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Abstract

Managing unemployment is one of the key issues in social policies. Unem-
ployment insurance schemes are designed not only to cushion against the
severe blow to finance and morale caused by the loss of job but also to
encourage the unemployed to seek new jobs more proactively due to the
continuous reduction of benefit payments. This thesis is concerned with the
entry time into unemployment insurance schemes. First, a simple model of
unemployment insurance is proposed with a focus on optimality of the indi-
vidual’s entry into the scheme. The corresponding optimal stopping problem
is solved, and its similarity and differences with the perpetual American call
option are discussed. Beyond a purely financial point of view, we argue that
in the actuarial context the optimal decisions should take into account other
possible preferences through a suitable utility function. Some examples in
this direction are worked out. Second, we expand the UI model by mak-
ing the parameters time dependent. This causes obvious complications to
the model and gives rise to an optimal stopping problem which involves
the computation of a time dependent boundary. An exact computational
formula for this time dependent optimal boundary is unknown. Neverthe-
less, some numerical approaches are proposed to approximate the optimal
boundary. Third, we focus on the analysis and modelling the labour force
data from the Office for National Statistics (ONS) in UK. The labour force
data is used because it consistently captures in details the estimates of the
number of individuals employed, unemployed and inactive in UK, which are
key features needed to compute the unemployment and reemployment rates
in our UI scheme. Additionally, aside the aforementioned key features, the
data also details the movement of individuals between employment, unem-
ployment, and inactivity. Hence enabling us to understand and interpret
the changes in the level of the labour market per quarter. To make our UI
model more realistic, we explore a variety of multi-state models and lake
models using the data and give highlights of the approaches and the results.
Finally, we summarise the results and indicate a few directives that can be
further explored.
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Chapter 1
Introduction

1.1 Unemployment

There are several definitions for unemployment across different disciplines. However,
one of the most known definitions of unemployment is ”all persons above a certain age
without paid work or self-employment, who at the time of assessment were available for
work either in paid employment or in self-employment, and who at the specified time
of assessment had taken specific steps to seek employment or self-employment” by [62].
Based on this definition, International Labour Organization (ILO) summarized the
definition of unemployment as without work, currently available for work and seeking
work in [81].

There are several classifications of unemployment. Some are broad (individuals will-
ing to work but are not searching due to circumstances such as injury and lost hope in
finding employment) and narrow (individuals willing to work and are enthusiastically
searching for jobs). Long-term (individuals out of a job for more than 27 weeks) and
short term (individuals out of a job for less than 27 weeks) are other classifications.
Furthermore, there are several types of unemployment which are somewhat associated
to each other. Some are structural unemployment (when wage earner skills no longer fit
the job market), cyclical unemployment (a fall in economic activity and business cycle)
and frictional unemployment (when individuals are briefly moving between occupa-
tions). For simplicity in our subsequent computations, the analysis of unemployment
is argued when an individual becomes unemployed voluntarily as well as involuntarily.

All types of unemployment vary depending on causal factors associated to economic,
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political, social and individual aspects in a society. In our work, we consider the
causes of unemployment that are beyond a person’s control such as wage, inflation
rate, unemployment rate and re-employment rates. Unemployment also has several
perilous consequences. In the society, unemployment leads to issues such as poverty,
corruption, delinquency and a reduction in the socio-economic growth and development
[98]. Furthermore, the physical and emotional wellbeing of the affected individuals
is negatively affected causing conditions such as depression, shame, and resentment
[98]. These effects keep mounting so fast that regularly reviewed sustainable strategies
for affected societies and individuals have been suggested and implemented to reduce
unemployment. However, to determine the level of success of these strategies, one must
be able to measure unemployment.

Unemployment is measured to ascertain the rates and dynamics of the labour mar-
ket. Due to diverse definitions of unemployment and sources of data, the computation
of the unemployment rate often differs. Knowing how to compute the unemployment
rate helps to improve the efficiency and effectiveness of an economy to utilize its work
force, increase the productivity of the labour market and most importantly reduce un-
employment. In this thesis, there are four rates of measurement for unemployment;
the unemployment transition rates, the unemployment probability rates, the percent-
age rates of change and the rates which show the proportion of the individuals in each
state to the total labour force. Further details on these rates are provided as the
computations unfold.

Thus, effectual strategies and policies to reduce the rate of unemployment rate such
as creating more jobs, education, training, employment subsidies and unemployment
insurance (UI) will help maintain the socio-economic stability in the society.

1.2 Motivation for the study

According to the literature, unemployment insurance (UI) scheme is a policy that can
solve the challenge of unemployment in both short-term and long-term [6], [93, §2]. UI
schemes are designed not only to cushion against the severe blow to finance and morale
caused by the loss of jobs but also to encourage the unemployed to seek new jobs more
pro-actively due to the continuous reduction of benefit payments.

UI provides protection for unemployed individuals without negatively affecting the
economy by addressing some major economic issues. For instance, firstly, according to
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[54] UI solves the issue of decreasing labour input rate in the economy because it serves
as an incentive that motivates unemployed workers to pursue more productive job offers
to increase their productivity and inspire companies to create these offers. Secondly,
UI ensures economic stability during economic recessions by providing unemployment
benefits to jobless individuals when there are insufficient jobs [78]. Thirdly, during
economic recessions, UI reduces the workforce drop-out rate by making it easier to exit
from unemployment than exit the workforce altogether [1]. Fourthly, UI may also lead
to better quality of job match between employees and employers because unemployed
workers receive financial assistance and support during the unemployment spell until
they find the best jobs that fit their skills. Based on the raised arguments, the purpose
of our study is to reduce unemployment rates by investigating UI schemes. Specifically,
we consider an individual’s optimal entry time into such a UI scheme.

1.3 Risk and Insurance

Assessing the risk in financial industries often aims at finding optimal choices in decision
making. In the insurance sector, optimality considerations are crucial primarily for the
insurers, who have to address monetary issues (such as how to price the insurance policy
so as not to run at a loss but also to keep the product competitive) and time issues
(e.g., when to release the product to the market). Less studied but also important
are optimal decisions on behalf of the insured individuals, related to monetary issues
(e.g., how profitable is taking up an insurance policy and the right portion of wealth to
invest), consumption decisions (e.g., whether to maximise or optimise own consump-
tion), or time-related decisions (such as when it is best to enter or exit an insurance
scheme). In the insurance literature, there has been much interest towards using optim-
ality considerations, including optimal stopping problems. From the standpoint of the
insurer seeking to maximise their expected returns, the optimal stopping time may be
interpreted as the time to suspend the current trading if the situation is unfavourable,
and to recalculate premiums (see, e.g., [72, 75, 96] and further references therein). In-
surance research has also focused on optimality from the individual’s perspective. One
important direction relevant to the UI context was the investigation of the job seeking
processes, especially when returning from the unemployed status [17, 88, 133]. This
was complemented by a more general research exploring ways to optimise and improve
the efficacy of the UI systems (also in terms of reducing government expenditure),
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using incentives such as a decreasing benefit throughout the unemployment spell, in
conjunction with sanctions and workfare (see [52, 60, 65, 77, 79], to cite but a few). A
related strand of research is the study of optimal retirement strategies in the presence
of involuntary unemployment risks and borrowing constraints [27, 35, 55, 70, 124].

To the best of our knowledge, optimal stopping problems in the UI context (such
as the optimal entry to / exit from a UI policy) have not received sufficient research
attention. This issue is important, because knowing the optimal entry strategies is
likely to enhance the motivation for individuals to join the UI scheme, thus ensuring
better societal benefits through the UI policies (see analysis and discussion in [112]).
Knowledge of the optimal entry time for insured individuals, which has impact on the
amount and duration of benefits to be claimed, will also help the insurers (both state
and private) to optimise their financial practices (see a discussion in [80]). Thus, our
present work attempts to fill in the gap by addressing the question of the optimal timing
to join the UI scheme.

1.4 Scope of thesis

In this thesis we focus on the particular type of products related to unemployment
insurance (UI), whereby an employed individual is covered against the risk of invol-
untary unemployment (e.g., due to redundancy). Various UI systems are designed to
help cushion against the severe blow to finance (as well as morale) caused by the loss
of jobs and to encourage unemployed workers to find a new job as early as possible
in view of the continued reduction of benefits. The protection is normally provided
in the form of regular financial benefits (usually tax free) payable after the insured
individual becomes unemployed and until a new job is found, but often only up to a
certain maximum duration and with payments gradually decreasing over time. Many
countries have UI schemes in place [64, 76], often run and funded by the governments,
with contributions from employers and workers, but also by private insurance compan-
ies [56]. For example, the governmental UI systems administered in France and Belgium
in the 1990s provided benefits decreasing with time according to a certain schedule; the
amount of the benefit was determined by the age of the worker, their final wage/salary,
the number of qualifying years in employment, family circumstances, etc.

In this work we introduce and analyse UI models focusing on the optimal time for
the individual to join the scheme. Before setting out the model formally, let us describe
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the situation in general terms. Consider an individual currently at work but who is
concerned about a possible loss of job, which may be a genuine potential threat due
to the fluidity of the job market and the level of demand in the particular employment
sector. To mitigate this risk, the employer or the social services has an unemployment
insurance scheme in place, available to this person (perhaps after a certain qualifying
period at work), which upon payment of a one-off entry premium would guarantee to
the insured a certain benefit payment proportional to their final wage and determined
by a specified declining benefit schedule, until a new job is found (see Fig. 1). The mode
of paying the premium is a fixed lump sum or total amount before the unemployment
insurance coverage begins.

0
Time t 

Pa
y 

ra
te

 

0 τ τ0 τ0+τ1

Xt

Figure 1: A time chart of the unemployment insurance scheme. The horizontal axis
shows (continuous) time; the vertical axis indicates the pay rate (i.e., income receivable
per unit time). The origin t = 0 indicates the start of employment. Two pieces of a
random path Xt depict the dynamics of the individual’s wage whilst in employment.
The individual joins the UI scheme at entry time τ (by paying a premium P ). When
the current job ends (at time τ0 > τ), a benefit proportional to the final wage Xτ0 is
payable according to a predefined schedule (e.g., see Example 2.2.1), until a new job is
found after the unemployment spell of duration τ1.

The decision the individual is facing is when (rather than if ) to join the scheme.
What are the considerations being taken into account when contemplating such a de-
cision? On the one hand, delaying the entry may be a good idea in view of the monetary
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inflation over time — since the entry premium is fixed, its actual value is decreasing with
time. Also, it may be reasonably expected that the wage is likely to grow with time
(e.g., due to inflation but also as a reward for improved skills and experience), which
may have a potential to increase the total future benefit (which depends on the fi-
nal wage). Last but not least, some savings may be needed before paying the entry
premium becomes financially affordable. On the other hand, delaying the decision to
join the insurance scheme is risky, as the individual remains unprotected against loss
of job, with its associated impact on finance and morale.

Thus, there is a scope for optimizing the decision about the entry time — probably
not too early but also not too late. Apparently, such a decision should be based on the
information available to date, which of course includes the inflation rate and also the
unemployment and redeployment rates, all of which should, in principle, be available
through the published statistical data. Another crucial input for the decision-making
is the individual’s wage as a function of time. We prefer to have the situation where
this is modelled as a random process, the values of which may go up as well as down.
This is the reason why we do not consider salaries (which are in practice piecewise
constant and unlikely to decrease), and instead we are talking about wages, which are
more responsive to supply and demand and are also subject to “real-wage” adjustments
(e.g., through the consumer price index, CPI). Besides, loss of job is more likely in wage-
based employments due to the fluidity of the job market. For simplicity, we model the
wage dynamics using a diffusion process called geometric Brownian motion (GBM). The
arguments for using GBM to model wages are as follows. Firstly, the GBM process only
assumes positive values, just like wages. Secondly, the GBM process shows the same
kind of uncertainty in its paths as we see in some real wages for very low income and
high income earners. Finally, computations with GBM processes are relatively easier
because the assumption of the volatility and drift can be adjusted in an attempt to
make the wage fixed which is the case for some workers. 1

1For technical convenience, we choose to work with continuous-time models, but our ideas can also
be adapted to discrete time (which may be somewhat more natural, since the wage process is observed
by the individual on a weekly time scale).
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1.5 UI scheme models

In this thesis, we study two UI scheme models in Chapter 2 and Chapter 3 and here
a brief review of the results is presented. The first case is the time-independent model
which allows for an explicit solution whereas the second case is the time-dependent
model which allows for an analytical characterization of the solution but with no explicit
formula for the optimal strategy.

Time-independent model

For the time-independent case in Chapter 2, the optimization problem for our model
aims to maximise the expected net present value (for an individual) of the UI scheme by
choosing an optimal entry time τ∗ to the contract. We will show that this problem can
be solved exactly by using the well-developed optimal stopping theory [107, 109, 121].
It turns out that the answer is provided by the hitting time of a suitable threshold b∗,
that is, the first time τb∗ when the wage process Xt will reach this level. Since the
value of b∗ is not known in advance, this leads to solving a free-boundary problem for
the differential operator (generator) associated with the diffusion process (Xt). In fact,
we first conjecture the aforementioned structure of the solution and find the value b∗,
and then verify that this is indeed the true solution to the optimal stopping problem.

It is interesting to point out that our optimal stopping problem and its solution
have a lot in common with (but are not identical to) the well-known American call
option in financial mathematics, where the option holder has the right to exercise it
at any time (i.e., to buy a certain stock at an agreed price), and the problem is to
determine the best time to do that, aiming to maximise the expected financial gain.
However, unlike the American call option setting based on purely financial objectives,
the optimal stopping solution obtained in our UI model is not entirely satisfactory from
the individual’s point of view, because the (optimal) waiting time τb∗ may be infinite
with positive probability (at least for some values of the parameters), and even if it is
finite with probability one, the expected waiting time may be very long.

Motivated by this observation, we argue that certain elements of utility should be
added to the analysis, aiming to quantify the individual’s “impatience” as a measure
of purpose and satisfaction. We suggest a few simple ideas of how utility might be
accommodated in the UI optimal stopping framework. Despite the simplicity of such
examples, in most cases they lead to much harder optimal stopping problems. Not
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attempting to solve these problems in full generality, we confine ourselves to exploring
suboptimal solutions in the class of hitting times, which nonetheless provide useful
insight into possible effects of inclusion of utility into the optimal stopping context.

The general concept of utility in economics was strongly advocated in the classical
book by von Neumann and Morgenstern [99], whose aim was in particular to overcome
the idealistic assumption of a strictly rational behaviour of market agents.1 These ideas
were quickly adopted in insurance, dating back to Borch [16] and soon becoming part
of the insurance mainstream, culminating in the Expected Utility Theory (see a recent
book by Kaas et al. [73]) routinely used as a standard tool to price insurance products.
In particular, examples of use of utility in the UI analysis are ubiquitous (see, e.g.,
[1, 7, 52, 60, 64, 65, 77, 79, 80]). There have also been efforts to combine optimal
stopping and utility [26, 27, 61, 75, 96, 133]. However, all such examples were limited
to using utility functions to re-calculate wealth, while other important objectives and
preferences such as the desire to buy the policy or to reduce the waiting times have not
been considered as yet, as far as we can tell.

Time-dependent model

We study the time-dependent problem in Chapter 3 which is an extension of the model
in Chapter 2. In particular, we are interested in finding the optimal stopping rule
that maximises the expected payoff for an unemployed individual under the UI scheme.
We formulate the stopping problem based on the assumption that risk-free rate, un-
employment rate and reemployment rate are time-dependent. We also prove that the
optimal stopping time for our problem is the first time the wage process exceeds a
time-dependent optimal boundary b(t), which is non-negative, continuous, either non-
decreasing or non-increasing and bounded. Prior to this, we prove the continuity of
the value function. We further find the regularity for the value function and derive
an integral equation that uniquely characterises the optimal boundary. Finally, we
numerically solve the integral equation and provide plots of the optimal boundary.

1Impact of individualistic (not always rational) perception in economics and financial markets is
the subject of the modern behavioural economics (see, e.g., a recent monograph [38]).
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1.6 Analysis and modelling of labour force data

For simplicity, the time until the current employment ends τ0 and the unemployment
spell of duration τ1 are assumed to have exponential distribution due to the Markovian
nature of transition from employment to unemployment and back. These times τ0 and
τ1 have parameters λ0(t) and λ1(t) respectively. In Chapter 2, the parameters are
constants (i.e. λ0(t) = λ0 and λ1(t) = λ1 ) and time-varying (i.e. λ0(t) and λ1(t) )in
Chapter 3.

One direction to make our UI scheme models more realistic is to include real labour
force data. In that case, labour force data modelling is a crucial part of this work. Due
to accessibility, we explore a variety of models using the labour force dataset from the
Office for National Statistics (ONS) in the United Kingdom (UK) [101]. The labour
force data contains estimates of variables related to the labour market [135, 134, 71, 102,
114]. Specifically, information on the number of individuals employed, unemployed and
inactive and their corresponding rates in the UK per quarter, which are key features
needed to compute the unemployment and reemployment rates in our UI scheme is
captured in the underlying data. Additionally, the data gives details of the number of
individuals that transition between employment, unemployment and inactivity hence
enabling us to understand and interpret the changes in the level of the labour market
per quarter.

In Chapter 4, we give a brief overview of the dataset using descriptive statistics and
visualization. Following this, we use a two-state, a four-state and a five-state model
collectively known as labour force state transition (LST) models to investigate the
movement between employment, unemployment and inactivity. The LST models are
used as decision models because they can be used to simulate labour market’ transitions
across various states over time. Thus, we run time-step (t-step) simulations using the
LST models. We further explore some lake models (two-state and three-state) for
the labour force market and run simulations for them as well. The performance and
accuracy of the LST and lake modelling techniques are obtained by comparing our
simulations to the actual data. Additionally, we fit distributions to data in order to
choose the best candidate probability distribution for future work suggestions.
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1.7 Optimal stopping theory

Here, we give a brief summary of optimal stopping theory. Optimal stopping theory
is one of the most developed areas of contemporary stochastic calculus. The objective
of optimal stopping problems is to determine when an underlying stochastic process
should be stopped in relation to taking a decision. These decisions are made to optim-
ise the value of certain functionals, to maximise gain functions or minimise loss and
cost functions. Optimal stopping has been applied in different disciplines for instance
economics [18], engineering [129], physics [37], mathematical finance [137].

Optimal stopping theory is known to have originated around the 1940’s from the
sequential analysis of statistical observations with a theory of the sequential probability
ratio test from Wald in [132] and has developed extensively till date. Based on Wald’s
initial development, Snell in [123] introduced the generalization of sequential analysis to
problems of pure stopping without the use of statistical structures. Sequentially, Snell
gave a different approach to solving optimal stopping problems by the characterization
of the value function as the smallest super-martingale dominating a stochastic process
which is known as the Snell envelope [107].

The equation for the value function was introduced by [5]. This was further de-
veloped by Bellman in [12] as the simplest equation of dynamic programming. This
finding resulted from the dynamic programming principle of backward induction and
also denoted as the Wald-Bellman equation. Dvoretzky in [44] introduced sequential
testing problems for continuous-time processes using the discrete time results from
[132, 5, 107].

An additional feature of optimal stopping theory is the reduction of an optimal
stopping problem to a free boundary problem from mathematical analysis in [136, 20,
84, 117, 9] to solve problems in sequential analysis, optimal stopping, and optimal
stochastic control. In [58], a link between free boundary problems for differential oper-
ators and optimal stopping problems for Markov processes is identified.

Dynkin [45] then highlighted that on the occasion when the succession of random
variables is Markovian, the super martingale characterization of the value function of
the optimal stopping problem is superharmonic. Dynkin did a detailed analysis of the
discrete time case and identified that similar findings are derived in the continuous
time case. Subsequently in the 60’s and 70’s outcomes of general theory of optimal
stopping for discrete time and continuous time in both martingale and Markovian
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approaches were explored. Some references such as [58, 118, 122, 125, 116, 50, 127,
47, 97] covered continuous time cases. Shiryaev in [119] also gives a comprehensive
overview of the general theory of optimal stopping for the discrete and continuous time
Markovian cases. The martingale approach for optimal stopping problems for discrete
time stochastic processes is presented in [28].

Accordingly, we see that there are two approaches considered when solving an op-
timal stopping problem: martingale approach and the Markovian approach. The for-
mulated problem and the probabilistic evolution of the stochastic process helps to
determine which approach to use. A modern and detailed overview of the optimal
stopping theory and the two approaches used to solve optimal stopping problems for
several stochastic models is given in [107] along with several examples.

This thesis deals with the application of optimal stopping theory to UI and the
development of the methodology to solve a time-independent and a time-dependent
optimal stopping problem. In the time-independent problem, the value function can
be explicitly computed by means of a free boundary formulation and the principle
of smooth fit [130], that requires certain regularity of the value function. The free
boundary technique is an approach based on the solution of a suitable differential
equation in a domain with an unknown boundary, the so called free boundary. The
smooth-fit principle leads to additional boundary conditions which provide equations
that can be used in a verification argument. The latter is used to prove that the solution
of the free-boundary problem is indeed the value function of the optimal stopping
problem and the free boundary turns out to be the optimal stopping boundary.

It is interesting to point out that in our time independent case, the value func-
tion is found explicitly along with a constant optimal stopping threshold. When the
parameters of the model are made time-dependent, obvious complications to the model
are caused. More specifically, the inclusion of time-dependent functions leads to the
alteration the value function to a time-dependent optimal stopping problem. This is
often more challenging to solve than the previous case as the free-boundary problem for
the value function is in the form of a partial differential equation (PDE) of parabolic
type. The optimal boundary in this case is a function of time and an exact computa-
tional formula is not known. Nevertheless, some numerical approach done in [8, 33] is
proposed to approximate the optimal boundary.
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1.8 A brief introduction to mathematical tools

In this section, we will give a brief outline of some major theorems in stochastic analysis
and calculus that will be used throughout this work. We assume that the reader has
some general knowledge on probability theory, stochastic processes and statistics. These
tools are intended to accompany the thesis, and in places are a bit brief. This section
is a compilation of materials from [107, 109, 104, 43] and more details can generally be
found there.

1.8.1 The martingale approach

We address the continuous time setting. Generally, the concepts in continuous time
are similar to the concepts in the discrete time case. Let G = (Gt)t≥0 (gains process)
be a stochastic process defined on a filtered probability space (Ω,F, (Ft)t≥0,P). Here
G stands for gain, so the process is to be thought of as what we gain if we stop now.
Also, G is adapted to the filtration (Ft)t≥0, and Ft is interpreted as all the information
we have after observing G up to time t. Optimal stopping theory is concerned with
finding a stopping time such that G above is optimised in some sense.

Definition 1.8.1. A random variable τ : Ω→ [0,∞] which is a random time, is called
a stopping time if, {τ ≤ t} := {ω ∈ Ω : τ(ω) ≤ t} ∈ Ft for all t ≥ 0 and P(τ <∞) = 1.

Consequently, the general optimal stopping problem will be of the form:

Vt = sup
t≤τ≤T

E[Gτ |Ft] (1.8.1)

where τ is a stopping time and T takes either a finite or infinite form. In order to obtain
the theorem about the problem’s solution, some assumptions are made about G. In
the general treatment of the theory it is assumed that the process G is right continuous
and left-continuous over stopping times. This means that P (limn→∞Gτn = Gτ ) = 1 if
τn ↑ τ as n→∞ where τn is a sequence of stopping times. This is a weaker condition
than left-continuity. Here, we assume for simplicity that G is continuous which is what
we need in this thesis. Further extensions can be found in [107].

An integrability condition is also needed:

E
(

sup
0≤t≤T

|Gt|
)
<∞. (1.8.2)
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The problem (1.8.1) is solved for both the uses of finite and infinite time horizon
T . In this case, the supremum is taken over the stopping times τ <∞. Consequently,
the concept of essential supremum is introduced (see [107] p.6-7) as follows.

Lemma 1.8.1. Let {Zα : α ∈ I} be a family of random variables defined on (Ω,F, (Ft)t≥0,P)
where the index set I can be arbitrary. Then there exists a countable subset J of I such
that the random variable Z∗ : Ω→ R defined by

Z∗ = sup
α∈J

Zα (1.8.3)

satisfies the following two properties:

(i) P (Zα ≤ Z∗) = 1 for each α ∈ I

(ii) If Z̄ : Ω → R is another variable satisfying (1.8.3) in place of Z∗ then P(Z∗ ≤
Z̄) = 1.

The random variable Z∗ above is called the essential supremum of {Zα : α ∈ I}
relative to P and is denoted by Z∗ = ess supα∈I Zα. It is determined uniquely up to a
P-null set by the two properties above. The concept of essential supremum is needed
because Vt must be Ft − measurable and this is not gained if we don’t use essential
supremum in (1.8.1).

Now back to our problem, consider the process V = (Vt)t≥0 defined by

Vt = ess sup
τ≥t

E(Gτ |Ft) (1.8.4)

and known as “Snell envelope” of G. Let us also introduce the stopping time

τt = inf{s ≥ t : Vs = Gs}, (1.8.5)

which will be used in the theorem below.
The main result about the existence of an optimal stopping time in the martingale

framework is as follows:

Theorem 1.8.2. Consider the optimal stopping problem (1.8.1) and assume that (1.8.2)
holds. Assume furthermore that P (τ < ∞) = 1 where t ≥ 0. Then for all t ≥ 0 we
have:

Vt ≥ E(Gτ |Ft) for all τ ∈Mt and Vt = E(Gτt |Ft) (1.8.6)

where Mt denotes the family of all stopping times τ satisfying τ ≥ t (being also smaller
than or equal to T when the latter is finite). Moreover, if t ≥ 0 is given and fixed, then
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we have that the stopping time τt is optimal in (1.8.1). If τ∗ is an optimal stopping time
in (1.8.1) then P(τt ≤ τ∗) = 1. The process (Vs)s≥t is the smallest right-continuous
supermartingale which dominates (Gs)s≥t. The stopped process (Vs∧τt)s≥t is a right-
continuous martingale. If P(τt = ∞) > 0 then, with probability 1, there is no optimal
stopping time in (1.8.1).

The proof of this theorem is long, and can be found in [107, §1, Section II, p.29].
Let us now give an overview of the other approach.

1.8.2 The Markovian approach

In the martingale approach, we can consider very general gain processes (Gt)t≥0. Here
we restrict the attention to Markov processes. Consider a strong Markov process
X = (Xt)t≥0 defined on a filtered probability space (Ω,F, (Ft)t≥0,Px) taking values
in (Rd,B(Rd)) where B(Rd) is the Borel σ-algebra on Rd. Furthermore, assume that
Px(X0 = x) = 1 and that the sample paths of X are continuous and that (Ft)t≥0

is right-continuous. Introducing an integrability condition, we consider a measurable
function G on Rd, with values in R, that satisfies

E
(

sup
0≤t≤T

|G(Xt)|
)
<∞. (1.8.7)

where G(Xt) = 0 if T =∞. Subsequently, the optimal stopping problem of interest is
given by

V (x) = sup
0≤τ≤T

ExG(Xτ ). (1.8.8)

Note that x ∈ Rd and the supremum is taken over all stopping times τ with respect
to (Ft)t≥0. Different aspects of the problem are tackled. First is to obtain the afore-
mentioned supremum through the finding of the optimal stopping time τ∗. Secondly,
Rd can be split into two regions: the continuation region (C) where it is optimal to
continue and the stopping region S = Rd\C where it is optimal to stop. Another part
of solving the problem is finding the C and S.

A few definitions to compute the results are given below. First we want to under-
stand what it means for a function to be superharmonic.

Definition 1.8.2. A measurable function F : Rd → R is said to be superharmonic if

ExF (Xσ) ≤ F (x) (1.8.9)

for all stopping times σ and all x ∈ Rd.
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Next we look at the concept of semi-continuity.

Definition 1.8.3. An extended real-valued function F is called lower semi-continuous
(lsc) at the point y if

F (y) 6= −∞ and F (y) ≤ lim inf
x→y

F (x). (1.8.10)

It is called upper semi-continuous (usc) at the point y if

F (y) 6= +∞ and F (y) ≥ lim sup
x→y

F (x). (1.8.11)

We can say that if it is upper (lower) semi continuous at all points then F is upper
(lower) semi-continuous.

The perpetual case for (1.8.8) is when T =∞. In that case the continuation region
is given as

C = {x ∈ Rd : V (x) > G(x)} (1.8.12)

and the stopping region as

S = {x ∈ Rd : V (x) = G(x)}. (1.8.13)

The first entry time of X into S is also denoted by

τS = inf{t ≥ 0 : Xt ∈ S} (1.8.14)

Based on the definitions of C and S, it is natural to say that

V (x) > G(x) ⇐⇒ sup
τ≥0

ExG(Xτ ) > G(x) (1.8.15)

This means that it is not optimal to stop when ExG(Xτ ) > G(x) for τ ∈ [0,∞].
Alternatively, it is optimal to stop if

V (x) = G(x) ⇐⇒ sup
τ≥0

ExG(Xτ ) = G(x). (1.8.16)

That is to say when we set τ = 0 then no greater value can be achieved. Using the
assumption that V is lsc and G is usc then τS is a stopping time with respect to (Ft)t≥0.
Next, in the Markovian framework, the main theorem about optimal stopping times is
given by:
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1.8 A brief introduction to mathematical tools

Theorem 1.8.3. Assuming that (1.8.7) holds, lets consider the perpetual case of prob-
lem (1.8.8). Additionally, assume that there exists a smallest superharmonic function
V̂ which dominates the gain function G on Rd. Also assume that V̂ is lsc and G is usc.
Then V̂ = V and τS defined in (1.8.14) is optimal in (1.8.8), if Px(τS <∞) = 1 for all
x ∈ Rd. There is also no optimal stopping time in (1.8.8) Px-a.s., if Px(τS < ∞) < 1
for some x ∈ Rd.

Under the same assumptions as above the theorem holds also for the case of a finite
horizon (T <∞) in which case we take t ∈ [0, T ] in the definition of τs in (1.8.14). The
above theorem hence states that finding a V̂ as described is equivalent to solving our
initial problem (1.8.8). As we briefly discuss next, this goal can be achieved by free
boundary techniques and more details are displayed in [107].

1.8.3 Reduction to free-boundary problem

A differential equation which is defined in some domain by means of an unknown
boundary is called free-boundary problem. In our set-up, the boundary may take the
form of a function, for instance of a time parameter t, or it may be a constant. Peskir
[107] indicates that computing the arbitrage free price of the perpetual American put
option leads to a free-boundary problem with a constant boundary b. Solving this
problem results to solving the equation itself and finding the unknown boundary. This
type of problems is seen in different disciplines. However, in this thesis, we are interested
in financial applications. Indeed, our main task later on will be to solve a problem which
requires a reduction of an optimal stopping problem to a free-boundary problem. This
subsection will serve as a brief introduction to this technique. We retain the notation
and settings from the previous section. Based on this, we consider a strong Markov
process X = (Xt)t≥0, which is continuous and takes values in Rd. Additionally, we
take a sufficiently regular, measurable function G : Rd → R as given, and consider the
optimal stopping problem

V (x) = sup
τ

Ex [G(Xτ )] . (1.8.17)

Now the stopping times are taken with respect to the filtration generated by X, and
Px(X0 = x) = 1 for x ∈ Rd. We have already seen that finding the smallest superhar-
monic function V̂ : Rd → R which dominates the gain function G on Rd is equivalent
to solving such a problem. As mentioned earlier, we split Rd into the stopping set
S = {V̂ = G}, and the continuation set C = {V̂ > G}. The first entry of X into S is
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optimal for (1.8.17), and we denote this by

τS = inf{t ≥ 0 : Xt ∈ S} (1.8.18)

We then formulate the free-boundary problem: V̂ and C should solve

LX V̂ ≤ 0 (V̂,minimal), (1.8.19)

V̂ ≥ G (V̂ > G on C & V̂ = G on S) (1.8.20)

LX V̂ = 0 ( on C). (1.8.21)

where LX is the infinitesimal generator of X. As mentioned in the beginning of this
section, both V̂ and C are unknown in the above system, and both are to be determined.
Under the conditions of Theorem 1.8.3 (see [107] for the details), it is possible to identify
V̂ , with V as in (1.8.17). It follows that we are able to write

V (x) = Ex [G(XτS )] (1.8.22)

where τS is defined by (1.8.18). In summary, it can be seen that V solves the Dirichlet
problem given by

LXV (x) = 0, x ∈ C (1.8.23)

V (x) = G(x), x ∈ S (1.8.24)

where ∂C is the optimal boundary. The function G and the optimal boundary ∂C have
to fulfill some conditions for the above discussion to be valid (again consult [107] for
the details). We assume that G is smooth in a neighborhood of ∂C. Also, we assume
that X starting at ∂C enters C immediately, which gives rise to the so-called smooth
fit condition

∂V

∂x
= ∂G

∂x
, x ∈ ∂C. (1.8.25)

In our thesis, we seek to obtain the right version of the Dirichlet problem for our
payoff functions. Certain necessary conditions are assumed when deriving these ana-
logue problems. Note that for our time-independent UI problem, the above method
is used. On the other hand, for our UI time-dependent problem, the approach is as
follows.

The equation (1.8.23) becomes more complicated as the PDE becomes parabolic
with a term ∂

∂t and usually cannot be solved explicitly. Consequently, finding a can-
didate function to which a verification procedure is to be applied is often impossible in

17



1.9 Contributions

this case. One can attempt to characterise V and C (i.e. S) using the free-boundary
problem attained above. A more polished method is to derive V in terms of ∂C and
find a nonlinear equation for ∂C.

To demonstrate the time-dependent method, let us consider the optimal stopping
problem

V (t, x) = sup
τ

Et,xG(t+ τ,Xt+τ ) (1.8.26)

where the supremum is taken over all stopping times τ of X and (t, x) ∈ R+×R. Also,
Et,x denotes the expectation with respect to the distribution of the process Zt = (t,Xt)
for t ≥ 0 given the initial value Xt = x. It follows that (1.8.23), (1.8.24) and (1.8.25)
become

Vt + LXV = 0 in C, (1.8.27)

V |S = G|S , (1.8.28)
∂V

∂x

∣∣∣∣
∂C

= ∂G

∂x

∣∣∣∣
∂C

, (smooth fit) . (1.8.29)

As stated earlier this is a brief overview of materials from [107, 109]. Thus, the question
of existence and uniqueness of the solution to the free-boundary problem will be studied
in subsequent chapters.

1.9 Contributions

The main objective of this thesis is to determine the optimal time for an individual
to join the UI scheme. A novel feature of this project is the incorporation of optimal
stopping techniques for a dynamic adjustment of the UI policy terms. Optimal stop-
ping is utilised to model and evaluate UI schemes, involving both internal and external
covariates that are likely to impact the decision of an individual to enter the scheme.
The internal covariates are the wage dynamics, the concept of utility and the premium
paid by the individual; and the external covariates are inflation, unemployment, em-
ployment, mortality and the benefit paid based on the terms of the policy from the
insurance company.

Another important feature is checking the sensitivity of the UI scheme models to
variation in the parameters as well as testing how they work over time. These tests are
complemented with numerical illustrations using the programming languages Python
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and R. To this end, we give insight into the economic implications of the changes in
parameters and how the variations affect the individual’s decision to enter the scheme.

In addition to the models, the research gives valuable insight into the dynamics of
the labour market and how it is affected by shock waves such as the financial recession
and COVID-19 shock wave. We further fit models based on the Markov assumption
on the time of unemployment and reemployment when formulating our UI scheme and
assess the performance of the Markov models against the actual data. Furthermore we
explore distributions that best fit the labour force data. This labour force analysis is
an important element and a stepping stone to modify the UI scheme models making
them more realistic and aid individuals make the best decisions on the optimal time to
enter UI schemes.

Our UI models, and more generally the research methods developed in this thesis,
are a strong potential to find important applications in actuarial science beyond the
specific context of unemployment. A portfolio of sustainable insurance products could
be developed to offer competitive benefits based on the possible states of the policy
holder (such as ‘unemployed/employed’, ‘dead’, ‘marriage’, ‘education’,etc).

1.10 Summary of chapters

In Chapter 2, a simple model of unemployment insurance is proposed with a focus
on optimality of the individual’s entry into the scheme. The corresponding optimal
stopping problem is solved, and its similarity and differences with the perpetual Amer-
ican call option are discussed. Beyond a purely financial point of view, we argue that
in the actuarial context the optimal decisions should take into account other possible
preferences through a suitable utility function.

In Chapter 3, we formulate a problem which is an extension of the simple model,
to include time dependent unemployment, reemployment and inflation rates. We im-
plement several tools that will serve as a framework for solving the new model. Before
outlining the main steps of the solution, we give a detailed formulation of the problem
and examine its properties in order to determine sufficient assumptions for its solution.
We justify our results with an analytical approach but we don’t derive an explicit solu-
tion. Instead we use a numerical method to evaluate the optimal stopping boundary
numerically.

In Chapter 4, we analyse and model the United Kingdom labour force data. The
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initial part of the chapter is devoted to understanding how the data is generated and the
structure of the dataset. This is followed by multistate modelling and lake modelling
of the labour market. We run time-step (t-step) simulations using the models and
assess the performance and accuracy of the modelling techniques by comparing our
simulations to the actual data. Additionally, we fit distributions to data in conjunction
with some diagnostic justifications to choose the best fitting models for future work
suggestions.

Finally Chapter 5 summarises our findings and concludes with suggestions for future
research on the UI scheme models and its application in the economy. The appendix
provides some technical definitions and tables discussed in the thesis. It also contains
the Python and R codes of some critical computations in the thesis that were imple-
mented.
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Chapter 2
Optimal Stopping in a Simple Model of
Unemployment Insurance

In this chapter following [4], we present an explicit solution to the optimal stopping
problem in a simple model of unemployment insurance. The method of proof is based
on the transformation of the optimal stopping problem for the underlying geomet-
ric Brownian motion to an appropriate free-boundary problem. The free-boundary
problem is solved and the subsequent martingale verification. We also address some
statistical issues and numerical illustrations as well as introduce the concept of utility
to formulate an optimal stopping problem.

2.1 The model of unemployment insurance

Let us describe our model in more detail. Suppose that time t ≥ 0 is continuous and
is measured (in the units of weeks) starting from the beginning of the individual’s
employment We assume without loss of generality that the unemployment insurance
policy is available immediately (although in practice, a qualifying period at work would
normally be required for eligibility). Let Xt > 0 denote the individual’s wage (i.e.,
payment per week, paid in arrears) as a function of time t ≥ 0, such that X0 = x.
We treat X = (Xt, t ≥ 0) as a random process defined on a filtered probability space
(Ω,F, (Ft),P), where Ω is a suitable sample space (e.g., consisting of all possible paths
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2.1 The model of unemployment insurance

of (Xt)), the filtration (Ft) is an increasing sequence of σ-algebras Ft ⊂ F, and P is a
probability measure on the measurable space (Ω,F) which determines the distribution of
various random inputs in the model, including (Xt). It is assumed that the process (Xt)
is adapted to the filtration (Ft), that is, Xt is Ft-measurable for each t ≥ 0. Intuitively,
Ft is interpreted as the full information available up to time t, and measurability of Xt

with respect to Ft means that this information includes knowledge of the values of the
process Xt.

Furthermore, remembering that Xt is positive valued, we use for it a simple model
of geometric Brownian motion driven by the stochastic differential equation

dXt

Xt
= µ dt+ σdBt, X0 = x, (2.1.1)

where Bt is a standard Brownian motion (i.e., with mean zero, E(Bt) = 0, and variance
Var(Bt) = t, and with continuous sample paths), and µ ∈ R and σ > 0 are the drift and
volatility rates, respectively. The equation (2.1.1) is well known to have the explicit
solution (see, e.g., [121, Ch. III, §3a, p. 237])

Xt = x exp
{
(µ− 1

2σ
2) t+ σBt

}
(t ≥ 0). (2.1.2)

Note that
Ex(Xt) = xeµt, Varx(Xt) = x2e2µt(eσ2t − 1

)
, (2.1.3)

where Ex and Varx denote expectation and variance with respect to the distribution of
Xt given the initial value X0 = x.

Let us now specify the unemployment insurance scheme. An individual who is cur-
rently employed may join the scheme by paying a fixed one-off premium P > 0 at the
point of entry. If and when the current employment ends (say, at time instant τ0), the
benefit proportional to the final wage Xτ0 is payable according to the benefit schedule
h(s); that is, the payout at time t ≥ τ0 is given by Xτ0h(t− τ0). However, the payment
stops when a new job is found after the unemployment spell of duration τ1. For simpli-
city, we assume that both τ0 and τ1 have exponential distribution (with parameters λ0

and λ1, respectively); as mentioned in the Introduction, this guarantees the Markovian
nature of the corresponding transitions. These random times are also assumed to be
statistically independent of the process (Xt).

Possible transitions in the state space of our insurance model are shown in Fig. 2,
where symbols “0” and “1” encode the states of being employed and unemployed,
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2.1 The model of unemployment insurance

respectively, whereas suffixes “+” and “–” indicate whether insurance is in place or not.
Note that all transitions, except from 0– to 0+ (which is subject to optimal control
based of observations over the wage process (Xt)), occur in a Markovian fashion; that
is, the holding times are exponentially distributed (with parameters λ0 if in states 0–
and 0+, or λ1 if in states 1– and 1+).
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λ1

λ0

(τ ≥ τ0)

λ1

Legend:

0 (employed)
1 (unemployed)
+ (with insurance)
– (without insurance)

Figure 2: Schematic diagram of possible transitions in the unemployment insurance
scheme. Here, τ0 and τ1 are the (exponential) holding times in states 0 and 1, with
parameters λ0 and λ1, respectively, whereas τ is the entry time (i.e., from state 0–
to state 0+), which is subject to optimal control based on observations over the wage
process (Xt).

The individual’s decision about a suitable time to join the scheme is based on the
information available to date. In our model, this information encoded in the filtration
(Ft) is provided by ongoing observations over the wage process (Xt). Thus, admissible
strategies for choosing τ must be adapted to the filtration (Ft); namely, at any time
instant t ≥ 0 it should be possible to determine whether τ has occurred or not yet,
given all the information in Ft. In mathematical terms, this means that τ is a stopping
time, whereby for any t ≥ 0 the event {τ > t} belongs to the σ-algebra Ft (see, e.g.,
[138, Ch.1, §3, p. 25]).
Remark 2.1.1. In general, a stopping time τ is allowed to take values in [0,∞] including
∞, in which case waiting continues indefinitely and the decision to join the scheme is
never taken. In practice, it is desirable that the stopping time τ be finite almost surely
(a.s.) (i.e., Px(τ <∞) = 1), but this may not always be the case (see Section 2.4.1).
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2.2 Setting the optimal stopping problem

2.2 Setting the optimal stopping problem

As was explained informally in the Introduction, there is a scope for optimizing the
choice of the entry time τ , where optimality is measured by maximizing the expected
financial gain from the scheme. Our next goal is to obtain an expression for the expected
gain under the contract. First of all, conditional on the final wage Xτ0 , the expected
future benefit to be received under this insurance contract is given by

Xτ0 E
(∫ τ1

0
e−rs h(s) ds

)
= βXτ0 , (2.2.1)

where r is the inflation rate and

β :=
∫ ∞

0
λ1 e−λ1tH(t) dt, H(t) :=

∫ t

0
e−rs h(s) ds. (2.2.2)

Note that the expectation in formula (2.2.1) is taken with respect to the (exponen-
tial) random waiting time τ1 (with parameter λ1), and that the expression inside the
integrand involves discounting to the beginning of unemployment at time τ0.
Example 2.2.1. A specific example of the benefit schedule h(s) may be as follows,

h(s) =

h0 , 0 ≤ s ≤ s0,

h0 e−δ(s−s0), s ≥ s0,
(2.2.3)

where 0 < h0 ≤ 1, 0 ≤ s0 ≤ ∞ and δ > 0. Thus, the insured receives a certain
fraction of their final wage (i.e., h0Xτ0) for a grace period s0, after which the benefit
is falling down exponentially with rate δ. This example is motivated by the declining
unemployment compensation system in France [76].1 Having specified the schedule
function, all calculations can be done explicitly. In particular, the constant β in (2.2.1)
is calculated from (2.2.2) as

β =
h0
(
1− e−(r+λ1)s0

)
r + λ1

+ h0 e−(r+λ1+δ)s0

r + λ1 + δ
.

1More specifically, according to the French UI system back in the 1990s (see [76, p. 8]), a worker
aged 50 or more, with eight months of insurable employment in the last twelve months, was entitled to
full benefits equal to 57.4% of the final wage payable for the first eight months, thereafter declining by
15% every four months; however, the payments continued for no longer than 21 months overall. This
leads to choosing the following numerical values in (2.2.3): h0 = 0.574, s0 = 8 (52/12) .= 34.7 (weeks)
and δ = −(3/52) ln (1− 0.15) .= 0.0094 = 0.94% (per week). The restriction of the benefit term by
21 (52/12) = 91 weeks can be taken into account in our model by adjusting the parameter λ1 from
the condition E(τ1) = 91, giving λ1

.= 0.0110. A more conservative choice is to use a tail probability
condition, for example, P(τ1 > 91) = 0.10, yielding λ1 = − ln (0.10) /91 .= 0.0253 (with E(τ1) .= 39.5).
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In the extreme cases s0 = 0 or s0 =∞, this expression simplifies to

β =


h0
λ1

(
1− r + δ

r + λ1 + δ

)
, s0 = 0,

h0
λ1

(
1− r

r + λ1

)
, s0 =∞.

Here, the first factor has a clear meaning as the product of pay per week (h0) and the
mean duration of the benefit payment (E(τ1) = 1/λ1), whereas the second factor takes
into account the discounting at rates r and δ.

Returning to the general case, if the contract is entered immediately (subject to the
payment of premium P ), then the net expected benefit discounted to the entry time
t = 0 is given by the gain function

g(x) := Ex
(
e−rτ0βXτ0

)
− P, (2.2.4)

where x = X0 is the starting wage and the symbol Ex now indicates expectation with
respect to both τ0 and Xτ0 . Recall that the random time τ0 is independent of the
process (Xt) and has the exponential distribution with parameter λ0. Using the total
expectation formula (see, e.g., [120, §II.7.4, Definition 3, p. 214, and Property G*,
p. 216]) and substituting the expression (2.1.3), the expectation in (2.2.4) is computed
as follows,

Ex
(
e−rτ0Xτ0

)
= Ex

[
e−rτ0 Ex(Xτ0 |τ0)

]
= Ex

[
e−rτ0(xeµτ0)

]
= x

∫ ∞
0

e(µ−r)tλ0 e−λ0 tdt

= λ0x

r + λ0 − µ
. (2.2.5)

Thus, substituting (2.2.5) into (2.2.4) and denoting

r̃ := r + λ0, β1 := βλ0
r̃ − µ

, (2.2.6)

the gain function is represented explicitly as

g(x) = β1x− P. (2.2.7)

Of course, the computation in (2.2.5) is only meaningful as long as

µ < r + λ0 = r̃. (2.2.8)

25



2.2 Setting the optimal stopping problem

Assumption 2.2.1. In what follows, we always assume that the condition (2.2.8) is
satisfied.

Remark 2.2.1. In real life applications, the wage growth rate µ is rather small (but may
be either positive or negative). It is unlikely to exceed the inflation rate r, but even
if it does, then it is hardly possible economically that it is greater than the combined
inflation–unemployment rate r̃ = r + λ0. Thus, the condition (2.2.8) is absolutely
realistic.

To generalize the expression (2.2.7), consider a delayed entry time τ > 0 (tacitly
assuming that τ <∞). Discounting first to the entry time τ when the deduction of the
premium P is activated, and then further down to the initial time moment t = 0, yields
the expected net present value of the total gain as a function of the initial wage x,

eNPV(x; τ) := Ex
[
e−rτ

(
e−r(τ0−τ)βXτ0 − P

)
1{τ<τ0}

]
, (2.2.9)

where the expectation on the right now also includes averaging with respect to τ , which
is a functional of the path (Xt). Note that the indicator function under the expectation
specifies that the entry time τ must occur prior to τ0, for otherwise there will be no
gain.
Remark 2.2.2. The notation (2.2.9) emphasizes that the expected net present value
depends on the specific entry time τ . As was intuitively explained in the Introduc-
tion, there is a scope for optimizing the choice of τ , where optimality is measured by
maximizing eNPV(x; τ).

Formula (2.2.9) indicates that the decision time τ has a finite (random) expiry date
τ0 (using the terminology of financial options). However, the expectation in (2.2.9)
involves averaging with respect to τ0. Moreover, taking advantage of exponential dis-
tribution of τ0, the expression (2.2.9) can be rewritten without any expiry date (i.e., as
a perpetual option).

Lemma 2.2.1. The expected net present value defined by formula (2.2.9) can be ex-
pressed in the form

eNPV(x; τ) = Ex
[
e−r̃τg(Xτ )1{τ<∞}

]
, (2.2.10)

where the function g(·) is defined in (2.2.4) and r̃ = r + λ0 (see (2.2.6)).

Proof. Since the distribution of τ0 is exponential, the excess time τ̃0 := τ0 − τ condi-
tioned on {τ < τ0} is again exponentially distributed (with the same parameter λ0)
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and independent of τ . Hence, conditioning on τ (restricted to the event {τ < ∞})
and using the total expectation formula as before [120, §II.7, Property G*, p. 216]),
together with the (strong) Markov property of the process (Xt), we get from (2.2.9)

eNPV(x; τ) = Ex
(
Ex
[
e−rτ (e−r(τ0−τ)βXτ0 − P )1{τ0>τ}

∣∣τ])
= Ex

(
e−rτEx

[
(e−rτ̃0βXτ+τ̃0 − P )

∣∣τ] · Ex[1{τ0>τ}
∣∣τ])

= Ex
(
e−rτ EXτ

[
(e−rτ̃0βX̃τ̃0 − P )

]
· Px

(
τ0 > τ |τ

))
, (2.2.11)

where X̃t := Xτ+t (t ≥ 0) is a shifted wage process starting at X̃0 = Xτ . Substitut-
ing Px

(
τ0 > τ |τ

)
= e−λ0τ and recalling notation (2.2.4), formula (2.2.11) is reduced

to (2.2.10).

Finally, without loss we can remove the indicator from the expression (2.2.10) by
defining the value of the random variable under expectation to be zero on the event
{τ =∞}. This definition is consistent with the limit at infinity. Indeed, observe using
(2.1.2) and (2.2.5) that

e−r̃ tg(Xt) = e−r̃ t
(
β1x e(µ−σ2/2)t+σBt − P

)
= β1x exp

{
−t
(
r̃ − µ+ 1

2σ
2 + σ t−1Bt

)}
− P e−r̃ t. (2.2.12)

Due to the condition (2.2.8), r̃ − µ+ 1
2σ

2 > 1
2σ

2 > 0. In addition, by the (strong) law
of large numbers for the Brownian motion (see, e.g., [42, Exercise 6.4, p. 265] or [121,
Ch. III, §3b, p.246]),

lim
t→∞

t−1Bt = 0 (P-a.s.).

Thus, the limit of (2.2.12) as t→∞ is zero (Px-a.s.). Hence, the event {τ =∞} does
not contribute to the expectation (2.2.10), so that, substituting (2.2.5), we get

eNPV(x; τ) = Ex
[
e−r̃τg(Xτ )

]
. (2.2.13)

To summarize, identification of the optimal entry time τ = τ∗, in the sense of
maximizing the expected net present value eNPV(x; τ) as a function of strategy τ

(see (2.2.13)), is reduced to solving the following optimal stopping problem,

v(x) = sup
τ

Ex
[
e−r̃τg(Xτ )

]
, (2.2.14)

where the function g(x) is given by (2.2.7) and the supremum is taken over the class
of all admissible stopping times τ (i.e., adapted to the filtration (Ft)). The supremum
v(x) in (2.2.14) is called the value function of the optimal stopping problem.
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2.2.1 Allowing for mortality

The simple model of unemployment insurance set out in Section 2.1 can be easily
extended to include mortality. Following [91, pp. 399–401], suppose that the individual
who contemplates taking out the unemployment insurance policy may die (say, at a
random time τ2 from zero), independently of employment-related events and subject
to a constant force of mortality λ2. That is to say, given that the individual is alive
at current age t ≥ 0, the residual lifetime τ2 − t is an independent random variable
exponentially distributed with parameter λ2,

P(τ2 − t > s | τ2 > t) = e−λ2s (s ≥ 0).

The necessary modifications to the unemployment insurance model of Section 2.2
start by adjusting the formula for the expected future benefit (see (2.2.1)). Assuming
that death does not occur prior to the time τ0 of losing the job (i.e., τ2 > τ0, so that
τ̃2 := τ2 − τ0 is exponentially distributed with parameter λ2), the benefit payments
cease at τ1 ∧ τ̃2 (i.e., when a new job is found or at death, whichever occurs first).
Since τ1 and τ̃2 are independent and both have exponential distributions, the random
variable τ1 ∧ τ̃2 has the exponential distribution with parameter λ1 + λ2. Hence, the
constant β from (2.2.2) is now written as

β =
∫ ∞

0
(λ1 + λ2) e−(λ1+λ2) tH(t) dt.

Next, we need to take into account the effect of death in service, that is, if τ2 ≤ τ0. To
be specific, it is reasonable to assume that the lump sum to be paid by the employer in
this case is proportional to the final wage, say a†Xτ2 . Then, separating the cases where
death occurs after or prior to loss of job, it is easy to see that the definition (2.2.4) of
the gain function (i.e., net expected benefit discounted to the policy entry time) takes
the form

g(x) = Ex
(
e−rτ0βXτ01{τ0<τ2}

)
+ Ex

(
e−rτ0a†Xτ21{τ2≤τ0}

)
− P. (2.2.15)

The first expectation in (2.2.15) is computed using conditioning on τ0 and the total
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2.2 Setting the optimal stopping problem

expectation formula (cf. (2.2.5)),

Ex
(
e−rτ0 Xτ01{τ0<τ2}

)
= Ex

[
e−rτ0 Ex

(
Xτ01{τ0<τ2}

∣∣ τ0
)]

= Ex
[
e−rτ0 Ex(Xτ0 | τ0) · Px(τ2 > τ0 | τ0)

]
= Ex

(
e−rτ0 xeµτ0 e−λ2τ0

)
= x

∫ ∞
0

e(µ−r−λ2)tλ0 e−λ0 tdt

= λ0x

r + λ0 + λ2 − µ
, (2.2.16)

where in the second line we used conditional independence of Xτ0 and τ2 given τ0.
Similarly, by conditioning on τ2 the second expectation in (2.2.15) is represented as

Ex
(
e−rτ0 Xτ21{τ2≤τ0}

)
= Ex

[
Xτ2 Ex

(
e−rτ01{τ0≥τ2}

∣∣ τ2
)]

= Ex
[
Xτ2

∫ ∞
τ2

e−rtλ0 e−λ0 tdt
]

= λ0
r + λ0

Ex
(
Xτ2 e−(r+λ0)τ2

)
. (2.2.17)

Again conditioning on τ2, the last expectation is computed as follows,

Ex
(
Xτ2 e−(r+λ0)τ2

)
= Ex

[
e−(r+λ0)τ2 Ex(Xτ2 |τ2)

]
= Ex

(
e−(r+λ0)τ2xeµτ2

)
= x

∫ ∞
0

e−(r+λ0−µ)tλ2 e−λ2 t dt

= λ2x

r + λ0 + λ2 − µ
. (2.2.18)

Finally, substituting the expressions (2.2.16), (2.2.17) and (2.2.18) into the definition
(2.2.15), we obtain explicitly

g(x) = λ0x

r + λ0 + λ2 − µ

(
β + λ2a

†

r + λ0

)
− P.

This expression has the same form as (2.2.7) but with the parameters r̃ and β1 redefined
as follows (cf. (2.2.6)),

r̃ := r + λ0 + λ2, β1 := λ0
r̃ − µ

(
β + λ2a

†

r + λ0

)
.

In addition, the inequality (2.2.8) of Assumption 2.2.1 is updated accordingly. Subject
to this reparameterization, all subsequent calculations leading to the optimal stopping
problem (2.2.14) remain unchanged.

29



2.2 Setting the optimal stopping problem

For the sake of clarity and in order not to distract the reader by unnecessary technic-
alities, in the rest of the paper we adhere to the original version of the model (i.e., with
no mortality, λ2 = 0); however, see the discussion at the end of Section 2.6.4 indicating
an important regularizing role of mortality, helping to avoid undesirable inconsistencies
of the model at small unemployment rates λ0.

2.2.2 A priori properties of the value function

The next lemma shows that the optimal stopping problem (2.2.14) is well posed.

Lemma 2.2.2. The value function x 7→ v(x) of the optimal stopping problem (2.2.14)
has the following properties:

(i) v(0) = 0 and, moreover, v(x) ≥ 0 for all x ≥ 0;

(ii) v(x) <∞ for all x ≥ 0.

Proof. (i) If x = 0 then, due to (2.1.2), Xt ≡ 0 (P0-a.s.) and the stopping problem
(2.2.14) is reduced to

v(0) = sup
τ

E0(−P e−r̃τ ),

which has the obvious solution τ = ∞ (P0-a.s.), with the corresponding supremum
value v(0) = 0. Furthermore, by considering τ = ∞ (Px-a.s.) it readily follows from
(2.2.14) that v(x) ≥ 0 for all x ≥ 0.

(ii) Recalling that µ < r̃ (see Assumption 2.2.1), observe that the process e−r̃ tXt is
a supermartingale; indeed, for 0 ≤ s ≤ t we have, using (2.1.2) and (2.1.3),

Ex
[
e−r̃ tXt |Fs

]
= e−r̃ tXsE

[
eσ(Bt−Bs)+(µ− 1

2σ
2)(t−s)]

= e−r̃ tXs eµ(t−s)

≤ e−r̃sXs (Px-a.s.).

In particular,
Ex(e−r̃ tXt) ≤ Ex(X0) = x.

Hence, by Doob’s optional sampling theorem for non-negative, right-continuous super-
martingales (see, e.g., [138, Theorem 8.18, pp.140–141]), for any stopping time τ we
have

Ex(e−r̃τXτ ) ≤ Ex(X0) = x,

and it follows that the supremum in (2.2.14) is finite.
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2.2 Setting the optimal stopping problem

2.2.3 The optimal stopping rule

For the wage process (Xt), consider the hitting time τb of a threshold b ∈ R, defined by

τb := inf{t ≥ 0: Xt ≥ b} ∈ [0,∞].

(As usual, we make a convention that inf ∅ =∞.) Clearly, τb is a stopping time, that
is, {τ ≤ t} ∈ Ft for all t ≥ 0. Since the process Xt has a.s.-continuous sample paths, on
the event {τb < ∞} we have Xτb = b (Px-a.s.). As we will show, the optimal strategy
for the optimal stopping problem (2.2.14) is to wait until the random process Xt hits
a certain threshold b∗ (see Fig. 3). More precisely, the solution to (2.2.14) is provided
by the following stopping rule,

τ∗ =

τb
∗ if x ∈ [0, b∗],

0 if x ∈ [b∗,∞).
(2.2.19)

That is to say, if x ≥ b∗ then one must stop and buy the policy immediately, or else wait
until the hitting time τb∗ ≥ 0 occurs and buy the policy then. (Of course, these two
rules coincide when x = b∗.) However, if it happens so that τb∗ = ∞, then, according
to the above rule, one must wait indefinitely and, therefore, never buy the policy.
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Figure 3: Simulated wage process Xt (left) and Yt = lnXt (right) according to the
geometric Brownian motion model (2.1.2), with X0 = 346 (euros) and parameters
µ = 0.0004 and σ = 0.02 (see Example 2.5.2). The dashed horizontal line on the left
plot indicates the optimal threshold b∗ .= 352.37 (euros) first attained in this simulation
at τ∗= 54 (weeks). The dashed line on the right plot shows the estimated drift of the
log-transformed data (see Section 2.5.2).
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2.2 Setting the optimal stopping problem

The specific value of the critical threshold b∗ is given by

b∗ = Pq∗
β1(q∗ − 1) , (2.2.20)

where
q∗ = 1

σ2

(
−
(
µ− 1

2σ
2)+

√(
µ− 1

2σ
2)2 + 2r̃σ2

)
. (2.2.21)

It is straightforward to check, using condition (2.2.8), that q∗ > 1 (see also Sec-
tion 2.3.2). Finally, the corresponding value function (2.2.14) is specified as

v(x) =


(β1b

∗ − P )
(
x

b∗

)q∗
, x ∈ [0, b∗],

β1x− P, x ∈ [b∗,∞).
(2.2.22)

Equivalently, substituting the expression (2.2.20), formula (2.2.22) is explicitly rewrit-
ten as

v(x) =


P

q∗ − 1

(
β1(q∗ − 1)x

Pq∗

)q∗
, 0 ≤ x ≤ Pq∗

β1(q∗ − 1) ,

β1x− P, x ≥ Pq∗
β1(q∗ − 1) .

(2.2.23)

In particular, the function x 7→ v(x) is strictly increasing for x ≥ 0, with v(0) = 0 (cf.
Lemma 2.2.2).

These results will be proved in Section 2.3.

2.2.4 Deterministic case

For orientation, it is useful to consider the simple baseline case σ = 0, where the random
process Xt (see (2.1.2)) degenerates to the deterministic function

Xt = xeµt (t ≥ 0).

Hence, any stopping time τ is non-random, say τ = t, and the optimal stopping problem
(2.2.14) is reduced to

v(x) = sup
t≥0

[
e−r̃ t(β1xeµt − P )

]
. (2.2.24)

The problem (2.2.24) is easily solved, with the maximizer t∗ given by

t∗ = inf
{
t ≥ 0: xeµt ≥ b∗0

}
∈ [0,∞], (2.2.25)
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2.3 Solving the optimal stopping problem

where

b∗0 =


P r̃

β1(r̃ − µ) , µ > 0,

P

β1
, µ ≤ 0.

(2.2.26)

The expression (2.2.26) is consistent with the general formula (2.2.20), noting that, in
the limit as σ ↓ 0, the quantity (2.2.21) is reduced to (cf. (2.2.8))

q∗ =


r̃

µ
> 1, µ > 0,

∞, µ ≤ 0.

With this convention, it is easy to check that the value function (2.2.24) is given by
the general formula (2.2.22). In particular, if µ ≤ 0 and x < b∗0 then, according to
(2.2.25), t∗ = ∞ and from (2.2.24) we get v(x) = 0; indeed, the function t 7→ xeµt is
non-increasing, so it never attains the required threshold b∗0 > x. In contrast, if x ≥ b∗0
then by (2.2.25) t∗ = 0 (for any µ), and (2.2.24) readily yields v(x) = β1x− P .

2.3 Solving the optimal stopping problem

The optimal stopping problem (2.2.14) involves two tasks: (i) evaluating the value
function v(x), and (ii) identifying the maximizer τ = τ∗. A standard approach is to
try and guess the solution and then to verify that it is correct.

2.3.1 Guessing the solution

Let us look more closely at the nature of the value function v(x) that we are trying to
identify. Observe that by picking τ = 0 in (2.2.14) yields the lower estimate

v(x) ≥ g(x). (2.3.1)

Clearly, if v(x) > g(x) then we have not yet achieved the maximum payoff available, so
we should continue to wait. On the other hand, if v(x) = g(x) then the maximum has
been attained and we should stop. This motivates the definition of the two regions, C
(continuation) and S (stopping),

C := {x ≥ 0: v(x) > g(x)}, S := {x ≥ 0: v(x) ≤ g(x)}.

By virtue of the Markov property of the process Xt, the same argument can be
propagated to any time t ≥ 0, provided that stopping has not yet occurred. Namely,
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2.3 Solving the optimal stopping problem

if Xt = x′ (and τ ≥ t) then the problem (2.2.14) is updated with the new (residual)
stopping time τ ′ = τ − t and with the initial value x replaced by x′.

Thus, it is natural to expect that the optimal strategy prescribes to continue as
long as the current wage value Xt belongs to the region C (i.e., v(Xt) > g(Xt)), but to
stop when Xt first enters the region S (i.e., v(Xt) ≤ g(Xt)). That is to say, the optimal
stopping time should be given by1

τ∗ = inf{t ≥ 0: Xt ∈ S} = inf{t ≥ 0: v(Xt) ≤ g(Xt)} ∈ [0,∞]. (2.3.2)

To clarify the plausible structure of the stopping set S, recall (see the proof of
Lemma 2.2.2(i)) that a zero value of the stopping problem (2.2.14) is achieved by
simply using the strategy τ ≡ ∞, that is, by never joining the scheme. Thus, if the
initial wage X0 = x is small (e.g., such that g(x) = β1x − P < 0) then, in order to
secure a positive payoff, we should wait for a sufficiently high wage Xt. This suggests
that the stopping rule (2.3.2) is reduced to the first hitting time for a certain set on
the plane {(t, x) : t ≥ 0, x ≥ 0}. Furthermore, noting that the definition (2.3.2) is time
homogeneous, in that it does not change in the course of time t, we also hypothesize the
simplest situation whereby the regions C and S are determined by a constant threshold
y = b∗ > 0,

C = [0, b∗), S = [b∗,∞). (2.3.3)

In other words, the conjectural hitting boundary does not depend on time.
Hence, we are led to the reduced optimal stopping problem over the subclass of

hitting times,
u(x) = sup

b≥0
Ex
[
e−r̃τb g(Xτb)

]
. (2.3.4)

In particular, formula (2.3.2) specializes to

τb∗ = inf{t ≥ 0: Xt ≥ b∗} = inf{t ≥ 0: u(Xt) ≤ g(Xt)} ∈ [0,∞]. (2.3.5)

Our first task is to identify the value function u(x) in (2.3.4) and the corresponding
maximizer b = b∗ by solving the corresponding free-boundary problem (Section 2.3.2).
After that, we will have to show that this solution is optimal in the general class of
stopping times, that is, u(x) = v(x) for all x ≥ 0 (Section 2.3.3).

1This conclusion is in accord with the general optimal stopping theory [107, §II.2.2].
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2.3.2 Free-boundary problem

According to general theory of optimal stopping (see, e.g., [107, Ch. IV]), in the con-
tinuation region C = [0, b) (see (2.3.3)) the value function u(x) from (2.3.4) must be
harmonic with respect to the underlying process X̃t generated by Xt. More precisely,
due to the discounting exponential factor in the optimal stopping problem (2.3.4), the
process X̃t is obtained from Xt by independent killing (or discounting) with rate r̃ (see
[107, §§ 5.4, 6.3]). Thus, if b is a suitable threshold and τb is the corresponding hitting
time, then for any x ≥ 0 the following condition must hold,

Ex
[
e−r̃(τb∧t)u(Xτb∧t)

]
= u(x) (t ≥ 0). (2.3.6)

Note that the geometric Brownian motion Xt determined by the stochastic differ-
ential equation (2.1.1) is a diffusion process with the infinitesimal generator

L := µx
d

dx + 1
2σ

2x2 d2

dx2 (x > 0). (2.3.7)

The generator of the killed process X̃t is then given by (see [107, § 6.3, p.127])

L̃ = L− r̃I, (2.3.8)

where I is the identity operator. Then the harmonicity condition (2.3.6) can be reduced
to the differential equation L̃u = 0, that is, Lu− r̃u = 0 (see (2.3.8)).

On the boundary x = b of the set C = [0, b), due to the stopping rule (2.3.5) we have
u(b) = g(b). Moreover, according to the smooth fit principle (see [107, §9.1]), we must
also satisfy the condition u′(b) = g′(b). Finally, in view of the equality v(0) = 0 (see
Lemma 2.2.2(i)), we add a Dirichlet boundary condition at zero, u(0+) = limx↓0 u(x) =
0. Thus, we arrive at the following free-boundary problem,

Lu(x)− r̃u(x) = 0, x ∈ (0, b),

u(b) = g(b),

u′(b) = g′(b),

u(0+) = 0,

(2.3.9)

where both b > 0 and u(x) are unknown.
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2.3 Solving the optimal stopping problem

Substituting (2.2.7) and (2.3.7), the problem (2.3.9) is rewritten explicitly as

µxu′(x) + 1
2σ

2x2u′′(x)− r̃u(x) = 0, x ∈ (0, b),
u(b) = β1b− P,
u′(b) = β1,

u(0+) = 0.

(2.3.10)

Let us look for a solution of (2.3.10) in the form u(x) = xq (x > 0), with a suitable
parameter q ∈ R. Then the differential equation in (2.3.10) yields

1
2σ

2q (q − 1) + µq − r̃ = 0. (2.3.11)

This quadratic equation has two distinct roots,

q1,2 = 1
σ2

(
−
(
µ− 1

2σ
2)±√(µ− 1

2σ
2)2 + 2r̃σ2

)
,

where q2 < 0 < q1 = q∗ (see (2.2.21)). Also note that, due to the condition (2.2.8),
the left-hand side of (2.3.11) is negative at q = 1, therefore q1 > 1. Thus, the general
solution of the differential equation (2.3.10) is given by

u(x) = Axq1 +Bxq2 , x ∈ (0, b), (2.3.12)

with arbitrary constants A and B. But since q2 < 0, the condition u(0+) = 0 im-
plies that B = 0. Hence, (2.3.12) is reduced to u(x) = Axq1 ≡ Axq∗ (0 < x < b).
Furthermore, the boundary conditions in (2.3.10) yieldAb

q∗ = β1b− P,

Aq∗b
q∗−1 = β1,

whence we find
A = β1b− P

bq∗
, b = Pq∗

β1(q∗ − 1) . (2.3.13)

Thus, the required solution to (2.3.10) is given by

u(x) =


(β1b− P )

(
x

b

)q∗
, x ∈ [0, b],

β1x− P, x ∈ [b,∞)
(2.3.14)

where the threshold b is defined in (2.3.13) and q∗ > 1 is the positive root of the
equation (2.3.11), given explicitly by formula (2.2.21).
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2.3.3 Verification of the found solution

Using (2.3.13) and (2.3.14), it is easy to see that

u(x) = g(x), x ∈ [b,∞),

u(x) > g(x), x ∈ [0, b),
(2.3.15)

in accord with the heuristics outlined in Section 2.3.1 (see (2.3.3)). However, there is
no need to check that the function u(x) defined in (2.3.14) solves the reduced optimal
stopping problem (2.3.4), because we can prove directly that u(x) provides the solution
to the original optimal stopping problem (2.2.14), that is, u(x) = v(x) for all x ≥ 0.

Remark 2.3.1. Since u(0) = 0 by formula (2.3.14), and v(0) = 0 according to Lemma 2.2.2(i),
in what follows it suffices to assume that x > 0.

The proof of the claim above (commonly referred to as verification theorem) consists
of two parts.

(i) Let us first show that u(x) ≥ v(x) (x > 0). If the map x 7→ u(x) was a C2-function
(i.e., with continuous second derivative), then the classical Itô formula (see, e.g.,
[104, Theorem 4.1.2, p. 44]) applied to e−r̃ tu(Xt) would yield, on account of (2.1.1)
and (2.3.7),

e−r̃ tu(Xt) = u(x) +
∫ t

0
e−r̃s

(
Lu(Xs)− r̃u(Xs)

)
ds+Mt (Px-a.s.), (2.3.16)

where
Mt :=

∫ t

0
e−r̃su′(Xs)σXs dBs (t ≥ 0). (2.3.17)

However, for the function u(x) given by (2.3.14), its C2-smoothness breaks down
at the point x = b, where it is only C1. But u(x) is strictly convex on (0, b) (i.e.,
u′′(x) > 0) and linear on (b,∞), and we can define the action Lu(x) at x = b by
using the one-sided second derivative, say,

u′′(b−) = Pq∗b
−2. (2.3.18)

In this situation, a generalization of the Itô formula holds, known as the Itô–Meyer
formula (see [121, Ch. VIII, §2a, p.757]), which ensures that the representation
(2.3.16) is still valid.

Recall that by construction (see the differential equation in (2.3.9)), we have

Lu(x)− r̃u(x) = 0, x ∈ (0, b). (2.3.19)
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Moreover, it is easy to check using (2.3.18) that the equality (2.3.19) also extends
to x = b. On the other hand, on account of the condition (2.2.8) and the definition
of b in (2.3.13), for x > b we get

Lu(x)− r̃u(x) = µβ1x− r̃ (β1x− P )

= β1x(µ− r̃) + r̃P

< β1b(µ− r̃) + r̃P

= P (µq∗ − r̃)
q∗ − 1 < 0, (2.3.20)

because, due to the equation (2.3.11) and the inequality q∗ > 1,

µq∗ − r̃ = −1
2σ

2q∗(q∗ − 1) < 0.

Thus, combining (2.3.19) and (2.3.20) we obtain

Lu(x)− r̃u(x) ≤ 0 (x > 0). (2.3.21)

Substituting the inequality (2.3.21) into formula (2.3.16), we conclude that, for
any x > 0 and all t ≥ 0,

u(x) +Mt ≥ e−r̃ tu(Xt) (Px-a.s.). (2.3.22)

According to formula (2.3.17), (Mt) is a continuous local martingale (see, e.g.,
[121, Ch. II, §1c, p.101]). Let (τn) be a localizing sequence of bounded stopping
times, so that τn ↑ ∞ (Px-a.s.) and the stopped process (Mτn∧t) is a martingale,
for each n ∈ N.

Now, let τ be an arbitrary stopping time of (Xt). From (2.3.22) we get

u(x) +Mτn∧τ ≥ e−r̃(τn∧τ)u(Xτn∧τ )

≥ e−r̃(τn∧τ)g(Xτn∧τ ) (Px-a.s.), (2.3.23)

using that u(x) ≥ g(x) for all x ≥ 0 (see (2.3.15)). Taking expectation on both
sides of the inequality (2.3.23) gives

u(x) ≥ Ex
[
e−r̃(τn∧τ) g(Xτn∧τ )

]
, (2.3.24)

since by Doob’s optional sampling theorem (see, e.g., [138, Theorem 8.10, p.131])

Ex[Mτn∧τ ] = Ex[M0] = 0.
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By Fatou’s lemma (see, e.g., [120, §II.6, Theorem 2(a), p.187]), from (2.3.24) it
follows

u(x) ≥ Ex
[
lim inf
n→∞

e−r̃(τn∧τ) g(Xτn∧τ )
]

= Ex
[
e−r̃τ g(Xτ )

]
. (2.3.25)

Finally, taking in (2.3.25) the supremum over all stopping times τ , we obtain

u(x) ≥ sup
τ

Ex
[
e−r̃τ g(Xτ )

]
= v(x) (x > 0),

as claimed.

(ii) Let us now prove the opposite inequality, u(x) ≤ v(x) (x > 0). According to
(2.3.1) and (2.3.15), we readily have u(x) = g(x) ≤ v(x) for x ∈ [b,+∞). Next,
fix x ∈ (0, b) and consider the representation (2.3.16) with t replaced by τn ∧ τb,
where (τn) is the localizing sequence of stopping times for (Mt) as before. Then,
by virtue of the identity (2.3.19) (which, as has been explained, is also true for
x = b), it follows that

u(x) +Mτn∧τ = e−r̃(τn∧τb)u(Xτn∧τb) (Px-a.s.). (2.3.26)

Similarly as above, taking expectation on both sides of the equality (2.3.26) and
again applying Doob’s optional sampling theorem to the martingale (Mτn∧t), we
obtain

u(x) = Ex
[
e−r̃(τn∧τb)u(Xτn∧τb)

]
. (2.3.27)

Note that, for 0 < x < b, we have 0 ≤ u(x) ≤ u(b) and 0 ≤ Xτn∧τb ≤ b (Px-a.s.),
hence

0 ≤ e−r̃(τn∧τb)u(Xτn∧τb) ≤ u(b) (Px-a.s.).

Using that τn ↑ ∞, observe that, Px-a.s.,

lim
n→∞

e−r̃(τn∧τb)u(Xτn∧τb) = e−r̃τbu(Xτb)1{τb<∞} + lim
n→∞

e−r̃τnu(Xτn)1{τb=∞}

= e−r̃τbu(b)1{τb<∞}, (2.3.28)

because Xτb = b on the event {τ < ∞}, while 0 ≤ u(Xτn) ≤ u(b) on the event
{τ =∞}. Hence, letting n→∞ in (2.3.27) and using the dominated convergence
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theorem (see, e.g., [120, §II.6, Theorem 3, p.187]), we get, on account of (2.3.28),

u(x) = Ex
[
e−r̃τbu(b)1{τb<∞}

]
= Ex

[
e−r̃τb g(b)1{τb<∞}

]
= Ex

[
e−r̃τb g(Xτb)1{τb<∞}

]
≤ v(x),

according to (2.2.14). That is, we have proved that u(x) ≤ v(x) for all 0 < x < b,
as required.

Thus, the proof of the verification theorem is complete.

2.4 Elementary solution of the reduced problem

2.4.1 Distribution of the hitting time

In view of the formula (2.1.2), the hitting problem for the process Xt is reduced to that
for the Brownian motion with drift,

τb := inf{t ≥ 0: Xt = b} ≡ inf{t ≥ 0: Bt + µ̃t = b̃}, (2.4.1)

where
µ̃ =

µ− 1
2σ

2

σ
, b̃ = 1

σ
ln b

x
. (2.4.2)

Suppose that x ≤ b, so that b̃ ≥ 0. The explicit expression for the Laplace transform
of the hitting time (2.4.1) is well known (see, e.g., [42, Exercises 6.29 and 6.31, p. 268]
or [49, Proposition 3.3.5, p. 61]).

Proposition 2.4.1. For x ≤ b and any θ > 0, set

Φx,b(θ) := Ex(e−θτb) ≡ Ex
(
e−θτb 1{τb<∞}

)
. (2.4.3)

Then
Φx,b(θ) = exp

{
−b̃
(√

µ̃2 + 2θ − µ̃
)}

, θ > 0, (2.4.4)

where µ̃ and b̃ are defined in (2.4.2).

Substituting the expressions (2.4.2), the formula (2.4.4) is rewritten as

Φx,b(θ) =
(
x

b

)q1(θ)
, θ > 0, (2.4.5)
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2.4 Elementary solution of the reduced problem

where q1(θ) is given by (cf. (2.2.21))

q1(θ) = 1
σ2

(
−
(
µ− 1

2σ
2)+

√(
µ− 1

2σ
2)2 + 2θσ2

)
. (2.4.6)

As usual, it is straightforward to extract from the Laplace transform (2.4.3) some
explicit information about the distribution of the hitting time τb. First, by the mono-
tone convergence theorem (see, e.g., [120, §II.6, Theorem 1(a), p.186] we have

lim
θ↓0

Φx,b(θ) = Ex(1{τb<∞}) = Px(τb <∞).

Hence, noting from (2.4.6) that

q1(0) =


0 if µ− 1

2σ
2 ≥ 0,

1− 2µ
σ2 if µ− 1

2σ
2 < 0,

(2.4.7)

we obtain

Px(τb <∞) =
(
x

b

)q1(0)
=


1, µ− 1

2σ
2 ≥ 0,(

x

b

)1−2µ/σ2

, µ− 1
2σ

2 < 0.
(2.4.8)

Remark 2.4.1. The result (2.4.8) shows that hitting the critical threshold b = b∗, as
required by the stopping rule, is only certain when the wage growth rate is large enough,
µ ≥ 1

2σ
2. Thus, the “dangerous” case is when µ < 1

2σ
2, whereby relying only on the

optimal stopping recipe may not be practical. This observation may serve as a germ of
the idea to connect the optimality problem in the insurance context with the notion of
utility (cf. the discussion in Section 2.7.1 below).

Via the Laplace transform Φx,b(θ), we can also obtain the mean hitting time Ex(τb)
in the case µ ≥ 1

2σ
2, where τb < ∞ (Px-a.s.). Namely, again using the monotone

convergence theorem we have

lim
θ↓0

∂Φx,b(θ)
∂θ

= − lim
θ↓0

Ex
(
τb e−θτb

)
= −Ex(τb).

Hence, differentiating formula (2.4.5) at θ = 0 and noting from (2.4.6) that q1(0) = 0
(cf. (2.4.7)) and

q′1(0) =


∞, µ = 1

2σ
2,

1
µ− 1

2σ
2 , µ > 1

2σ
2,
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2.4 Elementary solution of the reduced problem

we get

Ex(τb) = − ln
(
x

b

)(
x

b

)q1(0)
q′1(0) =


∞, µ = 1

2σ
2,

ln(b/x)
µ− 1

2σ
2 , µ > 1

2σ
2.

(2.4.9)

2.4.2 Alternative derivation

An alternative (and more direct) method to derive the formulas (2.4.8) and (2.4.9) is
based on general theory of Markov processes by solving the suitable boundary value
problems (see, e.g., [104, §9]). Namely, the hitting probability π(x) := Px(τb < ∞) as
a function of x > 0 satisfies the Dirichlet problem [104, §9.2]Lπ(x) = 0 (0 < x < b),

π(b) = 1.
(2.4.10)

The differential equation in (2.4.10) reads

1
2σ

2x2π′′(x) + µxπ′(x) = 0 (0 < x < b),

which is easily solved to give

π(x) = c1x
1−2µ/σ2 + c2.

If 1 − 2µ/σ2 < 0 (i.e., µ − 1
2σ

2 > 0) then c1 = 0 (since π(x) is bounded), and due
to the boundary condition π(b) = 1 it follows that c2 = 1 and π(x) ≡ 1. A similar
argument shows that π(x) ≡ 1 in the case 1−2µ/σ2 = 0. Finally, if 1−2µ/σ2 > 0 then,
noting that π(0) = 0, we conclude that c2 = 0 and, due to the boundary condition,
c1 = b−1+2µ/σ2. Thus, formula (2.4.8) is proved.

Similarly, the mean hitting time m(x) := Ex(τb) (with µ − 1
2σ

2 > 0) satisfies the
Poisson problem [104, §9.3]Lm(x) = −1 (0 < x < b),

m(b) = 0.
(2.4.11)

As usual, to solve the problem (2.4.11), it is convenient to approximate it with a
two-sided boundary problem by adding an auxiliary Neumann (reflection) condition at
ε > 0, 

Lmε(x) = −1 (ε < x < b),

mε(b) = 0,

m′ε(ε) = 0,

(2.4.12)

42



2.4 Elementary solution of the reduced problem

and then taking the limit of mε(x) as ε ↓ 0. This procedure will produce the correct
solution m(x) since limε↓0 Px(τε <∞) = Px(τ0 <∞) = 0 (for any x > 0).

A particular solution to the inhomogeneous differential equation

1
2σ

2x2m′′ε(x) + µxm′ε(x) = −1 (ε < x < b)

can be sought in the form m0(x) = c0 ln x, which gives c0 = −1/(µ− 1
2σ

2). Thus, the
general solution of (2.4.12) can be expressed as

mε(x) = − ln x
µ− 1

2σ
2 + c1x

1−2µ/σ2 + c2. (2.4.13)

Now, using the boundary conditions in (2.4.12) it is straightforward to check that

lim
ε↓0

c1 = 0, lim
ε↓0

c2 = ln b
µ− 1

2σ
2 .

Hence, from (2.4.13) we get

m(x) = lim
ε↓0

mε(x) = ln (b/x)
µ− 1

2σ
2 ,

which retrieves the result (2.4.9).

Remark 2.4.2. The same method applied to the killed process X̃t with generator L̃ =
L − r̃I (see (2.3.8)) provides a neat interpretation of the value function u(x) as given
by (2.3.14). Namely, rewrite the expectation in (2.3.4) (i.e., eNPV(x; τb)) in the form
Ẽx
[
g(X̃τb)

]
, where Ẽx denotes expectation with respect to the killed process (X̃t), and

note that, for b ≥ 0,

Ẽx
[
g(X̃τb)

]
=

g(b) P̃x(τb <∞), x ∈ [0, b],

g(x), x ∈ [b,∞).

In turn, the hitting probability π̃(x) := P̃x(τb <∞) can be easily found by solving the
corresponding Dirichlet problem (cf. (2.4.10)),L̃π̃(x) = 0 (0 < x < b),

π̃(b) = 1.

Indeed, repeating the calculations in Section 2.3.2, it is straightforward to get π̃(x) =
(x/b)q∗ .
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2.5 Statistical issues and numerical illustration

2.4.3 Direct maximization

Using the results of the previous sections, we can easily solve the optimal stopping
problem (2.2.14), at least in the subclass of hitting times τ = τb (see (2.3.4)),

u(x) = sup
b≥0

eNPV(x; τb) = sup
b≥0

Ex
[
e−r̃τb(β1Xτb − P )

]
. (2.4.14)

Observe that if x ≥ b then τb = 0 and Xτb = x (Px-a.s.), so that eNPV(x; τb) ≡
β1x−P for all b ∈ [0, x]. Let now b ∈ [x,∞). As already noted, on the event {τb <∞}
we have Xτb = b (Px-a.s.), hence, according to (2.2.14) and (2.4.5),

eNPV(x; τb) = (β1b− P ) Ex
(
e−r̃τb

)
= (β1b− P )

(
x

b

)q∗
(b ≥ x), (2.4.15)

where q∗ = q1(θ)|θ=r̃ (cf. (2.2.21) and (2.4.6)). It is straightforward to find the maxim-
izer for the function (2.4.15). Indeed, the condition (∂/∂b)eNPV(x; τb) ≥ 0, equivalent
to

β1b
−q∗− q∗(β1b− P )b−q∗−1 ≥ 0,

holds for all b ∈ [0, b∗], where
b∗ = Pq∗

β1(q∗ − 1) , (2.4.16)

which is the same optimal threshold as before (cf. (2.2.20)). Thus, the supremum of
eNPV(x; τb) over b ≥ x is attained at b = b∗ if x ≤ b∗ or at b = x if x ≥ b∗.

The corresponding value function u(x) is then calculated as (cf. (2.2.22))

u(x) =


(β1b

∗ − P )
(
x

b∗

)q∗
, x ∈ [0, b∗],

β1x− P, x ∈ [b∗,∞).
(2.4.17)

Finally, substituting (2.4.16) into (2.4.17), we obtain explicitly (cf. (2.2.23))

u(x) =


P

q∗ − 1

(
β1(q∗ − 1)x

Pq∗

)q∗
, 0 ≤ x ≤ Pq∗

β1(q∗ − 1) ,

β1x− P, x ≥ Pq∗
β1(q∗ − 1) .

(2.4.18)

2.5 Statistical issues and numerical illustration

2.5.1 Specifying the model parameters

From the practical point of view, in order to exercise the stopping rule (2.2.19) the
individual concerned needs to be able to compute the critical threshold b∗ expressed in
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2.5 Statistical issues and numerical illustration

(2.2.20), for which the knowledge is required about β1 (defined in (2.2.6)) and therefore
about the parameters r, λ0, µ and β (see (2.2.2)); furthermore, to evaluate the quantity
q∗ defined in (2.2.21), one needs to estimate µ− 1

2σ
2 and σ2 itself. Specifically:

• The loss-of-job rate λ0 can be extracted from the publicly available data about
the mean length at work, which is theoretically given by E(τ0) = 1/λ0.

• Likewise, the inflation rate r is also in the public domain.

• To specify the wage growth rate µ, a simple approach is just to set µ = r as a crude
version of a “tracking” rule. However, it may be possible that the individual’s wage
growth rate µ is, to some extent, stipulated by the job contract — for example, that
it must not exceed the inflation rate r by more than 1% per annum (applicable,
e.g., to civil servants) or, by contrast, that it must be no less than r minus 0.5%
per annum (more realistic in the private sector). In practical terms, this would
often mean that the actual growth rate µ is kept on the lowest predefined level.

• More generally, the wage growth rate µ can be estimated by observing the wage
process Xt. This can be implemented by first using regression analysis on Yt =
lnXt and estimating the regression line slope µ − 1

2σ
2 (see (2.1.2)). In addition,

the volatility σ2 can be estimated by using a suitable quadratic functional of the
sample path Yt.

• Finally, knowing the benefit schedule (which should be available through the
insurance policy’s terms and conditions), it is in principle possible to calculate,
or at least estimate the value β.

To summarize, certain estimation procedures need to be carried out along with the
on-line observation of the sample path (Xt). More details (most of which are quite
standard) are provided in the next two subsections.

2.5.2 Estimating the drift and volatility

Denote for short a := µ − 1
2σ

2. According to the geometric Brownian motion model
(2.1.2), we have

Yt := lnXt = ln x+ σBt + at, Y0 = ln x.

Suppose the process Xt is observed over the time interval t ∈ [0, T ] on a discrete-time
grid ti = iT/n (i = 0, . . . , n), and consider the consecutive increments

Zi := Yti − Yti−1 = σ(Bti −Bti−1) + a(ti − ti−1) (i = 1, . . . , n). (2.5.1)
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2.5 Statistical issues and numerical illustration

Note that the increments of the Brownian motion in (2.5.1) are mutually independent
and have normal distribution with zero mean and variance ti−ti−1 = T/n, respectively.
Therefore, (Zi) is an independent random sample with normal marginal distributions,

Zi ∼ N

(
aT

n
,
σ2T

n

)
(i = 1, . . . , n).

Then, it is standard to estimate the parameters via the sample mean and sample
variance,

ân := n

T
· Z̄ = Z1 + · · ·+ Zn

T
= YT − Y0

T
, (2.5.2)

σ̂2
n := n

T
· 1
n− 1

n∑
i=1

(Zi − Z̄)2. (2.5.3)

These estimators are unbiased,

E(ân) = a = µ− 1
2σ

2, E(σ̂2
n) = σ2,

with mean square errors

Var(ân) = σ2

T
, Var(σ̂2

n) = 2σ4

n− 1 .

In turn, the parameter µ is estimated by

µ̂n = ân + 1
2 σ̂

2
n,

with mean E(µ̂n) = E(ân) + 1
2 E(σ̂2

n) = a+ 1
2σ

2 = µ and mean square error

Var(µ̂n) = Var(ân) + 1
4 Var(σ̂2

n) = σ2

T
+ σ4

2(n− 1)

(due to independence of the estimators ân and σ̂2
n).

Note that the estimator ân in (2.5.2) only employs the last observed value, YT ; in
particular, its mean square error is not sensitive to the grid size ∆ti = T/n, and only
tends to zero with increasing observational horizon, T →∞. This makes the estimation
of the drift parameter a difficult in the sense that very long observations over Yt are
required to achieve an acceptable precision (see, e.g., [46, Example 2.1, p. 3]). For
instance, let µ = 0.004 and σ = 0.02 (per week), then a = 0.0038; if T = 25 (weeks)
then the 95%-confidence bounds for a are given by â ± 1.96σ/

√
T = â ± 0.00784, so

the margin of error is about twice as big as the value of a itself. To reduce it, say to
0.5a, one needs T ≈ 425 (weeks), which exemplifies slow convergence.
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In contrast, the mean square error of the estimator σ̂2
n in (2.5.3) tends to zero as

n→∞, with T fixed. Thus, estimation of the parameter σ2 can be made asymptotically
precise.

A numerical example illustrating the estimation of µ and σ2 using simulated data
will be given at the end of Section 2.5.4. A brief discussion of practical choices of µ,
based on sensitivity analysis, is provided at the end of Section 2.6.3.

2.5.3 Hypothesis testing

In view of the drawback in the general solution of the optimal stopping problem in
that the stopping time τb∗ may be infinite, that is, Px(τb∗ = ∞) > 0 (which occurs
when a = µ− 1

2σ
2 < 0, see Section 2.4.1), a reasonable pragmatic approach to decision

making in our model may be based on testing the null hypothesis H0 : a ≥ 0 versus the
alternative H1 : a < 0 (at some intuitively acceptable significance level, e.g. α = 0.05).
Namely, as long as H0 remains tenable, one keeps waiting for the hitting time τb∗ to
occur, but once H0 has been rejected, it is reasonable to terminate waiting and buy
the policy immediately.

The corresponding test is specified as follows. Again, suppose that the process Yt
is observed on a discrete time grid ti = iT/n, and set Zi = Yti − Yti−1 (i = 1, . . . , n).
Let z(α) be the upper α-quantile of the standard normal distribution N(0, 1), that is,
1−Φ(z(α)) = α, where Φ(x) = 1√

2π
∫ x
−∞ e−u2/2 du. Then the null hypothesis H0 : a ≥ 0

is to be rejected at significance level α whenever

Z1 + · · ·+ Zn ≤ inf
a≥0

{
aT − z(α)σ

√
T
}
,

that is,
YT − Y0 ≤ −z(α)σ

√
T . (2.5.4)

This test is uniformly most powerful among all tests with probability of error of type
I not exceeding α, that is, P(reject H0 |H0 true) ≤ α.

The normal test (2.5.4) assumes that the variance σ2 is known. As mentioned
before, this presents no real restriction if the process Yt is observable continuously (i.e.,
if the grid (ti) can be refined indefinitely). If this is not the case (e.g., because the wage
process can only be observed on the weekly basis) then the test (2.5.4) is replaced by
the t-test,

YT − Y0 ≤ −tn−1(α) σ̂
√
T ,
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where σ̂2 is the sample variance (see (2.5.3)) and tn−1(α) is the upper α-quantile of the
t-distribution with n− 1 degrees of freedom.

In practice, the hypothesis testing is carried out sequentially (e.g., weekly) as the
observational horizon T increases. The advantage of this approach is that the resulting
stopping time is finite with probability one (i.e., Px-a.s.); indeed, it is the minimum
between the optimal stopping time τb∗ (which is finite Px-a.s. under the null hypothesis
H0 : a ≥ 0) and the first time of rejecting H0 (which is finite Px-a.s. if H0 is false).

2.5.4 Numerical examples

To be specific, we use euro as the monetary unit. First of all, the value of the constant
β, which encapsulates information about the benefit schedule as well as the rate λ1 of
finding new job (see (2.2.2)), is chosen to be

β = 30.

Thus, the overall expected benefit payable over the lifetime of the policy (and projected
to the beginning of unemployment) is taken to be equal to 30 weekly wages; that is, if
the final wage is 400 (euro per week) then the total to be received is

400.00× 30 = 12 000.00 (euro).

Further, we set
λ0 = 0.01, r = 0.0004.

This means that the expected time until loss of job is 1/λ0 = 100 (weeks), that is,
about 1 year and 11 months, whereas the annual inflation rate is

e(365/7)·0.0004 − 1 = 0.02107617 ≈ 2.11%,

which is quite realistic.
Next, we need to specify the premium P and the parameters of the wage process

Xt, First, choose the initial value x = X0 as

x = 346.00 (euro).

This is motivated by the French labour legislation, whereby the current minimum pay
rate is set as 9.88 euro per hour [131], with a 35-hour workweek [48, 59], giving

9.88× 35 = 345.80 (euro per week).
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As for the premium, it is set at the value

P = 9 000.00 (euro),

which equates to about 26 minimum weekly wages (i.e., income over about half a year).
For simplicity, we also choose

µ = r = 0.0004, (2.5.5)

so that the wage growth rate is the same as inflation r (in reality, it could be slightly
less). Then from (2.2.6), using (2.5.5), we get

β1 = λ0β

r̃ − µ
= β = 30.

For the volatility σ, we will illustrate two opposite cases, µ < 1
2σ

2 and µ > 1
2σ

2.

Example 2.5.1. Set σ = 0.04, then µ− 1
2σ

2 = −0.0004 < 0. From (2.2.21) we calculate
q∗ = 3.864208, then (2.3.13) yields

b∗ = 404.7410 = 404.74 (euro).

Using (2.4.8), the hitting probability is calculated as

Px(τb∗ <∞) = 0.9245906.

Finally, using (2.3.14), we obtain the value of this contract,

v(346) = 1714.2780 = 1714.28 (euro).

Example 2.5.2. Now, set σ = 0.02, then µ − 1
2σ

2 = 0.0002 > 0. Furthermore, using
(2.2.21) we calculate q∗ = 6.728416, and from (2.3.13)

b∗ = 352.3705 = 352.37 (euro).

Hence, using (2.4.9), the expected hitting time is found to be

E(τb∗) = 91.22197 = 91.2 (weeks).

Finally, according to formula (2.2.22), the value of this contract is calculated as

v(346) = 1389.6190 = 1389.62 (euro).
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In the simulation of the process Xt shown in Fig. 3, the drift a = µ− 1
2σ

2 is estimated
using formula (2.5.2) as â .= 0.0005994. Estimation of the variance σ2 according to
formula (2.5.3) (on a weekly time grid) gives σ̂2 .= 0.0003723, while the true value
is σ2 = 0.0004. Hence, the parameter µ is estimated by µ̂

.= 0.0007855; recall that
the true value is µ = 0.0004. We then substitute these estimates into the values for
simulation in Example 2.5.1 and Example 2.5.2.

Example 2.5.3. Here µ̂− 1
2 σ̂

2 = 0.0006 > 0. From (2.2.21) we calculate q∗ = 6.170339,
then (2.3.13) yields

b∗ = 358.0233 = 358.02 (euro).

Hence, using (2.4.9), the expected hitting time is computed as

E(τb∗) = 56.99377 = 56.99 (weeks).

Finally, using (2.3.14), the value of this contract is given as,

v(346) = 1409.891 = 1409.89 (euro).

The values of b∗ and v when the estimates are plugged in Example 2.5.3 are close
to the true values in Example 2.5.2. It is interesting to point out that the expected
hitting time (E(τb∗)) in Example 2.5.2 is greater than Example 2.5.3 because µ̂ is higher
making it more likely to reach the boundary faster.

2.6 Parametric dependencies

In this section, we aim to explore the parametric dependencies of the solution of our
insurance problem, that is, of the optimal threshold b∗ given by (2.2.20) and the value
function v = v(x) given by (2.2.22). In particular, it is helpful to analyse different
asymptotic regimes as well as (the sign of) appropriate partial derivatives, so as to
ascertain the direction of changes under small perturbations and to understand their
economic meaning. This is a key ingredient of sensitivity analysis and of the so-called
comparative statics [90, Section VII].

In what follows, we confine ourselves to a discussion of the two most important exo-
genous parameters — the wage drift µ and the unemployment rate λ0. The constraint
(2.2.8) implies that the range of the parameters µ and λ0 is specified as follows,

−∞ < µ < r̃ = r + λ0, 0 ∨ (µ− r) < λ0 <∞.
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Remark 2.6.1. The next two technical subsections are elementary but rather tedious,
and the reader wishing to grasp the results quickly may just inspect the plots in Figs.
4 and 5.

2.6.1 Monotonicity

By virtue of the quadratic equation (2.3.11), the formula (2.2.20) can be conveniently
rewritten as

b∗ =
P (1

2σ
2q∗+ r̃)
βλ0

. (2.6.1)

First, fix λ0 and consider the function µ 7→ b∗. Differentiating the equation (2.3.11)
and then again using (2.3.11) to eliminate µ, we obtain

∂q∗
∂µ

= − q∗
1
2σ

2(2q∗ − 1) + µ
= − q2

∗
1
2σ

2q2
∗ + r̃

< 0. (2.6.2)

Hence, using (2.6.1) and (2.6.2),

db∗
dµ = ∂b∗

∂µ
+ ∂b∗

∂q∗
· ∂q∗
∂µ

= −
P (1

2σ
2q2
∗)

βλ0 (1
2σ

2q2
∗ + r̃)

< 0, (2.6.3)

and, therefore, b∗ is a decreasing function of µ (see Fig. 4(a)).
Similarly, the equation (2.3.11) yields

∂q∗
∂λ0

= 1
1
2σ

2(2q∗ − 1) + µ
= q∗

1
2σ

2q2
∗ + r + λ0

> 0. (2.6.4)

From (2.6.1) and (2.6.4), after some rearrangements we obtain

db∗
dλ0

= ∂b∗

∂λ0
+ ∂b∗

∂q∗
· ∂q∗
∂λ0

= −
P (1

2σ
2q∗+ r)
βλ2

0
+

P (1
2σ

2q∗)
βλ0 (1

2σ
2q2
∗ + r + λ0)

= −
P
[
(1

2σ
2q∗+ r)(1

2σ
2q2
∗ + r) + λ0r

]
βλ2

0 (1
2σ

2q2
∗ + r + λ0)

< 0, (2.6.5)

and it follows that the function λ0 7→ b∗ is decreasing (see Fig. 4(b)).
Let us now turn to the value function v = v(x). First, consider v as a function of

µ, thus keeping λ0 fixed. Using the expression (2.2.20), we can rewrite the first line of
the formula (2.2.22) (i.e., for x ≤ b∗) as

v = P

q∗ − 1

(
x

b∗

)q∗
. (2.6.6)
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Figure 4: Graphs illustrating parametric dependencies of the optimal
threshold (2.2.20): (a) on the wage drift µ < r̃ and (b) on the unemployment
rate λ0 > 0 ∨(µ− r), for selected values of λ0 and µ, respectively. The values of other
model parameters used throughout are as in Example 2.5.2: r = 0.0004, P = 9 000,
β = 30, and σ = 0.02. The dashed horizontal line in both plots indicates the initial
wage x = 346. The dashed vertical line in (a) indicates µ = r. The lower dashed
horizontal line in (b) shows the asymptote P/β = 300 (see (2.6.19)).

Differentiating (2.6.6), we get

∂v

∂q∗
= − P

(q∗ − 1)2

(
x

b∗

)q∗ (
1 + (q∗ − 1) ln

(
b∗

x

))
< 0, (2.6.7)

∂v

∂b∗
= − P q∗

(q∗ − 1)b∗
(
x

b∗

)q∗
< 0. (2.6.8)

Hence, on account of the inequalities (2.6.2), (2.6.4), (2.6.7) and (2.6.8),

dv
dµ = ∂v

∂µ
+ ∂v

∂q∗
· ∂q∗
∂µ

+ ∂v

∂b∗
· db∗

dµ > 0. (2.6.9)

If x ≥ b∗, then from the second line of (2.2.22) we readily obtain

dv
dµ = βλ0x

(r̃ − µ)2 > 0. (2.6.10)

Thus, in all cases dv/dµ > 0, which implies that the function µ 7→ v is increasing (see
Fig. 5(a)).
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Figure 5: Graphs illustrating parametric dependencies of the value function (2.2.22):
(a) on the wage drift µ < r̃ and (b) on the unemployment rate λ0 > 0 ∨ (µ − r), for
selected values of λ0 and µ, respectively. The values of other model parameters used
throughout are as in Example 2.5.2: r = 0.0004, P = 9 000, β = 30, σ = 0.02, and
x = 346. The dashed horizontal lines in both plots correspond to the value v∗ :=
βx− P = 1380. The dashed vertical line in (a) indicates µ = r; in this case, shown as
curve ii in plot (b), v(x) ≡ v∗ for all λ0 ≥ λ∗

.= 0.012420 (see (2.6.12)). That is why
curves iii, iv and v in plot (a) all intersect at µ = r.

Finally, fix µ and consider the function λ0 7→ v. If x ≥ b∗ then v is given by the
second line of (2.2.22), that is,

v = βλ0x

λ0 + r − µ
− P. (2.6.11)

In particular, if µ = r then (2.6.11) is reduced to v ≡ v∗ := βx − P . From (2.6.11) it
follows that

dv
dλ0

= βx(r − µ)
(λ0 + r − µ)2


< 0, µ > r,

= 0, µ = r,

> 0, µ < r.

Due to monotonicity of the function λ0 7→ b∗ (see (2.6.5)), v is given by (2.6.11) as
long as λ0 ≥ λ∗, for some critical value λ∗ ≡ λ∗(µ) ≤ ∞. It will be shown below
(see (2.6.19)) that limλ0→∞ b∗ = P/β, so λ∗ < ∞ if and only x > P/β. Clearly, λ∗ is
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2.6 Parametric dependencies

determined by the condition b∗ = x (see (2.2.20)) together with the equation (2.3.11).
In the special case µ = r (assuming that x > P/β), these equations can be solved to
yield

λ∗ = P

βx

( 1
2σ

2βx

βx− P
+ r

)
. (2.6.12)

In particular, in Example 2.5.2 this gives λ∗
.= 0.012420. From the consideration above,

it also follows that if x > P/β then (see (2.6.11))

lim
λ0→∞

v = v∗ = βx− P. (2.6.13)

In the case x ≤ b∗, we use formula (2.6.6). Similarly to (2.6.9),

dv
dλ0

= ∂v

∂λ0
+ ∂v

∂q∗
· ∂q∗
∂λ0

+ ∂v

∂b∗
· db∗

dλ0
. (2.6.14)

Substituting the expressions (2.6.2), (2.6.4), (2.6.7) and (2.6.8) into (2.6.14), cancelling
immaterial factors and recalling formula (2.6.1), the condition dv/dλ0 < 0 is reduced
to(1

2σ
2q∗ + r

)(1
2σ

2q2
∗ + r

)
+ λ0r <

( 1
q∗ − 1 + ln

(
b∗

x

))(1
2σ

2q2
∗ + r + λ0

)
. (2.6.15)

It can be proved that if µ ≥ r then the inequality (2.6.15) holds for all λ0 < λ∗, but
the analysis becomes difficult for µ < r. Numerical plots (see Fig. 5(b)) suggest that in
the latter case the function λ0 7→ v may be non-monotonic, with the derivative dv/dλ0

possibly vanishing in up to two points, provided that r − ε < µ < r with ε > 0 small
enough. To be more specific, the plots in Fig. 5(b) illustrate the case x > P/β, with
the common asymptote (2.6.13). For x ≤ P/β, the plots look similar (not shown here)
but with limλ0→∞ v = 0 (see (2.6.22) below), so the derivative dv/dλ0 may vanish in
at most one point.

2.6.2 Limiting values

Let us investigate the functions b∗ and v in the limits (i) µ → −∞ or µ ↑ r̃, and (ii)
λ0 → ∞ or λ0 ↓ 0 (µ < r), λ0 ↓ µ − r (µ ≥ r). Start by observing, using equation
(2.3.11), that

lim
µ→−∞

q∗ =∞, lim
µ↑ r̃

q∗ = 1, (2.6.16)

and moreover,
q∗ − 1 ∼ r̃ − µ

1
2σ

2 + r̃
(µ ↑ r̃). (2.6.17)
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Similarly, limλ0→∞ q∗ = ∞; on the other hand, if µ < r then limλ0↓0 q∗ = q∗|λ0=0 > 1,
while if µ ≥ r then

q∗ − 1 ∼ λ0 − (µ− r)
1
2σ

2 + µ
(λ0 ↓ µ− r). (2.6.18)

Hence, from (2.6.1) and (2.6.16) it readily follows that b∗ →∞ (µ→ −∞) and

b∗ →
P (1

2σ
2 + r̃)

βλ0
(µ ↑ r̃).

Also, using that q∗ →∞ (λ0 →∞), from (2.2.20) we get

b∗ → P

β
(λ0 →∞). (2.6.19)

In the opposite limit, if µ > r then, according to (2.6.1) and (2.6.18),

b∗ →
P (1

2σ
2 + µ)

β(µ− r) (λ0 ↓ µ− r), (2.6.20)

while if µ ≤ r then limλ0↓0 b
∗ =∞; in particular, for µ = r

b∗ ∼
P (1

2σ
2 + r)

βλ0
(λ0 ↓ 0). (2.6.21)

For the value function v = v(x), from formula (2.6.6) we get, using (2.6.16) and (2.6.17),

lim
µ→−∞

v = 0, lim
µ↑ r̃

v =∞.

Furthermore, according to (2.6.13), if x > P/β then v → v∗ = βx− P as λ0 →∞. In
the opposite case, due to monotonicity of b∗ (see (2.6.5)) and the limit (2.6.19) we have
b∗ > P/β ≥ x, so using formula (2.6.6) and recalling that q∗ →∞, we get

v ≤ P

q∗ − 1 → 0 (λ0 →∞). (2.6.22)

Now, consider the limit of v as λ0 approaches the lower edge of its range. If µ < r then
(2.6.6) implies that limλ↓0 v = 0, since b∗ → ∞ and q∗ → q∗|λ0=0 > 1. If µ = r then,
using (2.6.18) and (2.6.21) (with µ = r), we obtain

v ∼ βxλq∗−1
0 = βx exp

{
(q∗ − 1) lnλ0

}
→ βx (λ0 ↓ 0). (2.6.23)

Finally, if µ > r then from (2.6.6) it readily follows, according to (2.6.18) and (2.6.20),

v ∼ βx(µ− r)
λ− (µ− r) →∞ (λ0 ↓ µ− r). (2.6.24)
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Figure 6: Isolines (level curves) of the optimal stopping problem solution on the (λ0, µ)-
plane: (a) b∗(λ0, µ) = const (optimal threshold (2.2.20)); (b) v(λ0, µ) = const (value
function (2.2.22)). The values of other parameters used throughout are as in Ex-
ample 2.5.2: r = 0.0004, P = 9 000, β = 30, σ = 0.02, and x = 346. The slanted
dashed lines in both plots show the boundary µ = λ0 + r (see (2.2.8)). In plot (b), the
horizontal dashed line indicates µ = r and the vertical dashed line shows λ∗

.= 0.012420
(cf. Fig. 5(b)).

2.6.3 Comparative statics and sensitivity analysis

The goal of comparative statics is to understand how varying values of exogenous
parameters affect a target function of interest. For instance, consider the optimal
threshold b∗ as a function of both unemployment rate λ0 and wage drift µ. Rather then
fixing one of these parameters and then plotting b∗ against the remaining parameter (as
was done in Figs. 4(a) and 4(b)), it is useful to plot a family of comparative statics plots
showing the isolines (or level curves) for different values (levels) of the function, that
is, b∗(λ0, µ) = const (see Fig. 6(a)). As may be expected from Figs. 4(a) and 4(b), the
plots of the function λ0 = λ0(µ) (determined implicitly by the level condition) behave
as monotone decreasing graphs. Analogous plots for the value function are presented
in Fig. 6(b); the plots become non-monotonic for v large enough. If λ0 is fixed then
the value v grows with µ, in agreement with (2.6.9) and (2.6.10). Similarly, if µ > r
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is fixed then v decreases with λ0, converging to the limit v∗ = βx − P as λ0 → ∞
(see (2.6.13)), represented by curve II in Fig. 5(b). If v > v∗ then there are up to two
different values of λ0 (and common µ) producing the same value v, while for v smaller
than but close enough to v∗, the number of such roots may increase to three (see the
discussion in Section 2.6.4).

Let us also comment on the sensitivity of our numerical examples presented in
Section 2.5.4. The question here is, how much the output values (say, the optimal
threshold b∗ and the value v) would change under a small variation of one of the
background parameters. In the linear approximation, the change factor is given by the
corresponding partial derivative. As in the previous sections, we address the sensitivity
with regard to the wage drift µ (around the set value µ = 0.0004) and the unemployment
rate λ0 (around λ0 = 0.01). Other model parameters are fixed as in Section 2.5.4, that
is, r = 0.0004, P = 9 000, β = 30, and x = 346. As for the volatility parameter σ,
it is set to be σ = 0.04 as in Example 2.5.1 or σ = 0.02 as in Example 2.5.2. The
required partial derivatives of b∗ and v can be computed using the formulas derived in
Section 2.6.1; the results are presented in Table 2.1(a).

Numerical values in Table 2.1(a) may seem quite big, but they should be offset by
small background values of the parameters, µ = 0.0004 and λ0 = 0.01. If we increase
them by a small amount, say by 1%, then the absolute increments would be

∆µ = 0.0004/100 = 4 · 10−6, ∆λ0 = 0.01/100 = 10−4.

Hence, using Table 2.1(a), we obtain the corresponding approximate increments of
the target functions b∗ and v (see Table 2.1(b)), which look more palatable. One
interesting observation is that the value v reacts about 5 times stronger to the change
of the unemployment rate λ0 when the volatility σ gets 2 times bigger (from σ = 0.02
in Example 2.5.2 to σ = 0.04 in Example 2.5.1); in contrast, the change of v in response
to an increase of the wage drift is much less pronounced. This highlights the primary
significance of the unemployment rate, which is of course only natural.

Sensitivity analysis with regard to the wage drift µ is also useful in the light of the
difficulty in estimation of µ from the data, mentioned in Section 2.5.2. The results
in Table 2.1(b) suggest that a reasonably small error in selecting µ has only a minor
effect on the identification of the optimal threshold b∗ and the value v; for instance,
overestimating it by 1% will decrease b∗ by just 0.01 euro, while the value v will be
up by about 0.60 euro. Thus, an individual using a moderately inflated value of their
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(a) Derivatives

Derivative Example 2.5.1 Example 2.5.2

db∗/dµ −16 037.57 −13 962.43
dv/dµ 842 062.30 993 991.20

db∗/dλ0 −6 323.813 −3161.906
dv/dλ0 −46 485.530 −8768.435

(b) Increments (euro)

Increment Example 2.5.1 Example 2.5.2

∆b∗ (µ) −0.06415 −0.05585
∆v (µ) 3.36825 3.97597

∆b∗ (λ0) −0.63238 −0.31619
∆v (λ0) −4.64855 −0.87684

Table 2.1: Sensitivity check of numerical results for the functions b∗ and v in Examples
2.5.1 and 2.5.2: (a) parametric derivatives; (b) increments in response to a 1%-change
in the background parameters.

wage rate would take a slightly over-optimistic view about the timing of joining the
insurance scheme and its expected benefit. On the other hand, a risk-averse individual
may take a more conservative view and prefer to underestimate their wage drift µ,
which will raise the threshold b∗ resulting in a longer waiting time. For the insurance
company though, it may be reasonable to try and avoid underestimation of the wage
drift of potential customers, so as to reduce the risk of overpaying the benefits.

2.6.4 Economic interpretation

Monotonic decay of the optimal threshold b∗ with an increase of the unemployment
rate λ0 (see (2.6.5) and Fig. 4(b)) has a clear economic appeal: a bigger unemployment
rate λ0 means a higher risk of losing the job, which demands a lower target threshold
b∗ in order to expedite joining the insurance scheme. The economic rationale for the
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monotonicity of b∗ as a function of µ (see (2.6.3) and Fig. 4(a)) is different — a bigger
wage drift µ makes it more likely to reach a higher final wage Xτ0 by the time of loss
of job, so lowering the threshold b∗ adds incentive to an earlier entry.

Monotonic growth of the value v as a function of the wage drift µ (see (2.6.9),
(2.6.10), and Fig. 5(a)) is also meaningful — indeed, when the wage drift µ gets bigger,
there is more potential to reach a higher final wage Xτ0 by the time of loss of job, which
increases the expected benefit β1 (see (2.2.6)) and, therefore, the value v = v(x) of the
insurance policy.

The behaviour of the value function v = v(x) in response to a varying unemployment
rate λ0 is more interesting, as indicated by the plots in Fig. 5(b). In the case µ < r, it is
satisfactory to see that the value v, vanishing in the limit as λ0 ↓ 0, starts growing with
λ0, thus reflecting a good efficiency of the insurance policy against an increasing risk
of unemployment. On the other side of the policy, this may present a growing risk for
the insurance company which will have to finance an increasing number of claims. But
with the unemployment rate λ0 getting ever bigger, the value v should stay bounded,
so must converge to a limit as λ0 →∞, given by v∗ = βx−P if x > P/β (see (2.6.13))
or v∗ = 0 otherwise (see (2.6.22)). In particular, Fig. 5(b) shows that, for a certain
range of µ, the value v achieves its maximum at some λ0. However, the graphs also
reveal that if µ keeps increasing then the value plots may have a more complicated
non-monotonic behaviour, which is harder to interpret economically.

On the other hand, as is evident from Fig. 5(b), in the case µ ≥ r our model
produces a counter-intuitive increase of the value v as λ0 approaches the left edge of
its range — it is hard to believe that the value may grow as the risk of unemployment
falls. Moreover, as was computed in (2.6.24), for µ > r the corresponding limit of v is
infinite! But perhaps the most striking example emerges in the borderline case µ = r,
whereby formally setting λ0 = 0 we would get, according to (2.6.21), that the threshold
b∗ is infinite (unlike the case µ > r, see (2.6.21)), so that the wage process (Xt) never
reaches it; therefore, we never buy the insurance policy (understandably so, as there is
no risk of losing the job), and nonetheless its value is positive in this limit (see (2.6.13)).
The explanation of this paradox lies in the way how the optimal stopping is exercised
for small λ0 > 0: here, the threshold b∗ is high and there is only a very small probability
that it is ever reached; before this happens, we stay idle, but if and when the threshold
is hit then the expected payoff is rather big, which contributes enough to the expected
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net present value to keep it positive in the limit λ0 ↓ 0 (see (2.6.23)).
Thus, the artefacts in our model as indicated above are caused by not putting any

constraint on the waiting times. This can be rectified, for example, by introducing
mortality, as was sketched in Section 2.2.1; in particular, such a regularization should
restore a zero limit of v at the lower edge of λ0.

2.7 Including utility considerations

2.7.1 Perpetual American call option

Our model (and its solution) resembles that of the optimal stopping problem for the
(perpetual) American call option (see a detailed discussion in [121, Ch. VIII, §2a]).
More specifically, the holder of a call option may exercise the right to buy an asset
(e.g., one unit of stock) at any time for a pre-determined strike price K, where the
decision is based on observations over the random process of stock prices (St), assumed
to follow a geometric Brownian motion model. The term perpetual is used to indicate
that there is no expiration date, so the right to buy extends indefinitely.

The optimal time instant τ = τ∗ to buy, bearing in mind a purely financial target of
maximizing the profit Sτ−K, is the solution of the following optimal stopping problem,

V (x) = sup
τ

Ex
(
e−rτ (Sτ −K)+), (2.7.1)

where St is a geometric Brownian motion with parameters µ < r and σ > 0, the
supremum is taken over all stopping times τ adapted to the filtration associated with
(St). The positive truncation (·)+ corresponds to the constraint that the option holder
is not in a position to buy at the price K higher than the current spot price St. The
solution to (2.7.1) is well known (see, e.g., [121, Ch. VIII, §2a]) to be given by the
hitting time τ∗ = τb∗ , with the optimal threshold

b∗ = Kq∗

q∗ − 1 ,

where q∗ is given by formula (2.2.21) but with r̃ = r + λ0 replaced by r. The corres-
ponding value function is given by

V (x) =


(b∗ −K)

(
x

b∗

)q∗
, x ∈ [0, b∗],

x−K, x ∈ [b∗,∞).
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Observe that our optimal stopping problem (2.2.14) can be rewritten as

v(x) = β1 sup
τ

Ex
[
e−r̃τ (Xτ − K̃)

]
, K̃ := P/β1, (2.7.2)

which makes it look very similar to the perpetual American call option problem (2.7.1).
However, there are several important differences. Firstly, unlike the gain function in
the American call option problem (2.7.1), no truncation is applied in (2.7.2), because
the financial gain is not the sole priority in this context and therefore the individual is
prepared to tolerate negative values of β1Xτ − P (despite the fact that, under the op-
timal strategy, the value function v(x) is always non-negative, see Lemma 2.2.2(i) and
formula (2.2.22)).1 In addition, as was mentioned in Remark 2.4.1 and in Section 2.5.3,
the hitting time τb∗ may be infinite with a positive probability (i.e., when µ < 1

2σ
2),

which may be deemed impractical in the insurance context, but is considered to be
acceptable for exercising the American call option. This simple observation helps to
realize the fundamental conceptual difference between the two problems; indeed, the
insurance optimal stopping does not focus only on the financial gain, but also places
an ultimate priority on acquiring an insurance cover per se. Hence, a more realistic
formulation of the optimal stopping problem in the UI model should involve a cer-
tain utility, which specifies the individual’s weighted preferences for satisfaction — for
example, impatience against waiting for too long before joining the UI scheme.

2.7.2 Heuristic optimal stopping models with utility

Here, we present a few informal thoughts about the possible inclusion of utility in
the optimality analysis. As already mentioned, in the case µ < 1

2σ
2 the probability

of hitting the critical threshold b∗ is less than 1, so there is a probability that the
individual will never join the insurance scheme if the optimal stopping rule is strictly
followed. This is of course not desirable, as the individual puts high priority on getting
insured at some point in time (hopefully, prior to loss of job).

One simple way to take these additional requirements into account is to extend the
1The equivalence of the problems (2.7.1) and (2.7.2), which we have established directly, is not a

coincidence: it is known [130, Proposition 3.1, p.185] that, under mild assumptions, the solution of
the general optimal stopping problem v(x) = supτ Ex

(
e−rτg(Xτ )

)
does not change with the positive

truncation of g(·).
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optimal stopping problem (2.2.14) as follows:

v†(x) = sup
τ

[
κPx(τ <∞) + eNPV(x; τ)

]
= sup

τ
Ex
[
κ1{τ<∞}+ e−r̃τg(Xτ )

]
, (2.7.3)

where the supremum is again taken over all stopping times τ adapted to the process
(Xt), and the coefficient κ ≥ 0 is a predefined weight representing the individual’s
personal attitude (preference) towards the two contributing terms. If Px(τ < ∞) = 1
then the first term in (2.7.3) is reduced to a constant (κ), leading to a pure optimal
stopping problem as before; however, if Px(τ < ∞) < 1 then the first term enhances
the role of candidate stopping times τ that are less likely to be infinite.

The problem (2.7.3) can be rewritten in a more standard form by pulling out the
common discounting factor under expectation,

v†(x) = sup
τ

Ex
[
e−r̃τG(τ,Xτ )

]
, (2.7.4)

with
G(t, x) := κ e r̃ t+ g(x), (t, x) ∈ [0,∞]× [0,∞). (2.7.5)

Unfortunately, the optimal stopping problem (2.7.4) is not amenable to an exact solu-
tion as before, because the gain function (2.7.5) depends also on the time variable (see
[107, Ch.IV]). In this case, the problem (2.7.4) may again be reduced to a suitable (but
more complex) free-boundary problem, but the hitting boundary (of a certain set on
the (t, x)-plane) is no longer a straight line.

More generally, our optimal stopping problem can be modified by replacing the
indicator in (2.7.3) with the expression e−ρτ (ρ > 0),

v†(x) = sup
τ

Ex
[
κe−ρτ + e−r̃τg(Xτ )

]
, (2.7.6)

which retains the flavour of progressively penalizing larger values of τ , including τ =∞.
Here, the gain function (2.7.5) takes the form

G(t, x) = κ e(r̃−ρ)t+ g(x).

In particular, by choosing ρ = r̃ the problem (2.7.6) is transformed into

v† = sup
τ

Ex
[
e−r̃τ (β1Xτ + κ− P )

]
,
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2.7 Including utility considerations

which is the same problem as (2.2.14) but with the premium P replaced by P − κ.
Another, more drastic approach to amending the standard optimal stopping prob-

lem (2.2.14) stems from the observation that even if τ <∞ (Px-a.s.), it may take long
to wait for τ to happen — for instance, if Ex(τ) = ∞. In other words, it is reasonable
to take into account the expected value of τ , leading to the combined optimal stopping
problem

v†(x) = sup
τ

[
κPx(τ <∞) + κ exp{−Ex(τ)}+ eNPV(x; τ)

]
. (2.7.7)

If Px(τ < ∞) < 1 then Ex(τ) = ∞ and the problem (2.7.7) is reduced to (2.7.3),
whereas if Px(τ < ∞) = 1 then, effectively, only the term with the expectation re-
mains in (2.7.7). However, a disadvantage of the formulation (2.7.7) is that it cannot
be expressed in the form (2.7.4). Trying to amend this would take us back to the
version (2.7.6).

It is interesting to look at how the value function depends on the preference para-
meter κ. The next property is intuitively obvious.

Proposition 2.7.1. For each x > 0, the value function v†(x) of the optimal stop-
ping problem (2.7.6) is a strictly increasing function of κ. The same is true for the
problem (2.7.7).

Proof. We use the notation v†(x;κ) to indicate the dependence of the value function
on the parameter κ. For κ1 < κ2 and any stopping time τ 6≡ ∞, we have

Ex
[
κ1 e−ρτ + e−r̃τg(Xτ )

]
< Ex

[
κ2 e−ρτ + e−r̃τg(Xτ )

]
≤ v†(x;κ2). (2.7.8)

Suppose that τ∗ is a maximizer for the optimal stopping problem (2.7.6) with κ = κ1.
Then, according to (2.7.8),

v†(x;κ1) = Ex
[
κ1 e−ρτ∗+ e−r̃τ∗g(Xτ∗)

]
< v†(x;κ2),

that is, v†(x;κ1) < v†(x;κ2) as claimed. Similar arguments apply to the problem (2.7.7).

2.7.3 Sub-optimal solutions

As already mentioned, the optimal stopping problems outlined in Section 2.6.2 are
difficult to solve in full generality. To gain some insight about the qualitative effects of
the added utility-type terms, it may be reasonable to restrict our attention to solutions
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2.7 Including utility considerations

in the subclass of hitting times τb. Despite such solutions will only be suboptimal, the
advantage is that the reduced problems can be solved using that all the ingredients are
available explicitly (see Section 2.4.1).

For example, the original problem (2.7.3) is replaced by

u†(x) = sup
b≥0

[
κPx(τb <∞) + eNPV(x; τb)

]
. (2.7.9)

Similarly as in Section 2.4.3, we only need to maximize the functional in (2.7.9) over
b ≥ x. Indeed, if b ≤ x then τb = 0 (Px-a.s.) and, according to (2.2.4) and (2.2.13),

sup
b≤x

[
κPx(τb <∞) + eNPV(x; τb)

]
= κ+ eNPV(x; 0) = κ+ β1x− P,

whereas

sup
b≥x

[
κPx(τb <∞) + eNPV(x; τb)

]
≥
[
κPx(τb <∞) + eNPV(x; τb)

]∣∣
b=x

= κ+ β1x− P.

Assume that µ − 1
2σ

2 < 0 (for otherwise Px(τb < ∞) = 1, thus leading to the
same optimal stopping problem as before). Then, according to (2.4.8), the probability
Px(τb <∞) becomes a strictly decreasing function of b ∈ [x,∞), and so the maximum
in (2.7.9) is achieved by a different stopping strategy, with a lower optimal threshold
b†. More precisely, by virtue of formulas (2.4.8) and (2.4.15), the problem (2.7.9) is
explicitly rewritten as

u†(x) = sup
b≥x

[
κ

(
x

b

)1−2µ/σ2

+ (β1b− P )
(
x

b

)q∗]
, (2.7.10)

where q∗ > 1 is defined in (2.2.21). Differentiating with respect to b, it is easy to check
that the maximizer for the problem (2.7.10) is given by

b† = min
{
b ≥ x : aκ

(
b

x

)q∗−a
+ (q∗ − 1)β1b ≥ Pq∗

}
,

where a := 1− 2µ/σ2 < 1 < q∗.
The following (slightly artificial) version of the utility keeps the spirit of (2.7.9) but

is amenable to the exact analysis:

u†(x) = sup
b≥0

[
κ
{
Px(τb <∞)

}q∗/(1−2µ/σ2)+ eNPV(x; τb)
]
. (2.7.11)
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2.7 Including utility considerations

Indeed, using the same substitutions (2.4.8) and (2.4.15) as before, (2.7.11) is reduced
to (cf. (2.7.10))

u†(x) = sup
b≥x

[
(β1b+ κ− P )

(
x

b

)q∗]
, (2.7.12)

which is the same problem as (2.4.14) but with P replaced by P − κ (cf. (2.4.15)).
Therefore, from (2.4.16) we immediately obtain the maximizer

b† = (P − κ)q∗
β1(q∗ − 1) = b∗− κq∗

β1(q∗ − 1) ≤ b
∗. (2.7.13)

This is a strictly decreasing (linear) function of κ; in particular, b† = b∗ if κ = 0 and
b† = 0 if κ = P . The corresponding value function is given by (cf. (2.4.17))

u†(x) =


(β1b

† + κ− P )
(
x

b†

)q∗
, x ∈ [0, b†],

β1x+ κ− P, x ∈ [b†,∞),
(2.7.14)

or more explicitly (cf. (2.4.18))

u†(x) =


P − κ
q∗ − 1

(
β1(q∗ − 1)x
(P − κ)q∗

)q∗
, 0 ≤ x ≤ (P − κ)q∗

β1(q∗ − 1) ,

β1x+ κ− P, x ≥ (P − κ)q∗
β1(q∗ − 1) .

(2.7.15)

If x is fixed then the problem value u†, as a function of κ, is given by the first or the
second line in (2.7.15) according as κ ∈ [0, κ†] or κ ∈ [κ†,∞), respectively, where

κ† := P − β1(q∗ − 1)x
q∗

. (2.7.16)

The dependence of b† and u†(x) upon the utility parameter κ ∈ [0, P ] is illustrated
in Fig. 7, while Fig. 8 demonstrates the functional dependence of the hitting probability
Px(τb <∞) and the mean hitting time Ex(τb) upon the variable threshold b ≥ 0, along
with the corresponding plots of the expected net present value eNPV(x; τb).

Remark 2.7.1. Note that u†(x) is a strictly increasing function of κ ∈ [0, P ], in accord
with Proposition 2.7.1. In particular, u†(x) coincides with the original value function
u(x) given by (2.4.18), but with the premium P replaced by P − κ. This can be
interpreted as the individual’s consent to convert additional satisfaction, gained by
virtue of pursuing the optimal stopping problem (2.7.11) instead of (2.2.14), into a
higher premium, P † = P + κ. Such an effect is characteristic of the use of risk-averse
utility functions under the Expected Utility Theory [73] (see also a discussion below in
Section 2.6.4).
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Figure 7: Functional dependence on the preference weight κ in the reduced optimal
stopping problem (2.7.11): (a) the optimal threshold b† (see (2.7.13)); (b) the value
function u†(x) (see (2.7.15)). Numerical values of the parameters used are as in Ex-
ample 2.5.2: r = µ = 0.0004, P = 9 000, β = 30, σ = 0.02, and x = 346. In particular,
if κ = 0 then b† coincides with b∗ .= 352.3705 and u†(x) coincides with v(x) .= 1389.6190.
The dashed vertical lines on both plots indicate the value κ† .= 162.7108 (see (2.7.16))
separating different regimes for u†(x) according to (2.7.15). When κ = κ†, we have
b† = x = 346, shown as a dashed horizontal line in plot (a); the corresponding value
function is given by u†(x) = β1x+κ†−P .= 1542.7110 (see (2.7.14)), shown as a dashed
horizontal line in plot (b). Note that the graph of u†(x) in plot (b) looks almost linear
for κ ∈ [0, κ†], because the ratio κ/P is quite small, 0 ≤ κ/P ≤ κ†/P

.= 0.01808; the
slope here is approximately v(x)(q∗ − 1)/P .= 0.88448, as compared to slope 1 of the
linear graph for κ ≥ κ†.

In the case µ > 1
2σ

2, instead of (2.7.7) we may consider the simplified problem

u†(x) = sup
b≥0

[
κ exp{−Ex(τb)}+ eNPV(x; τb)

]
. (2.7.17)

Upon the substitution of formulas (2.4.9) and (2.4.15), it is rewritten in the form
(cf. (2.7.10))

u†(x) = sup
b≥x

[
κ

ln(b/x)
µ− 1

2σ
2 + (β1b− P )

(
x

b

)q∗]
. (2.7.18)

Again, the maximization problem (2.7.18) can be solved (at least, numerically). For
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Figure 8: Theoretical graphs for functionals of the hitting time τb versus threshold
b ≥ 0. Upper row: (a) the hitting probability Px(τb < ∞) (see (2.4.8)); (b) the
mean hitting time Ex(τb) (see (2.4.9)). Bottom row: the expected net present value
eNPV(x; τb) (see (2.4.15)) with µ < 1

2σ
2 (c) or µ > 1

2σ
2 (d). The values of parameters

used throughout are as in Section 2.5.4: x = 346, P = 9 000, β1 = 30, µ = 0.0004, and
σ = 0.04 (left) or σ = 0.02 (right). The dashed vertical lines on each plot indicate x
and the optimal threshold b∗, respectively; specifically, b∗ .= 404.7410 on the left (see
Example 2.5.1) and b∗

.= 352.3705 on the right (see Example 2.5.2).

an analytic solution, it is convenient to modify the problem (2.7.17) as follows,

u†(x) = sup
b≥0

[
κ exp

(
− q∗

µ− 1
2σ

2 Ex(τb)
)

+ eNPV(x; τb)
]
.

67



2.7 Including utility considerations

Similarly to (2.7.18), this leads to the maximization problem that coincides with (2.7.12)
and, therefore, has the same solution (2.7.13) and (2.7.14) (or, equivalently, (2.7.15)).

2.7.4 Connections to Expected Utility Theory

The considerations above can be linked to the standard Expected Utility Theory [73].
In the usual setting, it is assumed that an individual uses (perhaps, subconsciously) a
certain utility U(w), as a function of financial wealth w, to assess losses, gains and the
resulting satisfaction. Generically, given the current wealth w and some random future
loss Y , the expected loss (measured via utility U(·)) may be expressed as E

[
U(w−Y )

]
.

The individual is inclined to pay a premium P and buy the insurance policy as long as
the expected utility without insurance is no more than U(w − P ),

E
[
U(w − Y )

]
≤ U(w − P ). (2.7.19)

The balance condition
E
[
U(w − Y )

]
= U(w − P ) (2.7.20)

determines the maximum premium Pmax the customer is prepared to pay (in fact, at
this point it makes no difference whether to buy the insurance or not).

In the baseline case with U(w) ≡ w, the conditions (2.7.19) and (2.7.20) are reduced
to

P ≤ Pmax = E(Y ). (2.7.21)

However, choosing a different utility function may well change this threshold. For
instance, if the random loss Y has exponential distribution with parameter θ = 0.001,
then according to (2.7.21) we have Pmax = E(Y ) = 1/θ = 1000. In contrast, let the
utility function be chosen as U(w) = 1−exp

(
−1

2θw
)
. Here, the utility is between 0 and

1 if the wealth w is positive, but it becomes increasingly negative for a negative wealth;
that is, strong weight is placed against negative wealth, which may be characteristic of
a risk-averse individual. In this case, it is easy to check that

Pmax = 2 ln 2
θ

= 1386.294 > 1000.

Thus, the individual is happy to pay more than before to protect themselves from the
perceived risk of significant losses. That is to say, an additional amount of satisfaction
is convertible into an extra premium.
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In our case, if the UI was to be entered immediately, at time t = 0, then the value
of this decision would be eNPV(x; 0) = β1x− P (see (2.2.5) and (2.2.13)). Clearly, in
order for this to be non-negative, the premium P must satisfy the condition

P ≤ Pmax = β1x.

For instance, in the setting of the numerical example in Section 2.5.4, we get Pmax =
30× 346 = 10 380, while the set premium is P = 9 000.

Similarly, if the decision was taken at a stopping time τ , then, conditional on the
wage Xτ , the maximum premium payable would be given by Pmax = β1Xτ . Thus,
the value of Pmax goes up or down together with the current wage. However, in our
setting the entry time is not decided in advance, being subject to the stopping rule
based on observations over (Xt). As a result, the value function v(x) (x > 0) of the
optimal stopping problem is always positive for any premium P , no matter how high
(see formula (2.2.23)). Apparently, this is manufactured by selecting the threshold b∗

high enough, which guarantees that, in the (rare) event of hitting it, the mean value of
this strategy will be positive.

This may not be satisfactory from the standpoint of the Expected Utility Theory;
however, there is no contradiction, because in its standard version this theory does not
allow for an optional stopping. Adding utility terms to the gain function in the spirit
of Sections 2.6.2 and 2.6.3 helps to amend the situation (see Remark 2.7.1), but the
maximum premium payable still remains indeterminate.

The explanation of this paradox lies in the simple fact that the gain function in the
optimal stopping problems considered so far does not include any losses. A simple way
to account for such losses is to include consumption in the model. Namely, suppose for
simplicity that the consumption rate c is constant; for instance, the net present value
of consumption over time interval [0, t] is given by∫ t

0
e−rscds = c(1− e−rt)

r
.

It is natural to assume that the wage Xt is sufficient to finance the consumption, so
that Ex(Xt) = xeµt ≥ c for all t ≥ 0 (see (2.1.3)). In turn, for this to hold it suffices to
assume that X0 = x ≥ c and µ ≥ 0. Hence, we need to take into account consumption
only over the unemployment spell [τ0, τ0 + τ1], where the wage is replaced by the UI
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benefit. The expected net present value of this consumption is given by

γ := E
(

e−rτ0

∫ τ1

0
e−rscds

)
= E

(
e−rτ0

)
· E
(
c(1− e−rτ1)

r

)
= λ0c

(r + λ0)(r + ∗λ1) ,

using independence of τ0 and τ1 and their exponential distributions (with parameters
λ0 and λ1, respectively). Thus, our basic optimal stopping problem (2.2.14) is modified
to

v‡(x) = sup
τ

Ex
[
e−r̃τg(Xτ )− γ

]
,

which has the same solution as before (see Section 2.2.3) but with the new value function
v‡(x) = v(x)− γ, that is (cf. (2.2.22)),

v‡(x) =


(β1b

∗ − P )
(
x

b∗

)q∗
− γ, x ∈ [0, b∗],

β1x− P − γ, x ∈ [b∗,∞).

Now, the inequality v‡(x) ≥ 0 can be easily solved for P to yield

P ≤ P ‡max :=


β1b
∗ − γ

(
b∗

x

)q∗
, x ∈ [0, b∗],

β1x− γ, x ∈ [b∗,∞).
(2.7.22)

Note that P ‡max in (2.7.22) is a decreasing function of γ, but an increasing function
of x. Thus, as could be expected, the maximum affordable premium gets lower with
the increase of consumption, but becomes higher with the increase of the wage.

Remark 2.7.2. Of course, consumption can also be incorporated into the optimal stop-
ping models involving utility (see Sections 2.6.2 and 2.6.3), but we omit technical
details.
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Chapter 3
Optimal Stopping in a Time-Dependent
Model of Unemployment Insurance

In the previous chapter we adapted a guess-and-verify approach for solving an optimal
stopping problem in a simple model of unemployment insurance. This chapter aims to
formalize time inhomogeneous optimal stopping problem using the concepts in Chapter
1 and Chapter 2. For subsequent analysis, we need to prove a number of properties of
the value function. In addition, we show the existence of an optimal boundary which
is monotonic and continuous as a function of time. In that case, we will prove that the
boundary is bounded, derive an integral equation that uniquely determines its shape
and we use the latter to obtain a numerical estimate of the true boundary.

3.1 The model of unemployment insurance

Having discussed into details how to construct the UI model in Chapter 2, this section
addresses similar arguments in the formulation of the problem. For a precise formu-
lation of the problem, let us consider a filtered probability space (Ω,F,F = (Ft)t>0,P)
carrying a standard one-dimensional Brownian motion B = (Bt)t≥0 . Let us define the
individual’s wage process X = (Xs)s≥0 by

dXs = µ(s)Xt,x
s ds+ σ(s)Xt,x

s dBs (3.1.1)
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which solves the stochastic differential equation

Xt,x
s = Xt exp

(∫ s

t
σ(u)dBu +

∫ s

t

(
µ(u)− σ2(u)

2

)
du
)

(3.1.2)

where Xt,x
s is the wage of the individual at time s with the initial condition Xt = x

at time t. Also, µ(·) and σ(·) are continuous and denote the drift and volatility rates,
respectively. We further consider the problem of determining the payoff an individual
under the scheme will receive when unemployment occurs given certain conditions.
More precisely, the individual can enter the scheme at stopping time τ . Furthermore, we
assume that the time of unemployment τ0 and re-employment τ1 follow an exponential
distribution with time dependent parameters such that

Pt,x(τ0 > t+ s|τ0 > t) = e−
∫ s

0 λ0(t+u)du, Pt,x(τ1 > τ0 + s
∣∣τ0) = e−

∫ τ0+s
τ0

λ1(t+u)du
.

(3.1.3)
Then, the optimal payoff received by the insured when unemployment occurs is given
by the value of an optimal stopping problem, which we are going to introduce in the
next sections.

3.2 Setting the optimal stopping problem

In this section, we are interested in modeling the benefit to an employed individual who
is under the unemployment insurance cover when unemployment occurs. To begin with,
we calculate the expected future benefit to be received under this insurance contract
which is given by

f(t+ τ0, X
t,x
t+τ0) = Xt,x

t+τ0 E
(∫ t+τ1

t+τ0
e−
∫ s
t+τ0

r(u)du
h(s) ds

∣∣∣∣τ0, X
t,x
t+τ0

)
= β(t+ τ0)Xt,x

t+τ0 ,

(3.2.1)
where r(u) is the risk-free rate and

β(t+ τ0) :=
∫ ∞
t+τ0

e−
∫ s
t+τ0

λ1(u)du
H(t) dt, H(t) := e−

∫ s
t+τ0

r(u)du
h(s). (3.2.2)

Note for the expectation in formula (3.2.1) the expression inside integration involves
discounting to the beginning of unemployment at time t+ τ0.

Example 3.2.1. A specific example of the benefit schedule h(s) may be as follows,

h(s) =

h0 , t+ τ0 ≤ s ≤ t+ s0 + τ0,

h0 e−
∫ s
t+s0+τ0

δ(u)du
, s ≥ t+ s0 + τ0,

(3.2.3)
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where 0 < h0 ≤ 1 and δ(t) > 0. Thus, the insured receives a certain fraction of their
final wage (i.e., h0Xt+τ0) for a grace period 0 ≤ s0 ≤ ∞, after which the benefit is
falling down exponentially with rate δ(t). This example is motivated by the declining
unemployment compensation system in France [76].1

Let us consider the following assumption because the nature of the wage dynamics
in (3.1.1) presents a further numerical challenge when solving the optimal stopping
problem.

Assumption 3.2.1. Let us assume that µ(t) = µ and σ(t) = σ > 0 so that (3.1.2) can be
written as (2.1.2). For further computations, we also assume that λ0 and β ∈ C1(R+)
and δ(u) = δ > 0.

Having specified the schedule function, β(t+τ0) in (3.2.1) is calculated from (3.2.2)
as

β (t+ τ0) = h0

(∫ t+τ0+s0

t+τ0
e−
∫ s
t+τ0

(r(u)+λ1(u))duds

+
∫ ∞
t+τ0+s0

e−
∫ s
t+τ0

(r(u)+λ1(u))due−
∫ s
t+s0+τ0

δduds
)
. (3.2.4)

Then, at τ0 = 0 (3.2.1) is written as

f(t,Xt,x
t ) = Xt,x

t β(t). (3.2.5)

where

β(t) = h0

(∫ t+s0

t
e−
∫ s
t

(r(u)+λ1(u))duds+
∫ ∞
t+s0

e−
∫ s
t

(r(u)+λ1(u))due−
∫ s
t+s0

δduds
)
.

(3.2.6)

Returning to the general case, if the contract is entered immediately (subject to the
payment of premium P ), then the expected benefit discounted to the entry time t is
given by the gain function

g(t, x) := Et,x
(

e−
∫ t+τ0
t

r(u)duβ (t+ τ0)Xt+τ0

)
− P, (3.2.7)

where x is the starting wage and the symbol Et,x now indicates expectation conditional
on Xt = x. Recall that the random time τ0 is independent of the process (Xt) and has

1More specifically, according to the French UI system back in the 1990s (see [76, p. 8])
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3.2 Setting the optimal stopping problem

exponential distribution with parameter λ0(t). The expectation in (3.2.7) is computed
as follows,

Et,x
(

e−
∫ t+τ0
t

r(u)duβ(t+ τ0)Xt+τ0

)

= Et,x
(

Et,x
(

e−
∫ t+τ0
t

r(u)duβ(t+ τ0)Xt+τ0

∣∣FX∞
))

= Et,x
(∫ ∞

0
e−
∫ t+s
t

r(u)duβ(t+ s)λ0(t+ s)Xt+se−
∫ t+s
t

λ0(u)duds
)
. (3.2.8)

We apply Fubini’s theorem (see A.1.1) to derive

Et,x
(

e−
∫ t+τ0
t

r(u)duβ(t+ τ0)Xt+τ0

)

=
∫ ∞

0
e−
∫ t+s
t

(r(u)+λ0(u))duβ(t+ s)λ0(t+ s)Et,x (Xt+s) ds (3.2.9)

Using explicit formula in (3.1.2) for Et,x (Xt+s) we obtain

Et,x
(

e−
∫ t+τ0
t

r(u)duβ(t+ τ0)Xt+τ0

)

=
∫ ∞

0
e−
∫ t+s
t

(r(u)+λ0(u)−µ)duxβ(t+ s)λ0(t+ s)ds

=
∫ ∞
t

e−
∫ s
t

(r(u)+λ0(u)−µ)duxβ(s)λ0(s)ds

= xβ1(t) (3.2.10)

where
β1(t) :=

∫ ∞
t

e−
∫ s
t

(r̃(u)−µ)duβ(s)λ0(s)ds. (3.2.11)

Thus, substituting (3.2.10) into (3.2.7) and denoting

r̃(u) := r(u) + λ0(u), (3.2.12)

the gain function is represented explicitly as

g(t, x) = g̃(t, x)− P = xβ1(t)− P. (3.2.13)

Of course, the computation in (3.2.10) is only meaningful as long as

lim sup
s→∞

M(s)
R̃(s)

< 1 (3.2.14)

where M(t) =
∫ s
t µdu and R̃(u) =

∫ s
t r̃(u)du.
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3.2 Setting the optimal stopping problem

Assumption 3.2.2. In what follows, we always assume that the condition (3.2.14) is
satisfied and r̃(u) > r(u) > 0. In that case, we further assume that r̃(u) ≥ µ for all u.

Remark 3.2.1. In real life applications, the wage growth rate µ is rather small (but may
be either positive or negative). It is unlikely to exceed the inflation rate r(u), but even
if it does, then it is hardly possible economically that it is greater than the combined
inflation–unemployment rate r̃(u) = r(u) + λ0(u). Thus, the condition (3.2.14) is
absolutely realistic.

The expected net present value (eNPV) of the total gain as a function of the initial
wage x, using the expression (3.2.13), is given by

eNPV(t, x; t+ τ) := Et,x
[
e−
∫ t+τ
t

r(u)du
(

e−
∫ t+τ0
t+τ r̃(u)du

β (t+ τ0)Xt+τ0 − P
)
1{τ<τ0}

]
,

(3.2.15)
where τ is the entry time an individual joins the UI scheme and a stopping time of
(Ft)t≥0. The expectation on the right now also includes averaging with respect to t+τ ,
which is a functional of the path (Xt). Note that the indicator function under the
expectation specifies that the entry time t+ τ must occur prior to t+ τ0, for otherwise
there will be no gain.

Lemma 3.2.1. The expected net present value defined by formula (3.2.15) can be ex-
pressed in the form

eNPV(t, x; t+ τ) = Et,x
[
e−
∫ t+τ
t

r̃(u)dug(t+ τ,Xt+τ )
]
, (3.2.16)

where the function g(·) is defined in (3.2.7) and r̃(u) = r(u) + λ0(u) (see (3.2.11)).

Proof. Since the distribution of τ0 is exponential, (and hence memoryless), the excess
time τ̃0 := τ0−τ conditioned on {τ < τ0} is again exponentially distributed. Thus, from
[120, §II.7, Property G*, p. 216]) it is possible to say that conditioning on (t+τ,Xt+τ ),
together with the (strong) Markov property of the process (Xt), we get from (3.2.15)
that
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3.2 Setting the optimal stopping problem

eNPV(x; t+ τ)

=Et,x
[
Et,x

(
e−
∫ t+τ
t

r(u)du
(
e−
∫ t+τ+τ̃0
t+τ r(u)du

β(t+ τ + τ̃0)Xt+τ+τ̃0 − P
)

· 1{τ0>τ}

∣∣∣ t+ τ,Xt+τ

)]

=Et,x
[
e−
∫ t+τ
t

r(u)duEt,x
(

e−
∫ t+τ+τ̃0
t+τ r(u)du

β(t+ τ + τ̃0)Xt+τ+τ̃0 − P
∣∣∣ t+ τ,Xt+τ

)

· Et,x
(
1{τ0>τ}

∣∣ t+ τ,Xt+τ
)]
. (3.2.17)

Equation (3.2.17) can further be written as

eNPV(x; t+ τ)

=Et,x
[
e−
∫ t+τ
t

r(u)duEt+τ,Xt+τ

(
e−
∫ τ̃0

0 r(u)duβ(τ̃0)X̃τ̃0 − P
)

· Pt,x
(
τ0 > τ

∣∣∣ t+ τ

)]
. (3.2.18)

By virtue of the strong Markov property (see [107] for detailed explanation), we trans-
late to the present wage dynamics such that X̃t := Xτ+t (t ≥ 0) is a shifted wage
process starting at X̃0 = Xτ . Substituting Px

(
τ0 > τ | t + τ

)
= e−

∫ t+τ
t

λ0(u)du and
(3.2.7), formula (3.2.18) is reduced to (3.2.16).

3.2.1 The optimal stopping problem

To summarize, the identification of the optimal entry time τ = τ∗, in the sense of
maximizing the expected net present value eNPV(x; t+ τ) as a function of the strategy
τ (see (3.2.16)), is reduced to solving the following optimal stopping problem,

v(t, x) = sup
τ

Et,x
[
e−
∫ t+τ
t

r̃(u)dug(t+ τ,Xt+τ )
]
, (3.2.19)

where the function g(t, x) is given by (3.2.13) and the supremum is taken over the class
of all (Ft)t≥0 stopping times τ . The supremum v(t, x) in (3.2.19) is called the value
function of the optimal stopping problem.
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3.2 Setting the optimal stopping problem

3.2.2 Free-boundary problem

Next, based on the shift property of Brownian motion and thanks to Assumption 3.2.1
also we notice that Law(Xx

· ) = Law(Xt,x
t+·). Let us look more closely at the nature of

the value function v(t, x) that we are trying to identify. Observe that by picking τ = 0
in (3.2.19) yields the lower estimate

v(t, x) ≥ g(t, x). (3.2.20)

Clearly, if v(t, x) > g(t, x) then we have not yet achieved the maximum payoff available,
so we should continue to wait. On the other hand, if v(t, x) = g(t, x) then the maximum
has been attained and we should stop. This motivates the definition of the two regions,
C (continuation) and S (stopping),

C := {(t, x) ∈ R+ × R+ : v(t, x) > g(t, x)}, S := {(t, x) ∈ R+ × R+ : v(t, x) = g(t, x)}.
(3.2.21)

From the general optimal stopping theory in [107, §II.2.2], the smallest optimal
stopping time is

τ∗ = inf{s ∈ [0,∞) : (t+ s,Xt+s) ∈ S}. (3.2.22)

The key part of our work is to find the shape of the set S.
Recall (see the proof of Lemma 3.3.1(i)) that a zero value of the stopping problem

(3.2.19) is achieved by simply using the strategy τ ≡ ∞, that is, by never joining the
scheme. Thus, if the initial wage Xt = x is small (e.g., such that g(t, x) = β1(t)x−P <

0) then, in order to secure a positive payoff, we should wait for a sufficiently high wage
Xt. This suggests that the stopping rule (3.2.22) is reduced to the first hitting time for
a certain set in R+ × R+. Furthermore, we expect the simplest situation whereby the
regions C and S are determined by a threshold function b(t),

C := {(t, x) ∈ R× R : x ∈ [0, b(t))}, S := {(t, x) ∈ R× R : x ∈ [b(t),∞)}. (3.2.23)

In other words, the conjectural hitting boundary that determines the stopping rule
depends on time. This conjecture will be fully demonstrated in the next section.

Remark 3.2.2. The geometric Brownian motion determined by the stochastic differential
equation (3.1.1) is a diffusion process with the infinitesimal generator

L := µx
d

dx + 1
2σ

2x2 d2

dx2 . (3.2.24)
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3.2 Setting the optimal stopping problem

On the boundary x = b(t) of the set C, due to the stopping rule (3.2.22) we have
v(t, x) = g(t, x). Moreover, we must satisfy the smooth fit principle (see [107, §9.1]).
In view of this, the standard Markovian arguments (see, e.g., [107, Ch. III]) indicate
that the value function from (3.1.1) should solve the following free-boundary problem:

(∂t + L− r̃(t)) v(t, x) = 0, in C,

v(t, x) = g(t, x) = β1(t)x− P, x = b(t),

vx(t, x) = gx(t, x) = β1(t), x = b(t),

vt(t, x) = gt(t, x) = ∂tβ1(t)x, x = b(t),

(3.2.25)

where vx(t, x) = ∂xv(t, x), vt(t, x) = ∂tv(t, x), gx(t, x) = ∂xg(t, x) and gt(t, x) = ∂tg(t, x).
We will now proceed to rigorously prove that (3.2.25) indeed holds.

Lemma 3.2.2. Let g̃(t, x) := xβ1(t). We have(
L− r̃(t) + d

dt

)
g̃(t, x) = −λ0(t)xβ(t) = −λ0(t)f(t, x) (3.2.26)

Proof. Note that g̃(t, x) := xβ1(t) :=
∫∞
t e−

∫ s
t

(r̃(u)−µ)duβ(s)λ0(s)ds from (3.2.10) and
(3.2.13). To prove (3.2.26), we first notice

Lg̃(t, x) = µx
d

dxg̃(t, x) + 1
2σ

2x2 d2

dx2 g̃(t, x)

= µx

(∫ ∞
t

e−
∫ s
t

(r̃(u)−µ+λ0(u))duβ(s)λ0(s)ds
)
. (3.2.27)

We also apply Leibniz integral rule to derive

d
dt g̃(t, x) =

(
r̃(u)− µ+ λ0(u)

)∫ ∞
t

e−
∫ s
t

(r̃(u)−µ+λ0(u))duβ(s)λ0(s)ds

− xβ(t)λ0(t). (3.2.28)

We then combine (3.2.27) and (3.2.28) along with (3.2.11) to obtain (3.2.26).

Making use of the above argument, the optimal stopping problem in (3.2.19) is
presented in another way in order to examine the scope of the optimal stopping problem
in a clearer manner.

Lemma 3.2.3. The optimal stopping problem (3.2.19) can be rewritten as

v(t, x) := sup
τ

Et,x
(∫ t+τ

t
e−
∫ s
t
r̃(u)du (r̃(s)P − λ0(s)f(s,Xs)ds)

)
+ g̃(t, x)−P (3.2.29)
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3.3 Properties of the value function

Proof. We apply Itô formula to g̃(t+ τ,Xt+τ )− P and take expectation to derive

Et,x
(

e−
∫ s
t
r̃(u)du (g̃(t+ τ,Xt+τ )− P )

)
= Et,x

(∫ t+τ

t
e−
∫ s
t
r̃(u)du

(
L− r̃(s) + d

ds

)
g̃(s,Xs)ds

)
+ Et,x

(∫ t+τ

t
e−
∫ s
t
r̃(u)dur̃(s)Pds

)
+ g̃(t, x)− P

= g̃(t, x)− P + Et,x
(∫ t+τ

t
e−
∫ s
t
r̃(u)du

(
−λ0f(s,Xs)r̃(s)P

)
ds
)

+ Et,x
(∫ t+τ

t
e−
∫ s
t
r̃(u)dur̃(s)Pds

)
. (3.2.30)

From (3.2.26), it is observed that
(
L− r̃(s) + d

ds

)
g̃(s,Xs) = −λ0f(s,Xs) . The su-

premum is taken over the class of all admissible τ on (3.2.30) to derive (3.2.29).

In order to determine the structure of the optimal stopping time (i.e. the shape of
the sets C and D) we will first examine basic properties of the value function.

3.3 Properties of the value function

In this section, we prove sufficiently many properties of the value function to enable us
to prove the existence of an optimal boundary and that the optimal time to enter the
UI scheme is when an individual’s wage hits the boundary.

3.3.1 A priori properties of the value function v(t, x)

The next lemma shows that the optimal stopping problem given in (3.2.19) is well
posed.

Lemma 3.3.1. The value function (t, x) 7→ v(t, x) of the optimal stopping problem
(3.1.1) has the following properties: for all t ∈ [0, T ], then

(i) v(t, 0) = 0 and, moreover, v(t, x) ≥ 0 for all x ≥ 0;

(ii) v(t, x) <∞ for all x ≥ 0.

Proof. (i) Based on assumption 3.2.1 where r(t) ≥ r0 > 0, we fix t and let Xt ≡ 0
(Pt,0-a.s.) and the stopping problem (3.1.1) is reduced to

v(t, 0) = sup
τ

Et,0
[
−P e−

∫ t+τ
t

r̃(u)du] = −P inf
τ

Et,0
[
e−
∫ t+τ
t

r̃(u)du] = 0, (3.3.1)
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which has the obvious solution τ = ∞ (Pt,0-a.s.), with the corresponding supremum
value v(t, 0) = 0. Furthermore, by considering τ =∞ (Pt,x-a.s.) it readily follows from
(3.1.1) that v(t, x) ≥ 0 for all x ≥ 0 for fixed t.

(ii) Recalling that

v(t, x) = sup
τ

E
(

e−
∫ τ

0 r̃(t+s)dsg (t+ τ,Xx
τ )
)

= sup
τ

E
(

e−
∫ τ

0 r̃(t+s)ds (β1(t+ τ)Xx
τ − P )

)
. (3.3.2)

From (3.2.11), it can be seen that t→ β1(t+ τ) is decreasing so that β1(t+ τ) ≤ β1(t)
then

v(t, x) ≤ sup
τ

E
(

e−
∫ τ

0 r̃(t+s)dsβ1(t+ τ)Xx
τ

)
≤ sup

τ
E
(

e−
∫ τ

0 r̃(t+s)dsβ1(t)Xx
τ

)
. (3.3.3)

From Assumption 3.2.2 it follows that the process e−
∫ t+s
t

r̃(u)duXt+s is a supermartin-
gale for s ∈ (0,∞) based on Assumption 3.2.2. Also, using assumption 3.2.1 and (3.1.2)
we have that

E
[
e−
∫ t+s
t

r̃(u)duXt+s
∣∣Ft] = e−

∫ t+s
t

r̃(u)duxE
[
eσ(Bt+s−Bt)+(µ− 1

2σ
2)s∣∣Ft]

= xe−
∫ t+u
t

r̃(u)du+µsE
[
eσ(Bt+s−Bt)− 1

2σ
2s
∣∣Ft]

≤ x. (3.3.4)

In particular,
E
[
e−
∫ t+s
t

r̃(u)duXt+s
]
≤ E(Xt) = x.

Hence, by Doob’s optional sampling theorem (see, e.g., [138, Theorem 6.1(a), p. 87, and
Theorem 8.10, p.131]), for any stopping time τ and all n ∈ N, we have

E
[
e−
∫ (t+τ)∧(t+n)
t

r̃(u)duX(t+τ)∧(t+n)
]
≤ E(Xt) = x.

Furthermore, noting that

lim
n→∞

e−
∫ (t+τ)∧(t+n)
t

r̃(u)duX(t+τ)∧(t+n) = e−
∫ t+τ
t

r̃(u)duXt+τ (Px-a.s.),

by Fatou’s lemma (see, e.g., [120, §II.6, Theorem 2(a), p.187]) we conclude that

E
[
e−
∫ t+τ
t

r̃(u)duXt+τ
]
≤ x,

and it readily follows that the supremum in (3.2.19) is finite.
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3.3.2 Time monotonicity of the value function

Next, we prove time monotonicity of the value function relative to the stopping payoff.
This property addresses the time dependence of the value function and the results will
later be used to study the time dependence of the optimal boundary.

u(t, x) := v(t, x)− g(t, x) = sup
τ

E
(∫ t+τ

t
e−
∫ s
t
r̃(u)du (r̃(s)P − λ0(s)f(s,Xs)ds)

)
.

(3.3.5)
It turns out that the following steps are helpful in deriving assumptions to make certain
conclusions more elegant.

Proposition 3.3.2. (i) If t 7→ r̃(t) is increasing and t 7→ λ0(t)β(t) is decreasing,
then t 7→ u(t, x) is increasing.

(ii) If t 7→ r̃(t) is decreasing and t 7→ λ0(t)β(t) is increasing, then t 7→ u(t, x) is
decreasing.

Proof. (i) Fix t1 < t2 and pick τ∗ = τ∗(t1, x) = τ1 as the optimal time for u(t1, x). We
know from assumption 3.2.1 that Xt,x

t+s = Xs due to µ(t) = µ and σ(t) = σ. Then τ1 is
suboptimal for u(t2, x) and we get

u(t1, x)− u(t2, x)

≤ E
(∫ τ1

0
e−
∫ s

0 r̃(t1+u)du
(
r̃(t1 + s)P − λ0(t1 + s)f(t1 + s,Xt1,x

t1+s)ds
))

− E
(∫ τ1

0
e−
∫ s

0 r̃(t2+u)du
(
r̃(t2 + s)P − λ0(t2 + s)f(t2 + s,Xt2,x

t2+s)ds
))

. (3.3.6)

Note that
∫ τ1

0 e−
∫ s

0 r̃(t1+u)dur̃(t1 + s)ds = 1 − e−
∫ τ1

0 r̃(t1+u)du, so that (3.3.6) can be
written as

u(t1, x)− u(t2, x) ≤ E
(
P

(
e−
∫ τ1

0 r̃(t2+u)du − e−
∫ τ1

0 r̃(t1+u)du
))

+ E
(∫ τ1

0
e−
∫ s

0 r̃(t2+u)duλ0(t2 + s)f(t2 + s,Xt2,x
t2+s)ds

)
− E

(∫ τ1

0
e−
∫ s

0 r̃(t1+u)duλ0(t1 + s)f(t1 + s,Xt1,x
t1+s)ds

)
. (3.3.7)
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Also, if t 7→ r̃(t) is increasing then

u(t1,x)− u(t2, x)

≤E
(
P · 0 +

∫ τ1

0
e−
∫ s

0 r̃(t2+u)duλ0(t2 + s)f(t2 + s,Xx
s )ds

)
− E

(∫ τ1

t
e−
∫ s

0 r̃(t1+u)duλ0(t1 + s)f(t1 + s,Xx
s )ds

)

≤E
(∫ τ1

0
e−
∫ s

0 r̃(t1+u)du
(
λ0(t2 + s)f(t2 + s,Xx

s )− λ0(t1 + s)f(t1 + s,Xx
s )
)
ds
)
.

(3.3.8)

We see from (3.2.5) that f(t+ s,Xs) = Xsβ(t+ s). If t 7→ λ0(t)β(t) is decreasing then
t 7→ u(t, x) is increasing.

(ii) Fix t2 > t1 and pick τ∗ = τ∗(t2, x) = τ2 as the optimal time for u(t2, x). Since
τ2 is sub-optimal for u(t, x) we have

u(t1, x)− u(t2, x)

≥ E
(∫ τ2

0
e−
∫ s

0 r̃(t1+u)du
(
r̃(t1 + s)P − λ0(t1 + s)f(t1 + s,Xt1,x

t1+s)ds
))

− E
(∫ τ2

0
e−
∫ s

0 r̃(t2+u)du
(
r̃(t2 + s)P − λ0(t2 + s)f(t2 + s,Xt2,x

t2+s)ds
))

≥ E
(
P

(
e−
∫ τ2

0 r̃(t2+u)du − e−
∫ τ2

0 r̃(t1+u)du
))

+ E
(∫ τ2

0
e−
∫ s

0 r̃(t2+u)duλ0(t2 + s)f(t2 + s,Xt2,x
t2+s)ds

)
− E

(∫ τ2

0
e−
∫ s

0 r̃(t1+u)duλ0(t1 + s)f(t1 + s,Xt1,x
t1+s)ds

)
. (3.3.9)

If t 7→ r̃(t) is decreasing then

u(t1, x)− u(t2, x) ≥ E
(
P · 0

)
+ E

(∫ τ2

0
e−
∫ s

0 r̃(t1+u)du
(
λ0(t2 + s)f(t2 + s,Xx

s )− λ0(t1 + s)f(t1 + s,Xx
s )
)
ds
)
.

(3.3.10)

Again, if t 7→ λ0(t)β(t) is increasing then t 7→ u(t, x) is decreasing.

The proposition above has a clear economic interpretation which is explained in
detail in Section 3.6.2. In the next corollary, we provide simple sufficient conditions for
the monotonicity of t 7→ u(t, x), in terms of conditions on the model parameters.
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Corollary 3.3.3. The map t 7→ u(t, x) is increasing whenever λ′0(t)
λ0(t) ≤

1
γ+δ and t 7→

u(t, x) is decreasing whenever λ′0(t)
λ0(t) ≥

1
γ+δ .

Proof. This corollary is proved using Proposition 3.3.2. (i) t 7→ λ0(t)β(t) is decreasing

if and only if
λ′0(t)β(t) + β′(t)λ0(t) ≤ 0⇐⇒ λ′0(t)

λ0(t) ≤ −
β′(t)
β(t) . (3.3.11)

From Assumption 3.2.1 we have that

β(t) = h0

(∫ t+γ

t
e−
∫ s
t
r̃(u)duds+

∫ ∞
t+γ

e−
∫ s
t
r̃(u)due−

∫ s
t+γ δduds

)
. (3.3.12)

Given that e−
∫ s
t
r̃(u)du ≤ 1 then

β(t) ≤ h0

(∫ t+γ

t
1ds+

∫ ∞
t+γ

e−
∫ s
t+γ δduds

)
= h0

(
γ + 1

δ

)
. (3.3.13)

Thus, we have that
h0
β(t) ≥

1
γ + 1

δ

. (3.3.14)

Also,

β′(t) = h0

(
e−
∫ t+γ
t

r̃(u)du − e
∫ t
t
r̃(u)du + e

∫∞
t

r̃(u)due−δ(∞−t−s0)
)

− h0

(
e−
∫ t+γ
t

r̃(u)due−δ(t+s0−t−s0)
)

= −h0. (3.3.15)

Using (3.3.15), (3.3.11) can further be written as
λ′0(t)
λ0(t) ≤

h0
β(t) . (3.3.16)

Thus, (3.3.14) and (3.3.16) imply the first claim.

(ii) On the other hand, t 7→ λ0(t)β(t) is increasing if and only if

λ′0(t)β(t) + β′(t)λ0(t) ≥ 0⇐⇒ λ′0(t)
λ0(t) ≥ −

β′(t)
β(t) . (3.3.17)

We repeat the computation steps in (i) and derive

β(t) ≥ h0

(
γ + 1

δ

)
=⇒ h0

β(t) ≤
1

γ + 1
δ

. (3.3.18)

Then (3.3.17) holds if
λ′0(t)
λ0(t) ≥

h0
β(t) . (3.3.19)

Hence combining (3.3.18) and (3.3.19), it is sufficient to have that λ′0(t)
λ0(t) ≥

1
γ+δ .

83



3.3 Properties of the value function

From the arguments above, we have sufficiently many conditions to show that the
boundary is time dependent.

3.3.3 Continuity of the value function

The proof of the value function’s continuity establishes the existence of the optimal
boundary. Thus, we proceed by proving that (t, x) 7→ u(t, x) is continuous on R2

+ in
the subsequent arguments.

Proposition 3.3.4. The map x 7→ u(t, x) is decreasing.

Proof. Let t ∈ [0, t) and fix y ≥ x for all x, y ∈ R then

u(t, y)− u(t, x)

= sup
τ

E
(∫ τ

0
e−
∫ s

0 r̃(t+u)du
(
r̃(t+ s)P − λ0(t+ s)f(t+ s,Xt,y

t+s) ds
))

− sup
θ

E
(∫ θ

0
e−
∫ s

0 r̃(t+u)du
(
r̃(t+ s)P − λ0(t+ s)f(t+ s,Xt,x

t+s) ds
))

≤ sup
τ

E
(∫ τ

0
e−
∫ s

0 r̃(t+u)du
(
λ0(t+ s)f(t+ s,Xt,y

t+s)− λ0(t+ s)f(t+ s,Xt,x
t+s) ds

))
= sup

τ
E
(∫ τ

0
e−
∫ s

0 r̃(t+u)duλ0(t+ s)β(t+ s)
(
−Xt,y

t+s +Xt,x
t+sds

)
ds
)

= sup
τ

E
(∫ τ

0
e−
∫ s

0 r̃(t+u)duλ0(t+ s)β(t+ s) (−y + x) e
(∫ t+s

t
σdBu+

∫ t+s
t

(
µ−σ

2
2

)
du
))

≤0. (3.3.20)

Hence x→ u(t, x) is decreasing.

Proposition 3.3.5. The map (t, x) 7→ u(t, x) is continuous on R2
+.

Proof. Let us denote H(t, x) := r̃(t)P−λ0(t)f(t, x) = r̃(t)P−λ0(t)β(t)x and substitute
it into (3.3.5) to yield

u(t, x) = sup
τ

E
(∫ τ

0
e−
∫ s

0 r̃(t+u)duH(t+ s,Xx
s )ds

)
. (3.3.21)
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3.3 Properties of the value function

Take t2 > t1 ∈ R and let τ1 = τ∗(t1, x1) be optimal for u(t1, x1). Then

u(t1, x1)− u(t2, x2)

≤ E
(∫ τ1

0
e−
∫ s

0 r̃(t1+u)duH(t1 + s,Xx1
s )ds−

∫ τ1

0
e−
∫ s

0 r̃(t2+u)duH(t2 + s,Xx2
s )ds

)
= E

(∫ τ1

0
e−
∫ s

0 r̃(t1+u)du (H(t1 + s,Xx1
s )−H(t2 + s,Xx2

s )) ds
)

+ E
(∫ τ1

0

(
e−
∫ s

0 r̃(t1+u)du − e−
∫ s

0 r̃(t2+u)du
)
H(t2 + s,Xx2

s )ds
)
. (3.3.22)

We establish that

H(t1 + s,Xx1
s )−H(t2 + s,Xx2

s )

= P (r̃(t1 + s)− r̃(t2 + s)) + λ0(t2 + s)β(t2 + s)Xx2
s

− λ0(t1 + s)β(t1 + s)Xx1
s

= P (r̃(t1 + s)− r̃(t2 + s))

+ (λ0(t2 + s)β(t2 + s)− λ0(t1 + s)β(t1 + s))Xx2
s

+ λ0(t1 + s)β(t1 + s)(Xx2
s −Xx1

s )

= P (r̃(t1 + s)− r̃(t2 + s))

+ (λ0(t2 + s)β(t2 + s)− λ0(t1 + s)β(t1 + s))Xx2
s

+ λ0(t1 + s)β(t1 + s)(x2 − x1)X1
s (3.3.23)

where X1
s = 1 exp

(
σBt +

(
µ− σ2

2

)
t
)
. We substitute (3.3.23) into (3.3.22) along with

the property E(a− b) ≤ E(|a− b|) for a, b ∈ R to obtain

u(t1, x1)− u(t2, x2)

≤ E
(∫ τ1

0
e−
∫ s

0 r̃(t1+u)duP
∣∣∣ (r̃(t1 + s)− r̃(t2 + s))

∣∣∣ds)
+ E

(∫ τ1

0
e−
∫ s

0 r̃(t1+u)duXx2
s

∣∣∣λ0(t2 + s)β(t2 + s)− λ0(t1 + s)β(t1 + s)
∣∣∣ds)

+ E
(∫ τ1

0
e−
∫ s

0 r̃(t1+u)duλ0(t1 + s)β(t1 + s)
∣∣∣x2 − x1

∣∣∣X1
sds

)
+ E

(∫ τ1

0

∣∣∣e− ∫ s0 r̃(t1+u)du − e−
∫ s

0 r̃(t2+u)du
∣∣∣ · ∣∣∣H(t2 + s,Xx2

s )
∣∣∣ds) . (3.3.24)

All the integrals above are bounded from above and by replacing τ1 with +∞ we have
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that

u(t1, x1)− u(t2, x2)

≤ E
(∫ ∞

0
e−
∫ s

0 r̃(t1+u)duP
∣∣∣ (r̃(t1 + s)− r̃(t2 + s))

∣∣∣ds)
+ E

(∫ ∞
0

e−
∫ s

0 r̃(t1+u)duXx2
s

∣∣∣λ0(t2 + s)β(t2 + s)− λ0(t1 + s)β(t1 + s)
∣∣∣ds)

+ E
(∫ ∞

0
e−
∫ s

0 r̃(t1+u)duλ0(t1 + s)β(t1 + s)
∣∣∣x2 − x1

∣∣∣X1
sds

)
+ E

(∫ ∞
0

∣∣∣e− ∫ s0 r̃(t1+u)du − e−
∫ s

0 r̃(t2+u)du
∣∣∣ · ∣∣∣H(t2 + s,Xx2

s )
∣∣∣ds) . (3.3.25)

Letting
∣∣x2 − x1

∣∣ ↓ 0 and
∣∣t2 − t1∣∣ ↓ 0 then we see that, by dominated convergence,

lim sup
(t1,x1)→(t2,x2)

(u(t1, x1)− u(t2, x2)) ≤ 0. (3.3.26)

Next, we fix t1 > t2 ∈ R and choose τ2 = τ∗(t2, x2) as optimal for u(t2, x2). It follows
that

u(t1, x1)− u(t2, x2)

≥ E
(∫ τ2

0
e−
∫ s

0 r̃(t1+u)duH(t1 + s,Xx1
s )ds−

∫ τ2

0
e−
∫ s

0 r̃(t2+u)duH(t2 + s,Xx2
s )ds

)
= E

(∫ τ2

0
e−
∫ s

0 r̃(t2+u)du (H(t2 + s,Xx2
s )−H(t1 + s,Xx1

s )) ds
)

+ E
(∫ τ2

0

(
e−
∫ s

0 r̃(t2+u)du − e−
∫ s

0 r̃(t1+u)du
)
H(t1 + s,Xx1

s )ds
)
. (3.3.27)

We see that

H(t2 + s,Xx2
s )−H(t1 + s,Xx1

s )

= P (r̃(t2 + s)− r̃(t1 + s))

+ (λ0(t1 + s)β(t1 + s)− λ0(t2 + s)β(t2 + s))Xx1
s

+ λ0(t2 + s)β(t2 + s)(x1 − x2)X1
s (3.3.28)

Recall that t1 > t2 along with the property −E(a − b) ≥ −E(|a − b|) for a, b ∈ R. We
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then substitute (3.3.28) into (3.3.27) to derive

u(t1, x1)− u(t2, x2)

≥ E
(∫ τ2

0
e−
∫ s

0 r̃(t2+u)duP
∣∣∣r̃(t2 + s)− r̃(t1 + s)

∣∣∣ds)
+ E

(∫ τ2

0
e−
∫ s

0 r̃(t2+u)duXx1
s

∣∣∣λ0(t1 + s)β(t1 + s)− λ0(t2 + s)β(t2 + s)
∣∣∣ds)

+ E
(∫ τ2

0
e−
∫ s

0 r̃(t2+u)duλ0(t2 + s)β(t2 + s)
∣∣∣x1 − x2

∣∣∣X1
sds

)
+ E

(∫ τ2

0

∣∣∣e−∫ s0 r̃(t2+u)du − e−
∫ s

0 r̃(t1+u)du
∣∣∣ · (H(t1 + s,Xx1

s )) ds
)
. (3.3.29)

Again letting
∣∣x1 − x2

∣∣ ↓ 0 and
∣∣t1 − t2∣∣ ↓ 0 we see that

lim inf
(t1,x1)→(t2,x2)

(u(t1, x1)− u(t2, x2)) ≥ 0. (3.3.30)

This and (3.3.26) prove that (t, x) 7→ u(t, x) is continuous on R2.

Note that the arguments above are particularly useful and provide sufficient condi-
tions to prove the existence of an optimal boundary.

3.4 Existence of an optimal boundary

The aim of this section is to prove the existence of the optimal stopping boundary given
that

C := {(t, x) ∈ R× R : u(t, x) > 0}, S := {(t, x) ∈ R× R : u(t, x) = 0}. (3.4.1)

The subsequent arguments show that there is a non empty stopping set that has a time
dependent boundary and a collection of points above or below the boundary depending
on the time monotonic nature of the value function.

Lemma 3.4.1. From Proposition 3.3.4, x 7→ u(t, x) is decreasing. Moreover, recalling
Proposition 3.3.2,

(i) If t 7→ u(t, x) is decreasing then (t, x) ∈ S =⇒ (t′, x) ∈ S ∀ t′ ≥ t.

(ii) If t 7→ u(t, x) is increasing then (t, x) ∈ S =⇒ (t′, x) ∈ S ∀ t′ ≤ t.

Proof. (i)The map x 7→ u(t, x) is decreasing then ∀ x′ ≥ x, u(t, x) ≥ u(t, x′). We know
that u(t, x) ≥ 0 ∀ x and u(t, x) = 0 in S. Then if (t, x) ∈ S

0 = u(t, x) ≥ u(t, x′) ≥ 0 =⇒ u(t, x′) = 0. (3.4.2)
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3.4 Existence of an optimal boundary

Also, when the map t 7→ u(t, x) is decreasing then ∀ t′ ≥ t, u(t, x) ≥ u(t′, x). Again,
u(t′, x) ≥ 0 ∀ t and u(t, x) = 0 in S. Thus, if (t, x) ∈ S

0 = u(t, x) ≥ u(t′, x) ≥ 0 =⇒ u(t′, x) = 0. (3.4.3)

Analogous arguments allow us to prove (ii).

Recall from (3.3.5) that

u(t, x) = sup
τ

E
(∫ τ

0
e−
∫ s

0 r̃(t+u)duH(t+ s,Xx
s )ds

)
. (3.4.4)

where
H(t, x) := r̃(s)P − λ0(s)f(s,Xs). (3.4.5)

Proposition 3.4.2. H ∈ C(R2
+) and R := {(t, x) : H(t, x) > 0} ⊆ C.

Proof. The fact that H ∈ C(R2
+) follows from the continuity of r̃(t), λ0(t) and f(t, x).

Fix (t, x) ∈ R and take τR := inf{s ≥ 0 : (t+ s,Xx
s ) /∈ R}. Then

u(t, x) ≥ E
(∫ τR

0
e−
∫ s

0 r̃(t+u)duH(t+ s,Xx
s )ds

)
> 0. (3.4.6)

This implies that (t, x) ∈ {u > 0} = C, hence R ⊆ C since (t, x) was arbitrary.

Corollary 3.4.3. From Proposition 3.4.2, S ⊆ Rc := {(t, x) : H(t, x) ≤ 0}.

Theorem 3.4.4. The stopping set is not empty, that is S 6= ∅.

Proof. By contradiction assume that S = ∅ then τ∗ =∞ and ∀ (t, x) ∈ R2
+,

u(t, x) =E
(∫ ∞

0
e−
∫ s

0 r̃(t+u)du (r̃(t+ s)P − λ0(t+ s)f(t+ s,Xx
s )ds)

)
. (3.4.7)

Since E(Xx
s ) = xeµs then

u(t, x) =
∫ ∞

0
e−
∫ s

0 r̃(t+u)dur̃(t+ s)Pds− x
∫ ∞

0
e−
∫ s

0 (r̃(t+u)−µ)duλ0(t+ s)β(t+ s)ds

=
(

1− e−
∫ s

0 r̃(t+u)du
)
P − x

∫ ∞
0

e−
∫ s

0 (r̃(t+u)−µ)duλ0(t+ s)β(t+ s)ds

=:α(t, x). (3.4.8)

Thus limx↑∞ α(t, x) = −∞ and this is a contradiction because u(t, x) ≥ 0 ∀ x.
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The facts just proved above establishes the existence of a boundary such that the
continuation set (C) and the stopping set (S) are given by (3.4.1). With reference to
(3.2.25), let us recall that(∂t + L− r̃(t)) v(t, x) = 0, in C,

(∂t + L− r̃(t)) v(t, x) = H(t, x), in S\∂C.
(3.4.9)

Also, thanks to Lemma 3.4.1 and Theorem 3.4.4, we define

b(t) := sup{x ∈ R+ : u(t, x) > 0} = sup{x ∈ R+ : (t, x) ∈ C}. (3.4.10)

Now, let us show if the optimal boundary in (3.4.10) is a decreasing or increasing
function based on the conditions Corollary 3.3.3.

Corollary 3.4.5. (i) If t 7→ u(t, x) is decreasing, then the optimal boundary t 7→ b(t)
is decreasing.

(ii) If t 7→ u(t, x) is increasing, then the optimal boundary t 7→ b(t) is increasing.

Proof. (i) By contradiction assume that ∃ t0 < t1 such that b(t1) > b(t0). From the
definition of b(t) in (3.4.10), (t1, b(t0)) ∈ C whereas (t0, b(t0)) ∈ S. This contradicts
Corollary 3.4.3. The proof above for case (i) admits analogous arguments which can
be used to prove case (ii).

Proposition 3.4.6. (i) If the boundary is decreasing, then it is right continuous.

(ii) If the boundary is increasing, then it is left continuous.

Proof. We will prove the first statement in (i) as the second statement in (ii) follows
along the same lines. Let us pick t0 : b(t0) < +∞. Consider a decreasing sequence
(tn)n∈N such that tn ↓ t0 as n → ∞. The limit exists since b(.) is monotonic. Then
(tn, b(tn)) → (t0, b(t+0 )) as n → ∞ where b(t+0 ) := limn→∞ b(tn). Since (tn, b(tn)) ∈ S
for all n and S is closed, then it must be that (t0, b(t+0 )) ∈ S and hence b(t+0 ) ≥ b(t0) by
definition of b(t). Since b(.) is decreasing and tn > t0 then b(tn) ≤ b(t0). Take the limit
as n→∞, so that b(t+0 ) ≤ b(t0). Hence b(t+0 ) = b(t0) and b(·) is right continuous.

Next we show that the optimal boundary in (3.4.10) is continuous.

Proposition 3.4.7. If the boundary t 7→ b(t) is monotonic then it is continuous on
R+.
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3.4 Existence of an optimal boundary

Proof. This method of proof was developed from [31, 32, 33]. We only prove full
argument when the boundary is decreasing because the same result for an increasing
boundary can be proven by the same methods. Assume that there exists t0 such that a
discontinuity of b(.) occurs. That is, b(t+0 ) < b(t0) where b(t+0 ) denotes the right limit
of the boundary at t0. Consider an interval [x, x] such that b(t+0 ) < x < x < b(t0). By
monotonicity of b(·), we have that [0, t0)× [x, x] ⊂ C. Take tn ∈ [0, t0) and denote En
as the rectangle domain with vertices (tn, x), (t0, x), (t0, x), (tn, x). From (3.4.9), we see
that for all (t, x) ∈ C

(∂t + L− r̃(t))u(t, x) + r̃(t)P − λ0(t)f(t, x) = 0 (3.4.11)

holds. Pick an arbitrary non-negative function ψ that is continuously differentiable
infinitely many times and with compact support in the set [x, x], i.e. ψ ∈ C∞c ([x, x])
such that ψ ≥ 0, and

∫ x
x ψ(y)dy = 1. Since (3.4.11) holds in [0, t0)× [x, x], then for any

tn < t0 we have

0 =
∫ x

x
[(∂t + L− r̃(tn))u(tn, y) + r̃(tn)P − λ0(tn)f(tn, y)]ψ(y)dy. (3.4.12)

Recollect that t 7→ u(t, x) is decreasing then ∂tu(t, x) ≤ 0 such that (3.4.12) becomes

0 ≤
∫ x

x
[(L− r̃(t))u(t, y) + r̃(t)P − λ0(t)f(t, y)]ψ(y)dy. (3.4.13)

Apply integration by parts to the inequality (3.4.13) and recall that the function ψ(y)
has compact support then

0 ≤
∫ x

x
u(tn, y) (L∗ψ) (y)dy

+
∫ x

x
[−r̃(tn)u(tn, y) + r̃(tn)P − λ0(tn)f(tn, y)]ψ(y)dy (3.4.14)

where the adjoint operator in (3.4.13) is given by

(L∗ψ) (y) = µ
d
dy (y · ψ(y)) + 1

2σ
2 d2

dy2

(
y2 · ψ(y)

)
. (3.4.15)
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We take the limit tn → t0 as n→∞ so that

0 ≤ lim
n→∞

∫ x

x
u(tn, y) (L∗ψ) (y)dy

+
∫ x

x

[
− r̃(tn)u(tn, y) + r̃(tn)P − λ0(tn)f(tn, y)

]
ψ(y)dy

=
∫ x

x
u(t0, y) (L∗ψ) (y)dy

+
∫ x

x
[−r̃(t0)u(t0, y) + r̃(t0)P − λ0(t0)f(t0, y)]ψ(y)dy. (3.4.16)

Recall that u(t0, y) = 0 for all y ∈ [x, x] because it is (t0, y) ∈ S, then (3.4.16) becomes

0 ≤
∫ x

x
[r̃(t0)P − λ0(t0)f(t0, y)]ψ(y)dy =

∫ x

x
H(t0, x0)ψ(y)dy. (3.4.17)

Also from Proposition 3.4.2, H(t, x) := r̃(t)P − λ0(t)f(t, x),R := {(t, x) : H(t, x) >
0} ⊂ C and S ⊆ Rc := {(t, x) : H(t, x) ≤ 0}. Hence

0 ≤
∫ x

x
H(t0, y)ψ(y)dy ≤ 0. (3.4.18)

(3.4.18) implies H(t0, y) = 0 for all y ∈ [x, x], which is impossible because Hy(t0, y) < 0.
This is a contradiction and hence the proof.

Combining the arguments above establishes the existence of the optimal stopping
boundary.

3.5 Regularity of the value function

In this section, we show that the value function is sufficiently regular. The optimal
stopping time is given by

τ∗t,x = inf{s ∈ R+ : Xx
s ≥ b(t+ s)} = inf{s ∈ R+ : (t+ s,Xx

s ) ∈ S} (3.5.1)

for all (t, x) ∈ R2
+. Then τ∗t,x = 0 for any (t, x) ∈ ∂C. The argument of proof on the

regularity of the value function is guided by information from [34, §5] and [107, Ch
VI]. Thus from [34, 107], it is shown that for any sequence (tn, xn)n≥1 which converges
to (t0, x0) ∈ ∂C (that is x = b(t0)) as n→∞ then we obtain

lim
n→∞

τ∗tn,xn = 0 (P-a.s.) (3.5.2)
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Lemma 3.5.1. For all (t, x) ∈ R2
+\∂C we have

∂xv(t, x) = E
[
e−
∫ t+τ∗
t

r̃(u)duβ1(t+ τ∗t,x)X1
τ∗t,x

]
(3.5.3)

where X1
τ∗t,x

= d
dxXτ∗t,x

= e(µ−σ
2

2 )τ∗eσBτ∗ .

Proof. We know that the classical solution to v(t, x) is given by

∂tv(t, x) + Lv(t, x) = r̃(t)v(t, x) in ∂C. (3.5.4)

Then ∂xv(t, x) and ∂tv(t, x) exist and are continuous in C. Also, v(t, x) = g(t, x) =
β1(t)x − P in S implies that ∂xv(t, x) = β1(t) and ∂tv(t, x) = β′1(t)x for all (t, x) ∈
S\∂C. It remains to show that (3.5.3) holds for all (t, x) ∈ ∂C. Fix (t, x) ∈ ∂C and
take ε > 0. Let τ∗ = τ∗t,x be the optimal stopping time for our problem but sub-optimal
for our problem with value v(t, x+ ε). Then we have that

v(t, x+ ε)− v(t, x)

≥ E
[
e−
∫ t+τ∗
t

r̃(u)du
(
β1(t+ τ∗)(x+ ε)X1

τ∗ − P − β1(t+ τ∗)xX1
τ∗ + P

)]
= E

[
e−
∫ t+τ∗
t

r̃(u)duβ1(t+ τ∗)εX1
τ∗

]
. (3.5.5)

Multiply (3.5.5) by 1
ε and take limε→0 to derive

∂xv(t, x) = lim
ε→0

v(t, x+ ε)− v(t, x)
ε

≥ E
[
e−
∫ t+τ∗
t

r̃(u)duβ1(t+ τ∗)X1
τ∗

]
. (3.5.6)

Using the same argument, we also have that

v(t, x)− v(t, x− ε)

≤ E
[
e−
∫ t+τ∗
t

r̃(u)du
(
β1(t+ τ∗)xX1

τ∗ − P − β1(t+ τ∗)(x− ε)X1
τ∗ + P

)]
= E

[
e−
∫ t+τ∗
t

r̃(u)duβ1(t+ τ∗)εX1
τ∗

]
. (3.5.7)

Also,

∂xv(t, x) = lim
ε→0

v(t, x)− v(t, x− ε)
ε

≤ E
[
e−
∫ t+τ∗
t

r̃(u)duβ1(t+ τ∗)X1
τ∗

]
. (3.5.8)

Combining (3.5.6) and (3.5.8) we obtain

∂xv(t, x) = E
[
e−
∫ t+τ∗
t

r̃(u)duβ1(t+ τ∗)X1
τ∗

]
. (3.5.9)
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Lemma 3.5.2. For all (t, x) ∈ R2
+\∂C we have

∂tv(t, x) = E
[
e−
∫ t+τ∗
t

r̃(u)du ∂tβ1(t+ τ∗) Xτ∗

]
. (3.5.10)

Proof. Let (t, x) ∈ C and ε > 0. Pick τ∗ = τ∗t,x as the optimal for v(t, x), so that

v(t+ ε, x)− v(t, x) ≥E
[
e−
∫ t+ε+τ∗
t+ε r̃(u)du (β1(t+ ε+ τ∗)Xτ∗ − P )

]

− E
[
e−
∫ t+τ∗
t

r̃(u)du (β1(t+ τ∗)Xτ∗ − P )
]
. (3.5.11)

Multiply (3.5.11) by 1
ε and take limε→0.

∂tv(t, x) ≥ E
[
e−
∫ t+τ∗
t

r̃(u)du
(

lim
ε→0

(
β1(t+ ε+ τ∗)− β1(t+ τ∗)

ε

)
Xτ∗

)]
= Ex

[
e−
∫ t+τ∗
t

r̃(u)du ∂tβ1(t+ τ∗) Xτ∗

]
. (3.5.12)

By the same argument,

v(t, x)− v(t− ε, x) ≤E
[
e−
∫ t+τ∗
t

r̃(u)du (β1(t+ τ∗)Xτ∗ − P )
]

− E
[
e−
∫ t−ε+τ∗
t−ε r̃(u)du (β1(t− ε+ τ∗)Xτ∗ − P )

]
. (3.5.13)

Multiply (3.5.13) by 1
ε and take limε→0 to derive

∂tv(t, x) ≤ E
[
e−
∫ t+τ∗
t

r̃(u)du
(

lim
ε→0

(
β1(t+ τ∗)− β1(t− ε+ τ∗)

ε

)
Xτ∗

)]
= E

[
e−
∫ t+τ∗
t

r̃(u)du ∂tβ1(t+ τ∗) Xτ∗

]
. (3.5.14)

Combine (3.5.12) and (3.5.14) we get

∂tv(t, x) = E
[
e−
∫ t+τ∗
t

r̃(u)du ∂tβ1(t+ τ∗) Xτ∗

]
. (3.5.15)

Theorem 3.5.3. We have v ∈ C1(R2
+).

Proof. We know that ∂xv(t, x) and ∂tv(t, x) exist and are continuous in C. It remains
to prove that ∂xv(t, x) and ∂tv(t, x) are continuous across the boundary ∂C which is
done in two steps below.
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Step 1. (Continuity of ∂xv(t, x)). Fix (t0, x0) ∈ ∂C and for any sequence (tn, xn)n≥1 ⊆ C
converging to (t0, x0) as n → ∞, we use Lemma 3.5.1, (3.5.2) and dominated
convergence to derive

lim
n→∞

∂xv(tn, xn) = E
[

lim
n→∞

e−
∫ tn+τ∗tn,xn
tn

r̃(u)duβ1(tn + τ∗tn,xn)X1
τ∗tn,xn

]
= β1(t0).

(3.5.16)

Step 2. (Continuity of ∂tv(t, x)). Using Lemma 3.5.2, we replace (t, x) with (tn, xn) where
(tn, xn)n≥1 ⊆ C converges to (t0, x0) ∈ ∂C as n→∞ and using (3.5.2) we derive,

∂tv(t0, x0) = ∂tβ1(t0)x (3.5.17)

Next we show that ∂xxv is not continuous across the boundary ∂C

Corollary 3.5.4. We have ∂xxv continuous on R2
+\∂C. Moreover for any (t0, x0) ∈ ∂C

and any sequence (tn, xn) ⊆ C converging to (t0, x0) as n→∞, we have

lim
n→∞

∂xxv(tn, xn) =
[ 2
σ2x0

(
r̃(t0)(x0β1(t0)− P )− β′1(t0)x0 − β1(t0)µx0

)]
(3.5.18)

Proof. We know that v(t, x) = β1x− P in S and ∂xxv is continuous on R2
+\∂C. From

(3.2.25) we have that

∂tv(t, x) + ∂xv(t, x)µx+ ∂xxv(t, x)σ
2x2

2 = r̃(t)v(t, x). (3.5.19)

We rearrange (3.5.19) to derive

∂xxv(t, x) = 2
σ2x0

[r̃(t)v(t, x)− ∂tv(t, x)− ∂xv(t, x)µx] . (3.5.20)

Replace (t, x) by (tn, xn) in (3.5.20) and take the limit as n → ∞. Also, using The-
orem 3.5.3, it follows that

lim
n→∞

∂xxv(tn, xn)

= lim
n→∞

[ 2
σ2xn

[r̃(tn)v(tn, xn)− ∂tv(tn, xn)− ∂xv(tn, xn)µxn]
]

= 2
σ2x0

[r̃(t0)v(t0, x0)− ∂tv(t0, x0)− ∂xv(t0, x0)µx0]

= 2
σ2x0

[
r̃(t0)(x0β1(t0)− P )− β′1(t0)x0 − β1(t0)µx0

]
. (3.5.21)
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3.5 Regularity of the value function

Then

∂xxv(t0, x0) = 2
σ2x0

[
r̃(t0) (β1(t0)x0 − P )− β′1(t0)x0 − β1(t0)µx0

]
= 2
σ2x0

[
β1(t0)x0 (r̃(t0)− µ)− β′1(t0)x0 − r̃(t0)P

]
(3.5.22)

where β′1(t0) = −β1(t0)λ0(t0) + (r̃(t0)− µ)β1(t0). As such

∂xxv(t0, x0)

= 2
σ2x0

[
r̃(t0) (β1(t0)x0 − P )− β′1(t0)x0 − β1(t0)µx0

]
= 2
σ2x0

[β1(t0)x0 (r̃(t0)− µ)− β1(t0)x0 (r̃(t0)− µ) + β(t0)λ0(t0)x0 − r̃(t0)P ]

= 2
σ2x0

[β(t0)λ0(t0)x0 − r̃(t0)P ] . (3.5.23)

In that case,
∂xxv(t0, x0) = − 2

σ2x0
H (t0, x0) . (3.5.24)

Recall R := {(t, x) : H(t, x) > 0} ⊂ C and S ⊆ Rc := {(t, x) : H(t, x) ≤ 0} ⊂ C. In
S, ∂xxv(t0, x0) = − 2

σ2x0
H (t0, x0) ≤ 0 hence ∂xxv is not continuous at ∂C if H(t, x) <

0.

Proposition 3.5.5. We have supt>0 b(t) < +∞.

Proof. We give a full proof in the case in which t 7→ b(t) is non-increasing. The other
case can be treated analogously. Recall that u(t, x) = v(t, x)− g(t, x) such that

u(t, x) = sup
τ

E
[∫ τ

0
e−
∫ s

0 r̃(t+u)duH(t+ s,Xx
s )ds

]
. (3.5.25)

Assume to reach a contradiction, that there exists t0 > 0 such that b(t0) = +∞ for
some t0. Fix t′ < t0 and since b is non-increasing, b(t) = ∞, for t ∈ [t′, t0]. Given a
starting point (t′, x) then

τ∗ := τ∗t′,x ≥ t0 − t′ , P− a.s. (3.5.26)
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3.5 Regularity of the value function

where τ∗t′,x = inf{s ≥ 0 : u(t′ + s,Xx
s ) = 0} = inf{s ≥ 0 : (t′ + s,Xx

s ) ∈ S}. Next,

0 ≤ u(t′, x)

= E
[∫ τ∗

t′,x

0
e−
∫ s

0 r̃(t′+u)duH(t′ + s,Xx
s )ds

]

= E
[∫ t0−t′s

0
e−
∫ s

0 r̃(t+u)duH(t′ + s,Xx
s )ds

]

+ E
[∫ τ∗

t0−t′
e−
∫ s

0 r̃(t′+u)duH(t′ + s,Xx
s )ds

]
. (3.5.27)

Recall the set R from Theorem 3.5.3 and that H(t, x) = 0 is equivalent to r̃(t)P −
λ0(t)β(t)x = 0, hence to x = `(t) where `(t) = r̃(t)P

λ0(t)β(t) then (3.5.27) is further continued
as follows.

0 ≤E
[∫ t0−t′s

0
e−
∫ s

0 r̃(t′+u)duH(t′ + s,Xx
s )ds

]

+ E
[∫ τ∗

t0−t′
e−
∫ s

0 r̃(t′+u)duH(t′ + s,Xx
s )1{Xx

s≤`(t′+s)}ds
]

≤E
[∫ t0−t′s

0
e−
∫ s

0 r̃(t′+u)du (r̃(t′ + s)P − λ0(t′ + s)β(t′ + s)Xx
s

)
ds
]

+ E
[∫ τ∗

t0−t′
e−
∫ s

0 r̃(t′+u)du (r̃(t′ + s)P
)
1{Xx

s≤`(t′+s)}ds
]
, (3.5.28)

using that H(t′ + s,Xx
s ) ≤ r̃(t′ + s)P . Let x → ∞ then 0 ≤ u(t′, x) ≤ −∞ which is a

contradiction.

3.5.1 Characterisation of the free boundary and of the value function

We will find a non-linear integral equation that characterizes uniquely the free-boundary
and the value function. We use the regularity of the value function to derive an integral
equation for the optimal boundary. First we need a technical lemma.

Lemma 3.5.6. We have

lim
T↑∞

Ex
[
e−
∫ T

0 r̃(t+u)duv(T,XT−t)
]

= 0 (3.5.29)

for all x ∈ R+.
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3.5 Regularity of the value function

Proof. With reference to (3.2.19) and (3.2.11), we see that

v(t, x) = sup
τ

E
[
e−
∫ τ

0 r̃(t+u)dug(t+ τ,Xτ )
]

= sup
τ

E
[
e−
∫ τ

0 r̃(t+u)du (β1(t+ τ)Xτ − P )
]
. (3.5.30)

Accordingly, when τ = 0, we have v(t, x) > β1(t)x − P . Also t 7→ β1(t) is decreasing,
so

v(t, x) ≤ sup
τ≥0

E
[
e−
∫ τ

0 r̃(t+u)du (β1(t+ τ)Xτ )
]

≤ sup
τ≥0

E
[
e−
∫ τ

0 r̃(t+u)du (β1(t)Xτ )
]
. (3.5.31)

The process u 7→ e−
∫ t+τ
t

r̃(u)duXt+u is a positive supermartingale, so using Assumption
3.2.2 and from Doob’s optimal sampling theorem we obtain

E
[
e−
∫ t+τ
t

r̃(u)duXt+u
]
≤ x. (3.5.32)

From (3.5.31) and (3.5.32)
v(t, x) ≤ β1(t)x. (3.5.33)

Then
β1(t)x− P ≤ v(t, x) ≤ β1(t)x. (3.5.34)

Using (3.5.34) we conclude that

|v(t, x)| ≤ P + β1(t)x. (3.5.35)

Based on this, we get

E
[
e−
∫ T−t

0 r̃(t+u)duv(T,XT−t)
]
≤ E

[
e−
∫ T−t

0 r̃(t+u)du (P + β1(T )XT−t)
]

≤ E
[
e−
∫ T−t

0 r̃(t+u)duP
]

+ E
[
e−
∫ T−t

0 r̃(t+u)du (β1(T )XT−t)
]
. (3.5.36)

We see that
e−
∫ T−t

0 r̃(t+u)duP → 0 (3.5.37)

as T →∞ and using Assumption 3.2.2,

e−
∫ T−t

0 r̃(t+u)duXT−t → 0 (3.5.38)
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3.5 Regularity of the value function

as T →∞. Hence,
lim
T↑∞

Ex
[
e−
∫ T

0 r̃(t+u)duv(T,XT−t)
]

= 0, (3.5.39)

and the lemma is proved.

This helps to prove the next theorem.

Theorem 3.5.7. If the optimal boundary is monotonic then, for all (t, x) ∈ R2
+, the

value function is represented by

v(t, x) ≡ −E
[∫ ∞

0
e
∫ s

0 r̃(t+u)duH(t+ s,Xs)1{(t+s,Xs)∈S}ds
]

(3.5.40)

and the optimal boundary t → b(t) is the unique continuous solution of the following
nonlinear integral equation: for all t > 0

g(t, b(t)) ≡ −E
[∫ ∞

0
e
∫ s

0 r̃(t+u)duH(t+ s,Xb(t)
s )1{Xb(t)

s ≥b(t+s)}ds
]
. (3.5.41)

Proof. Here we only show how to obtain (3.5.40) then substitute x = b(t) into (3.5.40)
and using v(t, b(t)) = g(t, b(t)) we obtain (3.5.41). The proof of uniqueness is standard
[107, Ch. VII §25.2, page 386] so we omit it. Thanks to Theorem 3.5.3 we have v ∈
C1(R2

+) and thanks to Corollary 3.5.4 we have ∂xxv continuous on (R2
+)\∂C. Then, we

can find a mollifying sequence (vn)n≥0 ⊆ C∞(R2
+) for v such that

(vn, ∂xvn, ∂tvn)→ (v, ∂xv, ∂tv) (3.5.42)

as n→∞, uniformly on any compact sets , and

lim
n→∞

∂xxvn(t, x) = ∂v(t, x) for all (t, x) /∈ ∂C (3.5.43)

Let (Km)m≥0 be a sequence of compact sets converging to R2
+ and define

τm := inf {s > 0 : (t+ s,Xx
s ) /∈ Km} ∧ (T − t). (3.5.44)

Then an application of Itô formula gives

vn(t, x) = E
[
e
∫ τm

0 r̃(t+u)duvn(t+ τm, X
x
τm)
]

− E
[∫ τm

0
e
∫ s

0 r̃(t+u)du (∂tvn + Lvn − r̃vn) (t+ s,Xs)1{(t+s,Xs)∈S}ds
]
.

(3.5.45)
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Let n→∞ and use (3.5.42) and (3.4.9), upon noticing that (t+s,Xs) lies in a compact
set for s ≤ τm and that its law is absolutely continuous with respect to Lebesgue
measure on R+ × R+. The latter implies P [(t+ s,Xx

s ) ∈ ∂C] = 0 for all s ∈ [0,∞)
and enables the use of (3.5.43). Recall that v, vx, vt and vxx are locally bounded. Then
dominated convergence and (3.5.45) yield

v(t, x) = lim
n→∞

vn(t, x)

= E
[
e
∫ τm

0 r̃(t+u)duv(t+ τm, X
x
τm)
]

− E
[∫ τm

0
e
∫ s

0 r̃(t+u)duH(t+ s,Xs)1{(t+s,Xs)∈S}ds
]
. (3.5.46)

Recall that (t+ s,Xs) ∈ S ⇐⇒ Xs ≥ b(t+ s) then,

v(t, x) = E
[
e
∫ τm

0 r̃(t+u)duv(t+ τm, X
x
τm)
]

− E
[∫ τm

0
e
∫ s

0 r̃(t+u)duH(t+ s,Xs)1{Xt,x
t+s≥b(t+s)}

ds
]
. (3.5.47)

We take m→∞ and, noticing that τm → (T − t), we obtain

v(t, x) = E
[
e
∫ T−t

0 r̃(t+u)duv(T,Xx
T−t)

]
− E

[∫ T−t

0
e
∫ s

0 r̃(t+u)duH(t+ s,Xs)1{Xt,x
t+s≥b(t+s)}

ds
]
. (3.5.48)

Using Corollary 3.5.6 and letting T 7→ ∞ we finally have

v(t, x) = −E
[∫ ∞

0
e
∫ s

0 r̃(t+u)duH(t+ s,Xs)1{(t+s,Xs)∈S}ds
]
. (3.5.49)

At time t, v(t, x) = g(t, x) and the integral equation is obtained by setting (t, x) =
(t, b(t)) such that

v(t, b(t)) = g(t, b(t)) = −E
[∫ ∞

0
e
∫ s

0 r̃(t+u)duH(t+ s,Xs)1{Xt,b(t)
s ≥b(t+s)}ds

]
. (3.5.50)

3.6 Numerical computation

In this section we show the algorithm for the numerical solution to the boundary
function and give some economic interpretation of the results.
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3.6.1 Boundary equation

Based on obvious complications, it is difficult solve (3.5.50) analytically but can be
dealt with numerically. We use the Picard scheme to numerically solve (3.5.50). The
steps are illustrated as follows. At the outset, applying Fubini to (3.5.50) gives rise to

g(t, b(t)) =−
∫ ∞

0
e
∫ s

0 r̃(t+u)duE
[
H(t+ s,Xs)1{Xt,b(t)

s ≥b(t+s)}

]
ds

=−
∫ ∞

0
e
∫ s

0 r̃(t+u)du
(∫ ∞

b(t+s)
H(t+ s, y)p(t+ s, y, t, b(t))dy

)
ds (3.6.1)

where p(t + s, y, t, b(t)) = ∂P (Xt,b(t)
t+s ≤ y) is the transition density of the geometric

Brownian motion. Set Π := {0 := t0 < t1 < · · · < tn := T} be an equispaced partition
of [0, T ] for some large T with mesh h = 1/n. The algorithm is initialised by letting
b(0)(tj) := 1 for all j = 0, 1, . . . , n. Then set b(k−1)(tj) as the derived boundary values
after the k-th iteration. Next, the (k)-th iteration for all j = 0, 1, . . . , n using

g(tj , b(k)(tj))

= −
∫ T

0
e
∫ s

0 r̃(tj+u)du
(∫ ∞

b(k−1)(tj+s)
H(tj + s, y)p(tj + s, y, tj , b

(k−1)(tj))dy
)

ds. (3.6.2)

It is obvious that

p(t+ s, y, t, b(t)) = 1
yσ
√

2πs
exp

−
(
ln(y)− ln(b(t))−

(
µ− σ2

2

)
s
)2

2σ2s

 . (3.6.3)

Substitute (3.6.3) and (3.4.5) into (3.6.2) to derive

g(tj , b(k)(tj)) = −
∫ T

0
I
(
tj + s, b(k−1)(tj + s), tj , b(k−1)(tj)

)
ds (3.6.4)

where

I
(
tj + s, b(k−1)(tj + s), tj , b(k−1)(tj)

)
:= e

∫ s
0 r̃(tj+u)dur̃(tj + s)P

(
1− Φ

(
ξ(k−1)(tj + s)

))
+ e
∫ s

0 r̃(tj+u)duλ0(tj + s)β(tj + s)b(k−1)(tj)eµsP
(
1− Φ

(
ζ(k−1)(tj + s)

))
(3.6.5)

In particular, Φ is the cumulative density of a standard normal distribution,

ξ(k−1)(tj + s) :=
ln
(
b(k−1)(tj+s)
b(k−1)(tj)

)
−
(
µ− σ2

2

)
s

σ
√
s

(3.6.6)
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and

ζ(k−1)(tj + s) :=
ln
(
b(k−1)(tj+s)
b(k−1)(tj)

)
−
(
µ− σ2

2

)
s− σ2s

σ
√
s

. (3.6.7)

The outer integral with respect to ds is computed by standard quadrature method.
Thus, (3.6.4) becomes

g(tj , b(k)(tj)) = −h
n−T−j∑
m=0

I
(
tj +mh+ h

2 , b
(k−1)(tj +mh+ h

2 ), tj , b(k−1)(tj)
)
. (3.6.8)

Given the gain function as in (3.2.13), (3.6.2) can further be expressed as

b(k)(tj)

= 1
β1(tj)

[
P −

∫ T

0
ϑ(tj , s)

(∫ ∞
b(k−1)(tj+s)

H(tj + s, y)p(tj + s, y, tj , b
(k−1)(tj))dy

)]
ds

(3.6.9)

where ϑ(tj , s) := e
∫ s

0 r̃(tj+u)du. Hence,

b(k)(tj)

= 1
β1(tj)

P − h n−T−j∑
m=0

I
(
tj +mh+ h

2 , b
(k−1)(tj +mh+ h

2 ), tj , b(k−1)(tj)
) . (3.6.10)

The algorithm stops when the tolerance condition

max
j=0,1,...,n

|b(k)(tj)− b(k−1)(tj)| < ε (3.6.11)

is fulfilled for some ε > 0. The Python codes for this algorithm are in Appendix A.2.

3.6.2 Economic interpretation of the assumptions

An insight into the assumptions and conditions that determines the shape of the optimal
boundary is provided as follows.

• The benefit schedule β(t) in (3.2.6) is function motivated by the declining unem-
ployment compensation system. The time dependent parameters that influence
the increase or decrease of the benefit schedule are the inflation rate r(t) and the
employment rate λ1(t). According to [10, 92, 82], r(t) and λ1(t) are directly re-
lated which means an increase in inflation rate r(t) pushes employment rate λ1(t)
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and a decrease in inflation rate r(t) leads to a fall employment rate λ1(t). It is
interesting to note that a surge in r(t) and λ1(t) leads to a decline in the benefit
schedule and a fall in r(t) and λ1(t) causes a rise in the benefit schedule. This
is because when inflation and employment rates are high individuals in the UI
scheme receive benefits for relatively shorter amounts of time leading to smaller
benefits. In the same way a fall in inflation and employment rate results in un-
employed worker in the UI scheme earning more because the benefit is received
for a longer period of time.

• In Assumption 3.2.2, we see that r(t) + λ0(t) ≥ µ. In real life application, the
wage growth rate is rather small and may possibly exceed the inflation rate r(t),
but even if it does, then it is hardly likely economically greater than the combined
inflation-unemployment rate r(t) + λ0(t).

• The assumptions from Proposition 3.3.2 have clear economic appeals.

(i) On one hand, an increase in the mapping t 7→ r̃(t) and decrease in the
mapping t 7→ λ0(t)β(t) demands that t 7→ r(t) and t 7→ λ0(t) are increasing.
In reality when inflation rises, prices of goods and services also rise. The
available wage purchases fewer amounts of goods and services over time
which leads to the demand for higher wages by workers. The rise in wage
increment claims coupled with the fall in the purchase of goods and services
causes a reduction in the returns on economic activities. Companies then
publish lesser number of vacancies and may even lay off some workers. In
due course, unemployment rate increases but at a relatively slow rate [83]. In
Section 2.6.4, we see that as unemployment rate increases, the value function
increases which reflects the efficiency of the insurance policy against the risk
of unemployment because the benefit received when unemployment occurs
is paid relatively early and for a longer period. An increase in the value
function over time also leads to an increase in the mapping t 7→ u(t, x)
defined in (3.3.5). In Corollary 3.4.5, the increase in t 7→ u(t, x) results in an
increasing optimal boundary t 7→ b(t). This has an economic appeal because
a larger rate of unemployment means a higher risk of losing the job. However
before unemployment begun to rise, wages were increased to compensate for
the increasing inflation rate. Thus, even though the optimal boundary is
increasing, the wage is increasing fast enough in order to expedites joining
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the the insurance scheme.

(ii) On the other hand, the increase in the mapping t 7→ λ0(t)β(t) and the de-
crease in the mapping t 7→ r̃(t) requires that r(t) and λ0(t) are decreasing and
increasing respectively. A rise in unemployment rate coupled with a declines
in inflation rate and employment rate usually happens during uncertainty
shock periods such as the great financial recession in 2002 [10, 128, 92]. The
macroeconomic effects of uncertainty shocks on the unemployment rate is
intensified through falls in aggregate demand. Firms put out fewer job va-
cancies as a result of the decline in aggregate demand which amplifies the
increase in unemployment rate. Consequently, household income falls more
because individuals searching for jobs are unable to find jobs. This results
in a further fall in aggregate demand, which amplifies the influence of un-
certainty shocks. Prices of goods and services are decreased to meet the
decline in aggregate demand and eventually inflation falls [25, 82]. Using
similar arguments in (i), the rise in unemployment and the fall in inflation
and employment suggest a decline in the value function and the mapping
t 7→ u(t, x). This invariably leads to a decaying the optimal boundary based
on Corollary 3.4.5. The economic rationale for the decreasing optimal bound-
ary is that the wage of the worker is relatively low so a decreasing optimal
threshold is required to accelerate the joining of the UI scheme.

• Furthermore, sufficient conditions were derived in Corollary 3.3.3 to support Pro-
position 3.3.2. Thus, we substitute γ = 34.7 and δ = 0.0094 from the French UI
system (see [76, p. 8]) into the sufficient conditions to derive the following results.

(i) For t 7→ u(t, x) to increase

λ′0(t)
λ0(t) <

1
γ+δ =⇒ λ0(t) < λ0(0) + e

t
34.7094 . (3.6.12)

(ii) Alternatively for t 7→ u(t, x) to decrease

λ′0(t)
λ0(t) ≥

1
γ+δ =⇒ λ0(t) ≥ λ0(0) + e

t
34.7094 . (3.6.13)

Next we derive functions that will be used to verify the assumptions and conditions
above.
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3.6.3 Model parameters for numerical illustration

In order to exercise the stopping rule (3.2.22) the individual involved needs to be
able to compute the optimal threshold expressed in (3.6.1), for which the knowledge is
required about β(t) and β1(t) (defined in (3.2.6) and (3.2.11) respectively). In addition,
information on the parameters r(t), λ0(t), λ1(t), h0, γ, δ, µ and σ is essential along
with Assumptions 3.2.2 and 3.2.1. Specifically:

• The loss-of-job rate λ0(t), re-employment rate λ1(t) and inflation rate r(t) can be
extracted from using publicly available data from the Office for National Statistics
(ONS) [135, 134]. Detailed analysis and modelling of this data will be done in the
next chapter (Chapter 4). In the meantime, for simplicity we use the automated
trend-line exponential equations from Excel.

• Furthermore, the wage growth rate µ, a simple approach is just to set µ = 0.004
as done in Section 2.5. Recall that it may be possible that the individual’s wage
growth rate µ is, to some extent must not exceed the inflation rate r(t) as seen in
Assumption 3.2.2. Practically, this would often mean that the actual growth rate
µ is kept at the lowest possible level.

• Similarly, the volatility σ2 can be estimated by using the suitable value in Section
2.5.

• To be specific, the French UI system back in the 1990s (see [76, p. 8]) gives rise to
choosing the following numerical values in (2.2.3): h0 = 0.574, s0 = 8 (52/12) .=
34.7 (weeks) and δ = −(3/52) ln (1− 0.15) .= 0.0094 = 0.94% (per week).

• Finally, given that β(t) and β1(t) should be available through the insurance
policy’s terms and conditions are derived from the above parameters, they can be
calculated or estimated. We calculated them in for this numerical illustration

In summary, certain estimation procedures are executed along with the on-line obser-
vation of the wage dynamics (Xt). Given the parameters in the section above, where all
equations under consideration can be seen as special cases, it is clear that the numer-
ical solution to (3.5.41) takes different forms. More details showing numerical solutions
given specific model parameters are provided in the next subsection.

104



3.6 Numerical computation

3.6.4 Numerical examples

The monetary unit used is the euro and set the premium P = 9 000.00 (euro). The
numerically illustrate is done for two cases according to Proposition (3.3.2) where, (i)
t 7→ u(t, x) and t 7→ b(t) are increasing and (ii) t 7→ u(t, x) and t 7→ b(t) are decreasing.

Example 3.6.1. First of all for (i), set the inflation rate equation as

r(t) = 0.0252e0.0012t, (3.6.14)

the loss-of-job rate λ0(t) equation as

λ0(t) = 0.0596e0.0004t, (3.6.15)

and the re-employment rate λ1(t) equation as

λ1(t) = 0.7076e0.0007t. (3.6.16)

The corresponding results using the equations shown above are displayed in Fig. 9.
The wage dynamics are not very visible in the plots of the optimal boundary in Fig. 9(a)
and Fig. 10(a) because the initial wage is relatively low. In order to show the lines in
details, we insert a subplot that zooms the wage process. When X0 = 346, the wage
process never hits the optimal boundary within the time interval. The optimal time of
entry in this case when X0 = 60 000 is

τ∗ = 75. (3.6.17)

At τ∗ = 75, the wage is given by

b(τ∗) = 88 601.49757 ≈ 88 601 (euro) (3.6.18)

Also using (3.2.25), we obtain the value of this contract at the time of entry is

v(τ∗, b(τ∗)) = (β1(τ∗)× b[τ∗])− P = 299.5549 ≈ 300 (euro). (3.6.19)

The computed benefit schedule is shown in Fig. 11 to highlight that it is declining.

Example 3.6.2. For (ii), set the inflation rate equation as

r(t) = 0.0909e−0.009t, (3.6.20)
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(a) Optimal boundary with X0 = 346

0 20 40 60 80 100
Time t 

0

20000

40000

60000

80000

100000

120000

Pa
y 

ra
te

b(t)

Xt

τ∗C

S
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Figure 9: Numerical values of the parameters used are µ = 0.0004, P = 9 000 and
σ = 0.04. In particular, (a) is a plot which contains subplot that zooms the entry time
of a sample path a wage process (geometric Brownian motion) X starting at X0 = 346.
The geometric Brownian motion does not hits the optimal boundary. (b) A plot of a
sample path a wage process (geometric Brownian motion) X starting at X0 = 60 000.
The geometric Brownian motion hits the optimal boundary at τ∗ = 75. The boundary
divides the state space into the continuation region C and the stopping region S.

the loss-of-job rate λ0(t) equation as

λ0(t) = 0.0878e0.0009t, (3.6.21)

and the re-employment rate λ1(t) equation as

λ1(t) = 0.7245e−0.05t. (3.6.22)

The corresponding results using the equations shown above are displayed in Fig. 10.
The optimal time of entry in this case is

τ∗ = 62. (3.6.23)

At τ∗ = 62, the wage is given by

b(τ∗) = 287.3488 ≈ 287 (euro) (3.6.24)
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Also using (3.2.25), we obtain the value of this contract at the time of entry is

v(τ∗, b(τ∗)) = (β1(τ∗)× b[τ∗])− P = 417.5570 ≈ 418 (euro). (3.6.25)

Also the computed benefit schedule is shown in Fig. 11 to demonstrate that it is in-
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Figure 10: Numerical values of the parameters used are µ = 0.0004, P = 9 000 and
σ = 0.04. In particular, (a) is a plot that zooms the entry time of a sample path a
wage process (geometric Brownian motion) X starting at X0 = 346. The geometric
Brownian motion hits the optimal boundary at τ∗ = 62. (b) A plot of a sample path a
wage process (geometric Brownian motion) X starting at X0 = 60 000. The geometric
Brownian motion does not need to hit the optimal boundary because it starts in the
stopping region thus τ∗ = 0. The boundary divides the state space into the continuation
region C and the stopping region S.

creasing.

3.6.5 Economic interpretation of results

A monotonic decline or increment of the optimal boundary is as a result of the changes
in the various rates. First and foremost, from Sections 2.6.4 and 3.6.2 we see that for
(i), a bigger rate of unemployment means a higher risk of losing the job. Nonetheless,
before unemployment begun to rise, wages were increased to compensate for the increase
in inflation rates. Thus, even though the optimal boundary is increasing, the wage is
increasing fast enough in order to expedite joining the insurance scheme. For (ii), a

107



3.6 Numerical computation

0 20 40 60 80 100
Time t

0.89

0.90

0.91

0.92

0.93

0.94

0.95

B
en

ef
it 

sc
he

du
le

 β
(t

)

(a) Benefit schedule when t→ b(t) is increasing

0 20 40 60 80 100
Time t

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

B
en

ef
it 

sc
he

du
le

 β
(t

)
(b) Benefit schedule when t→ b(t) decreasing

Figure 11: Numerical values of the parameters used are s0 = 34.7 and δ = 0.0094. In
particular, (a) is the trajectory of the benefit schedule in (3.2.6) for Example 3.6.1. (b)
The trajectory of the benefit schedule in (3.2.6) for Example 3.6.2.

rise in unemployment rate leads to a decaying optimal boundary because the wage of
the worker is relatively low so a decreasing optimal threshold is required to accelerate
the joining of the UI scheme. These results are reflected in the numerical examples
(Example 3.6.1 and Example 3.6.2) for the time-dependent case.

It is important to note that in Fig. 9, even though the wage drops back below the
boundary after the optimal time, the wage values are relatively very high. Since the
financial crisis, uncertainty has been a concept that has kept most businesses on their
toes. High income earners such as CEOs have responded by buying unemployment
insurance to mitigate the costs of a potential unemployment. Thus, even though the
optimal boundary is increasing, the level of uncertainty from a high income earner’s
point of view is a good basis to make the individual choose to enter the UI scheme for
unemployment coverage over a fall in wage. Thus, a high income earners is satisfied to
have purchased the scheme before the wage dropped further.

The unemployment rate is set as an increasing function for both examples based on
the assumptions but its values over time are relatively higher values in Example 3.6.2
than in Example 3.6.1. When the same wage dynamics (X0 = 346) is used to find the
optimal entry time in both examples, we observe that in Example 3.6.1 (see Fig. 9(a)),
the optimal entry time may occur at a further time outside the time interval. This value
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is bigger that the optimal entry time in Example 3.6.1 which is 62 with initial wage
X0 = 346. When the initial value of the wage dynamics is increased (X0 = 60 000) the
optimal entry time in Example 3.6.2 is 75 and the optimal entry time in Example 3.6.1
is 0. Even tough more sensitivity analysis may be to be conducted, based on this we
can say that a rise in the unemployment rate means the individual are more likely to
enter the UI scheme earlier.

Furthermore, as explained in Section 3.6.2, the benefit schedule β(t) in (3.2.6) falls
when r(t) and λ1(t) are increasing. This is illustrated in Fig. 11. When inflation and
employment rates are high, individuals in the UI scheme receive benefits for relatively
shorter amounts of time which leads to smaller benefits because they find jobs faster.
In the same way a fall in inflation and employment rate results in unemployed worker
in the UI scheme earning more because the benefit is received for a longer period of
time.

The value of the UI scheme is also affected by the time varying rates. Lower values
of the lose-of-job rates results along with increasing inflation and employment rates
produces lower values of the UI scheme. This is because the value function is computed
using the benefit schedule and the wage of the individual. On the other hand, a higher
values of the unemployment rate coupled with decaying inflation and employment rates
higher values of the UI scheme.

Most workers would like to have some financial security when they loose their jobs
and this can be done using UI schemes. This study is a good starting point to aid
individuals decide when to purchase the UI scheme given that they know the rate of
inflation, unemployment and reemployment in their respective living environments.

To emphasis, an interesting point is the inclusion of publicly available rate perform-
ance; specifically for unemployment and employment rates in the UI model to make it
realistic. It is essential to examine the data to set more accurate assumptions as well
as modify our UI model if necessary. Thus, in the subsequent chapter (Chapter 4) we
explore, analyse and model the UK labour force data.
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Chapter 4
Analysis and Modelling of the Labour
Force Data

Our UI scheme can be made more realistic by incorporating labour force data. In
this chapter the labour force data from the Office for National Statistics (ONS) in
the United Kingdom is used. A brief overview of the data is given to understand the
levels, rates and flow of the labour market. Due to the assumption that the time until
the current employment ends, τ0, and the unemployment spell of duration, τ1, had
exponential distribution in Chapter 2 and Chapter 3 which guarantees a Markovian
nature of the corresponding transitions, multi-state models are then used to investigate
the movement in the labour market. We also determine the distribution that best fits
the data to serve as a guide to a possible modification of the UI model in Chapter 2
and Chapter 3.

4.1 Labour force data

The data for the parameterisation of the holding time τ0 and τ1 in our UI scheme
models is derived from the Office for National Statistics (ONS) in the United Kingdom
(UK) [135, 134]. The labour force data is collected by conducting labour force surveys
(LFS) that gather information from respondents (0.2% of the population living in the
UK), with the intent of extrapolating the results to reflect the status of the larger
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population. Only respondents who meet the basic criterion, that is, are between the
working age of 16 to 64 are only considered for the LFS. The labour force data most
importantly provides in-depth insights regarding the change in economic situation of
each respondent over time on a quarterly basis. This is key to enable modelling the
flow of the labour market in this study.

The labour force data used in this study has been collected 73 consecutive times
between October 2001 to December 2019 on a quartely basis with variables that repres-
ent information on the labour market. These variables are classified into employment
(E), unemployment (U) and inactivity (I). The first category which is employment (E)
comprises records on individuals in the labour force who are actively working. Next,
is unemployment (U) which refers to jobless individuals who are actively looking for
work. Finally, the economically inactive category represents individuals who are within
the labour market however, not in search of, available or willing to work. Note that,
the data estimates do not detail the effect of certain external factors such as early
retirement, disability, mortality and immigration.

The data consistently captures details and insight into the levels, rates, inflows and
outflows of the employment, unemployment and inactive states in the UK labour force.
The data is inspected using descriptive statistics and data visualisation to check the
quality and to give a general overview of the data to understand it better.

4.1.1 Descriptive statistics

In Table 4.1 details of all variables under consideration and their corresponding nu-
merical attributes (minimum, 25th percentile, median, mean, maximum) are provided.
Looking at the values in Table 4.1, we see that unemployment related variables give
the lowest values, the inactivity related variables have the second lowest values and the
employment related variables have the highest values for the numerical attributes. The
mean net flow values for unemployment and inactivity are negative which means that
on average more individuals exit unemployment and inactivity than enter. On the other
hand, the mean net flow values in employment shows that on average more individu-
als enter employment than leave on average. However, the percentage change denoted
by %∆ between the minimum and maximum number of individuals throughout the
observed time period shows that %∆U > %∆E > %∆I. The computations are as fol-
lows %∆E = (31637095−27323941)×100

27323941 = 15.79%,%∆U = (2661505−1256547)×100
1256547 = 111.81%
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and %∆I = (9487165−8477559)×100
8477559 = 11.91%. Note that even though inactivity and

unemployment have different values, they are sometimes collectively known as un-
employment which is the sum of all inactivity and unemployment values depending
on the application. In that case, when we consider an adjusted version of unem-
ployment which is all unemployed individuals plus inactive individuals, we have that
%∆U = (12121619−9734107)×100

9734107 = 24.53% and thus %∆U > %∆E.

4.1.2 Visualisation of the data

Next, we focus on data visualisation by exploring the levels and rates of employment,
unemployment and inactivity as well as the inflows and outflows.

Levels of employed, unemployed and inactive individuals

We begin by observing the levels or number of employed, unemployed and inactive
individuals. This is illustrated in Fig. 12. The first observation is that the levels of
unemployment and inactivity have similar trends over the given time. We also see
the development of unemployment and inactivity in the UK between 2001 and 2019
is characterised by the upswing period from 2001 through to 2012 and the downswing
period from 2013 to 2019. The variation in the trajectory seems to be relatively higher
and fluctuates more in the inactivity levels than the unemployment levels. We also
observe that there was a steady increase from the early 2000’s to 2007 in employment,
unemployment and inactivity. In 2008 through to 2012, there was an abrupt rise in
unemployment and inactivity due to people being laid off during the UK financial
recession [10, 128, 92]. Consequently there was a swift fall in the number of employed
individuals from 2008 to 2010. Following this fall was a steady slow rise mainly due to
increment in the number of working immigrants with the permit to work in UK and
young UK citizens coming of age to enter the labour market. The downswing from 2012
to 2019 in inactivity and unemployment levels is also known as the recovery period.
This is when the economy stabilised after the uncertainty shock wave (2008 financial
recession) hit [71, 114].

In this chapter, there are four rates of measurement; the transition rates, the prob-
ability rates, the percentage rates of change and the rates which show the proportion of
the individuals in each state to the total labour force. Further details on these rates are
provided as the computations unfold. Based on the information available in the data,
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Figure 12: Plots of quarterly number of individuals in the UK who are employed (E),
unemployed (U) and inactive (I) states from September 2001 to December 2019.

we explore the rates (proportions) in Fig. 13 and percentage rate of change in Fig. 14
of employment, unemployment and inactivity in the subsequent sections to know how
fast levels have risen or declined over the period.

The employment, unemployment and inactivity rates

The rates for each state is computed as the corresponding levels for each state divided
by the total number of individuals in the labour market [134]. A preview of the em-
ployment, unemployment and inactivity rates is displayed in Fig. 13. We see a swift
rise in unemployment and inactivity rate during the financial recession period between
2008 to 2012. Specifically, the unemployment rate grew from approximately 5.3% to
8.7%, the rate of inactivity rose from about 22.7% to 23.8%, whilst the employment
rate increase dropped from around 73% to 70%. Outside the financial recession period,
we see a steady fall in the unemployment and inactivity rates and a steady rise in
employment rate.

The employment, unemployment and inactivity percentage rate of change

The percentage rate of change, also known as percentage change denoted by %∆, is
derived by dividing the difference of the number of individuals in each state by the
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Figure 13: Plots of quarterly rates of employment (E), unemployment (U) and in-
activity (I) from September 2001 to December 2019.

previous value. That is the percentage rates of change for employment, unemployment
and inactivity at any quarterly date points denoted by t are given by %∆E(t) =
E(t)−E(t−1)

E(t−1) × 100%,%∆U(t) = U(t)−U(t−1)
U(t−1) × 100% and %∆I(t) = I(t)−I(t−1)

I(t−1) × 100%
respectively. In Fig. 14, we observe that the %∆ for unemployment fluctuates the
most. This means the change in unemployment is the highest be it an increment or a
decrement. Again, notice that %∆ in employment are mostly equal to or above zero
but within 2008 to 2012 we observe some falls below zero. This is due to financial
recession. The %∆ of inactivity mostly fluctuates between +1 and −1. During the
recession period we also see an increment in %∆ for unemployment and inactivity.

The employment, unemployment and inactivity inflows and outflows

Let us also note that the quarterly stock of individuals in employed (E), unemployed
(U) and inactive (I) is obtained by accumulating the corresponding flow categories.
Gross flows (inflows or outflows) are the total number of people moving from one state
to another, for instance from employment (E) to unemployment (U), or inactivity
(I), and the total number of people who move in the opposite direction (see Fig. 15
and Fig. 16). In total, there are nine different flow categories for the three economic
activity groupings, with an additional two which are individuals entering or leaving
working age. The net flows (inflows or outflows) are the differences between the total
number of people in each of the three economic activity categories at two different time
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Figure 14: Plots of the quarterly percentage rate of change for employment (E),
unemployment (U) and inactivity (I) from September 2001 to December 2019.

points (see Fig. 17).
Figure 15 indicates that holistically, the movement of individuals from the inactiv-

ity state is more than the flow of people from the employment state. Consequently,
less number of people transfer from the unemployment state than the inactivity and
employment state. Specifically, from 2001 to 2007 most people transitioned from the
inactivity state at an average of 894347, the employment outflow at an average of
893350, and the unemployment outflow at an average of 730327. From 2008 to 2013,
more individuals moved out of the inactivity state at an average of 965546 compared to
the employment outflow at an average of 938508. The average unemployment outflow
between 2008 to 2013 is 903467. Between 2013 and 2019, 857388 averagely got out
of employment which is less than the average number of individuals that got out of
inactivity (953698).

The mean gross outflow from unemployment from 2013 to 2019 is 795961. Figure
16 shows that outside the recession period (2008 to 2013), gross inflow for employment
is less than gross inflow for inactivity. Also, the gross inflow for inactivity is less than
the gross inflow of employment. The calculated averages for the gross inflows during
the recession period demonstrates that 983756 > 928423 > 965546 which are values of
the employment, unemployment and inactivity gross inflows receptively.

Furthermore, the number of individuals who are employed is given by the summation
of those who stay employed (EE), move from unemployment to employment (UE), and
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transfer from inactivity to employment (IE) per quarters (see Fig. 18).The number of
unemployed people per quarter is given by adding up those who move from employment
to unemployment (EU), those who remain unemployed (UU) and those who transition
from inactivity to unemployment (IU) (see Fig. 19). Finally, the sum of individuals that
transfer from employment to inactivity (EI), change from unemployment to inactivity
(UI), and those who keep on in inactive (II) gives the total number of inactive folks
(see Fig. 21).

Figure 20 shows the quarterly number of individuals that transition from employ-
ment to employment (EE), employment to unemployment (EU), employment to in-
activity (EI), unemployment to unemployment (UU), unemployment to employment
(UE), unemployment to inactivity (UI), inactivity to inactivity (II), inactivity to em-
ployment (IE) and inactivity to unemployment (IU). Most individuals stay employed,
followed by individuals that stay inactive, then lastly those that remain unemployed.
Based on all the raised arguments and findings, it can be seen why the inactivity rate
falls more steadily in Fig. 13 compared to the employment and unemployment rates.
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Figure 15: Graphs illustrating the quarterly gross outflows from 2001 to 2019 into
each state. In (a) the resulting three plots share the same x and y axis and in (b) the
resulting three plots split up into three different y axes while the x axis remains in-tact.
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Figure 16: Graphs illustrating the quarterly gross inflows from 2001 to 2019 into each
state. In (a) the resulting three plots share the same x and y axis and in (b) the resulting
three plots split up into three different y axes while the x axis remains in-tact.
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Figure 17: Graphs illustrating the quarterly net flows from 2001 to 2019 for each state.
Specifically, in (a) the resulting three plots share the same x and y axis and (b) the
resulting three plots split up into three different y axes while the x axis remains in-tact.
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Figure 18: Graphs illustrating quarterly observations from 2001 to 2019 for (a) em-
ployment gross outflows to inactivity and unemployment; and (b) employment gross
inflows from unemployment and inactivity.
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Figure 19: Graphs illustrating observations per quarter from 2001 to 2019 for (a)
unemployment gross outflows to inactivity and employment; and (b) unemployment
gross inflow from employment and inactivity.
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Figure 21: Graphs illustrating observations from 2001 to 2019 for each quarter on (a)
inactivity gross outflows to unemployment and employment; and (b) inactivity gross
inflow from employment and unemployment.

4.1.3 The Covid-19 shock wave hit on the labour force

The economic stability after the financial recession from 2008 to 2012 had a positive
impact on the labour market. This was evident as unemployment and inactivity began
to fall whilst employment started to rise until February 2020 when the world economy
was hit by the Covid-19 pandemic. Given the gravity of the impact, a worldwide
recession started taking place from early March 2020. As the Covid-19 shock wave
hit, there has been an increase in unemployment insurance claims, a growth in the
unemployment rate and momentous reduction in the employment rate.

Based on official information from the ONS virtual platform [134], the UK labour
force data has been published until February 2020 (at the time of writing this thesis).
Due to this we do not have access to official data for the crucial months of the Covid-19
epidemic (March to July 2020). However, provisional predictions from the ONS show
that the UK labour market is at risk following the Covid-19 pandemic and forecasts
that in the short term about at least 20% of the workers will lose their jobs or become
inactive [11]. The prediction indicates that the number of unemployed individuals will
increase from 1.34 million to over 6 million (i.e., a 4.66 million increment) by the end of
May 2020. This takes the effective current unemployment rate to around 20%, which
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is more than five times the most recent officially published rate of 3.9%. It can be said
that the Covid-19 pandemic has led and will further lead to a sharp spike in the number
of individuals in unemployment and inactivity and an abrupt drop in the number of
employed individuals. These estimates might turn out to be harsher as the lockdown
continues.

To summarise, all the aforementioned descriptions and features of employment,
unemployment and inactivity are to enable us understand and interpret the changes in
the level of the labour market needed to compute the unemployment and reemployment
rates to formulate more realistic UI scheme models.

4.2 Multistate Markov modelling

In Chapter 2, for simplicity we assumed that the time until the current employment
ends, τ0, and the unemployment spell of duration, τ1, had exponential distribution
(with parameters λ0 and λ1, respectively). As mentioned in the Introduction, this
guarantees a Markovian nature of the corresponding transitions.

Possible transitions in the state space of our insurance model are shown in Fig. 22,
where symbols E and U encode the states of being employed and unemployed, respect-
ively. Note that all transitions occur in a Markovian fashion; that is, the holding times
are exponentially distributed (with parameters λ0 if in state E, or λ1 if in states U).
The parameters λ0 or λ1 are called the unemployment transition rate and the reem-
ployment transition rate and are constant in Chapter 2. In Chapter 3, λ0 and λ1 are
time-varying.

Multistate Markov models are a useful way of estimating probability rates and rates
of transition between states. Thus, in the subsequent sections, we give a brief overview
of Markov chains and fit Markov models to the data.

4.2.1 Brief overview of Markov models

Markov models have been used in several disciplines to explain life course dynamics
[2, 86, 41, 19]. With this modelling approach the population under study in this thesis
is divided into compartments representing states, together with certain assumptions for
individuals to move from one compartment to another. This section is a compilation
of information from [3, 13, 69, 95, 126, 68, 108, 14, 15].
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The Markov property

Denote an individual’s employment journey by a continuous-time Markov jump process
(MJP) Yt, t ≥ 0 with finitely many states on a probability space (Ω, (Ft)t≥0,P). Here,
Ω is the sample space, (Ft)t≥0 is the filtration (interpreted as all information about the
process up to and including time t) associated to the process and P is the probability
measure. Let S denote the state space of the process. The process Y is said to have
Markov property if

P (Yt = j | Fs) = P (Yt = j | Ys) (4.2.1)

for all i ∈ S and t ≥ s ≥ 0. More specifically, for any state i1, i2, . . . , ik, i, j in S and
all times 0 ≤ s0 < s1 < · · · < sk < s < t,

P (Yt = j|Ys0 = i0, Ys1 = i1, . . . , Ysk = ik, Ys = i) = P (Yt = j|Ys = i) . (4.2.2)

The transition probability

The transition probability for a continuous-time Markov jump process for i, j ∈ S and
0 ≤ s ≤ t,

pij(s, t) := P(Yt = j |Ys = i) (4.2.3)

We assume that the state space is finite, |S| = ` < ∞ then the transition matrix is
written as

P(s, t) := (pij(s, t))`i,j=1 (4.2.4)

Note that 0 ≤ pij (s, t) ≤ 1 for all i, j ∈ S and ∑j pij (s, t) = 1 for all i ∈ S. Also, if
the state i is absorbing, then pij(s, t) = 0 for all j 6= i and pii(s, t) = 1, for all s ≤ t.

The Chapman–Kolmogorov equation

The Markov property implies that for any u, such that s ≤ u ≤ t, then the transition
probability pij(s, t) can be expressed as

pij(s, t) =
∑
k∈S

pik(s, u)pkj(u, t) (4.2.5)

for all i, j ∈ S. This is known as the Chapman–Kolmogorov equation. Equation (4.2.5)
can also be written in matrix form,

P(s, t) = P(s, u) P(u, t) (4.2.6)

for all s ≤ u ≤ t.
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The transition intensity

The convenient infinitesimal characterisation of the transition probabilities is as follows:
for all t ≥ 0 and i, j ∈ S, as h ↓ 0 we have

pij(t, t+ h) = λij(t)h+ o(h) (i 6= j), (4.2.7)

pii(t, t+ h) = 1 + λii(t)h+ o(h). (4.2.8)

Clearly, λij ≥ 0 for i 6= j and λii < 0. Moreover, by summing up the relations (4.2.7)
and (4.2.8) over j ∈ S, it follows that, for any i ∈ S and for all t ≥ 0,

∑
j∈S

λij(t) = 0. (4.2.9)

Here, λij(t) is called the transition rate or transition intensity from i to j at time t. In
particular,

λi(t) := |λii(t)| =
∑
j 6=i

λij(t) > 0. (4.2.10)

Let Λ(t) denote the transition rate matrix, also known as the generator matrix, defined
as

Λ(t) := (λij(t))`i,j=1. (4.2.11)

The sum of all elements in each row of (4.2.11) is zero due to (4.2.9).
If the Markov model is time-homogenous then the transition probabilities depend

only on the time shift, pij(s, t) = pij(t − s), and the transition rates do not depend
on time, λij(t) ≡ λij = const. In this case, it is sufficient to consider the transition
probabilities

pij(t) := P(Yt = j |Y0 = i). (4.2.12)

The transition probability matrix and the generator matrix are reduced to

P(t) = (pij(t))`i,j=1, Λ = (λij)`i,j=1. (4.2.13)

The Kolmogorov differential equations

For i 6= j, consider the transition probability pij(s, t + h), with h ↓ 0. Using the
Chapman–Kolmogorov equation in (4.2.5) and the asymptotic expansion for pij(t, t+h),
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we obtain

pij(s, t+ h) =
∑
k∈S

pik(s, t) pkj(t, t+ h) (4.2.14)

=
∑
k 6=j

pik(s, t)
(
λkj(t)h+ o(h)

)
+ pij(s, t)

(
1 + λjj(t)h+ o(h)

)
. (4.2.15)

Hence,
pij(s, t+ h)− pij(s, t)

h
=
∑
k∈S

pik(s, t)λkj(t) + o(h). (4.2.16)

Upon taking the limit as h ↓ 0, this yields

∂pij(s, t)
∂t

=
∑
k∈S

pik(s, t)λkj(t), (4.2.17)

or, in matrix form,

∂P(s, t)
∂t

= P(s, t)Λ(t). (4.2.18)

This is called the forward Kolmogorov equations. The initial conditions are

pi,j(s, t)|t=s = δij :=

0, i 6= j,

1, i = j,
(4.2.19)

that is,
P(s, s) = I (identity matrix). (4.2.20)

Similarly, by using the Chapman–Kolmogorov equation in (4.2.5) on the interval [s −
h, t], we get the backward Kolmogorov equations

∂pij(s, t)
∂s

= −
∑
k∈S

λik(s)pkj(s, t), (4.2.21)

or, in matrix form,

∂P(s, t)
∂s

= −Λ(s)P(s, t). (4.2.22)

The corresponding “terminal” conditions are

pi,j(s, t)|s=t = δij :=

0, i 6= j,

1, i = j,
(4.2.23)
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that is,
P(t, t) = I. (4.2.24)

In the time-homogeneous case, the Kolmogorov differential equations are reduced to

∂pij(t)
∂t

=
∑
k∈S

pik(t)λkj ,
∂pij(t)
∂t

=
∑
k∈S

λikpkj(t), (4.2.25)

or in matrix form
∂P(t)
∂t

= P(t)Λ, ∂P(t)
∂t

= ΛP(t). (4.2.26)

The Kolmogorov forward equations and the Kolmogorov backward equations are col-
lectively called the Kolmogorov differential equations (KDE).

Pathwise description of the Markov model

Define the residual holding time Rt as the (random) amount of time between t ≥ 0 and
the next jump, which is characterised by the property

{Rt > w, Yt = i} = {Yu = i for all u ∈ [t, t+ w]}. (4.2.27)

The distribution of Rt (assuming that Yt = i) is given by

P(Rt > w |Yt = i) = exp
(
−
∫ t+w

t
λi(u) du

)
. (4.2.28)

Recall that λi(u) = ∑
j 6=i λij(u). In particular, the conditional density of Rt (given

Yt = i) is

− d P(Rt > w |Yt = i)
dw = λi(t+ w) exp

(
−
∫ t+w

t
λi(u) du

)
. (4.2.29)

To show this, note that, by the Markov property,

P(Rt > w + h |Yt = i) = P(Rt > w + h | Yt = i, Rt > w︸ ︷︷ ︸
amounts to Yt+w = i

) · P(Rt > w |Yt = i)

= P(Rt+w > h |Yt+w = i) · P(Rt > w |Yt = i)

=
(
1− λi(t+ w)h+ o(h)

)
· P(Rt > w |Yt = i), (4.2.30)

and it follows that the function y(w) = P(Rt > w |Yt = i) satisfies the differential
equation

y′(w) = −λi(s+ w) y(w), y(0) = 1, (4.2.31)
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which solves to (4.2.28). It is also possible to characterise the distribution of the jump
destination from state i held at time s the process jumps at time t+Rt to a new state
j with probability proportional to the transition rate λij(t+Rt). To see this, consider
the probability

P(Yt+w+h = j, w < Rt ≤ w + h |Yt = i)

= P(Yt+w+h = j, Rt > w |Yt = i)

= P(Yt+w+h = j |Yt = i, Rt > w) · P(Rt > w |Yt = i)

= P(Yt+w+h = j |Yt+w = i) · P(Rt > w |Yt = i)

=
(
λij(t+ w)h+ o(h)

)
· exp

(
−
∫ t+w

t
λi(u) du

)
. (4.2.32)

Hence, dividing by h and taking the limit as h ↓ 0, the joint probability distribu-
tion/density of Yt+Rt and Rt is, conditionally on Yt = i, is given by

λij(t+ w) · exp
(
−
∫ t+w

t
λi(u) du

)
= λij(t+ w)

λi(t+ w) · λi(t+ w) exp
(
−
∫ t+w

t
λi(u) du

)
.

(4.2.33)
The second factor here is the density of Rt, whereas the first factor is

P(Yt+Rt = j |Yt = i) = λij(t+ w)
λi(t+ w) . (4.2.34)

Moreover, formula (4.2.33) implies that Yt+Rt is independent of Rt. When the Markov
model is time-homogeneous, λij(t) ≡ λij , λi(t) ≡ λi such that

P(YR0 = j |Y0 = i) = λij
λi
. (4.2.35)

Maximum likelihood estimation

Consider the time-homogeneous case to estimate the transition rate λij . Set T0, T1 <

· · · < Tn as the consecutive jump time such that T0 = Ri0 , T1 = T0 + Ri0 , . . . , Tn =
Tn−1 + Rin−1 . This means that the process starts in state i0, stays for time T0 and
jumps to state i0, where it stays for T1 and so on. Then, (T0 = t0 = 0, Yt0 = i0), (T1 =
t1, Yt1 = i1), . . . , (Tn = tn, Ytn = in) denotes the observations at successive times t0 <
t1 < t2 < · · · < tn between states S = i0, i1, . . . , in. The likelihood function is given by

L({λij} | {(tk, ik)}) =
n∏
k=1

λik−1,ik e−λi(tk−tk−1)

=
∏
i∈S

e−λivi
∏
j 6=i

(λij)nij , (4.2.36)
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4.2 Multistate Markov modelling

where nij is the total number of observed jumps from i to j and vi is the total time
spent in state i. Recall from (4.2.13) that Λ = {λij}. We take the logarithm of (4.2.36)
to derive

logL (Λ) =
∑
i∈S

∑
j 6=i

[log(λij)nij − λijvi] . (4.2.37)

Taking the partial derivative of (4.2.37) with respect to λij and equating it to 0 we get

∂ logL (Λ)
∂λij

= 0 ⇐⇒
∑
i∈S

∑
j 6=i

[
nij
λij
− vi

]
. (4.2.38)

Thus, maximising (4.2.36) leads to the maximum likelihood estimator (MLE)

λ̂ij = nij
vi
. (4.2.39)

Solving the Kolmogorov differential equations

The transition probabilities can be derived through the transition intensities by solv-
ing the KDE. Solving the KDE in (4.2.18) and (4.2.22) can be challenging when the
transition rates are time dependent. However, there are some techniques that can
been used to solve the KDE and fit time inhomogeneous Markov models [103]. One
approach is the to consider the generator matrix as a piecewise function as shown in
[29]. Another approach is to transform the time-dependent intensity matrix into the
smooth parametric form. This transformation requires choosing from a class of func-
tions that fits the shape and nature of the intensity. Some mathematical functions
used to model the time-dependent transition rates using the smooth parametric ap-
proach are the Weibull function of time model [106], the Gompertz–Makeham model
for human mortality [57, 87] and the Sigmoid model [100]. The next method is the
nonparametric approach. In this approach, the shape of the transition intensity is de-
termined from the data rather than making any specific assumptions about the shape
of the transition intensities. Some non-parametric techniques to estimate the trans-
ition rates are weighted smoothing approach [66] and spline representation approach
[39]. Notwithstanding time-varying transition rate models are often solved numerically
which is explained in [103].

In the subsequent section, we consider the time-homogeneous Markov process where
the transition rates do not depend on time (λij(t) = λij). The formal solution of KDE
in (4.2.26) is

P(t) = exp{tΛ}, t ≥ 0. (4.2.40)
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4.3 Two-state model

One approach to numerically evaluate the matrix exponential in (4.2.40) is the Mat-
rix Decomposition method. In this method, the transition intensity matrix can be
decomposed as

Λ = ΦQΦ−1 (4.2.41)

where Q is a diagonal matrix that contains the eigenvalues of Λ ({q1, · · · , q`}) and Φ
is a matrix that contains the ith eigenvector of Λ in the ith column. Substitute (4.2.41)
into (4.2.40) to obtain

P(t) = Φ · exp (tQ) ·Φ−1 = Φ · diag
(
eq1t, . . . , eq`t

)
·Φ−1. (4.2.42)

In the next sections, we study the two-state, four-state, five-state and lake models
for the labour force market.

4.3 Two-state model

We first investigate the simplest two-state model with constant transition rates as
displayed in Fig. 22. An individual may be in the employed state E or the unemployed
state U .

E U
λEU

λUE

Figure 22: Graphical representation of the transitions between possible states of the
labour market, labelled employment (E) and unemployment (U). This diagram also
shows the arrows from each state to the other states that signify transition rate λij for
i, j ∈ {E,U}.

Transition from E to U and U to E occur at rate λEU and λUE respectively. Relating
this to Chapter 2, λ0 = λEU and λ1 = λUE . Consequently, the generator matrix or
transition rate matrix Λ in Kolmogorov’s equation (see (4.2.18) and (4.2.22)) is

Λ =

−λEU λEU

λUE −λUE

 . (4.3.1)
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4.3 Two-state model

The data is collected up to time t. Thus, using (4.3.1), we find the transition probabil-
ities pij(0, t) = pij(t) = P(Y (t) = j|Y (0) = i) for each i, j ∈ {E,U} for continuous-time
Markov chain.

4.3.1 Finding the probability matrix with the transition matrix for
the two-state model

In this section, three approaches are used to find the probability matrix using the
generator matrix for the two-state model (Fig. 22).

The backward equation approach

The first approach is the backward equation approach. We know that

pEE(t) + pEU (t) = pUE(t) + pUU (t) = 1 (4.3.2)

for all t ≥ 0, and so it is sufficient to solve just pEE(t) and pUE(t). Recall that the
backward equation is given by

P′(t) = ΛP(t) (4.3.3)

where P(t) = {pij(t)} and where P′(t) = dP(t)
dt . This yields the equations

p′EE(t) = λEU [pUE(t)− pEE(t)] (4.3.4)

p′UE(t) = λUE [pEE(t)− pUE(t)] . (4.3.5)

We obtain

λUEp
′
EE(t) + λEUp

′
UE(t) = 0 =⇒ λUEpEE(t) + λEUpUE(t) = c (4.3.6)

where c is an arbitrary constant. On account of Fig. 22, P(0) = I, so we get

λEUpEE(0) + λUEpUE(0) = c ⇐⇒ λEU = c. (4.3.7)

Thus,

λUEpEE(t) + λEUpUE(t) = λUE =⇒ λEUpUE(t) = λUE − λUEpEE(t). (4.3.8)

Substituting (4.3.8) into the differential equation (4.3.4), we have that

p′EE(t) = λUE − λUEpEE(t)− λEUpEE(t) = λUE − (λUE + λEU )pEE(t) (4.3.9)

130



4.3 Two-state model

Solving (4.3.9) yields

pEE(t) = ce−(λEU+λUE)t + λUE
λEU + λUE

. (4.3.10)

With P(0) = I, we obtain

pEE(t) = λUE
λEU + λUE

+ λEU
λEU + λUE

e−(λEU+λUE)t. (4.3.11)

Using (4.3.2),

pEU (t) = 1− pEE(t) = λEU
λEU + λUE

− λEU
λEU + λUE

e−(λEU+λUE)t. (4.3.12)

We also have that from (4.3.8)

pUE(t) = λUE
λEU

− λUE
λEU

(
λUE

λEU + λUE
+ λEU
λEU + λUE

e−(λEU+λUE)t
)

= λUE
λEU + λUE

− λUE
λEU + λUE

e−(λEU+λUE)t. (4.3.13)

Similarly, using (4.3.2) we see that

pUU (t) = 1− pUE(t) = λEU
λEU + λUE

+ λUE
λEU + λUE

e−(λEU+λUE)t. (4.3.14)

The forward equation approach

An alternative approach which is the forward equation approach is to solve

P′(t) = P(t)Λ. (4.3.15)

Now we derive the following equations

p′EE(t) = −pEE(t)λEU + pEU (t)λUE (4.3.16)

p′UE(t) = −pUE(t)λEU + pUU (t)λUE (4.3.17)

p′EU (t) = −pEU (t)λUE + pEE(t)λEU (4.3.18)

p′UU (t) = −pUU (t)λUE + pUE(t)λEU . (4.3.19)

The equations can further be written as

p′EE(t) = −pEE(t)λEU + λUE(1− pEE(t)) = λUE − (λEU + λUE)pEE(t) (4.3.20)

p′UE(t) = −pUE(t)λEU + λUE(1− pUE(t)) = λUE − (λEU + λUE)pUE(t) (4.3.21)

p′EU (t) = −pEU (t)λUE + λEU (1− pEU (t)) = λEU − (λEU + λUE)pEU (t) (4.3.22)

p′UU (t) = −pUU (t)λUE + λEU (1− pUU (t)) = λEU − (λEU + λUE)pUU (t). (4.3.23)
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4.3 Two-state model

Solving (4.3.20), (4.3.21), (4.3.22) and (4.3.23) yields

pEE(t) = c1e−(λEU+λUE)t + λUE
λEU + λUE

pEU (t) = c3e−(λEU+λUE)t + λEU
λEU + λUE

(4.3.24)

pUE(t) = c2e−(λEU+λUE)t + λUE
λEU + λUE

pUU (t) = c4e−(λEU+λUE)t + λEU
λEU + λUE

(4.3.25)

When P(0) = I, we obtain the same results in (4.3.11), (4.3.12), (4.3.13) and (4.3.14).

The matrix decomposition approach

A more straightforward approach to finding the transition probabilities is to compute
the matrix exponential in (4.2.40). The eigenvalues of the generator matrix Λ in (4.3.1)
is 0 and −(λEU + λUE) and the corresponding eigenvectors are (1, 1)ᵀ and

(
λEU
λUE

, 1
)ᵀ

.
Let Q be a diagonal matrix consisting of the eigenvalues of Λ such that

Q =

0 0
0 −(λEU + λUE)

 . (4.3.26)

Also, set Φ as a matrix of the associated eigenvectors of Λ ordered in the same order
of the eigenvalues in Q such that

Φ =

1 −λEU
λUE

1 1

 ; Φ−1 =

 λUE
λEU+λUE

λEU
λEU+λUE

−λUE
λEU+λUE

λUE
λEU+λUE

 . (4.3.27)

Now, Λ can be decomposed into

Λ = ΦQΦ−1. (4.3.28)

In that case, we derive

P(t) = eΛt = ΦeQtΦ−1 = Φ · diag
(
eq1t, · · · , eq`t

)
·Φ−1 (4.3.29)

=

 λUE
λEU+λUE + λEU

λEU+λUE e−(λEU+λUE)t λEU
λEU+λUE −

λEU
λEU+λUE e−(λEU+λUE)t

λUE
λEU+λUE −

λUE
λEU+λUE e−(λEU+λUE)t λEU

λEU+λUE + λUE
λEU+λUE e−(λEU+λUE)t

 .
(4.3.30)

Consequently, we see that all three approaches give the same result.
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4.3 Two-state model

The long-term behaviour

Here we compute the limiting and stationary distributions. A probability distribution
denoted by π is a limiting distribution if for all state i, j

lim
t→∞

pij(t) = πj . (4.3.31)

This is equivalent to
lim
t→∞

P(t) = Π (4.3.32)

where Π is a matrix with rows equal to π. Also π is a stationary distribution if

πP(t) = π (4.3.33)

for t ≥ 0. That is
πj =

∑
i

πipij(t) (4.3.34)

for all states j. Thus, when we take the limit of 4.3.29 as t→∞ we have that

lim
t→∞

P(t) = Π = 1
λEU + λUE

λUE λEU

λUE λEU

 . (4.3.35)

We observe that P(t) converges to the distribution

Π =
[

λUE
λEU+λUE ,

λEU
λEU+λUE

]
(4.3.36)

which is the unique stationary distribution. That is to say, in the long run, the chain
will be in the employment (E) state with a probability of λUE

λEU+λUE .

4.3.2 Two-state model fitting

The labour force state transition (LST) models can be used as decision models because
they can be used to simulate labour market’ transitions across various states over time.
In this section, we show how to estimate the generator matrix and probability matrix of
a continuous-time Markov model using our discrete time data (quarterly observations).
We further use the derived results to run (t-step) simulations and compare the simulated
values with the actual data.
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4.3 Two-state model

Estimating the generator matrix and the probability matrix from the data
using diagonal adjustment (DA)

From Section 4.2.1, let Λ̂ = (λ̂ij)i,j∈S denote the maximum likelihood estimator (MLE)
of Λ where

λ̂ij = nij
vi

(4.3.37)

where nij is the total number of observed jumps from i to j and vi is the total time
spent in state i. The complicated aspect is that our data is collected at quarterly
time intervals so vi is unknown. Thus, we estimate Λ using the maximum likelihood
estimator for the transition probability. For a time-homogeneous process, the likelihood
function at m (quarterly) time points is given by

L(P) =
∏
i∈S

∏
j∈S

p
nij(m)
ij (4.3.38)

Taking the logarithm of (4.3.38) we derive

logL(P) =
∑
i∈S

∑
j∈S

p
nij(m)
ij . (4.3.39)

The likelihood function in (4.3.38) is similar to the likelihood function for n dependent
multinomial distribution [115, 111]. Thus the maximum likelihood estimator for the
transition probability also known as the relative probability rate in (4.2.3) is given by

p̂ij(m) = nij(m)
ni(m) . (4.3.40)

where nij(m) is the total number of observed jumps from i to j before m and ni(m) =∑
j nij(m). Let P̂ = (p̂ij)i,j∈S denote the relative probability matrix. Next, we use

the diagonal adjustment (DA) method to compute the generator matrix for our data
analysis. In this approach, we find the probability rates for each quarter by using
(4.3.40) and (4.2.40) to obtain

Λ̂ = log P̂ = Ψ · log(D) ·Ψ−1 = Ψ · diag (log(d1), . . . , log(d`)) ·Ψ−1 (4.3.41)

where D is the diagonal matrix that contains the eigenvalues of P̂ ({d1, . . . , d`}) and
Ψ is a matrix that contains the ith eigenvector of P̂ in the ith column. To ensure
that the row of the matrix Λ̂ sums up to zero, all negative diagonal elements in each
row are replaced with zero and the diagonal elements are re-calculated as the negative
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4.3 Two-state model

sum of the non-diagonal elements [108, 69]. To summarise, let λ̃ denote the transition
rate derived from the DA method such that Λ̃ = [λ̃ij ]i,j∈S . Then the procedure for
computation is

λ̃ij =

0 if (i 6= j) and λ̂ij < 0

λ̂ij otherwise
(4.3.42)

followed by

λ̃ij = −
∑̀

j=1,j 6=i
λ̂ij for i = 1, 2, . . . , `. (4.3.43)

Two-state model fitting

The model fitting is done using four different scenarios based on the time intervals
of the data at hand. The first scenario is the entire time interval which is the total
number of quarterly time steps in the data. The entire time interval is then split into 3
according to the impact of the UK financial recession. The divisions are pre-recession,
recession and the post-recession which are the periods before, during and after the
financial recession respectively. Details of each scenario, the time intervals and the
number of observation is shown in Table 4.2.

Scenario Time interval Number of observations

Entire September 2001 – December 2019 73
Pre-recession September 2001 – December 2007 25

Recession January 2008 – December 2012 20
Post-recession January 2013 – December 2019 28

Table 4.2: The scenarios, their corresponding time intervals and number of observation
for the data analysis.

The parameter for the simulation of the model are derived from the labour force data
in [134, 135]. These values are shown in Table 4.3. Note that values for unemployment
is the sum of all unemployed and inactive individuals in the data.
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4.3 Two-state model

Parameters Entire Pre-recession Recession Post-recession

N 37647261 37647261 39740790 40517859
E 27325028 27325028 29001072 28840555
U 10322233 10322233 10739718 11677304

E to E 26375755 26375755 27965849 27861367
E to U 906629 906629 920845 988327
U to E 915392 915392 1042197 954431
U to U 9252629 9252629 9623060 10412045

Table 4.3: Parameter for t-step simulations of the models derived from the labour
force data.

Let O denote a matrix which contains transition frequencies (levels) from the first
to the last day of the quarter under consideration (see Table 4.2).

Entire data scenario for the two-state model

Using the values in Table 4.3, the transition frequencies for the entire data scenario of
the two-state model from from September 2001 to December 2001 is given by

Oentire =

26375755 906629
915392 9252628

 . (4.3.44)

The matrix of relative transition probabilities is given by

P̂entire =

 26375755
26375755+906629

906629
26375755+906629

915392
915392+9252628

9252628
915392+9252628

 =

0.96676870 0.0332313
0.09002657 0.9099734

 . (4.3.45)

Next, we compute relative transition rates using Λ̂entire = log P̂entire in (4.3.41). We
have that

Dentire =

1.00 0.00
0.00 0.88

 , Ψentire =

0.71 −0.35
0.71 0.94

 and Ψ−1
entire =

 1.03 0.38
−0.78 0.78

 .
(4.3.46)
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Then

Λ̂entire = Ψentire · log(Dentire) ·Ψ−1
entire

=

0.71 −0.35
0.71 0.94

 ·
0.00 0.00

0.00 −0.13

 ·
 1.03 0.38
−0.78 0.78


=

−0.03546486 0.03546486
0.09607750 −0.09607750

 . (4.3.47)

We then replace all negative diagonal elements in each row with zero and re-calculate
the diagonal elements as the negative sum of the non-diagonal elements in (4.3.47).
Thus, the computed transition matrix using the DA approach is given by

Λentire =

−0.03546486 0.03546486
0.09607750 −0.09607750

 . (4.3.48)

We further compute the probability matrix using (4.3.48). Then from Section 4.3.1 we
have that

Qentire =

−0.13 0.00
0.00 0.00

 , Φentire =

−0.35 0.71
0.94 0.71

 ,Φ−1
entire =

−0.78 0.78
1.03 0.38

 .
(4.3.49)

Subsequently

Pentire = Φentire · exp(Qentire) ·Φ−1
entire

=

−0.35 0.71
0.94 0.71

 ·
0.88 0.00

0.00 1.00

 ·
−0.78 0.78

1.03 0.38


=

0.96676870 0.0332313
0.09002657 0.9099734

 . (4.3.50)

Note that (4.3.50) is equal to (4.3.45) which is as expected. The unique stationary
distribution for the entire data scenario is computed as[

0.7303921, 0.2696079
]
. (4.3.51)

The DA approach explained in Subsection 4.3.2 and demonstrated in Subsection 4.3.2
can be computed using R (see [108, p.2]). Thus, for subsequent computations, we will
display only the results from R to minimise repetition of steps. The codes used to
compute the entire data scenario is shown in Appendix A.3 as an example.
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4.3 Two-state model

Next, we use the probability matrix along with initial conditions from the data to
run simulations and compare the simulated values to our data.

For the entire data scenario of the two-state model, we use (4.3.50) and the initial
states given by [

E
N ,

U
N

]
=
[

27325028
37647261 ,

10322233
37647261

]
≈
[
0.73, 0.27

]
(4.3.52)

to obtain the simulated values. The simulated values and actual data of employment
and unemployment rates and levels for the entire data scenario of the two-state model
are shown in Fig. 23. The outcomes for the two-state model will be discussed after
considering all the scenarios.
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Figure 23: Graphs showing the t-step simulated values and actual data of employment
and unemployment rates and levels for the entire data scenario of the two-state model.
Plot 1) shows the simulated values for employment and unemployment rate only. Plot
4) shows employment and unemployment levels only. Plot 2) illustrates simulated and
actual for employment rates. Plot 5) illustrates simulated and actual for employment
levels. Plot 3) displays simulated and actual for unemployment rates. Plot 6) displays
simulated and actual for unemployment levels.
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Pre-recession data scenario for the two-state model

The parameters for the pre-recession data scenario are the same as the parameters
used in the entire data scenario (4.3.2). Thus, the generator matrix and probability
matrix in (4.3.48) and (4.3.50) respectively are the same. The only difference is the
time interval (see Table 4.2). Using (4.3.50) and the initial states in (4.3.52), we run
simulations and show the results in Fig. 24.
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Figure 24: Graphs showing the t-step simulated values and actual data of employment
and unemployment rates and levels of the pre-recession data scenario. Plot 1) shows
the simulated values for employment and unemployment rate only. Plot 4) shows
employment and unemployment levels only. Plot 2) illustrates simulated and actual for
employment rates. Plot 5) illustrates simulated and actual for employment levels. Plot
3) displays simulated and actual for unemployment rates. Plot 6) displays simulated
and actual for unemployment levels.
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Recession data scenario for the two-state model

The transition frequencies for the recession data scenario of the two-state model from
January 2008 to March 2008 is written as

Orecession =

27965849 920845
1042197 9623060

 . (4.3.53)

Again, we use the DA technique explained in Section 4.3.2 and demonstrated in Sec-
tion 4.3.2. The DA approach can also be easily computed in R (see [108, p.2]). The
matrix of estimated transition probabilities is given by

P̂recession =

 27965849
27965849+920845

920845
27965849+920845

1042197
1042197+9623060

9623060
1042197+9623060

 =

0.96812217 0.03187783
0.09771888 0.90228112

 . (4.3.54)

The computed transition matrix using the DA approach in R is given by

Λrecession =

−0.03414 0.03414
0.10470 −0.10470

 . (4.3.55)

Consequently

Precession =

0.96812218 0.03187783
0.09771888 0.90228112

 . (4.3.56)

The unique stationary distribution for the recession data scenario is given by[
0.7540229, 0.2459771

]
. (4.3.57)

Again using (4.3.50) and the initial states given by[
E
N ,

U
N

]
=
[

29001072
39740790 ,

10739718
39740790

]
≈
[
0.73, 0.27

]
, (4.3.58)

we run t-step simulations and display the results in Fig. 25.

Post-recession data scenario for the two-state model

The transition frequencies for the post-recession data scenario of the two-state model
from January 2013 to March 2013 is written as

Opost-recession =

27861367 988327
954431 10412045

 . (4.3.59)
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Figure 25: Graphs showing the t-step simulated values and actual data of employment
and unemployment rates and levels for the recession data scenario of the two-state
model. Plot 1) shows the simulated values for employment and unemployment rate
only. Plot 4) shows employment and unemployment levels only. Plot 2) illustrates
simulated and actual for employment rates. Plot 5) illustrates simulated and actual
for employment levels. Plot 3) displays simulated and actual for unemployment rates.
Plot 6) displays simulated and actual for unemployment levels.

The matrix of estimated transition probabilities is given by

P̂post-recession =

 27861367
27861367+988327

988327
27861367+988327

954431
954431+10412045

10412045
954431+10412045

 =

0.96574220 0.0342578
0.08396895 0.9160311

 .
(4.3.60)

The computed transition matrix using the DA approach in R is given by

Λpost-recession =

−0.03646 0.03646
0.08936 −0.08936

 . (4.3.61)

Consequently

Ppost-recession =

0.96574220 0.0342578
0.08396895 0.9160311

 . (4.3.62)
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4.3 Two-state model

The unique stationary distribution for the post-recession data scenario is given by[
0.7102365, 0.2897635

]
. (4.3.63)

The t-step simulation is done using (4.3.50) and the initial states given by[
E
N ,

U
N

]
=
[

28840555
40517859 ,

11677304
40517859

]
≈
[
0.71, 0.29

]
. (4.3.64)

The results of are shown in Fig. 26.
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Figure 26: Graphs showing the t-step simulated values and actual data of employment
and unemployment rates and levels for the post-recession data scenario of the two-
state model. Plot 1) shows the simulated values for employment and unemployment
rate only. Plot 4) shows employment and unemployment levels only. Plot 2) illustrates
simulated and actual for employment rates. Plot 5) illustrates simulated and actual
for employment levels. Plot 3) displays simulated and actual for unemployment rates.
Plot 6) displays simulated and actual for unemployment levels.

The root mean square error and coefficient of determination for the two-
state model.

After deriving the simulations, we use the root mean square error (RMSE) as a measure
to check the error between the simulated values in relation to the observed data. RMSE
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4.3 Two-state model

is a measure of accuracy used to compare the difference between the simulated values
and the actual data [67, §2]. The RMSE formula given that the simulated values are
denoted by ŷt and yt represents the observed data at time t over a period of T is given
by

RMSE =

√∑T
t=1(ŷt − yt)2

T
. (4.3.65)

We support the absolute fit measure, RMSE, with the relative fit measure, coefficient
of determination (R2). The coefficient of determination (R2) measures the proportion
of the variance in the simulated values that are predictable from the actual data [40,
Ch.I]. The formula for R2 is given by

R2 = 1−
∑T
t=1(y − ŷt)2∑T
t=1(yt − ȳ)2

(4.3.66)

where ȳ = 1
T

∑T
t=1 yt. The RMSE and R2 values for the two-state model for the four

scenarios are displayed in Table 4.4 and Table 4.5 respectively.

Parameters Entire Pre-recession Recession Post-recession

Employment rate 0.01637554 0.001924639 0.0377082 0.03482574
Unemployment rate 0.01637554 0.001924639 0.0377082 0.03482574
Employment level 0.6678523 0.07532717 1.52287 1.434191

Unemployment level 0.6678523 0.07532717 1.52287 1.434191

Table 4.4: RMSE values to assess the performance of the two-state model for the four
scenarios in Table 4.2.

Parameters Entire Pre-recession Recession Post-recession

Employment rate 0.002514518 0.1737243 0.6878303 0.932229
Unemployment rate 0.002514518 0.1737243 0.6878303 0.932229
Employment level 0.7064425 0.987504 0.1662591 0.9816291

Unemployment level 0.02166971 0.9217928 0.7860486 0.9778135

Table 4.5: R2 values to assess the performance of the two-state model for the four
scenarios in Table 4.2.

143



4.3 Two-state model

Discussions for the two-state model fitting

In Fig. 23 for the entire data scenario of the two-state model, we see that the simu-
lated values for rates and levels are close to the actual data from 2001 to 2008. After
this period, in Fig. 23 plot 2) and plot 5) we observe that the simulated values for
employment rates and levels are above the corresponding actual values for employment
rates and levels from 2008 to 2014. To add on, from 2015 to 2020 in Fig. 23 plot 2)
and plot 5) we see that the simulated values for employment rates and levels fall below
the corresponding actual values for employment rates and levels. Also in Fig. 23 plot
3) and plot 5), the simulated values for unemployment rates and levels are less than
the corresponding actual values for unemployment rates and levels within the period
2008 to 2014. Furthermore, Fig. 23 plot 3) and plot 5) show that the simulated values
for unemployment rates and levels are greater than the corresponding actual values
for unemployment rates and levels within the period 2015 to 2020. All the outlined
observed characteristics support the reason why the RMSE values in Table 4.4 are low.
Thus, the difference in the simulated and actual values cancel out each other as both
take different forms of direction at a given point and switch to the opposite direction.
At the same time, we can say that the model is able to predict the values better from
2008 to 2014. As a result, we split the entire data scenario into 3 time points to help
interpret the results better.

The closeness between the simulated values and the actual data in plot 2), plot 3),
plot 5) and plot 6) for Fig. 24, Fig. 25 and Fig. 26 are ranked as pre-recession<post-
recession<recession for the two-state model. This ranking also reflects in RMSE values
in Table 4.4. From Table 4.4, it can be seen that the pre-recession period has the
smallest RMSE values for employment rate, unemployment rate, employment level,
and unemployment level compared to that of the entire, recession and post-recession
periods. This indicates that the simulated values during the pre-recession period best
fits the rates and level of employment and unemployment in the actual data set for the
UK. The derived R2 values in Table 4.5 illustrate acceptable values and shows that the
rates and levels of employment and unemployment in the actual data are explained by
the simulated values.

It is important to note that the two state model best predicts employment and
unemployment rates and levels during the precession period when the economy is very
stable. During the recession period, employment and unemployment rates and levels
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become more unpredictable due to the instability in the economy. This is demonstrated
in Fig. 25. After the recession period, the economy begins to recover from the recession
shock. As a result the employment and unemployment rates and levels are somewhat
unpredictable (not as unpredictable as the recession period) and this reflects in Fig. 26.

On the whole, the two-state model is not a very good fit but can be used to predict
employment and unemployment rates and levels. Also, the two-state model is relatively
simple and does not account for external interventions such as mortality, birth and
immigration. To explore this further, we therefore include external interventions in
the two-state model to form the four and five state models detailed in the subsequent
sections.

4.4 Four-state model

The statistical framework for the next multi-state model is shown in Fig. 27. The in-
clusion of external entry and mortality allows four states for each quarterly transitions.
The four-states are employed (E), unemployed (U), new entry denoted by B and mor-
tality/exit state is denoted by D. To explain further, state B contains individuals that
do not meet certain labour force criteria such as age and immigrants without working
permits willing to work. Once the criteria limitations no longer hold, individuals transit
from state B to either state E,U or D. Individuals may also move from state E to
state U and vise versa, or may die.

Similar to Section 4.3, the transition from one compartment to another is described
by rates. The transition rates between E and U are denoted by λEU and λUE . Set
N̄ = E + U +B as the total population and N = E + U as the total labour force. We
assume that all new external entries into state E and U from state B are denoted by
βE and βU respectively. The exit rates from state E and U to state D are represented
by µE and µU respectively. Thus, state D is an absorbing state.

The generator matrix or transition rate matrix Λ is given by

Λ =


−(βE + βU ) βE βU 0

0 −(λEU + µE) λEU µE

0 λUE −(λUE + µU ) µU

0 0 0 0

 . (4.4.1)

We use the matrix exponential approach to find the probability matrix. We find the
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Figure 27: Graphical representation of the transition rates between employment (E),
unemployment (U), entry (B) and exit (D) states. All new external entries into state
E and U from state B are denoted by βE and βU respectively. The exit rates from
state E and U are represented by µE and µU respectively.

eigenvalues q such that for some non zero vector φ,

Λφ = qφ. (4.4.2)

Rewrite (4.4.2) to derive

(Λ− Iq)φ =


−(q + βE + βU ) βE βU 0

0 −(q + λEU + µE) λEU µE

0 λUE −(q + λUE + µU ) µU

0 0 0 −q

φ = 0

(4.4.3)

where I is the identity matrix and 0 is the zero vector. Note that (4.4.3) is true for
some non-zero vector φ if an only if

|Λ− Iq| = 0 (4.4.4)
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where | · | is the determinant. We have that

|Λ− Iq| =

∣∣∣∣∣∣∣∣∣∣∣

−(q + βE + βU ) βE βU 0
0 −(q + λEU + µE) λEU µE

0 λUE −(q + λUE + µU ) µU

0 0 0 −q

∣∣∣∣∣∣∣∣∣∣∣
= 0. (4.4.5)

The determinant of an upper triangular matrix is the product of its diagonal elements.
From (4.4.5) we get

− q (−(q + βE + βU )) (−(q + λEU + µE)) (−(q + λUE + µU )) = 0 (4.4.6)

We solve for q in (4.4.6) to obtain the eigenvalues of the generator matrix Λ in (4.4.1).
The eigenvalues are

q1 = 0 (4.4.7)

q2 = 1
2 (−ν − λUE − λEU − µE − µU ) (4.4.8)

q3 = 1
2 (ν − λUE − λEU − µE − µU ) (4.4.9)

q4 = −βE − βU (4.4.10)

where ν =
√

(λEU + λUE + µE + µU )2 − 4 (λUEµE + λEUµU + µEµU ). The corres-
ponding eigenvectors are those φ such that (Λ− Iq)φ = 0 for some eigenvalue q.
Using (4.4.3), we write φ = (ϕ1, ϕ2, ϕ3, ϕ4)ᵀ and 0 = (0, 0, 0, 0)ᵀ such that

(Λ− Iq)φ

=


−(q + βE + βU ) βE βU 0

0 −(q + λEU + µE) λEU µE

0 λUE −(q + λUE + µU ) µU

0 0 0 −q

 ·

ϕ1

ϕ2

ϕ3

ϕ4

 =


0
0
0
0

 .
(4.4.11)

To find the eigenvectors, we substitute each of the eigenvalues of the generator matrix
((4.4.7), (4.4.8), (4.4.9), (4.4.10)) into (4.4.11) and solve the system that is obtained.
First, substitute the eigenvalue q1 = 0 in (4.4.7) into the matrix (4.4.11) and solve the
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system

(Λ− I(0))φ =


−(βE + βU ) βE βU 0

0 −(λEU + µE) λEU µE

0 λUE −(λUE + µU ) µU

0 0 0 0

 ·

ϕ1

ϕ2

ϕ3

ϕ4

 =


0
0
0
0

 .
(4.4.12)

We then multiply both sides of the equation by an invertible matrix denoted by A such
that the derived coefficient matrix is in reduced echelon form. We then perform the
matrix multiplication for

A (Λ− I(0))φ = A0 (4.4.13)

where

A =


1

−(βE+βU )
−βEλUE−βUλUE−βEµU

(βE+βU )(λUEµE+λEUµU+µEµU )
−βEλEU−βUλEU−βUµE

(βE+βU )(λUEµE+λEUµU+µEµU ) 0
0 −λUE−µU

λUEµE+λEUµU+µEµU − λEU
λUEµE+λEUµU+µEµU 0

0 − λUE
λUEµE+λEUµU+µEµU

−λEU−µE
λUEµE+λEUµU+µEµU 0

0 0 0 1

 .
(4.4.14)

The matrix multiplication of (4.4.13) yields
1 0 0 −1
0 1 0 −1
0 0 1 −1
0 0 0 0

 ·

ϕ1

ϕ2

ϕ3

ϕ4

 =


0
0
0
0

 . (4.4.15)

Equation (4.4.15) as a sytem of scalar equation is given by
ϕ1 − ϕ4 = 0

ϕ2 − ϕ4 = 0

ϕ3 − ϕ4 = 0

=⇒


ϕ1 = ϕ4

ϕ2 = ϕ4

ϕ3 = ϕ4

(4.4.16)

We then use (4.4.16) to determine the entries of φ in terms of ϕ4. Accordingly,

φ =


ϕ1

ϕ2

ϕ3

ϕ4

 =


ϕ4

ϕ4

ϕ4

ϕ4

 . (4.4.17)
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Setting ϕ4 = 1 in
(
ϕ4 ϕ4 ϕ4 ϕ4

)ᵀ
, we have that

(
1 1 1 1

)ᵀ
is an eigenvector of the

generator matrix in (4.4.1) associated with the eigenvalue q1 = 0. We repeat this
procedure for the other eigenvalues in (4.4.8), (4.4.9) and (4.4.10). Consequently, the
eigenvalues of the generator matrix are given as

φ1 =
(
1, 1, 1, 1

)ᵀ
, (4.4.18)

φ2 =
(

(−βEλUE−2βUλUE+βEλEU+βEµE−βEµU+βEν)
(λUE(−2βE−2βU+λUE+λEU+µE+µU+ν+2µB)) ,−

−λUE+λEU+µE−µU+ν
2λUE , 1, 0

)ᵀ
,

(4.4.19)

φ3 =
(

(−βEλUE−2βUλUE+βEλEU+βEµE−βEµU−βEν)
(λUE(−2βE−2βU+λUE+λEU+µE+µU−ν+2µB)) ,−

−λUE+λEU+µE−µU−ν
2λUE , 1, 0

)ᵀ
,

(4.4.20)

φ4 =
(
1, 0, 0, 0

)ᵀ
(4.4.21)

Let Q be a diagonal matrix consisting of the eigenvalues of Λ such that

Q =


q1 0 0 0
0 q2 0 0
0 0 q3 0
0 0 0 q4

 . (4.4.22)

Using (4.4.18), (4.4.19),(4.4.20) and (4.4.21),

Φ =
[
φ1 φ2 φ3 φ4

]
. (4.4.23)

In that case, we derive

P(t) = eΛt = ΦeQtΦ−1 = Φ · diag
(
eφ1t, · · · , eφ`t

)
·Φ−1. (4.4.24)

Next we fit the four-state model in Fig. 27 to our data using similar arguments from
Section 4.3.2.

4.4.1 Four-state model fitting

The parameters for the t-step simulation of the four-state model in Fig. 27 are seen in
Table 4.3 with additional entries for state B and D in Table 4.6. There is no publicly
available data on entry and exit rates and levels to and from UK labour force so we use
the number of individuals in UK birth and mortality register from [85, 24, 105]. These
parameters came from only first time point and may not be appropriate but will do for
now.
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Parameters Entire Pre-recession Recession Post-recession

N̄ 70347261 70347261 77230790 79227859
B 32700000 32700000 37490000 38710000
D 12600200 12600200 12116000 11939300

B to B 9343128 9343128 12317254 13079917
B to E 12701680 12701680 14077937 14091229
B to U 4798154 4798154 5213361 5705423
B to D 5857037 5857037 5881448 5833432
E to D 4894303 4894303 4549701 4346148
U to D 1848859 1848859 1684852 1759719

Table 4.6: Parameter for computations and t-step simulations.

Entire data scenario for the four-state model

The transition frequencies for the entire data scenario of the four-state model from
September 2001 to December 2001 is written as

Oentire =


9343129 12701680 4798154 5857037

0 26375755 906629 4894303
0 915392 9252628 1848859
0 0 0 0

 . (4.4.25)

The matrix of relative transition probabilities is given by

P̂entire =


9343129
32700000

12701680
32700000

4798154
32700000

5857037
32700000

0 26375755
32176687

906629
32176687

4894303
32176687

0 915392
12016879

9252628
12016879

1848859
12016879

0 0 0 1



=


0.2857226 0.38843058 0.14673254 0.1791143

0 0.81971631 0.02817658 0.1521071
0 0.07617552 0.76996931 0.1538552
0 0 0 1

 . (4.4.26)
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Following this, we compute relative transition rates using Λ̂entire = log P̂entire in (4.3.41).
We have that

Dentire =


1.00 0.00 0.00 0.00
0.00 0.85 0.00 0.00
0.00 0.00 0.74 0.00
0.00 0.00 0.00 0.29

 then log(Dentire) =


0.00 0.00 0.00 0.00
0.00 −0.17 0.00 0.00
0.00 0.00 −0.30 0.00
0.00 0.00 0.00 −1.25

 .
(4.4.27)

Also,

Ψentire =


0.50 0.56 0.01 1.00
0.50 0.59 −0.34 0.00
0.50 0.58 0.94 0.00
0.50 0.00 0.00 0.00

 and Ψ−1
entire =


0.00 0.00 0.00 2.00
0.00 1.25 0.45 −1.70
0.00 −0.77 0.78 −0.01
1.00 −0.69 −0.26 −0.05

 .
(4.4.28)

Consequently,

Λ̂entire = Ψentire · log(Dentire) ·Ψ−1
entire =


−1.2527 0.75120 0.2846 0.2169

0 −0.20050 0.0355 0.1650
0 0.09598 −0.2631 0.1672
0 0 0 0

 .
(4.4.29)

We repeat the steps for the DA approach using (4.4.29) which are to replace all negative
diagonal elements in each row with zero and re-calculate the diagonal elements as the
negative sum of the non-diagonal elements. Thus, the computed transition matrix using
the DA approach is given by

Λentire =


−1.2527 0.75120 0.2846 0.2169

0 −0.20050 0.0355 0.1650
0 0.09598 −0.2631 0.1672
0 0 0 0

 . (4.4.30)

151



4.4 Four-state model

We then compute the probability matrix using (4.4.30). From Section 4.3.1 we have
that

Qentire =


−1.25 0.00 0.00 0.00
0.00 −0.30 0.00 0.00
0.00 0.00 −0.17 0.00
0.00 0.00 0.00 0.00

 and exp(Qentire) =


0.29 0.00 0.00 0.00
0.00 0.74 0.00 0.00
0.00 0.00 0.85 0.00
0.00 0.00 0.00 1.00

 .
(4.4.31)

In addition,

Φentire =


1.00 0.01 0.56 0.50
0.00 −0.34 0.59 0.50
0.00 0.94 0.58 0.50
0.00 0.00 0.00 0.50

 and Φ−1
entire =


1.00 −0.69 −0.26 −0.05
0.00 −0.77 0.78 −0.01
0.00 1.25 0.45 −1.70
0.00 0.00 0.00 2.00

 .
(4.4.32)

Subsequently,

Pentire = Φentire · exp(Qentire) ·Φ−1
entire =


0.2857 0.3884 0.1467 0.1791

0 0.8197 0.0282 0.1521
0 0.0762 0.7700 0.1538
0 0 0 1

 . (4.4.33)

We observe that (4.4.33) is equal to (4.4.26) which is as expected. To iterate, the
DA approach explained in Section 4.3.2 and demonstrated in Section 4.4.1 can be
computed in R (see [108, p.2] and Appendix A.3). From this point we use the probability
matrix along with initial conditions from the data to run simulations and compare the
simulated values to our data.

For the entire data scenario of the four-state model, we use (4.4.33) and the initial
states given by[

B
N ,

E
N ,

U
N , D

]
=
[

32700000
70347261 ,

27325028
70347261 ,

10322233
70347261 , 0

]
≈
[
0.46, 0.39, 0.15, 0

]
(4.4.34)

to simulate t-step values and compare them to the actual value. The outcome of our
simulation is shown in Fig. 28. The results for the four-state model will be discussed
after considering all the scenarios.

Pre-recession data scenario for the four-state model

The parameters for the pre-recession data scenario are the same as the parameters
used in the entire data scenario. Thus, the generator matrix and probability matrix
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Figure 28: Graphs showing the t-step simulated values and actual data of employment
and unemployment rates and levels for the entire data scenario of the four-state model.
Plot 1) shows the simulated values for employment, unemployment, entry and exit rates
only. Plot 4) shows employment, unemployment, entry and exit levels only. Plot 2)
illustrates simulated and actual for employment rates. Plot 5) illustrates simulated and
actual for employment levels. Plot 3) displays simulated and actual for unemployment
rates. Plot 6) displays simulated and actual for unemployment levels.

in (4.4.30) and (4.4.33) respectively are the same. The only difference is the time
interval (see Table 4.2). Using (4.4.33) and the initial states in (4.4.34), we derive
t-step simulated values. The results are shown in Fig. 29.

Recession data scenario for the four-state model

The transition frequency matrix in this case for the time interval January 2008 to March
2008 is given as

Orecession =


12317254 14077937 5213361 5881448

0 27965849 920845 4549701
0 1042197 9623060 1684852
0 0 0 0

 . (4.4.35)
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Figure 29: Graphs showing the t-step simulated values and actual data of employment
and unemployment rates and levels for the pre-recession data scenario of the four-
state model. Plot 1) shows the simulated values for employment, unemployment, entry
and exit rates only. Plot 4) shows employment, unemployment, entry and exit levels
only. Plot 2) illustrates simulated and actual for employment rates. Plot 5) illustrates
simulated and actual for employment levels. Plot 3) displays simulated and actual for
unemployment rates. Plot 6) displays simulated and actual for unemployment levels.

The matrix of relative transition probabilities is given by

P̂recession =


12317254
37490000

14077937
37490000

5213361
37490000

5881448
37490000

0 27965849
33436395

920845
33436395

4549701
33436395

0 1042197
12350109

9623060
12350109

1684852
12350109

0 0 0 1



=


0.3285477 0.37551179 0.1390600 0.1568804

0 0.83638948 0.0275402 0.1360703
0 0.08438768 0.7791883 0.1364241
0 0 0 1

 . (4.4.36)
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4.4 Four-state model

Using the DA approach explained in Section 4.3.2 and demonstrated in Section 4.4.1.
The computed transition matrix using the DA approach in R is given by

Λrecession =


−1.113 0.6762 0.25300 0.1838

0 −0.1804 0.03415 0.1463
0 0.1046 −0.25130 0.1467
0 0 0 0

 . (4.4.37)

Subsequently

Precession =


0.3285477 0.37551179 0.1390600 0.1568804

0 0.83638948 0.0275402 0.1360703
0 0.08438768 0.7791883 0.1364241
0 0 0 1

 . (4.4.38)

Using (4.4.38) and the initial states given by[
B
N ,

E
N ,

U
N , D

]
=
[

37490000
77230790 ,

29001072
77230790 ,

10739718
77230790 , 0

]
≈
[
0.48, 0.38, 0.14, 0

]
, (4.4.39)

we simulate t-step values and compare them to the actual value. The outcome of our
simulation is shown in Fig. 30.

Post-recession data scenario for the four-state model

The transition frequency matrix in this case for the time interval January 2013 to March
2013 is given as

Opost-recession =


13079917 14091229 5705423 5833432

0 27861367 988327 4346148
0 954431 10412045 1759719
0 0 0 0

 . (4.4.40)
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Figure 30: Graphs showing the t-step simulated values and actual data of employment
and unemployment rates and levels for the recession data scenario of the four-state
model. Plot 1) shows the simulated values for employment, unemployment, entry
and exit rates only. Plot 4) shows employment, unemployment, entry and exit levels
only. Plot 2) illustrates simulated and actual for employment rates. Plot 5) illustrates
simulated and actual for employment levels. Plot 3) displays simulated and actual for
unemployment rates. Plot 6) displays simulated and actual for unemployment levels.

The matrix of relative transition probabilities is given by

P̂recession =


13079917
38710001

14091229
38710001

5705423
38710001

5833432
38710001

0 27861367
33195842

988327
33195842

4346148
33195842

0 954431
13126195

10412045
13126195

1759719
13126195

0 0 0 1



=


0.3285477 0.37551179 0.1390600 0.1568804

0 0.83638948 0.0275402 0.1360703
0 0.08438768 0.7791883 0.1364241
0 0 0 1

 . (4.4.41)

To reiterate, we apply the DA approach explained in Section 4.3.2 and demonstrated
in Section 4.4.1. The computed transition matrix using the DA approach in R is given
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4.4 Four-state model

by

Λpost-recession =


−1.085 0.6475 0.26260 0.1749

0 −0.1768 0.03652 0.1403
0 0.0892 −0.23330 0.1441
0 0 0 0

 . (4.4.42)

Then

Ppost-recession =


0.337895 0.36402037 0.14738886 0.1506957

0 0.83930292 0.02977261 0.1309245
0 0.07271193 0.79322644 0.1340616
0 0 0 1

 . (4.4.43)

By using (4.4.43) and the initial states given by[
B
N ,

E
N ,

U
N , D

]
=
[

38710000
79227859 ,

28840555
79227859 ,

11677304
79227859 , 0

]
≈
[
0.49, 0.36, 0.15, 0

]
, (4.4.44)

we simulate t-step values and compare them to the actual value. The results of our
simulation is shown in Fig. 31.

The root mean square error and coefficient of determination for the four-
state model.

The RMSE and R2 values for the four-state model are displayed in Table 4.7 and
Table 4.8 respectively.

Parameters Entire Pre-recession Recession Post-recession

Employment rate 0.3457144 0.3457144 0.2028004 0.2815643
Unemployment rate 0.1285666 0.1285666 0.09088482 0.089691
Employment level 27.43777 27.43777 20.41562 24.58125

Unemployment level 10.22532 10.22532 8.84823 8.074786

Table 4.7: RMSE values to assess the performance of the four-state model for the
four scenarios in Table 4.2.

Discussions for the four-state model fitting

The four state model is an extension of the two-state model to which further includes
the entry and exit factors. In plot 1) and plot 5) of Fig. 28, Fig. 29, Fig. 30 and Fig. 31
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Figure 31: Graphs showing the t-step simulated values and actual data of employment
and unemployment rates and levels for the post-recession data scenario of the four-
state model. Plot 1) shows the simulated values for employment, unemployment, entry
and exit rates only. Plot 4) shows employment, unemployment, entry and exit levels
only. Plot 2) illustrates simulated and actual for employment rates. Plot 5) illustrates
simulated and actual for employment levels. Plot 3) displays simulated and actual for
unemployment rates. Plot 6) displays simulated and actual for unemployment levels.

the entry rates and levels fall whilst exit rates and levels increase. This is attributed to
the fact that in the four-state model individuals transition from state E and state U to
state D which is an absorbing state and individuals leave state B to state E and state
U . The employment and unemployment rates and levels increase to attain a maximum
and fall thereafter because individuals move in and out of state E and state U . The
simulated values for employment rates and levels are predominantly higher than the
simulated values for unemployment rates and levels.

To add on, the trend of the simulated values and actual values for unemployment
rates and levels in plot 3) and plot 6) of Fig. 28, Fig. 29, Fig. 30 and Fig. 31 are similar.
The similarity in plot 3) and plot 6) for all four scenarios reflects in the RMSE values
in Table 4.7. That is for all four scenarios, the RMSE values for unemployment rates
are approximately equal to 0.1 and the RMSE values for unemployment levels are also
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Parameters Entire Pre-recession Recession Post-recession

Employment rate 0.0210185 0.0210185 0.5209847 0.8569706
Unemployment rate 0.05186431 0.05186431 0.5532286 0.9239236
Employment level 0.3295091 0.3295091 0.09641019 0.9281154

Unemployment level 0.1107471 0.1107471 0.6631474 0.9154006

Table 4.8: R2 values to assess the performance of the four-state model for the four
scenarios in Table 4.2.

relatively close to each other. In the same way, the pattern of the simulated values and
actual values for employment rates and levels in plot 2) and plot 5) of Fig. 28, Fig. 29,
Fig. 30 and Fig. 31 are also alike. Again, for all four scenarios, the RMSE values for
employment rates and levels are relatively close to each other.

From Table 4.7, the simulated employment rates and levels using the four-state
model during the recession period best predicts or fits the actual data as compared to
the other periods. This is because during the recession phase, employment rates and
levels are decreasing in the real world and when using the five-state model. During the
post-recession period, unemployment rates and levels decrease as the economy would
have started taking a stable shape. Hence enabling better prediction of the rates and
levels of unemployment as compared to employment rates and levels which increase
[10, 92, 71].

To support the argument raised above, from Table 4.8 it can be seen that the
R2 values for the post-recession period has the highest values. Supporting the initial
assertion that the rate and level of movement for unemployment largely follows the
movement of factors during the post-recession period. In addition, the R2 values for
the recession are also high.

We further extend the four-state model in Section 4.4 to include the inactive I state
which results in a five-state model.

4.5 Five-state model

In this section, the inactive I state is added to the model. The transition rates from I to
E and U are λIE and λIU respectively. Entry rates into I from B,E and U are denoted
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4.5 Five-state model

by βI , λEI and λUI . The exit rate from I is denoted by µI . Also let N̄ = E+I+U +B

be the total population and N = E + I + U represent the total labour force. The
transitions diagram related to this model is shown in Fig. 32.

E

I

B

D

U

βE

βI

βU

λIUλIE

µI

λEU

λEI

µE µU

λUI

λUE

Figure 32: Graphical representation of the transition rates between employment (E),
unemployment (U), inactivity (U), entry (B) and exit (D) states. Here, individuals
enter state B at rate βB. All new external entries into the other respective states from
state B is denoted by βE , βU and βI . Also, the exit rate from the states are represented
by µE , µU , µI and µB.
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4.5 Five-state model

The generator matrix or transition rate matrix Λ for Fig. 32 is given by

Λ =



κ βE βU βI 0
0 −(λEU + λEI + µE) λEU λEI µE

0 λUE −(λUE + λUI + µU ) λUI µU

0 λIE λIU −(λIE + λIU + µI) µI

0 0 0 0 0


(4.5.1)

where κ = −(βE + βU + βI). We apply the matrix exponential approach to find the
probability matrix as shown in the two-state model (4.3.1) and the four-state (model
Section 4.4). The five-state model has more parameters and as such the eigenvalues
and eigenvectors of the generator matrix in (4.5.1) are lengthy. These can be computed
using the programming language Python. We then proceed by fitting the five-state
model to the data.

4.5.1 Five-state model fitting

Again t-step simulations are run and compared to the actual data. The parameters
for the simulation and computations in this subsection are in Table 4.3, Table 4.6 and
Table 4.9.

Entire data scenario for the five-state model

The transition frequencies for the entire data scenario for the five-state model from
September 2001 to December 2001 is given by

Oentire =



9343129 12701680 702261 4095894 5857037
0 26375755 363624 543005 4894303
0 417425 792240 261623 270600
0 497967 325124 7873642 1578259
0 0 0 0 0


. (4.5.2)
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Parameters Entire Pre-recession Recession Post-recession

U 1510768 1510768 1609762 2522005
I 8811465 8811465 9129956 9155299

B to U 702261 702261 781424 1232228
B to I 4095894 4095894 4431938 4473195
E to U 363624 363624 330631 422803
U to E 417425 417425 471023 569356
E to I 543005 543005 590213 565523
U to I 261623 261623 282931 379330
I to E 497967 497967 571174 385075
I to U 325124 325124 407238 509448
U to U 792240 792240 852497 1570299
I to I 7873642 7873642 8080394 7952968
U to D 270600 270600 252540 380055
I to D 1578259 1578259 1432312 1379664

Table 4.9: Parameter for t-step simulation and computations.

The matrix of relative transition probabilities is given by

P̂entire =



9343129
38710001

12701680
38710001

702261
38710001

4095894
38710001

5857037
38710001

0 27861367
32176687

27861367
32176687

988327
32176687

4346148
32176687

0 417425
1741888

792240
1741888

261623
1741888

270600
1741888

0 497967
10274992

325124
10274992

7873642
10274992

1578259
10274992

0 0 0 0 1



=



0.2857226 0.38843057 0.02147587 0.12525669 0.1791143
0 0.81971631 0.01130085 0.01687573 0.1521071
0 0.23963940 0.45481684 0.15019508 0.1553487
0 0.04846398 0.03164226 0.76629179 0.1536020
0 0 0 0 1


. (4.5.3)
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The computed transition matrix using the DA method as shown in Section 4.3.2 and
Section 4.4.1 using R is given by

Λentire =



−1.253 0.75110 0.04172 0.24300 0.2169
0 −0.20220 0.01776 0.01948 0.1649
0 0.38130 −0.80000 0.24880 0.1699
0 0.05284 0.05276 −0.27230 0.1667
0 0 0 0 0


. (4.5.4)

Subsequently,

Pentire =



0.2857226 0.38843057 0.02147587 0.12525669 0.1791143
0 0.81971631 0.01130085 0.01687573 0.1521071
0 0.23963940 0.45481684 0.15019508 0.1553487
0 0.04846398 0.03164226 0.76629179 0.1536020
0 0 0 0 1


. (4.5.5)

Applying (4.5.5) and the initial states given by[
B
N ,

E
N ,

U
N ,

I
N , D

]
=
[

32700000
70347261 ,

27325028
70347261 ,

1510768
70347261 ,

8811465
70347261 , 0

]
≈
[
0.46, 0.39, 0.02, 0.13, 0

]
(4.5.6)

we simulate t-step values and compare them to the actual value. The outcome of our
simulation is shown in Fig. 33. Discussions on the five-state model will be done after
considering all the scenarios.

Pre-recession data scenario for the five-state model

The parameters for the pre-recession data scenario are the same as the parameters
used in the entire data scenario. Thus, the generator matrix and probability matrix in
(4.5.4) and (4.5.5) respectively are the same. The only difference is the time interval
(see Table 4.2). Using (4.5.5) and the initial states in (4.5.6), we derive t-step simulated
values. The results are shown in Fig. 34.
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Figure 33: Graphs showing the t-step simulated values and actual data of employment
and unemployment rates and levels for the entire data scenario for the five-state model.
Plot 1) shows the simulated values for employment, unemployment, inactivity, entry
and exit rates only. Plot 5) shows employment, unemployment, inactivity, entry and
exit levels only. Plot 2) illustrates simulated and actual for employment rates. Plot 6)
illustrates simulated and actual for employment levels. Plot 3) displays simulated and
actual for unemployment rates. Plot 7) displays simulated and actual for unemployment
levels. Plot 4) represents simulated and actual for inactivity rates. Plot 7) displays
simulated and actual for inactivity levels.

Recession data scenario for the five-state model

The transition frequencies for the recession data scenario of the five-state model from
January 2008 to March 2008 is written as

Orecession =



12317254 14077937 781424 4431938 5881448
0 27965849 330631 590213 4549701
0 471023 852497 282931 252540
0 571174 407238 8080394 1432312
0 0 0 0 0


. (4.5.7)
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Figure 34: Graphs showing the t-step simulated values and actual data of employment
and unemployment rates and levels for the pre-recession data scenario for the five-state
model. Plot 1) shows the simulated values for employment, unemployment, inactivity,
entry and exit rates only. Plot 5) shows employment, unemployment, inactivity, entry
and exit levels only. Plot 2) illustrates simulated and actual for employment rates. Plot
6) illustrates simulated and actual for employment levels. Plot 3) displays simulated and
actual for unemployment rates. Plot 7) displays simulated and actual for unemployment
levels. Plot 4) represents simulated and actual for inactivity rates. Plot 7) displays
simulated and actual for inactivity levels.

The matrix of relative transition probabilities is given by

P̂recession =



0.3285477 0.37551178 0.020843531 0.11821653 0.1568804
0 0.83638950 0.009888357 0.01765181 0.1360703
0 0.25337562 0.458580488 0.15219600 0.1358479
0 0.05444358 0.038817407 0.77021286 0.1365262
0 0 0 1


.

(4.5.8)
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The computed generator matrix from using the DA approach in R is given by

Λrecession =



−1.113 0.67630 0.03785 0.21520 0.1838
0 −0.18180 0.01509 0.02045 0.1463
0 0.39700 −0.79310 0.25030 0.1458
0 0.05727 0.06451 −0.26860 0.1468
0 0 0 0 0


. (4.5.9)

Following this,

Precession =



0.3285477 0.37551178 0.020843531 0.11821653 0.1568804
0 0.83638950 0.009888357 0.01765181 0.1360703
0 0.25337562 0.458580488 0.15219600 0.1358479
0 0.05444358 0.038817407 0.77021286 0.1365262
0 0 0 1


.

(4.5.10)

To add on, using (4.5.5) and the initial states given by[
B
N ,

E
N ,

U
N ,

I
N , D

]
=
[

37490000
77230790 ,

29001072
77230790 ,

1609762
77230790 ,

9129956
77230790 , 0

]
≈
[
0.49, 0.38, 0.02, 0.12, 0

]
(4.5.11)

we simulate t-step values and compare them to the actual value. The results of our
simulation is shown in Fig. 35.

Post-recession data scenario for the five-state model

The transition frequencies for the post-recession data scenario for the five-state model
from January 2008 to March 2008 is written as

Opost-recession =



13079917 14091229 1232228 4473195 5833432
0 27861367 422803 565523 4346148
0 569356 1570299 379330 380055
0 385075 509448 7952968 1379664
0 0 0 0 0


. (4.5.12)
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Figure 35: Graphs showing the t-step simulated values and actual data of employment
and unemployment rates and levels for the recession data scenario for the five-state
model. Plot 1) shows the simulated values for employment, unemployment, inactivity,
entry and exit rates only. Plot 5) shows employment, unemployment, inactivity, entry
and exit levels only. Plot 2) illustrates simulated and actual for employment rates. Plot
6) illustrates simulated and actual for employment levels. Plot 3) displays simulated and
actual for unemployment rates. Plot 7) displays simulated and actual for unemployment
levels. Plot 4) represents simulated and actual for inactivity rates. Plot 7) displays
simulated and actual for inactivity levels.

The matrix of relative transition probabilities is given by

P̂post-recession =



0.337895 0.36402037 0.03183229 0.11555657 0.1506957
0 0.83930294 0.01273663 0.01703596 0.1309245
0 0.19639467 0.54166172 0.13084676 0.1310968
0 0.03765221 0.04981327 0.77763249 0.1349020
0 0 0 0 1


.

(4.5.13)
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The computed generator matrix using the DA approach in R is written as

Λpost-recession =



−1.09 0.65 0.06 0.21 0.17
0.00 −0.18 0.02 0.02 0.14
0.00 0.29 −0.63 0.20 0.14
0.00 0.04 0.08 −0.26 0.15
0.00 0.00 0.00 0.00 0.00


. (4.5.14)

Subsequently,

Ppost-recession =



0.337895 0.36402037 0.03183229 0.11555657 0.1506957
0 0.83930294 0.01273663 0.01703596 0.1309245
0 0.19639467 0.54166172 0.13084676 0.1310968
0 0.03765221 0.04981327 0.77763249 0.1349020
0 0 0 0 1


.

(4.5.15)

Using (4.5.5) and the initial states given by[
B
N ,

E
N ,

U
N ,

I
N , D

]
=
[

38710000
79227859 ,

28840555
79227859 ,

2522005
79227859 ,

9155299
79227859 , 0

]
≈
[
0.49, 0.36, 0.03, 0.12, 0

]
(4.5.16)

we simulate t-step values and compare them to the actual value. The outcome of our
simulation is shown in Fig. 36.

The root mean square error and coefficient of determination for the five-
state model.

Following this, the RMSE and R2 values for the five-state model are displayed in
Table 4.10 and Table 4.11 respectively.
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Figure 36: Graphs showing the t-step simulated values and actual data of employment
and unemployment rates and levels for the post-recession data scenario for the five-state
model. Plot 1) shows the simulated values for employment, unemployment, inactivity,
entry and exit rates only. Plot 5) shows employment, unemployment, inactivity, entry
and exit levels only. Plot 2) illustrates simulated and actual for employment rates. Plot
6) illustrates simulated and actual for employment levels. Plot 3) displays simulated and
actual for unemployment rates. Plot 7) displays simulated and actual for unemployment
levels. Plot 4) represents simulated and actual for inactivity rates. Plot 7) displays
simulated and actual for inactivity levels.

Parameters Entire Pre-recession Recession Post-recession

Employment rate 0.3456961 0.3456961 0.2026961 0.2816874
Unemployment rate 0.02264684 0.02264684 0.02132988 0.01152597

Inactivity rate 0.1063957 0.1063957 0.06996408 0.07826705
Employment level 27.43686 27.43686 16.00656 21.57998

Unemployment level 1.795637 1.795637 1.684051 0.8851902
Inactivity level 8.466665 8.466665 5.524827 5.999352

Table 4.10: RMSE values to assess the performance of the five-state model for the
four scenarios in Table 4.2.
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Parameters Entire Pre-recession Recession Post-recession

Employment rate 0.0210151 0.0210151 0.5208599 0.8568977
Unemployment rate 0.060819601 0.060819601 0.7170292 0.96064738

Inactivity rate 0.5501068 0.5501068 0.001026337 0.299389
Employment level 0.3296153 0.3296153 0.09495269 0.9266801

Unemployment level 0.113106 0.113106 0.7299813 0.9573919
Inactivity level 0.08141323 0.08141323 0.2477127 0.6653022

Table 4.11: R2 values to assess the performance of the five-state model for the four
scenarios in Table 4.2.

Discussions for the five-state model fitting

The five-state model is an extension of the four-state model which further incorporates
the inactivity state. Plot 1) and plot 5) of Fig. 33, Fig. 34, Fig. 35 and Fig. 36 illustrate
that the entry rates and levels fall whilst exit rates and levels increase. This is attributed
to the fact that in the five-state model individuals move from state E, state U and state
I to state D which is an absorbing state and individuals transition from state B to
state E, state U and state I.

We see that the simulated values for employment rates and levels are higher than
the simulated values for inactivity rates, followed by the simulated values for unemploy-
ment rates and levels. However the simulated values for employment, inactivity and
unemployment rates and levels have similar trends. That is, the employment, unem-
ployment and inactivity rates and levels increase to a point and fall thereafter because
individuals move in and out of state E, state U and state I.

In addition, the trend of the simulated values and actual values for employment rates
and levels in plot 2) and plot 6) of Fig. 33, Fig. 34, Fig. 35 and Fig. 36 are similar. The
similarity in plot 2) and plot 6) for all four scenarios reflects in the RMSE values in
Table 4.10. Specifically, for all four scenarios, the RMSE values for employment rates
are marginally close and the RMSE values for employment levels are also relatively
close to each other. Futhermore, the pattern of the simulated values and actual values
for inactivity rates and levels in plot 4) and plot 8) of Fig. 33, Fig. 34, Fig. 35 and
Fig. 36 are also similar in terms of trend. Again, for all four scenarios, the RMSE
values for inactivity rates and levels are relatively close to each other.
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From Table 4.10, the simulated employment and inactivity rates and levels using
the five-state model during the recession period best predicts or fits the actual data
as compared to the other periods. This is due to the fact that during the recession
phase, employment and inactivity rates and levels are predominately decreasing in the
real world, and when using the four-state model. During the recession period, the
economy rebounds from the impact of the recession as such unemployment rates and
levels decrease [10, 92, 71]. Hence enabling better prediction of the rates and levels
of unemployment as compared to employment and inactivity rates and levels using
the five-state model. To support the argument raised, from Table 4.11 it can be seen
that the R2 values which display acceptable values and show that the rates and levels
of employment and unemployment in the actual data are explained by the simulated
values.

We see that the Markov models give more accurate predictions during shorter peri-
ods (pre-recession, recession, post-recession) as compared to longer periods (entire). In
Section 4.3.2, the two-state model predicts employment and unemployment rates and
levels best when the economy is stable (pre-recession). In Section 4.4.1, the four-state
model predicts employment rates and levels best when the economy is unstable (re-
cession). The four-state model predicts unemployment rates and levels best when the
economy is recovering from a shock-wave (post-recession). In Section 4.5.1, the five-
state model predicts employment and inactivity rates and levels best when the economy
is unstable (recession). Whilst, the five-state model predicts unemployment rates and
levels best when the economy is recovering from a shock-wave (recession).

To summarise, the LST (two-state, four-state, five-state) models do not fit the
labour force data very well. This poor fit could be attributed to the selection of para-
meters. The parameters are not estimated in any optimal way, but simply using the
first time point. The four-state and five-state model cannot be used to fit the labour
force flow because their closed nature and incorporation of an absorbing state compels
the employment, inactivity and unemployment rates and levels to fall asymptotically.
Thus, in the extension of the model to a four-state and five state model, an optimal
choice of parameters would inevitably improve the fit.

To make the model more realistic using the same parameters for the LST models,
we explore labour force lake models in the subsequent section.
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4.6 Lake model of the labour force

In this section, we develop lake models of employment and unemployment and em-
ployment, unemployment and inactivity to measure the flow of workers in the labour
market. We then run simulations and compare the results with the real data.

4.6.1 Lake model of employment and unemployment

The lake model of employment and unemployment is explored in [113]. The lake model
of employment and unemployment also known as the two-state lake model is used to
model the dynamics between employment and unemployment. Figure 37 illustrates the
pattern of how a two-state lake model works.

E U
βE

βU

pEU

µE µU

pUE

Figure 37: Graphical representation of the flow in the labour market for the two-state
lake model. The possible states of the labour market are labelled employment (E)
and unemployment (U). The probability of finding a job denoted by pUE and the
probability of losing a job denoted by pEU . Here, individuals enter state E and state
U at rates βE and βU respectively. The exit rates from state E and state U are µE
and µU respectively.

The aggregate variables for the lake model of employment and unemployment are
E(t) which denotes the total number of employed individuals at time t, U(t) which
represents the total number of unemployed individuals at time t and N(t) = E(t)+U(t)
which is the total number of people in the labour force. We set e(t) = E(t)

N(t) and
u(t) = U(t)

N(t) as the employment rate and the unemployment rate respectively.
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Laws of motion for the aggregate variables

We begin by developing the laws of motion for the aggregate variables. The number of
employed individuals that stay in the labour force is denoted by (1− µE)E(t) and the
mass of employed people that stay employed is given by (1−pEU )(1−µE)E(t). Similarly,
the number of jobless individuals that remain in the labour force is (1 − µU )U(t) and
pUE(1−µU )U(t) represents the number of unemployed individuals that will find a job.
Consequently, the number of employed workers at time t+ 1 is

E(t+ 1) = (1− pEU )(1− µE)E(t) + pUE(1− µU )U(t) + βEE(t). (4.6.1)

In the same way the mass of jobless individuals at time t+ 1 is

U(t+ 1) = pEU (1− µE)E(t) + (1− pUE)(1− µU )U(t) + βUU(t). (4.6.2)

We let

V(t) :=

U(t)
E(t)

 (4.6.3)

then the law of motion for the K is

V(t+ 1) = KV(t) (4.6.4)

where

K :=

(1− pUE)(1− µU ) + βU pEU (1− µE)
pUE(1− µU ) (1− pEU )(1− µE) + βE

 (4.6.5)

This law shows how total employment and unemployment change over time. The total
number of workers is

N(t+ 1) = E(t+ 1) + U(t+ 1) = (1− µE + βE)E(t) + (1− µU + βU )U(t). (4.6.6)

Assumption 4.6.1. In what follows, we assume that µ = µE = µU and β = βE = βU .

Using Assumption 4.6.1, (4.6.6) can be written as

N(t+ 1) = (1− µ+ β)N(t) = (1 + ρ)N(t)

where ρ = β − µ is the growth rate of the labour force.
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Laws of motion for the rates

The law of motion for the rates is derived when we divide both sides of (4.6.4) by
N(t+ 1) to obtain U(t+ 1)/N(t+ 1)

E(t+ 1)/N(t+ 1)

 = 1
1 + ρ

K

U(t)/N(t)
E(t)/N(t)

 . (4.6.7)

Setting

v(t) :=

u(t)
e(t)

 =

U(t)/N(t)
E(t)/N(t)

 , (4.6.8)

we can write (4.6.4) as
v(t+ 1) = K̂v(t) (4.6.9)

where
K̂ := 1

1 + ρ
K. (4.6.10)

Note that e(t)+u(t) = e(t+1)+u(t+1) = 1 and the sum of the columns in K̂ is 1. The
aggregate variables E(t) and U(t) do not converge because the total value N(t) grows
at rate ρ. We modify the python codes in [113] for our computations. We use (4.6.5),
(4.6.9), (4.6.10) and initial values computed from the data to simulate the dynamics of
the number of employed and unemployed individuals. We then compare the simulated
values with our actual data and display the results in the next section.

Model fitting for two-state lake model

After identifying the two-state lake model, we simulate the dynamics of the aggregate
variables (E(t), U(t), N(t)) at different time steps using initial parameters from the
data. The simulated values are compared with the data to assess the performance of
the models. This comparison is done using RMSE, R2 and plots.

The parameters for the simulation of the model are derived from the labour force
data in [134, 135]. There is no publicly available data on entry and exit rates to and
from UK labour force so we use UK birth and mortality rates from [85] and [24, 105]
respectively.

The parameters for the simulation of the two-state lake model are shown in Table 4.12.
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4.6 Lake model of the labour force

Parameters Entire Pre-recession Recession Post-recession

N(t) 37647261 37647261 39740790 40517859
E(t) 27325028 27325028 29001072 28840555
U(t) 10322233 10322233 10739718 11677304
e(t) 0.7258 0.7258 0.7298 0.7118
u(t) 0.2742 0.2742 0.2702 0.2882
p̂EU 0.0332 0.0332 0.0319 0.0343
p̂UE 0.0900 0.0900 0.0977 0.0840
β 0.01012 0.01012 0.01330 0.01368
µ 0.0098 0.0098 0.0091 0.0090

Table 4.12: Parameter for simulations of the lake model.

Figure 38 shows plots of simulated data and the actual data for the time intervals
defined in Table 4.2. The performance of the models are further measured using RMSE
and R2. The values are shown in Table 4.13 and Table 4.14.

Parameters Entire Pre-recession Recession Post-recession

Employment 1.652355 0.6409675 12.23883 0.4514864
Unemployment 8.475462 0.3193458 13.54234 2.184255

Total labour force 2.069542 0.9540317 1.344444 2.585402

Table 4.13: RMSE values to assess the performance of two-state lake model for all
scenarios in Table 4.2.

Parameters Entire Pre-recession Recession Post-recession

Employment 0.8336775 0.9676875 0.2041849 0.970718
Unemployment 0.03211377 0.2340382 0.7448238 0.9685013

Total labour force 0.9311835 0.9927698 0.9091902 0.9712936

Table 4.14: R2 values to assess the performance of the two-state lake model for all
scenarios in Table 4.2.
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Figure 38: Plots of simulated data and actual data for each state using the time
intervals defined in Table 4.2. Plot a) shows the simulated values and actual data
for employment levels for the entire data scenario. Plot b) illustrates the simulated
values and actual data for employment levels for the pre-recession data scenario. Plot
c) displays the simulated values and actual data for employment levels for the recession
data scenario. Plot d) shows the simulated values and actual data for employment levels
for the recession data scenario. Plot e) illustrates the simulated values and actual data
for unemployment levels for the entire data scenario. Plot f) illustrates the simulated
values and actual data for unemployment levels for the pre-recession data scenario.
Plot g) displays the simulated values and actual data for unemployment levels for the
recession data scenario. Plot h) represents the simulated values and actual data for
unemployment levels for the recession data scenario. Plot i) illustrates the simulated
values and actual data for total labour force levels for the entire data scenario. Plot j)
illustrates the simulated values and actual data for inactivity levels for the pre-recession
data scenario. Plot k) displays the simulated values and actual data for total labour
force levels for the recession data scenario. Plot l) represents the simulated values and
actual data for total labour force levels for the recession data scenario.
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4.6 Lake model of the labour force

Discussions for the two-state lake model

The two-state lake model is a model that shows the inflow and outflow of individuals
to and from the labour market. After simulating values using the two-state lake model,
some interesting findings were uncovered. From plot a), plot e) and plot i) of Fig. 38
we observe that in the initial stage (2001–2005), the simulated values are close to the
actual data values in the entire data scenario. The RMSE values for the entire data
scenario are high because in plot a) and plot i) of Fig. 38 we see that although the
simulated employment and total labour force levels are increasing steadily, the actual
data values of employment and total labour force levels increase at a much faster rate.
Also from plot e) of Fig. 38 we notice that the actual unemployment levels rise above
and fall below the simulated unemployment levels.

During the pre-recession period, levels of employment and total labour force in-
crease and unemployment levels decrease [10]. In support of [10], we identify that the
simulated employment and total labour force values are increasing and the simulated
unemployment values are decreasing during the pre-recession period. This explains
why for the pre-recession data scenario, the RMSE values in Table 4.13 shows that the
two-state lake model best predicts unemployment levels followed by employment levels
then total labour force levels. This observation also reflects in the plot b), plot f) and
plot j) of Fig. 38.

Throughout a recession interim, employment levels fall, unemployment levels rise.
Consequently, total labour force increases at a slower rate. Plot c), g) and k) of Fig. 38
shows that the simulated employment values fall faster than the actual employment
values, the simulated unemployment values rise faster the actual employment values
whilst the simulated total labour force values are relatively close to the actual total
labour force values. This explains why the RMSE values in Table 4.13 show that the
two-state lake model best predicts the total labour force data in the recession data
scenario.

For the post-recession period, employment and total labour force levels rise while
unemployment levels falls in an economy. We notice from plot d), plot h) and plot l)
of Fig. 38 and the RMSE values in Table 4.13 that the two-state lake model best fits
the actual employment data during the post-recession period.
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4.6 Lake model of the labour force

4.6.2 Lake model of employment, unemployment and inactivity

The lake model of employment, unemployment and inactivity also known as the three-
state lake model is an extension of the model in Section 4.6.1. Here we assume that
the movement between the states are caused by firing, quiting or searching for a job
as well as entry and exit from the labour force. In order to derive the flow dynamics
shown in Fig. 39, we consider the following variables. Let E(t), U(t) and I(t) be the
total numbers of employed, unemployed and inactive workers at time t respectively.
Also, the total number of workers in the labour force at time t is represented by N(t) =
E(t) + U(t) + I(t). Thus, the values of the rates are given by e(t) = E(t)

N(t) , u(t) = U(t)
N(t)

and i(t) = I(t)
N(t) .

E
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βU

pIUpIE

µI
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pEI

µE µU
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pUE

Figure 39: Graphical representation of the flow in the labour market as a guide to de-
velop the lake model of employment, unemployment and inactivity. The possible states
of the labour market are labelled employment (E), unemployment (U) and inactivity
(I). This diagram also shows the arrows from each state to other states that signify
transition probabilities pij for i, j ∈ {E,U, I}. The entry and exit rates to and from
state E,U and I are βE , βU , βI and µE , µU , µU respectively.

The rates of transition between the states are governed by the following parameters.
Let pUE be the job finding rate for currently unemployed workers, pIE denote the job
finding rate for currently inactive workers; pEI signify the dismissal/quitting rate to
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4.6 Lake model of the labour force

inactive state for currently employed workers; pEU represent the dismissal/quitting
rate to unemployed state for currently employed workers; pUI symbolise the rate to
unemployed state from inactive; pIU be the rate from unemployed to inactive state.
Set the parameter β as the entry rate into the labour force; and µ as the exit rate from
the labour force. The mass of employed workers at time t+ 1 is given as follows,

E(t+ 1) = (1− pEI)(1− µE)E(t) + (1− pEU )(1− µE)Et + pUE(1− µU )U(t)

+pAE(1− µA)I(t) + βEE(t)− (1− µE)E(t) (4.6.11)

U(t+ 1) = (1− pUE)(1− µU )U(t) + (1− pUI)(1− µU )U(t) + pEU (1− µE)E(t)

+pAU (1− µA)I(t) + βUU(t)− (1− µU )U(t) (4.6.12)

A(t+ 1) = (1− pAE)(1− µA)I(t) + (1− pEI)(1− µE)E(t) + pEI(1− µE)E(t)

+pUI(1− µU )U(t) + βAI(t)− (1− µA)I(t) (4.6.13)

The total number of workers in the labour force becomes

N(t+ 1) = (1− µE + βE)E(t) + (1− µU − βU )U(t) + (1− µU + βA)I(t). (4.6.14)

If µ = µE = µI = µU and β = βE = βA = βU then

N(t+ 1) = (1− µ+ β)N(t). (4.6.15)

We set

Vt :=


I(t)
U(t)
E(t)

 . (4.6.16)

The law of motion of V which tells how employment, unemployment and inactivity
evolve over time is given by

V(t+ 1) = KV(t), (4.6.17)

where

K :=


Φ pUI(1− µU ) pEI(1− µE)

pAU (1− µA) Ψ pEU (1− µE)
pAE(1− µA) pUE(1− µU ) Ω

 (4.6.18)

with Φ = (1 − pAE − pAU )(1 − µA) + βI ,Ψ = (1 − pUE − pUI)(1 − µU ) + βU and
Ω = (1− pEI − pEU )(1− µE) + βE .
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Assumption 4.6.2. Again, we assume that the µ = µE = µA = µU and β = βE =
βA = βU .

With reference to Assumption 4.6.2, (4.6.17) becomes

I(t+ 1)
N(t+ 1)
U(t+ 1)
N(t+ 1)
E(t+ 1)
N(t+ 1)


= 1

1− µ+ β
K



I(t)
N(t)
U(t)
N(t)
E(t)
N(t)


. (4.6.19)

Based of the above information, it can be said that the growth rate of the labour force
is given by ρ = β − µ such that

v(t) =


i(t)
u(t)
e(t)

 =



I(t)
N(t)
U(t)
N(t)
E(t)
N(t)


. (4.6.20)

Then,

v(t+ 1) = K̂v(t) where K̂ := 1
1 + ρ

K (4.6.21)

Model fitting for three-state lake model

Using similar arguments as in Section 4.6.1, we notice that simulate the dynamics
of the aggregate variables (E(t), U(t), I(t), N(t)) at different time steps using initial
conditions from the data. The performance of the models is accessed by comparing the
simulated values with the data using RSME, the coefficient of determination (R2) and
plots. The parameters for our illustration are shown in Table 4.12 and Table 4.15.

180



4.6 Lake model of the labour force

Parameters Entire Pre-recession Recession Post-recession

U(t) 1510768 1510768 1609762 2522005
I(t) 8811465 8811465 9129956 9155299
u(t) 0.040130 0.040130 0.040507 0.062244
i(t) 0.234053 0.234053 0.229738 0.225957
p̂EU 0.0133 0.0133 0.01145 0.01466
p̂EI 0.0199 0.0199 0.0204 0.0196
p̂UE 0.2837 0.2837 0.2932 0.2260
p̂UI 0.1778 0.1778 0.1761 0.1506
p̂IE 0.0573 0.0573 0.0631 0.0435
p̂IU 0.0374 0.0374 0.0450 0.0576

Table 4.15: Parameter for simulations of the lake model.

Figure 40 shows plot of simulated data and the actual data for the time intervals
defined in Table 4.2. The performance of the models are measured using the evaluation
metrics RMSE and R2 displayed in Table 4.16 and Table 4.17 respectively.

Parameters Entire Pre-recession Recession Post-recession

Employment 1.604337 0.6047017 2.526076 0.3737226
Unemployment 0.5428011 0.09969416 0.79438 1.110893

Inactivity 0.4002489 0.3053444 0.4720625 1.18122

Table 4.16: RMSE values to assess the performance of the models.

Parameters Entire Pre-recession Recession Post-recession

Employment 0.8169215 0.9671357 0.0524951 0.9671949
Unemployment 0.007371375 0.04316064 0.2186831 0.9028163

Inactivity 0.4984624 0.61819 0.6262669 0.9127542

Table 4.17: Table containing R2 values to assess the performance of the models.
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Figure 40: Plots of simulated data and actual data for each state using the time
intervals defined in Table 4.2. Plot a) shows the simulated values and actual data
for employment levels for the entire data scenario. Plot b) illustrates the simulated
values and actual data for employment levels for the pre-recession data scenario. Plot
c) displays the simulated values and actual data for employment levels for the recession
data scenario. Plot d) shows the simulated values and actual data for employment
levels for the recession data scenario. Plot e) illustrates the simulated values and
actual data for unemployment levels for the entire data scenario. Plot f) illustrates
the simulated values and actual data for unemployment levels for the pre-recession
data scenario. Plot g) displays the simulated values and actual data for unemployment
levels for the recession data scenario. Plot h) represents the simulated values and
actual data for unemployment levels for the recession data scenario. Plot i) illustrates
the simulated values and actual data for inactivity levels for the entire data scenario.
Plot j) illustrates the simulated values and actual data for inactivity levels for the
pre-recession data scenario. Plot k) displays the simulated values and actual data for
inactivity levels for the recession data scenario. Plot l) represents the simulated values
and actual data for inactivity levels for the recession data scenario.
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Discussion for the three-state lake model

In plot a), plot e) and plot i) of Fig. 40 we notice that in the early stages (2001–2005),
the simulated values are close to the actual data values in the entire data scenario.
Although the RMSE values in Table 4.16 for the entire data scenairio are relatively small
because from plot e) and plot i) of Fig. 40, the actual unemployment and inactivity
levels rise above and fall below the simulated unemployment and inactivity levels. The
RMSE values for employment leves in the entire data scenario are high because plot
a) of Fig. 40 reveals that although the simulated employment and total labour force
levels are increasing steadily, the actual data values of employment and total labour
force levels increase at a much faster rate.

During the pre-recession and post recession period, levels of employment increase.
The three-state lake model best fits the employment levels during the pre-recession
period and post-recession period because the simulated employment values are rising.

The three-state lake model best predicts unemployment levels during the recession
period because the actual values and simulated values of unemployment levels are
increasing simultaneously. The actual unemployment data trend is similar to the actual
inactivity data trend. However, the simulated values for unemployment and inactivity
vary as shown in Fig. 40. As a result, the three-state lake model best forecasts inactivity
levels in the pre-recession phase.

The above observations and discussions in Section 4.6.1 reveal that the two-state
lake model predicts labour force flow more accurately during the short time intervals
than relatively long ones (entire data scenario). The results of the two-state lake model
is similar to that of the three-state lake model. Adding a new state to the model did
not completely revise the results for the estimation. Thus, the performance of these
two methods was found to be relatively accurate when uncertain circumstances do not
occur.

An interesting discovery is that the exponential distribution assumption for the
parameterisation of the unemployment rate and employment rate in the formulation of
our UI scheme is reasonable. However, to construct more realistic UI schemes, we have
to check if other distributions can predict labour force rates better. This brings us to
the the next section which is identifying distributions that fits the labour force data.
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4.7 Identifying distributions that fit the labour force data

In this section we identify distributions that best fit the employment, unemployment,
inactivity and adjusted unemployment (which is the sum of unemployment and in-
activity) rates. Even though inactivity and unemployment have different values, they
are sometimes collectively known as unemployment (which is the sum of all inactivity
and unemployment values) depending on the application. To make the understanding
clearer, we call this adjusted unemployment denoted by Ū that is Ū = U + I. We show
how to identify the distributions using the programming languages Minitab and R.

4.7.1 Identifying the distribution that best fits the data using Minitab

Minitab is a statistical software can be used to analyze, visualize, predict patterns and
discover relationships between variables in a given dataset [94]. In Minitab, distribution
tests are performed to determine if the data follows 14 probability distributions. A
detailed explanation of this test is found in [53, 110]. We use two measure, Anderson–
Darling test statistic (AD) and the p-value, produced by the test as a guide to select
the distribution that best fits the data.

The AD statistic computes the deviation between a fitted line using the candidate
distribution and a nonparametric step function using the data. To determine the p-
value, the null hypothesis (H0) and the alternative hypothesis (H1) for these hypothesis
tests are

• H0: The data follows the candidate distribution.

• H1: The data does not follow the candidate distribution.

The p-value measures the evidence against the null hypothesis (H0) calculated from
the AD statistic. A small p-value means that we reject the null hypothesis but since
we want to determine the probability distribution that our data follows, distributions
with high p-values are suitable options.

The results from Minitab are displayed in Table A.1. The first line of Table A.1
shows that normal distribution is not the best candidate, because the p-value is less
than 0.05. Also, since we would like to identify the data without transformation, we skip
the Box–Cox transformation distribution. We then see that the distributions with p-
values higher than 0.005 are Weibull, smallest extreme value and largest extreme value
distributions for all the rates. However, we use R to further select suitable candidates

184



4.7 Identifying distributions that fit the labour force data

because in Minitab, the computed p-values are < 0.010 which does not necessarily
mean they are greater that 0.005.

4.7.2 Identifying the distribution that best fits the data using R

In R, the fitdistrplus package has a descdist function which is used to derive possible
distribution functions. This function produces descriptive statistics and Cullen and
Frey skewness-kurtosis plots [36] for each rate which are displayed in Table 4.18 and
Figure 41 respectively to help make a choice among a set of parametric distributions.

Descriptive statistics

The descriptive statistics are minimum, maximum, median, mean, standard deviation,
skewness and kurtosis values for the rates. From Table 4.18 the minimum, max-
imum, median and mean values show that employment > inactivity > unmployment.
When we consider only employment and adjusted unemployment rates, the values of
the minimum, maximum , median and mean in Table 4.18 show that employment >
unemployment. Skewness is a measure of symmetry or the lack of symmetry. A nonzero

Statistics
Rates

Employment Unemployment Inactivity Unemployment
(U + I)

Minimum 0.7010535 0.0382003 0.2049145 0.2431148
Maximum 0.764713 0.08551785 0.2358759 0.3187915

Median 0.7282966 0.05354392 0.2297377 0.2840911
Mean 0.728509 0.05884596 0.2259994 0.2848453

Standard deviation 0.01645045 0.01428072 0.008599666 0.01974254
Skewness 0.3096558 0.5951262 -0.8635381 -0.1561019
Kurtosis 2.562624 1.933245 2.50764 2.46628

Table 4.18: Descriptive statistics from the fitdistrplus package in R for employment,
unemployment, inactivity and adjusted unemployment (which is the sum of unemploy-
ment and inactivity) rates.

skewness shows a lack of symmetry, negative skew shows longer or fatter tail on the
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left side and while positive skew illustrates a longer or fatter tail on the right of the
distribution. Thus all the rates exhibit lack of skewness. It turns out that employment
and unemployment rates have longer or fatter tails on the right. On the other hand
inactivity rates and adjusted unemployment rates are skewed to the left. The kurtosis
value is used to quantify whether the data are heavy-tailed or light-tailed relative to a
normal distribution. Zero kurtosis is implies the normal distribution, negative values of
kurtosis indicate that a distribution is flat and has thin tails, of lacks outliers. Positive
values of kurtosis indicate that a distribution is peaked and has heavy tails or outliers.
Consequently, all the rates are peaked and have heavy tails.

Cullen and Frey skewness-kurtosis plots

Skewness-kurtosis plots proposed by [30, 36] serve as guide to select the distribution
that best fits to data from the options; normal, uniform, logistic, exponential, gamma,
Weibull and log-normal distributions. The skewness-kurtosis Cullen and Frey plots
for the rates are shown in Fig. 41. The single blue point labelled observation is used
to represent the distribution of the data. Notice that in all the plots in Fig. 41 the
observations fall in the grey section of labeled beta distribution. Looking at the plots
we can select candidate distributions for the data at first glance but we can not decide
the best option. Thus we run some further analysis using goodness-of-fit plots and
criteria to make our choice more robust.
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(b) Unemployment rate

0 1 2 3 4

Cullen and Frey graph

square of skewness

ku
rto

si
s

10
9

8
7

6
5

4
3

2
1 Observation Theoretical distributions

normal
uniform
exponential
logistic

beta
lognormal
gamma

(Weibull is close to gamma and lognor

(c) Inactivity rate
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(d) Unemployment (U + I) rate

Figure 41: Graphs illustrating the Cullen and Frey plots for employment, unemploy-
ment, inactivity and adjusted unemployment (unemployment plus inactivity) rates.

Goodness-of-fit plot and criteria

In this subsection, we use the denscomp, cdfcomp, qqcomp and ppcomp functions
from the fitdist package in R to produce goodness-of-fit plots and criteria. The plots
comprise of density plots, cumulated density function (CDF) plots, Q–Q plots and P–P
plots. The density plots show the histograms of the empirical distribution of the rates
along with the fitted distributions for comparison. The CDF plots illustrate the CDF
representations for the empirical distribution of the rates and the fitted distributions.
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The Q–Q plots are scatter plots that show the empirical quantiles on the y–axis against
the theoretical quantiles on the x–axis. If both sets of quantiles are the same in terms
of distribution, the points form a seemingly straight line. The P–P plots compare the
empirical cumulative distribution functions of the data on the y–axis with the fitted
distribution functions on the x–axis. The point pattern on the P–P plots are linear
through the origin and has unit slope.

We further use the goodness-of-fit criteria which are Akaike information criteria
(AIC) and Bayesian information criteria (BIC) for model selection. The AIC and
BIC are penalised-likelihood criteria used to estimate the quality of statistical models
relative to other models for a given set of data to help select the best model. Details
of AIC and BIC computations are shown in [22, Ch. II] and [89, Ch. XI]. The lower the
AIC and BIC value, the better the fit of the model. With this in mind we examine the
plots, AIC and BIC values for our data.

Firstly, the plots and criteria for employment rates are shown in Fig. 42 and Table
4.19 respectively. In Fig. 42, the histogram of the empirical distribution of the em-
ployment rate is skewed to the right, has a peak and heavy tails which confirms the
skewness and kurtosis values in Table 4.18. We also see that in all the plots in Fig. 42
that the exponential and uniform distributions do not fit the data very well. From
Table 4.19, we see that the normal and log-normal distributions have the lowest AIC
and BIC values for the employment rate. This is confirmed in the Cullen and Frey
graph for employment rates (Fig. 41) where the observation point is relatively close to
the normal distribution point and the log-normal distribution line. According to the
AIC and BIC values in Table 4.18, the distributions with the lowest values are ranked
as follows: Weibull > gamma > logistic > beta > normal > log-normal. Thus, the
log-normal distribution highlighted in blue in Table 4.18 is the best fit amongst the
candidate distributions under consideration for employment rates.

Secondly, we repeat the goodness-of-fit plots and criteria for unemployment rates
and show the results in Fig. 43 and Table 4.20 respectively. The histogram in Fig. 43
is skewed to the right, peaked and heavy tailed as indicated in Table 4.18. Also from
Fig. 43 we observe that the exponential and uniform distributions are not the best
fits in all the plots. The ranking of the lowest AIC and BIC values in Table 4.20 is
logistic > Weibull > normal > beta > gamma > log-normal. Consequently, the AIC
and BIC value highlighted in blue in Table 4.20 which represents log-normal distribution
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is the best fit for unemployment rates.
Thirdly, using similar techniques we display the goodness-of-fit plots and criteria

for inactivity rates in Fig. 44 and Table 4.21 respectively. The histogram in Fig. 44
confirms the skewness and kurtosis values in Table 4.18 because the histogram is skewed
to the left and peaked. Furthermore, all the inactivity rate plots in Fig. 44 establish
the fact that the exponential and uniform distributions are the worst fits among the
distribution options under consideration. The lowest AIC and BIC values in Table 4.21
tell us that logistic > log-normal > gamma > beta > normal > Weibull. Subsequently,
the best fit for inactivity rates is Weibull distribution.

Finally, Fig. 45 and Table 4.22 contain the goodness-of-fit plots and criteria for
adjusted unemployment rates. The skewness and kurtosis values in Table 4.18 affirm the
shape of the histogram in Fig. 45 which is skewed to the left and peaked. In addition, all
the adjusted unemployment rate plots in Fig. 45 show that the exponential and uniform
distributions are the worst fits among the distribution options under consideration. The
smallest AIC and BIC values in Table 4.22 show that logistic > Weibull > gamma >
log-normal > beta > normal. The best fit for inactivity rates is normal distribution.

In summary, with the exception of exponential and normal distribution, it is dif-
ficult to notice the best fit from the distributions in Fig. 42, Fig. 43, Fig. 44 and
Fig. 45 because the distributions are close to each other. The AIC and BIC values in
Table 4.19, Table 4.20, Table 4.21 and Table 4.22 are used to select the best distri-
butions for the rates. These are Weibull for inactivity rates, normal distribution for
adjusted unemployment (U+I) rates and log-normal distribution for employment and
unemployment rates. This information is a good serves as a guide to select the best
distribution candidate to make the UI scheme model more realistic.
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Figure 42: Plots of histogram, empirical and theoretical CDF, Q–Q plot and P–P plot
for employment rates with fitted distributions.

Distribution Akaike information criteria (AIC) Bayesian information criteria (BIC)

Normal -389.5226 -384.9417
Exponential 101.7537 104.0442

Logistic -387.3464 -382.7655
Beta -388.9440 -384.3631

Log-normal -389.9826 -385.4016
Gamma -385.4016 -385.2581
Weibull -376.2044 -371.6235

Table 4.19: Goodness-of-fit criteria for employment rates for normal, exponential,
logistic, beta, log-normal, gamma and Weibull distributions.
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Figure 43: Plots of histogram, empirical and theoretical CDF, Q–Q plot and P–P plot
for unemployment rates with fitted distributions.

Distribution Akaike information criteria (AIC) Bayesian information criteria (BIC)

Normal -410.1732 -405.5923
Exponential -265.5935 -263.3030

Logistic -405.0523 -400.4714
Beta -416.5849 -412.0040

Log-normal -419.0182 -414.4372
Gamma -416.8396 -412.2587
Weibull -407.2079 -402.6270

Table 4.20: Goodness-of-fit criteria for unemployment rates for normal, exponential,
logistic, beta, log-normal, gamma and Weibull distributions.
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Figure 44: Plots of histogram, empirical and theoretical CDF, Q–Q plot and P–P plot
for inactivity rates with fitted distributions.

Distribution Akaike information criteria (AIC) Bayesian information criteria (BIC)

Normal -484.2225 -479.6416
Exponential -69.13457 -66.84411

Logistic -481.28854 -476.7075
Beta -483.1153 -478.5344

Log-normal -481.8174 -477.2365
Gamma -482.6401 -478.0592
Weibull -501.8136 -497.2326

Table 4.21: Goodness-of-fit criteria for inactivity rates for normal, exponential, lo-
gistic, beta, log-normal, gamma and Weibull distributions.
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Figure 45: Plots of histogram, empirical and theoretical CDF, Q–Q plot and P–P plot
for adjusted unemployment (U + I) rates with fitted distributions.

Distribution Akaike information criteria (AIC) Bayesian information criteria (BIC)

Normal -362.8889 -358.3080
Exponential -35.34811 -33.05765

Logistic -360.2077 -355.6267
Beta -362.5699 -357.9890

Log-normal -361.7767 -357.1958
Gamma -362.2420 -357.6611
Weibull -360.8905 -356.3096

Table 4.22: Goodness-of-fit criteria for adjusted unemployment (U + I) rates for
normal, exponential, logistic, beta, log-normal, gamma and Weibull distributions.

193



Chapter 5
Summary and Concluding remarks

The aim of this thesis is to develop models unemployment insurance schemes to cushion
the financial and morale blow of loss of job but also to encourage the unemployed to
seek new jobs more proactively due to the continuous reduction of benefit payments.
Our focus has been to determine the optimal entry time for an individual to enter the
unemployment insurance schemes. In this final chapter we summarise our results and
mention some future directions.

5.1 Summary of results

In Chapter 2, we set up and solved a simple optimal stopping problem in a stylized
UI model. The model and its solution are useful by illustrating approaches to op-
timal strategy of an individual seeking to get insured. By including consumption in
the model, we have also demonstrated how a fair premium can be calculated, which
makes our UI model usable also from the insurer’s perspective. An explicit closed-form
solution of the corresponding optimal stopping problem was possible due to some sim-
plifying assumptions — in particular, exponential distribution of time τ0 to loss of job
and constant inflation rate r. The analysis also strongly relied on the simplest model
for the wage process (Xt), that is, geometric Brownian motion with constant drift µ
and volatility σ2.

In Chapter 3, the risk-free rate, unemployment rate and employment rate in the
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simple model in Chapter 2 are made time-dependent, which caused complications to
the model. We found the optimal stopping rule that maximises the expected payoff for
an unemployed individual under the UI scheme. We formulated the stopping problem
based on the assumption that risk-free rate, unemployment rate and reemployment
rate are time-dependent. We also proved that the optimal stopping time for our prob-
lem is the first time the wage process exceeds a time-dependent optimal boundary
b(t), which is non-negative, continuous, either non-decreasing or non-increasing and
bounded. Prior to this, we proved the continuity of the value function. We found the
regularity for the value function and we derived an integral equation that uniquely
characterises the optimal boundary. We numerically solved the integral equation and
provide plots of the optimal boundary. Finally, we interpreted and discussed our results
economically.

In Chapter 4, we gave a brief overview of the dataset using descriptive statistics and
visualization. Following this, we used the (LST) models to investigate the movement
between employment, unemployment and inactivity. We further explored the two-state
and three-state lake models for the labour force. The performance and accuracy of
the LST and lake modelling techniques are obtained by comparing our simulations
to the actual data. The results of our findings are discussed. Additionally, we fitted
distributions to data in order to choose the best candidate probability distribution for
future work suggestions.

5.2 Future directions

Let us indicate a few directions of making our UI model more realistic. Firstly, indefinite
term of UI insurance could be replaced by a finite expiration term for the benefit
schedule (akin to American call option with finite horizon), which would lead to a
harder (time-dependent) optimal stopping problem (cf. [107, §25.2]).

After fitting distributions to the real labour force data in Chapter 4, the model
can be modified. Note, however, that fitting a different distribution for τ0 and τ0 will
invalidate the expression (2.2.10) for the expected net present value eNPV(x; τ) and,
therefore, will change the gain function in the optimal stopping problem (2.2.14), mak-
ing it more difficult to solve. In addition, since the labour force data can considered as
time series data, some time series analysis can also be done and the results incorporated
in the UI scheme.
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The implicit assumption of passive waiting for a new job during the unemployment
spell may not be realistic, or at least not desirable as individuals would rather be
expected to seek jobs more pro-actively. Thus, it may be interesting to combine our UI
model with job-seeking models such as in [17].

The inclusion of utility terms in the optimal setting is novel in this context, and
illuminates significant changes in the individual’s behaviour when driven by utility
considerations. In particular, the value of the optimal stopping problem (2.7.6) is an
increasing function of the preference coefficient κ (see Proposition 2.7.1). This result
is intuitively appealing, as it conforms with the usual impact of utility function (under
the Expected Utility Theory), allowing one to convert extra satisfaction into extra
premium. This is confirmed by our analysis of suboptimal solutions in Section 2.6.3
(see Fig. 7). It would also be interesting to study the optimal stopping problem (2.7.6)
in more detail.

The results from Section 2.7.4 indicates that the individual is happy to pay more
than before to protect themselves from the perceived risk of significant losses. That
is to say, an additional amount of satisfaction is convertible into an extra premium.
However, choosing another mode of paying premium may also well change the threshold.
Consequently, one direction that can be studied is to change the premium to depend
on the wage and exhibit other modes of payment such a monthly or quarterly.

A portfolio of sustainable insurance products could be developed to offer competit-
ive benefits based on the possible states of the policyholder (such as ‘unemployed/em-
ployed’, ‘dead’, ‘education’, ‘marriage’, etc.). It would be interesting to analyse optimal
strategies of switching between employment and unemployment from the point of view
of the regulator and/or insurer. This can be used as a guide explore optimal pricing of
insurance schemes and to optimise reserving.
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Appendix A
Appendix

A.1 Definitions

In this section, we have some definitions that have been references in Chapter 1.

Stopping times

Definition A.1.1. A random variable τ : Ω → [0,∞] is called a stopping time if
{τ ≤ t} ∈ F for all t ≥ 0 and P(τ <∞) = 1.

Fubini’s theorem

Fubini’s theorem, also known as Tonelli’s theorem, shows a link between a multiple
integral and a repeated one.

Theorem A.1.1. If f : R2 → R is an integrable function (i.e.
∫∫
|f(x, y)|dxdy < ∞)

on the rectangular region [a, b]× [c, d], then the equality∫ b

a

∫ d

c
f(x, y)dydx =

∫ d

c

∫ b

a
f(x, y)dxdy (A.1.1)

applies. [51, 63]

Lebesgue’s dominated convergence theorem

Theorem A.1.2. Suppose that {fn} is a sequence of measurable functions, such that
fn → f point-wise almost everywhere as n → ∞, and that |fn| ≤ g for all n, where g
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is integrable. Then f is integrable, and∫
fdµ = lim

n→∞

∫
fndµ (A.1.2)

[21, 63].

A.2 Python codes for time-dependent case

The python codes used to to solve the time-dependent case are presented below.

1 import matplotlib . pyplot as plt
2 from scipy import interpolate
3 from mpmath import *
4 from matplotlib . figure import Figure
5 from matplotlib . backends . backend _agg import FigureCanvasAgg as

FigureCanvas
6 import pandas as pd
7 from mpl_ toolkits import mplot3d
8 from mpl_ toolkits . mplot3d import Axes3D
9 from matplotlib import cm

10 from matplotlib . ticker import LinearLocator , FormatStrFormatter
11 import mpl_ toolkits . mplot3d as plt3d
12 from IPython . display import *
13 import numpy as np
14 import sympy as sp
15 from scipy. special import gammainc
16 import time
17 from datetime import timedelta
18 sp.init_ printing (use_ unicode =False , wrap_line=False)
19 from scipy. special import erf , erfc
20 from numpy import sin
21 from scipy. integrate import quad
22 from mpl_ toolkits .axes_grid1.inset_ locator import zoomed _inset_axes
23

24 # Symbols and parameters
25 bt = sp. Symbol (’b_t’)
26 bts = sp. Symbol (’b_(t+s)’)
27 s = sp. Symbol (’s’)
28 t = sp. Symbol (’t’)
29 y = sp. Symbol (’y’)
30 u = sp. Symbol (’u’)
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31 mu = sp. Symbol (’mu’)
32 sigma = sp. Symbol (’sigma ’)
33 gamma = sp. Symbol (’gamma ’)
34 delta = sp. Symbol (’delta ’)
35 P = 9000
36 mu = 0.0004
37 sigma = 0.002
38 gamma =34.7
39 delta = 0.0094
40 h0 = 0.7
41 P = 9000
42

43 # ########################################################
44 # Functions for computation
45

46 # Inflation rate
47 def r(t):
48 a = 0.0252 *sp.exp (0.0012 *t) # Exponential
49 return a
50 # Reemployment rate
51 def lambda1 (t):
52 a = 0.7076 *sp.exp (0.0007 *t) # Exponential
53 return a
54 # Inflation rate + Reemployment rate
55 def tilde_r1(t):
56 a = r(t)+ lambda1 (t)
57 return a
58 # Benefit schedule
59 def expint _r1(s,t):
60 a = sp.exp (-(sp. integrate (tilde_r1(u), (u, t, s))))
61 return a
62 def beta_a1(t):
63 a = lambda t: quad( expint _r1a , t, t+gamma , args =(t,))
64 return a
65 def expdelta _r(s,t):
66 a = sp.exp (-(sp. integrate (delta , (u, t+gamma , s))))
67 return a
68 def expintdelta _r(s,t):
69 a = expint _r1(s,t)* expdelta _r(s,t)
70 return a
71 def beta_b1(t):
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A.2 Python codes for time-dependent case

72 a = lambda t: quad( expintdelta _ra , t+gamma , inf , args =(t,))
73 return a
74 def beta(t):
75 a = h0*(beta_b1(t)[0]+ beta_a1(t)[0])
76 return a
77 # Unemployment Rate
78 def lambda0 (t):
79 a = 0.0596 *sp.exp ( -0.0004*t) # Exponential
80 return a
81 # Inflation rate + Reemployment rate
82 def tilde_r(t):
83 a = r(t)+ lambda0 (t)
84 return a
85 def expint _r(s,t):
86 a = sp.exp (-(sp. integrate (tilde_r(u), (u, t, s))))
87 return a
88 def expintmu _r(s,t):
89 mu = 0.0004
90 a = sp.exp (-(sp. integrate (tilde_r(u)- mu , (u, t, s))))
91 return a
92 def lambda0 _beta(t):
93 a = lambda0b (t)*beta(t)
94 return a
95 def expintmulam _r(s,t):
96 mu = 0.0004
97 a = expintmu _ra(s,t)* lambda0 _beta(s)
98 return a
99 def beta1(t):

100 a = lambda t: quad( expintmulam _r, t, inf , args =(t,))[0]
101 return a
102

103 def I_int_1(s,bt ,bts):
104 lnbt = sp.log(bts/bt)
105 g = (mu - (( sigma**2)/2))*s
106 d = sigma*sp.sqrt (2*s)
107 a = 0.5 - (0.5 * (sp.erf ((lnbt -g)/d)))
108 return a
109 def I_1(s,t,bt ,bts):
110 a = expint _r(s,t)*tilde_r(t+s)*P*I_int_1(s,bt ,bts)
111 return a
112 def I_int_2(s,bt ,bts):
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A.2 Python codes for time-dependent case

113 lnbt = sp.log(bts/bt)
114 g = (mu - (( sigma**2)/2))*s
115 w = (sigma**2)*s
116 d = sigma*sp.sqrt (2*s)
117 a = 0.5 - (0.5 * (sp.erf ((lnbt -g-w)/d)))
118 return a
119 def I_2_a(s,t,bt ,bts):
120 a = expint _r(s,t)*bt*sp.exp(mu*s)*I_int_2(s,bt ,bts)
121 return a
122 def I_2(s,t,bt ,bts):
123 a = I_2b(s,t,bt ,bts)* lambda0 _beta(t+s)
124 return a
125 def I_total(s,t,bt ,bts):
126 a = I_1b(s,t,bt ,bts) + I_2(s,t,bt ,bts)
127 return a
128

129 # ########################################################
130 # Boundary function algorithm
131 # Parameters
132 T = 100# final time
133 t = 0 #0.001 # initial time
134 h = 1 # time step
135 Pi = np. arange (start=t, stop=T, step=h) # Pi = t:h:T # time grid
136 b_0 = np.ones(len(Pi)) # b_0 = zeros (1, length (Pi)); % initialising the

starting boundary
137 b_1 = np.ones(len(Pi)) # b_1 = zeros (1, length (Pi)); % defining the next

-step boundary
138 b_2 = np.ones(len(Pi))
139 eps = 1e-1 #1e-6 % fixed -point tolerance
140 j = 1. # initialising the number of iterations
141 S = np. arange (start =(t+h/2), stop =(T+h/2), step=h) # S = t+h/2:h:1-h/2;

% vector of middle points
142 Y = np. arange (start =0, stop=T, step=h) # Y = -1:h:1; % space grid
143 # Computing the first iteration of the fixed -point algorithm
144 B_0 = np.ones(len(S))
145 error = []
146 for k in np. arange (len(Pi) -1,-1,-1):
147 P = 9000
148 t_k = Pi[k]
149 b_1[k] = (1/beta1(t_k))*(P-np.sum(I_total(S[k:],t_k,b_0[t_k],B_0[k:]))

)
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A.2 Python codes for time-dependent case

150 print(b_1)
151 err = np.max(np.abs(b_1- b_0))# error related to first iteration
152 print(err)
153 error. append (err)
154 plt.plot(np. arange (len(b_1)) ,(b_1))
155

156 while err > eps:
157 b_2 = np.abs(b_0)
158 b_0 = np.abs(b_1)
159 b_1 = np.abs(b_2)
160 j = j+1
161 inter = interpolate . interpolatedunivariatespline (pi , b_0)
162 b_0 = inter(s)
163 for k in np. arange (len(pi) -1,-1,-1):
164 p = 9000
165 t_k = pi[k]
166 b_1[k] = (1/beta1(t_k))*(p-np.sum(i_total(s[k:],t_k,b_0[t_k],b_0[k

:])))
167 err = np.max(np.abs(b_1 - b_0))# error related to first iteration
168 error. append (err)
169 print(error)
170 print(j)
171 j = str(j)
172 print(’number of iterations is ’ + j + ’.’)
173

174 # Beta plot
175 plt. figure ()
176 ax = plt.axes ()
177 timer = np. arange (len(Pi))
178 plt.plot(timer ,beta(Pi),’k*’)
179 ax.set_ facecolor ("white")
180 plt. xlabel (’Time $t$’,fontdict ={’fontsize ’: 11, ’fontweight ’: ’medium ’})
181 plt. ylabel (r’Benefit schedule $\beta(t)$’,fontdict ={’fontsize ’: 11, ’

fontweight ’: ’medium ’})
182 plt.show ()
183

184 ## Simulation of a Brownian motion and computation of the optimal
stopping time

185 random .seed (60)
186 mu = mu
187 sigma = sigma
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A.2 Python codes for time-dependent case

188 N = 50*T # number of steps within each simulation
189 deltat = T/N #time step
190 X = np.zeros(len(Pi)) # % initialising the Brownian motion path
191 X[0] = 346 # starting point
192 for i in np. arange (1, len(Pi)):
193 t_i = Pi[i] # corresponding time
194 X[i] = X[i -1]*(np.exp ((mu -( sigma**2)/2)* deltat +sigma*np.sqrt( deltat )*

np. random . normal (0 ,1)))
195 index = np.where(X>=b_1) [0][0] # index of optimal stopping time
196 print(index)
197 tau = Pi[index] # % optimal stopping time
198 print(tau)
199

200 # Optimal boundary plot
201 plt. figure ()
202 ax = plt.axes ()
203 ax.set_ylim ((0, 300000) )
204 ax.set_xlim ((0, T -1))
205 ax.set_ facecolor ("white")
206 ax.fill_ between (Pi , -0.5, b_1, color=" lightblue ", alpha =0.5)
207 plt.plot(Pi ,b_1, color=’black ’, linewidth =1.5)
208 plt.plot(Pi ,X, color=’black ’,linewidth =1.5) # % plotting the Brownian

bridge path
209 plt. xlabel (’Time $t$ ’,fontdict ={’fontsize ’: 11, ’fontweight ’: ’medium ’

})
210 plt. ylabel (’Pay rate ’,fontdict ={’fontsize ’: 11, ’fontweight ’: ’medium ’})
211 plt.text (8 ,280000 , r’$\ mathcal {S}$’, fontsize =20)
212 sub_axes = plt.axes ([.43 , .4, .45, .45])
213 sub_axes.set_ylim ((0, 1000)) #Limit
214 sub_axes.set_xlim ((0, T -1))
215 sub_axes.set_ facecolor ("white")
216 sub_axes.fill_ between (Pi , -0.5, b_1, color=" lightblue ", alpha =0.5)
217 sub_axes.plot(Pi ,b_1, color=’black ’, linewidth =1.5)
218 sub_axes.plot(Pi ,X, color=’black ’,linewidth =1.5) # % plotting the

Brownian bridge path
219 sub_axes.text (8, 100, r’$\ mathcal {C}$’, fontsize =20)
220 plt.show ()

Listing A.1: Python codes
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A.3 R codes for Markov model fitting

A.3 R codes for Markov model fitting

The R codes for model fitting using the DA approach is as follows.

1 library (tidyr)
2 library ( xtable )
3 library ( ggplot2 )
4 library ( tidyverse )
5 library (ctmcd)
6 library (expm)
7 library (" markovchain ")
8 library ( matlib )
9 States <- c("E","U") # Labels

10 byRow <- TRUE
11 tm_abs <- matrix (data = c( 26375755 , 906629 ,915392 , 9252628) , nrow = 2,
12 byrow = byRow , dimnames = list(States , States )) # Matrix
13 tm_rel <- rbind ((tm_abs/ rowSums (tm_abs))) # Relative probability
14 ev1 <- eigen(tm_rel)
15 L1 <- ev1$ values # Eigenvalues of relative probability
16 V1 <- ev1$ vectors # Eigenvectors of relative probability
17 inv(V1) # Inverse of Eigenvectors of relative probability
18 xtable (diag(L1)) # Diagonal of Eigenvalues of relative probability
19 xtable (logm(diag(L1))) #Log of diagonal of Eigenvalues
20 Q <- V1 %*% logm(diag(L1)) %*% inv(V1) #Log of relative probability
21 logm(tm_rel) #Log of relative probability
22 gmem <- gm(tm=tm_rel ,te=1, method ="DA") #DA result for transition matrix
23 A <- gmem$par
24 ev <- eigen(A)
25 L <- ev$ values # Eigenvalues of transition matrix
26 V <- ev$ vectors # Eigenvectors of transition matrix
27 P = V %*% expm(diag(L)) %*% inv(V) # Probability matrix
28 mc <- new(" markovchain ", states = c("E", "U"),
29 transitionMatrix = P,
30 name = " Labour ")
31 steadyStates (mc) # steady state

Listing A.2: R codes

A.4 Identifying the distributions fits the labour force data

This section contains plots referenced in Section 4.7.
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l’emploi: des estimations ex ante aux évaluations ex post (French). [The effects
of the shorter working week on employment: from ex-ante simulations to ex-post
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