
A statistical investigation into the
relationship between supermassive

black hole growth and star
formation

Liam Philip Grimmett

Department of Physics & Astronomy

The University of Sheffield

A dissertation submitted in candidature for the degree of
Doctor of Philosophy at the University of Sheffield

September 2020





Contents

1 Introduction 1
1.1 The discovery of quasar-like objects . . . . . . . . . . . . . . . . . . . . . 1
1.2 The AGN system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Connecting the SMBH to the host galaxy . . . . . . . . . . . . . . . . . . 11

1.3.1 Whether a SMBH is connected to its host galaxy . . . . . . . . . 12
1.3.2 The correlation between SMBH accretion and star formation . . . 14

1.4 This thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Using multi-wavelength data to determine host galaxy properties 22
2.1 COSMOS survey and multi-wavelength data . . . . . . . . . . . . . . . . 22
2.2 Measuring the SMBH accretion through AGN luminosity . . . . . . . . . 24
2.3 Measuring galaxy growth through star formation . . . . . . . . . . . . . . 29

2.3.1 A summary of the SFR tracers . . . . . . . . . . . . . . . . . . . 30
2.3.2 A reliable star formation measure . . . . . . . . . . . . . . . . . . 32

2.4 Using SED fitting to derive stellar masses . . . . . . . . . . . . . . . . . 36

3 Revealing the differences in the SMBH accretion rate distributions of
starburst and non-starburst galaxies. 40
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 Sample selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.2 X-ray luminosity upper limits . . . . . . . . . . . . . . . . . . . . 45
3.2.3 Calculating Starburstiness . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Constructing a flexible model . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3.1 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3.2 Model construction . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3.3 Likelihood Function . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3.4 Likelihood maximisation . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.4.1 MCMC output . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4.2 Power law slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.4.3 High turnover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.4.4 Parameter evolution with redshift . . . . . . . . . . . . . . . . . . 63

ii



3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.5.1 Assumptions and analysis limitations . . . . . . . . . . . . . . . . 66
3.5.2 Inferring the results . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 Finding a subtle difference in the RMS distribution between lower and
higher X-ray luminosity AGN 74
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2 Sample derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3 Parametric form and posterior distribution . . . . . . . . . . . . . . . . . 79
4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4.1 RMS distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.4.2 The relationship between SFR and LX . . . . . . . . . . . . . . . 84

4.5 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 86

5 A binning-free method reveals a continuous relationship between galax-
ies’ AGN power and offset from main sequence. 88
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.3 The continuous model, model selection and MCMC algorithm . . . . . . 91

5.3.1 RMS distribution and likelihood function . . . . . . . . . . . . . . 92
5.3.2 Prior and posterior distributions . . . . . . . . . . . . . . . . . . . 94
5.3.3 MCMC algorithm and model switching . . . . . . . . . . . . . . . 97

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.4.1 Posterior distributions . . . . . . . . . . . . . . . . . . . . . . . . 103
5.4.2 RMS as a function of LX . . . . . . . . . . . . . . . . . . . . . . . 105

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.5.1 Limitations of our approach . . . . . . . . . . . . . . . . . . . . . 112
5.5.2 Implications of our analysis . . . . . . . . . . . . . . . . . . . . . 114

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6 Improvements to the binning-free methodology: multi-component dis-
tributions and functional relationships 117
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.2 Adding a second component . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.2.1 Density and likelihood function . . . . . . . . . . . . . . . . . . . 119
6.2.2 Functional relationships . . . . . . . . . . . . . . . . . . . . . . . 120
6.2.3 Findings from testing the two-component model . . . . . . . . . . 122

6.3 Upgrading the functional relationships . . . . . . . . . . . . . . . . . . . 135
6.3.1 Adding stellar mass and redshift . . . . . . . . . . . . . . . . . . . 136
6.3.2 Including upper limits on LX . . . . . . . . . . . . . . . . . . . . 138

6.4 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 139

iii



7 Discussion and Conclusions 141
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.2 Comparison to literature . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.2.1 AGN Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.2.2 Gas availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.3 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

iv



List of Figures

1.1 The shadow of the SMBH in the local AGN M87. This image was taken
by the Event Horizon Telescope collaboration, using many different ra-
dio observatories. The use of many telescopes allows for incredibly long
baselines to be used, giving the telescope the resolution required to re-
solve down to the scale of the central SMBH. For size comparison, the
solar system would easily fit in the shadow. This Figure was originally
presented in Event Horizon Telescope Collaboration et al. (2019). . . . . 3

1.2 The MBH − σvel relation; the observed correlation between the mass of a
central SMBH and the stellar velocity dispersion of the host galaxy for
a sample of 72 nearby galaxies. The differences in points represent both
the morphological differences of the galaxy (colour) or the method used
to estimate MBH (marker type). This figure was originally presented in
McConnell & Ma (2013). . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 The MBH −Mbulge relation; the relationship between host galaxy bulge
mass and SMBH mass for a sample of 32 AGNs that were X-ray se-
lected between the redshift range 1.2 < z < 1.7 (shown as red stars).
Over-plotted are the results from non-AGN galaxies at lower redshifts
and intermediate redshift AGNs from the works of Bennert et al. (2011)
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Abstract

In an attempt to reveal whether any coevolution between a central SMBH and its host

galaxy exists, the literature has sought to identify whether the growth rates of the two are

connected (witnessed as Active Galactic Nuclei, AGN, and star-formation respectively).

However, depending on the sample selection method, there appears to be a contradic-

tion in the results, with those studies selecting a galaxy sample reporting a positive

correlation and those studies selecting an AGN sample reporting a flat relationship. In

order to include non-detections in the analysis, the majority of these studies resort to

a binning-and-averaging approach and thus investigate how the average star-formation

changes across AGN power bins, or vica versa. However, binning and averaging both

have limitations.

In this thesis, we conduct a detailed statistical analysis of the relationship between

the SMBH accretion rate and the star formation rate (SFR) of the host galaxy. We firstly

investigate how the full distribution of SMBH accretion rates changes between galaxies

with excess star formation (i.e., starburst galaxies) and those with lower levels of star

formation. Secondly, we investigate how the full distribution of star-forming properties

changes between high and low power AGNs, before moving on to present a binning-free

methodology to investigate how the same distribution changes continuously with AGN

power. Therefore, conducting analyses that moves beyond the binning-and-averaging

approach. In general, we find a statistical connection between SMBH accretion rate and

SFR likely exists such that more rapidly accreting SMBHs tend to reside in galaxies

with higher levels of star formation. We propose that this scenario is consistent with a

proposed coevolution of SMBH and galaxy growth in that they are both cogoverned by

cold molecular gas availability in the host galaxy.

xv





Chapter 1

Introduction

I’m going on an adventure!

Bilbo Baggins

1.1 The discovery of quasar-like objects

In the mid 20th century, studies had begun to explain the nature of a series of extragalac-

tic sources that, as a result of their stellar-like brightness at galaxy-like distances, did not

seem to match any known astronomical phenomenon. These sources, now dubbed Active

Galactic Nuclei (AGN), were first systematically studied in 1943, when Seyfert (1943)

identified six AGNs that had both broad emission lines in the spectrum and excessive nu-

clear emission; two unusual features for the galaxy population as it was known then. In a

key discovery twenty years later, Schmidt (1963) measured the distance to another AGN

(namely, 3C 273) and determined that, if it was at the distance inferred from the red-

shifted emission lines in it spectra (i.e., 500 megaparsecs), its luminosity must be around

≈10 times larger than a typical galaxy (i.e., ≈ 2× 1047 erg s−1, Courvoisier 1998)1. By

1969, 44 of these AGNs had been identified (see the review by Schmidt, 1969, and ref-

1During my PhD, I quickly learned that “typical” is an unusual term to describe a galaxy. They are
similar to humans in that they share common properties, but on the whole every galaxy is likely unique.

1
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erences therein) and whilst identification of such sources continued significant amounts

of research began to try and explain what physical processes were responsible for these

excessively bright and distant sources (e.g., Sandage, 1965; Burbidge, 1967; Schmidt,

1969).

It is now widely accepted that, as well as the many other AGNs discovered since,

those 44 sources and their excessive nuclear emission is likely powered by accretion of gas

and dust on to a central supermassive black-hole (SMBH, e.g., Salpeter, 1964; Zel’dovich,

1964; Lynden-Bell & Rees, 1971; Pringle et al., 1973; Ruffini & Wilson, 1975; Lynden-

Bell, 1978; Rees, 1984, 1998, but also see Section 1.2 for more details). Salpeter (1964)

first suggested that the accretion of matter on to a small, but incredibly massive object

(> 106 M�) was likely an incredibly efficient process (with 5-20% of the rest mass being

converted into radiation), meaning vast amounts of energy could be released, with not

unrealistic levels of accretion. For example, accretion of 0.002 M� of gas per year at 10%

efficiency would result in a luminosity of 1043 erg s−1, which would be enough to outshine

the Milky Way. Whilst SMBHs have, therefore, long been suspected to be responsible

for powering AGNs, arguably the most definitive piece of evidence came in 2019, when

the Event Horizon Team directly imaged the SMBH present in the centre of the nearby

AGN M87 (see Figure 1.1).

Large numbers of central SMBHs, like the ones powering the aforementioned AGNs,

have also been “detected” in their inactive state in nearby massive galaxies (e.g., Lynden-

Bell, 1969; Sargent et al., 1978; Tonry, 1984, 1987; Dressler & Richstone, 1988; Kormendy

& Richstone, 1995; Bender et al., 1996; Kormendy et al., 1997). These SMBHs are not

actively accreting and are therefore, unlike their active counterparts, dark (or at least

not bright enough for us to detect). As a result, identifying these SMBHs relies on

indirect techniques, such as measuring the velocities (or orbits) of nearby gas or stars.

Indeed, by tracing the proper motions of the stars within the central 0.1 parsecs of the

Milky Way, a dormant SMBH (with mass ≈ 2.5 × 106 M�) has been identified in the



Introduction 3

Figure 1.1: The shadow of the SMBH in the local AGN M87. This image was taken
by the Event Horizon Telescope collaboration, using many different radio observatories.
The use of many telescopes allows for incredibly long baselines to be used, giving the
telescope the resolution required to resolve down to the scale of the central SMBH.
For size comparison, the solar system would easily fit in the shadow. This Figure was
originally presented in Event Horizon Telescope Collaboration et al. (2019).
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centre of our own Galaxy (e.g., Lynden-Bell & Rees, 1971; Eckart & Genzel, 1996, 1997;

Ghez et al., 1998; Lo et al., 1998). Given the frequency at which these inactive SMBHs

are detected in nearby galaxies (see the review by Kormendy & Richstone, 1995, and

references therein), it is now widely accepted that most galaxies host a SMBH in their

centre.

Interestingly, some recent studies have demonstrated that the mass of these SMBHs

tends to correlate with properties of the host galaxy they reside within (e.g., Magorrian

et al., 1998; Ferrarese & Merritt, 2000; Gebhardt et al., 2000; Merritt & Ferrarese,

2001; Tremaine et al., 2002; Marconi & Hunt, 2003; Häring & Rix, 2004; Wyithe, 2006;

Hu, 2008; Gültekin et al., 2009; McConnell & Ma, 2013; de Nicola et al., 2019; Ding

et al., 2020a,b). Figure 1.2 (originally presented in McConnell & Ma, 2013) shows the

correlation between the SMBH mass and the stellar velocity dispersion of the host galaxy

for a sample of 72 nearby galaxies. However, similar correlations exist for AGNs and

more distant galaxies. Figure 1.3 highlights the correlation between SMBH mass and

host galaxy bulge mass for a sample of 32 AGNs at 1.2 < z < 1.7 presented in Ding et al.

(2020b) but also contains the works of Bennert et al. (2011) and Häring & Rix (2004),

which show the correlations for intermediate redshift AGNs and local non-AGN galaxies,

respectively. These correlations tend to suggest that a SMBH and its host galaxy are

connected and, given that the host galaxy (out to 10s kpc) lies beyond the gravitational

influence of the black hole (< 1 kpc), any connection would not be fully explained by

gravity alone. The naturally arising question, is therefore, what “macroscopic” properties

of the host galaxy, if any, are dictating the activity levels of the SMBH (as even inactive

SMBHs must have been historically-active to grow their mass). Or more succinctly, why

is it that some SMBHs are active and some are not, and why does it appear to be related

to the host galaxy? Before progressing with our research addressing this question in the

forthcoming chapters, the remainder of this introduction aims to provide further context

and discuss the findings of the literature thus far. Therefore in Section 1.2 we highlight
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the “unified model of AGN” which describes the fundamental components in an AGN

system, which is important for considering how to measure SMBH accretion rate. In

Section 1.3.1 we summarise the evidence to suggest that the true connection between a

SMBH and its host galaxy may be in the way they have co-evolved. In the same section,

we then discuss how the literature has provided inconclusive results, depending upon on

the analysis methods used, before highlighting areas of improvement in the statistical

analysis of the relationship between SMBH growth and galaxy growth in Section 1.3.2.
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Figure 1.2: The MBH − σvel relation; the observed correlation between the mass of a
central SMBH and the stellar velocity dispersion of the host galaxy for a sample of 72
nearby galaxies. The differences in points represent both the morphological differences
of the galaxy (colour) or the method used to estimate MBH (marker type). This figure
was originally presented in McConnell & Ma (2013).
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Figure 1.3: The MBH−Mbulge relation; the relationship between host galaxy bulge mass
and SMBH mass for a sample of 32 AGNs that were X-ray selected between the redshift
range 1.2 < z < 1.7 (shown as red stars). Over-plotted are the results from non-AGN
galaxies at lower redshifts and intermediate redshift AGNs from the works of Bennert
et al. (2011) and Häring & Rix (2004), implying correlations between SMBH and host
galaxy hold for different galaxy populations. This figure was originally presented in Ding
et al. (2020b).
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1.2 The AGN system

As was previously mentioned, the most widely accepted mechanism for powering AGNs is

the accretion of gas and dust on to a SMBH. However, the full system is somewhat more

complicated. As this thesis aims to investigate the connection between the SMBH ac-

cretion rate and properties of the host galaxy, we need to understand the inner-workings

of the AGN system. It is also important to understand the system in order to choose

an accurate SMBH accretion rate tracer (which we cover in Section 2.2). In short, all

AGNs are considered to be intrinsically similar in the way they work, with the majority

of observed differences (such as the presence or absence of broad emission lines or lack

of nuclear emission) explained by either changes in the viewing angle or the accretion

rate. A sketch of this “unified model” of AGN is presented in Figure 1.4.

During a growth phase, a SMBH is thought to be surrounded by an accretion disk

(with a radius of ≈ 10 light days, Hawkins 2007) which, as a result of thermal emission, is

bright at UV-optical wavelengths (e.g., Shakura & Sunyaev, 1973; Blandford & Znajek,

1977; Shields, 1978; Ulrich et al., 1980; Malkan & Sargent, 1982; Blaes, 2007). In addition

to this UV-optical emission, low energy X-ray photons may also be produced in the

innermost, and hottest, regions of the accretion disk (e.g., Shakura & Sunyaev, 1973;

Mushotzky et al., 1993; Reynolds & Nowak, 2003; Sobolewska et al., 2004; Fabian et al.,

2006; Turner & Miller, 2009; Done & Diaz Trigo, 2010; Gilfanov & Merloni, 2014; Kubota

& Done, 2018; Petrucci et al., 2018). Higher energy X-ray photons can also be produced

by a small corona (a few tens of light minutes in size but see Dovčiak & Done 2016 for

a discussion on the size of the corona) that resides just above the accretion disk (e.g.,

Vaiana & Rosner, 1978; Haardt & Maraschi, 1993; Fabian et al., 2015). These X-ray

photons are produced as a result of lower energy photons being up-scattered by high

energy electrons in a process called inverse Compton scattering (e.g., Liang & Price,

1977; Galeev et al., 1979; Haardt & Maraschi, 1991; Haardt et al., 1994; Stern et al.,
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Figure 1.4: The unified model of AGN. Theory predicts that SMBHs in the centre of every
galaxy are built from the same components, whilst orientation and accretion rate can
explain all the observational differences we see. Surrounding the SMBH is an accretion
disk (the properties of which are likely constrained by the precise accretion rate). Just
beyond the accretion disk are small clouds of gas, referred to as the broad line region.
A small X-ray emitting corona also sits just above the accretion disk. Surrounding the
accretion disk and the broad line region, is likely a dusty torus, which can obscure some
emission from the central components. Beyond the torus are other clouds of gas (narrow
line region), but being further away from the gravitational influence of the black hole,
have narrower emission lines than the broad line region. Some AGNs also show the
presents of radio jets.
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1995).

Beyond the accretion disk are small clouds of gas (extending out to ≈ 100 light days

depending on AGN luminosity, Pozo Nuñez et al. 2015) that are illuminated by the

accreting SMBH. As a result of being close to (hence under the gravitational influence

of) the SMBH, these gas clouds tend to have broad optical emission lines (≈ 1000s

of km s−1 and are hence named the broad line region, BLR, e.g., Antonucci & Miller

1985). Surrounding the inner-part of the system is a structure referred to as the dusty

torus, which can, if it lie in the light of sight, obscure emission from the accretion disk

and the BLR (e.g., Miller & Goodrich, 1986; Krolik & Begelman, 1988). As a result of

obscuration, the dusty torus is likely to be heated by emission from the accretion disk

and can, therefore, re-emit photons at mid-infrared wavelengths. Gas clouds can also

reside beyond the torus (out to kpc scales) which, being lesser influenced by the gravity

of the SMBH, have narrower emission lines than the BLR (≈ 100s km s−1) and are thus

named the narrow line region (NLR). The final structure in the system is the presence

of radio jets. These are, however, only seen in ≈ 10% of AGNs and are thought to be

dependent on the precise nature of the accretion, rather than orientation (see Heckman

& Best, 2014, and references therein).

The luminosity of the corona, accretion disk, BLR, dusty torus and NLR are all, at

least fundamentally, dependent upon the level of accretion of the SMBH. Our ability to

detect different levels of emission, however, depends upon our line of sight orientation.

Whilst the unified model is unlikely to be the true description of all AGN systems (one

example being the discussion around the precise shape, or clumpiness, of the torus,

e.g., Elitzur & Shlosman 2006), it is likely to be a viable approximation of reality. It

also allows us to pinpoint the different observational signatures of AGNs to different

components within the system. Again, this is important when we consider how best to

measure the growth rate of a SMBH.
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1.3 Connecting the SMBH to the host galaxy

Whilst subtle improvements to the unified model are still being made (see the recent

review by Netzer 2015), an overwhelming amount of AGN research now aims to inves-

tigate, whether an AGN is connected to its host galaxy and if so, how? In order to

investigate any potential connection between an AGN and its host galaxy, two potential

research-philosophies can be adopted. Firstly, the statistical analysis of large samples

can help by revealing whether a statistical connection between properties of the AGN

and properties of the host galaxy exists. Secondly, more detailed examination of (usu-

ally fewer) sources is required to identify which physical processes are responsible for

any observed connections. This dichotomy in research-philosophy is not only applica-

ble in astronomy. For example, in a medical setting clinical trials determine whether a

particular drug has an impact on the general population (i.e., does this drug have an

impact on the human body and if so, what changes?), whereas more specific studies

aim to identify which biological processes are responsible (i.e., identify the direct impact

of the drug on specific human cells). Analogously, in observational AGN astronomy,

large statistical studies uncover potential connections between properties of the SMBH

and the host galaxy whilst studies of a more precise nature identify potential connect-

ing processes. Only by adopting both research-philosophies can rapid progress be made

in our scientific understanding. This thesis adopts the former research philosophy, but

given its importance, we summarise what physical mechanisms could be responsible for

the results we see in Chapter 7, where we discuss the context of our results against the

backdrop of AGN feedback (i.e., the impact of SMBH accretion on the host galaxy) and

gas availability (the fuel that drives both SMBH accretion and star formation).
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1.3.1 Whether a SMBH is connected to its host galaxy

The aforementioned studies identifying correlations between the properties of SMBHs

and their host galaxies were not the only statistical sample-based studies seeking to

determine whether an AGN is connected to its host galaxy. During the late 1990s and

2000s, further evidence for a potential connection between SMBHs and galaxies was

found by investigating their relative growth rates. Since z ≈ 3, the volume-averaged

SMBH growth density, witnessed as AGN luminosity per cubic Mpc, has closely traced

the volume-averaged galaxy growth density, witnessed as star formation per unit Mpc

(e.g., Boyle & Terlevich, 1998; Heckman et al., 2004; Merloni et al., 2004; Silverman

et al., 2008; Aird et al., 2010). The two are systematically offset (star formation is

around 3-4 orders of magnitude more prevalent than SMBH accretion) but they both

appear to have peaked at z ≈ 2 and have both declined towards more recent redshifts.

Figure 1.5, which appeared in the white paper by Pope et al. (2019), shows the results of

recent works of Madau & Dickinson (2014); Delvecchio et al. (2014); Aird et al. (2015);

Vito et al. (2018). The results show the star formation rate (SFR) density and SMBH

accretion rate density are in good agreement up to z ≈ 3. Whilst beyond that redshift

they appear to deviate from one another, for the vast majority of the Universe’s lifetime

they have appeared to follow a similar evolutionary track. These results, taken with

the correlations between SMBHs and host galaxies shown previously, suggest that the

connection between a SMBH and its host galaxy may be connected is in the way they

have evolved over time, i.e., the connection may be between SMBH growth, witnessed

as AGN power and galaxy growth, witnessed as star formation.
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Figure 1.5: The SMBH accretion rate density and the SFR density as a function of
redshift. From a redshift of z ≈ 3 (i.e., the vast majority of the Universe’s lifetime)
the two trace each other remarkable closely, implying that whenever SMBHs have been
accreting, galaxies have also been growing. This provides further evidence that a SMBH
and a host galaxy may be connected. This figure was originally presented in Pope et al.
(2019).
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1.3.2 The correlation between SMBH accretion and star for-

mation

In an effort to determine whether the growth rate of a SMBH and the growth rate of a

galaxy are interconnected, a number of recent studies have adopted detailed statistical

analyses of the two processes. These studies, however, often take one of two approaches:

• Approach A: Investigate how the SMBH accretion rate varies across a sample of

galaxies that are classified based on their star-forming properties.

• Approach B: Investigate how the SFR varies across a sample of AGN-hosting

galaxies that are classified based on their SMBH accretion rates.

The key difference in the two approaches is the way in which the sample is selected.

Approach A selects a sample of galaxies that are not specifically AGNs, although some

will be, and investigates how the SMBH accretion rate varies as a function of star for-

mation of the host galaxy. Therefore, Approach A asks the specific question - How does

the SMBH accretion rate change as a function of the galaxy population’s SFR? Approach

B differs in that a sample of AGNs is initially selected and investigates how the SFR

of these AGNs change, as a function of their accretion rate. Thus, Approach B asks

a subtly different question - How do the star-forming properties of AGNs change as a

function of their accretion rate? One potential reason for this mixed-approach is that

studies investigating the relationship between SMBH growth and SFR often adopt a

binning-and-averaging approach to help include non-detections in their sample (i.e., bin

the data in one axis, and average in the other). Whilst a process called stacking2 can

be used to help with non-detections in the averaging axis, there is no consistent way

to accurately bin a source in which only an upper (or lower) limit is known, therefore

2By adding together the flux of non-detected sources (i.e., stacking them), the signal from the
sources increases linearly whilst the background noise increases slower than the signal. The resulting
stack therefore has a ‘detectable’ signal-to-noise ratio. The flux from this stack is then divided by the
number of sources in the stack to create an average measurement from the non-detections.
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Figure 1.6: The positive correlation witnessed between average SMBH accretion rate in
bins of SFR for a sample of ≈ 8600 star-forming galaxies. This figure was originally
presented in Delvecchio et al. (2015).

explaining the differences in the sample selection method previously mentioned (as one

axis must be fully-detected in order to bin the data).

Recent studies that have investigated how the average AGN power (tracing accretion

rate) changes between groups of galaxies binned by their SFR (i.e., Approach A, e.g.,

Rafferty et al., 2011; Rosario et al., 2012; Chen et al., 2013; Azadi et al., 2015; Delvecchio

et al., 2015; Harris et al., 2016; Lanzuisi et al., 2017; Shimizu et al., 2017; Stemo et al.,

2020) have generally found that the average AGN power increases as a function of SFR.

Figure 1.6 shows the correlation between average SMBH accretion rate in bins of SFR

for ≈ 8600 star-forming galaxies up to a redshift of z ∼ 2.5 from the work of Delvecchio

et al. (2015). Conversely, however, those studies that investigated how the average

SFR changes between groups of AGNs binned in terms of AGN power tend to find less

evidence of a correlation (i.e., Approach B, e.g., Harrison et al., 2012; Rosario et al.,

2012; Stanley et al., 2015, 2017; Suh et al., 2017; Ramasawmy et al., 2019). Figure 1.7



Introduction 16

Figure 1.7: The flat relationship witnessed between average SFR in bins of AGN power
derived using a sample of ≈ 2000 X-ray detected AGNs. This figure was originally
presented in Stanley et al. (2015).

shows the flat correlation between average SFR in bins of AGN power from Stanley

et al. (2015) as shown in Figure 4 of that paper. When taken as a whole, these results

provide a complicated reality. Studies adopting Approach A suggest that the average

SMBH growth rate is higher in galaxies with more star formation (i.e., the growth rates

of a SMBH and a host galaxy are likely connected), whilst studies adopting Approach B

suggest that the average SFR does not change with AGN power (i.e., the growth rates

of a SMBH and a host galaxy are likely not connected). If we are to understand the

true nature of how SMBH accretion is connected to host galaxy star formation, we need

to make sense of this apparent contradiction in results seen when adopting a binning-

and-averaging approach. One potential explanation for these contradictory results is

the uncertainties associated with both binning and averaging, which we cover in the

forthcoming subsections.
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AGN variability and the use of binning

The accretion of gas on to a SMBH is known to be a highly-variable process. In a recent

study, McAlpine et al. (2017) mapped out the SMBH accretion rate for an individual

galaxy in the Evolution and Assemble of GaLaxies and their Environments simulation

(EAGLE, Schaye et al., 2015)3. The SMBH accretion rate traced by McAlpine et al.

(2017) is shown in the bottom plot of Figure 1.8. This particular galaxy in the simulation

not only had a SMBH accretion rate that varied by ≈ 10 orders of magnitude during

the lifetime of the simulation, but one that, even at its most stable, could vary by ≈ 4

orders of magnitude over the course of a few megayears. Simulations have been useful for

allowing us to track variability over such (relative to humans) long timescales, but even

incredibly short term (≈ 20 years) observations have identified such rapid variability in

AGN-hosting systems (e.g., Mushotzky et al., 1993; Ulrich et al., 1997). The process of

star formation, however, is thought to be much more stable than SMBH accretion and

tends to vary considerably less on the same timescales (e.g., Gao & Solomon, 2004; Wu

et al., 2005; Krumholz & Thompson, 2007; Wong, 2009). The top plot of Figure 1.8 shows

the SFR evolution for the same galaxy as was shown for SMBH accretion (McAlpine

et al., 2017). In contrast to the SMBH accretion rate, the SFR only varied by ≈ 3 orders

of magnitude throughout the lifetime of the simulation, and at its most stable did not

change by an order of magnitude within 100Myr. This means that, when we compare

AGN power to SFR we are comparing a process that can vary rapidly in the short-term,

against one that is more stable.

Interestingly, it is those studies that bin in the highly-stochastic AGN power axis that

tend to find little evidence of a correlation. Whilst this could, of course, be because no

intrinsic connection exists, it could also be because binning in such a highly variable axis

can wash out potential long-term correlations (Hickox et al., 2014). Demonstrating this

3The EAGLE simulation is a large-scale cosmological simulation of the Universe (containing over
10,000 massive galaxies) designed to simulate galaxy formation and evolution.
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further, Lanzuisi et al. (2017) reported that, even within the same dataset, correlations

between AGN power and SFR could change significantly depending upon the chosen

binning axis. In addition to binning in a variable axis, there are, however, two further

problems associated with binning data generally. Firstly, how is a source classified into a

bin if, within errors, it could fall in to two or more bins? Some of the most recent studies

adopting binning often take the measured value only (e.g., Delvecchio et al., 2015; Aird

et al., 2018), which ignores uncertainties. A second limitation is the implied assumption

that sources within one particular bin have similar (or even identical) properties but

sources across bins are significantly different (or at least, it is hoped they are). Both

of these limitations have the potential to lead to inconsistencies in results. To our

knowledge, there has yet to be a study that, when investigating the relationship between

AGN power and SFR has completely removed the need for binning in both the AGN

power or SFR axis.

The use of averages

As was previously discussed, the need for the binning-and-averaging approach seen in

some studies is motivated by the need to account for non-detections in the sample (e.g.,

Shao et al., 2010; Harrison et al., 2012; Mullaney et al., 2012b; Rosario et al., 2012; Chen

et al., 2013; Azadi et al., 2015; Delvecchio et al., 2015; Stanley et al., 2015; Lanzuisi et al.,

2017; Stanley et al., 2017). Including these non-detections is critical to ensuring that

we capture the activity of the entire population, not just those SMBHs that are actively

accreting. The most commonly used method for dealing with non-detections in these

studies is by adopting a stacking approach. Whilst stacking is capable of incorporating

non-detections into the analysis, it can only provide us with an average. However,

averages are summary statistics and therefore only provide us with a simplified view of

reality. This has been demonstrated by Mullaney et al. (2015), who investigated the full

distribution of star-forming properties of AGN-selected galaxies and compared it to that
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of non-AGN galaxies. Whilst having similar averages, that study demonstrated that

AGNs had a significantly different star formation distribution than that of non-AGN

galaxies (specifically that AGNs have a wider range of star-forming properties than

‘main-sequence’ galaxies, i.e., galaxies that have star formation proportional to their

stellar mass, but see Section 2.3 for more details on main-sequence galaxies.) Indeed,

there have also been a series of studies that have adopted the use of full distributions

to reveal more detailed properties of the AGN population (e.g., Aird et al., 2010, 2012;

Bernhard et al., 2016; Wang et al., 2017)

1.4 This thesis

As a result of the limitations associated with both binning and averaging, it is likely

that the true relationship between SMBHs and their host galaxies is not fully revealed

by studies adopting the binning-and-averaging approach. As a result of AGNs being

incredibly stochastic in the short term, studies must be wary that binning sources by

their AGN power has the ability to contaminate results. Likewise, only considering

the average SFR (or average AGN power) can sometimes fail to provide us with the

full picture. This thesis, therefore, aims to investigate the relationship between SMBH

accretion rate and star-forming properties of the host galaxy in a more detailed statistical

way.

In Chapter 2 we describe our techniques for measuring SMBH accretion rate and other

relevant host galaxy properties. In an attempt to explain what is causing the average

increase in SMBH accretion rate per unit star formation, in Chapter 3 we determine how

the full distribution of SMBH accretion rates changes for galaxies with extreme levels

of star formation and compare them to the general galaxy population. In Chapter 4

we investigate the distribution of star-forming properties between two samples binned

in terms of AGN power, so that when remove the need for binning Chapter 5 we can
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compare the improvements made from removing the need to bin. In Chapter 6 we discuss

potential improvements to the binning-free methodology and provide a discussion and

provide thesis conclusions in Chapter 7.





Chapter 2

Using multi-wavelength data to

determine host galaxy properties

In theory, theory and practice are the

same. In practice, they are not.

Albert Einstein

GM Ben Finegold

2.1 COSMOS survey and multi-wavelength data

Astronomical surveys are incredibly useful for statistics-based studies. As a result of

surveys having limited pre-selection criteria, the galaxies within a survey field are likely

a more representative sample of the wider galaxy population than a targeted galaxy

sample1. The galaxies within a survey field would hopefully have very similar (if not the

same) properties of the wider galaxy population (effectively matched in morphology, en-

vironment, stellar mass, star formation rate and redshift). However, as different galaxies

are bright at different wavelengths, our ability to detect those galaxies can introduce

potential selection effects. This problem is somewhat (but not entirely) mitigated by

1Assuming that the Universe is similar in all directions and the survey has sufficient depth and width.

22
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the availability of multi-wavelength data, as detections in one wavelength can be utilised

to obtain upper limits in another (i.e., we know the galaxy exists because it is detected

at one wavelength, but we know it is not luminous enough at others to have been de-

tected). The inclusion of non-detections is important to ensure that any differences we

detect arise from the wider population and are not influenced by selection biases.

For the data used in this thesis we start with the 2 degree2 Cosmic Evolution Survey

(COSMOS, Scoville et al., 2007). Primarily COSMOS is chosen for its sufficient depth,

meaning we can probe higher redshift sources back to the epoch of peak SMBH and

galaxy growth (i.e., z ≈ 1−2, Madau & Dickinson 2014), but also its width, ensuring we

can achieve adequate sample sizes. However, COSMOS also benefits from extensive cov-

erage at various different wavelengths (instruments) such as ultraviolet (UV, GALEX ),

optical to near-infrared (Canada-France-Hawaii Telescope, Subaru, VISTA), near to mid-

infrared (Spitzer) and far-infrared (FIR, Herschel). All such data has been compiled in

the catalogue presented by Laigle et al. (2016, L16 from hereon in)2. In this thesis, we

compliment the L16 catalogue with the Chandra-COSMOS-legacy survey Marchesi et al.

(2016); Civano et al. (2016, C16 from hereon in), which provides us with additional data

at X-ray wavelengths (which we use to measure SMBH accretion rates, see Section 2.2).

Throughout the work presented in this thesis, we need to repeatedly estimate three

galaxy properties: SMBH accretion rate, SFR and host galaxy stellar mass. From the

multi-wavelength data presented in L16 (matched with the Chandra-COSMOS-legacy

survey), we use X-ray data to trace SMBH accretion, FIR data to estimate SFR and we

fit UV-infrared spectral energy distributions (SEDs) to derive host galaxy stellar masses.

In the rest of this chapter we discuss our reasons behind adopting these aforementioned

processes to calculate the necessary host galaxy properties. However, as there are slight

differences in the SFR calculations between Chapter 3 and Chapters 4 and 5, we reserve

specific details for the relevant chapters. It should also be noted that we do not review

2The full catalogue is accessible here.

ftp://ftp.iap.fr/pub/from_users/hjmcc/COSMOS2015/
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all possible methods for estimating these three galaxy properties. As spectroscopy re-

quires targeted observations, useful spectroscopic data for the entire COSMOS field is

not readily available. Although we do briefly mention some spectroscopic techniques,

preference is given to methods relying on photometric data as they are more readily

available for the COSMOS survey (and probably deep surveys in general).

2.2 Measuring the SMBH accretion through AGN

luminosity

For the purposes of this thesis, we need to accurately estimate the SMBH accretion rate.

In this section, we discuss how AGN luminosity is proportional to the the accretion rate

and how the AGN luminosity can be estimated from various wavelength measurements.

We then explain why we choose to use X-rays for the studies presented in the thesis (for

AGN detection reviews see LaMassa et al. 2010; Brandt & Alexander 2015; Padovani

et al. 2017).

Before covering which wavelengths are most appropriate for estimating the luminosity

of an AGN, we must understand why we are measuring the luminosity at all. As previ-

ously mentioned in Section 1.1, Salpeter (1964) first suggested that, during an accretion

event, a vast amount of energy could be released as the infalling matter’s gravitational

potential energy is converted into radiation (the vast majority of which would be light).

The luminosity of an AGN (LAGN) is therefore thought to be a direct function of mass

accretion such that,

LAGN = ηṀc2, (2.1)

where Ṁ is the mass accretion rate, c is the speed of light and η is the efficiency by

which infalling mass is converted to light energy. Again, as previously mentioned η is
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thought to be between 5− 20% (see Raimundo et al. 2012 and references therein). The

efficiency is thought to differ between AGN systems depending on properties of both the

black hole (such as spin) and the infalling matter (such as mass). However efficiency

measurements for individual AGN are very difficult to accurately derive and estimating

them often relies on indirect connections (e.g., Fabian & Iwasawa, 1999; Volonteri et al.,

2005; King & Pringle, 2006; Berti & Volonteri, 2008; Raimundo & Fabian, 2009). Whilst

the work in this thesis does not assume any given individual efficiency, we do hold the

assumption that changes in AGN luminosity are driven by changes to the accretion rate,

rather than the efficiency. This assumption does however apply to most works in the

literature on the connection between AGN luminosity and star formation.

During an accretion event, an AGN can be intrinsically bright across the EM spec-

trum (e.g., X-ray, UV, optical, mid-infrared and radio). Whichever wavelength is used

to accurately trace SMBH accretion must, however, attempt to meet three particular

criteria:

1. The emission traced must be intrinsically ubiquitous to SMBH accretion, thus

removing any intrinsic selection biases.

2. Ideally, the emission traced would be a direct function of accretion, removing as

many secondary dependencies as possible (such as obscuration).

3. Contamination from the host galaxy would be minimal.

The first AGN luminosity tracer we consider are those in the UV-optical luminosity

range. Photons are produced at these wavelengths in the accretion disk (e.g., Shakura

& Sunyaev, 1973; Shields, 1978; Malkan & Sargent, 1982), which means they are likely

ubiquitous to all accreting SMBHs, satisfying the first criterion. However, UV-optical

emission is prone to dust obscuration from the surrounding dusty torus (see Figure 1.4).

For this reason, rather than using the the UV-optical luminosity directly, it is far more
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common that a correction to the [OIII] emission line luminosity be used to trace AGN

luminosity at these wavelengths (e.g., Bassani et al., 1999; Heckman et al., 2005; Panessa

et al., 2006; LaMassa et al., 2010). It is thought that this emission originates in the NLR

and is therefore independent of torus-obscuration. Nonetheless, it would not be exempt

to obscuration by dust in the NLR or host galaxy itself (e.g., Lamastra et al., 2009).

The [OIII] luminosity also likely depends on the properties of the torus (i.e., covering

factor, or how much light escapes beyond the torus) and properties of the NLR itself

(Lamastra et al., 2009). Therefore, the correction from [OIII] luminosity (and indeed

any other dust-obscured measure) can be largely uncertain (e.g., Heckman et al., 2004).

Fundamentally, however, the problem of obscuration can cause a series of problems that

are difficult to fully overcome and account for. This means the second criterion is not met

by considering tracers in the UV-optical luminosity range as there is a large secondary-

dependency on obscuration. With regards to the host galaxy (and the third criterion),

significant contamination from stellar populations can occur at these wavelengths (more

so in the optical as, aside from the AGN, only massive, recently formed stars can emit UV

photons). And whilst it is likely true in the quasar-regime that the host galaxy emission is

insignificant compared to the emission from the AGN, for the majority of AGNs it is likely

the host galaxy has a significant contribution to the UV-optical luminosity. Therefore,

without applying a likely-uncertain correction for the host galaxy contamination, the

third criteria is not met.

As a result of obscuring thermally emitted photons, the dusty torus is likely heated

to temperatures such that it radiates at MIR wavelengths (1000 − 1900K, Barvainis

1987; Suganuma et al. 2006). Excess MIR emission is, therefore, often associated with

the presence of an AGN (e.g., Laurent et al., 2000; Lacy et al., 2004; Stern et al., 2005;

Alonso-Herrero et al., 2006; Fiore et al., 2008; Georgantopoulos et al., 2008; Donley

et al., 2012; Eisenhardt et al., 2012; Mateos et al., 2013). Many studies have found that

the MIR can adequately sample both obscured and unobscured AGNs (e.g., Rowan-
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Robinson et al., 2005; Mart́ınez-Sansigre et al., 2006; Hickox et al., 2007; Horst et al.,

2008; Hao et al., 2010, 2011; Lacy et al., 2015; Suh et al., 2019) even if there is an apparent

discrepancy in the amount of MIR emission between the two (e.g., see the difference in

SEDs in Ramos Almeida et al., 2011; Hickox et al., 2017). This suggests that the MIR

could be used to trace accretion across a representative sample of all AGNs, satisfying

the first criterion. MIR photons do not suffer the same levels of dust obscuration as

UV-optical ones do, meaning they are also less prone to obscuration in the host galaxy.

However, whilst not being significantly impacted by dust, the MIR emission from an

AGN is not only a function of accretion. Properties of the torus, such as the covering

factor, need to be carefully considered when converting MIR emission to AGN luminosity

(e.g., Stalevski et al., 2016). Additionally, star formation in the host galaxy can heat

intergalactic dust to similar temperature meaning emission from stellar-heated and AGN-

heated dust is difficult to disentangle. This disentangling often requires SED fitting to

accurately compute a MIR luminosity that relates to SMBH accretion, which can, for

large samples, be relatively model dependent (see e.g., Fritz et al., 2006; Alonso-Herrero

et al., 2011; Mullaney et al., 2011; Lira et al., 2013, for examples of infrared SED fitting).

So whilst the MIR can be useful for identifying AGNs, and can compliment obscuration-

dependent techniques extremely well, for constraining the precise accretion rate they can

be fairly uncertain as the third criterion is not met.

Another prominent technique used to trace SMBH accretion rates is an AGN’s X-

ray luminosity. It is widely accepted that X-rays are produced during most (if not all)

accretion events (e.g., Avni & Tananbaum, 1986; Brandt et al., 2000; Gibson et al.,

2008; Brandt & Alexander, 2015) by a hot (∼ 109K) corona that resides just above the

accretion disk (see Figure 1.4). This corona upscatters UV photons that were originally

emitted by the accretion disc up to X-ray energies (e.g., Haardt & Maraschi, 1991;

Mushotzky et al., 1993; Done & Diaz Trigo, 2010; Gilfanov & Merloni, 2014; Fabian

et al., 2015), meaning X-rays can be used to accurately probe the intrinsic accretion
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Figure 2.1: Optical and hard (2 − 8 keV) X-ray image of the local AGN NGC 3783.
The image shows how the host galaxy, clearly visible in the optical, provides very little
contamination at X-ray wavelengths. This figure was originally presented in Brandt &
Alexander (2015).

rate of AGNs. Additionally, as shown in Figure 2.1, the host galaxy can be largely

insignificant if there is an AGN, although this may change at the very lowest X-ray

luminosities, (i.e., L2−10keV = 1039−41 erg s−1, see Aird et al. 2018). Indeed, some studies

compare other AGN luminosity tracers (e.g., MIR) against the X-ray luminosity in order

to measure their performance (e.g., Horst et al., 2008; Gandhi et al., 2009). So whilst

the first and third criteria are met, using the X-ray luminosity to trace SMBH accretion

does suffer from one serious drawback; X-ray photons can be obscured by large column

densities of gas (NH = 1021−24.5 cm2). The X-ray luminosity, therefore, depends largely

upon two factors: the true SMBH accretion rate (which we are trying to estimate) and

obscuration from gas in the AGN vicinity or the host galaxy. The problem of obscuration

is partially overcome by only using harder X-rays (i.e., those with higher energies, > 2

keV), as they are considerably less prone to obscuration than softer X-rays (< 2 keV,

see Lansbury et al., 2017, and references therein). Whilst the most heavily obscured

AGNs may be missed (i.e., Compton-thick AGNs), we still believe X-rays are the most
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reliable tracer of SMBH accretion. In an effort to overcome the uncertainties associated

with obscuration (even at harder wavelengths), throughout this thesis we adopt the 2-

10 keV absorption-correct X-ray luminosity from the Chandra-COSMOS-legacy survey

(Marchesi et al., 2016; Civano et al., 2016) in order to trace SMBH accretion rate.

2.3 Measuring galaxy growth through star forma-

tion

In order to investigate the connection between SMBH accretion rate and host galaxy

growth, we need to accurately estimate the rate of star formation in host galaxies. In

a broad sense, star formation within a galaxy occurs during the gravitational collapse

of its cold dense molecular gas clouds. This gravitational collapse usually occurs when

the cloud is massive enough, but can also be instigatated by smaller regions reaching

a critical density. Upon reaching this critical mass (or density), the gravitational force

exceeds the forces supporting the gas cloud (which can be both motion and temperature

based), the cloud collapses as a result of its own gravity, prompting star formation,

and adding to the stellar mass of the galaxy. Star formation is, therefore, the process

by which the galaxy grows. It should be noted this is a very simplistic view of star

formation and the more intricate details can be found in the comprehensive reviews of

Larson (2003); McKee & Ostriker (2007); Larson (2010); Kennicutt & Evans (2012);

Girichidis et al. (2020) and the references therein.

As for estimating the level of star formation in the host galaxy, we utilise the fact

that the most massive stars (≥ 10 M�) go supernova relatively soon after formation

(≤ 100 Myr), meaning a stellar population can be aged by determining the luminosity

contribution from its massive-star subgroup (i.e., a young stellar population has a larger

contribution from massive stars). This is the fundamental principle behind most of the
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commonly used SFR indicators. However, in the forthcoming chapters, we go beyond

just comparing AGN activity to the raw SFR. As the SFR is known to correlate with

host galaxy mass and redshift, discovered connections could just be a byproduct of the

relationship between AGN activity and stellar mass or redshift. In this section we first

briefly compare the most common SFR indicators and then describe how we account for

mass and redshift evolution in forthcoming chapters.

2.3.1 A summary of the SFR tracers

Before covering specific SFR tracers, it is worth highlighting a general cause of uncer-

tainty when measuring the SFR of a galaxy using any tracer. As we try to estimate the

abundance of massive stars, a conversion must be used to estimate the mass of both the

massive and less-massive newly formed stars. This is often done by assuming an initial

mass function (IMF), which describes the theoretical mass distribution of a population

of recently formed stars. However, its precise form, accuracy and universality are widely

debated (e.g Salpeter, 1955; Scalo, 1986; Kroupa, 2001; Chabrier, 2003; Bastian et al.,

2010; Kroupa et al., 2013; Krumholz, 2014; Offner et al., 2014; Hopkins, 2018). Differ-

ent assumptions about the IMF will almost certainly lead to different estimates of the

level of star formation, even with the same measured flux. It is therefore important to

consider, for comparing studies investigating SFRs, the choices of IMF. Throughout this

thesis, we assume the IMF as described in Chabrier (2003).

As for tracing star formation, we consider a similar set of criteria that was mentioned

in Section 2.2 regarding AGN luminosity tracers. That is, an ideal estimator of star-

formation traces emission that is ubiquitous to recent star formation, with few, if possible,

secondary dependencies. However, this time, the contamination from the AGN would

ideally be negligible as well as minimal contamination from older, less massive stars. The

first tracer we consider are those at UV wavelengths. In the absence of AGN emission,
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the dominant source of UV photons in a galaxy are hot, massive stars, which immediately

provides us with an intrinsic SFR tracer (e.g., Lequeux et al., 1981; Donas & Deharveng,

1984; Kennicutt, 1998; Gallagher et al., 1989; Madau et al., 1998). However, the UV

luminosity is – as it was for tracing the SMBH accretion rate – both obscured by dust,

and in the presence of unobscured AGN, likely dominated by the accreting SMBH. The

UV luminosity can be, therefore, unreliable without significant assumptions about dust

and AGN contamination, which can both be difficult to disentangle and often require

comparison to other SFR estimators (e.g., Calzetti et al., 2000; Calzetti, 2001; Daddi

et al., 2007; Salim et al., 2007; Kennicutt et al., 2009; Reddy et al., 2010; Wuyts et al.,

2011). It is also likely unreliable to measure SFRs from optical photometry as it is

difficult to disentangle emission from older and younger stellar populations. However,

optical emission lines (such as Hα) can be used to trace the aforementioned ionising UV

photons and are commonly used in local, non-AGN systems (e.g., Calzetti et al., 2004).

It is also possible to estimate the SFR from SED fitting over the UV-MIR range (e.g. Aird

et al., 2017, 2018). This is a common approach in studies that do not have sufficient FIR

coverage. We do use SED fitting to derive our stellar masses (as we explain in Section 2.4)

but choose to use the FIR for our SFRs as to remove any potential degeneracy of the

stellar mass and SFR as result of them being derived using the same models. Our SED

fitting code is also tailored to providing the most accurate stellar masses (when the

performance of the code was tested against a mock sample in Ciesla et al. 2015) and

fine tuning for the most accurate SFRs would mean slight altering of the SED fitting

parameters.

As was the case with the torus obscuring the AGN, the obscuration of UV photons

causes the obscuring interstellar dust to warm to temperatures such that photons are

re-emitted at FIR wavelengths. FIR photons are far less sensitive to dust obscuration

and can be relatively clean from AGN contamination, except in exceptional cases (e.g.,

Elvis et al., 1994; Richards et al., 2006; Schweitzer et al., 2006; Netzer et al., 2007;
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Hatziminaoglou et al., 2010). Note that, as FIR emission only arises from dust-obscured

star formation, a correction is still necessary for light that has not been obscured (and

hence not detected at these wavelengths). The fact that a significant fraction of young

starlight is obscured by dust (at least in star forming galaxies) is however, well established

(e.g., Armus et al., 1987; Buat & Xu, 1996; Sanders & Mirabel, 1996; Goldader et al.,

2002; Buat et al., 2005; Riguccini et al., 2011; Penner et al., 2012; Oteo et al., 2013).

The most significant limitation for using FIR data to estimate SFRs, however, is the

lack of sensitivity from FIR instruments, meaning we can only probe higher levels of

star formation. For the studies in this thesis, we largely use measurements at FIR

wavelengths in order to derive SFRs and as we include upper limits where possible, we

can somewhat overcome the problems associated with poorer sensitivity. There are slight

differences between the SFR calculations in different studies in this thesis so the specific

calculations are fully explained in individual chapters.

2.3.2 A reliable star formation measure

Some studies that investigate AGN activity have found that the incidence of AGN in-

creases out to higher redshifts (i.e., z ≈ 2, see Aird et al. 2012; Bongiorno et al. 2016;

Aird et al. 2018). This trend appears to hold for increasing stellar mass too, although

care must be exercised for selection effects (e.g., Kauffmann et al., 2003; Best et al.,

2005; Aird et al., 2012; Mullaney et al., 2012a; Aird et al., 2018; Kaviraj et al., 2019).

However, the relationship between AGN prominence and stellar mass could be particu-

larly complicated. Aird et al. (2018) noticed that, whilst the AGN detection probability

changed as a function of stellar mass, is did so differently for star-forming galaxies when

compared to quiescent ones. However, that AGN activity depends on redshift and stellar

mass seems a widely accepted proposition.

The SFR of a galaxy, seemingly regardless of SFR tracer used, is also known to
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generally (at least for star-forming galaxies) increase with stellar mass and redshift (e.g

Brinchmann et al., 2004; Daddi et al., 2007; Elbaz et al., 2007; Noeske et al., 2007; Santini

et al., 2009; Karim et al., 2011; Whitaker et al., 2012; Kashino et al., 2013; Steinhardt

et al., 2014; Tomczak et al., 2016; Santini et al., 2017; Bisigello et al., 2018; Boogaard

et al., 2018). This strong relationship, dubbed the star-forming main sequence, is shown

in Figure 2.2 for a sample of 72,858 star-forming galaxies as originally presented in

Schreiber et al. (2015). It is worth noting that there are certain populations of galaxies

that appear to deviate from the main sequence. Firstly, a sub-population of galaxies

appear to reside well below the main sequence (often called the red sequence) which

have high stellar masses, but considerably less star formation than those galaxies that

lie on the main sequence. The majority of galaxies appear to reside on the main sequence,

or in this redder sequence, giving a bimodal star formation distribution. However, two

smaller groups do exist. Firstly, a ‘green valley’ group connects the main sequence to

the red galaxies with little star formation and secondly a series of starburst galaxies,

that have considerably more star formation than that of the majority of star-forming

galaxies. These groups are shown in the schematic in Figure 2.3.

As a result of both AGN activity and SFR being connected to the redshift and

stellar mass of the host galaxy, it is important to attempt to control for these potential

codependencies. To do this, throughout this thesis, rather than consider the raw SFR

of our sources we consider the SFR relative to the main sequence shown in Figure 2.2

(which we herein refer to as the “starburstiness” or RMS), such that RMS= SFR
SFRMS

, where

SFRMS is the SFR on the main sequence for a galaxy with the same stellar mass and

redshift. As per the prescription of Schreiber et al. (2015), SFRMS can be calculated by

using,
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Figure 2.2: The average SFR of star-forming galaxies as a function of mass and redshift,
calculated using by stacking of non-detections. Coloured lines represent a “continuous”
measurement, which are calculated by changing the bin boundaries. The grey lines
represent the a quadratic equation fit to the data, allowing for main sequence SFRs to
be calculated. At higher redshifts, it is worth noting that the performance of the fit can
not be judged, except at the highest stellar masses. This figure was originally presented
in Schreiber et al. (2015).
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Figure 2.3: Sketch highlighting the star-forming groups of the galaxy population. The
main sequence and starburst galaxies are often referred to as the star-forming galaxies,
whereas the green valley and red sequence may be referred to as quiescent. The area of
the ellipse nor the density of points are to scale with fractions residing in each group.
Main sequence and red sequence galaxies form the vast majority of the population.
Studies suggest up to 3% of galaxies may be starburst (e.g., Schreiber et al., 2015).
For star-forming galaxies, there is a strong connection between stellar mass and SFR,
although this does not appear to hold for red sequence galaxies.
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log10(SFRMS) = log10

(
M∗
109

)
− 0.5 + 1.5 log10(1 + z)

− 0.3[max(0, log10

(
M∗
109

)
− 0.36− 2.5 log10(1 + z))]2,

(2.2)

where SFRMS is in units of M�yr−1 and M∗ is in units of M�. RMS can therefore be

thought of as the excess (or discrepancy) in star formation that is not explained by

redshift and stellar mass. This approach allows us to derive a measure of star formation

that is largely stellar mass and redshift independent, reducing the potential for host

galaxy properties to contaminate results from studies comparing AGN activity to star

formation. However, calculating the RMS values obviously requires us to calculate stellar

masses for large samples, which we cover in the next section.

2.4 Using SED fitting to derive stellar masses

The stellar mass of a galaxy represents the star formation history integrated throughout

the lifetime of a galaxy. A lot of studies in extragalactic astronomy carefully consider the

stellar mass of the galaxy sample, as a range of galaxy properties correlate with stellar

mass. In an attempt to mitigate the potential effects of stellar mass on their results,

a large number of statistical studies either use mass-controlled samples or divide their

results in to stellar mass bins. The studies in this thesis need to show similar levels of

caution and therefore we need to accurately derive stellar masses.

Deriving the stellar mass for a large sample of galaxies is most commonly achieved by

investigating the UV-FIR SED of the host galaxies; a method which has proved relatively

successful when applied to simulated samples (e.g., Wuyts et al., 2009; Ciesla et al., 2015;

Hayward & Smith, 2015; Mobasher et al., 2015; Torrey et al., 2015; Price et al., 2017;



Measuring galaxies 37

Laigle et al., 2019). The (simplified) idea behind SED fitting is that a population of stars

is generated which, when the light from individual stars is combined, accurately matches

the observed SED. In reality, this is far less simple for two reasons. Firstly, the light

emitted from a stellar population depends on factors such as the mass distribution, the

metallicity and the age of stars and secondly, the light emitted is modified by a series of

host galaxy effects, such as dust obscuration and emission. SED modelling is, therefore,

a two stage process. Firstly, simple stellar populations (SSPs) are generated, in which

all the stars are assumed to have the same age and metallicity. The light emitted from

an SSP can then be calculated by integrating, over an age-altered IMF, the modelled

emission from stars of a given mass, allowing a combined SSP spectrum to be calculated

(for a detailed discussion of uncertainties within this process see Walcher et al., 2011, and

references therein). During the first part of the SED fitting routine (usually referred to as

stellar population synthesis, SPS), many SSPs are generated that adequately sample the

input parameter space (i.e., for different combinations of metallicity and age-altered mass

functions). SPS attempts, therefore, to provide a bank of intrinsic galaxy SEDs that can

be used to fit observed galaxy SEDs. The second part of the SED fitting routine is to

modify these intrinsic SEDs, by assuming dust attenuation and dust emission models,

to attempt to replicate the observed SED. AGN emission can also be included in this

part of the SED fitting process.

In reality, SED modelling is a difficult and complicated process. Usually, there is

a compromise made between excessive model parameters and realistic modelling of the

galaxy emission. Nonetheless for a large sample, SED fitting is still regarded as the

current best approach for stellar mass calculations of large samples of galaxies with

multi-wavelength data. Whilst a series of SED fitting codes are available (all specialising

in varying areas of uncertainty), we use Code Investigating GaLaxy Emission (CIGALE,

Noll et al. 2009; Serra et al. 2011; Roehlly et al. 2014). CIGALE has the ability to

account for AGN contribution by including the AGN emission models presented by Fritz



Measuring galaxies 38

et al. (2006), which helps to disentangle AGN emission from the host galaxy stellar

population. Ciesla et al. (2015) studied the ability of CIGALE to reproduce the stellar

masses of a mock sample of galaxies and reported that, in the presence of an AGN, the

predicted stellar masses were in reasonable agreement with the input. More specifically,

the three leftmost plots of Figure 11 in Ciesla et al. (2015) highlight the performance

of CIGALE for varying quantities of photometric data. Generally, CIGALE performed

well in terms of measuring stellar masses (within 40% of the input, with no systematic

offset) when given photometric data from across the spectrum. We used CIGALE to

derive stellar masses for all our sources, throughout this thesis, irrespective of whether

they were previously identified (in the X-rays) as hosting AGNs, so as to mitigate a

calculation bias. As L16 report photometric data ranging from the far-UV through

to the far-IR, we are confident that we have sufficient data to determine the stellar

masses for the sources in the samples used throughout this thesis. The range of possible

parameter values that we used for the CIGALE run are shown in Table 2.1. These values

are chosen as they were found to be the most successful for reproducing stellar masses

in Ciesla et al. (2015) and are the same values chosen by Bernhard et al. (2016), who

highlighted a strong correlation between the masses calculated by CIGALE and those in

L16.
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Chapter 3

Revealing the differences in the

SMBH accretion rate distributions

of starburst and non-starburst

galaxies.

Somewhere, something incredible is

waiting to be known.

Carl Sagan

3.1 Introduction

The finding that the average AGN luminosity increases with SFR (e.g., Rafferty et al.,

2011; Rosario et al., 2012; Chen et al., 2013; Azadi et al., 2015; Delvecchio et al., 2015;

Harris et al., 2016; Lanzuisi et al., 2017; Shimizu et al., 2017; Stemo et al., 2020) im-

plies that the distribution of AGN luminosity changes as a function of the star-forming

properties of the host galaxy. However, averages give little insights into the full shape

40
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of these distributions. For example, does a sample have a higher average AGN lumi-

nosity because each AGN is slightly more luminous, or is it due to a small number of

extreme, high luminosity AGN pulling the average up? Addressing such questions will

provide a deeper understanding of the relationship between SMBH growth and galaxy

growth: is the heightened average in star-forming galaxies caused by a slight increase

in the activity of all AGN or a greater fraction of extreme cases? A direct way of ad-

dressing this is to determine how the AGN luminosity distribution changes as a function

of the star-forming properties of their host galaxies. This has been explored in some

recent studies (e.g., Aird et al., 2012; Azadi et al., 2015; Wang et al., 2017; Aird et al.,

2017) who used rest frame optical to near infrared colours or SED fitting routines to

identify samples of star-forming and quiescent galaxies and determined the differences

in the stellar mass specific AGN X-ray luminosity. In general, these studies report a

suppression of AGN activity in quiescent galaxies, particularly at modest specific AGN

luminosities. However, in light of the difficulties associated with SFR estimates derived

from optical wavelengths as covered in Section 2.3, it has yet to be determined whether

these results are also observed when using FIR-derived SFRs.

In order to measure the SMBH growth relative to the size of the SMBH and remain

consistent with the aforementioned works, in this chapter we analyse the specific X-ray

luminosity (i.e., sLX = LX/M∗) distributions. As aforementioned, sLX is an appropriate

tracer of the Eddington ratio (λEdd), which is given by,

λEdd =
LAGN

LEdd

, (3.1)

where LEdd is the Eddington luminosity. LEdd corresponds to (assuming a constant

efficiency) the theoretical maximum luminosity (driven by the theoretical maximum ac-

cretion rate) after which the radiation pressure exceeds the inwards gravitational force

and thus accretion would be self regulated. The more massive the SMBH, the stronger
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the inwards gravitational force and therefore the higher the theoretical maximum accre-

tion rate. As LEdd is therefore a function of SMBH mass, the sLX can be converted to

the λrmEdd by assuming conversion factors: firstly converting LXto LAGN and secondly

stellar mass to SMBH mass. As these conversions can be highly uncertain the use of

sLXcan help overcome the need to apply uncertain correction factors.

In this chapter, we measure the full (i.e., including detected and undetected sources)

sLX distributions of galaxies whose star-forming properties have been measured from

FIR data. We then compare these distributions of starbursting galaxies (defined by

their RMS values, see Section 2.3.2) against non-starbursting galaxies. We cover our

specific sample derivation in Section 3.2. To measure the AGN luminosity distributions

we construct a flexible model (see Section 3.3) that allows for both a power law style

distribution (with lower and upper exponential turnovers) and a distribution that is

more log-normally shaped allowing the data to determine which is more appropriate.

Finally, we present the complete results and potential explanations in section 3.4 and

possible implications and caveats in section 3.5. Throughout this Chapter we assume a

6-parameter ΛCDM cosmological model, with parameter values best inferred from the

WMAP 9-year observations (Hinshaw et al., 2013). We must assume a cosmology for

estimating distances when converting between intrinsic flux limits and luminosities.

3.2 Data

We start this section by summarising the process by which we derived our final sample

of galaxies before elaborating on the specific calculations in the subsections that follow.

Note that, stellar mass calculations were covered in more detail in Section 2.4.
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3.2.1 Sample selection

As discussed in Section 2.1, we use the COSMOS survey to derive our samples (Scoville

et al., 2007). In this instance, in order to measure the AGN luminosity distributions,

it is important that we have as clean and unbiased a sample as possible. This is most

easily obtained by using blank field surveys like COSMOS. In addition we also require

a large sample, to avoid suffering from small sample size statistics, and comprehensive

multi-wavelength coverage (for deriving stellar masses and SFRs). In particular, we

also require good X-ray coverage as this provides, arguably, the most uncontaminated

measure of AGN luminosity (see Section 2.2 and Brandt & Alexander, 2015). These

requirements are well-met by the COSMOS survey, making it a natural choice for this

study.

Our sample selection starts with the catalogue presented by L16, which contains

photometric data for 1,182,108 sources in the COSMOS field. We supplement this with

X-ray data from the catalogue presented by C16, which contains X-ray fluxes from

Chandra for 4016 sources. We then apply the following steps to derive our final sample:

1. Firstly we ensure that the redshifts between L16 and C16 are consistent. We

start with the photometric redshifts presented in L16 for all our sources as default.

Then, for those sources present in C16, we adopt the “best” (i.e., spectroscopic

if present, otherwise photometric) redshift presented in C16 (of which 1,981 are

spectroscopic and 1,307 are photometric). We adopt the C16 redshift to ensure

that we can use their derived X-ray luminosities in our analysis. Next, we select

galaxies in the redshift range 0.05 ≤ z < 2.5, leaving 783,028 sources. This redshift

range includes the vast majority of detections in the Herschel PEP survey, as the

detection fraction drops off considerably at redshifts greater than z = 2.5 (see

Figure 12 from Lutz et al. 2011). Importantly, however, this redshift range spans

the epoch during which the majority of SMBH and galaxy growth took place (Aird
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et al., 2010; Delvecchio et al., 2014).

2. We then derive stellar masses for all our remaining sources by fitting their SED

using CIGALE (see Section 2.4). To avoid introducing a bias we also recalculated

stellar masses for all the remaining sources rather than use the stellar mass pre-

sented in L16 (with the AGN component switched off). We then select only those

sources with log10(M∗/M�) ≥ 10.5 to ensure the sample is mass-complete across

our entire redshift range. This leaves us with a sample containing 58,241 galaxies.

In Figure 3.1 we show a comparison between our CIGALE calculated mass and

the mass presented in L16 for 4,750 randomly selected non X-ray sources.

3. Next, we obtain 2-10 keV luminosities (or upper limits thereof) for the remaining

sources. Where the source is present in C16, we adopt the luminosity (or upper

limit) given in that catalogue. If the source is not detected we calculate a 2-10 keV

luminosity upper limit using the sensitivity maps of the Chandra-legacy survey

(Civano, priv. comm.). How these upper limits are calculated is fully explained

in Section 3.2.2. Any of the 58,241 sources in our sample that are not covered in

the sensitivity map are deemed to have insufficient X-ray data and thus removed,

leaving a sample of 40,418 (of which 2,763 have a measured X-ray luminosity).

4. SFRs in this sample are calculated by fitting SED models on IR to radio photom-

etry taken from Jin et al. (2018). The photometry catalogue is produced by a

“super-deblending” technique (Liu et al., 2018), including de-confused photometry

at MIPS/24µm, Herschel, SCUBA2, AzTEC and MAMBO wavelengths, supple-

mented by NIR Ks, IRAC (L16) and radio data (Smolčić et al., 2017; Daddi et al.,

2017). We used the same SED fitting algorithms described in Liu et al. (2018),

included AGN models of Mullaney et al. (2011) and the spectroscopic redshifts of

C16 to ensure redshift consistency. We then classified the sources according to the

starburstiness quantity as described in Section 2.3.2. This calculation is further
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0.05 ≤ z < 0.5 0.5 ≤ z < 1.5 1.5 ≤ z < 2.5
Det UL Det UL Det UL

Starburst 10 97 54 516 31 227
Non-starburst 90 1868 780 14299 461 7986

Table 3.1: The complete sample sizes for our study, split by redshift bin, starburst
classification and whether the sources are X-ray detected or an upper limit on X-ray
luminosity had been calculated.

explained in Section 3.2.3. Sources without radio or MIPS/24µm data are omitted

as a radio or MIPS/24µm detection is required for the deblending routine. The

non-detection at these wavelengths could indicate a lower SFR and such sources

are, therefore more likely to be classified as non-starburst. Whilst we could include

these sources in our analysis under this assumption, our non-starburst sample is

already the larger of the two samples in all of our redshift bins sized and thus does

not warrant the introduction of such an assumption. After removing those galaxies

without radio or MIPS/24µm detections, our final sample size is 26,419.

5. Finally, in order to investigate any redshift evolution in our sLX distributions we

subset our sample into three redshift bins: 0.05 ≤ z < 0.5, 0.5 ≤ z < 1.5 and

1.5 ≤ z < 2.5. The number of detected and upper limits for each redshift bin can

be seen in Table 3.1. In addition, Figure 3.2 shows the detected sLX distribution

for both the starburst and non-starburst samples for each redshift bin and the

cumulative upper limit fraction.

3.2.2 X-ray luminosity upper limits

If we were to include only X-ray detected sources when measuring our sLX distribution

we would be introducing a significant selection bias in to our analysis. It is therefore vital

that we include galaxies for which we do not have an X-ray detection by calculating upper

limits on their specific X-ray luminosity which we can then include in our maximum-
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Figure 3.1: Stellar masses presented in L16 compared with the CIGALE derived stellar
mass for a sample of 4750 randomly chosen non-AGN sources. The red line corresponds
to the one-to-one case. Despite choosing CIGALE so that we can more accurately include
the AGN component into the SED modelling, we choose to recalculate all stellar masses
using CIGALE (including those without X-ray detected AGN) to mitigate potential
systematics. The masses are, however, in good agreement when compared to those
derived in L16 using alternative SED fitting codes.
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likelihood analysis (see Section 3.3.3).

To calculate upper limits on the X-ray luminosities of our sources, we use the 2-10 keV

sensitivity map of the Chandra-legacy survey (F. Civano, priv. comm.). This provides 3σ

flux upper limits across the whole X-ray coverage of the survey. As such, to obtain flux

limits for our non-X-ray detected galaxies we simply extract the flux limit at the position

of that galaxy. This corresponds to an observed flux limit, whereas for our analysis, we

require an intrinsic flux limit that attempts to account for any obscuration due to gas

and dust. For detected sources we can use the hard (2-10 keV) to soft (0.5-2 keV) flux

ratio to estimate the level of obscuration. This cannot, however, be done for undetected

sources so for those we assume an average flux ratio calculated from the detected sources

of Q = 1.13. We acknowledge the possibility that the undetected sources may have

a higher level of obscuration than detected sources. However, the distribution of hard

to soft flux ratios (for detected sources) is positively skewed. Therefore, the mean is

shifted to higher levels of obscuration when compared to the median (0.74) or mode

(0.53) meaning that the mean value we assume is conservative. In addition, we note

there was no significant effect on our results when adopting an even higher obscuration

level (e.g, Q = 2). We then use the following equation to obtain an upper limit on the

intrinsic flux based on the upper limit on the observed flux (see Bernhard et al. 2016):

log10

(
FI

FO

)
=

2∑
i=0

ai log10(Q)i + biz
i, (3.2)

where FI is the intrinsic flux, FO is the observed flux (i.e., the flux limit) and Q is the av-

erage flux ratio from the detected sources, i.e., Q = 1.13. Fitting this polynomial on the

sample derived in Brightman et al. (2014), Bernhard et al. (2016) found the best fitting

coefficients were given by (a0, a1, a2, b1, b2, b3) = (0.23, 0.61, 0.041, 0.01, −0.11, −0.02),

and we adopt these values. The need for a redshift term in this polynomial is driven by

the finding of Brightman et al. (2014) that for a fixed luminosity, the level of obscura-
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tion changed with redshift. More specifically, the covering factor of the torus increased,

which provides an increased chance of additional obscuration. After calculating an upper

limit on FI, we then use our adopted redshifts to calculate an upper limit on 2-10 keV

luminosities, adopting a conversion of

Lx = FI4πD
2(1 + z)2−Γ, (3.3)

where Γ = 1.8 is the assumed averaged intrinsic photon index (Burlon et al., 2011).

There are 17,823 galaxies that have insufficient X-ray coverage to calculate a mean-

ingful X-ray upper limit. These are removed from the 58,241 that make up our mass-

complete sample leaving 40,418 galaxies, of which 2,763 have a detected X-ray luminosity

(the rest have upper limits on X-ray luminosity).

3.2.3 Calculating Starburstiness

Before we can derive and compare the specific X-ray luminosity distributions we need

to divide our sample based on their star-forming properties. In order to derive SFRs for

our sample in this Chapter we use the catalogue provided by Jin et al. (2018), which

provides FIR-based SFRs for the COSMOS field. Jin et al. (2018) adopt a similar

deblending routine as that presented in Liu et al. (2018). We use a positional match to

identify counterparts in the SFR catalogue to the 40,418 galaxies for our mass-complete

sample of galaxies. Since Jin et al. (2018) use mostly K-band positions as priors for

their deblending we use a small matching radius of 1” to identify counterparts to that

catalogue. From these SFRs, we calculate the RMS statistic for our galaxies using the

method outlined in Section 2.3.2. Each source in the sample is then classified as starburst

if its RMS> 3, and non-starburst otherwise.

Since Jin et al. (2018) provide uncertainties on SFRs, we choose to discard any

sources with ambiguous starburst status (i.e., those galaxies whose SFR error bars span
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Figure 3.3: The distribution of specific star formation rate to main sequence (at equiv-
alent mass and redshift) ratio (i.e., RMS) as a function of redshift. Sources highlighted
in blue are those selected as starburst. Sources in green have been discarded as their
uncertainty on SFR estimate could introduce ambiguity into our classification. Including
these sources would require a non-binning approach, which we introduce in Chapter 5.
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the starburst divide). This prevents the unnecessary introduction of uncertainty. To

accurately include information from those sources with ambiguous status a Bayesian

hierarchical model would be required, in addition to an analysis without the limitation

of binning on SFRs, i.e., an analysis that considers how the sLX changes as a function of

SFR, rather than between two bins. Such a model is introduced in Chapter 5. However,

as a check, we tested what would happen should we include those sources with ambiguous

status assigned based on their calculated starburstiness and noted that it did not have

a significant impact on the results. We chose to omit them to minimise the number of

potential misclassifications. Figure 3.3 shows the RMS distribution for all our sources,

with starburst sources highlighted in blue and discarded sources in green.

3.3 Constructing a flexible model

In this chapter, we aim to model the full sLX distributions (i.e., including detected

and undetected sources) of starburst and non-starburst galaxies in a range of different

redshift bins. This section starts by describing how we construct a model that is able to

incorporate information from undetected sources, whilst retaining the flexibility required

to model the different functional forms the sLX distribution may take. After describing

the model, we also derive the likelihood function, from which we can infer the sLX

distributions by considering the maximum likelihood estimates of the parameters.

3.3.1 Model Selection

Constraining the precise form of the sLX distribution (or its Eddington ratio equivalent)

has been the focus of a number of recent studies (e.g., Aird et al., 2017; Bernhard et al.,

2018; Aird et al., 2018). These works have suggested a number of different functional

forms for the distribution. Currently, the three most popular functional forms are: a

power-law with exponential cut-off (similar to a Schechter function, e.g., Hopkins et al.,
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2009; Aird et al., 2012; Bongiorno et al., 2012; Hickox et al., 2014; Bernhard et al., 2016,

2018; Wang et al., 2017; Lanzuisi et al., 2017; Georgakakis et al., 2017), a log-normal

distribution (e.g., Kauffmann & Heckman, 2009) or a so called “light-bulb” model (i.e.,

accretion is either on or off, e.g., Conroy & White, 2013). The difference in the observed

shape of the distribution has recently, however, been attributed to selection effects with

Jones et al. (2016) suggesting that after correcting for such effects a broad distribution

is a good representation for the sLX distribution of the AGN population. In this work,

we also find that our samples are best modelled by a power-law with exponential cutoff.

However, we develop and use a flexible probability distribution that retains the ability

to recover both a power-law distribution and, if necessary, a log-normal-like distribution

(see Figure 3.4).

In addition to the flexible nature of our model there are a number other criteria that

would be desirable for a purpose-built probability distribution. Firstly, we must have a

strict probability distribution (i.e., integrates to 1), which enables us to include infor-

mation from upper limits using the likelihood function (see 3.3.2 for details). Secondly,

for a power-law slope distribution, it is desirable to be able to control the power-law

index, and the position of the low and high end exponential cut-offs. In the following

subsections, we will describe how our model was built and how we included upper limits

into this model.

3.3.2 Model construction

Following Aird et al. (2017), we choose to model our specific X-ray luminosity distribu-

tions as a sum of 40 unique Gamma distributions where a single Gamma distribution is

described by the following equation:

Ga(X|α, β) =
βα

Γ(α)
xα−1e−βx, (3.4)
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where α, β control the position and shape of the distribution and Γ(α) is a normalising

constant. The mode of the Gamma distribution is given by α−1
β

. If α is fixed, the mode

can be controlled by β. As such, a set of β values can be used to construct a series of

equidistant Gamma distributions. If we then take the sum of these Gamma distributions,

we recover a flat power-law distribution with lower and upper cut-offs, as seen in the

upper-left plot of Figure 3.4. In particular, the minimum value of β controls the position

of the left-most gamma distribution and the maximum value controls the mode of the

right-most. Therefore, controlling the smallest and largest values for β allows us to

control the positions of the turnovers in our model.

With the position of the lower and upper turnovers controlled by β the remaining

parameter that we wish to control is the power-law slope. The power-law slope is con-

trolled by the normalisation of the individual gamma distributions. Allocating each

gamma distribution with parameter β a normalisation (i.e., a multiplicative constant) of

βγ produces a power-law distribution with a slope of γ (see Figure 3.4). The lower-left

plot in Figure 3.4 illustrates how, if the minimum and maximum β parameters are close,

the model has the ability to fit something similar to a log-normal distribution.

The above model provides us with the flexibility to construct a power-law distribution

with appropriate turnovers. Importantly, in addition to this flexibility, summing gamma

distributions allows us to easily include information from undetected sources by the in-

corporation of upper limits. To include upper limits in a likelihood function requires

integrating the probability distribution. Using defined parametric distributions, such as

the gamma distribution, allows the integrals to be quickly and easily calculated, elimi-

nating the computation time and numerical uncertainties associated with the numerical

integration that would be required if we assumed a standard power-law with cutoffs.
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Figure 3.4: Examples of our model built by the summation of 20 independent gamma
distributions (40 are used in the actual model for better accuracy). The parameters
are as followed: The shape of each gamma distribution is fixed at α = 3. Top left:
γ = 0, log(βmin) = −4 and log(βmax) = 1, Top right: γ = −1, log(βmin) = −5 and
log(βmax) = 0, Bottom left: γ = 1, log(βmin) = −6 and log(βmax) = −1, Bottom right:
γ = 0.1, log(βmin) = −3 and log(βmax) = 1.
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3.3.3 Likelihood Function

Now that we have a description for our model, we need to use our data to obtain the

most likely parameter values for our model distributions (hereafter, the parameter values

are collectively referred to as θ = {βmin, βmax, γ}). For a single X-ray detected galaxy,

with sLX = X, the likelihood is given by the probability density function (PDF),

f(X|θ) =
40∑
i=1

Kβγi β
α
i X

α−1e−βiX , (3.5)

where K is a global normalisation constant.

For a sample of n X-ray detected galaxies the total likelihood can be written as the

product of the PDFs, i.e.,

L(θ|x) =
n∏
i=1

f(Xi|θ). (3.6)

In our case, however, we have a large number of non-detections for which we have upper

limits on their sLX. In such cases we must replace the PDF with the cumulative distribu-

tion function (CDF). That is, the PDF must be replaced by its integral evaluated up to

the point of the upper limit. Mathematically, given data x = {X1, ..., Xm, Xm+1, ..., Xn}

where {X1, ..., Xm} are detected sources and {Xm+1, ..., Xn} are upper limits, the likeli-

hood function can now be expressed as,

L(θ|x) =
m∏
i=1

f(Xi|θ)
n∏

i=m+1

∫ ULi

−∞
f(Xi|θ)dXi. (3.7)

Given an sLX value for each of the sources in our sample it is this likelihood equa-

tion that we seek to maximise. To incorporate uncertainties on the detected sources we

calculate an error on the X-ray luminosity by calculating the relative error on the flux

observed and propagating this through to the relative error on the luminosity (i.e., ne-

glecting uncertainty on photo-z, for example). For each detected source we then replace
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the absolute detected value with a randomly sampled value from a Gaussian distribu-

tion centred at the observed value with the aforementioned percentage uncertainties.

We do this during each step of the maximisation process to accurately account for the

uncertainties on sLX throughout the analysis.

3.3.4 Likelihood maximisation

In Section 3.3.3, we derived the likelihood function for our parametric distribution. From

here, we can determine which parameter values maximise the likelihood function by using

the Markov-chain Monte Carlo (MCMC) Python package EMCEE (Foreman-Mackey

et al., 2013). MCMC is required as the likelihood function is too complicated to maximise

analytically.

We use MCMC methods to calculate posterior distributions of the parameters of our

model, for each redshift bin and both the starburst and non-starburst sample. Our chains

each have 200 walkers, each of which are run for 5000 steps (re-sampling the detected

values from their uncertainty distributions), with the first 1000 removed for burn-in.

This results in a posterior sample of size 800,000 for each parameter. We then choose to

thin this sample by selecting every 200th value in the sample. Thinning is used to reduce

the sample size to more manageable numbers but also removes the slight dependence

between consecutive draws in the chain. On inspection, we noticed the chain converged

much more rapidly than the applied burn-in so we are confident we are sampling the

posterior parameter space.

3.4 Results

We start this section by presenting the output (i.e., the posterior distributions) from the

MCMC algorithm. We then discuss the specific parameter results and their potential

implications on the sLX distributions for the starburst and non-starburst samples.
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Starburst Non-starburst
0.05 ≤ z < 0.5

power law slope -0.406 (-0.571, -0.275) -0.857 (-0.944, -0.791)
low turnover -5.161 (-6.01, -4.641) -4.842 (-4.877, -4.734)
high turnover -1.194 (-1.429, 0.016) -1.610 (-1.929, -0.808)

0.5 ≤ z < 1.5
power law slope -1.090 (-1.212, -0.900) -1.203 (-1.248, -1.160)

low turnover -3.138 (-3.257,-3.017) -3.377 (-3.395, -3.328)
high turnover -1.126 (-1.357, -0.332) -0.965 (-1.051, -0.799)

1.5 ≤ < 2.5
power law slope -0.902 (-1.077, -0.711) -2.178 (-2.301, -2.084)

low turnover -2.518 (-2.781, -2.389) -2.303 (-2.332, -2.268)
high turnover -0.051 (-0.314, 0.553) -0.556 (-0.614, 0.608)

Table 3.2: Modes from the posterior distributions presented in Figures 3.5, 3.6 and
3.7. The errors, displayed in brackets, are the 68% highest posterior density intervals
calculated using the HPDInterval package in R.

3.4.1 MCMC output

We present the burned-in, thinned, posterior distributions for the three redshift bins,

0.05 ≤ z < 0.5, 0.5 ≤ z < 1.5 and 1.5 ≤ z < 2.5 for both starburst and non-starburst

sources in Figures 3.5, 3.6 and 3.7, respectively. They show repeated MCMC draws

from the posterior distribution of each parameter on the diagonal, as well as the 2D

contour plots (shown because of the potential dependence between model parameters)

on the off-diagonal, calculated using kernel density estimation (a non-parametric way of

estimating a distribution from a histogram using smoothing). In this figure, as well as all

further plots, the starburst sample is shown in blue, whereas the non-starburst sample

is shown in red. Summary statistics from the posterior samples are shown in Table 3.2.

By randomly selecting from the posterior parameter values we can construct the

range of possible sLX distributions. This is shown in Figure 3.8, in which we highlight

the median sLX distributions including 1σ error regions, for the three redshifts bins. The

errors are calculated by identifying the 16th and 84th percentiles at a given value of sLX

for all the sampled parameter values. In the following subsections we discuss, in more
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Figure 3.5: The posterior distributions (on diagonal) and the 2-D contour plots, drawn
using a kernel density estimation technique for the redshift range 0.05 < z < 0.5 split
between starburst (blue) and non-starburst (red).
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Figure 3.6: Same as Figure 3.5, but for the redshift range 0.5 < z < 1.5.
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Figure 3.7: Same as Figure 3.5, but for the redshift range 1.5 < z < 2.5.
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detail, the differences between the parameter values for the two starburst samples and as

a function of redshift. As is good statistical practice, the posterior distributions displayed

in Figure 3.8 are only displayed between the range of the minimum and maximum values

of detections.

3.4.2 Power law slope

The power law slope parameter controls the gradient of the model between the low

and high exponential turnovers. The steepness of this slope could be indicative of the

proportion of very luminous sources in the sample, because the slope largely controls the

ratio of higher to lower sLX sources (i.e., above and below the midpoint, respectively).

From the posterior distributions presented in the upper-left plots of Figures 3.5, 3.6 and

3.7, we see consistently that the modes of the power law slope distribution are shifted

to less negative values for the starburst samples in all three redshift bins. In the lowest,

intermediate and highest redshift bins we can state that the power law slope in starburst

galaxies is shallower than in non-starburst galaxies at a significance of 97.7%, 80.9%

and 98.5% respectively. This could suggest that the proportion of higher sLX sources

is greater in the starburst population than the non-starburst population (as a result of

having a higher ratio of high to low sLX sources) and we explore this possibility further

in Section 3.5.2. The difference in power law slope can also be seen in the full posterior

sLX distributions shown in Figure 3.8 with the gradients of the distributions prior to the

break displaying a greatest difference in the high redshift bin.

3.4.3 High turnover

Whilst the power law slope indicates the ratio of high to low sLX sources (above and

below the midpoint), the high turnover controls the maximum possible values of sLX

in the model. From the posterior distributions presented in the lower-rightmost plots
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of Figures 3.5, 3.6 and 3.7, we see that there is significant overlap between the high

turnover distributions in both samples across all the redshift bins. We see a shift in the

mode of the posterior distributions in our lowest and highest redshift bins. In addition

to this, the high turnover posterior distributions are generally broader than those of

the power law slope. We suspect that this is a consequence of this extreme end of the

model being constrained by extremely luminous, extremely rare AGN and therefore the

inferred posterior distribution is poorly constrained. Having said that, in the highest

redshift bin, the significant difference in power-law slope and the inability to recover the

high turnover accurately enough combines to create an excess of very high sLX sources

in the starburst sample, as shown in Figure 3.8. Therefore, at this high redshift we

cannot rule out that SMBHs in starburst galaxies have the ability to accrete at higher

maximum thresholds.

3.4.4 Parameter evolution with redshift

As previously mentioned, we subset our sample into three redshift bins to investigate how

the various parameters describing our distributions evolve from a redshift of z ≈ 2.5. In

Figure 3.9 we show how the mode of the posterior distributions change for each parameter

as a function of redshift. Figure 3.9 shows the mode of the posterior distributions for

each parameter (power law slope, low turnover and high turnover in the left, middle and

right plots, respectively) plotted against the midpoint of the redshift bin it was inferred

from.

The leftmost plot in Figure 3.9 shows how the power law slope has evolved with

redshift. This plot suggests that the power law slope for non-starbursts becomes more

negative as we go to higher redshifts. As the power law slope may reflect the ratio of

higher to lower (i.e., above and below the mid-point) sLX sources, the apparent param-

eter evolution indicates that the proportion of higher sLX sources in the non-starburst
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galaxy population may have also evolved with redshift. More specifically, as the power

law slope has declined out to higher redshifts, the proportion of higher sLX in AGN

has also declined. In addition to this, the difference in parameter evolution between

the two samples suggests that the proportion of high sLX sources was higher in the

starburst population than the non-starburst one, which indicates that a relationship

between intense star formation and SMBH growth is likely to exist and that the evolu-

tion of this parameter is more dependent on starburst/non-starburst classification than

redshift. However, considering how the low and high turnovers (indicating the range of

sLX) evolve alongside the power law slope will provide a more complete picture. The

low turnover rapidly increases with redshift and whilst the high turnover evolution is

poorly constrained (again, due to the rarity of sources at this end of the distribution),

it does appear there may be a slight increase with redshift. Should this be the case,

it would suggest that while the proportion of higher sLX sources in the population de-

creases with redshift, the average sLX increases. However, it is worth emphasising that

the middle and right plots in Figure 3.9 do suggest that the difference in the low and

high turnover between the accretion rate distributions is primarily driven by redshift and

not starburstiness, whereas the left plot suggests a greater dependence on starburstiness.

Moreover, as the low turnover effectively controls the normalisation (as the probability

distribution must integrate to unity), the redshift evolution of the low turnover gives us

insight into the normalisation of the distribution with redshift. More specifically, the

normalisation increasing with redshift reaffirms the idea that the Universal accretion

rate increases with redshift (therefore, we would theoretically expect the low turnover

to decrease after z ≈ 2.5 as we know Universal accretion peaked at z ≈ 2). We explore

the implications of this in Section 3.5.2.
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3.5 Discussion

The primary goal of this study is to measure the differences, in the distributions of SMBH

accretion rates for starbursting and non-starbursting galaxies, which may be able to help

explain why the average SMBH accretion rate increases with SFR. We used the specific

X-ray luminosity (i.e., sLX = LX/M∗) as a proxy for Eddington ratio and derived the

SFR of our sources from Herschel FIR photometry via a deblending and SED fitting

routine (see Jin et al. 2018 for details). Our sources were split according to their star-

forming properties; if their star formation rate placed them a factor of three above the

main sequence (using the prescription of Schreiber et al. 2015) they were classed as a

starburst galaxy, otherwise they were classed as a non-starburst.

3.5.1 Assumptions and analysis limitations

In order to model the distribution of non-starburst and starburst galaxies as accurately

as possible we constructed a flexible parametric model that was able to recover either

of the two most popular forms of the sLX distribution reported in the literature (see

Section 3.3.1). However, the model is not without limitations and we acknowledge and

discuss these further in this section.

Firstly, as with any parametric study, our analysis and interpretation of results are

model dependent. A parametric form of the distribution must be assumed (in this case,

a power-law with exponential cut-offs or log-normal) in order to account for information

from both detections and non-detections. The aim of the study is then to derive the

most-likely parameter values for a given model and compare those parameters between

samples. From that, we can first pose the question: given our model, do the parameters

that describe the underlying distributions differ significantly for our starburst and non-

starburst samples? If so, then the underlying distributions differ. If they do differ, then

we can also ask, given our model, how to they differ? It is important, however, to



Comparing starburst with non-starburst galaxies 67

consider the limitations of our (or any other) model, particularly when considering the

latter question. For example, we acknowledge that our model is incapable of replicating

the distribution found in Aird et al. (2017), who found a “bump” in the distribution at

lower LX values (1039−1041erg s−1 depending on mass and redshift) that they attributed

to star formation. As such, any differences in our inferred distributions could be as a

result of a bump that we do not specifically model. However, were we to include a

bump at lower sLX values, it would likely cause the inferred power law slope of our

starburst sample to flatten further (as upper limits would occupy the bump) which

would strengthen the significance of our results.

Secondly, the data in this study contains a large fraction of non-detections. The

reason for this is that we intend to infer our results on the entire galaxy population

as opposed to only X-ray detected sources, as the latter would produce biased results.

However, aside from the appeal of an unbiased sample, the non-detections do contain

information about the underlying distribution. The CDF used in this analysis allows

us to incorporate information from the non-detections by fully considering the possible

values for them. In Figures 3.5, 3.6 and 3.7, one can see the power law slope and the

low turnover are correlated. One possible reason for this is that initially, at the high sLX

end of the distribution, the power law slope is inferred from the detected sources and

the model then computes whether enough upper limits are introduced to maintain this

slope. This indicates that our model is sensitive to the fraction of upper limits in the

analysis (the low turnover must occur at the point where upper limits are unlikely to be

able to maintain the gradient of the most likely power law slope, which is inferred from

the detections). As such, it is likely that the low-turnover at low Eddington ratios is a

direct consequence of the combination of large numbers of upper limits in the data with

our assumed model shape. This further stresses the importance of ensuring that we have

a sample representative of the population with a proportionate fraction of non-detections

and a justified choice of model.
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As with any population study, it is extremely difficult to rule out all possible system-

atic effects that could influence our final results. We attempt to mitigate the effects of

any unknown systematics by (a) treating starburst and non-starburst samples the same

in terms converting X-ray fluxes to accretion rates and (b) comparing starbursts to non-

starbursts within the same redshift bin and thus minimising the influence of, e.g., flux

limits between the samples. Considering point (a) specifically: one could imagine that

starburst galaxies have a higher level of absorption due to enhanced amounts nuclear

gas introduced by galaxy interactions. If this were the case, then this would work to

enhance the differences we see, as correcting for stronger absorption in starbursts would

systematically increase the intrinsic sLX we measure, leading to an even greater number

of high sLX AGN amongst starbursts.

3.5.2 Inferring the results

Figures 3.5, 3.6 and 3.7 suggest that the parameter with the largest difference between

the starburst and non-starburst samples is the power law slope. Given our model, the

probability that the accretion rate distribution for starburst galaxies has a less-negative

power law slope in the lowest, middle and highest redshift bins are 97.7%, 80.9% and

98.5% respectively. While these differences are not significantly different at the 3σ level,

a difference in the power law slope may indicate that the fraction of higher sLX sources

may be different between the starburst and non-starburst samples at a given value of

specific X-ray luminosity or Eddington ratio. In order to investigate this further, we

calculated the fraction of sources with “high” accretion rates (i.e., greater than 0.1λEdd)

in both the starburst and the non-starburst posterior accretion rate distributions. This

is calculated by integrating each of the 4000 posterior sLX distributions for each sample

from 0.1λEdd upwards. These fractions are presented in Figure 3.10 and show that the

starburst sample has a larger fraction of sources with high accretion rates across all
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Figure 3.10: Fraction of sources with high accretion rates (i.e., greater than 0.1λEdd)
as a function of redshift for the starburst and non-starburst samples. Uncertainties are
1σ and are calculated by selecting the 99.7% credible interval from the posterior sLX

distributions. Over-plotted are the starburst and main-sequence fractions from Aird
et al. (2019) with 1σ uncertainties.
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redshift bins. Also included in this plot are the ratios of high to low accretion rate AGN

for starbursts and main-sequence galaxies derived from the sLX distributions of Aird

et al. (2019).1 We note a remarkable consistency between our results and those of that

earlier work.

In order to be able to quantify the difference in these fractions we calculate the

probability that a randomly selected posterior sLX distribution from the starburst sample

has a higher fraction of high accretion rate sources than a randomly selection posterior

distribution from the non-starburst sample. We find that starbursts have a larger fraction

of high accretion rate AGN than non-starbursts in 99.6%, 99.97%, and >99.99% of cases

in our low, middle, and high redshift bins, respectively. In other words, our inferred

distributions suggest one is significantly more likely to identify a high accretion rate

AGN in a given starburst compared to a given non-starburst.

The result that the starburst population has a higher fraction of high sLX is consistent

with the findings of Georgakakis et al. (2014); Wang et al. (2017); Aird et al. (2017, 2018),

who found that the distribution of accretion rates was shifted to lower values in quiescent

galaxies compared to star-forming galaxies. By contrast, we also find no strong evidence

that the positions of the exponential turnover in the distribution differs between the two

populations. Overall, we interpret this in terms of SMBHs in starburst galaxies spending

longer at higher accretion rates, but the maximum possible accretion remain broadly the

same across the two populations. This could be caused by the SMBH self-regulating at

accretion rates close to the Eddington limit. With recent evidence that starburst events

are more commonly associated with interactions (Pawlik et al., 2018; Kauffmann, 2018;

Dietrich et al., 2018) this could be interpreted as further evidence that interactions also

enhance the levels of SMBH accretion (Comerford et al., 2015; Glikman et al., 2015;

Ricci et al., 2017).

1Aird et al. (2019) used optical to near-infrared SED fits, as opposed to the far-infrared data used
in this study, to classify galaxies according to their star-forming properties
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At face value, our results seem to show no indication that intense radiation produced

from an AGN during an accretion phase negatively impacts star-formation (Di Matteo

et al., 2005; Fabian, 2012). Otherwise, we may have expected to find heightened accretion

rates within non-starburst galaxies. However, care must be exercised when considering

the stochastic nature of AGN variability, since any impact on the FIR-derived SFR will

be delayed by roughly 100 Myr (Kennicutt, 1998). Indeed taking the complementary

approach of measuring the SFR distribution in X-ray luminosity bins, Scholtz et al.

(2018) demonstrates the need for negative feedback in simulations to reproduce the ob-

served X-ray luminosity-dependent stellar mass specific SFR (sSFR) distributions. This

demonstrates that the relationship between AGN feedback and SFR requires multiple

complementary analysis methods to provide a complete picture. We therefore stress that

the above result should not be interpreted as evidence against AGN activity quenching

star formation rate, as any study of this nature fails to adequately account for the time-

delay between AGN activity and the shutting-down of star formation.

3.6 Conclusions

In this Chapter we have developed a flexible model in order to infer the specific accretion

rate distributions of central SMBHs within starburst and non-starburst galaxies. Our

model distribution consists of a power-law curtailed by an upper and lower turnover,

and allows us to incorporate information from upper limits, thereby allowing our sample

to be more representative of the galaxy population in general. We derived the specific

accretion rates from the 2-10 keV X-ray luminosities (or upper limits thereof) and used

deblended Herschel maps to estimate the star formation rates. A source was classified

as starburst if it had a SFR a factor of 3 greater than the main sequence at its redshift.

The main conclusions of this work are as follows:

1. Given our assumed model, we find suggestive (i.e., between 1.8 and 3σ) evidence
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that the accretion rate distributions for massive galaxies (log10(M∗/M�) > 10.5)

are dependent on both the star-forming properties of the galaxies and on redshift.

2. More specifically, when modelled as a curtailed power-law, the gradient of the

power law slope of the accretion rate distribution is shallower (i.e., less negative)

in starburst galaxies, suggesting there is a slightly higher probability of detecting a

high sLX (high Eddington ratio) AGN in galaxies that have recently undergone an

intense period of star-formation. This suggests that SMBHs in starburst galaxies

spend more time at higher accretion rates than their non-starburst counterparts.

3. We find stronger evidence that starbursts and non-starbursts differ in terms of their

specific accretion rates when we use our posterior sLX distributions to calculate

the fractions of such galaxies with high accretion rates (i.e., greater than 0.1λEdd).

In doing so, we estimate that the fraction of starbursts hosting high accretion rate

AGN is larger than the fraction of non-starbursts at confidence levels of 99.6%,

99.97%, and ¿99.99% for our low (0.05 ≤ z < 0.5), mid (0.5 ≤ z < 1.5), and high

(1.5 ≤ z < 2.5) redshift bins, respectively.

4. Within our uncertainties, we find no evidence that the positions of the high end

turnover of the accretion rate distribution differs between starburst and non-

starburst galaxies. We interpret this as suggesting that, whilst there are a higher

fraction of SMBHs accreting at higher rates in the starburst population, the maxi-

mum accretion rates do not differ considerably, particularly in our low and middle

redshift bins. This suggests that either the SMBHs are being self-regulated as they

approach the Eddington limit or at least some other process is preventing accretion

at considerably higher rates.

By selecting a galaxy sample and investigating how the full distribution of accretion

rate properties changes as a function of star-forming properties (i.e., Approach A, as
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described in Section 1.3.2) we have revealed a deeper understanding of the accretion

rate properties of galaxies. It is natural, therefore, if we wish to provide a deeper

understanding of the star-forming properties of AGN (i.e., Approach B) to investigate

how the full distribution of star-forming properties changes as a function of accretion

rate properties, which is the aim of the next chapter.





Chapter 4

Finding a subtle difference in the

RMS distribution between lower and

higher X-ray luminosity AGN

The Universe is under no obligation
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4.1 Introduction

In Chapter 3 we discussed how various differences in the underlying distributions of

SMBH accretion rates can result in almost identical changes in the average (and would

thus be indistinguishable should only averages be considered). Thus, in an attempt to

explain what underlying properties were causing an increase in average SMBH accretion

rate per unit star formation, we instead considered the full distributions. The use of

these full distributions allowed us to reveal significant characteristics of the connection

between SMBHs and their host galaxies in more detail. However, the results presented

in that chapter do not fully explain the contradictory results discussed in Chapter 1

between SFR and AGN power (i.e., the lack of a correlation between average SFR per

unit AGN power). Explaining these results requires us to take the alternative approach

to that taken thus far – investigate the star-forming properties of AGNs as a function of

their AGN power. Given that a variety of distributions can have similar averages, the

lack of a correlation between average SFR in bins of AGN power does not necessarily

corroborate with the notion of no connection between star formation and SMBH growth.

Thus, in order to either identify subtle differences, or confirm the lack of connection, we

must investigate the distribution of star-forming properties.

In this chapter, we derive and compare the full (i.e., including upper limits) RMS

distribution between low and high X-ray luminosity (LX, tracing AGN power) AGNs.

The outline of this chapter is as follows. In Section 4.2 we explain how we construct

our sample. In Section 4.3, we explain how we model the RMS distribution, including

the parametric form we assume and derive the posterior distribution. In Section 4.4, we

summarise our results and discuss possible implications in Section 4.5.
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Figure 4.1: Top: The distribution of X-ray luminosities of our sample, highlighting the
division between low and high LX AGNs as selected in this study. Bottom: The stellar
mass distribution for the low (red) and high (blue) LX samples and the total stellar mass
distribution (black). There are no immediately obvious differences in the stellar mass
distribution between the two samples.
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4.2 Sample derivation

In this study, we chose to adopt the alternative approach to investigating the relationship

between SMBH accretion rate and star formation to that taken in Chapter 3. That is,

in this chapter, we select a sample of AGNs, and investigate how the distribution of

RMS changes as a function of their AGN power. Thus, in order to derive our sample

we start with the sources presented in the C16 catalogue. This catalogue contains the

absorption-corrected 2-10 keV luminosity for≈ 4000 AGNs, however, in order to mitigate

any potential redshift effects, we select only those in the redshift range 0.8< z<1.2. This

redshift range is chosen as a balance between being closer to the peak epoch of both

SMBH growth and star formation (e.g., Madau & Dickinson, 2014; Delvecchio et al.,

2014; Aird et al., 2015; Vito et al., 2018) and having sufficient Herschel detections. There

are 776 AGNs in the C16 catalogue that satisfy the redshift cut. In order to derive FIR

SFRs, we require adequate Herschel data and therefore, we discard 112 sources that do

not have adequate Herschel coverage (we do keep sources with adequate coverage, but

no detections and we explain how we consider them in the next paragraph). We also

discard a further 123 sources that do not have a detected LX, but instead an upper limit,

leaving us with 541 AGNs1. The top plot of Figure 4.1 shows the LX distribution for all

541 AGNs derived in the sample.

In order to derive SFRs (and subsequently RMS values) we match these 541 AGNs

to the super-deblended FIR photometry catalogue presented in Jin et al. (2018), which

is the same catalogue as was used in Chapter 3. Whilst the majority of our AGNs

have detections in at least one of the 6 bands presented (i.e., 24µm, 100µm, 160µm,

250µm, 350µm or 500µm), 100 AGNs did not have a detection at any of these wave-

lengths. For those 100 AGNs, we derive 3σ upper limits in the 100µm and 160µm bands

by using the sensitivity maps provided by the PACS Evolutionary Probe team (Lutz

1Details of how to extend this work to include LX upper limits and extend beyond our redshift range
is fully explained in Chapter 6
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et al., 2011). From this FIR photometry, we adopt the multi-component IR SED fitting

code DECOMPIR2 (Mullaney et al., 2011). DECOMPIR reconstructs the IR SED

by combining a series of galaxy templates and an AGN template to derive a total IR

luminosity for star formation. From there, a conversion is applied to convert the total

IR luminosity to a SFR following the prescription of Kennicutt (1998). This applies for

the 30% of sources with 3 detected fluxes in any of the 6 aforementioned wavelengths.

For the remaining sources, which all have fewer than 3 detections, an upper limit on

total IR luminosity (and hence on SFR) is derived by only fitting a host galaxy (i.e.,

non-AGN) component. By only fitting host galaxy templates, any AGN contribution is

ignored. It is therefore appropriate to treat these sources as upper limits (i.e., it would

be the true SFR if there was no contamination from the AGN). Once we have derived

SFRs (or upper limits thereof) we can use the redshift of the sources (75% of which

were spectroscopic) and stellar masses (as calculated in Section 2.4 and displayed in the

bottom plot of Figure 4.1) to convert from SFRs to RMS values. We still consider the

RMS over SFR (or specific SFR), as there could be subtle changes in the SFR distribution

that are driven by redshift, even within our redshift selected sample.

In order to investigate how the RMS changes with AGN power, we split our sample

into two bins according to LX. Those sources with LX > 2 × 1043 erg s−1 are classified

into the high LX bin, whereas those with LX < 2×1043 erg s−1 are classified into the low

LX bin. This threshold is chosen so that the sample size between the two groups is equal

with 271 sources (with 65 detected RMS and 206 upper limits) in the low LX sample and

270 sources (with 83 detected RMS and 187 upper limits) in the high LX sample. We

highlight that the choice of LX in this study (as opposed to sLX previously) is motivated

by the lack of apparent difference in the stellar mass distributions between the low and

high LX samples as shown in Figure 4.1.

2DECOMPIR is publicly available at https://sites.google.com/site/decompir/

https://sites.google.com/site/decompir/
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4.3 Parametric form and posterior distribution

A constant theme throughout this thesis is adequate consideration for sources with upper

limits. If our sample was fully detected, the analysis is straight-forward, as most para-

metric distributions have algebraically-stated maximum likelihood estimations (MLEs)

for their parameters. However, these algebraic forms for MLEs do not hold when pre-

sented with upper limits. In this section we therefore outline our assumed parametric

form for modelling the RMS distribution, how we derive a likelihood function (and sub-

sequently a posterior distribution) such that upper limits are adequately accounted-for

and then we describe our techniques for maximising the posterior distribution.

In order to model the RMS distribution we assume a log-normal form. Although

recent studies have found the scatter around the main sequence to be well-modelled by

a log-normal distribution (Rodighiero et al., 2011; Sargent et al., 2012; Guo et al., 2013;

Chang et al., 2015; Mullaney et al., 2015; Caplar & Tacchella, 2019; Davies et al., 2019;

Popesso et al., 2019a,b) there may be a “bump” in the high-RMS end of the distribution

caused by starburst galaxies. Indeed, it is also true that there is likely an additional

component at lower RMS values due to the population of quiescent galaxies. Therefore

the accuracy of using a log-normal distribution could be questioned. However, we leave

devising a more flexible model to Chapter 6, where we introduce the possibility of multi-

component models and discuss their credibility. It is important that we stress that this

study – and results arising from it – are working under the assumption that the deviation

from the main sequence of star formation is log-normally distributed, at least for AGNs.

As we choose to use a Bayesian approach, we wish to derive the posterior distribution,

which is proportional to the product of the data-driven likelihood function (assuming

a log-normal RMS distribution) and the prior distributions. We are then interested

in sampling parameter values from this posterior distribution. The remainder of this

section, therefore, describes how we derive the likelihood function.
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The likelihood function is given by the product of the PDFs of all the detected RMS

values, and the CDFs of all undetected sources. The PDF of a given detected RMS,i value

with parameters µ (representing the mode) and σ (representing the width), is given by

f(log10(RMS,i)|µ, σ) = (2πσ2)−
1
2 exp

(
−(log10(RMS,i)− µ)2

2σ2

)
. (4.1)

For upper limits (i.e., non-detected RMS values, which ultimately comes from an upper

limit on the SFR) the PDF is replaced by the CDF. The CDF is the integral of the PDF

and can therefore be written as,

F (log10(RMS)|µ, σ) =

∫ RMS

−∞
f(X|µ, σ)dX

=
1

2

(
1 + erf

(
log10(RMS)− µ

σ
√

2

))
,

(4.2)

where f(X|µ, σ) is given by Equation 4.1. In other words, for a given galaxy, F (log10(RMS))

is close to 1 if most of the RMS distribution with given µ and σ values lies below the value

of the upper limit. By contrast, F (log10(RMS)) is close to 0 if most of the distribution

lies above the upper limit, meaning those µ and σ values are incompatible with that

limit.

By combining both our m detections, RMS,1, ..., RMS,m, and n − m non-detections,

RMS,m+1, ..., RMS,n, the likelihood function is given by the product of the PDFs (for the

detections) and the CDFs (for the upper limits),

L(log10(RMS)|µ, σ) =
m∏
i=1

f(log10(RMS,i)|µ, σ)

n∏
i=m+1

F (log10(RMS,i))|µ, σ).

(4.3)
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As this likelihood function is too complex to maximise analytical, we adopt sampling

package EMCEE (Foreman-Mackey et al., 2013) to derive posterior distributions for

parameters µ and σ. We adopt uninformative flat prior distributions and note that

changing the bounds of our flat prior does not affect the posterior distributions.

4.4 Results

4.4.1 RMS distributions

In this study, we investigate how the RMS distribution, under an assumed log-normal

form, changes between a sample of low and high LX AGNs. The parametric form of the

distribution depends on the parameters µ (controlling the mode) and σ (controlling the

width). Having constructed a posterior distribution for these (i.e., the product of the

likelihood and prior distributions), we used sampling package EMCEE to derive poste-

rior parameter distributions. These posterior distributions are shown in the contour plots

in Figure 4.2. For comparison, in Figure 4.3 we also plot both the results from Mullaney

et al. (2015), who investigated the RMS distribution of a sample of higher redshift AGNs,

and the results from Schreiber et al. (2015) who reported the RMS distribution of main

sequence galaxies. Our results for low LX AGNs are consistent with those of Mullaney

et al. (2015) whilst our high LX sample appear to have RMS distributions more similar

to the star-forming main sequence. The median and 1σ uncertainties of the posterior

distribution for each parameter are displayed in Table 4.1. The RMS distribution, using

the median parameter values from the posterior distribution, are displayed in Figure 4.3.

Overall, the differences seen in the posterior distribution amount to a ≈ 2σ difference in

the RMS distribution of low and high LX AGN samples.

These results suggest that the RMS distributions for low and high LX AGNs could

be different, with high LX AGNs having a slightly higher (as a result of having a larger
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Sample
µ σ

mean of ln(RMS) std. dev. of ln(RMS)
This Work −0.30±0.06 0.55±0.05

Low LX AGNs

This Work −0.10±0.04 0.40±0.03

High LX AGNs

All AGNs (z< 1.5) −0.38+0.07
−0.08 0.6±0.1

(Mullaney et al., 2015)

Main Sequence −0.06±0.02 0.31±0.02

(Schreiber et al., 2015)

Table 4.1: Median parameter posterior values for µ and σ with 1σ
uncertainties.
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Figure 4.2: Contour plot for the posterior distribution of the RMS model parameters µ
and σ, which control the locus and width of the log-normal distribution respectively.
The high LX sample appears to have a higher µ and lower σ than the low LX sample.
Also, for comparison, the parameters of the main sequence from Schreiber et al. (2015)
and the parameters for a higher redshift AGN sample from Mullaney et al. (2015) are
plotted.
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Figure 4.3: Top: The distribution of detected and upper limit RMS values (empty and
filled histograms respectively), split between the low and high LX samples. Bottom: The
inferred RMS distribution from the median of the parameter posterior distributions. Also
plotted is the RMS distribution for main sequence galaxies from Schreiber et al. (2015)..
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µ) and slightly narrower distribution (as a result of having a smaller σ) than the low LX

AGNs. If these results hold, the findings of this study indicate that not only do high LX

AGNs have star-forming properties that are more consistent with main sequence galaxies

(Schreiber et al. 2015), they also have less diversity in their star-forming properties when

compared to low LX AGNs.

4.4.2 The relationship between SFR and LX

Recall that studies investigating how the average SFR changes across bins of AGN power

find little evidence of a connection (e.g., Harrison et al., 2012; Rosario et al., 2012; Stanley

et al., 2015; Suh et al., 2017; Stanley et al., 2017; Ramasawmy et al., 2019). At first

glance, given we have detected a subtle difference in the star-forming properties of AGNs

depending upon their AGN power, the results of those studies appear to contradict the

findings of this work. However, in Figure 4.4, we investigate how both the mean and the

mode SFR, inferred from our RMS distributions, change between the low and high LX

samples. Interestingly, the mean SFRs between our two samples are entirely consistent

with the flat relationship seen in both Stanley et al. (2015) and Lanzuisi et al. (2017).

Also, within their errors, the mean SFR of the low LX sample and the mean SFR of the

high LX sample differ by less than 1σ, whereas the parameters of their respective RMS

distributions appear to differ by ≈ 2σ. The mode SFR, however, being less influenced by

bright outliers, shows a greater difference between the two samples, but not at the same

significance level as the distribution-style analysis shows. However, the overall message

remains that, the summary statistics tend to show less evidence of a connection between

RMS and LX, even if the distributions provide more evidence of a difference.
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Figure 4.4: The mean (triangle) and mode (stars) SFR for the low (red) and high (blue)
LX samples derived from our RMS posterior distributions. Also plotted are the flat rela-
tionships seen in Stanley et al. (2015) and Lanzuisi et al. (2017). Within uncertainties,
there is very little evidence to suggest that the mean SFR changes between the two
samples, whereas the mode, as a result of being less affected by outliers, show a greater
difference. However, both summary statistics show less of a connection between RMS

and LX than is suggested by our distribution-style analysis.
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4.5 Discussion and Conclusions

In this chapter, we have investigated how the full (i.e., including upper limits) distri-

bution of RMS changes between two samples of AGNs grouped according to their LX

(tracing their accretion rate, see Section 2.2), under the assumption that RMS is log-

normally distributed. Our analysis provides tentative evidence that there is a difference

between the star-forming properties of AGNs with low and high LX values. More specif-

ically, we find evidence that the high LX sample (i.e., those with LX > 2× 1043erg s−1)

have a narrower yet slightly higher RMS distribution than the low LX sample (i.e., those

with LX < 2× 1043erg s−1). If this result holds true (e.g., with an increase sample size,

or a more thorough analysis such as that used in the forthcoming chapter), this likely

means that more luminous AGN reside in galaxies with a slightly higher, yet smaller

range of star-forming environments, than lower luminosity AGNs.

We propose the results in this work are consistent with the idea that gas availability

regulates both SMBH growth and galaxy growth. Being more easily triggered than their

rapidly accreting counterparts (a natural corollary of the X-ray luminosity functions,

see Aird et al. 2017), lower luminosity AGNs are more likely to reside in galaxies with

varying gas abundances. Higher luminosity AGNs, however, require larger amounts of

gas to be funnelled into the most central regions and we claim, therefore, more likely

to require a higher abundance of gas in the host galaxy (although see e.g., Shlosman

et al. 1989; Storchi-Bergmann et al. 2007; Audibert et al. 2019; Shimizu et al. 2019).

Reinforced by the stronger link seen between more luminous AGN and star formation,

than between lower luminosity AGNs, it is also likely the triggering of a lower luminosity

AGN is less dependent of the gas content of the host galaxy, than the triggering of a high

luminosity AGNs. Therefore, given higher luminosity AGNs have a stronger link with

the gas content of the host, it is natural to suggest they have a stronger connection with

gas-codependent star formation. In the broader picture, however, our results provide
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reasonable evidence that the accretion rate of a SMBH is connected to the star-forming

properties of the host galaxy, as is seen in other studies (e.g., Kauffmann & Heckman,

2009; Georgakakis et al., 2014; Wang et al., 2017; Aird et al., 2019; Bernhard et al.,

2018) and additionally reaffirms the notion that quasars are often associated with high

levels ongoing star formation (e.g., Rosario et al., 2013; Kalfountzou et al., 2014; Stanley

et al., 2017).

Finally, whilst the results presented in this chapter provide tentative evidence of a

relationship between star-forming properties and SMBH accretion rates, it fails to match

the significance of the relationship found in Chapter 3 and the wider literature (i.e., when

compared to galaxy selected samples, e.g., Azadi et al., 2015; Bernhard et al., 2016; Wang

et al., 2017; Aird et al., 2017, 2018). In Chapter 3, the use of full distributions revealed a

more detailed picture of how accretion rate properties change between starburst and non-

starburst galaxies, than averages had done. Additionally, the use of full distributions

here has revealed a more detailed (and more significant) picture of how star-forming

properties change between low and high power AGNs. However, it may still be that

uncertainties associated with binning (and specifically in the highly variable LX axis)

as we have here is weakening any true underlying connection. In the next chapter, we

develop a technique that allows us to move away from binning in LX such that we can

investigate the change in RMS distribution as a continuous function of LX.





Chapter 5

A binning-free method reveals a

continuous relationship between

galaxies’ AGN power and offset

from main sequence.

The essence of the independent mind lies not

in what it thinks, but in how it thinks.

Christopher Hitchens

5.1 Introduction

A key means of investigating what galaxy-scale factors govern SMBH growth rates is by

quantifying the properties of AGN-hosting galaxies and attempting to identify correla-

tions between these host properties and AGN power. However, this is hampered by the

fact that, compared to most other galactic processes (e.g., star-forming events, mergers),

AGNs are extremely variable and short-lived. As demonstrated by Hickox et al. (2014),

88
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this stochastic duty cycle tends to dilute the underlying connections between AGN power

and other galactic properties, such that plots of mean galaxy star formation rate (SFR)

vs. AGN power, for example, show a flat (i.e., independent) relationship (e.g., Harrison

et al., 2012; Rosario et al., 2012; Mullaney et al., 2012a; Stanley et al., 2015, 2017; Suh

et al., 2017; Ramasawmy et al., 2019). Recently, Scholtz et al. (2018) compared the

distribution of specific SFR in two X-ray luminosity (LX) bins, but did not find any

significant evidence of a difference between the two bins (43 < log10(LX/ergs s−1) < 44

and 44 < log10(LX/ergs s−1) < 45). In Chapter 4, we compared the distribution of the

RMS statistic in bins of low LX (i.e., 42.53 < log10(LX/erg s−1) < 43.3) and high LX (i.e.,

43.3 < log10(LX/erg s−1) < 45.09), and only found tentative evidence (i.e., ≈ 2σ) of a

dependency.

So whilst the use of distributions has allowed us to investigate the star-forming prop-

erties of AGNs in more detail than using simple averages, no study has demonstrated

that the distribution of star-forming properties is dependent on LX
1. Of course, this

may be because no intrinsic connection exists. It could, however, be due to an often

unaddressed limitation in the analysis: the use of arbitrarily-constructed bins of LX. As

discussed in Chapter 1, binning can be somewhat arbitrary, weakly-motivated and can

possibly impact results (Lanzuisi et al., 2017).

In this chapter, to investigate the implications of binning on our investigations of

the relationship between star-forming properties and AGN power, we analyse the RMS

distribution as a continuous function of LX. To do this, we develop a comprehensive

Bayesian hierarchical model which has two substantial benefits over binning. Firstly, it

allows us to eliminate the possibility of binning-dependent results. Secondly, the model

allows us to accurately account for all uncertainties (including, where necessary, upper

limits) on the independent variable (i.e., in our case LX). Specifically, in this chapter

1Note, here we use “dependence” in the strict mathematical sense, rather than suggesting that SFR
physically depends on AGN power.
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we aim to quantify the dependence between the RMS distribution and LX, without the

need for binning or averaging. In doing so, we extract all available information from our

data and find strong evidence of a relationship between the star-forming properties of

AGN-hosting galaxies and LX.

The outline of this chapter is as follows. In Section 5.2 we briefly summarise how

the dataset was constructed. In Section 5.3 we summarise the hierarchical Bayesian

model, explain how we eliminate the need for binning and briefly introduce our MCMC

model switching algorithm, which will test whether the RMS distribution is dependent

on LX. In Section 5.4 we present the output of the analysis and discuss the limitations

and implications in Section 5.5. Where necessary, we adopt a WMAP-7 year cosmology

Larson et al. (2011).

5.2 Data

So that we can compare the results of our new method with previously found results,

we decide to reuse the same dataset as constructed previously in Chapter 4. This will

ensure that any differences are the direct result of the analysis method, rather than from

differences between two independent data sets. However, we provide a summary of the

sample derivation here.

Briefly, we take the 541 X-ray detected sources with a redshift between 0.8 < z ≤ 1.2

from the C16 catalogue. This small redshift range (∼ 75 per cent have spectroscopic

redshifts) is chosen to minimise any potential redshift effects. These sources have rest-

frame 2-10 keV, absorption-corrected X-ray luminosities spanning the range 42.53 <

log10(LX/erg s−1) < 45.09 (see Marchesi et al. 2016 for details on how they calculated

LX, including how they corrected for absorption). We should note that in order to

remain consistent with Chapter 4 for the aforementioned purposes, we do not include

those sources with upper limits on LX nor account for redshift variation, although it
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would be straightforward to do so as explained in Section 5.3.2. Uncertainties on LX

values are derived by converting the percentage error on the flux measurement presented

in Marchesi et al. (2016). On comparing these errors to the upper and lower LX bounds

in Marchesi et al. (2016), we find that our uncertainties are generally more conservative.

The inclusion of these uncertainties is one benefit of the methodology presented in this

chapter over that presented in Chapter 4. We then derive a SFR for each source using

the DECOMPIR code (see Mullaney et al. 2011 for full details) on the super-deblended

photometry presented in the catalogue of Jin et al. (2018) which used the deblending

technique of Liu et al. (2018). The catalogue contains data from various sources such as

Spitzer and Herschel and covers the 24-1200µm range.

In total, our sample contains 148 AGNs with measured SFRs, and 393 with upper

limits on their SFRs. Stellar masses are calculated using the multi-wavelength spectral

energy distribution fitting code CIGALE (Noll et al., 2009; Serra et al., 2011; Ciesla

et al., 2015; Boquien et al., 2019) as described in Chapter 2. The stellar mass parameters

were chosen to maximise the accuracy according to the testing presented in Ciesla et al.

(2015). Next, we use the prescription of Schreiber et al. (2015), together with each

galaxy’s redshift and mass, to predict the SFR that it would have if it were on the star-

forming main sequence (i.e., SFRMS). Finally, we calculate the starburstiness statistic,

RMS, of each galaxy in our sample using the method outlined in Section 2.3.2.

5.3 The continuous model, model selection and MCMC

algorithm

In this section we describe how we model the RMS data, in such a way to remove the

need for binning, which enables us to investigate whether (and, if so, how) the RMS

distribution changes as a continuous function of LX. In subsection 5.3.1, we introduce
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the log-normal distribution we use to model the RMS distribution and explain why we

must use a “hierarchical” Bayesian approach to allow this to vary continuously with

LX. Next, in subsection 5.3.2 we describe our Bayesian priors and how these provide a

mechanism to include all uncertainties on each individual LX value. Finally, in subsection

5.3.3, we introduce our bespoke MCMC sampler that explores the posterior parameter

space in a way that allows us to test whether the RMS distribution depends on LX.

5.3.1 RMS distribution and likelihood function

In order to test the continuous relationship between the RMS distribution and LX we as-

sume a functional parametric form for the RMS distribution. In this chapter, we choose to

model the RMS distribution as a log-normal distribution (i.e., that log10(RMS) is normally

distributed). A log-normal distribution is chosen to remain consistent with Chapter 4.

Recall that our approach is to derive a posterior distribution for the parameters (i.e., the

product of the data-driven likelihood and a prior distribution). Recall that in Chapter 4,

we derived the likelihood function,

L(log10(RMS)|µ, σ) =
m∏
i=1

f(log10(RMS,i)|µ, σ)

n∏
i=m+1

F (log10(RMS,i))|µ, σ).

(5.1)

where f(log10(RMS,i)|µ, σ) is the PDF for detected RMS values and F (log10(RMS,i))|µ, σ)

is the CDF for RMS upper limits. If we were going to assume no dependence of RMS on

LX, and no uncertainty on LX, then at this stage we could simply find the best-fitting

values for µ and σ, as has been used previously in studies that bin in LX (i.e., Chapter 4).

Such studies derive the likelihood function in different bins, use parameter-maximisation

techniques to find the best fitting value for µ and σ within each bin, and then compare
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how parameters change between different bins (e.g., Mullaney et al., 2015; Scholtz et al.,

2018). However, in order to analyse the RMS distribution as a continuous function of LX,

we must use a hierarchical model, since this allows the parameters that control the shape

of the RMS distribution (i.e., µ, σ) to vary as a function of LX. As the true relationship

between the µ and σ parameters and the LX values is unknown, the choice of relationship

is arbitrarily specified. However, in order to test the case of no dependence (i.e., that

RMS and LX are independent of one another), it is sufficient to show that a simple model

that allows dependence is preferable to one that imposes independence. Therefore, we

choose to use simple functions to relate the parameters of the RMS distribution and the

LX values (hereafter referred to as the “functional relationships”), given by:

µi = θ0 + θ1 log10

(
LX,i

1040

)
and σi = e

θ2+θ3 log10

(
LX,i

1040

)
. (5.2)

The rescaling of the LX values ensures that θ = {θ0, θ1, θ2, θ3} (hereafter, our hyper-

parameters) are not orders of magnitude different, which could lead to problems in the

analysis. Note that, throughout this chapter, we are only considering the effect of LX on

the RMS distribution and hence our functional relationships only factor-in LX. If other

parameters, such as redshift or stellar mass were also to be considered, they could be

added to the functional relationships as described in Equation 5.2. Such an expansion

of the model is presented in Chapter 6.

By introducing these functional relationships, we have essentially related the mode

and width of the RMS distribution to the LX values. Additionally, we have changed the

parameters of interest from µ and σ to the hyperparameters; this is what makes the

approach “hierarchical”. Note that we specify an exponential form for the functional

relationship between σi and LX,i as σi cannot be negative. The focus of this analysis

is to now find the posterior distributions for θ. By considering these posteriors, the

functional relationships allow us to test whether the RMS distribution is dependent upon
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LX. For example if θ1 = θ3 = 0, the functional relationships are no longer a function of

LX and therefore imply that the RMS distributions are independent of LX. Additionally,

relating the mode and width of the RMS distribution to the LX values has completely

removed the need to bin the data in LX. The question of independence now becomes

how likely is θ1 = θ3 = 0, given the data observed. More details of which are contained

in Section 5.3.2.

As a result of adapting the mode and width of the distribution so that binning is not

required, the likelihood function changes slightly and is now given by,

L(θ, LX|RMS) =
m∏
i=1

f(log10(RMS,i)|θ, LX,i)

n∏
i=m+1

F (log10(RMS,i)|θ, LX,i).

(5.3)

5.3.2 Prior and posterior distributions

Prior distribution on LX

We have now expressed the parameters as functions of the independent data (in this

case, LX) and the hyperparameters, θ. The next step we must now consider is how to

fully account for uncertainties on LX. In our hierarchical model, we are able to treat the

LX values as parameters, and can therefore place informative Bayesian priors on their

values. The prior distribution on each LX,i can be constrained by the measured value

LX,i,meas and uncertainty ξi and modelled as a log-normal (here, we are assuming that our

errors are symmetric in log space). This means that the prior distribution on a specific

log10(LX,i) is given by,

f(log10(LX,i)| log10(LX,i,meas), ξi) =

(2πξi)
− 1

2 exp

(
−(log10(LX,i)− log10(LX,i,meas))

2

2ξ2
i

)
.

(5.4)
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where ξi is derived by converting the percentage error on the flux measurement presented

in Marchesi et al. (2016). This can be thought of as the probability density of observing

the true LX given we have observed a measurement, LX,i,meas and error ξi. It should

be noted that in this chapter we are working with only detected X-ray luminosities to

remain consistent with Chapter 4 and we assume all uncertainties are modelled with

a log-normal. One could, however, replace this prior distribution with any probability

distribution. Note that in this chapter, we have not accounted for the uncertainties on

the RMS values. This is largely to remain consistent with the modelling approach of

Chapter 4. In future studies, uncertainties on the dependent variable (in our case, RMS)

can be included using a similar method as the one applied to the sLX distribution in

Chapter 3. Whilst we do not believe that excluding these uncertainties has a major

impact on our results, it is a limitation of the work in this chapter. However, it is not a

limitation of the methodology.

At this stage, we have specified our likelihood function (Equation 5.3) and our priors

on LX. The final terms we must consider are the prior distributions on the hyperparam-

eters, which we discuss in the next subsection.

Prior distribution on hyperparameters

Because our primary scientific aim is to determine whether the RMS distribution changes

with LX, we are most interested in the (posterior) probability that the hyperparameters

θ1 and θ3 are equal to 0 or whether they are non-zero (i.e., there is a dependence on LX).

We therefore choose the prior distributions of these hyperparameters to be a “spike and

slab distribution”. This type of prior allows us to join two distributions; one defined

in discrete space (the spike) and one in continuous space (the slab). This is necessary

so that we can ensure that there is a defined prior probability that θ1 = 0 and θ3 = 0

(i.e., there is a prior probability of independence between RMS and LX), as opposed to

just a probability density. If we have a defined prior probability then we can calculate a
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posterior probability, again as opposed to just to a probability density. 2

Our spike and slab prior distributions take the form:

f(θ1|ω) = (1− ω)N(θ1; mean = 0, S.D. = 1) + ωδθ1=0,

f(θ3|ω) = (1− ω)N(θ3; mean = 0, S.D. = 1) + ωδθ3=0,

(5.5)

where ω is the prior probability that θ1, θ3 = 0 and δθi=0 is the delta function. For our

analysis, we choose ω = 0.5 so that our prior probability favours neither the case of

independence, p(θ1 = 0) = p(θ3 = 0) = 0.5, nor the case of dependence p(θ1 6= 0) =

p(θ3 6= 0) = 0.5. As we are not interested in the posterior probabilities that θ0, θ2 = 0,

the prior distributions on these parameters are Gaussian distributions with mean 0 and

standard deviation 1.

By using spike and slab prior distributions we have constructed four potential models:

• Model 1: θ1 = 0, θ3 = 0, no dependence on LX at all

• Model 2: θ1 6= 0, θ3 = 0, mode depends on LX, width does not

• Model 3: θ1 = 0, θ3 6= 0, width depends on LX, mode does not

• Model 4: θ1 6= 0, θ3 6= 0, both mode and width depend on LX.

Note that as we have chosen ω = 0.5 our prior distributions give no preferential

weight to any of the model scenarios (according to the prior, they all have a probability

of 0.25). Having now derived the likelihood function and all needed prior distributions

we can construct the final posterior distribution:

2A probability density is a “relative” likelihood as opposed to an absolute one. For a distribution over
a continuous space, the absolute probability of any one particular occurrence is 0, whilst the probability
density can be non-zero. For a distribution over a discrete space, the probability mass function (the
discrete equivalent of the density) is an absolute probability.
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f(θ, log10(LX)|log10(RMS), log10(LX,meas)) =

L(log10(RMS)|θ, log10(LX))

× f(log10(LX)|log10(LX,meas), ξ)

× f(θ|ω)

(5.6)

5.3.3 MCMC algorithm and model switching

As our posterior distributions cannot be derived analytically, we have written a purpose-

built MCMC sampler in order to sample from the posterior distributions of each given

hyperparameter (i.e., θ0, θ1, θ2, θ3). However, in addition to sampling from the posterior

distributions to find the most likely hyperparameter values, we also use our sampler to

determine the posterior probability of each of our four models (i.e., for model compar-

ison). The posterior probability of the models can be calculated analytically, however

even advanced sampling methods (e.g., Nested Sampling, see Buchner et al. 2014) strug-

gle to accurately calculate them due to the high dimensionality of our parameter space

(i.e., up to 545 dimensions as a result of including the LX values as parameters). In-

stead, we use “model switching” to compute the posterior model probabilities. In this

subsection, we fully describe one full step of the MCMC sampler used to construct the

posterior distributions presented in Section 5.4, which were then used to compare our

various models. Interested readers should also refer to the study of Gottardo & Raftery

(2008), from which our sampler is adapted.

For the most part, our MCMC sampler adopts a standard Metropolis-Hastings (MH)

algorithm (Metropolis et al., 1953; Hastings, 1970) to explore the parameter space. On

each iteration, the MH algorithm proposes a new set of parameter values, which are then

accepted or rejected. For efficiency, we propose new values for two parameters at a time,

and accept them based on their acceptance ratio α, where:
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α = min

(
π(θ′)q(θ′, θ)

π(θ)q(θ, θ′)
, 1

)
, (5.7)

where θ′ is the proposed parameter value, θ is the current parameter value, π(θ) is the

full conditional of θ and q(θ, θ′) is the proposal density (i.e., the probability density of

proposing θ′ given the current θ). For our analysis, the parameter vector is given by

θ = (θ0, θ1, θ2, θ3, log10(LX,1), ..., log10(LX,n)). We choose to sample θ0, θ1 together and

θ2, θ3 together as the value of θ0 is highly-dependent on the value of θ1; similarly, the

value of θ2 is highly-dependent on θ3. Proposing the dependent hyperparameters together

can allow us to take into account the dependency and therefore propose more sensible

values, which greatly improves the speed and efficiency of the sampler. If we were only

considering one model, and simply wished to sample the posterior distributions, then

we would simply iterate the above process. However, in our case we wish to compare

the relative probability of four different models. As mentioned above, we do this using

a technique known as “model switching”, which we describe next.

A key component of our algorithm is that, when it proposes a switch between models,

it proposes “reasonable” parameters within the proposed model. Otherwise, we run the

risk of never switching models – not because the proposed model is necessarily worse, but

because we always propose highly unlikely parameter values within that model. What we

mean by “reasonable”, therefore, is likely parameter values within each proposed model.

As such, we need to have some knowledge of the posterior probability distributions of

each model before we can start proposing switches between models. One way of achieving

this would be to force Model 1, for example, to converge, then force a switch to Model 2,

allow that to converge, and so on. Once all models have converged, we would then allow

our sampler to switch between models by proposing reasonable parameter values (i.e.,

those close to the posterior mode). In our case, however, as we only have four models,

we instead run a separate standard MCMC sampler for each model (i.e., without model
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switching), which gives us an indication of the most suitable regions of the posterior

parameter space for each model. Mathematically, these two approaches are exactly

analogous.

With an estimate of the posterior parameter space for each model in-hand, we can

propose reasonable regions of the parameter space when switching between models. In

what follows, we describe how we switch between various models. For ease of explanation,

we will only consider θ0 and θ1, but same process is applied when sampling θ2 and θ3.

Recalling that we step through the parameters in pairs, we sample θ0 and θ1 at the same

time. This leads to four possible cases, which are summarised in Table 5.1, and discussed

in detail below.

Case A: Here, the sampler is currently in the state where θ1 = 0, and is proposing

θ1 = 0 (i.e., it is in a µ-independent model [Models 1 or 3] and proposes to remain within

a µ-independent model). However, because we progress through the vector pairwise, the

sampler must still propose a θ0 value. For this, we use a standard MH proposal – a

value randomly selected from a Gaussian distribution centred on the current θ0 value.

Based on pilot runs, we choose a value for the width of the Gaussian distribution that

results in good mixing (i.e., the acceptance rate is between 20–40 per cent). In this case,

the q(θ, θ′) value is the product of the likelihood of choosing θ′1 = 0 (i.e., 0.5) and the

proposed θ0 value (i.e., θ′0 = f(θ′0|θ0, s1), where f is the Gaussian density function). This

product is symmetrical on switching between θ and θ′, meaning q(θ, θ′) = q(θ′, θ), so the

q terms cancel in Equation 5.7.

Case B: In this case, the sampler is currently in the state where θ1 = 0, and is

proposing θ1 6= 0 (i.e., it is in a µ-independent model [Models 1 or 3] and is proposing

to switch to a µ-dependent model [Models 2 or 4]). As a result of proposing a switch to

a µ-dependent model, we must propose values for both θ0 and θ1. To do this, we use a

bivariate Gaussian distribution, centred on the “reasonable” values obtained using the

process described above. Based on pilot runs, we choose a value for the widths of the
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bivariate Gaussian distribution that results in good mixing (i.e., the acceptance rate is

between 20–40 per cent). In addition to the widths, the bivariate Gaussian distribution

accounts for the correlation between θ0 and θ1 by using the calculated covariance matrix.

In this case, the q(θ, θ′) value is the product of the likelihood of choosing θ′1 6= 0 (i.e.,

0.5) and the proposed θ values (i.e., θ′ = f2( [θ′0, θ
′
1] | [θ̂0, θ̂1],Σ1), where f2 is the bivariate

Gaussian density function, θ̂0, θ̂1 are the estimates of the posterior mode from the original

chains and Σ1 is the covariance matrix. This product is not symmetrical on switching

between θ and θ′, since the inverse process involves sampling from a univariate Gaussian.

This means q(θ, θ′) 6= q(θ′, θ), so they must be accounted for in the acceptance ratio.

Case C: Here, the sampler is currently in the state where θ1 6= 0, and is proposing

θ′1 = 0 (i.e., it is in a µ-dependent model [Models 2 or 4] and is proposing to switch to a µ-

independent model [Models 1 or 3]). As a result of proposing a switch to a µ-independent

model, we again must propose a “reasonable” value of θ0 within the proposed model.

To do this, we use a distribution, centred on the “reasonable” values obtained using the

process described above. Based on pilot runs, we choose a value for the width of the

Gaussian distribution that results in good mixing (i.e., the acceptance rate is between

20–40 per cent). In this case, the q(θ, θ′) value is the product of the likelihood of choosing

θ′1 = 0 (i.e., 0.5) and the proposed θ0 value (i.e., θ′0 = f(θ′0|θ̂0, s2), where f is the Gaussian

density function, θ̂0, θ̂1 are the estimates of the posterior mode from the original chains

and Σ1 is the covariance matrix). This product is not symmetrical on switching between

θ and θ′ for the same reason as in Case B (i.e., the inverse process involves sampling

from a bivariate Gaussian distribution). This means q(θ, θ′) 6= q(θ′, θ), so they must be

accounted for in the acceptance ratio.

Case D: In this final case, the sampler is currently in the state where θ1 6= 0,

and is proposing θ′1 6= 0 (i.e., it is in a µ-dependent model [Models 2 or 4] and is

proposing to remain in a µ-dependent model). As a result we need to propose values

for both θ0 and θ1. To do this, we use a bivariate Gaussian distribution, centred on the
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current values. Based on pilot runs, we choose a value for the width of the Gaussian

distribution that results in good mixing (i.e., the acceptance rate is between 20–40 per

cent) and calculate the appropriate covariance matrix. In this case, the q(θ, θ′) value is

the product of the likelihood of choosing θ′1 6= 0 (i.e., 0.5) and the proposed θ value (i.e.,

θ′ = f2( [θ′0, θ
′
1] | [θ0, θ1],Σ1), where f2 is the bivariate Gaussian density function, and Σ2

is the covariance matrix). This product is symmetrical on switching between θ and θ′,

meaning q(θ, θ′) = q(θ′, θ) and so the terms cancel.

This process is then repeated for the next pair of hyperparameters (i.e., θ2 and

θ3) followed by one sampling through the LX values individually (i.e., not pair-wise),

the latter of which is done by using a standard MH algorithm. In one iteration we

sample through the full parameter vector and we run five chains in parallel for 25,000

iterations.3 Each chain has the first 5000 iterations removed as a burn-in, then the

remaining iterations from each chain are combined to form the final sample of 100,000

posterior draws for each parameter. The posterior probability of each of the four models

presented in Section 5.3.2 is then straightforward to calculate from the combined chain:

all we need to do is calculate the fraction of accepted samples from each model in the

combined chain.

5.4 Results

Given that we now have 100,000 independent draws from the posterior distribution

from each parameter, we can begin to investigate the relationship between the RMS

distribution and LX. Recall that we modelled the RMS distribution as a log-normal

distribution and set a relationship between the mode and width, and the LX values

as outlined in Equation 5.2. We proposed values such that our sample was forced to

consider θ1 = 0 and θ3 = 0 respectively, effectively allowing for the MCMC sampler to

3The choice of five chains for 25,000 iterations is arbitrary, but these values ensured that the combined
chain contained a sufficiently high number of samples from the posterior.
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switch between models of dependence or independence. In this Section, we present the

posterior distributions of the hyperparameters and the posterior model probabilities.

5.4.1 Posterior distributions

Posterior model probabilities

As a result of implementing model switching in the MCMC algorithm we can easily

calculate the posterior model probabilities by considering the fraction of samples of each

chain within each model. The posterior model probabilities alongside the Bayes Factor

comparison to the independent Model 1 are given in Table 5.2. The Bayes Factor, which

can be accurately used to compare two models (Kass & Raftery, 1995), is given as the

ratio of the posterior model probability of the more complex model to the posterior

model probability more simple one. Naturally, the Bayes Factor includes a “penalty”

for the number of parameters used. In our case, as a result of including LX values as

a parameters our models have vastly different numbers of parameters. Model 1, which

ignores LX values only has 2 parameters, whereas Models 2, 3 and 4 have 544, 544 and

545 parameters, respectively. This can help explain the very small posterior probabilities

of Models 2 and 3, where the chain either prefers the simple Model 1, or for the sake of 1

extra parameter Model 4, which comprehensively outperforms them. The Bayes Factor

comparing Model 4 to Model 1 gives us a value of 15.285, which can be seen as “strong”

evidence in favour of Model 4 (Kass & Raftery, 1995). Using this model comparison

model technique, the posterior model probability is not equal to the probability that the

model is true, as the sum of all posterior model probabilities in the analysis must be

equal to 1. It is therefore important to consider the Bayes Factor approach for comparing

the models, rather than using the posterior model probabilities as they are.



Binning-free continuous relationship 104

M
o
d
el

V
al

u
e

of
µ

V
al

u
e

of
σ

P
os

te
ri

or
p
ro

b
ab

il
it

y
B

ay
es

F
ac

to
r

v
s.

M
o
d
el

1
1

θ 0
eθ

2
0.

06
10

2
-

2
θ 0

+
θ 1

lo
g

1
0

( L X 1
0
4
0

)
eθ

2
0.

00
47

7
0.

07
81

3
θ 0

eθ
2
+
θ 3

lo
g
1
0

( L X 1
0
4
0

)
0.

00
14

8
0.

02
42

5

4
θ 0

+
θ 1

lo
g

1
0

( L X 1
0
4
0

) e
θ 2

+
θ 3

lo
g
1
0

( L X 1
0
4
0

)
0.

93
27

3
15

.2
85

T
ab

le
5.

2:
T

h
e

p
os

te
ri

or
m

o
d
el

p
ro

b
ab

il
it

ie
s

gi
ve

n
fo

r
ea

ch
m

o
d
el

.
T

h
es

e
ar

e
ca

lc
u
la

te
d

b
y

co
n
si

d
er

in
g

th
e

am
ou

n
t

of
ti

m
e

th
e

M
C

M
C

ch
ai

n
sp

en
t

in
ea

ch
of

th
e

m
o
d
el

s.
A

ls
o

sh
ow

n
is

th
e

B
ay

es
F

ac
to

r,
w

h
ic

h
is

u
se

d
to

ju
d
ge

,
ou

t
of

tw
o

m
o
d
el

s,
th

e
m

o
d
el

co
n
si

d
er

ed
to

b
e

th
e

m
os

t
li
ke

ly
.



Binning-free continuous relationship 105

Hyperparameters

In Figure 5.1 we present the posterior distributions for the hyperparameters as computed

by the MCMC algorithm outlined in Section 5.3.3. The off-diagonal plots show the joint

posterior distributions. As described in Section 5.4.1, we have strong evidence that a

model of the RMS distribution with a dependence on LX is preferred to the independent

model. The rest of this chapter therefore, works with the assumption that Model 4 is

the most suitable model.

We present summary statistics for the posterior distributions of the hyperparameters

in Table 5.3. The coefficients of LX in the functional relationships (see Equation 5.2)

are given by θ1 and θ3, which from Table 5.3 and Figure 5.1 are positive and negative

respectively. This implies that as LX increases, the mode and width of the RMS distribu-

tion increase and decrease respectively. The relationship between the mode and width of

the log-normal RMS distribution and LX can be seen in Figure 5.2, where the posterior

distributions of the hyperparameters have been sampled 1000 times and combined with

LX to provide samples of µ and σ.

5.4.2 RMS as a function of LX

In this chapter, we have used a hierarchical Bayesian framework to remove the need for

binning and stacking when modelling the RMS distribution of galaxies hosting AGN of

different LX. In doing so, and in contrast to Chapter 4, we find strong evidence that

there is relationship between the RMS distribution and LX (i.e., AGN power) as opposed

to just tentative evidence.

In Figure 5.3 we show how the RMS distribution, when modelled as a log-normal

distribution, changes as a function of LX in the range 42.53 ≤ log10(LX/ergs s−1) ≤

45.09. As LX increases, the mode of the RMS distribution increases, whilst the width

decreases. This is also shown in Figure 5.1, as θ1 takes positive values (i.e., µ increases
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Figure 5.1: The output from our MCMC algorithm. The on-diagonal plots show the
marginalised posterior distributions for each parameter, with the joint posterior distri-
butions shown by the off-diagonal contour plots. The figures include results from the
entire MCMC chain, which means that different peaks (on-diagonal) and contour regions
(off-diagonal) illustrate when the chain is in a particular model. For example, in the plot
in the second row, first column (from top left), the larger of the two contour regions
corresponds to θ1 6= 0, which is the case in both Model 2 and Model 4. From this pos-
terior plot alone, one cannot distinguish whether the chain is in Model 2 or Model 4, as
information about the other parameters is needed (i.e., a 4-dimensional plot would show
four discrete model regions). Secondly, there is a smaller region in the lower-right corner
that corresponds to the region where θ1 = 0, which is the case for both Model 1 and
Model 3. Again, one cannot distinguish between these two models from this plot alone.
However, given the negligible amount of time the chain spends in Model 2 and Model 3,
it can be assumed without much loss of accuracy that the larger region represents the
likelihood for Model 4 and the smaller region represents the likelihood for Model 1. This
is analogous to the larger and smaller peaks in the on-diagonal plot for θ1.
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of the hyperparameters, under the assumption of Model 4. Over-plotted are the results
from Chapter 4, with 1-σ errors. Also plotted is the main sequence values from Schreiber
et al. (2015) (solid black lines). The top plot is the histogram of LX values of the sample
for reference.
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Figure 5.3: The evolution of the RMS distributions as a continuous function of X-ray
luminosity, plotted as thin curves. Over plotted are the results from Chapter 4 and
the Rms distribution for main sequence galaxies from Schreiber et al. (2015). As the
X-ray luminosity of a galaxy increases, the probability density function for its RMS shifts
slightly to higher values and the distribution narrows, consistent with the findings in
Chapter 4.

with increasing LX) and θ3 takes negative values (i.e., σ decreases with increasing LX).

These results, albeit with more evidence, are still consistent with the tentative findings

of Chapter 4, which showed that more luminous X-ray AGNs have RMS distributions

closer to those of main sequence galaxies compared to lower LX AGNs. This is also

consistent with the findings of Schulze et al. (2019), who noticed no difference in the SFR

distribution of 20 z ∼ 2 quasars and the SFR distribution of main sequence galaxies.

With our new analysis showing stronger evidence of a dependence of RMS on LX, it is

natural to ask whether this is consistent with the observed flat relationship between SFR
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and LX reported by some other studies (e.g., Rosario et al., 2012; Stanley et al., 2015).

We are able to explore this issue by generating synthetic SFRs using our LX-dependent

RMS model, together with the measured LX, redshifts, and stellar masses of our sample.

To do this we:

1. randomly generate a sample from the joint posterior distribution of the hyper-

parameters, θ∗0, θ
∗
1, θ
∗
2, θ
∗
3. This involves taking a random point from each of the

off-diagonal plots in Figure 5.1 (and therefore respecting any correlations between

parameters);

2. for each of the 541 sources in our sample we use their detected LX values, alongside

the aforementioned randomly sampled hyperparameters, to calculate the mode and

width of the predicted RMS distribution. Recall, we reuse the functional relation-

ships we chose earlier so that we have a predicted mode, µpred and predicted width,

σpred:

µpred = θ∗0 + θ∗1 log10

(
LX

1040

)
and

σpred = e
θ∗2+θ∗3 log10

(
LX
1040

)
.

(5.8)

3. we then sample an RMS value from the log-normal distribution with the parameters

µpred and σpred;

4. we then repeat steps 1-3 10,000 times so that we have, for each source in our

sample, a set of 10,000 predicted RMS values constrained by our hyperparameter

posterior distributions and the assumption of our functional relationships;

5. we next multiply each of the sampled RMS values by the corresponding main se-

quence SFR, calculated by using the stellar masses, redshifts and the prescription

from Schreiber et al. (2015). This leaves us with a sample of 10,000 predicted
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Table 5.3: Posterior mean and standard deviations for the hyperparameters for Model
4.

Parameter Mode Standard Deviation
θ0 -1.191 0.119
θ1 0.276 0.033
θ2 0.54. 0.128
θ3 -0.391 0.040

SFRs for each source calculated using our functional relationships and posterior

distributions.

Figure 5.4 shows the relationship between SFR and LX as predicted by our LX-

dependent RMS distribution. The red stars show the mean predicted SFR in bins of LX,

using a bin width of 0.25 dex (with error bars indicating the 3σ standard error). Over-

plotted are the observed mean SFRs (calculated using survival analysis), also in bins of

LX, from Stanley et al. (2015). The yellow circles represent the SFRs of the 148 AGNs in

our sample with measured fluxes, while the yellow triangles represent the upper-limits on

SFRs for the remaining 393 AGNs. Despite our analysis providing strong evidence of a

relationship between the RMS distribution and LX, the projected relationship between the

average predicted SFRs and LX is comparable to the observed flat relationship of Stanley

et al. (2015) (i.e., while the means are offset, they are well within the range of scatter

given by the observed measurements). While the incorporation of mass and redshift

information to convert our predicted RMS values to SFR may contribute to some of the

flattening, it is plausible that averaging over a log-normal distribution within a particular

LX bin could have significantly flattened the relationship also. This further demonstrates

that even if a strong underlying relationship between star-forming properties and AGN

power exists, it is extremely difficult to extract using average (or even individually-

measured) SFRs in bins of LX.
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5.5 Discussion

5.5.1 Limitations of our approach

Before discussing the implications of our results, in this section we aim to highlight lim-

itations of our approach and discuss areas for potential improvement. Initially, as we

reuse the same dataset as Chapter 4, we have adopted the same set of initial assump-

tions as that chapter - namely, the assumption about the parametric form of the RMS

distribution and the validity of the Schreiber et al. (2015) main sequence. However by

removing the need for binning, we have relaxed the unstated assumption about sources

in the same bins having similar properties. The remainder of this section, therefore aims

to highlight additional limitations and assumptions with our methodology, as well as

those of Chapter 4.

Firstly, the analysis is computationally expensive. This is mostly due to the large

number of sampled parameters. In this case, there are four hyperparameters (θ0, ...θ3)

plus, as described in Section 5.3.2, 541 LX parameters with a well-defined (i.e., using by

the measured value and its uncertainties) prior distribution. The parameters are sampled

pair-wise throughout the MCMC algorithm, which reduces the time, but the algorithm

is still computationally expensive. Despite having a large number of parameters, over-

parameterisation is not a concern since the priors tightly constrain the LX values.

Secondly, in this work, we have imposed simple relationships between the mode and

width (µ, σ, respectively) of the RMS distribution and LX. Whilst this relationship could

be made more flexible, the aim of this chapter was to test the framework and to determine

if there is any dependence on LX. We therefore chose simple relationships to assess

whether we could rule-out the independent case. In future studies (as outlined further in

Chapter 6), more flexible forms of the functional relationships could be tested and model

comparison methods used to determine whether any other functional forms provide a

better representation of the data. In addition to making the functional relationships
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more flexible, other independent variables could be added (such as redshift and stellar

mass). By doing so, and allowing for more models to be compared, future studies could

use the techniques in this chapter to probe deeper into the connection between AGN

power and host galaxy properties. As a result of this chapter only investigating how

the RMS distribution changes as a function of LX, we were cautious that, if there was

a significant, systematic change of LX with redshift, then a redshift evolution in both

LX and RMS may introduce a spurious positive trend. However, we see no evidence of

a strong systematic change of LX with redshift. The median and standard deviation

of LX for the lowest and highest redshift quartiles were (43.23, 0.40) and (43.43, 0.44)

respectively. Therefore we have no reason to believe that our results are being affected

by an underlying redshift evolution in both LX and RMS across our redshift bin. With

regards to redshift and stellar mass effects, it may be interesting to investigate whether

assuming alternative models for the redshift and mass evolution of the main sequence

(e.g., Speagle et al., 2014; Ilbert et al., 2015; Whitaker et al., 2015; Popesso et al., 2019a)

has a large effect on the results.

Thirdly, posterior model probabilities can be dependent upon the choice of prior

distribution chosen for individual parameters. As the marginal likelihood is the integral

of the likelihood function over all the prior space (effectively a weighted average of the

likelihood function), an analysis of this sort must make sure that the prior distributions

are reflective of current up to date knowledge. Our prior distributions are influenced by

the work of Chapter 4. By the construction of the marginal likelihood, however, overly

vague prior distributions can excessively “penalise” more complex models. Likewise,

prior distributions that are too constrained can favour more complex models. Therefore,

prior distributions should be carefully chosen and justified.

Finally, we stress again that we have worked under the assumption that RMS distri-

bution is log-normal. This may not be entirely accurate. Indeed, it is known that some

AGNs reside in quiescent and starburst galaxies whose combined RMS values do not fol-
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low a log-normal distribution (e.g., the main sequence/starburst population is believed

to follow a bi-modal log-normal distribution in RMS). Having said that, our focus here is

to assess whether, after eliminating the need for binning and averaging (and comparing

to the same dataset in Chapter 4), the RMS distribution could be LX-dependent. It is not

immediately clear why a truly LX-independent RMS distribution would be better mod-

elled by a LX-dependent log-normal, as opposed to a LX-independent one. Therefore,

we stress we are not suggesting that our model represents the true RMS relationship,

but instead that an LX-dependent model is strongly favoured when compared to an

LX-independent one.

5.5.2 Implications of our analysis

The aim of this chapter was to introduce a Bayesian hierarchical framework that removes

both the need to bin data (particularly in distribution-style analyses) and the need to

use averaging techniques (or other summary statistics/parameters). To allow us to ac-

curately demonstrate that any new results were driven by the methodology, we applied

our hierarchical model on the same dataset as Chapter 4. The process involves assum-

ing a distributional form for one variable (in this case the starburstiness of a galaxy)

and setting a direct dependence between the parameters of this distribution and some

independent variable (in this case, LX). Uncertainties on the independent variable are

also fully considered by treating them as a parameter and applying an informative prior,

which is derived from the measured values and their uncertainties.

Our results show that, under the assumption that RMS is log-normally distributed,

there is a strong evidence of a relationship between RMS and LX within the redshift

range 0.8 < z < 1.2. This reaffirms, to a stronger degree of significance, the result

of Chapter 4, such that as LX increases, the RMS distribution is centred at a higher

value and the diversity of RMS values decreases. What this implies is that, within the
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constraints of our model, an LX= 1044 erg s−1 AGN is 21 per cent more likely to reside

in a galaxy with RMS> 2 than an LX= 1043 erg s−1 AGN. This is in agreement with

other studies that suggested there is a tighter (i.e., more consistent) connection between

more luminous AGNs and star formation than for lower-luminosity AGNs (e.g., Rosario

et al., 2013; Stanley et al., 2017; Aird et al., 2017; Dai et al., 2018; Masoura et al., 2018;

Aird et al., 2019): for example, it may be that any luminous AGN activity occurs close

in time to the star formation activity while lower-luminosity AGN activity can occur

when the galaxy is more quiescent (and hence the broader RMS distribution) in addition

to occurring during the periods of star-formation activity.

In this chapter, we have investigated the relationship between the RMS distribution

of AGN hosts and LX, and found strong evidence of a relationship between the two.

Recently, a number of studies have approached this problem from the other direction;

i.e., investigating how AGN power changes as a function of the star-forming properties of

their hosts. For example, Chen et al. (2013) reported that, when binned in terms of SFR,

the mean LX of star-forming galaxies increases with average SFR (see also Delvecchio

et al. 2015, who also accounted for the effects of galaxy stellar mass). Further, Rodighiero

et al. (2015) found that, when binning according to stellar mass, the mean LX of starburst

galaxies is higher then that of main sequence galaxies which, in turn, is higher than that

of quiescent galaxies. Both these results imply that average AGN power is higher in

more actively star-forming systems. In Chapter 3 we reported that the distribution of

specific LX (i.e., = LX/M∗, a proxy for Eddington ratio λEdd), changes as a function of

the star-forming activity of their hosts, with a higher fraction of starbursts hosting AGNs

with λEdd > 10% than their main sequence counterparts (consistent with the work found

in Aird et al. 2019). By exploring how the star-forming properties of galaxies change

as a function of LX, this chapter (and Chapter 4) take the opposite approach. While

there are significant differences between the properties being considered in each study

(not least the exploration of Eddington ratio in Aird et al. 2019 and Chapter 3, whereas
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we only consider LX here) all appear to support the assertion that more powerful AGNs

(whether expressed in terms of LX or Eddington ratio) are preferentially found in more

actively star-forming systems.

5.6 Conclusions

In this chapter, we have introduced a hierarchical Bayesian framework to assess whether

the RMS distribution of AGN-hosting galaxies changes as a continuous function of an

X-ray luminosity (LX). Our approach removes the need for both binning and averaging

and also allows for full consideration of the uncertainties on the independent variable.

By modelling the RMS distribution as a log-normal, and proposing simple relation-

ships between its parameters (i.e., mode and width) of that log-normal and X-ray lu-

minosity, we found strong evidence that an LX-dependent model is preferred over an

LX-independent one. By binning the same data, in Chapter 4 we reported the same

overall trend, but without such strong evidence, thereby highlighting the importance

of utilising all available information by removing the need for binning. By using the

same dataset and pre-processing as Chapter 4, we ensured that any differences found in

contrast to that chapter are a direct result of the new analysis technique.

Despite finding a strong relationship between the RMS distribution and AGN power,

when we convert our LX-dependent distributions back into the mean SFR - LX plane,

we find that the dependent model can reproduce results consistent with previously seen

flat relationships (e.g., Stanley et al., 2015). This further highlights the difficulty in

extracting underlying relationships between AGN power and host galaxy properties when

averaging in bins of AGN power.





Chapter 6

Improvements to the binning-free

methodology: multi-component

distributions and functional

relationships

If you’re not improving, chances are

you’re not going to win.

Mike Shanahan

6.1 Introduction

The finding that the RMS distribution changes significantly with LX provides an al-

ternative perspective on the connection between a SMBH and the host galaxy. More

specifically, the results presented in Chapter 5 are consistent with the findings of studies

that adopted the alternative approach (i.e., instead of an AGN-selected sample, using

a galaxy-selected sample, e.g., Rafferty et al., 2011; Rosario et al., 2012; Chen et al.,

117
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2013; Azadi et al., 2015; Delvecchio et al., 2015; Harris et al., 2016; Lanzuisi et al., 2017;

Shimizu et al., 2017; Stemo et al., 2020, Chapter 3). All these results suggest that there is

a stronger connection between higher-luminosity AGNs and the star-forming properties

of the host galaxy than between lower-luminosity AGNs and the star-forming properties

of the host galaxy.

Despite the binning-free methodology introduced in Chapter 5 being able to uncover a

significant connection between the RMS distribution and LX, there are still improvements

that can be made. Firstly, there is considerable evidence that the RMS distribution does

not take the form of a single log-normal distribution. Indeed, it may be the case that

starburst galaxies contribute to a bump in the high-RMS tail of the distribution (Schreiber

et al., 2015). Thus, in Section 6.2, we build a two-component model that could be used to

describe the RMS distribution in more detail. We test the two-component model on both

a simulated dataset and then on the same AGN sample as was used in Chapters 4 and 5.

A second possible improvement is to modify the functional relationships introduced in

Equation 5.2 (the equations that link parameters of the RMS distribution to LX) such that

they include other independent variables. This could reveal how the RMS distribution

changes with a broad range of other independent data, for example, environment, galaxy

colour, morphology (if somehow quantified). But perhaps the most relevant for the aims

of this thesis would be to consider how the relationship between the RMS distribution

and LX depends on stellar mass and redshift (which we discuss in Section 6.3). We

finally summarise this chapter in Section 6.4

6.2 Adding a second component

One potential limitation of the analysis performed through Chapters 4 and 5 is the

assumed parametric form of the RMS distribution. Whilst some studies have found that

RMS is appropriately modelled by a singular log-normal distribution (e.g., Chang et al.,
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2015; Mullaney et al., 2015; Caplar & Tacchella, 2019; Popesso et al., 2019a,b), others

have used an additional component to account for the secondary bump attributable to

starburst galaxies (e.g., Rodighiero et al., 2011; Sargent et al., 2012; Schreiber et al.,

2015). An initial way to improve the modelling approach taken previously is, therefore,

to move from a single component RMS model to a multi-component one. In this section,

we describe a possible implementation of a two-component model which would allow for

a more appropriate modelling of the individual contributions from main sequence and

starburst galaxies.

6.2.1 Density and likelihood function

To account for an additional starburst bump we use a mixture distribution (i.e., the

combination of two separate distributions). For our model, we use the sum of two log-

normal distributions: a main-sequence log-normal component controlled by µMS and σMS

and a starburst log-normal component controlled by µSB and σSB. In order to control

the relative contribution from each component, we set the proportion of the contribution

from the main-sequence component as ω and thus the starburst component contribution

is given by 1 − ω (where ω is bound between 0 and 1 to ensure that the resulting

model is still a probability distribution). The parameter ω can thus be used to estimate

the fraction of starburst galaxies that are not explained by the singular main-sequence

component. The PDF of the mixture distribution is given by the weighted (by ω) sum

of the two log-normal PDFs:

f(log10(RMS)|ω, µMS, µSB, σ,MSσSB) = ωN(log10(RMS)|µMS, σMS)

+ (1− ω)N(log10(RMS)|µSB, σSB).

(6.1)
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where N(log10(RMS)|µMS, σMS) is the log-normal PDF from the main sequence compo-

nent and N(log10(RMS)|µSB, σSB) is the log-normal PDF from the starburst component.

This model has, compared to the singular log-normal model that was used in previous

chapters, 3 additional parameters (i.e., the weight parameter ω and the parameters of

the additional log-normal starburst component µSB, σSB). An example of this model is

shown in Figure 6.1, where we show the main sequence and starburst components sepa-

rately. In a similar way, the CDF, which would be used for upper limits on RMS, can be

expressed as the weighted sum of the two log-normal component CDFs:

F (log10(RMS)|ω, µMS, µSB, σMS, σSB) = ω

∫ RMS

−∞
N(log10(X)|µMS, σMS)dX

+ (1− ω)

∫ RMS

−∞
N(log10(X)|µSB, σSB)dX.

(6.2)

The likelihood function, L, is then, as usual, the product of the PDF for the detected

sources multiplied by the product of the CDF for all upper limits:

L(ω, µMS, µSB, σ,MSσSB| log10(RMS)) =

p∏
i=1

f(log10(RMS)|ω, µMS, µSB, σ,MSσSB)

n∏
p+1

F (log10(RMS)|ω, µMS, µSB, σ,MSσSB),

(6.3)

where 1, ..., .m correspond to detected sources and p+ 1, ..., n are upper limits.

6.2.2 Functional relationships

The two-component model we have constructed would allow for more detailed modelling

of the starburst galaxies’ contribution to the RMS distribution. However, as a result of

now having five parameters, rather than just two, there are more parameters that could
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Figure 6.1: An example of the two-component log-normal model. The normalisations of
the two components are controlled by the weight parameter ω, which in this case is set
at 0.8. This corresponds to 80% of the density being accounted for by the main sequence
component and 20% coming from the starburst component.
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potentially change as a function of LX. As a starting point, given that we have already

investigated the relationship between the parameters of the log-normal distribution and

LX in this thesis, we choose to investigate the relationship between ω and LX and fix the

mode and width of the two Gaussian components to the values presented in Schreiber

et al. (2015, i.e., µMS = −0.06, µSB = 0.72 and σMS = σSB = 0.31 ). As ω represents

the proportional contribution from the main sequence component, it is bound between

0 and 1. If ω fell outside this range, it would lead to negative PDF values for either the

main sequence component (if ω < 0) or the starburst component (if ω > 1). Therefore,

the functional relationship chosen must transpose LX values to the [0,1] interval1. We

therefore propose a functional relationship of the form:

ωi =
1

1 + e
−(k log10

(
LX,i

1040

)
+m)

. (6.4)

where k and m thus become parameters of interest (i.e., k describes how ω changes with

LXand m is a coefficient term and we wish to find the best fitting k and m values).

This function ensures that ω is bound between 0 and 1, for any values of LX, k or m.

In Figure 6.2, we illustrate four different RMS distributions for various values of k and

m and how, according to Equation 6.4 they would change with different LX values. It

follows that if k = 0 then there is no evolution of ω with LX.

6.2.3 Findings from testing the two-component model

Simulated data

Thus far in this section we have outlined an extension of the one-component log-normal

model that was used to describe the RMS distribution in Chapters 4 and 5, such that

a secondary component can be added, to account for additional contribution from star-

1It is possible to impose a bounded prior distribution of ω to account for this too. However, this
would likely make the MCMC sampler – which given the complexity of the model and large number of
parameters is already likely to be slow – incredibly inefficient.
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burst galaxies. In order to test the capabilities of the two-component model, in this

subsection, we test the model on a simulated dataset. The simulated data is generated

using predetermined parameter values and, given the truth is known, is appropriate

for initially testing the two-component model. Our simple data generation and testing

algorithm is as follows:

1. We start by generating the independent data LX.

2. We then assume the form of the functional relationship between ω and the newly-

generated LX data. Next, we fix the values for the hyperparameters (k and m) to

predetermined values (in this case we choose k = −1.2 and m = 7).

3. Given a particular LX value and assumed functional relationships, we can accu-

rately derive the parameters of the two-component RMS distribution, from which

we simulate an RMS value.

4. Adopt a simple MCMC algorithm in order to attempt to recover the true values

of k and m.

During our testing we generated LX values from both a log-normal distribution (as

seen in Kauffmann & Heckman, 2009) and a power law with exponential cut-offs (as seen

in Aird et al., 2012). We find that the distribution used for generating LX values has

little impact on the ability of the MCMC sampler to recover the parameters of interest

and thus choose to use the power law with exponential cut-offs. In order to investigate

the performance of the MCMC sampler with sample size, we generated samples with

size 100, 1000 and 10,000. The generated RMS distributions and LX distributions for the

three samples are shown in Figures 6.3, 6.4 and 6.5.

After deriving the likelihood function from our simulated data, we use MCMC tech-

niques in order to find the parameter posterior distributions. The traceplots of the

MCMC algorithm for all three samples are shown in Figure 6.6, which highlights the
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Figure 6.3: The simulated RMS and LX distributions for a sample size of 100. The LX

values are generated from a Schechter like function and the RMS values generated using
the functional relationships shown in Equation 6.4, alongside the LX values. The true
values for the hyperparameters are k = −1.2 and m = 7.
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Figure 6.4: The same as Figure 6.3, but for a sample size of 1000.
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Figure 6.5: The same as Figure 6.3, but for a sample size of 10000.
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performance of the sampler for the three different samples. For a sample size of only

100, the sampler recovers very little information about the true input parameter values

for k and m (meaning very little information is coming from the data). However, the

true input parameters values are better recovered for samples of 1000 and 10000. In-

deed, very precise results are obtained from the simulated data using a sample size of

10000, demonstrating that the MCMC sampler can, with adequate data, perform well.

However, it should be noted that, these samples are generated with 100% detections on

RMS (generating upper limits on RMS is not feasible as the RMS upper limit distribution

is not known) and no uncertainty is included on LX. These simulated samples, therefore,

represent the very best case scenarios. Should upper limits on RMS and uncertainty on

LX be included in the analysis, resolving any true differences in the population is likely

to require an even larger data set.

Real data

The natural progression from testing the two-component model on simulated data is to

apply it to real data. The use of real data means we can include meaningful upper limits

on RMS and true uncertainties on LX. Therefore, in order to test the two-component

model further, we reuse the sample of 541 AGNs as used in Chapters 4 and 5 and apply

the functional relationships and the likelihood function that we previously outlined in

this section. We are still only interested in how ω (i.e., the proportional contribution

from the main sequence component to the RMS distribution) changes with LX, thus we

keep the other parameters fixed (µMS = −0.06, µSB = 0.72 and σMS = σSB = 0.31).

The posterior distributions for k and m are shown in the on-diagonal plots of Fig-

ure 6.7 and the joint distribution is shown in the off-diagonal plot. We find the mean

posterior values are given by k = 0.26± 1.11 and m = −3.52± 3.55. As k describes the

change in ω with LX (see the functional relationship in Equation 6.4), this is arguable the

most interesting parameter. By construction of the functional relationship, a positive
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Figure 6.7: The posterior distributions for k and m as derived using the data from
Chapters 4 and 5 and the functional relationship presented in Equation 6.4. The posterior
distributions for k and m are highly correlated, which is likely a result of the very small
range of ω values that accurately fit the data.
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value of k implies that as LX increases, the main sequence contribution increases (and

thus the starburst contribution decreases). In Figure 6.8, we plot the distribution of ω

for the whole sample assuming both the posterior mean and median values for both k

and m. Our results show that, depending on LX, the range of fractional contribution

of the main sequence component to the RMS distribution is between 98.4% and 99.2%,

thus meaning that the starburst component’s contribution is between 0.8% and 1.6%.

The fact that the posterior range of values for ω is quite small helps explain the tight

correlation witness between the posterior distributions of k and m as seen in the off-

diagonal plot of Figure 6.7 (i.e., assuming a fixed value for k, there is a very small range

of m values that would give reasonable values for ω). Finally in Figure 6.9, we plot the

two-component RMS posterior distributions as a function of LX for different values of

our parameter posterior distribution (i.e., the mode, the median and the 25th and 75th

percentiles). For comparison, we also plot the non-AGN two-component model results

from Schreiber et al. (2015).

At first glance it may appear that our mean and median posterior RMS distributions

suggest two main results. Firstly, as LX increases, the fractional contribution of the

starburst component to the total RMS distribution decreases. This would thus imply that

the more powerful an AGN is the less likely its host galaxy is a starburst and the more

likely it is to reside on the main sequence. Secondly, when compared to the distribution

of non-AGN from Schreiber et al. (2015), it appears that there is a significantly larger

contribution from the starburst component in non-AGN galaxies, when compared to

our AGN sample. However, as aforementioned, the posterior distributions for k and

m have large uncertainties (most probably due to the small sample size, consideration

of RMS upper limits and the inclusion of LX uncertainties). As demonstrated in the

bottom two plots of Figure 6.9, at the 25th percentile and 75th percentile of the posterior

distribution the aforementioned results do not necessarily hold. At the 25th percentile,

the value of k is negative, and thus the main sequence contribution decreases (thus
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Figure 6.8: The distribution of ω (i.e., the fractional contribution to the RMS distribution
of the main sequence component) assuming the posterior mean and posterior median for
k and m. The contribution of the main sequence to the total RMS distribution varies
(depending on LX) between 98.4% and 99.2%.
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the starburst component increases) as LX increases. Additionally, at both the 25th

and 75th percentiles, the fractional contribution of the starburst component is more

aligned with the findings of Schreiber et al. (2015). So whilst the posterior mean (and

median) suggest that higher-luminosity AGNs preferentially reside in main sequence

galaxies when compared to lower-luminosity AGN and that AGNs in general seem to

underrepresented in starburst galaxies, the uncertainties on our posterior distributions

mean that neither of these claims can be made with strong evidence.

Instead, this example with real data reaffirms the findings of the work that used sim-

ulated data. In order to reveal the true evolution of the two-component RMS distribution

with LX, much larger samples are required. A sufficiently increased sample would likely

reveal the true aforementioned connection but also may allow further investigation of the

other parameters, which we have fixed here (i.e., µMS, µSB, σMS, σSB). There is, however,

a further discussion to be held about whether the additional complexity in this model

(i.e., adding a second component) is statistically appropriate (or indeed beneficial), given

that the most likely starburst contribution found from this sample is between 1− 1.5%.

Therefore, any immediate study progressing with the two-component model should per-

form similar model testing as was demonstrated in Chapter 5 to compare whether the

two-component form of the model is significantly advantageous over the previously used

one-component form.

In addition to the limitations of sample size and whether the additional starburst com-

ponent is necessary, the fixing of the mode and width parameters of the main sequence

and starburst components also provide an additional limitation of this two-component

model. Unlike in the two previous chapters, the fixing of the component parameters

restricts the model such that it can no longer accurately account for the contribution to

the RMS distribution from AGN in quiescent galaxies. In the previous two works, the

flexibility of the width parameter allowed the model to account for quiescent galaxies

by extending the tails of the distribution down to lower RMS values. However, in this
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example, the widths are kept fixed to specifically investigate the contribution to the

RMS distribution of the starburst galaxies. As AGNs are known to reside in quiescent

galaxies, it is important to account for their contribution. Therefore, allowing the mode

and width parameters to vary should be a priority in extending this model. However, an

alternative approach (motivated by the fact the starburst contribution in our example

is restricted to 1 − 1.5%), would be to use the two-component model to instead model

the quiescent galaxies’ contribution to the RMS distribution. This asks a slightly dif-

ferent science question, which is beyond the remit of this thesis, but would be a more

appropriate use of the two-component model (at least one with fixed mode and width).

6.3 Upgrading the functional relationships

The use of functional relationships to connect the parameters of the RMS distribution

to independent data allows us to investigate the continuous relationship between star-

forming properties of host galaxies and AGN power. As well as also removing the need

to construct LX bins, they allow us to account for the uncertainty on LX, by considering

LX as a parameter with a prior (or proposal) distribution that is constrained by the

measured X-ray luminosity and uncertainty. This method effectively samples a range

of possible LX values, throughout the lifetime of the MCMC sampler, thereby carrying

through the measured uncertainty. The form of the functional relationships chosen

thus far in this thesis (and in particularly for the one-component model) are, however,

arbitrarily chosen and have little motivation other than their simplicity (i.e., for the

mode, µ and width, σ, a simple linear dependence was chosen between µ on LX and an

exponential dependence was chosen between σ and LX). In this section, we discuss the

most insightful improvements that can be made to these functional relationships.
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6.3.1 Adding stellar mass and redshift

Whilst model comparison techniques could be used to investigate the best-fitting func-

tional relationships, we believe the most insightful change that could be made to the

functional relationships would be the inclusion of other independent data such as red-

shift (z) and stellar mass (M∗). By including other such independent data, the ultimate

goal is to investigate whether the connection identified in Chapter 5 holds across a va-

riety of redshift ranges, and down to lower stellar masses. Reverting back to a single

log-normal distribution (for simplicity) with its peak and width controlled by µ and σ

as before, a potential new pair of functional relationships (which we refer to as Set A)

could be of the form:

µi = θ0 + θ1 log10

(
LX,i

1040

)
+ θ2z + θ3 log10

(
M∗
109

)
,

σi = exp

{
θ4 + θ5 log10

(
LX,i

1040

)
+ θ6z + θ7 log10

(
M∗
109

)}
.

(6.5)

These two equations attempt to model how the parameters of the RMS distribution

change with LX, z and M∗. However, whilst functional relationships of this form would

allow us to investigate how the RMS distribution changes as a function of LX, z or M∗

independently, it would not allow for a comparison of how the relationship between RMS

and LX changes with z and M∗. For example in this thesis, we are less interested in how

RMS changes with redshift, but more interested in how the connection between RMS and

LX changes with redshift (or put candidly, is the strength of the connection we witness

in Chapter 5 specific to our mass or redshift choices).

To investigate how the relationship between RMS and LX changes with redshift, we

need to introduce a term into the functional relationship that is codependent on both

LX and either z or M∗. Instead of Set A, therefore, for the questions posed in this thesis

functional relationships of the following form are more appropriate (we will refer to these
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as Set B):

µi = θ0 + θ1 log10

(
LX,i

1040

)
+ θ2z log10

(
LX,i

1040

)
+ θ3 log10

(
M∗
109

)
log10

(
LX,i

1040

)

σi = exp

{
θ4 + θ5 log10

(
LX,i

1040

)
+ θ6z log10

(
LX,i

1040

)
+ θ7 log10

(
M∗
109

)
log10

(
LX,i

1040

)}
.

(6.6)

The difference between Set A and Set B is that in Set B, the data controlled by the

parameters θ2, θ3, θ6 and θ7 changes to have an additional LX term. In Set A, θ2 and

θ3 describe the change of µ with redshift and stellar mass respectively, and θ6 and θ7

describe the change of σ with redshift and stellar mass respectively. Whereas in Set

B, θ2 describes how µ changes with both redshift and LX codependently (i.e., how the

relationship between µ and LX changes with redshift) and θ3 describes how µ changes

with both stellar mass and LX codependently (i.e., how the relationship between σ

and LX changes with stellar mass). Similarly, θ6 describes how σ changes with both

redshift and LX codependently (i.e., how the relationship between µ and LX changes with

redshift) and θ7 describes how σ changes with both stellar mass and LX codependently

(i.e., how the relationship between σ and LX changes with stellar mass). In Set A,

if θ2 is positive, then µ increases with redshift, regardless of LX. In Set B, if θ2 is

positive, then µ increases with LX more at higher redshifts (and vice versa). This means

that, if θ2 is non-zero, there is a change in the relationship between RMS and LX as a

function of redshift. This applies to θ3 and stellar mass, and similarly to θ6, θ7 with σ. It

should also be noted that here we have chosen simple dependencies (i.e., linear for µ and

exponential for σ) to relate our parameters of the RMS distribution to all independent

variables. Again, similar to the motivation in Chapter 5, these relationships are unlikely

to represent the true scenario (i.e., they have little physical motivation). Instead, they
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are suitable for testing whether the relationship between RMS and LX changes with z

and M∗, or not. It remains the case that it is not immediately clear why if compared to

the null case (i.e., the relationship between RMS and LX does not change with z or M∗)

a dependent model (i.e., one using Set B), would be preferred over an independent one

(i.e., the functional relationships used in Chapter 5, where we do not account for z or

M∗).

6.3.2 Including upper limits on LX

The use of functional relationships provides us with two significant benefits. Firstly, the

use of arbitrarily constructed bins is no longer required and secondly, uncertainties on

independent data can be accurately considered throughout the analysis (as was seen in

Chapter 5). Removing the need to bin our data means that we no longer need an AGN-

selected sample or a star-forming galaxy-selected sample, as we do not need a binning

axis (which is a requirement of the binning-and-averaging approach seen in the wider

literature, e.g., Rafferty et al., 2011; Harrison et al., 2012; Rosario et al., 2012; Chen

et al., 2013). However, if we want to investigate how the RMS distribution changes with

SMBH accretion rate for the wider galaxy population, we need to be able to include

upper limits on LX. This would allow us to probe the lower X-ray luminosity regime.

Recall that in Section 3 upper limits on sLX were included as we were investigating

the sLX distribution, but given in Chapter 5 we investigated the RMS distribution as a

continuous function of LX, the question raised here is: how can we include LX upper

limits when it is being used as an independent variable?

In Chapter 5, we appropriately consider uncertainties on LX by sampling it through

the MCMC algorithm with a sampling distribution described by the measured value and

uncertainty. This means, throughout the lifetime of the MCMC chain, for an individual

source, various LX values are considered, representing the range of possible true LX
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values. This approach is flexible and can thus be changed for those LX values for which we

do not have a detection and instead have only an upper limit. The crux is to ensure that

LX values proposed throughout the chain are plausible and realistic values. Therefore,

one can either propose random values (that are constrained by the prior) or directly

influence the proposal distributions, such that only realistic LX values are proposed. An

immediately obvious choice for a sampling (or prior) distribution is to adopt the AGN

X-ray luminosity function below the upper limit - although this does correspond to the

uninformative prior case (i.e., there is no source-specific information and instead we

resort to the population’s characteristics) and would require an assumed lower turnover.

More accurate distributions could be derived based on corrections from other wavelengths

(such as the UV-X-ray luminosity ratio, Lusso et al., 2010), which would allow some

source-specific knowledge to be introduced. Throughout the course of the MCMC chain,

possible LX values will be proposed and therefore the upper limit can be included in the

functional relationships and thus the analysis.

6.4 Discussion and Conclusions

In this chapter we have provided a series of potential extensions to the modelling ap-

proach taken in Chapters 5. We introduce two beneficial improvements: the movement

from a one-component model to a two-component one and the inclusion of other inde-

pendent data (such as stellar mass and redshift). Firstly, we modified the parametric

form used to model the RMS distribution such that an additional component could be

included to account more accurately for any potential excess contribution from starburst

galaxies. In doing so, we tested the two-component model on a simulated dataset with

known true parameters and identified that, even in the best case scenario, large datasets

were required to begin to resolve the true underlying parameters. Extending this, we

retested the two-component model on the real sample of the 541 AGNs previously used
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in the analyses in Chapters 4 and 5. In doing so, we forego knowledge of the underlying

true parameters and instead have a more realistic dataset (i.e., one with upper limits

on RMS and meaningful uncertainties on LX). Our findings, however, corroborate with

the findings from the simulated dataset, as no significant results were identified, largely

as the uncertainties on the parameter posterior distributions were far too large. Thus,

should this line of work be continued in the future, substantially larger datasets will be

required. We also noted that, any study wishing to use the two-component model should,

at first, determine if its performance is significantly better than the one-component case

described earlier in this thesis. One possible way of doing this is to adopt the model

comparison techniques demonstrated in Chapter 5.

The second highlighted improvement we made in this chapter was the upgrading of

the functional relationships (particularly in the one-component case) such that the re-

lationship between RMS and LX can be investigated across various redshift and stellar

mass ranges. By removing the need to construct bins of LX, the functional relation-

ships provided the framework for removing redshift and stellar mass binning too. In

Section 6.3, we therefore proposed a set of functional relationships (Set B) that could be

used to investigate how the strength of the relation witness in Chapter 5 changes as a

function of redshift and stellar mass, without repeating the analysis in different redshift

bins.





Chapter 7

Discussion and Conclusions

It’s not about how hard you can hit. It’s about

how hard you can get hit and keep moving

forward. How much you can take and keep

moving forward. That’s how winning is done.

Rocky Balboa

7.1 Introduction

The discovery that the mass of SMBHs correlate with both their host galaxy’s bulge

stellar mass and stellar velocity dispersion (e.g., Magorrian et al., 1998; Ferrarese &

Merritt, 2000; Gebhardt et al., 2000; Merritt & Ferrarese, 2001; Tremaine et al., 2002;

Marconi & Hunt, 2003; Häring & Rix, 2004; Wyithe, 2006; Hu, 2008; Gültekin et al.,

2009; McConnell & Ma, 2013; de Nicola et al., 2019; Ding et al., 2020a,b) provides

evidence of an evolutionary link between the two. Further evidence of a connection

between SMBH and host galaxy is also provided by the discovery that, as discussed

in the Introduction (Chapter 1), the volume average SMBH accretion rate and volume

averaged star formation have followed similar evolutionary tracks.

In an effort to further reveal more details about any potential connection, a large

141
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number of studies have sought to identify whether the rate at which the SMBH has

grown is correlated with the rate at which the host galaxy has grown via star formation.

To do this, some studies have investigated how the average SMBH growth (calculated

using stacking to include upper limits) changes as a function of SFR (e.g Rafferty et al.,

2011; Chen et al., 2013; Azadi et al., 2015; Delvecchio et al., 2015; Harris et al., 2016;

Lanzuisi et al., 2017; Shimizu et al., 2017; Stemo et al., 2020). These studies tend to

find evidence of a positive correlation, implying that as SFR increases, so does average

SMBH growth. However, averages are summary statistics and various differences in

the underlying properties of SMBH growth can cause a similar increase in the average.

For example, does the average SMBH growth increase because of a handful of extreme

outliers? Or is a more widespread, yet less pronounced, systematic increase responsible?

Therefore, in order to better understand the relationship between SMBH growth and star

formation, in Chapter 3 we investigated how the full distribution of host galaxy stellar

mass specific X-ray luminosity (sLX, tracing mass-normalised accretion rate) changes

between galaxies classified as starburst (i.e., a factor of three above the main sequence)

and non-starburst. We find that, amongst starburst galaxies, there is an significantly

increased fraction of SMBHs accreting at higher rates (i.e., greater than 10% of their

Eddington limit, similar to the results seen in Aird et al., 2018, who used SFRs from UV-

NIR SEDs). This means that a SMBH residing within a starburst galaxy has a greater

probability of having a higher accretion rate and can therefore explain the increased

average witnessed in correlation-based studies.

In addition to those aforementioned studies, an alternative approach to investigating

any statistical connection between the growth rates of SMBHs and their host galaxies

is to derive an AGN sample and instead investigate how the average SFR changes as a

function of AGN luminosity (e.g., Harrison et al., 2012; Rosario et al., 2012; Stanley et al.,

2015; Lanzuisi et al., 2017; Stanley et al., 2017; Suh et al., 2017; Ramasawmy et al., 2019).

However, contrasting the results using the aforementioned approach, these studies tend to
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find little evidence of a correlation. Similarly to how various differences in the underlying

population can cause the same apparent increase in the average (as mentioned before),

no difference in the average SFR does not necessarily imply that there is no difference in

the underlying star-forming properties. Therefore, in Chapter 4, we investigated the full

distribution of RMS (i.e., the deviation from the star forming main sequence) between

low luminosity AGNs (i.e., those with LX < 2× 1043 erg s−1) and high luminosity AGNs

(LX > 2× 1043 erg s−1). In that chapter, we report tentative evidence of a difference in

the RMS distribution between the two samples, suggesting that higher luminosity AGNs

tend to have a slightly higher peaked, yet considerably narrower RMS distribution than

lower luminosity AGNs. Interestingly, however, although we found a subtle difference in

the underlying RMS distributions, we reported that there was no obvious difference in the

average of the two, which may reaffirm the importance of investigating full distributions.

That said, we still only found tentative evidence of a connection between star-forming

properties of the host galaxy and AGN luminosity, which does not fully unify these

results with those seen when adopting the inverse approach.

Hickox et al. (2014) demonstrated that one potential explanation for the contradictory

results seen depending on whether an AGN-derived sample or a galaxy-derived sample

is used, could be the problems associated with binning in the highly variable AGN

luminosity axis. As a result of being highly variable, it is possible that the binning

process could wash-out potentially underlying correlations. However, binning data in

general has, as discussed throughout this thesis, other limitations, such as considering

uncertainties and implicit assumptions about sources within a bin having similar (if

not the same) properties. Motivated by these problems, in Chapter 5 we presented a

binning-free methodology to repeat the study performed in Chapter 4. By constructing

functional relationships that directly related the parameters of the RMS distribution to

LX, we removed the need to construct AGN luminosity bins and were able to more

accurately include uncertainties on – and arguably more relevantly the information from
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– every data point. In that chapter, we report strong evidence (rather than just tentative)

that the RMS distribution changes as a function of LX. More specifically, we reaffirmed

to a stronger degree of significance the results of Chapter 4 that the peak of the RMS

increases very slightly with LX, whilst the width decreases. Going a step further than we

did in Chapter 4, we also demonstrated that, even if we assume the relationship found

between RMS and LX to be true, the correlation observed between average SFR and LX

falls well within the scatter of the flat relationship found in the literature (e.g., Stanley

et al., 2015). Whilst these results provide evidence that star-forming properties of AGNs

are connected to the central SMBH accretion rate, arguably a more important finding

was that these results tend to agree with studies deriving galaxy-selected samples – i.e.,

it appears that higher levels of SMBH growth are associated with more star-forming

activity.

Throughout Chapters 4 and 5 we assumed that the parametric form of the RMS

distribution is adequately represented by a singular log-normal distribution. However, it

may be the case that the two-component model can more accurately include an excess

contribution from starburst galaxies (e.g., Sargent et al., 2012; Schreiber et al., 2015).

Therefore, in Chapter 6 we constructed a binning-free two-component model, in which

we investigated the fractional contribution from the starburst component to the total

RMS distribution. In short, we find that the model is likely to only work for large

datasets, and reusing the sample of 541 AGNs from Chapters 4 and 5, we were unable

to deduce any significant correlations, as the uncertainties on our posterior distributions

were too large. Additionally in that chapter, we discussed the possibility of an alternative

line of research, by which instead of improving the parametric form of the model (i.e.,

switching from one component to two), we modified the functional relationships of the

singular component, such that other independent data could be included. Specifically,

we highlighted a series of functional relationships that could be used to describe how the

relationship between the RMS distribution and LX changes with either redshift or stellar



Discussion and Conclusions 145

mass. By modifying the analysis in this way, future studies will be able to see whether

the results seen throughout this thesis hold at earlier or later times in the Universe and

down to smaller stellar masses. This is a crucial step in advancing our knowledge of how

the relationship between SMBH and host galaxy applied to the entire galaxy population.

7.2 Comparison to literature

As mentioned in the introductory chapter (Chapter 1), the statistical approach is only

one way to use observational data to investigate the relationship between SMBH accre-

tion rate and star-forming properties of the host galaxy. The alternative approach is to

look at fewer numbers of galaxies, but in a lot more individual detail, hoping to witness

directly any connecting process between SMBH and host galaxy rather than extract it

from characteristics of the population. In addition to observational approaches, there is

also the theoretical approach which has, up to now, been largely ignored in this thesis. In

this section we highlight two proposed connecting mechanisms that have been observed

in observational studies of smaller samples or proposed in studies that take a more the-

oretical approach and discuss where our results agree (or disagree) with them. The two

proposed connecting mechanisms we discuss are AGN feedback (i.e., a direct connection)

and the co-regulation of SMBH growth and star formation by the availability of gas in

the galaxy (i.e., a less direct, more codependent connection).

7.2.1 AGN Feedback

Since the 1980s, it has been suspected that the vast amount of energy produced during

a SMBH accretion event could propagate through the host galaxy (e.g., Sanders et al.,

1988). Many theoretical studies have predicted that this vast amount of energy would

heat or expel gas en route (Magorrian et al. 1998; Silk & Rees 1998 and see the reviews

by Alexander & Hickox 2012; Fabian 2012; Harrison 2017 and references therein). This
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energy, termed “AGN feedback”, has been thought to negatively impact star formation

to such an extent that it could potentially stagnate further galaxy growth (at least in

the most massive galaxies). More succinctly, by introducing the effects of AGN feedback

(alongside supernova feedback for the lower stellar mass-regime) into their models, theo-

retical studies have managed to explain fundamental properties of the galaxy population

(e.g., the observed galaxy mass function, see Figure 7.1, Silk & Rees, 1998; Bell et al.,

2003; Benson et al., 2003; Di Matteo et al., 2005; Springel et al., 2005; Croton et al.,

2006; Bower et al., 2006; Cattaneo et al., 2006; Hopkins et al., 2006; Panter et al., 2007;

Hopkins et al., 2008; Somerville et al., 2008; Booth & Schaye, 2009; Silk & Mamon,

2012; Dubois et al., 2013; Vogelsberger et al., 2013; Schaye et al., 2015; Dubois et al.,

2016; Pillepich et al., 2018). According to this scenario, the relationship between SMBH

accretion and star-formation should be a negatively-correlated one, where more rapidly

accreting SMBHs (or more luminous AGNs) should be suppressing star formation more

than less rapidly accreting SMBHs. If this paradigm holds, AGN feedback has had a

severe impact on the ability of the host galaxy to grow and has thus played large part

in the way galaxies have evolved. Some studies have thus explored AGN feedback in the

context of galaxy evolution and have suggested that AGN feedback could be responsi-

ble for transforming star-forming galaxies into more quiescent ones (e.g., Sanders et al.,

1988; Springel et al., 2005; Sijacki et al., 2007; Booth & Schaye, 2009; Kormendy et al.,

2009; Kormendy & Ho, 2013, although Jackson et al. 2019 suggested that AGN feedback

is not a requirement of this transition).

Observationally, AGN feedback – mediated by AGN driven outflows – has been widely

reported (e.g., Greene et al., 2012; Brusa et al., 2018). Whilst some studies do find that

the presence of AGN driven outflows appears to suppress star formation (e.g., Cicone

et al., 2014; Cresci et al., 2015b; Carniani et al., 2016; Cresci & Maiolino, 2018), some

studies still identify strong star formation in (or certainly close to) an AGN driven outflow

(e.g., Cresci et al., 2015a; Maiolino et al., 2017; Cresci & Maiolino, 2018; Gallagher et al.,
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Figure 7.1: The stellar mass to halo mass ratio as a function of halo mass. Plotted
in green are the empirical results found in Moster et al. (2010). All other plots show
the results of different theoretical models with differences in the quenching mechanisms.
The red open circles show the model without AGN feedback, where there is an excess of
massive galaxies compared to the empirical values. This Figure was originally presented
in Somerville et al. (2008).
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2019), leaving the true effects of AGN feedback still uncertain. Additionally, if AGN

feedback is to negatively impact star formation on galaxy-wide scales, the extent of the

outflow must be galaxy wide. However, there is also considerable debate as to the extent

at which feedback can propagate into the host galaxy (see Tadhunter et al., 2018, for a

discussion). This implies that if AGN feedback is quenching star formation, it is either

not instantaneous, not consistent or not on galaxy-wide scales.

Given the studies presented in this thesis compare the galaxy-wide SFR with the

power of the AGN, it may initially make sense to compare our results in the context

of AGN feedback. However, because any study investigating the instantaneous SMBH

accretion rate with recently time-averaged star formation fails to account for the in-

evitable time-delay between the onset of SMBH activity and the time required to quench

(or enhance) any star formation, our results provide little clarity to the AGN feedback

paradigm. More specifically, it would be inaccurate to suggest our results provide evi-

dence of positive feedback just because we observe a connection between higher levels of

recent (yet historic) star formation and greater (instantaneous) SMBH activity. There-

fore we stress that the results of this thesis provide little help in solving the AGN feedback

paradigm. Instead, our results are more helpful at looking at the triggering and fuelling

of AGNs and star-formation.

7.2.2 Gas availability

Both star formation and SMBH accretion rely on gas supply (e.g Maiolino et al., 1997).

However, both of these processes require specific conditions. Firstly, stars are formed

from the gravitational collapse of cold, dense, molecular clouds of gas and secondly, an

AGN may only be triggered if gas is driven down to the innermost regions of galaxies

(i.e., the vicinity of the SMBH). It is therefore logical to suggest that just because

a particular galaxy hosts a large cold molecular gas reservoir, it does not necessarily
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mean a guaranteed increase in star forming activity or AGN activity. Instead, a more

logical proposition is that the probability of SMBH accretion and SFR is regulated by

gas supply. To this extent, a tight correlation between SFR and dense molecular gas

has been long identified (e.g., Schmidt, 1959; Kennicutt, 1998; Gao & Solomon, 2004;

Shangguan et al., 2020a), indicating a strong dependency of star formation on the cold

molecular gas content of the host galaxy. However, studies investigating the host galaxy

gas fraction of AGNs have found mixed results, with some studies suggesting that AGNs

reside in systems with enhanced gas fractions (e.g., Bertram et al., 2007; König et al.,

2009; Yesuf et al., 2017; Shangguan et al., 2018, 2019, 2020b; Yesuf & Ho, 2020), in

systems with normal levels of gas (i.e., comparable to non-AGN galaxies, e.g., Fabello

et al., 2011; Xia et al., 2012; Krips et al., 2012; Villar-Mart́ın et al., 2013; Husemann

et al., 2017; Rosario et al., 2018; Ellison et al., 2019), and some in gas-poor systems (e.g.,

Haan et al., 2008; Brusa et al., 2015; Kakkad et al., 2017; Perna et al., 2018). However,

in a very recent study that attempted to understand the interplay between gas and AGN

activity and star formation, Yesuf & Ho (2020) analysed the molecular gas content of

a sample of type 2 AGNs and provided an evolutionary scenario by which both star

formation and SMBH accretion are “mediated” by the host galaxy gas content. Those

authors suggest that in a gas-rich system (the creation of which may be due to a gas-rich

merger, see Sanders et al. 1988; Di Matteo et al. 2005; Hopkins et al. 2006), vigorous

star formation takes place initially, after-which stochastic SMBH accretion is more likely

to trigger AGNs. Star formation would then likely be self-regulated by the impact of

supernovae, which could lower the SFR. After consumption of the majority of its fuel,

the galaxy then moves to a stage of gas-poor, star-forming quiescence, with only small

episodes of AGN activity occurring with any remaining gas supply and very little star

formation. This situation would explain why AGNs are seen in galaxies with varying

levels of gas. This paradigm is also supported by the work of Delvecchio et al. (2019),

who claimed in the early stages of BH-galaxy growth, the SMBH grows slower than the



Discussion and Conclusions 150

host galaxy, before undergoing rapid growth later.

The results of the studies in this thesis are consistent with the prediction that gas

content is ultimately regulating the probability of SMBH accretion and, in a more direct

way, the probability of star-formation, with the observed connections being the result of

codependence rather than direct dependence. More specifically, the results of Chapter 3

(suggesting a change in the probability distribution of sLX for starbursting galaxies)

support the idea that that, whilst starburst and non-starburst galaxies had similar max-

imum accretion rates, there is a larger fraction of SMBHs in starburst galaxies with

accretion rates above 10% of their Eddington limit (approximately 1 in 10 at z ≈ 2)

when compared to their non-starburst counterparts (1 in 60 − 70 at z ≈ 2). Referring

back to the previously mentioned evolution scenario, AGNs can be triggered throughout,

but there is a higher probability of excess accretion shortly after the initial star-forming

burst when the host galaxy gas fraction remains high. This message is reinforced by the

results of Chapters 4 and 5. AGNs with higher LX tend to have more consistent and

slightly higher rates of star-forming activity. Firstly, the ability of lower LX AGNs to

reside in a wider range of star-forming galaxies is consistent with the idea that the vast

majority of galaxies have enough gas to increase the probability of triggering a lower

luminosity AGN (even during the gas-poor quiescent scenario as mentioned previously),

whereas those systems with higher levels of star formation (and hence gas) have enough

gas to trigger a higher LX AGN. This scenario is only strengthened by the consideration

that quasars tend to reside in the most rapidly star-forming systems (e.g., Rosario et al.,

2013; Kalfountzou et al., 2014; Stanley et al., 2017; Jarvis et al., 2020), which would be

consistent with an extrapolation of our results in Chapters 4 and 5.
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7.3 Concluding remarks

Revealing the full extent as to which a SMBH and its host galaxy are connected remains a

complex and uncertain process. In this thesis, we specifically investigated the relationship

between the rate of growth of a SMBH (witnessed as AGN) and host galaxy (witnessed

through star formation). Given the complex and mixed results seen in the literature,

we set out to pursue a more detailed statistical analysis and have presented studies

utilising some of the most revealing statistical analyses to date. In summary, we have

identified some new and reinforced some previous findings of some crucial characteristics

of galaxies and SMBHs. More specifically, the results of this thesis tend to suggest that

rapid SMBH accretion is more closely connected to higher rates of star formation and

we propose this is consistent with the probability of both processes being regulated by

cold, dense, molecular gas supply in the host galaxy.
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König S., Eckart A., Garćıa-Maŕın M., Huchtmeier W. K., 2009, A&A, 507, 757

Kormendy J., Ho L. C., 2013, ARAA, 51, 511

Kormendy J., Richstone D., 1995, ARAA, 33, 581

Kormendy J., et al., 1997, ApJL, 482, L139

Kormendy J., Fisher D. B., Cornell M. E., Bender R., 2009, ApJS, 182, 216

Krips M., Neri R., Cox P., 2012, ApJ, 753, 135

Krolik J. H., Begelman M. C., 1988, ApJ, 329, 702

Kroupa P., 2001, MNRAS, 322, 231

http://dx.doi.org/10.1093/mnras/stz2440
https://ui.adsabs.harvard.edu/abs/2019MNRAS.489.4679J
https://ui.adsabs.harvard.edu/abs/2020arXiv200710351J
http://dx.doi.org/10.3847/1538-4357/aad4af
http://adsabs.harvard.edu/abs/2018ApJ...864...56J
http://dx.doi.org/10.3847/0004-637X/826/1/12
http://adsabs.harvard.edu/abs/2016ApJ...826...12J
http://dx.doi.org/10.1093/mnras/stx726
https://ui.adsabs.harvard.edu/abs/2017MNRAS.468.4205K
http://dx.doi.org/10.1093/mnras/stu782
https://ui.adsabs.harvard.edu/abs/2014MNRAS.442.1181K
http://dx.doi.org/10.1088/0004-637X/730/2/61
https://ui.adsabs.harvard.edu/abs/2011ApJ...730...61K
http://dx.doi.org/10.1088/2041-8205/777/1/L8
https://ui.adsabs.harvard.edu/abs/2013ApJ...777L...8K
http://dx.doi.org/10.1093/mnras/sty2029
http://adsabs.harvard.edu/abs/2018MNRAS.480.3201K
http://dx.doi.org/10.1111/j.1365-2966.2009.14960.x
http://adsabs.harvard.edu/abs/2009MNRAS.397..135K
http://dx.doi.org/10.1111/j.1365-2966.2003.07154.x
http://adsabs.harvard.edu/abs/2003MNRAS.346.1055K
http://dx.doi.org/10.1093/mnrasl/slz102
https://ui.adsabs.harvard.edu/abs/2019MNRAS.489L..12K
http://dx.doi.org/10.1146/annurev.astro.36.1.189
http://adsabs.harvard.edu/abs/1998ARA%26A..36..189K
http://dx.doi.org/10.1146/annurev-astro-081811-125610
http://adsabs.harvard.edu/abs/2012ARA%26A..50..531K
http://dx.doi.org/10.1088/0004-637X/703/2/1672
https://ui.adsabs.harvard.edu/abs/2009ApJ...703.1672K
http://dx.doi.org/10.1111/j.1745-3933.2006.00249.x
https://ui.adsabs.harvard.edu/abs/2006MNRAS.373L..90K
http://dx.doi.org/10.1051/0004-6361/200912546
https://ui.adsabs.harvard.edu/abs/2009A&A...507..757K
http://dx.doi.org/10.1146/annurev-astro-082708-101811
https://ui.adsabs.harvard.edu/abs/2013ARA&A..51..511K
http://dx.doi.org/10.1146/annurev.aa.33.090195.003053
http://adsabs.harvard.edu/abs/1995ARA%26A..33..581K
http://dx.doi.org/10.1086/310720
https://ui.adsabs.harvard.edu/abs/1997ApJ...482L.139K
http://dx.doi.org/10.1088/0067-0049/182/1/216
https://ui.adsabs.harvard.edu/abs/2009ApJS..182..216K
http://dx.doi.org/10.1088/0004-637X/753/2/135
https://ui.adsabs.harvard.edu/abs/2012ApJ...753..135K
http://dx.doi.org/10.1086/166414
https://ui.adsabs.harvard.edu/abs/1988ApJ...329..702K
http://dx.doi.org/10.1046/j.1365-8711.2001.04022.x
https://ui.adsabs.harvard.edu/abs/2001MNRAS.322..231K


Discussion and Conclusions 160

Kroupa P., Weidner C., Pflamm-Altenburg J., Thies I., Dabringhausen J., Marks M.,
Maschberger T., 2013, The Stellar and Sub-Stellar Initial Mass Function of Simple
and Composite Populations. p. 115, doi:10.1007/978-94-007-5612-0˙4

Krumholz M. R., 2014, Physics Reports, 539, 49

Krumholz M. R., Thompson T. A., 2007, ApJ, 669, 289

Kubota A., Done C., 2018, MNRAS, 480, 1247

LaMassa S. M., Heckman T. M., Ptak A., Martins L., Wild V., Sonnentrucker P., 2010,
ApJ, 720, 786

Lacy M., et al., 2004, ApJS, 154, 166

Lacy M., Ridgway S. E., Sajina A., Petric A. O., Gates E. L., Urrutia T., Storrie-
Lombardi L. J., 2015, ApJ, 802, 102

Laigle C., et al., 2016, ApJS, 224, 24

Laigle C., et al., 2019, MNRAS, 486, 5104

Lamastra A., Bianchi S., Matt G., Perola G. C., Barcons X., Carrera F. J., 2009, A&A,
504, 73

Lansbury G. B., et al., 2017, ApJ, 846, 20

Lanzuisi G., et al., 2017, A&A, 602, A123

Larson R. B., 2003, Reports on Progress in Physics, 66, 1651

Larson R. B., 2010, Reports on Progress in Physics, 73, 014901

Larson D., et al., 2011, ApJS, 192, 16

Laurent O., Mirabel I. F., Charmandaris V., Gallais P., Madden S. C., Sauvage M.,
Vigroux L., Cesarsky C., 2000, A&A, 359, 887

Lequeux J., Maucherat-Joubert M., Deharveng J. M., Kunth D., 1981, A&A, 103, 305

Liang E. P. T., Price R. H., 1977, ApJ, 218, 247

Lira P., Videla L., Wu Y., Alonso-Herrero A., Alexander D. M., Ward M., 2013, ApJ,
764, 159

Liu D., et al., 2018, ApJ, 853, 172

Lo K. Y., Shen Z.-Q., Zhao J.-H., Ho P. T. P., 1998, ApJL, 508, L61

Lusso E., et al., 2010, A&A, 512, A34

http://dx.doi.org/10.1007/978-94-007-5612-0_4
http://dx.doi.org/10.1016/j.physrep.2014.02.001
https://ui.adsabs.harvard.edu/abs/2014PhR...539...49K
http://dx.doi.org/10.1086/521642
https://ui.adsabs.harvard.edu/abs/2007ApJ...669..289K
http://dx.doi.org/10.1093/mnras/sty1890
https://ui.adsabs.harvard.edu/abs/2018MNRAS.480.1247K
http://dx.doi.org/10.1088/0004-637X/720/1/786
https://ui.adsabs.harvard.edu/abs/2010ApJ...720..786L
http://dx.doi.org/10.1086/422816
https://ui.adsabs.harvard.edu/abs/2004ApJS..154..166L
http://dx.doi.org/10.1088/0004-637X/802/2/102
https://ui.adsabs.harvard.edu/abs/2015ApJ...802..102L
http://dx.doi.org/10.3847/0067-0049/224/2/24
http://adsabs.harvard.edu/abs/2016ApJS..224...24L
http://dx.doi.org/10.1093/mnras/stz1054
https://ui.adsabs.harvard.edu/abs/2019MNRAS.486.5104L
http://dx.doi.org/10.1051/0004-6361/200912023
https://ui.adsabs.harvard.edu/abs/2009A&A...504...73L
http://dx.doi.org/10.3847/1538-4357/aa8176
https://ui.adsabs.harvard.edu/abs/2017ApJ...846...20L
http://dx.doi.org/10.1051/0004-6361/201629955
http://adsabs.harvard.edu/abs/2017A%26A...602A.123L
http://dx.doi.org/10.1088/0034-4885/66/10/R03
https://ui.adsabs.harvard.edu/abs/2003RPPh...66.1651L
http://dx.doi.org/10.1088/0034-4885/73/1/014901
https://ui.adsabs.harvard.edu/abs/2010RPPh...73a4901L
http://dx.doi.org/10.1088/0067-0049/192/2/16
https://ui.adsabs.harvard.edu/abs/2011ApJS..192...16L
https://ui.adsabs.harvard.edu/abs/2000A&A...359..887L
https://ui.adsabs.harvard.edu/abs/1981A&A...103..305L
http://dx.doi.org/10.1086/155677
https://ui.adsabs.harvard.edu/abs/1977ApJ...218..247L
http://dx.doi.org/10.1088/0004-637X/764/2/159
https://ui.adsabs.harvard.edu/abs/2013ApJ...764..159L
http://dx.doi.org/10.3847/1538-4357/aaa600
http://adsabs.harvard.edu/abs/2018ApJ...853..172L
http://dx.doi.org/10.1086/311726
https://ui.adsabs.harvard.edu/abs/1998ApJ...508L..61L
http://dx.doi.org/10.1051/0004-6361/200913298
https://ui.adsabs.harvard.edu/abs/2010A&A...512A..34L


Discussion and Conclusions 161

Lutz D., et al., 2011, A&A, 532, A90

Lynden-Bell D., 1969, Nature, 223, 690

Lynden-Bell D., 1978, Physica Scripta, 17, 185

Lynden-Bell D., Rees M. J., 1971, MNRAS, 152, 461

Madau P., Dickinson M., 2014, ARAA, 52, 415

Madau P., Pozzetti L., Dickinson M., 1998, ApJ, 498, 106

Magorrian J., et al., 1998, AJ, 115, 2285

Maiolino R., Ruiz M., Rieke G. H., Papadopoulos P., 1997, ApJ, 485, 552

Maiolino R., et al., 2017, Nature, 544, 202

Malkan M. A., Sargent W. L. W., 1982, ApJ, 254, 22

Marchesi S., et al., 2016, ApJ, 817, 34

Marconi A., Hunt L. K., 2003, ApJL, 589, L21

Mart́ınez-Sansigre A., Rawlings S., Lacy M., Fadda D., Jarvis M. J., Marleau F. R.,
Simpson C., Willott C. J., 2006, MNRAS, 370, 1479

Masoura V. A., Mountrichas G., Georgantopoulos I., Ruiz A., Magdis G., Plionis M.,
2018, A&A, 618, A31

Mateos S., Alonso-Herrero A., Carrera F. J., Blain A., Severgnini P., Caccianiga A.,
Ruiz A., 2013, MNRAS, 434, 941

McAlpine S., Bower R. G., Harrison C. M., Crain R. A., Schaller M., Schaye J., Theuns
T., 2017, MNRAS, 468, 3395

McConnell N. J., Ma C.-P., 2013, ApJ, 764, 184

McKee C. F., Ostriker E. C., 2007, ARAA, 45, 565

Merloni A., Rudnick G., Di Matteo T., 2004, MNRAS, 354, L37

Merritt D., Ferrarese L., 2001, ApJ, 547, 140

Metropolis N., Rosenbluth A. W., Rosenbluth M. N., Teller A. H., Teller E., 1953,
Journal of Chemical Physics, 21, 1087

Miller J. S., Goodrich B. F., 1986, in Bulletin of the American Astronomical Society.
p. 1001

Mobasher B., et al., 2015, ApJ, 808, 101

http://dx.doi.org/10.1051/0004-6361/201117107
http://adsabs.harvard.edu/abs/2011A%26A...532A..90L
http://dx.doi.org/10.1038/223690a0
https://ui.adsabs.harvard.edu/abs/1969Natur.223..690L
http://dx.doi.org/10.1088/0031-8949/17/3/009
https://ui.adsabs.harvard.edu/abs/1978PhyS...17..185L
http://dx.doi.org/10.1093/mnras/152.4.461
https://ui.adsabs.harvard.edu/abs/1971MNRAS.152..461L
http://dx.doi.org/10.1146/annurev-astro-081811-125615
http://adsabs.harvard.edu/abs/2014ARA%26A..52..415M
http://dx.doi.org/10.1086/305523
https://ui.adsabs.harvard.edu/abs/1998ApJ...498..106M
http://dx.doi.org/10.1086/300353
http://adsabs.harvard.edu/abs/1998AJ....115.2285M
http://dx.doi.org/10.1086/304438
https://ui.adsabs.harvard.edu/abs/1997ApJ...485..552M
http://dx.doi.org/10.1038/nature21677
https://ui.adsabs.harvard.edu/abs/2017Natur.544..202M
http://dx.doi.org/10.1086/159701
https://ui.adsabs.harvard.edu/abs/1982ApJ...254...22M
http://dx.doi.org/10.3847/0004-637X/817/1/34
http://adsabs.harvard.edu/abs/2016ApJ...817...34M
http://dx.doi.org/10.1086/375804
http://adsabs.harvard.edu/abs/2003ApJ...589L..21M
http://dx.doi.org/10.1111/j.1365-2966.2006.10563.x
https://ui.adsabs.harvard.edu/abs/2006MNRAS.370.1479M
http://dx.doi.org/10.1051/0004-6361/201833397
https://ui.adsabs.harvard.edu/abs/2018A&A...618A..31M
http://dx.doi.org/10.1093/mnras/stt953
https://ui.adsabs.harvard.edu/abs/2013MNRAS.434..941M
http://dx.doi.org/10.1093/mnras/stx658
http://adsabs.harvard.edu/abs/2017MNRAS.468.3395M
http://dx.doi.org/10.1088/0004-637X/764/2/184
https://ui.adsabs.harvard.edu/abs/2013ApJ...764..184M
http://dx.doi.org/10.1146/annurev.astro.45.051806.110602
https://ui.adsabs.harvard.edu/abs/2007ARA&A..45..565M
http://dx.doi.org/10.1111/j.1365-2966.2004.08382.x
https://ui.adsabs.harvard.edu/abs/2004MNRAS.354L..37M
http://dx.doi.org/10.1086/318372
https://ui.adsabs.harvard.edu/abs/2001ApJ...547..140M
http://dx.doi.org/10.1063/1.1699114
https://ui.adsabs.harvard.edu/abs/1953JChPh..21.1087M
http://dx.doi.org/10.1088/0004-637X/808/1/101
https://ui.adsabs.harvard.edu/abs/2015ApJ...808..101M


Discussion and Conclusions 162

Moster B. P., Somerville R. S., Maulbetsch C., van den Bosch F. C., Macciò A. V., Naab
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