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Abstract

The litigation and mitigation of maritime incidents suffer from a lack of information, first at the
incident location, then throughout the evolution of contaminants such as spilled oil through the
surrounding environment. Prior work addresses this through ocean and oil models, model di-
rected sensor guidance and other observation methods such as satellites. However, each of these
approaches and research fields have short-comings when viewed in the context of fast-response
to an incident, and of constructing an all-in-one framework for monitoring contaminants using
autonomous mobile sensors. In summary, models often lack consideration of data-assimilation
or sensor guidance requirements, sensor guidance is specific to source locating, oil mapping, or
fluid measuring and not all three, and data assimilation methods can have stringent require-

ments on model structure or computation time that may not be feasible.

This thesis presents a model-based adaptive monitoring framework for the estimation of oil
spills using mobile sensors. In the first of a four-stage process, simulation of a combined ocean,
wind and oil model provides a state trajectory over a finite time horizon, used in the second
stage to solve an adjoint optimisation problem for sensing locations. In the third stage, a
reduced-order model is identified from the state trajectory, utilised alongside measurements
to produce smoothed state estimates in the fourth stage, which update and re-initialise the

first-stage simulation. In the second stage, sensors are directed to optimal sensing locations

via the solution of a [Partial Differential Equation| (PDE|) constrained optimisation problem.

This problem formulation represents a key contributory idea, utilising the definition of spill
uncertainty as a scalar [PDE] to be minimised subject to sensor, ocean, wind and oil constraints.
Spill uncertainty is a function of uncertainty in (i) the bespoke model of the ocean, wind and
oil spill, (ii) the reduced order model identified from sensor data, and (iii) the data assimilation
method employed to estimate the states of the environment and spill. The uncertainty minimi-
sation is spatio-temporally weighted by a function of spill probability and information utility,

prioritising critical measurements.

In the penultimate chapter, numerical case-studies spanning a 2500 km? coastal area are pre-
sented. Here the monitoring framework is compared to an industry standard method in three
scenarios: A spill monitoring and prediction problem, a retrodiction and monitoring problem

and a source locating problem.



Abbreviations

DAE Differential Algebraic Equation.

DMD Dynamic Mode Decomposition.

GNOME General NOAA Operational Modeling Environment.
ITOPF The International Tanker Owners Pollution Federation.
KF Kalman Filter.

PDE Partial Differential Equation.

RTS Rauch-Tung-Striebel.

SAR Synthetic Aperture Radar.
SCEM Sheffield Combined Environment Model.
SLAR Side-Looking Airborne Radar.

SWEM Sheffield Wave Environment Model.

UAYV Unmanned-Airborne-Vehicle.

USV Unmanned-Submersible/Seaborne-Vehicle.
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Nomenclature

Common terms only. Single use and locally used terms are omitted.

g§| §\

N\

v

Coefficient that attenuates the velocity of oil particles resulting from ocean velocity.

Coefficient that attenuates the velocity of oil particles resulting from wind velocity.

The Hankel data matrix formed of centred state trajectories, excluding the last column.

The Hankel data matrix formed of centred state trajectories, excluding the first column.

The Hankel data matrix formed of centred state trajectories.

Column vector trajectory of centred external data.

Column vector trajectory of centred sensor measurements.

The mode shape matrix, or linear transformation matrix, that transforms the reduced
order state vector to a trajectory of full order states, contained in a single column of the

Hankel data matrix.

Reduced order model mapping from reduced order states to current-time full order states.

u
A (2, Z) Uncertainty state space system state transition matrix.

C

Sensor /output matrix for a sensor measurement and external data trajectory.

Cxr Sensor / output matrix for current-time sensor measurements only.

u
F(Z,2) The state trajectory of the uncertainty state space system, as constructed by a

L

particular implementation (4.111]).

Kalman filter gain.
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N

Full order model estimated error covariance matrix.

Reduced order model estimated error covariance matrix.

The regular time-step in the reduced order model.

The time-varying time-step in the temporal discretisation.

The time-varying time-step in the temporal discretisation, at time-step index k.

Grid spacing in the horizontal direction.

Grid spacing in the vertical direction.

Fine grid spacing in the water depth discretisation.

Coarse grid spacing in the water depth discretisation.

The error covariance of external data flow velocity in the horizontal direction.

The error covariance of external data flow velocity in the vertical direction.

Wind resistance coefficient.

Reduced order state transition matrix from one time-step to the next.

The set of complex numbers.

The set of natural numbers.

z(x;,y;) The set of depths at grid-cell i, j.

—

u v,

F(Lyi1, Ty, Dy 35) Differential Algebraic Equation|for a time-step of the uncertainty state

8 = = s

SIS

space system.

Fluid kinematic viscosity.

3D spatial domain.

State trajectory of the uncertainty state space system.

State vector of the uncertainty state space system.
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S

2D spatial domain at the air/water interface.

The set of real numbers.

The set of positive real numbers, excluding zero.

The density of (-) unless otherwise stated.

The standard deviation of (-), unless otherwise stated.

The variance of ().

The variance in particle position, in the horizontal direction.
The variance in particle position, in the vertical direction.

Limited Heaviside function that activates sensor uncertainty removal in a radius around

the sensor.

Limited Heaviside function that activates sensor uncertainty removal after a travel time.
Sensor position trajectory.

State trajectory of the combined environment and oil model.
Row vector of sensor positions.

External forces acting upon a flow.

Flow velocity, or oil advection velocity.

Ocean current flow velocity.

Ekman wind flow velocity.

Wind flow velocity.

Stokes drift, wave induced velocity.

State vector of the combined environment and oil model.

The Sheffield Combined Environment Modell state vector.
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Z State vector of the reduced order system.

c(Z,t,p) The sensor constraint function.

Dy, The horizontal diffusivity coefficient.

D,.  The vertical diffusivity coefficient.

E(Z,t,p) Spatio-temporal weighting of uncertainty in the sensor pathing cost function.

Fxr,(p) The data assimilation and reduced order modelling error for velocity in the horizontal

direction.

Exr,(p) The data assimilation and reduced order modelling error for velocity in the vertical

direction.
g Gravitational constant
he Number of columns in the Hankel data matrix.
h, Number of rows in the Hankel data matrix.

i,J,w The horizontal, vertical and depth grid indices respectively, unless otherwise stated for

a particular equation.

J Sensor pathing optimisation cost function evaluation.
k The discrete time-step index in the time interval [to,¢¢].
ko Number of standard deviations used in a confidence interval.

neer Lhe number of states per grid-cell in the [Sheffield Combined Environment Modell

ne  Number of pressure field correction iterations.

n, Number of discrete time-steps in sensor pathing optimisation.
Nt  Number of fine mesh grid cells in the water depth discretisation.
un Number of external data states at a given time.

Ny Number of sensors.
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Uz

Ty

Ty

ny

Ps

Number of repetitions of the state trajectory used in the [Dynamic Mode Decomposition|

The total number of states in the [Sheflield Combined Environment Modell

Number of time-lagged state trajectories in the Hankel data matrix.

The number of time-steps in the time interval [to, tf].

Number of states in the uncertainty state-space system.

Number of cells in the spatial discretisation of 02 in the horizontal direction.
Number of cells in the spatial discretisation of 02 in the vertical direction.
Number of reduced order model states, or mode amplitudes.

Internal pressure in a flow.

(xi,y;) The min-max normalised over 02 probability of oil presence/drift for a cell (z;,y;),

at a given time.

u
q(Z,t,p) Oil uncertainty, as a function of the variances in particle position.

to

The time, in seconds unless otherwise stated.

The start time of a simulation.

Sensor pathing optimisation end time.

Start time for a single sensor step form of the sensor pathing optimisation.

End time for a single sensor step form of the sensor pathing optimisation.

Sensor pathing optimisation start time.

The end time of a simulation.

The time at discrete time-step k.

Horizontal component of velocity.

Vertical component of velocity.

x1



x,1, 2 The horizontal, vertical and depth position in €2, increasing west-to-east, south-to-north

and surface-to-sea-floor.

Zerit  The depth at which the water depth discretisation switches from a fine to course mesh.

a,  Coefficient that attenuates the velocity of surface water resulting from wind induced

surface shear.
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Chapter 1

Introduction

This thesis describes a framework for the autonomous monitoring of contaminants in fluids.
Though a broad topic, there is focus upon the hindcasting, estimation and prediction of an
oil spill in a sea environment using mobile sensors. This is not a new problem to tackle, with
oil spill models and surveillance tools in common industrial use since the reformation of the
shipping industry following the Exxon Valdez oil spill of 1989, and long prior to that in more
occasional use and research. Despite this longevity, it is still an active research field to which
this thesis contributes. Before continuing, it is important to establish the process following a
maritime incident.

Consider the first response crew to a vessel in distress. Unless the coastguard, emergency
services or military are required to be involved, this is likely to be a private-sector team formed
from concerned parties and their hired investigators; the insurers, charterers, the ship owner
and cargo stakeholders. Their mission is to determine what has happened, what can be done
about it and who is liable to pay the cost at the end. This holds true for anything from a minor
ship-fire, to a collision, to a discharge of oil; accidental or otherwise. This is not an easy task
due to the lack of knowledge around, taking an oil spill as an example, the spill location, leak
time, leak amount and oil type. The past, current-time and future estimation of this spill fate
and the response to it, are all extremely sensitive to these variables. It is an unfortunate truth
that useful information is often obfuscated by a potentially liable party. This could be a sleep-
deprived crewman who accidentally discharged the wrong hold tank into the sea, sending tonnes
of oil into the ocean instead of sea-water, or the ship-owner who failed to see his vessel properly

maintained: Getting to an accurate description of the incident can take time. Unless this is a
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particularly severe incident, it is unlikely any expensive resources (aircraft, satellites etc) will be
assigned until deemed absolutely necessary and this holds true for a government investigation
also. Hence, the true extent of an oil spill is unlikely to be determined until much later in the

time-line. Several days later is common, but then so is months or years. However, the arrival of

increasingly low cost autonomous sensor platforms, in [Unmanned-Airborne-Vehicle| (UAV)) or

|Unmanned-Submersible /Seaborne-Vehicle| (USV)) configuration, could give the first responders

a method to rapidly gather wide-ranging information on a contaminant leak, sea conditions
and another view on the situation. These autonomous platforms, together with advances in
modelling, data assimilation and control theory, have opened the door to new approaches.
Regrettably, the advances in these fields are not always complementary. The hydrodynamic
and oil models, used for environment flow and spill estimation, are becoming ever more com-
plex, computationally intensive and restricted to access. To briefly describe the complexity
of state-of-the-art models, they combine stochastic random behaviour, with one, two, three or
four way coupling between wind, wave, water and contaminant behaviour, with flow described
as 4-dimensional partial differential-algebraic equations and wave motion stemming from an
overlapping spectrum of frequency and amplitude information. A decade ago, heuristic and
empirical relations between, for example, the presence of oil and the dampening of the wave
spectrum, were utilised. The field is now moving towards a fully physically coupled system.
This is simply infeasible to use in a real-time manner, within a controller.

In contrast to the above, within industry the fluid and oil models are becoming increasingly
separated, with it common practice to use operational hydrodynamic models as external data
providers to an entirely uncoupled oil model. An operational model is simply one that is
always in use, likely upon a high performance computing cluster, that makes regular data
available for access. However data access is unlikely to be free for the most useful of data
sets. This separation has made it difficult for any measurements of parameters outside of either
the hydrodynamic, or oil model, to be assimilated and effects included within the counterpart
model. In industry, there is seldom an online feedback loop between environment and oil
measurements, model use and measurement tasking.

In the data assimilation literature, new methods are enhancing the ability to use sparse mea-

surements, leveraging parallel model runs, reduced order models and/or machine-learning ap-



proximations of model derivatives to speed up the process. However, once again, the ever
increasing model complexity can result in a loss of dynamic fidelity when stepping from the
full model to the reduced order model, or limit parallel runs. In oil spill monitoring, machine
learning is a risky approach when an opposing expert in a court of law can point to the lack of
physical roots and data fitting inherent in data-driven methods.

Meanwhile, in the control field for mobile sensors, a huge variety of methods exist, exploring any-
thing from bio-mimicry, to abstract information theory, to traditional model-based approaches.
Each method has merits, but often lacks in two areas: the underlying model or assumptions
are too simple to capture the dynamics of oil in the ocean, or the method fails to consider
correcting past/future error in both contaminant and environment states. For an oil spill, de-
termining what has happened accurately can be just as important as establishing the current
situation and the future prediction. A final area often lacking in prior work, is consideration
of the sampling most useful to enhance the accuracy of the underlying model upon which all
other response decisions are made, not simply more energy efficient sampling. The control field
for oil spill response can be divided into three broad categories, strategic guidance, tactical
guidance and local guidance. This would be assigning sensors to an area of operations or spill
site, determining a measurement path for a sensor around a spill and the actuation required to
sense along a path in the presence of disturbances. This work will avoid the low level control
of a sensor platform, instead assuming there is already a controller present to manoeuvre the
platform and make use of the equipped sensors.

In this work a practical outlook is maintained while creating an oil contaminant monitoring
framework, focusing on the use of sensor equipped [UAVE. The decades of hydrodynamic and
oil spill modelling is distilled into a very fast, adequately accurate, combined ocean and oil
model. This model is validated against a real-world spill, and then is examined to extract a
definition of uncertainty in its oil spill predictions. In a novel optimisation, the uncertainty is
minimised by a sensing plan. These sensor measurements are assimilated into the model with
a carefully selected and adapted method from recent literature, that utilises the combined and
speedy properties of the model to employ reduced order modelling only where needed, thus
maintaining dynamic fidelity. The monitoring framework is demonstrated to improve upon

the industry standard method in a forward estimation and prediction scenario, a late-arrival
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hindsight analysis scenario and finally a source locating scenario.

The remainder of this chapter first presents further motivation for the research, with industrial
statistics and failings of the current methods detailed in Section (1.1, The formal research
aims are contained in Section [1.2| and the chapter concludes with a description of the following

chapters and their contributions in Section [1.3]

1.1 Motivation

Maritime incidents are varied and dynamic situations where immediate observation provides
valuable information for assessment and resource allocation. The maritime industry is growing
by approximately 3% per annum (UNCTAD 2016) incorporating more ships and larger vessels
every year. However, with companies’ revenues fluctuating around their operating costs, the
need to be competitive can lead to dangerous accidents. There are approximately 10 maritime
incidents every month, with 85 ships lost in 2015 and a total of 1231 ships lost between 2006
and 2015 (Allianz|2015)). In addition to ship wreckage and their contained fuel and fluids, 10000
shipping containers are lost per annum, each one a navigation hazard. There are also around

7 oil spills every 12 months, in 2016 there were 4 recorded spills and 1 major recorded spill,

totalling around 6000 tonnes of oil (ITOPF 2017)). Note that|The International Tanker Owners|

IPollution Federation| (ITOPF)) has the acronym [TOPF| The largest recent spill, excluding the

Deepwater Horizon spill, was the Sanchi oil spill of 2018, of 116’000 tonnes (ITOPF 2019).
Maritime incidents can lead to expensive court cases, argued through convoluted law that is
difficult to litigate without hard evidence of a party’s innocence or guilt. Verdicts often result in
millions of dollars in damage settlements, with the record being the $5.5 billion in damages from
BP as a result of the Deepwater Horizon oil spill. Clean-up operations, accident monitoring and
rescue attempts are often hindered by the information and resources available at the accident
locale, with specialist equipment including observation aircraft not arriving until several days
after the event. The lack of information is partially mitigated by remote sensing assets, reviewed
in Fingas and Brown 2014] and 2018.

Current observation solutions include satellites, capable of delivering a detailed view of an entire
oil spill, through a variety of sensor types with the most common being optical, microwave and

radar wavelength based. Though new satellites and data processing techniques are increasing
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the frequency and reliability of measurements, the delay from tasking a satellite to image
delivery is still up to 4 hours with an overpass frequency of once-per-day common (Fingas and

Brown 2018; Carlowicz 2010)). In the Sanchi tanker incident of 2018, the COSMO-SkyMed

satellite system (Fiorentino and Virelli 2016) first provided [Synthetic Aperture Radar| (SAR))

data on January the 15th, 9 days after the vessel registered distress and roughly 18 hours after
the vessel sank (E-geos 2018). Evening data on the 15th and data on the 16th gave false clear-
sea readings due to spill and vessel drift outside of the observed location (E-geos 2018). Good
data once every 12 hours continued on the 17th, with [SAR] Sentinel 1-S1 imaging acquired on
the 20th (E-geos 2018). satellites are unreliable in calm or rough seas (wind speeds less
than 3 m/s or greater than 10 m/s) and environmental phenomena can produce false positives
(Topouzelis and Singha 2016)). is incapable of measuring oil thickness and the complex
interplay between oil thickness, viscosity and wave parameters results in further uncertainty in
measurement results (Zhang et al. 2015). Evidently, the utility of Earth monitoring satellites
to first responders could be improved, as they currently suffer due to their delay and some
dependency on oil trajectory prediction, and direct observation assets such as aircraft are
preferred (ITOPF [2014)).

Not all maritime incidents are reported immediately, or at all, with clandestine releases of oil
into the ocean all too common. Often, first notification of an oil spill or wreckage comes from
a network of satellites that monitor shipping lanes (ITOPF [2014)). Possible incident sites
must be verified by direct observation, usually meaning aerial observation. However, due to
remoteness, flyovers are often conducted using a local aircraft with no specialist sensors or
tools, crewed by a human observer (ITOPF 2014). In extreme locations aerial observations are
hampered by a lack of runways, requiring the chartering of helicopter pad equipped vessels, but
still restricting the use of specialist fixed-wing aircraft and delaying observation by days, if-not
weeks (Laruelle 2011). Once arrived, the expense of aircraft limits their number and hence the
availability of simultaneous viewpoints or constant coverage during pilot/refuel breaks. Fur-
thermore, health and safety concerns for the crew can limit their night-time deployment and
their flight route is often pre-determined before take-off, with changes at the discretion of safety
and airspace concerns. Observation aircraft plan routes as ladder search patterns in the sup-

posed direction of wreckage or oil migration, usually estimated with large scale measurements
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HEBEI SPIRIT ——*

Yellow Sea:

Figure 1.1: image of the Hebei Spirit oil spill of the Tth December 2007. The image
shows the oil spread on the 11th December 2007 (Laruelle 2009).

of current and wind and a very simple model of drift. Supporting tools, such as oil models,
may not be available (due to a lack of data or resource allocation) in the crucial first few days
of an incident. The complexity of existing models produces slow calculation times but useful
data for response planning. However, despite their complexity and supposed accuracy, model
predictions still have to be verified by observation before resource allocation in the industry
(ITOPF [2014).

Failings of current solutions are visible in the Hebei Spirit spillage of 2007, pictured in Figure
[[.T] The collision occured on the 7th December and was reported immediately. Coast guard
vessels and non-specialist aircraft were on-scene after 4 hours and noted an oil leak; promptly
beginning damage mitigation and vessel salvage efforts (The Hong Kong Special Administrative
Region Marine Department . Though rough weather hampered oil containment efforts,
South-Korea’s Ministry of Maritime Affairs and Fisheries predicted the oil wouldn’t spread
due to the cold weather (Bae Ji-sook . By the 10th December, when the first
overflight and aerial observation using specialist equipment occured, the oil had spread 70 km
along the coastline. Alerted to the spillages severity, the first [SAR] sateillite image, as seen in
Figure became available on the 11th December and showed the extent of the spread clearly
(Laruelle . Had specialist observation tools, with a supporting model, been available
sooner the large scale of the spill and estimated drift could have directed resource allocation

more efficiently from the outset.
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1.2 Research Aims

The aim of this research is to produce an all-in-one framework for the autonomous monitoring
of contaminants in fluids. Sensors must coordinate to be in the right place at the right time
to sense contaminants, needing guidance from model-based predictions and data assimilation.

This poses research challenges of:

e Choosing a monitoring strategy appropriate to maritime incidents, including the platform

and sensor capability.

e Modelling contaminant movement using a sea state model, with prediction/analysis and
source location estimation. The model must be computationally tractable to run in real

time.

e Cooperative control of multiple systems to ensure an optimum coverage sensing strategy:
Adaptive decision making considering sensor, platform and communication capabilities,
considering their constraints in forming a sensing strategy. Navigational planning should

include consideration of model or assimilation short-comings.

e A further challenge of how to sense and update the combined environment and oil model
using new information and the incorporation of prior knowledge, such as spillage type,
in the prediction. The assimilation method must also be fast enough to run in real time,

and not require parallel runs or simplification of the model to a problematic degree.

Research outcomes include a simulation of sea contaminant scenarios and the sea surface and
contaminant within, a method of assimilating measurements into these simulations, as well as
a novel controller for guiding UAVs to gather these measurements that includes consideration

of the inaccuracy in the model or assimilation methods.

1.3 Description of the thesis, contained work and con-
tributions

This section describes the structure and contributions of the following thesis chapters, first

in summary and then in detail. Chapter [2] presents the reader with background maritime
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information and a review of prior, related research. Chapter [3| contains the overall monitoring
framework structure, with a time-line of the algorithm when applied in the simulations of
Chapter[7] Chapter[d]describes the modelling component of the monitoring framework. Chapter
details the sensor guidance stage of the monitoring framework and the optimisation which it
entails. Chapter [7| contains an evaluation of the monitoring framework performance in various
scenarios and Chapter [§| concludes the thesis.

Describing the chapters and their contributions in further detail:

e Chapter [2l First in this chapter, the use of UAVs and their sensor packages is examined
in the maritime setting to provide the reader with valuable context for the capability of
[UAVE and remote sensing. This includes a general overview of [UAV]and sensor types and
potential deployment purposes. A brief description of the optical appearances of oil on
water is also given. The chapter moves on to a literature review of existing hydrodynamic
and oil modelling, in the context of their suitability for a monitoring framework. The
review of existing methods continues to sensor guidance, across general areas of moving
to a fixed point, search and following, path planning and then the most closely related
works involving contaminant tracking or clean-up. Then, the review briefly covers modern
data assimilation methods employed in the hydrodynamic field, to offer context for the
monitoring framework assimilation method. Finally, the chapter summarises the key

insight from prior work.

e Chapter This short chapter presents the monitoring framework as a whole, a brief
overview of the utilised methods, and how the iterative procedure functions in practice.

This structures the chapters that follow.

e Chapter 4| begins with an overall description of the environment and oil model, then de-
tails the spatio-temporal structure and states of the model. The Chapter moves on to the
implementation of the 2D fluid flow solver, including the boundary conditions and the
expansion of a surface velocity to a 2.5D description with a depth velocity profile. Further
components of the fluid model are detailed, including wind induced phenomenon and the
wave model. Next, the oil model component of the combined model is examined, with
advection and diffusion, entrainment and buoyancy, thickness and mechanical spreading,

deposition and refloating all described. The surrounding parameters of an oil model are
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then looked at, that is, the number of particles needed, and extracting probabilities or
loosely defined properties (like the mean spill location) from the model. The backwards
implementation of the model is then noted. The chapter then presents a validation of

the model against a real world spill and a comparison with the common industry model

GNOME] (General NOAA Operational Modeling Environment]). Finally, the chapter ex-

tracts the definition of uncertainty and a companion description of sensing, for use in
sensor pathing, then represents uncertainty as a state-space system. The key contribu-
tions of this chapter is first, the development and validation of a bespoke model of wind,
ocean and oil dynamics for real-time monitoring, and secondly a PDE description of the

uncertainty of an oil particle distribution.

e Chapter |5| describes the sensor guidance component of the monitoring framework, and
the presentation and solving of a weighted, constrained uncertainty minimisation op-
timisation. The optimisation is introduced, then the weighting terms and constraint
Lagrangian multiplier described. The solution method, both the adjoint method based
gradient determination and gradient descent optimisation is then detailed, with example
solutions under static and mobile sensors then presented. The optimisation formulation
and solution method is a key contribution of this thesis, as it presents a multi-scale ap-
proach suitable for guiding both oil measurements and fluid measurements in support of

oil monitoring.

e Chapter [l This chapter sets out the data assimilation method for the monitoring frame-
work, first giving an overview, then recounting the formation of the reduced order model
from the full order model state trajectory. The reduced order model is then used with an
analysis capable state estimation method capable of assimilating a trajectory of measure-
ments and external values. Finally, the assimilation of measurements and external values
to form a complete full-order state trajectory estimation concludes the chapter. The
contributions in Chapter [5] are extensions of state estimation and reduced order mod-
elling techniques to develop an ensemble and tangent-linear model free data assimilation
method. A further key idea is to formulate the error of the data assimilation method and

utilise the error to inform sensor placement.
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e Chapter [7] evaluates the complete monitoring framework against industry standard meth-
ods of pathing and data-assimilation, across a forward estimation and prediction scenario,
a late-arrival hindsight analysis scenario and finally a source locating scenario. The moni-
toring framework is demonstrated to improve upon the industry standard method in both
spill estimation accuracy and sensor utilisation. This chapter demonstrates the monitor-
ing framework reduces estimation error (using a combined measure of spill position and
shape error) by up to 80%, when compared to a traditional ladder path sensor guidance

method and/or a simple data assimilation method.

e Chapter|8/concludes the thesis, by reiterating the principal research results and expanding

upon the contributions, then suggests avenues for future research.

To summarise the novelty of the thesis, in the context of real-time oil spill monitoring with mo-
bile sensors and computing hardware: There are a number of incremental improvements in each
of the main focus areas, which are wind/wave/oil modelling, oil uncertainty description, sensor
guidance optimisation and solution, reduced order modelling and finally data assimilation. The
work is detailed in the relevant chapters with brief comments on their contributions, though
the thesis contributions are elaborated upon in Chapter [8] However, the main contribution is
the linking of each component to form the monitoring framework as a whole. This is an all-in-
one monitoring framework that tackles the difficult problems of oil spill source determination,

hind-casting, now-casting, prediction, through the guidance and utilisation of mobile sensors.

1.4 Notation

Regarding notation: Where a function is presented with explicit arguments within an equation,
arguments are present to emphasise to the reader the dependency of said function upon partic-
ular variables. This dependency is important when considering the sensitivity of a system with
respect to the optimisation variable. In the interest of notational brevity, not all arguments
will be presented within an equation, but all functions are formally defined in the main text.
For example, given the scalars z,y € R and a function f(z,y) where f : R x R — R, the func-
tion f(z,y) may be described as f(z) within an equation. Consider the equation, min, f(x),

where only dependency upon x is explicitly noted. Furthermore, integer intervals are denoted
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by double brackets, e.g, [a,b] = {a,a +1,...,0 — 1,b}. Additionally, given a matrix M of size
m by n, a set of row indices ., C [1,m] and a set of column indices .#, C [1,n], then the
notation M (.%,, .7.) describes a sub-matrix M(.7,, %) = {M(i,k) : i € .%. Ak € Z.}. The
set of positive real numbers including 0 is defined by R, C R. Throughout this thesis, (-)7 is
the transpose, (-)* is the conjugate transpose or Hermitian, (-) o (-) is the Hadamard product
or elementwise product and (-)°* is the Hadamard exponential to power k. Further notation
includes, * as an estimate and - as a centered value or mean value with clarification in the text.
Vectors are denoted -, matrices in bold capitals, sets or trajectories in calligraphic. Any excep-
tion to this notation is explicitly stated. The vertical concatenation of vectors, &= [a’, I;T]T is
denoted by &= [a; b].

Consider the vector ¢ € R" of n. € N elements, with the ith element ¢ € R. If the ith element
is then subject to bounds ¢; € [l,u] for [ € R and u € R, then an under-bar notation, such as

¢ explicitly denotes that ¢ is formed of bounded values, while ¢ is not. This is relevant when

describing bounded and unbounded state vectors.
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Background and Related Work

This chapter first presents background maritime information, commenting on the common
scenarios and challenges facing autonomous monitoring in a maritime deployment. The sensor
requirements and capabilities are also noted, together with the visual appearance of oil spills
of varying thickness. The chapter then delivers a review of current oil spill and hydrodynamic
modelling methods, providing context for discussion of sensor guidance methods in a further
review and finally a review of the assimilation of sensor measurements into an oil spill and

hydrodynamic model.

2.1 Maritime information

The use of autonomous vehicles, airborne, seaborne or land based is fast becoming widespread
in the civilian, commercial and military markets. Though largely successful in military and
government use, their deployments alongside civilian operators have been hampered by legisla-
tion, safety concerns and the need for an operator to maintain constant control authority; both
to ensure danger avoidance and to adapt the automaton’s planning to environmental changes.
This is of particular prevalence for small Unmanned Aerial Vehicles (UAVs) and Submersibles
(USVs), where the real time, 2-way exchange of large amounts of data becomes infeasible due
to their mission range and the capabilities of their communication suite. Effort must be made
to improve the true autonomy and self-governance of UAVs and USVs in dynamic missions,
both in high-level decision making and low-level route planning (Zeigler 1990). The current

trend in deployed autonomous systems is to utilise low numbers of high cost, high sensing fi-

12
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delity and high performance systems that maintain 2-way communication and control to enable
mission flexibility and operational safety (Moreland et al. 2015). While capable of acquiring
excellent data the low number of viewpoints does not allow simultaneous coverage of a large
area and cooperative search methods are excluded. While industry acknowledges the potential
of autonomous systems, uptake is slow until the technology and surrounding legislation matures
(Foxwell [2017)).

Developing autonomous systems faces research challenges under headings of energy limitations,
environmental and operational hazards, information processing and human-system interaction.
These problems are exacerbated in a distant environment (Kitano et al. [1999)). A flexible,
cooperative and predictive package containing navigation, sensing and control algorithms could
enable far reaching missions of multiple autonomous vehicles, operating efficiently in a dynamic
scenario with minimal input from a human controller beyond what is currently capable in the
industry.

UAVs are particularly suited to use in the maritime domain, offering a range of benefits across
all their size classifications (Kaymal 2016). UAVs offer a high area coverage in a short amount
of time, due to their high speed (relative to ships) consistent during their deployment. Depend-
ing on their size, UAVs can offer extremely long endurance flights, without personnel based
limitations. Even smaller UAVs can maintain coverage for long periods if multiple systems
are deployed with overlapping coverage during battery or fuel replenishment. The low price
per unit and small size compared to manned aircraft or surface vessels facilitates the use of
multiple UAVs simultaneously, allowing for simultaneous view points across a wide area and
more efficient search techniques (Cevik et al. [2013).

UAV design for oil spill monitoring is determined by a number of factors; with the information
required perhaps the most critical: The absolute presence of oil measured as fast as possible
across a large area, or the thickness determined in a small area, or the oil type ascertained
at source. All would produce a different ideal design, coupled with other environmental char-
acteristics such as legislation or shared airspace. There exists a number of common maritime
incident scenarios where a UAV could provide valuable insight or improve upon the current
solutions employed by industry, satellites or manned flights. Each has a corresponding ideal

UAV design, portrayed in table
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’ UAYV design considerations for maritime incident scenarios

Incident description

Design parame-
ter

Requirement

Close proximity survey and inspec-
tion of spill source

Short distance survey and source
location and inspection

Long distance survey, source loca-
tion and inspection, and contami-
nant assessment.

Flight altitude

Payload
Endurance
Platform type

Sensor
Communication

Flight altitude
Payload
Endurance
Platform type

Sensor
Communication

Flight altitude

Payload
Endurance
Platform type

Sensor
Communication

Very low (50 m max)

7 kg max

1 hour max

Multicopter for stable, close up
sensing and access to unique loca-
tions

High resolution optical sufficient
Short range, high bandwidth for
data fidelity

Low (100 m max)

25 kg max

4 hour max

Fixed wing for endurance, range
and payload

Optical /IR /Lidar

Mid range, mid bandwidth for data
range. High fidelity imagery can be
burst transmitted at the expense of
other data, a spills location, thick-
ness and source is sufficient
Legislation limit (400m max)

100 kg max

30 hour max

Fixed wing for endurance, range
and payload

Multisensor /Deployable

Long range, low bandwidth for data
range. High fidelity imagery can be
stored for review, a spills location,
thickness and source is sufficient

Table 2.1: UAV design considerations for maritime incident scenarios, adapted from Goémez

and Green [2017].




2.1. Maritime information 15

\ Minimum spatial resolution requirements (m) \

Task Large Spill | Small Spill
Detect oil on water 6 2
Map oil on water 10 2
Map oil on land/shore 1 0.5
Tactical water clean-up 1 2
Tactical support land/shore 1 0.5
Thickness/volume 1 0.5
Legal and prosecution 3 1
General documentation 3 1
Long-range surveillance 10

Table 2.2: Requirements of oil spill detection.

’ Typical airborne sensor characteristics ‘

Sensor type | Sensor Spatial resolution range | Swath Width (km)
(m)
Radar SLA 10-50 10-40
Radar | [SAR 1-10 10-40
Optical Video Camera <1 & Alt. Dep. Alt. Dep.
Optical Still Camera < 0.1 & Alt. Dep. Alt. Dep.
Optical Typical Ultravio- | < 1 & Alt. Dep. Alt. Dep.
let /Infrared Scanner

Table 2.3: Typical airborne sensor characteristics. In the table, [Synthetic Aperture Radar]
(SAR)) and [Side-Looking Airborne Radar| (SLARJ) use their acronyms and “Alt. Dep.” is alti-
tude dependent.

Contaminant detection

The expected contaminant and mission profile determine the type and quality of sensors needed
aboard the UAV platform. Prior research offers sensor resolution requirements in table and
typical resolution of existing sensors in table (Jha, Levy, and Gao 2008).

Payload weight and size constraints apply, but a plethora of possible sensors remain. Despite
this, simple still or video photography is the most common form of contaminant or oil spill
detection (Fingas and Brown 1998, using the empirical observation rules in table Note the
orders of magnitude volume difference between oil appearances: although sheen may cover large
areas of the environment, it is a negligible portion of the total oil volume. Hence observation
should strive to focus on dark patches and be able to identify between sheen and thicker patches
of oil. Supplementing optical observation, airborne remote sensors can offer oil detection, or
information on the parameters of oil, in conditions where the visible spectrum is unsuitable,

such as night time or rough sea conditions. Sensors can be categorised as passive, or active;
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\ Optical appearance of oil \

Oil type Appearance Approximate thick- | Approximate volume
ness (mm) (m3/km?)

Oil sheen Silver > 0.0001 0.1

Oil sheen Iridescent (rainbow) | > 0.0003 0.3

Crude or fuel oil Brown to black > 0.1 100

Water/oil emulsions | Brown > 1 1000

Table 2.4: A tabulation of the thickness, appearance and volume of floating oil when observed
from the air. Adapted from ITOPF 2011al.

their capabilities are tabulated in tables and respectively.  The correct selection, or
further development of sensors will allow for accurate detection of surrounding fluid velocities
and contaminant properties. It is worth noting that sensor capabilities are improving all the
time and the sensor data above may become obsolete. Recently launched satellites may offer a
much greater resolution in the visual and SAR spectra, but satellites are still limited by weather
conditions (cloud cover) and the narrow band of wind conditions and false positives inherent in
SAR oil spill detection (Topouzelis and Singha 2016)). However, even a perfect sensor is useless
if it is not employed in the correct place at the correct time, which is the purpose of guidance

algorithms.

Guidance Algorithms

The maritime industry currently employs surveillance aircraft to map contaminants if possible
and the resources are available. Designated aircraft range from specialised, multi-engined ob-
servation craft with a trained crew and dedicated sensors to light aircraft and the human eye.
Their guidance is simplistic, usually following a pre-planned ladder path over a region identi-
fied by a spill trajectory model, or spiralling inwards/outwards to an estimated source location
(ITOPF [2011al). While ensuring good coverage, these are time consuming and inefficient. A
further consideration to be included in the decision making process would be the robust com-
munication between relevant agents. Control might be discretised, but communication and
information sharing is likely still essential to ensure efficient area and target coverage. Hence
constraints should be present upon sensor positions, to ensure they are within communication

range.
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’ A summary of passive sensors suited to sensing of oil and other contaminants ‘
Type Typical task Advantages Weaknesses
Passive Visible Spill detection Visual data Limited to good
(wavelength Approximate Inexpensive visibility condi-
0.38 — 0.76m) thickness detection | Light weight tions, e.g, affected
Approximate by darkness,
volume estimation clouds, haze or
Optical flow esti- smoke
mation
Short-wave in- | Spill detection Suitable for low | Expensive to pro-
frared (wavelength | Relative thickness | light conditions duce and operate
0.9 — 1.7pm) detection Low power con- | Not visible to hu-
Approximate sumption man eye, informa-
volume estimation | Light weight and | tion must be pro-
Capable of differ- | small size vided as spectral
entiating between maps etc
crude  oil  and
weathered  emul-
sions
Thermal in- | Night-time spill de- | Suitable for low | Reference data
frared (wavelength | tection light and night- | for comparison is
8 — 14pum) Approximate time conditions needed
thickness detection | Vision through | Not visible to hu-
Approximate clouds, haze or | man eye, informa-
volume estimation | smoke tion must be pro-
Low power con- | vided as spectral
sumption maps etc
Light weight and
small size
Live video Monitoring situa- | Forward  looking | Reduntant  infor-
tion video would allow | mation a lot of the
Approximate remote piloting if | time
thickness detection | needed Lower spatial reso-
Approximate Possibly 3D infor- | lution than still im-

volume estimation

mation, produces
measurement of
wave data

agery

Table 2.5: A tabulation of a selection of passive sensors suited to contaminant detection.
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’ A summary of active sensors suited to sensing of oil and other contaminants
Type Typical task Advantages Weaknesses
Active Lidar Spill detection High precision Limited to good
Absolute thickness visibility condi-

Radar

detection

Oil  identification
(Raimondi et al.
2017)

3D position and
velocity measure-
ments

Large area detec-
tion of contami-
nants and oil spills

Day and night con-
ditions

Unaffected by
smoke, haze or
clouds.

tions, e.g, affected
by clouds, haze or
smoke

High power
sumption
Extremely ac-
curate position
data required for
measurements
Lack of suitable
commercial sensors
Miniaturisation
difficulties

Power
tion
Unreliable in low
or high wind condi-
tions

Not visible to hu-
man eye, informa-
tion must be pro-
vided as spectral
maps etc

con-

consump-

Table 2.6: A tabulation of a selection of active sensors suited to contaminant detection.
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2.2 Modelling

This section presents an overview of oil spill modelling and the hydrodynamic models that oil
spill models depend upon. A broad overview of spill models is followed by a more in-depth
examination of the modelling approaches for the physical processes important to oil trajectory
extrapolation. The section continues to similarly examine the modelling approaches for the
environmental physical processes: The description of the wind and ocean dynamics that govern

the movement of an oil spill.

2.2.1 Oil spill modelling

Spill modelling for a particular incident typically ensues with a pre-validated oil spill model.
There are several available, from commercial and proprietary models to academic and open-
source models. Each model is the outcome of a significant investment in representing the
physics of an oil spill in mathematical form, with some models being specific to a particular
region and the local dynamics in that area. These models produce an estimate trajectory of the
oil through a spatio-temporal domain and form the basis for stochastic measures and decision
making. This could be, determining the likelihood of oil reaching a certain region, or a measure
of the likelihood of a significant volume of oil remaining (Nelson and Grubesic 2020)).

A recent state of the art review of oil spill modelling (Spaulding [2017)) covers OSCAR (Reed et
al. 2000), SIMAP/OILMAP (French McCay et al. [2016)), GNOME/ADIOS (Lehr et al. 2002),
though other notables in the field include the model, MEDSLIK (De Dominicis et al. 2013al)
and BLOSOM (Duran et al. 2018). There is also a wealth of commercial oil models, with
propriety methods for which little information is available.

The review by Spaulding 2017| affirms modern oil spill models are complex amalgamations of
Lagrangian (particle based) transport processes and varied algorithm types (stochastic and
deterministic) of other processes, such as entrainment in the water column, or evaporation.
There are some exceptions that use an Eulerian approach (Taylor et al. [2003)), but these are
more limited in scope as supporting algorithms (such as entrainment) are Lagrangian based
(Wang and Shen [2010)), providing solutions per particle. State of the art 3D models aim to
provide the most accurate estimations possible of oil position/properties, both surface and

sub-surface, at the expense of computational speed, over an extended period of time (weeks
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to months of prediction) and hence include weathering effects. Despite their complexity and
supposed accuracy, their results still have to be verified in the field; the industry will not allocate
resources based on modelling alone (ITOPF 2014)).

The modelling of the oil spillage itself can be sectioned into principal physical processes, in
order of importance with increasing time moving through a surface spill scenario: mechan-
ical spreading, advection by wind/wave/current, turbulent diffusion, entrainment (including
buoyancy and droplet size) and evaporation. Dissolution, emulsification, biological effects and
photo-degradation are other phenomona, but play a much lesser role in the first 24 to 72 hours
of an oil spill (Proctor, Flather, and Elliott 1994).

Mechanical spreading, without external forces, is the process of oil spreading over a surface,
to form a flat circle where internal hydraulic pressure and boundary surface tension balance.
Spreading is usually modelled with empirical formulae, producing an estimated radius at a
given time for a thick slick (Fay [1971)). Field observations or past data provide a spreading
rate coefficient and spreading ceases when the oil reaches a minimum thickness. These methods
have significant shortcomings, being only valid in calm conditions and ignoring the effects of
wind and current on shape (Hoult |1972). Later methods expanded upon Fay’s work, to produce
elliptical distributions (Lehr et al. [1984). Together with simple advection-diffusion equations,
these form the common simple models used by guidance algorithms under the presence of
uniform flow, for example within Zhang and Pei 2015.

Advection is a collective term for the mass-transport of oil particles by the wind and hydrody-
namic model. Across reviewed models it is described by a vector summation of water current
velocity (scaled by an empirical coefficient), the wind velocity (scaled by an empirical coefhi-
cient and rotated by an empirical drift angle) and a force or velocity from the wave model,
wave radiation stress or Stokes drift (Spaulding 2017). Coefficients vary with literature, from
1 to 1.1 for current velocities in (Lonin [1999)) and (Wang, Shen, and Zheng 2005) respectively,
and 0.01 to 0.06 for wind velocities and some geographical variation in drift angle formulation,
from 0 to 45 degrees (Li, Zhu, and Wang 2013)). Note however, that the drift angle should be
omitted in cases where the underlying environment data already incorporates Ekman currents,
the off-wind-axis flow that results from the balance between coriolis forces and wind shear.

Turbulent diffusion addresses the turbulent processes that move oil particles on a smaller scale
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than the grid of the hydrodynamic model. Almost exclusively, a Markov chain, or random
walk technique is used with coefficients either described by the user or calculated from the
hydrodynamic model. These coefficients vary by several orders of magnitude in the literature
and play an important role in oil spill simulation (Spaulding 2017)), for example, Elliott 1986
uses 0.7 m? /s while Al-Rabeh, Cekirge, and Gunay 1989 uses 10 m?/s as constant parameters.
Smagorinsky’s non-linear diffusion equation is present in some models to calculate the diffusion
coefficient. While dependent upon flow derivatives, it’s also strongly sensitive to a dimensionless
parameter set by the user, for which literature suggests values ranging from 0.03 (Baldauf and
Zangl 2012) to 0.2 (Wang, Shen, and Zheng [2005). Identified in Hunter, Craig, and Phillips
1993| and then further in recent work (Nordam et al. 2019b)), there are failings in the commonly
used diffusion coefficient formulae which can both under or over-estimate the true diffusion in
both horizontal and vertical directions. The corrections developed in the literature have been
applied here.

Wave induced motion calculation varies in literature. In early work, it might be omitted
completely (Lardner and Gunay [2000)), or simulated by Stokes drift calculations only using
either wave parameters or empirical estimates from wind speed; this forms the majority of
horizontal transport and is often taken as sufficient (Boufadel et al. 2007). Mellor’s work
advocates the inclusion of wave radiation stress (Mellor [2003) and recent work attempts to
join Stokes drift and wave radiation stress to describe Langmuir cells, discussed in Galt and
Overstreet 2011}, that create the surface windrows (very thin lines of thick oil), though this was
yet to be implemented into a model as of Spaulding’s review (Spaulding 2017)).

Subsurface entrainment, or subsumption of the oil into the water column, has several approaches
to modelling in the literature, depending on the available data from the hydrodynamic model or
measurements. Modern 3D hydrodynamic simulations can be coupled with a vertical diffusion
process alone, while early work required empirical probability functions of particle entrainment,
using wave energy and oil type, to ensure oil entered the sub-surface, as well as a vertical dif-
fusion process (Li, Zhu, and Wang [2013). The work of Li, Zhu, and Wang [2013| compares 3
methods of vertical diffusion coefficient calculation, an empirical scheme, an internal hydro-
dynamic model solver and solving a Langevin equation. Results were inconclusive and failed

to identify a most-accurate algorithm, though large differences in estimations were certainly
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noticed, with the empirical method being the simplest to calculate. Buoyancy methods again
vary, noted in Nordam et al. 2019a, where Nordam again identifies inconsistencies and correc-
tion modifications, implemented in this thesis.

Oil weathering or oil aging is a term for changes in oil properties over time, that includes
evaporation, dissolution, emulsification, biological effects and photo-degradation. Weathering
was determined to be non-critical in this research, due to the short horizon of the simulation
and ability to account for changes in oil parameters through sensing. However, under some
conditions, rapid evaporation can remove up to 40% of the oil mass within the first 2 days, if
not a few hours for a lighter hydrocarbon such as Kerosene (ITOPF [2011c). Hence, estimations
of weathering and particularly evaporation could be useful. A recent review of evaporation
methods, from Mackay’s early work (Mackay and Matsugu 1973) onwards, and investigation
into oil evaporation (Fingas |2015), showed that oil evaporation is not strictly boundary-layer
regulated, hence the dominant factors are time and temperature and so a simplistic evaporation
description would suffice. Fingas 2012/ offers several logarithmic, empirical equations improving
on the over and under estimation of Mackay’s oil component based work. That said, Spaulding
2017 argues that Fingas’ methods has data requirement flaws and is verified with too much
reliance on laboratory data. To account for weathering, the oil model here-in is capable of
interfacing with the ADIOS weathering system within the GNOME oil model (NOAA 2012)),
by the transferance of particle and environment data.

In most cases, though limited to heavy, crude and other persistent oils, the majority of oil
volume is contained on the surface, in dark slicks (ITOPF 2011a), with only 10% in the water
column after 24 hours (Proctor, Flather, and Elliott [1994). When subsumed underwater tem-
porarily, depths rarely exceed 10 m even in high wind conditions (Li, Zhu, and Wang 2013)).
This suggests a 2D current simulation, with empirical variation in depth, a 2D wind simulation
and a surface wave model, would be sufficient for surface input data into a short-term oil model.
The model would be intended for sensor guidance, not comprehensive spill simulation. Sensitiv-
ity studies of a similar model (De Dominicis et al. 2013b)) demonstrate that a calibrated model
retains predictive accuracy for approximately 1-2.5 days, with the forecast accuracy largely
dependent upon the input ocean currents.

Backwards in time models have been attempted in literature, where in general, oil at a receptor
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node, or final time position, is backtracked through a velocity grid produced by a forwards
simulation of fluid. Early work relied on time reversed stepping of particles through time-
invariant maps of mean current and wind fields to determine probability maps of oil starting
at that position reaching a receptor node target (Galt and Payton 2005). Batchelder 2006
used time-varying velocity fields stored from a forward run of an ocean model to implement
a forward and backward in time trajectory model of particles, that included advection and
vertical diffusion (Batchelder 2006). Batchelder used a negative time step for advection and
discusses the difficulty and utility of inverse diffusion, before including diffusion as a random
process in his backwards in time simulations, to demonstrate its utility in describing an area of
possible sources. Batchelder 2006 notes that vertical diffusion creates a particle dispersion with
no indication of particles’ initial depth after only 0.2 days of forward simulation and utilises
a further forward simulation of his estimated source and the closeness of the resulting mean
particle position to the original receptor node as a performance indicator.

Similar work, such as a two-way particle tracking model (Isobe et al. 2009), included horizontal
diffusion as a random walk in both the forward and backward simulation. Multiple particles
were reversed from a receptor node and each of their positions at the supposed release time was
considered a source. These sources were then tested via forward simulation and a statistical
measure of their final particle layout used to discard unlikely sources (Isobe et al. 2009). The
above approaches were limited to a singular receptor node in their backwards time simulation.
Perhaps the distribution of particles across multiple nodes could be used to infer something
of the random process. A more recent work looks at utilising multiple receptor nodes, but
only to generate probability maps of oil start positions reaching certain nodes (Ciappa Achille;
Costabile 2014). Yu et al. 2017|describes a method of parameter estimation for wind and current
coefficients, as well as random step size, given a large set of drift data. These parameters are
then used in another reverse advection and turbulent diffusion by random walk (Yu et al. 2017).
Inputs to the models, including geographical, wind and water current data, all must come from

exterior hydrodynamic models, that also vary in approach.
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2.2.2 Hydrodynamic modelling

Environmental models provide the oil spill model with wind, wave and current data. Modern
3-dimensional models commonly use a harmonic water-level tide model for boundary in-flows
and out-flows and base their physical processes on the work of Mellor (Mellor 2003)): 3D Navier
Stokes, radiation stress from linear surface waves and a Smagorinsky eddy parametization, but
with differing discrete solution methods such as an unstructured mesh (Wang and Shen 2010)).
Continuing work enabled coupling the wave model with an ocean model, and modification to
incorporate depth induced wave breaking and wave-current interaction (Mellor, Donelan, and
Oey [2008). Wave models are still external to the ocean model in most cases (Spaulding 2017)),
with one notable exception being Mellor’s continuing research. This is a joining of the Stevens
Institute of Technology Estuarine and Coastal Ocean Model (sSECOM) and Mellor-Donelan-Oey
(MDO) wave model (Marsooli et al. [2017). Some work omits Ekman currents completely (slow
forming horizontal net water currents due to the force balance between the Coriolis effect and
wind shear), others prefer to account for them (instantaneously forming) in their oil drift angle
formulation (De Dominicis et al. 2013a)), while others include them in their 3D hydrodynamic
model by including a Coriolis force term in their Navier Stokes equations (Marsooli et al. 2017).
Due to the constraints on computation, communication and time, the current 3D hydrodynamic
models are unsuitable for UAV application: A state of the art model takes 74 hours to solve a
9 day simulation across 66000 nodes (the most useful measure of area), or approximately 400
km x 300 km, on an 8 CPU OpenMP computer (Marsooli [2017)).

The separation of Ocean modelling to Oil modelling does have advantages, allowing for differing
hydrodynamic approaches to be used and the appropriation of data from any source, be it small
scale Boussinesq models (Lonin [1999), large scale circulation models (Marsooli et al. [2017)) or
broad-scale measurements: high-frequency radar, synthetic aperture radar (SAR), wave buoys
or other data sources. However, there are disadvantages: If the models are not integrated, or
run at the same time-steps, large data-sets must be produced and stored by the hydrodynamic
model for use by the oil model, which may need to interpolate the data. Also, there can be no
two-way coupling between oil and hydrodynamics; the dampening affect of oil on surface waves
(integral to SAR measurement) (Zhang et al. 2015) cannot be included if the hydrodynamics

are pre-calculated. Furthermore, certain parameters may only need to be calculated where oil
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is likely to be. Wave spectra for example, could be calculated only where required.

The chosen approach here is a computationally tractable 2D hydrodynamic model to resolve
input ocean and wind flow (if available from operational models) around local bathymetry and
geography features too small to be included in the input data. Flow simulation in 2D has
been conducted by the computational fluid dynamics (CFD) community as structured meshes,
unstructured meshes (Chen, Liu, and Beardsley 2003), finite difference, finite element, finite
volume and spectral methods. Assumptions that the sea-surface is inviscid, incompressible and
irrotational are common and acceptable, though flow around geographical boundaries may (but
not necessarily) invalidate this paradigm (Hover and Chin |2009). Since the priority here is large-
scale fast simulation, focused on only the key physical processes relevant to the spatio-temporal
evolution of oil spills, literature from the computer science industry that attempts to simulate
realistic flow in real-time or faster is of particular interest. Classical CFD approaches that
rely upon steady flows are disregarded, as tidal boundaries discount time-averaged methods.
The methods of discretising the simplified, incompressible and irrotational Navier Stokes PDE
vary from simple finite volume methods (Stam [2003) to even simpler, viscosity discarding
Euler simulations (Braley and Sandu 2009). Because of its computational speed, a structured
mesh (generated from images or bathymetry data), finite difference, projection based pressure
correction solver will be implemented. The large scale of oil spills implies large mesh scales and
long time-steps, while still offering a stable simulation using explicit methods.

The 2D ocean flow is then extrapolated to a complete vertical velocity profile to the sea-
bed, using tidal current, Ekman current estimations, Stokes drift and wind induced surface
shear. Additionally, a complete wave spectra is calculated where oil particles are present and
environment conditions are contained within each grid cell, though use of spatio-temporally
varying external data is also supported if available. The vertical velocity profile is important
to estimate the further dispersal of oil resulting from its subsumption and resurfacing within
water, without utilising expensive 3D flow simulation or large 3D external data-sets that are

often unavailable for the local region.
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2.2.3 Summary and further considerations for modelling

Concisely summarising the above reviews of oil and environment modelling: Both fields have a
vast array of methods, spanning from simple empirical formulae to stochastic PDE solving in
3-dimensions. Environment modelling has clearer trade-offs between accuracy and computation
speed, for example, the difference between a coupled 3D wave, wind and ocean flow model and
a 2D uncoupled simulation of the water surface flow with an empirical wave model. However, in
the oil modelling field every modelling approach has variation in coefficients, formulation and
solution methods. There is little consensus on the most accurate approximation, as every oil
spill is a unique example with difficult sensing challenges, limiting the comparison of methods
to a known result (Spaulding 2017)).

Here, the oil and environment models form part of a complete online monitoring framework.
Hence, there are further considerations outside of accuracy and computation speed. The mod-
els must be capable of assimilating measured data, including correcting externally provided
fluid flow data. Current stand-alone oil models are incapable of doing this without access to
the external hydrodynamic models upon which they rely. Additionally, the model must pro-
vide stochastic measures of probability, as is common, but also of other information theoretic
measures: Particle distribution variance and entropy for example. These further measures are

valuable when determining sensor location.

2.3 Sensor Guidance and Optimisation

Efficient sensor guidance is critical to monitoring contaminants, ensuring sensors and payloads
are in the optimal place and time. Sensor guidance can be divided into a hierarchy of strategic
guidance, tactical guidance and local guidance. As described in Chapter [I], this work will
focus upon the strategic and tactical level guidance; Assigning sensors to spills appropriately
and determining a measurement path for a sensor once there, to map, monitor, predict and
hind-cast the spill. The local guidance is assumed adequate, whereby the sensor can follow the

planned path and gather measurements appropriately.
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2.3.1 Sensor placement literature

Before focusing on sensor placement or guidance for contaminant monitoring, some background
on the sensor placement research field. It is a vast and fast-moving body of work, with distinctly
different approaches depending on the purpose of the sensing. The field expands again if the
control of sensors, via Model-Predictive-Control or similar (Vali et al. 2019), is considered also.
The method of sensor control or sensor placement varies with the intended use to such an extent
that it is difficult to direct the reader to a single review paper, but perhaps Yi and Li 2012,
Hinson 2014, Liu, Yan, and Guedes Soares 2018 and Wang, Li, and Chen 2020 offer an overview.
To provide a brief summary, in Wang, Li, and Chen 2020, it splits the NP-hard problem of
sensor placement under the broad approaches of decomposition based methods, optimisation
methods, greedy methods, heuristic methods and machine learning methods. It is also relevant
to briefly mention the metrics of sensor performance. Sensors are placed or pathed to fulfil a
variety of conditions in literature, these include but are not limited to; 1) maximising the Fisher
information matrix determinant, 2) minimising the estimation covariance matrix determinant,
3) maximising the observability Gramian, 4) minimising the highest variance in the estimation
covariance matrix and 5) minimising the average variance in the estimation covariance matrix.
So far, 1), 2) and 3) are all analogous and 1-3), 4) and 5) form conditions for D-optimal, E-
optimal and A-optimal sensor placement respectively. There are further information theoretic
metrics used, 6) maximising the information quality gathered and 7) minimising the information
entropy. The reader is referred to Yi and Li 2012, Hinson 2014, Hollinger and Sukhatme [2014
and Leyder et al. |2018 for further details on these metrics, though there is discussion of which
metrics intuitively suit this project in Chapter

In this work, sensors are mobile, there is a short (a minute at most) time-constraint on calcu-
lation time, the environment and oil model is stochastic, non-linear and has changing numbers
of states in its full-description due to the Lagrangian particle description of oil. Furthermore
there are fundamental choices to make in a sensing strategy in an uncertain environment: ex-
ploitation, or exploration, and in this case whether to measure oil or environment. For example,
consider the application of decomposition methods to the state trajectory of a combined ocean
and oil model. An initial decomposition, whether Proper-Orthogonal-Decomposition (Daescu

D. N., Navon 2006), Dynamic-Mode-Decomposition (Iungo, Abkar, and Port [2015)), Empirical-
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Orthogonal-Functions (Rozier et al. 2007)) or similar (Galerkin etc), provides a reduced order
description of the system in a set of spatially distributed basis functions, or modes. Assuming
a truncated decomposition, to a handful of modes, the mode shapes would describe the prin-
ciple flow structures of the ocean model and the major concentrations of oil. Additionally an
approximation of the time dynamics could be constructed. Assuming a cyclic tidal ocean flow,
the ocean flow time dynamics could be well described to an infinite time horizon, but oil dy-
namics are not cyclical and the decomposition model would fail when predicting oil distribution
to a future time. However, the ocean flow and oil concentration mode shapes are still poten-
tially useful. Two decomposition approaches to sensor placement for measuring ocean flow in
Yildirim, Chryssostomidis, and Karniadakis 2009 and Clark, Kutz, and Brunton 2020| place
sensors at mode extrema (highest fluid velocity) and the pivot points in a QR-factorisation of
the decomposition modes respectively. In both cases, this is a sensing strategy focusing on accu-
rate estimation of the modal amplitudes, not determination of the mode shapes in an unknown
environment. Application of such sensing strategies to the decomposition of the ocean and oil
model would place sensors at the supposed peak fluid flow velocities and oil concentrations
for the method in Yildirim, Chryssostomidis, and Karniadakis 2009, or at the optimal mode
interpolation points for the method in Clark, Kutz, and Brunton 2020. This may be adequate
for confirming the broad features of a prediction and exploiting the model, but is incapable of
exploring oil spill boundaries or unexpected flow shapes and has an intrinsic reliance upon an
already accurate trajectory for the decomposition. In-fact, both decomposition and machine
learning based approaches are subject to data-fitting, as the time-constraint limits the genera-
tion of sufficiently broad data-sets for decomposition or machine learning training. That said,
the recent machine-learning based work in Wang, Li, and Chen 2020/ shows promise: Although
the method in Wang, Li, and Chen [2020| again operates in a reduced order sub-space subject
to data-fitting, there is a measure of mode error present.

The complexity (non-linear, stochastic, Lagrangian particles) of the underlying model and
sensor placement problem makes solution through global optimisation infeasible within the
time-constraint, at least for the full model description with a branch and bound style solver.
The research field of optimising with linear, non-linear and stochastic systems, with constraints,

is vast and beyond the scope of this review. The reader is directed to Shahriari et al. 2016



2.3. Sensor Guidance and Optimisation 29

and Ehsan and Yang 2019| for an overview. A recent approach has applied the Efficient-
Global-Optimisation method to sensor placement to maximise the trace of a vibration modal
correlation matrix, with Kriging (or Gaussian-Process-Regression) amongst other approaches
used to form a model of the cost function evaluation and thereby simplifying the problem
(Morlier et al. |[2018)). By applying a simpler surrogate model, an update rule on sensor positions
that maximises the expected improvement in the surrogate model can be utilised, eventually
converging to the optimal sensor locations for the true system. Examples of other methods to
produce a tractable sensor placement problem include convex relaxation with local optimisation
(Akbarzadeh et al. 2014) and gradient descent style approaches (Joshi and Boyd [2009; Funke,
Farrell, and Piggott 2014)). These are, in-essence, heuristic and greedy methods.

Returning to the balance of confirmation and exploration measurements. This is analogous to
simultaneous estimation and control of the states of a system; mobile sensor-actuators must
balance their time between optimal sensing and actuation locations. For brevity, these mo-
bile sensor-actuators will be referred to as sensors here. This problem is addressed in Zammit
Mangion, Anderson, and Kadirkamanathan 2011, where an A-optimal (trace of the spatially
weighted estimated error covariance) cost function is extended by the squared error between
system states and reference states and extended again by a sensor effort term. Such an ap-
proach is elegant and intuitive. Mobile sensors therefore display simultaneous exploration and
field control behaviour as they minimise this all-in-one cost function, step-by-step to a time-
horizon. Results demonstrate intelligent sensor behaviour. A Galerkin decomposition spatial
discretisation is used to facilitate efficient evaluation of the cost-function and estimation using
a Kalman filter, and the later solving of the cost-function minimisation. Here, the family of
spectral PDE solution methods may be difficult to utilise due to the non-linearity, complex
bathymetry and system structure of a combined ocean and oil model, combined with the in-
herent lack of knowledge around a maritime incident. Although the smoothness, regularity and
structure of the ocean flow is likely well defined and suitable for a spectral or at least an un-
structured mesh solution method, the same can not be said for the distribution of uncertainty:.
In Zammit Mangion, Anderson, and Kadirkamanathan 2011 the cost function minimisation is
recognised as online stochastic optimal control and to make the problem tractable for real-time

implementation, a one-step ahead control horizon is utilised though requiring a two-step predic-
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tion: One step for sensor movement, another step for sensor affect. Furthermore, to avoid local
minima, a grid-based initialisation procedure is employed and sub-regioning acts as velocity
constraints on the sensor. Here, it is likely that cost-function evaluation will be prohibitively

computationally expensive for a grid-based initialisation and another heuristic may be needed.

2.3.2 Oil monitoring literature

The remainder of this section will discuss the strategic and tactical guidance of sensors, begin-
ning with path planning approaches to target following and moving on to contaminant specific
methods in recent literature. Classical path planning encompasses moving to a fixed target
location and searching for and following a moving target. Moving to a fixed target bears resem-
blance to the travelling salesman problem, an NP-hard computationally intractable problem;
for which multiple solutions have been developed (Eaton, Chong, and Maciejewski[2016]). Broad

approaches include:

e A traditional A-star or Dijkstra approach (Dijkstra 1959) has been applied to UAV path
finding and planning, due to its easily implementable structure and capability to be
adapted to any cell-based cost function (Meng, Gao, and Wang [2009) (Bertuccelli et al.
2009).

e Tabu or Taboo search algorithms (Glover [1990) have also been applied to UAV guidance
(Wang et al. |2015), though offer poor performance in comparison to newer techniques

and have no handling of constraints or complex objectives.

e Voronoi Diagrams and Discrete Particle Swarm Optimisation (DPSO) (Tong et al. 2012)).
This work builds upon particle swarm optimization approaches to non-linear function
optimization. Particle swarm optimization (PSO) has been utilized in cooperative search
UAS path planning (Peng et al. [2009)) or path planning for multiple agents (Wang, Li,

and Guo [2010) and can include collision-free guarantees (Alejo et al. [2015)).

e Genetic algorithms (GA) have been adapted to path planning for both single and mul-
tiple UAV and compared to PSO methods, proving to be an improvement (Roberge,
Tarbouchi, and Labonte 2013). Further research attempts optimal path generation (Son-

mez, Kocyigit, and Kugu 2015 and cooperative planning around tasks using GA’s (Geng
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et al. 2013).

e Simulated annealing search, using metallurgic processes to solve for global minima. Adapted
to UAS path planning (Turker, Sahingoz, and Yilmaz [2015) and compared to a variety
of approaches, simulated annealing gave the best performance, but at the highest com-
putation cost. Though its computation gradient was the shallowest, rising the least with

increasing problem complexity.

e Discretised control with ant colony optimisation (ACO), employing digital pheromones
and adapted to UAS (Duan et al. 2009). ACO and GA, when combined, give improved

performance (Shang et al. 2015).

e Receding horizon control (RHC) also known as model predictive control (Mattingley,
Wang, and Boyd 2011). Forms a part of many path planning algorithm types, offering
control of complex objective, non-linear, constrained, multi-input and multi-output sys-
tems. RHC produces future predictions and an input trajectory to follow, at smaller
computational cost than global planning method algorithms. RHC has been employed
as a decentralized guidance algorithm (Kuwata and How 2007), with safety guarantees
(Schouwenaars and Feron 2004) and combined with more abstract algorithms for perfor-

mance improvements (Xiao et al. 2012).

Algorithms have also been developed specifically for target search and target following with
UAVs, employing a large variety of methods. These include underlying employment of, a par-
tially observable Markov decision process (Ragi and Chong 2013), genetic algorithms (Sonmez,
Kocyigit, and Kugu 2015), triggered sensor networks (Krishnamoorthy et al. 2012) (Krish-
namoorthy, Casbeer, and Pachter 2015) with observation vehicles. Probability density func-
tions with negotiation task assignment framework, for multiple UAS tasking (Moon et al.[2015)),
demonstrated search capability for multiple UAS’s and multiple targets, with minimal overlap-
ping. Receding horizon control with a virtual force modification (Xiao et al. [2012)), capable of
cooperative search but proved inefficient on irregular search areas. Another method is modi-
fied diffusion with a receding horizon and potential method algorithm for coordinated search
(Sun and Liu [2009). There are further probability approaches (Bertuccelli and How 2005),

pheromone-based algorithms (Qu, Zhang, and Zhang 2015)), Gaussian process priors for global



32 Chapter 2. Background and Related Work

maxima locating (Zhang and Pei 2015) and multiple agent fed probability maps using Bayes’
rule (Hu et al. 2013).

Prior path planning research provides multiple satisfactory approaches to guidance generation
when searching for simple targets and following them once found. However, some lack consid-
eration of the target’s dynamics and rely upon an initial guess at the target’s location, offering
little in the context of maritime contaminants where the information available at the start (an
observed slick of oil) has no guarantee of containing the source location or providing a trail to the
source. The algorithms are not focused on continually developing maritime situations, where
the target number of oil slicks is not known, targets must be followed but not at the expense
of area mapping for other targets and there is both time-dependent and location-dependent
importance for each target.

In the oil industry, for monitoring oil spills there exists a variety of models (Spaulding 2017)
used to predict the spill trajectory, and further variation in definitions of spill uncertainty
(Goncalves et al. 2016), and decision support systems to evaluate potential responses (Nelson
and Grubesic 2019)). However, existing models and decision systems often confine their flight
patterns to standard profiles, focus solely upon spill sensing and do not support real-time data
assimilation of measurements to correct utilised large-scale fluid model data. For an example of
strategic guidance, as in decision support systems, see Ye et al. 2019, where a simulation-based
multi-sensor particle swarm optimization approach assigns resources to monitor and clean-up
an oil spill. Oil spills were assumed static and, as the beginnings of a common theme in the
literature, there is no feedback loop present between the sensors or clean-up skimmers, and
the model predicting spill location and clean-up time. Hence it is unclear what their approach
would do if, upon arrival at a supposed location, no oil spill is present. If it assumes there is
no spill and declares the mission complete, this is an incorrect response. Instead, there needs
to be an appropriate sensing strategy to correct the original spill trajectory prediction.

A consistent thread through all of the oil monitoring control literature is the limiting of sen-
sor consideration to determining an accurate now-cast, or an accurate source-location, when
monitoring an oil spill. With very few exceptions, which are discussed later in this section,
there is no consideration of utilising measurements to improve the accuracy of the environment

model. Given the variety of information required in spill responses and litigation, there should
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be a focus upon increasing estimation accuracy of the spill trajectory across the whole spatio-
temporal domain. In support of this, the monitoring framework must be capable of establishing
an accurate flow model for the region, with the directing of suitably equipped sensor platforms
to measure fluid velocities at crucial locations. The placement of sensors to determine fluid
flow and the principal dynamic structures within a flow field is a whole research field in itself,
beyond the scope of this Chapter. The reader is directed to Yildirim, Chryssostomidis, and
Karniadakis 2009, Annoni et al. 2018 Clark, Kutz, and Brunton 2020/ and Jayaraman and Al
Mamun 2020, which contain modern decomposition based approaches, similar to one evaluated
and ultimately discarded and replaced in this work, further detailed in Chapters [5 and [6]

The most closely related work in the sensor control field, that focus upon tracking oil spills
or drifting objects, utilise an underlying model to generate oil or object predictions over time.
However these models are extremely simplistic, using uniform flow in small areas, with constant
diffusion coefficients and no environmental constraints. Furthermore, the models themselves
are underutilised; for example, merely being used to generate a sinusoidal flight path around
the supposed oil spill edge (Zhang and Pei [2015). There has been application of model-based
optimisation to oil spill clean-up trajectories (Kakalis and Ventikos 2008; Grubesic, Wei, and
Nelson 2017)), and several multi-agent sensor approaches have followed bio-mimetic approaches
in swarm behaviour (Banerjee, Ghosh, and Das [2018; Bruemmer et al. 2002) to track oil spills
and further work uses cost-function minimisation to plan samples (Yan et al. [2018)). Yan et al.
2018 and Lian et al. 2018 minimise the mean-squared error between the estimates of a Gaussian-
Process-Regression model and sensor measurements, map a spill, and explore a domain through
a three-stage algorithm. Closely related work in the atmospheric field plans a sensor path that
maximises a utility function based on the estimated information gain of each measurement in a
Bayesian framework, seeking to determine the source parameters (Hutchinson, Liu, and Chen
2019). As noted in Hutchinson, Liu, and Chen 2019, the presence of turbulent flow, contaminant
irregularities and sparse sensing limits the effectiveness of gradient-based approaches for oil
spill mapping. In prior methods, though some do utilise a model of contaminant spread, their
models lack the oil dynamics, cyclical tidal flow, or wind, wave and water coupling necessary
to capture the key dynamics in oil spreading. For example, Hutchinson, Liu, and Chen 2019

nicely incorporates the effect of underlying flow on their tracer when sensor path planning,
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through generation of an expected observation using their model, but assumes a constant
mean flow velocity. In this work, it is acknowledged that a significant source of uncertainty
is the underlying time-varying velocity fields and the definition of uncertainty is structured to
incorporate this. Hence, improvement in estimation of the environment is considered when
planning sensor paths to minimise uncertainty.

Use of information theoretic measures of uncertainty minimisation is present in uncertain en-
vironment path planning literature (Feder, Leonard, and Smith [1999; Candido and Hutchin-
son [2011)), and some cognitive search strategies (Vergassola, Villermaux, and Shraiman 2007}
Hutchinson, Liu, and Chen |2019) are formulated as an optimisation using a partially observable
Markov decision process (Chong, Kreucher, and Hero 2007)), though these focus on source term
estimation. For example, Vergassola, Villermaux, and Shraiman 2007] minimises the expected

entropy of the posterior probability map of source location.

2.3.3 Summary and further considerations for sensor guidance

To effectively summarise the review of control literature for oil spill monitoring, particular at-
tention is given to four papers: These are Zammit Mangion, Anderson, and Kadirkamanathan
2011, Hutchinson, Liu, and Chen 2019, Yan et al. 2019 and Pashna et al. 2020. The strengths
of Hutchinson, Liu, and Chen [2019 and Yan et al. 2019 are their stochastic underpinnings
and optimisation: Through the use of a Bayesian framework and Gaussian-Process-Regression,
information theoretic measures form a cost function to be optimised by sensor guidance. In
Hutchinson, Liu, and Chen 2019, this is maximising the utility of the expected measurements in
the next update cycle. In Yan et al. [2019, this is minimising the variance within the Gaussian-
Process-Regression model, and variance of the observation prediction value of GPR regression
model. The major features that stand-out above other work is their consideration of enhancing
the accuracy of their underlying model and forming of an all-in-one optimisation problem that
does not require multiple control approaches. However, both Hutchinson, Liu, and Chen 2019
and Yan et al. 2019 employ a simplistic model. While Hutchinson, Liu, and Chen 2019 states
it is possible to substitute any model into the Bayesian framework (this includes Gaussian-
Process-Regression, Kalman Filters/Smoothers etc), a stochastic 2.5D hydrodynamic and oil

particle model with 10° variables would considerably complicate the propagation of variable
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distributions and uncertainty between time-steps. Hence some abstraction of the model will
be required. In Pashna et al. 2020|, an oil spill monitoring framework is suggested that makes
use of a more complex model, described by a stochastic PDE with weathering included. How-
ever, this models 2D surface dynamics only, without wave processes, entrainment or buoyancy.
Furthermore, though a hybrid Fuzzy and Artificial Potential Field controller demonstrates an
approximately 85% precision in tracking an oil spill, once again there is no consideration of
enhancing the accuracy of their underlying environment models. Finally, the cost function
extension and solution method in Zammit Mangion, Anderson, and Kadirkamanathan [2011
demonstrates an approach capable of multi-objective sensor control; to both measure and re-
move uncertainty at peak locations, but also explore the domain to improve the model.

Note that the above identified papers are both closely related and very recent. The work
here-in is similar in some aspects: The underlying model contains a stochastic PDE, but in
3D/2.5D for oil and environment flow respectively and makes use of a linear wave model.
This is a significant step towards a more accurate and complex model to utilise in a control
algorithm. A constrained model-based optimisation problem is formulated and solved, that
contains information theoretic measures including variance, probability and entropy. There
is also emphasis on measurements that enhance the accuracy of extrapolation of an oil spill

forward and backwards in time.

2.4 Data assimilation

Sensor data, assumed to be point measurements of states, must be used to estimate the states
of the entire environment flow fields, wind and ocean, as well as updating the oil particles.
Due to the complexity and the high numbers of states in a combined ocean and oil model, a
full-state estimator is infeasible. Commonly used methods in the hydrodynamic field include
the SEEK filter, see Rozier et al. 2007, Ensemble Kalman-Filters/Smoothers(EnKF/EnKS)
extended in Raanes, Bocquet, and Carrassi 2019 and 4-Dimensional Variational Assimilation
(4D-VAR) (Amezcua, Goodliff, and Van Leeuwen 2017). Note there are also hybrid meth-
ods (Cessna, Member, and Bewley 2010). The SEEK filter is also known as a reduced-order
Kalman filter and under certain conditions, and relaxation of the Gaussian distribution of

states/observations assumption, is akin to the reduced order information filter (Chin, Haza, and
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Mariano 2002). SEEK is concisely described as an Extended Kalman Filter (EKF), where the
error covariance matrices are truncated to a reduced low-order space and propagated through
time in their reduced form. Ensemble Kalman methods utilise a collection of simulations
forming an ensemble of propagated perturbed state trajectories to implicitly approximate the
propagation through time of an error covariance matrix. 4D-VAR is a space/time variational
minimisation of state error, similar to Moving Horizon Estimation in the controls community
(Michalska and Mayne |1995), that also requires estimation of covariance matrices but also
tangent linear approximations of the system to the first order (Jacobian matrix) and poten-
tially second order (Hessian matrix) and the adjoint of the system dynamics. 4D-VAR without
modification, operates directly on the high-order model. Substitution of reduced order models
and approximations into 4D-VAR, or their approximation through an ensemble (discussed in
Amezcua, Goodliff, and Van Leeuwen 2017)), alongside Hessian-free (Daescu D. N., Navon 2006])
solver methods, has attempted to reduce the computational complexity of 4D-VAR. Methods
of reducing the order of the system description and size of the associated covariance matrices
vary, with Proper-Orthogonal-Decomposition (Daescu D. N., Navon [2006]), Dynamic-Mode-
Decomposition (Iungo, Abkar, and Port 2015) and Empirical-Orthogonal-Functions (Rozier et
al. 2007) in use amongst others.

Parallel model runs or downloading multiple external data sets is not necessarily feasible in
remote environments, where only a singular operational model may be available, if at all. Fur-
thermore, even if multiple operational models are available, unless there is a high fidelity small
scale model also available, the data-sets may be large-scale and very similar. Hence a formed
ensemble may not include worthwhile perturbations that capture the variance induced by small
eddy currents or shipping traffic. Therefore, while ensemble based methods of estimating tra-
jectories and covariance matrices may still be a useful, it is a trade-off against the extra cost
of data-access and computation resources.

Needed for full-order and accurate variational assimilation, tangent linear descriptions of a
stochastic Lagrangian oil spill are impractical due to random variables and ever changing state
numbers, especially when coupled with an Eulerian fluid model. Although tangent-linear ap-
proximations and reduced order implementations of variational assimilation could be viable,

the advantage that variational assimilation has model-described knowledge of system behaviour
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may be lost as the solver must operate in the limited subspace of the reduced-order description.

2.5 Summary

Condensing the literature reviews above, there is potential for application of mobile sensors
upon UAVs to monitoring contaminants. The models currently used to predict spill trajecto-
ries are varied and either independent from a hydrodynamic model and fast, or coupled to a
hydrodynamic model and slow. There is therefore an incentive to develop a highly streamlined
combined ocean and oil model, that trades absolute accuracy for a fast computation speed for
a control feedback loop, with the ability to assimilate both oil and fluid measurements. The
developed model should be integral to the chosen guidance algorithm and thus improve upon
the models currently utilised in the control field. The model-based guidance algorithm should
consider model improvement, environment and oil spill estimation, analysis and prediction, in
an all-in-one solution. Finally, a data-assimilation method that is ensemble-free and tangent-
linear model-free is required, due to the computation requirements and system description
respectively. Together, the combined ocean and oil model, model-based sensor guidance and

data assimilation methods form a model-based adaptive monitoring strategy.
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The Adaptive Monitoring Framework

This chapter provides a brief overview of the proposed adaptive monitoring framework, with
the following chapters providing detailed explanation of each of the key stages.

The adaptive monitoring framework is shown in Figure[3.1] At the heart of the framework is the

fluid and oil model, the [Sheffield Combined Environment Model| (SCEM]) (Hodgson, Esnaola,

and Jones 2019). At each time step, solves the wind velocity, ocean velocity and oil
particle velocity at each grid point within a discretised spatial domain, and also evaluates a
probabilistic function of oil particle presence. These are combined into a state vector and solved
forwards in time, over a specified time horizon, to produce a state trajectory. This constitutes
the Stage 1 of the framework. The computed state trajectory is subsequently used separately
to solve an optimisation problem (Stage 2) and identify a reduced order model of the plant
(Stage 3). The solution of the optimisation problem returns the optimal sensing locations for
minimising a function of uncertainty in oil spill particle location. This is solved to a time
horizon, thereby providing each mobile sensor with a path trajectory. The sensors navigate to
the first location along this path and take a measurement of the ocean surface velocity, wind
velocity and oil thickness, at that point in space. The measurements are utilised with the
identified reduced order model, in an estimation stage (Stage 4). The estimated states of the
reduced order model are mapped back to the physical states and used to re-initialise at

the next time step. This sequence is recurrent in a receding horizon fashion.

38
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Figure 3.1: A block diagram of the framework for adaptive monitoring using [SCEM| demon-
strating the system feedback.

3.1 Overview of methods

This section provides an overview of the methods utilised in each stage of the framework.

Stage 1 (Chapter has a 2D Navier-Stokes solver, to resolve low-fidelity ocean and wind
flow around the local geography. The solver is similar to the work in Stam 2001, using finite
differences to approximate spatial derivatives, with forward Euler explicit time-stepping of
advection and backwards Euler implicit time-stepping of diffusion, with a varying time-step.
Empirical approximations extrapolate the ocean surface and wind flow velocities to an ocean
sub-surface velocity profile, including wind-shear flow, tidal flow and Ekman currents, and a
linear wave model uses wind and ocean flow to produce an ocean wave spectrum. The oil model
component of Stage 1 utilises a standard Langrangian particle approach, where oil particles are
moved around by the ocean and wind dynamics, with minor corrections and modifications from
recent literature. Chapter [4] also includes a Fokker-Planck type equation (Risken |1996), where
instead of a description of a particle ensemble’s position probability density function, a
pair of describe the evolution of a particle ensemble’s position variance and produces a
scalar measure of uncertainty. The scalar measure being the position uncertainty (as an area)
of particles at a spatio-temporal location. These uncertainty use a further Stam-style
discrete solver, in a state-space formulation for the application of state space optimisation

solvers in the next stage and chapter.



40 Chapter 3. The Adaptive Monitoring Framework

Stage 2 (Chapter [5)) finds a sequence of sensor measurement positions that best inform the
model of oil particles and fluid flow, up to a future time. To do so, an uncertainty minimisation
optimisation is formulated, with the sensor position trajectory to a receding horizon being the
optimisation variable. The uncertainty in this optimisation is governed by the the uncertainty
described in Chapter 4] This is a locally-convex, non-linear optimisation problem with
time-varying constraints on sensor position. The optimisation is solved for an optimal sensor
position trajectory using a gradient descent method. The gradient of the optimisation cost
function, with respect to the sensor positions, is determined through application of the discrete
Adjoint method. The Adjoint method uses the dual form of the constrained optimisation
problem to form a backwards recursion algorithm, that introduces and solves for a new set of
Adjoint variables backwards in time. These Adjoint variables are then used to determine the
cost function gradient.

Stage 3 (Chapter |§|, Section uses the state trajectory (data set of state snapshots over
time) of Stage 1 to form a reduced order model. While the non-linear model in Stage 1 utilises
a large number of states (several thousand) to describe fluid flow, the linear reduced order
model might have just a few, where each reduced order state describes a large flow structure.
For example, one state might describe the amplitude of the main flow in a river channel (See
Figure , and another the amplitude of the main eddy swirl at a river mouth. The reduced
order model adjusts the amplitude of these flow structures with time to capture the dynamics
of the flow. Hence the reduced order model describes the the large state trajectory using

a few mode shapes, the initial condition of the mode amplitudes, and changing of the mode

amplitudes with time. The method of model reduction extended in this thesis is|Dynamic Mode]

IDecomposition| (DMD]), a technique to extract spatio-temporally coherent structures, and their

dynamics, directly from the high dimensional data of the SCEM]|state trajectory. DMD] forms a
set of modes, each with a fixed oscillation frequency and decay/growth rate. Each mode has its
oscillatory temporal behaviour contained in a mode dynamics matrix, analogous to a discrete
time linear-time-invariant state-space dynamics matrix. See Figure for an example of the
mode dynamics matrix eigenvalues. The modes are not orthogonal in space (like Principal
Component Analysis), but instead groups spatially distributed states into modes according to

their sinusoidal behaviour in time. This is particularly useful when performing dimensional
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Figure 3.2: The mapping of the first DMD mode to tidal flow around Hong Kong, with a
mode state value of 2.7066 + 1.416:. As the first mode, this is the mode that captures the most
energetic structures in the flow and hence describes the Zhujiang river.

reduction on an oscillatory data-set, such as those involving tides, as a measurement in one
spatial location can be applied across the domain to all locations that are strongly coupled in
time through estimation of the underlying mode amplitudes.

Stage 4 (Chapter |§|7 Section uses measurements of flow velocity to estimate the mode
amplitudes of the reduced order model and hence the flow of the entire domain. The mode
estimates can be stepped backwards or forwards in time, using the linear reduced order model
dynamics, to produce an analysis or predicted flow trajectory that is resolved to a higher
fidelity in a rerun of the high order model SCEM] where [SCEM]is driven by the reduced order
model trajectory and velocity measurements. In addition to estimating the flow velocity using
sensor data, after several measurements are gathered, the estimates of earlier flow velocities are

adjusted (or smoothed) for better accuracy using the later sensor data. The selected method

of reduced order model state estimation is the [Rauch-Tung—Striebell (RTS]) smoother, a two-

pass algorithm for fixed interval smoothing. The forward pass is a time-varying [Kalman Filter|

(KF)): Despite the reduced order model being linear-time-invariant the reduced order model is
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Figure 3.3: The reduced order model eigenvalues for a four mode reduced order system. Note
that all eigenvalues are Lyapunov stable but un-damped, being exactly upon the unit circle,
and hence oscillate with the same amplitude indefinitely. These eigenvalues have oscillatory
periods of approximately 12 (larger imaginary component) and 24 hours (smaller imaginary
component). This is expected for an asymmetric tide cycle, where the sinusoidal profiles com-
prise of one standard 12 hour period oscillator to describe the tides, and a longer 24 hour
period oscillator that alters the amplitude of the first and second tides when the oscillators are
combined.
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redetermined regularly, so a non-linear Kalman filter is required to handle the changing system.
A Kalman filter is an efficient optimal estimator, utilising a series of noisy sensor measurements,
a model of the estimated process and a recursive methodology to produce state estimates more
accurate than estimates based on a single measurement alone. The Kalman filter also estimates
a measure of the state estimate uncertainty. The backward pass is a further recursive algorithm
that steps from the latest estimate to the earliest estimate, utilising the forward pass Kalman
filter variables and measurements to smooth the state estimates, also adjusting the smoothed

state estimate uncertainty.

3.2 Monitoring framework iteration

The monitoring framework is an iterative process, with an initial forward run being used for
analysis, providing conditions for another forward run and further analysis and so on, towards
a receding horizon. During a forward run the reduced order, DMD] model, is re-calculated
whenever new measurement information is available. Each time there is new sensor data, the
reduced order model is again determined from the moving time-window of the state trajectory
and has amplitudes estimated by the smoother. This smoothed trajectory is an analysis
trajectory. The [RTS| smoother uses prior flow estimates and external data as measurements,
and sensor data if sensors are active. By stepping the Kalman filter component of the [RTS]
smoother forward, ahead of the current time, the reduced order [DMD] model can be used to
predict future fluid flow and can assimilate external data predictions if desired. The prediction
of later (e.g an hour ahead) fluid flow, oil movement and uncertainty uses [SCEM] but forced
by the reduced order model fluid prediction and Kalman filter. Hence sensor path planning is
informed by prior sensor measurements. Once an analysis point has been reached, an analysis
trajectory is calculated, see Section [6.1.1] This analysis trajectory is then used to force another
forwards run of SCEM] A framework time-line for the simulations of Chapter [7} Section
and Section [7.3]is provided in Figure [3.4]
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alternating forward and analysis passes. Forward runs of [SCEM] are initially forced by external
data and then through and Kalman filter estimation. After analysis, which can include
source location estimation, forward runs are forced through the [DMD| model and [RTS| analysis
trajectory, with Kalman filter estimation if sensors are active. For Section [7.2], the analysis
times 4, , ts, and ¢, are after 12, 20 and 24 hours of sensing respectively.
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Modelling (Stage 1)

This chapter first presents the[Sheffield Combined Environment Model| (SCEM)), for the purpose

of providing online control guidance to assets with minimal supporting data. The SCEM]model
is described, giving equations and algorithm in both flow chart (Figure and pseudocode
(Algorithm . The model is then demonstrated to accurately predict a real-world oil spill in
the Bay of Biscay 2019 and give similar results to an industry standard oil model GNOME
when given the same input data for a spill near Hong Kong 2019. Next, a suitable description

of oil spill uncertainty is developed from the equations used to model oil processes in

To reiterate an earlier statement, the [Sheffield Combined Environment Model| does not present

a revolutionary step in the fields of hydrodynamic simulation or oil modelling, but instead
provides a fast, combined model for guidance of mobile sensors. This model is however, a step
forward for the model-based control field. Some components of the model are described only
in high-level detail, as referenced work offers a wealth of information. Any cases where there is
an unconventional description of a process is related to work in future sections. For example,
describing the turbulent diffusion process as a random walk, rather than incorporating it into a
complete description of particle movement as a stochastic PDE is to maintain clear separation
of the stochastic models for each process, for later analysis.

It is important to note that this model utilises external data provided by large-scale, complex
simulations of boundary layer wind and ocean flow as boundary data and estimated values if
available. The flow described by the external data is resolved around the local geography that
may not be present in the larger-scale external models. This is similar in purpose to the CATS

model (Galt [1984) employed by NOAA to inform the GNOME model (NOAA 2012)). Flow is

45
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Figure 4.1: A block diagram of the combined fluid and oil model, showing the initialisation
with external data and the coupling between wind, current and wave motion in producing a
contaminant velocity field.

resolved using the 2D incompressible Navier-Stokes fluid equations, which are reasonable to use
at the air-water interface where surface fluid density is approximately constant on a maritime

incident scale (e.g 50 km by 50 km).

4.1 Environment modelling and model structure

The environment model contains interconnected sub-systems that describe local ocean currents,
local Ekman currents, local wind and local wave conditions. Figure 4.1/ shows the main physics
sub-components and their interactions. At each time-step the local wind field is calculated first,
followed by the local ocean current velocity field, then the depth velocity profiles are calculated
and finally the wave model is updated to produce a wave induced velocity. These are used,
together with oil-only effects such as turbulent diffusion, mechanical spreading, entrainment
and buoyancy, to move oil particles. The complete forward simulation algorithm is described

in pseudocode in Algorithm

4.1.1 Domain structure

The spatial domain is denoted by 2 C R3, and represents a cuboid section of the Earth including
land and ocean with a given depth. The upper surface, at the air to water/land interface, of the

domain is 99 C R?. The surface is discretised into a regularly spaced grid of n, € N grid cells
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(west to east) and n, € N cells (south to north), with spacings 0z € R, and dy € Ry in the
respective directions. A grid cell at indexed position (x;,y;) covers the Cartesian coordinate
positions: (x; + %‘,yj + %y) C 012, where index i € [1,n,] is the west to east horizontal grid
index, where j € [1,n,] is the south to north grid index. Continuous time ¢t € R, has a
corresponding discrete time ¢, € R’ with a time-step index k € [0,n, — 1] for n; € N varying
time-steps of 0t : R, —¢& R. A particular time-step size at discrete index k is dtx : N — R.
The trajectory of ¢, formed by column stacking (or concatenating) t; for all k, is 7 € R™.
The initial time is tp € Ry and t; € R the final time.

Subsurface water is discretised with a two stage fine and coarse mesh, such that for each grid
cell there exists a set of depths z(z;, y;), defined by

z2(z,y;) = {0,021,2021, ..., Nexit021, Zexits Zexit + 022, Zexit + 2029, .., Nz, 029%;5}.

J

Depth spacings dz; € R, and 2z, € R, are the finer and coarser vertical grid spacing respec-
tively, Ny € N is the number of fine mesh grid cells. The switch depth from fine to coarse
mesh, z.i € Ry, is determined by the maximum depth of oil particle insertion into the water
column (explained in Section , or specified by the user. By utilising a two stage depth
grid, finer detail can be maintained near the surface where the majority of contaminant me-
chanics take place. A 3D grid cell is specified by the indexes (x;,y;, 2), where w € N is the
surface to sea floor grid index.

Note that a regular grid was selected in place of unstructured or spectral alternatives: In the
absence of prior information, or in the presence of often poor available information about the
maritime incident, there is no information available on the smoothness of the spatial gradients
of the fluid flow, or oil spill uncertainty, across the domain. Hence a regular grid of appropriate
size, balancing computation time with fidelity requirements, ensures a solution throughout the
region. Grid size in [SCEM]|is determined by the sensor swathe width and mobility constraints,

data assimilation time spacing and computation time needed.

Grid spacing

An example of grid spacing determination is now given, suitable for the simulations of Chapter

[7l Consider a capable of flying at 60 mph, equipped with a 1920 x 1080 pixel optical
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sensor with a 30° field-of-view. These are approximate figures for an inexpensive [UAV] with a
telephoto-lens equipped High-Definition video camera. The[UAV|is required to supply thickness
and volume information, and hence requires an oil sensing resolution of 0.5 m for a small spill,
(see Table . To achieve a spatial sensor resolution of 0.5 m, the would fly at an
altitude of 2000 m, with a 1000 m sensor swathe. Given the 1000 m sensor swathe, a grid cell
size of 1000 m by 1000 m is appropriate: Assuming an optical flow tracking capability, the
mean of the sensor flow observations can be taken for the grid cell low, while Langrangian
oil particles can be added, removed, or modified as appropriate within the observed cell. The
World Meteorological Organisation require a temporal resolution of < 1 hour for oil monitoring
(Golding et al. 2001), but due to the complex domain and environment (busy shipping lanes,
strong asymmetrical tides) a 15 to 30 minute temporal resolution seems prudent in Chapter
[7 At a 1000 m by 1000 m grid cell size, with a 15 to 30 minute time-step, the framework is
capable of operating sufficiently quickly for real-time [TUAV] control and data assimilation.

Note that the reduced order [DMD] model is far lower fidelity and filters out high frequency
components of flow. One reduced order state might describe the flow of an entire river channel
for example. However, the low-order projection is resolved to a higher accuracy by the 2D fluid

model in SCEM] and sensor measurements inject additional fidelity in important regions.

Model states

The combined ocean and oil model described here is a component of the larger adaptive mon-
itoring strategy. As such, it contains many internal states that are not needed in the full
system. In [SCEM] each grid-cell is defined by its geo-spatial coordinates and contains the

following states:

e Environmental information (temperature, water density etc).

Wave spectra.

Current time wind velocity.

Previous 12-hour mean wind velocity.

Tidal flow velocity profile.
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Wind induced surface shear flow velocity profile.

Ekman current velocity profile.

Stokes drift velocity profile.

Probability of oil presence.

The states are formally defined in the following subsections. Note that water density is assumed

constant through the water column, justified by the focus of this work upon surface oil slicks.

System states

The state vector passed to the monitoring framework is & : Ry — R"et"="s  containing the cell
centred states. The number of states per grid cell is denoted by nen = 7. The seven states in
the state vector are the horizontal components of surface wind, ocean and oil drift velocities and
a further state related to the probability of oil presence. The further states in[SCEM] describing
the wave spectrum, other velocity profiles and oil properties are only used as needed, where oil
particles are present in the simulation and are absent from the general system. Define the total
number of states as n, € R, where ny = (2(n, + 1)n,) + (2ny(n, + 1)) + (neen — 4)nzny,. As
a staggered grid, horizontal velocities have an extra column of states, while vertical velocities

have an extra row of states.

4.1.2 Flow solver

A 2D Navier-Stokes solver has been implemented to determine local flow velocities for both
wind and water, using assumed, measured or external model-provided boundary data. The

general form of the 2-dimensional incompressible Navier-Stokes equations are:

—

U . - ,

V.U =0, (4.1b)

where ﬁ(m,y, z,t) : Q x Ry — R? is the in-plane velocity field such that U(x,y,z,t) =

[u(z,y,2,t),v(z,y, z,t)]T, with u(z,y,2,t) : @ x Ry — R and v(z,y,2,t) : @ x R, — the
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in-plane velocity components in the west to east and south to north directions respectively.
For notational brevity the space and time dependency of variables is not shown in subsequent
equations. In (4.1]), v € R, is the kinematic viscosity of the fluid, p(z,y,t) : 9QxRy — R is the
surface internal pressure field and 8y := Sy (z,y,t) : dQ x R, — R? are external surface forces,
if present. Also in , V- and -V are the divergence and directional derivative operators
respectively. For wind flow U:=0U, = [y, Vo] T, for ocean current flow U=0U, = [, ve]T and
for Ekman wind U = Ug = [ug, vg]t. Flow is determined for ocean surface currents and for
wind velocities at 10 m above sea level by solving subject to spatio-temporal boundary
conditions upon the velocity. These are set from external data, measured data, or by setting
U (x,y,2,0) to a best-estimate of mean flow if no data is available. Boundary conditions are
described in the next section.

The Navier-Stokes equations are spatially discretised upon a staggered grid, with spatial deriva-

tives approximated by finite differences (F. Harlow and J. Welch |1965)). The staggered grid

structure is displayed in Figure [4.2
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Figure 4.2: This figure displays the grid structure of the fluid solver, note the velocities on
cell boundaries, while pressure is defined at the cell centres. This grid structure is shared by
the uncertainty PDE discretisation, where the uncertainty state replaces pressure at the grid
cell centre. Where velocities or uncertainties are required at spill centres, the mean is taken of
surrounding values.

With respect to time-stepping, diffusion terms are solved using a backward Euler method and
Gauss Seidel Successive Over Relaxation (Stam 2001), whilst advective terms are solved using
Ist, 3rd or 4th order Runge-Kutta methods. Mass conservation is enforced via an iterative
pressure projection step, in which the pressure field is found using Gauss-Seidel Successive
Over Relaxation (Stam [2001), with subsequent correction of the velocity field. The pressure
field is determined, the velocity corrected, then these steps are repeated 2n, times, where
ne € N, using successively corrected velocity fields until the flow-field divergence is below a

tolerance.

Time stepping

The time-step dt is shared between the hydrodynamic model, the oil model and the later

uncertainty model. The time-step is variable with the step size determined by the Courant
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number (Courant, Friedrichs, and Lewy |1967), or by the vertical diffusivity coefficient (Visser
1997), or by a user specified value, whichever is smaller. In practice, this would invariably be
the Courant number determined step size, but a maximum step-size of 15 to 60 minutes is
recommended to improve the temporal resolution of results for analysis. In the simulations of
Sections and[7.2] a user specified time-step limit of 30 and 15 minutes respectively effectively
implemented a regular time-step for each simulation, as the user specified time-step remained

smaller than the Courant number and vertical diffusivity determined time-steps.

Boundaries, measurements and obstacles

Obstacles are regions of ﬁc = 0 for ocean current flow velocity, or ﬁw : ﬁw < K2 U'me
2 2
for wind flow where k = k(z,y) : 00 — R, is a wind resistance coefficient based on the

environment and U. the maximum wind velocity. The presence of obstacles, such as coastline

geography, is accounted for by the use of Dirichlet boundary conditions on the velocity field
in relevant grid cells. Due to the staggered grid implementation, this is a form of semi-slip
boundary (F. Harlow and J. Welch [1965). This is not unprecedented in ocean models, a user
selected value for slip is found in the NEMO ocean model (Madec |2011)), with large scale models
using free-slip and small-scale models using no-slip. A semi-slip induces the circulation expected
from boundary layers but avoids under-estimation of fluid velocities in sparse grids near walls.
Domain edge boundary conditions can be specified as Dirichlet conditions on velocity, or left
open as free-flow.

Velocity field information from measurements, estimates or external data can either be set
precisely or within a bounded range, between a minimum and maximum value determined a
confidence interval. The estimated value of an uncertain state is applied prior to the projection
step of flow calculation. During pressure projection the value is altered, within the bounded
range, to ensure divergence free flow. If the value is at a boundary limit, then it is fixed during
pressure projection and other free flow-field velocities are adjusted by the pressure field until
the flow is divergence free.

For example, consider an estimate of a horizontal velocity component @ : 902 x R, x N —
R, where the horizontal velocity component is modelled as a normally distributed random

variable, u ~ N(u,02) where 62 : N — R, is the variance of u. The mapping from N
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just describes this is the estimate from the kth time-step, for a particular velocity. Under
an assumption of a normally distributed random variable, then a confidence interval can be
described by, Pla — k,0, < u < 4 + k,0,] = (,, where for each k, € {1,2,3,4} there is a
corresponding probability ¢, € {0.6827,0.9545,0.9973,0.9995}. In this work, a three-sigma
(k, = 3) confidence interval is utilised unless otherwise stated. Prior to pressure projection, u
is set to , then is modified in each iteration of the velocity field correction but must remain

in the interval [4 — k,0,, 4 + ky0,].

4.1.3 Discrete Navier-Stokes solver

This section describes the discretised Navier-Stokes solver for a free-stream cell, using finite
difference methods upon a regular grid spatial discretisation and a forward Euler advection
and backward Euler diffusion time discretisation, then pressure projection correction to ensure
divergence free flow. Although forward Euler advection is not the most accurate method, the
temporal evolution of flow is dominated by the tidal dynamics. The solver is described for
a representative velocity component in the horizontal and vertical directions. A free-stream
cell uses centred finite difference methods, while, for example, a left hand edge cell would use
single-sided finite difference instead for the left-side horizontal velocity gradient.

Let the superscript values k, k', k", k"a, K"d, k", k" be the notation of solver-steps. These are
k for the initial velocity, k' for the post-application of time-varying boundaries velocity, then
the advected k"a or diffused k”d velocity or both advected and diffused k" velocity. Then the
further superscript £ is for the re-applied boundaries and measurements velocity, and finally
the superscript k" is for the post-pressure-projection divergence free velocity. For example,
the horizontal velocity at grid index 7,7 and time-step k is noted as ui.:%’j for i € [1,n,] and
j € [1,n,], while the velocity field is noted U*. The algorithm is displayed as a flow-chart in
Figure 4.3

The first step in the Navier-Stokes solver is application of boundaries, measurements and esti-
mates. This is described by

Koo k k ~k
ui+%’j—bound(uw%’j,QH%J,QH%J), (4.2)

where u”

U1 € R is the Dirichlet boundary condition velocity in the horizontal direction, if
27
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Input velocity field.

VO
Apply boundary conditions, (4.2) (4.3
ok

Backward Euler diffusion, (4.11)) (4.12). Forward Euler advection, (4.6|) (4.7).

(j’k"d U’k//a

Combine advection and diffusion, (4.16|) (4.17)).
l U: k!
Apply boundary conditions, (4.18)) (4.19).

Loop ng times, with loop index 4 x"
l
Determine divergence, .A or"
|5
Determine pressure field, applying across 0€) for ngor iterations.

PR

Apply pressure correction, .
LI

Is this the last pressure correction iteration: iy = n4?
i Yes | No l

Apply boundary conditions, (4.30) (4.31). Apply boundary conditions, (4.28)) (4.29).

[jk+1 l
Output velocity field.

Figure 4.3: This flowchart displays the discrete Navier-Stokes solver algorithm.
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Sk . . . . ..
present, and u; b1, € R? is a monotonically increasing vector containing the lower and upper

-+ k,0,- ]. The standard

boundary values on u* , . This could be [af |  — kyo» )
2+2J

1
it+1.j i+1.j Uil +

deviation o, is the square-root of the corresponding element in the augmented mean-squared
i+l

error vector AMSE(Z ) defined in Chapter |§| Section . The function, bound : R x R x R? —

R, either applies the Dirichlet boundary condition if there is one, or clamps the value uf;l i to
2 9,

the interval [@" 1 7](1),Qiﬁ%7j(2)], where @Zﬁ%,j(l) € R is the lower bound and Qi’fk%,j(2) € Ris the

upper bound. These bounds are determined by external data, measurement or data assimilation

confidence intervals. The application of boundaries is similar for the vertical velocity,

4 —k
Z’“J+1 = bound(v J+1,vf’]+1,yw+ ), (4.3)

where v g+l € R is the Dirichlet boundary condition velocity in the vertical direction, if present,

and 9 v . € R? is a monotonically increasing vector containing the lower and upper boundary

0.J+5

k

values on v*
ij+s

The advection diffusion forward Euler step for the horizontal velocity is described by

N 1K 1,k
e TS T S ki PRI
= L1 . 1.
5tk‘ u71+§7‘7 7*+§1.7 5'%-
N K K
S Vij+l ~ Vig-1 N Vir1g41 ~ Vi1 -4
Uit 49 oy oy
/ / / ! ! /
uf o +uf - 2uF uf =2k
Z+§7] Z_EJ 7/+27.7 Z+57]+1 Z+§7J_1 1/+§7.7
+v 5 + 5 , (4.4)
ox oy
where Sk i1 € R is the horizontal component of the external force sy, at time-step k£ and grid
7 27

location (7, 7). The advection diffusion forward Euler step for the vertical velocity is similarly
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described by

k” kl 1 k‘l 1 k‘l
VY. — Uy, —sU7.
ity Wity gk oF 27— ts ]+f
-_— = — P .01
5tk2 ’U727.7+§ Zv]+§ (5y
K K K K
= ) U’ LU )
o L "itds Vit n i+5.g+l il
.01 T
btz 2 ox ox
! ! ! ! ! !
(A +vk — 208 P 1 —|—vk_ L= 20
1,J+35 5,J— 1,J+35 +1,5+5 i—1,j+3 ,J+35 45
+v 5y2 + 522 , (4.5)

k

i+l € R is the vertical component of the external force sy at time-step k& and grid

where §7
location (i, 7). Note that for large diffusion rates forward Euler diffusion can oscillate, then
become unstable (Stam 2003)), though this is unlikely here. However, since stability of the

solver is critical, the backwards Euler description of diffusion is used instead, with a Successive-

Over-Relaxation (SOR) solver, as in Stam 2003. In this case, (4.4]) reduces to advection terms

only,
K'a K 1K 1,k
Yisly ~ Yirly : 21, T 2l
2 27 Sk . uk 2 2
5ty w3, i+3.J Sx
K K o oF
v — oY
o L[ Y+t T V- Ykl T Vig-d 46
ui+%,j§ 5y + &U ’ ( : )
with a similar description for the vertical velocity;,
K K 1,k 1,k
v — o A SV,
Z?]J’_% 7/7.7—"_% o gk o /Uk;’ 2 7]_7 + 7]+7
S5t = Yvigts 6j+% 5y
K K K K/
ub o= ut o, wt = ut
wo L[ it Tl i+5.g+l il A7
~ Yiitgg ox + o (47)
The backward Euler description of diffusion for the horizontal velocity is
Ild k//d k//d k,//d . k//d
uk _ St z+2,] + uz——,j 2uz+2,] I ui-l—%,j—l—l + ui—l—%,j—l 2uz+2,] . uk/ (4 8)
i+1 k 522 51y = ittt '
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This can be rearranged to

2¢ 92 k 'd 2 K'd k"d K"d 2 k'd K'd k"d
0x“oy-u —6y Oty (uH%’j—l—u 1 -2 l+27)—6x Oty (UH%JH—F Uil — 2 Z+27J>
2
= 0x*dy*u Z+ g (49)
and then to

ulfici 4+ 25y25tkuu it 201 + 5tkyu "
Canev 7.]

=l 4 8yt < S+ ) + 00t pv ( k—|—é,j+1 + ufléj_1> , (4.10)

and finally to

2 K'd 2 uk'd
v _( —1—5y (5th< —|—u %>+5x 5tky< i+l +1+ i+d - 1))

9= 4.11
U’JF%J (1 —|— 25y25tk1/ + 25$25tklj) ( )
The expression for the vertical velocity diffusion is similar,
K’ 2 k"d 2 oF"d
l:c"'dl _ < ’J+;+5SE 5tk7/< Jr3 +'U’] >+5y ot V< z+1]+;+ i 17j+%)) (4 12)
Lita (14 20226t,v + 20y%5txv) '

The backwards Euler diffusion equations are solved through iterative SOR. The solver first

iterates (4.11)) and (4.12)) over the spatial domain, then repeats this spatial iteration process

nag € N times until the diffusion solution of u! +Cf ~and v*¢, converges for all 7,j. In the

2

special case where dx = dy, then backwards Euler diffusion equations reduce to

2 k'"d 2 k"d
i w 0wty (w4 uld ) ontot (ubd bl s
it5d 1+ 40x26tv ’ '
and
2 k'"d k'd 2 ""d k'd
S ( ey 107 5th< bty T Vi > oy &ky( it Tl >> (4.14)
ity (14 40225tyv) '
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The post advection and diffusion horizontal velocity is then described by

k,// . k,/ k//a o k/ kl/d . k_/
Uppdy = Ui gy T (Ul — U )+ (U — ), (4.15)
which reduces to,
kll . kl/a k//d . k:/
UH%J—UH%J—}—UH%J u’i+%,j' (416)

The post advection and diffusion vertical velocity is described by

k// k,//a

i,j+% = 1 —|—’Uk d k (417)

v i+l T Vil T Vel

Here, (1.16) and (£.17)

These intermediate velocities after advection and diffusion need application of boundaries,
described for the horizontal velocity by

K . K k —k
Uisd —bound(ui%,j,gﬂéd,gi%’j). (4.18)

The expression for the vertical velocity is similar,

o L =bound(v* 1, 0F . L, TF ). (4.19)

i+ ity Tty ity

Pressure projection step

The divergence, Dﬁ;/ : N x N x N — R is then determined using the advected and diffused

velocity field with boundaries applied. The divergence is described by

k/// k,/// k,//l k///
k’” . Z+2’] 7 27] + ’L,]+2 2,] 2

4.2
i 5 5 (4.20)

Let D¥” : N — R™™ be the vector of ij;f' across the discretised spatial domain, and q; K
N — R""™ be the vector of pressure p across the domain for the velocities UF" € R¥™m_ The

pressure Poisson equation is then described by

V2p*" = D", (4.21)
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The discrete form of (4.21]) using a 3-point centred difference is

Piviy + P01y = 2Py | Phywn P — 20 D*"” (4.22)
6x2 5y2 17] . .

This is solved with SOR, an iterative method. Let (4.22)) be rearranged to

(26y° + 262?) p%/ = —(S:UQ(SyQDk + 6y (pfrl] +pfﬁl17j> + 62? (pfl]’:rl +pf;" 1> (4.23)

and then to
111 1 111 111 111 111
k 25 2 K" 2 k 2( & k
p’L,] - (25y2 i 25$2) (—637 (53/ D + 5y <pi+1,j + pi,17]’> -+ 53; (pl]le -+ pl»] 1>> (424)

In the special case where dx = dy, this reduces to

k”l
.y

(—MZDQT';' + <P£:1] Pl P "‘pfl]”fl)) ' (4.25)

%IH

The pressure is evaluated across the spatial domain for all i € [1,n,] and j € [1,n,], using
. This is then repeated ngor € N times, or until convergence. For simplicity and speed of
evaluation, ngor = 20 is used here, which is too low to converge to a high degree of accuracy,
but this is accounted for as the pressure projection step is repeated a further ng4 times. With

the pressure field determined, the velocity field is then modified to be divergence free by

klll k,///

k1 K" pl+1,] pzv]
e e Py — P 4.26
i+3.] i+5. ox ’ (4:20)
and
Iz B
k//// k/// pl,j+1 pZ:J 4.27
T (4.27)

Finally, the boundary values are applied again. If this pressure projection iteration i, € [1, ny]

fulfils ¢4 < ny, then boundary application is described by

W'y =Dbound(ufs L ut L u@f ), (4.28)

7,+27 1 7_1+ 7]7_1+27j
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and

K" = bound(vF ., vF oro1). (4.29)

YVig+i ig+d Yigrdr Yig+l

The Navier-Stokes solver returns to (4.20)). Equations (4.20), (4.24), (4.26)), (4.27), (4.30)

and are repeated to produce divergence free flow, with boundary values, estimates and
measurements incorporated. This is displayed in Figure Note that the repeated correction
through pressure projection propogates pressure through the domain, unlike a single pressure
correction step. Hence, this can be thought of as a weakly compressible system.

Otherwise, if i, = ny then the velocity field at the next time-step k + 1 is determined,

k+1 - K k Sk
Uiyy ;= bound(ui s up s 5o Uiy ), (4.30)
and
k+1 o k! k Sk
Vig+l = bound(vi,j#%’Qi,j+%’yi,j+%)' (4.31)

4.1.4 Wind flow

Calculation of wind velocity U, is handled by the 2D Navier-Stokes solver described in Section
M.1.2] Though the grid is shared, the time-step requirement of the wind solver is likely to be a
much smaller time-step due to the higher velocities of wind flow. Hence, the wind velocity solver
steps forward in multiple smaller, sub-time-steps, to form ¢, and only the final solution at the
shared time t 4 dt is utilised in the state trajectory. In the wind solver there is replacement
of zero flow boundaries for obstacles by maximum wind-speed conditions to represent wind
resistant areas such as cities or mountains. This acts as a flow restriction and thus resolves
external data forced flow to greater accuracy for local geographic features. Velocity limits are
imposed in the same manner as estimated values in Section [4.1.2]

—

The velocity limit ﬁwhm = Uy, (7,y) : 00 — R? is calculated by the urban canopy profile

Oy = (1 2,)? Hﬁw

: (4.32)

2

max

where \, == A\, (z,y) : 9Q — [0, 1] is the obstruction plan, or footprint, density in the cell area

at 10 m altitude (CERC 2017). If an obstruction density map is not available, a coefficient can
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be specified in place of (1 — \,)? for coastal and land cells empirically using local data.

It is assumed that the external wind data incorporates the effect of land topology (height)
on wind flow, justified by the free-availability of data from a multitude of global circulation
wind models. If there is no alternative, the spatial derivatives in the horizontal and vertical
directions of the land height-map can be utilised to estimate an obstruction density map,
under an assumption that 2D wind flow is always parallel to the ground. Note this is a tenuous
method that operates as a last resort should no other data or model be available for generation
of wind-flow data that accounts for land topology.

For an intuitive example: Upon a discretised grid of spacing dx and ¢y, there is flow from a
cell with height 0 m into a cell of height 5 m. Assuming the down-wind cell resembles a 5 m
high step, the volume of obstruction in the down-wind cell is 5dxdy. Recall that here, wind is
simulated at a height of 10 m and hence the obstruction volume is modified to now stand at
10 m high. Therefore, the floor-plan area obstructed is reduced to %5m5y, or simply % as a
proportion of the cell area. However, this obstruction is only present if the wind flow is up-hill
and if the slope is steepening. Furthermore a topology based obstruction should never present
a complete flow<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>