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Abstract

In this thesis we introduce a new type of card shuffle called the one-sided transposition

shuffle. At each step a card is chosen uniformly from the pack and then transposed

with another card chosen uniformly from below it. This defines a random walk on the

symmetric group generated by a distribution which is non-constant on the conjugacy class

of transpositions. Nevertheless, we provide an explicit formula for all eigenvalues of the

shuffle by demonstrating a useful correspondence between eigenvalues and standard Young

tableaux. This allows us to prove the existence of a total-variation cutoff for the one-sided

transposition shuffle at time n logn. We also study weighted generalisations of the one-

sided transposition shuffle called biased one-sided transposition shuffles. We compute the

full spectrum for every biased one-sided transposition shuffle, and prove the existence

of a total variation cutoff for certain choices of weighted distribution. In particular, we

recover the eigenvalues and well known mixing time of the classical random transposition

shuffle. We study the hyperoctahedral group as an extension of the symmetric group, and

formulate the one-sided transposition shuffle and random transposition shuffle as random

walks on this new group. We determine the spectrum of each hyperoctahedral shuffle by

developing a correspondence between their eigenvalues and standard Young bi-tableaux.

We prove that the one-sided transposition shuffle on the hyperoctahedral group exhibits

a cutoff at n logn, the same time as its symmetric group counterpart. We conjecture

that this results extends to the biased one-sided transposition shuffles and the random

transposition shuffle on the hyperoctahedral group.
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Introduction

Consider a stacked deck of n distinct cards, whose positions are labelled by elements

of the set [n] ∶= {1, . . . , n} from bottom to top. Any shuffle which involves choosing two

positions and switching the cards found there (if the two positions coincide then no cards

are moved) is called a transposition shuffle, and may be viewed as a random walk on

the symmetric group Sn. We refer to the two positions as being picked by our right and

left hands, associating with them random variables, Ri and Li respectively, which take

values in [n]. Diaconis and Shahshahani [18] were the first to study random walks on

groups using representation theory; they famously showed that the random transposition

shuffle, in which the two positions are chosen independently and uniformly on [n], takes

(n/2) logn steps to randomise the order of the deck. The time taken to randomise the

order of the deck is known as the mixing time of the shuffle.

We may expect random walks to converge to their stationary distribution smoothly as

time increases but there are many classes of random walks for which convergence happens

only once a certain threshold time has been met. This behaviour was first observed in the

random transposition shuffle by Diaconis and Shahshahani and has been given the name

the cutoff phenomenon. Suppose the mixing time of a succession of random walks on

groups {Gn}n∈N may be tightly bounded above and below by a time of the form tn ± cwn,

where c is of constant order and wn = o(tn), then the sequence of random walks is said

to exhibit a cutoff at time tn. The mixing time of the random transposition shuffle may

be shown to be upper and lower bounded around at time (n/2) logn ± cn, thus it shows

a cutoff at time (n/2) logn. The cutoff phenomenon is prevalent throughout the study of

random walks on groups with many examples shown to exhibit a cutoff. However, there

is currently no known sufficient criterion for the existence of a cutoff, and proving a cutoff

for any particular random walk is generally difficult.

Since the analysis of the random transposition shuffle a variety of algebraic and proba-

bilistic techniques have been employed to study the mixing time of different transposition

shuffles. Notable examples include the top-to-random transposition shuffle [39], the adja-

cent transposition shuffle [29], and the random transposition shuffle on a cycle where our

positions are constrained to be within some fixed distance [8]. All of these shuffles have

the property that, at each step, the transposition to be applied is chosen uniformly from

a subset of transpositions which generate the entire group Sn.

An interesting class of transposition shuffles which are not chosen uniformly from a

set are the semi-random transposition shuffles (see e.g. [34, 36, 37]). Any semi-random

transposition shuffle is driven by the following procedure: pick one position with our right

hand uniformly at random, and then independently choose a second position with our left

hand following some stochastic (possibly time-inhomogeneous) process on the set [n], then

transpose the cards in the chosen positions. This class includes the random transposition

shuffle by letting the stochastic process for the left hand be repeated uniform draws from

[n]. Mossel, Peres, and Sinclair [34] were able to establish a universal upper bound of

O(n logn) on the mixing time of any semi-random transposition shuffle. The key idea

behind this proof relies on the positions chosen being independent. The card picked by

our stochastic process is uniformly transposed with a card in the deck, therefore, once our
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stochastic process has picked every possible card our deck will be at a uniformly chosen

permutation of Sn. This reduces the analysis of the mixing time to a coupon collector’s

problem, and thus we find an upper bound of order n logn.

In this thesis we introduce a new class of shuffles called the one-sided transposition

shuffles: these have the defining property that at step i the right hand’s position (Ri)

is chosen according to some arbitrary distribution on [n], and given the value of Ri the

distribution of the left hand’s position (Li) is supported on the set {1, . . . ,Ri}. When

our right hand is chosen uniformly from [n] the one-sided transposition shuffle follows a

similar description to that of a semi-random transposition shuffle however with the key

difference that our choice for Li now depends on our first uniform choice. This change of

dependence greatly influences the behaviour of the one-sided transposition shuffles. There

does not exist a universal upper bound on the mixing time of the one-sided transposition

shuffles without imposing further constraints on the distribution of the left hand, since a

arbitrarily slow shuffle can be created by increasing the probability that the two hands

choose the same position. For the majority of Chapter 5 we focus on the case when

the right and left hands are both chosen uniformly from their possible ranges: we call

this the (unbiased) one-sided transposition shuffle. Although the support for the one-

sided transposition shuffle is the entire conjugacy class of transpositions, our probability

distribution on this set is in general far from uniform. (E.g. when right and left hands are

both uniformly chosen from their permitted ranges, the probabilities attached to different

transpositions range from 1/n2 to 1/2n)

The main results of this thesis are as follows: we recover the eigenvalues for the one-

sided transposition shuffle using the technique of lifting eigenvectors which was recently

constructed by Dieker and Saliola [19]. Analysis of the spectrum for the one-sided trans-

position shuffle allows us to find tight bounds on the mixing time of the shuffle and prove

that it exhibits a cutoff at time n logn. Afterwards we modify our analysis to study one-

sided transposition shuffles where the right hand Ri is chosen via a weighted distribution:

we call these the biased one-sided transposition shuffles. We extend the technique of lifting

eigenvectors to compute the full spectrum of all biased one-sided transposition shuffles.

Furthermore, for particular choices of weighted distribution we are able to prove the exis-

tence of a cutoff for the biased one-sided transposition shuffles. We go on to study random

walks on the hyperoctahedral group Bn as an extension of the symmetric group where

each card now has a distinguishable back and front. We create transposition shuffles on

Bn from existing shuffles on Sn by allowing ourselves a chance of turning cards over. We

show that the method of lifting eigenvectors may be modified to the setting of the hy-

peroctohedral group, and compute the spectrum of the random transposition shuffle and

one-sided transposition shuffle on Bn. We end by showing that the unbiased one-sided

transposition shuffle on the hyperoctahedral group exhibits a cutoff at time n logn, the

same time as its symmetric group counterpart.

The structure of this thesis is as follows: Chapter 1 gives an introduction to the topic

of random walks on groups, including all the necessary probabilistic and algebraic back-

ground. We restrict our attention to random walks which converge to a unique stationary
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distribution and introduce total variation distance to measure the convergence of random

walks to their stationary distributions. We define the mixing time of a random walk,

and what it means for a random walk to exhibit a cutoff in total variation distance. We

recall the definitions of representations, modules and characters for a group G, and state

classical results including Schur’s Lemma and Maschke’s Theorem. We also explore the

properties of discrete Fourier transforms on a group G. Finally we recall the upper bound

lemma which allows us to analyse the mixing time of a random walk on a group G using

the irreducible representations of G.

In Chapter 2 we specialise the results of Chapter 1 to the symmetric group Sn. We

build up a picture of the structure of the symmetric group including a construction of its

simple modules. To demonstrate a variety of techniques used to analyse random walks

on groups we present three longer examples: the random transposition shuffle [18], the

top-to-random shuffle [2], and the random-to-random shuffle [19]. The most recent of

these is the random-to-random shuffle where Dieker and Saliola first used the technique of

lifting eigenvectors. We explore their work showing that the eigenvalues of the random-to-

random shuffle may be computed by transforming eigenvalues of the random-to-random

shuffle on n cards to those of the shuffle on n + 1 cards.

The main body of Chapter 3 is comprised of a paper jointly written with Michael E.

Bate and Stephen B. Connor [3]. In this chapter we explore the one-sided transposition

shuffle which stems from a modification of the classical random transposition shuffle. Our

main result is proving that the one-sided transposition shuffle exhibits a cutoff in total

variation distance at time n logn. To prove this result we analyse the spectrum of the

shuffle which we compute by inductively lifting the eigenvectors for the shuffle. We present

the details of our lifting in full as it differs in interesting ways from that of the random-

to-random shuffle, in particular we are able to recover all eigenvectors and eigenvalues

for the one-sided transposition shuffle. We generalise our lifting to recover eigenvalues for

biased one-sided transposition shuffles and for particular choices of weighted distribution

show them to exhibit a cutoff in total variation distance. Finally we show the one-sided

transposition shuffle to exhibit a cutoff in separation distance at time n logn via the use

of a strong stationary time.

Chapter 4 establishes the hyperoctahedral group Bn as an extension of the symmetric

group. We recall facts about the hyperoctahedral group, relating them to the definitions

and results of the symmetric group in Chapter 2. We examine the module structure of Bn

and construct its permutation and simple modules which are now indexed by bi-partitions

of n. We extend the random transposition shuffle and one-sided transposition shuffle to

random walks on the group Bn by adding in a chance to flip cards over during our shuffling

procedure. We generalise the technique of lifting eigenvectors to the hyperoctahedral group

allowing us to recover the entire spectrum of the random transposition shuffle and one-

sided transposition shuffle. We conjecture that the two shuffles on the hyperoctohedral

group exhibit a cutoff in total variation distance at the same time as their symmetric

group counterparts.
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Chapter 1

Preliminaries

1.1 Random Walks on Finite Groups

There are many different ways we may formulate a random walk on a group G. We could

designate one step transition probabilities for every two states g → h, or even have the

probabilities depend on our past like a self-avoiding random walk. However, in the first

case we have not used any of the symmetry a group has, and in the second case our walk

is not Markovian. We want to exploit the structure of groups to make our random walk

inherit sensible properties and we also want the walk to form a Markov chain. In this

thesis we focus on one particular Markovian description of a random walk where the walk

is driven by a single probability distribution P ∶ G → [0,1]. All groups we consider are

finite and have identity element e, unless otherwise stated. A detailed account of the

theory of Markov chains presented in this section can be found in Markov Chains and

Mixing Times by Levin, Peres, and Wilmer [32]. We begin this section with the definition

of a random walk on a group before moving on to recalling important definition and facts

about Markov chains. The section ends with the introduction of the cutoff phenomenon

for random walks on groups.

1.1.1 Markov Chains from Random Walks

Definition 1.1.1. Let G be a finite group, suppose P ∶ G → [0,1], and µ ∶ G → [0,1],
are probability distributions on G. Define each individual step of our random walk as

sequence of i.i.d. (independent and identically distributed) random variables {ξt}t≥1 on

G distributed according to P . Create a sequence of random variables {Xt}t≥0, by setting

X0 ∼d µ and inductively defining

Xt+1 = ξt+1Xt

for all t > 0. Then {Xt}t≥0 defines a Markov chain with one step transition probabilities

P (g, h) ∶= P (hg−1). We call this the random walk on G driven by P .

Given a random walk on G, its driving probability P gives rise to the transition matrix

of our random walk defined using one step transition probabilities P (g, h). We distinguish

between these two interpretations of the symbol P by the number of arguments each one

takes. Note that from the transition matrix we may recover the driving probability by

setting P (g) = P (e, g).
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Definition 1.1.2. Let P,Q be probabilities on a finite group G, define the convolution of

P with Q, denoted P ⋆Q ∶ G→ [0,1] as

(P ⋆Q)(g) ∶= ∑
h∈G

P (gh−1)Q(h).

This is the probability of a random walk ending at element g if we start at e and take the

first step according to Q and the second step to P . We denote P ⋆ P = P ⋆2, and the tth

convolution of P with itself as P ⋆t.

Lemma 1.1.3. Let P t be the tth power of our transition matrix P . Then P t(g, h) =
P ⋆t(hg−1). Hence, we drop the ⋆ in all subsequent work and just write P t.

Proof. We proceed by induction, by definition the statement holds for t = 1. Now

P t+1(g, h) = ∑
a∈G

P (g, a)P t(a, h) = ∑
a∈G

P (ag−1)P ⋆t(ha−1)

= ∑
b∈G

P (b)P ⋆t(hg−1b−1) = P ⋆(t+1)(hg−1).

Lemma 3 tells us that convolution and matrix multiplication amount to the same thing.

We use P t to stand for both the t-step transition matrix and the t-fold convolution of our

probability P , with the assumption that if a starting state is not specified we assume it

to be the identity.

Our starting state X0 is picked via a probability distribution µ, i.e. P(X0 = g) = µ(g).
Given the starting distribution µ the probability of being in state g at time t is (P tµ)(g).
In practice we often fix the starting distribution to be a single element of our state space,

usually the identity of our finite group. We note, however, that the choice of starting

distribution can have a large impact on the behaviour of a random walk, as the following

example shows.

Example 1.1.4. The simple random walk on Zn, is the random walk generated by prob-

ability P ∶ Zn → [0,1] with P (1) = P (−1) = 1/2.

Consider P to be the simple random walk on Z6. Suppose we start at state 0 then after

3 steps we have P 3(0,0) = 0 and P 3(0,1) = 6/16. This is because we always take one step

at each time meaning at odd times we are on odd elements on Z6 and at even times we are

on even elements. Instead now suppose we start at element 1, then P 3(1,0) = 6/16, and

P 3(1,0) = 0 for the same reason as above. Combining the two starting distributions let µ

now have µ(0) = µ(1) = 1/2 then (P 3µ)(0) = 1
2(P

3(0,0) + P 3(1,0)) = 3/16 = (P 3µ)(1).

Understanding how the distribution P t evolves in time is key to the study of Markov

chains. In theory we could always compute P t given the probability P but this becomes

impractical as we consider larger state spaces and behaviour at times with t large. Instead,

we often look to bound these probabilities to understand their behaviour without exact

computation. Development of tools to help understand how P tµ behaves are an active area

of research. Often we can use characteristics of our random walk: the starting distribution

µ, the transition matrix P , and the group G, in order to form bounds on the probability

distribution P tµ. In particular the eigenvalues of the transition matrix P play a big part in

its behaviour. Furthermore, random walks on groups allow the use of algebraic tools using

2



the representations of G, which we explore in section 1.2. Next we recall the definition of

stationary distributions for a Markov chain.

Definition 1.1.5. Let {Xt}t≥0 be a Markov chain with transition matrix P . A stationary

distribution for the Markov chain is a probability distribution π such that Pπ = π. Note

that for any stationary distribution π we have P tπ = π for all t ≥ 1.

Generic Markov chains do not necessarily have stationary distributions nor do they

have to be unique.

Example 1.1.6. LetG = Z, consider a Markov chain started at 0 and driven by probability

P (1) = 1. This random walk has no stationary distribution because for any distribution µ

on Z we have (Pµ)(i) = µ(i + 1).
Let G = Z2

2, consider a random walk with probability P ((0,0)) = P ((0,1)) = 1/2.

Suppose we have µ0, µ1 defined by µ0((i, j)) = 1/2 if i = 0, and µ1((i, j)) = 1/2 if i = 1.

Then both µ0, µ1 are stationary distributions for P . In fact let a ∈ [0,1] and µa be defined

by

µa((i, j)) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1−a
2 if i = 0

a
2 if i = 1

.

Then µa is a stationary distribution for P , so we have infinitely many stationary distribu-

tions for this random walk.

Lemma 1.1.7. Let π denote the uniform distribution on a finite group G, that is for all

g ∈ G, π(g) = 1/∣G∣. Then π is a stationary distribution for any random walk on G.

Proof. To prove this all we need to show is that Pπ = P ⋆ π = π for any probability P

defined on G. Following from the definition

(P ⋆ π)(g) = ∑
h∈G

P (gh−1)π(h) = 1

∣G∣ ∑h∈G
P (gh−1) = π(g).

Under mild assumptions we can prove that a Markov chain has a unique stationary

distribution which we denote by π. Below we list some of the properties a Markov chain

may exhibit.

Definition 1.1.8. Let {Xt} be a Markov chain on a space X with transition matrix P .

The Markov chain may have the following properties.

Irreducible: {Xt} is called irreducible if for all x, y, there exists t > 0 such that P t(x, y) > 0.

Aperiodic: Let r(x) = {t ≥ 1 ∶ P tx,x > 0} these are the return times of the state x, the period

of x is gcd(r(x)). The Markov chain is called aperiodic if all states have period 1.

Transitive: A Markov chain is called transitive if for all pairs (x1, x2) ∈ X ×X there exists a

bijection φ, such that φ(x1) = x2 and φ preserves all one step transition probabilities,

i.e. for all y, z ∈ X we have P (y, z) = P (φ(y), φ(z)).
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Reversible: A Markov chain is called reversible if there exists a probability distribution π

on X such that

π(x)P (x, y) = π(y)P (y, x) (1.1)

for all x, y ∈ X . In this case π is a stationary distribution. The set of equations

defined by (1.1) are called the detailed balance equations.

All random walks we study in detail in this thesis will be irreducible, aperiodic, and

transitive. We shall see one by one why these conditions are necessary for the study of

mixing times of random walks on groups. First we prove that all random walks on finite

groups are transitive.

Lemma 1.1.9 (Section 2.6.2 [32]). Random walks on finite groups define transitive Markov

chains.

Proof. Let {Xt}t≥0 be a random walk on a finite group with driving probability P . Take

a pair (x1, x2) ∈ G ×G, and define a bijection φx1,x2 ∶ G → G by φx1,x2(g) = gx−1
1 x2. Then

φx1,x2(x1) = x2, and for any pair g, h ∈ G we get

P (g, h) = P (hg−1) = P ((hx−1
1 x2)(x−1

2 x1g
−1)) = P (φx1,x2(g), φx1,x2(h)) .

Irreducibility implies that the Markov chain has a unique stationary distribution [32,

Corollary 1.17]. Therefore, by Lemma 1.1.7 if a random walk on a finite group G is

irreducible its unique stationary distribution must in fact be the uniform distribution.

Lemma 1.1.10. Let P be the transition matrix of an aperiodic irreducible Markov chain,

there exists a unique stationary distribution π for P .

Corollary 1.1.11. Let P be a probability on a finite group G. Define the support of P

as the set Supp(P ) = {g ∶ P (x) > 0}. Suppose Supp(P ) is a generating set for G, then the

random walk on G driven by P is irreducible, and hence has the uniform distribution as

its unique stationary distribution.

Suppose a random walk P on a group G is not irreducible, then if we restrict our state

space to the subgroup ⟨Supp(P )⟩ =H ⊊ G we recover an irreducible random walk on group

H. When choosing random walks on groups we like to fix the support of a probability to

be a set of generators S ⊆ G and vary our probability to see what different behaviour can

arise. One important case we focus on is transposition shuffles of the symmetric group.

We shall see that the one-sided transposition shuffle has very different behaviour to the

random transposition shuffle despite being generated by the same conjugacy class. If our

support S is a union of conjugacy classes of our group G then we gain access to extra

algebraic tools to help our analysis, we explore these in section 1.2. From here onwards

we assume all the random walks on groups are irreducible with stationary distribution

π ∶ G→ G being uniform.

Once we know a unique stationary distribution exists our next question is whether

our probability P t will ever reach this equilibrium? Convergence of P t to a stationary

distribution generally depends on the starting distribution of our Markov chain.
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Example 1.1.12. Consider the simple random walk on Zn started at 0, this Markov chain

is irreducible therefore has stationary distribution πn(i) = 1/n. Suppose n > 2 is even, then

the walk has a period of 2: at all even times X2t we must be at an even integer, and at

all odd times X2t+1 we are at an odd integer. Therefore, our probability P t will always

be distinguishable from π. However, if we start at the distribution µ(0) = µ(1) = 0.5, then

we have (P tµ)(i)→ 1/n for all i as t→∞.

Consider instead n > 2 being odd, the simple random walk on Zn has period 1. Now

for any single starting point i we have P t(i, j)→ 1/n for all j as t→∞.

The key difference between the two random walks in Example 1.1.12 is their period. In

Section 1.2.2. we establish that aperiodic random walks always converge to their stationary

distributions. To get rid of periodicity concerns for a random walk, we introduce the notion

of a lazy random walk.

Lemma 1.1.13. Let {Xt} be an periodic Markov chain driven by P . Create a new Markov

chain {Y t} with Y 0 = X0, and new transition probabilities Q created in the following

way: flip a fair coin, if heads do nothing, otherwise proceed according to P . Therefore,

Q(e) = 1
2 +

1
2P (e) and Q(g) = 1

2P (g) for g ≠ e. The Markov chain {Y t} is called the lazy

version of {Xt}, and is aperiodic.

Proof. The lazy walk has Q(e) > 1/2, and so for any g ∈ G we find r(g) = {t ≥ 1 ∶ Qt(g, g) >
0} = N. Hence, all states have period 1.

Example 1.1.14. The lazy simple random walk on Zn has probability P (0) = 1/2 and

P (−1) = P (1) = 1/4. This walk is now aperiodic for all n ≥ 2.

The proof of Lemma 1.1.13 exploits the fact that so long as we have P (e) > 0 our

random walk is aperiodic. All random walks we study we detail will be aperiodic because

they will have a non-zero probability of remaining still. In the next section we a define pair

of measures on the space of probability distributions, and define a notion of convergence

with respect to these measures.

1.1.2 Convergence to a Stationary Distribution

Consider a Markov chain {Xt} with transition matrix P and stationary distribution π. We

know that if our chain starts at X0 ∼d π then we remain at the distribution π after every

step. We show that for any starting distribution an irreducible, aperiodic Markov chain

always converges to its unique stationary distributions. To prove this we first establish a

measure on our space of probability distributions, and then use this to define convergence.

To this end we introduce two notions of distance on the space of probability distributions

over a finite group G.

Total Variation Distance

The first metric we introduce is ubiquitous within the study of Markov chains, it is called

total variation distance.
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Definition 1.1.15. Let µ, ν be two probabilities on a finite group G. Define the total

variation distance between µ, ν as follows:

∥µ − ν∥TV = sup
A⊆G

∣µ(A) − ν(A)∣. (1.2)

The total variation distance between any two probabilities always lies in the range

[0,1]. The formulation of total variation distance provided in Definition 1.1.15 is frequently

too cumbersome for use. We may reformulate definition (1.2) to involve summing over the

group G instead of its subsets.

Lemma 1.1.16 (Section 4.1 [32]). Let µ, ν be two probabilities on G, then we have

∥µ − ν∥TV = 1

2
∑
g∈G

∣µ(g) − ν(g)∣.

Proof. Let A = {g ∶ µ(g) ≥ ν(g)}, and so Ac = {g ∶ ν(g) > µ(g)}. First notice that the

supremum in Definition 1.1.15 is reached by set A, and secondly that µ(A) − ν(A) =
ν(Ac) − µ(Ac). Putting these facts together we find,

∥µ − ν∥TV = µ(A) − ν(A) = 1

2
(µ(A) − ν(A) + ν(Ac) − µ(Ac)) = 1

2
∑
g∈G

∣µ(g) − ν(g)∣.

Following from our definitions it is now easy to see that total variation distance forms

a metric on the space of probability distributions of G (the triangle inequality follows from

1.1.16).

We are interested in measuring the convergence of a Markov chain P t to its stationary

distribution. To understand this we need to analyse the total variation distance ∥P t(g, ⋅)−
π∥TV as a function of t. The following lemma demonstrates that ∥P t(g, ⋅) − π∥TV is a

non-increasing function; this follows the logic that performing another step of our random

walk should never bring us further away from our equilibrium.

Lemma 1.1.17. Let P be a transition matrix and µ, ν be probabilities on G. Then

∥Pµ − Pν∥TV ≤ ∥µ − ν∥TV.

Proof. Going from left to right we have:

∥Pµ − Pν∥TV = 1

2
∑
g∈G

∣Pµ(g) − Pν(g)∣

= 1

2
∑
g∈G

∣ ∑
h∈G

P (gh−1)(µ(h) − ν(h))∣

≤ 1

2
∑
g∈G

∑
h∈G

∣P (gh−1)∣∣µ(h) − ν(h)∣ = ∥µ − ν∥TV.

Corollary 1.1.18. Let P be a transition matrix for a random walk on a finite group G

with stationary distribution π, then for all t ∈ N and g ∈ G we have:

∥P t+1(g, ⋅) − π∥TV ≤ ∥P t(g, ⋅) − π∥TV

Proof. This is a consequence of Lemma 1.1.17 with µ = P t(g, ⋅), ν = π.
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Our definition of total variation distance so far has depended on our starting state g.

When bounding the speed at which a random walk convergences to its stationary distri-

bution we look at the time it takes from its worst possible starting state. For irreducible

random walks on finite groups every starting state gives the same total variation distance.

Lemma 1.1.19. Let P define an irreducible random walk on G. Then for any g, h ∈ G
we have

∥P t(g, ⋅) − π∥TV = ∥P t(h, ⋅) − π∥TV.

Proof. Let P be the transition probability for our Markov chain, and φ be our probability

preserving bijection with φ(g) = h, from the definition of transitivity. It follows that from

the proof of Lemma 1.1.9 that P t(a, b) = P t(φ(a), φ(b)) for all a, b ∈ G. Therefore,

∥P t(g, ⋅)−π∥TV = 1

2
∑
a∈G

∣P t(g, a)−π(a)∣ = 1

2
∑
a∈G

∣P t(φ(g), φ(a))−π(φ(a))∣ = ∥P t(h, ⋅)−π∥TV.

Following Lemma 1.1.19 we start all our random walks on groups at the identity of

the group. We introduce the function dTV(t) as condensed notation for the (worst) total

variation distance of a Markov chain.

Definition 1.1.20. Let P be a probability which defines an irreducible random walk on

G and t ≥ 0. Define the function dTV(t) as follows

dTV(t) ∶= max
g∈G

∥P t(g, ⋅) − π∥TV = ∥P t − π∥TV.

Separation Distance

We now provide a second notion of distance on probabilities as an alternative to total

variation distance. Separation distance is a commonly used measure of distance between a

Markov chain driven by P and its stationary distribution. Unlike total variation distance

to define separation distance we require the stationary distribution to exist and be unique.

Definition 1.1.21 (Section 6.4 [32]). Let P be a transition matrix for a Markov chain

with unique stationary distribution π. Define separation distance as follows:

∥P t(g, ⋅) − π∥Sep = max
h∈G

(1 − P
t(g, h)
π(h)

) . (1.3)

Separation distance takes values in [0,1] and tells us the maximum ratio of the prob-

ability being of in single state h against the uniform distribution.

Similarly to total variation distance for a random walk on a groupG separation distance

does not depend on the starting state g, that is for any g, h ∈ G, we have ∥P t(g, ⋅)−π∥Sep =
∥P t(h, ⋅) − π∥Sep.

Definition 1.1.22. Let P define by an irreducible random walk on a group G and t ≥ 0.

Define the function dSep(t) as follows

dSep(t) ∶= max
g∈G

∥P t(g, ⋅) − π∥Sep = ∥P t − π∥Sep.

7



The separation distance of an random walk on a group is always decreasing in time,

dSep(t + 1) ≤ dSep(t), for any t ≥ 0 [32, Section 6.4]. From our definitions it is unclear

whether separation distance is statistically different from total variation distance.

Example 1.1.23. Consider the simple random walk on Z5 started at point 0. The table

below gives the separation and total variation distance for 0 ≤ t ≤ 6:

t 0 1 2 3 4 5 6

dSep(t) 1 1 1 1 0.6875 0.6875 0.453125

dTV(t) 0.8 0.6 0.4 0.35 0.275 0.225 0.18125

Table 1.1: The values of separation and total variation distance for the simple random

walk on Z5.

In Table 1.1 we can see that total variation distance is always smaller than separation

distance. This is not specific to our example and holds for all Markov chains for which

separation distance is well defined.

Lemma 1.1.24. Let P define an irreducible random walk on a finite group G with station-

ary distribution π. Separation distance forms an upper bound on total variation distance,

that is for all t ≥ 0,

dTV(t) ≤ dSep(t). (1.4)

Proof. Following from the definition of total variation distance we find:

∥P t − π∥TV = ∑
h∈G

P (h)<π(h)

π(h) − P t(h) = ∑
h∈G

P (h)<π(h)

π(h)(1 − P
t(h)
π(h)

) ≤ max
h∈G

(1 − P
t(h)
π(h)

)

Bounds on Total Variation and Separation Distance

With our new definitions in hand we may state one of the cornerstone theorems in Markov

chain theory, the convergence of irreducible aperiodic Markov chains to their stationary

distributions. A proof of the following result may be found in [32, Theorem 4.9].

Theorem 1.1.25. Suppose that P is an irreducible, aperiodic random walk on a finite

group G, with stationary distribution π. Then there exists some constants c ∈ [0,1) and

A > 0 such that

∥P t − π∥TV ≤ Act (1.5)

Therefore, dTV(t)→ 0 as t→∞. Similarly dSep(t)→ 0 as t→∞.

This theorem tells us that any irreducible aperiodic random walk necessarily converges

to its stationary distribution and moreover we can bound the rate of this convergence. The

time at which our random walk is close to uniform is called the mixing time of the Markov

chain.
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Definition 1.1.26 (Section 4.5 [32]). Let {Xt} be a Markov chain with transition matrix

P . Define the ε-total variation mixing time tTV(ε) of our Markov chain as:

tTV(ε) ∶= min{t ∶ dTV(t) ≤ ε} (1.6)

Now define the total variation mixing time tTV of a Markov chain to be tTV ∶= tTV(1/4)
(the choice of 1/4 is semi-arbitrary, see [32, Section 4.5]). We may define the separation

mixing time tSep(ε) and tSep, in an analogous way replacing dTV with dSep.

From now on all random walks on groups we study will be irreducible, and aperiodic,

meaning that they always have convergence to their uniform distribution. It is then of

interest to ask what this convergence looks like for a given random walk. Theorem 1.1.25

allows us to bound the mixing time of a random walk from above. Without any more

assumptions about our Markov chain there is not much more we can say about the rate

of the convergence. The techniques and tools used to bound mixing times have long

been developed by probabilists. However, it is often the case that ad hoc techniques

need to be developed specific to the random walk being studied. We introduce the key

probabilistic and algebraic tools in this chapter. In Chapter 2 we shall see how we have

to use a combination of tools to prove precise bounds on the mixing time for the random

transposition shuffle and the top-to-random shuffle. To begin with we state a classical

upper bound on total variation distance for reversible random walks.

Theorem 1.1.27 (Classical `2 bound - see Lemma 12.16 [32]). Let P be the transition

matrix for a reversible, transitive, irreducible, aperiodic, Markov chain on a finite group

G, with stationary distribution π. Then we may label the eigenvalues so that 1 = β1 > β2 ≥
⋅ ⋅ ⋅ ≥ β∣G∣ > −1. Furthermore, we have the following bound,

4∥P t − π∥2
TV ≤∑

i≠1

β2t
i . (1.7)

For irreducible random walks on groups the detailed balanced equations (1.1) reduce

to P (g, h) = P (h, g), therefore a random walk on a group is reversible if and only if

P (g−1) = P (g). We make use of Theorem 1.1.27 in the analysis of the random-to-random

shuffle in Chapter 2, and the one-sided transposition shuffle in Chapter 3. Another popular

method to establish an upper bound on separation distance (and therefore total variation

distance) is the use of strong stationary times. To define a strong stationary time, we first

need to define the notion of a stopping time.

Definition 1.1.28. Let τ be a random variable taking values in N0. We call τ a stopping

time for a Markov chain {Xt}, if we can decide the event {τ = t} with the knowledge of

our Markov chain up to time t, that is the states {X0, . . . ,Xt}.

Example 1.1.29. Let G = S5 be the symmetric group on 5 elements, and define a random

walk on G given by the uniform distribution π. We may view S5 as the permutations of

a deck of 5 cards. We start at the identity permutation, and at every step of our random

walk choose a permutation to apply uniformly at random. Let τ be the first time card 5 is

moved. Then τ is a stopping time for our random walk because if we observe our walk up

to time t, we can tell whether card 5 has been moved and if so when was the first time this
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happened in our random walk. Suppose instead that τ is the last time card 5 is moved up

until a fixed future time T . To even decide the event {τ = 1} we would need to know the

entire future of our Markov chain up to time T , and so τ is no longer a stopping time.

Strong stationary times are a special kind of stopping times. We impose the extra con-

ditions that once a strong stationary time is met the distribution of Xt must be stationary

and independent of τ .

Definition 1.1.30. Let τ be a stopping time for an irreducible, aperiodic Markov chain

{Xt} which is a random walk on a group. We say τ is a strong stationary time if

P(Xt = g ∣ τ = t) = π(g). (1.8)

From the definition we swiftly prove how strong stationary times may be used to bound

separation distance and thus total variation distance for random walks.

Lemma 1.1.31. Let τ be a strong stationary time for an irreducible, aperiodic random

walk on G with driving probability P . The following holds for all t ≥ 1:

∥P t − π∥TV ≤ ∥P t − π∥Sep ≤ P(τ > t).

Proof. The first inequality comes directly from Lemma 1.1.24. For the second inequality

we start at the definition of separation distance,

1 − P
t(g)
π(g)

≤ 1 − P(Xt = g, τ ≤ t)
π(g)

= 1 − π(g)P(τ ≤ t)
π(g)

= P(τ > t) .

Strong stationary times are useful because they reduce the analysis of separation dis-

tance based on the probability P t, to the analysis of a single random variable τ . In practice

strong stationary times can be tricky to find but we will see two examples of them in this

thesis: a classical argument for the top-to-random shuffle in Chapter 2, and an original

argument for the one-sided transposition shuffle in Chapter 3.

All the methods we have mentioned so far give upper bounds on the mixing time of a

random walk. When analysing the rate of convergence of a Markov chain is it also useful

to bound the mixing time from below. To formulate a lower bound we frequently make

use of the following simple lemma.

Lemma 1.1.32. Let P be a random walk on a finite group G with stationary distribution

π. Suppose A ⊆ G then

∣P t(A) − π(A)∣ ≤ ∥P t − π∥TV.

Proof. The inequality follows from Definition 1.1.15.

This bound may seem näıve but throughout this thesis we shall see that it is a very

adaptable tool. The key idea behind using Lemma 1.1.32 for a lower bound on the mixing

time of a random walk P is to find a set A which tells apart P t from π. Usually we

look for A that has small probability under the stationary distribution, and that has high

probability under the probability P t for time t < tTV. The set A is often chosen based on

information about our group G. For random walks on the symmetric group a commonly
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used idea is to take A as a set of permutations with certain fixed points with the intention

of reducing the calculation of P t(A) to an estimation of how long it takes for each fixed

point to be eliminated. This allows us to use a modified coupon collectors argument to

estimate our probability. We use this idea to formulate lower bounds for both the random

transposition shuffle and the one-sided transposition shuffle.

1.1.3 The Cutoff Phenomenon

In practice, for many Markov chains, the total variation distance to uniform does not

decrease steadily as suggested by Theorem 1.1.25. Rather, a phenomenon is often seen

where the distance decreases sharply past a critical time as show in Figure 1.1: The blue

line shows an exponential convergence from the start, whereas the red line only shows

convergence to 0 after a certain time threshold has been met.

Figure 1.1: Ehrenfest’s urn is a random process starting with n balls distributed between

two urns, and at each step a ball is chosen uniformly at random and moved to the opposite

urn. The lines shows the total variation distance of the process from its uniform distribu-

tion from different starting states. The blue process starts with both urns containing 1/2
the total amount of balls, the red process starts with one urn full and the other empty.

The figure is taken from [31].

Furthermore, there exist many families of Markov chains {Xt
n} with transition proba-

bilities {Pn} that have the transition from 1 to 0 becoming sharper as n→∞, Thus when

such a phase transition is present we may think about the mixing time of a random walk

being the time of this phase transition. We now switch our view to now consider a family

of Markov chains {Xt
n} with transition matrices {Pn} and stationary distributions {πn}

where n ∈ N indexes the family. The phase transition which has been observed in many

families of random walks has been given the name the cutoff phenomenon.

Definition 1.1.33 (Section 18.1 [32]). A sequence of random walks {Xt
n} on finite groups

{Gn} with driving probabilities {Pn} and stationary distributions {πn} exhibits a (total
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variation/separation) cutoff at time tn with a window of size wn if wn = o(tn) and the

following limits hold:

lim
c→∞

lim sup
n→∞

∥P tn+cwnn − πn∥TV/Sep = 0 (1.9)

lim
c→∞

lim inf
n→∞

∥P tn−cwnn − πn∥TV/Sep = 1. (1.10)

The limits (1.10) and (1.9), respectively define upper and lower bounds on the mixing

time of the random walk .

The heuristic behind this definition is the phase transition for the family of chains

happens at time tn and this transition becomes sharper as n → ∞. If a family shows a

cutoff at time tn then we must have that tTV ∼ tn. An equivalent definition (see [32, Lemma

18.1]) of a cutoff is the function dTV(⋅) converges to a step function around the mixing

time of the random walk. Precisely, a family of random walks Pn exhibits a total variation

cutoff if and only if the following limit holds:

lim
n→∞

dTV(c tTV) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if c > 1

0 if c < 1
.

Once we have established a cutoff for a family of Markov chains we have complete asymp-

totic information about the families convergence to their stationary distributions. Defini-

tion 1.1.33 is given in terms of both total variation and separation distance. We may hope

that a cutoff in one would imply a cutoff in the other, however this is not the case [24].

This does not mean that a cutoff in total variation cannot help us prove a cutoff in sep-

aration or vice versa. By Lemma 1.1.24 if we establish an upper bound on separation

distance we get an upper bound on total variation distance, similarly a lower bound on

total variation distance gives a lower bound on separation distance. For the one-sided

transposition shuffle we first prove a cutoff in total variation distance then a cutoff in

separation distance with the lower bound following from our first proof.

To establish a cutoff it is not enough to just find the order of tn, although this is a

useful first step. Computing the exact constant factor of the correct order for a cutoff is

often where the difficultly in the analysis of mixing times stems from. Frequently finding

the correct cutoff time for a random walk involves an initial ansatz, and then refinement

to make sure both the upper and lower bounds hold. We prove the existence of a cutoff

for several random walks on the symmetric group in Chapter 2, for the moment we state

some simple cutoff results.

Example 1.1.34. Consider the family of lazy simple random walks on Zn, which are

driven by probabilities

Pn(i) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
2 if i = 0

1
4 if i = ±1

0 otherwise

.

This random walk is irreducible, aperiodic and transitive. We may ask whether dTV(t)
shows a cutoff as n → ∞. The answer is no, this family of random walks fails to show a

cutoff [39, Section 3.3]. The lazy simple random walk on a circle steadily spreads out from
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the starting point 0 meaning there is no phase transition and thus no cutoff.

Example 1.1.35. Consider the hypercube Zn2 , define the identity of the group as e0, the

zero vector. For i ∈ {1, . . . n}, define ei as the element which has 1 in position i, and

0 in every other position. The nearest neighbour walk on the hypercube is driven by

probability Pn defined by

Pn(g) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
n+1 if g = ei for i ∈ {0,1, . . . , n}

0 otherwise
.

The probabilities {Pn} define a family of irreducible, aperiodic, and transitive random

walks, which show a cutoff in total variation distance at time tn = n+1
4 logn, with a window

of wn = n+1
4 . Therefore we may say the mixing time of this random walk is exactly

tTV = n+1
4 logn. Details of this random walk may be found at [16, Chapter 3C].

Since its formulation the cutoff phenomenon has been a great area of interest in the

study of random walks. Establishing a cutoff for any particular example requires detailed

knowledge and understanding of the inner workings of the Markov chain. The upper bound

(1.9) and the lower bound (1.10) have to be proved separately and require the use of a wide

variety of techniques. We would instead prefer to find a simple criterion for a random walk

exhibiting a cutoff; however, no such result currently exists and in fact there are very few

global results on total variation cutoff of random walks. Contrary to this much is known

about cutoffs in `p-distance with 1 < p <∞ [14], which further highlights why the lack of

results for p = 1 (total variation) is so surprising. Why any family of Markov chains shows

a total variation cutoff is a mystery with many explanations proposed. One of the most

popular theories is that the existence of a cutoff is linked to the multiplicity and value of

the second biggest eigenvalue.

Conjecture 1.1.36 (Peres’s Conjecture [15]). Let {Pn} be a family of transition matrices

Markov chains, with second biggest (in absolute value) eigenvalue βn. The family shows a

total variation cutoff at time tn if and only if

tn(1 − βn)→∞ as n→∞. (1.11)

If we measure cutoff instead in `p-distance for 1 < p < ∞, Chen and Saloff-Coste [14]

have managed to prove a criterion for a cutoff in the spirit of Peres’ conjecture. If a family

of Markov chains shows a total variation cutoff, condition (1.11) is known to be satisfied.

On the other hand Aldous managed to find a counterexample for Peres’ conjecture using

random walks on graphs, see [13, Section 4.2] for details. However, if we specialise to

random walks on finite groups then there is currently no known counterexample to Peres’s

conjecture. Random walks on finite groups are an active area of research, the algebraic

setting allowing for specialised techniques in order to prove cutoff results. In the next

section we cover the algebraic tools available to find the mixing time of a random walk on

G, these require background about the representations, modules and characters of groups.

13



1.2 Representations, Modules, and Applications to Random

Walks

Group representation theory aims to study groups using linear algebra. The goal is to

reduce the abstract elements of groups into the well understood elements of linear algebra.

To do this we represent the elements of our group as matrices in such a way that the

structure of the group is respected. For the applications in this thesis it is enough to

develop the representation theory of groups over the complex numbers, so all vectors

spaces, matrices, etc., are over the field C unless otherwise stated. This assumption helps

to simplify the representation theory presented and allows the use of several theorems

which do not hold over general fields. A detailed account of all the representation theory

presented in this section can be found in Representations and Characters of Groups by

James and Liebeck [27]. We begin this section by introducing the representations and

characters of a finite group G. We focus on the irreducible representations of G from

which any representation may be built. The following section is devoted to the properties

of the discrete Fourier transform, which is used to analyse probabilities on G using the

group’s irreducible characters. Our last section covers the upper bound lemma, which

establishes a close link between random walks on G and the representation theory of G.

1.2.1 Representations, Characters and Modules

Representations and Modules

Definition 1.2.1. Let G be a finite group. A representation of G is a vector space V

together with a group homomorphism from G to the general linear group GL(V ), denoted

ρ ∶ G→ GL(V ), which has the property ρ(gh) = ρ(g)ρ(h) for all g, h ∈ G. We say the pair

(ρ, V ) is a representation. The dimension of V is denoted dρ and is called the dimension

of the representation (ρ, V ).

The vector space V our matrices ρ(⋅) act on is critical to our knowledge of the repre-

sentation. Thus, we write (ρ, V ) when we want to emphasise the space V . If the space V

is clear from context we will just talk about the group homomorphism ρ being a represen-

tation by itself. We now introduce the notion of G modules, by equipping our group with

a vector space structure.

Definition 1.2.2. Let G be a finite group. The group algebra of G is the vector space

C[G] = ⟨g ∣ g ∈ G⟩, spanned by elements of G with coefficients in C. This vector space has

a natural multiplication given by multiplying complex coefficients and the elements of G

separately, e.g. for g, h, f ∈ G we have (4g)(ih − 1
2f) = 4i(gh) − 2(gf).

Definition 1.2.3. Let G be a finite group. A C[G]-module is a vector space V with

a bilinear multiplication µ ∶ C[G] × V → V such that: µ(1, v) = v for all v ∈ V , and

for all g, h ∈ G, µ(h,µ(g, v)) = µ(hg, v). To simplify notation we frequently write the

multiplication µ(g, v) as just g v, and say C[G] acts on V .

We can think of a C[G]−module as a vector space V which our group G acts on. For

any group G, and vector space V , we may always define a trivial action by setting, g v = v
for all g ∈ G,v ∈ V . The trivial module of a group G is formed from a one-dimensional
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vector space with the trivial action. The trivial representation of a group G is a one-

dimensional vector space with group homomorphism ρ(g) = Id for all g ∈ G. The trivial

module and trivial representation are two different ways to view the same algebraic object.

The next result established that the representations of G (over field C) and C[G]−modules

are in one-to-one correspondence.

Theorem 1.2.4 (Theorem 4.4 [27]). Let G be a finite group. The representations of G

and C[G]-modules are in one-to-one correspondence. If (ρ, V ) is a representation for G

then V is a C[G]-module with multiplication defined by µ(g, v) = ρ(g)v for all g ∈ G. On

the other hand if V is a C[G]-module with multiplication µ, define ρ(g) = µ(g, ⋅), then

(ρ, V ) is a representation for G.

Proof. The constructions in the theorem may be verified by checking the definitions of

modules and representations. To prove this is a one-to-one correspondence take a repre-

sentation (ρ, V ) and form the module V with action µ via the process described in the

theorem. Now we turn the module V into a representation (ϕ,V ) with a new mapping

ϕ(g) = µ(g, ⋅) = ρ(g), therefore we recover our original representation (ρ, V ). We may

perform a similar check starting with a module V and transforming it to a representation

and back to a module recovering V . Thus, representations and modules are in one-to-one

correspondence.

From now on out we may talk about representations and modules interchangeably,

and every result we state is valid for either view point via the correspondence described

in Theorem 1.2.4. We now give a brief example of some natural representations.

Example 1.2.5. Let S3 denote the symmetric group on 3 elements. Consider the space

C3, we may form an action of S3 on C3, by permuting the basis elements. Realising

this action in terms of matrices gives us a group homomorphism ρ detailed in Table 1.2,

therefore the pair (ρ,C3) defines a representation of S3. For another module of S3 take the

2-dimensional subspace W = {v = (v1, v2, v3)T ∈ C3 ∣ v1 + v2 + v3 = 0}, spanned by vectors

w1 = (1,−1,0)T , and w2 = (0,1,−1)T . Again consider an action of S3 on W by permuting

the coordinates of C3, e.g., (1 2)w1 = −w1 and (1 2)w2 = w1 +w2. Realising this action as

matrices on W = ⟨w1,w2⟩ we find the group homomorphism ϕ shown in Table 1.2, hence

(ϕ,W ) is a representation of S3.

S3 e (1 2) (1 3) (2 3) (1 2 3) (1 3 2)

ρ(⋅)

⎛
⎜⎜⎜⎜⎜
⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

0 1 0

1 0 0

0 0 1

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

0 0 1

0 1 0

1 0 0

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

1 0 0

0 0 1

0 1 0

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

0 1 0

0 0 1

1 0 0

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

0 0 1

1 0 0

0 1 0

⎞
⎟⎟⎟⎟⎟
⎠

ϕ(⋅)
⎛
⎜
⎝

1 0

0 1

⎞
⎟
⎠

⎛
⎜
⎝

−1 0

1 1

⎞
⎟
⎠

⎛
⎜
⎝

0 −1

−1 0

⎞
⎟
⎠

⎛
⎜
⎝

1 1

0 −1

⎞
⎟
⎠

⎛
⎜
⎝

0 1

−1 −1

⎞
⎟
⎠

⎛
⎜
⎝

−1 −1

1 0

⎞
⎟
⎠

Table 1.2: The table shows the group homomorphisms ρ,ϕ on the vectors spaces C3 and

W respectively. Note that the elements ρ(⋅) are the 3-dimensional permutation matrices.

Definition 1.2.6. Let V be a C[G]-module. We call a subspace W ⊆ V G-stable if

{g w ∣ g ∈ C[G], w ∈ W} = W . A submodule of V is a stable subspace W ⊆ V . A module
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V is called simple if it has no non-trivial (W ≠ V,{0}) submodules. Equivalently a

representation (ρ, V ) is called irreducible if it has no non-trivial subrepresenations.

Take any one-dimensional vector space V , we know that {0} and V are the only

subspaces of V . Therefore, any one dimension module is necessarily simple. The simple

modules of a group G are the building blocks of its representation theory, in the sense

that every module may be decomposed into its simple submodules, see Theorem 1.2.14.

We now introducing mappings between modules which preserve their structure, these are

called homomorphisms.

Definition 1.2.7. Let V,W be C[G]-modules. A homomorphism of modules is a linear

map ψ ∶ V → W such that ψ(g v) = g ψ(v). An isomorphism of modules is a bijective

homomorphism ψ ∶ V → W , in this case we say V is isomorphic to W as C[G]-modules,

denoted V ≅W . Define the kernel and image of a homomorphism ψ ∶ V →W as follows:

Ker(ψ) = {v ∶ ψ(v) = 0}, Im(ψ) = {w ∶ ψ(v) = w for some v}.

Lemma 1.2.8. Let V,W be C[G]-modules, and ψ ∶ V → W a homomorphism. Then

Ker(ψ) is a submodule of V , and Im(ψ) is a submodule of W . If Ker(ψ) = {0} then ψ is

an injective map, and if Im(ψ) =W then ψ is a surjective map.

Proof. Take v ∈ Ker(ψ). For any element g ∈ C[G] we have gv ∈ Ker(ψ) because ψ(g v) =
gψ(v) = 0. Hence, the kernel of ψ is stable under the action of C[G] and so is a C[G]-
module contained in V . Similarly the image of ψ is stable under the action of C[G] and

so is a C[G]-module contained in W . The last statements are standard facts of linear

maps.

We are now in a position to state Schur’s Lemma which tells us that homomorphisms

between simple modules are trivial.

Lemma 1.2.9 (Schur’s Lemma). Let V,W be simple C[G]-modules. If ψ ∶ V → W is a

homomorphism then either ψ is the zero morphism or an isomorphism of representations.

Furthermore, the only homomorphisms ψ ∶ V → V are scalar multiplies of the identity

map, i.e., ψ(v) = βv for some β ∈ C.

Proof. By V being a simple module we have two choices for the kernel of ψ: V or {0}.

If Ker(ψ) = V then ψ is clearly the zero morphism. If Ker(ψ) = {0} then our map is

injective, moreover Im(ψ) ≠ {0} and hence must have Im(ψ) =W because W is a simple.

Therefore the map ψ is a bijective homomorphism.

Now assume ψ ∶ V → V is a homomorphism. Since we are working over the field C
the map ψ must have an eigenvalue β with eigenvector v. Form a new homomorphism

ψ′ = ψ − β Id, with Id being the identity homomorphism. We can see that ψ′(v) = 0

thus Ker(ψ′) = V , and so our new map ψ′ must be the zero morphism. Hence, we have

ψ = β Id.

Isomorphism forms an equivalence relation on the set of C[G]-modules. For any group

G we would like to form a complete collection of its simple modules (equivalently irre-

ducible representations) up to isomorphism.
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Lemma 1.2.10. Let G be a finite group. Then there are only finitely many simple C[G]-
modules up to isomorphism (see Definition 1.2.18).

Definition 1.2.11. Let G be a finite group. Define the complete collection of simple

C[G]-modules as a set, denoted Irr(G), such that if V is an simple C[G]-module then

V ≅M for exactly one M ∈ Irr(G).

We now look to decompose any reducible module into a direct sum of smaller submod-

ules.

Definition 1.2.12. Let V1, V2 be C[G]-modules. The direct sum of vector spaces V1 ⊕V2

is a C[G]-module under the action g (v1, v2) = (g v1, g v2) for v1 ∈ V1, v2 ∈ V2 and g ∈ G.

Moreover, we have dim(V ) = dim(V1)+dim(V2). Conversely, suppose W is a C[G]-module,

with submodules W1,W2, such that W1 ⊕W2 =W , and W1 ∩W2 = {0}. Then our module

W may be decomposed into a direct sum W =W1 ⊕W2.

We now prove that every stable subspace of a module V has a stable complement.

Thus, any non-simple module may be split into a direct sum of smaller modules. This

allows us to prove the powerful Maschke’s Theorem.

Lemma 1.2.13 (See Theorem 8.1 [27]). Let V be a C[G]-module. Suppose V contains a

stable subspace W . Then V contains a second stable subspace W 0 such that W ∩W 0 = {0}
and W ⊕W 0 = V . The vector space W 0 is called the complement of W .

Proof. Suppose v1, . . . , vn form a basis of V with v1, . . . vl simultaneously being a basis for

W . Let φ ∶ V → V be the projection onto the subspace W , defined for basis elements

φ(vi) = vi if 1 ≤ i ≤ l and 0 otherwise. Now define a new linear map ψ ∶ V → V as follows:

ψ(v) = 1

∣G∣ ∑g∈G
g−1 φ(g v).

The map ψ is a homomorphism of G-modules. Indeed for any h ∈ G,

hψ(v) = 1

∣G∣ ∑g∈G
hg−1 φ(g v) = 1

∣G∣ ∑g∈G
g−1 φ(ghv) = ψ(hv).

The image of ψ must be contained in the submodule W because of the presence of the

projection φ. In fact it is equal to W , taking w ∈W we have,

ψ(w) = 1

∣G∣ ∑g∈G
g−1φ(gw) = 1

∣G∣ ∑g∈G
g−1gw = w.

Set W 0 = Ker(ψ), by Lemma 1.2.8 this forms a stable submodule of V . To summarise, ψ

is a module homomorphism, with Im(ψ) = W and Ker(ψ) = W 0 therefore we must have

W ⊕W 0 = V , and W ∩W 0 = {0}.

Theorem 1.2.14 (Maschke’s Theorem). Suppose V is a module of a finite group G. Then

we may decompose V into a direct sum of simple modules. This means the module V may

be decomposed as follows,

V ≅ ⊕
Mi∈Irr(G)

ki Mi (1.12)
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where the direct sum is over all simple modules Mi ∈ Irr(G) and ki denotes the multiplicity

of Mi in the direct sum.

Proof. We proceed by induction on dimension. The statement is clearly true for one-

dimensional modules. If dim(V ) > 1 then either V is simple, in which case we are done, or

V has a proper submodule W . By 1.2.13 we may write V =W ⊕W 0, for modules W,W 0

with dim(W ),dim(W 0) < dim(V ). Hence, W and W 0 can be written as direct sums of

simple submodules, which implies the same for V .

Theorem 1.2.14 is essential to the study of modules (and representations) because it

tells us that to understand the modules of G it is enough to understand all the simple

modules. However, to completely describe any module V we also need to know the value

of the constants ki, before finding these multiplicities we should be sure that the decom-

position (1.12) is unique up to isomorphism. This follows from an application of Schur’s

Lemma.

Lemma 1.2.15. Let G be a finite group. Then for constants ki, li ∈ N0 we have:

⊕
Mi∈Irr(G)

ki Mi ≅ ⊕
Mi∈Irr(G)

li Mi⇔ ki = li for all i.

Proof. If ki = li for all i then the conclusion is immediate. Suppose that our direct sums

are isomorphic with isomorphism ψ. If we restrict to a summand Mi on the left hand side

then we must get an isomorphic copy of Mi on the right hand side, by Schur’s lemma.

Hence, the summand kiMi must land in the summand liMi on the right. Counting the

dimensions on each side now gives li = ki for all i.

Corollary 1.2.16. The decomposition shown in Theorem 1.2.14 is unique up to isomor-

phism.

Definition 1.2.17. Let G be a finite group, Mi a simple module, and V a module with

decomposition V ≅ ⊕kiMi. The isotypic component of Mi in V is the unique submodule

kiMi.

Corollary 1.2.16 tells us we can decompose any module into its simple parts but it

does not tell us the values of the constants ki. Finding efficient ways to know or compute

the constants in a decomposition is an important problem in representation theory. To

end this section we introduce the group algebra as a C[G]-module itself, called the regular

module of G.

Definition 1.2.18 (Definition 6.5 [27]). The regular module C[G] has the same vector

space and action given by the multiplication of the group algebra and it has dimension

∣G∣.

Lemma 1.2.19. Let G be a finite group. The regular module C[G] has canonical decom-

position

C[G] ≅ ⊕
Mi∈Irr(G)

diMi (1.13)
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where di is the dimension of the simple module Mi. We prove this decomposition in Lemma

1.2.27, after the introduction of characters.

Knowledge of the simple modules of the symmetric group Sn will be key to our analysis

of the one-sided transposition shuffle in Chapter 3. In particular we study the action of

the shuffle Pn on the regular module of Sn. This allows us to use the decomposition in

Definition 1.2.18 to reduce our goal of finding eigenvalues of the regular module to finding

eigenvalues of the action on the simple modules of Sn. Before we perform our analysis

we shall present a detailed construction of the simple modules of the symmetric group in

Chapter 2.

Character Theory

In the beginning of this section we assumed the field we are working over to be C. This

assumption lets us condense the information of any representation (ρ, V ) into a single

function χρ ∶ G → C, called the character of our representation. The characters gives is a

simple way to view the information given by any representation.

Definition 1.2.20. Let (ρ, V ) be a representation of a group G. Define the character

χρ ∶ G → C of a representation ρ by χρ(g) = Trρ(g), where Tr(⋅) denotes the trace

of a matrix. We say the dimension of the character, denoted dχ, is the same as its

corresponding representation. If (ρ, V ) is an irreducible representation then χρ is called

an irreducible character.

Lemma 1.2.21. Let χ be a character for the group G. We find:

1. χ(e) = dχ

2. For any g ∈ G we have χ(g−1) = χ(g), where c denotes the complex conjugate of c ∈ C

3. For any g, h ∈ G, we have χ(hgh−1) = χ(g).

Proof. 1. We clearly have χ(e) = Tr(Id) = dχ

2. We know that ρ(g)n = ρ(gn) = Id for some n, so the eigenvalues of ρ(g) must be

roots of unity, denoted ξi. Then we have

χ(g) = (Trρ(g)) =∑
i

ξi =∑
i

ξ−1
i = Tr (ρ(g)−1) = Trρ(g−1) = χ(g−1)

3. Follows from the property Tr(AB) = Tr(BA) of the trace .

The last of these properties tells us that characters are constant on the conjugacy

classes of any group G. Representations and characters have a close connection to the

conjugacy classes of the group they are defined over. In fact the number of irreducible

representations of G is exactly the number of conjugacy classes of G. To establish this we

introduce an inner product on the space of class functions of G.
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Definition 1.2.22. Let G be a finite group. A class function for G is a function φ ∶ G→ C
that is constant on the conjugacy classes of G, i.e., for all g, h ∈ G we have φ(g) = φ(h−1gh).
Let χ, φ be class functions on G. Define the inner product ⟨χ ∣φ⟩ as follows:

⟨χ ∣φ⟩ = 1

∣G∣ ∑g∈G
χ(g)φ(g). (1.14)

Theorem 1.2.23 (See Chapter 15 [27]). Let χi denote the character of the irreducible

representation ρi ∈ Irr(G). The irreducible characters are orthonormal, that is:

⟨χi ∣χj⟩ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if i = j

0 if i ≠ j
.

Furthermore, the irreducible characters form a basis for the class functions of G.

Corollary 1.2.24. Let G be a finite group. The number of irreducible representations of

G is exactly the number of conjugacy classes of G.

Proof. Let n be the number of conjugacy classes of G. The space of class functions on

G is spanned by exactly n functions which take value 1 on a single conjugacy class and

zero otherwise. Therefore, our basis of irreducible characters must be formed from n

characters.

Using the inner product on class functions and the irreducible characters χi we now

give a second proof of the uniqueness of decomposition (1.12).

Lemma 1.2.25. Let (ρ, V ), (ϕ,W ) be representations of a finite group G. Then we have

χρ⊕ϕ = χρ + χϕ.

Proof. We may choose a basis of the space V ⊕W such that the group homomorphism

has form (ρ⊕ ϕ)(g) =
⎛
⎝
ρ(g) 0

0 ϕ(g)
⎞
⎠

, then take traces.

Corollary 1.2.26. Let (ρ, V ) be a representation of a finite group G, with decomposition

⊕ikiρi into irreducible representations. Then ⟨χρ ∣χi⟩ = ki.

Proof. We split the character χρ into a sum of its irreducible characters via Lemma 1.2.25.

Taking the inner product, all non χi terms disappear by the orthogonality of irreducible

characters. Note that the character χρ does not depend on our decomposition, thus the

constants ki must be unique.

Finally we may prove the decomposition of the regular module stated in Definition

1.2.18. As a consequence we find that ∑ρ∈Irr(G) d2
ρ = ∣G∣.

Lemma 1.2.27. Let (ρ,C[G]) be the regular representation for a finite group G. Let

χi be an irreducible character with dimension di. Then ⟨χρ ∣χi⟩ = di, and ∣G∣ = χρ(e) =
∑i di χi(e) = ∑ρ∈Irr(G) d2

ρ.

Proof. By definition of the regular module for every g, h ∈ G we have ρ(g)(h) = gh,

therefore, ρ(g)(h) ≠ h unless g = e. This implies that if g ≠ e then all diagonals of ρ(g)
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must be 0, and thus χρ(g) = 0. Computing the inner product gives us,

⟨χρ ∣χi⟩ =
1

∣G∣ ∑g∈G
χi(g)χρ(g) =

1

∣G∣
χi(e)χρ(e) = di .

1.2.2 Discrete Fourier Transforms

The discrete Fourier transform links a C-valued function P on a group G and a representa-

tion ρ of G into a single algebraic object. Understanding Fourier transforms and how they

interact with convolutions is a key step in linking the worlds of probability and algebra.

Our goal in this section is to demonstrate the key properties of the transform, which are

used in the next section to bound total variation distance of a random walk. The results

below and their proofs come from [16, Chapter 2]

Definition 1.2.28. Let (ρ, V ) be a representation of G, and P a function on G. The

Fourier transform of P at ρ is:

P̂ (ρ) = ∑
g∈G

P (g)ρ(g). (1.15)

Note that P̂ (ρ) may be viewed as a mapping from V → V .

It may seem opaque at the moment why we want to consider taking Fourier transforms

of functions P . It turns out that Fourier transforms have properties which help simplify

the analysis of the convolution P t. One of the most immediate results is that the discrete

Fourier transform allows us to split up convolutions.

Lemma 1.2.29. Let P,Q be functions on a finite group G, and ρ a representation. Then

P̂ ⋆Q(ρ) = P̂ (ρ)Q̂(ρ). (1.16)

Proof. Proceeding from left to right we have:

P̂ ⋆Q(ρ) = ∑
g∈G

(P ⋆Q)(g)ρ(g)

= ∑
g∈G

∑
h∈G

P (gh−1)Q(h)ρ(g)

= ∑
h∈G

P (gh−1)ρ(gh−1)∑
g∈G

Q(h)ρ(h) = P̂ (ρ)Q̂(ρ).

This simple lemma is key to the usefulness of the discrete Fourier transform, applying

it repeatedly we can see that P̂ t = P̂ t. The second property of the Fourier transform

which we exploit is the Fourier Inversion Theorem, which allows us to recover P from the

information provided by P̂ (ρ) on all the irreducible representations of G.

Lemma 1.2.30 (Fourier Inversion Theorem - See Chapter 2C [16]). Let P be a function

on a finite group G. Then

P (g) = 1

∣G∣ ∑
ρ∈Irr(G)

dρTr (ρ(g−1)P̂ (ρ)) . (1.17)
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The Fourier inversion Theorem is important because it allows us to go back and forth

between the C-valued function P and the Fourier transform P̂ . However, to be able to

use this technique effectively we also need the details of the irreducible representations of

our group G. Using discrete Fourier transforms we may reduce the study of P t to P . This

connection was one of the crucial insights which permitted the study of random walks

on groups via their representation theory. Let us now state some simple results following

from the Fourier inversion Theorem.

Corollary 1.2.31 (Plancherel Theorem). Let P,Q be functions on a finite group G. Then

∑
g∈G

P (g)Q(g−1) = 1

∣G∣ ∑
ρ∈Irr(G)

dρTr (P̂ (ρ)Q̂(ρ)) . (1.18)

Proof. Both sides of (1.18) are linear in Q, so taking Q(h) = δg,h we just have to show

P (g−1) = 1

∣G∣ ∑
ρ∈Irr(G)

dρTr (ρ(g)P̂ (ρ)) .

This is just an application of the Fourier Inversion Theorem. Further Details may be

found in [16, Chapter 2C]

Corollary 1.2.32. Let P be a function on a finite group G. Then

∑
g∈G

P (g)P (g) = 1

∣G∣ ∑
ρ∈Irr(G)

dρTr (P̂ (ρ)P̂ (ρ)⋆) . (1.19)

Proof. Apply Plancherel’s Theorem with Q defined as Q(g) = P (g−1).

Corollary 1.2.33. Let P be a probability distribution on a finite group G, and π the

uniform distribution on G. Then

∑
g∈G

P (g)π(g) = 1

∣G∣
. (1.20)

Proof. Following from Plancherel’s Theorem we have

∑
g∈G

P (g)π(g) = 1

∣G∣ ∑
ρ∈Irr(G)

dρiTr (P̂ (ρ)π̂(ρ))

= 1

∣G∣ ∑
ρ∈Irr(G)

dρTr (π̂(ρ)) = 1

∣G∣ ∑
ρ∈Irr(G)

dρ
dρ

∣G∣
= 1

∣G∣
.

The second equality above comes from merging the Fourier transforms into one and ap-

plying Lemma 1.1.7.

The trace of Fourier transforms present in the Fourier inversion and Plancherel’s The-

orem turn the representation present in P̂ (ρ), Q̂(ρ) into the associated character χρ. We

have seen that characters are constant on conjugacy classes of G, so if also we impose this

condition on P we may simplify the trace of P̂ (ρ).

Lemma 1.2.34. Let Ci denote the conjugacy classes of a finite group G, with represen-

tatives gi. Let P be a probability on G which is constant on conjugacy classes of G. Then
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we have P̂ (ρ) = β Id with

β =∑
i

∣Ci∣P (gi)
χρ(gi)
dρ

(1.21)

Proof. It is enough to show that P̂ ∶ V → V is a module homomorphism. This follows

from the following calculation: for any g ∈ G we ahve ρ(g)P̂ (ρ)ρ(g−1) = ∑h P (h)ρ(ghg−1) =
∑h P (h)ρ(h) = P̂ (ρ). Therefore, applying Schur’s Lemma gives P̂ (ρ) = β Id, and taking

traces gives the required value of β.

1.2.3 The Upper Bound Lemma

We are now in a position to state one of the most important results on the mixing times

of random walks on groups. The upper bound lemma links the worlds of probability and

algebra in a surprising way, stating that the total variation distance of a random walk

on a group G may be upper bounded via Fourier analysis on the driving probability of

the walk. If the Fourier transforms on irreducible representation are well understood this

reduces the issue of analysing ∥P t−π∥TV to bounding a summation of numbers in C (often

just R). The results and proof presented below are taken from [16, Chapter 3B]

Lemma 1.2.35 (Upper Bound Lemma [18]). Let P be a probability on a finite group G,

π the uniform distribution on G. Then

∥P − π∥2
TV ≤ 1

4
∑

ρ∈Irr(G)
ρ≠Triv

dρTr(P̂ (ρ)P̂ (ρ)) (1.22)

Proof. Following from the definition of total variation distance we find:

4∥P − π∥2
TV =

⎛
⎝∑g∈G

∣P (g) − π(g)∣
⎞
⎠

2

≤ ∣G∣∑
g∈G

∣P (g) − π(g)∣2 (1.23)

= ∣G∣∑
g∈G

P (g)P (g) − 2∣G∣∑
g∈G

P (g)π(g) + ∣G∣∑
g∈G

π(g)π(g)

= ∑
ρ∈Irr(G)
ρ≠Triv

dρTr(P̂ (ρ)P̂ (ρ)) (1.24)

Step (1.23) is due to the Cauchty-Schwarz inequality, and the final equality is Plancherel’s

Theorem and its Corollaries.

Lemma 1.2.36 (Lower Bound Lemma [16]). Let P be a probability on a finite group G,

π the uniform distribution on G. Then

1

4∣G∣ ∑
ρ∈Irr(G)
ρ≠Triv

dρTr(P̂ (ρ)P̂ (ρ)) ≤ ∥P − π∥2
TV (1.25)
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Proof. Following from the definition of total variation distance we find:

4∥P − π∥2
TV =

⎛
⎝∑g∈G

∣P (g) − π(g)∣
⎞
⎠

2

≥ ∑
g∈G

∣P (g) − π(g)∣2 = 1

∣G∣ ∑
ρ∈Irr(G)
ρ≠Triv

dρTr(P̂ (ρ)P̂ (ρ))

The first inequality is a general one, and the final equality is Plancherel’s Theorem and

its Corollaries.

Corollary 1.2.37. Let P be a probability on a finite group G, and π the uniform distri-

bution on G. Then

1

4∣G∣ ∑
ρ∈Irr(G)
ρ≠Triv

dρTr(P̂ (ρ)tP̂ (ρ)t) ≤ ∥P t − π∥2
TV ≤ 1

4
∑

ρ∈Irr(G)
ρ≠Triv

dρTr(P̂ (ρ)tP̂ (ρ)t) (1.26)

The first use of the Upper Bound Lemma appeared in the seminal paper of Diaconis

and Shahshahani, where it was used to analyse the mixing time of the random trans-

position shuffle [18, Lemma 14]. We review this classic argument in detail in Chapter

2 to demonstrate the power of the upper bound lemma. Since its first appearance the

upper bound lemma has seen frequent use in proving cutoff for many random walks on

groups. It gives an explicit link between the areas of mixing time of Markov chains and

representation theory, reducing the study of ∥P t − π∥TV to understanding P̂ (ρ). The use

of the Cauchy-Schwarz inequality in the Upper Bound Lemma may seem like a näıve way

to bound this complicated summation, however we shall see that it frequently gives sharp

bounds of the correct mixing time. The upper and lower bounds presented in Corollary

1.2.37 are of different orders, this means that we can not get the exact mixing time for a

random walk just using representation theory.

In this thesis are main results will be focused on random walks on the symmetric

group Sn. To get a better understanding of the techniques introduced in this chapter we

dedicated the next chapter to exploring the symmetric group fully. We concentrate the

tools previously seen to specific examples which have guided the analysis of the one-sided

transposition shuffle, these are the random transposition shuffle, top-to-random shuffle,

and random-to-random shuffle.
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Chapter 2

The Symmetric Group and its

Modules

In this chapter we review all the information needed about the symmetric group in

order to analyse the mixing times of random walks on Sn. The first section is dedicated

to the the structure of the group. The second section presents a detailed construction of

the simple modules of the symmetric group, by way of permutation modules. We then see

how to view these modules as vector spaces spanned by words of length n. We end this

chapter with detailed examples of shuffles which have guided the analysis of the one-sided

transposition shuffle. These include cutoff results for the random transposition shuffle and

the top-to-random shuffle, as well as an exploration into lifting eigenvectors for the random-

to-random shuffle. A detailed account of the symmetric group and its representations may

be found in The Symmetric Group by Sagan [38] or The Representation Theory of the

Symmetric Groups by James [28].

2.1 The Symmetric Group

The symmetric group on n objects, denoted Sn, is defined as the group of all bijections

σ ∶ [n] → [n], where [n] = {1, . . . , n}. There are exactly n! of these bijections. Given two

bijections σ, η ∈ Sn define the product ση as the composition of functions from right to

left. Another common way to think about the symmetric group Sn is the arrangements

of a deck of n cards labelled, 1, . . . , n, from bottom to top. If we have n positions in a

deck of cards labelled 1 to n, and n cards labelled 1 to n then we may view the bijection

σ as telling us what position each card is in, i.e., card i is in position σ(i). The identity

element e has every card in its labelled position, i.e., for all i ∈ [n] we have e(i) = i.

Viewing the symmetric group as a deck of cards is often useful for random walks on Sn

because it allows us to formulate our random walks in the expressive terms of shuffling a

deck of cards.

We express elements of the symmetric group using cycle notation, for example,

σ = (1 2 5)(4 6)(3) = (1 2 5)(4 6).

We read the cycle (125) as 1 maps to 2 (i.e. σ(1) = 2), 2 maps to 5, and 5 maps to

1. The cycle structure of a permutation is the tuple of the lengths of its cycles arranged
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in non-increasing order, example the cycle structure of σ defined above is (3,2,1). Note

that the sum of cycle lengths for σ ∈ Sn is always n, therefore the cycle structure for any

permutation is a partition of n.

Definition 2.1.1. A partition of n is a tuple of positive integers λ = (λ1, . . . , λr) such

that, ∑ri=1 λi = n, and λ1 ≥ ⋅ ⋅ ⋅ ≥ λr, we denote this by λ ⊢ n. We call n the size of the

partition and r the length of the partition, denoted ∣λ∣ and l(λ) respectively. If a partition

contains repeated digits we may write them as a power for brevity, for example we denote

the partition (1, . . . ,1) = (1n), similarly (3,3,2,2,2,1) = (32,23,1).

Cycle notation can help us identify the conjugacy classes of the symmetric group. To

know if two elements are conjugate in Sn we need only compare their cycle structures.

Lemma 2.1.2 (See Chapter 1 [38]). Two elements in Sn are conjugate if and only if they

have the same cycle structure. Hence, the conjugacy classes of Sn are labelled by partitions

of n.

The identity has cycle structure (1n), as every element belongs to its own trivial cycle.

One particularly important conjugacy class of Sn is the class of transpositions, which is

formed from all two cycles (i j) for i < j, these elements have cycle type (2,1n−2). We

call the transposition (i j) an adjacent transposition if j = i + 1. The conjugacy class of

transpositions generates the whole symmetric group, in fact we only need the n−1 adjacent

transpositions for this, ⟨(i, i+1) ∣1 ≤ i ≤ n−1⟩ = Sn. We may decompose any element in Sn

into a product of transpositions, and in any decomposition the number of transpositions

required remains constant modulo 2. This leads us to make the following definition.

Definition 2.1.3. Let σ ∈ Sn, and decompose our permutation as σ = τk τk−1 . . . τ1, where

τi is a transposition. Define the sign function for Sn, denoted sgn ∶ Sn → {1,−1}, as follows

sgn(σ) = (−1)k.

This is a well defined function, i.e. independent of the decomposition of σ into transpo-

sitions. An element of σ ∈ Sn is called odd if sgn(σ) = −1, and called even if sgn(σ) = 1.

The sign function is also multiplicative, i.e., for σ, η ∈ Sn we have sgn(ση) = sgn(σ)sgn(η).
Therefore, the set of even permutations defines a subgroup of Sn called the alternating

group and denoted An.

Random walks supported on the conjugacy class of transpositions have been well stud-

ied since the random transposition shuffle, variants include the semi-random transposition

shuffles [34], adjacent transposition shuffle [29] and biased transposition shuffle [9]. In

Chapter 3 we present a novel modification to general transposition shuffles called the one-

sided transposition shuffle where the probability of applying transposition (i j) depends

only on the position j. We now move on to describe the module structure of the symmetric

group.

2.2 The Structure of Modules for The Symmetric Group

Denote the group algebra of the symmetric group as Sn ∶= C[Sn]. All the simple modules

of Sn are indexed by partitions of λ ⊢ n, we denote the simple module indexed by λ as
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Sλ, these are also called Specht modules. Understanding the simple modules of Sn will

be important to our analysis of the one-sided transposition shuffle presented in Chapter 3.

Before we construct modules of the symmetric group, we need to recall some facts about

partitions, Young diagrams and Young tableaux.

2.2.1 Young Diagrams

Every partition λ has an associated Young diagram, made by forming a left adjusted stack

of boxes with rows labelled downwards and row i having λi boxes. We often blur the

distinction between a partition and its Young diagram, e.g. (3,2) = . We may refer

to the boxes of a diagram λ by using coordinates (i, j) to mean the box in the ith row and

jth column. Define the diagonal index of the box (i, j) in partition λ to be the value j − i.
Define the diagonal sum of λ to be Diag(λ) = ∑(i,j)∈λ(j − i), this is the sum over all the

diagonal indexes of λ.

Given a partition λ ⊢ n, we may form the transpose of λ, denoted λ′, by swapping

rows and columns in the Young diagram, e.g. (3,2)′ = (2,2,1). We have λ ⊢ n if and only

if λ′ ⊢ n. Define a partial order on partitions of n called the dominance order : in terms

of Young diagrams, for two partitions µ,λ ⊢ n, we say λ dominates µ if we can form µ by

moving boxes of λ down and to the left, we denote this by λ ⊵ µ. Equivalently λ ⊵ µ if

and only if ∑ji=1 λi ≥ ∑
j
i=1 µi for all choices of j. Furthermore, we have λ ⊵ µ if and only if

µ′ ⊵ λ′, see [26, Lemma 1.4.11].

Example 2.2.1. Let n = 8 and consider the partitions (3,2,2,1) and (24). We may see

that (3,2,2,1) ⊵ (24), and (24)′ = (4,4) ⊵ (4,3,1) = (3,2,1,1)′. Now consider partitions

(5,13) and (42), neither partition here dominates the other. Hence, the dominance order

on partitions is not necessarily a total ordering.

Given two partitions µ,λ of different sizes, we write µ ⊆ λ if µ is fully contained in

λ when we align the Young diagrams of µ and λ at the top left corners; equivalently,

if we write λ = (λ1, . . . , λr) and µ = (µ1, . . . , µs), this means that s ≤ r and µi ≤ λi for

each 1 ≤ i ≤ s. For example (3,2) ⊆ (4,3) – this is simpler to see from the corresponding

Young diagrams, ⊆ . If we have two partitions µ,λ such that µ ⊆ λ we may

define the skew diagram λ/µ as the diagram containing all boxes which are in λ but not

in µ. For example the skew diagram of (4,3)/(3,2) is . A skew diagram λ/µ is called

a horizontal strip if it has at most one box per column, e.g. (4,3)/(3,2) is a horizontal

strip but (4,3)/(2,2) = is not.

Given a partition of n we may turn it into a partition of n + 1 by adding a box to the

corresponding Young diagram. In order to formalise this we view partitions as n-tuples,

filling the end with zeros if necessary. Given an n-tuple λ = (λ1, . . . , λn) of non-negative

integers summing to n and an element i ∈ [n + 1], we form an (n + 1)-tuple denoted

λ + ei by first adding a zero to the end of λ and then adding 1 to this (n + 1)-tuple in

position i. Then λ + ei is an (n + 1)-tuple of non-negative integers summing to n + 1,

e.g. (1,1,1) + e3 = (1,1,1,0) + (0,0,1,0) = (1,1,2,0). In terms of Young diagrams λ + ei
represents adding a box to λ on row i. Note that if µ ⊆ λ we may add boxes to µ to form

λ, the boxes we have to add are exactly those contained in the skew diagram λ/µ, e.g. for
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(3,2) ⊆ (4,3) we may see that (3,2)+e1+e2 = (4,3). If we restrict our attention to choices

of box ei that result in another partition we uncover a structure on Young diagrams called

Young’s lattice, seen in Figure 2.1. We allow n = 0 as a special case with empty partition

(0) and corresponding Young diagram ∅.

∅

Figure 2.1: Young’s lattice for partitions of size n ∈ {0,1,2,3,4}.

Each path in Figure 2.1 represents the placement or removal of a box to form a new

partition. Young’s lattice is an important structure as it allows us to link the partitions

of n to those of n+ 1. This structure play an important role in the linking the modules of

Sn and Sn+1 in Section 2.2.5.

2.2.2 Young Tableaux

Given a partition λ ⊢ n, we may form a Young tableau (alternatively a λ-tableau) T by

putting numbers 1, . . . , n into the boxes of (the Young diagram of) λ, such that each

number only appears once. The set of Young tableaux of shape λ is denoted YT(λ). We

says a value m occurs in the Young tableau T if m is present in a box of T . A standard

Young tableau T is a Young tableau where the values in the boxes of T are increasing

across rows and down columns. The set of standard Young tableaux of shape λ is denoted

by SYT(λ). The size of the set SYT(λ) is called the dimension of λ, denoted dλ. For

a tableau T , form the transpose of T , denoted T ′, by swapping rows and columns while

preserving the value in each box. A tableau T has T ∈ SYT(λ) if and only if T ′ ∈ SYT(λ′).
If a tableau T has a box in position (i, j), we let T (i, j) denote the value in that box

(i, j); otherwise T (i, j) is undefined. The partition (3,2) has 5 standard Young tableaux

therefore d(3,2) = 5, these are given below:

1 2 3
4 5

1 2 4
3 5

1 2 5
3 4

1 3 4
2 5

1 3 5
2 4

28



Each standard Young tableau corresponds to one path up Young’s lattice, starting at ∅
and ending at λ. To form this correspondence take a standard Young tableau T ∈ SYT(λ)
and form a path up Young’s lattice from ∅ to λ by adding the boxes to ∅ in the order given

by the entries in T . A standard Young tableau T ∈ SYT(λ) is called a desarrangement

tableau if there is no box (1,2) ∈ λ and ∣λ∣ is even, or the value T (1,2) is odd. We denote

the number of desarrangement tableaux of a shape λ as dλ. For example, in the collection

of standard Young tableaux of shape (3,2) displayed above, those in the bottom row are

desarrangement tableaux.

Finally we end with a result that links the tableaux of different shapes to the dominance

order of partitions.

Lemma 2.2.2 (Lemma 2.2.4 [38]). Let λ,µ ⊢ n. Take Tλ to be a λ-tableau and Tµ to be

a µ-tableau. Suppose that for each index i, the elements in row i of Tµ are all in different

columns of Tλ. Then λ ⊵ µ.

Proof. By our hypothesis the elements in row 1 of Tµ are in different columns of Tλ.

We may rearrange the columns of Tλ so that these elements all appear in row 1 of Tλ.

Continuing this we may sort the columns of Tλ so that the elements of rows 1,2, . . . , j of

Tµ all occur in the first j rows of Tλ. Then,

j

∑
i=1

λi = number of elements in the first j rows of Tλ

≥ number of elements in the first j rows of Tµ =
j

∑
i=1

µi.

2.2.3 Permutation Modules

On our way to defining the simple modules Sλ for Sn we first need to define the permu-

tation modules, denoted Mλ, which contain the simple modules as submodules. To define

the permutation module Mλ we use the natural action of the symmetric group on the

Young tableaux of shape λ.

Definition 2.2.3. Let T be a Young tableau of n, and σ ∈ Sn. Define an action of σ on

T , by applying σ to the values in T box wise. Thus σ T defines a new Young tableau of

the same shape as T . For example, given T = 5 4 1
2 3

and σ ∈ Sn, the product

σ T =
σ(5) σ(4) σ(1)

σ(2) σ(3)
.

To form the permutation module Mλ we first establish an important equivalence re-

lation on the tableaux of shape λ. Using the action in Definition 2.2.3 we may define the

groups of row and column permutations of a tableau T .

Definition 2.2.4. Let T be a tableau of size n. Define the subgroup of row permutations

of T, denoted RT , as the set of elements of Sn which preserves each row of T . Define the

subgroup of column permutations of T, denoted CT , as the set of elements of Sn which

preserves each columns of T . For example, if T is the tableau given in Definition 2.2.3
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then RT ≅ S3 × S2 as we are allowed to swap the numbers 5,4,1 freely and 2,3 freely but

not swap between them, similarly CT ≅ S2 × S2 × S1.

Definition 2.2.5. Let T1, T2 be two tableaux of the same Young diagram λ. We say T1

is row equivalent to T2, denoted T1 ∼R T2, if there exists σ ∈ RT1 such that σT1 = T2.

Similarly we say T1 is column equivalent to T2, denoted T1 ∼C T2, if there exists σ ∈ CT1
such that σT1 = T2.

Example 2.2.6. Let T = 5 4 1
2 3

, we know that ∣RT ∣ = 12, therefore there are 12 row

equivalent tableaux. 6 of these are found by permuting the first row of T , we list them

below:

1 4 5
2 3

1 5 4
2 3

4 1 5
2 3

4 5 1
2 3

5 1 4
2 3

5 4 1
2 3 .

The remaining 6 row equivalent tableaux can be found by swapping 2 and 3 in the second

row.

Lemma 2.2.7. The relation ∼R defines an equivalence relation on the tableaux of shape

λ.

Proof. This follows from RT forming a subgroup of Sn.

Definition 2.2.8. The row equivalence class of a tableau T is denoted by {T} and called

a tabloid.

Our action of Sn on tableaux extends naturally to an action on tabloids given by

σ{T} = {σT}. We are now in a position to define our permutation modules using tabloids

of a given partition.

Definition 2.2.9. Let λ ⊢ n. The permutation module for Sn, denoted Mλ, is the

following vector space

Mλ = ⟨{T} ∣T is a tableau of shape λ⟩

with action of Sn given by extending the action of the symmetric group on tabloids

(Definition 2.2.3) linearly.

There are 5! Young tableaux of shape (3,2) (in fact of any shape λ ⊢ 5), but the module

M (3,2) has a basis of 10 tabloids, because there are only two rows to split the five numbers

{1,2,3,4,5} across, giving (5
3
) choices for the first row, with the second row containing the

leftover numbers. Note that for the permutation module we may have basis elements that

are not in the equivalence class of a standard Young tableau. E.g., the module M (3,2) is

spanned by the following 10 tabloids:

{ 1 2 3
4 5

} { 1 2 4
3 5

} { 1 2 5
3 4

} { 1 3 4
2 5

} { 1 3 5
2 4

}

{ 1 4 5
2 3

} { 2 3 4
1 5

} { 2 3 5
1 4

} { 2 4 5
1 3

} { 3 4 5
1 2

}

Only the first row above are the tabloid classes of standard Young tableaux.
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2.2.4 Specht Modules

Every Mλ contains a unique copy of the simple module Sλ. We construct the Specht

module Sλ as a stable subspace of Mλ before going on to show it is simple. We form a

basis for the Specht module Sλ by taking taking linear combinations of tabloids, we call

these new elements polytabloids.

Definition 2.2.10. Given a Young tableau T form the element kT ∈ Sn as the following

sum:

kT = ∑
σ∈CT

sgn(σ)σ (2.1)

The polytabloid generated by tableau T , denoted eT , is given by the element eT = kT {T}.

Every polytabloid is an element of the permutation module Mλ. We say the polytabloid

eT1 contains the tabloid {T2} if it appears with a non-zero coefficient in eT1

Lemma 2.2.11 (Lemma 2.3.2 [38]). Let T be a tableau of size n, and η is an element in

Sn. Then η eT = eη T .

Proof.

ηeT = η
⎛
⎝ ∑σ∈CT

sgn(σ)σ
⎞
⎠
η−1η{T} = ∑

σ∈CT
sgn(σ)ηση−1 {ηT} = ∑

σ∈CηT
sgn(σ)σ {ηT}.

Definition 2.2.12. Let λ ⊢ n, the Specht module Sλ is defined to be the following vector

space

Sλ = ⟨eT ∣T ∈ YT(λ)⟩

with the natural action of Sn on tabloids. In fact we may restrict this spanning set to a

basis by considering only polytabloids formed from standard Young tableaux,

Sλ = ⟨eT ∣T ∈ SYT(λ)⟩

see [38, Theorem 2.6.2] for a proof of this. Thus, the Specht module Sλ has dimension dλ.

The Specht modules are also cyclic, that is Sλ is generated as an Sn-module by any one

polytabloid.

Example 2.2.13. Let λ = (3,1), up to row equivalence we have 4 Young tableaux of this

shape, we label them by which number appears in the second row

T4 = 1 2 3
4

T3 = 1 2 4
3

T2 = 1 3 4
2

T1 = 2 3 4
1

.

The permutation module Mλ is four dimensional and spanned by the four tabloids above.

We can see that T4, T3, T2 are all standard Young tableau of shape λ, and so the dimension

of S(3,1) is 3. To form the polytabloids that make up Sλ we need to use the group of column

permutations of each tableau. In this example CT ≅ S2 with each tableau having a single

transposition which may be applied to the first column. Therefore,

eT4 = { 1 2 3
4

} − (1 4){ 1 2 3
4

} = { 1 2 3
4

} − { 4 2 3
1

} = {T4} − {T1}.
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Performing the same calculation for the tableaux T3 and T2, we may write a basis for Sλ

as follows:

S(3,1) = ⟨eT4 , eT3 , eT2⟩ = ⟨{T4} − {T1},{T3} − {T1},{T2} − {T1}⟩.

Furthermore, the Specht module S(3,1) may be generated by a single polytabloid eT4 ,

(3 4)eT4 = (3 4){T4} − (3 4){T1} = {T3} − {T1} = eT3
(2 4)eT4 = (2 4){T4} − (2 4){T1} = {T2} − {T1} = eT2

as Lemma 2.2.11 asserts.

We know the conjugacy classes of Sn are labelled by partitions of n, and we have found

exactly one Specht module for each partition. To be sure {Sλ ∣λ ⊢ n} forms a complete set

of simple modules we have to check that they are in fact simple, and all distinct from one

another. To do this we study how kT acts on tableaux of different shapes. The following

arguments were presented by James in [25], and further details of them can be found in

Sections 2.4 and 2.5 in [38]

Lemma 2.2.14. Let λ,µ ⊢ n. Take Tλ to be a λ-tableau and Tµ to be a µ-tableau.

Suppose there exists a, b which occur in the same row of Tµ and same column of Tλ. Then

kTλ{Tµ} = 0.

Proof. From our hypothesis we have (e−(a b)){Tµ} = 0. Take signed coset representatives

{σ1, . . . , σk} for the subgroup {e, (a b)} ⊆ CTλ . Then KTλ {Tµ} = (∑σ∈CTλ sgn(σ)σ){Tµ} =
(∑ki=1 σi(e − (a b))) {Tµ} = 0.

Applying Lemma 2.2.14 in combination with Lemma 2.2.15, we are able to use the

value of kTλ{Tµ} to tell us information about λ and µ.

Lemma 2.2.15. Let λ,µ ⊢ n. Take Tλ to be a λ-tableau and Tµ to be a µ-tableau. If

kTλ{Tµ} ≠ 0, then λ ⊵ µ. Furthermore if λ = µ then kTλ{Tµ} = ±eTλ.

Proof. If kTλ{Tµ} ≠ 0 then for all a, b in the same row of µ they are in different columns

of λ. Therefore, by Lemma 2.2.2 we know λ ⊵ µ. If λ = µ, then we must have our

tabloids being column equivalent otherwise we violate kTλ{Tµ} ≠ 0 (see [38, Corollary

2.4.2]). Hence, there must exist η ∈ CTλ such that {Tµ} = η{Tλ}, therefore

kTλ{Tµ} =
⎛
⎝ ∑σ∈CT

sgn(σ)σ η
⎞
⎠
{Tλ} =

⎛
⎝ ∑σ∈CT

sgn(η−1)sgn(σ)σ
⎞
⎠
{Tλ} = sgn(η)eTλ .

Corollary 2.2.16. Let v ∈Mµ, and take Tµ a µ-tableau. Then kTµ v is a multiple of eTµ.

Proof. Write v = ∑i ci{Ti} where Ti are µ-tableaux. By Lemma 2.2.15 each summand

kTµ{Ti} is either a multiple of eTµ or 0.

We are now in a position to prove that the Specht module Sλ is simple, and that

Sλ ≅ Sµ if and only if λ = µ. These facts together tell us that the Specht modules form a

complete set of simple modules for Sn.

32



Theorem 2.2.17 (Submodule Theorem). Let V ⊆Mλ be a submodule. Then V ⊇ Sλ or

V ⊆ (Sλ)0. Therefore, the Specht module Sλ is simple.

Proof. Take v ∈ V , and a λ-tableau T . By Corollary 2.2.16 we know that kT v = c eT for

some c ∈ C. We consider two cases: c ≠ 0 for some T , and c = 0 always. Suppose that there

exists v and T with kT v = c eT ≠ 0. Then we have c−1kT v = eT ∈ V . Hence, by Lemma

2.2.11 we may generate Sλ inside of V .

Now suppose we always have kT v = 0. Consider the inner product on Mλ defined on

tabloids by ⟨{T1},{T2}⟩ = δ{T1},{T2}, this inner product is Sn-invariant. We now find,

⟨v, eT ⟩ = ⟨v, ∑
σ∈CT

sgn(σ)σ {T}⟩ = ⟨ ∑
σ∈CT

sgn(σ)σ−1 v,{T}⟩ = ⟨kT v,{T}⟩ = ⟨0,{T}⟩ = 0.

A single polytabloid eT spans Sλ, therefore v ∉ Sλ ⇒ v ∈ (Sλ)0.

Theorem 2.2.18. Let λ,µ ⊢ n. Suppose we have a non-zero homomorphism ψ ∶ Sλ →Mµ.

Then λ ⊵ µ and if λ = µ then ψ is multiplication by a scalar.

Proof. Take a basis vector eT ∈ Sλ such that ψ(eT ) ≠ 0. Extend the homomorphism ψ to

a homomorphism ψ ∶Mλ →Mλ by setting it to be zero on the complement of Sλ. Then,

0 ≠ ψ(eT ) = kTψ({T}) = kT (∑
i

ci{Ti})

where the Ti are µ-tableaux, and we must have at least one ci being non-zero. Hence, by

Lemma 2.2.15 we have λ ⊵ µ. If λ = µ, then we know ψ(eT ) = c eT for some constant c ∈ C,

and for any σ ∈ Sn we have

ψ(eσ T ) = ψ(σeT ) = σψ(eT ) = c ⋅ σeT = c ⋅ eσ T .

Corollary 2.2.19. Let λ,µ ⊢ n. Then Sλ ≅ Sµ if and only if µ = λ.

Proof. If µ = λ then the conclusion is immediate. Suppose Sλ ≅ Sµ, then there exist

non-zero homomorphisms ψ ∶ Sλ →Mµ, and ϕ ∶ Sµ →Mλ. Therefore, by Theorem 2.2.18,

λ ⊵ µ and µ ⊵ λ, which implies λ = µ.

Corollary 2.2.20 (Theorem 2.4.6 [38]). The Specht modules Sλ for λ ⊢ n form a complete

set of non-isomorphic simple modules for Sn.

Proof. We have found the correct number of non-isomorphic simple modules.

Now we have a complete set of simple modules for the symmetric groups we proceed

to decompose each permutation module into its simple parts. The following result is

sometimes known as Young’s Rule.

Lemma 2.2.21 (Young’s Rule). For µ ⊢ n we have,

Mµ ≅ ⊕
λ⊵µ

Kλ,µS
λ,

where Kλ,µS
µ denotes a direct sum of Kλ,µ copies of Sµ. The coefficients Kλ,µ ∈ N are

called Kostka numbers, and for all λ ⊢ n we know Kλ,λ = 1.
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Proof. If Sλ appears with a non-zero coefficient in the decomposition of Mµ then we clearly

have a non-zero homomorphism ψ ∶ Sλ →Mµ, therefore λ ⊵ µ. To establish that all λ ⊵ µ
appear in our decomposition requires information about semi-standard Young tableaux

which will not feature elsewhere in this thesis, so we leave the details which may be found

in Section 2.10 [38]. If λ = µ, we know any morphism ψ ∶ Sλ →Mλ is multiplication by a

scalar hence there is only one copy in of Sλ in Mλ.

Lemma 2.2.21 shows a instance of Maschke’s Theorem (Theorem 1.2.14). Notably this

theorem does not tell us the value of the Kostka numbers but importantly it tells us that

Sµ appears as a submodule of Mλ if and only if µ ⊵ λ. Consider the permutation module

M (3,1) from Example 2.2.13, we know that S(3,1) appears as one composition factor. This

leaves a 1 dimensional submodule left to find, and Young’s rule tells us it must be the

Specht module S(4), as the only partition of 4 which dominates (3,1) is (4).
We have previously seen that the regular module for any group has a canonical de-

composition into the simple modules for that group. For the symmetric group the regular

module Sn may be seen to be the permutation module M (1n).

Lemma 2.2.22. The permutation module M (1n) ≅Sn as modules. Therefore, M (1n) has

canonical decomposition

M (1n) ≅ ⊕
λ⊢n

dλS
λ as Sn-modules.

This decomposition satisfies Lemma 2.2.21, as every partition of n dominates (1n).

Proof. The moduleM (1n) is spanned by n! tabloids. To define a linear map ψ ∶Sn →M (1n)

it is enough to define it on each permutation σ ∈ Sn. To do this set,

ψ(σ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ(1)

. . .

σ(n)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

The map ψ respects the action of both modules and is an isomorphism of vector spaces,

therefore Sn ≅M (1n) as Sn-modules.

The decomposition present in Lemma 2.2.22 is important for the analysis of the

random-to-random shuffle and the one-sided transposition shuffle. It allows us to focus on

the Specht modules of Sn as opposed to the larger space Sn.

2.2.5 Branching Rules for Specht Modules

Every symmetric group has a natural embedding into symmetric groups of a greater size.

To embed Sm ↪ Sn for m < n, we extend every permutation σ ∈ Sm to a permutation in

Sn by choosing it to fix all elements of [m] ∖ [n]. The group algebras of the symmetric

groups and subsequently Sn-modules inherit this recursive structure. A module Sλ for

λ ⊢ n may be viewed as an Sn−1 module by the action of Sn−1 inside of Sn. Conversely

we may also turn Sn-modules into Sn+1-modules by a process known as induction. We

now introduce the definition of restricted and induced modules.
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Definition 2.2.23. Let H ⊆ G be groups. Suppose W is a H-module and V is a G-

module. The restriction ResGHV of V consists of the vector space V viewed as a module

for H by restricting the action of G to the subgroup H.

Let {g1, . . . , gn} be a set of coset representatives for H in G. Then the induced module

of W to a G-module, denoted IndGHW , has vector space ⊕i ({gi}⊕W ) and action given

by

g (
n

∑
i=1

(gi, wi)) =
n

∑
i=1

(gr(i), hiwi)

where ri, hi are the unique values satisfying g ⋅gi = gr(i) ⋅hi. This definition may be extended

to include restricting/inducing representations and characters as well, see [27, Chapter 21].

There is a close link between the restriction and induction of modules, this is shown

off best in a theorem known as Frobenius reciprocity (see [27, Theorem 21.16]).

Theorem 2.2.24 (Frobenius Reciprocity). Let H ⊆ G be groups, and suppose ϕ and χ

are characters of H and G respectively. Then

⟨IndGHϕ,χ⟩G = ⟨ϕ,ResGHχ⟩H ,

where the inner product for characters is computed over G and H respectively.

The decomposition of an induced module IndGHV into the simple modules of G, or

the restricted module ResGHW into simple modules of H, is an important question in

representation theory. Results which allow us to relate the of the modules of G in terms

of those for H and vice versa are called branching rules. The natural recursive structure

of the symmetric group allows us an answer to this question for Sn−1 ⊆ Sn. A proof of the

following result can be found in [38, Theorem 2.8.3]

Theorem 2.2.25 (Branching rules for Sn). Let n ≥ 1, and λ ⊢ n. The branching rules

for the simple module of the symmetric group are as follows:

ResSnSn−1S
λ ≅ ⊕

µ⊢n−1
µ⊆λ

Sµ as Sn−1-modules (2.2)

IndSn+1Sn
Sλ ≅ ⊕

µ⊢n+1
λ⊆µ

Sµ as Sn+1-modules (2.3)

The branching rules for the symmetric group are closely related to Young’s lattice.

The direct sum of (2.2) could be rephrased as take a direct sum of all Specht modules

found by removing a box of λ, similarly the direct sum (2.3) may be thought as taking

a sum of all Specht modules found by adding a box to λ. The branching rules allow us

to describe the restriction or induction of any Sn-module, all we must do is decompose it

into its simple summands and then apply Theorem 2.2.25 to each part individually. The

recursive structure of Sn-modules is key to the study of the random-to-random shuffle

and one-sided transposition shuffle.

2.2.6 Switching to Words

The notation of tabloids is cumbersome, we therefore introduce a one-to-one correspon-

dence between certain words of length n and tabloids of size n, allowing us to describe our
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permutation and Specht modules in more succinct notation. This notation is particularly

useful when studying the action of Sn on these modules.

Given n ∈ N0 we denote by Wn the set of words of length n with letters in [n], where

by a word of length n we simply mean a string w = w1w2 . . . wn with wi ∈ [n] for all i.

For n = 0 we allow a special case where W 0 is comprised solely of the empty word denoted

ω. Note that in forming words we regard the elements of [n] as distinct symbols. Later

on it will be notationally convenient to have our words comprised of positive integers, for

example W 2 = {11, 12, 21, 22}. The size of the set Wn is nn.

There is a natural action of the symmetric group Sn on Wn. For a word w =
w1w2 . . . wn ∈ Wn and an element σ ∈ Sn, we let σw ∶= wσ−1(1)wσ−1(2) . . . wσ−1(n) ∈ Wn.

We emphasise that this is the action of Sn on words by place permutations, it is not the

action of Sn acting on the individual letters that comprise a word, e.g. if σ = (123) then

σ (2 3 2) = 223 ≠ 313. Let Mn be the vector space over the field C with basis of words in

Wn. The action of Sn on words in Wn extends linearly to an action of Sn on the vector

space Mn. Thus, Mn is an nn-dimensional module for the group algebra Sn. For elements

of Mn we use the notation ⋅ to separate the complex coefficients from the words in Wn,

e.g. 2 ⋅ 232 + 4i ⋅ 213.

To each word w ∈Wn we can associate an n-tuple of non-negative integers, called its

evaluation, denoted eval(w), as follows. For 1 ≤ i ≤ n, let evali(w) count the number of

occurrences of the symbol i in the word w, and then let eval(w) ∶= (eval1(w), . . . , evaln(w)).
Note that ∑ni=1 evali(w) = n for any word w in Wn. For example taking 232 ∈ W 3, its

evaluation is eval(2 3 2) = (0,2,1). If in addition eval(w) is a non-increasing sequence of

integers, then we identify eval(w) with the corresponding partition of n, ignoring possible

ending zeros at the end of the partition. For example w = 1231 ∈ W 4 has evaluation

eval(w) = (2,1,1,0) and we associate it to the partition (2,1,1). Note that the evaluation

of a word is unchanged by the action of Sn, i.e. for any σ ∈ Sn and w ∈ Wn, we have

eval(w) = eval(σw). Thus we may find a stable subspace of Mn corresponding to the

words with a given evaluation.

Definition 2.2.26. Let ν be a n-tuple of non-negative integers. Define the module Mν

as the following vector space

Mν = ⟨w ∈Wn ∣ eval(w) = ν⟩ ⊆Mn.

For a partition λ ⊢ n the module Mλ from Definition 2.2.26 is exactly the permuta-

tion module we defined in Definition 2.2.9. To establish this we create a correspondence

between words of evaluation λ and Young tableau of shape λ. For a partition λ ⊢ n, a

Young tableaux T of shape λ naturally corresponds to a word in Wn.

Definition 2.2.27. Let λ ⊢ n. Define a map w ∶ YT(λ)→Wn as follows: for each tableau

T of shape λ, let w(T ) = w1 . . . wn be the word with wT (i,j) = i for each box (i, j) in T .

Equivalently, the numerical entries in the ith row of T tell us in which positions to put the

symbol i in the word w(T ). Importantly the words formed by tableau of shape λ have

evaluation w(T ) = λ (possibly ignoring some zeroes).
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The map w respects the action of Sn, i.e. for any σ ∈ Sn, we have σw(T ) = w(σT ). Also

for any w ∈Mn with eval(w) = λ, there exists a tableau T ∈ YT(λ) such that w(T ) = w.

Thus, the map is surjective on words of the correct evaluation.

Example 2.2.28. Let λ = (3,2), and T = 5 4 1
2 3

. The word in Wn corresponding to T is

w(T ) = 12211. Now take the element (123) ∈ Sn, then the action on tableaux (equivalently

words) gives us: (123)w(T ) = 21211 = w((123)T ). Note that the map w is not injective,

for example

w ( 5 4 1
2 3

) = 12211 = w ( 1 4 5
3 2

) .

To link Definitions 2.2.9 and 2.2.26 we need to find a bijection from tabloids of shape

λ to words of evaluation λ, to do this we observe that two tableaux have the same corre-

sponding word if and only if they belong to the same class of tabloids.

Lemma 2.2.29. Let T1, T2 be two tableaux of shape λ. Then

w(T1) = w(T2)⇔ T1 ∼R T2 ⇔ {T1} = {T2}.

Proof. This is clear from the description of w(T ).

Following from this we can see that the map w(T ) on all tableaux induces a bijection

between tabloids and words. Thus we can quickly establish our permutation modules as

vector spaces over words.

Lemma 2.2.30. Let λ ⊢ n, the permutation module Mλ for Sn may be seen as a vector

space over the following bases:

Mλ = ⟨{T} ∣T is a tableau of shape λ⟩

≅ ⟨w(T ) ∣T is a tableau of shape λ⟩

≅ ⟨w ∈Mn ∣ eval(w) = λ⟩

Proof. The map w(T ) forms a bijection between tabloids of shape λ and words of evalu-

ation λ, which respects the action of Sn.

Thus to find elements of the module Mλ we now only have to think of words with a

fixed evaluation. The regular module M (1n) may now be viewed as the module of words

of length n which contain every letter of [n], e.g.

M (13) ≅ ⟨123, 132, 213, 231, 312, 321⟩. (2.4)

We may also establish a basis for the Specht module Sλ using words, by replacing each

tabloid by its corresponding word. E.g. rewriting S(3,1) from Example 2.2.13,

S(3,1) ≅ ⟨1112 − 2111, 1121 − 2111, 1211 − 2111⟩. (2.5)

2.3 Random Walks on The Symmetric Group

We now use the techniques introduced in Chapter 1 to study random walks on the sym-

metric group, otherwise know as shuffles. We explore three different shuffles which have
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inspired the analysis of the one-sided transposition shuffle. These illustrate both the alge-

braic and probabilistic techniques needed to prove cutoff results on mixing time. We begin

with the classic random transposition shuffle, where we present Diaconis and Shahsha-

hani’s argument using the upper bound lemma (Lemma 1.2.36). Next we study the top-

to-random shuffle where we use strong stationary times to get an effective bound on our

mixing time. Finally we end the section with a discussion of the random-to-random shuf-

fle, for which the existence of a cutoff was recently proven. The random-to-random shuffle

is our first look at the technique of lifting eigenvectors. We give explicit examples of this

procedure but leave the full algebraic details for our analysis of the one-sided transposition

shuffle.

2.3.1 The Random Transposition Shuffle

Our first significant example is the random transposition shuffle. This was first analysed by

Diaconis and Shahshahani in 1981 [18]. In this seminal paper they proved the upper bound

lemma and used it to find tight bounds on the mixing time of the random transposition

shuffle. Since this important work there has been much research into the behaviour of

the random transposition shuffle. Berestycki has studied the hyperbolic geometry of the

random transposition shuffle when formulated as a random walk on the Cayley graph

of Sn generated by transpositions [4]. Furthermore, Berestycki and Durrett showed that

under a continuous time random transposition shuffle the number of transposition required

to return to the identity undergoes a phase transition around time n/2 [6]. A natural

extension of the random transposition shuffle is the random k-cycles shuffle where at each

step we of the shuffle we apply a uniformly chosen k-cycle. In 2011, Berestycki, Schramm

and Zeitouni proved that the random k-cycles shuffle has mixing time (n/k) logn [7].

Lately there has been an effort to study the cutoff (or limit) profile of random walks

on Sn, that is the exact behaviour of ∥Ptn+cwnn − πn∥TV as n → ∞ where Pn exhibits a

cutoff at time tn. Naturally the first cutoff profile we want to understand is that of the

random transposition shuffle and in 2016 Berestycki posed this exact question at an AIM

workshop [5]. This conjecture was recently settled in a breakthrough paper by Teyssier

where he proved that

lim
n→∞

∥RT(n/2) logn+cn
n − π∥TV = ∥Po(1 + e−2c) −Po(1)∥TV

where Po(r) represents the Poisson distribution with rate r [42]. In order to prove the

limit profile of the random transposition shuffle Teyssier derived a improvement of Diaco-

nis’ upper bound lemma (Lemma 1.2.35). This improvement of the upper bound lemma

has opened the path to study limit profiles of many other random walks, including the pre-

viously mentioned random k-cycles shuffle [21, 35]. This collection of work demonstrates

how important the random transposition shuffle is to the study of random walks on groups

and how it is still influencing the field even today.

Throughout this section we use information about the irreducible representations of Sn

which we proved in Section 2.2. The argument we present here is given by Diaconis in

his book Group Representations in Probability and Statistics [16, Chapter 3D, Theorem 5].
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The random transposition shuffle is a random walk on Sn given by the following pro-

cedure: at time t, choose position i uniformly at random with your left hand, and inde-

pendently choose position j uniformly at random with your right hand, then swap the

cards at the positions. Swapping the cards at positions i and j amounts to applying the

transposition (i j).

Definition 2.3.1. The random transposition shuffle is the random walk on Sn generated

by the following probability distribution:

RTn(σ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1/n if σ = e

2/n2 if σ = (i j) with i < j

0 otherwise

.

We now state the cutoff result for the random transposition shuffle which we work

towards throughout this section.

Theorem 2.3.2. Let tn = (n/2) logn, and wn = n. The random transposition shuffle RTn

satisfies the following bounds for any c > 0:

lim sup
n→∞

∥RTtn+cwn
n − πn∥TV ≤ Ae−2c for a universal constant A (2.6)

lim inf
n→∞

∥RTtn−cwn
n − πn∥TV ≥ 1

e
− e−e

2c

(2.7)

Thus, the random transposition shuffle exhibits a cutoff in total variation distance at time

(n/2) logn with a window of size n.

Upper Bound

We begin by establishing the upper bound present in Theorem 2.3.2. The random trans-

position shuffle is constant on the conjugacy classes of Sn, thus making it amenable to

analysis via discrete Fourier transforms. We have seen that the simple modules of Sn are

labelled by partitions of n. Let λ ⊢ n be a partition, and let χλ denote the character of

the corresponding irreducible representation.

The random transposition shuffle only takes non-zero values of the conjugacy class of

the identity and of transpositions. The conjugacy class of the identity has size 1, and the

class of transpositions has size (n
2
) = (n(n − 1))/2. Applying Lemma 1.2.34 we find the

Fourier transform of the random transposition shuffle at the irreducible representation λ

to be,

R̂Tn(λ) = (∑
i

∣Ci∣RTn(gi)
χλ(gi)
dλ

) ⋅ Id = ( 1

n
+ n − 1

n

χλ(τ)
dλ

) ⋅ Id

where the first sum is over the conjugacy classes of Sn with gi a class representative, and

τ in the second equation is any transposition. A straightforward application of the Upper
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Bound Lemma (Lemma 1.2.35) now gives us

4∥RTt
n − πn∥2

TV ≤ ∑
λ⊢n
λ≠(n)

dλTr(R̂Tn(λ)tR̂Tn(λ)t) = ∑
λ⊢n
λ≠(n)

d2
λ (

1

n
+ n − 1

n

χλ(τ)
dλ

)
2t

. (2.8)

To bound this sum we need to understand the irreducible characters of Sn, particularly

their values on the conjugacy class of transpositions. Below we give a combinatorial

formula for the value of χλ(τ)/dλ in terms of the Young diagram λ, see [16, Chapter 3D,

Fact 2] for details.

Lemma 2.3.3. Let λ ⊢ n, and τ be any transposition. Then

n(n − 1)
2

χλ(τ)
dλ

= Diag(λ)

where Diag(λ) = ∑(i,j)∈λ(j − i).

Using this equality we may rewrite the sum (2.8) as

∑
λ⊢n
λ≠(n)

d2
λ (

1

n
+ n − 1

n

χλ(τ)
dλ

)
2t

= ∑
λ⊢n
λ≠(n)

d2
λ (

n + 2Diag(λ)
n2

)
2t

. (2.9)

The combinatorics of Young diagrams allows us to find and prove bounds on the terms

present in (2.9). We now state several facts which have intuitive proofs using our knowledge

of Young diagrams.

Lemma 2.3.4. Let λ,µ be partitions of n, such that λ ⊵ µ. Then we have:

1. Diag(λ) ≥ Diag(µ).

2. Diag(λ′) = −Diag(λ).

3. The following bound holds,

2Diag(λ) ≤
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(n − 1)n − 2(n − λ1)(λ1 + 1) if λ1 ≥ n
2

(λ1 − 1)n for all λ
(2.10)

Proof. For our first assertion suppose that µ is one step below λ, that is we may form µ

by moving one box of λ down and to the left. When we move this box its diagonal index

(column - row) must decrease, therefore Diag(λ) ≥ Diag(µ). If µ is more than one step

down from λ we may apply this result inductively to find Diag(λ) ≥ Diag(µ). The second

assertion follows from the construction of the transpose (i, j) ∈ λ′ ⇔ (j, i) ∈ λ. For the

last property take any λ ⊢ n, in general we know that the first row of λ gives the biggest

contribution to its diagonal index sum. Therefore, by taking this value and multiplying

by the number of rows in λ we may form the following bound

Diag(λ) = ∑
(i,j)∈λ

(j − i) ≤ n

λ1

λ1

∑
j=1

(j − 1) = (λ1 − 1)n
2

.
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Now suppose λ1 ≥ n/2, then we may see that our partition is dominated by (λ1, n−λ1) ⊵ λ,

by fixing the first row and move all other boxes up and to the right to join the second row.

Therefore, by property 2 we have:

Diag(λ) ≤ Diag(λ1, n − λ1) =
λ1

∑
j=1

(j − 1) +
n−λ1
∑
j=1

(j − 2) = n(n − 1)
2

− (n − λ1)(λ1 + 1).

To simplify our upper bound we also need a bound on the dimension sum of partitions

with fixed first row λ1. Details of the following result may be found in [16, Chapter 3D].

Lemma 2.3.5. Let λ ⊢ n, then

∑
λ⊢n

λ1=n−k

d2
λ ≤ (n

k
)

2

∑
λ⊢n

λ1=n−k

d2
λ/λ1 ≤ (n

k
)

2

k! (2.11)

Using the results we have just proved we may simplify the summation (2.9). We first

double up our sum by only concentrating on those partitions which have positive diagonal

sum. Note that we have to deal with the partition (1n) as a special case because its

transpose (1n)′ = (n) is not presented in the sum (2.9). We then parametrise our sum

based on the value of λ1 splitting our sum around the value of λ1 ≶ 3n/4. Lemma 2.3.4

helps to bound the terms with given λ1 as follows:

n + 2Diag(λ)
n2

≤
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 − 2(λ1+1)(n−λ1)
n2 if λ1 ≥ 3n/4

λ1
n for all λ

. (2.12)

Subsequently Lemma 2.3.5 may be used to bound the multiplicities of the new terms.

Performing these steps gives us,

(2.9) = ∑
λ⊢n
λ≠(n)

Diag(λ)≥0

d2
λ (

n + 2Diag(λ)
n2

)
2t

+ ∑
λ⊢n

λ≠(1n)
Diag(λ)<0

d2
λ (

n + 2Diag(λ)
n2

)
2t

+ (n + 2Diag((1n))
n2

)
2t

≤ ∑
λ⊢n
λ≠(n)

Diag(λ)≥0

d2
λ (

n + 2Diag(λ)
n2

)
2t

+ ∑
λ⊢n

λ≠(1n)
Diag(λ)<0

d2
λ′ (

n + 2Diag(λ′)
n2

)
2t

+ (n − n(n − 1)
n2

)
2t

= 2 ∑
λ⊢n
λ≠(n)

Diag(λ)≥0

d2
λ (

n + 2Diag(λ)
n2

)
2t

+ (1 − 2

n
)

2t

(2.13)

≤ 2
n/4
∑
k=1

(1 − 2(n − k + 1)k)
n2

)
2t

∑
λ⊢n

λ1=n−k

d2
λ + 2

n−2

∑
k>n/4

(1 − k
n
)

2t

∑
λ⊢n

λ1=n−k

d2
λ + (1 − 2

n
)

2t

≤ 2
n/4
∑
k=1

(1 − 2(n − k + 1)k)
n2

)
2t

(n
k
)

2

k! + 2
n−2

∑
k>n/4

(1 − k
n
)

2t

(n
k
)

2

k! + (1 − 2

n
)

2t

(2.14)

After our simplifications we are left with summations in n, k, and t. Finally we are in

a position to analyse the behaviour of these sums around time t = (n/2) logn + cn. The
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singular term given by the partition (1n) may be easily dealt with at this time,

lim sup
n→∞

(n − n(n − 1)
n2

)
2t

= lim sup
n→∞

(1 − 2

n
)
n logn+2cn

= 0.

The first summation of (2.14) contains the largest values of the Fourier transforms R̂Tn(λ).
These values control the mixing time of the random transposition shuffle. The first term,

k = 1, in the summation is given by

n2 (1 − 2

n
)

2t

(2.15)

this term is tightly bounded by 1 at time t = (n/2) logn as n→∞. If we add an additional

window of cn to give time t = (n/2) log+cn we find the first term bounded by an exponential

decay,

n2 (1 − 2

n
)

2((n/2) logn+cn)
≤ n2e−2 logn−4c ≤ e−4c.

We may show that the ratio of subsequent terms in the first sum is less than 1 for n ≥ 17.

This allows us to bound the first summation via a geometric series and conclude that it may

be bounded by Ae−4c for a universal constant A at the time (n/2) logn+cn for n sufficiently

large. Now we look to bound the second summation in (2.14) at time (n/2) logn+cn. The

terms in the second summation can be shown to be decreasing in k for n sufficiently large

and thus we may bound the sum by 3n/4 times the first term. Using Stirling’s formula

the first term can be seen to be tending to 0 at time (n/2) logn + cn as n → ∞. Further

details of this analysis can be found in [16]. Putting these bounds together we are now in

a position to prove our upper bound on mixing time for the random transposition shuffle.

Proof of the upper bound in Theorem 2.3.2. We reduced the analysis of total variation dis-

tance to the bound of summation (2.14). Taking the limit as n→∞ we may establish the

following bound on total variation distance at time (n/2) logn + cn,

lim sup
n→∞

4∥RTtn+cwn
n − πn∥2

TV ≤ lim sup
n→∞

∑
λ⊢n
λ≠(n)

d2
λ (

1

n
+ n − 1

n

χλ(τ)
dλ

)
2(tn+cwn)

≤ Ae−4c for a universal constant A.

Lower Bound

We now prove the lower bound of Theorem 2.3.2. Let Fn = {σ ∈ Sn ∣σ has at least one

fixed point}. Using the definition of total variation distance we may find

∥RTn − πn∥TV ≥ ∣RTn(Fn) − πn(Fn)∣.

It is a classical result [20] that as n→∞ the chance that a permutation picked uniformly

at random has no fixed points tends to 1/e. Therefore,

lim
n→∞

πn(Fn) = 1 − 1

e
.
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Next we show that under the random transposition measure we have a high probability of

being in set Fn at time (n/2) logn − cn. Consider the set of random variables {Ri, Li}i∈N
which track which positions our hands have picked at time i in the random transposition

shuffle. Clearly if the random variables Ri, Li, have not chosen every position by time t

then the permutation we find ourselves at after t steps of random transposition shuffle

must have at least one fixed point. Let J tn be the event {∪ti=1{Ri, Li} ⊊ [n]}, then by the

reasoning above we have J tn ⊆ Fn, and hence P(J tn) ≤ RTt
n(Fn). The probability P(J tn)

may be computed using a coupon collector’s argument. In the uniform coupon collector’s

problem, the expected time to collect all coupons is n logn. However, we are performing

two independent trials at each step, leading our expected time to choose every card to

quicken to (n/2) logn. More careful arguments in Feller [20, Section IV.2] show that,

P(J tn) = 1 − e−ne
−2t/n

+ o(1), as n→∞.

Proof of the lower bound in Theorem 2.3.2. Let tn = (n/2) logn and wn = n. Putting to-

gether our bounds on the probability of Fn under our different distributions we may

complete our lower bound on total variation distance as follows,

lim inf
n→∞

∥RTtn−cwn
n − πn∥TV ≥ lim inf

n→∞
RTtn−cwn

n (Fn) − π(Fn) ≥
1

e
− e−e

2c

.

This completes the proof of a total variation cutoff for the random transposition shuffle.

The analysis of the random transposition shuffle is exemplary in a few important ways.

We always look to reduce the upper bound on total variation distance to a collection of

summations like those in (2.14). At this point we may perform analysis of the summations

to find a value of t for which they are bounded. The mixing time of random walks on

groups are thought to be controlled by their second biggest eigenvalue. The first sum (2.14)

contains the largest eigenvalues of the random transposition shuffle, including the second

biggest eigenvalue (2.15), and is closely bounded at time (n/2) logn, whereas the second

summation disappears at time (n/2) logn as n → ∞. Therefore, the first summation in

(2.14) can be thought of as determining the mixing time for the random transposition

shuffle.

The lower bound argument presented for the random transposition shuffle shows how

versatile the simple bound in Lemma 1.1.32 can be when applied to a careful choice of set.

Often we like to reduce a lower bound in total variation distance to other probabilistic

problems, in this instance a coupon collector’s problem. This gives us another insight into

why a cutoff occurs, hard to reach sets stop the total variation decaying before they are

hit, keeping it close to 1 until we pass the critical time of (n/2) logn.

2.3.2 The Top-to-Random Shuffle

The top-to-random shuffle is defined by the following procedure: choose a position of the

deck uniformly at random, then insert the top card into this position. The top-to-random

shuffle is an example of a random walk which is not constant on the conjugacy classes of

Sn. This means the technique of discrete Fourier transforms does not work as effectively
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for the top-to-random shuffle, which leads us to use the method of strong stationary times

instead.

Definition 2.3.6. The top-to-random shuffle has driving probability TTRn defined by:

TTRn(σ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1/n if σ = (k k − 1 . . . 1) for some k ∈ [n]

0 otherwise
.

The elements (k k−1 . . . 1) represent cycling the top k cards of the deck one space up the

deck with the card in position k moving to position k − 1, and finally the top card of the

deck moving to position k.

We may clearly see that the top-to-random shuffle is not constant on the conjugacy

classes of Sn, for a quick counter example notice that TTRn((2 3)) ≠ TTRn((1 2)) for n ≥ 3.

In this section we prove the following total variation cutoff for the top-to-random shuffle,

the arguments we present are taken from [16, Chapter 4A, Theorem 1] and [32, Section

6.5.3].

Theorem 2.3.7. Let tn = n logn and wn = n. The top-to-random shuffle TTRn satisfies

the following bounds for any c > 0:

lim sup
n→∞

∥TTRtn+cwn
n − πn∥TV ≤ e−c (2.16)

lim inf
n→∞

∥TTRtn−cwn
n − πn∥TV ≥ 1 − 2

ec−1
(2.17)

Thus, the top-to-random shuffle exhibits a cutoff in total variation distance at time

n logn with a window of size n.

Upper Bound

We start by proving the upper bound (2.16), but for separation distance – we can then

appeal to Lemma 1.1.24 to give a bound on total variation distance. Recall that our deck

of cards is labelled {1, . . . , n} from bottom to top. As mentioned above to find a bound on

separation distance we use a strong stationary time for the top-to-random shuffle. To this

end define T to be the first time card 1 is randomly inserted into the deck when following

the top-ro-random shuffle. We prove that T is a strong stationary time and then reduce

the analysis of P(T > n logn + cn) to the uniform coupon collector’s problem.

Lemma 2.3.8. Let T be the first time card 1 is inserted into the deck during the top-to-

random shuffle. Then T is a strong stationary time for the top-to-random shuffle.

Proof. We start our shuffle from the identity permutation with card 1 at the bottom of

the deck and card n at the top. Define a sequence of stopping times Ti, as the first time

i cards have been placed under the bottom card of the deck, i.e. card 1. Notice that

Tn−1 is the first time card 1 has reached the top of our deck, define the stopping time Tn

as the time when card 1 is inserted into the deck uniformly at random. Our proposed

strong stationary time is T = Tn = Tn−1 + 1. By induction we prove that at time Ti the

bottom i cards of the deck are distributed according to a uniformly chosen permutation of
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Si. Clearly at time T1 the first card to be inserted below card 1 is in a uniformly chosen

permutation of S1. Assume our hypothesis to be true for time Ti, so the bottom i cards

of our deck are arranged in a uniformly chosen permutation of Si. At time Ti+1 we have

moved a new card into one of i + 1 positions below card 1, thus forming a permutation of

Si+1 amongst the bottom i + 1 cards. To see that this permutation is uniformly chosen

from Si+1 we must recognise that the new card has equal probability of being inserted into

of any of the i + 1 positions below card 1. Pairing this fact with our inductive hypothesis

means that all permutations of the bottom i+ 1 cards are equiprobable. Furthermore, the

arrangement of the bottom i+ 1 cards is independent of the value of Ti+1. At time T = Tn
the entire deck is distributed according to a uniformly chosen permutation of Sn, and so

T is a strong stationary time.

Lemma 2.3.9. The time T satisfies the following bound:

P(T > n logn + cn) ≤ e−c (2.18)

Proof. Define a sequence of stopping times Ti as in Lemma 2.3.8. Our first observation is

that

T = Tn = (Tn − Tn−1) + (Tn−1 − Tn−2) + ⋅ ⋅ ⋅ + (T2 − T1) + T1.

The increments Ti − Ti−1 are independent and geometrically distributed with parameter

i/n. The random variable T shares the same distribution as the uniform coupon collector’s

problem which may be described as follows: Suppose at each time step we choose a card

from our deck of n cards uniformly at random, if this is the first time we have seen this

card we say we collect this card. The coupon collector’s problem asks how long does it

takes to collect every card of the deck?

Let Ti be the first time we have collected i cards from the deck, clearly we have

Tn = (Tn − Tn−1) + ⋅ ⋅ ⋅ + (T2 − T1) + T1.

The increments Ti−Ti−1 are independent and are geometrically distributed with parameter

(n−i)/n. Therefore, Tn−i−Tn−i−1 ∼D Ti−Ti−1 and so the random variables Tn ∼D Tn follow

the same law. In the uniform coupon collector’s problem let Cti be the event we have not

collected the card i by time t. Using the events Cti we may find a simple bound on Tn
(and respectively T ) at the time t = n logn + cn,

P(Tn > t) = P(Tn > t) ≤ P(
n

⋃
i=1

Cti) ≤
n

∑
i=1

P(Cti ) ≤
n

∑
i=1

(1 − 1

n
)
n logn+cn

≤ e−c. (2.19)

Proof of Upper Bound in Theorem 2.3.7. Using the strong stationary time T , together

with Lemma 2.3.9, we proven the upper bound (2.16) as follows,

lim sup
n→∞

∥TTRn logn+cn
n − π∥TV ≤ lim sup

n→∞
∥TTRn logn+cn

n − πn∥Sep

≤ lim sup
n→∞

P(T > n logn + cn) ≤ e−c
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Lower Bound

To prove the lower bound present in Theorem 2.3.7 we again appeal to Lemma 1.1.32. For

k ≥ 2, let Ik be the set of permutations our deck such that the bottom k cards remain in

their original relative order, in other words σ ∈ Tk if and only if σ(1) < σ(2) < ⋅ ⋅ ⋅ < σ(k).
Under the uniform distribution we have (n

k
) ways to arrange the bottom k cards while

retaining their relative order, after which we may place the remaining n − k cards in any

order giving us a factor of (n − k)!. Therefore,

πn(Ik) =
(n − k)!
n!

(n
k
) = 1

k!
≤ 1

k − 1
. (2.20)

To bound the probability of being in set Ik under the top-to-random shuffle we make

use of the random variables Ti introduced in the proof of Lemma 2.3.9. The time T −Tk−1

is the first time the card k has come to the top of our deck and been reinserted into

the deck. Before this time the bottom k cards always remain in the same relative order,

therefore TTRt
n(Ik) ≥ P(T − Tk−1 > t). Using the decomposition of T in Lemma 2.3.9 we

may rewrite the random variable into independent geometrically distributed increments

T − Tk−1 = ∑ni=k(Ti − Ti−1). The expectation and variance of the random variable T − Tk−1

is as follows:

E[T − Tk−1] =
n

∑
i=k

n

i
≥ n(logn − log k) (2.21)

Var[T − Ti−1] ≤
∞
∑
i=k

n2

i(i − 1)
≤ n2

k − 1
. (2.22)

Applying Chebyshev’s inequality to the random variable T − Tk−1 we find,

P(T − Tk−1 ≤ n logn − cn) ≤ 1

k − 1
(2.23)

provided that c ≥ log k + 1. We are now in a position to prove the lower bound on the

mixing time of the top-to-random shuffle.

Proof of Lower Bound in Theorem 2.3.7. Let Ik be the set defined above and set k − 1 =
⌈ec−1⌉. Provided n ≥ ec−1 + 1 we may use our bounds (2.20), (2.23), to form the following

lower bound on total variation distance,

∥TTRtn−cwn
n − πn∥TV ≥ TTRtn−cwn

n (Ik) − πn(Ik) ≥ 1 − 2

ec−1
.

Taking the lim inf as n→∞ gives the desired result.

The top-to-random shuffle showcases the advantages of strong stationary times. In this

case analysis via discrete Fourier transforms would be difficult owing to its support being

a mix of elements from different conjugacy classes. Instead a strong stationary time leads

to a simple and effective upper bound on its mixing time, reducing the analysis to the well

studied uniform coupon collector’s problem. The strong stationary time T was the limit

of a sequence of stopping times, which build up a uniform set from S1 to Sn. In Chapter

3 we present a novel strong stationary time for the one-sided transposition shuffle which
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does not rely on building up a sequence of uniform subgroups. The lower bound for the

top-to-random shuffle further showcases the usefulness of Lemma 1.1.32 in reducing the

analysis of total variation distance to discrete random variables.

2.3.3 The Random-to-Random Shuffle

The last shuffle we study in this chapter is the random-to-random shuffle. The random-to-

random shuffle is described by the following procedure: at each step pick a card uniformly

at random and take it from the deck, then pick a position uniformly at random and insert

the card back into the deck at this position. This shuffle has a long history in the literature

of mixing times of random walks. First introduced by Diaconis and Saloff-Coste [17] in

1993, together they proved its mixing time was of order n logn, and conjectured that a

total variation cutoff occurs at time (3/4)n logn. This bound was improved by Uyemura-

Reyes [43] who showed the mixing time to be in the range [(n/2) logn, 4n logn]. In

2012, Subag [41] was able to prove a lower bound of (3/4)n logn − (1/4)n log logn on the

mixing time and in 2017, Bernstein and Nestoridi [10] proved a matching upper bound

of (3/4)n logn − (1/4)n log logn on the mixing time. Together these results prove the

existence of a total variation cutoff for the random-to-random shuffle.

The recent work of Bernstein and Nestoridi [10] relied on knowledge of the eigenvalues

for the random-to-random shuffle. These were computed by Dieker and Saliola [19], in

a breakthrough publication where they invented the technique of lifting eigenvectors and

eigenvalues. We dedicate this subsection to an exploration of the technique of lifting

eigenvectors for the the random-to-random shuffle. This technique uses the branching

structure of the symmetric group to turn eigenvalues of the random-to-random shuffle on

n cards into eigenvalues of the random-to-random shuffle on n + 1 cards.

To describe the random-to-random shuffle we introduce the concept of symmetrizing

a random walk. Consider a Markov chain {Xt}t≥0 on Sn driven by a probability P . By

viewing our Markov chain backwards in time we may create a new a Markov chain {Y t}t≥0

driven by probability P −1(σ) ∶= P (σ−1), this is called the time reversal process. Note that

for a reversible random walk on a group driven by P we necessarily have that P −1 = P ,

this follows straight from the detailed balance equations (1.1). From any shuffle P we may

create a reversible random walk called the symmetrization of P , by taking the convolution

of P with its time reversal process, i.e., P −1 ⋆ P .

Consider the top-to-random shuffle, its time reversal process does the following: it picks

a card uniformly at random and places it back on top of the deck, the shuffle described by

this process is called the random-to-top shuffle, denoted RTTn. Imagine that we perform

one random-to-top shuffle and then one top-to-random shuffle, the two steps together

define a process whereby we pick a card uniformly at random and insert it back into the

deck uniformly at random, we know this as the random-to-random shuffle.

Definition 2.3.10. The random-to-random shuffle on Sn picks a card uniformly at ran-

dom and places it back into the deck uniformly at random. It is defined by the following
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probability distribution:

RTRn(σ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1/n if σ = e

1/n2 if σ = (i i + 1 . . . j − 1 j) for 1 ≤ i < j ≤ n

1/n2 if σ = (i i − 1 . . . j + 1 j) for 1 ≤ j < i ≤ n

0 otherwise

. (2.24)

The first non-identity permutations above correspond to taking a card from position j and

moving it down the deck to position i. The second non-identity permutation correspond to

taking a card from position j and moving it up the deck to position i. We may also define

the random-to-random shuffle as the symmetrization of the top-to-random (or equivalently

random-to-top) shuffle, RTRn = TTRn ⋆RTTn. The random-to-random shuffle defines an

aperiodic, transitive, reversible Markov chain.

The random-to-random shuffle is not constant on the conjugacy classes of Sn, again

this may see by considering two transpositions, RTRn((1 2)) ≠ RTRn((1n)) for all n ≥ 3.

This makes the discrete Fourier transforms of probability RTRn difficult to compute,

leading us to require a different method to study this shuffle. The random-to-random

shuffle is reversible, which means if we can compute its eigenvalues we may apply the

classical `2 bound given in Theorem 1.1.27 to find an upper bound on the total variation

distance of the random-to-random shuffle and uniform distribution. Dieker and Saliola

provide an interesting combinatorial description (involving Young diagrams) of all the

eigenvalues for the random-to-random shuffle which follows directly from the procedure of

lifting eigenvectors.

Theorem 2.3.11 (Theorem 5 [19]). The eigenvalues of the random-to-random shuffle on

n cards are indexed by pairs of partitions (λ,µ) with λ ⊢ n and λ/µ a horizontal strip. The

eigenvalue eig(λ,µ) corresponding to (λ,µ) occurs with multiplicity dλd
µ and has value,

eig(λ,µ) = 1

n2
((∣λ∣ + 1

2
) − (∣µ∣ + 1

2
) +Diag(λ) −Diag(µ)) .

The combinatorial description of the eigenvalues of the random-to-random shuffle hides

away the algebraic techniques used to find them. The key idea behind Deiker and Saliola’s

work is to exploit the module structure of Sn in order to create new eigenvectors from

known ones. The first step is to change from studying the random-to-random shuffle as a

probability to instead studying it as an element of the group algebra Sn.

Definition 2.3.12. The random-to-random shuffle on n cards can be viewed as the fol-

lowing element of Sn:

ARTRn ∶= n2 ∑
σ∈Sn

RTRn(σ)σ

= ne + ∑
1≤i<j≤n

(i i + 1 . . . j − 1 j) + ∑
1≤j<i≤n

(i i − 1 . . . j + 1 j) (2.25)

We call this element the algebraic random-to-random shuffle. Note that to create ARTRn

we have scaled our probability by a factor of n2.
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This new viewpoint allows the random-to-random shuffle to act on modules of Sn

via the element ARTRn. In particular we are interested in the action of ARTRn on the

regular module of Sn, because the eigenvectors and eigenvalues of this action are exactly

the eigenvectors and eigenvalues for the probability RTRn.

Lemma 2.3.13. A probability distribution ν ∶ Sn → [0,1] is an eigenvector for RTRn

with eigenvalue ε, if and only if v = ∑η∈Sn ν(η)η ∈ Sn is an eigenvector for ARTRn with

eigenvalue n2ε.

Proof. Suppose ν is an eigenvector for RTRn with eigenvalue ε, this means that P ⋆ν = ε ν.

Therefore, ε ν(σ) = ∑η RTRn(ση−1)ν(η). Now consider the action

ARTRn
⎛
⎝ ∑η∈Sn

ν(η) η
⎞
⎠

= n2 ∑
σ∈Sn

∑
η∈Sn

RTRn(σ)ν(η)ση

= n2 ∑
τη−1∈Sn

∑
η∈Sn

RTRn(τη−1)ν(η) τ

= n2 ∑
τη−1∈Sn

ε ν(τ) τ = n2ε
⎛
⎝ ∑η∈Sn

ν(η)η
⎞
⎠
.

In the second equally we have relabelled ση = τ , and the last equality we relabel the sum

to match our original vector.

Following Lemma 2.3.13 we may focus on the action of ARTRn on the regular mod-

ule with the understanding that all of the eigenvectors and eigenvalues of the random-

to-random shuffle may be recovered. Recall that the regular module has the following

decomposition

Sn ≅ ⊕
λ⊢n

dλS
λ as Sn-modules. (2.26)

Note that because ARTRn is an element of our group algebra it acts on the module

Sn and stabilises the submodules Sλ. Therefore, the decomposition (2.26) means we can

reduce the problem of finding eigenvectors for the random-to-random shuffle on Sn to the

problem of finding eigenvectors belonging to the individual Specht modules Sλ. Moreover,

since the shuffle is acting as an element of the group algebra, we are then free to study

its action on the single copy of Sλ inside Mλ to solve this problem rather than having

to stick to the copies of Sλ which appear inside Sn. In work that follows we present the

eigenvectors of ARTRn as elements of the Specht modules comprised of words as described

in Section 2.2.6.

The Specht modules of Sn and Sn+1 are closely related by the branching structure

in Theorem 2.2.25, and by Young’s lattice shown in Figure 2.1. The random-to-random

shuffle also exhibits a recursive structure which can be seen by taking the difference of the

shuffle on n + 1 cards and the shuffle on n-cards,

ARTRn+1 −ARTRn = e + ∑
1≤i≤n
j=n+1

(i i + 1 . . . n n + 1) + ∑
1≤j≤n
i=n+1

(n + 1 n . . . j + 1 j).
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The permutations that do not involve the new card in position n + 1 have disappeared

in our comparison of the two elements. The key idea is that moving the card in position

j to position i < j does not affect any of the cards above j, thus it does not matter

how many cards above j our deck contains. This recursive structure is at the heart of

why lifting eigenvectors works and we recover a similar recursive structure for the one-

sided transposition shuffle (see equation (3.6)). The technique of lifting eigenvectors uses

the branching structure for Specht modules and the recursive structure of the random-to-

random shuffle, to turn eigenvectors of ARTRn into eigenvectors of ARTRn+1. In particular

we lift eigenvectors belonging to the Specht modules Sµ into eigenvectors belonging to

Specht modules Sλ where µ ⊂ λ, i.e., for λ we can create from µ by adding boxes.

The following theorem summarises the main result of lifting eigenvectors for the random-

to-random shuffle.

Theorem 2.3.14 (Theorem 21 [19]). Let λ ⊢ n, and 1 ≤ i ≤ l(λ) + 1 be such that λ + ei ⊢
n+ 1. Then there exists a linear map Lλi ∶ Sλ → Sλ+ei, such that, Lλi maps eigenvectors of

the random-to-random shuffle on n cards belonging to Sλ, to eigenvectors of the random-to-

random shuffle on n+ 1 cards belonging to Sλ+ei. In particular, if v ∈ Sλ is an eigenvector

of ARTRn with eigenvalue ε, then Lλi (v), if non-zero, is an eigenvector of ARTRn+1 with

eigenvalue ε + (n + 1) + (λi + 1) − i.

Using Theorem 2.3.14 we may find eigenvectors of a Specht module Sλ from by lifting

eigenvectors from below, however we must be careful that the map Lλi we apply does not

kill the eigenvectors by mapping them to 0. The non-injectivity of the lifting operators

stops all the eigenvectors belonging to a Specht module Sλ being described by lifting.

However, Deiker and Saliola managed to recover all the eigenvalues belonging to Sλ by

proving that the eigenvectors we fail to find by lifting belong to the kernel of ARTRn+1 and

thus have eigenvalue 0. This was taken into account when formulating Theorem 2.3.11.

The lifting operators Lλi may be fully described in terms of linear operators on the space

of words Mn (see Section 2.2.6), which we now introduce.

Definition 2.3.15. Define two linear operators on the space Mn spanned by words, to

do so, it is enough to define the effect on any given word. Let w = w1 . . .wn in Wn.

1. Let a ∈ [n + 1]. Define the shuffling operator, denoted shi ∶ Mn → Mn+1 as the

following linear map

sha(w) =
n+1

∑
j=0

w1 . . . wj awj+1 . . . wn.

The operator sha is a linear combination of all words that are formed by inserting a

into one position. The shuffling operator is a linear map from Mλ (or Sλ) to Mλ+ea .

2. Let a, b ∈ [n]. Define the switching operator, denoted Θb,a ∶Mn →Mn as follows:

Θb,a(w) ∶= ∑
1≤k≤n
wk=b

w1 ⋅ . . . ⋅wk−1 ⋅ a ⋅wk+1 ⋅ . . . ⋅wn.

The operator Θb,a forms a linear sum of all words created from w by replacing one
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occurrence of b with a. If we restrict to domain Mλ (or Sλ) then we end in the

module Mµ with λ + ea = µ + eb.

Remark 2.3.16. We should define the shuffling and switching operators for all possible

domains Mλ, however to do so would burden us with more notation, when it will always

be clear from context which domain and codomain we are considering.

Example 2.3.17. Let w = 1231 ∈ M4. Then sh1(w) = 11231 + 11231 + 12131 + 12311 +
12311 = 2 ⋅ 11231 + 12131 + 2 ⋅ 12311, this is a element belongs to the vector space M5.

We may see that 1231 ∈ M (2,1,1) ⊆ M4 and sh1(1231) ∈ M (3,1,1) ⊆ M5. An example of

our switching operator is Θ3,1(w) = 1211, and Θ1,3(w) = 3231 + 1233. Our images for the

switching operator are Θ3,1(w) ∈M (3,1) and Θ1,3(w) ∈M (1,1,2). Another characteristic of

the switching operator is that for any w ∈Mn and i ∈ [n] we have Θi,i(w) = evali(w)w .

We may construct the lifting operators Li as linear combinations of the shuffling and

switching operators defined in Definition 2.3.15. Moreover, we may tell exactly when there

is no possible lifting from module Sµ to Sλ by analysis of the partitions µ and λ.

Lemma 2.3.18 (Theorem 21 [19]). Let λ ⊢ n. The lifting operators as defined in Theorem

2.3.14 are a linear combination of the shuffling and switching operators, explicitly they are:

Lλi = ∑
1≤b1<...<bm<bm+1=i

⎛
⎝

m

∏
j=1

1

(λi − i) − (λbj − bj)
Θbj ,bj+1

⎞
⎠
○ shb1 . (2.27)

For i = 1,2 the above equation simplifies to:

Lλ1 = sh1 (2.28)

Lλ2 = sh2 +
1

(λ2 − 2) − (λ1 − 1)
Θ1,2 ○ sh1 (2.29)

Furthermore, let µ ⊂ λ, such that µ +∑kj=1 eij = λ where i1 ≤ . . . ≤ ik. Define the lifting

operator from µ to λ, denoted Lλ/µ, as the map Lλ/µ = ∏k
i=1Lij , that is lift µ to λ by

forming each row in order.

Theorem 2.3.19 (Theorem 26 [19]). Suppose λ ⊢ n. Every non-kernel eigenvector of

ARTRn belonging to Sλ may be found by lifting a eigenvector in the kernel of ARTR∣µ∣
belonging Sµ for some µ ⊂ λ with λ/µ a horizontal strip. In other words if v ∈ µ is a

eigenvector in the kernel of ARTR∣µ∣, then Lλ/µ(v) ≠ 0 if and only if λ/µ is a horizontal

strip. Thus, all eigenvalues for the module Sλ may be recovered as they are the eigenvalue

of a lifted eigenvector, or 0 otherwise.

We end this chapter with explicit examples of lifting eigenvectors of the random-to-

random shuffle to Specht modules of S1, S2, and S3, using the lifting operators Lλ1 ,Lλ2 .

We start with the only Specht module of S1 which is S(1) = ⟨1⟩. Define the trivial partition

(0) to have a trivial eigenvector of the empty word, denoted ω, with eigenvalue 0. The

only partition strictly contained in the partition (1) is the empty partition (0) and so we

the only possible lifting is

L(1)/(0)(ω) = L(0)1 (ω) = 1.
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We easily see that L(1)/(0)(ω) is the only eigenvector of ARTR1 belonging to S(1) with

eigenvalue 1.

We now compute the eigenvectors for ARTR2 belonging to the Specht modules of S2.

For the simple modules S(2) = ⟨11⟩ and S(1,1) = ⟨12 − 21⟩ we must start our lifting in

the module S(0) because the we saw above that S(1) has no eigenvector in the kernel of

ARTR1 thus it can not be used for lifting. The skew diagram of (2)/(0) is a horizontal

strip, therefore

L(2)/(0)(ω) = L(1)1 L
(0)
1 (ω) = L(1)1 (1) = 2 ⋅ 11

is an eigenvector of ARTR2. The skew diagram of (1,1)/(0) is not a horizontal strip

therefore when we applying the lifting operator we find

L(1,1)/(0)(ω) = L(1)2 L
(0)
1 (ω) = (12 + 21) − (12 + 21) = 0

as Theorem 2.3.19 asserts. The eigenvector of ARTR2 belonging to S(1,1) is actually the

basis element 12 − 21 which has corresponding eigenvalue 0.

Our final example is lifting eigenvectors to the 2 dimensional Specht module S(2,1) =
⟨112 − 211,121 − 211⟩. Consider µ ⊂ (2,1), from our above work we know that the only

modules Sµ which contain eigenvectors in the kernel of ARTR∣µ∣ are µ = (0) or µ = (1,1).
The skew diagram of (2,1)/(0) is not a horizontal strip so lifting ω does not recover

an eigenvector. The skew diagram (2,1)/(1,1) is a horizontal strip and so lifting the

eigenvector 12 − 21 we find

L(1,1)1 (12 − 21) = 2 ⋅ (112 − 211)

which belongs to S(2,1) and is an eigenvector of ARTR3 with eigenvalue 4. To find the

remaining eigenvector for S(2,1) it is enough to look at the orthogonal complement of the

subspace ⟨112−211⟩ ⊂ S(2,1), this gives an eigenvector 112−2 ⋅121+211 with eigenvalue 0.

This ends our discussion of the random-to-random shuffle. Since Dieker and Saliola’s

work Lafrenière has shown that similar techniques can be applied to more general sym-

metrized shuffling operators [30]. In the next chapter we show that the technique of lifting

eigenvectors can be used to recover the spectrum of a variety of transposition shuffles,

including the one-sided transposition shuffle . The lifting we present in Chapter 3 differs

in key ways from Deiker and Saliola’s [19] because we are analysing very different random

walks. The random-to-random shuffle is a uniform measure on its non-identity support

which covers many conjugacy class of Sn, whereas the one-sided transposition shuffle is not

uniform on its single conjugacy class of transpositions. These differences lead to changes

in the underlying algebra of lifting eigenvectors and subsequentially a change in the re-

quired lifting operators. The biggest difference for the one-sided transposition shuffle is

the corresponding lifting operators are injective and thus never kill our eigenvectors (see

Theorem 3.2.18). This means that all the eigenvectors as well as the eigenvalues of the

one-sided transposition shuffle belonging to Sλ may be recovered by lifting eigenvectors

from modules Sµ with µ ⊂ λ. In Chapter 3 we give the full details of this technique for

the one-sided transposition shuffle. Later in Chapter 4 we extend the technique of lifting

eigenvectors to the random transposition shuffle and one-sided transposition shuffle on the
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hyperoctohedral group.
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Chapter 3

The One-sided Transposition

Shuffle

In this chapter we introduce a new class of shuffles called one-sided transposition shuffles:

these have the defining property that at step i the right hand’s position (Ri) is chosen

according to a distribution supported on [n], and given the value of Ri the distribution of

the left hand’s position (Li) is supported on the set {1, . . . ,Ri}. In this chapter we restrict

ourselves to the case where the left hand is chosen uniformly from {1, . . . ,Ri}. We begin

by focusing on the situation where our right hand is chosen uniformly from its possible

range, we call this the (unbiased) one-sided transposition shuffle. Afterwards we generalise

our techniques to allow our right hand to be driven by a non-uniform distribution, we call

these the biased one-sided transposition shuffles.

3.1 Main Results

In order to state our main results we introduce the (unbiased) one-sided transposition

shuffle formally as follows.

Definition 3.1.1. The (unbiased) one-sided transposition shuffle is the random walk on

Sn generated by the following distribution on the conjugacy class of transpositions:

OSTn(τ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
n ⋅

1
j if τ = (i j) for some 1 ≤ i ≤ j ≤ n

0 otherwise.

We use the convention that all permutations (i i) are equal to the identity element e,

and therefore OSTn(e) = 1
n(1 +

1
2 + ⋅ ⋅ ⋅ +

1
n) = Hn/n, where Hk denotes the kth harmonic

number.

This shuffle is clearly reversible, transitive, and has stationary distribution equal to

the uniform distribution on Sn, denoted πn. However, the shuffle is not constant on the

conjugacy class of transpositions, unlike the previously seen random transposition shuffle.

We look to study the total variation mixing time of the family of one-sided transposition

shuffles {OSTn}n∈N. Recall that mixing time is defined as follow:

tTV(ε) = min{t ∶ ∥OSTt
n − πn∥TV < ε}.
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Existence of a cutoff at time tn implies that tmix
n (ε) ∼ tn for all ε ∈ (0,1) (see Definition

1.1.33). The main conclusion of our work is that the one-sided transposition shuffle exhibits

a cutoff at time tn = n logn.

Theorem 3.1.2. The one-sided transposition shuffle OSTn satisfies the following bounds

for any c1 > 0 and c2 > 2:

lim sup
n→∞

∥OSTn logn+c1n
n − πn∥TV ≤

√
2e−c1 , (3.1)

and lim inf
n→∞

∥OSTn logn−n log logn−c2n
n − πn∥TV ≥ 1 − π2

6(c2 − 2)2
. (3.2)

Thus, the one-sided transposition shuffle exhibits a cutoff at time n logn with a window of

order n log logn.

The lower bound on the total variation distance in (3.2) will be obtained via a coupling

argument which allows us to compare the one-sided transposition shuffle to a variation of

a coupon collector’s problem. To establish the upper bound on total variation distance

we make use of the classical `2 bound given in Theorem 1.1.27. In order to use this result

we compute the eigenvalues of the one-sided transposition shuffle.

To analyse the spectrum of the one-sided transposition shuffle we make use of the

technique of lifting eigenvectors. We make several non-trivial changes to the technique

presented in Section 2.3.3 in order to employ it in the analysis of transposition shuffles:

we believe that this is the first time such a technique has been shown to be applicable

to non-symmetrized shuffles or to a transposition shuffle. In Section 3.2 we describe an

explicit method for obtaining the eigenvectors of OSTn+1 from those of OSTn. The key

to our method is to show that each eigenvalue of OSTn corresponds to a standard Young

tableau, and may be computed explicitly from the entries in the tableau. We state here

the main result which we aim towards with our analysis.

Theorem 3.1.3. The eigenvalues of OSTn are labelled by standard Young tableaux of size

n, and the eigenvalue represented by a tableau of shape λ appears dλ times, where dλ is the

dimension of λ. For a standard Young tableau T of shape λ the eigenvalue corresponding

to T is given by

eig(T ) = 1

n
∑

boxes
(i,j)

j − i + 1

T (i, j)
, (3.3)

where the sum is performed over all boxes (i, j) in T .

The organisation of this chapter is as follows. Section 3.2 will be dedicated to the

proof of Theorem 3.1.3. We give full details of the lifting procedure, highlighting original

contributions to the method which allow the recovery of the eigenvalues for the one-sided

transposition shuffle. In Section 3.3 we first explore some important properties of the

eigenvalues for OSTn, and then use these to prove the upper bound on the mixing time

given by Theorem 3.1.2. The corresponding lower bound will be proved in Section 3.5,

using entirely probabilistic arguments. In Section 3.6 we consider a generalisation of

the one-sided transposition shuffle, in which Ri is chosen according to a non-uniform
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distribution: we show that the algebraic technique developed for OSTn holds in this more

general setting, and that the well-known mixing time for the random transposition shuffle

may be recovered in this way. Finally in Section 3.7 we show that the unbiased one-sided

transposition shuffle exhibits a cutoff in separation distance at n logn, the same time as

our cutoff in total variation distance.

3.2 Lifting Eigenvectors for Transposition Shuffles

In this section we explore the technique of lifting eigenvalues for transposition shuffles. Our

analysis follows a similar path to Dieker and Saliola’s but with several novel changes which

allow us to describe every eigenvector of the one-sided transposition shuffle by lifting. We

end this section showing how lifting may be used to recover all the eigenvalues for the

random transposition shuffle which were previously stated in Section 2.3.1.

3.2.1 Lifting Eigenvectors for the One-sided Transposition Shuffle

Recall that the permutation modules Mλ of Sn are formed of a basis of words in the

alphabet [n] with length n and evaluation λ ⊢ n. The simple modules Sλ of Sn are called

Specht modules and labelled by λ a partition of n. Within each permutation module Mλ

we find one copy of the Specht module Sλ. The permutation module M (1n) is isomorphic

to the regular module for Sn, and has decomposition,

M (1n) ≅ ⊕
λ⊢n

dλS
λ as Sn-modules. (3.4)

To model our shuffle OSTn acting on the space Sn we need to turn it into a linear

operator. In fact we turn it into an element of our group algebra Sn.

Definition 3.2.1. Let n ∈ N. The one-sided transposition shuffle on n cards may be

viewed as the following element of the group algebra Sn.

∑
1≤i≤j≤n

OSTn((i j))(i j) = ∑
1≤i≤j≤n

1

nj
(i j).

To simplify our calculations it is convenient to scale this operator by n, so we introduce a

new element called the algebraic one-sided transposition shuffle:

AOSTn ∶= ∑
1≤i≤j≤n

1

j
(i j). (3.5)

Lemma 3.2.2. Let ν be a distribution of Sn, and define v = ∑η∈Sn ν(η)η an element of

Sn. Then ν is an eigenvector for OSTn with eigenvalue ε if and only if v is an eigenvalue

for AOSTn with eigenvalue nε.

Proof. The proof follows from the same argument as Lemma 2.3.13.

By realising the one-sided transposition shuffle as an element of the group algebra we

can concentrate on finding the eigenvalues of AOSTn acting on Sn or equivalently M (1n).

Furthermore, applying equation (3.4), we can reduce the problem of finding eigenvalues

for the shuffle on M (1n) to the problem of finding eigenvalues belonging to the individual
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Specht modules Sλ comprised of the words formed by polytabloids. To lift our eigenvectors

from Sn-modules Sλ to Sn+1 modules Sλ+ei we introduce linear operators on the vector

space of words Mn. The one-sided transposition shuffle admits a recursive structure which

is seen when we focus on the difference of AOSTn+1 and AOSTn,

AOSTn+1 −AOSTn =
1

(n + 1) ∑
1≤i≤(n+1)

(i n + 1). (3.6)

This signifies that the only difference between shuffle n+1 and n cards is the movement

of the new card in position n + 1. This relation is key to lifting eigenvectors as it allows

us to model the action of AOSTn+1 using AOSTn and special linear operators which we

now define.

Definition 3.2.3. We define two linear operators on the spaces spanned by words. To do

so, it is enough to define the effect on any given word. Let w = w1 . . . wn ∈Wn.

1. Let a ∈ [n + 1]. Define the adding operator Φa ∶Mn →Mn+1 as follows:

Φa(w) ∶= wa (3.7)

The adding operator appends the symbol a to the end of the word. If we think about

the adding operator acting on tabloids {T} instead of words, then Φa({T}) is the

process of adding a box labelled n + 1 onto row a of the tabloid {T}.

2. Let a, b ∈ [n] Define the switching operator Θb,a ∶Mn →Mn as follows:

Θb,a(w) ∶= ∑
1≤k≤n
wk=b

w1 . . . wk−1 awk+1 . . . wn. (3.8)

The operator Θb,a forms a linear sum of all words created from w by replacing one

occurrence of b with a.

We previously defined the switching operator in Definition 2.3.15. Again we should

define the operators for all possible domains separately but to do so would burden us with

more notation: it will always be clear from context which domain and codomain we are

considering. The adding operator is our analogue of the shuffling operator (Section 2.3.3)

and it allow us to lift eigenvectors of the one-sided transposition shuffle.

Recall that given a partition λ we may add boxes onto certain rows to form a new

partition. Since we are allowing ourselves to blur the distinction between n-tuples and

partitions of n, if we add a box on row i the new tuple/partition formed is λ + ei. By the

end of our analysis we only need the cases where λ + ei is a partition.

Lemma 3.2.4. Given a ∈ [n + 1] and an n-tuple λ of non-negative integers summing to

n, we have

Φa ∶Mλ →Mλ+ea .

In other words the restriction of Φa to Mλ (or Sλ) has image in Mλ+ea.

Given a, b ∈ [n] and n-tuples λ,µ of non-negative integers summing to n with λ + ea =
µ + eb, we have

Θb,a ∶Mλ →Mµ,
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i.e., the restriction of Θb,a to Mλ (or Sλ) has image in Mµ.

Our next result establishes the crucial equation upon which all the subsequent results

in this section rely. It relates the shuffle on n cards to that on n+1 cards, and gives us the

basis of lifting eigenvectors. The following theorem is an analogue of [19, Theorem 38].

Theorem 3.2.5. Given n ∈ N, acting on words in Mn we have

AOSTn+1 ○Φa −Φa ○AOSTn =
1

n + 1
Φa +

1

n + 1
∑

1≤b≤n
Φb ○Θb,a . (3.9)

Proof. It suffices to prove the result on a generic word in Mn. Let w = w1 . . . wn be a

word of length n and let a ∈ [n + 1]. Consider the two terms on the left hand side applied

to w:

(AOSTn+1 ○Φa)(w) = 1

n + 1
∑

j=n+1
1≤i≤n+1

(i j) (wa) + ∑
1≤i≤j≤n

1

j
(i j) (wa) (3.10)

(Φa ○AOSTn)(w) =
⎛
⎝ ∑

1≤i≤j≤n

1

j
(i j)(w)

⎞
⎠
a. (3.11)

The second summation in (3.10) cancels with (3.11) because the adjoined a is in the

(n+1)-th place, therefore it never moves and may be brought outside the sum. This leaves

us with the following:

(AOSTn+1 ○Φa −Φa ○AOSTn)(w) = 1

n + 1
∑

1≤i≤n+1

(i n + 1)(wa). (3.12)

If i = n + 1 we move nothing, giving the term wa = Φa(w). Otherwise we apply the

transposition (i n + 1) to wa. This has the same effect as replacing the ith symbol wi in

w with a and then appending wi on the end of the new word. Since we do this for all

symbols in w, the net effect is the same as ∑1≤b≤nΦb○Θb,a applied to w. The operator Θb,a

systematically finds all occurrences of the letter b in w and replaces with an a, and then

Φb puts the b back on the end. Since w ∈Wn, all possibilities are exhausted by letting b

range over every possible letter 1 ≤ b ≤ n. This completes the proof.

In terms of shuffling cards, we can interpret (3.9) as taking into account the difference

between shuffling a deck and then adding a card versus adding a card and then shuffling.

If we can understand how the operators Φa and Θb,a behave, then this inductively tells

us how the shuffle on n + 1 cards behaves using information about the shuffle on n cards,

vastly simplifying our original problem. We now record a key property of the linear maps

Θa,b.

Lemma 3.2.6 (See Section 2.9 of [38]). The switching operators Θb,a are Sn-module

morphisms.

Proof. This is clear from the definitions, since Sn is acting by place permutations, the

operator Θb,a commutes with the action of Sn. It amounts to the same thing to replace
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an occurrence of the symbol b with a symbol a and then permute the word as to first

permute the word and then replace the same symbol b in its new position with an a.

The above result is helpful in understand how our adding operators behave when

restricted to Specht modules.

Lemma 3.2.7 (Lemma 44 of [19]). Let λ ⊢ n be such that λ+ea = µ+eb for some a, b ∈ [n].
Then Θb,a is non-zero on Sλ if and only if λ dominates the non-increasing rearrangement

of µ. In particular, if b > a then Θb,a(Sλ) = 0.

Proof. Since Sλ is simple and Θb,a is a module homomorphism, the image Θb,a(Sλ) is 0 or

isomorphic to Sλ, by Schur’s lemma. But Θb,a(Sλ) lies in Mµ because of the relationship

λ+ea = µ+eb. Let ν be the non-increasing rearrangement of µ, then ν ⊢ n, and Mµ ≅Mν ,

so Mµ has a submodule isomorphic to Sλ if and only if λ dominates ν, see Lemma 2.2.21.

Therefore, if λ does not dominate ν we have Θb,a(Sλ) = 0. Conversely if λ dominates ν

then Θb,a(Sλ) ≅ Sλ (see [38, Section 2.10] for further details).

To finish, note that in terms of diagrams the fact that λ+ea = µ+eb corresponds to the

fact that we can get from the diagram for λ to that for µ by moving a box from row b to

row a. Hence, under the given hypothesis, we have that λ dominates the non-increasing

rearrangement of µ if and only if b ≤ a.

Example 3.2.8. Consider the Specht module S(3,1). We have seen previously that this

is spanned by the following polytabloids represented as words

S(3,1) = ⟨1112 − 2111, 1121 − 2111, 1211 − 2111⟩.

If we apply Θ2,1 we go from partition (3,1) to the partition (2,2). Lemma 3.2.7 tells us

that all the elements of S(3,1) belong to the kernel of Θ2,1. Verifying this result we find,

Θ2,1(1112 − 2111) = 1111 − 1111 = 0

Θ2,1(1211 − 2111) = 0

Θ2,1(1121 − 2111) = 0

Instead if we apply Θ1,2 we find a non-zero elements belonging to the module M (2,2).

Θ1,2(1112 − 2111) = 1212 + 1122 − 2211 − 2121

Θ1,2(1211 − 2111) = 1212 + 1221 − 2121 − 2112

Θ1,2(1121 − 2111) = 1221 + 1122 − 2211 − 2121.

The preceding result shows that when we restrict equation (3.9) to a Specht module

Sλ we can change the index of the summation in the final term on the right hand side, as

follows.

Corollary 3.2.9 (Corollary 45 of [19]).

(AOSTn+1 ○Φa −Φa ○AOSTn)∣Sλ =
1

n + 1
Φa∣Sλ +

1

n + 1
∑

1≤b≤a
Φb ○Θb,a∣Sλ (3.13)
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Having restricted equation (3.9) to the Specht module Sλ, we analyse the image in

the module Mλ+ea : note that it is clear from the left hand side of (3.9) that we land in

Mλ+ea . The following lemma and its proof follow Lemma 41 of Deiker and Saliola [19].

Lemma 3.2.10 (Lemma 41 of [19]). Suppose λ ⊢ n. Then the subspace Φa(Sλ) is con-

tained in an Sn+1 submodule of Mλ+ea that is isomorphic to ⊕µSµ, where the sum ranges

over the partitions µ obtained from λ by adding a box in row i for i ≤ a.

Proof. Let w be a word of length n, so that Φa(w) = wa. If the symbol b does not occur

in w then

Φa(w) = Θb,a(Φb(w)).

Let b = l(λ)+1, so b does not appear in any w ∈Mλ, and consider the Sn+1-submodule N

of Mλ+eb generated by the elements xb with x ∈ Sλ,

N = ⟨xb ∶ x ∈ Sλ⟩.

The submodule N is isomorphic to IndSn+1
Sn×S1

(Sλ ⊗ S1) (this is essentially the definition

of how to induce), and using the branching rules on Sn this decomposes as a multiplicity

free direct sum of Specht modules Sµ, where µ ⊢ n + 1 and λ ⊂ µ (see [22, Theorem I.7]).

Using the observation at the start of the proof, we obtain

Φa(Sλ) = Θb,a(Φb(Sλ)) ⊆ Θb,a(⟨Φb(Sλ)⟩) = Θb,a(N) ≅ ⊕
µ⊢n+1
λ⊂µ

Θb,a(Sµ).

Now note that Θb,a sends any word with evaluation λ+eb to a word with evaluation λ+ea,
and hence Θb,a(Mλ+eb) ⊆Mλ+ea . It follows that all nonzero summands Sµ appearing on

the right hand side occur for µ ⊢ n + 1 dominating the non-decreasing rearrangement of

λ + ea, and then by Lemma 3.2.7 we can conclude that µ is obtained from λ by adding a

cell in row i with i ≤ a, as required.

Lemma 3.2.7 tells us a great deal about the image of Φa(Sλ). Specifically we know

that Φa(Sλ) contains exactly one submodule isomorphic to Sλ+ea . This means that after

applying our adding operator we may project down onto the required simple module to

get a linear operator from Sλ → Sλ+ea : these will become our lifting operators. To project

onto the required simple module we introduce the isotypic projections.

Definition 3.2.11. Let G be a finite group, V be a simple G−module with corresponding

character χV . Let M be a module for G, we may define the isotypic projection πV from

M onto its unique defined V -isotypic component (see Definition 1.2.17) in the following

way:

πV ∶M →M, πV (m) =
⎛
⎝

dim(V )
∣G∣ ∑

g∈G
χV (g)g

⎞
⎠
m.

Note that the isotypic projection is given by the action of the element
dim(V )
∣G∣ ∑g∈G χV (g)g

which belongs to the centre of the group algebra C[G]. Thus, πV is a morphism of

G−modules and commutes with any G−module endomorphism.

Using these projections, we can now define our lifting operators, which will beproven

to map eigenvectors of AOSTn to those of AOSTn+1.
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Definition 3.2.12. Suppose λ ⊢ n and λ + ea = µ ⊢ n + 1 are two partitions. Define the

lifting operator

κλ,µa ∶= πµ ○Φa ∶ Sλ → Sµ ⊆Mµ.

Note that since Φa(Sλ) ⊆ Mµ and Mµ contains a unique copy of Sµ, therefore the Sµ

isotypic component in Mµ is just Sµ and κλ,µa (Sλ) is actually contained in Sµ.

We next prove that our lifting operators κλ,µa are injective Sn-module morphisms. This

differs from the lifting operators Lλi for the random to random shuffle which we have seen

are not injective. The difference in lifting operators depends in an essential way on our

adding operator Φa. Using the lifting operators κλ,µa we are able to find all the eigenvectors

for a module Sµ by lifted eigenvectors from partitions λ ⊂ µ.

Corollary 3.2.13. For any λ ⊢ n and λ + ea ⊢ n + 1, there exists some v ∈ Sλ with

κλ,λ+eaa (v) ≠ 0.

Proof. If κλ,λ+eaa (Sλ) = {0}, then the image Φa(Sλ) lies in the kernel of the projection

πλ+ea ∶ Mλ+ea → Sλ+ea , which is an Sn+1-submodule with no component equal to Sλ+ea .

Hence the submodule generated by Φa(Sλ) has no component equal to Sλ+ea . But we

previously observed that (with notation as in the proof of Lemma 3.2.10)

⟨Φa(Sλ)⟩ = ⟨Θb,a(Φb(Sλ))⟩ = Θb,a(⟨Φb(Sλ)⟩) ≅ Θb,a(N) ≅ ⊕
1≤i≤a

Sλ+ei .

Since the right hand side contains Sλ+ea as a summand, we have a contradiction.

We already know the map πµ is an Sn+1 module morphism. Let us realise Sn inside

Sn+1 as the stabilizer of the (n + 1)th position. Then any Sn+1-module gives rise to an

Sn-module by restriction (see Definition 2.2.23). Hence, πµ is a Sn-module morphism.

Lemma 3.2.14. The linear operator κλ,λ+eaa is a Sn-module morphism with trivial kernel.

Therefore, the lifting operators are injective.

Proof. Our key observation is that our adding operator commutes with elements of Sn

inside of Sn+1, i.e., Φa(σ(v)) = σ(Φa(v)) for all v ∈ Sλ and σ ∈ Sn ⊂ Sn+1. This is

obvious, since Φa adds an element in the final position which is not affected by σ. Hence

κλ,λ+eaa is the composition of two Sn-module morphisms. The final observation follows

from Corollary 3.2.13 – since κλ,λ+eaa is a nonzero module morphism with a simple module

as its domain, it must be injective by Schur’s lemma (Lemma 1.2.9).

The lifting operators κλ,λ+eaa being injective is a key point which simplifies our analysis

compared to that of the random to random shuffle - in [19] the lifting operators can kill

eigenvectors. The next results show that κλ,λ+eaa lifts eigenvectors of AOSTn into those of

AOSTn+1. To establish this we apply our projection πλ+ea to equation (3.13). Before we

do this we state an identity between our adding and switching operators which is critical

to the proofs which follow.
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Lemma 3.2.15. Take a, b ∈ [n]. Then our adding and switching operators satisfy the

following equality

Φb ○Θb,a = Θb,a ○Φb −Φa. (3.14)

Proof. Let w be a word of length n. Let v ∶= Φb(w) so that vn+1 = b. Consider the affect

of switching operator Θb,a on the word v of length n + 1. We find,

Θb,a ○Φb(w) = ∑
1≤k≤n+1
vk=b

v1 . . . vk−1 avk+1 . . . vn+1

= Φa(w) + ∑
1≤k≤n
vk=b

v1 . . . vk−1 avk+1 . . . vn b = Φa(w) +Φb ○Θb,a(w)

The second equality follows from taking the k = n + 1 out of the sum. The last equality

follows from the fact that vi = wi for all i ∈ [n]. Rearranging this final expression gives us

the desired equality.

We can now state our versions of [19, Lemma 48, Theorem 49]; the proofs follow

mutatis mutandis from the ones given there (the changes needed are to the constants in

equation (3.9)).

Lemma 3.2.16 (Lemma 48 of [19]). Let λ ⊢ n, and a ∈ {1,2, . . . , l(λ) + 1}. Take i ∈ [n]
such that 1 ≤ i ≤ a and set µ = λ + ei. Then,

AOSTn+1 ○ κλ,µa − κλ,µa ○AOSTn =
2 + λa − a
n + 1

κλ,µa + 1

n + 1
∑
i≤b<a

Θb,a ○ κλ,µb .

Proof. This follows from the work in [19] because we have not changed the switching

operators Θb,a. The values on the right hand side change to reflect our adding operators

and our new equation (3.9). We present the modified proof in full for completeness.

Continuing from Corollary 3.2.9 we know

AOSTn+1 ○Φa −Φa ○AOSTn∣Sλ =
1

n + 1
Φa∣Sλ +

1

n + 1
∑

1≤b≤a
Φb ○Θb,a∣Sλ .

Apply the isotypic projection πµ to both sides of the equation. Since AOSTn+1 is

given by the action of an element of the group algebra of Sn+1 and πµ is an Sn+1-module

morphism, these operators commute and so we have

AOSTn+1 ○ κλ,µa − κλ,µa ○AOSTn =
1

n + 1
κλ,µa + 1

n + 1
∑

1≤b≤a
(πµ ○Φb ○Θb,a)∣Sλ . (3.15)

Our adding operator Φa satisfies the equation (3.14) and so

πµ ○ (Φb ○Θb,a) = πµ ○ (Θb,a ○Φb −Φa) = Θb,a ○ πµ ○Φb − πµ ○Φa.

The right side side of the equation (3.15) now becomes

1 − a
n + 1

κλ,µa + 1

n + 1
∑

1≤b≤a
Θb,a ○ κλ,µb . (3.16)
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Notice that if b = a then Θa,a(w) acts as a scalar by the number of occurrences of the

symbol a in w. In our case all words in κλ,µa (Sλ) contain λa + 1 occurrences of a. Finally

if b < i we know that Φb(Sλ) does not contain the module Sλ+ei (by Lemma 3.2.10), so

κλ,µb = 0. Thus, equation (3.16) is equal to

2 + λa − a
n + 1

κλ,µa + 1

n + 1
∑
i≤b<a

Θb,a ○ κλ,µb .

Theorem 3.2.17 (Theorem 49 of [19]). Let λ ⊢ n, and a ∈ {1,2, . . . , l(λ)+1}. Take i ∈ [n]
such that 1 ≤ i ≤ a and set µ = λ + ei. Then,

AOSTn+1 ○ κλ,µa − κλ,µa ○AOSTn =
(2 + λi − i)
n + 1

κλ,µa . (3.17)

In particular if v ∈ Sλ is an eigenvector of AOSTn with eigenvalue ε, then κλ,µa (v) is

an eigenvector of AOSTn+1 belonging to Sµ with eigenvalue

ε + 2 + λi − i
n + 1

. (3.18)

Proof. This proof follows from the work in [19] with minor changes to reflect the one-sided

transposition shuffle. For i = a this follows from Lemma 3.2.16, this will be the key to

showing it holds in all cases. Let µ = λ + ei, we know from Lemma 3.2.16 that lifting via

κλ,µi gives us

AOSTn+1 ○ κλ,µi − κλ,µi ○AOSTn =
2 + λi − i
n + 1

κλ,µi . (3.19)

Applying the linear operator Θi,a to the above equation,

AOSTn+1 ○Θi,a ○ κλ,µi −Θi,a ○ κλ,µi ○AOSTn =
2 + λi − i
n + 1

Θi,a ○ κλ,µi . (3.20)

Consider the left hand side of (3.20) break up the lifting operator into κλ,µi = πµ ○Φi. The

projection πµ commutes with the Sn+1 module morphism Θi,a. Performing this we obtain

the equation below, restricted to Sλ;

AOSTn+1 ○Θi,a ○ κλ,µi −Θi,a ○ κλ,µi ○AOSTn

= AOSTn+1 ○ πµ ○Θi,a ○Φi − πµ ○Θi,a ○Φi ○AOSTn (3.21)

From the identity Θi,a ○Φi = Φa +Φi ○Θi,a (which is a rearrangement of equation (3.14)),

the equation (3.21) becomes

(AOSTn+1 ○ πµ ○Φa +AOSTn+1 ○ πµ ○Φi ○Θi,a) − (πµ ○Φa ○AOSTn + πµ ○Φi ○Θi,a ○AOSTn)

Our one-sided transposition shuffle AOSTn commutes with Θi,a, swapping these around
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and using our observation (3.19), we reduce the above equation to:

(AOSTn+1 ○ πµ ○Φa − πµ ○Φa ○AOSTn) + (AOSTn+1 ○ πµ ○Φi − πµ ○Φi ○AOSTn) ○Θi,a.

= (AOSTn+1 ○ κλ,µa − κλ,µa ○AOSTn) + (AOSTn+1 ○ κλ,µi − κλ,µi ○AOSTn) ○Θi,a.

= (AOSTn+1 ○ κλ,µa − κλ,µa ○AOSTn) +
2 + λi − i
n + 1

κλ,µi ○Θi,a. (3.22)

We are finished manipulating the left hand side of equation (3.20), and now focus our

attention on the right hand side. Taking the right hand side we split the lifting operator

into κλ,µi = πµ ○Φi, and use the properties of Θi,a and equation (3.14) in order to find the

following:

2 + λi − i
n + 1

Θi,a ○ κλ,µi

= 2 + λi − i
n + 1

πµ ○Θi,a ○Φi∣Sλ =
2 + λi − i
n + 1

πµ ○Φa∣Sλ +
2 + λi − i
n + 1

πµ ○Φi ○Θi,a∣Sλ

= 2 + λi − i
n + 1

κλ,µa + 2 + λi − i
n + 1

κλ,µi ○Θi,a. (3.23)

Combining equations (3.22) and (3.23) gives the desired result.

The last theorem tells us exactly how to turn eigenvectors of AOSTn into those of

AOSTn+1 and critically it shows how the eigenvalues change in value. An important

observation here is the numerator of the change 2+λi−i
n+1 depends on what box (or letter)

we are adding and the denominator depends on the step of our lifting, thus they are

independent of one another. The final part of our analysis rests on showing that all of the

eigenvectors in a Specht module Sµ can be retrieved by lifting from Specht modules Sλ

with µ = λ + ea. In fact, we show that these lifted eigenvectors form a basis of Sµ.

Theorem 3.2.18. For any µ ⊢ n + 1 we may find a basis of eigenvectors of AOSTn+1

for the module Sµ, by lifting the eigenvectors of AOSTn belonging to the modules Sλ with

λ ⊢ n and λ ⊂ µ.

Proof. We proceed by induction. For n = 1 we know that the simple modules S(2), S(1,1)

of S2 are both one dimensional. Therefore, the eigenvector 1 ∈ S(1) when lifted indeed

forms a basis for each simple module, this was demonstrated in Example 3.2.20.

Consider the simple module of Sµ with µ ⊢ n+ 1. We know from the classic branching

rules of Sn (Theorem 2.2.25) that the restriction of this module to Sn is given by

ResSn+1Sn
(Sµ) ≅ ⊕

λ⊢n
λ⊂µ

Sλ.

Importantly Sµ is isomorphic as a vector space to ⊕λ⊢n
λ⊂µ

Sλ. Now suppose we have a basis

of eigenvectors for every Sλ. By Lemma 3.2.14 the map κλ,µ(Sλ) gives a basis for the

submodule Sλ inside of the vector space of ResSn+1Sn
(Sµ). Hence, considering all of the

lifted eigenvectors from every Sλ together we find a basis for Sµ. By Theorem 3.2.17 the

lifted eigenvectors form a basis of eigenvectors for Sµ.

Inductively, for any λ ⊢ n, Theorem 3.2.18 gives us the way to find all the eigenvectors

for AOSTn belonging to the Specht module Sλ: starting at S∅ and recursively applying
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lifting operators until we reach Sλ gives us an eigenvector, and all eigenvectors arise

in this way. Note that S∅ has no eigenvectors attached to it, but we allow the empty

word ω to be an eigenvector with eigenvalue 0, and Φa(ω) = a. This agrees with the

formula in Theorem 3.2.17 because a is the only eigenvector of AOST1 with eigenvalue

1 = 0+(2+0−1)/(1). The inductive process of lifting naturally forms one path up Young’s

lattice which starts at ∅ and ends at λ. Furthermore, by Theorem 3.2.18 each unique path

we take ∅ → λ results in a unique eigenvector for Sλ, and all these eigenvectors together

form a basis. We now are in a position to prove Theorem 3.1.3.

Proof of Theorem 3.1.3. Every eigenvector in our constructed basis gives a distinct eigen-

value of Sλ, hence there are dλ distinct eigenvalues. These are eigenvalues for the shuffle

AOSTn, and each one appears dλ times due to the isomorphism in equation (3.4). Overall

we have found ∑λ⊢n d2
λ = n! eigenvalues and thus have a complete set. Given a standard

tableau T ∈ SYT(λ), we build up the tableau following its labelling and keeping track of

the changes in eigenvalue given by Theorem 3.2.17. When box (i, j) is added to T we get

a change in eigenvalue of 2+λi−i
n+1 = 2+(j−1)−i

T (i,j) = j−i+1
T (i,j) . After summing these changes for all

boxes (i, j) in T we divide by n to normalise the eigenvalue, recovering equation 3.3.

We have given an explicit description of how to compute the eigenvalues of the shuffle

AOSTn. We now state a description of maps κλ,λ+eaa in terms of adding and switching

operators, these allow explicit computation of any eigenvector if required. The proof of

Theorem 3.2.19 follows from directly from the work of [19, Section 5.6].

Lemma 3.2.19 (Theorem 21 [19]). Let λ ⊢ n. The lifting maps as defined in Definition

3.2.12 are a linear combination of the shuffling and switching operators, explicitly they

are:

κλ,λ+eii = ∑
1≤b1<...<bm<bm+1=i

⎛
⎝

m

∏
j=1

1

(λi − i) − (λbj − bj)
Θbj ,bj+1

⎞
⎠

Φb1 . (3.24)

For example, the first three lifting operators are:

κλ,λ+e11 = Φ1

κλ,λ+e22 = Φ2 +
1

(λ2 − 2) − (λ1 − 1)
Θ1,2Φ1

κλ,λ+e33 = Φ3 +
1

(λ3 − 3) − (λ2 − 2)
Θ2,3 ○Φ2 +

1

(λ3 − 3) − (λ1 − 1)
Θ1,3 ○Φ1

+ 1

((λ3 − 3) − (λ2 − 2))((λ3 − 3) − (λ1 − 1))
Θ2,3 ○Θ1,2 ○Φ1

Example 3.2.20. Consider the Specht module S(1) = ⟨1⟩. The eigenvector of AOST1

belonging to this module is 1 with eigenvector 1. Using our lifting operators κ
(1),(2)
1 and

κ
(1,1)
2 we find:

κ
(1),(2)
1 (1) = Φ1(1) = 11

κ
(1,1)
2 (1) = (Φ2 −

1

2
Θ1,2Φ1) (1) = 1

2
⋅ (12 − 21)

The above elements belong to the modules S(2) and S(1,1) respectively. Furthermore 11 is
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an eigenvector of AOST2 with eigenvalue 2, and 12 − 21 is an eigenvector of AOST2 with

eigenvalue 1.

For the analysis of the mixing time of the one-sided transposition shuffle we only use the

eigenvalues computed in Theorem 3.1.3. To end this section we give an explicit example

of computing an eigenvalue using the process described in the proof Theorem 3.1.3.

Example 3.2.21. Let λ = (4,2,1) and choose a standard Young tableau

T1 =
1 3 6 7
2 4
5

.

We build up T1 using our lifting maps, at each step Theorem 3.2.17 tells us the change in

our eigenvalue. We start at n = 0 with eigenvector ω ∈ S∅ with eigenvalue 0. Applying the

lifting map κ∅,∅+e11 gives us:

κ
∅,(1)
1 (ω) = 1 ∈ S(1) with the eigenvalue 0 + 2 + 0 − 1

1
= 1.

On the second row, this corresponds to applying κ
(1),(1)+e2
2 , which gives:

κ
(1),(1,1)
2 κ

∅,(1)
1 (ω) = κ(1),(1,1)2 (1) = 1

2
(12 − 21) with eigenvalue 1 + 2 + 0 − 2

2
= 1.

Continuing the procedure in the proof of Lemma 3.1.3 we build up T1 keeping track of the

change in eigenvalue at each step.

∅
1
1Ð→ 1

0
2Ð→ 1

2

2
3Ð→ 1 3

2

1
4Ð→ 1 3

2 4

−1
5Ð→ 1 3

2 4
5

3
6Ð→ 1 3 6

2 4
5

4
7Ð→ 1 3 6 7

2 4
5

The arrows represent the lifting operators and the value above each arrowis the change in

eigenvalue at each step. From here computing the eigenvalue for T1 is a matter of summing

all the changes then dividing by n (because we scaled OSTn in Definition 3.2.1). We find

the eigenvalue for T1 being

eig(T1) =
1

7
(1

1
+ 0

2
+ 2

3
+ 1

4
− 1

5
+ 3

6
+ 4

7
) = 1

n
∑

boxes
(i,j)

j − i + 1

T1(i, j)
= 1171

2940
.

3.2.2 Lifting Eigenvectors for the Random Transposition Shuffle

The eigenvalues of the random transposition shuffle were stated in Section 2.3.1 and shown

to correspond to Fourier transforms of the random transposition shuffle at the irreducible

representations of Sn. Given a partition λ of n we computed these to be

1

n
+ n − 1

n

χλ(τ)
dλ

= n + 2Diag(λ)
n2

with multiplicity d2
λ.

We show our lifting operators κλ,λ+eia may be used to lift eigenvectors of the random

transposition shuffle. Thus, we recover the a description of the eigenvalues of the random

transposition shuffle in terms of partitions of n. The analysis follows from the work
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of Section 3.2.1, but we need to account for changes in constants needed to represent

a different shuffle. Recall that in Definition 2.3.1 the random transposition shuffle was

defined with driving probability RTn. We begin our analysis by turning the random

transposition shuffle into an element of the group algebra Sn.

Definition 3.2.22. The random transposition shuffle on n cards can be viewed as the

following element of Sn:

ARTn ∶= n2 ∑
σ∈Sn

RTn(σ)σ = n ⋅ e + 2 ∑
1≤i<j≤n

(i j). (3.25)

We call this element the algebraic random transposition shuffle. Note that here we have

scaled by n2.

We remark that the eigenvalues of RTn may be recovered from those of ARTn, as

we have done for the the random-to-random and the one-sided transposition shuffles (see

Lemma 3.2.2). The random transposition shuffle also exhibits a recursive structure shown

in the equation below

ARTn+1 −ARTn = e + 2 ∑
1≤i≤n

(i n + 1). (3.26)

This allows us to lift the eigenvectors of ARTn to those of ARTn+1. The next result

replicates Theorem 3.2.5, which relates the shuffle ARTn+1 to a combination of ARTn and

our adding and switching operators.

Theorem 3.2.23. Given n ∈ N, we have

ARTn+1 ○Φa −Φa ○ARTn = Φa + 2 ∑
1≤b≤n

Φa ○Θb,a. (3.27)

Proof. This follows from the same proof as Theorem 3.2.5 allowing for changes in constants

in equation (3.25)

From here the rest of the analysis in Section 3.2.1 can be followed without fundamental

changes to the algebra. Keeping track of the coefficients in Theorem 3.2.23 carefully we

can swiftly arrive at a modified Theorem 3.2.17 for the random transposition shuffle.

Theorem 3.2.24 (Theorem 49 of [19]). Let λ ⊢ n, and a ∈ {1,2, . . . , l(λ)+1}. Take i ∈ [n]
such that 1 ≤ i ≤ a and set µ = λ + ei. Then,

ARTn+1 ○ κλ,µa − κλ,µa ○ARTn = (1 + 2(λi − i))κλ,µa . (3.28)

In particular if v ∈ Sλ is an eigenvector of ARTn with eigenvalue ε, then κλ,µa (v) is an

eigenvector of ARTn+1 belonging to µ with eigenvalue

ε + 1 + 2(λi + 1 − i) (3.29)

The value λi + 1 − i is the diagonal index of the added box (i, λi + 1).

Notice that the change in eigenvalue (1+ 2(λi + 1− i)) has no dependence on n. Thus,

the eigenvalues we recover are not dependent on the order in which we lift our eigenvectors
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(path we take up Young’s lattice), in other words, we can label the eigenvalues by partitions

λ ⊢ n, rather than standard Young tableaux of λ. Using Theorem 3.2.24 and the proof of

Theorem 3.2.18 we can recover exactly the eigenvalues we found in Section 2.3.1.

Lemma 3.2.25. The eigenvalues of the random transposition shuffle RTn are indexed by

partitions λ. For a partition λ the corresponding eigenvalue is:

n + 2Diag(λ)
n2

with multiplicity d2
λ

Proof. This follows from following the procedure of Theorem 3.1.3 keeping track of the

new changes in eigenvalue from Theorem 3.2.24.

Comparison of the lifting for the one-sided transposition and random transposition

shuffles allows us to see what parts of the method are coloured by our choice of shuffle.

The equations in Theorems 3.2.5 and 3.2.23 are crafted to fit with our chosen shuffle, but

the lifting operators κλ,µa remain the same in both cases. The key here is how our shuffles

act on n + 1 versus n cards, they both show a similar structure (compare equations (3.6)

and (3.26)) which allows the recovery of their eigenvectors using our lifting operators. For

lifting eigenvectors to work on a generic family of transposition shuffles {Pn} we need

the difference of Pn+1 and Pn to only involve the movement of the new card n + 1. This

allows the adding operator Φa to mimic the addition of this card, and for the recovery of

the eigenvalues of Pn+1 using those known for Pn. In Section 3.6 we show this technique

to be applicable to an entire class of transposition shuffles, called the biased one-sided

transposition shuffles.

3.3 Eigenvalues Analysis

In this section we establish important results about the eigenvalues of the one-sided trans-

position shuffle. Throughout this section we will use standard facts and definitions about

Young diagrams and tableaux, these were laid out in Sections 2.2.1, 2.2.2. We also need

some specialised notation to deal with the eigenvalues of OSTn which we introduce now.

Definition 3.3.1. For any λ ⊢ n, define the tableau T→λ by inserting the numbers 1, . . . , n

from left to right. Define the tableau T ↓λ by inserting the numbers 1, . . . , n from top to

bottom.

Following from Section 3.2.1 we know the eigenvalues for OSTn are labelled by Young

tableaux of size n, and Theorem 3.1.3 gives an explicit formula for the eigenvalue associated

to any given tableau. Before applying the classical `2 bound on total variation distance,

we first investigate relationships between the eigenvalues. We show that the eigenvalue

corresponding to T ∈ SYT(λ) is bounded by the eigenvalues for T→λ and T ↓λ. To simplify

our upper bound calculation, we prove that we only need to consider the partitions for

which T→λ gives a positive eigenvalue. Lastly, we prove that the eigenvalues corresponding

to T→λ , T
↓
λ decrease as one moves down the dominance order of partitions. We first illustrate

the preceding definitions and discussion with an example.

Example 3.3.2. Let λ = (3,2) ⊢ 5. There are 5 standard Young tableaux of shape

λ, these tableaux together with the associated eigenvalues are given in Table 3.1 below.
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In this table, T→λ is the first tableau listed and T ↓λ is the last one; we can see that the

corresponding eigenvalues bound all the others.

T ∈ SYT((3,2))
1 2 3
4 5

1 2 4
3 5

1 2 5
3 4

1 3 4
2 5

1 3 5
2 4

eig(T ) 0.64 0.59 0.57 0.523 0.503

Table 3.1: Eigenvalues corresponding to T ∈ SYT((3,2)).

For a Young tableau T which is not necessarily standard, define eig(T ) to be the value

given by the formula in Theorem 3.1.3 (if T is not standard this value has no relation to

the eigenvalues of OSTn). We begin our analysis by showing how swapping numbers in

a tableau affects the corresponding eigenvalue. Throughout this section we accompany

results with explicit examples to aid understanding of the results and their proofs.

Lemma 3.3.3. Let T be a Young tableau. Suppose we form a new tableau S by swapping

two values in T which have coordinates (i1, j1), (i2, j2) in T . WLOG assume T (i1, j1) <
T (i2, j2). Then the change in corresponding eigenvalues satisfies the following inequality:

eig(S) − eig(T )
⎧⎪⎪⎪⎨⎪⎪⎪⎩

≥ 0 if (i1 − i2) + (j2 − j1) ≥ 0

< 0 if (i1 − i2) + (j2 − j1) < 0 .

Importantly, if we move the larger entry down and to the left the change in eigenvalue is

non-negative; if it moves up and to the right then the change is negative.

Proof. Since S and T agree in all but two entries the difference in eigenvalues is given by

eig(S) − eig(T ) = 1

n
(j1 − i1 + 1

T (i2, j2)
+ j2 − i2 + 1

T (i1, j1)
) − 1

n
(j1 − i1 + 1

T (i1, j1)
+ j2 − i2 + 1

T (i2, j2)
)

= (i1 − i2) + (j2 − j1)
n

( 1

T (i1, j1)
− 1

T (i2, j2)
) .

Example 3.3.4. Let λ = (3,3,3) and take T to be the Young tableau of shape λ,

T =
1 2 3
8 9 4
7 6 5

.

To demonstrate Lemma 3.3.3 we transpose the value 9 with every other value in the

tableau. Table 3.2 gives the new tableaux and the corresponding change in eigenvalue.

We see that when 9 is moved down and to the left (swapping with values 6,7,8) the change

in eigenvalue is non-negative, and when it is moved up and to the right (swapping with

values 2,3,4) the change in eigenvalue is negative.
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S ∈ YT((3,2))

9 2 3
8 1 4
7 6 5

1 9 3
8 2 4
7 6 5

1 2 9
8 3 4
7 6 5

1 2 3
8 4 9
7 6 5

1 2 3
8 5 4
7 6 9

1 2 3
8 6 4
7 9 5

1 2 3
8 7 4
9 6 5

1 2 3
9 8 4
7 6 5

5670 ⋅ (eig(S) − eig(T )) 0 −245 −280 −87.5 0 35 40 8.75

Table 3.2: A list of tableaux formed from T in Example 3.3.4 by transposing the value

9 with a value from {1, . . . ,8}. To aid comparison of the eigenvalues we have found the

difference with eig(T ) and scaled by 5670.

Lemma 3.3.3 allows us to prove that the eigenvalue for any T ∈ SYT(λ) is bounded

between those for T ↓λ and T→λ .

Lemma 3.3.5. Let λ ⊢ n. For any T ∈ SYT(λ) we have the following inequality:

eig(T ↓λ) ≤ eig(T ) ≤ eig(T→λ ). (3.30)

Proof. Reading across the rows of T , beginning with the first row, identify the first box in

which T and T→λ have different entries; write (i, j) for the coordinates of this box. Due to

the way in which T→λ is constructed, T (i, j) > T→λ (i, j). Furthermore, the number T (i, j)−1

must occur strictly below and to the left of T (i, j), since T is a standard Young tableau.

Swapping entries T (i, j) − 1 and T (i, j) in tableau T produces a new element of SYT(λ)
whose corresponding eigenvalue is no smaller than eig(T ), thanks to Lemma 3.3.3.

We iterate this procedure, swapping T (i, j) − 1 with T (i, j) − 2 etc, until T (i, j) =
T→λ (i, j). Note that at this point the entries in the first T (i, j) boxes of T and T→λ must

agree, moreover these entries are now fixed in place. We now proceed to the next box in

which T and T→λ differ, and repeat: this results in a sequence of swaps which make the

entries of T agree with those in T→λ , and which can only ever cause the corresponding

eigenvalue to increase. This proves the second inequality in Lemma 3.3.5, and the first

one follows via an analogous argument on the columns of T this time with our eigenvalue

decreasing after each iteration.

Example 3.3.6. Let λ = (3,2,1,1), to illustrate the procedure defined in Lemma 3.3.5,

we show the first two iterations of the algorithm for turning T ↓λ into T→λ . The first two

iterations involve transforming the boxes (1,2) and (1,3) in T ↓λ to match the boxes of (1,2)
and (1,3) in T→λ (box (1,1) is always matched for any pair of standard Young tableaux).

We keep track of the eigenvalue of the tableaux at each step of the algorithm to show it

is always increasing. Applying transpositions in order to fix box (1,2) we find,

1 5 7 8
2 6
3
4

→
1 4 7 8
2 6
3
5

→
1 3 7 8
2 6
4
5

→
1 2 7 8
3 6
4
5

0.207738 0.232738 0.263988 0.305655

Notice that after each swap we still remain at a standard Young tableau. Once box

(1,2) is fixed we proceed to fix box (1,3) in the same way
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1 2 7 8
3 6
4
5

→
1 2 6 8
3 7
4
5

→
1 2 5 8
3 7
4
6

→
1 2 4 8
3 7
5
6

→
1 2 3 8
4 7
5
6

0.305655 0.311607 0.33244 0.35744 0.38869

If we repeat this process until all boxes (i, j) match T→λ , we only ever increase the

eigenvalue and thus find an upper bound. If instead we wanted to turn T→λ into T ↓λ we

would first fix box (2,1) like so:

1 2 3 4
5 6
7
8

→
1 2 3 5
4 6
7
8

→
1 2 4 5
3 6
7
8

→
1 3 4 5
2 6
7
8

0.471726 0.446726 0.415476 0.37381

Now the eigenvalue is decreasing after each step, if we fix every column in turn we

eventually end at T ↓λ.

The next result and its corollary establish that when bounding eigenvalues, we only

need to consider those given by T→λ .

Lemma 3.3.7. Let λ ⊢ n. For any T ∈ SYT(λ) we have

eig(T ) + eig(T ′) = 2Hn

n
.

Proof. Let T ∈ SY T (λ). Then

eig(T ) + eig(T ′) = 1

n
∑

boxes
(i,j)∈T

j − i + 1

T (i, j)
+ 1

n
∑

boxes
(j,i)∈T ′

i − j + 1

T ′(j, i)

= 1

n
∑

boxes
(i,j)∈T

j − i + 1

T (i, j)
+ 1

n
∑

boxes
(i,j)∈T

−(j − i) + 1

T (i, j)
= 2Hn

n
.

Corollary 3.3.8. Let λ ⊢ n, and suppose we have eig(T ↓λ) ≤ 0, then we have

eig(T→λ′ ) ≥ ∣eig(T ↓λ)∣ ≥ 0. (3.31)

Proof. It follows from Lemma 3.3.7 that eig(T→λ′ ) + eig(T ↓λ) = 2Hn/n. Thus if eig(T ↓λ) ≤ 0

then

eig(T→λ′ ) =
2Hn

n
− eig(T ↓λ) ≥ −eig(T ↓λ) = ∣eig(T ↓λ)∣ ≥ 0 . (3.32)

We end this section by establishing a relationship between eigenvalues and the domi-

nance ordering on partitions.

Lemma 3.3.9. Let λ,µ ⊢ n. If λ ⊵ µ then

eig(T→λ ) ≥ eig(T→µ ) (3.33)

and eig(T ↓λ) ≥ eig(T ↓µ). (3.34)
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Proof. If we can show the statements hold for any partition µ which is formed from λ by

moving only one box then inductively it will hold for all λ ⊵ µ. Suppose µ is formed from

λ by moving a box from row a to row b, with a < b ≤ l(λ) + 1 (if b = l(λ) + 1 then a new

row is created by placing the removed box on the very bottom of the diagram). The box

we move goes from coordinates (a, λa) of λ to (b, λb + 1) in µ.

We begin by proving eig(T→λ ) ≥ eig(T→µ ). Since T→λ and T→µ are both numbered from

left to right, the effect of moving a box from row a to row b is that T→µ (i, j) = T→λ (i, j)− 1

for any box (i, j) ∈ T→λ ∩T→µ with a < i ≤ b; boxes in all other rows contain the same values

in both tableaux. Using equation (3.3), and remembering to include a term to account for

the box being moved, we find that:

n(eig(T→λ ) − eig(T→µ )) = ( λa − a + 1

T→λ (a, λa)
− (λb + 1) − b + 1

T→µ (b, λb + 1)
) + ∑

(i,j)∈T→λ ∩T→µ
with a<i≤b

[ 1

T→λ (i, j)
− 1

T→µ (i, j)
] (j − i + 1)

≥ ( λa − a + 1

T→λ (a, λa)
− (λb + 1) − b + 1

T→µ (b, λb + 1)
) + (λa − a + 1)( 1

T→µ (b, λb + 1)
− 1

T→λ (a, λa)
)

= (λa − λb) + (b − a) − 1

T→µ (b, λb + 1)
≥ 0.

The first inequality holds because all the square-bracketed terms in the sum are negative;

we upper bound j − i+1 ≤ λa−a+1, and the resulting sum telescopes. The final inequality

holds because (λa − λb) ≥ 1 and (b − a) ≥ 1.

For the inequality (3.34), recall that λ ⊵ µ if and only if µ′ ⊵ λ′. Therefore, using

inequality (3.33) we find that eig(T→µ′ ) ≥ eig(T→λ′ ). Now Lemma 3.3.7 gives −eig(T ↓µ) ≥
−eig(T ↓λ) and thus we recover the desired inequality.

Example 3.3.10. The dominance ordering on partitions of size 4 is a linear order. Table

3.3 lists T→λ and T ↓λ for every partition λ ⊢ 4. Reading from the table we can see the

eigenvalues of T→λ and T ↓λ decrease down the dominance ordering. Also we may use the

eigenvalues in the table to verify that eig(T ) + eig(T ′) = 2H4/4 = 25/24.

T→λ 1 2 3 4
1 2 3
4

1 2
3 4

1 2
3
4

1
2
3
4

24 ⋅ eig (T→λ ) 24 18 13.5 10.5 1

T ↓λ 1 2 3 4
1 3 4
2

1 3
2 4

1 4
2
3

1
2
3
4

24 ⋅ eig (T ↓λ) 24 14.5 11.5 7 1

Table 3.3: The eigenvalues T→λ , T ↓λ for every partition λ ⊢ 4. The dominance order follows

from left to right. We have scaled the values by 24 for ease of comparison
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3.4 Upper Bound for the One-sided Transposition Shuffle

In this section we complete the proof of the upper bound present in Theorem 3.1.2, making

use of the results of Section 3.3. The analysis splits into two parts, dealing separately with

those partitions λ having either large or small first row.

Theorem 1.1.27 allows us to upper bound the total variation distance in terms of the

non-trivial eigenvalues of the transition matrix. Using Theorem 3.1.3 we see that the triv-

ial eigenvalue corresponds to the one-dimensional partition λ = (n), and so Theorem 3.1.3

implies that

4∥OSTt
n − πn∥2

TV ≤ ∑
λ⊢n
λ≠(n)

dλ ∑
T ∈SY T (λ)

eig(T )2t . (3.35)

Recall from Lemma 3.3.5 that for any T ∈ SYT(λ) the eigenvalue corresponding to T may

be bounded by those corresponding to T ↓λ and T→λ . With this in mind, we let Λ→n = {λ ⊢
n ∶ ∣eig(T ↓λ)∣ ≤ ∣eig(T→λ )∣} and Λ↓n = {λ ⊢ n ∶ ∣eig(T ↓λ)∣ > ∣eig(T→λ )∣}; note that these are

disjoint sets, with Λ→n ⊆ {λ ⊢ n ∶ eig(T→λ ) ≥ 0} and Λ↓n ⊆ {λ ⊢ n ∶ eig(T ↓λ) < 0}. Using

Lemma 3.3.5 and then Corollary 3.3.8 we relax the upper bound as follows:

4∥OSTt
n − πn∥2

TV ≤ eig (T(1n))
2t + ∑

λ∈Λ→n
λ≠(n)

dλ ∑
T ∈SY T (λ)

eig(T )2t + ∑
λ∈Λ↓n
λ≠(1n)

dλ ∑
T ∈SY T (λ)

eig(T )2t

≤ eig (T(1n))
2t + ∑

λ∈Λ→n
λ≠(n)

d2
λ eig(T→λ )2t + ∑

λ∈Λ↓n
λ≠(1n)

d2
λ eig(T ↓λ)

2t

≤ eig (T(1n))
2t + ∑

λ ∶ eig(T→λ )≥0

λ≠(n)

d2
λ eig(T→λ )2t + ∑

λ ∶ eig(T ↓
λ
)<0

λ≠(1n)

d2
λ eig(T ↓λ)

2t

≤ eig (T(1n))
2t + ∑

λ ∶ eig(T→λ )≥0

λ≠(n)

d2
λ eig(T→λ )2t + ∑

λ ∶ eig(T ↓
λ
)<0

λ′≠(1n)

d2
λ′ eig(T→λ′ )

2t

≤ eig (T(1n))
2t + 2 ∑

λ ∶ eig(T→λ )≥0

λ≠(n)

d2
λ eig(T→λ )2t . (3.36)

In the penultimate line we have used Corollary 3.3.8 and the fact that dλ′ = dλ. The final

inequality follows by a second application of Corollary 3.3.8: if λ satisfies eig(T ↓λ) < 0 then

eig(T→λ′ ) must be non-negative.

The first term in (3.36) is simple to deal with at time t = n log(n)+cn. We have already

observed that eig (T(n)) = 1, and so Lemma 3.3.8 implies that eig (T(1n)) = 2Hn/n−1. This

means that

eig (T(1n))
2t = (1 − 2Hn

n
)

2(n logn+cn)
≤ e−4Hn(log+c) for n ≥ 5 (3.37)

here we have used the bound 1 − x ≤ e−x, we see that this tends to zero for any positive c

as n→∞.

It therefore remains to bound the sum in (3.36). The partitions with the biggest

eigenvalues are be those with large first rows λ1, and so we split the analysis into two
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parts according to this value; by large partitions we mean those with λ1 ≥ 3n/4, and small

partitions are those with λ1 < 3n/4. Large partitions give the biggest eigenvalues for OSTn

and must be dealt with carefully; it is these which will determine the mixing time of the

shuffle. Small partitions have correspondingly larger dimensions, but eigenvalues which

are small enough to give control around time of order n log(n). We begin by identifying

the partition at the top of the dominance ordering for any fixed value of λ1, which allows

us to employ Lemma 3.3.9.

Definition 3.4.1. Let k ∈ [n], define the partition (n−k,⋆) to have as many rows of n−k
as possible, with the last row being formed of n − (n − k)⌊n/(n − k)⌋ boxes. For example,

(n − k,⋆) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(n − k, k) if k ∈ [1, n/2]

(n − k,n − k,2k − n) if k ∈ (n/2, n/3]

Lemma 3.4.2. Suppose λ ⊢ n has first row equal to λ1 = n − k, then by moving boxes up

and to the right it follows trivially that λ ⊴ (n − k,⋆).

The notation of (n − k,⋆) is driven by our analysis as it will transpire that only the

size of the first two rows are important for our bounds. For each k we also need a bound

on sum of the squared dimensions of all partitions with λ1 = n− k, and for this recall that

Lemma 2.3.5 tells us

∑
λ⊢n

λ1=n−k

d2
λ ≤ (n

k
)

2

k! ≤ n
2k

k!
.

The Eigenvalues of Partition (n − 1,1)

Before we proceed with the analysis of large and small partitions let us look at the partition

(n−1,1) in more detail. This partition gives the first and largest term in the sum in (3.36),

and controls the mixing time of the one-sided transposition shuffle.

Label the different standard Young tableau of shape (n − 1,1) by Ti, where i denotes

the value in the second row of (n − 1,1). The eigenvalue of Ti is given by,

eig(Ti) = 1 − 1

n

⎛
⎝

1 +
n

∑
j=i+1

1

j

⎞
⎠

We have eig(Tn) = eig(T→(n−1,1)), and a clear linear order on the eigenvalues given by

eig(Tn) > eig(Tn−1) > . . . > eig(T3) > eig(T2).

The tableau Tn gives us the second biggest (in absolute value) eigenvalue of the one-

sided transposition shuffle. The contribution of this tableau to the sum (3.35) is,

(n − 1) (1 − 1

n
)

2t

(3.38)

and we have seen previously that this eigenvalue is killed at time t = (n/2) logn. We have

said before that the time needed to kill the second biggest eigenvalue often tells us the time

expected for a random walk to converge to its stationary distribution. For the one-sided
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transposition shuffle the eigenvalue Tn is tightly grouped around the other eigenvalues for

partition (n − 1,1), with the biggest difference being Tn − T2 = (Hn − 1)/n. This means

that in order to estimate the mixing time it is not good enough to consider the single

eigenvalue (3.38); rather, we must consider the sum,

n

∑
i=2

(n − 1)eig(Ti)2t = (n − 1)
n

∑
i=2

⎛
⎝

1 − 1

n

⎛
⎝

1 +
n

∑
j=i+1

1

j

⎞
⎠
⎞
⎠

2t

. (3.39)

This sum is bounded at time close to n logn as n →∞. Therefore, we expect the mixing

time of the one-sided transposition shuffle to be around n logn, as stated in Theorem 3.1.2.

Note that in sum (3.36) we reduce the sum (3.39) of eigenvalues for (n − 1,1), to

(n − 1)2 (1 − 1

n
)

2t

which is bounded in n exactly at time t = n logn.

3.4.1 Large Partitions

In this subsection we prove that the sum of large partitions is bounded with a decay of e−2c

at time n logn + cn. Let λ be a partition satisfying eig(T→λ ) ≥ 0, and for which λ1 = n − k
for some k ≤ n/4. We have observed that λ ⊴ (n− k, k), and so Lemma 3.3.9 suggests that

we look at the eigenvalue of T→(n−k,k). Using our eigenvalue formula from Theorem 3.1.3

we calculate this as follows, with the first and second sum corresponding to the first and

second row of T→(n−k,k) respectively:

eig (T→(n−k,k)) =
1

n

n−k
∑
j=1

j

T→(n−k,k)(1, j)
+ 1

n

k

∑
j=1

j − 1

T→(n−k,k)(2, j)

= n − k
n

+ 1

n

k

∑
j=1

j − 1

n − k + j
(3.40)

= 1 − (n − k + 1)
n

(Hn −Hn−k+1) −
1

n
. (3.41)

We now use this, along with the inequality 1− x ≤ e−x, to bound the contribution of large

partitions to the sum in (3.36):

n/4
∑
k=1

∑
λ ∶ eig(T→λ )≥0
λ1=n−k

d2
λeig(T→λ )2t ≤

n/4
∑
k=1

eig (T→(n−k,k))
2t

∑
λ ∶ eig(T→λ )≥0
λ1=n−k

d2
λ

≤
n/4
∑
k=1

n2k

k!
eig (T→(n−k,k))

2t
(by Lemma 2.3.5)

≤
n/4
∑
k=1

n2k

k!
(1 − (n − k + 1)

n
(Hn −Hn−k+1) −

1

n
)

2t

≤
n/4
∑
k=1

n2k

k!
e
−2t( (n−k+1)

n
(Hn−Hn−k+1)+ 1

n
)

≤ e−2c
n/4
∑
k=1

n2k−2(n−k+1)(Hn−Hn−k+1)−2

k!
, (3.42)
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in the last step we have substituted t = n logn+ cn. When k = 1 we get the following term

(n2−2(n)(Hn−Hn)−2) /1! = 1.

Thus if the ratio between consecutive terms is less than 1 for n suitably large we may

bound the sum via a geometric series. The ratio of the (k + 1)th term to the kth term in

(3.42) is given by

n2(Hn−Hn−k)

k + 1
. (3.43)

For large n this ratio is approximated by (n2 log(n/n−k))/(k + 1). To see that this ratio

is less than 1 for all k ∈ {1, . . . , n/4} as n → ∞ we consider the two cases, k = O(1) and

k = O(n). In both cases limn→∞ n2(Hn−Hn−k) = limn→∞ n2 logn/(n−k). Now if k is constant

then we have limn→∞ n2 logn/(n−k) = 1 and so

lim
n→∞

(n2 log(n/n−k))/(k + 1) = 1

k + 1
.

If k = an with a ∈ (0,1/4] then n2 log(n/(n−an)) = n2 log 1/(1−a) ≤ n2 log(4/3) = n0.58. Taking the

limit in n we have,

lim
n→∞

(n2 log(n/n−k))/(k + 1) ≤ lim
n→∞

n0.58−1/a = 0.

Therefore, for large enough n the ratio (3.43) is less than 1 for all k ∈ {1, . . . , n/4}. Indeed

for n → ∞ the largest value of the ratio over this range of k is achieved when k = 1, at

which point it equals n2/n/2. For sufficiently large n this ratio is thus bounded above by

3/4, say, which permits us to bound the sum in (3.42) by a geometric series with initial

term 1:

e−2c
n/4
∑
k=1

n2k−2(n−k+1)(Hn−Hn−k+1)−2

k!
≤ e−2c

n/4
∑
k=1

(3/4)k−1 ≤ 4e−2c . (3.44)

3.4.2 Small Partitions

Now consider a partition λ satisfying eig(T→λ ) ≥ 0 and for which λ1 = n − k with n/4 <
k ≤ n − 2. Suppose first of all that n/4 < k ≤ n/2; as in the large partition case, any such

partition is dominated by (n− k, k), and the same calculation as in equation (3.40) shows

that

eig (T→(n−k,k)) = n − k
n

+ 1

n

k

∑
j=1

j − 1

n − k + j
. (3.45)

Now consider the case when k > n/2. We have already identified that λ ⊴ (n − k,⋆),
and so we proceed by calculating the eigenvalue of T→(n−k,⋆). Note first that for any box on

row three or below – that is (i, j) with i ≥ 3 – its contribution to equation (3.3) may be

bounded by:

j − i + 1

T→(n−k,⋆)(i, j)
= j − i + 1

(i − 1)(n − k) + j
≤ (n − k)

(i − 1)(n − k) + (n − k)
≤ 1

3
.
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Using this inequality in conjunction with Theorem 3.1.3 we bound eig (T→(n−k,⋆)) as follows:

eig(T→(n−k,⋆)) =
1

n

n−k
∑
j=1

j

T→(n−k,⋆)(1, j)
+ 1

n

n−k
∑
j=1

j − 1

T→(n−k,⋆)(2, j)
+ 1

n
∑
(i,j)
i≥3

j − i + 1

T→(n−k,⋆)(i, j)

≤ n − k
n

+ 1

n

n−k
∑
j=1

j − 1

n − k + j
+ n − 2(n − k)

3n
. (3.46)

Observe that if we substitute k ∈ (n/4, n/2] in (3.46) it provides an upper bound for the

expression in (3.45). Indeed, for n/4 < k ≤ n/2 we may write

n − k
n

+ 1

n

n−k
∑
j=1

j − 1

n − k + j
+ n − 2(n − k)

3n
− eig(T→(n−k,k)) = 1

n

n−k
∑
j=k+1

( j − 1

n − k + j
− 1

3
)

= 2(n − 2k)
3n

− (n − k + 1)
n

(H2(n−k) −Hn) .

Substituting k = γn, the final expression is bounded below by

2(1 − 2γ)
3

− (1 − γ + 1

n
) log(2(1 − γ)). (3.47)

For n ≥ 15 the expression (3.47) is non-negative for all γ ∈ [1/4,1/2] thus completing

our claim. We have just shown that (3.46) provides a bound on eig (T→(n−k,⋆)) for all

k ∈ (n/4, n − 2], therefore, it provides a bound for all eig (T→λ ) with λ1 = n − k. Working

with our new bound we rearrange it to:

eig (T→λ ) ≤ n − k
n

+ 1

n

n−k
∑
j=1

j − 1

n − k + j
+ n − 2(n − k)

3n

= n − k
n

+
n − k − 1 − (n − k + 1)(H2(n−k) −Hn−k+1)

n
+ 2k − n

3n

= 1 − (4k − 2n + 3)
3n

− (n − k + 1)
n

(H2(n−k) −Hn−k+1) . (3.48)

Using the inequalities 1 − x ≤ e−x for all x, and, our eigenvalue bound (3.48), we are able

to bound the contributions of small partitions in the sum (3.36) at time t = n logn+ cn as

follows:

n−2

∑
k=n/4

∑
λ ∶ eig(T→λ )≥0
λ1=n−k

d2
λeig (T→λ )2t ≤

n−2

∑
k=n/4

n2k

k!
e−

2t
n
( 4k−2n+3

3
+(n−k+1)(H2(n−k)−Hn−k+1))

≤ e−2c
n−2

∑
k=n/4

n
4n−2k−6

3
−2(n−k+1)(H2(n−k)−Hn−k+1)

k!
. (3.49)

To analyse this bound further we require the following inequality.

Lemma 3.4.3. (n + 1) (H2n −Hn+1) > (n − 1) log 2 for all integers n ≥ 1

Proof. Rearranging our inequality we have to show that (n + 1) (H2n −Hn+1 − log 2) >
−2 log 2. The nth harmonic number may be bounded by logn+γ+ 1

2n+1 ≤Hn ≤ logn+γ+ 1
2n−1

where γ is the Euler–Mascheroni constant. Using the lower bound for H2n and upper
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bound for Hn+1, we have:

(n + 1) (H2n −Hn+1 − log 2) ≥ (n + 1) ( 1

4n + 1
− 1

2n + 1
+ log ( n

n + 1
))

= − 2n(n + 1)
(4n + 1)(2n + 1)

− (n + 1) log (n + 1

n
)

≥ − 2n(n + 1)
(4n + 1)(2n + 1)

− (n + 1)
n

≥ −2 log 2 for all n ≥ 8.

The last inequality comes from
2n(n+1)

(4n+1)(2n+1) +
(n+1)
n being a decreasing function, and n = 8

is the first time it passes 2 log 2. The original inequality may be verified for the remaining

integer values 1 ≤ n ≤ 7

Using the new bound provided by Lemma 3.4.3 we may bound (3.49) via the following:

e−2c
n−2

∑
k=n/4

n
4n−2k−6

3
−2(n−k−1) log 2

k!
. (3.50)

Once again writing k = γn, now for γ ∈ [1/4,1], the terms in the summand of (3.50) may

be rewritten as

n
2n(2−γ)

3
−2n(1−γ) log 2−0.5+2 log 2/(γn!) (3.51)

An application of Stirling’s formula to γn! tells us that γn! >
√

2π(γn)γn+0.5e−γn. Com-

bining this with equation (3.51) we get

eγnn2 log 2−1

γγn
√

2π
n
n
3
(4−5γ−6(1−γ) log 2) (3.52)

Thus the dominant term of (3.52) takes the form n
n
3
g(γ), where g(γ) = 4 − 5γ − 6(1 −

γ) log 2 < 0 for all γ ∈ [1/4,1]. It follows that, for any positive c,

lim
n→∞

e−2c
n−2

∑
k=n/4

n
4n−2k−6

3
−2(n−k−1) log 2

k!
= 0 (3.53)

This completes the analysis of small partitions.

Proof of the Upper Limit in Theorem 3.1.2

Combining the results and bounds of (3.36), (3.37), (3.44) and (3.53) we find at time

t = n logn + cn,

4 lim sup
n→∞

∥OSTt
n − πn∥2

TV ≤ lim sup
n→∞

eig (T(1n))
2t + 2 lim sup

n→∞
∑

λ ∶ eig(T→λ )≥0

λ≠(n)

d2
λ eig(T→λ )2t .

≤ 2 lim sup
n→∞

n/4
∑
k=1

d2
λeig (T→(n−k,k))

2t
+ +2 lim sup

n→∞

n−2

∑
k=n/4

d2
λeig (T→(n−k,⋆))

2t

≤ 8e−2c
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This completes the proof that lim supn→∞∥OSTn logn+cn
n − πn∥TV ≤

√
2e−c. Thus, we have

an upper bound on the mixing time of the one-sided transposition shuffle of time n logn.

3.5 Lower Bound for the One-sided Transposition Shuffle

To complete Theorem 3.1.2 we need to prove our lower limit on total variation distance.

To do this we employ the usual trick of finding a set of permutations Fn ⊆ Sn which

has significantly different probability under the uniform distribution πn and the one-sided

transposition measure OSTt
n before a certain time t. The definition of total variation

distance then immediately yields a simple lower bound:

∥OSTt
n − πn∥TV ≥ OSTt

n(Fn) − πn(Fn) .

In particular, we follow in the steps of the random transposition shuffle from Section 2.3.1

and find a suitable set Fn by considering the number of fixed points within - a certain part

of - the deck. Estimation of OSTt
n(Fn) then reduces to a novel variant of the classical

coupon collector’s problem.

Recall that one step of the one-sided transposition shuffle may be modelled by firstly

choosing a position Ri ∼d U{1, . . . n} with our right hand, and then choosing a position

Li ∼d U{1, . . . ,Ri} with our left hand and transposing the cards in the chosen positions.

Since the left hand always chooses a position below that of the right hand, it is intuitively

clear that our shuffle is relatively unlikely to transpose two cards near to the top of the

deck. For example, taking n > 3, OSTn((1 2)) = 1/2n, whereas OSTn((n − 1n)) = 1/n2,

therefore we are (n/2) times as likely to apply transposition (1 2), than (n − 1n).
This leads us to focus the attention of our analysis on a set of positions at the top of

the deck: write Vn for the top part of the deck,

Vn = {n − n/m + 1, . . . , n − 1, n} ,

where m = m(n) is growing in n and to be chosen later. We want to keep track of fixed

points within this part of the deck, let Fn = {σ ∈ Sn ∣σ has at least 1 fixed point in Vn}.
Note that Vn contains n/m positions, and so we find an easy upper bound on the uniform

distribution πn(Fn) ≤ 1/m→ 0 as n→∞.

To bound the value of OSTt
n(Fn) we reduce the problem to studying a simpler Markov

chain linked to coupon collecting. When either of our hands (Ri, Li) picks a new (previ-

ously untouched) card we say that this card gets collected. The uncollected cards in Vn at

time t are those which have not yet been picked by either hand, and thus the size of this

set gives us a lower bound on the number of fixed points in Vn. Writing U tn for the set of

uncollected cards in Vn after t steps of the one-sided transposition shuffle, it follows that

OSTt
n(Fn) ≥ P(∣U tn∣ ≥ 1) . (3.54)

We wish to show that at time t = n logn − n log logn the probability on the right

hand side of (3.54) is large, thus recovering a lower bound on OSTt
n. For the one-sided
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transposition shuffle the value of Li is clearly not independent of the value Ri. Importantly

if Ri ∉ Vn then P(Li ∈ Vn) = 0. This means that a standard coupon-collecting argument for

the time taken to collect all of the cards/positions in Vn cannot be applied to our shuffle,

and a little more work is therefore required.

Note that at each step there are four possibilities: both hands collect new cards, only

one hand does (left or right) or neither does. This permits us to bound the change in the

number of collected cards as follows:

∣Vn ∖U t+1
n ∣ = ∣Vn ∖U tn∣ + ∣{Lt+1,Rt+1} ∩U tn∣

≤ ∣Vn ∖U tn∣ + 2 ⋅ 1[Lt+1 ∈ U tn] + 1[Lt+1 ∉ U tn,Rt+1 ∈ U tn] , (3.55)

where 1[⋅] is an indicator function. We may find a useable upper bound for P(Lt+1 ∈ U tn)
by conditioning only on the size of U tn. Furthermore, we shall show that P(Lt+1 ∈ U tn) is

relativity small compared with P(Lt+1 ∉ U tn,Rt+1 ∈ U tn), thus our approximation does not

stop us finding the correct mixing time.

The probability P(Lt+1 ∈ U tn), naturally depends on what positions the uncollected

cards are in at time t. However, our left hand is more likely to choose positions towards

the bottom of the pack so, letting Û tn = {n−n/m+1, . . . , n−n/m+ ∣U tn∣}, i.e. the ∣U tn∣ lowest

numbered positions in Vn, we may form an upper bound on our probabilities as follows:

P(Lt+1 ∈ U tn) ≤ P(Lt+1 ∈ Û tn) .

Given the number of uncollected cards,the the set Û tn is completely determined, so we may

compute a bound in terms of ∣U tn∣,

P(Lt+1 ∈ Û tn) = 1

n
∑
k∈Ûtn

P (Lt+1 ∈ Û tn ∣Rt+1 = k) + 1

n
∑

k∈Vn∖Ûtn

P (Lt+1 ∈ Û tn ∣Rt+1 = k)

= 1

n
∑
k∈Ûtn

k − (n − n/m)
k

+ 1

n
∑

k∈Vn∖Ûtn

∣U tn∣
k

≤ ∑
∣Utn∣
k=1 k + (n/m − ∣U tn∣)∣U tn∣

n(n − n/m)
≤ ∣U tn∣

(m − 1)n
. (3.56)

The probability of the event {Lt+1 ∉ U tn,Rt+1 ∈ U tn} in (3.55) is simple to bound:

P(Lt+1 ∉ U tn,Rt+1 ∈ U tn) ≤ P(Rt+1 ∈ U tn) ≤ ∣U tn∣
n

. (3.57)

Using (3.55), (3.56) and (3.57) together, we now define a counting process M t
n which

stochastically dominates the number of collected cards ∣Vn ∖U tn∣ at all times:

M0
n = 0 ;

P(M t+1
n =M t

n + k) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
(m−1)n ( n

m −M t
n) if k = 2

1
n
( n
m −M t

n) if k = 1

1 − m
(m−1)n ( n

m −M t
n) if k = 0 .

(3.58)
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Combining this with (3.54) we obtain the following bound on OSTt
n(Fn):

OSTt
n(Fn) ≥ P (M t

n < n/m) . (3.59)

The idea behind this counting process is that it increases by 1 whenever Ri collects a

card (i.e. the event {Rt+1 ∈ U t+1
n }), and increases by 2 whenever Li collects a card (i.e.

the event {Lt+1 ∈ U t+1
n }). We know that for Ri to collect every card in Vn would take

O(n logn) time by standard coupon collecting. In our case Li is also helping to collect

cards speeding up this time but we mitigate this additional help by focusing on collecting

the cards in Vn.

From this point on we are interested in the time at which the process M t
n first reaches

level n/m, we now take m =m(n) = logn for the remainder of this section.

Lemma 3.5.1. Let T = min{t ∶ M t
n ≥ n/ logn}. Then for any c > 2,

P(T ≤ n logn − n log logn − cn) ≤ π2

6(c − 2)2
.

Proof. Let Ti be the time spent by the process M t
n in each state i ≥ 0. We have T =

T0 + T1 + ⋅ ⋅ ⋅ + T(n/m)−1. Define pi to be the probability that we leave state i after one step

of M t
n, from (3.58) we see that

pi ∶= P(M t+1
n >M t

n ∣M t
n = i) = m

(m − 1)n
( n
m
− i) . (3.60)

In the standard coupon collector’s problem each of the random variables Ti has a geometric

distribution with success probability pi (see Section 2.3.2). Here, however, we have to take

into account the chance that our counting process Mn increments by two, leading it to

spend zero time at some state. Note first that

P(M t+1
n =M t

n + 2 ∣M t+1
n >M t

n) = 1

m
,

independently of the value of M t
n, taking m = logn the probability of us skipping a state

is tending to 0 as n→∞.

Prior to spending any time in state i, the process M t
n must visit (at least) one of the

states i − 1 or i − 2. A simple argument shows that

P(Ti > 0 ∣Ti−1 > 0) = 1 − 1

m
, and P(Ti > 0 ∣Ti−2 > 0) = 1 − 1

m
(1 − 1

m
) ≥ 1 − 1

m
.

Therefore P(Ti > 0) ≥ 1− 1
m for all states i, and so Ti stochastically dominates the random

variable T ′i with mass function

P(T ′i = k) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1/m k = 0

(1 − 1/m)pi(1 − pi)k−1 k ≥ 1 .
(3.61)

Define T ′ = T ′0 + T ′1 + ⋅ ⋅ ⋅ + T ′(n/m)−1, it follows that P(T < t) ≤ P(T ′ < t) for any t.

Substituting m =m(n) = logn we may bound the expectation and variance of T ′ using
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the variables T ′i :

E[T ′] =
n/m−1

∑
i=0

m − 1

mpi
= (m − 1

m
)

2

n log(n/m) ≥ n logn − n log logn − 2n ;

Var[T ′] ≤
n/m−1

∑
i=0

1

p2
i

≤
n/m
∑
i=1

n2

i2
≤ π2

6
n2 .

Finally, applying Chebyshev’s inequality yields the following for any c > 2:

P (T ′ ≤ n log(n) − n log logn − cn) ≤ P (∣T ′ −E[T ′] ∣ ≥ (c − 2)n) ≤ π2

6(c − 2)2
.

Proof of the Lower Limit in Theorem 3.1.2

Lemma 3.5.1 quickly leads to a proof of the lower bound in Theorem 3.1.2. Setting

t = n logn − n log logn, and c > 2 we obtain

∥OSTt−cn
n − πn∥TV ≥ OSTt−cn

n (Fn) − πn(Fn) ≥ P (M t−cn
n < n/m(n)) − 1/m(n)

= P(T > t − cn) − 1

logn
≥ 1 − π2

6(c − 2)2
− 1

logn
.

Therefore taking a limit in n, we recover lim infn→∞∥OSTt−cn
n − πn∥TV ≥ 1 − π2

6(c−2)2 as

required.

This finishes our proof of Theorem 3.1.2, showing the unbiased one-sided transposition

shuffle exhibits a total variation cutoff at time n logn. The mixing time for the unbiased

one-sided transposition shuffle is therefore half as slow as the mixing time of the random

transposition shuffle. This fact fits our intuition that restricting the choice of our left hand

should slow down the randomisation of our deck. We now explore the behaviour of a new

class of one-sided transposition shuffles where our left hand retains its behaviour but the

right hand may be biased on [n].

3.6 Biased One-sided Transposition shuffles

The unbiased one-sided transposition shuffle had our right hand choosing uniformly from

the support [n]. In this section we allow the right hand to choose a position according to a

weighted distribution on [n], and we call these biased one-sided transposition shuffles. We

generalise the work of Section 3.2 to compute the eigenvalues for our biased shuffles and

show that within this class certain natural choices for the weights lead to shuffles which

exhibit a cutoff in total variation distance.

Definition 3.6.1. Given a weight function w ∶ N→ (0,∞), let Nw(n) = ∑ni=1w(k) denote

the cumulative weight up to n. Then the biased one-sided transposition shuffle OSTn,w is

the random walk on Sn generated by the following distribution on transpositions:

OSTn,w(τ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

w(j)
Nw(n) ⋅

1
j if τ = (i j) for some 1 ≤ i ≤ j ≤ n

0 otherwise.
(3.62)
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Note that if w(j) = 1 for all j, we recover the unbiased one-sided transposition shuffle.

According to a biased one-sided transposition shuffle with weight function w the ran-

dom variables Rt, Lt defined by the choices of our right and left hands follow the distribu-

tions,

P(Rt = j) = w(j)
Nw(n)

, for 1 ≤ j ≤ n (3.63)

P(Lt = i ∣Rt = j) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
j if i ≤ j

0 otherwise
. (3.64)

Notice the left hand Lt still chooses a position uniformly on the set {1, . . . ,Rt}. Im-

portantly in Definition 3.6.1 the weight of each position w(j) may only depend on j and

not the size of the deck n. This setup preserves the recursive algebraic structure identified

in Section 3.2, and allows us to recover the eigenvalues of the biased shuffles by minor

modifications to our analysis.

Lifting Eigenvectors for the Biased One-sided Transposition Shuffle

Our first step is to turn the shuffle OSTn,w into an element of our group algebra.

Definition 3.6.2. Let n ∈ N. The biased one-sided transposition shuffle on n cards, with

bias w(j), may be viewed as the following element of the group algebra Sn:

AOSTn,w ∶= ∑
1≤i≤j≤n

w(j)
j

(i j). (3.65)

Note that to form AOSTn,w we have scaled OSTn,w by a factor of Nw(n).

The eigenvalues of the biased one-sided transposition shuffle OSTn,w may be recovered

from the eigenvalues of the element AOSTn,w acting on the simple Specht modules Sλ.

Thus, as before we may focus our attention on the action of our shuffle as an element of the

group algebra. The biased one-sided transposition shuffle inherits the recursive structure

present in the unbiased case. Compare

AOSTn+1,w −AOSTn,w = w(n + 1)
n + 1

∑
1≤i≤n+1

(i n + 1) (3.66)

to equation (3.6), we can see that the only change is a new factor of w(n+1). If our weight

function is allowed to depend on things other than the position j then we run into issues

with our lifting because w(n + 1) may no longer solely be a function of (n + 1). Now we

establish an analogue of Theorem 3.2.5 for our biased shuffles.

Theorem 3.6.3. Given n ∈ N, we have

AOSTn+1,w ○Φa −Φa ○AOSTn,w = w(n + 1)
n + 1

Φa +
w(n + 1)
n + 1

∑
1≤b≤n

Φb ○Θb,a . (3.67)

Proof. This follows the same proof as Theorem 3.2.5 up to changes in constants.
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If our bias is uniform, i.e. w(j) = 1, then we recover exactly the equation used for the

unbiased one-sided transposition shuffle. Overall we can see that our bias affects Theorem

3.2.5 minimally. From here we may use the previously established lifting operators κλ,µa

to skip to the conclusion of lifting eigenvectors. We restate Theorem 3.2.17 for our biased

one-sided transposition shuffle.

Theorem 3.6.4 (Theorem 49 of [19]). Let λ ⊢ n, and a ∈ {1,2, . . . , l(λ)+ 1}. Take i ∈ [n]
such that 1 ≤ i ≤ a and set µ = λ + ei. Then,

AOSTn+1,w ○ κλ,µa − κλ,µa ○AOSTn,w = w(n + 1)(2 + λi − i)
n + 1

κλ,µa . (3.68)

In particular if v ∈ Sλ is an eigenvector of AOSTn,w with eigenvalue ε, then κλ,µa (v) is an

eigenvector of AOSTn+1,w with eigenvalue

ε + w(n + 1)(2 + λi − i)
n + 1

. (3.69)

Proof. This follows from Theorem 3.2.17 with changes in constants for our biased shuffles.

Lemma 3.6.5. The eigenvalues for the biased one-sided transposition shuffle Pn,w on n

cards are indexed by standard Young tableaux of size n. Moreover, the eigenvalue corre-

sponding to a tableau T is given by

eig(T ) = 1

Nw(n)
∑

boxes
(i,j)∈T

j − i + 1

T (i, j)
⋅w(T (i, j))

Mixing Times of Biased One-sided Transposition Shuffles

We have recovered the eigenvalues for the biased one-sided transposition shuffles. To

find the mixing time of the shuffle OSTn,w, we need some extra conditions on the weight

function w. We focus on a class of weight functions with form w(j) = jα for α ∈ R; we

denote the resulting shuffle as OSTn,α, and write Nα(n) in place of Nw(n). For α = 0 we

recover our original one-sided transposition shuffle OSTn, while if α > 0 (α < 0) the right

hand is biased towards the top (respectively, bottom) of the deck. Restating Lemma 3.6.5

for this class of weight functions we find the eigenvalue for OSTn,α given by tableau T to

be,

eig(T ) = 1

Nα(n)
∑

boxes
(i,j)∈T

(j − i + 1) ⋅ T (i, j)α−1 = 1

Nα(n)

n

∑
m=1

T (m)mα−1, (3.70)

where T (m) is the index j − i + 1 of the box containing value m in T .

In the following sections we analyse the the mixing time of biased one-sided transposition

shuffles generalising work from Sections 3.4 and 3.5. The conlusion of this section is the

biased one-sided transposition shuffles exhibit a cutoff for all real choices of α.
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Theorem 3.6.6. Define the time tn,α as,

tn,α =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Nα(n)/nα if α ≤ 1

Nα(n)/Nα−1(n) if α ≥ 1
.

The biased one-sided transposition shuffle OSTn,α satisfies the following bounds for any

c1 > 5/2, c2 > max(2,3 − α):

lim sup
n→∞

∥OST
tn,α(logn+c1)
n,α − πn∥ ≤ Ae−2c1 for a universal constant A, for all α

and lim inf
n→∞

∥OST
tn,α(logn−log logn−c2)
n,α − πn∥ ≥

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 − π2

6(c2−3+α)2 if α ≤ 1

1 − π2

6(c2−2)2 if α ≥ 1

Thus, the biased one-sided transposition shuffle exhibits a total variation cutoff at time

tn,α logn for all α with a window of size tn,α log logn.

The asymptotics of the times tn,α as n→∞ for the one-sided transposition shuffle are

summarised in Table 3.4

α ∈ (−∞,−1) α = −1 α ∈ (−1,1] α ∈ (1,∞)
tn,α logn ζ(−α)n−α logn n(logn)2 1

1+αn logn α
1+αn logn

Table 3.4: Asymptotics of tn,α logn as n→∞.

The fastest mixing time of a biased one-sided transposition shuffle is obtained when α =
1; using this weight function the shuffle is constant on the conjugacy class of transpositions,

with probability close to that of the random transposition shuffle, Pn,1((i j)) = 2/(n(n+1)).
We obtain a mixing time of tn,1 ∼ (n/2) logn which agrees with that of the random

transposition shuffle. The mixing time increases as α moves away from 1 in either direction

but as α →∞ the time stays bounded above by n logn whereas if α → −∞ then the mixing

time is unbounded. As α → −∞ our right hand is choosing positions near to the bottom

of the deck frequently, and since the left hand is restricted to the range {1, . . . ,Ri}, this

leads to more and more mass being placed on the identity element as α →∞, thus slowing

the mixing time.

3.6.1 Cutoff for Biased One-sided Transposition Shuffles with α ≤ 1

The proof of a total variation cutoff for the biased one-sided transposition shuffle with

α ≤ 1 follows from generalisations of Sections 3.4 and 3.5. For the upper bound we establish

bounds on the eigenvalues of OSTn,α for large and small partitions, and reduce the analysis

to a previously bounded summation. The lower bound follows from the same argument

as Section 3.5 with careful attention paid to how the weighting affects the probabilities of

Li,Ri.

Upper Bound

First of all we once again use Lemma 1.1.27 to form an upper bound on the total variation

distance of OSTn,α from πn. Furthermore, for α ≤ 1 every result of Section 3.3 holds after
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suitable adjustments to account for the new eigenvalues. In particular, Lemma 3.3.7 now

becomes: for any T ∈ SYT(λ) we have eig(T ) + eig(T ′) = 2Nα−1(n)/Nα(n). Applying the

same analysis as equation (3.36) we reduce our bound to:

4∥OSTt
n,α − πn∥2

TV ≤ ∑
λ⊢n
λ≠(n)

∑
T ∈SYT(λ)

dλ (eig(T ))2t

≤ (eig(T(1n)))
2t + 2 ∑

λ∶eig(T→λ )≥0

λ≠(n)

d2
λeig(T→λ )2t. (3.71)

We bound the eigenvalues of large and small partitions separately.

Lemma 3.6.7. Let λ ⊢ n with λ1 = n − k. Then the eigenvalue eig(T→λ ) for the shuffle

OSTn,α with α ≤ 1 may be bounded as follows:

eig(T→λ ) ≤
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 − (n−k+1)knα
nNα(n) if k ≤ n/4

1 − knα

2Nα(n) if k > n/4.

Proof. For k ≤ n/2, the maximum partition in the dominance order of partitions with

λ1 = n − k is (n − k, k), and so eig(T→λ ) ≤ eig (T→(n−k,k)). The eigenvalue of T→(n−k,k) may be

calculated by summing over the rows of the partition (n−k, k) and using equation (3.70),

as follows:

Nα(n) eig (T→(n−k,k)) =
n−k
∑
m=1

mα +
n

∑
m=n−k+1

(m − n + k − 1)mα−1

=
n

∑
m=1

mα − (n − k + 1)
n

∑
m=n−k+1

mα−1

≤ Nα(n) −
(n − k + 1)knα

n
.

This immediately proves the desired inequality for k ≤ n/4. The above bound also holds

for k ∈ (n/4, n/2], and in this case

Nα(n) −
(n − k + 1)knα

n
≤ Nα(n) −

knα

2

giving us our required bound.

For k > n/2 we once again need to bound eig (T→(n−k,⋆)). Letting ν = (n − k,⋆) for ease

of notation we calculate as follows:

Nα(n) eig(T→ν ) =
n−k
∑
j=1

(j − 1 + 1)α +
l(ν)
∑
i=2

νi

∑
j=1

(j − i + 1)((i − 1)(n − k) + j)α

(i − 1)(n − k) + j

= Nα(n) −
l(ν)
∑
i=2

νi

∑
j=1

(i − 1)(n − k + 1)((i − 1)(n − k) + j)α

(i − 1)(n − k) + j

≤ Nα(n) −
nα

n

l(ν)
∑
i=2

νi

∑
j=1

((i − 1) ⋅ (n − k + 1))

≤ Nα(n) −
(n − k + 1)nα

n

l(ν)
∑
i=2

(i − 1)νi . (3.72)
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By definition of the partition ν, each row but the last has size n−k, and the final row has

size νl(ν) = n−(l(ν)−1)(n−k). In addition, since l(ν) is equal to the ceiling of n/(n−k) we

may write l(ν) = n/(n − k) + x for some 0 ≤ x < 1. Substituting these values into equation

(3.72) we obtain:

Nα(n) eig(T→ν ) ≤ Nα(n) −
(n − k)nα

n

(l(ν) − 1)(2n − (n − k)l(ν))
2

= Nα(n) −
nα

2n
(n − (1 − x)(n − k))(n − x(n − k))

= Nα(n) −
nα

2n
(nk + x(1 − x)(n − k)2)

≤ Nα(n) −
knα

2
.

Using these eigenvalue bounds we complete the proof of the upper bound for the biased

one-sided transposition shuffles with α ≤ 1. Splitting the sum in (3.71) around the big and

small partitions we find,

4∥OSTt
n,α − πn∥2

TV ≤ (eig(T1n))2t + 2
n/4
∑
k=1

(n
k
)

2

k!(1 − 2(n − k + 1)knα

2nNα(n)
)

2t

+ 2
n−1

∑
k>n/4

(n
k
)

2

k!(1 − knα

2Nα(n)
)

2t

.

The singular term eig(T1n) may be seen to be tending to 0 as n→∞ at time t = tn,α(logn+
c),

lim
n→∞

eig(T1n)2t = lim
n→∞

( 1

Nα(n)

n

∑
i=1

(2 − i)α−1)
2t

≤ lim
n→∞

( n

Nα(n)
)

2tn,α(logn+c)
= 0

We are left with two sums to control, taking t = tn,α(logn+ c) these sums may be reduced

too:

e−2c
n/4
∑
k=1

n
2(k(k−1))

n

k!
+

n−1

∑
k>n/4

(n
k
)

2

k!n−ke−kc (3.73)

The first summation in (3.73) was shown to be bounded by a universal constant by Di-

aconis [16, Chapter 3D Theorem 5]. The ratio between consecutive terms in the second

summation is decreasing in k and less than 1 at its start (k = n/4) if c > 2.5. Thus we may

bound the summation by bounding it by n times its first term; this reduces to bounding

n−1

∑
k>n/4

(n
k
)

2

k!n−ke−kc ≤ n( n

n/4
)

2

(n/4)!n−n/4e−(n/4)c. (3.74)

We now compute the asymptotics of the binomial and factorial terms using Stirling’s

approximation, these results are given in Table 3.5.
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Term ( n
δn
)2 (δn)!

Stirling’s approximation (δ−2δn(1 − δ)−2(1−δ)n)/(2πδ(1 − δ)n)
√

2πδn (δn/e)δn

log(Stirling’s approximation) − log(2πδ) − 2δn log(δ) − 2(1 − δ)n log(1 − δ) 1
2 log(2πδn) + δn log(δn) − δn

Table 3.5: Asymptotics of binomial and factorial terms computed using Stirling’s approx-

imation.

Using the results in Table 3.5 we find the asymptotics of the logarithm of (3.74) to be:

−(n/4) (c + 1 + 2 log(0.25) + 6 log(0.75)) + o(n). (3.75)

The coefficient of the leading order term

c + 1 + 2 log(0.25) + 6 log(0.75)

is positive if c > 5/2. Therefore for c > 5/2, the term (3.75) is tending to −∞ as n → ∞.

Hence, the second summation in (3.73) is tending to 0 as n →∞. Putting together all of

the bounds above we find,

lim sup
n→∞

∥OST
tn,α(logn++c)
n,α − πn∥TV ≤ Ae−c for some universal constant A.

This completes the upper bound for α ≤ 1 present in Theorem 3.6.6.

Lower Bound

We use a coupon-collecting argument as in Section 3.5, once again letting Vn = {n−n/m+
1, . . . , n − 1, n} with m = logn, and considering the set Fn = {σ ∈ Sn ∣σ has at least 1

fixed point in Vn}. We have seen previously that under the uniform distribution we have

πn(Fn) ≤ 1/m = 1/ logn. For the biased one-sided transposition shuffle we modify the

bounds (3.56) and (3.57) as follows, using the inequality kα ≤ ( m
m−1)

1−αnα for all k ∈ Vn
(which holds for all α ≤ 1):

P(Lt+1 ∈ Û tn) = ∑
k∈Ûtn

w(k)
Nα(n)

k − (n − n/m)
k

+ ∑
k∈Vn∖Ûtn

w(k)
Nα(n)

∣U tn∣
k

≤
( m
m−1)

1−αnα

Nα(n)
∑∣U

t
n∣

k=1 k + (n/m − ∣U tn∣)∣U tn∣
(n − n/m)

≤
( m
m−1)

1−αnα∣U tn∣
Nα(n)(m − 1)

; (3.76)

P(Rt+1 ∈ U tn) ≤
( m
m−1)

1−αnα∣U tn∣
Nα(n)

. (3.77)
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Using these as before we construct a counting process M t
n,α which stochastically dominates

the number of collected cards ∣Vn ∖U tn∣ at all times:

M0
n,α = 0 ;

P(M t+1
n,α =M t

n,α + k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
(m−1) (

( m
m−1
)1−αnα∣Utn∣
Nα(n) ) if k = 2

( (
m
m−1
)1−αnα∣Utn∣
Nα(n) ) if k = 1

1 − m
(m−1) (

( m
m−1
)1−αnα∣Utn∣
Nα(n) ) if k = 0 .

(3.78)

Our counting process M t
n,α gives a lower bound on the probability of being in Fn as follows,

OSTt
n,α(Fn) ≥ P(M t

n,α < n/m).

We are now interested in the time it takes M t
n,α to pass value n/m.

Lemma 3.6.8. Let T = min{t ∶ M t
n,α ≥ n/ logn}. Then for any c > 3 − α,

P(T ≤ tn,α(logn − log logn − c)) ≥ 1 − π2

6(c − (3 − α))2
.

Proof. Construct the time T = T0 + T1 + . . . + Tn/m−1 with Ti being the time spent in state

i. Denote the escape probability of state i as pi, the expression for pi modified from (3.60)

becomes

pi = ( m

m − 1
)

2−α nα

Nα(n)
( n
m
− i) ,

and this is easily checked to be strictly less than one for all values of α ≤ 1 if n is sufficiently

large. The remainder of the analysis mirrors the unbiased case: using the new expression

for pi the distribution of the random variable T ′i is exactly as given in (3.61), that is

P(T ′i = k) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1/m k = 0

(1 − 1/m)pi(1 − pi)k−1 k ≥ 1 .

Setting T ′ = T ′0+. . .+T ′n/m−1 then T stochastically dominates T ′. Analysing the expectation

and variance of T ′ we arrive at:

E[T ′] =
n/m−1

∑
i=0

m − 1

mpi
= Nα(n)

nα
(1 − 1

m
)

3−α n/m
∑
i=1

1

i
≥ Nα(n)

nα
(logn − log logn − (3 − α)) ;

Var[T ′] ≤
n/m−1

∑
i=0

1

p2
i

= Nα(n)2

n2α
(1 − 1

m
)

2(2−α) n/m
∑
i=1

1

i2
≤ Nα(n)2

n2α

π2

6
.

An application of Chebyshev’s inequality give us:

P(T ′ ≤ tn,α(logn − log logn − (3 − α))) ≤ P(∣T ′ −E[T ′]∣ ≥ (c − (3 − α))n)

≤ π2

6(c − (3 − α))2
.
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Lemma 3.6.8 quickly leads to a lower bound, taking c > 3 − α we have

∥OST
tn,α(logn−log logn−c)
n,α − πn∥TV ≥ P(T > tn,α(logn − log logn − c)) − πn(Fn)

≥ 1 − π2

6(c − (3 − α))2
− 1

logn
.

Taking limits in n recovers the limit present in Theorem 3.6.6.

3.6.2 Cutoff for Biased One-sided Transposition Shuffles with α ≥ 1

The proof of a total variation cutoff for biased one-sided transposition shuffle with α ≥ 1

requires more work than the α ≤ 1 case. To prove the upper limit we construct a new

special tableau, T↘λ , which bounds all the eigenvalues associated to partition λ. This new

tableau is then used to reduce our analysis to summations which we have previous seen to

be bounded at the correct mixing time. The lower bound follows from the same argument

as Section 3.5 up to the replacement of a normalising factor.

Upper Bound

Unlike the α ≤ 1 previous case not all results of Section 3.3 generalise to the bias α ≥ 1.

The results which do generalise include Lemma 3.3.5 and 3.3.8, we restate these below

with all eigenvalues calculated for a biased one-sided transposition shuffle with α ≥ 1.

Lemma 3.6.9. Let λ ⊢ n. For any T ∈ SYT(λ) we have the following inequality :

eig(T→λ ) ≤ eig(T ) ≤ eig(T ↓λ). (3.79)

Proof. This follows from the proof of Lemma 3.3.5 with the roles of T→λ and T ↓λ reversed.

Corollary 3.6.10. Let λ ⊢ n, and suppose we have eig(T→λ ) ≤ 0, then we have

eig(T ↓λ′) ≥ ∣eig(T→λ )∣ ≥ 0. (3.80)

Proof. This follows from the proof of Lemma 3.3.8 with the roles of T→λ and T ↓λ reversed.

Using the above lemmas allows us to reduce our analysis to looking at T ↓λ but we may

not solely focus on partitions at the top of the dominance order like before. Applying the

same analysis as equation (3.36) we reduce our bound to:

4∥OSTt
n,α − πn∥2

TV ≤ ∑
λ⊢n
λ≠(n)

∑
T ∈SYT(λ)

dλ (eig(T ))2t

≤ (eig(T1n))2t + 2 ∑
λ∶eig(T ↓

λ
)≥0

λ≠(n)

d2
λeig(T ↓λ)

2t. (3.81)

To bound the eigenvalue of T ↓λ when λ1 = n− k we introduce a new special tableau for

a Young diagram λ.
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Definition 3.6.11. Let λ ⊢ n. Define the λ-tableau T↘λ by filling in the diagonals of λ

from left to right, with each diagonal filled in top to bottom. For example, the tableaux

T↘(44), T
↘
(4,3,12), T

↘
(6,4) are given below,

7 11 14 16
4 8 12 15
2 5 9 13
1 3 6 10

4 6 8 9
3 5 7
2
1

2 4 6 8 9 10
1 3 5 7

Lemma 3.6.12. For α ≥ 1, and λ ⊢ n with λ1 = n − k we have,

eig(T ↓λ) ≤ eig (T↘(n−k,⋆)) .

Proof. The eigenvalue associated to the tableau T ↓λ is given by,

Nα(n) ⋅ eig(T ) =
n

∑
m=1

T (m)mα−1.

Now consider all indexes T ↓λ(m) for m ∈ [n] including repeats and order them from smallest

to largest as ci for i ∈ [n]. The fact that α ≥ 1 allows us to upper bound our eigenvalue in

the following way:

Nα(n) eig(T ↓λ) =
n

∑
m=1

T ↓λ(m)mα−1 ≤
n

∑
m=1

cmm
α−1 =

n

∑
m=1

T↘λ (m)mα−1.

The first inequality holds because we have matched up the pairs of values ci and mα−1 in

such a way as to maximise the summations value. The last equality comes from the fact

that every diagonal in λ has the same index (j − i+1) and this increases from left to right

matching the ordering of T↘λ .

To complete our proof we need to show that moving from T↘λ to T↘(n−k,⋆) increases the

eigenvalue. To get from λ to (n−k,⋆) we move boxes up and to the right. Every box that

moves increases its index (j− i+1) and thus its value in our eigenvalue summation. Hence

when we put the values of the boxes of (n − k,⋆) in via ↘, we find T↘λ (m) ≤ T↘(n−k,⋆)(m)
for all m, establishing

n

∑
m=1

T↘λ (m) ⋅mα−1 ≤
n

∑
m=1

T↘(n−k,⋆)(m) ⋅mα−1 = Nα(n) ⋅ eig (T↘(n−k,⋆)) .

Example 3.6.13. As a demonstration of Lemma 3.6.12 consider the partition λ = (4,2).
The tableaux T ↓(4,2), and T↘(4,3) are given below:

T ↓(4,2) =
1 3 5 6
2 4

T↘(4,2) =
2 4 5 6
1 3

.

For any α we may compute the eigenvalues of both tableaux using equation (3.70):

Nα(8) eig (T ↓(5,3)) = 1(1α−1) + 0(2α−1) + 2(3α−1) + 1(4α−1) + 3(5α−1) + 4(6α−1)

Nα(8) eig (T↘(5,3)) = 0(1α−1) + 1(2α−1) + 1(3α−1) + 2(4α−1) + 3(5α−1) + 4(6α−1).
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For α ≥ 1 the values iα−1 are increasing in i. Therefore rearranging the coefficients given

by the diagonal value of each box (in our case the values {0,1,1,2,3,4}) to be in increasing

order only increases our eigenvalue of the tableau.

Lemma 3.6.14. Let n ∈ N, k ∈ {1, . . . , n − 2}. Suppose λ = (n − k,⋆), then for every box

(i, j) ∈ λ we have

j − i + 1 ≤ n − k
n

T↘λ (i, j) (3.82)

Proof. Let us write l(n − k,⋆) = l+ = ⌈ n
n−k ⌉ and l− = ⌊ n

n−k ⌋. If (i1, j1), (i2, j2) belong to the

same diagonal of λ then j1 − i1 + 1 = j2 − i2 + 1, and hence if (3.82) holds for the smallest

value T↘λ (i, j) on a diagonal it holds for every entry of that diagonal. Furthermore, the

bound trivially holds for any box (i, j) which satisfies j − i+ 1 ≤ 0 (for which the left hand

side of (3.82) is non-positive). Combining these two observations, we see that it suffices

to prove the bound for boxes (1, j), which appear on the first row of (n − k,⋆) as they

must contain the smallest value on their given diagonal.

Note that no diagonal can contain more than l+ boxes: call diagonals with l− or

fewer boxes short diagonals, and all others long diagonals. Note that long diagonals can

only exist when l+ = l− + 1. Any long diagonals clearly occur strictly before the short

ones, when working left to right along the first row. If the box (1, j) lies on a long

diagonal, then the numbering pattern for T↘ implies that this box will contain the integer

T↘(n−k,⋆)(i, j) = (l
+

2
)+1+ (j −1)l+. For this value of m, the left hand side of (3.82) becomes

n − k
n

( l
+(l+ − 1)

2
+ 1 + (j − 1)l+) = (n − k)l+

n
( l

+ − 1

2
+ 1

l+
− 1 + j) ≥ j

thanks to the definition of l+ and the fact that (x − 1)/2 + 1/x ≥ 1 if x ≥ 2.

It remains to deal with the short diagonals which contain a box on the first row. For

these diagonals we now work from right (j = n − k) to left (j = 1). For rightmost box on

the first row (1, n − k) we know that T↘(n−k,⋆)((1, n − k)) = n, and it is clear that (3.82)

holds for box (1, n − k). Suppose (3.82) holds for a box (1, j), then for box (1, j − 1) on a

small diagonal it is straightforward to see that

j − 1 ≤ n − k
n

T↘λ (1, j) − 1 ≤ n − k
n

T↘λ (1, j − 1) (3.83)

because T↘λ (1, j)−n/(n− k) ≤ T↘λ (1, j − 1). The result for all short diagonals now follows

quickly by induction.

Example 3.6.15. To illustrate Lemma 3.6.14 consider the partition λ = (10,10,9), which

may be represented as λ = (n − k,⋆) for n = 29, k = 19. For λ = (n − k,⋆) we have

(n − k/n) = 10/29. Define T a λ-tableau, such that T (i, j) = ⌊(10/29)T↘λ (i, j)⌋ for all

(i, j) ∈ λ. The two tableaux T↘λ , T are given below,

T↘λ =
4 7 10 13 16 19 22 25 27 29
2 5 8 11 14 17 20 23 26 28
1 3 6 9 12 15 18 21 24

T =
1 2 3 4 5 6 7 8 9 10
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8

.
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We may clearly see that for any box (i, j) ∈ λ we have j − i + 1 ≤ T (i, j).

Lemma 3.6.16. Let λ ⊢ n with λ1 = n − k. Then the eigenvalue eig(T ↓λ) for the shuffle

OSTn,α with α ≥ 1 may be bounded as follows:

eig(T ↓λ) ≤
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 − k(n−k)Nα−1(n)
nNα(n) if k ≤ n/4

1 − k
n for all k

.

Proof. We begin by quickly proving the second bound for all k using Lemmas 3.6.12 and

3.6.14:

eig(T ↓λ) ≤ eig (T↘(n−k,⋆)) = 1

Nα(n)
∑

(i,j)∈T↘
(n−k,⋆)

(j − i + 1)T↘(n−k,⋆)(i, j)
α−1

≤ 1

Nα(n)
n − k
n

∑
(i,j)∈T↘

(n−k,⋆)

T↘(n−k,⋆)(i, j)
α = 1 − k

n
.

Now we prove the bound for k ≤ n/4, by finding a tighter bound on T↘(n−k,⋆) and once

again using Lemma 3.6.12. For k ≤ n/4, we know (n − k,⋆) = (n − k, k), and thanks to

the order in which the boxes are filled, we see that T↘(n−k,⋆)(m) ≤m/2 for 1 ≤m ≤ 2k, and

T↘(n−k,⋆)(m) =m − k for 2k + 1 ≤m ≤ n. This gives us the following simple bound:

Nα(n) ⋅ eig(T↘(n−k,⋆)) ≤
2k

∑
m=1

m

2
mα−1 +

n

∑
m=2k+1

(m − k)mα−1

= Nα(n) − kNα−1(n) + (kNα−1(2k) −
1

2
Nα(2k)) . (3.84)

Now,

kNα−1(2k) −
1

2
Nα(2k) = k

2k

∑
m=1

mα−1 (1 − m

2k
) ≤ k∫

2k

0
xα−1 (1 − x

2k
)dx

= k(2k)α

α(1 + α)

≤ k2nα−1

α

22−α

(1 + α)
(since k ≤ n/4)

≤ k2Nα−1(n)
n

(3.85)

in the last step we have used the inequality nα/α = ∫
n

0 jα−1 ≤ ∑n0 jα−1 = Nα−1(n) which

holds for α ≥ 1. Combining (3.85) and (3.84) yields the desired result.

Note that the bound for k ≤ n/4 in Lemma 3.6.16 is not the same as our previous

bound (Lemma 3.6.7) when α = 1. The accuracy lost here helps us establish one bound

for all α ≥ 1. Using Lemma 3.6.16 above we complete our upper bound argument for Pn,α
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with α ≥ 1. The total variation distance is bounded as follows,

4∥OSTt
n,α − πn∥2

TV ≤ (eig(1n))2t + 2
(n/4)
∑
k=1

(n
k
)

2

k! (eig(T↘(n−k,k)))
2t

+ 2
n−2

∑
k>(n/4)

(n
k
)

2

k! (eig(T↘(n−k,⋆)))
2t

Substituting t = tn,α(logn + c), the first term eig(T1n) disappears as n→∞,

lim
n→∞

eig(T1n)2t = lim
n→∞

( 1

Nα(n)

n

∑
i=1

(2 − i)α−1)
2t

≤ lim
n→∞

( nα

Nα(n)
)

2tn,α(logn+c)
= 0.

We are left with the following two sums to control:

2
(n/4)
∑
k=1

(n
k
)

2

k!(1 − (n − k)kNα−1(n)
nNα(n)

)
2t

+ 2
n−2

∑
k>(n/4)

(n
k
)

2

k!(1 − k
n
)

2t

.

The first sum at time t = tn,α(logn + c) may be reduced to:

(n/4)
∑
k=1

(n
k
)

2

k!(1 − (n − k)kNα−1(n)
nNα(n)

)
2tn,α(logn+c)

≤ e−2c
n/4
∑
k=1

n2k2/n

k!
.

Following the work of Diaconis presented in Section 2.3.1 this may be shown to be bounded

by Ae−2c for sufficiently large n. For the second sum note that Nα(n)/Nα−1(n) is increas-

ing in α, and at α = 1 we have Nα(n)/Nα−1(n) = (n+1)/2. The second summation has been

shown to be tending to 0 at time (n/2) logn+cn as n→∞ by Diaconis [16, Chapter 3D The-

orem 5]. Therefore, the sum tending to 0 at the larger time t = (Nα(n)/Nα−1(n))(logn+c)
as n→∞. Putting these bounds together we get find,

lim sup
n→∞

∥OST
tn,α(logn+c)
n,α − πn∥TV ≤ Ae−c for some universal constant A.

This completes the upper bound for α ≥ 1 present in Theorem 3.6.6.

Lower Bound

For the case of α ≥ 1 a straightforward generalisation of Section 3.5 does not work. Instead,

we are going to present a symmetric argument, swapping the roles of the left and right

hands. For α ≥ 1, let Vn = {1, . . . , n/m} (i.e. the bottom n/m cards) and

Fn = {σ ∈ Sn ∣σ has at least 1 fixed point in Vn}.

We have already seen that πn(Fn) ≤ 1/m. We again want to bound the probability of

OSTn,α(Fn) via a coupon collector’s argument. Writing U tn for the set of uncollected

cards in Vn after t steps of the biased one-sided transposition shuffle, it follows that

OSTt
n,α(Fn) ≥ P(∣U tn∣ ≥ 1) . (3.86)
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Given α ≥ 1 our right hand is now choosing the top of the deck with higher probability

meaning it is not likely to touch any card in U tn. Whereas, our left hand is comparatively

more likely to touch cards in U tn. In one step we still only have four choices: both hands

touch uncollected cards, only one does (left or right), or neither does. This permits us to

bound the change in the number of collected cards as follows:

∣Vn ∖U t+1
n ∣ = ∣Vn ∖U tn∣ + ∣{Lt+1,Rt+1} ∩U tn∣

≤ ∣Vn ∖U tn∣ + 2 ⋅ 1[Rt+1 ∈ U tn] + 1[Rt+1 ∉ U tn, Lt+1 ∈ U tn] , (3.87)

This is the ‘reverse’ of equation (3.55), this time we increase by two if our right hand

collects a card. For sufficiently large n we may bound the probability of the events in

(3.87) as follows:

P(Rt+1 ∈ U tn) ≤
1

Nα(n)

n/m
∑

i=(n/m)−∣Utn∣
iα ≤ ∣U tn∣

Nα(n)
(n/m)α ≤ ∣U tn∣

Nα(n)
nα

α(m − 1)

≤ ∣U tn∣Nα−1(n)
Nα(n)(m − 1)

(3.88)

P(Rt+1 ∉ U tn, Lt+1 ∈ U tn) ≤
∣U tn∣
Nα(n)

n

∑
i=∣Utn∣+1

iα

i
≤ ∣U tn∣Nα−1(n)

Nα(n)
. (3.89)

In the last inequality of (3.88) we have used the fact that nα/α ≤ Nα−1(n) for α ≥ 1.

Using (3.87), (3.89) and (3.88) together, we now define a counting process M t
n,α which

stochastically dominates the number of collected cards ∣Vn ∖U tn∣ at all times:

M0
n,α = 0 ;

P(M t+1
n,α =M t

n,α + k) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Nα−1(n)
Nα(n)(m−1) (

n
m −M t

n,α) if k = 2

Nα−1(n)
Nα(n) ( n

m −M t
n,α) if k = 1

1 − m
m−1

Nα−1(n)
Nα(n) ( n

m −M t
n,α) if k = 0 .

(3.90)

Setting m = logn, this forms a valid probability distribution for n sufficiently large. The

counting process Mn,α is analogous to the process Mn defined in (3.58) with 1/n replaced

with Nα−1(n)/Nα(n). We recover the bound,

OSTt
n,α(Fn) ≥ P(M t

n,α < n/m).

Lemma 3.6.17. Let T = min{t ∶ M t
n ≥ n/ logn}. Then for any c > 2,

P(T ≤ tn,α(logn − n log logn − cn) ≤ π2

6(c − 2)2
.

Proof. This follows from the proof of Lemma 3.5.1 accounting for the change of 1/n to

Nα−1(n)/Nα(n).
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Following from Lemma 3.6.17 and taking c > 2 we find,

∥OST
tn,α(logn−log logn−c)
n,α − πn∥TV ≥ P(T > tn,α(logn − log logn − c)) − πn(Fn)

≥ 1 − π2

6(c − 2)2
− 1

logn
.

Taking limits in n recovers the limit present in Theorem 3.6.6 for biased shuffles with

α ≥ 1.

3.6.3 Cutoff for Biased One-sided Transposition Shuffles with General

Weight Functions

We have established a total variation cutoff for the biased one-sided transposition shuffles

where the weight function takes the form w(j) = jα for some α. In this section we look to

extend our previous results to a more general class of weight functions. Notice that jα/j
is monotonically increasing if and only if α ≥ 1 and monotonically decreasing if and only

if α ≤ 1. We now consider the class of weight functions w ∶ N → (0,∞) with the property

w(j)/j is monotonic. We first consider the case where w(j)/j is monotonically decreasing

(corresponding to α ≤ 1). In this situation we can prove the following extension of Lemma

3.6.7.

Lemma 3.6.18. Let λ ⊢ n with λ1 = n − k. Then the eigenvalue eig(T→λ ) for the shuffle

OSTn,w with w(j)/j monotonically decreasing may be bounded as follows:

eig(T→λ ) ≤
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 − (n−k+1)kw(n)
nNw(n) if k ≤ n/4

1 − kw(n)
2Nw(n) if k > n/4.

Proof. This follows the same proof as Lemma 3.6.7 with mα/m (or mα−1) replaced with

w(m)/m.

Corollary 3.6.19. The mixing time of the biased one-sided transposition shuffle OSTn,w

with w(j)/j monotonically decreasing is at most (Nw(n)/w(n)) logn.

Proof. Applying the same argument as Section 3.6.1 Upper Bound with the new bounds

from Lemma 3.6.18 immediately yields the desired result.

To complete the existence of a total variation cutoff we need to find a matching lower

bound of the same time. However, the argument presented in Section 3.6.1 is not easily

generalised for our new choices of weight function. The main issue being the relationship

between w(k) and w(n) for k ∈ Vn = {n − n/m, . . . , n}. In the previous case with w(j) =
jα we can easily see that w(k) = w(k/n)w(n). In the current situation we only know

w(n)/n ≤ w(k)/k; this is not enough information to establish a relationship between w(k)
and w(n) for use in equations (3.76), and (3.77). A new approach is likely to be needed

to prove a lower bound on the mixing time of the biased one-sided transposition shuffle

for this class of weight functions.

Conjecture 3.6.20. The biased one-sided transposition shuffle OSTn,w with w(j)/j mono-

tonically decreasing exhibits a total variation cutoff at time (Nw(n)/w(n)) logn.
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We now consider the class of weight functions where w(j)/j is monotonically increasing

(corresponding to α ≥ 1). Previously we proved the mixing time for the biased one-sided

transposition shuffle with α ≥ 1 to be (Nα(n)/Nα−1(n)) logn. For a general function w we

replace the factor of Nα−1(n) by the summation N ′
w(n) ∶= ∑ni=1w(i)/i. Therefore, we now

look to prove a cutoff at time (Nw(n)/N ′
w(n)) logn. The lower bound argument presented

in Section 3.6.2 Lower Bound, can easily be modified for this new class of weight functions.

Lemma 3.6.21. The mixing time of the biased one-sided transposition shuffle OSTn,w

with w(j)/j monotonically decreasing is at least (Nw(n)/N ′
w(n)) logn.

Proof. The result follows from the work of Section 3.6.2 Lower Bound withNα−1(n)/Nα(n)
replaced by N ′

w(n)/Nw(n), and the inequalities (3.88) and (3.89) replaced with:

P(Rt+1 ∈ U tn) ≤
1

Nw(n)

n/m
∑

i=(n/m)−∣Utn∣
w(i) ≤ ∣U tn∣

(m − 1)Nw(n)
(m − 1)w(n/m)

≤ ∣U tn∣
(m − 1)Nw(n)

n

∑
i=1

w(i)
i

= ∣U tn∣N ′
w(n)

(m − 1)Nw(n)
(3.91)

P(Rt+1 ∉ U tn, Lt+1 ∈ U tn) ≤
∣U tn∣
Nw(n)

n

∑
i=∣Utn∣+1

w(i)
i

≤ ∣U tn∣N ′
w(n)

Nw(n)
. (3.92)

To find a matching upper bound on the mixing time we look to generalise the results

of Section 3.6.2 Upper Bound. For a general weight function with w(j)/j monotonically

increasing Lemma 3.6.12 still holds and so we can bound the eigenvalues associated to a

partition λ using the value eig (T↘λ ). For small partitions we are able to use the bound

constructed in Lemma 3.6.16 without any modifications. For large partitions we encounter

an issue because the proof of the bound in Lemma 3.6.16 relies on exact knowledge of the

weight function w. In particular, we use the integral of w in order to obtain an upper

bound on the value of eig (T↘λ ), this argument can not be generalised to a generic weight

function w. However, we conjecture that an upper bound of the correct mixing time is

possible.

Conjecture 3.6.22. The biased one-sided transposition shuffle OSTn,w with w(j)/j mono-

tonically decreasing exhibits a total variation cutoff at time (Nw(n)/N ′
w(n))n logn.

The class of functions {w ∶ N → (0,∞) ∣w(j)/j is monotonic} is still quite restrictive.

We suspect that cutoffs in total variation distance may be proved for biased one-sided

transposition shuffles with more general weight function w (for example, slowly and reg-

ularly varying functions), but any proof of this would certainly need different techniques

to those developed in this section.
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3.7 Separation Distance for the One-sided Transposition Shuf-

fle

3.7.1 Cutoff for the Unbiased One-sided Transposition Shuffle

The unbiased one-sided transposition shuffle exhibits a cutoff in total variation distance

at time n logn. To prove that we also have a cutoff in separation distance at time n logn

we identify a strong stationary time for the unbiased one-sided transposition shuffle. The

aim of this section is to prove the following result.

Theorem 3.7.1. There exists a strong stationary time T for the one-sided transposition

shuffle, with P(T > n logn + cn) ≤ e−c.

From Theorem 3.7.1 we may quickly establish that the one-sided transposition shuffle

exhibits a cutoff in separation distance at time n logn.

Theorem 3.7.2. The one-sided transposition shuffle exhibits a cutoff in separation dis-

tance at time n logn.

Proof of Theorem 3.7.2. The lower limit on separation distance mixing time follows from

Lemma 1.1.24 and Theorem 3.1.2. The upper limit on separation distance mixing time

follows from Theorem 3.7.1.

A Strong Stationary Time Argument

Recall that we may view the elements of Sn as the possible permutations of deck of cards

which is made up of cards and positions both indexed by [n]. Any permutation σ ∈ Sn
is a bijection from cards to positions and σ−1 is a bijection from positions to cards, i.e.

σ(i) tells us the position of card i whereas σ−1(i) tells us what card is in position i.

We begin all our random walks at the identity permutation with positions and labels

fully matched. Throughout the rest of this section let (Xt)t∈N denote a Markov chain

driven by the unbiased one-sided transposition shuffle, and let (Y t)t∈N be a Markov chain

defined by setting Y t = (Xt)−1 for all times t. For any σ ∈ Sn and time t we have

P(Xt = σ) = P(Y t = σ−1). The Markov chains (Xt) and (Y t) represent two different ways

to view the one-sided transposition shuffle.

Let τ t be the transposition chosen at step t of the unbiased one-sided transposition

shuffle. To construct our strong stationary time we need to condition on the exact permu-

tation of cards in positions above position j at time t, that is the random variables Y t(i)
for j < i ≤ n. Given this information we also know which cards can be in positions 1 to j

at time t, define this set as,

Atj = [n] ∖ {Y t(i) ∣ j < i ≤ n}.

Definition 3.7.3. We say the random walk (Y t)t∈N satisfies property Pj at time t if we

have:

P (Y t(j) = l ∣Y t(i) for all j < i ≤ n) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1/j if l ∈ Atj
0 otherwise

(3.93)
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This property tells us that given total information about the deck strictly above position

j, the card in position j is equally likely to be any of the remaining cards.

Lemma 3.7.4. Let Tj be the first time our right hand chooses the position j when per-

forming the unbiased one-sided transposition shuffle. If Tj ≤ t then the Markov chain

(Y t)t∈N satisfies property Pj at time t.

Proof. We prove this by induction: once property Pj holds for some t, it holds for all

times after t.

Consider the time Tj , at this step of our Markov chain we must have applied a trans-

position (i j) with i ≤ j. The probability of picking any one of the transpositions (i j) at

time Tj is P(τTj = (i j)) = 1/j for all i ≤ j. Therefore, the card in position j at time Tj has

a uniform chance of being any of the cards in A
Tj−1
j = ATjj . Thus, we may clearly see that,

P (Y Tj(j) = l ∣Y Tj(i) for all j < i ≤ n) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1/j if l ∈ ATjj
0 otherwise

(3.94)

so Pj holds at time Tj .

Now suppose property Pj holds at time t. We study the time t+1 and split the analysis

into cases based on which transposition (a b) (with a ≤ b) was applied at time t + 1,

P (Y t+1(j) = l ∣Y t+1(i) for all j < i ≤ n)

= ∑
1≤a≤b≤n

P(τ t+1 = (a b))P (Y t+1(j) = l ∣Y t+1(i) for all j < i ≤ n, τ t+1 = (a b)) . (3.95)

Using knowledge of the transposition τ t+1 we evolve our deck backwards in time (Xt =
τ t+1Xt+1) to recover the random variables Y t(i) from Y t+1(i) for j < i ≤ n, and relate

Y t+1(j) to Y t(j). This allows us to use our inductive hypothesis.

If b = j then our random walk satisfies property Pj at time t+1 for the same reasoning

as time Tj . Suppose a ≤ b < j then we know that Y t(i) = Y t+1(i) for all j < i ≤ n.

Suppose instead that a, b > j, then we have Y t(b) = Y t+1(a) and Y t(a) = Y t+1(b), with

Y t(i) = Y t+1(i) for all other j < i ≤ n. In either case we know At+1
j = Atj , and the card in

position j has not moved from time t to t + 1. Therefore, we have

P (Y t+1(j) = l ∣Y t+1(i) for all j < i ≤ n, τ t+1 = (a b)) (3.96)

= P (Y t(j) = l ∣Y t(i) for all j < i ≤ n) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1/j if l ∈ Atj = At+1
j

0 otherwise
.

We now study in detail the effects of the remaining transpositions (a b) with a ≤ j < b.
In this case we can not fully recover the random variables Y t(i) with i < j ≤ n without extra

assumptions. To this end fix b > j, a card C ∈ At+1
j , and suppose that τ t+1 = (Xt+1(C) b),

i.e., card C is moved from position b into a position below j by τ t+1. Letting C range

over all choices in At+1
j will recover every transposition (a b) with b > j fixed and a ≤ j. In

the case that τ t+1 = (Xt+1(C) b), we know that Y t(b) = C and the other positions above

j have Y t(i) = Y t+1(i) for j < i ≤ n and i ≠ b. Therefore, for this choice of τ t+1 we know
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that Atj = (At+1
j ⊔ {Y t+1(b)}) ∖ {C}. Now consider the probability:

P (Y t+1(j) = l ∣Y t+1(i) for all j < i ≤ n, τ t+1 = (Xt+1(C) b)) .

If l = C then the event in question can only occur if the card currently in position b,

i.e. Y t+1(b), was in position j at time t. Noting that Y t+1(b) ∈ Atj , and using our inductive

hypothesis we find,

P (Y t+1(j) = C ∣Y t+1(i) for all j < i ≤ n, τ t+1 = (Xt+1(C) b))

= P (Y t(j) = Y t+1(b) ∣Y t(i) for all j < i ≤ n) = 1/j (3.97)

Alternatively, suppose l ∈ At+1
j ∖ {C}, we know the card l does not move from its position

at time t to time t + 1, and we know l ∈ Atj . Therefore, we find

P (Y t+1(j) = l ∣Y t+1(i) for all j < i ≤ n, τ t+1 = (Xt+1(C) b))

= P (Y t(j) = l ∣Y t(i) for all j < i ≤ n) = 1/j (3.98)

Putting the equations (4.48) and (4.50) together gives us,

P (Y t+1(j) = l ∣Y t+1(i) for all j < i ≤ n, τ t+1 = (Xt+1(C) b)) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1/j if l ∈ At+1
j ∖ {C}

1/j if l = C

0 otherwise

.

Letting C range over all possible choices of card in At+1
j while keeping b > j fixed, we cover

the desired probability for every transposition (a b) with a ≤ j < b. Finally applying every

separate case to (3.95) we have established that

P (Y t+1(j) = l ∣Y t+1(i) for all j < i ≤ n) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1/j if l ∈ At+1
j

0 otherwise

as required, thus by induction our hypothesis holds for all t ≥ Tj .

Lemma 3.7.5. Let T be the first time our right hand has chosen every position. Then T

is a strong uniform time for (Xt)t∈N and (Y t)t∈N.

Proof. Note that Xt is uniformly distributed if and only if Y t is uniformly distributed.

Lemma 3.7.4 implies that by time T ≥ Tj the Markov chain (Y t)t∈N satisfies all properties

Pj . Hence, for any σ ∈ Sn,

P(Y t = σ−1 ∣T ≤ t) = P (∩nj=1{Y t(j) = σ−1(j)} ∣T ≤ t)

=
n

∏
j=1

P (Y t(j) = σ−1(j) ∣ ∩ni=j+1 {Y t(i) = σ−1(i)}, T ≤ t)

=
n

∏
j=1

1

j
= πn(σ).
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We have found a strong stationary time for the unbiased one-sided transposition shuffle.

Following quickly from this we may prove Theorem 3.7.1, and thus establish a cutoff in

separation distance for the one-sided transposition shuffle.

Proof of Theorem 3.7.1. Let T be the first time our right hand has chosen every position

j. Our right hand is choosing positions via a uniform probability on [n]. Thus T is

modelled by the standard coupon collector’s problem with n coupons. To complete our

argument recall (Section 2.3.2, equation (2.19)) that for the standard coupon collector’s

problem on n cards we have P(Tn > n logn + cn) ≤ e−c.

The strong stationary time T is novel in a few ways. Often strong stationary times

rely on a sequence of stopping times (Ti)i∈N where at time Ti we know there exists a

subset of i cards which are uniformly distributed with respect to Si. This is exactly the

technique employed to find a strong stationary time for the top-to-random shuffle which

we covered in Section 2.3.2. The strong stationary time T can not be split up in this way.

Suppose we require that we touch positions in order from 1 to n, then after we choose

position i the cards in the subset of positions [i] ⊆ [n] are uniformly distributed on Si,

similarly to the top-to-random shuffle. However, if instead we require that positions are

touched in reverse order, i.e. from n to 1, then we do not find any uniform subsets of Sn

before becoming completely uniform when we touch card 1. Therefore, because we do not

impose a condition on the order in which we must touch positions to get to the time T ,

at any particular time before T there is no certainty that we have a uniformly distributed

subset of the cards [n]. This sudden uniformity is the kind of behaviour which drives the

existence of a cutoff in separation distance.

3.7.2 Generalising for Biased One-sided Transposition Shuffles

In Section 3.6 we were able to prove cutoff in total variation for all biased one-sided

transposition shuffles. Given that the unbiased one-sided transposition shuffle OSTn,0

also shows a cutoff in separation at the same time as for total variation we may hope the

same can be proven for all biased shuffles OSTn,α. However, in this section we show that

simply extending the method used for OSTn,0 is not enough to prove the existence of a

cutoff in separation distance for all α. Recall that for a biased one-sided transposition

shuffle OSTn,α our right hand chooses a position j with probability jα/Nα(n).

Lemma 3.7.6. Let Tα be the time for the right hand of the biased shuffle OSTn,α to

choose every position in [n] at least once. Then Tα is a strong stationary time for the

shuffle OSTn,α, for all α.

Proof. For the biased shuffle OSTn,α our left hand is still choosing uniformly below our

right hand, therefore this result follows from the proofs of Lemmas 3.7.4 and 3.7.5.

Given Tα is still a strong stationary time all we have left to do is analyse the proba-

bility P(Tα > t). This reduces to a biased coupon collector’s problem. The next lemma

establishes a bound on the time Tα which will allow us to prove a cutoff in separation

distance for biased one-sided transposition shuffles with α ≤ 0.
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Lemma 3.7.7. Let tn,α be the time defined in Theorem 3.6.6, that is

tn,α =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Nα(n)/nα if α ≤ 1

Nα(n)/Nα−1(n) if α ≥ 1
.

For the biased one-sided transposition shuffle with α ≤ 0 we have that P(Tα > tn,α(logn +
c)) ≤ e−c.

Proof. We say position j is collected the first time it is chosen by our right hand. Its

collection probability at each step of our random walk is jα/Nα(n). We bound the time

Tα by a coupon collector’s argument with inspiration taken from the top to random shuffle

(Lemma 2.3.9). Let Ctj be the event that we have not collected position j by time t. We

may find a simple upper bound as follows:

P(Tα > t) = P(∪nj=1C
t
j) ≤

n

∑
j=1

P(Ctj) =
n

∑
j=1

(1 − jα

Nα(n)
)
t

. (3.99)

Now substituting t = tn,α(logn + c) = (Nα(n)/nα)(logn + c) for α ≤ 0, and applying the

bound (1 − x)t ≤ e−tx, we find,

P(Tα > t) ≤
n

∑
j=1

(1 − jα

Nα(n)
)
tn,α(logn+c)

≤ e−c
n

∑
j=1

n−(j/n)
α

≤ e−cn1−(1)α ≤ e−c,

with the second to last inequality following from (j/n)α = (n/j)−α ≥ 1−α for α ≤ 0.

Theorem 3.7.8. The biased one-sided transposition shuffle OSTn,α with α ≤ 0 exhibits a

cutoff in separation distance at time tn,α logn.

Proof. The lower bound on separation distance mixing time follows from Lemma 1.1.24

and Theorem 3.6.6. The upper bound on separation distance mixing time follows from

Theorem 3.7.1

The problem stopping us from copying Lemma 3.7.7 for shuffles with α > 0 is the

approximation in equation (3.99). For α ∈ (0,1] we still find that

P(Tα > t) ≤
n

∑
j=1

(1 − jα

Nα(n)
)
tn,α(logn+c)

≤ e−c
n

∑
j=1

n−(j/n)
α

.

The summation present above is unbounded as n → ∞ for α ∈ (0,1]. Similarly for α ∈
[1,∞) we may find the bound (3.99) to be,

P(Tα > t) ≤
n

∑
j=1

(1 − jα

Nα(n)
)
tn,α(logn+c)

≤
n

∑
j=1

n−j
α/Nα−1(n)e−c (j

α/Nα−1(n))

and this summation is still unbounded as n → ∞. Therefore, to use bound (3.99) for

α > 0 we would need to increase the time we consider from tn,α logn until the respective
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summation is bounded in n. For example if α = 1 the summation (3.99) becomes

e−c
n

∑
j=1

(1 − 2j

n(n + 1)
)
t

which is bounded at time t = O(n2), which is of a greater order than our lower bound of

(n + 1)/2 logn from Theorem 3.6.6.

Overall the bound presented in the proof of Lemma 3.7.7 is not good enough to establish

an upper bound on our separation distance mixing time that matches our lower bound of

tn,α logn for the biased one-sided transposition shuffles with α > 0.

The shuffle OSTn,1 is closely related to the random transposition shuffle. Strong sta-

tionary times for the random transposition shuffle have historically been difficult to find.

In [11] Broder found a strong stationary time for random transpositions which gave an

upper bound on the mixing time of 2n logn. Matthews claimed to have improved this

to n logn and then to (n/2) logn, thus establishing a cutoff in separation distance [33].

However, the argument Matthew presented had a subtle mistake which was only recently

discovered by White and explored in his thesis [44]. White has constructed a strong station-

ary time for random transpositions which gives the correct upper bound of (n/2) logn [45].

The proof of this involves the creation of a sophisticated stationary time involving keeping

track of the possible cycle structure the deck could be in at certain times. In light of this

it is not a surprise that a simple generalisation does not yield a satisfactory upper bound

on separation distance for the shuffle OSTn,1. Despite not finding a strong stationary time

for the biased one-sided transposition shuffles with α > 0, we conjecture that they show a

cutoff in separation distance at the same time as their respective total variation cutoff.

Conjecture 3.7.9. The biased one-sided transposition shuffle OSTn,α with α ∈ (0,∞)
exhibits a cutoff in separation distance at tn,α logn.
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Chapter 4

The Hyperoctahedral Group and

Random Walks

The hyperoctahedral group Bn is a natural extension of the symmetric group. We may

view the hyperoctahedral group as the arrangement of a deck of n cards with the extra

information of knowing whether a given card is face up or face down. The group has a

lot of structural similarly with the symmetric group; its elements may still be decomposed

into a product of different cycles, and the conjugacy classes are determined by cycle

type. This allows us to extend shuffles on Sn into those on Bn, in particular we focus on

extensions of the random transposition shuffle and one-sided transposition shuffle. The

module structure of the hyperoctahedral group also resembles that of Sn with its simple

modules being generalised Specht modules Sλ labelled now by bi-partitions of n. This

enables us to modify the technique of lifting eigenvectors for the hyperoctahedral group

and extended shuffles.

In the first few sections we cover the basics of the hyperoctahedral group and its

module structure, good references for the material we cover are The Representations of

the Weyl Groups of Type Bn by Aamily, Morris and Peel [1], and Representations of the

hyperoctahedral Groups by Geissinger and Kinch [22]. The last two sections detail lifting

eigenvectors for the hyperoctahedral group, we recover the full spectrum of the random

transposition shuffle and one-sided transposition shuffle.

4.1 The Hyperoctahedral Group

Define the set [±n] ∶= {1, . . . , n}∪ {−1, . . . ,−n} The hyperoctahedral group on n elements,

denoted Bn, may be defined as the group of all bijections σ ∶ [±n] → [±n] such that

σ(−i) = −σ(i), there are 2nn! such bijections. Any map σ ∈ Bn is completely determined

by its values on the positive elements {1, . . . , n}. Another common way to think about

the group Bn is the arrangements of a deck of n cards where we may now distinguish

between cards that are face up or face down. The bijection σ tell us what position card

i is in and whether it is face up (σ(i) positive), or face down (σ(i) negative). The last

way to view the hyperoctahedral group is as the wreath product Z2 ≀Sn. We may identify

important subgroups Sn = {σ ∣σ(i) > 0 if i > 0} and Zn2 = {σ ∣σ(i) = ±i for all i} inside the

hyperoctahedral group.
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Define multiplication performed in the group Bn to be the composition of functions

from right to left. We may decompose elements of Bn into a product of negative transpo-

sitions, and a permutation from Sn. This allows us to use cycle notation from Sn (Section

2.1) to represent the elements of Bn.

Definition 4.1.1. The conjugacy class of negative transpositions in Bn is composed of

the elements ξi for 1 ≤ i ≤ n, with:

ξi(j) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−i if j = i

+i if j = −i

j otherwise

.

The elements ξi can be thought of as flipping card i over.

Lemma 4.1.2. Let σ ∈ Bn. We may decompose σ into a permutation from Sn and a

product of negative transpositions. I.e., there exists xi ∈ {0,1} and η ∈ Sn ⊂ Bn such that,

σ = (
n

∏
i=1

ξxii )η.

Proof. By applying negative transpositions to σ we may recover an element of Sn inside

of Bn, i.e., there exists a collection of yi ∈ {0,1} such that, (∏n
i=1 ξ

yi
i )σ = η for some η ∈ Sn.

From here taking inverses of the elements ξi gives the desired form.

The conjugacy class of positive transpositions for Bn is formed from the elements (i j)
and ξiξj(i j) with i < j. The set of transpositions for the hyperoctahedral group is the

union of the sets of positive and negative transpositions. Lemma 4.1.2 may by restated

as; every element of Bn may be decomposed into a product of transpositions. Previously

we described the conjugacy classes of Sn in terms of their cycle type. Any element of Bn

may be split into positive and negative cycles which define the cycle type of that element.

To label the possible cycles types for Bn we introduce the concept of bi-partitions.

Definition 4.1.3. Let n ∈ N0, a bi-partition of n, denoted λ, is a pair of partitions

λ = (λ1, λ2) such that λ1 ⊢m and λ2 ⊢ n −m for some 0 ≤m ≤ n. If λ is a bi-partition of

n we write λ ⊢ n.

Definition 4.1.4. Let σ ∈ Bn with decomposition σ = (∏n
i=1 ξ

xi
i )η. We call a cycle in

η a positive cycle if ∑j xj ≡ 0 mod 2 for elements j in the cycle. We call a cycle in η a

negative cycle if ∑j xj ≡ 1 mod 2 for elements j in the cycle. Form two non-increasing

tuples λ1, λ2 of the lengths of positive and negative cycles respectively. The cycle type of

σ is defined as the bi-partition (λ1, λ2).

Example 4.1.5. Let n = 6 and consider σ ∈ B6 as defined by,

σ = (ξ1ξ2ξ4ξ5) (1)(2 3 4)(5 6).

The element σ only has one positive cycle of length 3, being ξ2ξ4(2 3 4). We also have two

negative cycles, the element ξ1 forms a cycle of length 1, and the elements ξ5(5 6) giving

a cycle of length 2. Therefore, σ has cycle type ((3), (2,1)).
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Lemma 4.1.6. Elements of Bn belong to the same conjugacy class if and only if they

share the same cycle type. Hence, bi-partitions label the conjugacy classes of Bn.

The conjugacy classes of negative and positive transpositions have cycle types ((1n−1), (1))
and ((2,1n−2), (0)) respectively. Following from the decomposition of Lemma 4.1.2, we

may introduce the generalised sign function for the hyperoctahedral group, which counts

the number of transpositions (positive and negative) needed to form an element.

Definition 4.1.7. Let σ ∈ Bn with decomposition σ = (∏n
i=1 ξ

xi
i )η. Define the sign

function for the hyperoctahedral group, denoted sgn ∶ Bn → {−1,1}, as follows,

sgn(σ) = (−1)∑
n
i=1 xi sgn(η).

An element in Bn is called even if it has positive sign, and is called odd if it has negative

sign. The sign function on Bn is multiplicative, that is sgn(στ) = sgn(σ)sgn(τ). Thus,

the set of positive elements of Bn forms a normal subgroup of index 2.

4.2 The Structure of Modules for the Hyperoctahedral Group.

Define the group algebra of the hyperoctahedral group as Bn ∶= C[Bn]. To construct the

modules of the hyperoctahedral group we extend the notions of partitions and tableaux to

bi-partitions and bi-tableaux. This new notation allows for the formulation of permutation

and Specht modules for Bn following a combinatoric method similar to that of Sn.

4.2.1 Bi-partitions

Every bi-partition has an associated Young diagram, which is formed from the Young

diagrams for partitions λ1, λ2 separately. For example, the bi-partition ((3,1), (22,1)) has

Young diagram

⎛
⎝

,
⎞
⎠
.

In a Young diagram we denote the empty partition (0) as ∅. We refer to the boxes of λ

by triples (i, j, k), which mean box (i, j) in λk. For any bi-partition λ we may form the

transpose of λ, denoted λ
′
, by swapping the partitions λ1, λ2 and taking their transposes

separately, i.e., λ
′ = (λ2 ′, λ1 ′). For example the transpose of bi-partition ((3,1), (22,1))

is ((3,2), (2,1,1)), which has corresponding Young diagram,

⎛
⎝

,
⎞
⎠
.

We may extend the dominance ordering on partitions to a partial ordering on bi-partitions

in the following way.

Definition 4.2.1. Let λ,µ be bi-partitions. Define the dominance ordering on bi-partitions

as follows:

λ ⊵ µ⇔
⎧⎪⎪⎪⎨⎪⎪⎪⎩

we have ∣λ1∣ > ∣µ1∣,

or ∣λ1∣ = ∣µ1∣ and λ1 ⊵ µ1, λ2 ⊵ µ2.
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In the case λ ⊵ µ we say λ dominates µ.

Consider the bi-partitions λ = ((2,1), (2,2)), µ = ((3), (2,1,1)), we do not have λ

dominating µ nor vice versa, because µ1 ⊵ λ1 and λ2 ⊵ µ2. Therefore, the dominance

order of bi-partitions is not necessarily a total ordering (however, it may be for small n).

The dominance ordering does have maximal and minimal elements, which are given by

((n), (0)) and ((0), (1n)) respectively. Note that if λ ⊵ µ we may form µ from λ by moving

boxes from λ1 to λ2, or moving boxes down and to the left within each separate partition.

Lemma 4.2.2. Let λ,µ be bi-partitions of n. Then λ ⊵ µ if and only if µ′ ⊵ λ′.

Proof. Suppose λ ⊵ µ, if ∣λ1∣ > ∣µ1∣ then the lemma follows immediately from the definitions

of transpose and dominance ordering. If ∣λ1∣ = ∣µ1∣ then also ∣λ2∣ = ∣µ2∣ and we know λk ⊵ µk

if and only if µk ′ ⊵ λk ′. Hence, µ′ ⊵ λ′.

Given two bi-partitions λ,µ of possibly different sizes, we say λ ⊆ µ if λ1 ⊆ µ1 and

λ2 ⊆ µ2. Given a bi-partition of n we may turn in into a bi-partition of n + 1 by adding a

single box to one of the partitions λ1, λ2. Let the element e1
i denote the tuple (ei, (0)) and

e2
i = ((0), ei), with ei as defined in Section 2.2.1. When we add a box to λ on the ith row of

partition k we form a new bi-tuple λ + eki . We may extend Young’s lattice (Figure 2.1) to

bi-partitions by restriction our attention to choices of eki that result in a new bi-partition.

This structure may be seen in Figure 4.1.

Each path upwards (respectively downwards) in Figure 4.1 represents the placement

(respectively removal) of a box to form a Young diagram. This is an important structure

as it connects the bi-partitions of n to bi-partitions of n + 1, this in turn allows us to link

the modules of Bn and Bn+1.

(∅ ,∅)

(∅ , )( , ∅)

( , ∅) ( , ∅) ( , ) (∅ , ) (∅ , )

( , ∅) ( , ∅) ( , ∅) (∅ , )(∅ , )(∅ , )( , )( , ) ( , ) ( , )

Figure 4.1: Young’s lattice for bi-partitions of size n ∈ {0,1,2,3}.
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4.2.2 Bi-tableaux

Given a bi-partition λ we may form a Young bi-tableau (alternatively a λ-tableau), denoted

T = (T 1, T 2), by putting the numbers ±1, . . . ,±n into the boxes of (the Young diagram of)

λ such that the value a (positive or negative) only appears once. We say the value a occurs

in a bi-tableau T if ±a appears in a box of T . In this chapter we refer to bi-tableaux as just

tableaux with the understanding that for the hyperoctahedral group we are working with

bi-partitions, and bi-tableaux. The set of Young tableaux of shape λ is denoted YT(λ).
A standard Young tableau T is a Young tableau where the values in the boxes of T are

all positive, and increasing across rows and down columns within T 1 and T 2. The set of

standard Young tableaux of shape λ is denoted SYT(λ). The size of the set SYT(λ) is

denoted dλ and called the dimension of λ.

Lemma 4.2.3. The dimension dλ is equal to the product ( n
∣λ1∣)dλ1dλ2 where dλk is the

dimension of λk as a partition of ∣λk∣.

Proof. To form a standard Young tableau of shape λ first split the values of [n] across the

two Young diagrams, there are ( n
∣λ1∣) ways to do this. Then form standard Young tableaux

of shape λ1, λ2 with their assigned values, there are dλ1dλ2 way to do this.

The transpose of a tableau T , denoted T
′
, is defined by swapping the tableaux T 1, T 2

and taking each transpose separately, i.e., T
′ = (T 2 ′, T 1 ′). A tableau T is a standard

Young tableau if and only if its transpose T
′

is a standard Young tableau. If a tableau

T has a box in position (i, j, k), we let T (i, j, k) denote the value in that box; otherwise

T (i, j, k) is undefined.

Example 4.2.4. The bi-partition λ = ((3,1), (2,1)) has (7
4
)d(3,1)d(2,1) = 35 ∗ 6 = 210

standard Young tableaux, 6 of these are given below:

( 1 2 3
4

,
5 6
7

) ( 1 2 4
3

,
5 6
7

) ( 1 3 4
2

,
5 6
7

)

( 1 2 3
4

,
5 7
6

) ( 1 2 4
3

,
5 7
6

) ( 1 3 4
2

,
5 7
6

) .

The remaining standard Young tableaux may be found by choosing different divisions of

the numbers {1,2,3,4,5,6,7} between the partitions (3,1) and (2,1).

Each standard Young tableau of shape λ corresponds to one path up Young’s lattice

(Figure 4.1) starting at ∅ and ending at λ. To form this correspondence take any T ∈
SYT(λ) and create a path up Young’s lattice by adding boxes to ∅ in the order given by

the entries in T .

The following result is an extension of Lemma 2.2.2 which establishes a link between

Young tableaux and their respective shapes. In particular by comparing two young

tableaux of possibly different shapes we may learn whether one bi-partition dominates

the other.

Definition 4.2.5. Let Tλ be a λ-tableau and Tµ be a µ-tableau. We say that Tλ agrees

with Tµ, if for all a that occur in T k
λ

we have ±a occurring in T kµ for k ∈ {1,2}. If the

tableaux Tλ, Tµ agree then we must have ∣λk∣ = ∣µk∣ for k ∈ {1,2}.
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Lemma 4.2.6. Let Tλ be a λ-tableau and Tµ be a µ-tableau that agree. Suppose for each

index i the elements in row i of T kµ appear in different columns of T k
λ

. Then λ ⊵ µ.

Proof. We know ∣λk∣ = ∣µk∣ for k ∈ {1,2} and thus using the same argument as Lemma

2.2.2 on the first and second tableaux separately we have λ1 ⊵ µ1, λ2 ⊵ µ2.

4.2.3 The Module Structure of the Hyperoctahedral Group

We are now in a position to define the permutation and Specht modules for the hyperoc-

tahedral group. We find one permutation module for every bi-partition λ which contains

the simple Specht modules as special submodules. The following proofs are adapted from

several sources, including Geissinger and Kinch [22], Aamily, Morris, and Peel [1], and

Can [12]. We have adapted the constructions presented in the literature to allow us to re-

establish Young’s rule (Lemma 2.2.21) for the permutation modules of the hyperoctahedral

group.

Permutation Modules

To define the permutation modules of Bn we reintroduce the idea of a row permutation

for a tableau T , this defines an equivalence relation on the Young tableaux of a fixed

bi-partition.

Definition 4.2.7. Let T be a Young tableau of size n, and σ ∈ Bn. Define an action of σ

on T by applying σ to the values of T box wise.

Definition 4.2.8. Let T be a bi-tableau of size n. Define the subgroup of row permutations

of T , denoted RT , as the set of elements in Bn which fix rows of T 1 up to changes in sign,

and fix rows in T 2 completely. Define the subgroup of column permutations of T , denoted

CT , as the set of elements in Bn which fix columns in T 2 up to changes in sign, and fix

columns in T 1 completely.

Definition 4.2.9. Define an equivalence relation on tableaux of shape λ called row equiv-

alence, denoted ∼R, in the following way:

T1 ∼R T2 ⇔ ∃σ ∈ RT1 such that σ T1 = T2.

The row equivalence class of a tableau T is denoted by {T} and called a (bi-)tabloid.

Example 4.2.10. Let λ = ((2,1), (2)). Consider the following three λ-tableaux,

T 1 =
⎛
⎝

1 5

3
, 4 2

⎞
⎠

T 2 =
⎛
⎝

5 −1

3
, −4 2

⎞
⎠

T 3 =
⎛
⎝
−1 −5

−3
, 2 4

⎞
⎠
.

The tableaux T 1, T 2 are not row equivalent because we have changed the sign of 4 in the

second tableau. The tableaux T 1, T 3 are row equivalent for the permutation (ξ1ξ3ξ5(2 4)) ∈
RT1 , therefore, {T 1} = {T 3}.

The action of Bn on tableaux, naturally extends to an action on tabloids, given by

σ {T} = {σ T}. We now construct the permutation modules for Bn.
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Definition 4.2.11. Let λ ⊢ n. The permutation module for Bn, denoted Mλ, is the

following vector space

Mλ = ⟨{T} ∣T is a tableau of shape λ⟩

with action of Bn given by extending the action of Bn on tabloids (Definition 4.2.7)

linearly.

Note that just simply extending the previous definition of row permutations (Definition

2.2.4) for single tableaux T to both tableaux T 1, T 2 is not strong enough to distinguish

all the permutation modules of Bn from one another. For example, if we study row

permutations of bi-tableaux which fix rows completely in both separate tableaux, then

for any partition λ ⊢ n the modules M (λ,(0)) and M ((0),λ) would be isomorphic to one

another.

Lemma 4.2.12. The permutation module Mλ is cyclic and has dimension

2∣λ
2∣ n!

∏2
i=1 (∏

l(λi)
j=1 λij !)

.

Proof. The main fraction above is a multinomial coefficient formed from n and the size of

every row in λ. The extra factor 2∣λ
2∣ represents the fact that all entries of λ2 have fixed

signs. The permutation module being cyclic follows from the row equivalence relation.

Specht Modules

We construct the Specht modules Sλ for the hyperoctahedral group as stable subspaces

of the corresponding permutation modules Mλ. We form a basis for the Specht module

Sλ by taking linear combinations of tabloids, we call these new elements polytabloids.

Definition 4.2.13. Given a Young tableau T , form the element kT ∈Bn as the following

sum:

kT = ∑
σ∈C

T

sgn(σ)σ. (4.1)

The polytabloid associated to tabloid T , denoted eT , is the element eT = kT {T}. We

say that the tabloid {T ′} is contained in the polytabloid eT if it appears with a non-zero

coefficient.

Lemma 4.2.14. Let T be a Young tableau of size n, and η ∈ Bn. Then η eT = eη T .

Proof.

η eT = ∑
σ∈C

T

sgn(σ)η σ η−1{ηT} = ∑
σ∈C

η T

sgn(σ)σ {ηT} = eη T .

Definition 4.2.15. Let λ ⊢ n. The Specht module for Bn, denoted Sλ, is defined as the

following vector space,

Sλ = ⟨eT ∣T ∈ YT(λ)⟩
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with the natural action of Bn on tabloids. In fact we may restrict the spanning set

{eT ∣T ∈ YT(λ)} to a basis of polytabloids formed from standard Young tableaux of λ

(see [12, Sections 4 and 5]), that is

Sλ = ⟨eT ∣T ∈ SYT(λ)⟩. (4.2)

Thus, the Specht module Sλ has dimension dλ, and is cyclic by applying Lemma 4.2.14.

Example 4.2.16. Let λ = ((2,1), (2)), the Specht module Sλ has dimension dλ = (5
3
)d(2,1)d2 =

20. Take T to be the following standard Young tableau of shape λ,

T = ( 1 2
3

, 4 5 ) .

The group of column permutations for any tableau of shape λ has size 8, as we may swap

elements in the first column of T
1
, and swap the sign of every value in T

2
. Starting from

the tabloid T we can compute its associated polytabloid:

eT = kT {T} = { 1 2

3
, 4 5 } − { 3 2

1
, 4 5 } − { 1 2

3
, −4 5 } + { 3 2

1
, −4 5 }

− { 1 2

3
, 4 −5} + { 3 2

1
, 4 −5} + { 1 2

3
, −4 −5} − { 1 2

3
, −4 −5} .

We have seen that the conjugacy classes of Bn are labelled by bi-partitions, and we have

found exactly one Specht module for each bi-partition λ. We now prove that the Specht

modules form a complete set of simple modules for the hyperoctahedral group. To do this

we study the properties of the groups action on polytabloids. We first show every Specht

module to be simple and then prove that Sλ ≅ Sµ if and only if λ = µ. The following

arguments take inspiration from the construction of Specht modules for the symmetric

group (Section 2.2.4), and work by Can [12].

Lemma 4.2.17. Let λ,µ ⊢ n. Let Tλ be a λ-tableau and Tµ be a µ-tableau. Suppose that

at least one of the following conditions holds: 1) there exists a ∈ T 1
µ such that ±a ∈ T 2

λ
,

2) there exists a, b in the same row of T kµ , with c = ±a, d = ±b in the same column of T k
λ

.

Then kT
λ
{Tµ} = 0.

Proof. First we establish that CT
λ
∩RTµ ≠ {e}. If the first condition is met then clearly

ξa ∈ CT
λ
∩RTµ . If the second condition is met with k = 1 then (a b) ∈ CT

λ
∩RTµ , if k = 2

then (c d) ∈ CT
λ
∩RTµ . Let τ be a transposition in CT

λ
∩RTµ , then (e − τ){Tµ} = 0. All

choices of τ generate a subgroup of order 2 in CT
λ
, taking signed coset representatives

σ1, . . . σm for this subgroup. Then,

kT
λ
{Tµ} =

⎛
⎜
⎝
∑

σ∈CT
λ

sgn(σ)σ
⎞
⎟
⎠
{Tµ} = (

m

∑
i=1

σi(e − τ)){Tµ} = 0.

Lemma 4.2.18. Let λ,µ ⊢ n. Let Tλ be a λ-tableau and Tµ be a µ-tableau. Suppose λ ⋭ µ,

then kT
λ
{Tµ} = 0.
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Proof. Suppose Tλ does not agree with Tµ then by our hypothesis there must exist a ∈ T 1
µ

such that ±a ∈ T 2
λ

thus the conclusion holds by Lemma 4.2.17. However, if Tλ agrees with

Tµ the conclusion holds by Lemma 4.2.17 and Lemma 4.2.6.

Corollary 4.2.19. Let λ,µ ⊢ n. Let Tλ be a λ-tableau and Tµ be a µ-tableau. Suppose

kT
λ
{Tµ} ≠ 0, then λ ⊵ µ. Furthermore, if λ = µ then kT

λ
{Tµ} = ±eT

λ
.

Proof. The first statement is the contrapositive of Lemma 4.2.18. Let λ = µ and kT
λ
{Tµ} ≠

0. The tableaux Tλ, Tµ must agree and furthermore, if a, b belong to the same row of T k
λ

then c = ±a, d = ±b belong to different columns of Tµ. This implies that there exists a

column permutation η ∈ CT
λ

such that {Tµ} = η{Tλ} for more details see [12, Lemma 3.6].

Therefore,

kT
λ
{Tµ} =

⎛
⎜
⎝
∑

σ∈CT
λ

sgn(σ)ση
⎞
⎟
⎠
{Tλ} =

⎛
⎜
⎝
∑

σ∈CT
λ

sgn(η−1)sgn(σ)σ
⎞
⎟
⎠
{Tλ} = sgn(η)eT

λ
.

Corollary 4.2.20. Let Tλ be a λ-tableau and v ∈Mλ. Then kT
λ
v is a multiple (possibly

zero) of eT
λ
.

Proof. Write v = ∑i ci{T i}, where T i is a Tλ-tableau. Each summand kT
λ
{T i} is either

zero or a multiple of eT
λ

by Corollary 4.2.19.

We are now in a position to prove that every Specht module is simple, and that they

are pairwise non-isomorphic to each other. The proofs of the next theorems follow closely

from their symmetric group counterparts (Theorems 2.2.17 and 2.2.18).

Theorem 4.2.21 (Submodule Theorem). Let V ⊆Mλ be a submodule. Then V ⊇ Sλ or

V ⊆ (Sλ)0. Therefore, the Specht module Sλ is simple.

Proof. Take v ∈ V , and Tλ a λ-tableau. By Corollary 4.2.20 we have kT
λ
v = ceT

λ
for some

c ∈ C. Suppose we have c ≠ 0 for some choice of Tλ, then c−1kT
λ
v = eT

λ
∈ V hence we may

generate Sλ inside V .

Now suppose that c = 0 for all choices of tableau Tλ, then consider the inner product

on Mλ defined on its basis by ⟨{T 1} , {T 2}⟩ = δ{T 1} ,{T 2}. This inner product is invariant

under the action of Bn, so we find

⟨v, eT
λ
⟩ = ∑

σ∈CT
λ

⟨v, sgn(σ)σ {Tλ}⟩ = ∑
σ∈CT

λ

⟨sgn(σ)σ−1 v,{Tλ}⟩ = ⟨kT
λ
v,{Tλ}⟩ = ⟨0,{Tλ}⟩ = 0.

Therefore no polytabloid appears in Mλ, and because any single polytabloid would span

Sλ, we have v ∉ Sλ ⇒ v ∈ (Sλ)0.

Theorem 4.2.22. Let λ,µ ⊢ n. Suppose there is a non-zero homomorphism ψ ∶ Sλ →Mµ.

Then λ ⊵ µ, and if λ = µ then ψ is multiplication by a scalar.

Proof. Take a basis vector eT
λ
∈ Sλ such that ψ(eT

λ
) ≠ 0. Extend the homomorphism ψ

to the whole module Mλ by setting it to be 0 on the complement of Sλ. Then

0 ≠ ψ(eT
λ
) = kT

λ
ψ({Tλ}) = kTλ (∑

i

ci{T i})
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where the T i are µ-tableau. We must have at least one ci and product kT
λ
ci{T i} being

non-zero. Therefore, by Corollary 4.2.19 we have λ ⊵ µ.

If λ = µ we have that ψ(eT
λ
) = c ⋅ eT

λ
for some constant c ∈ C. Hence, for any σ ∈ Bn,

using Lemma 4.2.14 we have

ψ(eσT
λ
) = ψ(σ eT

λ
) = σψ(eT

λ
) = c ⋅ σeT

λ
= c ⋅ eσ T

λ
.

Corollary 4.2.23. The Specht modules Sλ for λ ⊢ n form a complete set of pairwise

non-isomorphic simple modules for Bn.

Proof. The Submodule Theorem tells us the Specht modules are simple. Now if λ = µ we

may easily see that Sλ ≅ Sµ. Conversely if Sλ ≅ Sµ then we have non-zero homomorphisms

ψ ∶ Sλ → Mµ and φ ∶ Sµ → Mλ. Therefore, by Theorem 4.2.22 we must have λ ⊵ µ and

µ ⊵ λ which implies λ = µ.

Given a permutation module Mλ we would like to decompose it into its simple sub-

modules. An application of Theorem 4.2.22 allows us to re-establish Young’s rule for the

the permutation modules of the hyperoctahedral group.

Lemma 4.2.24 (Young’s Rule). For µ ⊢ n we have,

Mµ ≅ ⊕
λ⊢n
λ⊵µ

Kλ,µS
λ, (4.3)

where Kλ,µS
λ denotes a direct sum of Kλ,µ copies of Sµ. We call the coefficients Kλ,µ ∈ N

0

generalised Kostka numbers. We know that Kλ,λ = 1 for all λ ⊢ n. Furthermore, if

∣λ1∣ = ∣µ1∣ then Kλ,µ =Kλ1,µ1 Kλ2,µ2.

Proof. Theorem 4.2.22 tells us that if Sλ appears as a summand of Mµ we must have

λ ⊵ µ. If λ = µ we know that any homomorphism Sλ →Mλ is multiplication by a scalar

hence there must only be one copy of Sλ in Mλ. The last assertion follows from work by

Geissinger and Kinch [22, Corollary II.3].

Similarly to the symmetric group case the regular module Bn is isomorphic to the per-

mutation module associated to the bi-partition at the bottom of the dominance ordering,

that is the partition ((0), (1n)).

Lemma 4.2.25. The permutation module M ((0),(1n)) ≅ Bn as Bn-modules. Thus, it has

canonical decomposition,

M ((0),(1n)) ≅ ⊕
λ⊢n

dλS
λ as Bn-modules.

Proof. Define a isomorphism of Bn-modules ψ ∶Bn →M ((0),(1n)) by its action on a single

permutation σ ∈ Bn:

ψ(σ) = {∅, σ(1) . . . σ(n) } .
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The version of Young’s rule we stated for the hyperoctahedral group is weaker than

the result for the symmetric group (Lemma 2.2.21). For the purpose of lifting eigenvectors

we do not require that every Specht module Sλ with λ ⊵ µ appears in the decomposition

of Mµ.

The hyperoctahedral group has a natural inclusion structure Bm ↪ Bn for m < n, by

extending every permutation ofBm to a permutation of Bn by choosing it to fix all elements

of [±m] ∖ [±n]. The group algebras of the hyperoctahedral group and subsequently Bn-

modules inherit this recursive structure. To end this section we state the branching rules

for the Specht modules of the hyperoctahedral group, a proof and further details of this

result may be found in [22, Section III].

Theorem 4.2.26 (Branching rules for Bn). Let n ≥ 2, and λ ⊢ n. The branching rules

for the simple modules of the hyperoctahedral group are as follows:

ResBnBn−1S
λ ≅ ⊕

µ⊢n−1

µ⊆λ

Sµ as Bn−1-modules (4.4)

IndBn+1Bn
Sλ ≅ ⊕

µ⊢n+1

λ⊆µ

Sµ as Bn+1-modules (4.5)

The branching rules for Specht modules are closely related to the edges of Young’s

lattice. When we induce a Specht module Sλ one step we create a direct sum of the

Specht modules associated to bi-partitions directly above λ in Young’s lattice, conversely

when we restrict one step we find a direct sum of Specht modules associated to bi-partitions

directly below λ in Young’s lattice.

4.2.4 Switching to Words

Let λ ⊢ n, and take a tableau T of shape λ. If we add a box to T containing the value

±(n + 1) we transform T to a tableau of size n + 1. Similarly we can transform a tabloid

{T} if size n into a tabloid of size n+1 by adding a single box. This is exactly how we lift

vectors from permutation module Mλ to permutation modules of Bn+1. Notationally this

process is cumbersome, therefore we instead form a correspondence between the study of

tabloids to the study of words over a finite alphabet. This allows the algebra of lifting

eigenvectors in Section 4.2.4 to be presented in a concise way. The construction of the

correspondence follows closely to that of the symmetric group, however the alphabet and

words now contain signed and unsigned letters.

Define the set [n±] = {1+, . . . , n+}∪{1−, . . . , n−}, viewed as 2n distinct symbols. We call

the letters in [n±] signed, and letters in [n] unsigned. Given n ∈ N0 we denote by Wn the

set of words of length n with letters from the set [n] = [n] ∪ [n±]. For n = 0 we allow the

empty word ω as the unique word of length zero. The size of Wn is (3n)n.

The hyperoctahedral group has a natural action on Wn. Take σ ∈ Bn with decompo-

sition σ = (∏n
i=1 ξ

xi
i )η, then σ acts on the word w ∈ Wn in the following way: permute

the letters in w by η (as defined in Section 2.2.6), then for all xi = 1 flip the sign of wi if

possible. For example, take w = 1+24−3+3 and σ = (ξ1ξ4ξ5) (1 2 3), then σw = 4+1+23−3,

note that ξ5 has no affect on w5 = 3 because it is an unsigned letter. Let Mn be the vector
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space over C spanned by words in Wn. The action of Bn on Wn extends linearly to an

action of Bn on Mn, thus the vector space Mn is a Bn-module.

To each word w ∈ Wn we may associate a bi-tuple of size n of non-negative inte-

gers called its evaluation, denoted eval, as follows. Define evali(w) to count the number

of occurrences of unsigned symbol i in w, and let eval(w) ∶= (eval1, . . . , evaln). De-

fine eval±i (w) to count the number of occurrences of signed symbol i± in w and let

eval±(w) ∶= (eval±1 , . . . , eval±n). Then for a word w ∈Wn define its evaluation as the tuple

eval(w) ∶= (eval(w), eval±(w)). Note that the evaluation of any word in Wn sums to n.

For example, the word 1+24−3+3 has evaluation ((0,1,1,0,0), (1,0,1,1,0)). If the bi-tuple

eval(w) is non-decreasing we associate it with the corresponding bi-partition, e.g. 1+112−2

has evaluation ((2,1,02), (1,1,03)), and we associate this bi-tuple with the bi-partition

((2,1), (1,1)). The evaluation of any word is stable under the action of Bn because we

only permute symbols and change the sign of signed symbols, both of which do not affect

eval±(w). Therefore, we may form a submodule of Mn by restricting to words with a

given evaluation.

Definition 4.2.27. Let ν be a bi-tuple of non-negative integers which sum to n. Define

the Bn-module Mν as the following stable vector space

Mν = ⟨w ∈Wn ∣ eval(w) = ν ⟩ ⊆Mn.

Let ν ⊢ n, then the module Mν is isomorphic to the permutation module defined in

Definition 4.2.11. To establish the equivalence of these two definitions we construct a

bijection from tabloids of shape λ to words with evaluation λ.

Definition 4.2.28. Let λ ⊢ n. Define a map w ∶ YT(λ)→Wn as follows: for each tableau

T of shape λ, let w(T ) = w1 . . . wn be the word with wT (i,j,1) = i for each box (i, j,1) ∈ T ,

and WT (i,j,2) = i
± for each box (i, j,2) ∈ T with the sign of i given by the sign present in

box (i, j,2) of T . The word w(T ) formed by this process has evaluation λ. The map w

respects the action of Bn on tableaux and words, thus forming a homomorphism between

the Bn-modules of λ-tableaux and words in Mλ.

Example 4.2.29. Let λ = ((2,1), (1,1)), and take T a λ-tableau,

T = ( 2 1

−4
, −3 5 ) which has corresponding word w(T ) = 111−21+.

Now take σ ∈ Bn, the action of σ commutes with the linear map w. For example take

σ = (ξ1ξ2) (1 3)(2 4 5), then

σT = ( 4 3

−5
, 1 −2) which has corresponding word w(σT ) = 1+1−112 = σw(T ).

The homomorphism w ∶ YT(λ) → Mλ is surjective but not injective. To form an

isomorphism between the two definitions of the permutation modules Mλ we restrict the

domain of w from tableaux of shape λ, to tabloids of shape λ which are in one-to-one-

correspondence with words of evaluation λ.
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Lemma 4.2.30. Let λ ⊢ n and T 1, T 2 be two λ-tableaux. Then

{T 1} = {T 2}⇔ T 1 ∼R T 2 ⇔ w(T 1) = w(T 2).

Proof. This follows from the definition of w. Any row permutation fixes the occurrences

of letters in our word, but may change the sign of those in the first tableau. However, the

letters represented by the first tableau are unsigned, therefore changing the sign does not

create a new word.

Lemma 4.2.31. Let λ ⊢ n, the permutation module Mλ may be seen as a vector space

over the following bases:

Mλ = ⟨{T} ∣T is a tableau of shape λ ⟩

≅ ⟨w(T ) ∣T is a tableau of shape λ ⟩

≅ ⟨w ∈Mn ∣ eval(w) = λ ⟩

Proof. The map w ∶ Mλ → Mλ forms a bijection between tabloids of shape λ and words

of evaluation λ, which respects the action of Bn.

Using the one-to-one correspondence between tabloids and words we may also use

words to describe the Specht modules for Bn. In example 4.2.16 we saw an explicit

description of a polytabloid eT belonging to the module S((2,1),(2)). We can restate this

element replacing every tabloid by its corresponding word:

eT = { 1 2

3
, 4 5 } − { 3 2

1
, 4 5 } − { 1 2

3
, −4 5 } + { 3 2

1
, −4 5 }

− { 1 2

3
, 4 −5} + { 3 2

1
, 4 −5} + { 1 2

3
, −4 −5} − { 1 2

3
, −4 −5}

= 1121+1+ − 2111+1+ − 1121−1+ + 2111−1+

− 1121+1− + 2111+1− + 1121−1− − 2111−1−. (4.6)

The structure of words allow us to describe the lifting from modules of Bn to Bn+1

by adding letters to words instead of adding boxes to tabloids. The lifting operators for

the Specht modules of Sn were described by appending letters to the end of a word. We

perform a similar analysis for the Specht modules of Bn but we now we have a choice

of adding a signed or unsigned letter. Overall the correspondence with words helps to

simplify the presentation of the lifting operators for Bn and the results in Section 4.3.2.

Random Walks on The Hyperoctahedral Group

We may extend any shuffle on the symmetric group to a shuffle on Bn by adding an

additional action by negative transpositions to the end of the shuffle. In the following

sections we study extended versions of the random transposition shuffle and one-sided

transposition shuffle. We first extend the random transposition shuffle to Bn and show

how to recover its eigenvalues by lifting eigenvectors. Then we extend the one-sided

transposition shuffle to Bn and recover its eigenvalues using the same technique.
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4.3 The Random Transposition Shuffle on The Hyperocta-

hedral Group

The random transposition shuffle for the hyperoctahedral group is described by the fol-

lowing procedure: pick two positions in [n] uniformly at random and switch the cards

in these positions, then flip a fair coin; if heads do nothing, if tails flip the moved cards

over to their opposite sides. There are other ways we could choose to extend the random

transposition shuffle to the hyperoctahedral group – Schoolfield [40] studied an alterna-

tive description where each card’s flip are done independently at the end of the shuffle,

e.g., we could flip one card and not the other. Schoolfield went on to analyse the mixing

time of this shuffle using Fourier transforms and found it to be tightly bounded at time

(n/2) logn, i.e., the same time as the random transposition shuffle on Sn. Instead of using

Fourier transformations we analyse the random transposition shuffle using the technique

of lifting eigenvectors.

Definition 4.3.1. The random transposition shuffle for Bn, denoted RTn, is driven by

the following probability distribution:

RTn(σ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1/2n if σ = e

1/2n2 if σ = ξi for i ∈ [n]

1/n2 if σ = (i j) for i, j ∈ [n] with i < j

1/n2 if σ = ξiξj(i j) for i, j ∈ [n] with i < j

0 otherwise

. (4.7)

This shuffle is defined on the conjugacy classes of positive and negative transpositions.

Lifting eigenvectors for the random transposition shuffle on Bn requires modification from

the symmetric group case in order to account for the new Specht modules associated to

bi-partitions. In particular we require two different lifting operators to take eigenvectors

of Bn to those of Bn+1. Throughout this section we will be working towards the following

result.

Theorem 4.3.2. The eigenvalues for the random transposition shuffle RTn are indexed

by bi-partitions λ ⊢ n. The eigenvalue corresponding to partition λ occurs with multiplicity

d2
λ
, and is given by

eig(λ) = 1

2n2
(2∣λ1∣ + 4 Diag(λ1) + 4 Diag(λ2)) . (4.8)

The random transposition shuffle for Bn is closely related to that for Sn, and in fact

by considering a group homomorphism from Bn to Sn we recover an easy lower bound on

the total variation distance between RT
t
n and πn ∶= 1/(2n n!).

Lemma 4.3.3. The random transposition shuffle RTn satisfies the following bound for

any c > 0:

lim inf
n→∞

∥RT
(n/2) logn−cn
n − πn∥TV ≥ 1

e
− e−e

2c

. (4.9)
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Proof. The proof of this lemma follows from the fact that total variation distance can only

decrease under projections, see [32, Lemma 7.10]. Form a surjective homomorphism ψ ∶
Bn → Sn by ignoring the signs on permutations in Bn, i.e., for σ ∈ Bn with decomposition

σ = (∑ni=1 ξ
xi
i )η we have ψ(σ) = η. Consider the preimage of ψ at a permutation in η ∈ Sn,

we find that

∑
σ∈ψ−1(η)

RTn(σ) = RTn(η).

Extending this equality forward in time we have,

∑
σ∈ψ−1(η)

RT
t
n(σ) = RTt

n(η) for all t ≥ 0 and η ∈ Sn.

Thus, we may reduce the total variation distance of random transposition shuffle on Bn

to random transposition shuffle on Sn:

∥RT
t
n − πn∥TV = 1

2
∑
σ∈Bn

∣RT
t
n(σ) − πn(σ)∣

≥ 1

2
∑
η∈Sn

RRRRRRRRRRRRRRRRRR

∑
σ∈Bn

σ∈ψ−1(η)

RT
t
n(σ) − πn(σ)

RRRRRRRRRRRRRRRRRR

= ∥RTt
n − πSn∥TV.

Using the above inequality the lower bound is then established from Theorem 2.3.2.

4.3.1 Upper Bound for the Random Transposition Shuffle

To complete a cutoff argument for the random transposition shuffle on Bn we need to show

that its mixing time is at most (n/2) logn. The random transposition shuffle is reversible

so we can use the eigenvalues given by Theorem 4.3.2 to upper bound the total variation

distance between RT
t
n and πn (see Theorem 1.1.27).

4∥RT
t
n − πn∥2

TV ≤ ∑
λ⊢n

λ≠((n),(0))

d2
λ

eig(λ)2t (4.10)

=
n

∑
k=0

∑
λ⊢n

λ≠((n),(0))
∣λ1∣=k

(n
k
)

2

d2
λ1d

2
λ2 (

k + 2Diag(λ1) + 2Diag(λ2)
n2

)
2t

. (4.11)

The first step in bounding the summation (4.11) is to decrease the number of bi-

partitions λ we have to consider. For any bi-partition λ = (λ1, λ2), we can create at

most eight other bi-partitions by taking transposes of λ1, λ2, as well as swapping the posi-

tions of λ1 and λ2. For example two of the bi-partitions we can form following these rules

are (λ2 ′, λ1 ′), and (λ1 ′, λ2). Furthermore, all the bi-partitions we can form have the same

dimension because dλ = dλ′ and ( n
∣λ1∣) = ( n

∣λ2∣). If we consider the eigenvalues associated to

these eight possible bi-partitions, the largest eigenvalue in magnitude must come from the

bi-partition λ with ∣λ1∣ ≥ ∣λ2∣ and Diag(λ1) ≥ 0, Diag(λ2) ≥ 0. Therefore, the contribution

of any bi-partition to (4.11) may be upper bounded by a bi-partition λ with ∣λ1∣ ≥ ∣λ2∣,
Diag(λ1) ≥ 0, and Diag(λ2) ≥ 0. This allows us to reduce the number of bi-partitions we
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have to consider by roughly a factor of 8. However, we need to make a special exception for

the bi-partitions ((1n), (0)), ((0), (n)), ((0), (1n)), because ((n), (0)) does not belong to

our sum. The eigenvalues associated to these bi-partitions are: eig((1n), (0)) = −1+ (2/n)
and eig((0), (n)) = −eig((0), (1n)) = 1−(1/n). These eigenvalues all have dimension 1 and

so can easily be seen to be bounded at time (n/2) logn,

lim sup
n→∞

(1 − 2

n
)
n logn

+ 2(1 − 1

n
)
n logn

= 0.

Altogether applying our reduction we may see that the summation (4.11) is upper bounded

by

3(1 − 1

n
)

2t

+ 8
n

∑
k≥n/2

∑
λ⊢n

λ≠((n),(0))
∣λ1∣=k

Diag(λ1)≥0

Diag(λ2)≥0

(n
k
)

2

d2
λ1d

2
λ2 (

k + 2Diag(λ1) + 2Diag(λ2)
n2

)
2t

. (4.12)

The values Diag(λ1) and Diag(λ2) are closely related to the eigenvalues eig(λ1) and eig(λ2)
for the random transposition shuffle on Sk and Sn−k respectively. In fact we can upper

bound eig(λ) by

eig(λ) ≤ k + 2Diag(λ1) + (n − k) + 2Diag(λ2)
n2

= k
2

n2
eig(λ1) + (n − k)2

n2
eig(λ2).

We have previously bounded the value of Diag(λ) for λ a partition of n using information

about λ1. The following bound was given in Lemma 2.3.4 for λ ⊢ n:

2Diag(λ) ≤
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(n − 1)n − 2(n − λ1)(λ1 + 1) if λ1 ≥ n
2

(λ1 − 1)n for all λ
. (4.13)

Using this result we may establish bounds on the value eig(λ) for particular choices of

λ1 and λ2. We would like to analyse equation (4.12) by reducing it to previously studied

bounds for the random transposition shuffle on the symmetric group. This technique

was used by Schoolfield to analyse the mixing time of the random transposition shuffle

on Bn with independent card flips [40], and recently by Ghosh to analyse the mixing

time of the flip-transpose top with random shuffle [23]. However, for the shuffle RTn this

technique leads to problems which stem from how our eigenvalues eig(λ) are composed

from the eigenvalues eig(λ1) and eig(λ2). To see where this approach fails let us focus on

an example. Suppose that λ1 = k− i with i ≤ k/4, and λ2 = (n−k)− j with j < (n−k)/4, in

other words both λ1, λ2 are large partitions of k and n − k respectively (see Section 3.4).

In this case the eigenvalue eig(λ) may be bounded as follows:

k + 2Diag(λ1) + 2Diag(λ2)
n2

≤ 1 − 2k(n − k)
n2

− 2i(k − i + 1)
n2

− 2j(n − k − j + 1)
n2

. (4.14)

In the above bound there are three different negative terms, we want to use the first to

bound the binomial coefficient (n
k
)2

, the second to bound d2
λ1 , and the third to bound d2

λ2 .

Making use of Lemma 2.3.5 and setting t = (n/2) logn+cn we can reduce the contributions
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of large partitions in (4.12) to:

n

∑
k≥n/2

k/4
∑
i=0

(n−k)/4
∑
j=0

∑
λ⊢n

λ≠((n),(0))
∣λ1∣=k
λ11=k−i

λ21=n−k−j

(n
k
)

2

d2
λ1d

2
λ2 (1 − 2k(n − k)

n2
− 2i(k − i + 1)

n2
− 2j(n − k − j + 1)

n2
)

2t

=
n

∑
k≥n/2

k/4
∑
i=0

(n−k)/4
∑
j=0

(n
k
)

2

(1 − 2k(n − k)
n2

− 2i(k − i + 1)
n2

− 2j(n − k − j + 1)
n2

)
2t

∑
λ1⊢k
λ11=k−i

d2
λ1 ∑

λ2⊢n−k
λ21=n−k−j

d2
λ2

≤
n

∑
k≥n/2

k/4
∑
i=0

(n−k)/4
∑
j=0

(n
k
)

2

(k
i
)

2

i!(n − k
j

)
2

j! (1 − 2k(n − k)
n2

− 2i(k − i + 1)
n2

− 2j(n − k − j + 1)
n2

)
2t

≤
n

∑
k≥n/2

k/4
∑
i=0

(n−k)/4
∑
j=0

(n
k
)

2

(k
i
)

2

i!(n − k
j

)
2

j! e
−(n logn+2cn)( 2k(n−k)

n2
+ 2i(k−i+1)

n2
+ 2j(n−k−j+1)

n2
)

≤ e−2c
n

∑
k≥n/2

k/4
∑
i=0

(n−k)/4
∑
j=0

(n
k
)

2

(k
i
)

2

i!(n − k
j

)
2

j!n−
2k(n−k)

n
− 2i(k−i+1)

n
− 2j(n−k−j+1)

n (4.15)

From here we split equation (4.15) into three separate summations, one for the binomial

coefficients and one each for the dimensions of λ1 and λ2,

e−2c
n

∑
k≥n/2

(n
k
)

2

n−
2k(n−k)

n

k/4
∑
i=0

(k
i
)

2

i!n−
2i(k−i+1)

n

(n−k)/4
∑
j=0

(n − k
j

)
2

j!n−
2j(n−k−j+1)

n .

We can now try to show that equation (4.15) is bounded in n by analysing each of these

summations separately. The sums corresponding to partitions λ1 and λ2 given by

k/4
∑
i=0

(k
i
)

2

i!n−
2i(k−i+1)

n and
(n−k)/4
∑
j=0

(n − k
j

)
2

j!n−
2j(n−k−j+1)

n (4.16)

are closely related to the bounds analysed by Diaconis [16, Chapter 3D] for the random

transposition shuffle on Sk and Sn−k, these are respectively given by,

k/4
∑
i=0

(k
i
)

2

i!k−
2i(k−i+1)

k and
(n−k)/4
∑
j=0

(n − k
j

)
2

j! (n − k)−
2j(n−k−j+1)
(n−k) . (4.17)

Diaconis showed the summations in (4.17) are bounded by a universal constant as k →∞
and n − k → ∞ respectively. The difference between equations (4.16) and (4.17) comes

from the eigenvalue eig(λ) being of a different dimension compared with those of eig(λ1),
eig(λ2). These differences make the sums in (4.16) challenging to bound. For example, if

n − k = O(n) we find that the summation given by λ2 is unbounded as n →∞. A similar

issue is found when we consider λ1 and λ2 to be any other combination of large or small

partitions. Hence, trying to reduce the analysis of (4.12) to separate bounds related to

the symmetric group case would appear to fail.

There are several ways we could try to circumvent this issue. The first way is to

consider a more holistic approach to bounding equation (4.15). The binomial term given

by (n
k
)2
n−

2k(n−k)
n is not only bounded in n but is decaying as k → n/2, whereas the terms
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(k
i
)2
i!n−

2i(k−i+1)
n and (n−k

j
)2
j!n−

2j(n−k−j+1)
n corresponding to λ1 and λ2 respectively are grow-

ing as k → n/2. By considering all these terms together instead of as three separate sums

we may be able to use the decay of the binomial term to counteract the growth of the λ1

and λ2 terms. Alongside this it may be useful to consider a more fine-grain analysis of

the eigenvalues, either by further restricting the choices of λ1 and λ2, or by splitting the

analysis into cases depending on whether n − k = O(1) or n − k = O(n).
To date we have been unable to successfully use the eigenvalues to establish an upper

bound on the mixing time of the random transposition shuffle on Bn, but we conjecture

that an upper bound of time (n/2) logn may be found. Thus, we expect the random

transposition shuffle on Bn to exhibit a total variation cutoff at the same time as the

random transposition shuffle on Sn.

Conjecture 4.3.4. The random transposition shuffle RTn satisfies the following bound:

lim
c→∞

lim inf
n→∞

∥RT
(n/2) logn+cn
n − πn∥TV = 0 (4.18)

Thus, the random transposition shuffle on the hyperoctahedral group exhibits a cutoff in

total variation distance at time (n/2) logn.

4.3.2 Lifting Eigenvectors for the Random Transposition Shuffle

We lift the eigenvectors of RTn by reducing the lifting of bi-partitions λ to the lifting

of the individual partitions λ1 and λ2. This allows us to extend the technique of lifting

eigenvectors that we developed for the random transposition shuffle on Sn to the random

transposition shuffle on Bn. The first step as before is to turn the probability RTn into

an element of the group algebra Bn.

Definition 4.3.5. The random transposition shuffle on Bn may be viewed as the following

element of the group algebra Bn.

ARTn = n ⋅ e + ∑
1≤i≤n

ξi + 2 ∑
1≤i<j≤n

(i j) + 2 ∑
1≤i<j≤n

ξiξj(i j). (4.19)

Note that here we have scaled by 2n2.

The eigenvectors and eigenvalues of RTn are in one-to-on correspondence with those

given by ARTn acting on the regular module Bn. Using the canonical decomposition

of the regular module we now focus our attention on finding the eigenvectors of ARTn

belonging to the Specht modules Sλ. If we compare the elements ARTn+1 and ARTn we

can see they have a close relationship to one another,

ARTn+1 −ARTn = e + ξn+1 + 2 ∑
1≤i≤n

(i n + 1) + 2 ∑
1≤i≤n

ξiξn+1(i n + 1). (4.20)

The equation (4.20) only depends on transpositions involving n + 1, this is similar to

equation (4.20), and gives us an insight into why lifting eigenvectors works for the random

transposition shuffle on Bn. To turn eigenvectors for the module Sλ into those for Sλ+e
k
i

we introduce new adding and switching operators.
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Definition 4.3.6. Let w be a word in Mλ, we may add a letter to w to form a word of

size n + 1. Define the linear adding operators, denoted Φa, for letter a ∈ [n] as follows,

Φa(w) = wa, Φ+
a(w) = wa+, Φ−

a(w) = wa−.

Note that the first operator takes us from Mλ to space Mλ+e1a whereas the second and

third operators takes us to Mλ+e2a . Using the above basic adding operators define two new

adding operators:

Φ1
a = Φa, Φ2

a = Φ+
a −Φ−

a .

These new adding operators are critical to our analysis of the random transposition shuffle.

Definition 4.3.7. Let w be a word in Mλ and a, b ∈ [n]. We define the linear switching

operators as follows:

Θb,a(w) = ∑
1≤i≤n
wi=b

w1 . . .wi−1 awi+1 . . .wn (4.21)

Using this single operator we define three other switching operators for a, b ∈ [n]:

Θb±,a(w) = Θb−,a +Θb+,a (4.22)

Θ+
b±,a±(w) = Θb+,a+ +Θb−,a− (4.23)

Θ−
b±,a±(w) = Θb+,a− +Θb−,a+ (4.24)

The operator Θb±,a takes all signed occurrences of b and replaces them by the unsigned

a. The operators Θ±
b±,a± swap signed occurrences of b for signed occurrences of a, with Θ+

fixing the signs, and Θ− swapping them. Define two new operators Θ1
b,a,Θ

2
b,a with domain

Mλ for the unsigned symbols a, b ∈ [n] as follows:

Θ1
b,a = Θb,a (4.25)

Θ2
b,a = Θ+

b±,a± −Θ−
b±,a± . (4.26)

The operator Θ1
b,a acts only on unsigned letters, and Θ2

b,a acts only on signed letters. The

image of Θ1
b,a is λ − e1

b + e
1
a, and the image of Θ2

b,a is λ − e2
b + e

2
a.

Lemma 4.3.8. The switching operators Θb±,a,Θ
1
b,a and Θ2

b,a are Bn-module morphisms.

Proof. The operators Θ1
b,a and Θb±,a, swap a letter b (signed or unsigned) for an unsigned

letter a, this is unaffected by movement of the letter and changes in sign (as it always

ends up unsigned), therefore it commutes with elements Bn. The operator Θ+
b±,a± swaps a

signed letter b± for a± while preserving the current sign of b± so it does not matter if the

letter is moved or the sign of the letter is changed before or after applying the operator.

Similar logic holds for the operator Θ−
b±,a± . Hence, the signed lifting operator Θ2

b,a is a

Bn-module morphism.

Notice that we have not defined a switching operator which takes unsigned letters and

turns them into a signed letters, the reason behind this is there is no way to give a letter a
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sign and respect the action of Bn. The adding operators are not module morphisms, how-

ever, they can be seen to commute with the switching operators with an extra adjustment

term.

Lemma 4.3.9. The adding and switching operators satisfy the following equalities:

Φ1
b ○Θ1

b,a = Θ1
b,a ○Φ1

b −Φ1
a (4.27)

Φ2
b ○Θ2

a,b = Θ2
a,b ○Φ2

b − 2 ⋅Φ2
a. (4.28)

We can already see that lifting eigenvectors for Bn requires more careful tools than for

Sn; we have gone from requiring one adding and switching operator to two of them each.

We now establish a relationship between the modules of Bn and Bn+1 using the newly

defined operators. This is similar to Theorem 3.2.5 however we now consider two cases,

based on if we lift the partition λ1 or λ2.

Theorem 4.3.10. Let n ∈ N and λ ⊢ n. For words in Mλ we have the following equalities:

ARTn+1 ○Φ1
a −Φ1

a ○ARTn = 2Φ1
a + 2 ∑

1≤b≤n
2 ⋅Φ1

b ○Θ1
b,a + (Φ+

b +Φ−
b ) ○Θb±,a. (4.29)

ARTn+1 ○Φ2
a −Φ2

a ○ARTn = 2 ∑
1≤b≤n

Φ2
b ○Θ2

b,a. (4.30)

Proof. Take w ∈Mλ a generic element to verify these equations with. In both equations all

non-identity elements of ARTn+1 which do not involve n+1 commute with the adding oper-

ators Φ1
a,Φ

2
a, and therefore cancel with ARTn. This just leaves us the elements present in

equation (4.20) to work with. First we prove equation (4.29), using the above observation

we reduce it to,

ARTn+1 ○Φ1
a −Φ1

a ○ARTn = (e + ξn+1 + 2 ∑
1≤i≤n

(i n + 1) + 2 ∑
1≤i≤n

ξiξn+1(i n + 1))Φ1
a(w).

Clearly (e + ξn+1)Φ1
a(w) = 2Φ1

a(w). The letter we add to w is unsigned, define the word

vi = w1 . . .wi−1 awi+1 . . .wn. Then the positive transpositions act on wa in the following

way:

((i n + 1) + ξiξn+1(i n + 1))Φ1
a(w) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

vib + vib = 2vib if wi = b

vib
+ + vib− if wi = b+

vib
− + vib+ if wi = b−

.

Thus, summing over all i or equivalently all signed and unsigned letters we recover

(4.29). Now we prove equation (4.30), again it may be reduced it to

ARTn+1 ○Φ2
a −Φ2

a ○ARTn = (e + ξn+1 + 2 ∑
1≤i≤n

(i n + 1) + 2 ∑
1≤i≤n

ξiξn+1(i n + 1))Φ2
a(w).

Looking at the negative transposition we find (e+ξn+1)Φ2
a(w) = (e+ξn+1)(wa+−wa−) = 0.

For the positive transpositions we must be careful because the added letter a is now

signed. Define v+i = w1 . . .wi−1 a
+wi+1 . . .wn, and v−i = w1 . . .wi−1 a

−wi+1 . . .wn. The posi-
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tive transpositions act on (wa+ −wa−) in the following way:

((i n + 1) + ξiξn+1(i n + 1))Φ2
a(w) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(v+i b − v−i b) + (v−i b − v+i b) = 0 if wi = b

(v+i b+ − v−i b+) + (v−i b− − v+i b−) = Φ2
b (v

+
i − v−i ) if wi = b+

(v+i b− − v−i b−) + (v−i b+ − v+i b+) = Φ2
b (v

−
i − v+i ) if wi = b−

.

Thus summing over all 1 ≤ i ≤ n or equivalently all signed letters b± in w completes

equation (4.30).

Once refined, equations (4.29), (4.30) will enable us to turn eigenvectors of ARTn into

those for ARTn+1. The next step is to restrict their domains to a Specht module Sλ.

Lemma 4.3.11. Let λ ⊢ n be such that µ+ ekb = λ+ e
l
a for some k, l ∈ {1,2} and a, b ∈ [n].

If k > l then Θb±,a(Sλ) = 0. If k = l then Θk
b,a is non-zero on Sλ if and only if λk dominates

the non-increasing rearrangement of µk. In particular, if a < b, then Θk
b,a(S

λ) = 0.

Proof. We know that for both cases the respective switching operators Θ (Sλ) must belong

in Mµ, and so for the map to be non-zero we must have λ dominating the non-increasing

rearrangement of µ by Lemma 4.2.24. If k > l then µ ⊵ λ therefore Θb±,a(Sλ) = 0. If k = l
the assertion holds by the same reasoning as Lemma 3.2.7.

For an illustration of Lemma 4.3.11 take the polytabloid eT belonging to module

S((2,1),(2)) from Example 4.2.16 (also equation (4.6)), the switching operators Θ1±,1, Θ1
2,1,

and Θ1
1,3 applied to eT gives us:

Θ1±,1(eT ) = (11211+ + 1121+1) − (21111+ + 2111+1) − (11211+ + 1121−1) + (21111+ + 2111−1)

− (11211− + 1121+1) + (21111− + 2111+1) + (11211− + 1121−1) − (21111− + 2111−1) = 0

Θ1
2,1(eT ) = 1111+1+ − 1111+1+ − 1111−1+ + 1111−1+

− 1111+1− + 1111+1− + 1111−1− − 1111−1− = 0

Θ1
1,3(eT ) = (1321+1+ + 3121+1+) − (2131+1+ + 2311+1+)

− (1321−1+ + 3121−1+) + (2131−1+ + 2311−1+)

− (1321+1− + 3121+1−) + (2131+1− + 2311+1−)

+ (1321−1− + 3121−1−) − (2131−1− + 2311−1−) ≠ 0.

Applying Lemma 4.3.11 we now restrict equations (4.29) and (4.30) to the domain of a

Specht module Sλ.

Corollary 4.3.12. Let λ ⊢ n, restricting equations (4.29) and (4.30) to have domain Sλ

we find the following:

ARTn+1 ○Φ1
a −Φ1

a ○ARTn∣Sλ = 2Φ1
a∣Sλ + 4 ∑

1≤b≤a
Φ1
b ○Θ1

b,a∣Sλ (4.31)

ARTn+1 ○Φ2
a −Φ2

a ○ARTn∣Sλ = 2 ∑
1≤b≤a

Φ2
b ○Θ2

b,a∣Sλ . (4.32)

Notice that equations (4.31) and (4.32) now only depend on unsigned or signed letters,

respectively, being added or moved. This allows us to stop focusing on the bi-partition
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λ and instead focus on the two single partitions λ1, λ2. Equations (4.31), (4.32) are used

to lift eigenvectors by adding a box to λ1 or λ2 respectively. Before we project onto the

Specht modules Sλ+e
1
a or Sλ+e

2
a we must be sure they are contained as a submodule of the

image. The next lemma is an analogue of Lemma 3.2.10 for the hyperoctahedral group.

Lemma 4.3.13. The subspace Φk
a(Sλ) is contained in a Bn+1 submodule of Mλ+eka , iso-

morphic to ⊕Sµ where µ ranges over the partitions obtained from λ by adding a box eki
with i ≤ a.

Proof. We begin by proving our hypothesis for k = 1, that is adding a box to λ1. Let w

be a word in Mλ, let a ∈ [n + 1], if letter b does not appear in w then

Φ1
a(w) = Θ1

b,a(Φ
1
b(w)) = Θ1

b,a(w b).

Let b = l(λ1) + 1, and consider the Bn+1-module

N1 = ⟨xb ∶ x ∈ Sλ⟩ ≅ IndBn+1
Bn×B1

(Sλ ⊗ S((1),∅)) ≅ ⊕
µ⊢n+1
λ1⊂µ1
λ2=µ2

Sµ

where the last isomorphism follows from the branching rules for Bn (see [22, Theorem

III.2]). Using the observation at the start of the proof, we obtain

Φ1
a(Sλ) = Θ1

b,a(Φ
1
b(S

λ)) ⊆ Θ1
b,a(⟨Φ

1
b(S

λ)⟩) = Θ1
b,a(N1) ≅ ⊕

µ⊢n+1
λ1⊂µ1
λ2=µ2

Θ1
b,a(S

µ).

Now note that Θ1
b,a sends any word with evaluation λ + e1

b to a word with evaluation

λ + e1
a, and hence Θ1

b,a(N1) ⊆ Θ1
b,a(M

λ+e1b) ⊆Mλ+e1a . It follows that all nonzero summands

Sµ appearing on the right hand side occur for µ ⊢ n + 1 dominating the non-decreasing

rearrangement of λ + e1
a, and then by Lemma 4.3.11 we can conclude that µ is obtained

from λ by adding a box e1
i with i ≤ a, as required.

Suppose k = 2, let w be a word in λ, let a ∈ [n + 1], if the letter b± does not appear in

w then

Φ2
a(w) = 1

2
Θ2
b,a ○Φ2

b(w) = 1

2
Θ2
b,a (w b

+ −w b−) .

Let b = l(λ2) + 1, consider the set

N2 = ⟨xb+ − xb− ∶ x ∈ Sλ⟩ ≅ IndBn+1
Bn×B1

(Sλ ⊗ S(∅,(1))) ≅ ⊕
µ⊢n+1
λ1=µ1
λ2⊆µ2

Sµ

where the last isomorphism follows from the branching rules for Bn (see [22, Theorem

III.2]) Using the observation at the start of the proof, we obtain as modules over Bn+1:

Φ2
a(Sλ) = Θ2

b,a(Φ
2
b(S

λ)) ⊆ Θ2
b,a(⟨Φ

2
b(S

λ)⟩) = Θ2
b,a(N2) ≅ ⊕

µ⊢n+1
λ1=µ1
λ2⊆µ2

Θ2
b,a(S

µ).

By the same reasoning as before the final direct sum must be over all µ with µ2 formed
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by adding a box e2
i to λ with i ≤ a.

Definition 4.3.14. Let πµ be the isotypic projector onto the simple module Sµ. Define

the lifting operator for k ∈ {1,2} as:

κλ,µ,ka = (πµ ○Φk
a)∣Sλ ∶ S

λ →Mλ+eka . (4.33)

Lemma 4.3.13 tells us that the image of Φk
a may contain at most one copy of any Specht

module Sµ. Therefore, if there exists a copy in the image the element κλ,µ,ka (w) belongs

exactly to the Specht module Sµ within Mλ+eka .

Corollary 4.3.15. For any λ ⊢ n, a ∈ {1,2, . . . , l(λk)+1} and 1 ≤ i ≤ a, there exists v ∈ Sλ

such that

κ
λ,λ+eki ,k
a (v) ≠ 0.

Proof. Suppose κ
λ,λ+eki ,k
a (v) = 0, then the image Φk

a(Sλ) lies in the kernel of the projection

πλ+e
k
i ∶ Mλ+eki → Sλ+e

k
i which is an Bn+1-submodule with no component equal to Sλ+e

k
i .

Hence, the submodule generated by Φk
a(Sλ) has no competent equal to Sλ+e

k
i . But we

previously observed that (with notation from Lemma 4.3.13 and the two cases presented

together)

⟨Φk
a(Sλ)⟩ = ⟨Θk

b,a(Φ
k
b (S

λ))⟩ = Θk
b,a(⟨Φ

k
b (S

λ)⟩) = Θk
b,a(Nk) ≅ ⊕

1≤i≤a
Sλ+e

k
i (4.34)

Since the corresponding right hand side contains Sλ+e
k
i as a summand, we have a contra-

diction.

Lemma 4.3.16. The linear operators κ
λ,λ+eki ,k
a for 1 ≤ i ≤ a are Bn-module morphisms

with trivial kernels. Therefore, these lifting operators are injective.

Proof. Our key observation is that σ(Φk
a(w)) = Φk

a(σw) for any k ∈ {1,2} and σ ∈ Bn ⊂
Bn+1, which fixes the coordinate n+1. Thus our lifting operators κ

λ,λ+eki ,k
a are a composi-

tion of two Bn module morphisms. Finally we know from Corollary 4.3.15 that the map

is non-zero and therefore by Schur’s Lemma must be injective.

We are now ready to lift eigenvectors for the random transposition shuffle. We state

two theorems, one for lifting λ1, and another for lifting λ2. Afterwards we combine the

theorems to recover all the eigenvalues for the random transposition shuffle on Bn. The

results below follow from work presented in [19] and Section 3.2.1 (Lemma 3.2.16 and

Theorem 3.2.17) with suitable modifications to the new setting of the hyperoctahedral

group.

Lemma 4.3.17. Let λ ⊢ n, and a ∈ {1,2, . . . , l(λ1) + 1}. Take i ∈ [n] such that 1 ≤ i ≤ a
and set µ = λ + e1

i . Then,

ARTn+1 ○ κλ,µ,1a − κλ,µ,1a ○ARTn = (2 + 4(λ1
a + 1 − a))κλ,µ,1a + 4 ∑

i≤b<a
Θ1
b,a ○ κ

λ,µ,1
b .

Proof. Continuing from Corollary 4.3.12 we know

ARTn+1 ○Φ1
a −Φ1

a ○ARTn∣Sλ = 2Φ1
a∣Sλ + 4 ∑

1≤b≤a
Φ1
b ○Θ1

b,a∣Sλ .
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Apply the isotypic projection πµ to both sides of the equation. Since ARTn+1 is given by

the action of an element of the group algebra Bn and πµ is an Bn+1-module morphism,

these operators commute and so we have

ARTn+1 ○ κλ,µ,1a − κλ,µ,1a ○ARTn = 2κλ,µ,1a + 4 ∑
1≤b≤a

(πµ ○Φ1
b ○Θ1

b,a)∣Sλ . (4.35)

Applying equation (4.27) we may see that

(πµ ○Φ1
b ○Θ1

b,a) = Θ1
b,a ○ κ

λ,µ,1
b − κλ,µ,1a .

The right hand side of equation (4.35) now becomes,

2κλ,µ,1a + 4 ∑
1≤b≤a

(Θ1
b,a ○ κ

λ,µ,1
b − κλ,µ,1a ) (4.36)

Notice that if b = a then Θ1
a,a(w) acts as a scalar by the number of occurrences of the

symbol a in w. All words in κλ,µ,1a (Sλ) contain λ1
a + 1 occurrences of a. Finally if b < i we

know that Φ1
b(S

λ) does not contain Sλ+e
1
i as a submodule (by Lemma 4.3.13), so κλ,µ,1b = 0.

Thus, equation (4.36) is equal to

(2 + 4(λ1
a + 1 − a))κλ,µ,1a + 4 ∑

i≤b<a
Θ1
b,a ○ κ

λ,µ,1
b .

Lemma 4.3.18. Let λ ⊢ n, and a ∈ {1,2, . . . , l(λ2) + 1}. Take i ∈ [n] such that 1 ≤ i ≤ a
and set µ = λ + e2

i . Then,

ARTn+1 ○ κλ,µ,2a − κλ,µ,2a ○ARTn = 4(λ2
a + 1 − a)κλ,µ,2a + 2 ∑

i≤b<a
Θ2
b,a ○ κ

λ,µ,2
a .

Proof. This follows from the same proof as Lemma 4.3.17 replacing the use of the first

equality in Lemma 4.3.11 with the second equality.

Theorem 4.3.19 (Lifting for λ1). Let λ ⊢ n, and a ∈ {1,2, . . . , l(λ1) + 1}. Take i ∈ [n]
such that 1 ≤ i ≤ a and set µ = λ + e1

i . Then,

ARTn+1 ○ κλ,µ,1a − κλ,µ,1a ○ARTn = (2 + 4(λ1
i + 1 − i))κλ,µ,1a

Thus if we have an eigenvector v ∈ Sλ with eigenvalue ε, we find κλ,µ,1a (v) to be an eigen-

vector of Sµ with eigenvalue ε + (2 + 4(λ1
i + 1 − i)).

Proof. For i = a the result follows from Lemma 4.3.17. Let µ = λ + e1
i , again from Lemma

4.3.17 we know that

ARTn+1 ○ κλ,µ,1i − κλ,µ,1i ○ARTn = (2 + 4(λ1
i + 1 − i))κλ,µ,1i .

Applying the linear operator Θ1
i,a to the above equation,

ARTn+1 ○Θ1
i,a ○ κ

λ,µ,1
i −Θ1

i,a ○ κ
λ,µ,1
i ○ARTn = (2 + 4(λ1

i + 1 − i))Θ1
i,a ○ κ

λ,µ,1
i . (4.37)
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Consider the left hand side of (4.37), break up the lifting operator into κλ,µ,1i = πµ ○Φ1
i ∣Sλ .

The projection πµ commutes with the Bn+1-module morphism Θ1
i,a. Performing this and

using equation (4.27) we obtain the equation below, restricted to Sλ;

ARTn+1 ○ πµ ○Θ1
i,a ○Φ1

i − πµ ○Θ1
i,a ○Φ1

i ○ARTn

= ARTn+1 ○ πµ ○ (Φ1
i ○Θ1

i,a +Φ1
i ) − πµ ○ (Φ1

i ○Θ1
i,a +Φ1

i ) ○ARTn

= (ARTn+1 ○ κλ,µ,1a − κλ,µ,1a ○ARTn) + (ARTn+1 ○ κλ,µ,1i − κλ,µ,1i ○ARTn)Θ1
i,a

= (ARTn+1 ○ κλ,µ,1a − κλ,µ,1a ○ARTn) + (2 + 4(λ1
i + 1 − i))κλ,µ,1i ○Θ1

i,a, (4.38)

Manipulating the right hand side of (4.35) by again splitting our lifting operator κλ,µ,1i

and applying (4.27) we recover,

(4.35) = (2 + 4(λ1
i + 1 − i))πµ ○Θ1

i,a ○Φ1
i

= (2 + 4(λ1
i + 1 − i))πµ ○ (Φ1

i ○Θ1
i,a +Φ1

i )

= (2 + 4(λ1
i + 1 − i))κλ,µ,1i ○Θ1

i,a + (2 + 4(λ1
i + 1 − i))κλ,µ,1a . (4.39)

Combining equations (4.38) and (4.39) completes the proof.

Theorem 4.3.20 (Lifting for λ2). Let λ ⊢ n, and a ∈ {1,2, . . . , l(λ2) + 1}. Take i ∈ [n]
such that 1 ≤ i ≤ a and set µ = λ + e2

i . Then,

ARTn+1 ○ κλ,µ,2a − κλ,µ,2a ○ARTn = 4(λ2
i + 1 − i)κλ,µ,2a

Thus if we have an eigenvector v ∈ Sλ with eigenvector ε, we find κλ,µ,2a (v) to be an

eigenvector of Sµ with eigenvalue ε + 4(λ2
i + 1 − i).

Proof. This follows the same proof as Theorem 4.3.19.

Notice that there is a quantifiable difference in the change in eigenvalue depending on

whether we lift λ1 or λ2. The value λki + 1 − i refers to the diagonal index of the new box

added to λk, this value does not depend on current size of λ. Combining Theorems 4.3.19

and 4.3.20 we recover all the eigenvectors for the random transposition shuffle belonging

to each Specht module, this allows us to give a swift proof of Theorem 4.3.2

Lemma 4.3.21. For any µ ⊢ n+ 1 we may find a basis of eigenvectors of ARTn+1 for the

module Sµ by lifting the eigenvectors of ARTn belonging in the modules Sλ with λ ⊢ n and

λ ⊂ µ.

Proof. We proceed by induction. For n = 1 we know the simple modules ⟨a⟩ = S((1),(0)), ⟨a+−
a−⟩ = S((0),(1)) of B1 are both one dimensional, and their elements are eigenvectors for

ART1.

Consider the simple module Sµ with µ ⊢ n+1. We know classically from the branching

rules of the hyperoctahedral group (Theorem 4.2.26) that the restriction of this module

to Bn is given by

ResBn+1Bn
(Sµ) ≅ ⊕

λ⊢n
λ⊂µ

Sλ.
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Now suppose we have a basis of eigenvectors for every Sλ. By Lemma 4.3.16 the map

κλ,µ(Sλ) gives a basis for the submodule Sλ inside of the vector space of ResBn+1Bn
(Sµ)

which vector space is isomorphic to the vector space Sµ. Hence, considering all of the

lifted eigenvectors from every Sλ together we find a basis for Sµ. By Theorems 4.3.19 and

4.3.20 the lifted eigenvectors form a basis of eigenvectors for Sµ.

Proof of Theorem 4.3.2. We have found a basis of eigenvectors of the random transposition

shuffle for every Specht module Sλ. Each eigenvector in this basis may be constructed

by repeated applications of Theorems 4.3.19 and 4.3.20, starting at the empty word ω

belonging to S((0),(0)), and ending at the eigenvector belonging to Sλ. When we add box

e1
i in the process of forming λ the change in eigenvalue is 2 + 4(λ1

i + 1 − i), the second

coefficient here is the diagonal index of the box (i, λ1
i + 1) added to λ1. Similarly when we

add box e2
i the change in eigenvalue is the change in eigenvalue is 4(λ2

i +1− i), which is the

diagonal index of the box (i, λ2
i + 1) added to λ2. Both of these changes are independent

of when in the lifting we choose to add each box. Therefore, building up λ in any order

produces an eigenvalue 2∣λ1∣ + 4Diag(λ1) + 4Diag(λ2) with multiplicity d2
λ
. Normalising

the eigenvalue by 2n2 gives the expression (4.8).

If we choose to ignore the second partition λ2 when we lift eigenvalues we recover

exactly the eigenvalues for the random transposition shuffle on Sn. That is, for a partition

λ ⊢ n, the bi-partition (λ, (0)) has corresponding eigenvalue,

eig ((λ, (0))) = 1

n2
(n + 2Diag(λ)) .

as seen in Lemma 3.2.25. We end the lifting of the random transposition shuffle by

providing an explicit description of the lifting operators κ
λ,λ+eki ,k
i , this result follows from

work of Dieker and Saliola [19].

Lemma 4.3.22 (Theorem 21 [19]). Let λ ⊢ n. The lifting maps as defined in Definition

4.3.14 are a linear combination of the shuffling and switching operators, explicitly they

are:

κ
λ,λ+eki ,k
i = ∑

1≤b1<...<bm<bm+1=i

⎛
⎜
⎝

m

∏
j=1

1

k ((λki − i) − (λkbj − bj))
Θk
bj ,bj+1

⎞
⎟
⎠

Φk
b1 . (4.40)

Example 4.3.23. Let λ = ((1), (1)), its associated Specht module is 2-dimensional and

spanned by Sλ = ⟨11+ − 11−,1+1 − 1−1⟩. Both these basis vectors of Sλ are eigenvectors

for ART2. Take w = 1 1+ − 1 1− using the formulae given in Lemma 4.3.22 we lift w to an

eigenvector of ART3 belonging to the Specht modules S((1,1),(1)) and S((1),(1,1)) by adding

the box e1
2, e2

2 respectively.

κ
λ,λ+e12,1
2 (w) = (Φ1

2 −
1

2
Θ1

1,2Φ1
1) (w) = 1

2
[(1 1+ 2 − 2 1+ 1) − (1 1− 2 − 2 1− 1)]

κ
λ,λ+e22,2
2 (w) = (Φ2

2 −
1

4
Θ2

1,2Φ2
1) (w)

= 1

2
[(11+2+ − 12+1+) + (11−2− − 12−1−) − (11+2− − 12−1+) − (11−2+ − 12+1−)] .
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4.4 One-sided Transposition Shuffles on The Hyperoctahe-

dral Group

The one-sided transposition shuffle for the hyperoctahedral group is described by the

following procedure: apply a transposition chosen according to the one-sided transposition

shuffle for Sn, i.e. OSTn,w, then flip a fair coin; if heads do nothing, if tails flips the cards

that were moved this step to their opposite sides.

Definition 4.4.1. The biased one-sided transposition shuffle for Bn with bias w(j), de-

noted OSTn,w, is driven by the following probability distribution:

OSTn,w(σ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑nj=1w(j)/j
2Nw

if σ = e
w(j)
Nw

1
2j if σ = ξj for j ∈ [n]

w(j)
Nw

1
2j if σ = (i j) for i, j ∈ [n] with i < j

w(j)
Nw

1
2j if σ = ξiξj(i j) for i, j ∈ [n] with i < j

0 otherwise

. (4.41)

The one-sided transposition shuffle is a transitive, aperiodic, and reversible random

walk on Bn, and is not constant on the conjugacy classes of Bn. The method of lifting

eigenvectors for the random transposition shuffle on Bn may be modified to be applicable

for the biased one-sided transposition shuffle on Bn. In Section 4.4.1 we prove the following

result.

Theorem 4.4.2. The eigenvalues for the biased one-sided transposition shuffle OSTn,w

are indexed by standard Young tableaux of shape λ ⊢ n, and the eigenvalue represented by

a tableau of shape λ has multiplicity dλ. For a standard Young tableau T of shape λ the

eigenvalue corresponding to T is given by

eig(T ) = 1

Nw

⎛
⎜
⎝

∑
(i,j,1)∈T

j − i + 1

T 1(i, j)
w(T 1(i, j)) + ∑

(i,j,2)∈T

j − i
T 2(i, j)

w(T 2(i, j))
⎞
⎟
⎠
.

If we focus on bi-tableau T = (T 1, T 2) with T 2 = ∅ (those we can form by lifting only

the first partition) then we recover the eigenvalues for the biased one-sided transposition

shuffle on Sn (Lemma 3.6.5). We once again restrict our attention to weight functions of

the form w(j) = jα, and define the biased one-sided transposition shuffle with this weight

function as OSTn,α. Recall that the time tn,α was defined as,

tn,α =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Nα(n)/nα if α ≤ 1

Nα(n)/Nα−1(n) if α ≥ 1
.

Applying the same projection argument used in Lemma 4.3.3 we may establish a lower

bound of tn,α(logn) on the mixing time of the biased one-sided transposition shuffle

OSTn,α. Using the eigenvalues established in Theorem 4.4.2 we can compute an up-

per bound on the total variation distance between OSTn,α and πn. We suspect that any

analysis of this bound is likely to encounter similar problems to those described in Section
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4.3.1 for the random transposition shuffle. We conjecture that it is possible to find a

matching upper bound on the mixing time of OSTn,α for all α.

Lemma 4.4.3. The biased one-sided transposition shuffle on the hyperoctahedral group

OSTn,α satisfies the following bound for any c > max(2,3 − α):

lim inf
n→∞

∥OST
tn,α(logn−log logn−c)
n,α − πn∥TV ≥

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 − π2

6(c−3+α)2 if α ≤ 1

1 − π2

6(c−2)2 if α ≥ 1

Conjecture 4.4.4. The biased one-sided transposition shuffle on the hyperoctahedral

group OSTn,α satisfies the following bound:

lim
c→∞

lim sup
n→∞

∥OST
tn,α(logn+c)
n,α − πn∥TV = 0

Thus, the biased one-sided transposition shuffle exhibits a cutoff in total variation distance

at time tn,α logn for all α.

4.4.1 Lifting Eigenvectors for One-sided Transposition Shuffles

The eigenvectors of the one-sided transposition shuffle OSTn,w may be computed using

the same lifting operators κλ,µ,ka as the random transposition shuffle. The difference in the

lifting is reflected by changes to Theorems 4.3.10 and 4.3.19. We begin by transforming

OSTn,w into an element of the group algebra Bn.

Definition 4.4.5. The one-sided transposition shuffle on Bn may be viewed as the fol-

lowing element of the group algebra Bn,

AOSTn,w = ∑
1≤j≤n

w(j)
2j

e + ∑
1≤j≤n

w(j)
2j

ξi + ∑
1≤i<j≤n

w(j)
2j

(i j) + ∑
1≤i<j≤n

w(j)
2j

ξiξj(i j). (4.42)

Note that above we have scaled our probability by Nw(n).

The one-sided transposition shuffle on Bn has a similar recursive structure to the shuffle

on Sn. Taking the difference of AOSTn+1,w and AOSTn,w we find

AOSTn+1,w −AOSTn,w = w(n + 1)
2(n + 1)

(e + ξn+1) + ∑
1≤i<≤n

w(n + 1)
2(n + 1)

((i n + 1) + ξiξn+1(i n + 1))

which only depends the movement of the new card n + 1 (compare this with equation

(3.66)). Using this relationship we recover a new version of Theorem 4.3.10 for the one-

sided transposition shuffle.

Theorem 4.4.6. Let λ ⊢ n for n ∈ N, for words in Mλ we have the following equalities:

AOSTn+1,w ○Φ1
a −Φ1

a ○AOSTn,w = w(n + 1)
n + 1

(Φ1
a + ∑

1≤b≤n
Φ1
b ○Θ1

b,a +
1

2
∑

1≤b≤n
(Φ+

b +Φ−
b ) ○Θb±,a) .

AOSTn+1,w ○Φ2
a −Φ2

a ○AOSTn,w = w(n + 1)
2(n + 1) ∑

1≤b≤n
Φ2
b ○Θ2

b,a.

Proof. This follows the same proof as Theorem 4.3.10 with changes in constants to reflect

equation (4.42).
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Following from Theorem 4.4.6 the work of Section 4.3.2 may be replicated for the

one-sided transposition shuffle. We summarise the results of the lifting in the following

theorems whose proofs follow from those of the random transposition shuffle with changes

in coefficients from Theorem 4.4.6.

Theorem 4.4.7 (Lifting for λ1). Let λ ⊢ n, and a ∈ {1,2, . . . , l(λ1)+1}. Take i ∈ [n] such

that 1 ≤ i ≤ a and set µ = λ + e1
i . Then,

AOSTn+1,w ○ κλ,µ,1a − κλ,µ,1a ○AOSTn,w =
w(n + 1)(1 + (λ1

i + 1 − i))
n + 1

κλ,µ,1a

Thus if we have an eigenvector v ∈ Sλ with eigenvalue ε, we find κλ,µ,1a (v) to be an eigen-

vector of Sµ with eigenvalue ε + w(n+1)(1+(λ1i+1−i))
n+1 .

Theorem 4.4.8 (Lifting for λ2). Let λ ⊢ n, and a ∈ {1,2, . . . , l(λ2)+1}. Take i ∈ [n] such

that 1 ≤ i ≤ a and set µ = λ + e2
i . Then,

AOSTn+1,w ○ κλ,µ,2a − κλ,µ,2a ○AOSTn,w =
w(n + 1)(λ2

i + 1 − i)
n + 1

κλ,µ,2a

Thus if we have an eigenvector v ∈ Sλ with eigenvalue ε, we find κλ,µ,2a (v) to be an eigen-

vector of Sµ with eigenvalue ε + w(n+1)(λ2i+1−i)
n+1 .

Note that Lemma 4.3.21 still holds for the one-sided transposition shuffle because the

lifting operators have not changed. This leads us to a proof of Theorem 4.4.2

Proof of Theorem 4.4.2. For any bi-tableau T of shape λ we build up a distinct eigenvector

belonging to Sλ by lifting from partition ((0), (0)) to λ in the order specified by the tableau

T . Summing the changes in eigenvalue given by Theorems 4.4.7 and 4.4.8 and normalising

by Nw(n) we recover the expression for the eigenvalue corresponding to T given in the

theorem.

4.4.2 A Strong Stationary Time for the Unbiased One-sided Transposi-

tion Shuffle on The Hyperoctahedral Group.

In this section we prove that the unbiased one-sided transposition shuffle on Bn exhibits a

cutoff in separation distance at time n logn. To establish a cutoff in separation distance we

prove that the strong stationary time introduced in Section 3.7 is also a strong stationary

time for the unbiased one-sided transposition shuffle on Bn. We record our main results

below before constructing the strong stationary time in detail.

Theorem 4.4.9. There exists a strong stationary time T for the unbiased one-sided trans-

position shuffle for Bn. Furthermore, for c > 0 we have P(T > n logn + cn) ≤ e−c.

From Theorem 4.4.9 we may quickly establish that the one-sided transposition shuffle

exhibits a cutoff in total variation distance and separation distance at time n logn. This

proves Conjecture 4.4.4 for the case α = 0.
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Theorem 4.4.10. The unbiased one-sided transposition shuffle OSTn,0 satisfies the fol-

lowing bounds, for c1 > 0, c2 > 2:

lim sup
n→∞

∥OST
n logn+c1n
n,0 − πn∥sep ≤ e−c1 (4.43)

lim inf
n→∞

∥OST
n logn−n log logn−c2n
n,0 − πn∥TV ≥ 1 − π2

6(c2 − 2)2
(4.44)

Thus, unbiased one-sided transposition shuffle exhibits a cutoff in total variation distance

and separation distance at time n logn.

Proof of Theorem 4.4.10. The lower limit was given in Lemma 4.4.3. The upper limit

follows from Theorem 4.4.9, using the strong stationary time T , we see that,

lim sup
n→∞

∥OST
n logn+c1n
n,0 − πn∥sep ≤ lim sup

n→∞
P(T > n logn + c1n) ≤ e−c1 .

Separation distance gives an upper bound on total variation distance (Lemma 1.1.24),

therefore combining the two bounds establishes a cutoff in both total variation distance

and separation distance.

A Strong Stationary Time Argument

Recall that we may view the elements of Bn as a subset of permutations of a deck of

cards made up of cards and positions both indexed by [±n]. Any permutation σ ∈ Bn is a

bijection from cards to positions and σ−1 is a bijection from positions to cards, i.e., σ(i)
tells us the position of card i whereas σ−1(i) tells us what card is in position i. We begin

all our random walks at the identity permutation with positions and labels fully matched.

Throughout the rest of this section let (Xt)t∈N denote a Markov chain on Bn driven by

the unbiased one-sided transposition shuffle, and let (Y t)t∈N be a Markov chain on Bn

defined by setting Y t = (Xt)−1 for all t. The Markov chains (Xt) and (Y t) represent two

different ways to view the unbiased one-sided transposition shuffle.

Let τ t be the transposition chosen at step t of the unbiased one-sided transposition

shuffle. To construct our strong stationary time we need to condition on the exact permu-

tation of cards in positions (both positive and negative) above position j at time t, that

is the random variables Y t(±i) for j < i ≤ n. Note that if we know the random variable

Y t(i) we may compute Y t(−i) = −Y t(i). Given this information we also know which cards

can be in positions [±j] at time t, define this set as,

Atj = [±n] ∖ {Y t(±i) ∣ j < i ≤ n}.

Definition 4.4.11. We say the random walk (Y t)t∈N satisfies property Pj at time t if we

have:

P (Y t(j) = l ∣Y t(i) for all j < i ≤ n) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1/2j if l ∈ Atj
0 otherwise

(4.45)

This property tells us that given total information about the deck strictly above position

j, the card in position j is equally likely to be any of the remaining cards.
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Lemma 4.4.12. Let Tj be the first time our right hand chooses the position j when

performing the unbiased one-sided transposition shuffle. If Tj ≤ t then the Markov chain

(Y t)t∈N satisfies property Pj at time t.

Proof. We prove this by induction: once property Pj holds for some t, it holds for all

times after t.

Consider the time Tj , at this step of our Markov chain we must have applied a transpo-

sition (i j) or ξiξj(i j) with i ≤ j. The probability of picking any one of the transpositions

(i j) at time Tj is P(τTj = (i j)) = P(τTj = ξiξj(i j)) = 1/2j for all i ≤ j. Therefore, the

card in position j at time Tj has a uniform chance of being any of the cards in A
Tj−1
j = ATjj

(which contains both positive and negative cards). Thus, we may clearly see that,

P (Y Tj(j) = l ∣Y Tj(i) for all j < i ≤ n) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1/2j if l ∈ ATjj
0 otherwise

(4.46)

so Pj holds at time Tj .

Now suppose property Pj holds at time t. We study the time t+1 and split the analysis

into cases based on which permutation was applied at time t + 1,

P (Y t+1(j) = l ∣Y t+1(i) for all j < i ≤ n)

= ∑
σ∈Bn

P(τ t+1 = σ)P (Y t+1(j) = l ∣Y t+1(i) for all j < i ≤ n, τ t+1 = σ) . (4.47)

Using knowledge of the transposition τ t+1 we evolve our deck backwards in time (Xt =
τ t+1Xt+1) to recover the random variables Y t(i) from Y t+1(i) for j < i ≤ n, and relate

Y t+1(j) to Y t(j). This allows us to use our inductive hypothesis.

If τ t+1 ∈ {(a j), ξaξj(a j) ∣a ≤ j} then our random walk satisfies property Pj at time t+1

for the same reasoning as time Tj . Suppose that τ t+1 ∈ {(a b), ξaξb(a b) ∣a, b < j}. Then we

know that Y t(i) = Y t+1(i) for all j < i ≤ n. Suppose instead that τ t+1 ∈ {(a b), ξaξb(a b) ∣ j <
a, b}, then we have Y t(±b) = Y t+1(±a) and Y t(±a) = Y t+1(±b) (with the signs swapping

in the second case), with Y t(i) = Y t+1(i) for all other j < i ≤ n. In either case we know

At+1
j = Atj , and the card in position j has not moved from time t to t + 1. Therefore, we

have

P (Y t+1(j) = l ∣Y t+1(i) for all j < i ≤ n, τ t+1 ∈ {(a b), ξaξb(a b) ∣a, b < j or both b, a > j})

= P (Y t(j) = l ∣Y t(i) for all j < i ≤ n) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1/2j if l ∈ Atj = At+1
j

0 otherwise
.

We now study in detail the effects of the remaining transpositions (a b) and ξa, ξb(a b)
with a ≤ j < b. In this case we can not fully recover the random variables Y t(i) with

i < j ≤ n without extra assumptions. To this end fix b > j, a card C ∈ At+1
j , and suppose

that τ t+1 = (Xt+1(C) b), i.e., card C is moved from position b into a position below j by

τ t+1. Letting C range over all choices in At+1
j will recover every transposition (a b) and

ξaξb(a b) with b > j fixed and a ≤ j. In the case that τ t+1 = (Xt+1(C) b), we know that

Y t(b) = C and the other positions above j have Y t(i) = Y t+1(i) for j < i ≤ n and i ≠ b.
Therefore, for this choice of τ t+1 we know that Atj = (At+1

j ⊔ {Y t+1(±b)}) ∖ {±C}. Now
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consider the probability:

P (Y t+1(j) = l ∣Y t+1(i) for all j < i ≤ n, τ t+1 = (Xt+1(C) b)) .

If l = C then the event in question can only occur if the card currently in position b, i.e.

Y t+1(b), was in position j at time t. Noting that Y t+1(b) ∈ Atj , and using our inductive

hypothesis we find,

P (Y t+1(j) = C ∣Y t+1(i) for all j < i ≤ n, τ t+1 = (Xt+1(C) b))

= P (Y t(j) = Y t+1(b) ∣Y t(i) for all j < i ≤ n) = 1/2j (4.48)

If l = −C then the event in question can only occur if the card currently in position −b, i.e.

Y t+1(−b), was in position j at time t. Noting that Y t+1(−b) ∈ Atj , and using our inductive

hypothesis we find,

P (Y t+1(j) = −C ∣Y t+1(i) for all j < i ≤ n, τ t+1 = (Xt+1(C) b))

= P (Y t(j) = Y t+1(−b) ∣Y t(i) for all j < i ≤ n) = 1/2j (4.49)

Alternatively, suppose l ∈ At+1
j ∖{±C}, we know the card l does not move from its position

at time t to time t + 1, and we know l ∈ Atj . Therefore, we find

P (Y t+1(j) = l ∣Y t+1(i) for all j < i ≤ n, τ t+1 = (Xt+1(C) b))

= P (Y t(j) = l ∣Y t(i) for all j < i ≤ n) = 1/2j (4.50)

Putting the equations above together gives us,

P (Y t+1(j) = l ∣Y t+1(i) for all j < i ≤ n, τ t+1 = (Xt+1(C) b)) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1/2j if l ∈ At+1
j ∖ {±C}

1/2j if l ∈ {±C}

0 otherwise

.

Letting C range over all possible choices of card in At+1
j while keeping b > j fixed, we

cover the desired probability for all transpositions (a b), ξaξb(a b) with a ≤ j < b. Finally

applying every separate case to (4.47) we have established that

P (Y t+1(j) = l ∣Y t+1(i) for all j < i ≤ n) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1/2j if l ∈ At+1
j

0 otherwise

as required, thus by induction our hypothesis holds for all t ≥ Tj .

Lemma 4.4.13. Let T = min{t ≥ 0 ∣ t ≥ T1, . . . Tn} be the first time our right hand has

chosen every position j. Then T is a strong uniform time for (Xt)t∈N and (Y t)t∈N.

Proof. Note that Xt is uniformly distributed if and only if Y t is uniformly distributed.

Lemma 4.4.12 implies that by time T our Markov chain (Y t)t∈N satisfies all properties Pj .
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Hence, we have

P(Y t = σ−1 ∣T ≤ t) = P (∩nj=1{Y t(j) = σ−1(j)}∣T ≤ t)

=
n

∏
j=1

P (Y t(j) = σ−1(j)∣ ∩ni=j+1 {Y t(i) = σ−1(i)}, T ≤ t)

=
n

∏
j=1

1

2j
= 1

2nn!
= πn(σ).

We have found a strong stationary time for the unbiased one-sided transposition shuffle.

Following quickly from this we may prove Theorem 4.4.9, and thus establish a cutoff in

separation distance for the one-sided transposition shuffle.

Proof of Theorem 4.4.9. Let T be the first time our right hand has chosen every position j.

Our right hand is choosing positions via a uniform probability on [n]. Thus T is modelled

by the uniform coupon collectors problem with n coupons. To complete our argument

recall (Section 2.3.2, equation (2.19)) that for the uniform coupon collectors problem on

n cards we have P(T > n logn + cn) ≤ e−c.

The strong stationary time we have constructed in this section is actually a strong

stationary time for any biased one-sided transposition shuffle. Let Tα be the first time

our right hand has chosen every position j following the biased one-sided transposition

shuffle OSTn,α. In Lemma 3.7.7 we showed that for α ≤ 0 we have the bound P(Tα >
tn,α(logn + c)) ≤ e−c. Therefore, extending the proof of Theorem 4.4.10 we are able to

prove the following.

Corollary 4.4.14. The biased one-sided transposition shuffle OSTn,α with α ≤ 0 exhibits

a cutoff in separation distance and total variation distance at time tn,α logn. Thus, con-

jecture 4.4.4 holds for all α ≤ 0.

4.5 Further Work

In this chapter we have explored the hyperoctahedral group as an extension of the sym-

metric group. The hyperoctahedral group is just one instance of the generalised symmetric

group.

Definition 4.5.1. Let r, n ∈ N, and let ξ be a rth root of unity. The generalised symmetric

group, denoted Gr,n, is defined as the group of all bijections σ on elements {ξki ∣ i ∈ [n], k ∈
[k]} such that σ(ξki) = ξkσ(i). The generalised symmetric group Gr,n is isomorphic to

the wreath product Zr ≀ Sn.

The symmetric and hyperoctahedral groups are isomorphic to the generalised symmet-

ric groups G1,n and G2,n respectively. We were able to describe the module structure of

the symmetric group and the hyperoctahedral group using a similar set of techniques in

both cases. The arguments presented in Sections 2.2 and 4.2 can be modified to work for

the generalised symmetric group Gr,n for any r ∈ N. Below we describe the module struc-

ture of Gr,n over the field C, a full construction of the permutation and Specht modules

for any choice of r ∈ N may be found in [12].
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Definition 4.5.2. Let r, n ∈ N. An r-partition of n, denoted λ, is a tuple of partitions

λ = (λ1, . . . , λr) such that ∑rk=1 ∣λk∣ = n. Let λ,µ be r-partitions. Define the dominance

ordering on r-partitions as follows:

λ ⊵ µ⇔

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∣λ1∣ > ∣µ1∣

or ∣λk∣ = ∣µk∣ for 1 ≤ k ≤ i, and ∣λi+1∣ > ∣µi+1∣ for some i ∈ {1, . . . , r − 2}

or ∣λk∣ = ∣µk∣ and λk ⊵ µk for all k ∈ [r]

.

Lemma 4.5.3. The permutation and simple modules for the generalised symmetric group

Gr,n are index by r-partitions of n. The permutation module and simple module corre-

sponding to a r-partition λ are denoted Mλ and Sλ respectively. Furthermore, the permu-

tation and simple modules respect Young’s rule, that is

Mµ ≅ ⊕
λ⊵µ

Kλ,µS
λ,

for constants Kλ,µ ∈ N
0.

Conjecture 4.5.4. Let n ≥ 2, and λ ⊢ n. The branching rules for the simple modules of

Gr,n are as follows:

Res
Gr,n
Gr,n−1

Sλ ≅ ⊕
µ⊢n−1

µ⊆λ

Sµ as Gr,n−1-modules (4.51)

Ind
Gr,n+1
Gr,n

Sλ ≅ ⊕
µ⊢n+1

λ⊆µ

Sµ as Gr,n+1-modules. (4.52)

The structure of Gr,n allows us to generalise the random transposition shuffle and the

one-sided transposition shuffle for any choice of r. To do this we first need to define the

negative transpositions ξi for the group Gr,n. Let ξ be an rth-root of unity, and define the

negative transpositions ξi ∈ Gr,n for i ∈ [n] as follows:

ξi(j) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ξ i if j = i

j otherwise
.

The random transposition shuffle on the group Gr,n is defined by the following procedure:

pick a transposition (i j) of Sn ⊆ Gr,n via the random transposition shuffle and apply it,

then uniformly at random choose a element k ∈ [r] and apply the negative transpositions

ξki , ξ
k
j to the positions i, j. Overall we have applied an element of Gn,r of the form ξki ξ

k
i (i j)

or ξkj (j j). If r = 1,2 we recover the random transposition shuffle on the symmetric group

and hyperoctahedral group respectively which were described in Sections 2.3.1 and 4.3.

Similarly we may form the biased one-sided transposition shuffles on the group Gr,n by the

following procedure: pick a transposition (i j) of Sn via the biased one-sided transposition

shuffle and apply it, then uniformly at random choose a element k ∈ [r] and apply the

negative transpositions ξki , ξ
k
j to the positions i, j. It is natural to think how we might

extend the technique of lifting eigenvectors to the random transposition and the one-sided

transposition shuffles on the group Gr,n for r > 2. In line with the r = 2 case we expect
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there to be r different lifting operators, one for adding a box to each separate partition

λk which together constitute an r-partition. Furthermore, we expect the eigenvectors for

each shuffle to correspond to standard Young tableaux of r-partitions.

Conjecture 4.5.5. The eigenvalues for the random transposition shuffle on the gener-

alised symmetric group Gr,n are labelled by r-partitions of n, and may be described by the

technique of lifting eigenvectors.

Conjecture 4.5.6. The eigenvalues for the biased one-sided transposition shuffle on the

generalised symmetric group Gr,n are labelled by standard Young tableaux of r-partitions

of n, and may be described by the technique of lifting eigenvectors.

Once the eigenvalues for each shuffle have been found they could be used to analyse

the mixing time of each shuffle on the generalised symmetric group Gr,n. We conjecture

that the random transposition shuffle and the one-sided transposition shuffles on the group

Gr,n exhibit a cutoff in total variation distance at the same time as their symmetric group

counterparts.

Conjecture 4.5.7. The random transposition shuffle on the generalised symmetric group

Gr,n exhibits a cutoff in total variation distance at time (n/2) logn.

Conjecture 4.5.8. The biased one-sided transposition shuffle on the generalised sym-

metric group Gr,n with weight function w such that w(j) = jα exhibits a cutoff in total

variation distance at time tn,α logn.

In fact by using the strong stationary time introduced in Section 3.7 we may prove the

above conjecture in the case of the unbiased one-sided transposition shuffle (α = 0) on the

group Gr,n.

Theorem 4.5.9. The unbiased one-sided transposition shuffle on the generalised symmet-

ric group Gr,n exhibits a cutoff in total variation distance and separation distance at time

n logn.

Sketch Proof. The proof of this Theorem follows from extending the techniques of Sections

3.7.1 and 4.4.2. Let ξ be an rth root of unity. Let (Xt)t∈N denote a Markov chain on Gr,n

driven by the unbiased one-sided transposition shuffle, and let (Y t)t∈N be a Markov chain

on Gr,n defined by setting Y t = (Xt)−1 for all t. To construct a strong stationary time we

need to condition on exact knowledge of the positions above position j at time t, that is

the random variables Y t(ξki) for j < i ≤ n and k ∈ [r]. Note that if we know the random

variable Y t(i) we may compute Y t(ξki) = ξkY t(i) for any k ∈ [r]. Given this information

we also know the value of positions ξk1 to ξkj at time t, define this set as,

Atj = {ξki ∣ i ∈ [n], k ∈ [r]} ∖ {Y t(ξki) ∣ j < i ≤ n, k ∈ [r]}.

We say our random walk satisfies property Pj at time t if we have,

P (Y t(j) = l ∣Y t(i) for all j < i ≤ n) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1/rj if l ∈ Atj
0 otherwise

. (4.53)
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Let Tj be the first time we apply a transposition ξki ξ
k
j (i j) with i ≤ j and k ∈ [r] following

the unbiased one-sided transposition shuffle on Gr,n. Extending the arguments of Lemmas

3.7.4 and 4.4.12, we may see that at any time t ≥ Tj the Markov chain (Y t)t∈N satisfies

property Pj .
Let T = min{t ≥ 0 ∶ t ≥ Tj for all j}, this is a stopping time for our random walk. At

any time after T the random walk (Y t)t∈N, satisfies all properties Pj , therefore for any

σ ∈ Gr,n we have

P(Y t = σ−1 ∣T ≤ t) = P (∩nj=1{Y t(j) = σ−1(j)} ∣T ≤ t)

=
n

∏
j=1

P (Y t(j) = σ−1(j) ∣ ∩ni=j+1 {Y t(i) = σ−1(i)}, T ≤ t)

=
n

∏
j=1

1

rj
= 1

rnn!
= πn(σ).

Hence, the time T is a strong stationary time for (Y t)t∈N and so (Xt)t∈N. Using the same

coupon collector’s argument as before we know that P(T > n logn + cn) ≤ e−c, hence we

have an upper bound of n logn on the on separation distance mixing time of the unbiased

one-sided transposition shuffle. To find a matching lower bound we reduce the analysis of

the unbiased one-sided transposition shuffle on Gr,n to the r = 1 (symmetric group case)

using the same argument as Lemma 4.3.3. This gives a lower bound of n logn on the total

variation distance mixing time of the unbiased one-sided transposition shuffle. Combining

the two bounds above proves the existence of a cutoff in total variation distance and

separation distance at time n logn.
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