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Abstract

The litigation and mitigation of maritime incidents suffer from a lack of information, first at the

incident location, then throughout the evolution of contaminants such as spilled oil through the

surrounding environment. Prior work addresses this through ocean and oil models, model di-

rected sensor guidance and other observation methods such as satellites. However, each of these

approaches and research fields have short-comings when viewed in the context of fast-response

to an incident, and of constructing an all-in-one framework for monitoring contaminants using

autonomous mobile sensors. In summary, models often lack consideration of data-assimilation

or sensor guidance requirements, sensor guidance is specific to source locating, oil mapping, or

fluid measuring and not all three, and data assimilation methods can have stringent require-

ments on model structure or computation time that may not be feasible.

This thesis presents a model-based adaptive monitoring framework for the estimation of oil

spills using mobile sensors. In the first of a four-stage process, simulation of a combined ocean,

wind and oil model provides a state trajectory over a finite time horizon, used in the second

stage to solve an adjoint optimisation problem for sensing locations. In the third stage, a

reduced-order model is identified from the state trajectory, utilised alongside measurements

to produce smoothed state estimates in the fourth stage, which update and re-initialise the

first-stage simulation. In the second stage, sensors are directed to optimal sensing locations

via the solution of a Partial Differential Equation (PDE) constrained optimisation problem.

This problem formulation represents a key contributory idea, utilising the definition of spill

uncertainty as a scalar PDE to be minimised subject to sensor, ocean, wind and oil constraints.

Spill uncertainty is a function of uncertainty in (i) the bespoke model of the ocean, wind and

oil spill, (ii) the reduced order model identified from sensor data, and (iii) the data assimilation

method employed to estimate the states of the environment and spill. The uncertainty minimi-

sation is spatio-temporally weighted by a function of spill probability and information utility,

prioritising critical measurements.

In the penultimate chapter, numerical case-studies spanning a 2500 km2 coastal area are pre-

sented. Here the monitoring framework is compared to an industry standard method in three

scenarios: A spill monitoring and prediction problem, a retrodiction and monitoring problem

and a source locating problem.
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Abbreviations

DAE Differential Algebraic Equation.

DMD Dynamic Mode Decomposition.

GNOME General NOAA Operational Modeling Environment.

ITOPF The International Tanker Owners Pollution Federation.

KF Kalman Filter.

PDE Partial Differential Equation.

RTS Rauch–Tung–Striebel.

SAR Synthetic Aperture Radar.

SCEM Sheffield Combined Environment Model.

SLAR Side-Looking Airborne Radar.

SWEM Sheffield Wave Environment Model.

UAV Unmanned-Airborne-Vehicle.

USV Unmanned-Submersible/Seaborne-Vehicle.
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Nomenclature

Common terms only. Single use and locally used terms are omitted.

αc0 Coefficient that attenuates the velocity of oil particles resulting from ocean velocity.

αw0 Coefficient that attenuates the velocity of oil particles resulting from wind velocity.

H̄ The Hankel data matrix formed of centred state trajectories, excluding the last column.

H̄ ′ The Hankel data matrix formed of centred state trajectories, excluding the first column.

H̄r The Hankel data matrix formed of centred state trajectories.

K̄ Column vector trajectory of centred external data.

Ȳ Column vector trajectory of centred sensor measurements.

Φ The mode shape matrix, or linear transformation matrix, that transforms the reduced

order state vector to a trajectory of full order states, contained in a single column of the

Hankel data matrix.

Ψ Reduced order model mapping from reduced order states to current-time full order states.

Ak(
u

~X , ~P) Uncertainty state space system state transition matrix.

C Sensor/output matrix for a sensor measurement and external data trajectory.

CKF Sensor/output matrix for current-time sensor measurements only.

F (
u

~X
¯
, ~P) The state trajectory of the uncertainty state space system, as constructed by a

particular implementation (4.111).

L Kalman filter gain.
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P Full order model estimated error covariance matrix.

P r Reduced order model estimated error covariance matrix.

∆t The regular time-step in the reduced order model.

δt The time-varying time-step in the temporal discretisation.

δtk The time-varying time-step in the temporal discretisation, at time-step index k.

δx Grid spacing in the horizontal direction.

δy Grid spacing in the vertical direction.

δz1 Fine grid spacing in the water depth discretisation.

δz2 Coarse grid spacing in the water depth discretisation.

εx The error covariance of external data flow velocity in the horizontal direction.

εy The error covariance of external data flow velocity in the vertical direction.

κ Wind resistance coefficient.

Λ
δt
∆t Reduced order state transition matrix from one time-step to the next.

C The set of complex numbers.

N The set of natural numbers.

z(xi, yi) The set of depths at grid-cell i, j.

F (
u

~x
¯k+1,

u

~x
¯k
, ~pk,

u

~X
¯
, ~P) Differential Algebraic Equation for a time-step of the uncertainty state

space system.

ν Fluid kinematic viscosity.

Ω 3D spatial domain.

u

~X State trajectory of the uncertainty state space system.

u

~x State vector of the uncertainty state space system.

viii



∂Ω 2D spatial domain at the air/water interface.

R The set of real numbers.

R+ The set of positive real numbers, excluding zero.

ρ(·) The density of (·) unless otherwise stated.

σ· The standard deviation of (·), unless otherwise stated.

σ2
· The variance of (·).

σ2
x The variance in particle position, in the horizontal direction.

σ2
y The variance in particle position, in the vertical direction.

H
¯ r(·) Limited Heaviside function that activates sensor uncertainty removal in a radius around

the sensor.

H
¯ t(·) Limited Heaviside function that activates sensor uncertainty removal after a travel time.

~P Sensor position trajectory.

~X State trajectory of the combined environment and oil model.

~p Row vector of sensor positions.

~sU External forces acting upon a flow.

~U Flow velocity, or oil advection velocity.

~Uc Ocean current flow velocity.

~UE Ekman wind flow velocity.

~Uw Wind flow velocity.

~Us Stokes drift, wave induced velocity.

~x State vector of the combined environment and oil model.

~x The Sheffield Combined Environment Model state vector.
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~z State vector of the reduced order system.

c(~x, t, ~p) The sensor constraint function.

Dh The horizontal diffusivity coefficient.

Dvz The vertical diffusivity coefficient.

E(~x, t, ~p) Spatio-temporal weighting of uncertainty in the sensor pathing cost function.

EKFx(~p) The data assimilation and reduced order modelling error for velocity in the horizontal

direction.

EKFy(~p) The data assimilation and reduced order modelling error for velocity in the vertical

direction.

g Gravitational constant

hc Number of columns in the Hankel data matrix.

hr Number of rows in the Hankel data matrix.

i, j, w The horizontal, vertical and depth grid indices respectively, unless otherwise stated for

a particular equation.

J Sensor pathing optimisation cost function evaluation.

k The discrete time-step index in the time interval [t0, tf ].

kσ Number of standard deviations used in a confidence interval.

ncell The number of states per grid-cell in the Sheffield Combined Environment Model.

nφ Number of pressure field correction iterations.

nτ Number of discrete time-steps in sensor pathing optimisation.

Ncrit Number of fine mesh grid cells in the water depth discretisation.

nk Number of external data states at a given time.

np Number of sensors.
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nr Number of repetitions of the state trajectory used in the Dynamic Mode Decomposition.

ns The total number of states in the Sheffield Combined Environment Model.

nt Number of time-lagged state trajectories in the Hankel data matrix.

nt The number of time-steps in the time interval [t0, tf ].

nu Number of states in the uncertainty state-space system.

nx Number of cells in the spatial discretisation of ∂Ω in the horizontal direction.

ny Number of cells in the spatial discretisation of ∂Ω in the vertical direction.

nz Number of reduced order model states, or mode amplitudes.

p Internal pressure in a flow.

P ~̂Op
(xi, yj) The min-max normalised over ∂Ω probability of oil presence/drift for a cell (xi, yj),

at a given time.

q(
u

~x, t, ~p) Oil uncertainty, as a function of the variances in particle position.

t The time, in seconds unless otherwise stated.

t0 The start time of a simulation.

tε Sensor pathing optimisation end time.

tι Start time for a single sensor step form of the sensor pathing optimisation.

tφ End time for a single sensor step form of the sensor pathing optimisation.

tτ Sensor pathing optimisation start time.

tf The end time of a simulation.

tk The time at discrete time-step k.

u Horizontal component of velocity.

v Vertical component of velocity.
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x, y, z The horizontal, vertical and depth position in Ω, increasing west-to-east, south-to-north

and surface-to-sea-floor.

zcrit The depth at which the water depth discretisation switches from a fine to course mesh.

αw Coefficient that attenuates the velocity of surface water resulting from wind induced

surface shear.
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Chapter 1

Introduction

This thesis describes a framework for the autonomous monitoring of contaminants in fluids.

Though a broad topic, there is focus upon the hindcasting, estimation and prediction of an

oil spill in a sea environment using mobile sensors. This is not a new problem to tackle, with

oil spill models and surveillance tools in common industrial use since the reformation of the

shipping industry following the Exxon Valdez oil spill of 1989, and long prior to that in more

occasional use and research. Despite this longevity, it is still an active research field to which

this thesis contributes. Before continuing, it is important to establish the process following a

maritime incident.

Consider the first response crew to a vessel in distress. Unless the coastguard, emergency

services or military are required to be involved, this is likely to be a private-sector team formed

from concerned parties and their hired investigators; the insurers, charterers, the ship owner

and cargo stakeholders. Their mission is to determine what has happened, what can be done

about it and who is liable to pay the cost at the end. This holds true for anything from a minor

ship-fire, to a collision, to a discharge of oil; accidental or otherwise. This is not an easy task

due to the lack of knowledge around, taking an oil spill as an example, the spill location, leak

time, leak amount and oil type. The past, current-time and future estimation of this spill fate

and the response to it, are all extremely sensitive to these variables. It is an unfortunate truth

that useful information is often obfuscated by a potentially liable party. This could be a sleep-

deprived crewman who accidentally discharged the wrong hold tank into the sea, sending tonnes

of oil into the ocean instead of sea-water, or the ship-owner who failed to see his vessel properly

maintained: Getting to an accurate description of the incident can take time. Unless this is a

1
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particularly severe incident, it is unlikely any expensive resources (aircraft, satellites etc) will be

assigned until deemed absolutely necessary and this holds true for a government investigation

also. Hence, the true extent of an oil spill is unlikely to be determined until much later in the

time-line. Several days later is common, but then so is months or years. However, the arrival of

increasingly low cost autonomous sensor platforms, in Unmanned-Airborne-Vehicle (UAV) or

Unmanned-Submersible/Seaborne-Vehicle (USV) configuration, could give the first responders

a method to rapidly gather wide-ranging information on a contaminant leak, sea conditions

and another view on the situation. These autonomous platforms, together with advances in

modelling, data assimilation and control theory, have opened the door to new approaches.

Regrettably, the advances in these fields are not always complementary. The hydrodynamic

and oil models, used for environment flow and spill estimation, are becoming ever more com-

plex, computationally intensive and restricted to access. To briefly describe the complexity

of state-of-the-art models, they combine stochastic random behaviour, with one, two, three or

four way coupling between wind, wave, water and contaminant behaviour, with flow described

as 4-dimensional partial differential-algebraic equations and wave motion stemming from an

overlapping spectrum of frequency and amplitude information. A decade ago, heuristic and

empirical relations between, for example, the presence of oil and the dampening of the wave

spectrum, were utilised. The field is now moving towards a fully physically coupled system.

This is simply infeasible to use in a real-time manner, within a controller.

In contrast to the above, within industry the fluid and oil models are becoming increasingly

separated, with it common practice to use operational hydrodynamic models as external data

providers to an entirely uncoupled oil model. An operational model is simply one that is

always in use, likely upon a high performance computing cluster, that makes regular data

available for access. However data access is unlikely to be free for the most useful of data

sets. This separation has made it difficult for any measurements of parameters outside of either

the hydrodynamic, or oil model, to be assimilated and effects included within the counterpart

model. In industry, there is seldom an online feedback loop between environment and oil

measurements, model use and measurement tasking.

In the data assimilation literature, new methods are enhancing the ability to use sparse mea-

surements, leveraging parallel model runs, reduced order models and/or machine-learning ap-
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proximations of model derivatives to speed up the process. However, once again, the ever

increasing model complexity can result in a loss of dynamic fidelity when stepping from the

full model to the reduced order model, or limit parallel runs. In oil spill monitoring, machine

learning is a risky approach when an opposing expert in a court of law can point to the lack of

physical roots and data fitting inherent in data-driven methods.

Meanwhile, in the control field for mobile sensors, a huge variety of methods exist, exploring any-

thing from bio-mimicry, to abstract information theory, to traditional model-based approaches.

Each method has merits, but often lacks in two areas: the underlying model or assumptions

are too simple to capture the dynamics of oil in the ocean, or the method fails to consider

correcting past/future error in both contaminant and environment states. For an oil spill, de-

termining what has happened accurately can be just as important as establishing the current

situation and the future prediction. A final area often lacking in prior work, is consideration

of the sampling most useful to enhance the accuracy of the underlying model upon which all

other response decisions are made, not simply more energy efficient sampling. The control field

for oil spill response can be divided into three broad categories, strategic guidance, tactical

guidance and local guidance. This would be assigning sensors to an area of operations or spill

site, determining a measurement path for a sensor around a spill and the actuation required to

sense along a path in the presence of disturbances. This work will avoid the low level control

of a sensor platform, instead assuming there is already a controller present to manoeuvre the

platform and make use of the equipped sensors.

In this work a practical outlook is maintained while creating an oil contaminant monitoring

framework, focusing on the use of sensor equipped UAVs. The decades of hydrodynamic and

oil spill modelling is distilled into a very fast, adequately accurate, combined ocean and oil

model. This model is validated against a real-world spill, and then is examined to extract a

definition of uncertainty in its oil spill predictions. In a novel optimisation, the uncertainty is

minimised by a sensing plan. These sensor measurements are assimilated into the model with

a carefully selected and adapted method from recent literature, that utilises the combined and

speedy properties of the model to employ reduced order modelling only where needed, thus

maintaining dynamic fidelity. The monitoring framework is demonstrated to improve upon

the industry standard method in a forward estimation and prediction scenario, a late-arrival
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hindsight analysis scenario and finally a source locating scenario.

The remainder of this chapter first presents further motivation for the research, with industrial

statistics and failings of the current methods detailed in Section 1.1. The formal research

aims are contained in Section 1.2 and the chapter concludes with a description of the following

chapters and their contributions in Section 1.3.

1.1 Motivation

Maritime incidents are varied and dynamic situations where immediate observation provides

valuable information for assessment and resource allocation. The maritime industry is growing

by approximately 3% per annum (UNCTAD 2016) incorporating more ships and larger vessels

every year. However, with companies’ revenues fluctuating around their operating costs, the

need to be competitive can lead to dangerous accidents. There are approximately 10 maritime

incidents every month, with 85 ships lost in 2015 and a total of 1231 ships lost between 2006

and 2015 (Allianz 2015). In addition to ship wreckage and their contained fuel and fluids, 10000

shipping containers are lost per annum, each one a navigation hazard. There are also around

7 oil spills every 12 months, in 2016 there were 4 recorded spills and 1 major recorded spill,

totalling around 6000 tonnes of oil (ITOPF 2017). Note that The International Tanker Owners

Pollution Federation (ITOPF) has the acronym ITOPF. The largest recent spill, excluding the

Deepwater Horizon spill, was the Sanchi oil spill of 2018, of 116’000 tonnes (ITOPF 2019).

Maritime incidents can lead to expensive court cases, argued through convoluted law that is

difficult to litigate without hard evidence of a party’s innocence or guilt. Verdicts often result in

millions of dollars in damage settlements, with the record being the $5.5 billion in damages from

BP as a result of the Deepwater Horizon oil spill. Clean-up operations, accident monitoring and

rescue attempts are often hindered by the information and resources available at the accident

locale, with specialist equipment including observation aircraft not arriving until several days

after the event. The lack of information is partially mitigated by remote sensing assets, reviewed

in Fingas and Brown 2014 and 2018.

Current observation solutions include satellites, capable of delivering a detailed view of an entire

oil spill, through a variety of sensor types with the most common being optical, microwave and

radar wavelength based. Though new satellites and data processing techniques are increasing
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the frequency and reliability of measurements, the delay from tasking a satellite to image

delivery is still up to 4 hours with an overpass frequency of once-per-day common (Fingas and

Brown 2018; Carlowicz 2010). In the Sanchi tanker incident of 2018, the COSMO-SkyMed

satellite system (Fiorentino and Virelli 2016) first provided Synthetic Aperture Radar (SAR)

data on January the 15th, 9 days after the vessel registered distress and roughly 18 hours after

the vessel sank (E-geos 2018). Evening data on the 15th and data on the 16th gave false clear-

sea readings due to spill and vessel drift outside of the observed location (E-geos 2018). Good

data once every 12 hours continued on the 17th, with SAR Sentinel 1-S1 imaging acquired on

the 20th (E-geos 2018). SAR satellites are unreliable in calm or rough seas (wind speeds less

than 3 m/s or greater than 10 m/s) and environmental phenomena can produce false positives

(Topouzelis and Singha 2016). SAR is incapable of measuring oil thickness and the complex

interplay between oil thickness, viscosity and wave parameters results in further uncertainty in

measurement results (Zhang et al. 2015). Evidently, the utility of Earth monitoring satellites

to first responders could be improved, as they currently suffer due to their delay and some

dependency on oil trajectory prediction, and direct observation assets such as aircraft are

preferred (ITOPF 2014).

Not all maritime incidents are reported immediately, or at all, with clandestine releases of oil

into the ocean all too common. Often, first notification of an oil spill or wreckage comes from

a network of SAR satellites that monitor shipping lanes (ITOPF 2014). Possible incident sites

must be verified by direct observation, usually meaning aerial observation. However, due to

remoteness, flyovers are often conducted using a local aircraft with no specialist sensors or

tools, crewed by a human observer (ITOPF 2014). In extreme locations aerial observations are

hampered by a lack of runways, requiring the chartering of helicopter pad equipped vessels, but

still restricting the use of specialist fixed-wing aircraft and delaying observation by days, if-not

weeks (Laruelle 2011). Once arrived, the expense of aircraft limits their number and hence the

availability of simultaneous viewpoints or constant coverage during pilot/refuel breaks. Fur-

thermore, health and safety concerns for the crew can limit their night-time deployment and

their flight route is often pre-determined before take-off, with changes at the discretion of safety

and airspace concerns. Observation aircraft plan routes as ladder search patterns in the sup-

posed direction of wreckage or oil migration, usually estimated with large scale measurements
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Figure 1.1: SAR image of the Hebei Spirit oil spill of the 7th December 2007. The image
shows the oil spread on the 11th December 2007 (Laruelle 2009).

of current and wind and a very simple model of drift. Supporting tools, such as oil models,

may not be available (due to a lack of data or resource allocation) in the crucial first few days

of an incident. The complexity of existing models produces slow calculation times but useful

data for response planning. However, despite their complexity and supposed accuracy, model

predictions still have to be verified by observation before resource allocation in the industry

(ITOPF 2014).

Failings of current solutions are visible in the Hebei Spirit spillage of 2007, pictured in Figure

1.1. The collision occured on the 7th December and was reported immediately. Coast guard

vessels and non-specialist aircraft were on-scene after 4 hours and noted an oil leak; promptly

beginning damage mitigation and vessel salvage efforts (The Hong Kong Special Administrative

Region Marine Department 2007). Though rough weather hampered oil containment efforts,

South-Korea’s Ministry of Maritime Affairs and Fisheries predicted the oil wouldn’t spread

due to the cold weather (Bae Ji-sook 2007). By the 10th December, when the first ITOPF

overflight and aerial observation using specialist equipment occured, the oil had spread 70 km

along the coastline. Alerted to the spillages severity, the first SAR sateillite image, as seen in

Figure 1.1, became available on the 11th December and showed the extent of the spread clearly

(Laruelle 2009). Had specialist observation tools, with a supporting model, been available

sooner the large scale of the spill and estimated drift could have directed resource allocation

more efficiently from the outset.
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1.2 Research Aims

The aim of this research is to produce an all-in-one framework for the autonomous monitoring

of contaminants in fluids. Sensors must coordinate to be in the right place at the right time

to sense contaminants, needing guidance from model-based predictions and data assimilation.

This poses research challenges of:

• Choosing a monitoring strategy appropriate to maritime incidents, including the platform

and sensor capability.

• Modelling contaminant movement using a sea state model, with prediction/analysis and

source location estimation. The model must be computationally tractable to run in real

time.

• Cooperative control of multiple systems to ensure an optimum coverage sensing strategy:

Adaptive decision making considering sensor, platform and communication capabilities,

considering their constraints in forming a sensing strategy. Navigational planning should

include consideration of model or assimilation short-comings.

• A further challenge of how to sense and update the combined environment and oil model

using new information and the incorporation of prior knowledge, such as spillage type,

in the prediction. The assimilation method must also be fast enough to run in real time,

and not require parallel runs or simplification of the model to a problematic degree.

Research outcomes include a simulation of sea contaminant scenarios and the sea surface and

contaminant within, a method of assimilating measurements into these simulations, as well as

a novel controller for guiding UAVs to gather these measurements that includes consideration

of the inaccuracy in the model or assimilation methods.

1.3 Description of the thesis, contained work and con-

tributions

This section describes the structure and contributions of the following thesis chapters, first

in summary and then in detail. Chapter 2 presents the reader with background maritime
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information and a review of prior, related research. Chapter 3 contains the overall monitoring

framework structure, with a time-line of the algorithm when applied in the simulations of

Chapter 7. Chapter 4 describes the modelling component of the monitoring framework. Chapter

5 details the sensor guidance stage of the monitoring framework and the optimisation which it

entails. Chapter 7 contains an evaluation of the monitoring framework performance in various

scenarios and Chapter 8 concludes the thesis.

Describing the chapters and their contributions in further detail:

• Chapter 2. First in this chapter, the use of UAVs and their sensor packages is examined

in the maritime setting to provide the reader with valuable context for the capability of

UAVs and remote sensing. This includes a general overview of UAV and sensor types and

potential deployment purposes. A brief description of the optical appearances of oil on

water is also given. The chapter moves on to a literature review of existing hydrodynamic

and oil modelling, in the context of their suitability for a monitoring framework. The

review of existing methods continues to sensor guidance, across general areas of moving

to a fixed point, search and following, path planning and then the most closely related

works involving contaminant tracking or clean-up. Then, the review briefly covers modern

data assimilation methods employed in the hydrodynamic field, to offer context for the

monitoring framework assimilation method. Finally, the chapter summarises the key

insight from prior work.

• Chapter 3. This short chapter presents the monitoring framework as a whole, a brief

overview of the utilised methods, and how the iterative procedure functions in practice.

This structures the chapters that follow.

• Chapter 4 begins with an overall description of the environment and oil model, then de-

tails the spatio-temporal structure and states of the model. The Chapter moves on to the

implementation of the 2D fluid flow solver, including the boundary conditions and the

expansion of a surface velocity to a 2.5D description with a depth velocity profile. Further

components of the fluid model are detailed, including wind induced phenomenon and the

wave model. Next, the oil model component of the combined model is examined, with

advection and diffusion, entrainment and buoyancy, thickness and mechanical spreading,

deposition and refloating all described. The surrounding parameters of an oil model are
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then looked at, that is, the number of particles needed, and extracting probabilities or

loosely defined properties (like the mean spill location) from the model. The backwards

implementation of the model is then noted. The chapter then presents a validation of

the model against a real world spill and a comparison with the common industry model

GNOME (General NOAA Operational Modeling Environment). Finally, the chapter ex-

tracts the definition of uncertainty and a companion description of sensing, for use in

sensor pathing, then represents uncertainty as a state-space system. The key contribu-

tions of this chapter is first, the development and validation of a bespoke model of wind,

ocean and oil dynamics for real-time monitoring, and secondly a PDE description of the

uncertainty of an oil particle distribution.

• Chapter 5 describes the sensor guidance component of the monitoring framework, and

the presentation and solving of a weighted, constrained uncertainty minimisation op-

timisation. The optimisation is introduced, then the weighting terms and constraint

Lagrangian multiplier described. The solution method, both the adjoint method based

gradient determination and gradient descent optimisation is then detailed, with example

solutions under static and mobile sensors then presented. The optimisation formulation

and solution method is a key contribution of this thesis, as it presents a multi-scale ap-

proach suitable for guiding both oil measurements and fluid measurements in support of

oil monitoring.

• Chapter 5. This chapter sets out the data assimilation method for the monitoring frame-

work, first giving an overview, then recounting the formation of the reduced order model

from the full order model state trajectory. The reduced order model is then used with an

analysis capable state estimation method capable of assimilating a trajectory of measure-

ments and external values. Finally, the assimilation of measurements and external values

to form a complete full-order state trajectory estimation concludes the chapter. The

contributions in Chapter 5 are extensions of state estimation and reduced order mod-

elling techniques to develop an ensemble and tangent-linear model free data assimilation

method. A further key idea is to formulate the error of the data assimilation method and

utilise the error to inform sensor placement.



10 Chapter 1. Introduction

• Chapter 7 evaluates the complete monitoring framework against industry standard meth-

ods of pathing and data-assimilation, across a forward estimation and prediction scenario,

a late-arrival hindsight analysis scenario and finally a source locating scenario. The moni-

toring framework is demonstrated to improve upon the industry standard method in both

spill estimation accuracy and sensor utilisation. This chapter demonstrates the monitor-

ing framework reduces estimation error (using a combined measure of spill position and

shape error) by up to 80%, when compared to a traditional ladder path sensor guidance

method and/or a simple data assimilation method.

• Chapter 8 concludes the thesis, by reiterating the principal research results and expanding

upon the contributions, then suggests avenues for future research.

To summarise the novelty of the thesis, in the context of real-time oil spill monitoring with mo-

bile sensors and computing hardware: There are a number of incremental improvements in each

of the main focus areas, which are wind/wave/oil modelling, oil uncertainty description, sensor

guidance optimisation and solution, reduced order modelling and finally data assimilation. The

work is detailed in the relevant chapters with brief comments on their contributions, though

the thesis contributions are elaborated upon in Chapter 8. However, the main contribution is

the linking of each component to form the monitoring framework as a whole. This is an all-in-

one monitoring framework that tackles the difficult problems of oil spill source determination,

hind-casting, now-casting, prediction, through the guidance and utilisation of mobile sensors.

1.4 Notation

Regarding notation: Where a function is presented with explicit arguments within an equation,

arguments are present to emphasise to the reader the dependency of said function upon partic-

ular variables. This dependency is important when considering the sensitivity of a system with

respect to the optimisation variable. In the interest of notational brevity, not all arguments

will be presented within an equation, but all functions are formally defined in the main text.

For example, given the scalars x, y ∈ R and a function f(x, y) where f : R×R→ R, the func-

tion f(x, y) may be described as f(x) within an equation. Consider the equation, minx f(x),

where only dependency upon x is explicitly noted. Furthermore, integer intervals are denoted
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by double brackets, e.g, Ja, bK = {a, a + 1, ..., b− 1, b}. Additionally, given a matrix M of size

m by n, a set of row indices ~Ir ⊆ J1,mK and a set of column indices ~Ic ⊆ J1, nK, then the

notation ML ~Ir, ~IcM describes a sub-matrix ML ~Ir, ~IcM = {MLi, kM : i ∈ ~Ir ∧ k ∈ ~Ic}. The

set of positive real numbers including 0 is defined by R+ ⊂ R. Throughout this thesis, (·)T is

the transpose, (·)∗ is the conjugate transpose or Hermitian, (·) ◦ (·) is the Hadamard product

or elementwise product and (·)◦k is the Hadamard exponential to power k. Further notation

includes, ·̂ as an estimate and ·̄ as a centered value or mean value with clarification in the text.

Vectors are denoted~·, matrices in bold capitals, sets or trajectories in calligraphic. Any excep-

tion to this notation is explicitly stated. The vertical concatenation of vectors, ~c = [~aT ,~bT ]T is

denoted by ~c = [~a;~b].

Consider the vector ~c ∈ Rnc of nc ∈ N elements, with the ith element ~ci ∈ R. If the ith element

is then subject to bounds ~ci ∈ [l, u] for l ∈ R and u ∈ R, then an under-bar notation, such as

~c
¯

explicitly denotes that ~c
¯

is formed of bounded values, while ~c is not. This is relevant when

describing bounded and unbounded state vectors.



Chapter 2

Background and Related Work

This chapter first presents background maritime information, commenting on the common

scenarios and challenges facing autonomous monitoring in a maritime deployment. The sensor

requirements and capabilities are also noted, together with the visual appearance of oil spills

of varying thickness. The chapter then delivers a review of current oil spill and hydrodynamic

modelling methods, providing context for discussion of sensor guidance methods in a further

review and finally a review of the assimilation of sensor measurements into an oil spill and

hydrodynamic model.

2.1 Maritime information

The use of autonomous vehicles, airborne, seaborne or land based is fast becoming widespread

in the civilian, commercial and military markets. Though largely successful in military and

government use, their deployments alongside civilian operators have been hampered by legisla-

tion, safety concerns and the need for an operator to maintain constant control authority; both

to ensure danger avoidance and to adapt the automaton’s planning to environmental changes.

This is of particular prevalence for small Unmanned Aerial Vehicles (UAVs) and Submersibles

(USVs), where the real time, 2-way exchange of large amounts of data becomes infeasible due

to their mission range and the capabilities of their communication suite. Effort must be made

to improve the true autonomy and self-governance of UAVs and USVs in dynamic missions,

both in high-level decision making and low-level route planning (Zeigler 1990). The current

trend in deployed autonomous systems is to utilise low numbers of high cost, high sensing fi-

12
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delity and high performance systems that maintain 2-way communication and control to enable

mission flexibility and operational safety (Moreland et al. 2015). While capable of acquiring

excellent data the low number of viewpoints does not allow simultaneous coverage of a large

area and cooperative search methods are excluded. While industry acknowledges the potential

of autonomous systems, uptake is slow until the technology and surrounding legislation matures

(Foxwell 2017).

Developing autonomous systems faces research challenges under headings of energy limitations,

environmental and operational hazards, information processing and human-system interaction.

These problems are exacerbated in a distant environment (Kitano et al. 1999). A flexible,

cooperative and predictive package containing navigation, sensing and control algorithms could

enable far reaching missions of multiple autonomous vehicles, operating efficiently in a dynamic

scenario with minimal input from a human controller beyond what is currently capable in the

industry.

UAVs are particularly suited to use in the maritime domain, offering a range of benefits across

all their size classifications (Kaymal 2016). UAVs offer a high area coverage in a short amount

of time, due to their high speed (relative to ships) consistent during their deployment. Depend-

ing on their size, UAVs can offer extremely long endurance flights, without personnel based

limitations. Even smaller UAVs can maintain coverage for long periods if multiple systems

are deployed with overlapping coverage during battery or fuel replenishment. The low price

per unit and small size compared to manned aircraft or surface vessels facilitates the use of

multiple UAVs simultaneously, allowing for simultaneous view points across a wide area and

more efficient search techniques (Cevik et al. 2013).

UAV design for oil spill monitoring is determined by a number of factors; with the information

required perhaps the most critical: The absolute presence of oil measured as fast as possible

across a large area, or the thickness determined in a small area, or the oil type ascertained

at source. All would produce a different ideal design, coupled with other environmental char-

acteristics such as legislation or shared airspace. There exists a number of common maritime

incident scenarios where a UAV could provide valuable insight or improve upon the current

solutions employed by industry, satellites or manned flights. Each has a corresponding ideal

UAV design, portrayed in table 2.1.



14 Chapter 2. Background and Related Work

UAV design considerations for maritime incident scenarios

Incident description Design parame-
ter

Requirement

Close proximity survey and inspec-
tion of spill source

Flight altitude Very low (50 m max)

Payload 7 kg max
Endurance 1 hour max
Platform type Multicopter for stable, close up

sensing and access to unique loca-
tions

Sensor High resolution optical sufficient
Communication Short range, high bandwidth for

data fidelity
Short distance survey and source Flight altitude Low (100 m max)
location and inspection Payload 25 kg max

Endurance 4 hour max
Platform type Fixed wing for endurance, range

and payload
Sensor Optical/IR/Lidar
Communication Mid range, mid bandwidth for data

range. High fidelity imagery can be
burst transmitted at the expense of
other data, a spills location, thick-
ness and source is sufficient

Long distance survey, source loca-
tion and inspection, and contami-
nant assessment.

Flight altitude Legislation limit (400m max)

Payload 100 kg max
Endurance 30 hour max
Platform type Fixed wing for endurance, range

and payload
Sensor Multisensor/Deployable
Communication Long range, low bandwidth for data

range. High fidelity imagery can be
stored for review, a spills location,
thickness and source is sufficient

Table 2.1: UAV design considerations for maritime incident scenarios, adapted from Gómez
and Green 2017.
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Minimum spatial resolution requirements (m)

Task Large Spill Small Spill

Detect oil on water 6 2
Map oil on water 10 2
Map oil on land/shore 1 0.5
Tactical water clean-up 1 2
Tactical support land/shore 1 0.5
Thickness/volume 1 0.5
Legal and prosecution 3 1
General documentation 3 1
Long-range surveillance 10 2

Table 2.2: Requirements of oil spill detection.

Typical airborne sensor characteristics

Sensor type Sensor Spatial resolution range
(m)

Swath Width (km)

Radar SLAR 10-50 10-40
Radar SAR 1-10 10-40
Optical Video Camera < 1 & Alt. Dep. Alt. Dep.
Optical Still Camera < 0.1 & Alt. Dep. Alt. Dep.
Optical Typical Ultravio-

let/Infrared Scanner
< 1 & Alt. Dep. Alt. Dep.

Table 2.3: Typical airborne sensor characteristics. In the table, Synthetic Aperture Radar
(SAR) and Side-Looking Airborne Radar (SLAR) use their acronyms and “Alt. Dep.” is alti-
tude dependent.

Contaminant detection

The expected contaminant and mission profile determine the type and quality of sensors needed

aboard the UAV platform. Prior research offers sensor resolution requirements in table 2.2 and

typical resolution of existing sensors in table 2.3 (Jha, Levy, and Gao 2008).

Payload weight and size constraints apply, but a plethora of possible sensors remain. Despite

this, simple still or video photography is the most common form of contaminant or oil spill

detection (Fingas and Brown 1998), using the empirical observation rules in table 2.4. Note the

orders of magnitude volume difference between oil appearances: although sheen may cover large

areas of the environment, it is a negligible portion of the total oil volume. Hence observation

should strive to focus on dark patches and be able to identify between sheen and thicker patches

of oil. Supplementing optical observation, airborne remote sensors can offer oil detection, or

information on the parameters of oil, in conditions where the visible spectrum is unsuitable,

such as night time or rough sea conditions. Sensors can be categorised as passive, or active;
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Optical appearance of oil

Oil type Appearance Approximate thick-
ness (mm)

Approximate volume
(m3/km2)

Oil sheen Silver > 0.0001 0.1
Oil sheen Iridescent (rainbow) > 0.0003 0.3
Crude or fuel oil Brown to black > 0.1 100
Water/oil emulsions Brown > 1 1000

Table 2.4: A tabulation of the thickness, appearance and volume of floating oil when observed
from the air. Adapted from ITOPF 2011a.

their capabilities are tabulated in tables 2.5 and 2.6 respectively. The correct selection, or

further development of sensors will allow for accurate detection of surrounding fluid velocities

and contaminant properties. It is worth noting that sensor capabilities are improving all the

time and the sensor data above may become obsolete. Recently launched satellites may offer a

much greater resolution in the visual and SAR spectra, but satellites are still limited by weather

conditions (cloud cover) and the narrow band of wind conditions and false positives inherent in

SAR oil spill detection (Topouzelis and Singha 2016). However, even a perfect sensor is useless

if it is not employed in the correct place at the correct time, which is the purpose of guidance

algorithms.

Guidance Algorithms

The maritime industry currently employs surveillance aircraft to map contaminants if possible

and the resources are available. Designated aircraft range from specialised, multi-engined ob-

servation craft with a trained crew and dedicated sensors to light aircraft and the human eye.

Their guidance is simplistic, usually following a pre-planned ladder path over a region identi-

fied by a spill trajectory model, or spiralling inwards/outwards to an estimated source location

(ITOPF 2011a). While ensuring good coverage, these are time consuming and inefficient. A

further consideration to be included in the decision making process would be the robust com-

munication between relevant agents. Control might be discretised, but communication and

information sharing is likely still essential to ensure efficient area and target coverage. Hence

constraints should be present upon sensor positions, to ensure they are within communication

range.
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A summary of passive sensors suited to sensing of oil and other contaminants

Type Typical task Advantages Weaknesses

Passive Visible
(wavelength
0.38− 0.76µm)

Spill detection
Approximate
thickness detection
Approximate
volume estimation
Optical flow esti-
mation

Visual data
Inexpensive
Light weight

Limited to good
visibility condi-
tions, e.g, affected
by darkness,
clouds, haze or
smoke

Short-wave in-
frared (wavelength
0.9− 1.7µm)

Spill detection
Relative thickness
detection
Approximate
volume estimation
Capable of differ-
entiating between
crude oil and
weathered emul-
sions

Suitable for low
light conditions
Low power con-
sumption
Light weight and
small size

Expensive to pro-
duce and operate
Not visible to hu-
man eye, informa-
tion must be pro-
vided as spectral
maps etc

Thermal in-
frared (wavelength
8− 14µm)

Night-time spill de-
tection
Approximate
thickness detection
Approximate
volume estimation

Suitable for low
light and night-
time conditions
Vision through
clouds, haze or
smoke
Low power con-
sumption
Light weight and
small size

Reference data
for comparison is
needed
Not visible to hu-
man eye, informa-
tion must be pro-
vided as spectral
maps etc

Live video Monitoring situa-
tion
Approximate
thickness detection
Approximate
volume estimation

Forward looking
video would allow
remote piloting if
needed
Possibly 3D infor-
mation, produces
measurement of
wave data

Reduntant infor-
mation a lot of the
time
Lower spatial reso-
lution than still im-
agery

Table 2.5: A tabulation of a selection of passive sensors suited to contaminant detection.
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A summary of active sensors suited to sensing of oil and other contaminants

Type Typical task Advantages Weaknesses

Active Lidar Spill detection
Absolute thickness
detection
Oil identification
(Raimondi et al.
2017)
3D position and
velocity measure-
ments

High precision Limited to good
visibility condi-
tions, e.g, affected
by clouds, haze or
smoke
High power con-
sumption
Extremely ac-
curate position
data required for
measurements
Lack of suitable
commercial sensors
Miniaturisation
difficulties

Radar Large area detec-
tion of contami-
nants and oil spills

Day and night con-
ditions
Unaffected by
smoke, haze or
clouds.

Power consump-
tion
Unreliable in low
or high wind condi-
tions
Not visible to hu-
man eye, informa-
tion must be pro-
vided as spectral
maps etc

Table 2.6: A tabulation of a selection of active sensors suited to contaminant detection.
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2.2 Modelling

This section presents an overview of oil spill modelling and the hydrodynamic models that oil

spill models depend upon. A broad overview of spill models is followed by a more in-depth

examination of the modelling approaches for the physical processes important to oil trajectory

extrapolation. The section continues to similarly examine the modelling approaches for the

environmental physical processes: The description of the wind and ocean dynamics that govern

the movement of an oil spill.

2.2.1 Oil spill modelling

Spill modelling for a particular incident typically ensues with a pre-validated oil spill model.

There are several available, from commercial and proprietary models to academic and open-

source models. Each model is the outcome of a significant investment in representing the

physics of an oil spill in mathematical form, with some models being specific to a particular

region and the local dynamics in that area. These models produce an estimate trajectory of the

oil through a spatio-temporal domain and form the basis for stochastic measures and decision

making. This could be, determining the likelihood of oil reaching a certain region, or a measure

of the likelihood of a significant volume of oil remaining (Nelson and Grubesic 2020).

A recent state of the art review of oil spill modelling (Spaulding 2017) covers OSCAR (Reed et

al. 2000), SIMAP/OILMAP (French McCay et al. 2016), GNOME/ADIOS (Lehr et al. 2002),

though other notables in the field include the model, MEDSLIK (De Dominicis et al. 2013a)

and BLOSOM (Duran et al. 2018). There is also a wealth of commercial oil models, with

propriety methods for which little information is available.

The review by Spaulding 2017 affirms modern oil spill models are complex amalgamations of

Lagrangian (particle based) transport processes and varied algorithm types (stochastic and

deterministic) of other processes, such as entrainment in the water column, or evaporation.

There are some exceptions that use an Eulerian approach (Taylor et al. 2003), but these are

more limited in scope as supporting algorithms (such as entrainment) are Lagrangian based

(Wang and Shen 2010), providing solutions per particle. State of the art 3D models aim to

provide the most accurate estimations possible of oil position/properties, both surface and

sub-surface, at the expense of computational speed, over an extended period of time (weeks
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to months of prediction) and hence include weathering effects. Despite their complexity and

supposed accuracy, their results still have to be verified in the field; the industry will not allocate

resources based on modelling alone (ITOPF 2014).

The modelling of the oil spillage itself can be sectioned into principal physical processes, in

order of importance with increasing time moving through a surface spill scenario: mechan-

ical spreading, advection by wind/wave/current, turbulent diffusion, entrainment (including

buoyancy and droplet size) and evaporation. Dissolution, emulsification, biological effects and

photo-degradation are other phenomona, but play a much lesser role in the first 24 to 72 hours

of an oil spill (Proctor, Flather, and Elliott 1994).

Mechanical spreading, without external forces, is the process of oil spreading over a surface,

to form a flat circle where internal hydraulic pressure and boundary surface tension balance.

Spreading is usually modelled with empirical formulae, producing an estimated radius at a

given time for a thick slick (Fay 1971). Field observations or past data provide a spreading

rate coefficient and spreading ceases when the oil reaches a minimum thickness. These methods

have significant shortcomings, being only valid in calm conditions and ignoring the effects of

wind and current on shape (Hoult 1972). Later methods expanded upon Fay’s work, to produce

elliptical distributions (Lehr et al. 1984). Together with simple advection-diffusion equations,

these form the common simple models used by guidance algorithms under the presence of

uniform flow, for example within Zhang and Pei 2015.

Advection is a collective term for the mass-transport of oil particles by the wind and hydrody-

namic model. Across reviewed models it is described by a vector summation of water current

velocity (scaled by an empirical coefficient), the wind velocity (scaled by an empirical coeffi-

cient and rotated by an empirical drift angle) and a force or velocity from the wave model,

wave radiation stress or Stokes drift (Spaulding 2017). Coefficients vary with literature, from

1 to 1.1 for current velocities in (Lonin 1999) and (Wang, Shen, and Zheng 2005) respectively,

and 0.01 to 0.06 for wind velocities and some geographical variation in drift angle formulation,

from 0 to 45 degrees (Li, Zhu, and Wang 2013). Note however, that the drift angle should be

omitted in cases where the underlying environment data already incorporates Ekman currents,

the off-wind-axis flow that results from the balance between coriolis forces and wind shear.

Turbulent diffusion addresses the turbulent processes that move oil particles on a smaller scale
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than the grid of the hydrodynamic model. Almost exclusively, a Markov chain, or random

walk technique is used with coefficients either described by the user or calculated from the

hydrodynamic model. These coefficients vary by several orders of magnitude in the literature

and play an important role in oil spill simulation (Spaulding 2017), for example, Elliott 1986

uses 0.7 m2/s while Al-Rabeh, Cekirge, and Gunay 1989 uses 10 m2/s as constant parameters.

Smagorinsky’s non-linear diffusion equation is present in some models to calculate the diffusion

coefficient. While dependent upon flow derivatives, it’s also strongly sensitive to a dimensionless

parameter set by the user, for which literature suggests values ranging from 0.03 (Baldauf and

Zängl 2012) to 0.2 (Wang, Shen, and Zheng 2005). Identified in Hunter, Craig, and Phillips

1993, and then further in recent work (Nordam et al. 2019b), there are failings in the commonly

used diffusion coefficient formulae which can both under or over-estimate the true diffusion in

both horizontal and vertical directions. The corrections developed in the literature have been

applied here.

Wave induced motion calculation varies in literature. In early work, it might be omitted

completely (Lardner and Gunay 2000), or simulated by Stokes drift calculations only using

either wave parameters or empirical estimates from wind speed; this forms the majority of

horizontal transport and is often taken as sufficient (Boufadel et al. 2007). Mellor’s work

advocates the inclusion of wave radiation stress (Mellor 2003) and recent work attempts to

join Stokes drift and wave radiation stress to describe Langmuir cells, discussed in Galt and

Overstreet 2011, that create the surface windrows (very thin lines of thick oil), though this was

yet to be implemented into a model as of Spaulding’s review (Spaulding 2017).

Subsurface entrainment, or subsumption of the oil into the water column, has several approaches

to modelling in the literature, depending on the available data from the hydrodynamic model or

measurements. Modern 3D hydrodynamic simulations can be coupled with a vertical diffusion

process alone, while early work required empirical probability functions of particle entrainment,

using wave energy and oil type, to ensure oil entered the sub-surface, as well as a vertical dif-

fusion process (Li, Zhu, and Wang 2013). The work of Li, Zhu, and Wang 2013 compares 3

methods of vertical diffusion coefficient calculation, an empirical scheme, an internal hydro-

dynamic model solver and solving a Langevin equation. Results were inconclusive and failed

to identify a most-accurate algorithm, though large differences in estimations were certainly
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noticed, with the empirical method being the simplest to calculate. Buoyancy methods again

vary, noted in Nordam et al. 2019a, where Nordam again identifies inconsistencies and correc-

tion modifications, implemented in this thesis.

Oil weathering or oil aging is a term for changes in oil properties over time, that includes

evaporation, dissolution, emulsification, biological effects and photo-degradation. Weathering

was determined to be non-critical in this research, due to the short horizon of the simulation

and ability to account for changes in oil parameters through sensing. However, under some

conditions, rapid evaporation can remove up to 40% of the oil mass within the first 2 days, if

not a few hours for a lighter hydrocarbon such as Kerosene (ITOPF 2011c). Hence, estimations

of weathering and particularly evaporation could be useful. A recent review of evaporation

methods, from Mackay’s early work (Mackay and Matsugu 1973) onwards, and investigation

into oil evaporation (Fingas 2015), showed that oil evaporation is not strictly boundary-layer

regulated, hence the dominant factors are time and temperature and so a simplistic evaporation

description would suffice. Fingas 2012 offers several logarithmic, empirical equations improving

on the over and under estimation of Mackay’s oil component based work. That said, Spaulding

2017 argues that Fingas’ methods has data requirement flaws and is verified with too much

reliance on laboratory data. To account for weathering, the oil model here-in is capable of

interfacing with the ADIOS weathering system within the GNOME oil model (NOAA 2012),

by the transferance of particle and environment data.

In most cases, though limited to heavy, crude and other persistent oils, the majority of oil

volume is contained on the surface, in dark slicks (ITOPF 2011a), with only 10% in the water

column after 24 hours (Proctor, Flather, and Elliott 1994). When subsumed underwater tem-

porarily, depths rarely exceed 10 m even in high wind conditions (Li, Zhu, and Wang 2013).

This suggests a 2D current simulation, with empirical variation in depth, a 2D wind simulation

and a surface wave model, would be sufficient for surface input data into a short-term oil model.

The model would be intended for sensor guidance, not comprehensive spill simulation. Sensitiv-

ity studies of a similar model (De Dominicis et al. 2013b) demonstrate that a calibrated model

retains predictive accuracy for approximately 1-2.5 days, with the forecast accuracy largely

dependent upon the input ocean currents.

Backwards in time models have been attempted in literature, where in general, oil at a receptor
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node, or final time position, is backtracked through a velocity grid produced by a forwards

simulation of fluid. Early work relied on time reversed stepping of particles through time-

invariant maps of mean current and wind fields to determine probability maps of oil starting

at that position reaching a receptor node target (Galt and Payton 2005). Batchelder 2006

used time-varying velocity fields stored from a forward run of an ocean model to implement

a forward and backward in time trajectory model of particles, that included advection and

vertical diffusion (Batchelder 2006). Batchelder used a negative time step for advection and

discusses the difficulty and utility of inverse diffusion, before including diffusion as a random

process in his backwards in time simulations, to demonstrate its utility in describing an area of

possible sources. Batchelder 2006 notes that vertical diffusion creates a particle dispersion with

no indication of particles’ initial depth after only 0.2 days of forward simulation and utilises

a further forward simulation of his estimated source and the closeness of the resulting mean

particle position to the original receptor node as a performance indicator.

Similar work, such as a two-way particle tracking model (Isobe et al. 2009), included horizontal

diffusion as a random walk in both the forward and backward simulation. Multiple particles

were reversed from a receptor node and each of their positions at the supposed release time was

considered a source. These sources were then tested via forward simulation and a statistical

measure of their final particle layout used to discard unlikely sources (Isobe et al. 2009). The

above approaches were limited to a singular receptor node in their backwards time simulation.

Perhaps the distribution of particles across multiple nodes could be used to infer something

of the random process. A more recent work looks at utilising multiple receptor nodes, but

only to generate probability maps of oil start positions reaching certain nodes (Ciappa Achille;

Costabile 2014). Yu et al. 2017 describes a method of parameter estimation for wind and current

coefficients, as well as random step size, given a large set of drift data. These parameters are

then used in another reverse advection and turbulent diffusion by random walk (Yu et al. 2017).

Inputs to the models, including geographical, wind and water current data, all must come from

exterior hydrodynamic models, that also vary in approach.
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2.2.2 Hydrodynamic modelling

Environmental models provide the oil spill model with wind, wave and current data. Modern

3-dimensional models commonly use a harmonic water-level tide model for boundary in-flows

and out-flows and base their physical processes on the work of Mellor (Mellor 2003): 3D Navier

Stokes, radiation stress from linear surface waves and a Smagorinsky eddy parametization, but

with differing discrete solution methods such as an unstructured mesh (Wang and Shen 2010).

Continuing work enabled coupling the wave model with an ocean model, and modification to

incorporate depth induced wave breaking and wave-current interaction (Mellor, Donelan, and

Oey 2008). Wave models are still external to the ocean model in most cases (Spaulding 2017),

with one notable exception being Mellor’s continuing research. This is a joining of the Stevens

Institute of Technology Estuarine and Coastal Ocean Model (sECOM) and Mellor-Donelan-Oey

(MDO) wave model (Marsooli et al. 2017). Some work omits Ekman currents completely (slow

forming horizontal net water currents due to the force balance between the Coriolis effect and

wind shear), others prefer to account for them (instantaneously forming) in their oil drift angle

formulation (De Dominicis et al. 2013a), while others include them in their 3D hydrodynamic

model by including a Coriolis force term in their Navier Stokes equations (Marsooli et al. 2017).

Due to the constraints on computation, communication and time, the current 3D hydrodynamic

models are unsuitable for UAV application: A state of the art model takes 74 hours to solve a

9 day simulation across 66000 nodes (the most useful measure of area), or approximately 400

km x 300 km, on an 8 CPU OpenMP computer (Marsooli 2017).

The separation of Ocean modelling to Oil modelling does have advantages, allowing for differing

hydrodynamic approaches to be used and the appropriation of data from any source, be it small

scale Boussinesq models (Lonin 1999), large scale circulation models (Marsooli et al. 2017) or

broad-scale measurements: high-frequency radar, synthetic aperture radar (SAR), wave buoys

or other data sources. However, there are disadvantages: If the models are not integrated, or

run at the same time-steps, large data-sets must be produced and stored by the hydrodynamic

model for use by the oil model, which may need to interpolate the data. Also, there can be no

two-way coupling between oil and hydrodynamics; the dampening affect of oil on surface waves

(integral to SAR measurement) (Zhang et al. 2015) cannot be included if the hydrodynamics

are pre-calculated. Furthermore, certain parameters may only need to be calculated where oil
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is likely to be. Wave spectra for example, could be calculated only where required.

The chosen approach here is a computationally tractable 2D hydrodynamic model to resolve

input ocean and wind flow (if available from operational models) around local bathymetry and

geography features too small to be included in the input data. Flow simulation in 2D has

been conducted by the computational fluid dynamics (CFD) community as structured meshes,

unstructured meshes (Chen, Liu, and Beardsley 2003), finite difference, finite element, finite

volume and spectral methods. Assumptions that the sea-surface is inviscid, incompressible and

irrotational are common and acceptable, though flow around geographical boundaries may (but

not necessarily) invalidate this paradigm (Hover and Chin 2009). Since the priority here is large-

scale fast simulation, focused on only the key physical processes relevant to the spatio-temporal

evolution of oil spills, literature from the computer science industry that attempts to simulate

realistic flow in real-time or faster is of particular interest. Classical CFD approaches that

rely upon steady flows are disregarded, as tidal boundaries discount time-averaged methods.

The methods of discretising the simplified, incompressible and irrotational Navier Stokes PDE

vary from simple finite volume methods (Stam 2003) to even simpler, viscosity discarding

Euler simulations (Braley and Sandu 2009). Because of its computational speed, a structured

mesh (generated from images or bathymetry data), finite difference, projection based pressure

correction solver will be implemented. The large scale of oil spills implies large mesh scales and

long time-steps, while still offering a stable simulation using explicit methods.

The 2D ocean flow is then extrapolated to a complete vertical velocity profile to the sea-

bed, using tidal current, Ekman current estimations, Stokes drift and wind induced surface

shear. Additionally, a complete wave spectra is calculated where oil particles are present and

environment conditions are contained within each grid cell, though use of spatio-temporally

varying external data is also supported if available. The vertical velocity profile is important

to estimate the further dispersal of oil resulting from its subsumption and resurfacing within

water, without utilising expensive 3D flow simulation or large 3D external data-sets that are

often unavailable for the local region.
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2.2.3 Summary and further considerations for modelling

Concisely summarising the above reviews of oil and environment modelling: Both fields have a

vast array of methods, spanning from simple empirical formulae to stochastic PDE solving in

3-dimensions. Environment modelling has clearer trade-offs between accuracy and computation

speed, for example, the difference between a coupled 3D wave, wind and ocean flow model and

a 2D uncoupled simulation of the water surface flow with an empirical wave model. However, in

the oil modelling field every modelling approach has variation in coefficients, formulation and

solution methods. There is little consensus on the most accurate approximation, as every oil

spill is a unique example with difficult sensing challenges, limiting the comparison of methods

to a known result (Spaulding 2017).

Here, the oil and environment models form part of a complete online monitoring framework.

Hence, there are further considerations outside of accuracy and computation speed. The mod-

els must be capable of assimilating measured data, including correcting externally provided

fluid flow data. Current stand-alone oil models are incapable of doing this without access to

the external hydrodynamic models upon which they rely. Additionally, the model must pro-

vide stochastic measures of probability, as is common, but also of other information theoretic

measures: Particle distribution variance and entropy for example. These further measures are

valuable when determining sensor location.

2.3 Sensor Guidance and Optimisation

Efficient sensor guidance is critical to monitoring contaminants, ensuring sensors and payloads

are in the optimal place and time. Sensor guidance can be divided into a hierarchy of strategic

guidance, tactical guidance and local guidance. As described in Chapter 1, this work will

focus upon the strategic and tactical level guidance; Assigning sensors to spills appropriately

and determining a measurement path for a sensor once there, to map, monitor, predict and

hind-cast the spill. The local guidance is assumed adequate, whereby the sensor can follow the

planned path and gather measurements appropriately.
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2.3.1 Sensor placement literature

Before focusing on sensor placement or guidance for contaminant monitoring, some background

on the sensor placement research field. It is a vast and fast-moving body of work, with distinctly

different approaches depending on the purpose of the sensing. The field expands again if the

control of sensors, via Model-Predictive-Control or similar (Vali et al. 2019), is considered also.

The method of sensor control or sensor placement varies with the intended use to such an extent

that it is difficult to direct the reader to a single review paper, but perhaps Yi and Li 2012,

Hinson 2014, Liu, Yan, and Guedes Soares 2018 and Wang, Li, and Chen 2020 offer an overview.

To provide a brief summary, in Wang, Li, and Chen 2020, it splits the NP-hard problem of

sensor placement under the broad approaches of decomposition based methods, optimisation

methods, greedy methods, heuristic methods and machine learning methods. It is also relevant

to briefly mention the metrics of sensor performance. Sensors are placed or pathed to fulfil a

variety of conditions in literature, these include but are not limited to; 1) maximising the Fisher

information matrix determinant, 2) minimising the estimation covariance matrix determinant,

3) maximising the observability Gramian, 4) minimising the highest variance in the estimation

covariance matrix and 5) minimising the average variance in the estimation covariance matrix.

So far, 1), 2) and 3) are all analogous and 1-3), 4) and 5) form conditions for D-optimal, E-

optimal and A-optimal sensor placement respectively. There are further information theoretic

metrics used, 6) maximising the information quality gathered and 7) minimising the information

entropy. The reader is referred to Yi and Li 2012, Hinson 2014, Hollinger and Sukhatme 2014

and Leyder et al. 2018 for further details on these metrics, though there is discussion of which

metrics intuitively suit this project in Chapter 5.

In this work, sensors are mobile, there is a short (a minute at most) time-constraint on calcu-

lation time, the environment and oil model is stochastic, non-linear and has changing numbers

of states in its full-description due to the Lagrangian particle description of oil. Furthermore

there are fundamental choices to make in a sensing strategy in an uncertain environment: ex-

ploitation, or exploration, and in this case whether to measure oil or environment. For example,

consider the application of decomposition methods to the state trajectory of a combined ocean

and oil model. An initial decomposition, whether Proper-Orthogonal-Decomposition (Daescu

D. N., Navon 2006), Dynamic-Mode-Decomposition (Iungo, Abkar, and Port 2015), Empirical-
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Orthogonal-Functions (Rozier et al. 2007) or similar (Galerkin etc), provides a reduced order

description of the system in a set of spatially distributed basis functions, or modes. Assuming

a truncated decomposition, to a handful of modes, the mode shapes would describe the prin-

ciple flow structures of the ocean model and the major concentrations of oil. Additionally an

approximation of the time dynamics could be constructed. Assuming a cyclic tidal ocean flow,

the ocean flow time dynamics could be well described to an infinite time horizon, but oil dy-

namics are not cyclical and the decomposition model would fail when predicting oil distribution

to a future time. However, the ocean flow and oil concentration mode shapes are still poten-

tially useful. Two decomposition approaches to sensor placement for measuring ocean flow in

Yildirim, Chryssostomidis, and Karniadakis 2009 and Clark, Kutz, and Brunton 2020 place

sensors at mode extrema (highest fluid velocity) and the pivot points in a QR-factorisation of

the decomposition modes respectively. In both cases, this is a sensing strategy focusing on accu-

rate estimation of the modal amplitudes, not determination of the mode shapes in an unknown

environment. Application of such sensing strategies to the decomposition of the ocean and oil

model would place sensors at the supposed peak fluid flow velocities and oil concentrations

for the method in Yildirim, Chryssostomidis, and Karniadakis 2009, or at the optimal mode

interpolation points for the method in Clark, Kutz, and Brunton 2020. This may be adequate

for confirming the broad features of a prediction and exploiting the model, but is incapable of

exploring oil spill boundaries or unexpected flow shapes and has an intrinsic reliance upon an

already accurate trajectory for the decomposition. In-fact, both decomposition and machine

learning based approaches are subject to data-fitting, as the time-constraint limits the genera-

tion of sufficiently broad data-sets for decomposition or machine learning training. That said,

the recent machine-learning based work in Wang, Li, and Chen 2020 shows promise: Although

the method in Wang, Li, and Chen 2020 again operates in a reduced order sub-space subject

to data-fitting, there is a measure of mode error present.

The complexity (non-linear, stochastic, Lagrangian particles) of the underlying model and

sensor placement problem makes solution through global optimisation infeasible within the

time-constraint, at least for the full model description with a branch and bound style solver.

The research field of optimising with linear, non-linear and stochastic systems, with constraints,

is vast and beyond the scope of this review. The reader is directed to Shahriari et al. 2016
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and Ehsan and Yang 2019 for an overview. A recent approach has applied the Efficient-

Global-Optimisation method to sensor placement to maximise the trace of a vibration modal

correlation matrix, with Kriging (or Gaussian-Process-Regression) amongst other approaches

used to form a model of the cost function evaluation and thereby simplifying the problem

(Morlier et al. 2018). By applying a simpler surrogate model, an update rule on sensor positions

that maximises the expected improvement in the surrogate model can be utilised, eventually

converging to the optimal sensor locations for the true system. Examples of other methods to

produce a tractable sensor placement problem include convex relaxation with local optimisation

(Akbarzadeh et al. 2014) and gradient descent style approaches (Joshi and Boyd 2009; Funke,

Farrell, and Piggott 2014). These are, in-essence, heuristic and greedy methods.

Returning to the balance of confirmation and exploration measurements. This is analogous to

simultaneous estimation and control of the states of a system; mobile sensor-actuators must

balance their time between optimal sensing and actuation locations. For brevity, these mo-

bile sensor-actuators will be referred to as sensors here. This problem is addressed in Zammit

Mangion, Anderson, and Kadirkamanathan 2011, where an A-optimal (trace of the spatially

weighted estimated error covariance) cost function is extended by the squared error between

system states and reference states and extended again by a sensor effort term. Such an ap-

proach is elegant and intuitive. Mobile sensors therefore display simultaneous exploration and

field control behaviour as they minimise this all-in-one cost function, step-by-step to a time-

horizon. Results demonstrate intelligent sensor behaviour. A Galerkin decomposition spatial

discretisation is used to facilitate efficient evaluation of the cost-function and estimation using

a Kalman filter, and the later solving of the cost-function minimisation. Here, the family of

spectral PDE solution methods may be difficult to utilise due to the non-linearity, complex

bathymetry and system structure of a combined ocean and oil model, combined with the in-

herent lack of knowledge around a maritime incident. Although the smoothness, regularity and

structure of the ocean flow is likely well defined and suitable for a spectral or at least an un-

structured mesh solution method, the same can not be said for the distribution of uncertainty.

In Zammit Mangion, Anderson, and Kadirkamanathan 2011 the cost function minimisation is

recognised as online stochastic optimal control and to make the problem tractable for real-time

implementation, a one-step ahead control horizon is utilised though requiring a two-step predic-



30 Chapter 2. Background and Related Work

tion: One step for sensor movement, another step for sensor affect. Furthermore, to avoid local

minima, a grid-based initialisation procedure is employed and sub-regioning acts as velocity

constraints on the sensor. Here, it is likely that cost-function evaluation will be prohibitively

computationally expensive for a grid-based initialisation and another heuristic may be needed.

2.3.2 Oil monitoring literature

The remainder of this section will discuss the strategic and tactical guidance of sensors, begin-

ning with path planning approaches to target following and moving on to contaminant specific

methods in recent literature. Classical path planning encompasses moving to a fixed target

location and searching for and following a moving target. Moving to a fixed target bears resem-

blance to the travelling salesman problem, an NP-hard computationally intractable problem;

for which multiple solutions have been developed (Eaton, Chong, and Maciejewski 2016). Broad

approaches include:

• A traditional A-star or Dijkstra approach (Dijkstra 1959) has been applied to UAV path

finding and planning, due to its easily implementable structure and capability to be

adapted to any cell-based cost function (Meng, Gao, and Wang 2009) (Bertuccelli et al.

2009).

• Tabu or Taboo search algorithms (Glover 1990) have also been applied to UAV guidance

(Wang et al. 2015), though offer poor performance in comparison to newer techniques

and have no handling of constraints or complex objectives.

• Voronoi Diagrams and Discrete Particle Swarm Optimisation (DPSO) (Tong et al. 2012).

This work builds upon particle swarm optimization approaches to non-linear function

optimization. Particle swarm optimization (PSO) has been utilized in cooperative search

UAS path planning (Peng et al. 2009) or path planning for multiple agents (Wang, Li,

and Guo 2010) and can include collision-free guarantees (Alejo et al. 2015).

• Genetic algorithms (GA) have been adapted to path planning for both single and mul-

tiple UAV and compared to PSO methods, proving to be an improvement (Roberge,

Tarbouchi, and Labonte 2013). Further research attempts optimal path generation (Son-

mez, Kocyigit, and Kugu 2015) and cooperative planning around tasks using GA’s (Geng
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et al. 2013).

• Simulated annealing search, using metallurgic processes to solve for global minima. Adapted

to UAS path planning (Turker, Sahingoz, and Yilmaz 2015) and compared to a variety

of approaches, simulated annealing gave the best performance, but at the highest com-

putation cost. Though its computation gradient was the shallowest, rising the least with

increasing problem complexity.

• Discretised control with ant colony optimisation (ACO), employing digital pheromones

and adapted to UAS (Duan et al. 2009). ACO and GA, when combined, give improved

performance (Shang et al. 2015).

• Receding horizon control (RHC) also known as model predictive control (Mattingley,

Wang, and Boyd 2011). Forms a part of many path planning algorithm types, offering

control of complex objective, non-linear, constrained, multi-input and multi-output sys-

tems. RHC produces future predictions and an input trajectory to follow, at smaller

computational cost than global planning method algorithms. RHC has been employed

as a decentralized guidance algorithm (Kuwata and How 2007), with safety guarantees

(Schouwenaars and Feron 2004) and combined with more abstract algorithms for perfor-

mance improvements (Xiao et al. 2012).

Algorithms have also been developed specifically for target search and target following with

UAVs, employing a large variety of methods. These include underlying employment of, a par-

tially observable Markov decision process (Ragi and Chong 2013), genetic algorithms (Sonmez,

Kocyigit, and Kugu 2015), triggered sensor networks (Krishnamoorthy et al. 2012) (Krish-

namoorthy, Casbeer, and Pachter 2015) with observation vehicles. Probability density func-

tions with negotiation task assignment framework, for multiple UAS tasking (Moon et al. 2015),

demonstrated search capability for multiple UAS’s and multiple targets, with minimal overlap-

ping. Receding horizon control with a virtual force modification (Xiao et al. 2012), capable of

cooperative search but proved inefficient on irregular search areas. Another method is modi-

fied diffusion with a receding horizon and potential method algorithm for coordinated search

(Sun and Liu 2009). There are further probability approaches (Bertuccelli and How 2005),

pheromone-based algorithms (Qu, Zhang, and Zhang 2015), Gaussian process priors for global
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maxima locating (Zhang and Pei 2015) and multiple agent fed probability maps using Bayes’

rule (Hu et al. 2013).

Prior path planning research provides multiple satisfactory approaches to guidance generation

when searching for simple targets and following them once found. However, some lack consid-

eration of the target’s dynamics and rely upon an initial guess at the target’s location, offering

little in the context of maritime contaminants where the information available at the start (an

observed slick of oil) has no guarantee of containing the source location or providing a trail to the

source. The algorithms are not focused on continually developing maritime situations, where

the target number of oil slicks is not known, targets must be followed but not at the expense

of area mapping for other targets and there is both time-dependent and location-dependent

importance for each target.

In the oil industry, for monitoring oil spills there exists a variety of models (Spaulding 2017)

used to predict the spill trajectory, and further variation in definitions of spill uncertainty

(Goncalves et al. 2016), and decision support systems to evaluate potential responses (Nelson

and Grubesic 2019). However, existing models and decision systems often confine their flight

patterns to standard profiles, focus solely upon spill sensing and do not support real-time data

assimilation of measurements to correct utilised large-scale fluid model data. For an example of

strategic guidance, as in decision support systems, see Ye et al. 2019, where a simulation-based

multi-sensor particle swarm optimization approach assigns resources to monitor and clean-up

an oil spill. Oil spills were assumed static and, as the beginnings of a common theme in the

literature, there is no feedback loop present between the sensors or clean-up skimmers, and

the model predicting spill location and clean-up time. Hence it is unclear what their approach

would do if, upon arrival at a supposed location, no oil spill is present. If it assumes there is

no spill and declares the mission complete, this is an incorrect response. Instead, there needs

to be an appropriate sensing strategy to correct the original spill trajectory prediction.

A consistent thread through all of the oil monitoring control literature is the limiting of sen-

sor consideration to determining an accurate now-cast, or an accurate source-location, when

monitoring an oil spill. With very few exceptions, which are discussed later in this section,

there is no consideration of utilising measurements to improve the accuracy of the environment

model. Given the variety of information required in spill responses and litigation, there should
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be a focus upon increasing estimation accuracy of the spill trajectory across the whole spatio-

temporal domain. In support of this, the monitoring framework must be capable of establishing

an accurate flow model for the region, with the directing of suitably equipped sensor platforms

to measure fluid velocities at crucial locations. The placement of sensors to determine fluid

flow and the principal dynamic structures within a flow field is a whole research field in itself,

beyond the scope of this Chapter. The reader is directed to Yildirim, Chryssostomidis, and

Karniadakis 2009, Annoni et al. 2018, Clark, Kutz, and Brunton 2020 and Jayaraman and Al

Mamun 2020, which contain modern decomposition based approaches, similar to one evaluated

and ultimately discarded and replaced in this work, further detailed in Chapters 5 and 6.

The most closely related work in the sensor control field, that focus upon tracking oil spills

or drifting objects, utilise an underlying model to generate oil or object predictions over time.

However these models are extremely simplistic, using uniform flow in small areas, with constant

diffusion coefficients and no environmental constraints. Furthermore, the models themselves

are underutilised; for example, merely being used to generate a sinusoidal flight path around

the supposed oil spill edge (Zhang and Pei 2015). There has been application of model-based

optimisation to oil spill clean-up trajectories (Kakalis and Ventikos 2008; Grubesic, Wei, and

Nelson 2017), and several multi-agent sensor approaches have followed bio-mimetic approaches

in swarm behaviour (Banerjee, Ghosh, and Das 2018; Bruemmer et al. 2002) to track oil spills

and further work uses cost-function minimisation to plan samples (Yan et al. 2018). Yan et al.

2018 and Lian et al. 2018 minimise the mean-squared error between the estimates of a Gaussian-

Process-Regression model and sensor measurements, map a spill, and explore a domain through

a three-stage algorithm. Closely related work in the atmospheric field plans a sensor path that

maximises a utility function based on the estimated information gain of each measurement in a

Bayesian framework, seeking to determine the source parameters (Hutchinson, Liu, and Chen

2019). As noted in Hutchinson, Liu, and Chen 2019, the presence of turbulent flow, contaminant

irregularities and sparse sensing limits the effectiveness of gradient-based approaches for oil

spill mapping. In prior methods, though some do utilise a model of contaminant spread, their

models lack the oil dynamics, cyclical tidal flow, or wind, wave and water coupling necessary

to capture the key dynamics in oil spreading. For example, Hutchinson, Liu, and Chen 2019

nicely incorporates the effect of underlying flow on their tracer when sensor path planning,
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through generation of an expected observation using their model, but assumes a constant

mean flow velocity. In this work, it is acknowledged that a significant source of uncertainty

is the underlying time-varying velocity fields and the definition of uncertainty is structured to

incorporate this. Hence, improvement in estimation of the environment is considered when

planning sensor paths to minimise uncertainty.

Use of information theoretic measures of uncertainty minimisation is present in uncertain en-

vironment path planning literature (Feder, Leonard, and Smith 1999; Candido and Hutchin-

son 2011), and some cognitive search strategies (Vergassola, Villermaux, and Shraiman 2007;

Hutchinson, Liu, and Chen 2019) are formulated as an optimisation using a partially observable

Markov decision process (Chong, Kreucher, and Hero 2007), though these focus on source term

estimation. For example, Vergassola, Villermaux, and Shraiman 2007 minimises the expected

entropy of the posterior probability map of source location.

2.3.3 Summary and further considerations for sensor guidance

To effectively summarise the review of control literature for oil spill monitoring, particular at-

tention is given to four papers: These are Zammit Mangion, Anderson, and Kadirkamanathan

2011, Hutchinson, Liu, and Chen 2019, Yan et al. 2019 and Pashna et al. 2020. The strengths

of Hutchinson, Liu, and Chen 2019 and Yan et al. 2019 are their stochastic underpinnings

and optimisation: Through the use of a Bayesian framework and Gaussian-Process-Regression,

information theoretic measures form a cost function to be optimised by sensor guidance. In

Hutchinson, Liu, and Chen 2019, this is maximising the utility of the expected measurements in

the next update cycle. In Yan et al. 2019, this is minimising the variance within the Gaussian-

Process-Regression model, and variance of the observation prediction value of GPR regression

model. The major features that stand-out above other work is their consideration of enhancing

the accuracy of their underlying model and forming of an all-in-one optimisation problem that

does not require multiple control approaches. However, both Hutchinson, Liu, and Chen 2019

and Yan et al. 2019 employ a simplistic model. While Hutchinson, Liu, and Chen 2019 states

it is possible to substitute any model into the Bayesian framework (this includes Gaussian-

Process-Regression, Kalman Filters/Smoothers etc), a stochastic 2.5D hydrodynamic and oil

particle model with 105 variables would considerably complicate the propagation of variable
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distributions and uncertainty between time-steps. Hence some abstraction of the model will

be required. In Pashna et al. 2020, an oil spill monitoring framework is suggested that makes

use of a more complex model, described by a stochastic PDE with weathering included. How-

ever, this models 2D surface dynamics only, without wave processes, entrainment or buoyancy.

Furthermore, though a hybrid Fuzzy and Artificial Potential Field controller demonstrates an

approximately 85% precision in tracking an oil spill, once again there is no consideration of

enhancing the accuracy of their underlying environment models. Finally, the cost function

extension and solution method in Zammit Mangion, Anderson, and Kadirkamanathan 2011

demonstrates an approach capable of multi-objective sensor control; to both measure and re-

move uncertainty at peak locations, but also explore the domain to improve the model.

Note that the above identified papers are both closely related and very recent. The work

here-in is similar in some aspects: The underlying model contains a stochastic PDE, but in

3D/2.5D for oil and environment flow respectively and makes use of a linear wave model.

This is a significant step towards a more accurate and complex model to utilise in a control

algorithm. A constrained model-based optimisation problem is formulated and solved, that

contains information theoretic measures including variance, probability and entropy. There

is also emphasis on measurements that enhance the accuracy of extrapolation of an oil spill

forward and backwards in time.

2.4 Data assimilation

Sensor data, assumed to be point measurements of states, must be used to estimate the states

of the entire environment flow fields, wind and ocean, as well as updating the oil particles.

Due to the complexity and the high numbers of states in a combined ocean and oil model, a

full-state estimator is infeasible. Commonly used methods in the hydrodynamic field include

the SEEK filter, see Rozier et al. 2007, Ensemble Kalman-Filters/Smoothers(EnKF/EnKS)

extended in Raanes, Bocquet, and Carrassi 2019 and 4-Dimensional Variational Assimilation

(4D-VAR) (Amezcua, Goodliff, and Van Leeuwen 2017). Note there are also hybrid meth-

ods (Cessna, Member, and Bewley 2010). The SEEK filter is also known as a reduced-order

Kalman filter and under certain conditions, and relaxation of the Gaussian distribution of

states/observations assumption, is akin to the reduced order information filter (Chin, Haza, and
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Mariano 2002). SEEK is concisely described as an Extended Kalman Filter (EKF), where the

error covariance matrices are truncated to a reduced low-order space and propagated through

time in their reduced form. Ensemble Kalman methods utilise a collection of simulations

forming an ensemble of propagated perturbed state trajectories to implicitly approximate the

propagation through time of an error covariance matrix. 4D-VAR is a space/time variational

minimisation of state error, similar to Moving Horizon Estimation in the controls community

(Michalska and Mayne 1995), that also requires estimation of covariance matrices but also

tangent linear approximations of the system to the first order (Jacobian matrix) and poten-

tially second order (Hessian matrix) and the adjoint of the system dynamics. 4D-VAR without

modification, operates directly on the high-order model. Substitution of reduced order models

and approximations into 4D-VAR, or their approximation through an ensemble (discussed in

Amezcua, Goodliff, and Van Leeuwen 2017), alongside Hessian-free (Daescu D. N., Navon 2006)

solver methods, has attempted to reduce the computational complexity of 4D-VAR. Methods

of reducing the order of the system description and size of the associated covariance matrices

vary, with Proper-Orthogonal-Decomposition (Daescu D. N., Navon 2006), Dynamic-Mode-

Decomposition (Iungo, Abkar, and Port 2015) and Empirical-Orthogonal-Functions (Rozier et

al. 2007) in use amongst others.

Parallel model runs or downloading multiple external data sets is not necessarily feasible in

remote environments, where only a singular operational model may be available, if at all. Fur-

thermore, even if multiple operational models are available, unless there is a high fidelity small

scale model also available, the data-sets may be large-scale and very similar. Hence a formed

ensemble may not include worthwhile perturbations that capture the variance induced by small

eddy currents or shipping traffic. Therefore, while ensemble based methods of estimating tra-

jectories and covariance matrices may still be a useful, it is a trade-off against the extra cost

of data-access and computation resources.

Needed for full-order and accurate variational assimilation, tangent linear descriptions of a

stochastic Lagrangian oil spill are impractical due to random variables and ever changing state

numbers, especially when coupled with an Eulerian fluid model. Although tangent-linear ap-

proximations and reduced order implementations of variational assimilation could be viable,

the advantage that variational assimilation has model-described knowledge of system behaviour
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may be lost as the solver must operate in the limited subspace of the reduced-order description.

2.5 Summary

Condensing the literature reviews above, there is potential for application of mobile sensors

upon UAVs to monitoring contaminants. The models currently used to predict spill trajecto-

ries are varied and either independent from a hydrodynamic model and fast, or coupled to a

hydrodynamic model and slow. There is therefore an incentive to develop a highly streamlined

combined ocean and oil model, that trades absolute accuracy for a fast computation speed for

a control feedback loop, with the ability to assimilate both oil and fluid measurements. The

developed model should be integral to the chosen guidance algorithm and thus improve upon

the models currently utilised in the control field. The model-based guidance algorithm should

consider model improvement, environment and oil spill estimation, analysis and prediction, in

an all-in-one solution. Finally, a data-assimilation method that is ensemble-free and tangent-

linear model-free is required, due to the computation requirements and system description

respectively. Together, the combined ocean and oil model, model-based sensor guidance and

data assimilation methods form a model-based adaptive monitoring strategy.
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The Adaptive Monitoring Framework

This chapter provides a brief overview of the proposed adaptive monitoring framework, with

the following chapters providing detailed explanation of each of the key stages.

The adaptive monitoring framework is shown in Figure 3.1. At the heart of the framework is the

fluid and oil model, the Sheffield Combined Environment Model (SCEM) (Hodgson, Esnaola,

and Jones 2019). At each time step, SCEM solves the wind velocity, ocean velocity and oil

particle velocity at each grid point within a discretised spatial domain, and also evaluates a

probabilistic function of oil particle presence. These are combined into a state vector and solved

forwards in time, over a specified time horizon, to produce a state trajectory. This constitutes

the Stage 1 of the framework. The computed state trajectory is subsequently used separately

to solve an optimisation problem (Stage 2) and identify a reduced order model of the plant

(Stage 3). The solution of the optimisation problem returns the optimal sensing locations for

minimising a function of uncertainty in oil spill particle location. This is solved to a time

horizon, thereby providing each mobile sensor with a path trajectory. The sensors navigate to

the first location along this path and take a measurement of the ocean surface velocity, wind

velocity and oil thickness, at that point in space. The measurements are utilised with the

identified reduced order model, in an estimation stage (Stage 4). The estimated states of the

reduced order model are mapped back to the physical states and used to re-initialise SCEM at

the next time step. This sequence is recurrent in a receding horizon fashion.

38
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Figure 3.1: A block diagram of the framework for adaptive monitoring using SCEM, demon-
strating the system feedback.

3.1 Overview of methods

This section provides an overview of the methods utilised in each stage of the framework.

Stage 1 (Chapter 4) has a 2D Navier-Stokes solver, to resolve low-fidelity ocean and wind

flow around the local geography. The solver is similar to the work in Stam 2001, using finite

differences to approximate spatial derivatives, with forward Euler explicit time-stepping of

advection and backwards Euler implicit time-stepping of diffusion, with a varying time-step.

Empirical approximations extrapolate the ocean surface and wind flow velocities to an ocean

sub-surface velocity profile, including wind-shear flow, tidal flow and Ekman currents, and a

linear wave model uses wind and ocean flow to produce an ocean wave spectrum. The oil model

component of Stage 1 utilises a standard Langrangian particle approach, where oil particles are

moved around by the ocean and wind dynamics, with minor corrections and modifications from

recent literature. Chapter 4 also includes a Fokker-Planck type equation (Risken 1996), where

instead of a PDE description of a particle ensemble’s position probability density function, a

pair of PDEs describe the evolution of a particle ensemble’s position variance and produces a

scalar measure of uncertainty. The scalar measure being the position uncertainty (as an area)

of particles at a spatio-temporal location. These uncertainty PDEs use a further Stam-style

discrete solver, in a state-space formulation for the application of state space optimisation

solvers in the next stage and chapter.
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Stage 2 (Chapter 5) finds a sequence of sensor measurement positions that best inform the

model of oil particles and fluid flow, up to a future time. To do so, an uncertainty minimisation

optimisation is formulated, with the sensor position trajectory to a receding horizon being the

optimisation variable. The uncertainty in this optimisation is governed by the the uncertainty

PDEs described in Chapter 4. This is a locally-convex, non-linear optimisation problem with

time-varying constraints on sensor position. The optimisation is solved for an optimal sensor

position trajectory using a gradient descent method. The gradient of the optimisation cost

function, with respect to the sensor positions, is determined through application of the discrete

Adjoint method. The Adjoint method uses the dual form of the constrained optimisation

problem to form a backwards recursion algorithm, that introduces and solves for a new set of

Adjoint variables backwards in time. These Adjoint variables are then used to determine the

cost function gradient.

Stage 3 (Chapter 6, Section 6.1) uses the state trajectory (data set of state snapshots over

time) of Stage 1 to form a reduced order model. While the non-linear model in Stage 1 utilises

a large number of states (several thousand) to describe fluid flow, the linear reduced order

model might have just a few, where each reduced order state describes a large flow structure.

For example, one state might describe the amplitude of the main flow in a river channel (See

Figure 3.2), and another the amplitude of the main eddy swirl at a river mouth. The reduced

order model adjusts the amplitude of these flow structures with time to capture the dynamics

of the flow. Hence the reduced order model describes the the large state trajectory using

a few mode shapes, the initial condition of the mode amplitudes, and changing of the mode

amplitudes with time. The method of model reduction extended in this thesis is Dynamic Mode

Decomposition (DMD), a technique to extract spatio-temporally coherent structures, and their

dynamics, directly from the high dimensional data of the SCEM state trajectory. DMD forms a

set of modes, each with a fixed oscillation frequency and decay/growth rate. Each mode has its

oscillatory temporal behaviour contained in a mode dynamics matrix, analogous to a discrete

time linear-time-invariant state-space dynamics matrix. See Figure 3.3 for an example of the

mode dynamics matrix eigenvalues. The DMD modes are not orthogonal in space (like Principal

Component Analysis), but instead groups spatially distributed states into modes according to

their sinusoidal behaviour in time. This is particularly useful when performing dimensional
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Figure 3.2: The mapping of the first DMD mode to tidal flow around Hong Kong, with a
mode state value of 2.7066 + 1.416i. As the first mode, this is the mode that captures the most
energetic structures in the flow and hence describes the Zhujiang river.

reduction on an oscillatory data-set, such as those involving tides, as a measurement in one

spatial location can be applied across the domain to all locations that are strongly coupled in

time through estimation of the underlying mode amplitudes.

Stage 4 (Chapter 6, Section 6.1.1) uses measurements of flow velocity to estimate the mode

amplitudes of the reduced order model and hence the flow of the entire domain. The mode

estimates can be stepped backwards or forwards in time, using the linear reduced order model

dynamics, to produce an analysis or predicted flow trajectory that is resolved to a higher

fidelity in a rerun of the high order model SCEM, where SCEM is driven by the reduced order

model trajectory and velocity measurements. In addition to estimating the flow velocity using

sensor data, after several measurements are gathered, the estimates of earlier flow velocities are

adjusted (or smoothed) for better accuracy using the later sensor data. The selected method

of reduced order model state estimation is the Rauch–Tung–Striebel (RTS) smoother, a two-

pass algorithm for fixed interval smoothing. The forward pass is a time-varying Kalman Filter

(KF): Despite the reduced order model being linear-time-invariant the reduced order model is
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Figure 3.3: The reduced order model eigenvalues for a four mode reduced order system. Note
that all eigenvalues are Lyapunov stable but un-damped, being exactly upon the unit circle,
and hence oscillate with the same amplitude indefinitely. These eigenvalues have oscillatory
periods of approximately 12 (larger imaginary component) and 24 hours (smaller imaginary
component). This is expected for an asymmetric tide cycle, where the sinusoidal profiles com-
prise of one standard 12 hour period oscillator to describe the tides, and a longer 24 hour
period oscillator that alters the amplitude of the first and second tides when the oscillators are
combined.
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redetermined regularly, so a non-linear Kalman filter is required to handle the changing system.

A Kalman filter is an efficient optimal estimator, utilising a series of noisy sensor measurements,

a model of the estimated process and a recursive methodology to produce state estimates more

accurate than estimates based on a single measurement alone. The Kalman filter also estimates

a measure of the state estimate uncertainty. The backward pass is a further recursive algorithm

that steps from the latest estimate to the earliest estimate, utilising the forward pass Kalman

filter variables and measurements to smooth the state estimates, also adjusting the smoothed

state estimate uncertainty.

3.2 Monitoring framework iteration

The monitoring framework is an iterative process, with an initial forward run being used for

analysis, providing conditions for another forward run and further analysis and so on, towards

a receding horizon. During a forward run the reduced order, DMD model, is re-calculated

whenever new measurement information is available. Each time there is new sensor data, the

reduced order model is again determined from the moving time-window of the state trajectory

and has amplitudes estimated by the RTS smoother. This smoothed trajectory is an analysis

trajectory. The RTS smoother uses prior flow estimates and external data as measurements,

and sensor data if sensors are active. By stepping the Kalman filter component of the RTS

smoother forward, ahead of the current time, the reduced order DMD model can be used to

predict future fluid flow and can assimilate external data predictions if desired. The prediction

of later (e.g an hour ahead) fluid flow, oil movement and uncertainty uses SCEM, but forced

by the reduced order model fluid prediction and Kalman filter. Hence sensor path planning is

informed by prior sensor measurements. Once an analysis point has been reached, an analysis

trajectory is calculated, see Section 6.1.1. This analysis trajectory is then used to force another

forwards run of SCEM. A framework time-line for the simulations of Chapter 7, Section 7.2

and Section 7.3 is provided in Figure 3.4.
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Figure 3.4: A time-line displaying the iterative refinement of the model estimates, through
alternating forward and analysis passes. Forward runs of SCEM are initially forced by external
data and then through DMD and Kalman filter estimation. After analysis, which can include
source location estimation, forward runs are forced through the DMD model and RTS analysis
trajectory, with Kalman filter estimation if sensors are active. For Section 7.2, the analysis
times ts1 , ts2 and ts3 are after 12, 20 and 24 hours of sensing respectively.
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Modelling (Stage 1)

This chapter first presents the Sheffield Combined Environment Model (SCEM), for the purpose

of providing online control guidance to assets with minimal supporting data. The SCEM model

is described, giving equations and algorithm in both flow chart (Figure 4.1) and pseudocode

(Algorithm 1). The model is then demonstrated to accurately predict a real-world oil spill in

the Bay of Biscay 2019 and give similar results to an industry standard oil model GNOME

when given the same input data for a spill near Hong Kong 2019. Next, a suitable description

of oil spill uncertainty is developed from the equations used to model oil processes in SCEM.

To reiterate an earlier statement, the Sheffield Combined Environment Model does not present

a revolutionary step in the fields of hydrodynamic simulation or oil modelling, but instead

provides a fast, combined model for guidance of mobile sensors. This model is however, a step

forward for the model-based control field. Some components of the model are described only

in high-level detail, as referenced work offers a wealth of information. Any cases where there is

an unconventional description of a process is related to work in future sections. For example,

describing the turbulent diffusion process as a random walk, rather than incorporating it into a

complete description of particle movement as a stochastic PDE is to maintain clear separation

of the stochastic models for each process, for later analysis.

It is important to note that this model utilises external data provided by large-scale, complex

simulations of boundary layer wind and ocean flow as boundary data and estimated values if

available. The flow described by the external data is resolved around the local geography that

may not be present in the larger-scale external models. This is similar in purpose to the CATS

model (Galt 1984) employed by NOAA to inform the GNOME model (NOAA 2012). Flow is

45
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Figure 4.1: A block diagram of the combined fluid and oil model, showing the initialisation
with external data and the coupling between wind, current and wave motion in producing a
contaminant velocity field.

resolved using the 2D incompressible Navier-Stokes fluid equations, which are reasonable to use

at the air-water interface where surface fluid density is approximately constant on a maritime

incident scale (e.g 50 km by 50 km).

4.1 Environment modelling and model structure

The environment model contains interconnected sub-systems that describe local ocean currents,

local Ekman currents, local wind and local wave conditions. Figure 4.1 shows the main physics

sub-components and their interactions. At each time-step the local wind field is calculated first,

followed by the local ocean current velocity field, then the depth velocity profiles are calculated

and finally the wave model is updated to produce a wave induced velocity. These are used,

together with oil-only effects such as turbulent diffusion, mechanical spreading, entrainment

and buoyancy, to move oil particles. The complete forward simulation algorithm is described

in pseudocode in Algorithm 1.

4.1.1 Domain structure

The spatial domain is denoted by Ω ⊂ R3, and represents a cuboid section of the Earth including

land and ocean with a given depth. The upper surface, at the air to water/land interface, of the

domain is ∂Ω ⊂ R2. The surface is discretised into a regularly spaced grid of nx ∈ N grid cells
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(west to east) and ny ∈ N cells (south to north), with spacings δx ∈ R+ and δy ∈ R+ in the

respective directions. A grid cell at indexed position (xi, yj) covers the Cartesian coordinate

positions: (xi ± δx
2
, yj ± δy

2
) ⊂ ∂Ω, where index i ∈ J1, nxK is the west to east horizontal grid

index, where j ∈ J1, nyK is the south to north grid index. Continuous time t ∈ R+ has a

corresponding discrete time tk ∈ Rnt
+ with a time-step index k ∈ J0, nt − 1K for nt ∈ N varying

time-steps of δt : R+ →∈ R. A particular time-step size at discrete index k is δtk : N → R.

The trajectory of tk, formed by column stacking (or concatenating) tk for all k, is T ∈ Rnt .

The initial time is t0 ∈ R+ and tf ∈ R+ the final time.

Subsurface water is discretised with a two stage fine and coarse mesh, such that for each grid

cell there exists a set of depths z(xi, yi), defined by

z(xi, yi) = {0, δz1, 2δz1, ..., Ncritδz1, zcrit, zcrit + δz2, zcrit + 2δz2, ..., Nz̄ijδz2z̄ij}.

Depth spacings δz1 ∈ R+ and δz2 ∈ R+ are the finer and coarser vertical grid spacing respec-

tively, Ncrit ∈ N is the number of fine mesh grid cells. The switch depth from fine to coarse

mesh, zcrit ∈ R+, is determined by the maximum depth of oil particle insertion into the water

column (explained in Section 4.2.2), or specified by the user. By utilising a two stage depth

grid, finer detail can be maintained near the surface where the majority of contaminant me-

chanics take place. A 3D grid cell is specified by the indexes (xi, yj, zw), where w ∈ N is the

surface to sea floor grid index.

Note that a regular grid was selected in place of unstructured or spectral alternatives: In the

absence of prior information, or in the presence of often poor available information about the

maritime incident, there is no information available on the smoothness of the spatial gradients

of the fluid flow, or oil spill uncertainty, across the domain. Hence a regular grid of appropriate

size, balancing computation time with fidelity requirements, ensures a solution throughout the

region. Grid size in SCEM is determined by the sensor swathe width and mobility constraints,

data assimilation time spacing and computation time needed.

Grid spacing

An example of grid spacing determination is now given, suitable for the simulations of Chapter

7. Consider a UAV capable of flying at 60 mph, equipped with a 1920 x 1080 pixel optical
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sensor with a 30◦ field-of-view. These are approximate figures for an inexpensive UAV with a

telephoto-lens equipped High-Definition video camera. The UAV is required to supply thickness

and volume information, and hence requires an oil sensing resolution of 0.5 m for a small spill,

(see Table 2.2). To achieve a spatial sensor resolution of 0.5 m, the UAV would fly at an

altitude of 2000 m, with a 1000 m sensor swathe. Given the 1000 m sensor swathe, a grid cell

size of 1000 m by 1000 m is appropriate: Assuming an optical flow tracking capability, the

mean of the sensor flow observations can be taken for the grid cell flow, while Langrangian

oil particles can be added, removed, or modified as appropriate within the observed cell. The

World Meteorological Organisation require a temporal resolution of ≤ 1 hour for oil monitoring

(Golding et al. 2001), but due to the complex domain and environment (busy shipping lanes,

strong asymmetrical tides) a 15 to 30 minute temporal resolution seems prudent in Chapter

7. At a 1000 m by 1000 m grid cell size, with a 15 to 30 minute time-step, the framework is

capable of operating sufficiently quickly for real-time UAV control and data assimilation.

Note that the reduced order DMD model is far lower fidelity and filters out high frequency

components of flow. One reduced order state might describe the flow of an entire river channel

for example. However, the low-order projection is resolved to a higher accuracy by the 2D fluid

model in SCEM, and sensor measurements inject additional fidelity in important regions.

Model states

The combined ocean and oil model described here is a component of the larger adaptive mon-

itoring strategy. As such, it contains many internal states that are not needed in the full

system. In SCEM, each grid-cell is defined by its geo-spatial coordinates and contains the

following states:

• Environmental information (temperature, water density etc).

• Wave spectra.

• Current time wind velocity.

• Previous 12-hour mean wind velocity.

• Tidal flow velocity profile.
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• Wind induced surface shear flow velocity profile.

• Ekman current velocity profile.

• Stokes drift velocity profile.

• Probability of oil presence.

The states are formally defined in the following subsections. Note that water density is assumed

constant through the water column, justified by the focus of this work upon surface oil slicks.

System states

The state vector passed to the monitoring framework is ~x : R+ → Rncellnxny , containing the cell

centred states. The number of states per grid cell is denoted by ncell = 7. The seven states in

the state vector are the horizontal components of surface wind, ocean and oil drift velocities and

a further state related to the probability of oil presence. The further states in SCEM, describing

the wave spectrum, other velocity profiles and oil properties are only used as needed, where oil

particles are present in the simulation and are absent from the general system. Define the total

number of states as ns ∈ R, where ns = (2(nx + 1)ny) + (2nx(ny + 1)) + (ncell − 4)nxny. As

a staggered grid, horizontal velocities have an extra column of states, while vertical velocities

have an extra row of states.

4.1.2 Flow solver

A 2D Navier-Stokes solver has been implemented to determine local flow velocities for both

wind and water, using assumed, measured or external model-provided boundary data. The

general form of the 2-dimensional incompressible Navier-Stokes equations are:

δ~U

δt
= −(~U · ∇)~U + ν∇2~U −∇p+ ~sU , (4.1a)

∇ · ~U = 0, (4.1b)

where ~U(x, y, z, t) : Ω × R+ → R2 is the in-plane velocity field such that U(x, y, z, t) =

[u(x, y, z, t), v(x, y, z, t)]T, with u(x, y, z, t) : Ω × R+ → R and v(x, y, z, t) : Ω × R+ → the
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in-plane velocity components in the west to east and south to north directions respectively.

For notational brevity the space and time dependency of variables is not shown in subsequent

equations. In (4.1), ν ∈ R+ is the kinematic viscosity of the fluid, p(x, y, t) : ∂Ω×R+ → R is the

surface internal pressure field and ~sU := ~sU(x, y, t) : dΩ×R+ → R2 are external surface forces,

if present. Also in (4.1), ∇· and ·∇ are the divergence and directional derivative operators

respectively. For wind flow ~U := ~Uw = [uw, vw]T, for ocean current flow ~U := ~Uc = [uc, vc]
T and

for Ekman wind ~U := ~UE = [uE, vE]T. Flow is determined for ocean surface currents and for

wind velocities at 10 m above sea level by solving (4.1) subject to spatio-temporal boundary

conditions upon the velocity. These are set from external data, measured data, or by setting

~U(x, y, z, 0) to a best-estimate of mean flow if no data is available. Boundary conditions are

described in the next section.

The Navier-Stokes equations are spatially discretised upon a staggered grid, with spatial deriva-

tives approximated by finite differences (F. Harlow and J. Welch 1965). The staggered grid

structure is displayed in Figure 4.2.
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Figure 4.2: This figure displays the grid structure of the fluid solver, note the velocities on
cell boundaries, while pressure is defined at the cell centres. This grid structure is shared by
the uncertainty PDE discretisation, where the uncertainty state replaces pressure at the grid
cell centre. Where velocities or uncertainties are required at spill centres, the mean is taken of
surrounding values.

With respect to time-stepping, diffusion terms are solved using a backward Euler method and

Gauss Seidel Successive Over Relaxation (Stam 2001), whilst advective terms are solved using

1st, 3rd or 4th order Runge-Kutta methods. Mass conservation is enforced via an iterative

pressure projection step, in which the pressure field is found using Gauss-Seidel Successive

Over Relaxation (Stam 2001), with subsequent correction of the velocity field. The pressure

field is determined, the velocity corrected, then these steps are repeated 2nφ times, where

nφ ∈ N, using successively corrected velocity fields until the flow-field divergence is below a

tolerance.

Time stepping

The time-step δt is shared between the hydrodynamic model, the oil model and the later

uncertainty model. The time-step is variable with the step size determined by the Courant
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number (Courant, Friedrichs, and Lewy 1967), or by the vertical diffusivity coefficient (Visser

1997), or by a user specified value, whichever is smaller. In practice, this would invariably be

the Courant number determined step size, but a maximum step-size of 15 to 60 minutes is

recommended to improve the temporal resolution of results for analysis. In the simulations of

Sections 4.4 and 7.2, a user specified time-step limit of 30 and 15 minutes respectively effectively

implemented a regular time-step for each simulation, as the user specified time-step remained

smaller than the Courant number and vertical diffusivity determined time-steps.

Boundaries, measurements and obstacles

Obstacles are regions of ~Uc = 0 for ocean current flow velocity, or ~Uw :
∥∥∥~Uw

∥∥∥
2
≤ κ2

∥∥∥~Uwmax

∥∥∥
2

for wind flow where κ := κ(x, y) : ∂Ω → R+ is a wind resistance coefficient based on the

environment and ~Uwmax the maximum wind velocity. The presence of obstacles, such as coastline

geography, is accounted for by the use of Dirichlet boundary conditions on the velocity field

in relevant grid cells. Due to the staggered grid implementation, this is a form of semi-slip

boundary (F. Harlow and J. Welch 1965). This is not unprecedented in ocean models, a user

selected value for slip is found in the NEMO ocean model (Madec 2011), with large scale models

using free-slip and small-scale models using no-slip. A semi-slip induces the circulation expected

from boundary layers but avoids under-estimation of fluid velocities in sparse grids near walls.

Domain edge boundary conditions can be specified as Dirichlet conditions on velocity, or left

open as free-flow.

Velocity field information from measurements, estimates or external data can either be set

precisely or within a bounded range, between a minimum and maximum value determined a

confidence interval. The estimated value of an uncertain state is applied prior to the projection

step of flow calculation. During pressure projection the value is altered, within the bounded

range, to ensure divergence free flow. If the value is at a boundary limit, then it is fixed during

pressure projection and other free flow-field velocities are adjusted by the pressure field until

the flow is divergence free.

For example, consider an estimate of a horizontal velocity component û : ∂Ω × R+ × N →

R, where the horizontal velocity component is modelled as a normally distributed random

variable, u ∼ N(ū, σ2
u) where σ2

u : N → R+ is the variance of u. The mapping from N
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just describes this is the estimate from the kth time-step, for a particular velocity. Under

an assumption of a normally distributed random variable, then a confidence interval can be

described by, P[û − kσσu ≤ u ≤ û + kσσu] ≈ ζu, where for each kσ ∈ {1, 2, 3, 4} there is a

corresponding probability ζu ∈ {0.6827, 0.9545, 0.9973, 0.9995}. In this work, a three-sigma

(kσ = 3) confidence interval is utilised unless otherwise stated. Prior to pressure projection, u

is set to û, then is modified in each iteration of the velocity field correction but must remain

in the interval [û− kσσu, û+ kσσu].

4.1.3 Discrete Navier-Stokes solver

This section describes the discretised Navier-Stokes solver for a free-stream cell, using finite

difference methods upon a regular grid spatial discretisation and a forward Euler advection

and backward Euler diffusion time discretisation, then pressure projection correction to ensure

divergence free flow. Although forward Euler advection is not the most accurate method, the

temporal evolution of flow is dominated by the tidal dynamics. The solver is described for

a representative velocity component in the horizontal and vertical directions. A free-stream

cell uses centred finite difference methods, while, for example, a left hand edge cell would use

single-sided finite difference instead for the left-side horizontal velocity gradient.

Let the superscript values k, k′, k′′, k′′a, k′′d, k′′′, k′′′′ be the notation of solver-steps. These are

k for the initial velocity, k′ for the post-application of time-varying boundaries velocity, then

the advected k′′a or diffused k′′d velocity or both advected and diffused k′′ velocity. Then the

further superscript k′′′ is for the re-applied boundaries and measurements velocity, and finally

the superscript k′′′′ is for the post-pressure-projection divergence free velocity. For example,

the horizontal velocity at grid index i, j and time-step k is noted as uk
i+ 1

2
,j

for i ∈ J1, nxK and

j ∈ J1, nyK, while the velocity field is noted ~Uk. The algorithm is displayed as a flow-chart in

Figure 4.3.

The first step in the Navier-Stokes solver is application of boundaries, measurements and esti-

mates. This is described by

uk
′

i+ 1
2
,j

= bound(uk
i+ 1

2
,j
, uk

i+ 1
2
,j
, ~u ki+ 1

2
,j), (4.2)

where uk
i+ 1

2
,j
∈ R is the Dirichlet boundary condition velocity in the horizontal direction, if
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Input velocity field.

Apply boundary conditions, (4.2) (4.3)

Backward Euler diffusion, (4.11) (4.12). Forward Euler advection, (4.6) (4.7).

Combine advection and diffusion, (4.16) (4.17).

Apply boundary conditions, (4.18) (4.19).

Determine divergence, (4.20).

Determine pressure field, applying (4.24) across δΩ for nSOR iterations.

Apply pressure correction, (4.26) (4.27).

Is this the last pressure correction iteration: iφ = nφ?

Apply boundary conditions, (4.30) (4.31). Apply boundary conditions, (4.28) (4.29).

Output velocity field.

~U k

~U k′

~U k′′a~U k′′d

~U k′′

~U k′′′

~U k′′′

~U k′′′ , ~φ k
′′′

~D k′′′

~U k′′′′

Yes No

~U k+1

Loop nφ times, with loop index iφ

Figure 4.3: This flowchart displays the discrete Navier-Stokes solver algorithm.
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present, and ~u ki+ 1
2
,j ∈ R2 is a monotonically increasing vector containing the lower and upper

boundary values on uk
i+ 1

2
,j

. This could be [ûk
i+ 1

2
,j
− kσσuk

i+ 1
2 ,j

, ûk
i+ 1

2
,j

+ kσσuk
i+ 1

2 ,j

]. The standard

deviation σuk
i+ 1

2 ,j

is the square-root of the corresponding element in the augmented mean-squared

error vector AMSE(~̂x), defined in Chapter 6 Section 6.1.1. The function, bound : R×R×R2 →

R, either applies the Dirichlet boundary condition if there is one, or clamps the value uk
′

i+ 1
2
,j

to

the interval [~u ki+ 1
2
,j(1), ~u ki+ 1

2
,j(2)], where ~u ki+ 1

2
,j(1) ∈ R is the lower bound and ~u ki+ 1

2
,j(2) ∈ R is the

upper bound. These bounds are determined by external data, measurement or data assimilation

confidence intervals. The application of boundaries is similar for the vertical velocity,

vk
′

i,j+ 1
2

= bound(vk
i,j+ 1

2
, vk

i,j+ 1
2
,~v ki,j+ 1

2
), (4.3)

where vk
i,j+ 1

2

∈ R is the Dirichlet boundary condition velocity in the vertical direction, if present,

and ~v ki,j+ 1
2
∈ R2 is a monotonically increasing vector containing the lower and upper boundary

values on vk
i,j+ 1

2

.

The advection diffusion forward Euler step for the horizontal velocity is described by

uk
′′

i+ 1
2
,j
− uk′

i+ 1
2
,j

δtk
= ~s k

u,i+ 1
2
,j
− uk′

i+ 1
2
,j

−1
2
uk
′

i− 1
2
,j

+ 1
2
uk
′

i+ 3
2
,j

δx


− uk′

i+ 1
2
,j

1

2

vk′i,j+ 1
2

− vk′
i,j− 1

2

δy
+
vk
′

i+1,j+ 1
2

− vk′
i+1,j− 1

2

δy


+ ν

uk′i+ 3
2
,j

+ uk
′

i− 1
2
,j
− 2uk

′

i+ 1
2
,j

δx2
+
uk
′

i+ 1
2
,j+1

+ uk
′

i+ 1
2
,j−1
− 2uk

′

i+ 1
2
,j

δy2

 , (4.4)

where ~s k
u,i+ 1

2
,j
∈ R is the horizontal component of the external force ~sU at time-step k and grid

location (i, j). The advection diffusion forward Euler step for the vertical velocity is similarly
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described by

vk
′′

i,j+ 1
2

− vk′
i,j+ 1

2

δtk
= ~s k

v,i,j+ 1
2
− vk′

i,j+ 1
2

−1
2
vk
′

i,j− 1
2

+ 1
2
vk
′

i,j+ 3
2

δy


− vk′

i,j+ 1
2

1

2

uk′i+ 1
2
,j
− uk′

i− 1
2
,j

δx
+
uk
′

i+ 1
2
,j+1
− uk′

i− 1
2
,j+1

δx


+ ν

vk′i,j+ 3
2

+ vk
′

i,j− 1
2

− 2vk
′

i,j+ 1
2

δy2
+
vk
′

i+1,j+ 1
2

+ vk
′

i−1,j+ 1
2

− 2vk
′

i,j+ 1
2

δx2

 , (4.5)

where ~s k
v,i,j+ 1

2

∈ R is the vertical component of the external force ~sU at time-step k and grid

location (i, j). Note that for large diffusion rates forward Euler diffusion can oscillate, then

become unstable (Stam 2003), though this is unlikely here. However, since stability of the

solver is critical, the backwards Euler description of diffusion is used instead, with a Successive-

Over-Relaxation (SOR) solver, as in Stam 2003. In this case, (4.4) reduces to advection terms

only,

uk
′′a
i+ 1

2
,j
− uk′

i+ 1
2
,j

δtk
= ~s k

u,i+ 1
2
,j
− uk′

i+ 1
2
,j

−1
2
uk
′

i− 1
2
,j

+ 1
2
uk
′

i+ 3
2
,j

δx


− uk′

i+ 1
2
,j

1

2

vk′i,j+ 1
2

− vk′
i,j− 1

2

δy
+
vk
′

i+1,j+ 1
2

− vk′
i+1,j− 1

2

δy

 , (4.6)

with a similar description for the vertical velocity,

vk
′′

i,j+ 1
2

− vk′
i,j+ 1

2

δtk
= ~s k

v,i,j+ 1
2
− vk′

i,j+ 1
2

−1
2
vk
′

i,j− 1
2

+ 1
2
vk
′

i,j+ 3
2

δy


− vk′

i,j+ 1
2

1

2

uk′i+ 1
2
,j
− uk′

i− 1
2
,j

δx
+
uk
′

i+ 1
2
,j+1
− uk′

i− 1
2
,j+1

δx

 . (4.7)

The backward Euler description of diffusion for the horizontal velocity is

uk
′′d
i+ 1

2
,j
− δtkν

uk′′di+ 3
2
,j

+ uk
′′d
i− 1

2
,j
− 2uk

′′d
i+ 1

2
,j

δx2
+
uk
′′d
i+ 1

2
,j+1

+ uk
′′d
i+ 1

2
,j−1
− 2uk

′′d
i+ 1

2
,j

δy2

 = uk
′

i+ 1
2
,j
. (4.8)
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This can be rearranged to

δx2δy2uk
′′d
i+ 1

2
,j
− δy2δtkν

(
uk
′′d
i+ 3

2
,j

+ uk
′′d
i− 1

2
,j
− 2uk

′′d
i+ 1

2
,j

)
− δx2δtkν

(
uk
′′d
i+ 1

2
,j+1

+ uk
′′d
i+ 1

2
,j−1
− 2uk

′′d
i+ 1

2
,j

)
= δx2δy2uk

′

i+ 1
2
,j
, (4.9)

and then to

uk
′′d
i+ 1

2
,j

+ 2δy2δtkνu
k′′d
i+ 1

2
,j

+ 2δx2 + δtkνu
k′′d
i+ 1

2
,j

= uk
′

i+ 1
2
,j

+ δy2δtkν
(
uk
′′d
i+ 3

2
,j

+ uk
′′d
i− 1

2
,j

)
+ δx2δtkν

(
uk
′′d
i+ 1

2
,j+1

+ uk
′′d
i+ 1

2
,j−1

)
, (4.10)

and finally to

uk
′′d
i+ 1

2
,j

=

(
uk
′

i+ 1
2
,j

+ δy2δtkν
(
uk
′′d
i+ 3

2
,j

+ uk
′′d
i− 1

2
,j

)
+ δx2δtkν

(
uk
′′d
i+ 1

2
,j+1

+ uk
′′d
i+ 1

2
,j−1

))
(1 + 2δy2δtkν + 2δx2δtkν)

. (4.11)

The expression for the vertical velocity diffusion is similar,

vk
′′d
i,j+ 1

2
=

(
vk
′

i,j+ 1
2

+ δx2δtkν
(
vk
′′d
i,j+ 3

2

+ vk
′′d
i,j− 1

2

)
+ δy2δtkν

(
vk
′′d
i+1,j+ 1

2

+ vk
′′d
i−1,j+ 1

2

))
(1 + 2δx2δtkν + 2δy2δtkν)

. (4.12)

The backwards Euler diffusion equations are solved through iterative SOR. The solver first

iterates (4.11) and (4.12) over the spatial domain, then repeats this spatial iteration process

ndiff ∈ N times until the diffusion solution of uk
′′d
i+ 1

2
,j

and vk
′′d
i,j+ 1

2

converges for all i, j. In the

special case where δx = δy, then backwards Euler diffusion equations reduce to

uk
′′d
i+ 1

2
,j

=
uk
′

i+ 1
2
,j

+ δx2δtkν
(
uk
′′d
i+ 3

2
,j

+ uk
′′d
i− 1

2
,j

)
+ δx2δtkν

(
uk
′′d
i+ 1

2
,j+1

+ uk
′′d
i+ 1

2
,j−1

)
1 + 4δx2δtkν

, (4.13)

and

vk
′′d
i,j+ 1

2
=

(
vk
′

i,j+ 1
2

+ δx2δtkν
(
vk
′′d
i,j+ 3

2

+ vk
′′d
i,j− 1

2

)
+ δy2δtkν

(
vk
′′d
i+1,j+ 1

2

+ vk
′′d
i−1,j+ 1

2

))
(1 + 4δx2δtkν)

. (4.14)
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The post advection and diffusion horizontal velocity is then described by

uk
′′

i+ 1
2
,j

= uk
′

i+ 1
2
,j

+ (uk
′′a
i+ 1

2
,j
− uk′

i+ 1
2
,j

) + (uk
′′d
i+ 1

2
,j
− uk′

i+ 1
2
,j

), (4.15)

which reduces to,

uk
′′

i+ 1
2
,j

= uk
′′a
i+ 1

2
,j

+ uk
′′d
i+ 1

2
,j
− uk′

i+ 1
2
,j
. (4.16)

The post advection and diffusion vertical velocity is described by

vk
′′

i,j+ 1
2

= vk
′′a
i,j+ 1

2
+ vk

′′d
i,j+ 1

2
− vk′

i,j+ 1
2
. (4.17)

Here, (4.16) and (4.17)

These intermediate velocities after advection and diffusion need application of boundaries,

described for the horizontal velocity by

uk
′′′

i+ 1
2
,j

= bound(uk
′′

i+ 1
2
,j
, uk

i+ 1
2
,j
, ~u ki+ 1

2
,j). (4.18)

The expression for the vertical velocity is similar,

vk
′′′

i,j+ 1
2

= bound(vk
′′

i,j+ 1
2
, vk

i,j+ 1
2
,~v ki,j+ 1

2
). (4.19)

Pressure projection step

The divergence, Dk′′′
i,j : N × N × N → R is then determined using the advected and diffused

velocity field with boundaries applied. The divergence is described by

Dk′′′

i,j =
uk
′′′

i+ 1
2
,j
− uk′′′

i− 1
2
,j

δx
+
vk
′′′

i,j+ 1
2

− vk′′′
i,j− 1

2

δy
. (4.20)

Let ~D k′′′ : N → Rnxny be the vector of Dk′′′
i,j across the discretised spatial domain, and ~φ k

′′′
:

N→ Rnxny be the vector of pressure p across the domain for the velocities ~U k′′′ ∈ R2nxny . The

pressure Poisson equation is then described by

∇2~φ k
′′′

= ~D k′′′ . (4.21)
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The discrete form of (4.21) using a 3-point centred difference is

pk
′′′
i+1,j + pk

′′′
i−1,j − 2pk

′′′
i,j

δx2
+
pk
′′′
i,j+1 + pk

′′′
i,j−1 − 2pk

′′′
i,j

δy2
= Dk′′′

i,j . (4.22)

This is solved with SOR, an iterative method. Let (4.22) be rearranged to

(
2δy2 + 2δx2

)
pk
′′′

i,j = −δx2δy2Dk′′′

i,j + δy2
(
pk
′′′

i+1,j + pk
′′′

i−1,j

)
+ δx2

(
pk
′′′

i,j+1 + pk
′′′

i,j−1

)
, (4.23)

and then to

pk
′′′

i,j =
1

(2δy2 + 2δx2)

(
−δx2δy2Dk′′′

i,j + δy2
(
pk
′′′

i+1,j + pk
′′′

i−1,j

)
+ δx2

(
pk
′′′

i,j+1 + pk
′′′

i,j−1

))
. (4.24)

In the special case where δx = δy, this reduces to

pk
′′′

i,j =
1

4

(
−δx2Dk′′′

i,j +
(
pk
′′′

i+1,j + pk
′′′

i−1,j + pk
′′′

i,j+1 + pk
′′′

i,j−1

))
. (4.25)

The pressure is evaluated across the spatial domain for all i ∈ J1, nxK and j ∈ J1, nyK, using

(4.24). This is then repeated nSOR ∈ N times, or until convergence. For simplicity and speed of

evaluation, nSOR = 20 is used here, which is too low to converge to a high degree of accuracy,

but this is accounted for as the pressure projection step is repeated a further nφ times. With

the pressure field determined, the velocity field is then modified to be divergence free by

uk
′′′′

i+ 1
2
,j

= uk
′′′

i+ 1
2
,j

+
pk
′′′
i+1,j − pk

′′′
i,j

δx
, (4.26)

and

vk
′′′′

i,j+ 1
2

= vk
′′′

i,j+ 1
2

+
pk
′′′
i,j+1 − pk

′′′
i,j

δy
. (4.27)

Finally, the boundary values are applied again. If this pressure projection iteration iφ ∈ J1, nφK

fulfils iφ < nφ, then boundary application is described by

uk
′′′

i+ 1
2
,j

= bound(uk
′′′′

i+ 1
2
,j
, uk

i+ 1
2
,j
, ~u ki+ 1

2
,j), (4.28)
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and

vk
′′′

i,j+ 1
2

= bound(vk
′′′′

i,j+ 1
2
, vk

i,j+ 1
2
,~v ki,j+ 1

2
). (4.29)

The Navier-Stokes solver returns to (4.20). Equations (4.20), (4.24), (4.26), (4.27), (4.30)

and (4.31) are repeated to produce divergence free flow, with boundary values, estimates and

measurements incorporated. This is displayed in Figure 4.3. Note that the repeated correction

through pressure projection propogates pressure through the domain, unlike a single pressure

correction step. Hence, this can be thought of as a weakly compressible system.

Otherwise, if iφ = nφ then the velocity field at the next time-step k + 1 is determined,

uk+1
i+ 1

2
,j

= bound(uk
′′′′

i+ 1
2
,j
, uk

i+ 1
2
,j
, ~u ki+ 1

2
,j), (4.30)

and

vk+1
i,j+ 1

2

= bound(vk
′′′′

i,j+ 1
2
, vk

i,j+ 1
2
,~v ki,j+ 1

2
). (4.31)

4.1.4 Wind flow

Calculation of wind velocity ~Uw is handled by the 2D Navier-Stokes solver described in Section

4.1.2. Though the grid is shared, the time-step requirement of the wind solver is likely to be a

much smaller time-step due to the higher velocities of wind flow. Hence, the wind velocity solver

steps forward in multiple smaller, sub-time-steps, to form δt, and only the final solution at the

shared time t + δt is utilised in the state trajectory. In the wind solver there is replacement

of zero flow boundaries for obstacles by maximum wind-speed conditions to represent wind

resistant areas such as cities or mountains. This acts as a flow restriction and thus resolves

external data forced flow to greater accuracy for local geographic features. Velocity limits are

imposed in the same manner as estimated values in Section 4.1.2.

The velocity limit ~Uwlim
:= ~Uwlim

(x, y) : ∂Ω→ R2 is calculated by the urban canopy profile

~Uwlim
= (1− λp)2

∥∥∥~Uwmax

∥∥∥
2
, (4.32)

where λp := λp(x, y) : ∂Ω→ [0, 1] is the obstruction plan, or footprint, density in the cell area

at 10 m altitude (CERC 2017). If an obstruction density map is not available, a coefficient can
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be specified in place of (1− λp)2 for coastal and land cells empirically using local data.

It is assumed that the external wind data incorporates the effect of land topology (height)

on wind flow, justified by the free-availability of data from a multitude of global circulation

wind models. If there is no alternative, the spatial derivatives in the horizontal and vertical

directions of the land height-map can be utilised to estimate an obstruction density map,

under an assumption that 2D wind flow is always parallel to the ground. Note this is a tenuous

method that operates as a last resort should no other data or model be available for generation

of wind-flow data that accounts for land topology.

For an intuitive example: Upon a discretised grid of spacing δx and δy, there is flow from a

cell with height 0 m into a cell of height 5 m. Assuming the down-wind cell resembles a 5 m

high step, the volume of obstruction in the down-wind cell is 5δxδy. Recall that here, wind is

simulated at a height of 10 m and hence the obstruction volume is modified to now stand at

10 m high. Therefore, the floor-plan area obstructed is reduced to 5
10
δxδy, or simply 1

2
as a

proportion of the cell area. However, this obstruction is only present if the wind flow is up-hill

and if the slope is steepening. Furthermore a topology based obstruction should never present

a complete flow blockage, so 0.95 is selected as an upper-limit on an obstruction coefficient.

The obstruction in the horizontal direction, λpx : ∂Ω→ [0, 0.95], is described by

λpx = median

(
0,

1

10
sgn (uw) sgn

(
∇2
x∂ΩH

)
∇x∂ΩH , 0.95

)
, (4.33)

with a similar expression for the vertical direction. In (4.33), the median function clamps

λpx between 0 and 1, ∂ΩH : ∂Ω → R is the height map of the surface ∂Ω and the operation

∇x∂ΩH returns the gradient of the height-map in the horizontal direction, using single-sided

finite difference with the up-wind cell. The operation ∇2
x∂ΩH returns the second derivative

of the height-map in the horizontal direction. The term sgn (uw) ensures an obstruction only

exists if flow is moving up-hill and sgn (∇x∂ΩH) ensures an obstruction exists only if the

slope is steepening, otherwise the wind is assumed to already be flowing parallel to the slope.

In Cindori et al. 2020, it is extrapolated from West and Apelt 1982 that the effect of an

obstruction less than 6% is negligible and we account for this with a modified obstruction
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variable λ̄px : ∂Ω→ [0, 0.95], described by

λ̄px =

 0 λpx < 0.06

λpx otherwise,
(4.34)

again with a similar expression for the vertical direction. Note that unlike (4.32), the topology

based obstruction operates on a velocity component basis, not a velocity vector basis. So for

the horizontal component, the limit is described by,

uwlim
= (1− λp)2uwmax , (4.35)

with a similar expression for the vertical component.

4.1.5 Ocean flow

The Navier-Stokes equation are solved in 2D, but a depth velocity profile extension to 2.5D

is important when modelling oil-trajectories and the separation of slicks caused by sub-surface

shear flows and entrainment. Note that this velocity profile approach acceptable for oil surface

slick simulation, but for an oil plume, or up-welling from a sunken vessel, a full 3D ocean

simulation is likely required. Typical individual velocity profiles for the 2.5D approach are

shown in Figure 4.4.
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Figure 4.4: A depiction of sub-surface flow resulting from mechanisms included in the three-
dimensional model. The insert magnifies the sub-surface flow at shallow depths, note the very
shallow effect of wind surface drift. Here, a depth of -5 m is 5 m below the water surface.

Tidal and circulation flow

The velocity profile, introducing vertical variation to ~Uc for a tide driven flow, follows a standard

logarithmic profile where z ∈ [0, z̄] ⊂ R is depth in the water column, with z = 0 at the surface

and z = z̄ at maximum water depth where z̄ is the mean total water depth in that cell. A

no-slip condition, ~Ucz̄ = 0 is imposed on the sea floor and ~Ucz increases to its maximum value at

the surface. As predictions focus on surface oil particles, boundary layer simulation is omitted

and Ucz can be simply described by

~Ucz = ~Uc0

(
1− z

z̄

) 1
6
, (4.36)

where the empirical denominator parameter in the power law has been assigned the value of 6,

which falls in the range of accepted values for ebbing and flowing tides (Thiébaut and Sentchev

2016).
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Wind induced surface shear

Under strong wind conditions the velocity of surface water is heavily affected by the boundary

stress between the two-phase flow of air and water, so is vital for inclusion in an advective ocean

model. Large scale models often use measured wind speed data (De Dominicis et al. 2013a)

or wind speed estimated from surface roughness (measured via radar scattering) (Smith 1988)

to simply calculate a surface flow velocity. This takes the form of a scaled velocity αw

∥∥∥~Uw

∥∥∥
2
,

rotated by a wind drift angle β := β(x, y, t) : ∂Ω×R+ → R, representing the balancing of wind

shear and Coriolis effects. This velocity is then scaled to a logarithmic velocity profile (Wu

1975), modelled in oceans as beginning at z0 (the wind driven surface layer) and falling to zero

effect at zc meters (Proctor, Flather, and Elliott 1994). This latter depth can be approximated

as

zc ≈ αzL. (4.37)

A value of αz = 2 is suggested to give good agreement with observations (Elliott 1986) in a

short-fetch environment, using L as the dominant wavelength of sea-surface waves. For even a

low wind speed fetch in deep water, wave lengths are likely to be around 8 meters giving rise to

large zc values and a large effect of wind on sub-surface currents, with data supporting a wind

penetration depth of 40 meters (Elliott 1986).

An assumption of the above method is instantaneous changes of sub-surface currents in response

to local wind gusting. Here, wind effects are modelled in parts, deep effects are modelled as a

combination of slow time-varying Ekman currents and stokes drift from a linear wave model.

Shallow effects are instantaneously applied by a logarithmic velocity profile. In a wind wave

spectrum, local wind affects only the small-scale ripples (capillary waves) and gravity-wind

waves that are accounted for in the linear wave model. Modelling just capillary waves gives rise

to varying surface roughness (as wave amplitude) across wind conditions, of typical wavelength

(Lamb 1895) defined by

Lcapillary = 2π

√
σwater

(ρwater − ρair)g
, (4.38)

where for an air-water interface, Lcapillary = 0.017m (Lamb 1895) and σwater is the surface tension

of water, ρwater and ρair are the densities of water and air, respectively. Thus the new wind

shear zero effect depth for αz = 2 is 0.037m when using (4.38) to determine the wavelength in
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4.37. This is a shallow depth, where viscous shear and vertical mixing allows an assumption of a

velocity change time-scale much smaller than the simulation time-step. Hence velocity changes

immediately with fluctuating wind as in traditional percentage based algorithms for surface oil

spill drift due to wind/wave interaction (Spaulding 2017), with the wind shear velocity profile

~Uwz := ~Uwz(x, y, z, t) : Ω× R+ → R2, defined by

~Uwz = αw
~Uwe

− 2π
zc
z, (4.39)

where αw ∈ [0.005, 0.03]. A value of 0.02 is suggested for αw (Proctor, Flather, and Elliott

1994), but varies within literature (Kim et al. 2014).

Ekman currents

Ekman currents describe the net motion of fluid that results from the balance of a forcing wind,

turbulent drag and Coriolis forces. In a small scale simulation it would be preferable not to

assume an instantaneous (in distance and time) change in the sub-surface layer velocity due

to wind. Ekman currents take approximately 12 hours to form (TE = 12 hours), accelerating

approximately linearly to their fully formed magnitude (Weatherly 1975). Ideally, the Ekman

current would change towards its final value at each time-step, but this would require changing

every depth value in every grid cell, at every time-step, leading to excessive computational

load. An alternative would be to keep a moving average of the last 12 hours of wind data, but

this requires stored data and introduces a large phase lag in Ekman changes. For a domain

where wind-speed changes are frequent, an incremental weighted mean of wind speeds to form

an average of the past 12 hours of wind speed is proposed. The Ekman wind velocity ~UwE
:=

~UwE
(x, y, t) : ∂Ω× R+ → R2, is calculated for the surface of each grid cell:

~UwE
=
WE1

~U t−δt
wE

+WE2
~U t

w

WE1 +WE2

, (4.40)

where the Ekman averaged wind velocity at the previous time-step is ~U t−δt
wE

and ~U t
w is the

current time wind-velocity. The weights for the value WE1 ∈ R : [0, 1] and future values

WE2 ∈ R : [0, 1] are calculated as

WE1 =
TE − δt

1
2
TE

(4.41a)
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Figure 4.5: A depiction of the wind speed ~Uw that Ekman currents are calculated from, ~UwE
,

under noisy wind conditions. a) Calculated using the weighted mean approach. b) Calculated
by a traditional 12 hour moving average approach, which shows a more linear growth but
significantly greater lag. Observe that at 38 hours, the wind speed falls beneath the Ekman
wind speed. Note how the weighted mean approach to calculating Ekman wind speed (left)
immediately begins to reduce, while the moving average approach (right) has 4 hours of lag
before it decreases.

and

WE2 =
δt

TE

. (4.41b)

Figure 4.5 shows the growth and decay of the Ekman wind speed, used to calculate the Ekman

current, under a range of wind conditions when calculated by both the weighted mean and

moving average approaches. Results from literature suggest there should be no lag between

wind stress and Ekman shelf velocities (Kirincich and Barth 2008). Inspection of Figure 4.5

clearly shows the lag from the moving average approach is significantly greater than that from

the weighted mean approach, to the point where the Ekman wind speed response is almost

completely out of phase with the forcing wind. The wind stress of the surface layer can be used

to estimate the Ekman current magnitude. Prior work provides stress coefficients for water

under a variety of conditions, including adjustment factors for wind speeds measured at various

heights to normalise their values at 10 m above sea level (Wu 1980) and (Smith 1988). Let the

stress coefficient CDstress
:= CDstress(x, y, t,

∥∥∥~UwE

∥∥∥
2
) : ∂Ω × R+ × R → R+. Hence, using ~UwE

as

wind velocity yields

τ = CDstressρair

∥∥∥~UwE

∥∥∥2

2
, (4.42)
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where the scalars τ := τ(x, y, t) : ∂Ω × R+ ∈ R+ are the wind stresses on the water surface

and ρair ∈ R+ is the air density. A final Ekman current velocity profile is calculated (Pond and

Pickard 1983), using a vertical eddy viscosity coefficient (Rasmussen 1985) of Az := Az(x, y, t) :

∂Ω× R+ → R+ and a surface Ekman speed V0E
:= V0E

(x, y, t) : ∂Ω× R+ → R+ defined by

Az = 4.3× 10−4
∥∥∥~UwE

∥∥∥2

2
(4.43a)

and

V0E
=

√
2πτ

zEρwater|f |
, (4.43b)

where zE := zE(x, y, z, t) : Ω × R+ → R+ is the Ekman layer depth (Pond and Pickard 1983),

f := f(x, y, t) : ∂Ω × R+ → R is the Coriolis frequency and ρwater ∈ R+ is the water density.

Adjusting for a coordinate system where u is positive east velocity and v is positive north, with

an ascending z with depth and positive clockwise from north angles, an alternative formulation

that also reflects the smaller drift divergence angle in current formations under high wind

conditions can be described by

uEz = ±V0E
sin

(
βrad −

π

zE

z

)
e
− π
zE
z
, (4.44a)

where the negative sign applies to the northern hemisphere, the positive to the southern hemi-

sphere. Similarly

vEz = ±V0E
cos

(
βrad −

π

zE

z

)
e
− π
zE
z
, (4.44b)

where a wind drift angle (Wang and Shen 2010) is proposed for the Ekman current angle,

instead of a constant 45 degrees:

β =


40◦ − 8◦ 4

√
u2

w + v2
w for 0 ≤

√
u2

w + v2
w ≤ 25 m/s,

0◦ for
√
u2

w + v2
w > 25 m/s,

(4.45a)

and

βrad = β
π

180
. (4.45b)
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The velocity components (4.44) compose the fully formed Ekman velocity ~UcEz
= [uEz , vEz ]

T ,

where ~UcEz
:= ~UcEz

(x, y, z, t) : Ω× R+ → R2.

These equations produce an Ekman velocity profile, shown in Figure 4.6, that follows a typical

spiral pattern and has a magnitude of approximately 1% of the wind speed. This is as expected,

the 3% wind velocity advection employed by classical models will be a composite of the smaller

Ekman currents, Stokes drift and Surface stress induced currents calculated separately here.

Figure 4.6: The spatial variation of Ekman velocity with depth resulting from non-aligned
wind and current angles. Here, a depth of -5 m is 5 m below the water surface.

4.1.6 Linear wave model

To determine the effect of waves on contaminants a spatio-temporally varying wave spectrum

is approximated by the Sheffield Wave Environment Model (SWEM) (Heins and Jones 2016),

which combines modified wave spectra from ocean swell, local wind, surface current and finite

water depth to simulate the ocean surface. It includes a directional spreading function and

swell estimation from fetch parameters or buoy data. Each cell updates its wave model with

the local wind and surface current velocity at every time-step. The wave models then re-evaluate

the wave spectra, along with the significant wave height Hs := Hs(x, y, t) : ∂Ω × R+ → R+,

wavelength L := L(x, y, t) : ∂Ω × R+ → R+ and wave period T := T (x, y, t) : ∂Ω × R+ → R+

for each grid cell. In a time-constrained simulation, the wave model is updated only in cells

where oil is present without adversely affecting results.



4.2. Oil model 69

4.2 Oil model

The oil model uses a common Lagrangian approach (Spaulding 2017), utilising large numbers

of particles (see section 4.2.5), each representing a volume of contaminant. Particles undergo

advection and turbulent diffusion in response to forcing from the environmental model. Particles

are then used to build a thickness map and undergo mechanical spreading in areas where the

thickness is above a minimum value, with particle size determined from oil properties. Particles

can be entrained underwater, determined by variables from the wave model, with subsequent

resurfacing dependent upon vertical turbulent diffusion and terminal buoyancy velocity.

4.2.1 Advection and diffusion

The advective velocity of particles at depth z consists of horizontal velocity components uoz , voz

and a vertical velocity component woz . These are determined from a summation of tidal, wind

induced surface shear and Ekman current velocities, plus turbulent diffusion terms as follows:


uoz

voz

woz

 = αwo


uw

vw

0

+ αco


ucz

vcz

0

 +


uwz

vwz

0

+


uEz

vEz

0

+


uwavez

vwavez

0

 +


ud

vd

wb

+


u′

v′

w′z

 , (4.46)

where αwo ∈ [0, 0.05] is a coefficient for additional wind advection and αco ∈ [0.95, 1.1] is

an advection coefficient for tidal currents. The buoyancy velocity is wb := wb(x, y, z, t,Dv) :

Ω×R+ ×R→ R, while diffusion correction velocities ud := ud(x, y, t,Dh) : ∂Ω×R+ ×R→ R

and vd := vd(x, y, t,Dh) : ∂Ω× R+ × R→ R are defined

ud(x, y, t,Dh) =
δDh

δx
, (4.47a)

in the horizontal x direction and

vd(x, y, t,Dh) =
∂Dh

∂y
(4.47b)

in the horizontal y direction. They are the spatial derivative of Dh := Dh(x, y, t) : ∂Ω×R+ → R,

the horizontal diffusion coefficient (Hunter, Craig, and Phillips 1993). The turbulent diffusion
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velocities comprise of u′ := u′(x, y, t) : ∂Ω × R+ ∈ R, v′ := v′(x, y, t) : ∂Ω × R+ ∈ R, w′ :=

w′(x, y, z, t) : Ω×R+ ∈ R in the horizontal x and y plane and vertical z direction respectively.

The stokes drift velocities (defined in Section 4.2.1) uwavez := uwavez(x, y, z, t) : Ω × R+ ∈ R,

vwavez := vwavez(x, y, z, t) : Ω × R+ ∈ R in the x and y horizontal direction respectively. The

additional wind advection represents only the carrying of oil droplets by wind, since the major

wind drift is accounted for in the hydrodynamic model.

Turbulent diffusion is calculated by the common random walk method (Spaulding 2017), but

avoids direct parameter setting for horizontal diffusivity and vertical diffusivity coefficients in

favour of empirical formulae that also introduce variation in the diffusion coefficient dependent

upon flow properties. Spatial variation in diffusion coefficient results in a requirement for a

diffusion correction velocity (Hunter, Craig, and Phillips 1993). Horizontal turbulent diffusion

velocity is assumed constant with depth and calculated (Chao, Shankar, and Wang 2003) using:

u′ = ξp

√
12Dh

δt
sin(2πφp), (4.48a)

v′ = ξp

√
12Dh

dt
cos(2πφp), (4.48b)

where ξp ∈ [0, 1] and φp ∈ [0, 1] are particle specific random variables with uniform distribution.

Vertical turbulent diffusion velocity is depth dependent and calculated (Lardner and Gunay

2000) according to:

w′ = (2ζw − 1)

√
6Dvz

dt
, (4.49)

where ζw is a particle specific random variable with uniform distribution in [0, 1]. Coefficients for

horizontal diffusivity Dh (Baldauf and Zängl 2012) and vertical diffusivity Dvz := Dvz(x, y, t) :

∂Ω× R+ → R+ (Ichiye 1967) are calculated as follows:

Dh =
csmag

1
∂x2+∂y2

√
Tsmag + Ssmag, (4.50a)

Tsmag =
∂uc

∂x
− ∂vc

∂y
, (4.50b)
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Ssmag =
∂uc

∂y
+
∂vc

∂x
, (4.50c)

Dvz = 0.028
H2
s

T
e−2 1

L
z − 0.056

H2
s

LT
e−2 1

L
z, (4.50d)

where csmag ∈ R : [0.01, 0.3] is an empirical coefficient, with a nominal default value of 0.1.

Note that (4.50d) is an implementation of Ichiye 1967 corrected according to the derivative,

as in Hunter, Craig, and Phillips 1993 and Nordam et al. 2019b. Further define dh(u, v) :=

Dh(x, y, t) : R× R→ R, as an equivalent term to the horizontal diffusivity coefficient Dh that

explicitly describes the dependencies of Dh as dependencies on velocity, u and v.

Stokes Drift

Stokes drift is the net horizontal movement of a particle due to wave motion, resulting from

shear stresses and mixing layers from surface gravity waves. For each grid cell in which there

are oil particles and for each time-step, the spectral wave model SWEM is used to compute the

wave parameters that govern Stokes drift, chiefly significant wave height Hs, wavelength L and

wave period T . These are evaluated from the peak magnitude ap := ap(x, y, t) : ∂Ω×R+ → R+

and corresponding peak frequency fp := fp(x, y, t) : ∂Ω× R+ → R+ of the wave spectrum.

Webb proposes the use of the peak frequency, with a Stokes drift amplitude modified by the

spectral moment (calculated through intergrands) and empirical terms specific to that spectrum

(Webb and Fox-Kemper 2011). The spectrum in SWEM is a summation of several others and

therefore this approach would require multiple calculations of spectral moments and ultimately,

too much computation. Hence, only the peak information of the SWEM spectrum (representing

the fetch, local current and local wind interaction) is used, as the high frequency ripple waves

are accounted for through wind shear.

Stokes drift magnitude is similar to a near-surface tidal shear (Elliott 1986) or 1 - 2% of the wind

speed (Proctor, Flather, and Elliott 1994). The literature suggested (Elliott 1986) hyperbolic

trigonometric formulation of Stokes drift can become undefined in deep water conditions, hence
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it is redefined to give the Stokes drift speed:

∥∥∥~Uwavez

∥∥∥
2

= ωka2
pe
−2kz, (4.51)

where ω = 2π/Tpeak, k = 2π/Lpeak using the wave spectrum peak values from SWEM. To

achieve an accurate Stokes drift velocity, the wave spectrum produces an average wave energy

direction and scales the Stokes drift velocity to the proportion of wave energy in that direction

compared to the total wave energy in the spectrum. The direction and magnitudes of the waves

are expressed in polar coordinates as follows:

θΨTotali
= atan2

(
ky
kx

)
, (4.52a)

rΨTotali
= ΨTotal(kx, ky), (4.52b)

where ΨTotal(kx, ky) := ΨTotal(kx(x, y, t), ky(x, y, t)) : ∂Ω×R+ → R+ is the energy of the waves

with wavenumbers kx := kx(x, y, t) : ∂Ω × R+ → R and ky := ky(x, y, t) : ∂Ω × R+ → R. The

polar angle θΨTotali
:= θΨTotali

(x, y, t) : ∂Ω × R+ → R and magnitude rΨTotali
:= rΨTotali

(x, y, t) :

∂Ω×R+ → R+ form the polar coordinate representation of that wave-number, with magnitude

being the wave energy and angle as the wave direction. The wave spectrum is thus converted

from 2D [kx, ky] wave numbers to a kxky by 1 vector of polar coordinates. The sum of the

vector of polar coordinates provides an average wave energy polar coordinate with magnitude

and direction of the average wave energy:

[θsum, rsum] =

kxky∑
i=1

[θΨTotali
, rΨTotali

], (4.53a)

Ψavgθ = rsum. (4.53b)

The polar angle θsum := θsum(x, y, t) : ∂Ω × R+ → R and magnitude rsum := rsum(x, y, t) :

∂Ω × R+ → R+ form the polar coordinate with magnitude and direction equivalent to the

average wave energy. This wave energy magnitude Ψavgθ
:= Ψavgθ(x, y, t) : ∂Ω × R+ → R is

used to attenuate stokes drift velocity by the fraction of wave energy that is in the average
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wave direction Ψfr := Ψfr(x, y, t) : ∂Ω× R+ → R, calculated by

Ψfr =
Ψavgθ∑kxky

i=1 ΨTotali(kx, ky)
. (4.54)

Stokes drift speed
∥∥∥~Uwavez

∥∥∥
2

is in the direction of Ψavgθ , where ~Uwavez : Ω × R+ → R3 is the

stokes drift velocity vector ~Uwavez = [usz , vsz , 0]T , forming a stokes drift velocity:

~Uwavez = ωka2
pe
−2kzΨfr. (4.55)

4.2.2 Entrainment and buoyancy

Oil entrainment from the surface slick to the water column represents the movement of oil

particles underwater by wave action and can be modelled as a random process with a probability

for a particle to be entrained at a given time. The principal variable in the volume of oil

entrained is the rate-scale scalar λow := λow(x, y, t) : ∂Ω × R+ → R (Tkalich and Chan 2002),

which is defined by

λow =
πkeγHs

8αTpeakLow

, (4.56)

where ke ∈ [0.3, 0.5] ⊂ R is an empirical constant, Hs is the peak significant wave height,

Tpeak is the wave period from the linear wave model and Low ∈ R+ is a vertical length scale

parameter that depends on the type of breaking wave. This is valued between 10 m and 20 m

(Tkalich and Chan 2002). The vertical mixing term coefficient is α ∈ R : [1.15, 1.85]. The

parameter γ := γ(x, y, t) : ∂Ω × R+ ∈ R is a dimensionless damping coefficient that takes the

following values:

γ =


105ωE0.25

w , for white-capping waves,

1.8× 10−7ω3, for swell decay,

where Ew := Ew(x, y, t) : ∂Ω× R+ → R+ is calculated by

Ew =
gρwaterH

2
s

16
, (4.57)
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where g is the gravitation acceleration constant of 9.81m/s. The probability of entrainment Ps

for a Lagrangian particle for a discrete time-step dt ∈ R is as follows (Wang and Shen 2010):

Ps = 1− e(−λowdt). (4.58)

If the particle is inserted at this time-step, it enters the water column with intrusion depth:

Di = (1.5 + 0.35(2φ− 1))Hs, (4.59)

where φ is a particle specific random variable with a uniform distribution in [0, 1], as described

in Delvigne and Sweeney 1988. The maximum depth of intrusion, when φ = 1, can be utilised

as zcrit to ensure a high resolution grid for entrained sub-surface oil particles.

Oil particle buoyancy is modelled as in Proctor, Flather, and Elliott 1994, whereby oil droplets

rise at a constant velocity, determined by the oil droplet size, the water viscosity and the density

difference. The droplet distribution is an active research field, with a recent review in Nissanka

and Yapa 2018. Though normal, log-normal, Rosin-Rammler and uniform distributions have

all been utilised, the review concludes that all distributions are based on an empirical fit,

with each distribution the best fit for limited cases. Hence, for simplicity, this work employs

a normal distribution fitted to measured data, if available, as in Wang and Shen 2010. If it

is not available, then the available distribution for the closest type of oil is utilised until a

measurement can be taken. When a particle is entrained into the water column, the particle

samples the distribution to determine the droplet size of that particle. The buoyancy velocity is

added to w, the vertical component of oil particle velocity. As in Nordam et al. 2019a, particles

are considered to have surfaced only if they reach the surface due to buoyancy, without the

influence of vertical turbulent diffusion.

4.2.3 Thickness and mechanical spreading

Following the advection, diffusion and entrainment of oil particles, additional particle movement

is needed to represent the mechanical spreading of oil if the oil slick thickness is above the

terminal spreading thickness of the particular oil. Note that mechanical spreading is applied

within each cell, on a cell-by-cell basis and the overall spread of the oil spill is dominated by



4.2. Oil model 75

the ocean environment processes; advection, turbulent diffusion and stokes drift.

The volume of oil in each thickness map cell is calculated by summing the particles present in the

cell, to form Voil := Voil(x, y, t) : ∂Ω× R+ → R+, in units of barrels for the empirical equation.

This is then used to calculate area in square meters in Lehr’s modified fay-type spreading

formula (Lehr et al. 1984), using the lower coefficient for a low wind case (as wind drift is

accounted for elsewhere) and the average age of the oil in that cell toil := toil(x, y, t) : ∂Ω×R+ ∈

R+ in minutes from the spill start. The empirical slick area Aoil := Aoil(x, y, t) : ∂Ω×R+ → R+

is found by computing

Aoil = 103

(
2.27

ρwater − ρoil

ρoil

2
3

V
2
3

oilt
− 1

2
oil + 0.03

ρwater − ρoil

ρoil

1
3

V
1
3

oil

∥∥∥~Uwknots

∥∥∥ 4
3

2
toil

)
, (4.60)

where ~Uwknots
: ∂Ω×R+ → R2 is the wind velocity converted to knots and where the oil age in

hours is toil ∈ R+. Slick thickness in meters Γ := Γ(x, y, t) : ∂Ω× R+ → R+ in the grid cell of

area Aoil is then calculated as

Γ =
Voilm3

Aoil

, (4.61)

where Voilm3 : ∂Ω × R+ → R+ is the volume of oil in the cell converted to cubic meters.

Depending on the oil type, if this thickness exceeds that of the equilibrium, or terminal oil

thickness then mechanical spreading is applied using Lardners Lagrangian method in the local

cell (Lardner and Gunay 2000):

∂Q = 1.13

(
ρwater − ρoil

ρwater

) 1
3

V
1
3

oilm3

1

4
t
− 3

4
oilsec

dt, (4.62a)

∂R = ∂Q+ 0.0034 ‖Uw‖
4
3
2

3

4
t
− 1

4
oilsec

dt, (4.62b)

xnew = x0 + ∂Q cos(θwind) + ∂R sin(θwind), (4.62c)

ynew = y0 + ∂Q sin(θwind) + ∂R cos(θwind). (4.62d)
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For this empirical formula, toilsec ∈ R+ is the oil age in seconds and θwind := θwind(x, y, t) :

∂Ω × R+ → R is the wind angle, or bearing from north of ~Uw. The distances ∂Q ∈ R and

∂R ∈ R represent the mechanical spreading and the augmented mechanical spreading from

wind effects respectively. Equations within Sections 4.2.1, 4.2.2 and 4.2.3 have described the

movement of oil particles in the surface and subsurface ocean, but have not accounted for any

changing in oil properties through weathering or particle deposition on obstacles and shorelines.

Weathering

A case could be made that for Crude, Heavy or other persistent oils, significant weathering

occurs on longer time-scales (a day) than the measuring interval (an hour) and hence can be

well accounted for with data-fitting to measurements. The growth in oil droplet size as the

oil weathers or ages would be accounted for with droplet distribution fitting. However, with a

late sensor arrival, or in some environments (particularly hot, stormy or in the presence of oil

dispersant) and for lighter oils, this would be erroneous; with oil properties such as viscosity

changing significantly in just a few hours. Hence SCEM can interface with the ADIOS weath-

ering model (Lehr et al. 2002) in GNOME (NOAA 2012), by transferring Lagrangian particles

between the two models. The ADIOS weathering model is used to account for emulsification,

evaporation and dispersion.

4.2.4 Oil deposition

The model assumes zero particle movement once it enters a non-water cell. If the beach cell is

considered saturated, the particle cannot enter (Chao, Shankar, and Wang 2003) and remains

afloat. This offers simple shore deposition, though particles cannot re-float once deposited.

4.2.5 Number of oil particles

The presence of random processes modelling oil turbulent diffusion and entrainment cause

the spreading of oil particles to become a stochastic process in the simulation. Therefore the

number of particles required in the simulation is determined both by the need for accurate

reconstruction of a spill shape, and by the need to adequately sample the combined probability

distribution function to resolve the process, whichever requires more particles. The stochastic
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elements in particle movement are a 2D random walk, a 1D random walk and a dichotomous

binomial distribution with a uniform distribution. These are horizontal turbulent diffusion,

vertical turbulent diffusion and binary entrainment at a uniformly random depth.

First consider the horizontal turbulent diffusion random walk: Although the distance from

origin is not accurately represented by a normal distribution as samples cannot take values less

than zero, the distribution of particles along an individual axis can be assumed Normal. The

horizontal diffusion normal distribution has the parameters

σhorz = (
√

2− 1)
√

12Dhdt (4.63a)

and

µhorz = 0, (4.63b)

forming the distribution N(µhorz, σ
2
horz). Define the confidence interval αhorz ∈ R and expected

random walk movement Ehorz ∈ R by

αhorz = 0.05, (4.64a)

and

Ehorz =
1

2

√
12Dhdt, (4.64b)

then the number of samples needed to approximate the random walk process with a 95%

confidence level is (NIST/SEMATECH 2012):

nhorz ≥
(

1.96

αhorzEhorz

)2

σ2
horz. (4.65)

Under typical simulation conditions in Beaufort scale 5 sea states, nhorz in (4.65) has a value of

approximately 1000, which exceeds the samples needed to approximate the vertical turbulent

diffusion, uniform entrainment depth and the number of samples required to apply the central

limit theorem to the dichotomous binomial distribution of entrainment. Given the complex

interaction between stochastic processes that would greatly increase the variance of the com-

bined probability function, the possibly complex shape of an oil spill, the negligible effect on

computational time of increased numbers of oil particles and the implicit desire to improve the
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simulation accuracy and confidence limit, it is sufficient that 3000 particles be used. This also

exceeds the sum of sample sizes needed for each random process in typical conditions.

4.2.6 The probability of oil presence

This section formulates the probability of oil presence, for use in sensor placement determi-

nation. In a simulation realization identified by sn with n ∈ N, the presence of oil at a

time-step tk in the cell at position (xi, yj, zw) ∈ Ω is described by the binary random variable

Op(xi, yj, zw, tk, sn), which takes the value 0 when the oil volume in the cell at (xi, yj, zw) is less

than an arbitrary threshold value ζp ∈ R+ (no oil present) and the value 1 when the oil volume

in the cell is greater than ζp (oil is present), at time-step tk. The binary random variable is

described by

Op(xi, yj, zw, tk, sn) =


0 when Ṽoil(xi, yj, zw, tk, sn) ≤ ζp,

1 when Ṽoil(xi, yj, zw, tk, sn) > ζp,

(4.66)

where the function Ṽoil(xi, yj, zw, tk, sn) : Ω×R+ ×N+ → R+ returns the volume of oil present

in the discrete cell (xi, yj, zw) at time tk for realization sn. Consequently, the evolution of oil

presence across the spatial domain is described by the stochastic process {Op(Ω, tk, sn)}tk∈R+ ,

the set of binary random variables describing oil presence in the spatial domain Ω for each

time-step tk, for realization sn. The presence of oil in a set of space and time A ⊆ Ω × R+

that may span multiple time-steps, on a discrete mesh, is characterised by the binary random

variable

Õp(A, sn) =


0 when

∑
xi,yj ,zw,tk∈A

Op(xi, yj, zw, tk, sn) = 0,

1 when
∑

xi,yj ,zw,tk∈A

Op(xi, yj, zw, tk, sn) 6= 0.

(4.67)

Hence, Õp(A, sn) only takes value 0 if the volume oil in every cell is less than or equal to ζp for

the entire spatio-temporal set A, or takes value 1 if the oil volume in any cell exceeds ζp at any

time, in the realization sn.

To inform sensor placement it is useful to describe the probability of oil presence in A, by

utilising multiple realizations each of which is assumed to be an independent stochastic process.

Multiple realizations are needed to examine model sensitivity to uncertain parameters, such
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as drift coefficients. The probability of oil volume exceeding ζp using sT ∈ N realizations,

P[Ôp(A) = 1, sT ] is defined by

P[Ôp(A) = 1, sT ] =

∑sn=sT
sn=1 Õp(A, sn)

sT
. (4.68)

To determine the number of realizations needed to adequately sample the random processes,

the probability of oil presence sample variance after sT realizations is calculated (Montgomery

and Runger 1994) by

Var(P[Ôp(A) = 1]) =
1

sT − 1

sn=sT∑
sn=1

(
P[Ôp(A) = 1, sn]− P̄[Ôp(A) = 1, sn]

)2

, (4.69a)

with a maximum value across Ω of

Varmax(P[Ôp(A) = 1]) = max
A∈Ω

(
Var(P[Ôp(A) = 1]

)
, (4.69b)

where P̄[Ôp(A) = 1, sT ] = 1
sT

∑sn=sT
sn=1 P[Ôp(A) = 1, sn] is the mean probability of oil presence

for sT realizations. For the parameters of Table 4.1 and an oil threshold value of ζp = 0, the

maximum value of the variance (4.69b) with realization number decreases rapidly, then settles

after sn u 200 as in Figure 4.10. The variance distribution of (4.69a) displayed peaks at the

trail and leading edges of the spill, as expected due to the changing in presence of oil across

realizations compared to the overlap of spills at the spill centre. The variance in oil presence

probability is utilised instead of the variance in oil presence, as a confidence interval in oil

probability describes a range of chance in oil presence and is more useful than a confidence

interval describing the range of realizations with oil present. A 3 sigma confidence interval

from (4.69a) would be, for example, a statement that there is a probability of 99.7% that the

probability of oil in a given area is between determined lower and upper bounds. In practice,

this would be used to identify oil-free and oil-likely areas with some degree of confidence.

In a simulation realisation denoted by sn with n ∈ N, for a selected oil particle pi, with i ∈ N,

a particle has the 2D position denoted ~O(pi, t, sn) where ~O : N×R+×N→ R2 and is modelled

as a vector valued random process.
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4.2.7 The probability of oil drift location at a specific time

Another useful event to model, and for sensor placement determination, is the surface location of

a selected oil volume at a given time-step. Define the vector valued random variable O(pi, tk, sn)

where ~O : N×R+ ×N→ R2, to take the vector position of the oil particle index pi ∈ N at the

time-step tk, with xp ∈ R and yp ∈ R the horizontal and vertical locations respectively, for a

given realization sn. The probability of an oil particle pi to be within the discrete cell (xi, yj)

at tk, P[O(pi, tk, sn) ∈ (xi, yj)], is defined by

P[O(pi, tk, sn) ∈ (xi, yj)] =

∑
pi∈pp(xi,yj ,tk,sn)

Vparticle(pi, sn)

∑
pi∈pt(tk,sn)

Vparticle(pi, sn)
, (4.70)

where pp(xi, yj, tk, sn) : ∂Ω × R+ → Nmp is a vector of particle indices present in the discrete

spatio-temporal location and pt(tk, sn) → Nmt is a vector of all particle indices at time tk,

with mp and mt being the number of oil particles present and the total number of oil particles

respectively. The oil volume function Vparticle(pi, sn) : Nmt → R+ maps oil particle indices pi

to the oil volume they represent in the model. Evaluation of (4.70) for every cell in ∂Ω forms

the probability mass function displayed in Figures 4.8 and 4.9. The probability of oil presence

in cell (xi, yj) is obtained by averaging over the realizations of the stochastic process. The

resulting probability is given by

P[Ô(pi, tk) ∈ (xi, yj)] =
1

sT

sn=sT∑
sn=1

P[O(pi, tk, sn) ∈ (xi, yj)], (4.71)

where P[O(pi, tk, sn) ∈ (xi, yj)] is the evaluation of (4.70) for that realization index. This

probability, P[Ô(pi, tk) ∈ (xi, yj)], provides a further measure for route planning by indicating

likely areas of high oil volume, while the probability of oil presence P[Op(xi, yj, zw, tk) = 1]

defines likely areas of any oil exceeding a threshold ζp.
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4.2.8 The use of probability of oil drift and presence in sensor path

optimisation

The uncertainty minimisation weighting across the spatio-temporal domain is a function of

oil drift, or oil presence probability, amongst others, detailed in Chapter 5. Given the above

sections on probability, it should be noted that the probability of oil presence P[Ôp(A) =

1, sT ] in a cell (xi, yj) is likely highly inaccurate when the number of simulations sT sampling

from a distribution of uncertain parameters is very small. Note in Figure 4.10 the sharp

fall off of oil presence variance and hence the choice of sT = 20 as the switching point from

minimisation weighting using oil drift probability to oil presence probability. The oil drift

probability is initially used to ensure spatial variation in the selected probability measure, and

oil drift probability is the only suitable measure when sT = 1.

The min-max normalised over ∂Ω probability of oil presence or drift for a cell (xi, yj), at a

given time, is defined by P ~̂Op
(xi, yj) where P ~̂Op

: ∂Ω × R+ × Rns → [0, 1]. If sT > 20 this is

the min-max normalisation of oil presence probability P[Ôp(A) = 1, sT ] where A is area of the

cell (xi, yj). However, when sT ≤ 20, P ~̂Op
(xi, yj) is defined as the min-max normalised over ∂Ω

probability of oil particle drift to cell (xi, yj), at a given time, instead. This is the min-max

normalised value of P[Ô(pi, tk) ∈ (xi, yj)].

4.2.9 The mean location of the spill centre

A further vector valued random variable Om(tk, sn) = [xm, ym] ∈ ∂Ω takes the value of the

position of highest oil volume for realization sn, where xm ∈ R and ym ∈ R are the horizontal

and vertical locations of the highest volume position respectively. The value taken by Om(tk, sn)

is one definition of the spill centre. Define the mean spill centre position across realizations by

Ōm(tk) =
1

sT

sn=sT∑
sn=1

Om(tk, sn). (4.72)

The mean spill centre position for 500 realizations of the Grande America simulation in Section

4.4 is displayed in Figure 4.11.
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4.3 Backwards SCEM model

In order to offer backtracking or hind-casting capabilities for source location, the model must

be capable of simulating a detected oil spill advecting backwards in time, and converging if

there is an assumption of a point source. The location of the spill at the estimated spill start

time is an estimated source location.

There is a lack of determinism in reverse time without modification of the forward model (Galt

and Payton 2005; Ciappa Achille; Costabile 2014), in all non-linear or stochastic processes

forming the oil model, and this is why prior work assesses possible starting points by running

a forward simulation and compares the result, see Breivik et al. 2012. However, a forward

ensemble approach requires multiple simulations and may be ill-suited for time constrained

simulations. The short-time frame of simulations here may allow a single backward simulation

using modified algorithms to produce an accurate source estimation, or at least, a refined set

of source locations for an ensemble of forward simulations.

4.3.1 Ocean model

Due to the ill-posed nature of backwards simulation of the Navier-Stokes equations, the ocean

model runs forward from the oldest relevant data at t = 0 to the newest at t = tf and stores the

data required by the oil model. The sub-surface velocities are extrapolated from the surface

velocities, wind speeds and the averaged wind speed for the Ekman current, hence only these

values are stored. The wave spectra are calculated by SWEM using the surface current and

wind speeds at each time-step and are not past-time-dependent, hence they do not need to be

stored.

4.3.2 Oil model

The oil model steps backwards from tf loading the velocities from the ocean model, calculating

the sub-surface velocities and the wave spectrum in SWEM with its Stokes drift velocity, then

applying the oil processes with a negative time-step. The negative time-steps continue until

the estimated t = 0, or until the oil reaches an estimated starting thickness or size. The oil

processes for entrainment, diffusion, mechanical spreading are also ill-posed in reverse: An

example would be that, forwards in time, an oil patch is entrained into the water column in a
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patch of rough sea. The oil enters sheared flow, moves underwater and then rises to the surface

to form a new patch in calmer waters. In a backwards time simulation, starting with the oil

patch in calmer waters, nothing is entrained into the water column and so the patch does not

advect backwards through the sheared flow and is at the incorrect position at the starting time.

Sub-surface oil particles

Oil particles that begin entrained into the water column undergo negative buoyancy until they

sink to the intrusion depth of their current cell, where upon they rise to the surface and

become part of the main spill. Otherwise, oil particle entrainment is disabled, as wave induced

entrainment is ill-posed in a reverse simulation. Vertical turbulent diffusion is left as a random

process, and buoyancy remains positive for all non-entrained particles; this ensures the spills

vertical dispersion near the surface is consistent, albeit without entrainment.

Turbulent diffusion

The random walk process that describes the forward horizontal turbulent diffusion would still

be a random process with the time-step inverted. The expected motion of the random walk

process needs to be examined to infer a reverse motion, where particles will be required to step

towards a position, likely the centre of the oil spill, to simulate reverse diffusion. The forwards

random walk has both a uniform step size distribution, between 0 and
√

12Dhdt and a uniform

direction distribution between 0 and 2π, see Section 4.2.1. For a uniform, constant step size, it

is known (Weisstein 2017) that for particle counts tending to infinity:

Srms = l
√
N (4.73)

where Srms ∈ R+ is the root-mean-squared distance travelled, l ∈ R+ is the step size and N ∈ N

is the number of steps. For a uniform step size distribution and time-step δt, the expected value

Estep ∈ R+ can be substituted for the step size, calculated by:

Estep =
1

2

√
12Dhδt (4.74)
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By substituting the number of steps for N = toilsec/δt, where toilsec is the age of the oil spill in

seconds, the dependency on the time-step can be removed, as the full equation simplifies:

Srms =
1

2

√
12Dhδt

√
toilsec

δt
, (4.75a)

Srms =
1

2

√
12Dhtoilsec . (4.75b)

For an estimated boundary radius, the r.m.s distance can be converted to a peak to peak value,

using the maximum step size of 2Estep, by

Spk = 2
√

2
√

12Dhtoilsec . (4.76)

However, this has an accuracy limitation, since it operates under the assumption that the oil

has been subject to this Dh for all of toilsec and Dh is not uniform across the spatio-temporal

domain. The derivative of Equation (4.76) gives a shrinking velocity Ushr : ∂Ω×R+ → R2, the

speed at which particles on the boundary of the oil spill should move towards the centre. This

is scaled by the distance a particle is from the spil centre, Sparticle ∈ R+, as a proportion of the

Spk radius. The scaling factor dependence on the Spk represents an estimate of the spill radius

resulting from turbulent diffusion alone. To combat the over-estimation of shrinkage on inner

particles, shrinkage is only applied to particles outside the estimated radius when Sparticle > Spk.

The shrinkage velocity Ushr is described by,

Ushr =
2
√

6Dh

Dhtoilsec

Sparticle

1
2
Spk

. (4.77)

Hence, the backwards turbulent diffusivity velocity can be determined by

u′
v′

 = Ushr

u∗
v∗

 , (4.78)

where u∗ and v∗ are the horizontal and vertical components of the unit vector from the particle

position to the spill centre.
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Mechanical spreading

Mechanical spreading is again, ill-posed in reverse and is dependent upon environmental con-

ditions (wind speed etc) as well as the oil thickness in the forwards simulation. Consideration

has been given to implementing an empirical shrinkage, similar to turbulent dispersion. An

estimated ellipse from mechanical spreading (Chao, Shankar, and Wang 2003) is described by

Lmin = 53.76

(
ρw − ρo
ρo

)1/3

V
1/3

oil t
1/4
oil , (4.79a)

Lmax = Lmin + 0.95U
4/3
windt

3/4
oil , (4.79b)

A = (π/4)LminLmax. (4.79c)

In a similar manner to the turbulent diffusion, the derivative of equations (4.79a) provides a

mechanical spread shrinkage velocity, to be scaled by the particles positions along the ellipses

long axis Lmax, towards the spill centre. Again, to combat the over-estimation of shrinkage

on inner particles, spill shrinkage is only applied to particles outside the estimated radius.

Although the long axis includes effects of wind, using the short axis led to the shrinkage

velocity being too high in simulations.

4.3.3 Practical considerations for source locating

After investigation through backtracking of spill particles released from a known point source,

the above methods of spill shrinkage are interesting, but ultimately not useful for source lo-

cating. The methods force convergence of a spill and give some indication of a spill size when

stepping a spill backwards, but are only valid for a roughly elliptical spill shape with a well

defined centre and axis lengths. Furthermore, due to many not-modelled processes when run-

ning backwards in time, the location at which the spill converges to a point is very seldom the

true source location, though it may be close. In practice, it is preferred to advect and diffuse

the spill backwards in time, omitting ill-posed processes, with further diffusion based spreading

and accept that there will be a large area identified as possible sources at the estimated release
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External Data Oil Model - Run BackwardsInternal Environment Model - Run Forwards

Regional Current Flow

Bathymetry Data

Regional Wind Flow

Fetch or Wave Swell

Ocean Navier Stokes
(4.1)

Wind Navier Stokes
(4.1)

Mean Wind
Velocity
(4.40)

Ekman Current
Profile (4.44)

Wind Shear
Velocity Profile

(4.39)

Tidal Flow
Velocity Profile

(4.36)

SWEM Wave Model
(Heins and Jones 2016)

∑

∑

Forwards Random
Walk Diffusion

(4.47) to (4.50a)

Entrainment
Under Surface

(4.56) to (4.59)

Buoyancy
(Proctor 1994)

Current Advection
(4.46)

Wind Advection
(4.46)

Stokes Drift Advection
(4.2.1) to (4.55)

Mechanical
Spreading

(4.60) to (4.62)

Oil Particle Movement
Section 4.2

Figure 4.7: A block diagram of the combined fluid and oil model, in the backwards mode. Note
that the fluid model runs forward in time, to produce a fluid state trajectory, that the oil model
then steps through backwards in time, with the SWEM wave spectra only being calculated when
needed. When running backwards the oil model omits the processes of entrainment, buoyancy
and mechanical spreading, highlighted in red. Note that the random walk diffusion continues
to spread a spill out as it is advected backwards.

time. This backwards implementation of SWEM is displayed in Figure 4.7.

As mentioned in Ciappa Achille; Costabile 2014, the random walk backwards in time describes

the uncertainty of the trajectory caused by turbulent diffusion, while the backwards in time

integration of advection provides probabilities of possible source locations. Then, similar to

prior work (Breivik et al. 2012), run an ensemble of spill releases from the possible source loca-

tions, then ascribe a probability to each source location using the prediction-to-measurement

correlation of the spatio-temporal distribution of oil volume for each spill.

In the source locating scenario in Chapter 7, the source locating process is described thus:

After a suitable amount of sensing time, 12 hours, 20 hours and 24 hours, an analysis model

run occurs. This assimilates all the fluid measurements up to that sensing time, to produce

an improved analysis state-trajectory for the ocean model. Then, running back-in-time from

the latest measurement, spill particles are injected into the ocean only where they have been

measured, and backtracked with advection and diffusion through the ocean flow. Though this

reverse time advection and diffusion is strictly speaking, ill-posed, the distribution of particles

at their supposed leak-times identifies a range of possible source locations and times. An

ensemble of forward spills are then simulated from each of these possible source locations and

times. As the ensemble particles move forward through time, they are compared with the
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sensor measurements of oil presence. If the particles from a source location are present when

an oil measurement confirms oil, then the source location receives +1 correlation score. If they

are not present when an oil measurement confirms oil, then the source location receives −1

correlation score. The source location with the highest score after all sensor measurements are

taken into account, is the identified source location to be used for an analysis run of the oil

model, with the analysis run of the ocean model.

4.4 Model simulation and results

The model is intended to guide sensing assets in the aftermath of maritime incidents and hence

requires validation, with comparison against real-world data preferable (Spaulding 2017). The

Grande America oil spill of March 2019 provides a recent and observed incident to validate

against. However due to the vessel’s abandonment on the 11th March 2019 due to an on-board

fire and the subsequent sinking in water depth of 4600 m between 1500 and 1800 hours on

the 12th March 2019, it is unclear exactly when the vessel sank, the oil leak occurred, or how

much leaked. This information forms the initial conditions for the spill and can heavily affect

simulation results.

For the model simulation it is assumed the fuel tanks became compromised as the hull split

and sank and the worst case scenario is modelled: all 2200 tonnes of Heavy Fuel Oil carried by

the Grande America is spilt in a short time-frame, from 1400 to 1600 hours on the 12th March

2019, at coordinates -5.7844◦ East, 46.0689◦ North. The model utilises Global Forecast System

(GFS) wind velocities and Tidetech ocean velocities, with a North-West to South-East wave

swell with significant wave height of 3m from National Centers for Environmental Prediction

(NCEP) data. User specified parameters are presented in Table 4.1. The Grande America oil

spill was observed by the Copernicus Sentinel 1 and 2 satellites on two occasions, on the 19th

March 2019 the 5 day old slick is observed at approximately 45.439458◦ North, -4.283424 ◦ East

and on the 23rd March 2019 the 11 day old slick is observed at 45.0826◦ North, -4.4559◦ East.

Due to the uncertainty surrounding the initial spill conditions and volume, emphasis is placed on

the model accurately predicting the drift of a spill, with little importance placed on predicting

the slick thickness or volume. The probability of oil drift location in a spatio-temporal domain

is given by equation (4.70), this is evaluated for each grid-cell area at the indicated time to
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produce Figures 4.8 and 4.9. Figures 4.8 and 4.9 show accurate prediction of the slick locations,

with high probability at 45.2000◦ North, -4.1850◦ East on the 19th March 2019, with the true

location being 45.1857◦ North, -4.323424 ◦ East, ≈14km to the north west. For the 23rd March

2019, with no correction or reinitialisation from the true spill position on the 19th March, the

model predicts a slick location at 45.0300◦ North, -4.2100 ◦ East, compared to the true position

at 45.0826◦ North, -4.6559◦ East, 20 km to the west of the predicted position. Errors of 15 km

and 20 km for five and eleven day predictions, respectively, not unreasonable given the scale

of the spill, the large size of the domain, the lack of model correction or calibration and the

model’s intended purpose for predictions over much shorter time-scales (hours to a day). The

288 hour prediction took 568 seconds to compute in Matlab, on a Windows 10, i7-6700k CPU

desktop computer, this includes computation time for the wind, wave and ocean hydrodynamic

models across 2688 surface nodes, extrapolated to 534912 sub-surface nodes. All parameters

were within ranges acceptable to literature and use their values within Table 4.1.

To investigate the sensitivity to the spill parameters and the diffusion, wind and ocean current

coefficients of equation (4.46), 500 simulation realizations using simultaneous sampling of the

random variable coefficients of Table 4.1 were utilised to get a probability of oil presence map

(4.68) across the set of random variables. Figure 4.11 shows that the model is accurate for

the Grande America spill within the typical bounds for drift parameters and that the default

coefficient values slightly overestimate oil movement up to the 19th March 2019 when comparing

the results of Figures 4.8 and 4.11.

As demonstrated by the Grande America spill, data is scarce on spill components, environmental

data, contaminant position and thickness following a real incident, with even international scale

incidents only becoming well observed and documented several days after the incident.

The model is now compared to the industry standard model GNOME as a benchmark to

see if it provides similar predictions when provided with the same inputs. The comparison

simulation utilises Global Forecast System (GFS) wind velocities and Tidetech ocean velocities.

As large data set acquisition is unlikely to be available in deployment due to data transmission

constraints, the Tidetech ocean data results are assumed to be available as surface velocity

only. The data set includes Ekman currents and therefore Ekman currents are omitted from

the surface dynamics, but a spiral is calculated sub-surface to model oil slick shear separation
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Figure 4.8: The probability mass function of oil particle drift (4.71) from the SCEM simulation
for 17:00 on 19th March 2019, 5 days after the spill released, using a log scale and with the real
position marked. Note the similarity in location to the real slick location on the 19th March.
Map data c©2019 Google, Inst. Geogr. Nacional. Contains modified Copernicus Sentinel data
(2019), processed by ESA, CC BY-SA 3.0 IGO.

https://creativecommons.org/licenses/by-sa/3.0/igo/
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Figure 4.9: The probability mass function of oil particle drift (4.70) from the SCEM simulation
for the 23rd March 2019, 11 days after the spill released, using a log scale and with the real
position marked. Note the similarity in location to the real slick location on the 23rd March.
Map data c©2019 Google, Inst. Geogr. Nacional. Contains modified Copernicus Sentinel data
(2019), processed by ESA, CC BY-SA 3.0 IGO.

https://creativecommons.org/licenses/by-sa/3.0/igo/
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Figure 4.10: The plot showing the decay of the maximum variance of oil presence (4.69b)
across 500 SCEM simulations for 17:00 on the 19th March 2019, 5 days after the spill released.
Note the rapid decay and convergence, settling around 200 simulations.
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Figure 4.11: The combined probability map of oil presence (4.68) for 17:00 on the 19th March
2019, 5 days after the spill released, with the real position marked. Each SCEM simulation
was a sampling of spill parameters in Table 4.1. Note the similarity in location of the highest
probability and mean spill position to the real slick location on the 19th March. Map data
c©2019 Google, Inst. Geogr. Nacional. Contains modified Copernicus Sentinel data (2019),

processed by ESA, CC BY-SA 3.0 IGO.

https://creativecommons.org/licenses/by-sa/3.0/igo/


4.5. Uncertainty and sensor modelling 93

between surface and sub-surface particles. Both models utilise the same number of particles,

representing the same volume of oil each and released at the same leak rate from the same

location. Therefore, particle positions can be utilised for comparative purposes.

The model comparison is a 3-day simulation of a 100 barrel spill released 1 mile south of Lamma

Island, Hong Kong, at 0330 hours on the 8th January 2019 carried out as a contingency for the

Aulac Fortune oil tanker explosion. The oil models are both forced by Tidetech ocean current

data and GFS wind data and their similarity displayed in Figure 4.12 indicates SCEM is at

least a comparable model that includes the resolving of external data in the environment model

(Section 4.1).

4.5 Uncertainty and sensor modelling

This section first discusses the key information required for monitoring and litigating a maritime

incident, then formulates a description of uncertainty, to be later minimised in a cost function

in Chapter 5. Recall from Chapter 1 the overview of a maritime incident, the typical response

and the intended use of information gathered to support guide further monitoring, clean-up

operations and provide evidence for litigation purposes. Here, there is an assumption that

sensors are only capable of measuring environment and oil properties at the ocean surface,

limited to the wind and ocean flow velocity, the peak wave amplitude and period, and the

oil thickness. To briefly summarise the review in Chapter 2, two principal approaches are

favoured: those of placing sensors in locations that maximise the expected improvement in

estimation or expected information utility (Morlier et al. 2018; Hutchinson, Liu, and Chen

2019), or minimise the trace of the estimation error covariance (Zammit Mangion, Anderson,

and Kadirkamanathan 2011; Yan et al. 2019). Here, the uncertainty minimisation approach is

taken: A design choice is made that gaining knowledge of uncertain variables is most important,

to the extent it should almost be the sole focus through uncertainty minimisation. In a maritime

incident where there are large sources of uncertainty inherent in both the scenario and the

mathematical descriptions, mapping the spill then establishing a broad description of the ocean

and oil dynamics for extrapolation is far more important than model refinement; at least

until the situation is well estimated. However, the spatio-temporal weighting of uncertainty

minimisation by measures of information utility is used here to balance sensor focus between
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Figure 4.12: The model and GNOME simulation results for a 3-day simulation of a 100 barrel
spill released 1 mile south of Lamma Island, Hong Kong, at 0330 hours on the 8th January
2019. Both models has been forced by GFS wind velocities and Tidetech ocean velocities. Note
the presence of oil on all the same islands and positions of the leading edge of the spill. Map
data c©2019 Google, Inst. Geogr. Nacional.
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confirmation (also termed exploitation) and exploration.

In this scenario, the first key piece of information is the chance of oil presence in an area,

throughout the temporal domain. This is determining where the oil was in the past, including

the source location, where the oil is now and where the oil is going to be in the future. This

is described by the probability of oil particle presence in SCEM, the combined ocean and oil

model, within a discrete area (4.68). The second key piece of information is the distribution of oil

within the spatial domain, throughout the temporal domain, which can be used to describe the

oil concentration and thickness. This is described by the probability of oil particle drift location

in SCEM within a discrete area (4.71). It would now be useful to quantify the uncertainty of

these two key probabilities and place sensors to minimise the defined uncertainty. There is prior

work in Goncalves et al. 2016 to formulate descriptions of uncertainty for an oil model using a

polynomial chaos approach. However, this approach relies upon constructing a surrogate model

and a large ensemble (1024 model realisations) with which to form a robust estimate of the

models statistical distribution. As discussed in Chapter 2, a large ensemble is not feasible given

the time constraints on the computation time and hence the use of (4.69a) is impractical in

a control setting. Here, it is desired to produce a definition of uncertainty specific to surface

measurements of oil and environment parameters that does not require multiple simulation

runs, and this uncertainty will be a key component in the sensor pathing algorithm described

in Chapter 5.

A complete system description convenient for state estimation with a Kalman filter or Gaussian-

Process-Regression is not possible due to the non-linearities, stochastic processes and high num-

ber of states present in the full combined ocean and oil model description. Hence, the use of

the estimation error covariance matrix as a measure of uncertainty (as in Zammit Mangion,

Anderson, and Kadirkamanathan 2011) is not feasible here. The method employed instead is

to construct a secondary system of PDEs that approximates the uncertainty of the oil model

surfaces, described in this chapter. Then construct a reduced order model of the ocean model

suitable for state estimation with a Kalman filter, described in Chapter 6, with the estimation

uncertainty as a function of the standard estimated error covariance matrix and reduced order

modelling error. It is apparent that the uncertainty in estimating ocean and wind flow dynam-

ics also introduces uncertainty in the oil model, so these two descriptions of uncertainty are
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combined to form the definition in this chapter.

Note that the important outputs, (4.68) and (4.71), along with oil thickness, are dependent

upon the position of particles in SCEM and hence the principal uncertainty in the key out-

puts of SCEM can be described through the uncertainty in particle position in SCEM. Before

continuing, it is important to establish the meaning of uncertainty, as there are two common

measures. They are the variance and discrete entropy of a variable. Note that entropy is

defined for continuous distributions but its definition has a number of short-comings (Marsh

2013). The variance captures the spread of outcomes quantitatively as a deviation around the

mean value, while entropy is something that maximises when each outcome occurs with the

same probability (large uncertainty) and minimises when there is only a single outcome (no

uncertainty). Choosing which measure to utilise is not entirely simple: In the case of a multi-

modal distribution where the probability density function contains multiple peaks, the variance

is a poor measure as it fails to present this important structural information. In this case, en-

tropy would increase to describe the multi-modal nature. However, entropy is independent to

the range of outcomes as it is solely dependent upon the probability of each outcome. In this

case, the range of outcomes is important: consider a random variable, e.g. representing particle

position on an axis, that samples two discrete distributions. The first distribution has equal

probability of outcomes 0 m or 1 m, while the second distribution has an equal probability of

outcomes of 0 m and 100 m. Both distributions have the same entropy as they assign the same

probabilities to the same number of outcomes, but the first distribution has a variance of 0.5

and the second of 5000. Here, the variance has captured the discrepancy in distributions, as

would be useful. For the above reasons, the variance in particle position is modelled, with ad-

ditional terms representing the effect of uncertainty in ocean dynamics upon particle position,

and this variance in particle position is termed the uncertainty of SCEM.

4.5.1 Describing uncertainty

This section constructs a PDE description of the uncertainty in position of a Langrangian

particle ensemble, for use in sensor placement determination. In a simulation realisation denoted

by sn with n ∈ N, for a selected oil particle pi, with i ∈ N, a particle has the 2D position denoted

~O(pi, t, sn) where ~O : N×R+×N→ R2 and is modelled as a vector valued random process. In
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a slight abuse of notation, dependency upon the simulation realisation is omitted from here-on,

as the uncertainty is to be defined for a single simulation realisation. For a 2D oil particle

position, depth in water is ignored. Particle 2D movement is also modelled as a vector valued

random process, described by

d~O

dt
= f(~Uc) + f(~Uw) + f(~Uwave) + ~Ud + ~Us + ~Umech, (4.80)

where the ocean current velocity is ~Uc, with ~Uw as the wind velocity, the vector ~Ud is the

horizontal turbulent diffusion correction velocity, ~Uwave is the Stokes drift wave induced velocity.

The horizontal diffusion velocity is ~Us and the mechanical spreading velocity of the particle is

denoted ~Umech. The right hand terms in (4.80) are all random variables and therefore the

expectation (4.82) is the total expectation. The velocities ~Uc, ~Uw, ~Uwave, ~Ud are independent

from the presence of other oil particles and are calculated within the fluid model. The min-max

normalised probability of oil presence in a cell (xi, yj), at a given time, is defined by P ~̂Op
(xi, yj)

where P ~̂Op
: ∂Ω × R+ × Rns → [0, 1], detailed in Hodgson et al. 2019. This indicates likely

locations of oil for use in the optimisation problem of (5.1a), scaled between 0 for least probable

and 1 for most probable. The min-max normalised value of the ith element αi ∈ R within the

vector ~α ∈ Rnα is β(αi) : Rnα × R→ R described by,

β(αi) =
αi −minj(αj ∈ ~α)

maxj(~αj ∈ ~α)−minj(~αj ∈ ~α)
, (4.81)

where minj(~αj ∈ ~α) : Rnα → R is the minimum value of ~α and maxj(~αj ∈ ~α) : Rnα → R is

the maximum value of α. In this manner, for all i ∈ J1, nαK, the min-max normalised vector

~β ∈ Rnα can be formed by ~β = [β(α1), β(α2), β(αi), ..., β(αnα)].

The uncertainty in particle position is the squared area in which the particle has a high prob-

ability of being in, after drifting from a known location. From the description of motion in

(4.80), a single expected drift velocity ~U : ∂Ω × R+ → R2 is calculated for application to the

oil particle by,

E

[
d~O

dt

]
= ~U = E

[
f(~Uc)

]
+E

[
f(~Uw)

]
+E

[
f(~Uwave)

]
+E

[
~Ud

]
+E

[
~Us

]
+E

[
~Umech

]
. (4.82)
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The drift velocity ~U has a horizontal component u : δΩ × R+ → R and vertical component

v : δΩ × R+ → R. Note that for the horizontal turbulent diffusion velocity it holds that

E
[
~Us

]
= 0. Mechanical spreading is negligible after the oil has reached a terminal thickness

and therefore is discarded.

The uncertainty tracer qpi : N × R+ → [0, 1] is defined as the square of the area in which the

position of a particle has probability ζ to be within, when moved from a previously known

position in ∂Ω over a given time-step. The uncertainty tracer qpi is normalised to the spatial

domain ∂Ω and has a minimum value of 0 corresponding to a known particle position, and

a maximum value of 1 denoting that a particle can be anywhere in the spatial domain. The

probable region A (pi, t) is described by

A (pi, t) =
{

(x, y) ∈ R2 : P
[
~O(pi, t+ dt) ∈ Conv(A )

]
≥ ζ
}
, (4.83)

where Conv(A ) is the convex hull of the set of points in A , where A is defined such that this

convex hull is the region that contains the particle pi in the next-time step with probability

at least ζ. Assuming the vector d ~O
dt

is formed of independent, normally distributed horizontal

and vertical components, the scalar area A(pi, t) of Conv(A ) can be described without needing

to determine A , where A : N × R+ → R+. Modelling particle movement as a Chi-squared

distribution with 2 degrees of freedom, A(pi, t) is described by

A(pi, t) = πχ(ζ, 2)

√√√√Varx

(
d~O

dt

)√√√√Vary

(
d~O

dt

)
, (4.84)

where χ := χ(ζ, 2) : [0, 1] × N → R+ is the Chi-squared distribution value for probability

ζ with 2 degrees of freedom. In (4.84), the terms Varx

(
d ~O
dt

)
and Vary

(
d ~O
dt

)
, where Varx :

∂Ω × R+ × Rns → [0, nxδx
πχ

2
] and Vary : ∂Ω × R+ × Rns → [0, nyδy

πχ

2
], are the variances of

particle movement in the x-direction and y-direction respectively. Figure 4.13 is a pictorial

representation. The upper bounds nxδx
πχ

2
and nyδy

πχ

2
limit the axes of the confidence interval

ellipse to the width and height of the domain respectively.

Note that Varx

(
d ~O
dt

)
and Vary

(
d ~O
dt

)
are mappings from the spatial domain surface, time and

the state vector, but not the particle index pi. The variance of the vector valued random

process describing d ~O
dt

is not particle dependent, but location dependent. Given the focus
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Figure 4.13: This figure displays a particle moving from the origin (blue cross) with a sampled
velocity. The expected location given an expected velocity (4.82) is displayed as a red cross.
Possible particle locations are marked with black crosses, with the perimeter of the chi-squared
approximation of (4.83) displayed as a red ellipse, with an area described by (4.84). This is
the region that contains the particle with some probability, e.g 95% probability meaning 5%
of possible locations are outside the region. In practice, 99.95% is used. This red ellipse is
constructed for a particle at the centre of every grid-cell, using the expected velocity of the
particle in the grid cell to locate (or advect) the ellipse and the variances in particle velocity
in the grid-cell to determine the ellipse axis lengths. The definition of uncertainty in (4.85)
is a function of the area of the red ellipse. The PDEs in (4.86) describe the spatio-temporal
evolution of the variances determining the ellipse axis lengths.
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of this work upon highly mobile sensors measuring at the water surface, determination of

A(pi, t) is constrained to horizontal processes for an oil particle at the water surface. Hence the

random processes of particle entrainment and vertical turbulent diffusion are ignored, enabling

the description of variance in (4.86). If a depth capable sensing strategy were required, A(pi, t)

would be replaced by a scalar volume from a Chi-squared distribution with 3 degrees of freedom

in particle movement and (4.86) would be extended by a further PDE describing the evolving

variance of particle movement in the z-direction.

To recognise the dependency of uncertainty upon sensor positions and other components of the

monitoring framework, now expand the definition of uncertainty qpi : N × R+ → [0, 1] as a

function of the particle index and time, to q(
u

~x, t, ~p), where q : ∂Ω×R+×Rnu×R1×2pn → [0, 1].

In this definition,
u

~x : R+ → Rnu is the nu = 8nxny length state-vector of the uncertainty system

(see Section 4.6). Although some states in
u

~x have further dependency upon the SCEM state

vector ~x, this layered dependency is omitted for brevity. Hence q is a function of the spatial

location, the time, the uncertainty state vector and np ∈ N sensor positions in the row vector

~p : R+ → R1×2np . A row vector is required for the optimisation solver method in Section 5.1.1.

Let kχ := 1
∂ΩA

πχ, σ2
x := Varx

(
d ~O
dt

)
and σ2

y := Vary

(
d ~O
dt

)
, then the uncertainty tracer function

q(
u

~x, t, ~p) is defined by

q(
u

~x, t, ~p) := k2
χσ

2
xσ

2
y . (4.85)

In summary, q is a scalar measure of the area in which an oil particle might be, as defined

by the Chi-squared distribution for 2 degrees of freedom, normalised to the spatial domain.

The uncertainty q(
u

~x, t, ~p) is a function of the variance in the horizontal and vertical directions,

which are modelled by the PDEs,

∂σ2
x

∂t
= −u · ∇xσ

2
x − v · ∇yσ

2
x + ν∇2σ2

x

−H
¯ t(~pt−δt)

ksσ
2
x

δt
H
¯ r(~p) +

dh(u, v)

δt
+ εx + EKFx(~p), (4.86a)
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and

∂σ2
y

∂t
= −u · ∇xσ

2
y − v · ∇yσ

2
y + ν∇2σ2

y

−H
¯ t(~pt−δt)

ksσ
2
y

∂t
H
¯ r(~pt−δt) +

dh(u, v)

δt
+ εy + EKFy(~p). (4.86b)

The PDEs of (4.86) are a Fokker-Planck or Kolmogrov type equation, that together with (4.85),

describe the spatio-temporal evolution of the uncertainty (as a scalar area) in the position of

Langrangian oil particles, across the domain. The division by the time-step scales out the

time-step dependency of the PDE discretisation. These PDEs have initial values at t0 of

σ2
x = δx

πχ

2
and σ2

y = δy
πχ

2
, meaning a uniform spatial distribution of uncertainty where particles

are assumed to be anywhere within a grid-cell. In a scenario with no prior information, they

have initial values of σ2
x = nxδx

πχ

2
and σ2

y = nyδy

πχ

2
meaning particles can be anywhere in the

domain. In (4.86), ν ∈ R+ is the diffusion coefficient of the fluid moving the particle, and

the terms H
¯ t(~pt−∂t) and H

¯ r(~p) are used to activate sensing after sufficient time for a sensor

travelling at speed vsensor ∈ R+ to reach a location and to remove the uncertainty tracer

in a radius r ∈ R+ around the sensor position. These H
¯

terms are functions of H(·), the

Heaviside step function. The sensor movement term H
¯ t : ∂Ω× R+ × R+ × R1×2np → [0, 1] has

dependency upon the spatial location, time, sensor velocity and the sensor positions. The sensor

reach, H
¯ r : ∂Ω × R+ × R+ × R1×2np → [0, 1] has dependency upon the spatial location, time,

sensor radius and the sensor positions. In (4.86), the sensor effectiveness coefficient ks ∈ [0, 1]

defines how much uncertainty as a proportion of the amount present should be removed by

a reading. Here a value of 1 has been used, as perfect sensors are assumed. The variance

of the random walk that models turbulent diffusion (Hodgson, Esnaola, and Jones 2019) is

described by dh(u,v)
∂t

: ∂Ω × R+ × R × R → R+. Additional inputs of uncertainty in x and

y directions, are EKFx(~p) and EKFy(~p), where EKFx : ∂Ω × R+ × Rns × R1×2np → R+ and

EKFy : ∂Ω × R+ × Rns × R1×2np → R+. These uncertainty inputs are a function of the data

assimilation error, see Section 6.1.1. The terms εx, εy ∈ R+ are the error covariance (or mean

squared error) of ~U from external data sources of ~Uc and ~Uw, or the sample variance of ~U for

that spatio-temporal location in the absence of other information. Sensor i ∈ N is selected by

the notation ~pit where ~pit : R+ × N → R1×2 returns the position vector of the sensor at the
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noted time. To describe the limited Heaviside functions H
¯ t and H

¯ r, first define the functions

Ht(~pt−δt) =

np∑
i=1

(
H

(
∂t−

∥∥∂Ωp − ~pit−δt
∥∥

2

vsensor

))
, (4.87)

and

Hr(~p) =

np∑
i=1

H(r − ‖∂Ωp − ~pit‖2). (4.88)

The term ∂Ωp ∈ R2 is the position in ∂Ω where the containing function is evaluated. The

limited Heaviside functions are then described by,

H
¯ t(~pt−δt) =

 1 Ht(~pt−δt) ≥ 1

Ht(~pt−δt) otherwise,
(4.89)

and

H
¯ r(~p) =

 1 Hr(~p) ≥ 1

Hr(~p) otherwise,
(4.90)

where the limits are necessary to describe the ineffectiveness of multiple sensors being active in

the same location.

The definition of uncertainty, in (4.85) and (4.86), incorporates uncertainty propagating through

the system via advection and diffusion and the additional uncertainty for oil particles due to

turbulent advection and poor external data as uncertainty source parameters. There is a

further uncertainty input as a function of the data assimilation error and finally a term for

the removal of uncertainty through mobile sensors. The uncertainty definition considers the

dynamics of an oil spill and estimation framework, with a continuous, determinable derivative

and hence determinable sensitivity of uncertainty to sensor position, enabling gradient based

optimisation. This definition of uncertainty is suitable for description as a non-linear state-space

system (Ogata et al. 1995).

4.6 Uncertainty as a state space system (Stages 1 & 2)

This section describes the uncertainty definition in Section 3.4 as a non-linear state-space

system, suitable for application of the adjoint method (Chapter 5, Section 5.2) to solve the
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optimisation for sensor placement (Chapter 5, Section 5.1). Although conceptually straight-

forward, this is technically challenging due to the non-linear terms in (4.86). The PDEs in (4.86)

are solved with forward Euler time-stepping, using δt from the fluid model, upon the staggered

grid spatial discretisation of SCEM (cell boundary states are fluid velocities and fluid variances,

cell centre states are all other states). However, unlike in SCEM, the cell boundary states are

required at the cell centres: uncertainty is required to be advected by the fluid velocity and

the velocity estimation error is required as an uncertainty source, at the cell centre. Cell centre

values are the mean of the adjacent values on the cell boundary.

The section goes on to detail the implementation of bounded state values between upper and

lower limits by the introduction of new matrices to the state-space system, rather than new

terms in (4.86). Finally, the state-trajectory of the system is described. There is a summary of

key insight for the reader at the end of this section, and the hurried reader may wish to finish this

introductory section and then skip to the summary. The optimisation for a sensor trajectory

does not necessarily share the initial t0 and final time tf of the oil trajectory simulation, so

denote tτ ∈ R+ and tε ∈ R+ as the initial and final times of the sensor trajectory, with

corresponding discrete time steps kτ ∈ N and kε ∈ N and with nτ ∈ N discrete time-steps in

the interval [tτ , tε]. For example, the sensor trajectory might be determined only for the last 2

steps of the oil trajectory simulation, then implemented, then the oil trajectory extrapolated

to a further time with use of new sensor information, then the sensor trajectory determined

again, in a receding horizon manner.

First define a trajectory of sensor locations ~P ∈ R1×2npnτ : ~P = [~pkτ , ~pkτ+1, ~pkτ+2, ..., ~pkε ],

where ~pk = ~PL1, J((k − 1)2np + 1), (k2np)KM for the time index k. Define further scalar terms,

ex, ey, sx, sy : ∂Ω× R+ → R, as ex := EKFx(~p, ~pt−δt), ey := EKFy(~p, ~pt−δt), sx := εx and sy := εy.

Then, in the uncertainty system, the state-vector is formed of the components ~σ2
x, ~σ

2
y , ~ex, ~ey :

R+ → Rnxny , that are each a vector of a spatially distributed scalar value sampled at nxny

locations and a function of time. These are the particle movement variance in the horizontal and

vertical directions and the variance sources from the data assimilation in horizontal and vertical

directions at cell-centres, respectively. The system input vector is formed of vectors of the cell-

centre fluid velocity components ~u,~v : R+ → Rnxny and further vectors ~sx, ~sy : R+ → Rnxny .

These are externally determined inputs of uncertainty to the system. The uncertainty system
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utilises a state vector
a

~xk = [~σ2
x;~σ

2
y;~ex;~ey] ∈ R4nxny and inputs ~ik = [~u;~v;~sx;~sy] ∈ R4nxny . In

the next section, the abstract structure of the state-space system will be described, without

rigorous definition of terms. This will facilitate a more rigorous definition later.

4.6.1 Forming the abstract state space system

In this section, a traditional state space system is formed, then the state-vector is augmented

with the internally determined inputs. This is because the optimisation and Adjoint method

based solver require a complete system description, including inputs, in the state trajectory.

Assume fixed sensor positions and that the system has no time dependency outside the current

time-step k, then a non-linear (in both states and inputs) state-space system is described by

a

~̇xk =
ss

Ak(
a

~xk,~ik)
a

~xk +
ss

Bk(
a

~xk,~ik)~ik, (4.91a)

~yk =
ss

Ck(
a

~xk,~ik)
a

~xk +
ss

Dk(
a

~xk,~ik)~ik. (4.91b)

In this system,
a

~̇xk is the time-derivative of the states,
ss

Ak is the state dynamics matrix,
ss

Bk

is the input matrix,
ss

Ck is the output or sensor matrix and
ss

Dk is the feed-through matrix.

More rigorous definitions will be provided later. Note the inputs~ik are not the sensor positions

to be determined, but are sources of uncertainty prescribed externally. Hence, the system is

redefined, with a new state vector
u

~xk = [
a

~xk;~ik] where
u

~xk :=
u

~xk(t) : R+ → Rnu for nu = 8nxny

total states, and new matrices

Ak =

 ssAk

ss

Bk

0
ss
A 0

ss
B

 (4.92)

and

Ck =

[
ss

Ck

ss

Dk

]
, (4.93)

where the dependency notation describing non-linearity is temporarily discarded for brevity.

Here the notation 0
ss
A is a matrix of zeros of the same size as

ss

A and 0
ss
B is a matrix of zeros

of the same size as
ss

B. The system description now utilises ~pk as inputs with a corresponding

input matrix Bk. Now define a further trajectory,
u

~X ∈ Rnτnu that contains the vertically
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concatenated states at each time-step, where
u

~X = [
u

~x0,
u

~x1,
u

~xk, ...,
u

~xnτ−1]. To create a general

description, now recognise the time-varying nature of sensor positions ~pk in P and by exam-

ination of (4.86) the non-linearity due to dependency, both on ~pk and ~pk−1. There is further

non-linearity on ~pk+1, but this will be discussed later. For now, the non-linearity will be rep-

resented in a time-varying description of Ak(
u

~X ,P), which encompasses non-linearity of the

system at k due to any states or sensor positions in the trajectory. A new input matrix is also

defined, Bk(
u

~X ,P). The new state-space system, discarding the output equation, is described

by
u

~̇xk = Ak(
u

~X , ~P)
u

~xk + Bk(
u

~X , ~P)~pk. (4.94a)

After inspection of (4.86), it is decided to represent the complete system in Ak(
u

~X , ~P)
u

~xk, as

there is no summation term of ~pk. Hence, Bk(
u

~X , ~P) = 0 and control of the system states is

achieved through manipulation of the system dynamics matrix.

4.6.2 Constructing the system dynamics matrix

This section describes the construction of the state space system dynamics matrix, that contains

the dynamics of the uncertainty PDEs discretised form. This enables the evolution of oil

particle position uncertainty to be utilised in a sensor placement optimisation. The uncertainty

system inherits the grid spatial discretisation of the fluid model in SCEM but utilises cell

centred velocities ~u,~v ∈ Rnxny . These are the mean of the adjacent velocities that lie upon cell

boundaries. An explicit forward Euler time discretisation is used, with the time-step δt from

SCEM. When solving backwards in time with the adjoint method, this forms a useful implicit

solver for the adjoint variable vector. In (4.86) let the operation ~u·∇x be represented by a linear

algebra finite difference operation diag(~u)Dx, where Dx is the 1st to 3rd ordered single-sided

difference for the first derivative as prescribed by boundaries, otherwise 2nd to 3rd ordered

centred difference for the first derivative, matrix in the x direction. Let ∇2 be represented

by the 1st ordered centred difference matrix for the second derivative D2. Assume similar

definitions of finite difference matrices in the y direction. Recall the definition of horizontal

diffusivity, from Section 4.2.1, and let cd = csmag
1

δx2+δy2
. Define new functions T k(~uk, ~vk)u and
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T k(~uk, ~vk)v, where T k : Rnxny × Rnxny → Rnxny . The functions are described by

T k(~uk, ~vk)u = diag
(
~u◦−1 ◦ cd ((Dx~uk −Dy~vk) + (Dy~uk + Dx~vk))

◦0.5) , (4.95)

and

T k(~uk, ~vk)v = diag
(
~v◦−1 ◦ cd ((Dx~uk −Dy~vk) + (Dy~uk + Dx~vk))

◦0.5) . (4.96)

Then define the function Y k(~pk, ~pk−1) : R1×2np × R1×2np × Rnxny × Rnxny × R+ → Rnxny×nxny

as,

Y k(~p, ~pk−1) := − diag(uk)Dx − diag(vk)Dy + νD2 − diag(H
¯ t(~pk−1))

ks
δt

diag(H
¯ r(~p)). (4.97)

Note that in Y k, the terms diag(H
¯ t(~pk−1)) and diag(H

¯ r(~p)) form nxny×nxny diagonal matrices,

containing the evaluation of the Heaviside term for the spatial locations in the discretised ∂Ω

along the diagonal. These Heaviside terms activate sensing for travel time and a sensor radius

respectively.

Then define further state transition functions ~Ek+1x(~pk, ~pk+1), ~Ek+1y(~pk, ~pk+1) : R1×2np → Rnxny ,

that step the horizontal and vertical components of the estimated error covariance EKF(~pk, ~pk−1)

to the next time-step and apply the posterior Kalman filter correction. The variance sources

EKFx(~p) and EKFy(~p) are defined as a function of the sensor positions for brevity. However,

they are also a function of the reduced order Kalman filter estimated error covariance matrix

P r(~p)t|k in the RTS smoother (see Chapter 6), where for the horizontal component

EKFx(~p, ~pt−δt) = Gx

(
diag

(
ΨuP r(~p, ~pt−δt)t|kΨ

∗
u

)
+ maxrow

(
X̃
¯ x

))
. (4.98)

The term Gx ∈ Rnxny×(nx+1)ny is the matrix representation of the linear operation that averages

adjacent cell-boundary values, to form the cell-centred value. Define the cell-boundary horizon-

tal velocities as
e

~u : ∂Ω×R+ → R(nx+1)ny then ~u = Gx

e

~u. The multiplication Gx

e

~u computes the

mean velocity at every cell centre, using the two adjacent cell-boundary velocities. In (4.98) the

cell-boundary horizontal velocity uncertainty is averaged (using the mean of adjacent values),

to produce a cell-centred horizontal velocity uncertainty, by multiplication with Gx. Similarly,

Gy ∈ Rnxny×nx(ny+1) is the matrix representation of the linear operation that averages adja-



4.6. Uncertainty as a state space system (Stages 1 & 2) 107

cent cell-boundary vertical velocities, to form the cell-centred vertical velocities. Define the

cell-boundary vertical velocities as
e

~v : ∂Ω× R+ → Rnx(ny+1) then ~v = Gy

e

~v.

The expression for the vertical component of uncertainty is similar to (4.98), but with Gy,

Ψv and X̃
¯ y. See Chapter 6 for details on the data assimilation process and estimation error.

In short, Ψu ∈ C(nx+1)ny and Ψv ∈ Cnx(ny+1) are subsets of the reduced order mode matrix

Ψ. These subsets map the reduced order states to the current-time horizontal and vertical

cell-boundary velocities respectively, and in this case, maps the reduced order estimation error

covariance to the mean-squared estimation error for the horizontal and vertical cell-boundary

velocities. Note that in (4.98), maxrow

(
X̃
¯

)
is a measure of error between the model and the

environment, and is deemed impossible to predict and so is assumed constant. The error state

transition function in the horizontal x direction is described by

~Ek+1x(~pk+1, ~pk) =

Gx

(
diag

(
Ψu

((
I −Lk+1(~pk+1, ~pk)CKFk+1

(~pk+1)
) (

Λ
δt
∆tP r(~pk, ~pk−1)k|k(Λ

δt
∆t )∗ + Re

))
Ψ∗u

)
+ maxrow

(
X̃
¯ x

))
, (4.99)

with a similar description for the vertical y direction, with v and y subscripts. Again, see

Chapter 6 for details, but in short, L is the Kalman filter gain, CKF is a sensor matrix, Λ
δt
∆t

is the reduced order state transition matrix from one time-step to the next and Re is the

reduced order model state covariance matrix. Note in (4.99) there is dependency upon ~pk−1,

in P r(~pk, ~pk−1)k|k, which in turn has an unstated dependency upon ~pk−2 and so on, as a result

of being an iterative process. Provided the adjoint description accounts for the effect of the

iteration directly before and after, any implicit iterative dependency will be accounted for.

To describe the state transition of ~exk and ~eyk when multiplied with the state-vector ~xk, define

a new term Qk+1x
(~exk , ~pk+1, ~pk), to be utilised within the state transition matrix. The term

Qk+1x
(~exk , ~pk+1, ~pk) is described by,

Qk+1x
(~exk , ~pk+1, ~pk) = diag

((
~e ◦−1
x

)
◦ ~Ek+1x(~pk+1, ~pk)

)
, (4.100)
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such that

~exk+1
= Qk+1x

(~exk , ~pk+1, ~pk)~exk , (4.101)

with similar expressions for the vertical direction, with y subscripts.

Recall that
u

~xk = [
a

~xk;~ik] and define a modified identity matrix I
~i such that I

~i
u

~xk = [0
a
~xk ;~ik],

where 0
a
~xk is a vector of nu zeros. Under forward Euler stepping, the state transition is then

described by

(I − I
~i)
u

~xk+1 + I
~i
u

~xk = I
u

~xk + δtAk(
u

~X , ~P)
u

~xk. (4.102)

In (4.102) the left-hand-side terms reflect that the system states,
a

~xk ⊂
u

~xk have changed to
a

~xk+1,

while the external inputs ~ik ⊂
u

~xk have remained ~ik.

The state dynamics matrix Ak(
u

~X , ~P) is described by,

Ak(
u

~X , ~P) =



Y k(·) 0 I 0 T k(·)u 0 I 0

0 Y k(·) 0 I 0 T k(·)v 0 I

0 0 Qk+1x
(·) 0 0 0 0 0

0 0 0 Qk+1y
(·) 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



(4.103)

4.6.3 Describing the system trajectory and introducing limits

As noted in Section 4.5.1, there is an upper and lower bound on the state values of ~σ2
x and ~σ2

y.

Without modification, the system in (4.102) using forward Euler time discretisation undesirably

steps to unlimited states and unmodified inputs. Let
u

~x
¯
∈ Rnu and

u

~X
¯
∈ Rnτnu be the bounded

state vector and trajectory of bounded states respectively. The state transition in (4.102) is

now described by,

(I − I
~i)
u

~xk+1 + I
~i
u

~x
¯k

= I
u

~xk + δtAk(
u

~X
¯
, ~P)

u

~x
¯k
. (4.104)

The left-hand-side terms describe the stepping of the state vector forward, to k+1, but without

bounded values or new inputs at k+ 1. Using 2 steps for illustration, rather than nτ steps, the
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state trajectory of this system is described by


I 0 0

−
(
I + δtA0(

u

~X
¯
, ~P)

)
I 0

0 −
(
I + δtA1(

u

~X
¯
, ~P)

)
I




u

~x
¯0

u

~x
¯1

u

~x
¯2

 =


u

~x
¯0

(
u

~x
¯1 −

u

~x1) + (~u1 − ~u0)

(
u

~x
¯2 −

u

~x2) + (~u2 − ~u1)

 ,
(4.105)

where 
u

~x
¯0

(
u

~x
¯1 −

u

~x1) + (~u1 − ~u0)

(
u

~x
¯2 −

u

~x2) + (~u2 − ~u1)

 =


I 0 0

−I~i I
~i 0

0 −I~i I
~i



u

~x
¯0

u

~x
¯1

u

~x
¯2

+


0

(
u

~x
¯1 −

u

~x1)

(
u

~x
¯2 −

u

~x2)

 (4.106)

To describe the limiting action in a general framework, new matrices external to the underlying

equations in (4.86) are introduced to the state-space description. First define a state transition

function ~G (
u

~x
¯k
, ~pk,

u

~X
¯
, ~P) : Rnu × R1×2np × Rnτnu × R2npnτ → Rnu by,

~G (
u

~x
¯k
, ~pk,

u

~X
¯
, ~P) := I

u

~x
¯k

+ δtAk(
u

~X
¯
, ~P)

u

~x
¯k
. (4.107)

To ensure the use of bounded state vectors on the system trajectory, define further matrices

M
¯ k(

u

~X
¯
, ~P) : Rnu×R1×2np×Rnτnu×R2npnτ → Rnu×nu and R

¯ k(
u

~X
¯
, ~P) : Rnu×R1×2np×Rnτnu×

R2npnτ → Rnu×nu . Though explicitly noted with the bounded state and position trajectories as

arguments, intuitively these functions have dependency upon the next state-vector and then

inherit any dependencies of the state transition function ~G (
u

~x
¯k
, ~pk,

u

~X
¯
, ~P).

Define M
¯ k(

u

~X
¯
, ~P) such that: M

¯ k
~G (
u

~x
¯k
, ~pk,

u

~X
¯
, ~P) =

u

~x
¯k+1 (4.108a)

Then: M
¯ k(

u

~X
¯
, ~P) = diag

(
u

~x
¯k+1 ◦ ~G (

u

~x
¯k
, ~pk,

u

~X
¯
, ~P)

◦−1
)
, (4.108b)

where diag(·) forms a matrix with the operated values on the diagonal. Note how M
¯ k is defined

for zero valued limits but becomes undefined if it attempts to operate on a zero valued state.

Thus the need for an alternative approach on the right hand side:

Define R
¯ k+1(

u

~X
¯
, ~P) such that: R

¯ k+1

u

~x
¯k+1 =

u

~x
¯k+1 − ~G (

u

~x
¯k
, ~pk,

u

~X
¯
, ~P) (4.109a)



110 Chapter 4. Modelling (Stage 1)

Then: R
¯ k+1(

u

~X
¯
, ~P) = diag

(
1− ~G (

u

~x
¯k
, ~pk,

u

~X
¯
, ~P) ◦

(
u

~x
¯k+1

)◦−1
)
. (4.109b)

Though only evaluated if ~G (
u

~x
¯k
, ~pk,

u

~X
¯
, ~P) = 0, this full expression is needed to describe the

derivative for the adjoint method. The right-hand-side of (4.106) is now described by


u

~x
¯0

(
u

~x
¯1 −

u

~x1) + (~u1 − ~u0)

(
u

~x
¯2 −

u

~x2) + (~u2 − ~u1)

 =


I 0 0

−I~i I
~i 0

0 −I~i I
~i



u

~x
¯0

u

~x
¯1

u

~x
¯2

+


0 0 0

0 R
¯ 1 0

0 0 R
¯ 2



u

~x
¯0

u

~x
¯1

u

~x
¯2

 . (4.110)

The trajectory of the system is then described by


0 0 0

−M
¯ 0 (I + δtA0) + I

~i I −
(
I
~i + R

¯ 1

)
0

0 −M
¯ 1 (I + δtA1) + I

~i I −
(
I
~i + R

¯ 2

)


u

~x
¯0

u

~x
¯1

u

~x
¯2


︸ ︷︷ ︸

F (
u
~X
¯
, ~P)

= 0. (4.111)

In (4.111) the dependency notation has been omitted for brevity. Define the left-hand-side

of the equation, in matrix form, as F (
u

~X
¯
, ~P) : Rnτnu × R1×2npnτ → Rnτnu×nτnu . From the

trajectory description in (4.111), a Differential-Algebraic Equation is described by

F (
u

~x
¯k+1,

u

~x
¯k
, ~pk,

u

~X
¯
, ~P) =

[
−M

¯ k(
u

~X
¯
, ~P)

(
I + δtAk(

u

~X
¯
, ~P)

)
+ I ik

]
u

~x
¯k︸ ︷︷ ︸

Ak

+

[(
I −

(
I ik+1 + R

¯ k+1(
u

~X
¯
, ~P)

))]
u

~x
¯k+1︸ ︷︷ ︸

Ck+1

= 0, (4.112)

where Ak and Ck+1 define terms for derivatives for the adjoint method, in Appendix A. Hence

there is a second definition of F , described by the stacking of the DAEs to form a trajectory,


0

F (
u

~x
¯1,

u

~x
¯0, ~p0,

u

~X
¯
, ~P)

F (
u

~x
¯2,

u

~x
¯1, ~p1,

u

~X
¯
, ~P)

 = F . (4.113)
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It is this trajectory that describes the evolution of the uncertainty system for implementation

of the Adjoint method. Note that the condition of each DAE being equal to zero still holds.

4.6.4 Uncertainty as a state space system: Key insight

The purpose of Section 4.5 is to form a description of uncertainty and sensors suitable for use

in the optimisation and adjoint method of solving the sensor pathing optimisation, presented

in Chapter 5. Note that this state-space system is highly non-linear, in both states and sensor

positions, but it is a deterministic description of the variance in the stochastic system of Section

4.1. The bounded values for the variances in Section 4.5.1 are enforced in the state-space

system through introduction of limiting matrices M
¯

and R
¯

. The state-space system trajectory

is contained in F and a Differential-Algebraic Equation for each time-step is F ; these will be

heavily utilised in the adjoint based optimisation solver.
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Result: Forwards ocean and contaminant simulation with external/sensor data
/* INITIALISE */

read user parameters (domain bounds, empirical parameters, see Table 4.1);
load external data files (domain bathymetry, external flow forcing data);
initialise domain, initialise SWEM wave models, set start date state values;
load time-varying contaminant source file (oil type, source location, leak rate);
/* RUN SIMULATION */

while start time ≤ current time ≤ end time do
/* CURRENT STATES */

get predicted state values;
get external and/or sensor state values;
correct state values using external and/or sensor values;
calculate ekman wind value for each grid cell (4.40);
save corrected state values;
/* CURRENT OIL SPILL */

get oil particles;
get external and/or sensor oil values;
correct oil spill particles using external and/or sensor values;
save oil particles;
/* PREDICT NEXT OIL SPILL */

get corrected state values and oil particles;
calculate time-step;
add source oil particles for time-step;
calculate velocity profiles at oil containing grid cells (4.36), (4.39), (4.55);
simulate SWEM at oil containing grid cells;
calculate oil diffusion coefficient at oil containing grid cells (4.50a)(4.50d);
calculate total oil velocity profile at oil containing grid cells (4.46);
calculate diffusion correction velocity at oil containing grid cells (4.47);
foreach oil particle do

if oil particle is entrained into water column (4.58) then
insert oil particle at calculated depth, set buoyancy to 0 for time-step;

end
surface oil particles in water column if they would reach the surface by buoyancy
velocity alone ;

advect oil particle by current time local (total oil velocity + diffusion velocities +
correction velocity + buoyancy velocity) for time-step (4.46);

end
calculate oil spill thickness and volume for each grid cell (4.60);
foreach oil particle do

advect oil particle by local mechanical spreading (4.62);
end
calculate oil spill thickness and volume for each grid cell (4.60);
increase oil particles age;
save predicted oil particles for next time;
/* PREDICT NEXT STATES */

simulate ocean and wind flow for time-step (4.1a);
save predicted state values for next time;
/* STEP TIME */

step forward current time by time-step;

end
Algorithm 1: Pseudocode of the fluid model, simulating forwards in time.
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Chapter 5

Sensor Guidance and Optimisation

(stage 2)

This chapter describes the sensor guidance stage of the monitoring framework; detailing the

utilisation of the modelling work and posing of an optimisation, the solution to which is an

optimal sensing path. The optimisation posed is to minimise the uncertainty in important oil

properties for an oil spill over a receding horizon spatio-temporal domain, by guiding mobile

sensors. Sensors measure the oil thickness and wind and ocean flow velocities at locations

that best inform the model of the oil spill, and crucially, inform the model of environmental

information that can be used to correct the model future and past extrapolations.

The approach here is akin to the uncertainty minimisation methods discussed in Chapter 2,

with certain problem specific differences and extensions. In Zammit Mangion, Anderson, and

Kadirkamanathan 2011, sensor constraints are imposed through sub-regioning, the one-step-

ahead optimisation requires a two-step-ahead prediction, with a cost function that drives ex-

ploitation and exploration. The cost function also contains a sensor effort term. Here, sensor

constraints are imposed through a Lagrangian constraint term in the cost function and an in-

equality constraint on the solver. A one-step-ahead optimisation and prediction is feasible with

Heaviside functions describing sensor movement and range within a single step. The cost func-

tion disregards sensor effort and combines information utility measures (Hutchinson, Liu, and

Chen 2019) and variance minimisation (Zammit Mangion, Anderson, and Kadirkamanathan

2011). This is similar to the Expected Improvement measure of Efficient Global Optimisation,

which sums a term describing the improvement in optimisation with a term describing the

114
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uncertainty of the surrogate model. Here, the constant spatial weighting matrix in Zammit

Mangion, Anderson, and Kadirkamanathan 2011 is replaced by a spatio-temporally varying

matrix. This matrix weights the reduction of uncertainty in a region, by the probability of use-

ful information in that region and the estimated value of information available in that region,

at a given time. The optimisation in this section is solved through application of the Adjoint

method to determine a gradient for gradient based methods, described for one-step-ahead sen-

sor placement and a complete Model-Predictive-Control style N-step-ahead sensor trajectory

calculation which may be infeasible for the computational resources available on a laptop or

UAV.

5.1 Problem Description

This section describes the optimisation used by the monitoring frame-work for a trajectory

of sensor positions between tτ and tε and then for a single vector of sensor positions between

tι ∈ R+ and tφ ∈ R+.

The optimisation cost function J , is defined in (5.1a). The optimisation seeks sensor positions ~p

that minimise the uncertainty tracer q and constraint function c, weighted over time and space

by E. These terms are formally defined below. The optimisation is subject to constraints on

tracer dynamics (5.1b), tracer variance dynamics in (5.1c) and (5.1d), oil and fluid dynamics

(5.1e) to (5.1i) and sensor placement (5.1j). Note that in the absence of any oil information,

the optimisation is akin to the minimisation of the estimated error covariance of the ocean and
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wind flow over a spatio-temporal domain. The optimisation is formulated as follows,

minimize
~P

J =

tε∫
tτ

∫
∂Ω

(
E(~x, t, ~p)q(

u

~x, t, ~p) + c(~x, t, ~p)

)
d∂Ωdt (5.1a)

subject to q = f(σ2
x, σ

2
y, ~p), (5.1b)

∂σ2
x

∂t
= f(~U, ~x, ~p), (5.1c)

∂σ2
y

∂t
= f(~U, ~x, ~p), (5.1d)

~U = f(~Uc) + f(~Uw) + f(~Uwave) + ~Ud, (5.1e)

∂Uc
∂t

=−(Uc·∇)Uc + νc∇2Uc−∇wc+sc, (5.1f)

∇ · Uc = 0, (5.1g)

∂Uw
∂t

=−(Uw·∇)Uw + νw∇2Uw−∇ww+sw, (5.1h)

∇ · Uw = 0, (5.1i)

g(~p) ≤ 0. (5.1j)

where the terms in (5.1b) to (5.1d) are defined in (4.85) to (4.86). The function E(~x, t, ~p) where

E : ∂Ω×R+×Rns×R1×2np → [0, 1], weights the spatio-temporal importance of minimising the

uncertainty state tracer q(
u

~x, t, ~p). A further term, c(~x, t, ~p), where c : ∂Ω×R+×Rns×R1×2np →

R acts as a penalty function for the sensor positions and velocity constraints of (5.1j), defined

in Section 5.1.1. Uncertainty drift velocity is ~U , as described previously in Section 4.5. Tracer

and oil specific uncertainty dynamics are described by (5.1a) to (5.1e), fluid flow constraints

in (5.1f) to (5.1i), while sensor constraints are specified by (5.1j). Let kτ ∈ N be the discrete

time index when tkτ = tτ and kε ∈ N be the discrete time index when tkε = tε. For a pictorial

representation of the optimisation process, refer to Figure 5.1 and Figure 5.2, which display an

example of the uncertainty minimisation weighting and distribution respectively.

In the optimisation of (5.1a), the optimisation determines an optimal sensor trajectory ~P

for the time interval [tτ , tε]. If solving for an optimal trajectory is computationally infeasible

(this depends on the computing resources available), then a substitution of a one-step-ahead

optimisation method is used, as in Zammit Mangion, Anderson, and Kadirkamanathan 2011. In

this case, the optimisation determines the optimal sensor positions, where ~P = ~p, for the time
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Figure 5.1: This figure displays the spatial weighting of the uncertainty minimisation, E(~x, t, ~p),
at a time-step of the monitoring framework application in Chapter 7, Section 7.3. There is high
spatial weighting where the spill is expected to be, but also note the non-zero measuring priority
in the left figure at (0.62,0.1), (0.58,0.32) and (0.42,0.29) to reduce fluid flow estimation error.
Though the spatial weighting at these coordinates is very low, the sensor will begin exploring
these areas once the spill has been mapped. The sensor position is displayed as a red circle
with a five hour trail. The sensor first flies to the high priority region where the spill is likely
to be, mapping upstream to the north, then exploring the down-stream edges of the spill to the
west and south.
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Figure 5.2: This figure displays the spatial distribution of uncertainty, q(
u

~x, t, ~p), at a time-step
of the monitoring framework application in Chapter 7, Section 7.3. There is low uncertainty
where the sensor, displayed as a red circle with a 5 hour trail, has measured and high uncertainty
at the domain boundaries spreading across the domain. Areas of land are assigned a high value
to represent the complex interaction of flow at a coast-line.
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interval [tι, tφ]. When constrained to one-step-ahead solutions, if a sensor position trajectory

is required for the time interval [tτ , tε] the optimisation is repeated sequentially nτ times, one-

step-ahead each time, up to the time horizon. This forms the trajectory of sensor positions ~P

that are locally optimal in the set of time intervals

{[tτ , tτ + δt], [tτ + δt, tτ + 2δt], ..., [tτ + (no − 1)δt, tτ + noδt]}

where tτ+noδt = tε. This is a trajectory of locally optimal positions, not the optimal trajectory,

but is computationally tractable compared to a full adjoint Model Predictive Control (MPC)

implementation. In this one-step ahead case, optimal sensor positions are a function of the

time-step δt, therefore parallel sequences of adjoint solved optimisations using different time-

steps for each position optimisation produce a sensor path up to a common future time, and the

lowest total cost function is selected. This parallel method is only worthwhile under memory

limitations and if the velocity constraints are affecting the optimal sensor positions. This

parallel method is instead of an MPC approach, which is more memory intensive but preferable

under constraints. Other cases considered in the following sections include static sensors and

full adjoint-MPC.

5.1.1 Uncertainty weighting

The selection of E(~x, t, ~p) that selectively weights particular regions of uncertainty minimisation,

allows sensors to prioritise areas and times where the spill probability, or spill probability

entropy, or uncertainty in spill location and velocity field are high. The weighting matrix is

defined by

E(~x, t, ~p) =
1

kT

(
kP

~̂Op
P ~̂Op

(xi, yj)

+ kSeSe(P ~̂Op
(xi, yj), xi, yj) + kPKF

AMSE(ˆ̄~x)

+ kSoPsource(xi, yj) + kPt−24hr
P ~̂Op

(xi, yj)t−24hr

+ kPt−24hr
Se(P ~̂Op

(xi, yj), xi, yj)t−24hr + k∂Ω

)
(5.2a)
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where,

kT = kP
~̂Op

+ kSe + kPKF
+ kSo + k∂Ω + kPt−24hr

. (5.2b)

In (5.2) Se(P ~̂Op
(xi, yj), xi, yj), where Se : ∂Ω × Rns × R+ → [0, 1], is the min-max normalised

(Juszczak, Tax, and Duin 2000) Shannon entropy (Shannon 1948) of P ~̂Op
(xi, yj) in the 3-by-3

neighbourhood of the cell at (xi, yj). This is a measure of the Shannon self-information in that

cell, min-max normalised by the values of Se across ∂Ω. The entropy term Se(P ~̂Op
(xi, yj), xi, yj)

takes a high value where there is significant spatial variation in spill probability, thus identifying

the spill perimeter and internal variation in the spill distribution as measures to determine sens-

ing allocation. The term EKF(xi, yj, t, ~p), where EKF : ∂Ω× R+ × Rns × R1×2np → [0, 1], is the

min-max normalised augmented state estimation error of the velocity field, arising from the data

assimilation method (Chapter 6, Section 6.1.1). Further functions focus on past information,

Psource(xi, yj), P ~̂Op
(xi, yj)t−24hr and Se(P ~̂Op

(xi, yj), xi, yj)t−24hr, where Psource : ∂Ω×Rns ×R+ →

[0, 1], P ~̂Op
,t−24hr : ∂Ω×Rns×R+ → [0, 1] and Se,t−24hr : ∂Ω×Rns×R+ → [0, 1]. These terms are

the probability of presence of the source location of the spill Psource(xi, yj), the 24 hour delayed

oil probability P ~̂Op
(xi, yj)t−24hr and the 24 hour delayed oil entropy Se(P ~̂Op

(xi, yj), xi, yj)t−24hr.

Jointly, they provide a quantitative metric with which to determine sensor resource allocation to

the likely source location and the oil location 24 hours prior, acquiring the most informative ve-

locity field measurements for that time in the tide cycle, even in asymmetric tide cycles. The to-

tal weighting kT ∈ R+ is the sum of the weighting coefficients kP
~̂Op
, kSe , kPKF

, kSo , k∂Ω, kPt−24hr
∈

R+. Unless otherwise stated, assume a uniform weighting, where kP
~̂Op
, kSe , kPKF

, kSo , kPt−24hr
=

1, but k∂Ω = 0.001. This balances sensor effort between spill mapping and exploration, with a

balanced temporal focus.

5.1.2 Sensor considerations

Sensor constraints are included in the function of interest J by the penalty function c(~x, t, ~p),

defined by

c(~x, t, ~p) = V (~p, ~p0, vsensor) +Dm(E(~x, t, ~p), ~p)

+De(∂Ω, ~p).

(5.3)
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A velocity penalty term V (~p, ~pt−∂t, vsensor), where V : ∂Ω × R+ × R1×2np → R maps spatial

locations to the euclidean distance to each sensor, though destinations reachable from prior

sensor positions ~pt−∂t within a given time step incur zero penalty. A further term, Dm(~x, ~p),

where Dm : ∂Ω×R+×Rns×R1×R1×np → R, is defined for each sensor position and contains the

Euclidean distance to the closest region of interest, where E(~x, t, ~p) > 0. The term De(∂Ω, ~p)

where De : ∂Ω×R+×R1×2np → R is defined for each sensor position as the Euclidean distance

to the closest non-excluded area. The derivatives of V , Dm and De with respect to sensor

positions are used in the gradient descent solver to guide sensors to feasible, non-empty and

permissible regions respectively.

5.2 The adjoint solution method

The optimisation problem (5.1a) is solved through a gradient descent method, using an appli-

cation of the adjoint method to provide gradient information, in a similar manner to Funke,

Farrell, and Piggott 2014. Concisely, the adjoint method constructs the dual form of the con-

strained optimisation problem, introducing a new adjoint state equation that includes a new,

unknown variable, ~λk : R+ → Rnu . Solving for this dual variable allows construction of the

gradient of the original optimisation problem, with respect to the control variables. The adjoint

approach first solves the adjoint state equation,

 ∂F

∂
u

~X
¯

∗ ~L =

 ∂J

∂
u

~X
¯

∗ , (5.4)

where ∂F

∂
u
~x
¯

∈ Rnunτ×nunτ is the derivative of the state-space system trajectory, described in

(4.111). The state-space system describes the set of constraint equations (5.1b) to (5.1j). In

(5.4), (·)∗ is the conjugate transpose and ~L ∈ Rnunτ is the adjoint solution trajectory formed

of nτ vertically concatenated adjoint state vectors ~λ. In (5.4),
u

~X
¯

is the state trajectory of

the optimisation states and J is the function of interest (5.1a). The cost function derivative

is defined ∂J

∂
u
~X
¯

∈ R1×nunτ . The next subsection will describe the high level structure of the

adjoint equation. The detailed analytical derivatives are described in appendix A. Note that

matrix derivatives here and in the appendix use the numerator layout convention, with tensor

derivatives as in Khang 2012.
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5.2.1 Adjoint equation structure

Introduce the notation F (...)
u
~xk = ∂F (...)

∂~xk
where F is defined in (A.2). Continuing the examples

of system trajectories with two time-steps from an initial condition, the matrix description of

∂F

∂
u
~X
¯

is

∂F

∂
u

~X
¯

=


0 0 0

F (
u

~x
¯k
,
u

~x
¯k−1, ~pk−1,

u

~X
¯ ,

~P)
u
~x
¯k−1 F (

u

~x
¯k
,
u

~x
¯k−1, ~pk−1,

u

~X
¯ ,

~P)
u
~x
¯k F (

u

~x
¯k
,
u

~x
¯k−1, ~pk−1,

u

~X
¯ ,

~P)
u
~x
¯k+1

F (
u

~x
¯k+1,

u

~x
¯k
, ~pk,

u

~X
¯ ,

~P)
u
~x
¯k−1 F (

u

~x
¯k+1,

u

~x
¯k
, ~pk,

u

~X
¯ ,

~P)
u
~x
¯k F (

u

~x
¯k+1,

u

~x
¯k
, ~pk,

u

~X
¯ ,

~P)
u
~x
¯k+1

 .
(5.5)

For brevity, let there be further notation, such that F (
u

~x
¯k+1,

u

~x
¯k
, ~pk,

u

~X
¯
,P)

u
~x
¯k = F

u
~x
k̄+1,k. Note

that the first subscript k + 1 refers to the latest time index in F (
u

~x
¯k+1,

u

~x
¯k
, ~pk,

u

~X
¯
,P) while

the second subscript k is the time index of the derivative variable. Extending this notation,

F ~p
k+1,k =

∂F (
u
~x
¯k+1,

u
~x
¯k
,~pk,

u
~X
¯
,P)

∂~pk
. The adjoint equation (5.4) using (5.5) is described by


0 0 0

F
u
~x
k̄,k−1 F

u
~x
k̄,k F

u
~x
k̄,k+1

F
u
~x
k̄+1,k−1 F

u
~x
k̄+1,k F

u
~x
k̄+1,k+1


∗ 
~λk−1

~λk

~λk+1

 =


∂J

∂xk−1

∗

∂J
∂xk

∗

∂J
∂xk+1

∗

 . (5.6)

By inspection of (A.2) and the terms within it, for time-step k to k + 1, only the derivatives

F
u
~x
k̄+1,k and F

u
~x
k̄+1,k+1 are non-zero valued. Hence the adjoint equation, with applied conjugate

transpose, is again described by,


0

(
F

u
~x
k̄,k−1

)∗
0

0

(
F

u
~x
k̄,k

)∗ (
F

u
~x
k̄+1,k

)∗
0 0

(
F

u
~x
k̄+1,k+1

)∗




~λk−1

~λk

~λk+1

 =


∂J

∂xk−1

∗

∂J
∂xk

∗

∂J
∂xk+1

∗

 . (5.7)

Note the diagonal structure of the matrix of derivatives in (5.7). Hence an iterative expression

can be derived for ~λ, solving back in time from ~λkε . The iterative adjoint equation is described
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by (
F

u
~x
k̄,k

)∗
~λk =

(
∂J

∂xk

)∗
−
(

F
u
~x
k̄+1,k

)∗
~λk+1, (5.8)

but note this can be rearranged to the following for an inverse based iterative solution:

~λk =

((
F

u
~x
k̄,k

)∗)+((
∂J

∂xk

)∗
−
(

F
u
~x
k̄+1,k

)∗
~λk+1

)
, (5.9)

where the notation ·+ is the Moore-Penrose inverse. In practice, it may be preferable to use an

efficient linear-solver to determine ~λk in (5.8). The final time adjoint states ~λkε are described

by

~λkε =

((
F

u
~x
k̄ε,kε

)∗)+(
∂J

∂xkε

)∗
. (5.10)

5.2.2 Adjoint gradient calculation

The solving of (5.4) for the trajectory of adjoint states ~L enables calculation of the cost

function gradient by

dJ

d ~P
= − ~L ∗ ∂F

∂ ~P
+

∂J

∂ ~P
, (5.11)

where dJ

d ~P
∈ R1×nτ2np is the cost function total derivative with respect to sensor positions,

∂F

∂ ~P
∈ Rnτnu×nτ2np is the partial derivative of the state-space system with respect to sensor

positions. The further partial derivative ∂J

∂ ~P
∈ R1×nτ2np describes any direct dependency of the

cost function upon sensor positions. In this case, ∂J

∂ ~P
describes the effect of constraints on the

cost function.



124 Chapter 5. Sensor Guidance and Optimisation (stage 2)

An expansion of (5.11) to a trajectory containing 5 time-steps is described by,

[
∂J

∂~pk−2

∂J
∂~pk−1

∂J
∂~pk

∂J
∂~pk+1

∂J
∂~pk+2

]
=

−
[
~λ∗k−2

~λ∗k−1
~λ∗k

~λ∗k+1
~λ∗k+2

]


F ~̄p∗

k−2,k−2 F ~̄p∗

k−2,k−1 F ~̄p∗

k−2,k F ~̄p∗

k−2,k+1 F ~̄p∗

k−2,k+2

F ~̄p∗

k−1,k−2 F ~̄p∗

k−1,k−1 F ~̄p∗

k−1,k F ~̄p∗

k−1,k+1 F ~̄p∗

k−1,k+2

F ~̄p∗

k,k−2 F ~̄p∗

k,k−1 F ~̄p∗

k,k F ~̄p∗

k,k+1 F ~̄p∗

k,k+2

F ~̄p∗

k+1,k−2 F ~̄p∗

k+1,k−1 F ~̄p∗

k+1,k F ~̄p∗

k+1,k+1 F ~̄p∗

k+1,k+2

F ~̄p∗

k+2,k−2 F ~̄p∗

k+2,k−1 F ~̄p∗

k+2,k F ~̄p∗

k+2,k+1 F ~̄p∗

k+2,k+2


︸ ︷︷ ︸

∂F

∂ ~P

+
∂J

∂ ~P
.

(5.12)

By inspection of (A.2) and the terms within it, for time-step k to k + 1, only the derivatives

F ~p
k+1,k−1, F ~p

k+1,k and F ~p
k+1,k+1 are non-zero valued. Hence the structure is now restated as,

[
∂J

∂~pk−2

∂J
∂~pk−1

∂J
∂~pk

∂J
∂~pk+1

∂J
∂~pk+2

]
=

−
[
~λ∗k−2

~λ∗k−1
~λ∗k

~λ∗k+1
~λ∗k+2

]


F ~̄p∗

k−2,k−2 0 0 0 0

F ~̄p∗

k−1,k−2 F ~̄p∗

k−1,k−1 0 0 0

F ~̄p∗

k,k−2 F ~̄p∗

k,k−1 F ~̄p∗

k,k 0 0

0 F ~̄p∗

k+1,k−1 F ~̄p∗

k+1,k F ~̄p∗

k+1,k+1 0

0 0 F ~̄p∗

k+2,k F ~̄p∗

k+2,k+1 F ~̄p∗

k+2,k+2


︸ ︷︷ ︸

∂F

∂ ~P

+
∂J

∂ ~P
. (5.13)

5.2.3 One-step-ahead optimisation

In a system where the dynamics of for time-step k is only affected by sensor positions ~pk, then

∂F

∂ ~P
would be non-zero only on the lower diagonal, or F ~p

k+1,k. Hence calculation of ∂J

∂ ~P
can be

performed iteratively. The iterative adjoint gradient would be described by

dJ

d~pk
= −~λ∗k+1

∂F (
u

~x
¯k+1,

u

~x
¯k
, ~pk,

u

~X
¯
,P)

∂~pk
+
∂J

∂~pk
. (5.14)
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Here, this iterative approach is only usable for a one-step ahead prediction and sensor-placement,

which makes the gradient calculation and optimisation efficient. In a one-step-ahead case,

tε = tτ + δt, nτ = 1 and the descriptions in (5.7) and (5.13) reduce in dimension accordingly.

The determined gradient is then used in a gradient descent approach to optimisation for the

sensor positions one step ahead.

5.2.4 Fixed sensor optimisation

When solving for fixed sensor positions ~pkτ that are optimal up to tε, then only F ~p
k,kτ

is non-zero

and ~pk = ~pkτ for all k. Hence the matrix ∂F

∂ ~P
is non-zero only in the left-most block column in

(5.5). It is therefore possible to describe the cost function gradient with respect to the fixed

sensor position by

dJ

d~pkτ
=

k=kε−1∑
k=kτ

−~λ∗k+1

∂F (
u

~x
¯k+1,

u

~x
¯k
, ~pkτ ,

u

~X
¯
,P)

∂~pkτ

+
∂J

∂~pkτ
. (5.15)

This can be determined iteratively, while stepping back to solve for ~λk.

5.2.5 Adjoint MPC

Alternatively, if the memory and computation resources available, the full matrices can be

constructed in (5.13) after stepping back in-time and determining ~L , and the gradient descent

optimisation will converge to an optimal trajectory of sensor positions. This is an extension of

the implementation of adjoint-MPC in Vali et al. 2019 to systems with dependency at time-step

k on variables outside of the time-step k.

5.3 Gradient descent optimisation

The initial estimate of sensor placement is at the local maxima of the uncertainty, at each time-

step, without sensors. The maxima are ordered from the highest valued maxima to the smallest.

Sensors are assigned to each maxima in the fastest feasible configuration. The uncertainty map
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without sensors is described by

Jempty
t = E(~x, t)q(~x, t), (5.16)

where the omission of an integral over ∂Ω or t results in Jempty
t : ∂Ω× R+ → [0, 1].

The local maxima are found through a search of the spatial domain for values higher than their

immediate neighbours, in the discretised mesh of nxny cells. The initial sensor positions at k

are defined by

~pk = fp

(∫ tk+1

tk
Jempty
t

tk+1 − tk
, np

)
, (5.17)

where the function fp finds the highest np number of peaks (one for each sensor) in time-

averaged weighted uncertainty and returns their coordinates. In practice, Jempty
t is determined

for [tkτ , tkτ+1] and initial sensor positions are determined for ~pkτ+1 and uncertainty removed

accordingly, then Jempty
t is determined for [tkτ + 1, tkτ+2] and initial sensor positions are deter-

mined for ~pkτ+2 and so on, up to ~pkε . Sensor positions descend the gradient each iteration of

the solver, described by

d ~Pn = γn
dJ

d ~P n

, (5.18)

where n ∈ N is the iteration index and the step size γn : N → R is found with a backtracking

determined line-search using the Armijo-Goldstein condition (Armijo 1966; Goldstein 1965;

Coope and Price 1995). Alternatively, a suitable constant can be used, e.g γ = 0.001 for all n.

Gradient descent continues until
∥∥∥ dJ

d ~P n

∥∥∥
2
< ζg where ζg = nτ10−3 is a threshold value, or descent

continues to a maximum number of iterations. The nτ term in the threshold value scales the

threshold value with the number of time-steps in the optimisation, to ensure scalability with

longer time-horizons. In practice, given a simple flow and bathymetry, the initial locations

identified in (5.17) are suitably close to the optimal that a single gradient step occurs then the

stop condition is fulfilled.



Chapter 6

Data assimilation (Stages 3 & 4)

This chapter describes the data assimilation portion of the framework. This work adopts an

approach with Kalman estimators and Dynamic-Mode-Decomposition (DMD) (Schmid 2010)

similar to Nonomura, Shibata, and Takaki 2019, employing a Rauch-Tung-Striebel Smoother

(akin to a dual pass Kalman filter and Smoother) and various extensions of DMD with a historic

state-trajectory and iterative improvement with a moving horizon. DMD extracts coherent

spatial-temporal patterns, as a mode matrix and a dynamics matrix, from a state-trajectory

and forms a low-order model to approximate the dynamics of SCEM, repeated upon a moving

time-window of the SCEM state trajectory.

6.1 Forming the reduced order model (Stage 3)

This section describes the identification of the reduced order model used for data assimilation.

The solution, or state-trajectory, of the non-linear state equations within the high order model

can be represented by an LTI system of infinite state dimension, as described by Koopman Op-

erator Theory (Koopman 1931; Schmid 2010; Tu et al. 2014; Brunton et al. 2015). In practice,

the Koopman Operator is often approximately low-rank. DMD is a computationally efficient

procedure for identifying the dominant eigenfunctions and eigenvalues of the Koopman Oper-

ator from simulation data. These can then be used to form a reduced-order model, enabling

efficient estimation of the full-order system states, domain-wide, from sparse localised mea-

surements. The reduced-order, linear, and time-invariant model enables efficient hind-casting

and prediction of fluid states. The approach here utilises a Centred (Hirsh et al. 2020) Hankel

127
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(Filho and Lopes 2019) weighted Dynamic Mode Decomposition of the high order model sim-

ulation. This decomposition utilises an augmented time-window of the SCEM state trajectory,

described next.

DMD trajectory construction

The DMD initial data set is a time subset, between sensor activation time ts ∈ R+ and the

latest sensing time tc ∈ R+ of the state trajectory and is defined by

D = Xts→tc , (6.1)

where ts and tc are defined such that tc − ts selects the period sensors have been active, or

ts is set to be 24 hours prior to tc if sensors have been active less than 12 hours and hence

would include purely external data forced state snapshots in the trajectory, from before sensors

arrived. This is to ensure at least one complete tide cycle has been observed by sensors, or

in past data, for a reduced order model to utilise. To enforce 24 hour cycles in flow from a

data set less than 24 hours long, e.g if sensors have been active 15 hours, the DMD trajectory

is appended with the beginning states, moved 24 hours ahead in time. Let te ∈ R+ where

te = ts + 24hrs, then the trajectory is appended as described by,

Dc = [D , ~xts ]. (6.2)

Similarly, a corresponding time trajectory is constructed,

Tc = [Tts→tc , te] . (6.3)

The data is then centred through linear regression.

Alternatively, if the data set is longer than 24 hours, the linear regression is performed prior

to enforcing cyclic data, and on a subset containing the last multiple of 24 hours of data, (24,

48, 72 hours etc). The appended point is then placed at the next complete day after tc, at 48

hours, 72 hours etc after ts, at time te. The appended point has values extrapolated from the

linear regression. This ensures the low order model captures slow growth or decay from spring

or neap tides, without confusion from mixed semi-diurnal (irregular) tides.
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The trajectory of each state is centred around a first order linear regression of that state against

time, solving (6.4a) through ordinary least squares. This is an extension of Hirsh et al. 2020

where states are centred around their mean value. A state xn, with the DMD trajectory D̂cn ,

has regression coefficients αn and βn that solve the minimisation,

minimize
αn, βn

(Dcn − αn − βnTc)
2. (6.4a)

The regression coefficient matrices are constructed,

~α = [α0, α1, ..., αns ]
T , (6.5a)

~β = [β0, β1, ..., βns ]
T . (6.5b)

The centred trajectory is then defined by,

D̄ = Dc − ~α− ~β ◦Tk|k, (6.6)

where ◦ is the Hadamard product. The centred trajectory D̄ is formed of centred state vectors

~̄xt : R+ → RnT . Similarly, the sensor measurements of velocity ~y(~p, t) : R1×2np × R+ → R2np

are also centred to ~̄y(~p, t),

~̄y(~p, t) = ~y(~p, t)− ~αy − ~βy ◦ t, (6.7)

where ~αy and ~βy are the subsets of ~α and ~β that correspond to the sensor locations. External

data is ~kt ∈ Rnk are the centred external data states of time varying size nk : R+ → N. The

external data is centred in the same manner,

~̄kt = ~kt − ~αk − ~βk ◦ t, (6.8)

where ~αk and ~βk are the subsets of ~α and ~β that correspond to the external data location that

do not overlap with sensor locations.

The DMD trajectory D̄ is now a set of zero mean states from ts to te. However, note that

the data is non-uniform in time because SCEM does not utilise a fixed time-step, and there is
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a gap in the state trajectory between tc and te. In a similar manner to Leroux and Cordier

2016, although utilising a least squares two-term Fourier fit model instead of an Expectation-

Maximisation KF estimated Gaussian model, the missing centred state values between tc and te

are estimated. In short, this is a Fourier fit to the trajectory of each single state, extrapolated

and sampled to provide values for the state between tc and te. The Fourier fit is appropriate

given the centred data and assumption of periodic flow. Traditional DMD requires regularly

sampled data, so a new time trajectory is constructed with a fixed time-step ∆t ∈ R+,

Tr = [ts, ts + ∆t, ts + 2∆t, ..., te]. (6.9)

A corresponding regular centred state trajectory D̄r is also constructed. Linear interpolation

of the centred state trajectory is used from ts to tc, while the Fourier fit is used to generate

data points between tc and te. The regular data matrix is defined by,

D̄r = [~̄xts , ~̄xts+∆t, ~̄xts+2∆t, ..., ~̄xte ]. (6.10)

Application of Hankel data matrices to the data set reduces the number of samples available

(see Section 6.1). Hence the data set is extended by repetition, nr ∈ N times, where nr = 3 is

chosen for Section 7.2. A 3 day long data set will contain a complete tide-cycle, even if data

at the beginning and end is lost. For n ∈ J1, nrK, the extended state and time trajectories are

defined by,

D̄e = [D̄r, D̄r, ..., D̄r︸ ︷︷ ︸
nr times

], (6.11a)

Te = [Tr, (n− 1)te + Tr − ts, ..., (nr − 1)te + Tr − ts]. (6.11b)

Hankel DMD

The DMD will fail to extract the dominant mode present in an oscillatory signal if the set of

data containing those signals has cardinality less than the number of these modes (Filho and

Lopes 2019). Consider a data set described by,

θ(t) = cos(ω0t) =
1

2
(exp(jω0t) + exp(−jω0t)) , (6.12)
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where j is the imaginary
√
−1. The DMD of the data set produces a first order system with

one mode, while the true system contains two modes (Filho and Lopes 2019). Due to the

oscillatory nature of tidal and wind flow, it is possible that every state in D̄r is an oscillatory

signal with more than one mode and hence the cardinality of the data set must be extended.

To ensure the DMD accurately captures the oscillatory behaviour, and allow use of past data

and measurements to determine the phase of the oscillatory flow, a time-lagged data set in the

form of a Hankel matrix is constructed. The Hankel matrix is defined by,

H̄r =



{D̄e|ti ≤ t ≤ te − ntkd∆t}

{D̄e|ti + kd∆t < t ≤ te − (nt − (n− 1))kd∆t}
...

{D̄e|ti + (n− 1)kd∆t < t ≤ te − (nt − (n− 1))kd∆t}
...

{D̄e|ti + (n− 1)kd∆t < t ≤ te − kd∆t}

{D̄e|ti + (n− 1))kd∆t < t ≤ te}



(6.13)

where kd ∈ N defines the time lag multiple of ∆t for each row and n ∈ J1, ntK is the lag index

beginning at 1 for the first row and stepping to nt ∈ N for the last row. The Hankel matrix

H̄r ∈ Rhr×hc has hr = nTnt rows and hc = (nrte−ts)−ts
∆t

− nt columns. Recall that nT is the

number of states in the high-order system. For an example data set, D̄r = [~̄xt1 , ~̄xt2 , ~̄xt3 , ~̄xt4 , ~̄xt5 ],

with kd = 1 and nt = 3, a corresponding Hankel matrix H̄r is defined by,

H̄r =


~̄xt1 ~̄xt2 ~̄xt3

~̄xt2 ~̄xt3 ~̄xt4

~̄xt3 ~̄xt4 ~̄xt5

 . (6.14)

Note the reduction in samples of the data set from 5 to 3, but increase in cardinality. The

selection of values for k and nt allow for inclusion of more delayed data, without extending car-

dinality of the data set so much that the singular value decomposition becomes computationally

prohibitive in the real-time system.

Recalling the notation in Chapter 1, describe two data sets, H̄
′

and H̄ , as follows

H̄
′
= AH̄ , (6.15)
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and

H̄
′
= H̄rLJ1, hrK, J2, hcKM, (6.16a)

H̄ = H̄rLJ1, hrK, J1, hc − 1KM, (6.16b)

where H̄
′
, H̄ ∈ Rhr×hc−1 are the Hankel matrices formed from the centred state trajectories

and A ∈ Rhr×hr is the state transition matrix. The notation ·̄ represents centred values, while ·̂

are estimates, unless stated otherwise. The number of rows and columns in the Hankel matrices

are hr ∈ N and hc ∈ N respectively. In practice, wind and ocean velocities are assimilated

separately, and trajectories are formed using sequences of the (nx + 1)ny + nx(ny + 1) wind

or ocean velocity component states. For a velocity represented by 2 states, the number of

data rows hr is approximately 5× 105 in the simulations of Section 7.2. Hence the dimensions

A prohibits a least-squares solution for A in (6.15). Instead, the DMD computes the subset

of eigenvectors and eigenvalues of the A that minimises
∥∥H̄ ′ −AH̄

∥∥
F

, without explicitly

forming or storing A. In comparison, just 5 low-order states are used in Section 7.2.

Reduced order model definition

In traditional DMD, the first step is to identify the Proper Orthogonal (POD) modes of the data-

set using an economy or truncated Singular Value Decomposition (SVD). The SVD constructs

a truncated rank nz ∈ N approximant of H̄ , H̄ ≈ USV ∗, with the left unitary matrix

U ∈ Rhr×nz , the singular value matrix S ∈ Rnz×nz and the right unitary matrix V ∗ ∈ Rnz×hc−1.

However, the POD modes are determined by the Hankel state trajectory, which may contain

inaccurate states from poor prior predictions or external data. This work utilises DMD with

Bi-Iterative Regularised SVD (BIRSVD) (Dasa and Neumaiera 2011), where a weighting matrix

W ∈ [0, 1]hr×hc applies an individual weighting to each state in the Hankel matrix. The state

trajectory is weighted in a manner that encourages the modes to describe well estimated parts

of the state-trajectory, while ignoring states with a high degree of uncertainty that may result

in inaccurate mode shapes.

The BIRSVD also results in a truncated rank approximant of H̄ , with a numerically different

but structurally identical decomposition. Continuing with the DMD (Schmid 2010) to identify

the reduced order system, an identified reduced order system dynamics matrix Ar ∈ Rnz×nz
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is constructed by Ar = UH̄
′
V S−1. The DMD approximates the eigenvectors (DMD modes)

of the high order dynamics matrix A, from the eigenvectors of Ar, since the former represent

basis functions from which to reconstruct the air/ocean velocity fields. Compute the eigen

decomposition ArΥ = ΛΥ, where Υ ∈ Cnz×nz is formed by column stacking the eigenvectors

of Ar and Λ ∈ Cnz×nz is a diagonal matrix of eigenvalues. If a strong tidal component is

expected in the flow dynamics, the eigenvalues contained in Λ are modified such that their

oscillation period is a divisor of the 24 hour tide cycle. For example, consider the ith eigenvalue

Λi ∈ C and the jth eigenvalue Λj ∈ C which form a conjugate pair of discrete domain oscillatory

complex valued eigenvalues, where i, j ∈ J1, nzK. The modification will be described for the ith

eigenvalue, but a similar process is used for the jth and all others. Let the eigenvalue Λi be

mapped to the continuous domain by

Λt
i =

ln(Λi)

∆t
, (6.17)

where ln(·) is the natural logarithm and Λt
i ∈ C is the continuous domain eigenvalue. The

desired oscillation period is Td ∈ R+ and the eigenvalue oscillation period Ti ∈ R+ is described

by

Ti =
2π

|Λt
i|
, (6.18)

where | · | is the absolute value, or magnitude, of the complex value. The modified continuous

domain eigenvalue Λ̃
t

i ∈ C is then,

Λ̃
t

i =
Td

Ti

Λt
i. (6.19)

Finally, the discrete domain eigenvalue is revalued by,

Λi = eΛ
t
i , (6.20)

and substituted back into Λ in the appropriate location. In practice, eigenvalues with a period

of oscillation within 1 hour of a 6, 12 or 24 hour period, are modified to be eigenvalues with 6,

12 and 24 hour periods of oscillation.

The reduced order system has the mode matrix Φ ∈ Chr×nz , where each column is a mode
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mapping. The orthogonal modes from the BIRSVD are transformed to DMD modes by,

Φ = UΥ. (6.21)

Note that Φ, obtained from a truncated decomposition, is a linear transformation matrix that

maps between the complex states of the reduced order system and the real states of the high

order system. Without restricting the set of modes, the DMD mode amplitudes are the entries

of a matrix zr ∈ Cnz×hc of complex random variables, such that

H̄r ≈ Φzr, (6.22)

and the full Hankel data matrix is constructed when mapping into the high order state space.

The matrix of DMD mode amplitudes zr is a column stacked trajectory, Z ∈ Cnz×hc , of mode

amplitude vectors ~zt : R+ → Cnz . For estimation of the current-time flow fields, only a vector

description of current-time mode amplitudes ~zt is required. These mode amplitudes map to a

single column of the Hankel data matrix S̄ ∈ Rhr , described by

S̄ =



~̄xt−ndkdδt
...

~̄xt−(nt−(n−1))kdδt

...

~̄xt


≈ Φ~zt, (6.23)

which, as a trajectory of ~̄xt, allows use of historic data. The phase and amplitude accuracy of the

estimated DMD modes is improved by the inclusion of prior estimated states and measurements,

which provide information to determine the tidal phase. It is necessary to describe a trajectory

of all available centred sensor data Ȳ ∈ R2nmnp and all available external data K̄ ∈ Rnk , for
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the times in S̄ ,

Ȳ =



~̄yt−ndkdδt
...

~̄yt−(nt−(n−1))kdδt

...

~̄yt


, K̄ =



~̄kt−ndkdδt
...

~̄kt−(nt−(n−1))kdδt

...

~̄kt


, (6.24)

where ~̄y : R+ → R2np are centred sensor measurements, ~̄k : R+ → Rnkt is the centred external

data of dimension nkt : R+ → N, nm ∈ N is the number of times the sensors have measured and

nk ∈ N is the amount of external data states available. Where the available sensor measure-

ments and external data overlap, only the sensor measurements are kept and the corresponding

external data is removed from K̄ .

The reduced order system has a state equation of,

~zt+δt = Λ
δt
∆t~zt, (6.25)

where it should be stated that ~zt = ~zk, and ~zt+δt = ~zk+1. This is just equivalence of continuous

time and discrete time notation. There is an output equation of

 Ȳ

K̄

 = C~zt, (6.26)

where C : R1×2np → C(2nmnp+nk)×nz is the output and sensor matrix, further defined in Sec-

tion 6.1.1. Note that (6.26) produces centred values. The output equation for non-centred

values is described by Y

K

 = C~zt + ~αy,k + ~βy,k ◦ t, (6.27)

where ~αy,k ∈ R2nmnp+nk and ~βy,k ∈ R2nmnp+nk are the regression coefficients for the locations

corresponding to measured and external data in the state vector.

In the simulations of Section 7.2, the reduced order model captures the evolution of the a 2D

flow-field in a large coastal area with complex geometry, using 5 states, instead of approxi-

mately 20000. This reduced order representation allows an estimation of the low-order states
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to reconstruct an entire flow-field and efficient past analysis or future prediction by stepping the

reduced order model through time, as will be detailed in following sections. Though analysis

is used here, as in fluid assimilation literature, hindcasting is also an appropriate term.

6.1.1 State estimation (Stage 4)

The reduced order model (6.25) is utilised for estimation of mode amplitudes, ~̂zt ∈ Cnz , which

in turn allow very sparse sensor measurements of flow velocity to be used to estimate the entire

flow field. The reduced order model states are determined using an RTS smoother, which

consists of a forward pass time-varying Kalman filter, and a backward recursion smoother, using

sensor data and previous states as measurements. The majority of error in data assimilation

stems from poor reduced order model mode shapes, and the poor mode shapes form from

an inaccurate state trajectory that improves as the monitoring framework iterates with new

sensor readings. Therefore, as the RTS smoother is solely concerned with the reduced order

mode amplitudes, a smoothed estimate of the mode amplitudes only occurs prior to a long-term

analysis or prediction to ensure the most accurate initial conditions for state extrapolation. RTS

smoother produced states are referred to as state estimates, not smoothed state estimates, as

only the forward pass time-varying Kalman filter is active for the vast majority of the framework

iterations. The estimated modal amplitudes, the low order states, are then used to reconstruct

the states of the high order system.

The Rauch-Tung-Striebel smoother

The RTS smoother sensor matrix in (6.26) makes use of the current and previous time centred

sensor data, and centred external data if available, to form first an estimate, then a smoothed

estimate of reduced order modal states prior to extrapolation.

Recall that Φ is a tall thin matrix, that provides an approximate linear transform from low

order states to a column of the hankel data matrix of high order states, as in (6.23). By selecting

a subset of rows in Φ, only a subset of the Hankel data matrix is constructed. For example, if

only the last ns rows of Φ are selected, only ~̄xt would be constructed in (6.23). Let ~IX̄ ∈ Nns
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be described by ~IX̄ = Jhr − ns, hrK, then

~̄xt ≈ ΦL ~IX̄ , J1, nzKM~zt. (6.28)

In (6.28), ~̄xt ∈ Rns is the centred state vector. For brevity, let Ψ ∈ Cns×nz be defined by

Ψ := ΦL ~IX̄ , J1, nzKM. If estimated states are utilised instead, then

ˆ̄~xt = Ψ~̂zt, (6.29)

where ˆ̄~xt ∈ Rns and ~̂zt ∈ Rnz are the estimated centred full order and reduced order state

vectors respectively.

Define ~IȲ ∈ Nnm as the nm indices of S̄ that correspond to the spatio-temporal locations of

the measurements in Ȳ . Further define ~IK̄ ∈ Nnk as the nk indexes of S̄ that correspond

to the spatio-temporal locations of the external data in K̄ . Finally, define ~IĀ ∈ Nnm+nk

as the combined indexes, ~IĀ = ~IȲ ∪ ~IK̄ . Then the reduced order system sensor matrix,

C : N× R2np → Cnm+nk×nz , is defined by

C := ΦL ~IĀ , J1, nzKM. (6.30)

The sensor matrix C is a function of more than just the discrete time-step k and sensor posi-

tions ~p, but the further dependencies upon the state-trajectory, external data and past mea-

surements are ignored for brevity and are contained in the time-step k regardless. The further

sensor matrix CKF ∈ C2np×nz contains the rows of Φ corresponding to the current-time sensor

measurements only, such that ȳt = CKF~zt. This is used in the adjoint derivatives in Appendix

A. This substantially cuts down on the dimensions of matrices involved and thus speeds up

computation time. Furthermore, the adjoint method derivatives, and sensor-placement optimi-

sation in general, is concerned with sensor placement; The only changeable sub-matrix in C is

CKF at a given time-step. This changes the dimensions of the Kalman filter variables when the

optimisation model steps ahead to a future time-horizon.

There are two time-varying Kalman filters, both utilising the reduced order model. The full

Kalman filter is part of the RTS smoother, described in this section, and this assimilates

trajectories of sensor measurements and external data to provide an estimate of the reduced
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order states. Then a reduced Kalman filter, which is identical, but only utilises the current-time

sensor measurements and operates solely within the uncertainty system used in the optimisation

(5.1a). In the uncertainty system, the estimation of the reduced order model states is not

required: the sensor pathing is in the future and sensor measurements are hypothetical. Hence,

this reduced Kalman filter only estimates the effect of future sensor placement on the data-

assimilation error EKFx(~p) and EKFy(~p) in (4.86), without the increased complexity of including

external or historic data. The differences in the reduced Kalman filter are the substitution of

CKF for C, the measurement covariance matrix RKF ∈ R2np×2np is for the current-time sensor

measurements alone, and finally the absence of the reduced order model state estimate update

equation (6.31).

The RTS smoother is split into two parts: A time-varying Kalman filter in the forward pass,

where the prior and posterior state estimates and covariances are saved for use in the backwards

pass smoother. Let ~̂zt|k−1 ∈ Cnz and ~̂zt|k ∈ Cnz be the prior and posterior state estimates,

and then P r(~pk−1)t|k−1 : R+ × R2np → Cnz×nz and P r(~p)t|k : R+ × R2np → Cnz×nz are the

corresponding prior and posterior estimated error covariance matrices. Let Re ∈ Rnz×nz and

Rv ∈ Rnm+nk×nm+nk be the state and measurement covariance matrices respectively. The

measurement update of the forward time-varying Kalman filter is described by

~̂zt = ~̂zt|k = ~̂zt|k−1 + Lk


 Ȳ

K̄

−C~̂zt|k−1

 , (6.31)

where Lk : N× R2np → Cnz×nm+nk is the Kalman gain and is described by

Lk = (P r(~pk−1)t|k−1C)(CP r(~pk−1)t|k−1C
∗ + Rv)

−1. (6.32)

The prior estimated error covariance matrix is updated to the posterior matrix by

P r(~p)t|k = (I −LkC)P r(~pk−1)t|k−1. (6.33)

A new set of priors for the next measurement time is determined by

~̂zt+δt|k = Λ
δt
∆t ~̂zt|k, (6.34)
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and

P r(~p)t+δt|k = Λ
δt
∆tP r(~p)t|k(Λ

δt
∆t )∗ + Re. (6.35)

The covariance of the reduced order model states Re is estimated through application of the

sample covariance formula (Montgomery and Runger 1994) to the trajectory Z , for use in the

RTS smoother. Also required for the RTS smoother, covariance values for sensor readings,

past sensor readings and external data should be provided for use in Rv. The RTS smoother

estimates of reduced order mode amplitudes, ~̂zt are used to construct an estimate of the high

order states ~̂xt ∈ Rns , with addition of the linear regression fit originally subtracted to centre

the data, see (6.27).

To describe the smoothing component of the RTS smoother, recall that it is a backwards pass

algorithm. Let the latest discrete time-step with sensing be ksf ∈ N and the first discrete

time-step with sensing be ks0 ∈ N. Starting at k = ksf − 1 and stepping backwards to ks0, the

smoothed state estimate is described by the following recursive equations,

~̂zk|ksf = ~̂zk|k + Ξk

(
~̂zk+1|ksf − ~̂zk+1|k

)
(6.36)

and

P r(~p)k|ksf = P r(~p)k|k + Ξk

(
P r(~p)k+1|ksf − P r(~p)k+1|k

)
Ξ∗k, (6.37)

where

Ξk = P r(~p)k|k(Λ
δt
∆t )∗P r(~p)

−1
k+1|k. (6.38)

Recall that this state smoothing only occurs prior to an long-term extrapolation or analysis re-

run of SCEM, to enhance the accuracy of ~̂zt (in terms of phase and amplitude). These analysis

times are visible in Figure 3.4.

Defining the estimation error for optimisation (Stage 4 → Stage 2)

The reduced order states are modelled as random variables with complex normal distributions,

~zt ∼ C N (0,Var(Z )) where Var(·) is the unbiased sample covariance of a state trajectory. The

centred high order states are modelled as real valued normal distributions, ~̄xt ∼ N (0,Var(X̄ )).

In the reduced order system, Φ is formed of complex conjugate columns, such that it reduces
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the imaginary component to zero magnitude when transforming reduced order states to high

order states in (6.23). Therefore, a linear transformation of the complex normal distribution

~zt ∼ C N (0,Var(Z )) by Ψ, results in a normal distribution,

Ψ~zt ∼ N (0,ΨVar(Z )Ψ∗) ≈ ~̄x ∼ N (0,Var(X̄ )). (6.39)

Note that Ψ is formed from a truncated decomposition and hence is an approximate linear

transform. The transform of the covariance of the reduced order complex distribution, to the

covariance of the high order real distribution is

Var(X̄ ) ≈ ΨVar(Z )Ψ∗. (6.40)

The linear transformation matrix Ψ also transforms the covariance matrix of reduced order

state estimation error (see Section 6.1.1), P r(~p)t|k : Rns × R1×2np → Cnz×nz , to a covariance

matrix of state estimation error for current-time high order states. The transformation is

described by

P (~p)t|k = ΨP r(~p)t|kΨ
∗, (6.41)

where P (~p)t|k : Rns ×R1×2np → Rns×ns is the estimated error covariance matrix for the current

time high order states.

The mean-squared error (MSE) for a state estimation is the diagonal in the error covariance

matrix. Hence, the transform of (6.41) is utilised, but only diagonal terms of P are required,

MSE(ˆ̄~xt|k) = diag(P (~p)t|k) (6.42)

where diag(·) extracts the diagonal of a matrix as a column vector. Note the translated MSE,

MSE : Rns × R1×2np → Rns , is a real valued column vector containing the MSE for each state.

However, (6.42) only describes the estimated MSE of reduced order states (mode amplitudes),

translated to the high order system through the mode shapes. This often under-estimates the

error in high order state estimates when the identified model is inaccurate, before sensing has

corrected the state-trajectory provided by external data. It does not include any description of

the error in the mode shapes, an error that emerges from a mismatched state trajectory of the
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fluid system. Minimising this mode shape error in (5.1a) by appropriately placing sensors results

in more accurate mode shapes. To define an augmented MSE, AMSE : Rns × R1×2np → Rns ,

first construct an appended state trajectory reconstruction error matrix, ˜̄X ∈ Rns×nd , where

˜̄X =
[
(X̄ −USV ∗)◦2, (~̂xt|t−δt − ~̂xt|t)◦2

]
. (6.43)

In (6.43) (·)◦2 is the Hadamard power of 2. The error matrix ˜̄X contains the squared error of the

reduced order reconstruction of the state trajectory, concatenated with the squared difference

between the prior estimated values for the current-time states ~̂xt|t−δt : R+ × R1×np → Rns

and the posterior high order state estimate from the reduced order data assimilation, ~̂xt|t :

R+ × R1×np → Rns . The augmented MSE is then,

AMSE(ˆ̄~x) = MSE(ˆ̄~x) + maxrow

(˜̄X )
, (6.44)

where maxrow(·) extracts the maximum value of each row. Hence, the second term of (6.44)

returns the maximum MSE of the reduced order trajectory reconstruction and state estimation.

The state trajectory has assimilated prior sensor measurements, and in this case is appended

with the MSE of a current-time prior and the posterior state estimate. Therefore the augmented

MSE is likely largest where a sensor reading has significantly differed from a poor prior state

estimation. This provides incentive for a sensor to examine a well-determined mode amplitude,

but badly-determined mode shape.

The variance sources EKFx(~p) and EKFy(~p), which describe the assimilation error in horizon-

tal and vertical fluid velocity, are utilised in the uncertainty description (4.86) to inform the

sensor optimisation of poorly resolved or estimated regions of the flow field. The variance

sources EKFx(~p) and EKFy(~p) are the subsets of the augmented MSE corresponding to the

horizontal and vertical velocity augmented MSE at a specific spatio-temporal location. The

term EKF(xi, yj, t, ~p) in (5.2), is the magnitude of the vector [EKFx(~p), EKFy(~p)] ∈ R2, min-max

normalised across the spatial domain. In the adjoint method, the derivatives of EKFx(~p) and

EKFy(~p) are required. In (6.44), it is assumed that maxrow

(˜̄X )
is constant, so the derivative

reduces to the derivative of the time-varying Kalman filter estimation-error covariance matrix

update equation. This derivative is described in Appendix A.
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The weighting matrix for the BIRSVD in Section 6.1, seeks to mitigate the creation of reduced

order mode shapes that do not represent true flow field characteristics. Poor mode shapes can

occur due to erroneous states in the high order state trajectory, that can be present due to

inaccurate external data. The weighting matrix is described in a block-wise fashion, for each

centred state vector ~̄xt in H̄r,

W (~̄xt) = median
([

0, Rsens AMSE(~̄xt)
◦−1, 1

])
. (6.45)

In (6.45), Rsens ∈ R+ is the sensors mean squared measurement error for homogeneous sensors,

(·)◦−1 is the Hadamard inverse and AMSE(~̄xt) ∈ Rns is the estimated augmented MSE of that

state vector within the Hankel state trajectory. The median(·) function returns the median of

the three values in (6.45), limiting Rsens AMSE(~̄xt)
◦−1 to the interval [0, 1]. Hence the weightings

W (~̄xt) are the inverse of the augmented MSE of each state, as a proportion of the sensor MSE.

Past and future estimation (Stage 4)

The DMD model is used to extrapolate the fluid flow before sensors have arrived. Beginning

at the closest time before the oil release that matches the time of day of the present DMD

model and mode amplitude estimate, the reduced order model steps forward in time, from the

current condition and thus exploits the periodicity of tidal cycles but with amplitude growth

or decay from the linear-regression fit. The modal trajectory is calculated up to the activation

of sensors. The estimated modal amplitudes reconstruct a fluid flow trajectory that is utilised

in a re-run of the oil simulation before sensors arrive. The reduced order model is also used to

augment the external data used as inputs for SCEM. As SCEM predicts towards the future,

the RTS smoother utilises both external data and DMD predicted flow as measurements to

correct the fluid flow.

6.2 Time varying reduced order system and the RTS

smoother

The reduced order system is re-identified whenever new sensor measurements are available,

therefore it is necessary to transform the RTS smoother prior estimations of states and error
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covariance to the new mode-shapes of the system before correction. This accounts for possible

changes in mode shape (basis functions) from new data that has become available. The same

transformation of stored state-estimates and covariance matrices to the most-recent reduced

order system is required when stepping backwards in time with the RTS smoother. This section

uses time subscripts, hence time dependence is defined explicitly. Define two mode matrices

Φk−1 : Nnt → Cns×nz and Φk : Nnt → Cns×nz for the previous-time-step and current-time-step

reduced order systems respectively, as functions of a changing state-trajectory. Furthermore,

let ~̂zt|k−1 : R+ → Cnz and ~̂zt|k : R+ → Cnz be the previous-time-step and current-time-step prior

estimation of reduced order states, then note P r(~p)t|k−1 and P r(~p)t|k|k−1 : R+×R2np → Cnz×nz

as the corresponding error covariance matrices. The extended subscript t|k|k − 1 reflects that

this is the estimated error covariance for time t, using the DMD system at k, but the available

information at k − 1. This is still a prior Kalman variable. Handling the reduced order states

is straight-forward,

~̂zt|k = Φ+
k (Φk−1~̂zt|k−1), (6.46)

where + is the Moore-Penrose inverse. However translating the error covariance is more involved.

Transforming a complex reduced order covariance to a high order covariance is described by

P t|k−1 = Φk−1P r(~p)t|k−1Φ
∗
k−1, (6.47)

where P t|k−1 : R+×Rnp → Rns×ns is the error covariance of fluid states in the full system. For

the error covariance, the problem statement is solving for P r(~p)t|k|k−1, the current-time error

covariance for the most recently identified reduced order system, in

P t|k|k−1 = ΦkP r(~p)t|k|k−1Φ
∗
k. (6.48)

The term, P t|k|k−1 : R+ × Rnp → Rns×ns is the full-order estimated error covariance for time

t, using the DMD system at k, with the available information at k − 1 before the Kalman

filter update at k. Though (6.48) is an over-determined system, recall that Φk and Φ∗k are

non-square, low-rank and complex valued, and the solution is required to be unique and pos-

itive semi-definite as P r(~p)t|k|k−1 and P t|k|k−1 are both covariance matrices. Theoretically, a

Moore-Penrose inverse based solution should provide a positive semi-definite solution as both
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P r(~p)t|k|k−1 and P t|k|k−1 are strictly positive semi definite matrices. However, under the influ-

ence of rounding error induced numerical instability or inconsistency where P t|k|k−1 6= P ∗t|k|k−1

in implementation, a solution method with a guarantee of positive semi-definiteness prevents

instability of the RTS smoother. The general, inconsistency capable method described in

Section 3 of Hua and Lancaster 1996 is implemented. To summarise this approach, first let

P r = P r(~p)t|k|k−1, Q = Φ∗k,∈ Cm×n of m,n ∈ N dimensions, and r = rank(Q) ∈ N. Consider

the solution to (6.48) as the solving P r in the following minimisation,

min
P r

∥∥Q∗P rQ− P t|k|k−1

∥∥
F
, (6.49)

where ‖·‖F denotes the Frobenius norm. Perform the full SVD of Q = UQΣV ∗Q and assemble

the partitioned form,

Q = UQ

Σ 0

0 0

V ∗Q, (6.50)

where the unitary matrices are split, UQ = [UQ1
,UQ2

] ∈ Cn×n, V Q = [V Q1
,V Q2

] ∈ Cm×m,

the subsets are UQ1
∈ Cn×r, V Q1

∈ Cm×r. The subsets UQ2
and V Q2

are the remaining

components of UQ and V Q. Substitute the partitioned form of Q into (6.49),

min
P r

∥∥∥∥∥∥∥
UQ

Σ 0

0 0

V ∗Q


∗

P rUQ

Σ 0

0 0

V ∗Q − P t

∥∥∥∥∥∥∥
F

. (6.51)

By expansion of the conjugate transpose and through further partitioning and rearranging,

(6.51) becomes

min
P r

∥∥∥∥∥∥∥
Σ 0

0 0

U ∗QP rUQ

Σ 0

0 0

−
V ∗Q1

P tV Q1
0

0 0


∥∥∥∥∥∥∥
F

. (6.52)

Through inspection of (6.52), the minimising solution is of the form,

P r = UQ

P r0 0

0 0

U ∗Q, (6.53)
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where P r0 = Σ−1V ∗Q1
P tV Q1

Σ−1 is the natural, but non-positive-semi-definite enforced so-

lution. To constrain P r to a positive semi definite solution, it is only necessary to enforce

symmetry as P t is also positive semi definite.

It is known that the nearest symmetric matrix to (any) the given matrix P r0 in the F -norm is

1
2
(P r

∗
0 +P r0). Applying this to P r0 = Σ−1V ∗Q1

P tV Q1
Σ−1 for a minimising symmetric solution

Xs gives,

P rs =
1

2
Σ−1((V ∗Q1

P tV Q1
)∗ + (V ∗Q1

P tV Q1
))Σ−1. (6.54)

To demonstrate the positive semi-definite enforcement of (6.54), consider that if P t is positive

semi-definite, then V ∗Q1
P tV Q1

must also be positive semi-definite. Therefore, P rs must also be

positive semi-definite. The complete solution for P r, when P r is constrained to be symmetric

and therefore positive semi-definite, is

P r = UQ

P rs 0

0 0

U ∗Q. (6.55)



Chapter 7

Evaluation

This chapter utilises the monitoring framework in three scenarios, all in the coastal waters near

Hong Kong, modified from the 2019 Aulac Fortune spill. The same location is used for clarity,

though the SCEM model has been utilised worldwide, for the 2018 Sanchi spill near China, the

2019 MV Solomon Trader near the Solomon Islands, the 2019 Bay of Biscay spill and others

mentioned in Chapter 8. The scenarios have benchmark spill results using TideTech ocean data,

which includes the tidal dynamics of the Zhujiang river, while the monitoring framework has

initial data from the Global Forecasting System, which does not include tidal dynamics. Sensing

must therefore correct the lack of tidal flow through measurement, at locations determined by

one-step-ahead solving of the uncertainty minimisation when using the monitoring framework.

The first scenario discussed is a forward monitoring problem. Multiple sensors are activated

from the spill source, when the spill occurs, and monitor the spill forward in time. Sensing

ends and the spill is predicted into the future. The monitoring framework is compared with

ladder path sensing with value replacement feedback of environment properties. The value

replacement feedback represents the inability of a standard oil model relying upon external

fluid data to properly assimilate data into the fluid flow without an internal model. This first

scenario represents a well-equipped response team immediately responding to an incident.

The second scenario is considerably more complex. A single sensor arrives 12 hours late to

the spill. The spill source location is known but the spill location is not, and the sensors

are tasked with mapping and monitoring the spill, and determining the spill trajectory prior to

sensor arrival. This represents a standard realistic scenario, where an initial response team with

reduced resources responds to an incident in a remote location. The monitoring framework is

146
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compared with ladder path sensing, which also uses the monitoring framework, but without the

optimisation determined sensor pathing. There is also some discussion here about the effect of

additional sensors with each pathing method.

In the final scenario, a spill is detected from an unknown source, 10 hours after the spill

has occurred. The initial spill detection contains false positive locations and false negative

locations, though it has some overlap with the benchmark spill and a completely disparate

false spill. This is representative of synthetic aperture radar imagery in a coastal environment

with sheltered areas, where both wind speeds and oil presence can cause great variation in ocean

surface roughness. This surface roughness, or lack-of, can lead to false positive and negatives

of oil presence. In the scenario, 2 hours after the spill is detected, a single sensor arrives and is

required to map and monitor the spill, determine the source location through spill backtracking,

and establish the trajectory of the spill prior to sensor arrival. In this scenario it is assumed the

sensor can determine the spill age, or time-in-water, to within an hour. This may be beyond the

capability of current mobile sensors, but when combined with more human information (crews

noticing oil in the water, people on the beach noticing oil), it is not unreasonable to expect to

establish oil age with some accuracy.

7.1 Monitoring of an oil spill

This test case is a hypothetical 100 barrel spill of light crude oil near Hong Kong at 1900

hours on the 8th of January 2019. To provide measurements, 4 mobile sensors capable of

measuring oil particles, wind and current velocities arrive 1 hour after the leak begins and stay

for 14 hours, de-activating at 0900 hours on the 9th January. The sensors are speed limited

to 60 miles-per-hour, model guided sensors are measuring only in 15-minute intervals at point

locations while industry sensors have been given the capability to continuously measure while

following waypoints. Spill prediction continues to 1900 hours on the 9th of January 2019.

The real simulation, from which sensors measure, utilises data from the Global-Forecast-System

(GFS) for wind velocities and Tidetech data for current velocities that include both global

circulation currents and tidal flow. The test simulations use the same wind velocity data, but

instead use GFS current data that does not include tidal flow which is critical for spill prediction

in this region, at the mouth of the Zhujiang river.
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Industry pathing prescribes a ladder flight path (IPIECA and IOGP 2016; ITOPF 2011b) that

covers where oil is predicted to be by the model, with a 10% overlap selected here. The path

plan is split up into sections, one for each sensor, with spacing sufficient to ensure no oil can

be missed during flight. Detected oil or clear areas are updated in the model, but velocity and

wave spectrum data is only utilised as a value-replacement in the model to reflect the inability

of traditional models to utilise measured velocity data in the same manner as SCEM. Figure

7.2 also includes the error of industry pathing with no velocity feedback, to represent a simple

model incapable of modifying external flow data. The ladder flight path is updated every hour

to enable sensors to respond to measured oil, with sensors repeating the path at maximum

speed for the highest frequency of measurements along the path.

7.1.1 Analysis of results

The simulation using industry pathing and oil particle updates was accurate before sensors were

deactivated (see Figure 7.2), but once sensors deactivate and the model loses high frequency

updates on particle positions, the inaccurate velocity field causes the main body of the industry

spill to drift 5 km to the North East of the real spill. For the model-based method, after sensors

were deactivated the prediction model of SCEM had been sufficiently modified by measured data

to produce a more accurate velocity field and maintain accuracy when advecting the particles,

with the main body of particles within the real spill location even 3 hours after sensors had

deactivated.

Analysing the oil presence error in Figure 7.2, model guided sensing with state estimation has

a 30% reduction in the area of incorrect oil presence from the industry method with feedback,

or 50% better than the industry method with only oil information feedback, both when sensors

are active and after sensor removal at 0900 hours on the 9th January. After sensor deactivation,

the industry method rapidly becomes less accurate as it is still utilising the incorrect input data

to predict the spill drift. The model guided sensors have partially corrected the SCEM fluid

model to include tidal flow and so while this prediction also loses accuracy after sensors are

deactivated, it continues to perform better than using no sensors and the incorrect input data,

unlike the industry method. In both Figure 7.2 and Figure 7.3 the error of the model guided

sensors is slightly above that of industry sensors with value replacement feedback. This is due
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Figure 7.1: A comparison of the simulations at 1200 hours on the 9th January 2019, 15
hours after the initial leak at the indicated spill location, and 3 hours after the 4 sensors have
deactivated though their final positions are displayed. Real oil particle locations are displayed
in red and are advected by the red velocity field. The simulation using incorrect input data
and no sensors has particle locations displayed in gold and the main body of this spill is not
within the real spill body. The simulation using the industry method of sensor pathing and
feedback, has particle positions and velocity field displayed in dark blue. The main body of the
industry spill is 5 km to the North East of the real spill. The simulation using model based
sensor behaviour and state estimation has the main body of particles (green) within the body
of the real spill. Note how the flight path of industry sensor 1 (purple) concentrates over the
predicted spill location in an expanding ladder path from the spills initial position, while the
flight path of model based sensor 1 (dark green) also flies to crucial velocity measuring locations
both up and downstream of the spill, before returning to check the spill. Map data c©2020
Google.
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Figure 7.2: A comparison of the oil presence error of the simulations. Note how all sensor
approaches reduce error by 70% while sensors are active, with the model guided sensors being
approximately 60% as erroneous as industry standard pathing and continuing to have less error
after sensing stops.
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Figure 7.3: A comparison of the RMS error of ocean flow velocity where oil is present. Note
the 30% to 50% in reduction in error the model guided sensors with feedback and estimation
displays over the industry sensors using value replacement, and the continuation of less error
after sensing stops.
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to the sensors flying further from the spill to measure crucial flow regions and temporarily

compromising their update-rate of states local to the spill, though is important for reducing

the long-term error.

Although the area covered by the model based flight path of sensor 1 is much greater, as seen

in Figure 7.1, the distance moved is actually the same or less than the sensor 1 using the

industry method: In the industry method, the sensors fly the ladder path at their maximum

speed for the whole time sensors are active, repeating the path and measurements as often as

possible before the next ladder path is generated as the update rate is crucial to the accuracy

of the industry method. Meanwhile, the model-based method will relocate sensors to optimal

positions that may or may not require flying at maximum speed.

7.1.2 Conclusion

In this section the framework has demonstrated improvement in present-time monitoring on a

test case and a capability for online model adjustment to better predict future spill dynamics.

7.2 Monitoring and analysis of an oil spill

A test case is formed from a high fidelity simulation of the 2019 Aulac Fortune tanker explosion,

with initial conditions modified to better examine the monitoring framework. A 100 barrel spill

of light crude oil near Hong Kong, began at 19:00 on the 8th of January and the leak continued

until 00:00 on the 9th January. The simulation providing the benchmark results utilises data

from the Global-Forecast-System (GFS) for wind velocities and Tidetech data for ocean current

velocities that includes tidal flow. The test simulations use the same wind velocity data as the

benchmark simulation, but instead use GFS ocean circulation current data. The GFS data

lacks the tidal flow within the Tidetech data, which is critical for spill prediction in this region,

at the mouth of the Zhujiang river. Hence the monitoring framework will be required to resolve

the additional tidal flow component. This is representative of a common real-life simulation

case where global circulation or mean-flow data is available, but local tidal data is unavailable.

In this region, the Hong Kong Tidal Stream Prediction System available from the Hong Kong

Hydrographic Office Marine Department does not provide tidal flow data to the west of Lantau

Island. The difficulty of tidal estimation is increased, as the tide flow is mixed semi-diurnal (first
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and second tides of the day differ) and in January is moving towards a spring tide, increasing

in magnitude by approximately 5% per day.

A mobile sensor that measures oil concentration, wind and ocean velocities in point locations

arrives 12 hours after the leak begins, and remains active for 24 hours, de-activating at 07:00

on the 10th January. Spill prediction continues to 08:00 on the 10th of January.

7.2.1 Experiment setup

This paper compares the benchmark results with test simulations utilising;

(A) No sensors.

(B) A constantly measuring sensor using industry standard ladder pathing and the monitoring

framework but with simple value-replacement data assimilation, as would be available to

external-data reliant oil models.

(C) A constantly measuring sensor using industry standard ladder pathing and the monitor-

ing framework. This enables evaluation of full pathing autonomy with the uncertainty

method, compared to the common ladder pathing.

(D) A constantly measuring sensor using optimisation pathing and the monitoring framework

(the approach here).

(E) A 15-minute interval measuring sensor using optimisation pathing and the monitoring

framework. The sensor measurement frequency represents the time taken to survey the

area within a grid cell, with the reduced sensor swathe of sensors mounted on small

autonomous aircraft.

(F) 1/2/3/4 sensors using the ladder pathing and optimisation pathing, to investigate the

utilisation of extra sensors.

Only experiments (A), (C) and (D) are compared in figures, with (F) also displayed in Ta-

ble 7.2. However, the results of (B) and (E) are discussed. This selection of tests enables

evaluation of the monitoring framework, the optimisation determined sensor trajectory and the

analysis/hindcast effectiveness.
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A speed constraint limits the sensor to 60 miles-per-hour. Sensors following a ladder flight

path (IPIECA and IOGP 2016; ITOPF 2011b), use spacing determined by the sensor swathe

to ensure no oil can be missed during flight. The ladder path is updated every 30 minutes

to respond to new information. Industry sensors always fly at their maximum speed and

sensors repeat their route should they reach the end before a route update, offering the highest

frequency of information acquisition across their path. The ladder plan overlaps where the oil is

predicted to be by the model, with 20% extra length and width and is split into equal sections,

with each assigned to a sensor if there are multiple.

7.2.2 Performance measures

To compare test results, a performance scalar ep : R+ → [0, 1] is the equally weighted sum of:

• The distance between spill centres normalised by the diagonal dimension of the domain

surface. The spill centre is defined as the mean location of non-beached particles. This

definition avoids ambiguity in spill geometry definitions, such as choosing the division

between two distinct but overlapping spill slicks.

• The volume distribution error between the spills, after the test spill has been moved to

the mean location of the benchmark spill or remaining in its original position, whichever

is smaller. Beached particles are not relocated. This is normalised by the total volume of

both spills.

Note this includes error in spill position and volume distribution across the domain. The

performance measure has a maximum value of 1, indicating an estimated spill entirely in the

wrong location (the opposite side of the surface domain), with an incorrect spill shape resulting

in no-overlap of spills, even when adjusted such that the mean positions of the benchmark and

estimate spill match. A low score indicates an accurate estimation, with a score of 0 indicating

an identical estimated spill to benchmark spill. The mean value of ep over a time period is

denoted ēp ∈ [0, 1]. Simulations compare their forward estimation and analyses over the first

24 hours of the spill. This time window is equally divided between 12 hours analysis-only and

12 hours sensors-active time and will be used to compare discovery and mapping speed of the

spill, the forward monitoring effectiveness and the analysis performance prior to sensor arrival.
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Figure 7.4: This figure displays the performance metric for the first 24 hours of the spill for
the test simulations (C) and (D). Both strategies without analysis or sensors are identical until
sensor activation. Then, as the sensors deploy and ascertain that the pre-analysis estimated
spill is inaccurate and remove the cyan particles in Figure 7.5, the error increases immediately
after 07:00 on Jan 9th, as there is now an estimation of no spill in the domain. The optimisation
pathed sensing (iii) discovers the benchmark spill at approximately 10:30 on the 9th January,
with a corresponding reduction in error as this spill is mapped. The ladder path sensing (ii)
discovers the benchmark spill at 09:00, as the strategy resorts to a large area survey once the
original estimate is removed. With the spill mapped, the ladder pathing method outperforms
the no-analysis optimisation pathing by around 15%. Note that following analysis after 12
hours of sensing, the optimisation pathing (v) and monitoring framework reduces average error
over the time domain by approximately 50% and by a further 20% after 24 hours of sensing
(vii), while the ladder pathing method (iv and vi) does not produce an accurate analysis. Note
that although 12 hours optimisation pathing analysis outperforms the 24 hours at the end of
the displayed time window, this is reversed later in time and the practical difference in location
and distribution is negligible.
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7.5.a: Comparison of oil particles after 12 hours of sensing.

7.5.b: Comparison of oil particles after 24 hours of sensing.
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Figure 7.5 (previous page): A comparison of oil particle positions at 07:00 on the 9th January
2019, 12 hours after the leak at the indicated location, before sensor activation. Black dots
are the benchmark oil particle positions, while the cyan dots display the estimated location of
spill particles using incorrect fluid data without analysis. Magenta dots display the estimated
location of spill particles at 07:00, after 12 hours of sensing with analysis. The position er-
ror using optimisation determined pathing is reduced from the estimated spill being 7 km to
the south-east of the benchmark spill, to the estimated spill being 2 km to the south of the
benchmark spill. Blue dots display the estimated location of spill particles after 24 hours of
optimisation pathed sensing with analysis, with negligible error in spill location but small error
in spatial distribution. The orange dots in the left figure are the estimated location of spill
particles after 12 hours of ladder path sensing with analysis and the spill position error has
reduced, with the estimated spill being 4 km to the south-east of the benchmark spill, but with
a large error in spatial distribution. The orange dots in the right figure are the estimated spill
position after 24 hours of ladder path sensing, with analysis, and they have no improvement
upon the original estimation. Map data c©2020 Google.

Performance ēp vs number of sensors np
np 1 2 3 4
Sensors + analysis 0.21 0.07 0.05 0.04
LP Sensors + analysis 0.24 0.17 0.19 0.10

Table 7.2: This table displays the scalar performance metric (lower is better) for test sim-
ulations using different numbers of sensors with analysis and ladder path (LP) sensors with
analysis. The optimisation pathing method improves upon the ladder pathing method by an
average of 50%, and improves consistently with the addition of new sensors, compared to the
irregular behaviour of ladder pathed sensors.

7.2.3 Discussion

Discussion will follow a chronological path through the spill release and sensing, then analysis.

Much of the description of results is contained in figure captions and this section will focus

upon insight and explanation.

Pre-sensors, without analysis

Referring to Figure 7.4, spill release begins 19:00 on the 8th January and before sensors activate

there is negligible oil presence error difference between no sensing and any sensing method

without analysis. They are not identical due to the random processes in oil behaviour. The

similarity is expected because they are using the same external ocean data without tidal flow

and no correction, and is observed in the lack of difference in error of Figure 7.4.
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Figure 7.6: The optimisation determined sensor trajectory, for sensor 1. Note the number of
sensor flights made away from the spill particles and their mean position, to measure crucial
regions of fluid flow and around the spill source. The sensor often alternates between a source
measurement, a current-time spill measurement and an up or down-stream measurement en-
route between the source and current-time spill. Map data c©2020 Google.
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Figure 7.7: A depiction of the ladder path sensor trajectory for sensor 1 is in orange. Note
the coverage of the spill particles and mean position and structured flight path. The unusually
long flight paths to the north and south are from the large area survey conducted to discover
the benchmark spill after removal of the poor initial estimate. The sensor does not return to
the prior positions of the spill to form an accurate analysis. Map data c©2020 Google.
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Figure 7.8: A heat-map of the optimisation determined sensor measurements up to 07:00,
10th January. Note the concentration along the spill path to the west and expansion up
and downstream to crucial fluid measuring locations. Also observe the true and post-analysis
mean paths of the spill. The optimisation determined placement has a very accurate analysis
trajectory, while the ladder path placement analysis remains inaccurate. Map data c©2020
Google.
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First 12 hours of sensing

With Figure 7.4 for reference: After sensors activate at 07:00 on the 10th January, error rapidly

increases for pre-analysis estimates in (C) and (D) as they remove the inaccurate spill estimate

and until discovery of the benchmark spill. With discovery and mapping of the benchmark spill,

error decreases again and they maintain a 15% error difference until analysis, with optimisation

pathing being most accurate as it focuses upon uncertain regions such as spill boundaries. The

optimisation pathing is balancing measurement capability between spill mapping and fluid esti-

mation for prediction and analysis, while the ladder pathing is solely focused upon monitoring

the current-time spill. The optimisation pathing method discovers the benchmark spill as the

sensor is en-route to a fluid measuring location at 09:15, while the ladder pathing discovers it

at 10:15 after resorting to a large ladder-path survey across the domain. Note that for a large

domain, where a large area survey may be infeasible, the ability to form an accurate analysis

estimate of spill location (and thus find the true spill) is critical, and this is only achievable

with sensing consideration of fluid flow.

The results of experiment (C) outperformed those of (B), with a 15% reduction in ēp, indicating

that the monitoring framework improves upon the existing ladder path data gathering and

value replacement method. This performance gain stems from the framework improving upon

the external data only prediction of future oil movement, and hence both planning a sensor

route with improved coverage and maintaining better estimation of oil movement away from

measurements.

Over the first 12 hours of sensing, without analysis, experiment (E) had a 20% increase in

ēp over (D). The ability to only measure once every 15 minutes results in very sparse sensor

measurements, though the results were still a vast improvement over a zero sensor case (A) and

comparable to (B). The addition of an extra sensor improves results of (E) to be comparable

to, or better (lower ēp) than (D), as the 15-minute sensing frequency induced sparsity is offset

by the ability to measure in two locations simultaneously.

Analysis estimation

Following 12 hours of sensing, the first analysis occurs and another forward run provides a

new estimate of spill behaviour, displayed in Figure, 7.57.5.a:. For optimisation determined
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sensing (D), note the reduction in ēp by up to 80% between the leak commencing and sensors

activating in Figure 7.4. Also observe the removal, in analysis results, of the error spike present

in no-analysis at 07:00 on the 9th of January. This spike resulted from the first measurements

removing the original, poorly estimated spill, then the delay of discovery of the true spill. Now

measurements confirm the presence of the analysis spill. The direction and distribution of the

spill has been corrected (see Figure 7.57.5.a:) and there is overlap of spill particles with the true

spill. Sensing the alternate tide cycle for 12 hours, in this mixed semi-diurnal tide location, that

differs considerably from the tidal flow when the spill was released, has enabled the reduced

order model to accurately estimate the fluid flow 12 hours prior to the sensor arrival.

The ladder path 12 hour analysis displays a minor 10% decrease in ēp prior to sensor activation.

The ladder path sensing has solely gathered data in the west of the domain, monitoring the

present-time spill, without consideration for reconstruction of the spill trajectory prior to their

arrival. As a result, their analysis estimation of fluid flow around the source location is still

dependent upon the external data and the analysis oil trajectory is very similar.

The next analysis occurs after 20 hours of sensing and the iterated estimate of spill behaviour

is more accurate. Though only a 2% reduction in ēp for optimisation pathed sensing (D),

from the 12 hour analysis, the lack of particles in the north section of the benchmark spill

in Figure 7.57.5.a: is corrected. Ladder path sensing analysis (C) minorly improves, a 2%

reduction in ēp, but the estimation of spill particles is actually worse, closely resembling those

of Figure 7.57.5.b:. The further sensing, solely concentrated to the west of the domain, has

not continued the tidal flow observations of the early ladder path sensing near the spill source.

Hence, the flow prediction around the source is even further based upon the incorrect external

data alone. Though the analysis spill trajectory is less accurate, the prior measurements of

the sensors rapidly remove the inaccurate analysis spill where it overlapped with the original

pre-sensing estimate, resulting in a reduced error.

Following 24 hours of sensing the final analysis for both optimisation determined and ladder

path sensors produces another estimate of the oil spill trajectory. For optimisation determined

sensing (D), there is further improvement, with a 16% reduction in ēp from the 20 hour analysis,

or 19% from the 12 hour analysis. The extra 4 hours of sensor data has refined the reduced order

model estimate of fluid flow and the oil particles of Figure 7.57.5.b: match the benchmark spill
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very closely. There is negligible spatial distribution inaccuracy between the 24 hours analysis

and true spill in Figure 7.57.5.b:, and there overlap and deposition of oil on the north side of the

island at 22.17N 113.8E. The remaining inaccuracy can be attributed to tidal flow differences

between the measured data on the 10th of January and the tidal flow on the 9th. Note that

towards the end of the first 12-hour measurement period, the 24-hour analysis has slightly higher

error than the 12 hour analysis, despite having a better prediction earlier. This is simply a few

erroneous particles that have yet to be corrected by measurements.

The 24 hour analysis using ladder path sensing is worse than the 20 hour analysis. The extra

4 hours of sensing has been solely to the west of the domain as sensors ladder path over the

late particle positions of Figure 7.6 and measurements have sampled DMD modes far from the

source origin, further over-damping the early mode amplitudes and hence the flow near the

source. The western and easten flow modes have not been sampled at approximately the same

time and so the DMD model does not have an accurate coupling between their amplitudes. The

particles in Figure 7.57.5.b: are far from the benchmark spill and again, there is approximately

no reduction in ēp from the 12 hour analysis.

The analyses of the single sensor implementation (E) outperformed those of (C) by around

15%. The sparse sensing data resulted in inaccurate particle distributions, but a close mean

spill path. This indicates a good reconstruction of the main tidal amplitudes, but poor spatial

accuracy in the current-flow analysis causing inaccurate dispersal of oil particles.

Sensor discussion

The sensor flight path, up to 24 hours of sensing, is displayed in Figures 7.6 and 7.7 for optimi-

sation determined and ladder path sensing respectively. Both methods first prioritise validation

of the external data prediction of a spill at 22.15N, 113.8E. The optimisation determined path,

after removing the incorrectly predicted spill, goes to the source location, then to crucial fluid

locations with the intention of either detecting oil or taking measurements for an accurate anal-

ysis with which to then estimate an accurate spill position. En route, the true spill is detected

and the sensors map the spill by following entropy contours, then continue a monitoring strat-

egy balancing surveillance of the spill, the spill source and critical flow regions. In contrast,

the industry ladder path removes the incorrectly predicted spill and then, without other data
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available, begins a ladder path survey of the entire domain in the hope of detecting a spill. This

is an expensive and potentially infeasible exercise. Even with the ladder flight path covering an

extra 20% in width and length of the external data provided spill, the true spill is not detected

and is only mapped after discovery in a large area survey.

The optimisation determined sensor travels 37% of the distance of the industry pathing (543

to 1440 miles), with similar estimation error while sensors are active and less analysis error,

demonstrating an improvement in efficiency. This is because ladder pathed sensors travel at

their maximum speed to maximise the update rate of sensor measurements, while the optimi-

sation pathed sensors move to new positions every 15 minutes and each position may or may

not require flying at maximum speed.

With reference to Table 7.2, adding sensors to the ladder pathing method yields irregular

results. The initial improvement is due to the increased number of measurements at spill

activation providing more useful data for the Fourier estimation of tides prior to sensor arrival.

However, as the number of sensors rise, the increased measurement density in the west of

the domain leads to inaccurate estimation of fluid flow around the source. In contrast, each

additional sensor improves the monitoring framework by at least 20%.

7.3 Source locating for an oil spill

This test scenario is identical to that of Section 7.2 unless otherwise stated. The key difference

is a lack of knowledge about the spill. It is not known when or where the spill occurred. A

snapshot of the spill, containing false positive and negative oil particles is captured at 05:00

on the 9th January 2020, 5 hours after the spill leaked. A sensor arrives at 07:00 on the 9th

January and remains active for 24 hours. After 12 hours, 20 hours and 24 hours of sensing,

the source location is estimated using a spill backtracking then forward tracking method (see

Chapter 4, Section 4.3.3) and an analysis spill trajectory determined. Figures 7.9, 7.10, 7.11

and 7.12 display the source location probability distributions for pre-analysis, 12 hours, 20

hours and 24 hours of sensing, while Figures 7.13, 7.14 and 7.15 display the oil particles and

flight paths. In summary, the monitoring method accurately determines the source location to

within a kilometre and also accurately determines the analysis spill trajectory, while monitoring

the spill with a single sensor for 24 hours. However, these results do rely upon sensors being
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capable of determining oil age.

Figure 7.9: This figure displays the probability of source location across the domain, before
sensing has corrected the fluid flow in the region. The inaccurate fluid flow results in a source
location estimate 7 km to the north-west of the true location. Map data c©2020 Google.
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Figure 7.10: This figure displays the probability of source location across the domain, after
12 hours of sensing. The 12 hours of sensing has partially corrected the fluid flow and the
source location probability distribution overlaps the true source location. The first 12 hours
of sensing has focused on mapping the spill and the fluid flow down-stream, see the sensor
path in Figure 7.14, but with an approximate source location identified and an analysis spill
trajectory established, the next 12 hours of sensing will balance spill monitoring, down-stream
flow measuring and flow measuring around the source. Map data c©2020 Google.
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Figure 7.11: This figure displays the probability of source location across the domain, after 20
hours of sensing. A further 8 hours of sensing, with measurements around the source location,
see the sensor path in Figure 7.15, has corrected the inaccurate initial fluid flow data and the
resulting analysis spill and estimated source location match closely with the true benchmark
spill trajectory and source. Map data c©2020 Google.
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Figure 7.12: This figure displays the probability of source location across the domain, after 24
hours of sensing. The spill source probability distribution is further concentrated around the
true source location and the analysis spill is now very accurate, see Figure 7.13, despite the
lack of knowledge before sensor activation. Map data c©2020 Google.
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Figure 7.13: This figure displays three sets of oil particles. The black spill particles are the
benchmark spill particles. The cyan particles are the initial knowledge of the spill, from a
snapshot of the spill at 05:00 on the 9th January 2020, 5 hours after the spill leaked. These
cyan particles contain many false positives and negatives, but have partial overlap with the
true spill. The red particles are the analysis spill particles after 24 hours of sensing, which are
very similarly distributed to the benchmark spill particles. Map data c©2020 Google.
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Figure 7.14: This figure displays two sets of oil particles. The black spill particles are the
benchmark spill particles, the red particles are the estimated particles after 5 hours of sensing.
Note the false positive cyan spill particles of Figure 7.13 have been removed and the true
benchmark spill mapped. Also displayed, as a black line, is the 12 hour sensor path up to
19:00 on the 9th January. Though this sensor path extends past the particle display time in
this figure, observe that the path first maps the spill, then explores south and west, continuing
to monitor the spill as the particles move west, to the particle distribution in Figure 7.15.
The sensor path has not explored around the source location, as an analysis source probability
distribution is yet to be determined. Map data c©2020 Google.
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Figure 7.15: This figure displays two sets of oil particles. The black spill particles are the
benchmark spill particles, the red particles are the estimated particles after 12 hours of sensing.
Also displayed, as a black line, is the 24 hour sensor path up to 07:00 on the 10th January.
In addition to monitoring the spill and exploring the surrounding fluid flow, the sensor also
measures to the east, around the source probability distribution. Map data c©2020 Google.



Chapter 8

Conclusions and Future Work

The principal aim of this research has been the development of a contaminant monitoring frame-

work, for gathering information with mobile sensors in the aftermath of a maritime incident, for

incident mitigation and litigation. This thesis has constructed a monitoring framework utilising

a bespoke environment and oil model (Chapter 4), a description of uncertainty (Chapter 4),

an uncertainty minimisation for sensor placement (Chapter 5) and a data assimilation method

that makes use of reduced order modelling (Chapter 6). In Chapter 7 the monitoring framework

demonstrated significant improvement over the industry standard ladder-pathing method for

oil spill monitoring, across monitoring and prediction, monitoring and hindcast, and monitoring

and source location problem scenarios. The developed framework, though focused on oil spill

monitoring, could be modified for application to other contaminants.

8.1 Main contributions

To the knowledge of the author, the key original contributions of this thesis are as follows:

1. The construction of a combined environment and oil model (named SCEM) explicitly de-

signed to form part of a monitoring framework. It is a blend of available computationally

efficient modelling techniques, from classical to modern, for the key physical processes

needed to describe oil drift at sea. While ocean, wind and oil models are of course, not

a new concept, SCEM is tailored to the needs of this research and is more complex than

the models utilised in sensor guidance for oil spill monitoring literature. SCEM has been

validated using the 2019 Grande America spill and published in Hodgson et al. 2019.

172
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2. The modelling of the uncertainty of SCEM, a non-linear, time-varying structure system,

by a further non-linear state-space system suitable for standard state-space methods.

This, to the authors knowledge, is new to oil models, which usually quantify their uncer-

tainty through an ensemble of simulations sampling from a distribution of parameters.

This uncertainty also includes terms for of data-assimilation and reduced order modelling

error, with further terms for describing sensor dynamics within one time step, enabling

one-step-ahead optimisation.

3. Determining the optimal placement of sensors to monitor the spill, through the forming

and solving of an uncertainty minimisation optimisation. Though uncertainty minimisa-

tion exists in sensor-placement literature, the cost-function terms for sensor constraints

and weighting of uncertainty minimisation by information theoretic measures have been

formulated for the specific requirements of oil monitoring. Unlike prior mobile sensor

guidance for oil spill monitoring, the strategy here strikes a balance between oil observa-

tion and measuring the environment to improve the hind-casting or prediction of the spill

using SCEM.

4. Extension of the adjoint method to incorporate bounded states, implemented as extra

matrices as opposed to modification of the underlying state-space model. This provided

gradient information to an optimisation solver based on prior work.

5. Use of parallel optimisations across multiple time-step sizes as an alternative to adjoint-

MPC. Parallel optimisation has no guarantee of finding a global optimal, but is less

memory intensive.

6. Improving an ensemble and tangent-linear model free data assimilation method, in-terms

of reduced order model creation and accuracy, by employing a weighted decomposition

and a “data-driven model versus trajectory” based description of error.

7. Combining all of the above into a monitoring framework, with a suitable structure for a

variety of scenarios.

8. Application of the monitoring framework to example monitoring problems in high fidelity

simulations. The monitoring framework demonstrated significant improvement, in error
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reduction and sensor distance travelled reduction, compared to the industry standard

survey method, as displayed in conference poster sessions at Intcatch 2019 and AGU

Fall Meeting 2019, published in Hodgson, Esnaola, and Jones 2020b and submitted in

Hodgson, Esnaola, and Jones 2020a.

8.2 Future work

The below list states possible future improvements and avenues of further research based on

this work:

1. SCEM has been used to simulate the 2018 Sanchi spill in the China sea, the 2019 Aulac

Fortune spill near Hong Kong and the 2020 unknown-origin spill near Brasil with the

industry partner. Further model development will adapt the model for prediction of

drifting bodies and other contaminants, with accompanying alteration of the uncertainty

description. In August 2020, SCEM was utilised to produce a probability of location map

for a man-overboard situation near Hong Kong.

2. Future work should compare the one-step-ahead control method with the adjoint-MPC

method. Alternative optimisation or control methods that provide a guarantee of opti-

mality should also be investigated. Approximating Sequence of Riccati Equation (ASRE)

control was implemented, but failed to converge to a solution, likely due to the high

state-dimension and degree of non-linearity present. This deserves further analysis.

3. Extension of the uncertainty description to 3-dimensions, where-by the uncertainty area

becomes an uncertainty volume to be minimised. This would then be evaluated as guid-

ance for sub-surface sensing.

4. In this work, a regularly sized staggered grid spatial discretisation was used, as it offered

flexibility with meshing and boundary conditions, and was accompanied by Euler or

Runge-Kutta based time discretisation (all finite difference based methods). It could

perhaps offer computation speed benefits to make use of spectral methods, e.g, Galerkin

projection, but this may complicate boundary conditions.

5. Perhaps most importantly, the framework needs to be utilised in industry, with suitable
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hardware and sensors. This is a major undertaking, requiring considerable resources, but

would deliver tangible impact.
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Hodgson, Zak, Iñaki Esnaola, and Bryn Jones (2020a). “Model-Based Optimal Adaptive Mon-

itoring of Oil”. In: IEEE Transactions on Control Systems Technology - Submitted.

— (2020b). “Optimal Model-Based Sensor Placement & Adaptive Monitoring Of An Oil Spill”.

In: IFAC-V.

Hodgson, Zak et al. (2019). “A combined ocean and oil model for model-based adaptive moni-

toring”. In: arXiv: 1910.12658.

https://arxiv.org/abs/1911.10823
https://arxiv.org/abs/1910.12658


182 BIBLIOGRAPHY

Hollinger, Geoffrey A. and Gaurav S. Sukhatme (2014). “Sampling-based robotic information

gathering algorithms”. In: International Journal of Robotics Research 33.9, pp. 1271–1287.

Hoult, David P (1972). “Oil spreading on the sea”. In: Massachusetts Institute of Technology

4.1, pp. 341–368.

Hover, Franz and Harrison Chin (2009). 2.017J Design of Electromechanical Robotic Systems,

Fall. Tech. rep. Massachusetts Institute of Technology: MIT OpenCourseWare, https://ocw.mit.edu/.

License: Creative Commons BY-NC-SA.

Hu, Jinwen et al. (2013). “Multiagent information fusion and cooperative control in target

search”. In: IEEE Transactions on Control Systems Technology 21.4, pp. 1223–1235.

Hu, Yuanming et al. (2019). “DiffTaichi: Differentiable Programming for Physical Simulation”.

In: ICLR 2020, pp. 1–20. arXiv: 1910.00935.

Hua, Dai and Peter Lancaster (1996). “Linear Matrix Equations From an Inverse Problem of

Vibration Theory”. In: Linear Algebra and its Applications 246.1, pp. 31–42.

Hunter, J. R., P. D. Craig, and H. E. Phillips (1993). “On the use of random walk models with

spatially variable diffusivity”. In: Journal of Computational Physics 106.2, pp. 366–376.

Hutchinson, Michael, Cunjia Liu, and Wen Hua Chen (2019). “Information-Based Search for

an Atmospheric Release Using a Mobile Robot: Algorithm and Experiments”. In: IEEE

Transactions on Control Systems Technology 27.6, pp. 2388–2402.

Ichiye, Takashi (1967). “Upper ocean boundary-layer flow determined by dye diffusion”. In:

Physics of Fluids 10.9.

IPIECA and IOGP (2016). “Aerial observation of oil spills at sea”. In: IPIECA resources.

Isobe, Atsuhiko et al. (2009). “Two-way particle-tracking model for specifying sources of drifting

objects: Application to the East China Sea shelf”. In: Journal of Atmospheric and Oceanic

Technology 26.8, pp. 1672–1682.

ITOPF (2011a). Aerial Observation of Marine Oil Spills. Tech. rep. 1. ITOPF, p. 12.

— (2011b). “TIP 01: Aerial Observation of Marine Oil Spills”. In: ITOPF Technical Informa-

tion Paper 1, p. 12.

— (2011c). “TIP 02: Fate of Marine Oil Spills”. In: ITOPF Technical Information Paper.

— (2014). Aerial Surveillance - ITOPF.

https://arxiv.org/abs/1910.00935


BIBLIOGRAPHY 183

— (2017). “Oil tanker spill statistics 2016”. In: The International Tanker Owners Pollution

Federation Limited February.

— (2019). Oil Tanker Spill Statistics 2018. Tech. rep. January. ITOPF, p. 12.

Iungo, G V, M Abkar, and F Port (2015). “Data-driven Reduced Order Model for prediction

of wind turbine wakes”. In: 625, pp. 1–11.

Jayaraman, Balaji and S. M.Abdullah Al Mamun (2020). “On data-driven sparse sensing and

linear estimation of fluid flows”. In: Sensors (Switzerland) 20.13, pp. 1–31.

Jha, Maya Nand, Jason Levy, and Yang Gao (2008). “Advances in Remote Sensing for Oil Spill

Disaster Management: State-of-the-Art Sensors Technology for Oil Spill Surveillance”. In:

Sensors 8.1, pp. 236–255.

Joshi, Siddharth and Stephen Boyd (2009). “Sensor selection via convex optimization”. In:

IEEE Transactions on Signal Processing 57.2, pp. 451–462.

Juszczak, P, D M J Tax, and Robert P W Duin (2000). Feature scaling in support vector data

description. Tech. rep.

Kakalis, Nikolaos M P and Yiannis Ventikos (2008). “Robotic swarm concept for efficient oil

spill confrontation”. In: 154, pp. 880–887.

Kaymal, Turgut (2016). “Unmanned Aircraft Systems for Maritime Operations”. In: Interna-

tional Conference on Unmanned Aircraft Systems (ICUAS), pp. 763–768.

Khang, Nguyen Van (2012). “Partial Derivative of Matrix Functions With Respect To a Vector

Variable”. In: Vietnam Journal of Mechanics 30.4, pp. 269–279.

Kim, Tae Ho et al. (2014). “Analysis of the contribution of wind drift factor to oil slick movement

under strong tidal condition: Hebei Spirit oil spill case”. In: PLoS ONE 9.1, pp. 1–14.

Kirincich, Anthony R. and John A. Barth (2008). “Time-Varying Across-Shelf Ekman Transport

and Vertical Eddy Viscosity on the Inner Shelf”. In: Journal of Physical Oceanography 39.3,

pp. 602–620.

Kitano, H et al. (1999). “RoboCup Rescue: search and rescue in large-scale disasters as a

domain for autonomous agents research”. In: IEEE SMC’99 Conference Proceedings. 1999

IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028).

Koopman, B. O. (1931). “Hamiltonian Systems and Transformation in Hilbert Space”. In:

Proceedings of the National Academy of Sciences 17.5, pp. 315–318.



184 BIBLIOGRAPHY

Krishnamoorthy, K., D. Casbeer, and M. Pachter (2015). “Minimum time UAV pursuit of

a moving ground target using partial information”. In: 2015 International Conference on

Unmanned Aircraft Systems, ICUAS 2015, pp. 204–208.

Krishnamoorthy, K. et al. (2012). “UAV search & capture of a moving ground target under

delayed information”. In: Proceedings of the IEEE Conference on Decision and Control,

pp. 3092–3097.

Kuwata, Yoshiaki and Jonathan P. How (2007). “Robust cooperative decentralized trajectory

optimization using receding horizon MILP”. In: Proceedings of the American Control Con-

ference 4, pp. 522–527.

Lamb, Horace (1895). “Hydrodynamics”. In: Journal of Chemical Information and Modeling

53.9, pp. 468–470. arXiv: 1011.1669v3.

Lardner, R W and N Gunay (2000). “Gulfspill Version 2 . 0 : a software package for oil spills

in the Arabian Gulf”. In: Environment Modelling & Software 15, pp. 425–442.

Laruelle, Franck (2009). “The Role of ITOPF & Hebei Spirit case study”. In: Oil Clean Con-

ference.

— (2011). “Responding to Spills in Remote Locations: GULSER ANA (Madagascar) & OLIVA

(South Atlantic)”. In: ITOPF Library, pp. 1–12.

Lehr, W. et al. (2002). “Revisions of the ADIOS oil spill model”. In: Environmental Modelling

& Software 17.2, pp. 189–197.

Lehr, W. J. et al. (1984). “A new technique to estimate initial spill size using a modified fay-type

spreading formula”. In: Marine Pollution Bulletin 15.9, pp. 326–329.

Leroux, Romain and Laurent Cordier (2016). “Dynamic mode decomposition for non-uniformly

sampled data”. In: Experiments in Fluids 57.5.

Leyder, Claude et al. (2018). “Optimal sensor placement methods and metrics–comparison and

implementation on a timber frame structure”. In: Structure and Infrastructure Engineering

14.7, pp. 997–1010.

Li, Yan, Jiang Zhu, and Hui Wang (2013). “The impact of different vertical diffusion schemes in

a three-dimensional oil spill model in the Bohai Sea”. In: Advances in Atmospheric Sciences

30.6, pp. 1569–1586.

https://arxiv.org/abs/1011.1669v3


BIBLIOGRAPHY 185

Lian, Wu et al. (2018). “An improved adaptive sampling algorithm”. In: 2018 IEEE 4th Inter-

national Conference on Computer and Communications, ICCC 2018, pp. 2205–2211.

Liu, Kang, Ren Jun Yan, and C. Guedes Soares (2018). “Optimal sensor placement and assess-

ment for modal identification”. In: Ocean Engineering 165.July, pp. 209–220.

Lonin, Serguei A. (1999). “Lagrangian model for oil spill diffusion at Sea”. In: Spill Science and

Technology Bulletin 5.5-6, pp. 331–336.

Mackay, Donald and Ronald S. Matsugu (1973). “Evaporation rates of liquid hydrocarbon spills

on land and water”. In: The Canadian Journal of Chemical Engineering 51.4, pp. 434–439.

Madec, Gurvan (2011). NEMO Ocean Engine: version 3.3. Tech. rep. l’Institut Pierre-Simon

Laplace.

Marsh, Charles (2013). “Introduction to Continuous Entropy”. In: Department of Computer

Science Princeton University crmarsh@princeton.edu, pp. 1–17.

Marsooli, Reza (2017). “Some questions on “A Coupled Circulation-Wave Model for Numerical

Simulation of Storm Tides and Waves (2017)””. In: [email].

Marsooli, Reza et al. (2017). “A Coupled Circulation-Wave Model for Numerical Simulation of

Storm Tides and Waves”. In: Journal of Atmospheric and Oceanic Technology.

Mattingley, Jacob, Yang Wang, and S P Boyd (2011). “Receding Horizon Control”. In: IEEE

Control Systems 31.3, pp. 52–65. arXiv: 1011.1669v3.

Mellor, George (2003). “The Three-Dimensional Current and Surface Wave Equations”. In:

Journal of Physical Oceanography 33.9, pp. 1978–1989.

Mellor, George L., Mark a. Donelan, and Lie-Yauw Oey (2008). “A Surface Wave Model for Cou-

pling with Numerical Ocean Circulation Models”. In: Journal of Atmospheric and Oceanic

Technology 25.10, pp. 1785–1807.

Meng, Bo Bo, Xiaoguang Gao, and Yunhui Wang (2009). “Multi-mission path re-planning for

multiple unmanned aerial vehicles based on unexpected events”. In: 2009 International Con-

ference on Intelligent Human-Machine Systems and Cybernetics, IHMSC 2009 1, pp. 423–

426.

Michalska, Hannah and David Q Mayne (1995). “Moving Horizon Observers and Observer-

Based Control”. In: IEEE Transactions on Automatic Control 40.6.

https://arxiv.org/abs/1011.1669v3


186 BIBLIOGRAPHY

Montgomery, D. C. and G. C. Runger (1994). Applied statistics and probability for engineers.

John Wiley, p. 201.

Moon, Sangwoo et al. (2015). “Decentralized information-theoretic task assignment for search-

ing and tracking of moving targets”. In: 2015 International Conference on Unmanned Air-

craft Systems, ICUAS 2015, pp. 1031–1036.

Moreland, Erin E et al. (2015). “Evaluation of a ship-based unoccupied aircraft system (UAS)

for surveys of spotted and ribbon seals in the Bering Sea pack ice 1”. In: J. Unmanned Veh.

Sys. 3.3, pp. 114–122.

Morlier, Joseph et al. (2018). “An EGO-like optimization framework for sensor placement op-

timization in modal analysis”. In: Smart Materials and Structures 27.7.

Nelson, Jake R. and Tony H. Grubesic (2019). “Oil spill modeling: computational tools, an-

alytical frameworks, and emerging technologies”. In: Progress in Physical Geography 43.1,

pp. 129–143.

— (2020). “Oil spill modeling: Mapping the knowledge domain”. In: Progress in Physical Ge-

ography 44.1, pp. 120–136.

Nissanka, Indrajith D. and Poojitha D. Yapa (2018). “Calculation of oil droplet size distribution

in ocean oil spills: A review”. In: Marine Pollution Bulletin 135.July, pp. 723–734.

NIST/SEMATECH (2012). NIST/SEMATECH e-Handbook of Statistical Methods.

NOAA (2012). General NOAA Operational Modeling Environment (GNOME) Technical Doc-

umentation. Tech. rep.

Nonomura, Taku, Hisaichi Shibata, and Ryoji Takaki (2019). Extended-Kalman-filter-based dy-

namic mode decomposition for simultaneous system identification and denoising. Vol. 14. 2.

arXiv: 1805.01985.

Nordam, Tor et al. (2019a). “Numerical analysis of boundary conditions in a Lagrangian particle

model for vertical mixing, transport and surfacing of buoyant particles in the water column”.

In: Ocean Modelling 136.January, pp. 107–119.

Nordam, Tor et al. (2019b). “On the use of random walk schemes in oil spill modelling”. In:

Marine Pollution Bulletin 146.April, pp. 631–638.

Ogata, Katsuhiko et al. (1995). Discrete-time control systems. Vol. 2. Prentice Hall Englewood

Cliffs, NJ.

https://arxiv.org/abs/1805.01985


BIBLIOGRAPHY 187

Pashna, Mohsen et al. (2020). “Autonomous multi-robot tracking system for oil spills on sea

surface based on hybrid fuzzy distribution and potential field approach”. In: Ocean Engi-

neering 207.February 2019, p. 107238.

Peng, Hui Peng Hui et al. (2009). “Cooperative area search for multiple UAVs based on RRT

and decentralized receding horizon optimization”. In: 2009 7th Asian Control Conference,

pp. 298–303.

Pond, Stephen and George L Pickard (1983). Introductory dynamical oceanography. Gulf Pro-

fessional Publishing.

Proctor, Roger, Roger A. Flather, and Alan J. Elliott (1994). “Modelling tides and surface drift

in the Arabian Gulf-application to the Gulf oil spill”. In: Continental Shelf Research 14.5,

pp. 531–545.

Qu, Yaohong, Yintao Zhang, and Youmin Zhang (2015). “A UAV solution of regional surveil-

lance based on pheromones and artificial potential field theory”. In: 2015 International

Conference on Unmanned Aircraft Systems, ICUAS 2015, pp. 380–385.

Raanes, Patrick N., Marc Bocquet, and Alberto Carrassi (2019). “Adaptive covariance inflation

in the ensemble Kalman filter by Gaussian scale mixtures”. In: Quarterly Journal of the

Royal Meteorological Society 145.718, pp. 53–75. arXiv: 1801.08474.

Ragi, Shankarachary and Edwin K P Chong (2013). “UAV path planning in a dynamic environ-

ment via partially observable markov decision process”. In: IEEE Transactions on Aerospace

and Electronic Systems 49.4, pp. 2397–2412.

Raimondi, Valentina et al. (2017). “Int J Appl Earth Obs Geoinformation Experimental tests

and radiometric calculations for the feasibility of fluorescence LIDAR-based discrimination

of oil spills from UAV”. In: 61.April, pp. 46–54.

Rasmussen, Dorte (1985). “Oil Spill Modeling—a Tool for Cleanup Operations”. In: Interna-

tional Oil Spill Conference Proceedings 1985.1, pp. 243–249.

Reed, Mark et al. (2000). “OSCAR2000: a multi-component 3-dimensional Oil Spill Contingency

and Response model”. In: Arctic and Marine Oilspill Program Technical Seminar.

Risken, Hannes (1996). “Fokker-planck equation”. In: The Fokker-Planck Equation. Springer,

pp. 63–95.

https://arxiv.org/abs/1801.08474


188 BIBLIOGRAPHY

Roberge, Vincent, Mohammed Tarbouchi, and Gilles Labonte (2013). “Comparison of parallel

genetic algorithm and particle swarm optimization for real-time UAV path planning”. In:

IEEE Transactions on Industrial Informatics 9.1, pp. 132–141.

Rozier, D et al. (2007). “A Reduced-Order Kalman Filter for Data Assimilation in Physical

Oceanography”. In: SIAM Review 49.3, pp. 449–465.

Schmid, Peter J. (2010). “Dynamic mode decomposition of numerical and experimental data”.

In: Journal of Fluid Mechanics, Cambridge University Press (CUP), 656, pp. 5–28.

Schouwenaars, Tom and Eric Feron (2004). “Decentralized Cooperative Trajectory Planning of

Multiple Aircraft with Hard Safety Guarantees”. In: Control August, AIAA 2004–5141.

Shahriari, Bobak et al. (2016). “Taking the human out of the loop: A review of Bayesian

optimization”. In: Proceedings of the IEEE 104.1, pp. 148–175.

Shang, Ke et al. (2015). “A GA-ACO hybrid algorithm for the multi-UAV mission planning

problem”. In: 14th International Symposium on Communications and Information Tech-

nologies, ISCIT 2014, pp. 243–248.

Shannon, C. E. (1948). “Comment”. In: The Bell System Technical Journal XXVII.3, pp. 379–

423.

Smith, Stuart D. (1988). “Coefficients for sea surface wind stress, heat flux, and wind profiles

as a function of wind speed and temperature”. In: Journal of Geophysical Research: Oceans

93.C12, pp. 15467–15472.

Sonmez, Abdurrahim, Emre Kocyigit, and Emin Kugu (2015). “Optimal path planning for

UAVs using Genetic Algorithm”. In: 2015 International Conference on Unmanned Aircraft

Systems (ICUAS), pp. 50–55.

Spaulding, Malcolm L. (2017). “State of the art review and future directions in oil spill mod-

eling”. In: Marine Pollution Bulletin 115.1-2, pp. 7–19.

Stam, Jos (2001). “A Simple Fluid Solver Based on the FFT”. In: Journal of Graphics Tools

6, pp. 43–52.

— (2003). “Real-Time Fluid Dynamics for Games”. In: Proceedings of the Game Developer

Conference 18.11, p. 17.



BIBLIOGRAPHY 189

Sun, Andrew K and Hugh H T Liu (2009). “Cooperative UAV Search for Moving Targets Using

a Modified Diffusion Uncertainty Model”. In: AIAA Guidance, Navigation, and Control

Conference August.

Taylor, Publisher et al. (2003). “A multiphase oil spill model Un modèle multiphase de nappe
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Appendix A

Derivatives required for the Adjoint

method

This section describes the analytical derivatives required for implementation of the Adjoint

method and it may be useful to have Chapter 5 and Chapter 4 Section 4.6 for reference.

This section begin with state and position derivatives of the system matrix. The constraint

derivatives with respect to states and positions are then noted, followed by additional definitions

for terms used within the prior derivatives. In this section, the notation
u· is dropped for the

bounded and unbounded states and state trajectory of the uncertainty system, and they are

referred to as ~x
¯

and ~X
¯

for brevity, as there is no possibility of confusion. The notation I~x¯k

represents an identity matrix for the dimensions of ~x
¯k

. To avoid tensor derivatives, evaluations

of ∂(·)
∂~p

is performed per sensor and per movement direction of the selected sensor, for sensor

i ∈ J1, npK, at time tk and a direction d = x|y, the derivative is with respect to ~p kid : N → R.

Additionally, let the position vector of a sensor have the notation ~p kiv : N→ R2. The Kronecker

product is denoted by ⊗. The diag(~x) function here constructs a matrix with ~x along the

diagonals, while Diag(M ) constructs a vector, containing the diagonal elements of M .

This section is heavy in analytical tensor derivatives and the reader is advised to make use of

the modern auto-differential products to describe their adjoint system (see Hu et al. 2019 for

example). These auto-differential products were entering development at the beginning of this

research.

Note that the derivative ∂A(~x)~x
∂~x

is described by ∂A(~x)~x
∂~x

= ∂A(~x)
∂~x

(I~x ⊗ ~x) + A(~x)I~x, where I~x is

an identity matrix of a suitable dimension (the same number of rows) as ~x.
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A.0.1 System derivatives with respect to states.

Employ the notation F (~x
¯k+1, ~x¯k

, ~p
¯k
, ~X

¯
, ~P)~x

¯m
= F

~x
¯m
k+1,m = ∂F (...)

∂~x
¯m

, then for all m /∈ {k, k + 1},

there is a zero-valued derivative F ~x
k̄+1,m = 0. To determine the tensor derivative ∂Ak( ~X

¯
, ~P)

∂ ~(·)
,

without resorting to element-by-element calculus, the derivative is determined with respect to

each scalar component of the vector ~(·). The full tensor derivative can then be constructed

through manipulation of the matrix-by-scalar derivatives. Each matrix-by-scalar derivative,

resulting in a matrix, is stacked underneath the last, from first state element to the last. This

large and very sparse matrix, D ∈ R(8nxny)2×8nxny is then reshaped, such that it is a combination

of each stacked matrix with alternating rows. For example,



A1,1 A1,2

A2,1 A2,2

B1,1 B1,2

B2,1 B2,2

C1,1 C1,2

C2,1 C2,2


→

 A1,1 B1,1 C1,1 A1,2 B1,2 C1,2

A2,1 B2,1 C2,1 A2,2 B2,2 C2,2

 . (A.1)

Note that if A = ∂F
∂~x1

, B = ∂F
∂~x2

, C = ∂F
∂~x3

, where ~x1,2,3 are the 1st, 2nd and 3rd elements in

~x, then the right-hand-side matrix in (A.1) is ∂F
∂~x1,2,3

under the numerator partial derivative

convention, using the definitions in Khang 2012. The derivatives of Ak( ~X
¯
, ~P) are zero valued

with respect to ~σ2
x, ~σ

2
y , ~sx, ~sy. Recall the Differential-Algebraic Equation described by

F (~x
¯k+1, ~x¯k

, ~pk, ~X
¯
, ~P) =

[
−M

¯ k(
~X
¯
, ~P)

(
I + δtAk( ~X

¯
, ~P)

)
+ I ik

]
~x
¯k︸ ︷︷ ︸

Ak

+
[(

I −
(
I ik+1 + R

¯ k+1( ~X
¯
, ~P)

))]
~x
¯k+1︸ ︷︷ ︸

Ck+1

= 0. (A.2)

The derivative with respect to the current-step states is F (...)~xk , described by,

F ~x
k̄+1,k = −∂R¯ k+1( ~X

¯
, ~P)

∂~x
¯k

(
~x
¯k+1 ⊗ I~x¯k

)
+
[
−M

¯ k

(
I + Ak( ~X

¯
, ~P)

)
+ I i

]
−
(
∂M

¯ k

∂~x
¯k

((
I + Ak( ~X

¯
, ~P)

)
⊗ I~x¯k

)
+ M

¯ k

(
∂Ak( ~X

¯
, ~P)

∂~x
¯k

))(
~x
¯k
⊗ I~x¯k

)
. (A.3)



194 Chapter A. Derivatives required for the Adjoint method

The derivative with respect to the next states is F (...)~xk+1
, described by,

F ~x
k̄+1,k+1 =

(
I − (I i + R

¯ k+1)
)
− ∂R

¯ k+1( ~X
¯
, ~P)

∂~x
¯k+1

(
~x
¯k+1 ⊗ I~x¯k+1

)
−
(
∂M

¯ k

∂~x
¯k+1

((
I + Ak( ~X

¯
, ~P)

)
⊗ I~x¯k+1

)
+ M

¯ k

(
∂Ak( ~X

¯
, ~P)

∂~x
¯k+1

))(
~x
¯k
⊗ I~x¯k+1

)
. (A.4)

Beginning with Y k, the derivative is non-zero valued for ~uk and ~vk only. Using Matlab matrix

indexing notation, the derivatives with respect to a selected by i ∈ {1, 2, ..., nxny} state of ~uk

and ~vk are described by,

∂Y k(i, :)

∂~uk(i)
= −Dx(i, :),

∂Y k(i, :)

∂~vk(i)
= −Dy(i, :). (A.5)

The derivatives of T k,u|v with respect to ~uk and ~vk are also non-zero. The derivatives for T k,u

are described by,

∂T k,u(i, :)

∂~uk(i)
=

I(i, :)◦
(
cd(Dx(i, i)+Dy(i, i))(2~uk(i)

◦−1)◦((Dx(i, :)~uk −Dy(i, :)~vk) + (Dy(i, :)~uk + Dx(i, :)~vk))
◦0.5

− cd~uk(i)◦−2 ◦ ((Dx(i, :)~uk −Dy(i, :)~vk) + (Dy(i, :)~uk + Dx(i, :)~vk))
◦0.5
)
, (A.6)

∂T k,u(i, :)

∂~uk(j 6= i)
=

I(i, :)◦
(
cd(Dx(i, j)−Dy(i, j))(2~uk(j)

◦−1)◦((Dx(i, :)~uk −Dy(i, :)~vk) + (Dy(i, :)~uk + Dx(i, :)~vk))
◦0.5
)
,

(A.7)

and

∂T k,u(i, :)

∂~vk(j)
=

I(i, :)◦
(
cd(Dx(i, j)−Dy(i, j))(2~uk(i)

◦−1)◦((Dx(i, :)~uk −Dy(i, :)~vk) + (Dy(i, :)~uk + Dx(i, :)~vk))
◦0.5
)
.

(A.8)
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The derivatives for T k,v are described by,

∂T k,v(i, :)

∂~vk(i)
=

I(i, :)◦
(
cd(Dx(i, i)+Dy(i, i))(2~vk(i)

◦−1)◦((Dx(i, :)~uk −Dy(i, :)~vk) + (Dy(i, :)~uk + Dx(i, :)~vk))
◦0.5

− cd~vk(i)◦−2 ◦ ((Dx(i, :)~uk −Dy(i, :)~vk) + (Dy(i, :)~uk + Dx(i, :)~vk))
◦0.5
)
, (A.9)

∂T k,v(i, :)

∂~vk(j 6= i)
=

I(i, :)◦
(
cd(Dx(i, j)−Dy(i, j))(2~vk(j)

◦−1)◦((Dx(i, :)~uk −Dy(i, :)~vk) + (Dy(i, :)~uk + Dx(i, :)~vk))
◦0.5
)
,

(A.10)

and

∂T k,v(i, :)

∂~uk(j)
=

I(i, :)◦
(
cd(Dx(i, j)−Dy(i, j))(2~vk(i)

◦−1)◦((Dx(i, :)~uk −Dy(i, :)~vk) + (Dy(i, :)~uk + Dx(i, :)~vk))
◦0.5
)
.

(A.11)

The derivative of Qk+1x
is non-zero for elements of ~exk only, similar for Qk+1y

and ~eyk . The

derivative of Qk+1x
with respect to ~exk(i) is described by,

∂Qk+1x
(i, :)

∂~exk(i)
= I(i, :) ◦

(
− ~exk(i)◦−2 ◦ ~Ek+1x(i)

)
, (A.12)

with a similar expression in the vertical y direction.

To construct the total derivative with respect to a scalar variable in the state vector, the above

derivative terms for the scalar variable are inserted into an empty matrix Z ∈ R8nxny×8nxny , at

their corresponding location. This is repeated for each element of the state vector, with each

Z vertically concatenated to form Q ∈ R(8nxny)2×8nxny , Q is then reshaped to form ∂Ak( ~X
¯
, ~P)

∂~xk
∈

R8nxny×(8nxny)2
, a large and very sparse matrix. Note that a sparse representation of a matrix

(only non-zero values are assigned) should be used at every stage to avoid memory constraints.
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A.0.2 System derivatives with respect to sensor positions.

Employ the notation F (~x
¯k+1, ~x¯k

, ~pk, ~X
¯
, ~P)~pm = F ~p

k+1,m = ∂F (...)
∂~pm

, then for all m /∈ {k−1, k, k+

1}, there is a zero-valued derivative F ~p
k+1,m = 0.

The derivative with respect to the prior sensor positions is F (...)~pk−1
, described by,

F ~p
k+1,k−1 = −∂R¯ k+1( ~X

¯
, ~P)

∂~pk−1

(
~x
¯k+1 ⊗ I~p

)
−
(
∂M

¯ k

∂~pk−1

((
I + Ak( ~X

¯
, ~P)

)
⊗ I~p

)
+ M

¯ k

(
∂Ak( ~X

¯
, ~P)

∂~pk−1

))(
~x
¯k
⊗ I~p

)
. (A.13)

The derivative with respect to the current-step sensor positions is F (...)~xk , described by,

F ~p
k+1,k = −∂R¯ k+1( ~X

¯
, ~P)

∂~pk

(
~x
¯k+1 ⊗ I~p

)
+

−
(
∂M

¯ k

∂~pk

((
I + Ak( ~X

¯
, ~P)

)
⊗ I~p

)
+ M

¯ k

(
∂Ak( ~X

¯
, ~P)

∂~pk

))(
~x
¯k
⊗ I~p

)
. (A.14)

The derivative with respect to the next sensor positions is F (...)~xk+1
, described by,

F ~p
k+1,k+1 = −∂R¯ k+1( ~X

¯
, ~P)

∂~p
¯k+1

(
~x
¯k+1 ⊗ I~p

)
−
(
∂M

¯ k

∂~pk+1

((
I + Ak( ~X

¯
, ~P)

)
⊗ I~p

)
+ M

¯ k

(
∂Ak( ~X

¯
, ~P)

∂~pk+1

))(
~x
¯k
⊗ I~p

)
. (A.15)

Define the matrix Dp ∈ Rnτ8nxny×np , that contains the derivative ∂F
∂~pm

, for m ∈ {k− 1, k, k+ 1},
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in the following arrangement,

∂F

∂~pm
=


∂~xk−1

∂~pk−1

∂~xk−1

∂~pk

∂~xk−1

∂~pk+1

∂~xk
∂~pk−1

∂~xk
∂~pk

∂~xk
∂~pk+1

∂~xk+1

∂~pk−1

∂~xk+1

∂~pk

∂~xk+1

∂~pk+1

 =



∂ ~σx
¯
,k−1

∂~p1

∂ ~σx
¯
,k−1

∂~p2
...

∂ ~σx
¯
,k−1

∂~pkp

∂ ~σy
¯
,k−1

∂~p1

∂ ~σy
¯
,k−1

∂~p2
...

∂ ~σy
¯
,k−1

∂~pkp
...

... ...
...

∂ ~σx
¯
,k−1

∂~p1

∂ ~sy
¯
,k−1

∂~p2
...

∂ ~sy
¯
,k−1

∂~pkp

∂ ~σx
¯
,k

∂~p1

∂ ~σx
¯
,k

∂~p2
...

∂ ~σx
¯
,k

∂~pkp
...

... ...
...

∂ ~sy
¯
,k

∂~p1

∂ ~sy
¯
,k

∂~p2
...

∂ ~σx
¯
,k

∂~pkp

∂ ~σx
¯
,k+1

∂~p1

∂ ~σx
¯
,k+1

∂~p2
...

∂ ~σx
¯
,k+1

∂~pkp
...

... ...
...

∂ ~sy
¯
,k+1

∂~p1

∂ ~sy
¯
,k+1

∂~p2
...

∂ ~σx
¯
,k+1

∂~pkp



=


F ~p
k−1,k−1 F ~p

k−1,k F ~p
k−1,k+1

F ~p
k,k−1 F ~p

k,k F ~p
k,k+1

F ~p
k+1,k−1 F ~p

k+1,k F
~p+1

k+1,k+1



(A.16)

Begin with the derivative of Y k(~p, ~pk−1). The derivative with respect to the prior sensor posi-

tions is described by

∂Y k(~p, ~pk−1)

∂~p k−1
id

= diag

(∥∥δΩ− ~pik−1

∥∥
d∥∥δΩ− ~pik−1

∥∥
2

ks
δt
δ

(
δt−

∥∥δΩ− ~pik−1

∥∥
2

vsensor

))
, (A.17)

where δ(·) is the dirac delta function and the diag function operates on a vector, where each

element corresponds to a location in ∂Ω. The derivative with respect to the current-step sensor

positions is described by

∂Y k(~p, ~pk−1)

∂~p kid
= diag

(∥∥δΩ ∩ (Hr ≤ 1)− ~pik−1

∥∥
d∥∥δΩ ∩ (Hr ≤ 1)− ~pik−1

∥∥
2

ks
δt
δ (r − ‖δΩ ∩ (Hr ≤ 1)− ~pi‖2)

)
. (A.18)

The derivative of Qk+1x
with respect to the prior sensor positions is described by,

∂Qk+1x

∂~p k−1
id

= diag

(
(~e◦−1
x ) ◦ ∂

~Ek+1x

∂~p k−1
id

)
, (A.19)

where the further derivative is described by,

∂ ~Ek+1x

∂~p k−1
id

= Gx diag

(
Ψu

((
I −Lk+1(~pk+1, ~pk)CKFk+1

(~pk+1)
)(

(Λ
δt
∆t )

∂P r(~pk, ~pk−1)k|k

∂~p k−1
id

(Λ
δt
∆t )∗ + RKF

))
Ψ∗u

)
.

(A.20)
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The term RKF ∈ R2np×2np is the measurement covariance matrix only for the current-time

sensor measurements. The derivative
∂P r(~pk,~pk−1)k|k

∂~p k−1
id

is described in (A.43), and additional terms

are described in Section A.0.4.

The derivative of Qk+1x
with respect to the current-time sensor positions is described by,

∂Qk+1x

∂~p kid
= Gx diag

(
Ψu

((
I −Lk+1(~pk+1, ~pk)CKFk+1

(~pk+1)
)(

(Λ
δt
∆t )

∂P r(~pk, ~pk−1)k|k

∂~p kid
(Λ

δt
∆t )∗ + RKF

))
Ψ∗u

)
+Gx diag

(
Ψu

((
I − ∂Lk+1(~pk+1, ~pk)

∂~p kid
CKFk+1

(~pk+1)

)(
(Λ

δt
∆t )P r(~pk, ~pk−1)k|k(Λ

δt
∆t )∗ + RKF

))
Ψ∗u

)
,

(A.21)

where the derivatives
∂P r(~pk,~pk−1)k|k

∂~p kid
and ∂Lk+1(~pk+1,~pk)

∂~p kid
are described in (A.37) and (A.45) respec-

tively.

The derivative of Qk+1x
with respect to the next sensor positions is described by,

∂Qk+1x

∂~p k+1
id

= Gx diag

(
Ψu

((
I − ∂Lk+1(~pk+1, ~pk)

∂~p k+1
id

CKFk+1
(~pk+1)

)(
(Λ

δt
∆t )P r(~pk, ~pk−1)k|k(Λ

δt
∆t )∗ + RKF

))
Ψ∗u

)

+Gx diag

(
Ψu

((
I −Lk+1(~pk+1, ~pk)

∂CKFk+1
(~pk+1)

∂~p k+1
id

)(
(Λ

δt
∆t )P r(~pk, ~pk−1)k|k(Λ

δt
∆t )∗ + RKF

))
Ψ∗u

)
,

(A.22)

where the derivative ∂Lk+1(~pk+1,~pk)

∂~p k+1
id

is described in (A.39), while
∂CKFk+1

(~pk+1)

∂~p k+1
id

is calculated by the

finite difference of sensor matrices with peturbed locations of sensor i in direction d.

The above derivatives are used to form ∂Ak( ~X
¯
, ~P)

∂~pmid
, which are then vertically concatenated and

reshaped to form ∂Ak( ~X
¯
, ~P)

∂~pm
. There are similar derivative expressions for Qk+1y .
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The derivative ∂J
∂~xk

is described by,

∂J

∂~xk
=



~E(~x, t) ◦ k2
χσ

2
y

~E(~x, t) ◦ k2
χσ

2
x

0

0

0

0

0

0



, (A.23)

where ~E(~x, t) ∈ Rnxny is a vector of the uncertainty minimisation weighting E(~x, t) across the

spatial domain.

The further derivative ∂J
∂~pk

is described by,

∂J

∂~pk
=[

∂c(t,~pk,~pk−1)

∂~p k1x
+ ∂c(t,~pk+1,~pk)

∂~p k1x

∂c(t,~pk,~pk−1)

∂~p k1y
+ ∂c(t,~pk+1,~pk)

∂~p k1y
... ∂c(t,~pk,~pk−1)

∂~p kks,x
+ ∂c(t,~pk,~pk)

∂~p k+1
ks,x

∂c(t,~p,~pk−1)

∂~p k+1
ks,y

+ ∂c(t,~p,~pk)

∂~p kks,y

]
,

(A.24)

where the complete derivative of the cost function J with respect to the sensor position trajec-

tory for a 5-time-step horizon is described by

∂J

∂ ~P
=

[
∂J

∂~pk−2

∂J
∂~pk−1

∂J
∂~pk

∂J
∂~pk+1

∂J
∂~pk+2

]
(A.25)

A.0.3 Constraint derivatives.

The constraint term c(t, ~pk, ~pk−1) is the sum of three components. The first, V (~pk, ~pk−1, vsensor),

is described by

V (~pk, ~pk−1, vsensor) =

i=np∑
i=1

[∥∥~p kiv − ~p k−1
iv

∥∥
2
H

(∥∥~p kiv − ~p k−1
iv

∥∥
2

vsensor

− δt
)]

, (A.26)
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and represents the velocity constraints of the sensor by incurring additional penalty when the

sensor position is in violation of these constraints, in addition to the loss of sensing due to the

Heaviside functions in (4.86a) and (4.86b). The derivative ∂V (~pk,~pk−1,vsensor)

∂~p kid
is described by,

∂V (~pk, ~pk−1, vsensor)

∂~p kid
=

∥∥~p kiv − ~p k−1
iv

∥∥
d∥∥~p kiv − ~p k−1

iv

∥∥
2

H

(∥∥~p kiv − ~p k−1
iv

∥∥
2

vsensor

− δt
)

+
∥∥~p kiv − ~p k−1

iv

∥∥
2

(
1

vsensor

∥∥~p kiv − ~p k−1
iv

∥∥
d∥∥~p kiv − ~p k−1

iv

∥∥
2

)
δ

(∥∥~p kiv − ~p k−1
iv

∥∥
2

vsensor

− δt
)
, (A.27)

which simplifies to,

∂V (~pk, ~pk−1, vsensor)

∂~p kid
=

∥∥~p kiv − ~p k−1
iv

∥∥
d∥∥~p kiv − ~p k−1

iv

∥∥
2

H

(∥∥~p kiv − ~p k−1
iv

∥∥
2

vsensor

− δt
)

+

∥∥~p kiv − ~p k−1
iv

∥∥
d

vsensor

δ

(∥∥~p kiv − ~p k−1
iv

∥∥
2

vsensor

− δt
)
. (A.28)

The derivative ∂V (~pk,~pk−1,vsensor)

∂~p k−1
id

is described by,

∂V (~pk, ~pk−1, vsensor)

∂~p k−1
id

= −
∥∥~p kiv − ~p k−1

iv

∥∥
d∥∥~p kiv − ~p k−1

iv

∥∥
2

H

(∥∥~p kiv − ~p k−1
iv

∥∥
2

vsensor

− δt
)

−
∥∥~p kiv − ~p k−1

iv

∥∥
2

(
1

vsensor

∥∥~p kiv − ~p k−1
iv

∥∥
d∥∥~p kiv − ~p k−1

iv

∥∥
2

)
δ

(∥∥~p kiv − ~p k−1
iv

∥∥
2

vsensor

− δt
)
, (A.29)

which simplifies to

∂V (~pk, ~pk−1, vsensor)

∂~p k−1
id

= −
∥∥~p kiv − ~p k−1

iv

∥∥
d∥∥~p kiv − ~p k−1

iv

∥∥
2

H

(∥∥~p kiv − ~p k−1
iv

∥∥
2

vsensor

− δt
)

−
∥∥~p kiv − ~p k−1

iv

∥∥
d

vsensor

δ

(∥∥~p kiv − ~p k−1
iv

∥∥
2

vsensor

− δt
)
. (A.30)

The second component, Dm(~pk), is the Euclidean distance from each sensor to the closest

location of E(t) > 0 in ∂Ω, summated for all sensors. Define a set of ne ∈ N points, Em :

∂Ω × R+ → Rnm×2, where Em is described by Em = (∂Ω ∩ E(t) > 0). Then Em is the set of

grid cells where E(t) > 0. Let lm ∈ N∩ [1, nm] be defined such that it minimises the following:

minlm
∥∥E (lm)m − ~p kiv

∥∥
2
. The term E (l)m is the closest location of E(t) > 0 to sensor i. The
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constraint term component is then described by,

Dm(~pk) =

i=np∑
i=1

[∥∥E (lm)m − ~p kiv
∥∥

2

]
, (A.31)

and incurs additional penalty when the sensor position is not in a region of interest, providing

incentive for sensors to move towards the region of interest in the absence of other information.

When calculating derivatives, there is an assumption of a constant E (lm)m. This is valid as a

minute perturbation in sensor position is unlikely to alter the closest location of E(t) > 0. The

derivative ∂Dm(~pk)

∂~p kid
is defined by

∂Dm(~pk)

∂~p kid
=
−
∥∥E (lm)m − ~p kiv

∥∥
d∥∥E (lm)m − ~p kiv

∥∥
2

(A.32)

The third component, De(~pk), is the Euclidean distance from each sensor to the closest permis-

sible location in ∂Ω, summated for all sensors. Define a set of points Ee : ∂Ω×R+ → Rne×2 as

ne ∈ N permissible locations in ∂Ω. Let le ∈ N ∩ [1, ne] now be defined such that it minimises

the following: minle
∥∥E (le)e − ~p kiv

∥∥
2
. The term E (le)e ∈ R2 is the closest permissible location

to sensor i. The constraint term component is then described by,

De(~pk) =

i=np∑
i=1

[∥∥E (le)e − ~p kiv
∥∥

2

]
, (A.33)

and incurs additional penalty when the sensor position is within an excluded region, providing

incentive for sensors to move towards a permissible region. The derivative ∂De(~pk)

∂~p kid
is defined by

∂De(~pk)

∂~p kid
=
−
∥∥E (le)e − ~p kiv

∥∥
d∥∥E (le)e − ~p kiv

∥∥
2

. (A.34)

A.0.4 Estimation error derivatives.

To avoid tensor derivatives, evaluation of ∂(·)
∂~p

is performed per sensor and per movement di-

rection of the selected sensor. The individual derivatives are then suitably utilised later. This

approach is used repeatedly throughout. The derivatives of the variance sources for sensor
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i ∈ [1, np], at time t and a direction d = x|y, ~p kid , are described by,

∂ ~EKFx(~p, ~pk−1)

∂~p kid
= Gx diag

(
Ψu

(
∂P r(~p, ~pk−1)k|k

∂~p kid

)
Ψ∗u

)
, (A.35a)

and

∂ ~EKFy(~p, ~pk−1)

∂~p kid
= Gy diag

(
Ψv

(
∂P r(~p, ~pk−1)k|k

∂~p kid

)
Ψ∗v

)
, (A.35b)

respectively. In the time varying Kalman filter, P r(~p, ~pk−1)k|k is a function of the Kalman gain

L(~p, ~pk−1), the sensor matrix CKF(~p) and the prior error covariance matrix, predicted from the

previous time-step for this time-step, Rm(~pk−1) = P r(~pk−1, ~pk−1)k|k−1. The posterior estimated

error covariance P r(~p, ~pk−1)k|k is defined by

P r(~p, ~pk−1)k|k = (I −L(~p, ~pk−1)CKF(~p))Rm(~pk−1)∗. (A.36)

The derivative is defined by

∂P r(~pk, ~pk−1)k|k

∂~p kid
= −

(
CKF(~p)

∂L(~p, ~pk−1)

∂~p kid
+
∂CKF(~p)

∂~p kid
L(~p, ~pk−1)

)
Rm(~pk−1)∗, (A.37)

with the Kalman gain decribed

L(~p, ~pk−1) = (Rm(~pk−1)CKF(~p)∗)(CKF(~p)Rm(~pk−1)CKF(~p)∗ + RKF)−1. (A.38)

Let KKF = (CKF(~p)Rm(~pk−1)CKF(~p)∗ + RKF), then,

∂L(~p, ~pk−1)

∂~p kid
= (Rm(~pk−1)D∗KF)K−1

KF−K−1
KF(CKF(~p)Rm(~pk−1)D∗KF+DKFRm(~pk−1)CKF(~p))K−1

KF,

(A.39)

The sensor matrix derivative DKF = ∂CKF(~p)

∂~p kid
is calculated by the finite difference of sensor

matrices with perturbed locations of sensor i in direction d. The prior error covariance matrix

Rm(~pk−1) is described by,

Rm(~pk−1) =
(
ΛP r(~pk−1, ~pk−2)k−1|k−1Λ

∗ + Re

)
. (A.40)
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Recall that Re is the covariance matrix of the reduced order model states. As before, although

the description of Rm(~pk−1) has a dependency upon ~pk−2, this is omitted in other notation in

the interest of brevity. It is clear though, that as a sequential system, each iteration of the

time-varying Kalman Filter is dependent upon the one before. The description of Rm(~pk−1)

has the derivatives,

∂Rm(~pk−1)

∂~p tid
= 0 (A.41)

and

∂Rm(~pk−1)

∂~p k−1
id

= Λ
∂P r(~pk−1, ~pk−2)k−1|k−1

∂~p k−1
id

Λ∗. (A.42)

In (A.42), the derivative term is equal to (A.37), but at the prior estimation step, k − 1. The

derivative of P r(~p, ~pk−1)k|k with respect to the prior sensor positions is described by,

∂P r(~p, ~pk−1)k|k

∂~p k−1
id

=
∂(I −L(~p, ~pk−1)CKF(~p))

∂~p k−1
id

Rm(~pk−1) + (I −L(~p, ~pk−1)CKF(~p))
∂Rm(~pk−1)

∂~p k−1
id

,

(A.43)

where,

∂(I −L(~p, ~pk−1)CKF∗(~p))

∂~p k−1
id

= −∂L(~p, ~pk−1)

∂~p k−1
id

CKF∗(~p), (A.44)

and

∂L(~p, ~pk−1)

∂~p k−1
id

=

(
∂Rm(~pk−1)

∂~p k−1
id

CKF(~p)∗

)
K−1

KF −K−1
KF

(
CKF(~p)

∂Rm(~pk−1)

∂~p k−1
id

CKF(~p)∗

)
K−1

KF.

(A.45)

A.0.5 State transition derivative

Recall define the state transition function,

G (~x
¯k
, ~pk, ~X

¯
, ~P

¯
) := I~x

¯k
+ Ak( ~X

¯
, ~P)~x

¯k
= ~xk+1, (A.46)

with the derivative, with respect to a vector ~km ∈ R8nx×ny , described by

∂G (~x
¯k
, ~pk, ~X

¯
, ~P

¯
)

∂~km
= I

∂~x
¯k

∂~km
+
∂Ak( ~X

¯
, ~P)

∂~km

(
I
~km ⊗ ~x

¯k

)
+ Ak( ~X

¯
, ~P)

∂~x
¯k

∂~km
, (A.47)
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and the derivative with respect to the position vector ~pk described by,

∂G (~x
¯k
, ~pk, ~X

¯
, ~P

¯
)

∂~pk
=
∂Ak( ~X

¯
, ~P)

∂~pk

(
I~pk ⊗ ~x

¯k
)
. (A.48)

Limit derivatives:

Now it is necessary to define the derivatives of the limit matrices, M
¯ n and R

¯ n+1. The general

derivatives descriptions are given, for ~km, with the difference upon the value of m ∈ [0, Nt]

being that
∂~x

¯n+1

∂~km
= I for m = n+ 1 and ~k = ~x

¯
, or

∂~x
¯n+1

∂~km
= 0 otherwise. Recall that

M
¯ n( ~X

¯
, ~P) = diag

(
~x
¯n+1 ◦ ~G (~x

¯n
, ~pn, ~X

¯
, ~P)

◦−1
)
. (A.49)

Recall that ~km ∈ Rnm and En( ~X , ~P) ∈ RNs×Ns , An( ~X , ~P) ∈ RNs×Ns and Bn( ~X , ~P) ∈

RNs×Np . The derivative ∂M
¯ n( ~X

¯
, ~P)

∂~km
is defined by,

∂M
¯ n( ~X

¯
, ~P)

∂~km
=
(
INs ⊗ 1∗Nm

)
◦

∂
(
~x
¯n+1 ◦ ~G (~x

¯n
, ~pn, ~X

¯
, ~P)

◦−1
)

∂~km
⊗ 1∗Ns

 , (A.50)

where

∂
(
~x
¯n+1 ◦ ~G (~x

¯n
, ~pn, ~X

¯
, ~P)

◦−1
)

∂~km
=

[(
∂~x

¯n+1

∂~km
diag

(
~G (~x

¯n
, ~pn, ~X

¯
, ~P)◦−1

))

+

(
diag (~x

¯n+1)

(
−∂

~G (~x
¯n
, ~pn, ~X

¯
, ~P)

∂~km
diag

(
~G (~x

¯n
, ~pn, ~X

¯
, ~P)

◦−2
)))]

. (A.51)

For the right-hand-side limit, to be applied when a state is zero-valued, recall that

R
¯ n+1( ~X

¯
, ~P) = diag

(
1− ~G (~x

¯n
, ~pn, ~X

¯
, ~P) ◦ (~x

¯n+1)◦−1
)
. (A.52)

The derivative
∂R

¯ n+1( ~X
¯
, ~P)

∂~km
is defined by,

∂R
¯ n+1( ~X

¯
, ~P)

∂~km
=
(
INs ⊗ 1∗Nm

)
◦

∂
(

1− ~G (~x
¯n
, ~pn, ~X

¯
, ~P) ◦ (~x

¯n+1)◦−1
)

∂~km
⊗ 1∗Ns

 , (A.53)

where
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∂
(

1− ~G (~x
¯n
, ~pn, ~X

¯
, ~P) ◦ (~x

¯n+1)◦−1
)

∂~km
=

[
−
(
∂ ~G (~x

¯n
, ~pn, ~X

¯
, ~P)

∂~km
diag

(
(~x
¯n+1)◦−1))

+

(
− diag

(
~G (~x

¯n
, ~pn, ~X

¯
, ~P)

)(∂~x
¯n+1

∂~km
diag

(
(~x
¯n+1)◦−2)))]. (A.54)
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