating 

layers in the vertical profile can also be said of the 18-25 km simulations, as they begin 

to match more closely with the observations in the ash cases than in the non-ash cases.  

The inclusion of ash does also appear to induce a slightly earlier dispersion to the 

northern hemisphere mid-latitudes.  As the BDC is changing to an autumnal/winter 

phase following the eruption, it is possible that injection at a lower altitude leads to 

more dispersion to the north in a lower branch (Holton et al., 1995), whereas with 21-23 

km it may be more confined in the tropical pipe and with 18-25 km there may be a 

combination of northern hemisphere dispersion at the base, some restriction tropically 

and then dispersion to southern hemisphere in a higher branch of the BDC.   

Balloon-borne particle counters have had a gap in their particle measurements between 

the smallest measured particles (10 nm) to the next particle size channel (>150 nm) with 

recent measurements allowing particles with radius 75 nm to be detected (Ward et al., 

2014).  However, Pueschel et al. (1994) show that aircraft impactor measured down to 

size fractions in the range 0.1 ± 0.04 µm following the Mount Pinatubo euption.   

This analysis highlights the importance of measurements with these smaller cut-off 

sizes and an understanding of the proportion of ultra-fine ash after any future major 

eruptions will be an important element to assess in initial measurement capabilities 
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deployed to sample the subsequent cloud.  The model simulations show that ultra-fine 

ash particles do impact on the sulfate burden and optical depth and therefore potentially 

impact radiative forcing from volcanic eruptions.  In order to directly compare 

measurements and model data, comparing to observations that can detect these size 

fractions is imperative, therefore this advancement in balloon-borne particle counters, 

for example will be an extremely useful capability.    

 

6.10  Conclusions 

The overall aim of this chapter is to investigate the role of ash in an major tropical 

eruption of a similar magnitude to the 1991 Mount Pinatubo eruption and its effects on 

sulfate, optical depth and vertical profile of extinction of the resulting volcanic aerosol 

cloud.  By investigating different size fractions of ash using UM-UKCA, the 

simulations predict that 10 µm diameter ash particles are removed from the atmosphere 

within 8 days of the eruption, in line with theory and other modelling studies, 1 µm ash 

particles are reduced by 95% after 75 days and 0.1 µm ash particles lose just 5% after 

75 days.  These 0.1 µm particles also only reduce by a maximum of 50% depending on 

injection height after 9 months, therefore remaining prevalent in the atmosphere for far 

longer than the few days assumed by most modelling studies and in agreement with 

Vernier et al. (2016) who confirmed the presence and impact of ash <0.3 µm on AOD 3 

months after the 2014 Kelud eruption.   

Though non-linear in response, ultra-fine ash does have an impact on sulfate burden, 

SAOD and vertical dispersion.  The most obvious differences are seen in sulfate 

burdens, particularly for the 18-20 km and 21-23 km cases and for 14 Tg and 20 Tg 

injected SO2.  These differences are seen in the peaks of the SAOD and sulfate burden 

and show up to 2.4 Tg decrease in sulfate in the ash-containing case, indicating that the 

model successfully represents the scavenging effect of sulfate condensing onto ash 

particles although this process does not have as significant of an effect as removal due 

to the BDC.   

The SAOD broadly decreases when ash is included in model simulations, corresponding 

to less mass.  This effect is also primarily seen at the peak, indicating that the reduction 

in sulfate is reflected in the optical depth.  Overall, the 18-20 km injection height and 

ash containing simulations show the highest SAOD values of 0.18, 0.26 and 0.34 for 10, 
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14 and 20 Tg of SO2, respectively, for the northern hemisphere, indicating that a lower 

injection height preferentially disperses aerosol to the northern hemisphere through the 

lower branch of the BDC and that including ash aids the dispersion of aerosol to the 

northern hemisphere. The increase in SAOD in the northern hemisphere when including 

ash indicates there is more of a heating effect from the ash, lofting aerosol preferentially 

towards the mid-latitudes, as opposed to the scavenging effect which would have 

created a decrease in SAOD in both the tropics and the mid-latitudes.   

The inclusion of ash in simulations bring extinction values closer to those observed at 

ground-based lidar sites and indicates ash may partially be the cause for the shape and 

height of the layers seen in the observations.  This is not without the uncertainty created 

by lidar retrieval, extinction to backscatter and wavelength conversion factors, however, 

qualitatively better matches to observations are evident.  Qualitatively, the inclusion of 

ash creates layers in the MLO model simulated extinction for 18-20 km and 18-25 km 

simulations in comparison to the vertical profiles noted in Chapter 5.   

Measurements are crucial for determining the presence of ash in the atmosphere and 

have been gradually increasing in accuracy in recent years, but climate models are 

imperative for furthering our understanding on how volcanoes impact our atmosphere 

and understanding potential microphysical processes not detectable by instruments.  

Climate models can dramatically impact our understanding on how ash may impact the 

dispersion of volcanic material and the climate response from volcanic eruptions and 

more modelling work is needed to further understand the impact of ash during the 

Mount Pinatubo eruption and future major tropical eruptions.   
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Chapter 7 Conclusions and Future Work 

The overarching aim of this thesis is to investigate the early global dispersion of the 

1991 Mount Pinatubo volcanic aerosol cloud, analysing ground-based lidar 

measurements and interactive stratospheric aerosol simulations from UM-UKCA.  This 

research was carried out to understand how the cloud evolved in the tropical reservoir 

and assess potential influence from ultra-fine ash.   

The first part of this thesis analysed the progression of the vertical profile of the Mount 

Pinatubo cloud, as measured from a ground-based lidar at the tropical Mauna Loa site 

and three northern hemisphere ground-based lidar sites.  Distinct phases in this initial 

global dispersion of the plume were identified, with comparisons to interactive 

stratospheric aerosol simulations providing a new perspective to evaluate recent UM-

UKCA model simulations of the Mount Pinatubo cloud for the international ISA-MIP 

initiative (Timmreck et al., 2018).  A related aim is to explore how the global dispersion 

proceeds differently across similar initial meteorological conditions, comparing 

simulations to assess how precise the 1991 QBO phase-transition needs to be modelled 

for accurate simulation of the aerosol cloud dispersion.   

The second part of this thesis aimed to understand the effects of varying eruption source 

parameters for the Mount Pinatubo eruption, namely injection height and SO2 emission, 

on vertical extinction profiles, sulfate burden and SAOD.  The simulations were also 

aimed at improving constraint estimates of SO2 and injection height in UM-UKCA for 

Mount Pinatubo and to assess the subsequent changes in effective radius under different 

eruption source parameter conditions.     

The third and final aim of this thesis is to understand how the presence of ultra-fine ash 

within the Mount Pinatubo cloud affected its initial progression in the tropics and its 

later dispersion to the mid-latitudes.  Stratospheric aerosol simulations emitting ash 

particles as well as SO2 were specifically designed to assess this issue, comparing 

directly to the equivalent model ensemble from the Chapter 5.  Ground-based lidar 

measurements from Aberystwyth were gathered during the PhD thesis, allowing an 

evaluation of the vertical profile of ash particles in the volcanic aerosol cloud.  
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Combining this observational constraint for the ultra-fine ash with effects on vertical 

extinction profiles, sulfate burden and SAOD presents a substantial test for the model.   

This chapter summarises the main findings from each chapter with suggestions for 

future work for each.   

 

7.1 Initial dispersion of the 1991 Mount Pinatubo aerosol cloud – a 

ground-based lidar and interactive composition climate model 

comparison 

The aim of the first results chapter was to investigate the initial dispersion of the 1991 

Mount Pinatubo aerosol cloud using ground-based lidars and to evaluate the evolving 

vertical structure of the UM-UKCA interactive stratospheric aerosol simulations.  An 

assessment of the initial conditions was also conducted using UM-UKCA by comparing 

an approximate-QBO initial condition with a pre-nudged initial condition configuration.  

The time period for this study was June 1991 – February 1992 and approximate-QBO 

conditions used model initial conditions from 01/02/1996 where the QBO was in a 

similar condition to the time of the Mount Pinatubo eruption, the pre-nudged initial 

conditions were nudged to the point of 2 months prior to the eruption.  For this initial 

model comparison an injection mass of 14 Tg SO2 and injection height of 21-23 km was 

used.   

 

7.1.1 Main conclusions 

a. Ground-based lidar are extremely useful for investigating the full vertical 

structure of a volcanic aerosol cloud and its progression globally and through 

time.  In particular, the tropical Mauna Loa (MLO) site, due to the saturation of 

the tropical measurements of the Mount Pinatubo cloud from SAGE II.  The 

analysis has demonstrated that the lidars are a highly valuable tool to assess the 

evolving vertical structure of the Mount Pinatubo aerosol cloud whilst it was 

sheared by the strengthening easterly winds with altitude and affected by SO2 

oxidation and subsequent microphysics.  At the MLO site, distinct phases of the 

evolution of the aerosol cloud were identified, divided into a first 

inhomogeneous phase, when the initial volcanic plume was still a concentrated 
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plume spreading out globally, the sheared nature of the aerosol cloud observed 

at MLO as seemingly descending layers of aerosol.  The descending layers in 

the first phase of the MLO record are caused by easterly winds increasing with 

height over time, the cloud detected at 25 km a day before it is seen at 23 km.  

The period of increasing shear eventually progresses to a well-mixed mature 

phase where the aerosol is fully mixed within the tropical reservoir.  The 

distinction of phases in these measurements allows a more precise timing of 

when the volcanic cloud spread out inhomogeneously (Phase 1) into the tropical 

reservoir (Phase 2) and dispersed globally (Phase 3).   

b. UM-UKCA is able to replicate the timing of these layers and phases seen in the 

observations at MLO and reproduces the altitude of the top of the first layer 

well, though the altitude of the top of the other layers is higher by 2-4 km.  The 

model also reproduces timings at the northern hemisphere mid-latitudes quite 

well initially with the aerosol cloud below 20 km until September, rising to ~17-

23 km in later months (November 1991-February 1992).  A possible reason for 

the higher model simulated aerosol cloud top is too much radiative heating in the 

model, an injection height that is too high or a lack of scavenging mechanism, 

such as ash, in the model.  UM-UKCA produces anomalous temperatures 

following the eruption two times higher than those from ERA-interim, 

potentially lofting aerosol to these higher altitudes, though exact temperature 

anomalies are difficult to quantify due to the calculation of anomalies by ERA-

interim.  Extinction values in the model are also lower than those calculated for 

the observations, however absolute differences are difficult to calculate due to 

errors associated with the backscatter-to-extinction conversion.   

c. As with other studies, using pre-nudged initial conditions produces values and a 

better qualitative agreement to observations in the vertical profiles.  Dhomse et 

al. (2014) found easterlies in their study were slightly weaker than in 

observations, with this study showing the timing of the initial conditions used to 

investigate the Mount Pinatubo eruption can produce model simulations that 

agree better with observations.  A comparison of wind patterns for the first 2 

weeks after the eruption show the pre-nudged conditions compare better with 

observations from Trepte et al. (1993).  Using pre-nudged conditions is therefore 

a good solution for allowing free-running simulations whilst starting simulations 

from an accurate starting point.  The pre-nudged conditions allow a closer match 
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to the initial progression of the Mount Pinatubo cloud as seen by ground-based 

lidar observations and should be considered as initial conditions for future 

studies of the Mount Pinatubo and future major tropical eruptions.   

7.1.2 Future work 

This research found distinct descending layers and phases of the progression of the 

Mount Pinatubo aerosol cloud at MLO, which in turn led to an assessment of the initial 

conditions used for assessing the 1991 Mount Pinatubo eruption, with pre-nudged 

conditions leading to a better comparison to vertical profiles of extinction at ground-

based lidar sites.  A further assessment of this use of pre-nudged conditions for other 

large-magnitude and smaller eruptions would aid future research into the dispersion of 

volcanic eruptions.   

An assessment of differing injection heights with and without radiative heating would 

allow a better understanding of how the radiative heating in UM-UKCA affects the 

vertical lofting of volcanic aerosol.  An investigation of different scavenging 

mechanisms, such as ash and ice would further aid our understanding of the balance 

between scavenging mechanisms and radiative heating.   

 

7.2 Exploring varying eruption source parameters: a Pinatubo case 

study 

The aim of this chapter was to explore the Historical Eruptions SO2 Emission 

Assessment (HerSEA) Mount Pinatubo eruption source parameters within UM-UKCA.  

An assessment of the effect of varying injection mass of SO2 and injection height on 

vertical profiles of extinction was made.  A comparison of the effects of these 

parameters on the lidar profiles introduced in the first results chapter was made, 

primarily focussing on the MLO lidar site to assess the impact of these parameters on 

the top of the aerosol cloud altitude which was noted to be too high in the model when 

compared in the first results chapter.  The effects of varying these parameters on sulfate 

burden and SAOD was also investigated with a comparison to satellite measurements.  

A hypothetical tropical lidar site was introduced, as satellite measurements at the time 

of the Mount Pinatubo eruption were saturated and could not, therefore, retrieve 

accurate values of extinction or SAOD.  Analysing the vertical profile of extinction 
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from hypothetical lidar sites at 10°N, at the equator and 10°S allowed a further 

assessment of the possible progression of the Mount Pinatubo aerosol cloud from the 

tropical reservoir to the midlatitudes.   

7.2.1 Main conclusions 

a. The main conclusion in relation to vertical profiles of extinction was that the 21-

23 km injection height led to the closest qualitative comparison with the MLO 

lidar site.  This injection height produced the correct descending layers seen in 

observations and resultant phase 1, 2 and 3 that were outlined in the first results 

chapter.  An injection height of 18-20 km led to a confined layer of aerosol and 

no layer pattern; however, extinction values were closest to observed values.   

An 18-25 km injection height led to a similar layer in the 18-20 km region and 

an attached layer pattern up to 25 km in altitude initially, leading to layer heights 

of 24, 28 and 29 km respectively.  These results suggest that for UM-UKCA an 

injection height closer to 21-23 km will produce extinction profiles that are well-

matched to lidar observations and that injecting below 20 km will confine 

aerosol and not allow the wind shear to take effect.   

b. An assessment of SAOD and sulfate burden led to the conclusion that, for UM-

UKCA, SO2 values between 10-14 Tg lead to values of SAOD and sulfate 

burden that are closest to observed values.  This is in agreement with other 

Mount Pinatubo modelling studies, though many of these find better agreement 

with an injection height between 18-20 km.  Injection heights of 21-23 km and 

18-25 km agree best with observations, an injection height of 21-23 km 

matching closest across extinction, SAOD and sulfur burden.   

c. The use of a hypothetical tropical lidar shows the volcanic aerosol is detected at 

the equator within 4 days following the eruption.  The southern and northern 

hemisphere tropical sites both detect the volcanic aerosol cloud at the very end 

of June, with the northern tropical site producing a thicker cloud (16-32 km in 

depth) showing evidence for layers.  The southern tropical site has a thinner 

cloud (22-31km predominantly) and shows less obvious layers.  Higher 

extinction values are noted in the northern hemisphere tropics than the southern 

hemisphere tropics.  Clear benefits can be seen of having more observational 

capability at tropical sites, in order to account for potential satellite saturation 

during major eruptions.   
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7.2.2 Future work 

A further assessment of different injection heights and depths would build a clearer 

picture of the effects of these eruption source parameters.  For example, testing different 

injection depths and altitudes and perhaps injecting greater values of SO2 at specific 

heights.  Marshall et al. (2019) began this work for major eruptions in general, with 

3km depth injection heights over the range 15-25 km and SO2 emissions of 10-100 Tg 

and a further assessment of different injection heights or specifying a greater amount of 

SO2 at specific altitudes would be beneficial to better understand the effect of these 

eruption source parameters.  An assessment of the effects for smaller magnitude 

eruptions would also be valuable, in order to assess the impact of injection height on 

more frequent smaller eruptions.  Assessing smaller volcanic eruptions would help 

determine whether injection height and SO2 mass are as important for smaller eruptions 

as they are for major eruptions.   

 

7.3 The role of ash in the initial dispersion of the 1991 Mount Pinatubo 

aerosol cloud 

The aim of this results chapter was to assess the role of ash as a potential scavenging 

and self-lofting mechanism within the Mount Pinatubo aerosol cloud.  The first aim was 

to investigate the fine ash particles and assess their lifetime using UM-UKCA.  The next 

aim was to investigate how long ultra-fine ash particles persisted in the atmosphere 

using UM-UKCA.  Following on from this, an investigation of these sub-micron ash 

particles on the vertical dispersion, sulfate burden and SAOD was carried out, with a 

direct comparison to the second results chapter as well as with depolarisation data taken 

from a northern hemisphere site (Aberystwyth) following the Mount Pinatubo eruption.   

7.3.1 Main conclusions 

a. The key conclusion from investigating the fine ash particles was that particles of 

10 µm diameter are removed from the atmosphere within 8 days of the eruption 

and 1 µm particles are reduced by 95% after 75 days.  Only particles <1 µm in 

size remained in the atmosphere for longer than 75 days, with 0.1 µm particles 

retaining >90% of the original mass of ash injected after 75 days.  These results 

show that super-micron particles do fall out of the stratosphere within days of 
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the eruption, but that sub-micron, ultra-fine ash particles can persist in the 

stratosphere for over 9 months following a major tropical eruption.   

b. When assessing the impact of injection height and mass of SO2 on the remaining 

burden of ash, the injection height has the largest effect, with an 18-25 km 

injection height retaining the largest percentage of originally erupted mass of ash 

(70%) by March 1992.  21-23 km retains 60% and 18-20 km retains 44% by 

March 1992, respectively.  This study shows that a deeper injection height up to 

higher altitudes allows ultra-fine ash particles to persist in the stratosphere for 

longer, whilst an injection height closer to the tropopause results in large 

sedimentation of ash.   

c. Including ultra-fine ash particles (0.1 µm) in UM-UKCA simulations of the 

Mount Pinatubo eruption affects vertical dispersion, sulfate burden and SAOD.  

Increased lofting of the layers noted at MLO can be seen in the 18-20 km and 

18-25 km injection height simulations when ash is included and values for the 

21-23 km injection height are brought closer to observed values.  SAOD and 

sulfate burden values broadly decrease when ash is included in the model, 

primarily seen at the peak for each simulation.  A decrease in SAOD and sulfate 

burden suggest ash is scavenging sulfate from the volcanic aerosol cloud which 

has the potential to impact on resultant climatic effects of the sulfate cloud.   

d. 18-20 km injection height simulations show the highest SAOD values for the 

northern hemisphere, suggesting that there is a preferential dispersion to the 

northern hemisphere through a lower branch of the BDC with a lower injection 

height.  Including ash also appears to increase dispersion to the northern 

hemisphere, suggesting that an inclusion of ash may allow a reduction in the 

number of grid boxes that the aerosol is initially injected over.  Ultra-fine ash 

increases dispersion to the northern hemisphere, suggesting the radiative heating 

impact of the ash significantly lofts the aerosol cloud when ultra-fine ash is 

included in simulations before being affected by the BDC to be transported to 

the winter hemisphere (the northern hemisphere for the Mount Pinatubo 

eruption).   

7.3.2 Future work 

Further work based on the ash size and density are needed to further understand the 

impacts of ash on dispersion and sulfate deposition.  Density and shape of ash can vary 
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for eruption types and for particle size (Saxby et al., 2018) and an assessment for these 

would allow a better understanding of different eruptions, both of large and smaller 

magnitudes.   

An assessment of the effects of ash when dispersing over different numbers of grid 

boxes would allow an assessment of the affect that ash may have on dispersion to 

different hemispheres, depending on volcano latitude.  The inclusion of ash may allow 

for fewer grid boxes to be injected over for the Mount Pinatubo case study due to the 

fact that ash has been found in this thesis to transport aerosol preferentially towards the 

northern hemisphere.  The requirement to inject over multiple grid boxes is noted in a 

number of modelling studies for the Mount Pinatubo eruption, therefore it would be 

useful to assess this effect in multiple models.   

The effects of heterogenous reactions of SO2 on ash particles is not currently included 

in UM-UKCA, but may act as a further removal pathway (Maters et al., 2017; Urupina 

et al., 2019).  An assessment of this may lead to lower values of injected SO2 being 

required to compare well with observations for the Mount Pinatubo eruption.   

Further research into the effects of ash in smaller-scale and other major eruptions is 

required.  Research on the optical properties of ash in the 2014 Kelud eruption cloud 

(Vernier et al., 2016) indicated that ash may have been more significant than previously 

thought, therefore, it is important for modelling studies including ash to be conducted 

across a wide spectrum of volcanic eruptions in order to understand the strength of the 

effects of ash.    
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Appendix A Method for layer finding algorithm and 

conversion factors for BSR-EXT 

A.1 Layer finding algorithm explanation 

The steps below outline how the algorithm for finding volcanic layers within the data is 

implemented: 

1) Load 2D array of data (BSR or extinction values on time vs altitude grid). 

2) Set a background and delta value for backscatter ratio or extinction.  The background 

value accounts for usual background conditions (0.003 for extinction) and the delta 

value (0.001) removes possible noise peaks in order to pick out the large layers, i.e. the 

bulk of the volcanic cloud.  Figure 3-3 shows how this works visually.   

3) Find all values where the data goes above background level and then all values that 

are below background level.  The first value of a layer is then set to be the first value 

which reaches above the set background level (“lower” value) and then the top of that 

layer is set to be where the BSR goes back below the background value (“upper” value).  

It then searches to see if there is more than one value above the background level and 

restarts this search from the first point that goes back above the background level above 

the other layer.  This function requires altitude points, BSR values, a start index and 

your background value.   

4) In order to account for noise within the data, i.e. small peaks within or around the 

larger peaks, the maximum point of a found layer must exceed the background value + 

delta.   
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A.2 Conversion factors for converting between 694 nm and 532 nm.  

These values are spilt for 3 monthly intervals and 5 km altitude 

resolution.   

Year TP-15 km 15-20 km 20-25 km 25-30 km 

91.375 -1.40E+00 -1.47E+00 -1.35E+00 -1.51E+00 

91.625 -1.28E+00 -1.37E+00 -1.29E+00 -1.40E+00 

91.875 -1.22E+00 -1.35E+00 -1.41E+00 -1.42E+00 

92.125 -1.11E+00 -1.29E+00 -1.44E+00 -1.48E+00 

92.375 -1.01E+00 -1.18E+00 -1.41E+00 -1.51E+00 

92.625 -9.30E-01 -1.07E+00 -1.45E+00 -1.44E+00 

92.875 -1.06E+00 -1.26E+00 -1.48E+00 -1.48E+00 

93.125 -1.13E+00 -1.33E+00 -1.47E+00 -1.50E+00 

93.375 -1.08E+00 -1.26E+00 -1.43E+00 -1.48E+00 

93.625 -1.17E+00 -1.23E+00 -1.46E+00 -1.47E+00 

93.875 -1.25E+00 -1.34E+00 -1.53E+00 -1.55E+00 

94.125 -1.30E+00 -1.41E+00 -1.55E+00 -1.58E+00 

94.375 -1.33E+00 -1.42E+00 -1.52E+00 -1.56E+00 

94.625 -1.35E+00 -1.42E+00 -1.47E+00 -1.48E+00 

94.875 -1.28E+00 -1.43E+00 -1.39E+00 -1.41E+00 

95.125 -1.29E+00 -1.43E+00 -1.38E+00 -1.37E+00 

95.375 -1.35E+00 -1.40E+00 -1.43E+00 -1.41E+00 

95.625 -1.36E+00 -1.40E+00 -1.44E+00 -1.44E+00 

95.875 -1.34E+00 -1.40E+00 -1.41E+00 -1.44E+00 

96.125 -1.33E+00 -1.40E+00 -1.39E+00 -1.43E+00 

96.375 -1.40E+00 -1.41E+00 -1.39E+00 -1.35E+00 

96.625 -1.50E+00 -1.41E+00 -1.38E+00 -1.23E+00 
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96.875 -1.40E+00 -1.36E+00 -1.34E+00 -1.29E+00 

97.125 -1.43E+00 -1.41E+00 -1.30E+00 -1.35E+00 

97.375 -1.54E+00 -1.48E+00 -1.26E+00 -1.37E+00 

97.625 -1.40E+00 -1.39E+00 -1.22E+00 -1.30E+00 

97.875 -1.39E+00 -1.36E+00 -1.24E+00 -1.32E+00 

98.125 -1.41E+00 -1.33E+00 -1.27E+00 -1.37E+00 

 

A.3 Conversion exponents for converting backscatter ratio to 

extinction.  These values are spilt for 3 monthly intervals and 5 km 

altitude resolution.  Obtained from Juan Carlos Antuña Marrera from 

Jager and Deshler (2005).   

Year TP-15 km 15-20 km 20-25 km 25-30 km 

91.375 4.41E+01 4.94E+01 5.12E+01 4.11E+01 

91.625 4.81E+01 5.22E+01 5.20E+01 4.45E+01 

91.875 4.55E+01 4.70E+01 4.92E+01 5.14E+01 

92.125 3.75E+01 3.87E+01 4.67E+01 5.48E+01 

92.375 2.95E+01 3.07E+01 4.58E+01 5.17E+01 

92.625 2.19E+01 2.63E+01 4.86E+01 5.34E+01 

92.875 2.76E+01 3.35E+01 5.13E+01 5.51E+01 

93.125 2.85E+01 3.75E+01 5.32E+01 5.31E+01 

93.375 2.72E+01 3.39E+01 5.39E+01 4.81E+01 

93.625 2.88E+01 3.23E+01 5.49E+01 5.17E+01 

93.875 3.04E+01 3.71E+01 5.60E+01 5.35E+01 

94.125 3.29E+01 4.20E+01 5.63E+01 5.37E+01 

94.375 3.64E+01 4.19E+01 5.63E+01 5.07E+01 

94.625 3.51E+01 4.28E+01 5.62E+01 4.75E+01 

94.875 3.64E+01 4.78E+01 5.43E+01 4.62E+01 
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95.125 3.90E+01 5.02E+01 5.23E+01 4.63E+01 

95.375 4.15E+01 4.75E+01 5.03E+01 4.50E+01 

95.625 4.29E+01 4.57E+01 4.88E+01 4.40E+01 

95.875 4.24E+01 4.45E+01 4.72E+01 4.45E+01 

96.125 4.18E+01 4.33E+01 4.57E+01 4.51E+01 

96.375 4.29E+01 4.21E+01 4.68E+01 4.75E+01 

96.625 4.41E+01 4.08E+01 4.87E+01 5.08E+01 

96.875 4.53E+01 4.68E+01 5.05E+01 4.76E+01 

97.125 4.47E+01 5.09E+01 4.92E+01 4.10E+01 

97.375 4.24E+01 4.51E+01 4.88E+01 3.89E+01 

97.625 4.42E+01 5.03E+01 5.02E+01 3.87E+01 

97.875 4.61E+01 5.08E+01 5.22E+01 4.02E+01 

98.125 4.79E+01 5.03E+01 5.22E+01 4.18E+01 

Appendix B Varying conversion factors vs blanket 

conversion of 40 

A comparison of the lidar extinction conversion factors was performed and shows the 

largest differences between the two backscatter to extinction methods within the layers.  

The upper parts of the layers have differences between 0.03-0.05, ~10 times larger than 

background values, with an average difference over time of 0.003.  These values are 

significant, as values <0.001 km-1 are generally considered as background values, 

therefore, differences consistently varying by 0.003 indicates the blanket conversion 

factor of 40 results in extinction values that differ by a factor of 3 in comparison to the 

size-dependent conversion.  As the extinction values in are dependent on size-

distributions, which vary greatly following a volcanic eruption, the extinction values in 

are used to compare with model simulations.   
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Figure B-1 Extinction (/km) values for Mauna Loa (MLO) from June 1991 - February 1992.  a) Lidar with varying BSR-EXT values over time, b) Lidar 

values with BSR-EXT value of 40, c) Model simulation with approximate-QBO, d) Model simulation with pre-nudged conditions.

 



211                             Appendix 

 

 

 

 

Figure B-2 Extinction (/km) values for Table Mountain (TAB) from June 1991 - February 1992.  a) Lidar with varying BSR-EXT values over time, b) Lidar 

values with BSR-EXT value of 40, c) Model simulation with approximate-QBO, d) Model simulation with pre-nudged conditions
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Figure B-3 Extinction (/km) values for Toronto (TOR) from June 1991 - February 1992.  a) Lidar with varying BSR-EXT values over time, b) Lidar values 

with BSR-EXT value of 40, c) Model simulation with approximate-QBO, d) Model simulation with pre-nudged conditions. 
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Figure B-4 Extinction (/km) values for Haute Provence (OHP) from June 1991 - February 1992.  a) Lidar with varying BSR-EXT values over time, b) Lidar 

values with BSR-EXT value of 40, c) Model simulation with approximate-QBO, d) Model simulation with pre-nudged conditions.
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Appendix C Chapter 5 Northern and southern 

hemisphere sulfate burden and SAOD 

 

Figure C-1 Northern hemisphere (left) SO2 sulfur burden and (right) SO4 sulfur burden for each 

injection height and mass of SO2. 

 

 

 

Figure C-2 Southern hemisphere (left) SO2 sulfur burden and (right) SO4 sulfur burden for each 

injection height and mass of SO2. 
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Figure C-3 SAOD values for the northern hemisphere for each different injection height and mass 

of SO2. Red lines are 10 Tg, green lines are 14 Tg and blue lines are 20 Tg with different linestyles 

for each injection height. 
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Figure C-4 SAOD values for the southern hemisphere for each different injection height and mass 

of SO2. Red lines are 10 Tg, green lines are 14 Tg and blue lines are 20 Tg with different linestyles 

for each injection height. 
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Appendix D Chapter 6 sulfate and ash burden profiles 

 

Figure D-1 Monthly average ash (red) and sulfate (blue) burden for the northern mid-latitudes (20-

60°N) for a 14 Tg SO2 and 0.05 Tg ash injection mass at 18-20 km (solid lines), 21-23 km (dashed 

lines) and 18-25 km (dot-dashed line).   

 

 

 

 

 



218                             Appendix 

 

 

 

 

 

Figure D-2 Monthly average ash (red) and sulfate (blue) burden for the northern mid-latitudes (20-

60°S) for a 14 Tg SO2 and 0.05 Tg ash injection mass at 18-20 km (solid lines), 21-23 km (dashed 

lines) and 18-25 km (dot-dashed line). 
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Appendix E Chapter 6 vertical extinction profiles for 

all lidar sites 

 

Figure E-1 Extinction plots for MLO with 10 Tg SO2 and 18-20 km injection height.  Plots show 

observations (top), no ash (middle) and with ash (bottom). Black dots denote where layers.  .

 

Figure E-2 Extinction plots for MLO with 10 Tg SO2 and 21-23 km injection height.  Plots show 

observations (top), no ash (middle) and with ash (bottom). Black dots denote layers.  
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Figure E-3 Extinction plots for MLO with 10 Tg SO2 and 18-25 km injection height.  Plots show 

observations (top), no ash (middle) and with ash (bottom). Black dots denote layers.

 

Figure E-4 Extinction plots for TAB with 10 Tg SO2 and 18-20 km injection height.  Plots show 

observations (top), no ash (middle) and with ash (bottom). 
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Figure E-5 Extinction plots for TAB with 10 Tg SO2 and 21-23 km injection height.  Plots show 

observations (top), no ash (middle) and with ash (bottom).

 

Figure E-6 Extinction plots for TAB with 10 Tg SO2 and 18-25 km injection height.  Plots show 

observations (top), no ash (middle) and with ash (bottom). 
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Figure E-7 Extinction plots for TOR with 10 Tg SO2 and 18-20 km injection height.  Plots show 

observations (top), no ash (middle) and with ash (bottom). 

 

Figure E-8 Extinction plots for TOR with 10 Tg SO2 and 21-23 km injection height.  Plots show 

observations (top), no ash (middle) and with ash (bottom). 
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Figure E-9 Extinction plots for TOR with 10 Tg SO2 and 18-25 km injection height.  Plots show 

observations (top), no ash (middle) and with ash (bottom). 

 

Figure E-10 Extinction plots for OHP with 10 Tg SO2 and 18-20 km injection height.  Plots show 

observations (top), no ash (middle) and with ash (bottom). Black dots denote where layers are 

picked out from the layer finding algorithm.
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Figure E-11 Extinction plots for OHP with 10 Tg SO2 and 21-23 km injection height.  Plots show 

observations (top), no ash (middle) and with ash (bottom). 

 

Figure E-12 Extinction plots for OHP with 10 Tg SO2 and 18-25 km injection height.  Plots show 

observations (top), no ash (middle) and with ash (bottom). 

 


