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Abstract

Sparse relative effectiveness evidence is a frequent problem in Health Technology Assessment
(HTA). For example, evidence on a particular comparator or randomised evidence in a specific
population (e.g. paediatric) may be limited. Where evidence directly pertaining the decision
problem is sparse, one could expand the evidence base to include studies relating to the decision
problem only indirectly: for instance, when there is no evidence on a specific comparator, evidence
from other treatments of the same molecular class could be used; similarly, a decision on children
may borrow strength from evidence on adults. Usually, in HTA, such indirect evidence is either
included by ignoring any differences (‘lumping’) or is not allowed to influence the decision
(‘splitting’). However, more sophisticated methods exist in the literature which, rather than
lumping or splitting, borrow strength from the indirect evidence by imposing more moderate, and
perhaps more appropriate, degrees of information-sharing.

This thesis commences with a systematic review that sought to identify methods to combine evi-
dence directly and indirectly relating to a research question. A classification of Information-sharing
methods (ISMs) according to the main assumption employed to facilitate information-sharing
is proposed. Subsequently, detailed descriptions of methods’ assumptions and implementation
suggestions are provided in the context of a specific synthesis problem. To aid transparency in
selecting ISMs, a step-by-step approach that could be useful for HTA analysts and policy-makers
is proposed. Then, all applicable methods are used to borrow strength from indirect evidence on
relative effectiveness in a case-study. Findings imply that the choice of method can affect how
much strength is borrowed, impact relative effectiveness estimates, and influence adoption and
research recommendation decisions. Then, the strength of information-sharing imposed by the
various methods is investigated using probabilistic scenarios. Finally, lessons learned throughout
the thesis are distilled into a set of recommendations for HTA practice.

2



Contents

Abstract 2

List of Tables 7

List of Figures 9

Acknowledgements 14

Declaration 15

1 Introduction 16
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.2 Thesis aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Synthesis and modelling methods in Health Technology Assessment 24
2.1 Evidence synthesis methods for binary data . . . . . . . . . . . . . . . . . . 24

2.1.1 Pairwise meta-analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.2 Network meta-analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1.3 Model fitting and model comparison . . . . . . . . . . . . . . . . . . 28
2.1.4 Heterogeneity and meta-regression . . . . . . . . . . . . . . . . . . . 29

2.2 Decision modelling methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.1 Model structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.2 Model inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2.3 Making decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2.4 Evaluating uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2.5 Value of information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Classifying information-sharing methods: a citation-mining review 43
3.1 Chapter aims and structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.1 Characteristics of the included studies . . . . . . . . . . . . . . . . . 46
3.3.2 ‘Core’ assumptions of information-sharing . . . . . . . . . . . . . . . 49
3.3.3 Information-sharing methods . . . . . . . . . . . . . . . . . . . . . . . 52

3



CONTENTS

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Network meta-analytic methods that borrow strength from aggregate-level bi-
nary evidence from indirectly related populations 59
4.1 Chapter aims and structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Definition of the synthesis problem . . . . . . . . . . . . . . . . . . . . . . . 60
4.3 The ‘splitting-model’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4 Information-sharing methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.1 Functional relationships . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4.2 Exchangeability-based relationships . . . . . . . . . . . . . . . . . . . 68
4.4.3 Prior-based relationships . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5 A ‘methods identification’ framework . . . . . . . . . . . . . . . . . . . . . . 79
4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Borrowing strength from paediatric patients to inform relative effectiveness in
adults: a case-study 88
5.1 Chapter aims and structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.2 Background to the case-study . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2.1 Decision problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2.2 Previous work on clinical effectiveness . . . . . . . . . . . . . . . . . 90

5.3 Motivation for this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.4 Systematic review update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.5 Naive analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.6 Re-exploration of heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.6.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.7 Sharing information between adult and paediatric evidence . . . . . . . . . 113
5.7.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.7.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6 Policy-implications of information-sharing:
cost-effectiveness and value of information analyses 129
6.1 Chapter aims and structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.2.1 Decision model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4



CONTENTS

6.2.2 Policy-related outcome measures . . . . . . . . . . . . . . . . . . . . . 133

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.3.1 ICERs and decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.3.2 Probability of being cost-effective and EVPI . . . . . . . . . . . . . . 138

6.3.3 EVPPI and EVSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7 Comparing information-sharing methods: a simulation 149

7.1 Chapter aims and structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.2.1 Simulation aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.2.2 Data generating mechanisms . . . . . . . . . . . . . . . . . . . . . . . 151

7.2.3 Target quantity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.2.4 Information-sharing methods . . . . . . . . . . . . . . . . . . . . . . . 157

7.2.5 Strength-of-sharing measures . . . . . . . . . . . . . . . . . . . . . . . 159

7.2.6 Software and implementation . . . . . . . . . . . . . . . . . . . . . . 161

7.2.7 Presentational methods . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.3.1 Fixed-effect simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.3.2 Random-effects simulation . . . . . . . . . . . . . . . . . . . . . . . . 174

7.3.3 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

8 Discussion 185

8.1 Thesis summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

8.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

8.3 Strengths of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

8.4 Limitations and directions for future research . . . . . . . . . . . . . . . . . 194

8.4.1 Methods-related research . . . . . . . . . . . . . . . . . . . . . . . . . 194

8.4.2 Policy-related research . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

8.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

Appendices 200

A Appendix to Chapter 3: Classifying information-sharing methods: a citation-
mining review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

A.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

A.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

5



CONTENTS

B Appendix to Chapter 5: Borrowing strength from paediatric patients to
inform relative effectiveness in adults: a case-study . . . . . . . . . . . . . . 216
B.1 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
B.2 Systematic review update . . . . . . . . . . . . . . . . . . . . . . . . . 217
B.3 Naive analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
B.4 Heterogeneity re-exploration . . . . . . . . . . . . . . . . . . . . . . . 222
B.5 Sharing information between adults and paediatric patients . . . . . 227
B.6 Power-prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

C Appendix to Chapter 6: Policy-implications of information-sharing:
cost-effectiveness and value of information analyses . . . . . . . . . . . . . 236
C.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
C.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

D Appendix to Chapter 7: Comparing information-sharing methods: a simu-
lation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
D.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
D.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

Acronyms 253

Bibliography 255

6



List of Tables

2.1 Decision model inputs and usual sources of evidence. . . . . . . . . . . . . 35

3.1 ‘Pearls’ (i.e. seminal papers) used for forwards and backwards citation-
mining. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Main synthesis challenges identified and relevant references. . . . . . . . . 48

3.3 A categorisation of papers that share information on the relative effective-
ness parameter according to the ‘core’ method that they use and the PICOS
level that direct and indirect evidence differ in. . . . . . . . . . . . . . . . . . 51

4.1 An example of an extended evidence base. A binary variable X is used to
indicate the source that each study pertains. . . . . . . . . . . . . . . . . . . 61

4.2 A summary of the methods described in this chapter that share information
only on the Relative Treatment Effect (RTE) mean d. . . . . . . . . . . . . . . 82

4.2 A summary of the methods described in this chapter that share information
only on the RTE mean d (continued). . . . . . . . . . . . . . . . . . . . . . . . 83

4.3 A summary of methods that share information on τ and can therefore be
used under Random-Effects (RE) base-models. . . . . . . . . . . . . . . . . . 84

5.1 Research question investigated in Soares et al., 2012. . . . . . . . . . . . . . 90

5.2 Final set of synthesis models considered in Soares et al., 2012. . . . . . . . . 92

5.3 Data used for all the models. . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4 Characteristics of the direct (adult) and the indirect (paediatric) evidence
bases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.5 Results of Step 1 of the re-exploration of heterogeneity. . . . . . . . . . . . . 106

5.6 Step 2c. Results of meta-regression models on various covariates in network
T3b. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.7 Results of meta-regression models on duration for all network parametrisa-
tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.8 Step 3. Meta-regression models with multiple covariates in T3b network.
The first two columns of β correspond to the adult and paediatric coef-
ficients for the first variable and the next two columns for the second
variable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7



LIST OF TABLES

5.9 ‘Hybrid’ models that do not use the same covariates in the two populations.
T3b network parametrisation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.10 The final list of models used in this work. . . . . . . . . . . . . . . . . . . . . 112
5.11 Applicable methods for each base-model of Table 5.10. . . . . . . . . . . . . 114
5.12 Predictions across all eligible ISMs for the T3b Duration FE and the T2

Jadad RE base-models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.13 Relative ranking of ISMs in descending order (1 is the highest). . . . . . . . 126

6.1 Key decision-model inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.2 ICERs, total costs, and total QALYs for all applicable ISMs. . . . . . . . . . . 137
6.3 Probability of IVIG/IVIGAM being cost-effective (pCE) and population

EVPI at 10 years. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.4 ISMs for each base-model ranked according to optimal sample size in

ascending order. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.1 Properties of direct and indirect evidence across scenarios in Fixed-Effects
(FE) and RE simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.2 ISMs used in the FE and RE simulations. . . . . . . . . . . . . . . . . . . . . 158
7.3 A summary of the main characteristics of the simulation. . . . . . . . . . . . 162
7.4 Sucra values of the two strength-of-sharing measures (PED, PrI) used in

the analysis of the base-case scenario under a FE model. . . . . . . . . . . . 163
7.5 Sucra values for PED and PrI in the base-case scenario of the RE simulation.174

A.2.1A brief summary of the papers included in the citation-mining review. . . . 202
B.1.1 Characteristics of the interventions used in the included studies. . . . . . . 216
B.2.1 Search in Ovid MEDLINE(R). . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
B.2.2 Search in EMBASE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
B.2.3 Current evidence totality comprising from Randomised Controlled Trial

(RCT)s on both adult and paediatric patients. . . . . . . . . . . . . . . . . . . 219
B.4.1 Step 2. T2 Network results of meta-regression models on covariates shown

in the first column. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
B.4.2 Step 2. T3a Network results of meta-regression models on covariates. . . . 223
B.4.3 Step 2. T4 Network results of meta-regression models on covariates. . . . . 224
B.4.4 Results of meta-regression models on sample size for all network parametri-

sations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
B.4.5 Results of Meta-Regression models on Jadad for all network parametrisations.225
B.4.6 The final lists of models in Soares et al., 2012 and after the inclusion of the

paediatric studies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

8



LIST OF TABLES

B.5.1 ISMs results for the T3b FE meta-regression on sample size base-model. . . 231
B.5.2 ISMs results for T3b RE base-model without any covariates. . . . . . . . . . 231
B.5.3 ISMs for T2 RE meta-regression on Jadad score. . . . . . . . . . . . . . . . . 233
C.2.1Policy measures for ISMs under the T2 RE Jadad meta-regression base-model.238
C.2.2Policy measures for all ISMs used under the T3b Duration FE base-model. 239

9



List of Figures

1.1 Extended evidence base. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1 FE (A) and RE (B). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 An example of a connected network. . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 An illustration of direct and indirect evidence in Network Meta-Analysis
(NMA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 An example of a decision tree. . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 An example of a Markov model. . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6 The cost-effectiveness plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.7 An example of how the results of the Probabilistic Sensitivity Analysis
(PSA) can be used in the incremental cost-effectiveness plane to represent
joint uncertainty in costs and effects. . . . . . . . . . . . . . . . . . . . . . . . 38

2.8 An example of a Cost-Effectiveness Acceptability Curve (CEAC). . . . . . . 39

3.1 Citation-mining flow chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 An example of how constraints can be very informative under particular
circumstances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 An illustration of the multi-level model. . . . . . . . . . . . . . . . . . . . . . 69

4.3 A step-by-step process to identify applicable ISMs. . . . . . . . . . . . . . . 80

5.1 Different treatment parametrisations explored in Soares et al., 2012. . . . . 91

5.2 Flow chart. Results of the systematic review. . . . . . . . . . . . . . . . . . . 97

5.3 Updated graphs of networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.4 RE meta-analysis separately within each population and across both popu-
lations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.5 RE meta-analysis combining adult evidence with the large paediatric study
only. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.6 Resulting estimates of all ISMs for the Duration FE and the Jadad RE
base-models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.7 The predicted relative effects (IVIG/IVIGAM vs ALB) for Jadad = 5 of
power-prior models with varying alpha values between 0 (no-sharing/only
adults) and 1 (full sharing). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

10



LIST OF FIGURES

5.8 Statistical measures of ISMs used in the FE meta-regression on duration
base-model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.9 Statistical measures of ISMs used in the Jadad RE base-model. . . . . . . . 125

6.1 A simplified representation of the decision-model. . . . . . . . . . . . . . . . 130

6.2 ICERs and Decisions for all applicable ISMs across the Duration FE and
Jadad RE base-models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.3 Cost-effectiveness acceptability curves of all the applicable ISMs in the
FE meta-regression on treatment duration and the RE meta-regression on
Jadad score. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.4 Cost-effectiveness plane of the FE meta-regression on treatment duration
FE and the Jadad RE base-models in the no sharing/only adults case (i.e.
no information-sharing). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.5 Per person EVPIs of the various ISMs for the FE meta-regression on duration
and the RE meta-regression on Jadad score base-models. . . . . . . . . . . . 142

6.6 Population EVPPI at 10 years for the Duration FE base-model. . . . . . . . 144

6.7 Population EVPPI at 10 years for the Jadad RE base-model. . . . . . . . . . 145

7.1 An illustration of the two RTE quantities of interest. . . . . . . . . . . . . . . 156

7.2 Rankograms of ISMs used in the base-case scenario of the FE simulation. . 164

7.3 A case where the simulated data suggest the opposite direction of relative
effects than the specified constraint (Dataset 38 of the base-case scenario). . 166

7.4 Absolute values of PED and PrI across all simulations in the base-case
scenario under FE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.5 Forest plots of PED-ratios, Lumping SeR, and Splitting SeR across ISMs. . 168

7.6 Actual difference between direct and indirect LOR plotted against the
PED-ratio (top) and Splitting SeR (bottom) for mixture priors under FE. . . 170

7.7 Forest plots of PED-ratios, Lumping SeR, and Splitting SeR across all
methods for three scenarios with different sample size of the indirect
evidence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.8 The relationship between the degree of sharing imposed by the power-prior
with α = 0.5 and sample size of the indirect evidence for PED. . . . . . . . 172

7.9 Forest plots of PED-ratios, Lumping SeR, and Splitting SeR across all
methods for three scenarios with different overlapping coefficient between
direct and indirect evidence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.10 RE simulation. Forest plots of PED-ratios, Lumping SeR, and Splitting SeR,
across all ISMs used in the base-case scenario. . . . . . . . . . . . . . . . . . 176

11



LIST OF FIGURES

7.11 RE simulation. Forest plots of PED-ratios, Lumping SeR, and Splitting SeR
across ISMs used in the three heterogeneity scenarios. . . . . . . . . . . . . 177

7.12 RE simulation. Forest plots of PED-ratios, Lumping SeR, and Splitting SeR
across all ISMs used in the three percentage overlap scenarios. . . . . . . . 178

7.13 RE simulation. Forest plots of PED-ratios, Lumping SeR, and Splitting SeR
across all ISMs used in the two scenarios where the indirect patients are
differently distributed across studies. . . . . . . . . . . . . . . . . . . . . . . 179

B.3.1 FE meta-analysis separately within each population and across both popu-
lations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

B.3.2 Funnel-plot including all studies. Adult studies in black circles and paedi-
atric studies in red diamonds. . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

B.4.1 A comparison of the final list of base-models included in Soares et al., 2012
(black) and those included after the heterogeneity re-exploration in this
work (red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

B.5.1 An illustration of KL divergence from the standard normal distribution. . . 230

B.5.2 ISMs (except power-prior) of the FE Duration Meta-regression model and
the RE Jadad base-models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

B.6.1 Relative treatment effect (IVIG/IVIGAM vs ALB) estimates (y-axis) of re-
running power-prior models for different α values (x-axis), for the Jadad
RE base-model, under different scenarios for the indirect evidence. . . . . . 235

C.1.1Long-term survival of patients who experienced a severe sepsis or septic
shock episode. Comparison of different parametric survival curves. . . . . 237

D.1.1Standard deviation of strength of sharing measures (PED, PrI) for two ISMs
(Multi-level, Mixture priors) under FE. . . . . . . . . . . . . . . . . . . . . . . 240

D.1.2An illustration of two distributions with a 50% overlapping coefficient. . . 242

D.2.1FE simulation. PED-ratios, Lumping SeR, and Splitting SeR across all the
attempted methods for three scenarios characterised by different hetero-
geneity of the indirect evidence. . . . . . . . . . . . . . . . . . . . . . . . . . 247

D.2.2Rankograms of all ISMs used in the base-case scenario of the RE simulation.248

D.2.3PED-ratios for a set of ISMs against the actual point estimate difference in
the simulated direct and indirect evidence. . . . . . . . . . . . . . . . . . . . 249

D.2.4RE simulation. PED-ratios, Lumping SeR, and Splitting SeR of the various
ISMs under three scenarios characterised by a different sample size in the
indirect evidence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

D.2.5RE simulation. Absolute values for PED of a subset of methods under three
scenarios for the heterogeneity of the indirect evidence. . . . . . . . . . . . . 251

12



LIST OF FIGURES

D.2.6RE simulation. Standard error of relative effect estimates using different
ISMs for three different scenarios. One where direct and indirect evidence
exhibit very low percentage overlap (5%), one with medium (50%), and one
with high (75%). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

13



Acknowledgements

I am eternally thankful to my primary supervisor, Dr. Marta Soares for her invaluable
advice, continuous help, and insightful guidance throughout the whole process of this
thesis. I would also like to thank my two other supervisors, Mrs. Beth Woods for devoting
a substantial amount of time to help me with both general and technical aspects of this
work as well as Prof. Stephen Palmer for his astute advice to ensure that this work is
relevant to the policy-context and remains useful for decision-makers. Also, I am deeply
grateful to my Thesis Advisory Panel (TAP), Dr. Sylwia Bujkiewicz for devoting time,
both in TAP and other meetings, to bring in her statistical expertise and provide me with
useful comments and suggestions, as well as Dr. Mona Kanaan for overseeing the overall
process and offering important statistical advice on all matters.

I would also like to thank all staff and students in the Centre for Health Economics
who were always available for a friendly chat and made me feel welcome and supported
during these three years in York.

I acknowledge proofreading assistance kindly provided by Ewan Tomeny, Dr. David
Glynn, Michail Prapas, and Sophia Nikolaidou.

This thesis would have never been completed without the selfless help of my life-
partner and best friend, Dr. Chrysoula Rizava. I hope life will give me the chance to
reciprocate.

14



Declaration

I declare that this thesis is a presentation of original work and I am the sole author. This
work has not previously been presented for an award at this, or any other, university. All
sources are acknowledged as references.

My studies were funded by the Centre for Health Economics by the means of a PhD
Studentship.

15



Chapter 1

Introduction

Health Technology Assessment (HTA) is the process of systematically evaluating
the properties of a particular health technology (World Health Organization,
2018). These properties relate not only to the technology‘s effects on health

(e.g. clinical benefits), but also to wider concerns such as its cost and economic impact
on the healthcare system (Drummond et al., 2015). In some cases, the perspective is
further expanded to include societal welfare concerns such as patients’ or even carers’
productivity. However, for the purposes of this thesis the public-sector perspective
(including the National Health Service (NHS) and personal social services) is adopted
in accordance with National Institute for Health and Care Excellence (NICE) guidance.
This includes the costs borne by the public-sector, service users, and their families (NICE,
2013).

The term ‘health technology‘ might refer to any application of practical knowledge that
has the potential to improve health (Goodman, 2014). For instance, health technologies
are not only limited to pharmaceutical agents (e.g. monoclonal antibodies, vaccines), but
may also include procedures (e.g. surgery), medical devices (e.g. diagnostic tests), and
social interventions (e.g. educational or behavioural). The variety of existing technologies
combined with the rapid advent of new innovative expensive treatments implies that not
all technologies can be implemented, and thus not all needs can be met by a health care
system (Drummond et al., 2015). Regardless of whether or not a system functions under
explicit budget constraints, resources spent on a technology could have been used on
alternative options. Therefore, policy-makers considering the implementation of health
technologies are always faced with unavoidable decisions associated with opportunity
costs and benefits (Claxton et al., 2015b). It follows that a set of tools ought to be used so
that policy-makers can rationally and transparently decide about the adoption of specific
health technologies (Drummond et al., 2015).

Decision analysis offers a quantitative framework that brings together evidence on
all relevant parameters (e.g. natural history of disease, Relative Treatment Effects (RTEs),
Quality of Life (QoL), resources use, costs etc.), quantifies their relationships, and, after
making explicit judgements about social value and modelling structure, produces outputs
that can be useful in informing decision-makers regarding the value of alternative policy
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choices (Briggs et al., 2006). The process of constructing a Decision Analytic Model
(DAM) that accurately reflects technologies‘ relative performance, accounting for costs
and consequences of all alternative courses of action while producing outputs which
directly relate to explicit decision rules, is termed cost-effectiveness analysis. A broad
summary of the steps involved in cost-effectiveness analysis (Warner, 1989) is provided
below:

1. Define the decision problem in terms of the population, the intervention(s), the
comparator(s), and the outcome(s) of interest.

2. Identify alternative strategies (courses of action) and construct a DAM.

3. Identify evidence on all relevant model parameters (i.e. natural history, RTEs, costs,
resource use, QoL).

4. Synthesise multiple evidence sets on single parameters or groups of related parame-
ters accounting for parameter uncertainty.

5. Bring together the evidence on all relevant parameters quantitatively in a decision-
model.

6. Discount future costs and benefits.

7. Appropriately reflect uncertainty in model inputs and outputs.

8. Produce outputs (e.g. total costs and total effects) which will inform a deliberative
decision-making process.

17



1.1. Background

1.1. Background

A key component of cost-effectiveness analysis is the process of synthesising the identified
evidence. This entails the combination of the various sources of information to produce
estimates for single parameters or groups of parameters, and is hence different from
pooling the evidence together in a model where mathematical relationships are defined
among model inputs. Even though formal synthesis is rare for some decision model
inputs such as costs and QoL, for which only a few studies are usually available, it is
much more common for RTEs (Drummond et al., 2015). For this purpose, Meta-Analysis
(MA) is usually used. MA is a formal process that enables the statistical synthesis of
several independently conducted RCTs, and is considered in the top of the evidence
hierarchy due to its potential to minimise bias when the whole existing body of research
is considered (Haidich, 2010). Since the advent of the first meta-analytic methods which
aimed to facilitate the combination of multiple studies comparing the same two treatments
(DerSimonian and Laird, 1986), several extensions have been proposed to accommodate
particular evidence synthesis challenges and data structures. For instance, Network
Meta-Analysis (NMA), enables the simultaneous synthesis of several studies which do
not necessarily evaluate the same treatments, allowing treatment comparisons across the
whole network of treatments to be made (Lu and Ades, 2004) and the best treatment to be
identified. As a result, NMA has been widely used for policy-making where decision-
makers are often confronted with making decisions between multiple treatment options
in the absence of head-to-head studies that include all relevant treatments.

In evidence synthesis for decision-making, the amount of available evidence is of
paramount importance. To assist study selection in systematic reviews, guidance from the
Centre for Reviews and Dissemination (CRD) suggests that the research question should
be made explicit by defining its PICOS (P : Population, I : Intervention, C : Comparator, O
: Outcome, S : Study-design) (Centre for Reviews and Dissemination, 2006). The set of
evidence that comprises studies which investigate the research question as defined by all
dimensions of PICOS are henceforth termed direct evidence. Ideally, the direct evidence
on relative effectiveness for an HTA comprises of a collection of comparative studies,
appropriately randomised, evaluating all of the interventions under assessment, recruiting
patients from the population of interest, and measuring effects on all relevant outcomes.
Where such evidence is available, the aforementioned standard MA and NMA methods
may be used to synthesise the evidence base and provide decision models with the
appropriate relative effectiveness inputs and appropriate characterisation of uncertainty.

Often though, direct evidence in HTA is sparse and/or heterogeneous and synthesis
becomes challenging. Evidence sparsity is defined as the situation where sparse event
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rates are observed for one or more of the treatments under consideration, because either
only a few patients were recruited in the available trials, or studies reported at a short
follow-up (Dias et al., 2018). This can create several problems for HTA and estimates of
RTE. First, the required RTE estimates cannot often be obtained, and even when they
can, they are surrounded by high uncertainty and are not considered adequately robust
to inform an un-deferrable decision (Ades and Sutton, 2006). Second, evidence sparsity
may prevent appropriate exploration of heterogeneity because small studies are at higher
risk of enrolling unrepresentative populations (IntHout et al., 2015) and inappropriately
reporting patient characteristics (Soares, 2017). Finally, a sparse evidence base may
complicate the justification of distributional approximations for certain parameters of
interest (Sweeting et al., 2004).

A primary example concerns paediatric indications of health technologies where
the evidence base is typically sparse due to the regulatory restrictions on trials which
restrict evidence development in children. Hence, HTA is facing important barriers
because the absence of evidence prevents the precise quantification of the magnitude of
effect (English et al., 2010). Such situations have been considered by the U.S. Food and
Drugs Administration (FDA) (Food and Drug Administration and Center for Devices and
Radiological Health, 2016) and the European Medicines Agency (EMA). Specifically, EMA
has suggested that “The evidence needed to address the research questions that are important
for marketing authorisation of a given product in the target population might be modified based
on what is known for other populations” (European Medicines Agency, 2016). Therefore
equivalent evidence on adult patients may be considered for decision-making, while
acknowledging potential differences between the two populations. The proposal here is
to expand the evidence base (i.e. extrapolate) to include other evidence that relate to the
research question only indirectly, but may still be judged as relevant (i.e. indirect evidence).

Similarly, since the decision to include indirect evidence is based on a judgement of
its relevance to the research question, it is possible that evidence may be judged relevant
when the indirectness pertains to another PICOS dimension. For example, indirect
evidence pertaining to a study-design or a treatment that is not directly considered in the
decision research question may still be able to contribute relevant information. Figure 1.1
shows several cases where the direct evidence base may be expanded to consider indirectly
related evidence on any PICOS level. It becomes immediately apparent that if interest lies
in a particular treatment comparison even NMA can be considered as borrowing strength
from evidence on indirectly relevant treatment comparisons through the consistency
assumption to inform the treatment effect of primary focus (Ohlssen et al., 2014).

An important concern with the use of indirect evidence is the imposed level of
borrowing (i.e. the extent to which the indirect evidence is allowed to affect the estimates
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Figure 1.1: Extended evidence base.

O1: Evidence on 

different, correlated, 
endpoints

O2: Evidence on the same outcome 

reported at a different time-point
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from a different line of treatment

P0 I0

S0
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randomised studies

I1: Evidence on a different dosage 
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treatment which is compared 
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intervention of interest and 
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P2: Evidence on patients 

of different severity
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low quality RCTs

The direct evidence, characterised by P0, I0, C0, O0, S0 is included in the small circle in the centre. All the
evidence sets outside the small circle address a slightly different research question and may be considered
only indirectly relevant.

obtained by using only the direct evidence). In England and Wales, Technology Appraisals
(TAs) are conducted by NICE to assess whether new and existing technologies should be
routinely funded in the NHS. Typically, when indirect evidence is used in TAs, evidence
sets are either considered perfectly generalisable (lumping), or separated according to a
suspected source of heterogeneity and independently analysed (splitting). For example,
Duarte et al., 2017, expanded a paediatric evidence base by adding studies that enrolled
adult patients and lumped all trials in a single analysis. Also, Faria et al., 2016 generalised
relative effectiveness across subgroups of different Hepatitis C genotype and Rodgers et al.,
2011 combined evidence from studies that report at different follow-up periods without
accounting for the potential impact of the length of follow-up on relative effectiveness. In
contrast, Corbett et al., 2017 -TA 445- used a splitting approach and separately analysed the
evidence that relate to two population subgroups and four outcome measures, conducting
eight different analyses.
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Despite the fact that the majority of HTAs usually either lump or split, there are
examples of HTAs which use more sophisticated synthesis methods. These methods may
impose different levels of information-sharing between direct and indirect evidence. For
instance, Corbett et al., 2016 —TA 383 —not only assumed a ‘class-effect’ (i.e. exchange-
ability) among the RTEs of interventions that share the same molecular pathway, but also
functionally related two outcomes so that information on any outcome contributes to infer-
ences on the other outcomes. Also, McDaid et al., 2009 —TA139 —and Burch et al., 2008
—TA168 —simultaneously modelled two outcomes by allowing their correlation structure
to share information between outcome measures. Finally, Riemsna et al., 2011 —TA244
—modelled a network of interventions with multiple treatment components assuming
that the RTE of an intervention is the sum of the RTEs of its comprising components.

Overall, the use of indirectly related evidence necessarily implies that there is some
influence of the indirect evidence on the estimates of interest —that is, there is sharing
of information. On the one hand, borrowing strength enables the use of all available
relevant evidence, providing a coherent way to interpret the data from the synthesis to the
economic model. It may also yield more precise estimates and allow better characterisation
of heterogeneity and uncertainty, providing a more comprehensive basis for decision-
making. On the other hand, incorporating indirectly related evidence may introduce bias,
inflate heterogeneity, impose difficult-to-verify assumptions, and raise questions around
relevance. Crucially, underlying the use of indirect evidence is always a judgement of
relevance which is untestable, and can therefore be challenged. As a result, borrowing
strength from indirect evidence should not be viewed as a substitute for high-quality
direct evidence, but instead only as a way of making better use of all the available evidence
by explicitly describing assumptions that relate to information-sharing in order to produce
more appropriate inputs for decision-models.

To date, no work has attempted to bring together all the methods that can facilitate
information-sharing, and explore their implications for decision-making. Instead, exist-
ing work broadly falls into two categories: the first category is methodological papers
that develop models for very specific synthesis problems, such as the combination of
randomised and observational evidence (Verde and Ohmann, 2015), the simultaneous
analysis of evidence pertaining to multiple dosages of a particular treatment (Welton
et al., 2008), and bias-adjustment (Turner et al., 2009). Although these papers deal with
information-sharing, they lack the generality required to approach information-sharing
comprehensively. The second category includes papers that describe methods for multi-
parameter evidence synthesis (Ades and Sutton, 2006; Ades et al., 2008), discussing their
potential applicability and value for decision-making (Ades et al., 2006). However, these
papers were published more than 10 years ago, and do not include recent developments,

21



1.2. Thesis aims

or explore the policy implications of information-sharing. Hence, further research that
aims to produce more general guidance regarding the use of Information-sharing methods
(ISMs) in HTA and their implications for cost-effectiveness is warranted.

1.2. Thesis aims

This thesis is concerned with the use of evidence to support decision-making. In particular,
it is focused on issues relevant to the use of indirect evidence and methods that borrow
strength from indirect evidence to assist inference. Importantly, the notion of indirect
evidence is used in a broader manner than in the NMA literature1 and hence evidence
may be indirect to any PICOS level (see Figure 1.1).

The aims of this thesis are:

1. To identify and classify evidence synthesis methods that have been used in the
literature to combine evidence that directly and indirectly relate to a research
question.

2. To comprehensively describe the different methods that can be used to borrow
strength in a specific context (from an indirectly related population), identify explic-
itly their underlying assumptions, and show how they can be implemented.

3. To develop a framework for the identification and selection of applicable methods
that borrow strength in order to systematise the process of methods choice and in
this way aid transparency.

4. To illustrate the use of ISMs in an applied case-study.

5. To highlight the impact of using different ISMs on adoption and further research
recommendation decisions.

6. To understand which features of the evidence determine the extent of borrowing of
strength that each method imposes.

7. To produce recommendations for HTA practice and further methods research.

1In the NMA literature the term indirect evidence is only used to illustrate how the evidence that pertain to
the various treatment comparisons are allowed to influence one another through the consistency equations.
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1.3. Structure of the thesis

This thesis is structured in the following manner:
Chapter 2 starts by introducing the standard methodology for HTA focusing primarily

on evidence synthesis methods such as pairwise MA, NMA, and ways to account for and
explain heterogeneity. Subsequently, standard decision-modelling methods are described,
including decision rules, and ways to characterise uncertainty in decision-making and
prioritise further research towards where it is most needed.

Chapter 3 is a systematic review that used citation-mining techniques to identify
methods that have been used in the literature to combine evidence directly and indirectly
relating to a research question. A categorisation of the identified methods according to
the main assumption imposed to facilitate information-sharing is provided.

Chapter 4 considers the problem of synthesising independent studies conducted on
two different yet related populations, allowing information on relative effectiveness to
be shared between the two sets of studies. This chapter describes in detail the different
NMA methods that may be used for a specific synthesis problem, thoroughly discussing
the assumptions underpinning each approach. A step-by-step framework is suggested to
systematise the process of choosing ISMs, and aid transparency.

Chapter 5 is a case-study on the use of intravenous immunoglobulin (IVIG/IVIGAM)
for adults with severe sepsis and septic shock. The adult evidence base is expanded to
include evidence from paediatric patients. Several ISMs are used to combine the two
evidence sets. Methods are compared according to the degree of information-sharing
impose based on three different measures that aim to capture the impact on the point
estimate and the precision of the adult relative effect estimate.

In Chapter 6 the RTE estimates produced from the application of the various ISMs
in Chapter 5 are used in a decision model that evaluates the cost-effectiveness of
IVIG/IVIGAM. This work reveals the implications of information-sharing for policy.

Chapter 7 describes a simulation using probabilistic scenarios to compare ISMs
in terms of the degree of information-sharing they impose. The methods described in
Chapter 4 are reduced to the pairwise MA case. Several different scenarios are constructed
differing in the characteristics of the indirect evidence and in how the indirect evidence
relates to the direct. This shows how the nature of the direct and indirect evidence affects
how methods compare to lumping and splitting. The simulation is run both under FE
and RE to contrast methods’ behaviour under both approaches.

Finally, Chapter 8 provides an overall summary and discussion of the thesis, drawing
attention to the main findings and contributions of each chapter, and highlighting a
number of practical recommendations and directions for future research.
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Chapter 2

Synthesis and modelling methods in Health Technology
Assessment

This chapter introduces the basic methods used in HTA to obtain the most contemporary
reflection of the costs and consequences of the alternative choices that decision-makers
are faced with. Section 2.1 summarises the main statistical methods that are used
for evidence synthesis. These methods primarily consider the synthesis of relative
effectiveness evidence as the use of formal evidence synthesis methods is much less
common for other types of parameters (e.g. costs, utilities). The methods summarised here
will serve as a foundation for the ISMs that will be described in this thesis. Subsequently,
Section 2.2 summarises quantitative methods that are used to combine all the evidence that
is relevant to a decision within a decision analytic modelling framework and appropriately
reflect uncertainty.

2.1. Evidence synthesis methods for binary data

This section describes the basic statistical methods used for evidence synthesis in HTA.
Initially, pairwise MA for binary data is introduced (DerSimonian and Laird, 1986),
as a means of combining several studies that assess the effectiveness of the same two
interventions in separate arms. MA provides a vehicle that enables the synthesis of
multiple studies, and the estimation of an overall summary effect that has the potential to
be more precise than the results of single studies. Subsequently, pairwise MA methods are
extended to accommodate the inclusion of multiple treatments, which have not necessarily
been compared head-to head in a network meta-analytic framework. Finally, the approach
adopted in this thesis for model fitting and model comparison is described along with
issues that arise when between-trial differences are present, and methods that have been
suggested to account for and/or explain heterogeneity. Although evidence synthesis
methods can be implemented under both a Bayesian and a frequentist framework, the
primary focus here will be on the former, because the Bayesian framework naturally lends
itself to information-sharing.
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2.1.1. Pairwise meta-analysis

Consider a set of n studies (i = 1, ..., n) comparing the same two alternative treatment
options in the population of interest. If all studies report the same dichotomous (i.e.
binary) outcome, the data generation process is commonly assumed to follow a binomial
distribution so that:

ri,k ∼ Binomial(pi,k, ni,k) (2.1)

logit(pi,k) = ln(
pi,k

1− pi,k
) = θi,k (2.2)

where ri,k, ni,k, and pi,k are the number of events, the total number of patients, and the
probability of an event in study i and arm k respectively. pi,k

1−pi,k
represents the odds of the

event and θi,k the logit transformed probability from the 0 6 p 6 1 range to the real line
(−∞,+∞).

Depending on the nature of the data, different likelihoods and link functions can be
used. For example, continuous data are commonly modelled using a normal likelihood
and an identity link, count data using a poisson likelihood and a log-link, and competing
risk data1 using a multinomial likelihood log-link function (Dias et al., 2011a).

In order to synthesise the evidence provided by all the studies, typically the Contrast-
based Model (CBM) is used. For the binomial likelihood model, the CBM looks like:

θi,k = µi + δi (2.3)

where µi is the log-odds of the baseline treatment, and δi is the RTE between the baseline
and the active treatment in the form of the log-odds ratio. Even though the study-
specific baselines are commonly treated as nuisance parameters, further assumptions are
usually imposed on the RTEs. Under fixed-effect models, the studies are assumed to be
estimating the same underlying ‘true’ RTE, and therefore differences across studies are
purely attributed to random noise (i.e. sampling error). Under RE, studies are assumed
to be estimating only exchangeable RTEs, and hence discrepancies are also attributed to
differences between study-specific ‘true’ effects (Figure 2.1). Mathematically, under a FE
model:

δi = d (2.4)

1This is special data structure where a patient can reach several endpoints, but once they reach one they
cannot reach any other. As a result, negative correlations are induced between the different endpoints and
those need to be appropriately reflected.
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where d is the underlying true RTE (Equation 2.4). Alternatively, under a RE model,

δi ∼ (d, τ2) (2.5)

where d is the hyperparameter of the normal distribution from which the underlying
study-specific true RTEs are drawn from, and τ2 is the variance of that distribution which
is indicative of the heterogeneity across the RTEs of the included studies (Equation 2.5).

Figure 2.1: FE (A) and RE (B).

Treatment effect
for each study

Study variation
(random error)

Common true treatment
effect underlying studies

True average
effect of studies

Study speciöc effect
underlying each study

Treatment effect
for each study

Within study variation
(random error)

Between study variation

Between study variation 
is assumed to follow a
normal distribution

Figure adapted from Lee, 2008.
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2.1.2. Network meta-analysis

Suppose now that more than two treatments, forming a connected network (e.g. Fig-
ure 2.2), can be used to treat the population of interest, and that several studies which
assess the effectiveness of all or any subset of the alternative treatments are available.

Figure 2.2: An example of a connected network.

Figure adapted from Caldwell et al., 2005.

To accommodate the simultaneous analysis of all treatments, Lu and Ades, 2004,
motivated by Lumley, 2002, suggested methods that extend the CBM from pairwise MA
to NMA whilst retaining randomisation. Essentially,

ri,k ∼ Bin(pi,k, ni,k) (2.6)

logit(pi,k) = θi,k = µib + δi,bk · I{k 6=b} (2.7)

δi,bk = dbk (FE) (2.8)

δi,bk ∼ N(dbk, τ2
bk) (RE) (2.9)

dbk = d1k − d1b (2.10)

dAA = 0 (2.11)

where now µib is the study-specific baseline log-odds of the reference treatment b in trial i
(which is not necessarily the reference treatment of the whole network), and δi,bk is the
study-specific RTE between the baseline treatment in study i and the treatment in arm k.

Under a FE model, dbk is the study-invariant RTE between treatments b and k (Equa-
tion 2.8), whilst under a RE model, the study-specific δi,bk are assumed to be drawn from a
normal distribution with a common mean dbk and a between-trials variance parameter τ2

bk

(Equation 2.9). Between-trial variances are typically assumed invariant across comparisons
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(i.e. τ2
bk = τ2) to assist identification. This assumption implies that the correlation between

any two treatment comparisons is 0.5 (Higgins and Whitehead, 1996). However, if either
patient populations are not similar across the included studies, or study-designs are not
similar across comparisons, it may not be reasonable to assume a common heterogeneity
parameter. For such cases, alternative modelling approaches for the comparison-specific
heterogeneities have been suggested (Lu and Ades, 2009).

The main assumption of NMA is embedded in the consistency equations (Equa-
tion 2.10). These describe a set of functional relationships that express any comparison-
specific RTE mean as a linear function between two basic parameters (i.e. RTE means
between a treatment and the reference treatment in the network —denoted as treatment 1
—). Consistency implies that ‘direct’ evidence (i.e. evidence from studies directly compar-
ing two treatments in separate arms) and ‘indirect’ evidence (i.e. evidence from studies
comparing two treatments via a third anchor treatment) are in agreement (Figure 2.3).
Essentially, consistency assumes that all studies can be considered multi-arm studies that
would have assessed all treatments included in the network, but the arms not included
are missing at random (Salanti, 2012). Methods for evaluating consistency include the
Bucher method (Bucher et al., 1997) and node-splitting (Dias et al., 2010a).

Figure 2.3: An illustration of direct and indirect evidence in NMA.

Figure adapted from Riley et al., 2017.

2.1.3. Model fitting and model comparison

Both MA and NMA can be implemented using either a frequentist or a Bayesian approach.
Under the former, all information is contained within the data, and model parameters are
estimated using maximum likelihood functions. Under the latter, Bayes’ theorem (Bayes,
1763) is used to combine previous information with the available study data (Ntzoufras,
2008). Essentially,

posterior ∝ likelihood · prior (2.12)
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where the posterior probability distribution represents the updated belief once previous
information, expressed in the prior distribution, is combined with the available data
contained in the Bayesian likelihood. It follows that under a Bayesian framework priors
need to be specified for all parameters that are estimated by the model. Most often,
researchers opt for ‘uninformative’ prior distributions which contain minimal information,
in order to allow the information contained within the data to dominate the posterior.
For example, in MA and NMA models, common choices of uninformative priors for
log odds-ratios RTEs and baseline log-odds are Normal(0, 104), whilst for between-trial
variances Uni f orm(0, 2) or, less often, Inverse.Gamma(10−2, 10−2) (Dias et al., 2011a).

All models described in this thesis adopt a Bayesian approach primarily due to its
flexibility and ease of implementation even with complex models (Dias et al., 2018),
but also because the Bayesian framework naturally lends itself to information-sharing.
To fit the various Bayesian models, most common software choices are WinBUGS and
OpenBUGS, both of which use Markov Chain Monte Carlo (MCMC) sampling algorithms
to estimate posterior distributions (Lunn et al., 2013). For model comparison, information
criteria, and in particular Deviance Information Criterion (DIC) is used here. This is the
sum of the posterior mean of the residual deviance and the effective number of parameters
(McCullagh and Nelder, 1989). Hence, DIC incorporates both model fitting and model
complexity considerations, and therefore provides a principled way to balance over-fitting
and under-fitting (McElreath, 2016). In this work it is assumed that differences larger than
three units of DIC are important (Spiegelhalter et al., 2002).

2.1.4. Heterogeneity and meta-regression

It is inevitable that studies combined in a meta-analysis will often differ. The Cochrane
handbook (Higgins and Green, 2011) distinguishes between two main sources of between-
trials variation. First, clinical heterogeneity is attributed to differences across studies in
the characteristics of the enrolled populations, the interventions, or the outcomes used.
Second, methodological heterogeneity relates to differences in study-design and conduct.
Clinical and methodological diversity between studies lead to variability in the study-
specific treatment effects which is termed statistical heterogeneity or simply heterogeneity.
Tests for heterogeneity include Cochran’s Q test (a chi-squared test that evaluates the
null hypothesis that all studies estimate the same underlying treatment effect) (Cochran,
1950), and Higgin’s I2 (estimates the proportion of variability that is beyond what can be
attributed to chance) (Higgins and Thompson, 2002).

In a RE model, heterogeneity is accounted for by assuming that the study-specific
RTEs are not identical across studies, but only exchangeable, and are hence drawn from
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a normal distribution (see Equation 2.5, Equation 2.9). Essentially, τ2 reflects the extent
of heterogeneity, with higher values indicating a more heterogeneous evidence base. It
follows that when τ2 = 0, a RE model reduces to FE. Importantly, even though the RE
model accounts for heterogeneity, it does not specifically model its source, and therefore
it does not explain it.

When a study-level covariate is suspected to be a source of heterogeneity, analyses
can be adapted to reflect the covariate’s effect. In the simplest case where a covariate
is categorical, the evidence base can be split into subsets of studies according to the
levels of the variable, and separate analyses can be conducted for each subset of studies.
However, in such subgroup analyses, less data is used in each analysis rendering the
estimation of the between-trial variances harder —particularly in subgroups with fewer
studies. Also, subgroup analyses do not provide a test of interaction; hence, it cannot be
confirmed that the suspected covariate is indeed an important source of heterogeneity
(Dias et al., 2011b). Alternatively, to simultaneously model all studies while accounting
for potential heterogeneity caused by a study-level covariate, the pairwise meta-analysis
model (Equation 2.3) can be extended to a meta-regression model so that:

θi,k = µi + δi + β · Xi (2.13)

where Xi is the study-level covariate. If X is binary, β is the additional RTE in the
subset of studies for which X = 1. If X is continuous, β is the slope that represents the
additional RTE for every additional unit of X. The δi represent the study-specific RTEs
not attributed to the covariate, and may follow either a FE or a RE model according to
Equation 2.4, Equation 2.5 respectively. In a RE meta-regression model, τ2 represents the
additional heterogeneity that cannot be explained by the covariate effect and is expected
to decrease compared to the null model that did not include any covariates. In a Bayesian
framework, β is usually assigned a vague prior such as ∼ N(0, 104) (Dias et al., 2011b).
The model naturally extends to multiple study-level covariates. However, it should be
noted that several studies are required to detect such interaction effects with adequate
power (Borenstein et al., 2009), and the existence of a relationship at the study-level (i.e.
across studies) does not mean that the same relationship also applies at the individual
level (i.e. across individuals within a each study) (Higgins and Green, 2011). This is
termed ‘ecological fallacy’ and to avoid it one would have to use Individual-patient data
(IPD) in order to establish a relationship at the within-study level. Finally, meta-regression
models can be extended to the NMA context, however comparison-specific slopes are
then used and assumptions may need to be made regarding how those are related across
treatment comparisons (Cooper et al., 2009).
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For decision-making, heterogeneity mainly matters for two reasons: first, if benefits
differ due to some patient characteristic, then the estimates of the benefit that are used
in cost-effectiveness analyses must reflect the expected benefit in the target population;
that is the population considered by the decision. Second, recognising differences in the
expected benefits across subgroups might justify ‘optimising’ decisions instead of making
‘one size fits all’ recommendations. Importantly, it is necessary to ensure that the health
gain for all subgroups for which a treatment is recommended is sufficient to offset the
potential health lost from a reduction in the provision of services elsewhere in the health
system necessary to fund the new treatment.

2.2. Decision modelling methods

This section explains basic methods used in HTA for constructing and analysing decision
analytic models. In particular, it starts by describing the various model structures, their
main benefits, and cases where each model type may be more appropriate than others.
Subsequently, the main model inputs are presented along with sources typically employed
to identify relevant evidence, and quantities used to inform resource allocation decisions
are described. Then, the importance of uncertainty is highlighted, and ways to evaluate
and present the uncertainty that surrounds decisions are explained. Finally, the established
methods for assessing the value of obtaining further information are detailed along with
methods for determining what type and design for future research may be most valuable.

2.2.1. Model structures

Once the research question has been defined, a decision model is often constructed to
represent the decision problem, and provide a quantitative framework to bring together
all relevant evidence. The choice of decision model type is not necessarily straightforward,
however, often, a particular decision model type is better suited to represent diseases
with specific characteristics. Examples of key considerations include whether we need
to model recurring events, whether event probabilities vary with time in the model, and
whether patients’ prognoses depend on events that have already happened in the past
(Drummond et al., 2015). This section briefly describes the different types of decision
models used in HTA, focusing primarily on decision trees and Markov models.
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2.2.1.1 Decision trees

Decision trees represent patients’ possible prognoses using a set of alternative pathways
(Figure 2.4). Each pathway describes a sequence of events, often chronologically ordered
(Briggs et al., 2006). Three types of nodes can be distinguished (Gray et al., 2010): first,
decision nodes represent potential policy questions that decision-makers may be faced
with (e.g. should we give low molecular weight heparin or conventional treatment to
patients who receive a hip replacement?). Second, chance nodes indicate that a set of
mutually exclusive events (i.e. events which are characterised by probabilities that sum
to one) occur (e.g. the patient either experiences a deep vein thrombosis event or not).
Finally, terminal nodes signal the end of a pathway. Pathway-specific probabilities are
calculated by multiplying the initial branch probability with the subsequent conditional
probabilities (Drummond et al., 2015). Finally, pathway-specific costs and payoffs are
assigned to each of the terminal nodes, and the model is ‘averaged out’ by weighting
costs and payoffs with their corresponding pathway probabilities. Though the simplicity
of decision trees has led to their widespread use for acute conditions featuring short time
horizons, these models are unable to accommodate time-dependency, and tend to get
’bushy’ and cumbersome in more complex diseases with recurring events; hence, their
use in chronic conditions is limited (Petrou and Gray, 2011).

Figure 2.4: An example of a decision tree.

The model compares the use of low molecular weight (LMW) heparin and Conventional treatment for
preventing deep vein thrombosis in patients who undergo hip replacement. Adapted from Sutton, 2016.
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2.2.1.2 Markov models

In contrast to decision trees which do not explicitly model time, Markov models use a
finite number of ‘states’ in which patients reside at any point in time. Time is explicitly
modelled and discretised into cycles of particular length (e.g. one month). Between cycles,
patients either remain in the same state or transition across states according to specified
transition probabilities. The model comes to an end either when all patients have arrived
in an absorbing state from which they cannot ‘escape’ (e.g. death), or when a pre-specified
number of cycles has elapsed (Petrou and Gray, 2011). Costs and benefits associated
with each cycle are calculated by weighing the state-specific costs and benefits by the
proportion of patients that occupy each state in that cycle. Total costs/benefits can be
estimated as the sum of cycle-specific costs/benefits over the time horizon of the model.

The main limitation of Markov models is their ‘memorylessness’ which means that
the transition probabilities are usually fixed through time; hence, a patient has the same
probability of moving from State A to State B, regardless of the cycle the model is currently
in, or the time the patient has already spent in a state (Drummond et al., 2015). This
limitation can be overcome by introducing ‘tunnel’ states that patients are required to
occupy in a particular sequence, or states that patients can only reside in for one cycle
(Briggs et al., 2006).

Figure 2.5: An example of a Markov model.

Figure is adapted from Petrou and Gray, 2011.
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2.2.1.3 Other model structures

To overcome the limitations of cohort models (e.g. decision trees, Markov models),
approaches that model individuals separately have been suggested (Siebert et al., 2012;
Karnon et al., 2012). For instance, patient-level simulation models track how each
individual transits among several states while accumulating costs and benefits. Such
models provide analysts with increased flexibility by allowing each patient’s prognosis to
depend on their history. Hence, complex dependencies between risks of clinical events
and patient histories can be easily modelled, and the overall expected values can be
calculated by averaging costs and benefits across patients. Discreet-event simulation
models also simulate patients individually, however they also model the time until the
next event for each patient separately, avoiding the disadvantages of fixed cycle lengths
(Petrou and Gray, 2011). Despite their benefits, the aforementioned models can be hard to
inform as they may be more heavily parametrised than cohort models, and thus require
more evidence to be populated (Drummond et al., 2015).

Another recent development is Partition Survival Models (partSA). Despite their
conceptual similarity with state-transition models, partSA models directly utilise survival
curves (e.g. overall survival, progression-free survival) to determine state membership. On
the one hand, partSA models can be very useful when only survival data is available, and
therefore there is not enough evidence to calculate transition probabilities and the effect of
treatments on these probabilities (as is usually the case for anti-cancer treatments). On the
other hand, partSA models, consider outcomes independently and cannot accommodate
cases where there is a structural dependency across endpoints (Woods et al., 2017).

All model types described above are static and therefore do not allow for interactions
across patients. This means that each patient’s health is assumed to be independent
of other patients’ health status. Despite the fact that this assumption may be true for
non-communicable diseases, it does not hold for infectious diseases which may require
dynamic modelling. For instance, the probability of being infected by a disease may
be contingent on the proportion of people who have been immunised against it (herd-
immunity). Dynamic transition models can be used in these cases to allow appropriate
estimation of cost-effectiveness that accounts for such interactions (Drummond et al.,
2015).

34



2.2. Decision modelling methods

2.2.2. Model inputs

Because decision-makers are accountable, decision models need to be fit-for-purpose, and
able to reasonably approximate incremental costs and effects. Hence, the evidence used
in the model has to be comprehensive. Consequently, evidence needs to be systematically
identified and synthesised in order to produce reliable model inputs. Even though the
principles of Evidence-based Medicine (EBM) (Centre for Reviews and Dissemination,
2006) are generally followed for RTE parameters, this is not necessarily also the case
for other parameters such as the natural history of the disease, costs, resource use, and
QoL. This is because there are rarely many studies providing us with information on
these parameters to justify any synthesis. Also, it is necessary to ensure that model
inputs constitute the most contemporary reflection of the current clinical practice in
the country that faces the decision problem, and therefore evidence pertaining to other
jurisdictions may be deemed overly unrepresentative and inappropriate. As a result, it
is not uncommon to see natural history, costs, or QoL being informed by observational
studies conducted in the country of interest. Crucially, it is paramount to ensure that even
when RCTs are not used to derive the required model inputs, a transparent process is
followed which is in line with the objectives of the decision model (Philips et al., 2004). A
summary of the main decision model inputs and usual sources of evidence is supplied in
Table 2.1.

Table 2.1: Decision model inputs and usual sources of evidence.

Parameter
Usual sources of

evidence
Notes

Natural
history

Control arms of
clinical trials or
observational

studies.

It is very important to use the best reflection of the
current clinical practice. This means obtaining evidence

representative of the context of interest.

Relative
effects

Randomised
clinical trials.

Formal synthesis methods are commonly used to
synthesise the available RCTs. Usual issues include the

lack of adequate studies which lead to evidence
sparsity problems.

Quality of
life

Randomised or
observational

studies.

Commonly, QoL weights, estimated using instruments
such as EQ-5D (EuroQol Research Foundation, 2019),

are combined with time, to calculate Quality-Adjusted
Life-Year (QALY)s.

Costs and
resources

use

Randomised or
observational

studies.

The actual resources that are included depend on the
perspective that is adopted in the analysis. NICE

suggests that the perspective of the decision-maker (i.e.
the payer) is used (NICE, 2013).
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2.2.3. Making decisions

The main question that economic evaluation is primarily concerned with is whether the
additional health offered by a new technology is sufficient to justify any additional costs
(Drummond et al., 2015). Figure 2.6 illustrates the possible situations that analysts may
be faced with. It is immediately obvious that under some circumstances decisions can
be straightforward. For example, when the new technology falls in the north-west (NW)
quadrant, it is dominated by the old technology because it is more costly, and leads to
reductions in health. Similarly, when it falls in the south-east (SE) quadrant it dominates
the old technology because it increases health, and also yields cost-savings.

Figure 2.6: The cost-effectiveness plane.

The shaded area shows the region below the willingness-to-pay threshold that the technology would be
considered cost-effective. Figure is adapted from (Savitz and Savitz, 2016).

However, when the new treatment is either more costly and leads to health gains (i.e.
north-east quadrant), or less costly and results in health losses (i.e. south-west quadrant),
it is less clear whether or not it should be considered cost-effective. The trade-off between
costs and health is usually illustrated with the Incremental Cost-Effectiveness Ratio (ICER)
statistic. Essentially,

ICER =
∆C
∆H

=
C′ − C
H′ − H

(2.14)

where C′ and H′ represent the costs and benefits of the new treatment, whilst C and H
the costs and benefits of the comparator treatment.
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A higher ICER implies that we need to devote more resources in order to get the
same amount health, and therefore the profile of the technology becomes less favourable.
It follows that in order to make an adoption decision we need to be able to specify a
cost-effectiveness threshold k (i.e. a cut-off value), also termed Willingness to Pay (WTP)
threshold. An ICER that is lower than k would mean that the new technology offers an
acceptable trade-off and is therefore recommended, whilst when the ICER is higher than
k it would imply that the additional cost of the new technology is not justified by the
additional health it offers. In Figure 2.6, for a threshold depicted by the diagonal line,
ICERs that fall in the shaded area or in the SE quadrant represent favourable options.
Effectively, k represents an expectation of the amount of resources that displaces a single
unit of health elsewhere in the health care system (i.e. opportunity cost), and is therefore
indicative of the system’s productivity (Claxton et al., 2015a). In the United Kingdom
(UK), NICE has been using a threshold between £20, 000− 30, 000 per QALY (McCabe
et al., 2008); however, this estimate has little empirical basis, and does not align with more
recent empirical threshold estimates.

Even though ICERs are straightforward to use when there are only two alternative
treatments, they become complicated when decision-makers are confronted with multiple
alternatives (Drummond et al., 2015). This is because many different comparisons can
be made and it may be challenging to establish dominance and extended dominance.
Under these circumstances, a more convenient way that also avoids the disadvantages
of ratio statistics (Hoch et al., 2002), is to summarise cost-effectiveness using the Net-
Benefit (NB) statistic (Stinnett and Mullahy, 1998). Essentially, NBs directly translate
each technology’s associated costs and benefits to overall health or monetary gains by
specifying a particular threshold k. The NBs of the various competing alternatives can
then be directly compared without the need to calculate increments. Two types of NBs
can be specified according to whether we prefer to express NBs in health (Equation 2.15)
or monetary terms (Equation 2.16).

Net Health Bene f it = H − C
k

(2.15)

Net Monetary Bene f it = H ∗ k− C (2.16)

where H is the health that the technology in question offers, C its costs, and k the specified
threshold. If net health (or monetary) benefits are positive, we can conclude that a
technology is cost-effective as its health gains exceed the opportunity cost.
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2.2.4. Evaluating uncertainty

Inevitably, most decisions are associated with some level of uncertainty. Decision uncer-
tainty relates to the fact that we do not know exactly what the actual costs and effects
of the use of an intervention to the population of interest will be in any future ‘rollout’.
Two main sources of uncertainty can be distinguished (Briggs et al., 2012): first, parameter
uncertainty refers to the input parameters of the decision model, and second structural
uncertainty relates to the assumptions and judgements that were made in the process of
constructing the decision model (Drummond et al., 2015).

Despite the fact that adoption decisions are typically based on the expected costs
and benefits, an assessment of the uncertainty surrounding the decision is crucial to
evaluate whether the existing evidence is sufficient to inform the decision, or further
evidence should be sought. The simplest way of assessing uncertainty is by using
Deterministic Sensitivity Analysis (DSA) where one input parameter is varied to determine
the sensitivity of the decision to that parameter(s) values (Briggs and Sculpher, 1995).
However, DSA is limited because it does not indicate the level of uncertainty that the
decision is associated with, and also tends to underestimate uncertainty by ignoring that
in reality multiple parameters vary simultaneously (Drummond et al., 2015). Alternatively,
PSA can be used (Claxton et al., 2005; Claxton, 2008). In PSA, probability distributions are
assigned to all model input parameters, and then random samples are repeatedly drawn
for all parameters and combined to calculate iteration-specific NBs.

Figure 2.7: An example of how the results of the PSA can be used in the incremental cost-effectiveness
plane to represent joint uncertainty in costs and effects.

Figure is adapted from (Holmes et al., 2018).
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To represent the joint uncertainty in costs and effects the PSA output can directly be
illustrated in the cost-effectiveness plane. For instance, in Figure 2.7 each dot represents
the incremental costs (y-axis) and effects (x-axis) calculated in an iteration of the PSA.
The size of ‘cloud’ is indicative of the joint uncertainty in incremental costs and effects.
All iterations falling below the threshold indicated by the red line suggest that the
new treatment should be adopted; hence, the proportion of these iterations indicates
the probability that the new treatment is cost-effective. Sensitivity analysis is typically
performed for different threshold values, and the probability of the new treatment being
cost-effective for each threshold is represented in CEACs (see Figure 2.8). There is a
direct link between the quadrants that the iterations’ probability mass is located in the
cost-effectiveness plane and the shape of the CEACs, and a detailed discussion of the
various situations that might occur can be found in Fenwick et al., 2004. Overall, PSA
is a more appropriate estimation of decision uncertainty (Briggs et al., 2006), and is
recommended by NICE (NICE, 2013).

Figure 2.8: An example of a CEAC.

Figure is adapted from (Holmes et al., 2018).
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2.2.5. Value of information

Given the presence of decision uncertainty, it is reasonable to infer that decision-makers
should also consider the need for and value of further research. Crucially, if the ultimate
aim is to improve overall health of existing and future patients, an assessment of the
potential value of acquiring further information and resolving uncertainty of decision-
model inputs is also central to policy-making (Drummond et al., 2015). Such an assessment
would evaluate the expected cost of current uncertainty by considering both the probability
and the magnitude of the consequences of making a wrong decision with the existing
evidence. The resulting estimate would represent the maximum amount that decision-
makers should be willing to invest to reduce uncertainty in the decision at hand.

In what follows, three main concepts of value-of-information analysis are introduced.
These are the Expected Value of Perfect Information (EVPI), the Expected Value of
Perfect Parameter Information (EVPPI), and the Expected Value of Sample Information
(EVSI). The first, EVPI, calculates the maximum value of further research that resolves all
parameter uncertainty; EVPPI extends EVPI to identify the particular type of research
that would be more useful (i.e. which parameters should we focus on acquiring more
information for); finally, EVSI aims to inform the design of further research.

2.2.5.1 Expected Value of Perfect Information

Assume that there is a set of alternative interventions t and that the net-benefit (B) of each
is dependent on uncertain parameters that may take a range of possible values (θ). With
current information, the best treatment is that which maximises the expected net-benefits,
B (Ades et al., 2004). i.e.

maxtEθ B(t, θ) (2.17)

where maxt indicates that we are seeking the treatment t which maximises the expression
that follows, E(θ) denotes the expectation of θ, and B(t, θ) the net-benefits produced
by treatment t for parameters taking the value of θ. However, the treatment decision
that is based on the average values of θ (i.e. E(θ)) is not necessarily the decision that
we would have made under every possible combination of the model inputs. In other
words, had we known the current state of the world, we would only need to choose the
intervention that maximises the NBs of a given value of θ (i.e. maxtB(t, θ)) and we may
have made a different decision. However, when decisions about further research are
made, θ is typically unknown. Hence, to calculate the maximum NB under every possible
combination of the model inputs, we need to average across the joint distribution of θ, i.e.

EθmaxtB(t, θ) (2.18)
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EVPI represents the additional benefit that could be gained if all uncertainty surrounding
the treatment choice decision was resolved and therefore it can be used as the upper-
bound for the potential benefits of new research. In other words, it is the difference
between the net-benefits which can be achieved under perfect and current information
and is derived by subtracting Equation 2.18 from Equation 2.17, so that:

EVPI = EθmaxtB(t, θ)−maxtEθ B(t, θ) (2.19)

EVPI can be calculated from the PSA output by directly applying the aforementioned
rationale.

Since the information acquired by further research can be valuable to more than one
patient, to appropriately calculate the upper bound for the cost of research we need to
account for the whole current and future patient population. This is achieved by applying
the individual EVPI estimate across the whole set of patients expected to be affected by
the disease for as long as the technology is expected to be relevant i.e.

Pop.EVPI = EVPI ·
Y

∑
y=1

Iy

(1 + r)y (2.20)

where Iy is the incidence in year y, Y is the total number of years that additional informa-
tion will be useful for, and r is the discount rate.

2.2.5.2 Expected Value of Perfect Parameter Information

Despite that EVPI is a valuable measure that can be used to eliminate research suggestions
expected to cost more than this upper bound, it does not help in prioritising different
types of research. In other words, it does not provide insight into the contribution
of the various model inputs towards the decision uncertainty and consequences. Such
information is obtained by calculating the partial EVPI of a single or a subset of parameters
(θI), and can be valuable in tailoring further research. For example, if the majority of
decision uncertainty and consequences is attributed to relative effectiveness, a randomised
controlled trial may be prioritised to better characterise this parameter.

EVPPI (Equation 2.21) is calculated in a similar manner to EVPI (Equation 2.19), only
now in the first component we need to average over the joint distribution of the subset of
parameters under evaluation i.e.

EVPPI = EθI maxtEθ|θI
B(t, θ)−maxtEθ B(t, θ) (2.21)

where θI denotes a subset of parameters of θ and θc
I its complement. E(θ|θI) represents
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the expectation of θ conditional on a given value for θI . Note that the first component
may become computationally intensive as it requires an inner simulation to estimate the
NB of each θI value (i.e. Eθ|θI

B(t, θ)) and an outer integration to sample all possible values
for θI . However, if B(t, θ) is linear or multi-linear in θc

I , then Eθ|θI
B(t, θ) can be re-written

as B(t, θI , E(θc
I)) (Thompson and Evans, 1997). For non-linear models, efficient methods

that partly alleviate the computational burden have also been suggested (Strong et al.,
2014). Population EVPPI is calculated in the same manner as population EVPI.

2.2.5.3 Expected Value of Sample Information

Once the maximum acceptable cost of future research and the type of research that will
most significantly reduce the existing uncertainty have been established, we need to
better define the characteristics of this research. These may include a trial’s sample size
and allocation of patients or the appropriate outcome and its optimal length of follow-
up. Since we are never going to fully resolve all uncertainty regarding any parameter,
the extent of the information that we will gain will directly relate to its characteristics
(Drummond et al., 2015).

The development of EVSI follows that of EVPPI (Briggs et al., 2006). Assuming that
a new study of sample size n is undertaken, it will provide us with sufficient statistics
D relating to the subset of parameters θI

2. If we knew what D was going to be, then
we would just maxtEθc

I ,(θI |D)B(θI , θc
I , t). However, since we do not know D, we need to

average across its distribution. Therefore, EVSI is expressed as:

EVSI = EDmaxtEθc
I ,(θI |D)B(θI , θc

I , t)−maxtEθ B(θI , θc
I , t) (2.22)

Finally, to calculate the optimal sample size, the cost of each potential trial of sample
size n needs to be deducted from its corresponding population EVSI, calculated in the
same way as population EVPI, to produce the Expected Net Benefit of Sample (ENBS):

ENBS(n) = Pop.EVSI(n)− Cost(n) (2.23)

The sample size n that maximises ENBS is the optimal sample size of the new trial.

In summary, this chapter reviewed the basic methods used in HTA to synthesise
relative efficacy evidence as well as methods used to bring together all relevant types of
evidence (RTEs, costs, utilities) in a decision-model and characterise uncertainty. These
methods serve as the foundation for the work that is undertaken in subsequent chapters.

2It is assumed here that θI and its complement θc
I are independent.
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Chapter 3

Classifying information-sharing methods: a citation-
mining review

3.1. Chapter aims and structure

As introduced in Section 1.1, usually HTAs either adopt a splitting approach, whereby
indirect evidence is completely disregarded (e.g. Corbett et al., 2017), or lump direct
and indirect evidence as if they do not differ in any respect (e.g. Duarte et al., 2017;
Faria et al., 2016). However, these approaches represent only the two extremes of the
‘information-sharing spectrum’ and more options are usually available. For instance,
some recent HTAs have used more sophisticated synthesis methods, initially developed
in the biostatistics literature, which impose more moderate assumptions and perhaps
more appropriate degrees of information-sharing between direct and indirect evidence
(e.g. Corbett et al., 2016; McDaid et al., 2009; Burch et al., 2008).

This chapter aims to look in the biostatistics literature, and in particular into the
field of MA/NMA, in order to identify and classify methods that have been used to
share information among multiple populations, treatment comparisons, outcomes, study-
designs and more generally between evidence directly and indirectly relating to a research
question. Importantly, due to the vastness of the field, this chapter is neither meant
to provide an exhaustive list of ISMs, nor describe the details underpinning all those
methods, because such aims would far exceed the scope of a single chapter. Instead, its
main contribution is the classification of Information-sharing methods (ISMs) according
to the main assumption of each. This classification provides a conceptual way of thinking
more generally around methods and assumptions that could be used for information-
sharing synthesis challenges. To date, no work has been conducted with a primary focus
on ‘information-sharing’ or ‘borrowing strength’ and the aim of categorising the breadth
of the available methods. On the contrary, the existing literature consists of either old
studies that try to introduce and discuss methods for multi-parameter evidence synthesis
(Ades and Sutton, 2006; Ades et al., 2006), or more recent reviews that discuss methods
for MA/NMA (e.g. Efthimiou et al., 2016) without focusing on information-sharing.
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This chapter is organised in the following manner: in Section 3.2 the citation-mining
methods which were used to identify relevant papers are explained. Section 3.3 starts
by providing the characteristics of the included articles and introduces the four ‘core’
assumptions, at least one of which is employed by any ISM. The identified methods are
then explained under each ‘core’ assumption. Finally, in Section 3.4, strengths, limitations
and areas for future research are discussed.

3.2. Methods

This work aims to answer the following research question: What methods have been used in
the literature to combine evidence directly and indirectly relating to a research question and how
can those be classified according to the assumptions that they impose?

Given the lack of consistent terminology in the literature referring to methods that
combine direct and indirect evidence, keyword-based search methods (Higgins and
Green, 2011) were impractical and could not be used. Instead, ‘citation-mining’ methods
(Grandage et al., 2002), which are efficient (Badampudi et al., 2015) and have been used
for similar reviews (Verde and Ohmann, 2015) were preferred. The process consisted
of the following steps: initially, a list of seminal/influential papers was compiled and
articles that either cited the seminal papers (forwards citation-mining) or were cited by the
seminal papers (backwards citation-mining) were identified; subsequently, as in classical
systematic reviews, the list of identified papers was screened according to inclusion and
exclusion criteria and data were extracted from the included studies.

Seminal papers were chosen after an initial scoping review of the literature and
in consensus with the supervisory team to represent a variety of fields including MA,
NMA, multi-parameter evidence synthesis, and the incorporation of evidence of historical
controls in trial-design. Even though the last category was outside the scope of this review,
it may have inspired the extension of methods from that field into MA/NMA. Overall, the
citations of 7 seminal papers were searched in the Web of Science (WoS) on 20-Feb-2019.
The number of papers cited in each seminal paper and the number of times each seminal
paper has been cited on the day of the search, according to WoS, are shown in Table 3.1.
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Table 3.1: ‘Pearls’ (i.e. seminal papers) used for forwards and backwards citation-mining.

# ‘Pearl’ Citations Cited by
1 Higgins and Whitehead, 1996. Borrowing strength from exter-

nal trials in a meta-analysis.
33 309

2 Ades and Sutton, 2006. Multiparameter evidence synthesis in
epidemiology and medical decision-making: current approaches.

109 82

3 Ades et al., 2006. Bayesian methods for evidence synthesis in
cost-effectiveness analysis.

79 210

4 Jackson et al., 2011. Multivariate meta-analysis: Potential and
promise.

74 148

5 Efthimiou et al., 2016. GetReal in network meta-analysis: a
review of the methodology.

193 37

6 Hobbs et al., 2011. Hierarchical commensurate and power-prior
models for adaptive incorporation of historical information in
clinical trials.

16 64

7 Schmidli et al., 2014. Robust meta-analytic-predictive priors in
clinical trials with historical control information.

50 42

Subsequently, articles that cited (forwards citation-mining) or were cited by the seminal
papers (backwards citation-mining) were identified. Articles were included if they mathe-
matically specified MA or NMA models , either Bayesian or frequentist, that combined
information from comparative studies pertaining to multiple populations, interventions,
outcomes, study-designs or if they utilised evidence from an external source such as
previous meta-analyses. Importantly, papers that used only standard NMA methods were
excluded even though they shared information across treatment comparisons, because
such methods are well established in the literature.

From each included paper, the evidence synthesis model was isolated and from within
it, methods facilitating information-sharing were extracted. Methods were subsequently
categorised according to the ‘core’ relationship that they used to enable information-
sharing. When papers tackled multiple synthesis challenges simultaneously (e.g. Madan
et al., 2014; Welton et al., 2010), the issues they dealt with were isolated along with the
method used to address each. The PICOS level of indirectness was also extracted. The
search was conducted in Zotero version 5.0.69 using various ‘tags’ which enabled the
categorisation of the identified studies according to their characteristics.
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3.3. Results

3.3.1. Characteristics of the included studies

The review identified 89 papers in total, as shown in Figure 3.1.

Figure 3.1: Citation-mining flow chart.
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After removing duplicates, 1012 records were screened, 798 of which were excluded
based on their title and abstract, and 214 were assessed for eligibility by full text. A total
of 125 studies were subsequently excluded because they only used standard MA/NMA
methods without any methodological developments (n = 14), or the University of York
could not provide access (n = 2), or they were irrelevant to information-sharing and
borrowing strength (n = 109) (e.g. they described methods to assess quality of methods
used in MA/NMA or to evaluate network consistency).

The database with all included papers can be found in the following url https://www.
zotero.org/groups/2360368/citation-mining_included-studies1. Most papers (n =

84) developed ISMs in a Bayesian framework. The majority of papers (n = 79) described
methods that shared information on relative treatment effects. Other studies shared
information on the comparison-specific meta-regression slopes (n = 4), the comparison-
specific between studies heterogeneities (n = 6), or the study-specific baselines (n = 2).
Regarding the PICOS level, 39 papers shared information across multiple outcomes, 23
across multiple treatments, 10 across study-designs and 6 across populations. Note that
the numbers do not necessarily add up to the total number of identified studies (i.e. 89),
because some of the identified papers described methods that shared information on
several types of parameters and across more than one PICOS level (e.g. Dakin et al., 2011).
Overall, there was a balance amongst papers that developed methods within MA (n = 45)
and within NMA (n = 44). The reader can identify the references pertaining to each
category by navigating through the library of the included papers using the relevant tags
(link supplied above). A full list of the included papers along with a description of how
information was shared within each paper can be found in Table A.2.1.

Table 3.2 lists the most common synthesis challenges addressed by the included
papers. Synthesis Challenge 1 is the most common issue relating to multiple population
subgroups and considers the combination of adult and paediatric evidence. Challenges
2-4 relate to models that allow the evidence on some treatment to affect the estimation
of parameters specific to other treatments. Challenges 5-6 consider the simultaneous
synthesis of studies of different designs that may be of different quality and therefore
prone to different types and levels of bias. Challenges 7-9 relate to the synthesis of
multiple outcomes that may only be correlated or dependent in a more complex manner.
Finally, Challenge 10 considers methods for utilising meta-epidemiological evidence to
strengthen analyses and assist estimation in conditions of data sparsity.

1The included papers are organised according to various tags such as the type of the relationship they
use, the synthesis issue they address, whether they developed models for MA or NMA, and the parameter
on which information was shared.
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Table 3.2: Main synthesis challenges identified and relevant references.

Synthesis challenge 1 (n = 3): Synthesis of adult and paediatric evidence.
Duarte et al., 2017; Gamalo-Siebers et al., 2017; Roever et al., 2019

Synthesis challenge 2 (n = 7): Synthesis of multiple dosages of the same treatment.
da Costa et al., 2017; Del Giovane et al., 2013; Langford et al., 2018; Mawdsley et al., 2016;
Owen et al., 2015; Warren et al., 2014; Wu et al., 2018

Synthesis challenge 3 (n = 7): Synthesis of drugs falling under the same ‘class’.
Dakin et al., 2011; Dominici et al., 1999; Moreno et al., 2011; Nixon et al., 2007; Owen
et al., 2015; Soares et al., 2014a; Warren et al., 2014

Synthesis challenge 4 (n = 5) : Synthesis of complex interventions.
Madan et al., 2014; Melendez-Torres et al., 2015; Mills et al., 2012; Nixon et al., 2007;
Welton et al., 2009b

Synthesis challenge 5 (n = 4): Synthesis of randomised and non-randomised evidence.
Efthimiou et al., 2017; Prevost et al., 2000; Rietbergen, 2016; Schmitz et al., 2013

Synthesis challenge 6 (n = 12): Synthesis of potentially biased and unbiased studies.
Chaimani and Salanti, 2012; Dias et al., 2010b; Eddy et al., 1990; Efthimiou et al., 2017;
Mavridis et al., 2013; Salanti et al., 2010; Schmitz et al., 2013; Spiegelhalter and Best, 2003;
Trinquart et al., 2012; Turner et al., 2009; Welton et al., 2009a; Wolpert and Kerrie, 2004

Synthesis challenge 7 (n = 2): Synthesis of structurally related outcomes.
Welton et al., 2008, 2010

Synthesis challenge 8 (n = 5): Synthesis of studies reporting on multiple follow-ups.
da Costa et al., 2017; Ding and Fu, 2013; Jackson et al., 2014; Lu et al., 2007; Musekiwa
et al., 2016

Synthesis challenge 9 (n = 22): Synthesis of correlated outcomes.
Achana et al., 2014; Ades et al., 2010; Bujkiewicz et al., 2014, 2016; Daniels and Hughes,
1997; Efthimiou et al., 2014; Hong et al., 2016; Jackson et al., 2011, 2013; Jackson and Riley,
2014; Jackson et al., 2018; Madan et al., 2014; Mavridis and Salanti, 2013; Nam et al., 2003;
Riley et al., 2007a, 2008; Van Houwelingen et al., 1993; van Houwelingen et al., 2002b;
Wei and Higgins, 2013a,b; Welton et al., 2008, 2010

Synthesis challenge 10 (n = 5): Incorporating evidence from previous meta-analyses.
Higgins and Whitehead, 1996; Pullenayegum, 2011; Rhodes et al., 2015; Turner et al.,
2015; Welton et al., 2009a
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3.3.2. ‘Core’ assumptions of information-sharing

As the primary purpose of this review was to classify the breadth of methods into a
handful of meaningful categories, efforts were made to identify information-sharing
patterns. Across all the included papers, one or more of four ‘core’ methods was used to
relate direct and indirect evidence. Each ‘core’ method was using a different underlying
assumption. Those four method categories are described below:

The first type is functional relationships which include deterministic functions among
model parameters that pertain to the direct and indirect evidence. They range from
simple relationships such as lumping (i.e. equal effects), which mainly aim to reduce the
number of parameters estimated by the model and thus assist parameter identifiability, to
complicated functionals (e.g. dose-response curves) which might introduce additional
parameters and may not be estimable under data sparsity conditions. The central assump-
tion is the validity of the imposed function which is often untestable. When dDir is the
parameter that relates to the direct evidence and dIndirν

the parameter that relates to the
ν− th indirect source, functional dependence can be expressed in the following way:

dDir = f (dIndir1 , dIndir2 , ..., dIndirν
) (3.1)

The second type is exchageability-based relationships, where a common distribution
(usually normal) is imposed on a set of source-specific parameters which are hence treated
as random draws from that distribution and shrink towards its mean (m) so that:

(dIndir1 , dIndir2 , ..., dIndirν
) ∼ N(m, σ) (3.2)

The variance of the estimated distribution (σ) provides an indication of the extent of
heterogeneity between evidence sets. Importantly, the source of heterogeneity is not
explicitly modelled and heterogeneity is not explained, but only accounted for. The
critical underlying assumption (i.e. exchangeability) assumes that the set of parameters
on which the distribution is imposed do differ, but in a non-systematic way.

The third type is prior-based relationships, which aim to regularise the estimation of
the parameters that pertain to the policy research question (i.e. the direct evidence) by
using ‘informative’ prior distributions derived from the indirectly related evidence. This
method is usually a two-step process where the indirectly related evidence is initially
analysed to generate an informative prior which is then combined with the direct evidence
in a Bayesian framework. Even though the assumption is similar to lumping (i.e. there
are no differences between direct and indirect evidence), the effect of the prior on the
posterior distribution will decrease as more direct information becomes available (Gelman
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et al., 2013). Importantly, prior-based methods allow the analyst to specify the perceived
similarity between direct and indirect evidence and vary the degree of similarity by
down-weighting the derived ‘informative‘ priors if necessary. For Dν and L(dν|Dν) being,
respectively the data and the likelihood of evidence set ν, these relationships can be
expressed as follows:

p(dDir|DDir, DIndir1 , DIndir2 , · · · , DIndirν
) ∝ L(dDir|DDir) x π0

where
π0 ∝ f (L(dIndir1 |DIndir1), L(dIndir2 |DIndir2), · · · , L(dIndirν

|DIndirν
))

The final type is multi-variate relationships. These assume that both direct and indirect
parameters are correlated and thus their relative effects are multi-variately distributed
(often- but not necessarily- multivariately normally distributed). Information-sharing is,
hence, achieved through the flow of information between all correlated variables. For
dn,i, being the source (ν) and study (i) specific parameter of interest, τn the source-specific
between-studies variance in parameters dn,i, and ρn,k the between-studies correlation
across the parameters of interest of sources n and k, multi-variate relationships can be
expressed as:


dDiri

...
dIndirν,i

 ∼ MVN

[
dDir

...
dIndirν

 ,


τ2

Dir · · · ρDir,Indν
· τDir · τIndirν

...
. . .

...
ρDir,Indν

· τDir · τIndirν
· · · τ2

Indirν


]

Table 3.3 classifies papers according to the ‘core’ relationship that they used and the
PICOS level that the additional evidence was indirect to.
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Table 3.3: A categorisation of papers that share information on the relative effectiveness parameter according
to the ‘core’ method that they use and the PICOS level that direct and indirect evidence differ in.

Multiple Treatments
Functional (n = 21): Chaimani and Salanti, 2012; Cooper et al., 2009; da Costa et al., 2017;
Dakin et al., 2011; Del Giovane et al., 2013; Dias et al., 2011a,b; Langford et al., 2018; Lu and
Ades, 2009; Madan et al., 2014; Mawdsley et al., 2016; Melendez-Torres et al., 2015; Mills et al.,
2012; Nixon et al., 2007; Owen et al., 2015; Soares et al., 2014a; Thorlund et al., 2013; Warren
et al., 2014; Welton et al., 2009b,a; Wu et al., 2018
Exchangeability-based (n = 14): Achana et al., 2013; Chaimani and Salanti, 2012; Cooper
et al., 2009; da Costa et al., 2017; Dakin et al., 2011; Del Giovane et al., 2013; Dominici et al.,
1999; Lu and Ades, 2009; Moreno et al., 2011; Nixon et al., 2007; Owen et al., 2015; Soares et al.,
2014a; Thorlund et al., 2013; Warren et al., 2014
Prior-based (n = 0): No references
Multivariate (n = 1): Nixon et al., 2007

Multiple Populations
Functional (n = 2): Duarte et al., 2017; Soares et al., 2014a
Exchangeability-based (n = 3): Achana et al., 2013; Dias et al., 2011c; Gamalo-Siebers et al.,
2017
Prior-based (n = 3): Achana et al., 2013; Gamalo-Siebers et al., 2017; Roever et al., 2019
Multivariate (n = 0): No references

Multiple Outcomes
Functional (n = 4): Dakin et al., 2011; Ding and Fu, 2013; Lu et al., 2007; Welton et al., 2008
Exchangeability-based (n = 2): da Costa et al., 2017; Lu et al., 2007
Prior-based (n = 0): No references
Multivariate (n = 30): Achana et al., 2014; Ades et al., 2010; Bujkiewicz et al., 2014, 2016;
Copas et al., 2018; Daniels and Hughes, 1997; Efthimiou et al., 2014, 2015; Hong et al., 2016,
2018b; Hwang and DeSantis, 2018; Jackson et al., 2011, 2018, 2014, 2013; Jackson and Riley,
2014; Liu et al., 2018; Lu et al., 2014; Madan et al., 2014; Mavridis and Salanti, 2013; Musekiwa
et al., 2016; Nam et al., 2003; Riley et al., 2008, 2007a; Tan et al., 2018; Van Houwelingen et al.,
1993; van Houwelingen et al., 2002b; Wei and Higgins, 2013a,b; Welton et al., 2008, 2010

Multiple Designs
Functional (n = 12): Chaimani and Salanti, 2012; Dias et al., 2010b; Eddy et al., 1990; Mavridis
et al., 2013; Salanti et al., 2010, 2009; Spiegelhalter and Best, 2003; Trinquart et al., 2012; Turner
et al., 2009; Wolpert and Kerrie, 2004; Welton et al., 2009a; Moreno et al., 2011
Exchangeability-based (n = 4): Efthimiou et al., 2017; McCarron et al., 2010; Prevost et al.,
2000; Schmitz et al., 2013
Prior-based (n = 7): Efthimiou et al., 2017; Mak et al., 2009; McCarron et al., 2010, 2011;
Rietbergen, 2016; Schmitz et al., 2013; Welton et al., 2009b
Multivariate (n = 0): No references
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3.3.3. Information-sharing methods

This section presents the findings of the citation-mining review, categorising the identified
papers and methods under the four ‘core’ relationships of information-sharing.

3.3.3.1 Functional relationships

The simplest functional relationship is lumping (i.e. common effects) where all data points
inform a single parameter independently of whether the evidence is direct or indirect.
Examples include pooling RTEs across time-points (Dakin et al., 2011) or (sub-)populations
(Soares et al., 2014a; Duarte et al., 2017) as well as pooling between-trial heterogeneity
parameters (Dias et al., 2011a) or meta-regression slopes (Cooper et al., 2009).

Constraints impose a strict inequality among parameters, facilitating information-
sharing by preventing MCMC simulations that do not conform to the specified constraint.
Such methods have been used to relate RTEs across dosages, expressing that higher
dosages are expected to exhibit larger RTE (Owen et al., 2015; Del Giovane et al., 2013), de-
scribe structurally-related outcomes (Welton et al., 2008) and specify second-order consis-
tency equations that impose a triangle inequality on the comparison-specific between-trial
variances (Lu and Ades, 2009; Thorlund et al., 2013).

Meta-regression-type methods have also been suggested. In the examples found, the
relationships were usually linear —on the modelling scale —with one RTE component
independent and another RTE component dependent on a particular study characteristic
(see e.g. Equation 2.13). The most common example of methods in this category is bias-
adjustment, primarily used to synthesise studies of different designs. Bias-adjustment
methods broadly fall into two categories: general frameworks that adjust the RTE for
biases affecting internal and external validity provided that the extent of bias can be either
estimated from empirical evidence or elicited from experts (Eddy et al., 1990; Wolpert
and Kerrie, 2004; Turner et al., 2009; Spiegelhalter and Best, 2003), and approaches that
adjust for bias due to particular study-level characteristics (considered proxies for study
quality such as their size (Chaimani and Salanti, 2012; Trinquart et al., 2012; Mavridis
et al., 2013; Salanti et al., 2010; Moreno et al., 2011), publication year (Salanti et al., 2009),
or risk-of-bias (Dias et al., 2010b; Welton et al., 2009a). Meta-regression-type relationships
have also been used for complex interventions (i.e. treatments that comprise of multiple
components). In their simplest form, they model the cumulative RTE of a complex
intervention as the sum of RTEs of its treatment components (Nixon et al., 2007; Madan
et al., 2014; Mills et al., 2012; Melendez-Torres et al., 2015), whilst more sophisticated
approaches allow for synergistic or antagonistic relationships by suggesting functions
that also contain treatment interaction RTE components (Welton et al., 2009b). Other
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applications include approaches that model the RTEs measured in two survival outcomes
(e.g. time-to-mortality and time-to-progression) by assuming that they only differ by a
constant component which is invariant across treatment comparisons (Welton et al., 2010),
methods that assume a linear relationship between dosage and RTE (Warren et al., 2014),
and methods for baseline-risk adjustment (Achana et al., 2013).

Finally, more complex, non-linear, relationships have also been presented in the
literature, namely those enabling the synthesis of RTEs across a range of dosages using
the Emax model (Mawdsley et al., 2016; Wu et al., 2018; Langford et al., 2018) commonly
employed in pharmacokinetics and those enabling the sharing of information across
follow-up periods (Lu et al., 2007; Ding and Fu, 2013).

3.3.3.2 Exchangeability-based relationships

The simplest exchangeability-based relationship relates a set of parameters using a RE
model which accounts for heterogeneity without explicitly modelling its source(s). The
RE model assumes that all parameters are drawn from a distribution, implying that
individual parameters are shrunk towards the RE mean; this can happen to a greater or
lesser extent, depending on each individual estimate’s precision and discrepancy from
the RE mean. Examples include pooling RTEs of different dosages of the same treatment
(Del Giovane et al., 2013), comparison-specific meta-regression slopes (Cooper et al., 2009;
Achana et al., 2013; Chaimani and Salanti, 2012; Moreno et al., 2011), comparison-specific
between-trial variances (Lu and Ades, 2009; Thorlund et al., 2013), and study-specific
baseline-risks (Dias et al., 2011c; Achana et al., 2013).

Random-walks express the assumption that data points which are more similar with
respect to a particular characteristic are expected to exhibit more similar RTEs. Examples
include approaches assuming that the RTE of a particular dosage comes from a distribution
that is centred around the RTE of its adjacently lower or higher dosage (Del Giovane et al.,
2013) and models assuming that the RTE of a particular follow-up period is more similar
and hence centred around the RTEs of adjacent follow-up periods than to RTEs of more
‘distant’ follow-ups (Lu et al., 2007; da Costa et al., 2017).

Multi-level models also impose the assumption of exchangeability, but also account
for the hierarchical/clustered structure of the available data. As such, exchangeability is
imposed once within specific groups of parameters (i.e. conditional on some characteristic)
and across the group-specific hyper-parameters. For example, in the bottom level, studies
may be categorised according to a characteristic and a different random-effect may be
imposed within every category, producing group-specific means and heterogeneities. In
the top-level, exchangeability may also be assumed across the group-specific means which
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are shrunk towards an overall, global, group-independent, hyper-mean. Examples include
‘class-effects’ models where, on top of the classical RE NMA models, the basic parameters
of treatments that function through the same mechanism are assumed to be drawn from a
common distribution with an overall ‘class’ mean and an across-treatments, within-class,
heterogeneity (Soares et al., 2014a; Owen et al., 2015; Nixon et al., 2007; Dakin et al.,
2011; Dominici et al., 1999; Warren et al., 2014). Class-effect approaches have also been
imposed across comparison-specific meta-regression slopes (Cooper et al., 2009; Moreno
et al., 2011). Multi-level models have been suggested to combine adult and paediatric
evidence (Gamalo-Siebers et al., 2017) and studies of different designs (Prevost et al., 2000;
Efthimiou et al., 2017; Schmitz et al., 2013; McCarron et al., 2010).

3.3.3.3 Prior-based relationships

Direct and indirect evidence can also be combined through the use of prior distributions.
The process usually consists of two steps where initially the indirect evidence is analysed
and subsequently the resulting distribution is used as a prior in the analysis of the direct
evidence. Examples include the combination of adult and paediatric evidence (Gamalo-
Siebers et al., 2017) or randomised and non-randomised evidence (Efthimiou et al., 2017;
Schmitz et al., 2013; McCarron et al., 2010, 2011). The prior can be adjusted for bias or
have its precision inflated (Efthimiou et al., 2017). Alternative ways to inform the prior
include using meta-epidemiological evidence or expert elicitation. The former has been
used primarily for bias-adjustment (Welton et al., 2009b), whilst both the former (Higgins
and Whitehead, 1996; Turner et al., 2015; Pullenayegum, 2011) and the latter (Ren et al.,
2018) have been used to define a prior distribution for the between-trials heterogeneity.

More nuanced prior-based approaches such as mixture priors have also been used.
Here, the distribution representing the indirect evidence is not used at face value, but
instead combined with a ‘vague’ component. The informative and vague parts are mixed
according to weights that may be specified by the analyst or determined within the
synthesis model. The resulting informative prior is typically heavy-tailed, and allows for
adaptive information-borrowing which has been argued to be desirable under prior data
conflict conditions (Roever et al., 2019); that is, when the direct and indirect evidence
turn out to be substantially different from one another. Mixture priors have been used to
combine evidence on RTE and between-studies heterogeneity across adults and children
(Roever et al., 2019) and to analyse the study-specific baseline parameters from studies that
enrol populations with different baseline risk (Achana et al., 2013). The use of mixture
priors has also been discussed for the synthesis of randomised and non-randomised
evidence (Efthimiou et al., 2017).
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Finally, a flexible method, initially proposed by Ibrahim and Chen, 2000, is the power-
prior. In this method, direct and indirect evidence are simultaneously analysed but
the Bayesian likelihood of the indirect evidence is raised to a power scalar 0 6 a 6 1
which reflects the perceived similarity between the two evidence sets. When α = 1 the
results are equivalent to lumping and when α = 0 it is identical to splitting. The power
parameter, α, needs to be specified, and can be elicited (Rietbergen et al., 2016) or varied
in sensitivity analyses (Spiegelhalter et al., 2004). Power-priors have been used to combine
observational and randomised evidence whilst regulating the impact of observational
evidence (Rietbergen, 2016) and their use has also been described for the simultaneous
synthesis of adult and paediatric evidence (Gamalo-Siebers et al., 2017).

3.3.3.4 Multi-variate relationships

Multi-variate relationships have primarily been used to borrow strength across multiple
outcomes. Multivariate meta-analysis correlates the various outcomes and may separate
within- and between-studies correlations (Mavridis and Salanti, 2013). At the within-
studies level, the study-specific correlations arise due to differences among the included
patients, and indicate how the outcomes co-vary across individuals within the study. For
example, patients who —due to a baseline characteristic that makes their disease more
severe —show high values for outcome A, are also more likely to yield high values for
outcome B. At the between-studies level, correlations arise mainly due to study-level
differences such as the distribution of patient-level characteristics across studies. For
instance, studies that enrol more severe cases and show high values for the mean of
outcome A, are also more likely to result in high values for the mean of outcome B. These
models are argued to potentially produce more precise estimates (Riley et al., 2007a) and
mitigate outcome reporting bias (Hwang and DeSantis, 2018; Kirkham et al., 2012).

Multivariate methods have been developed to consider two (Van Houwelingen et al.,
1993; van Houwelingen et al., 2002b; Nam et al., 2003), three, or more correlated outcomes
(Wei and Higgins, 2013b; Jackson et al., 2011), accommodate the simultaneous analyses of
multiple treatments (Efthimiou et al., 2014; Achana et al., 2014), and assess the relationship
between surrogate and final outcomes (Daniels and Hughes, 1997; Bujkiewicz et al., 2016).
Given that within-trial correlations are commonly unknown, authors have suggested
using external data to inform prior distributions for these parameters (Bujkiewicz et al.,
2014) or, when external data are not available, methods that approximate within-study
co-variances (Wei and Higgins, 2013a). Further extensions can also handle missing data
(Jackson et al., 2013) and allow modelling of heterogeneity and inconsistency using two
different variance components (Jackson et al., 2018).
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To accommodate cases where the within-trials correlations are unavailable and cannot
be otherwise obtained, alternative models which require the same data as a univariate
approach and do not separate within- and between-trials correlations have been suggested
for MA (Riley et al., 2008; Hong et al., 2018a) and NMA (Efthimiou et al., 2014). When
the overall correlation is not very strong, these models perform very similarly with their
counterpart that separates the two correlations whilst preserving their benefits against
the univariate approach.

Finally, some models only account for either the within- or the between- studies corre-
lations. For example, to model mutually exclusive outcomes, it has been suggested to only
account for the within-trials negative correlations which are induced by the competing
risks structure of the data (i.e. the more patients that reach one outcome, the fewer
that reach another) (Ades et al., 2010). Also, other approaches have only modelled the
between-studies covariance matrix to allow simultaneous synthesis of multiple outcomes
(Welton et al., 2008, 2010; Madan et al., 2014; Hong et al., 2016), accommodate outcomes
reported at several follow-up periods (Jackson et al., 2014; Musekiwa et al., 2016) and en-
able information-sharing across different treatment components of complex interventions
(Nixon et al., 2007).
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3.4. Discussion

The aim of this study was to identify and classify evidence synthesis methods that have
been used to combine evidence directly and indirectly relating to a research question.
Given that there was a pattern in the main assumptions/mathematical relationships that
the various methods utilised in order to facilitate information-sharing, the results are
presented in four main categories. These are functional relationships, relationships based
on exchangeability, prior-based relationships, and multivariate relationships. In addition,
the most common evidence synthesis challenges were identified and listed in Table 3.2
along with the papers that developed methods to address them.

Interestingly, most of the identified ISMs were developed in a Bayesian setting. This
is perhaps because the Bayesian framework naturally lends itself to information-sharing.
Specifically, in Bayesian inference parameter estimation requires that the observed data are
combined with a prior distribution to derive posterior conclusions. The prior distribution
reflects any previous beliefs/knowledge about the parameters, and therefore provides an
obvious ‘vehicle’ to load indirect evidence. However, ISMs that do not share information
though prior distributions can also be implemented in a frequentist setting without any
particular implications and there are several examples in the literature (Jackson et al.,
2011, 2013; Wei and Higgins, 2013a; Riley et al., 2007a; Mavridis and Salanti, 2013).

The findings of this review have a number of important implications. As shown in
Table 3.3, some ‘core’ relationships are preferred when information is shared across specific
PICOS levels. For instance, most of the identified papers which share information across
treatment comparisons either use functional or exchangeability-based relationships, and
no example using priors was found. Also, papers that used multivariate relationships, did
so to borrow strength across related outcomes and no paper used multivariate methods
to borrow strength across populations or study-designs. This may be partly because
the information required to implement multivariate methods for multiple populations
or study-designs is usually unavailable. For instance, to estimate the between-study
correlation across populations we would require evidence from studies enrolling and
separately reporting on each population. Still, methods that were originally developed to
share information on one PICOS level may be transferable to other levels.

This review highlights the breadth of methods that can facilitate information-sharing.
Although, typically, particular relationships are used preferentially to share information on
specific information-sharing contexts, it is likely that several methods are applicable and
analysts would need to choose which method is more appropriate. This work highlights
that appropriate considerations need to be made when choosing ‘core’ relationships and
methods, as choices are likely to influence the degree of information-sharing. Specifically,
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method selection may be informed by the following considerations; the first is the
plausibility of the assumptions imposed by the methods in the context of interest. The
classification of methods according to the ‘core’ relationship that enables information-
sharing, is expected to facilitate a clearer discussion about the plausibility of these
assumptions in the decision context of interest.

The second is the degree of information-sharing that is imposed between direct and
indirect evidence. There has been limited exploration of how much different methods
borrow-strength from indirect evidence, though for multivariate methods, it has been
noted that information-sharing is ‘usually modest’ (Jackson et al., 2011; Copas et al.,
2018) and, sometimes, instead of ‘borrowing-strength’, multi-variate methods may end
up ‘borrowing-weakness’ (Bujkiewicz et al., 2013). The few studies that have assessed
the degree of information-sharing typically consider only the degree of precision gains
(Jackson et al., 2017) rather than also examining how the point estimate changes —which
is also important for decision-making. Further research to understand the extent to which
different methods share information is warranted.

Finally, decision-makers may be interested in exploring different levels of information-
sharing. One way to do that is by using prior-based methods that allow some control on
the degree of information-sharing. For instance, an informative prior may use either the
posterior distribution of the mean, or the predictive distribution of the indirect evidence.
The former is equivalent to lumping, whilst the latter imposes less information-sharing.
Similarly, power-priors allow a range of values to be used for α which determines the
extent of information-sharing.

Whilst it is expected that the above identification of ‘core’ relationships is exhaustive,
the use of citation-mining techniques may have missed relevant methods, particularly
those outside of health research. Additionally, this review only looked for methods that
shared information between evidence sets that address different research questions. Hence,
methods such as commensurate priors which have been used to combine individual-
patient data and aggregate-level evidence on the same research question (Hong et al.,
2018b) could also be useful for combining evidence sets that pertain to different research
questions, but were here considered outside of the scope of the search.

Overall, this is the first attempt to summarise and categorise the existing literature
by classifying methods according to the ‘core’ assumption that they use to facilitate
information-sharing. Despite the challenges described above, the identified papers allowed
borrowing-of-strength patterns to emerge. Further research could explore the following
questions: first, how can we determine whether indirect evidence is relevant? Second, how
can the appropriateness of each ISM be assessed for the synthesis problem at hand? Finally,
can the extent of information-sharing be quantified to assist transparent decision-making?
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Chapter 4

Network meta-analytic methods that borrow strength from
aggregate-level binary evidence from indirectly related
populations

4.1. Chapter aims and structure

In the previous chapter, the literature was searched in order to identify evidence synthesis
models which can be used to facilitate information-sharing across evidence sets that
investigate different, yet related, research questions. Furthermore, the identified ISMs
were classified into four ‘core’ relationships, each one using a different main assumption
to relate direct and indirect evidence. However, the identified ISMs were not explained in
detail, because they were applied for a variety of synthesis challenges, data structures,
and outcome types. This chapter aims to provide a thorough description of the details
underpinning the methods identified in Chapter 3, in order to aid transparency in method
choice. Specifically, this chapter has the following main aims:

1. To describe in detail the ISMs that were identified in Chapter 3 in the context of
a simple, commonly encountered, synthesis problem. This is the simultaneous
synthesis of two sets of evidence, each one including a number of studies enrolling
a different patient population, whilst allowing for information to be shared on the
relative effectiveness parameter. It will be assumed here that studies provide only
aggregate-level evidence.

2. To thoroughly explain and discuss the assumptions underpinning ISMs in the
context of the synthesis problem at hand.

3. To provide programming and coding suggestions for WinBUGS (MRC Biostatistics
Unit, 2010) with the purpose of advancing the accessibility and applicability of ISMs.

4. To provide a step-by-step process for the identification of applicable ISMs that can
be used by others facing similar synthesis problems.
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The remainder of this chapter is structured as follows. In Section 4.2, the synthesis
problem that will be central to this chapter is described, and in Section 4.3 the classical
NMA model is extended to account for multiple evidence sets, though without imposing
any degree of information-sharing. Subsequently, in Section 4.4 models that borrow
information from the indirect evidence to ‘strengthen’ the relative treatment effect esti-
mate of the direct evidence are mathematically developed. Note here that multi-variate
relationships are not included because the required information for such relationships
is not provided in the synthesis problem under consideration. Finally, in Section 4.5, a
process to identify applicable ISMs for similar synthesis problems is explained, while in
Section 4.6 the strengths and limitations of this work are discussed along with directions
for future research.

4.2. Definition of the synthesis problem

This section describes the synthesis problem that will be considered throughout this
chapter. As a starting point, it is assumed that there are only two sets of evidence:
one which provides information directly relevant to the research question, and another
which provides indirectly related information, because it enrolled a different, yet related,
population. The focal question which is then explored here is: ‘What methods can be used to
share information between direct and indirect evidence on relative effectiveness?’

Except for the enrolled population, the two sets of evidence are identical in all other
PICOS aspects. Specifically, they include only two-arm studies and test the same set of
interventions, thus producing the same basic parameters. Also, both evidence sets assess
effectiveness based on the a binary outcome (e.g. mortality) and there are no studies
including patients from both populations while reporting separately for each. In order for
the models to be widely applicable, it is assumed that only aggregate-level evidence is
available; however, all models can be easily extended to incorporate IPD as well. Finally,
it is beyond the scope of this chapter to present ways to explore heterogeneity within the
evidence sets, and hence only FE and RE models are considered.

The data take the form shown in Table 4.1. Essentially, a study-level covariate X is
constructed to indicate whether a study provides direct or indirect information. Hence,
studies with the same covariate value belong to the same evidence set. If multiple indirect
evidence sets were available, a categorical variable could be used and only one of its
values would correspond to the directly relevant population, whilst all remaining values
would pertain to different indirect evidence sets. Finally, if the indirect evidence sets can
further be ordered according to their expected RTEs, the value of the categorical variable
assigned to each evidence set should reflect the a priori expected ordering.
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4.2. Definition of the synthesis problem

Table 4.1: An example of an extended evidence base. A binary variable X is used to indicate the source that
each study pertains.

Study
index

na[] t[,1] r[,1] n[,1] t[,2] r[,2] n[,2] X

1 2 1 13 27 3 8 29 0
...

...
...

...
...

...
...

... 0

ndir 2 1 10 22 3 9 30 0
ndir +1 2 2 9 28 3 1 27 1

...
...

...
...

...
...

...
...

...
ndir +
nindir

2 1 3 19 3 4 19 1

ndir: number of studies in the direct evidence set, nindir: number of studies in the indirect evidence set,
na: number of arms, t[, k] treatment indicator for arm k, r[, k]: number of events in arm k, n[, k]: number
of patients enrolled in arm k.

The synthesis problem described above was chosen for three main reasons: First, it
is a simple problem allowing for the focus to remain on the explanation of the meth-
ods. Second, it is relatively common in HTA and therefore analysts may be able to use
the methods and the provided code with little to no adaptation. Finally, this synthesis
problem links with the applied work that is undertaken in the next chapters, and is
hence convenient in the sense that methods will not have to be repeated, with only the
unavoidable modifications requiring further explanation.
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4.3. The ‘splitting-model’

To accommodate the simultaneous synthesis of both direct and indirect evidence without
imposing any information-sharing, for population j, the basic NMA model described on
page 27 is extended here so that:

ri,k ∼ Bin(pi,k, ni,k) (4.1)

logit(pi,k) = θi,k = µib + δi,bk (4.2)

where under a FE model:

δi,bk = dj
bk

whereas under a RE model:

δi,bk ∼ N(dj
bk, τ j2)

dj
bk = dj

1k − dj
1b (4.3)

dj
11 = 0 (4.4)

where dj
bk, dj

1k, τ j are the evidence set-specific relative treatment effects, basic parameters,
and between-studies heterogeneity respectively. Since no studies report for both pop-
ulations, the population index is nested within the study index and hence parameters
that have the study index (i) do not need a population index (j). Therefore, by defining
population specific relative effects dj

bk and basic parameters dj
1k no information-sharing is

allowed across populations; vague priors are assigned to all parameters.
The model can be applied in WinBUGS using the code developed by Dias et al., 2011a

as shown below. However, two separate loops are defined, one for each evidence set,
and different names are being used for parameters that represent population-specific
quantities and are not study-specific. For instance, δi,k are study-specific and the evidence
set that each δi,k pertains to is nested within the i index. In contrast, dj

1k, τ j are assigned
names specific to each evidence set.
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4.3. The ‘splitting-model’

model{ # *** Program starts

for(i in 1:ns.dir){ # LOOP THROUGH DIRECT STUDIES
w[i,1] <- 0 # multi-arm adjustment is zero for control arm
delta[i,1] <- 0 # treatment effect is zero for control arm
mu[i] ∼ dnorm(0,.0001) # vague priors for all trial baselines

for (k in 1:na[i]) { # Loop through arms
r[i,k] dbin(p[i,k],n[i,k]) # binomial likelihood
logit(p[i,k]) <- mu[i] + delta[i,k] # model for linear predictor

} # Arms loop closes
for (k in 2:na[i]){ # Loop through arms

delta[i,k] ∼ dnorm(md[i,k],precd[i,k]) # trial-specific LOR
md[i,k] <- d.dir[t[i,k]] - d.dir[t[i,1]] + sw[i,k] # mean of LOR
precd[i,k] <- prec.dir *2*(k-1)/k # precision of LOR
w[i,k] <- (delta[i,k] - d.dir[t[i,k]] + d.dir[t[i,1]]) # multi-arm adjustment
sw[i,k] <- sum(w[i,1:k-1])/(k-1) # cumulative multi-arm adjustment

} # Arms loop closes
} # DIRECT STUDIES LOOP CLOSES

d.dir[1]<-0 # tr.effect is zero for ref.treatment in direct studies
for (k in 2:nt){ d.dir[k] ∼ dnorm(0,.0001) } # vague priors for direct basic params
tau.dir ∼ dunif(0,2) # between-trial SD
prec.dir <- pow(tau.dir,-2) # between-trial precision

for(i in ns.dir+1:ns.dir+ns.indir){ # LOOP THROUGH INDIRECT STUDIES
w[i,1] <- 0 # multi-arm adjustment is zero for control arm
delta[i,1] <- 0 # treatment effect is zero for control arm
mu[i] ∼ dnorm(0,.0001) # vague priors for all trial baselines

for (k in 1:na[i]) { # Loop through arms
r[i,k] dbin(p[i,k],n[i,k]) # binomial likelihood
logit(p[i,k]) <- mu[i] + delta[i,k] # model for linear predictor

} # Arms loop closes
for (k in 2:na[i]){ # Loop through arms

delta[i,k] ∼ dnorm(md[i,k],precd[i,k]) # trial-specific LOR
md[i,k] <- d.indir[t[i,k]] - d.indir[t[i,1]] + sw[i,k] # mean of LOR
precd[i,k] <- prec.indir *2*(k-1)/k # precision of LOR
w[i,k] <- (delta[i,k] - d.indir[t[i,k]] + d.indir[t[i,1]]) # multi-arm adjustment
sw[i,k] <- sum(w[i,1:k-1])/(k-1) # cumulative multi-arm adjustment

} # Arms loop closes
} # INDIRECT STUDIES LOOP CLOSES

d.indir[1]<-0 # tr.effect is zero for ref.treatment in indirect studies
for (k in 2:nt){ d.indir[k] ∼ dnorm(0,.0001) } # vague priors for indirect basic params
tau.indir ∼ dunif(0,2) # between-trial SD
prec.indir <- pow(tau.indir,-2) # between-trial precision

} # *** Program ends
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4.4. Information-sharing methods

This section describes models that can be used to share information on RTEs for the
synthesis problem described in Section 4.2. This is sharing information between two
evidence sets enrolling different populations; one directly related to the research question
and one only indirectly relevant. The models consider information-sharing on the RTE
mean, d, and between-studies heterogeneity, τ, (under RE) and are summarised in
Table 4.2 and Table 4.3 respectively. The evidence set that each parameter pertains to
is denoted in their subscript (e.g. dDir

1k , dIndir
1k ). Where possible, it is also shown how the

methods can be extended to consider the case of one direct and multiple indirect sources
(i.e. dj

1k = dDir
1k , dIndir1

1k , dIndir2
1k , dIndir3

1k , ..., dIndirJ
1k ). WinBUGS code for all the models can be

found in https://github.com/NikolaidisGFZ/PHD.git Models are organised under the
‘core’ relationship that they impose to facilitate information-sharing as introduced on
page 49. Note that multi-variate relationships are not included here, because the necessary
information that is required for such relationships is not provided in the synthesis problem
under consideration. This is further discussed in Section 4.6.

4.4.1. Functional relationships

This section covers relationships that take the form of deterministic functions among
parameters that pertain to the direct and the indirect evidence. These include lumping,
constraints, and meta-regression/bias-adjustment approaches. Their main assumption is
the validity of the imposed deterministic relationship which is often un-testable.

4.4.1.1 Lumping

Being the easiest to implement and most commonly used ISM, lumping simply ignores
any differences between direct and indirect evidence. Under FE models, this is achieved
by assuming that dDir

1k = dIndir
1k , which is equivalent to dropping the j index and analysing

all studies as if they pertain to the same set of evidence. Under RE, however, both d and τ

are components of the RTE and lumping can be imposed on either or both. For instance,
if the two sets of evidence are expected to exhibit the same point estimate for the relative
effect but one set of evidence is evidently more heterogeneous than the other, then we
could just assume that dDir

1k = dIndir
1k and allow for population-specific heterogeneities τ j.

In contrast, the two sources may only be equally heterogeneous without equal RTE means,
so that only τDir = τ Indir and the point estimate is population-specific dj

1k. Finally, if the
direct and indirect evidence sets are expected to yield both equal d and τ, a RE can be
imposed across all studies.
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4.4. Information-sharing methods

4.4.1.2 Constraints

When it can be reasonably assumed that the RTEs of the two populations should follow a
particular ordering (e.g. that the RTE is expected to be larger in the indirect population),
this assumption can be explicitly reflected in the model. As suggested by Owen et al.
(2015), this can be achieved by defining a new variable γ which takes the form of a step
function I(x), so that:

γ =

I(x) = 0, if x 6 0

I(x) = 1, if x > 0

The expected ordering can then be expressed by appropriately defining x and forcing γ

to take a specific value. For example, if we expect a larger reduction in mortality in the
direct population than in the indirect population (i.e. a lower log-odds ratio), then we can
define x = dIndir

1k − dDir
1k and γ = 1, so that dIndir

1k − dDir
1k > 0 and therefore dIndir

1k > dDir
1k . To

apply a constraint in WinBUGS the code displayed below can be added to the splitting
model, outside the population-specific loops, for every basic parameter 1k the constraint
is applied on.

b <- 1
b ∼ dbern(constraint)
constraint <- step(d.ind[1k] - d.dir[1k]) # e.g. for basic parameter 1k

If there were more sets of indirect evidence, the RTEs of which were expected to follow
an underlying ordering, the model could be extended by using an ordinal distinguishing
variable. For instance, if we simultaneously analyse evidence that pertain to patient
subgroups of differing disease severity, one of which is the population directly considered,
and we expect the RTE to increase for more severe disease (i.e. dj=1

1k < dj=2
1k < ... < dj=J

1k ),
we can express this belief by defining the following function γ = 1:

γ =
j=J

∏
j=1

I(dj+1
1k − dj

1k)

where dj+1
1k is the RTE that pertains to the more severe patients than dj

1k. By assuming that
the product of all I(x) is equal to 1, we are effectively assuming all I(x) = 1 and hence all
x = dj+1

1k − dj
1k > 0.

It is worth noting that this model does not imply that the posterior distributions for
dDir

1k and dIndir
1k cannot overlap, but only that the expressed ordering is preserved within
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each MCMC iteration. Crucially, the notion of information-sharing may seem counter-
intuitive in this case, because increasing information-sharing implies that parameters
become more distant instead of more similar. For instance, as illustrated in Figure 4.1,
when direct and indirect evidence suggest very different evidence set-specific RTEs (left
hand-side graph), imposing a constraint of the correct direction will have minimal effect
on the RTE estimates, whilst lumping would majorly affect estimates. In contrast, when
direct and indirect evidence suggest very similar RTEs (right hand-side graph), lumping
will lead to minimal changes, but the constraint is expected to produce a major shift in
the RTE means of the two evidence sets.

Figure 4.1: An example of how constraints can be very informative under particular circumstances.

Black and red solid lines correspond to estimates of the direct and the indirect relative effects under a splitting
approach, whilst dotted lines correspond to estimates using a model that imposes constraints. The solid
orange line represents lumping estimates. On the left, the direct and indirect evidence are very different
-distant- and imposing a constraint of the correct direction results in only minor changes in the estimates
RTEs. On the contrary, on the right, direct and indirect evidence are more similar and overlap considerably.
As a result, imposing a constraint results in larger changes in the estimated mean effects.
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4.4.1.3 Meta-regression (and bias-adjustment)

Since the population indicator is a binary study-level variable, meta-regression models can
also be applied. For this, the j index is dropped from the splitting model and Equation 4.2
is modified so that:

logit(pi,k) = θi,k = µi + δi,1k + β1k · Xi (4.5)

where β1k is a treatment comparison-specific component that represents the additional
RTE (log-odds ratio) that is exhibited in the indirect population and is assigned a vague
prior. Most often β1k is assumed to be comparison-invariant (i.e. β1k = β) to assist
parameter identification, however alternative modelling approaches are explained in
detail in (Cooper et al., 2009). This model effectively assumes that there is an additional
RTE component in the indirect population which is the same for any treatment comparison
and can be implemented using material that is supplied in (Dias et al., 2011b).

Despite the fact that this approach allows us to test the interaction between the relative
effect and the population covariate, it does not facilitate any information-sharing between
direct and indirect evidence as long as β parameters remain comparison-specific. This
is because no studies report for both populations, and therefore the indirect evidence
will provide information for the estimation of β, whilst the direct evidence will provide
information for the estimation of δ. However, if evidence from multiple patients subgroups
is available and X can be used as a cardinal variable, then information would be shared
across all evidence sets in which X 6= 0 in the estimation of β. The model would then
assume that as X increases, the additional relative treatment effect remains constant or, in
other words, that the relative effect increases linearly with X.

Since this model is essentially a bias-adjustment approach, ideas that were developed
in Welton et al., 2009a could potentially be used to enable further information-sharing if
appropriate meta-epidemiological data were available. Such an approach would facilitate
information-sharing through the use of a prior distribution by substituting the vague
prior on β (i.e. the difference between direct and indirect evidence) with an informative
prior derived from previous meta-analyses. Another approach could be to treat indirect
studies as being externally biased, extend the model to accommodate study-specific
bias components βi and elicit a distribution for the study-specific bias components from
experts according to methods that were suggested by Turner et al., 2009.
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4.4.2. Exchangeability-based relationships

This sections covers methods that employ the assumption of exchangeability. That is
the assumption that a set of parameters do not differ in a systematic manner. Methods
include multi-level models and random-walks.

4.4.2.1 Multi-level model

When the same treatments have been evaluated in different evidence sets and the expected
RTEs cannot be distinguished with an ordinal variable1, but only with a categorical
—unordered—variable2, multi-level models are still applicable. Under this approach, the
‘splitting-model’ is extended so that:

dj
1k ∼ N(D1k, φ1k) (4.6)

where population- and comparison-specific basic parameters are normally distributed with
a ‘global’, population-invariant, comparison-specific mean D1k, and a comparison-specific,
between-populations, variance φ1k. The variance is indicative of the between-populations
heterogeneity on the basic parameters and may be assumed equivalent across treatment
comparisons (i.e. φ1k = φ). At the bottom level this method performs NMA separately
across studies within each population, whilst at the top level it performs a meta-analysis
of the population-specific basic parameters applying a random-effect (see Figure 4.2).
Under RE, the model contains three-levels overall, whilst under FE two levels. The model
assumes that evidence set-specific basic parameters dj

1k do not systematically differ across
populations and therefore allows them to shrink towards a comparison-specific hyper-
mean that is independent of population D1k. It is worth noting that this approach requires
that the same basic parameters can be obtained from every evidence set and that it is
not necessarily applicable when different evidence sets compare different interventions.
Efthimiou et al., 2017 discuss approaches for which be more appropriate under such
circumstances.

Importantly, multi-level models not only require enough studies within each popula-
tion in order for the population-specific between-trial variance to be adequately identified,
but also require evidence from multiple different patient groups so that the between-
populations heterogeneity is identified. Gelman, 2006a suggested that when a RE is

1e.g. If the two evidence sets relate to a more severe subgroup and a less severe subgroup of patients, it
may be reasonable to expect a priori that the RTE pertaining to the more severe subgroup is larger than that
of the less severe subgroup.

2e.g. if the evidence sets relate to different disease sub-types such as different gene mutations, it is unlikely
that there will be a rationale to expect, a priori, that the RTE pertaining to the subgroup of one mutation is
higher or lower than the RTE of the other mutation subgroup, and hence they cannot be ordered.
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used, at least four or five data-points should be available to prevent implausibly high or
low variance values. However, here, at the top level, we pool population-specific means
instead of study-specific observations, which may be less erratic and hence we may be
able to obtain realistic estimates of the between-populations heterogeneity with less than
five population groups. Alternative options for the application of multi-level models with
a small number of groups include the use of an informative prior for φ that is produced
either by eliciting from experts the expected dispersion of the results across population
groups, or by using meta-epidemiological data; although, no such approach came up in
the review of Chapter 3.

Figure 4.2: An illustration of the multi-level model.

Group 1 Group 2

12
j=1d 13

j=1d 14
j=1d

12D 13D 14

Within-group NMAs
bottom level

Across groups MA
top level

D

12
j=2d 13

j=2d 14
j=2d

At the bottom level, NMA is performed within each evidence set to produce evidence set-specific basic
parameters, dj

1k. At the top level, basic parameters are pooled across evidence sets using an additional
random-effect. This process results in the estimation of evidence set-independent basic parameter D1k and a
between-sets heterogeneity.

The WinBUGS code that extends the ‘splitting model’ to impose a multi-level model
across four evidence sets is given below. All source-specific basic parameters are assumed
to be drawn from a common overarching normal distribution, the hyperparameters of
which are independent of the source and are assigned vague priors.

for(k in 2:nt) {
d.dir[k] ∼ dnorm(d[k], prec.pop) # d[k] is hyper-mean
d.indir1[k] ∼ dnorm(d[k], prec.pop)
d.indir2[k] ∼ dnorm(d[k], prec.pop)
d.indir3[k] ∼ dnorm(d[k], prec.pop)
d[k] ∼ dnorm(0, .001 ) # vague prior for every basic parameter hyper-mean
}
prec.pop <- pow(tau.pop, -2)
tau.pop ∼ dunif(0,2) # vague prior for between populations variance
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4.4.2.2 Random-Walk

Approaches based on random-walks have also been suggested in the literature. Under this
method, if there is just one indirect evidence set, the following relationship is assumed:

dDir
1k ∼ N(dIndir

1k , η) (4.7)

where the RTE of the direct evidence is drawn from a normal distribution centered around
the RTE of the indirect evidence set. The variance of this distribution, η, is estimated
within the model, typically as a comparison-independent parameter, and represents the
plausibility of sharing information on relative effectiveness between the two evidence sets.
Crucially, for the case of only two evidence sets, the random-walk model is very similar
to the multi-level model and is expected to yield comparable results because both models
shrink the direct and indirect RTEs closer to each other.

Despite the fact that this method can be used when only one indirect evidence set
exists, it was initially developed —and is better suited —for cases where there are multiple
indirect evidence sets which can be ordered in terms of their expected RTE according to
some ordinal characteristic. The model then assumes that the RTE that pertains to one
group is more similar to the RTEs of adjacent groups (i.e. groups that are more similar
with respect to the characteristic in question) than to the RTE of groups that are more
‘distant’. This is reflected by extending Equation 4.7 so that:

dj+1
1k ∼ N(dj

1k, η) (4.8)

where, if population groups are for example ordered according to severity, then dj+1
1k

is the basic parameter for comparison 1k of the population group with higher severity
which is drawn from a normal distribution with a mean that is the basic parameter 1k of
the adjacently lower severity group i.e. dj

1k. The variance, η, is here assumed common
across comparisons and groups and assigned a vague prior. If, however, the difference
between dj

1k and dj+1
1k can be expressed based on a continuous characteristic, the variance

may depend on this difference so that it is larger when the distance between dj
1k and dj+1

1k

increases (Del Giovane et al., 2013). Finally, a vague prior needs to be assigned to the basic
parameter that pertains to the population group with the lowest j. The WinBUGS code
that can be used to extend the ‘splitting-model’ in order to implement a random-walk
across four evidence sets is shown below.
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# Say that there are 4 population groups that can be ordered
# according to some categorical characteristic (e.g. severity)
# in the following manner: d.indir1, d.indir2, d.indir3, d.dir
for(k in 2:nt){
d.dir[k] ∼ dnorm(d.indir3[k], prec.pop)
d.indir3[k] ∼ dnorm(d.indir2[k], prec.pop)
d.indir2[k] ∼ dnorm(d.indir1[k], prec.pop)
d.indir1[k] ∼ dnorm(0, .001 ) # vague prior for last group
}
prec.pop <- pow(eta.pop, -2)
eta.pop ∼ dunif(0,2)
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4.4.3. Prior-based relationships

This section covers relationships that are based on priors. These employ a Bayesian
framework to ‘load’ the indirect evidence on priors that inform parameters of the direct
evidence. They include commensurate priors, standard informative priors, mixture priors,
and power-priors.

4.4.3.1 Commensurate prior

Commensurate priors, which were recently applied in order to simultaneously synthesise
individual-level and aggregate-level evidence (Hong et al., 2018b), can also be adapted
for the case of multiple population groups. In this approach, the priors for the basic
parameters of the direct evidence are centred around the basic parameters of the indirect
evidence and the variance of the prior controls the extent of borrowing of strength.
Essentially,

dDir
1k ∼ N(dIndir

1k , η1k) (4.9)

where
1

η1k
∼

N(20, 1) ,if c1k = 0

Gamma(0.1, 0.1)I(0.1, 5) ,if c1k = 1
(4.10)

and c1k ∼ Bernoulli(p1k) (4.11)

where η1k are the comparison-specific variances that can be assumed invariant across
comparisons (i.e. η1k = η). When η1k is very low, it imposes strong information-sharing by
requiring that dDir

1k and dIndir
1k be very similar (thus forcing commensurability), whilst when

η is very high, it imposes minimal information-sharing, if any, by effectively disengaging
dDir

1k and dIndir
1k . This is achieved by imposing a ‘spike-and-slab’ hyper-prior on the

precision (i.e. 1
η1k

) which puts a probability p1k on a high precision value ‘spike’, forcing
strong borrowing of strength from the indirect evidence, and a probability of 1− p1k on
a very low precision value ‘slab’ that imposes minimal information-sharing. The first is
here expressed using a normal distribution arbitrarily centered around 20 and given a low
standard deviation of 1, whilst the latter using a truncated Gamma distribution with shape
and rate parameters of 0.13. c1k are independent Bernoulli trials i.e. c1k ∼ Bernoulli(p1k).
Since the probability placed on the spike controls the extent of commensurability, it also
determines the strength of information-sharing between direct and indirect evidence, and
hence the strength of the assumption that the method imposes. One option is for p1k

3Indicatively, a random simulation of 1000 samples from ∼ Gamma(shape = 0.1, rate = 0.1) yields a
collection of values with the following quantiles 0.05% = 2.45 · 10−13, 0.25% = 8.18 · 10−6, 0.5% = 5.24 ·
10−3, 0.75% = 3.4 · 10−1, 0.95% = 6.9.
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to be fixed to an arbitrary value (e.g. p1k = 0.5). Alternatively, they can be assigned a
vague hyper-prior, such as p1k ∼ Beta(1, 1), in order to be estimated within the model and
hence potentially facilitate adaptive information borrowing. However, such an approach
estimates more parameters and may lead to increased uncertainty.

When there are only two evidence sets, the commensurate-prior is similar to the
random-walk in the sense that they both assume that dDir is drawn from a distribution that
is centered around dIndir. However, unless p1k is set to a value close to 1, the commensurate
prior does not estimate the variance within the model, but imposes additional assumptions
on it, encouraging further information-sharing.The commensurate prior is therefore
expected to share information more ‘strongly’ than the random-walks. The model can be
extended to accommodate multiple indirect evidence sets in the same way as done for the
random-walks i.e. by extending Equation 4.9 so that dj+1

1k ∼ N(dj
1k, η1k).

WinBUGS code that extends the splitting model to implement the commensurate-prior
is shown below. Vague priors are assigned to the basic parameters of the indirect evidence,
whilst for the basic parameters of the direct evidence commensurate priors are used.

for(k in 2:nt) { d.dir[k] ∼ dnorm(d.indir[k], ssprec[k]) }
# ssprec = 1000 would force commensurability
# ssprec = 0.001 would disconnect d.dir and d.indir
for (k in 2:nt) {
tee[k,1] ∼ dnorm(20,1) # Spike
tee[k,2] ∼ dgamma(0.1, 0.1)I(0.1, 5) # Slab
flip[k] ∼ dbern(prob) # pk is considered an uncertain parameter and is estimated
within the model. Silence if p deterministic
# flip[k] ∼ dbern(0.5) # pk is assumed 0.5. Un-silence for deterministic p
pick[k] <- flip[k] + 1 # convert 0,1 to 1,2 to match tee indexing
ssprec[k] <- tee[k,pick[k]]
sstau[k] <- sqrt(1/ssprec[k])
}
prob ∼ dbeta (a, b) # Silence if p deterministic
a ∼ dunif (0, 1000) # vague prior for hyperparam a. Silence if p deterministic
b ∼ dunif (0, 1000) # vague prior for hyperparam b. Silence if p deterministic
for (k in 2:nt) { sstau[k]<-sstau.com } # use for comparison-independent variance
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4.4.3.2 Informative prior

Informative priors can also be used to inform the RTE and between-studies heterogeneity
of the direct evidence. Although all previous models simultaneously analysed all evidence
sets, this does not have to be the case. Two-step approaches can also be used, whereby in
the first step the indirect evidence is analysed using NMA with vague priors, followed by
a second step which takes these posterior estimates and uses them as prior information
in an analysis of the direct evidence. In the simplest case, the evidence of the directly
relevant population is analysed with informative priors placed on the basic parameters,
defined on the basis of a separate previous analysis of the indirect data, so that:

dDir
1k ∼ N(dIndir

1k , V Indir
1k ) (4.12)

where dIndir
1k is the posterior mean of the basic parameters that result from the NMA of

the indirect evidence, and V Indir
1k their corresponding variance. If the indirect evidence has

been analysed using a FE model, then the variance would be the square of the standard
error of the posterior mean and the model would be expected to yield results equal to
those under lumping.

If a RE approach is employed for the analysis of the indirect evidence to form a prior
for dDir

1k , we can use either the posterior mean and its associated uncertainty for dIndir
1k

i.e. ∼ N(dIndir
1k , se2 Indir

1k ), or its predictive distribution i.e. ∼ N(dIndir
1k , se2 Indir

1k + τ2). Since
we are not trying to predict the relative effect of a future ‘rollout’, but rather trying to
characterise dDir

1k , which is the random-effect mean (i.e. the hyperparameter), the former
is more appropriate than the latter. Although the posterior distribution would serve as
the appropriate prior for the RE mean, the predictive distribuition has been used before
(Efthimiou et al., 2017) to impose less information-sharing (due to its larger variance).

A similar approach can be undertaken if we wish to share information only on the
heterogeneity component. Once again, in this case we have to start with an analysis of the
indirect evidence, and subsequently use the posterior distribution of the heterogeneity
parameter τ Indir as a prior for τDir in the analysis of the direct evidence. Importantly, the
type of prior distribution would need to be chosen so that it respects the nature of the
variance parameter, which must be strictly positive. Following previous work by Turner
et al., 2015, a log-normal prior is suggested here, so that:

τDir ∼ Lognormal(µIndir, σIndir
2) (4.13)

where µIndir and σIndir are the mean and the standard deviation in the logarithmic scale
and can be obtained by extracting the CODA for τIndir and fitting a log-normal distribution.
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Other prior distributions, such as the inverse gamma half-Cauchy and half-t, have also been
used for τ (Gelman, 2006b). If there are multiple sources of indirect evidence or several
historical meta-analyses including studies with similar characteristics, we could perform
a meta-analysis of meta-analyses, just as Turner et al., 2015 did, in order to estimate
the predictive distribution for heterogeneity (τnew) and use it as prior information for
heterogeneity in the analysis of the direct evidence.

Finally, when there are multiple sets of indirect evidence, the analyst would have to
choose how to analyse all indirect sets as part of the first step, in order to produce an
informative prior that can be used in the second step. A simple option might be to lump
all indirect evidence, whilst a more complicated approach could potentially analyse the
indirect evidence in a multi-level framework and use the predictive distribution of the
top-level, incorporating the uncertainty between evidence-sets in the RTE hyper-means as
informative priors for the analysis of the direct evidence.

4.4.3.3 Mixture prior

An extension of the informative prior is the mixture of prior. In this approach, the
posterior estimates of the initial analysis of the indirect evidence are mixed with a non-
informative prior to form comparison-specific mixture priors. These are then imposed on
the basic parameters of the direct evidence, so that:

dDir
1k ∼ ν · N(dIndir

1k , V Indir
1k ) + (1− ν) · N(0, 104) (4.14)

where, as before, dIndir
1k and V Indir

1k are the posterior mean and variance of the basic
parameters that result from the NMA of the indirect evidence under a FE model, or, under
a RE model, the corresponding parameters of either the predictive distribution or the
posterior mean (see relevant discussion on page 74). The parameter ν is the weight that is
placed on the informative component, and (1− ν) the weight of the vague component
which ensures that the weights sum to 1. The value of ν reflects the plausibility of sharing
information between the direct and the indirect evidence sets on relative effectiveness. It
follows that for ν = 1, the analysis becomes equivalent to the previous described classical
informative prior, whilst for ν = 0, equivalent to splitting.

The model can be extended to accommodate multiple sources of indirect evidence as
long as the same basic parameters can be estimated in separate evidence set-specific NMAs.
Essentially, each source is reflected in a separate component and a vague component is
added in the following way:
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dDir
1k ∝ ν1 · N(dIndir1

1k , V Indir1
1k ) + · · ·+ νJ · N(dIndirJ

1k , V IndirJ
1k ) + [1−

J

∑
i=1

νi] · N(0, 104) (4.15)

where all parameters are specific to indirect evidence set j.

# For comparison 12
lambda2[1] ∼ dnorm(d.ind[2], prec.d.ind[2]) # Informative component
lambda2[2] ∼ dnorm(0, .001) # Flat component
P2[1:2] ∼ ddirch(alpha[]) # uncertain probabilities vector
# P2[1] <- 0.5 # Un-silence for deterministic probabilities vector
# P2[2] <- 0.5 # Un-silence for deterministic probabilities vector
T2 ∼ dcat(P2[]) # Draw a categorical indicator according to P
d.dir[2] <- lambda2[T2] # Prior

# For comparison 13
lambda3[1] ∼ dnorm(d.ind[3], prec.d.ind[3])
lambda3[2] ∼ dnorm(0, .001)
P3[1:2] ∼ ddirch(alpha[]) # uncertain probabilities vector
# P3[1] <- 0.5 # Un-silence for deterministic probabilities vector
# P3[2] <- 0.5 # Un-silence for deterministic probabilities vector
T3 ∼ dcat(P3[])
d.ad[3] <- lambda3[T3]

Regarding the choice of weights, analysts have several options. One option is to
arbitrarily specify some weight to be placed on the informative component. For example,
the vague and informative components can each be set to 50%, with sensitivity analyses
then conducted to explore the impact of different weights. However, if results are indeed
sensitive to the choice of weights, this approach does not provide any insight into which
set of weights is the most credible. Another option is to elicit from experts how relevant
each evidence set is to the research question, and then to normalise weights accordingly.
Finally, a Dirichlet prior can be placed on the weights to allow them to be estimated
within the model, potentially providing an adaptive way of information-sharing. This
is achieved by estimating the weights according to the degree of comparability between
the evidence sets, and results in lower weights for the informative component when the
data suggest that the two evidence sets are in ‘disagreement’. The WinBUGS code for the
implementation of these approaches is shown above. Essentially, an NMA is conducted
only on the direct evidence and mixture priors are placed on all basic parameters. The
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informative component of these mixture priors is derived from a previous step (NMA of
indirect evidence with vague priors) and is inserted here as data. Despite that both mixture
prior and commensurate priors have the potential to facilitate ‘adaptive’ borrowing, it
is worth noting that the former requires two separate steps whilst the latter analyses all
evidence simultaneously.

4.4.3.4 Power-prior

Another modelling approach, initially introduced by Ibrahim and Chen, 2000 to facilitate
flexible information-sharing, is the power-prior. This model down-weights indirect
evidence by raising its likelihood to a power α. To put into context the formula introduced
in Equation 2.12 on page 28, in a standard Bayesian analysis that uses only direct evidence
and vague priors, the posterior distribution of the basic parameters arises as:

π(dDir
1k |DDir) ∝

NDir

∏
i=1

L(dDir
1k |DDir) · π0(dDir

1k )

where DDir denotes the direct data so that π(dDir
1k |DDir) are the posterior distributions

of the basic parameters which are proportional to the likelihood of the direct evidence,
L(dDir

1k |DDir), and to a vague prior π0(dDir
1k ).

Under a Power-prior approach, π0(dDir
1k ) becomes informative by incorporating the

indirect information so that:

π0(dDir
1k ) ∝

NDir+NIndir

∏
i=1+NDir

L(dIndir
1k |DIndir)α · π0(dIndir

1k ) (4.16)

where DIndir denotes the indirect data provided by NIndir indirect studies, L(dIndir
1k |DIndir)α

is the likelihood of the indirect evidence raised to the power of α, and π0(dIndir
1k ) is a

vague prior for the basic parameters of the indirect evidence. Therefore the posterior
distribution of the basic parameters of the direct evidence becomes:

π(dDir
1k |DDir, DIndir, α) ∝

Ndir

∏
i=1

L(dDir
1k |DDir) ·

NDir+NIndir

∏
i=1+NDir

L(dIndir
1k |DIndir)α · π0(dIndir

1k )︸ ︷︷ ︸
Power-prior

with α regulating the influence of the indirect evidence. The variable α may be interpreted
as the relative precision of the indirect evidence with lower values of α producing
priors with heavier tails. The model can be extended to accommodate both study-
and comparison-specific discounting powers (i.e αi,k). When α = 1, the power-prior is
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equivalent to lumping, while when α = 0 the indirect evidence is effectively disregarded
and the approach is equivalent to splitting. As with the weights of mixture priors, the
value of α could be arbitrarily defined, in which case extensive sensitivity analyses should
be conducted to explore the impact of α (Spiegelhalter et al., 2004). Alternatively, α

could be based on subjective expert opinion on the relevance of the indirect evidence in
determining the relative effects of the direct evidence. The model can also accommodate
the inclusion of multiple indirect evidence sets by defining evidence set-specific likelihoods
and powers αj, so that the power-prior becomes:

π0(dDir
1k ) ∝

NIndir1

∏
i=1+Ndir

L(dIndir1
1k |DIndir1)α1 · ... ·

NIndirj

∏
i=NIndirj−1

+1
L(d

Indirj
1k |DIndirj)αj · πvague (4.17)

where πvague is a vague prior, Dindirj is the data provided by studies Nindirj−1 , ..., Nindirj and

d
Indirj
1k the evidence set-specific basic parameter estimates.

To code the power-prior model, relevant guidance for the specification of an arbitrary
sampling distribution can be used (Lunn et al., 2013). Specifically, we can use the ‘zeros’
trick to produce a custom ‘down-weighted’ likelihood. An example of a custom binomial
down-weighted likelihood is shown below. Initially, we create a set of zi,k that are assumed
to be drawn from a Poisson(φi,k) distribution. Each observation then has a likelihood
contribution e−φi,k , and therefore by defining φi,k = α · (−loglikelihoodi,k) we obtain the
correct discounted likelihood contribution (because log(Lα) = α · log(L)). φi,k is the mean
of the Poisson distribution and therefore needs to be positive; this is ensured by adding
an arbitrary constant. The −loglikelihoodi,k part is subsequently defined based on the
binomial likelihood function ( n!

r!(n−r)! · p
r · (1− p)n−r). Importantly, if there are multiple

indirect evidence sets, each one should be analysed in a separate loop and a custom
likelihood should be specified for every source.

constant<-10000 # arbitrary to ensure phi[i,k] is positive
for(i in n.dir+1 : n.dir + n.indir) {
for (k in 1:na[i]) {
z[i,k] <- 0
z[i,k] ∼ dpois(phi[i,k])
phi[i,k] <- alpha * neg.LL[i,k] + constant
neg.LL[i,k] <- - logfact(n[i,k]) + logfact(r[i,k]) + logfact(n[i,k] - r[i,k])
- r[i,k]*log(p[i,k]) - (n[i,k] - r[i,k])*log(1-p[i,k])
logit(p[i,k]) <- mu[i] + delta[i,k] # model for linear predictor
} }
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Finally, although it is expected that as α increases the posterior estimates will move
from those obtained under splitting to those obtained under lumping, the relationship
between α values and the posterior estimates is not necessarily strictly increasing or
decreasing. Instead, a non-monotonous relationship between α and posterior estimates
may be observed when the indirect evidence comprises studies of very different sample
sizes that suggest considerably different relative effects. Under such circumstances, as
discounting happens on the studies’ likelihood, when α is low, studies of high sample
size will exert disproportionately more influence than studies of low sample size.

4.5. A ‘methods identification’ framework

The previous sections highlighted that several methodological options exist for the combi-
nation of direct and indirect evidence. That said, the methods presented are not applicable
across all instances. This is because their applicability depends on both the nature of
the available indirect evidence and the plausibility of the assumptions that they impose
in the context of the synthesis problem at hand. In this section, a simple set of steps is
suggested that can assist analysts in identifying applicable ISMs for their own synthesis
problems (Figure 4.3). Note that this process can also be used when indirectness stems
from a non-population level of PICOS such as the ‘Intervention’ or the ‘Study-design’ level.
However, this process is not applicable for the synthesis of indirectly related outcomes.
More details on this matter are provided in the discussion.

The process begins with the ‘Identification’ of direct and indirect evidence. In this
step, directly and indirectly relevant evidence are identified using classical systematic
review methods which have been described in Higgins and Green, 2011. To date, specific
routines for the identification of indirect evidence have only been described for the case
of evidence pertaining to indirectly related treatments (Hawkins et al., 2009).

In the ‘Parametrisation’ step, the analyst has to decide how the sources will be grouped.
In the simplest case where only one indirect source exists, a study-level binary variable
can be used to indicate to which evidence set each study pertains. However, if more
indirect sources exist, a categorical variable may be more appropriate. The analyst then
would have to decide whether or not there is a way of ordering the various sources
according to their expected size of the RTE (i.e. the variable is ordinal) and whether the
magnitude of the difference is meaningful (i.e. the variable is cardinal). For instance, if
the difference among the various sources is that they pertain to patients who suffer from
different disease severities, it may be reasonable to assume —based on empirical evidence
or expert opinion —that as the disease severity increases we would expect to observe a
higher relative effectiveness; yet it may not be the case that the RTE increases linearly.
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Figure 4.3: A step-by-step process to identify applicable ISMs.

‘Identification’: Identification of direct and indirect evidence sets and studies.

⇓

‘Parametrisation’: Based on the nature and quantity of indirect evidence, decide how
the various evidence sets can be grouped (e.g. using a categorical, ordinal or cardinal
variable).

⇓

‘Base-model selection’: Explore heterogeneity within each evidence set and across evidence
sets to understand which effect modifiers influence which evidence sets ultimately
selecting the model that best describes the evidence (hereafter termed base-model).

⇓

‘Eligibility’: Determine which ISMs can be used given the nature of the variable used to
describe the differences between the direct and indirect datasets. Table 4.2 and Table 4.3
can be useful.

⇓

‘Plausibility’: Examine each method’s assumptions in the context of the particular syn-
thesis problem and eliminate methods which impose unrealistic assumptions. Table 4.2
and Table 4.3 can be useful.

⇓

‘Implementation’: Implement the remaining methods.

The next step is ‘Base-model selection’. At this point, heterogeneity should be explored
in the extended evidence base in order to decide which synthesis model best describes
each evidence set. This is similar to the classical model selection process that is commonly
followed to identify effect modifiers and determine the model that best describes the data
and accounts/explains between-study heterogeneity when there is no indirect evidence.
The difference here is that this process needs to be conducted for both evidence sets,
leading to the development of a Base-model which best describes both evidence sets. This
can then be the starting point for the application of ISMs. This step allows us to investigate
whether the same effect modifiers apply to the various evidence sets. Where this is the
case, the extent of the effect modification can be compared across evidence sets with a
view to assess the appropriateness of sharing information across treatment effect modifiers.
Meta-regression models with a common effect modification coefficient in all evidence sets
can be used for this purpose. Where this is not the case, different base-models can be
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used for each evidence set. Importantly, at this step no information-sharing is imposed
across different evidence sets unless a base-model with a common effect modification
coefficient is chosen, in which case there is already some information-sharing when this
model parameter is estimated.

In the ‘Eligibility’ step, a list of applicable methods is obtained. Table 4.2 and Table 4.3
show methods that may potentially be applied for each type of variable that may be
chosen to distinguish between direct and indirect evidence in the ’Parametrisation’ step.
These tables also raise additional points for consideration. For example, the type of the
selected base-models should be considered (i.e. FE or RE), because under RE, several
lumping approaches may be applicable as well as methods that share information only
on the heterogeneity component.

Subsequently, in the ‘Plausibility’ step, the assumptions underlying each method
should be examined for the specific synthesis problem at hand and a judgement regarding
their plausibility should be made. The reader may again find Table 4.2, Table 4.3 helpful
in this process. It follows that methods which impose implausible assumptions should be
eliminated. Furthermore, the number of indirect evidence sets is important in determining
whether model parameters such as the across-sources variance of the multi-level models
can be appropriately estimated and therefore, in this step, it should also be judged
whether there are enough data to implement potentially applicable methods.

Finally, all the remaining methods should be applied in the ‘Implementation’ and their
results should be compared.
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4.5. A ‘methods identification’ framework
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4.6. Discussion

4.6. Discussion

This chapter utilised the findings of Chapter 3 to describe ISMs that can be implemented
for a specific synthesis problem. That is, when we wish to borrow strength from evidence
pertaining to a population that is different —yet related —to that considered by the policy
research question. Thorough mathematical descriptions and explanations of the different
methods were provided along with coding suggestions. Therefore, researchers facing
similar synthesis issues can consult this chapter to both get a theoretical understanding
of, and practical implementation suggestions for the various ISM options. This chapter
serves as the methodological foundation for subsequent chapters.

Given the plethora of available methods and that it is unclear how methods compare
in terms of the extent of information-sharing that they impose, method choice should
be justified carefully. To that end, this chapter thoroughly explains the assumptions
underpinning all the specified methods, raising important points for consideration and
discussing ways to extend the methods for cases where several indirect sets of evidence
exist. Furthermore, a step-by-step framework is described which attempts to systematise
the process of choosing ISMs. This framework can be used by both researchers who seek
to find methods applicable to their own synthesis issues, and by appraisers who need
to ensure that no applicable method is unjustifiably excluded. To my knowledge, this is
the first attempt to describe a process of identifying and choosing amongst alternative
ISMs. The use of this process not only raises awareness around the existence of several
ISMs, but also aids transparency by discouraging the use of sole methods that produce
‘convenient’ results.

The suggested methods identification process does not provide a way of choosing the
most appropriate amongst the applicable methods. This is because the actual relationship
between the true RTEs of the two populations is typically unknown in decision-making
and the plausibility of each ISM cannot be solely determined by the data alone or the
relationships imposed analytically. Hence, it is likely that a judgement will be required
about the plausibility of each method’s assumptions and the ‘appropriate’ degree of
information-sharing.

It should be clarified at this point that information criteria, such as DIC and residual
deviance (Dres) are not appropriate means of comparing ISMs. First, some methods analyse
the extended evidence base in two steps (first the indirect evidence and then the direct) and
therefore their DICs are not comparable with methods that analyse all evidence in a single
step. Second, perhaps more importantly, models that impose stronger information-sharing
(e.g. lumping) probably yield larger Dres and DICs, because increasing information-
sharing implies that estimates increasingly differ from the no sharing case and therefore
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4.6. Discussion

the model fits to the data less well. Hence, increasing conflict between direct and indirect
evidence implies higher Dres and DICs for methods that impose stronger information-
sharing. However, if, for instance, we expect the direct evidence set to suffer from biases
and the indirect evidence set to be of higher quality, conflict may justified and strong
information-sharing desirable. Finally, given that model fitting quantities such as Dres

and DICs are based on information theory and the concept of divergence, they would be
primarily driven by the evidence set which contains the most information and would be
indicative of the best fitting model to the richer evidence set instead of the Information-
sharing method (ISM) that imposes the most appropriate degree of information-sharing.
Overall, although it may be useful to see which models may not fit well to the available
data, methods choice should not be based on statistical fit. Instead, choice of model
is likely best made in the context of a deliberative process that takes into account the
characteristics of the available evidence sets (e.g. patient characteristics, study-design)
as well as clinical opinion, in order to determine the appropriate degree of information-
sharing. However, given that such assessments may not always be straightforward, a
judgement regarding the desired degree of information-sharing is perhaps a good starting
point in refining the list of applicable ISMs. If there is no basis on which to reduce the
number of models, implementation of all applicable models may still be useful as it can
be viewed as a sensitivity analysis to ISMs.

This chapter only considers the case where the indirect evidence pertains to a different,
yet relevant, population (e.g. patient group) on which the same interventions are used.
This implies that the evidence sets can be distinguished using a study-level variable to
which patients have not been randomised —and hence findings cannot be interpreted
as causal. The methods are directly transferable with minor modifications to cases
where indirectness stems from some other non-population study-level characteristic.
For example, if the various evidence sets pertain to studies of different quality, or to
randomised and observational evidence, the same models are applicable without any
modifications. However, if evidence is indirect to the intervention level and we want
to relate the basic parameters pertaining to different interventions, direct and indirect
evidence would then be distinguished by an arm-level variable to which patients have
been randomised , and hence any conclusions would retain causal character. Finally,
if indirectness stems from the outcome level -and hence the indirect evidence provide
information on an outcome that is not directly considered by the policy question but
is relevant to one of the considered outcomes- then other methods may be applicable.
For instance, the direct and indirect outcomes may be functionally related, or multi-
variate relationships could be used model the correlation structure of direct and indirect
outcomes.

86



4.6. Discussion

The ISMs explained in Section 4.4 consider only simple FE and RE models without any
effect modifiers. Extending the ISMs to the meta-regression case may not be straightfor-
ward if the extent of the effect modification is different in the various evidence sets. This
is because imposing relationships among the direct and indirect basic parameters would
effectively only share information on the part of the relative effect that the effect modifier
is not responsible for. Therefore, to properly extend these methods to meta-regression, we
would need to relate the adjusted relative effects in the direct and the indirect evidence.
This issue is revisited in Chapter 5, where the circumstances under which the existing
methods can be used for meta-regression models are explained.

Lastly, multi-variate relationships have not been described in this chapter. This is
because it is assumed that the two evidence sets include studies that do not enrol from and
report for both populations. Therefore, the information that is required to calculate within-
and between- studies correlations is not available. Specifically, for the between-study
correlations we would require several studies that enrol from and separately report for
both population groups. Even more restrictively, for the within-study correlations we
would require that the nature of the two populations is such that patients move from
belonging in one population to belonging in the other, and also that there is IPD evidence
reporting the outcome for each patient being in each population. Albeit rare, there are
examples where such evidence could be obtained. For instance, progression in a patient
cohort may be observed for a considerable length of time, as their condition becomes
more severe or they switch to a later line of treatment. Then, within-patient correlations
across outcomes pertaining to a different disease severity or a different line of treatment
could be estimated. An example where registry data is used to inform the correlation
between treatment effects in two different lines of therapy in a multi-variate model can be
found in Abrams et al., 2017.

Future work can try to address the limitations of this chapter by explicitly describing
how the models and the step-by-step ‘methods identification process’ can be adapted
to address cases where indirectness stems from a non-population level. Furthermore,
extending these methods to meta-regression, allowing for covariates to be considered as
effect modifiers, can considerably increase their usefulness and make them applicable
to a wider set of circumstances. Finally, given that no general conclusions can be made
from this chapter about how methods compare to each other, further work —such as
that undertaken in Chapter 7 —can try to identify which factors determine the degree
of information-sharing that the various models impose. This might assist model choice
by mapping judgements regarding the desired degree of information-sharing to specific
methods, and thus provide methods guidance to decision-makers.
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Chapter 5

Borrowing strength from paediatric patients to inform
relative effectiveness in adults: a case-study

5.1. Chapter aims and structure

The previous chapters provided the necessary foundation for the use of ISMs in HTA.
Chapter 3 identified the statistical models that have been used to combine information
directly and indirectly relating to a research question, and classified them according
to the core-relationships imposed. Chapter 4 detailed methods applicable for the case
where sharing happens across studies enrolling different populations and developed a
step-by-step process for determining which methods are applicable for such synthesis
problems.

This chapter aims to illustrate the impact of using different ISMs on RTE estimates
using a case-study. The following questions are explored:

1. How can the indirect evidence help in explaining heterogeneity?

2. How can the applicable ISMs influence relative effectiveness estimates and how do
these estimates compare in terms of the imposed strength-of-sharing?

It should be noted that this chapter does not aim to produce conclusions about how the
results of the various ISMs compare in general and such a task would require simulation
experiments.

The remainder of this chapter is structured as follows. Section 5.2 provides the
necessary background to the case-study describing the decision problem and the synthesis
approach that was originally adopted. Section 5.3 explains the motivation for borrowing
strength from indirect evidence and Section 5.4 describes methods and findings of a
review that sought to systematically update the searches for direct evidence and identify
indirect evidence. Subsequently, in Section 5.5 the identified direct and indirect evidence is
initially ‘naively’ combined using lumping and splitting approaches. Then, in Section 5.6,
heterogeneity is explored in the extended evidence base in order to understand whether
the same covariates influence the relative effect in the direct and the indirect evidence and
identify the best-fitting base-models. In Section 5.7, given the best-fitting base-models,
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5.2. Background to the case-study

the applicable methods to share information on relative effectiveness between direct and
indirect evidence are identified using the framework that was developed in Section 4.5.
These are then implemented, and their results are compared and contrasted in terms of a
set of strength of sharing measures. Finally, in Section 5.8 the findings of this chapter are
discussed along with its strengths and limitations.

5.2. Background to the case-study

This section provides details on the decision problem which was initially explored in
NIHR funded secondary research by Soares et al., 2012. A detailed description of the
evidence synthesis undertaken as part of that work was also reported in Welton et al., 2015,
and a detailed description of the cost-effectiveness evaluation and policy implications was
separately published in Soares et al., 2014b. In what follows, that piece of work is briefly
described along with the main challenges that the authors encountered in their analysis.

5.2.1. Decision problem

Sepsis is an inflammatory response caused by a serious infection of the bloodstream that
can rapidly develop to a life-threatening condition (Hall et al., 2011). Recent UK estimates
suggest that, each year, there are at least 260,000 new episodes of sepsis, claiming around
44,000 lives and costing around £15.6 billion to the NHS (Daniels and Nutbeam, 2017;
Hex et al., 2017). Standard treatment includes antibiotics to target the infection, fluids to
tackle the symptoms of septic shock, and occasionally albumin (ALB) serum to boost the
immune system (National Institute for Health and Care Excellence, 2016).

Randomised trials have suggested that adjuvant Intravenous Immunoglobulin (IVIG)
may be more effective than ALB in adults (Rodriguez et al., 2005; Werdan et al., 2007), but
meta-analyses have failed to produce conclusive results (Alejandria and Marissa, 2013),
possibly due to the fact that the evidence base was comprised of only a few high quality
trials and was heterogeneous. Secondary research by Soares et al., 2012, which is also
the case-study used in this chapter, reviewed the literature to obtain relevant studies,
synthesised the evidence base to estimate relative effectiveness, and constructed a decision
model to answer the following policy-relevant questions:

• Is IVIG a cost-effective adjuvant therapy for adults with severe sepsis or septic shock
in terms overall mortality?

• Does the potential value of a new randomised clinical trial exceed the cost of
conducting it? If so, what is the optimal sample size of such a trial?
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5.2. Background to the case-study

5.2.2. Previous work on clinical effectiveness

In this section, the evidence identification and synthesis process followed in Soares et al.,
2012 is summarised and the main findings and key challenges are highlighted.

The authors conducted a systematic review (up to 2nd October 2009) to look for
evidence from randomised studies on the effectiveness of IVIG in adults (Table 5.1). All
comparators to IVIG in RCTs were included. This evidence is here considered to be direct.
They identified 17 head-to-head RCTs, conducted between 1981 and 2007, comparing
various preparations of IVIG on top of Standard of Care (SoC) against SoC alone, or
SoC combined with ALB , considered in terms of all-cause mortality. SoC comprised of
antibiotics only. The main characteristics of these studies can be found in (Table B.1.1).
Additional information about these studies was also extracted such as the duration of
therapy, the dosage of IVIG, and the overall study quality proxied by Jadad score (0:
lowest quality, 5: highest quality) (Jadad et al., 1996).

Table 5.1: Research question investigated in Soares et al., 2012.

Population Adults with severe sepsis and septic shock
Intervention IVIG or IVIGAM (in addition to SoC)
Comparator(s) Placebo + SoC, Albumin + SoC
Outcome All-cause mortality
Study-design RCTs

When synthesising the 17 RCTs together to obtain a summary odds-ratio estimate,
significant statistical heterogeneity was identified. First, the authors explored alternative
treatment parametrisations to attempt to resolve heterogeneity due to the treatment defini-
tion. Five different treatment parametrisations were compared, which either combined or
separated control and active treatments (Figure 5.1). The authors concluded that network
T3B fitted the best because it achieved the best balance between resolving treatment
heterogeneity and retaining adequate volume of evidence to inform treatment compar-
isons. The T3b network pooled immunoglobulin treatments (i.e. IVIG/IVIGAM + SoC),
hereafter termed simply IVIG/IVIGAM, whilst retaining two separate treatment nodes for
the comparators (i.e. ALB + SoC and SoC), hereafter termed ALB and PLA respectively.
However, when covariates were added, network T2 -which pooled comparator as well as
treatment arms- fitted similarly to T3b for most models, and was therefore preferred on
parsimony grounds.

Additionally, a number of effect-modifiers relating to the treatment characteristics and
risk-of-bias were explored using meta-regression models. The authors found duration
of treatment to be important in explaining heterogeneity, however the clinical experts
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5.2. Background to the case-study

Figure 5.1: Different treatment parametrisations explored in Soares et al., 2012.

could not determine a clear clinical rationale for it. Furthermore, covariates that relate to
study-quality, including sample size1 and year of publication, were found to significantly
modify the treatment effect when included alone. However, neither the combination of the
study quality covariates, nor the combination of any study quality covariate with duration
of treatment explained a larger proportion of heterogeneity than that explained by using
duration of treatment alone. The meta-regression model that used the ‘publication year’
covariate returned similar estimates with that which used the Jadad score, and since the
latter provides more useful predictions (by referring to a study of very good quality rather
than to a study published in a particular year), it was preferred.

1Taken as 1/
√

N, where N is the number of patients in the treatment arm.
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5.2. Background to the case-study

Despite the thorough heterogeneity exploration process, there was significant re-
maining heterogeneity under most models, as well as uncertainty regarding the optimal
treatment parametrisation. As a result, the authors did not select just one model, but
considered the implications of a set of best-performing base-models (Table 5.2). Except
for the prediction for a study of infinite sample size, all model predictions suggested that
the treatment with IVIG reduces mortality when compared to ALB or PLA alone. Within
models, relative effectiveness predictions were very uncertain, with the 95% credible
intervals of the odds ratios ranging considerably both below and above 1. They also
differed in terms of their point estimates, which ranged from 0.68 in M2 —suggesting that
IVIG is more effective than ALB —to 1.27 in M4b —suggesting that IVIG is less effective
than ALB —(Table 5.2).

Table 5.2: Final set of synthesis models considered in Soares et al., 2012.

Model Odds Ratio (95% CrI)
M1 : T3b FE Meta-regression on duration of treatment
(Prediction for 3 days of treatment) 0.75 (0.58, 0.96)

M2 : T3b RE
(Predictive distribution) 0.68 (0.16, 1.83)

M3 : T2 RE Meta-regression on Jadad
(Predictive distribution. Prediction for Jadad = 5) 0.83 (0.18, 2.13)

M4a : T2 RE Meta-regression on 1/
√

N
(Predictive distibution. Prediction for sample = 339)

0.92 (0.23, 2.10)

M4b : T2 RE Meta-regression on 1/
√

N
(Predictive distibution. Prediction for sample = ∞)

1.27 (0.25, 3.17)

The Odds Ratio estimates reported correspond to the relative effect of ALB vs IVIG/IVIGAM for the T3b
models, and to the ALB/PLA vs IVIG/IVIGAM for the T2 models. Credible Interval (CrI) is the Bayesian
analogue of the Confidence Interval (CI).
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5.3. Motivation for this work

As mentioned in the previous section, despite the meticulous analyses undertaken by
Soares et al., 2012 using the adult evidence —here considered direct evidence —, sig-
nificant uncertainties remain. Particularly, the clinical effectiveness of IVIG/IVIGAM
as an adjunctive therapy to SoC remains unclear with relative effectiveness estimates
surrounded by considerable uncertainty. Also, the authors could not conclude with
certainty the best treatment parametrisation nor fully explain heterogeneity. As a result,
several synthesis models —which used different covariates and suggested considerably
different RTEs —were used and brought forward to the economic analysis.

Intravenous immunoglobulin has also been suggested as an adjunctive treatment for
paediatric patients with severe sepsis and septic shock (Samatha et al., 1997; Akdag et al.,
2014; Kola et al., 2014) with several studies, including a recent large multi-centre study
that enrolled more than 3,000 patients (Brocklehurst et al., 2011), assessing its relative
effectiveness against the current standard treatment (i.e. ALB).

To date, adult and paediatric evidence has not been considered together. However, a
recent study by Capasso et al., 2017 used the effectiveness evidence of IVIG in adults to
support the potential value of IVIG in paediatric patients, implying that evidence may be
partially transferable between adults and paediatric patients with severe sepsis. In this
chapter, the adult and paediatric evidence are combined using a range of different ISMs.
The adult population will still remain the population of interest, while the paediatric
evidence will only support inference for adults.

Importantly, the appropriateness of using paediatric evidence to inform inferences on
adults needs to be judged. To that end, the European Medicines Agency, 2016 suggests
that an explicit extrapolation concept should be developed to identify whether there are
adequate data to justify extrapolation, and an extrapolation plan should be undertaken to
address existing data gaps and uncertainties relating to the similarity of the populations
and the transferability of the evidence. Crucially, for the purposes of this case-study, even
if evident differences between the two populations exist, it may still be appropriate to
combine relative effectiveness evidence. Hence, a judgement on the commensurability
of evidence sets for the specific parameter(s) that information is to be shared on is still
required. Moreover, whilst it might still not be acceptable to consider the two evidence
sets perfectly generalisable, some level of ‘sharing’ may still be appropriate. Here, as
Chapter 4 illustrated, we have plenty of ISMs in our arsenal, each imposing assumptions of
varying strengths, including the power-prior that allows the analyst to specify the desired
strength of information-sharing. Nevertheless, it should be acknowledged that whilst
the two evidence sets are here combined for the purpose of methodological research,
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the usefulness of findings for health policy and clinical practice hinges critically on a
judgement on the appropriateness of borrowing strength from the paediatric population.

5.4. Systematic review update

5.4.1. Methods

This component of work aimed to i) update the review of RCTs on the adult population
undertaken within the HTA (Soares et al., 2012), and ii) expand the evidence base by
including studies that enrolled paediatric patients. Therefore, the resulting studies will
reflect the current evidence totality on both populations. The process comprised of the
following steps:

1. The identified studies on adults from Soares et al., 2012 (up to December 2009) along
with the identified studies on both adults and paediatric patients from Alejandria
and Marissa, 2013 (up to December 2012), which was a systematic review that
identified studies in both adults and children, were directly included.

2. The search strategy employed by Soares et al., 2012 to search for adult studies up to
December 2009 was used to:

(a) Identify citations before December 2009 that pertained only to paediatric
patients. This was possible because the search strategy did not apply any
population criteria, and only excluded studies on non-adult patients during
the screening process

(b) Update the search for both adult and paediatric patients by restricting searches
to between 1st January 2010 and 1st August 2018.

The search strategies for MEDLINE and EMBASE are included in the Appendix
(Table B.2.1 and Table B.2.2).
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Inclusion Criteria
The inclusion criteria were the same as those used in Soares et al., 2012, with an

important difference being that studies enrolling participants of any age were included. In
particular:

• Population(s) : Patients of any age with severe sepsis or septic shock

• Intervention(s) : Any preparation of polyclonal IVIG or IVIGAM (i.e. IgM-enriched
IVIG)

• Comparator(s) : No treatment (Placebo), Standard of Care (SoC) i.e. antibiotics, or
Albumin (ALB) serum

• Outcome(s) : All-cause mortality

• Setting : Critical-care unit

• Study-design : Randomised controlled trials

All studies which investigated the use of IVIG/IVIGAM for prevention of sepsis were
excluded, along with those studies which had enrolled patients with suspected but
unconfirmed sepsis.

Data Extraction
Data were extracted using the template that was developed in Soares et al., 2012. The

following information was extracted:

• Population: Whether the enrolled patient population was paediatric or adult. If
paediatric, information on population age (young children, full- or pre-term neonates
etc.) was also extracted.

• Intervention: The specific IVIG/IVIGAM product used in the treatment arm, in-
cluding days of treatment duration, and total dosage (in mg/kg). For control
interventions, data extracted predominantly concerned the type of treatment (e.g.
no treatment, antibiotics, albumin-serum).

• Outcome: The number of patients enrolled in each arm, along with the number of
events (deaths).

• Quality: Allocation concealment, blinding, randomisation, intention-to-treat analysis,
missing data; from these, Jadad scores were subsequently calculated (Jadad et al.,
1996).

• Other details : Year of publication, setting (e.g. Intensive Case Unit).
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5.4.2. Results

The number of studies identified by each step of the systematic review update are
illustrated in Figure 5.2. In brief, from previous reviews (Soares et al., 2012; Alejandria
and Marissa, 2013) 17 studies in adults and 9 studies in paediatric patients were included.
By updating the search strategy of Soares et al., 2012, no further RCTs enrolling adults
were identified. However, when their search strategy was used without population
restrictions two further studies enrolling paediatric patients were found. The list of all the
identified studies with the ‘filter’ by which they were identified is shown in the Appendix
in Table B.2.3, and the full data set is reproduced in Table 5.3.
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Figure 5.2: Flow chart. Results of the systematic review.
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Overall, 28 studies were included. Among these 17 studies enrolled adults (2300
patients), and 11 studies enrolled children2 (4071 patients). Despite the larger number
of adult studies, more paediatric patients are included in the analysis due to a single
large trial of almost 3,500 paediatric patients (Brocklehurst et al., 2011). As illustrated in
Table 5.4 the median sample sizes are similar between adult and paediatric studies (52
and 60 patients respectively). Across populations, a similar proportion of studies used
IVIG instead of IVIGAM in the treatment arm (9/17 = 53% in adults and 6/11 = 55%
in paediatric patients). In contrast, for the control treatment, a much smaller proportion
of paediatric studies used ALB (≈ 18%) compared with the adult studies (≈ 47%).
With respect to total dosage of IVIG/IVIGAM, paediatric studies used, on average,
slightly lower dosages per kg than adult studies. This is because paediatric studies
used IVIG/IVIGAM for relatively smaller time periods. Paediatric studies seem to be
of better quality overall with with 55% of the paediatric studies achieving a Jadad score
of 4 or more, compared to only 24% of the adult studies. The total number of studies
of the full evidence base informing each comparison in the various potential treatment
parametrisations is illustrated in Figure 5.3.

Table 5.4: Characteristics of the direct (adult) and the indirect (paediatric) evidence bases.

Quantity Adults (N=17) Paediatric patients (N=11)
Median sample size
(interquartile range Q25% - Q75% )

52 (40-113) 60 (47 - 69)

Average total dosage across studies, mg/kg
(standard deviation)

0.95 (0.49) 0.7 (0.48)

Average treatment duration, in days
(standard deviation)

3.4 (1.2) 2.2 (1.0)

Number of studies using IVIG (%)
-in the treatment arm-

9 (53%) 6 (55%)

Number of studies using Albumin (%)
-in the control arm-

8 (47%) 2 (18%)

Number of studies of good quality (%)
i.e. Jadad score > 4

4 (24%) 6 (55%)

2Neonates and young children will be lumped henceforth.
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Figure 5.3: Updated graphs of networks.

In the parentheses, the first number indicates the number of adult studies providing evidence for the
comparison in question, while the second number indicates the number of paediatric studies.
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5.5. Naive analyses

Commonly, HTAs either discard indirect evidence as if it is irrelevant or lump them
with the direct evidence as if it does not differ from the direct evidence in any respect
(Duarte et al., 2017; Faria et al., 2016; Rodgers et al., 2011). In this section, lumping
and splitting approaches are presented as a starting point to motivate the use of more
sophisticated ISMs covered later in the chapter. Despite that the comparison of interest is
ALB against IVIG/IVIGAM, here the T2 treatment parametrisation is used. T2 is more
parsimonious than T3b and provides the ALB/PLA against IVIG/IVIGAM comparison.
Direct and indirect studies are either separately analysed or pooled with a RE meta-
analysis (Figure 5.4). A FE meta-analysis is included in the Appendix (Figure B.3.1),
although given the considerable between-studies heterogeneity in the adult population,
this model may be considered inappropriate. The funnel-plot (Figure B.3.2) shows that
the addition of the paediatric studies alleviates publication bias, as revealed by a gap in
the bottom right part of the graph.

When the two sources are analysed separately, a significant relative effect is estimated
for adults, favouring IVIG/IVIGAM. However, the same is not observed for paediatric
patients where the relative effect crosses the ‘line of no effect’. Also, the between-studies
heterogeneities seem to differ substantially between adults and paediatric patients. In
particular, across adult studies, the no heterogeneity hypothesis is rejected at a 95%
confidence level (p-value = 0.02), yielding a τ2

AD = 0.23 and I2 = 68%. In contrast,
paediatric studies are much less heterogeneous (τ2

PE = 0.04 and I2 = 13%) failing to reject
the null hypothesis of no significant between-studies heterogeneity (p-value = 0.32).

When direct (adults) and indirect (paediatric patients) evidence is analysed under a
common RE, a significant overall effect is estimated. This is considerably smaller and more
precise than the effect of adults alone. The combined effect is more precise than either the
adult or the paediatric effect, epitomising a potential benefit of using indirect evidence.
However, pooling all studies together as if they are exchangeable might be considered
inappropriate. Hence, lower levels of sharing may be more acceptable. Optimally, analysts
should consider several methods which impose varying degrees of information-sharing,
and check whether all methods consistently lead to similar conclusions.

Given that in the paediatric evidence there is one large, high-quality study, including
85% of the paediatric patients, it could be of interest to consider this study in isolation
in order to strengthen the adults evidence base. As shown in Figure 5.5, the RTE
is very similar with that of the analysis that combines all studies, albeit slightly less
precise. Importantly, when only Brocklehurst et al., 2011 is added, the between-studies
heterogeneity is higher that when all studies indirect studies are included. The RE model
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Figure 5.4: RE meta-analysis separately within each population and across both populations.

The plot was created using Review Manager 5.4 (Copenhagen: The Nordic Cochrane Centre, The Cochrane
Collaboration, 2014).

using only Brocklehurst et al., 2011 estimates that 56% of the between-studies variance
cannot be explained by chance compared with the all-studies analysis that estimates 45%.
Furthermore, this approach does not allow us to explore the heterogeneity in the two
populations separately, nor estimate the extent to which the potential effect modifiers
explain the between-trials heterogeneity in the two populations. Lastly, including only one
indirect study restricts our list of ISMs because the between-indirect-trials heterogeneity
cannot be estimated3 and shared among the two populations.

3The between-paediatric-studies heterogeneity cannot be estimated when there is only one study on
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Figure 5.5: RE meta-analysis combining adult evidence with the large paediatric study only.

The plot was created using Review Manager 5.4 (Copenhagen: The Nordic Cochrane Centre, The Cochrane
Collaboration, 2014).

Optimally, before combining the evidence on the two populations, heterogeneity
should be explored in the full evidence base, identifying the effect-modifiers separately
in each population and then, for common effect-modifiers, also checking whether or not
the use of the indirect evidence can lead to more precise estimation of the extent of the
effect-modification. This process is explained in more detail in the next section.

paediatric patients. As a result, all the methods that share the heterogeneity parameter (i.e. common
heterogeneity, prior on heterogeneity) cannot be used.
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5.6. Re-exploration of heterogeneity

5.6.1. Methods

In Soares et al., 2012, the authors developed and implemented a step-by-step framework
to identify important effect modifiers and select the best-fitting models in an evidence
base that comprised only of direct evidence. Here, this framework is extended to also
include the indirect evidence from paediatric patients. The proposed process not only
explores potential effect modifiers and alternative treatment parametrisations separately
within each population, but also identifies if and how indirect evidence might help in
explaining the heterogeneity among the direct studies.

The extended framework developed here consists of the following steps:

1. FE and RE models without covariates: For every possible treatment parametrisa-
tion4, fit FE and RE models separately in each population without imposing any
information-sharing between direct and indirect evidence5. Record population-
specific residual deviances and between-studies heterogeneities as well as overall
DIC and residual deviance6. This step provides an initial understanding of the
heterogeneity within each population, the extent to which alternative treatment
parametrisations can partly explain heterogeneity, and whether or not the relative
effects seem to be similar among the two populations.

2. Adding covariates: Subsequently, for each potential effect modifier fit the following
four meta-regression models:

(a) FE with separate, population-specific, effect modification
(i.e. logit(pi,k) = µi + dk,pop + βpop × cov )

(b) FE with common effect modification across the two populations
(i.e. logit(pi,k) = µi + dk,pop + β× cov )

(c) RE with separate, population-specific, effect modification
(i.e. logit(pi,k) = µi + δi,k + βpop × cov )

(d) RE with common effect modification across the two population
(i.e. logit(pi,k) = µi + δi,k + β× cov )

4Note that the 10 treatments network is not considered here because there would be only 1 or 2 studies
informing each treatment comparison.

5This is achieved by specifying separate parameters for each population. The only quantities that refer to
the full evidence base are the DIC and the overall residual deviance.

6That is simply the sum of the population-specific residual deviances.
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In the equations above, pop indexes the population, k the treatment, and i the study.
Note that because no study provides information on both populations, pop is nested
in i. Study-specific random-effects are assumed to follow treatment- and population-
specific normal distributions (δi,k ∼ N(dk,pop, τpop)). All remaining parameters in the
aforementioned models are defined as in Chapter 2 (Section 2.1) and vague priors
are applied to all hyperparameters. Finally, it is important to highlight that models
(a) and (c) do not impose any information-sharing among the direct and indirect
evidence, whilst models (b) and (d) impose some information-sharing because
common effect modification is assumed across the two populations. The process is
repeated for all treatment parametrisations.

This step allows us to compare the direction and estimated magnitude of the effect
modification for each potentially important covariate in the two populations to
assess whether it is statistically reasonable to impose a common effect modifica-
tion coefficient. We can also obtain additional information regarding the optimal
treatment parametrisation, and confirm whether the results are consistent with the
previous step, and that the inclusion of covariates has not changed the best-fitting
treatment parametrisation.

3. Combining covariates: For the identified important effect modifiers and the best
performing treatment parametrisation, we can repeat the process of Step 2, using
combinations of covariates. If the results of Step 2 suggest that different covariates
are important in the two populations, models which use different effect modifiers
for each population can be fit i.e. ‘hybrid’ models.

For this analysis, four different treatment parametrisations were explored: T2, T3a,
T3b and T4 (see Figure 5.1). The five covariates which had been found to explain some
of the heterogeneity in Soares et al., 2012 were also considered. These were: duration of
treatment, Jadad score, 1/

√
N (sample size), Dosage of IVIG/IVIGAM, and year of study

publication.
Models were implemented in WinBUGS (MRC Biostatistics Unit, 2010), through R (R

Development Core Team, 2010) using the R2WinBUGS package (Sturtz et al.); a Bayesian
framework was adopted. Three MCMC chains with different starting values were used
for all models, and Gelman-Rubin statistics were used to assess model convergence. For
model comparison, deviance information criterion (DIC) and posterior mean residual
deviance (Dres) were used. Models were considered to fit significantly worse when
differences in DIC were larger than 3 points (Spiegelhalter et al., 2002). (For an example
of a WinBUGS RE model which assumes separate effect modification coefficients for each
evidence set, see https://github.com/NikolaidisGFZ/PHD.git)
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5.6.2. Results

The results are presented in the same sequence as the steps were described in the methods
section. This is because the conclusions of each step feed into the next, until we reach the
last step and decide on the final list of base-models. The base-models will subsequently
be the starting point for sharing information among adults and paediatric patients on
relative effectiveness.

5.6.2.1 Step 1 : FE and RE models without any covariates

Table 5.5 illustrates the results of the application of FE and RE models, without any
covariates (null models), in the four treatment parametrisations being assessed.

Table 5.5: Results of Step 1 of the re-exploration of heterogeneity.

Network Model τAD τPE Dres DresAD DresPE DIC

T2
FE n/a n/a 77.02 51.43 25.59 303.36
RE 0.56∗ 0.47 51.97 30.82 21.14 289.31

T3a
FE n/a n/a 71.11 50.12 20.99 299.45
RE 0.60∗ 0.35∗ 51.89 31.23 20.67 289.50

T3b
FE n/a n/a 65.61 42.76 22.84 293.91
RE 0.49∗ 0.47 52.98 31.57 21.41 290.28

T4
FE n/a n/a 65.57 43.58 22.00 295.92
RE 0.53∗ 0.46∗ 52.99 31.90 21.08 291.76

Blue colour indicates a low within-column value, red a high within-column value, and yellow similar
within-column values. The asterisk (∗) indicates a significant value at the 95% confidence level. τ refers
to the between-studies-heterogeneity and Dres to the residual deviance. Subscripts (AD, PE) represent
whether a measure only refers to adult or paediatric studies, while when there is no subscript the
measure refers to the whole database (adults and paediatric patients).

In all networks, the DIC and residual deviance for RE models are lower than for
FE models. The breakdown in residual deviance between the adult and paediatric
patients shows that the decrease in residual deviance is mainly driven from the adult
evidence (the difference between the paediatric residual deviance across FE and RE
models within each network is very small and this is consistent across networks). Across
adult studies, heterogeneity (τAD) is significant regardless of treatment parametrisation,
implying that heterogeneity is not adequately explained by the network structure, and
therefore covariates will need to be considered.

Across networks, all RE models fit similarly based on both Total Residual Deviance
and DIC. However, based on the heterogeneity estimates (τAD, τPA), T3b network is the
best for adults and T3a for the paediatric studies. However, it should be noted that in
the paediatric network only 2 out of the 11 studies use ALB in the control arm, so when
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ALB and PLA are separated (as in T3b), only a limited amount of evidence informs the
IVIG/IVIGAM vs ALB comparison. With regards to T4, DIC and Dres are similar to T3b,
but heterogeneity estimates are significant for both evidence sets and the model is less
parsimonious. Overall, based on DIC values and given the fact that the primary focus
here is on adults, T3b is chosen as the best treatment parametrisation.

5.6.2.2 Step 2 : Adding covariates

Table 5.6 shows the results of the meta-regression models, under T3b parametrisation,
on a collection of variables which where shown by Welton et al., 2015 to influence the
relative effect.

Table 5.6: Step 2c. Results of meta-regression models on various covariates in network T3b.

Covariate Model τAD τPE βAD βPE Dres DresAD DresPE DIC

NULL
FE n/a n/a - - 65.61 42.76 22.84 293.91
RE 0.49∗ 0.47 - - 52.98 31.57 21.41 290.28

Duration

FE sep n/a n/a −0.40∗ 0.54 50.88 27.95 22.94 281.23
FE com n/a n/a −0.36∗ −0.36∗ 53.25 27.99 25.26 282.58
RE sep 0.19 0.50 −0.40∗ 0.54 50.03 28.43 21.60 284.81
RE com 0.20 0.57 −0.36∗ −0.36∗ 50.50 28.32 22.17 285.26

Jadad

FE sep n/a n/a 0.26∗ 1.97 61.07 38.23 22.85 290.39
FE com n/a n/a 0.26∗ 0.26∗ 61.09 38.20 22.88 290.41
RE sep 0.44‡ 0.45 0.18 −3.18 53.86 32.43 21.43 291.07
RE com 0.43‡ 0.47 0.19 0.19 53.84 32.46 21.38 291.10

Sample

FE sep n/a n/a −7.49∗ -4.48 55.98 33.09 22.89 286.28
FE com n/a n/a −6.70∗ −6.70∗ 55.56 32.95 22.61 284.92
RE sep 0.29 0.50 −6.70∗ −4.51 53.22 31.57 21.65 289.36
RE com 0.27 0.45 −6.22∗ −6.22∗ 52.78 31.47 21.31 287.71

Dosage

FE sep n/a n/a −1.44∗ 2.06 58.65 35.75 22.90 288.97
FE com n/a n/a −1.19∗ −1.19∗ 60.61 35.80 24.80 289.95
RE sep 0.37‡ 0.49 −1.25‡ 2.02 52.88 31.26 21.62 290.32
RE com 0.38‡ 0.54 −1.01 −1.01 53.05 31.16 21.90 290.31

Year

FE sep n/a n/a 0.08∗ 0.05 57.45 34.65 22.80 287.68
FE com n/a n/a 0.08∗ 0.08∗ 56.86 34.47 22.39 286.19
RE sep 0.31 0.48 0.06 0.06 54.62 32.98 21.63 290.97
RE com 0.29 0.44 0.07‡ 0.07‡ 54.08 32.89 21.19 289.24

Blue colour indicates a low value with darkest shading showing the lowest values. The ‡ symbol indicates
significance at the 90% confidence level. τ refers to the between-studies-heterogeneity, Dres to the residual
deviance and β to the meta-regression coefficient of the control variable in question which is modelled
in the log-odds ratio scale. Subscripts (AD, PE) represent whether a measure refers to only adult or
paediatric studies, while when there is no subscript the measure refers to the whole database (adults and
paediatric patients).

107



5.6. Re-exploration of heterogeneity

The first feature to notice is that in contrast to the null models, FE models here
perform better than RE with the exception of the meta-regression model on Jadad which
struggles to explain any heterogeneity. All other models seem to at least partly explain
heterogeneity, and improve the fit according to DIC.

The covariate which produces the best performing meta-regression models is duration
of treatment, though this improvement seems to be driven only by the adult evidence7.
This is further supported by the fact that compared to the model that imposes separate
effect modification coefficients, when a common effect modification is imposed, the
direction of βPE changes and its magnitude becomes very similar to the adult one. As
a result of this difference between the two populations, the FE model with population-
specific coefficients fits the best in terms of both DIC and residual deviance.

FE meta-regression models on sample size also fit well and marginally better than
random-effects. In this case, the magnitude of effect modification is similar among
adult and paediatric studies and when a common coefficient is imposed, its estimate
becomes more precise (CrI not shown in Table 5.6). The meta-regression models on year
of publication provide a very similar fit with those on sample size, albeit slightly worse in
terms of heterogeneity, residual deviance, and DIC.

7The fact that duration of treatment does not seem to be an important effect modifier in the paediatric
studies may confirm the clinicians’ suspicion about this variabe in Soares et al., 2012 where they were unable
to intuitively explain the reason that it was the main source of heterogeneity in adults —see Soares et al.,
2012 page 38.

108



5.6. Re-exploration of heterogeneity

Regarding alternative treatment parametrisations, the results of the meta-regression
models on all covariates are provided in the Appendix in Table B.4.1, Table B.4.2, Ta-
ble B.4.3. For illustrative purposes though, the models on duration of treatment are
provided in Table 5.7 and for sample size and Jadad in the Appendix (Table B.4.4, Ta-
ble B.4.5). Just as in Step 1, T3b is again much better than T2 and T3a, but not significantly
better than T4. However, T3b may be preferred over T4 on parsimony grounds.

Table 5.7: Results of meta-regression models on duration for all network parametrisations.

covariate Model τAD τPE βAD βPE Dres DresAD DresPE DIC

T2

FE sep n/a n/a −0.38∗ 0.36 61.39 37.11 24.27 289.70
FE com n/a n/a −0.27∗ −0.27∗ 69.01 38.12 30.90 296.34
RE sep 0.37 0.46 -0.29 0.25 54.01 32.40 21.61 290.33
RE com 0.43 0.57 -0.18 -0.18 53.28 31.71 21.57 290.52

T3a

FE sep n/a n/a −0.37∗ 0.29 58.24 37.57 20.67 288.55
FE com n/a n/a −0.27∗ −0.27∗ 63.53 38.25 25.28 292.85
RE sep 0.42 0.37 -0.28 0.31 53.14 32.63 20.51 290.34
RE com 0.49 0.44 -0.14 -0.14 53.55 31.90 21.65 291.56

T3b

FE sep n/a n/a −0.40∗ 0.54 50.88 27.95 22.94 281.23
FE com n/a n/a −0.36∗ −0.36∗ 53.25 27.99 25.26 282.58
RE sep 0.19 0.50 −0.40∗ 0.54 50.03 28.43 21.60 284.81
RE com 0.20 0.57 −0.36∗ −0.36∗ 50.50 28.32 22.17 285.26

T4

FE sep n/a n/a −0.41∗ 0.54 50.88 28.80 22.08 283.23
FE com n/a n/a −0.36∗ −0.36∗ 53.29 28.85 24.44 284.61
RE sep 0.21 0.50 −0.40∗ 0.54 50.42 29.15 21.27 286.72
RE com 0.22 0.57 −0.36∗ −0.36∗ 51.10 29.14 21.97 287.43

Blue colour indicates a low value with darkest shading showing the lowest values. τ refers to the
between-studies-heterogeneity, Dres to the residual deviance and β to the meta-regression coefficient
of the control variable in question which is modelled in the log-odds ratio scale. Subscripts (AD, PE)
represent whether a measure only refers to adult or paediatric studies, while when there is no subscript
the measure refers to the whole database (adults and paediatric patients).
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5.6.2.3 Step 3 : Combining covariates

The results of Step 2 suggest that duration of treatment is the most important predictor
of the relative effect, followed by sample size and year of publication. In this step, these
covariates are combined to assess whether the models would fit better and explain a
larger part of heterogeneity. The models that combined year with sample size and all
three variables together did not converge8 despite additional efforts such as centering or
thinning the MCMC chains. The results of the two remaining combination meta-regression
models are shown in Table 5.8.

Table 5.8: Step 3. Meta-regression models with multiple covariates in T3b network. The first two columns
of β correspond to the adult and paediatric coefficients for the first variable and the next two
columns for the second variable.

Covariate Model τAD τPE β1,AD β1,PE β2,AD β2,PE Dres DresAD DresPE DIC

Duration + Sample

FE sep n/a n/a −0.35∗ −0.18 −1.6 −5.7 51.74 28.76 22.98 283.14
FE com n/a n/a −0.26∗ −0.26∗ −3.9‡ −3.9‡ 51.42 28.69 22.72 281.8
RE sep 0.20 0.48 −0.34∗ −0.04 −2.04 −4.7 50.69 29.12 21.56 286.32
RE com 0.20 0.47 −0.27‡ −0.27‡ −3.85 −3.85 50.11 28.77 21.34 284.76

Duration + Year

FE sep n/a n/a −0.36∗ 6.0 0.015 −0.57 51.82 28.78 23.03 283.26
FE com n/a n/a −0.27∗ −0.27∗ 0.05‡ 0.05‡ 51.67 28.84 22.82 281.99
RE sep 0.22 0.50 −0.36∗ −2.5 0.01 0.32 50.63 29.13 21.5 286.3
RE com 0.21 0.48 −0.29∗ −0.29∗ 0.04 0.04 50.78 29.38 21.4 285.7

Blue colour indicates a low value with darkest shading showing the lowest values. τ refers to the
between-studies-heterogeneity, Dres to the residual deviance, and β1 and β2 to the meta-regression
coefficient of the first and the second control variable in question which is modelled in the log-odds ratio
scale. Subscripts (AD, PE) represent whether a measure only refers to adult or paediatric studies, while
when there is no subscript the measure refers to the whole database (adults and paediatric studies).

The first thing to note is that the effects of sample size, modelled as 1/
√

N, and the
year of publication are not significant at the 95% level when separate coefficients are
assumed in each population. In the first set of models (Duration + Sample), common
coefficient models perform slightly better than those with separate coefficients. This may
be because the coefficient for duration across paediatric studies has the same sign as in
adults, and as a result when a common coefficient is imposed, the residual deviance does
not increase and a better fit is observed overall. Heterogeneity in adults is comparable to
that estimated with the T3b meta-regression solely on duration (Table 5.6), indicating that
sample size does not explain any additional heterogeneity in adults. However, it does on
paediatric studies as can be observed by comparing the paediatric-specific heterogeneity
estimates in Table 5.8 with the corresponding estimates in Table 5.6, and this leads to
lower total and paediatric-specific residual deviance values.

8According to Gelman-Rubin convergence diagnostics.
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As mentioned above, the model that included both the year of publication and the
sample size did not converge. This may indicate that these variables explain the same
component of heterogeneity, implying that only one is enough to explain the heterogeneity
due to study quality. This hypothesis is further supported by the fact that the last meta-
regression models that use the duration of treatment and year of publication perform
similarly to the models that use the duration of treatment and the sample size.

Finally, given the conclusions from all steps, ‘hybrid’ models were attempted (Ta-
ble 5.9), using different specifications for each evidence set. Note that the first model
with FE meta-regression on duration in adults and a FE model without any covariates in
paediatric patients provides the best fit amongst all attempted models in this section.

Table 5.9: ‘Hybrid’ models that do not use the same covariates in the two populations. T3b network
parametrisation.

covariate Model ad Model paed τAD τPE βAD βPE Dres DresAD DresPE DIC
Duration (adults) FE M-regr FE n/a n/a −0.4∗ - 50.82 27.96 22.87 280.1
Duration (adults) FE M-regr RE n/a 0.47 −0.4∗ - 49.34 27.96 21.39 281.7

Dur (ad); Sample (paed) FE M-regr FE Mregr n/a n/a −0.4∗ -5 51.28 27.96 23.32 281.9
Blue colour indicates a low value with darkest shading showing the lowest values. τ refers to the
between-studies-heterogeneity, Dres to the residual deviance and β to the meta-regression coefficient
of the control variable in question which is modelled in the log-odds ratio scale. Subscripts (AD, PE)
represent whether a measure only refers to adult or paediatric studies, while when there is no subscript
the measure refers to the whole database (adults and paediatric studies).

5.6.2.4 Model selection

The previous steps identified duration of treatment as the covariate that explained the
largest part of heterogeneity, particularly under a T3b treatment parametrisation. However,
there is no evidence of such an effect on paediatric patients, and hence a FE meta-
regression ‘hybrid’ model was selected as the base-model. Despite the fact that this
model fits significantly better than any other model that either uses another covariate or
no covariate at all, more models need to be included in our final list. This is because,
as explained in Soares et al., 2012, page 38, clinical experts did not identify a rationale
for treatment duration to be an important effect-modifier. Instead, they thought that
covariates that related to study quality were more important and should be considered.
Therefore, here the list of final base-models is expanded to accommodate the experts’
views on this matter, enabling both a more comprehensive comparison with the findings of
Soares et al., 2012, and an assessment of whether conclusions regarding the performance
of ISMs are consistent across different base-models.

Regarding the meta-regression models on sample size, which was the second most
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important effect modifier, T3b again yields the lowest DIC values (Table B.4.4). Here, the
extent of the effect modification is similar among adults and paediatric patients, and the
FE meta-regression model with the common coefficient fits the best. In Soares et al., 2012,
a T2 RE meta-regression model on sample size was preferred. Therefore, by including the
paediatric evidence here, we were able to estimate the sample size effect more precisely
and move from a RE to a FE model, and from T2 network to T3b.

Based solely on DIC values, we could stop here and move forward only with these two
models. However, to allow a more thorough comparison with the original HTA (Soares
et al., 2012), we will include two more models that were included in Soares et al., 2012
after consultation with clinicians.

Among simple models without any covariates, T3b is preferred here because it yields
the lowest DIC values under FE. However, since heterogeneity is evidently not negligible,
RE models are more appropriate and fit better. Therefore, our final list also includes the
simple T3b RE model, just as in Soares et al., 2012.

Finally, even though the meta-regressions on Jadad did not perform very well in
Soares et al., 2012, the authors nevertheless considered a Jadad model9. In this work,
according to Table B.4.5 (see Appendix, page 225), all FE and RE models across all
treatment parametrisations fit very similarly, so T2 is preferred on parsimonious grounds.
Within T2 meta-regression models on Jadad, there is significant remaining heterogeneity
and RE models should be preferred. Among these, the one with the common coefficient
seems to perform slightly, but not significantly, better and is therefore included in our list
of base-models. The final list of base-models is shown in Table 5.10 and a comparison
between the final base-models in this work and those in Soares et al., 2012 is provided in
the Appendix in Table B.4.6 and Figure B.4.1.

Table 5.10: The final list of models used in this work.

Final Models for CEA Posterior mean (adults) se DIC
T3b : FE + duration (adults), FE (paediatric patients) −0.3 0.13 280.1
T3b : FE + sample size (common) 0.02 0.14 284.9
T3b : RE −0.56 0.6 290.3
T2 : RE + Jadad (common) −0.38 0.6 291.1

Estimates correspond to predictions for a duration of treatment of 3 days, a treatment arm sample size of
n = 339, which is the largest amongst all adult studies, and Jadad = 5, which corresponds to a study of
the best possible quality.

9This model was included for the following reason: the prediction of the Jadad model for a study of the
best quality (i.e. Jadad = 5) provided an identical point estimate to the meta-regression model on the year of
publication (Year = 2007) and it is much easier to suggest that the CEA should consider the relative estimate
of a study of the best quality instead of a study published in 2007. Hence they preferred the model on Jadad
instead of the model on the year of publication.
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5.7. Sharing information between adult and paediatric evidence

5.7.1. Methods

This section comprises of two parts. First, the applicable methods that were used to share
information among paediatric and adult studies on the relative effectiveness parameter
are identified for each one of the base-models chosen in Section 5.6.2.4. This made
use of the ‘methods identification framework’ introduced in Section 4.5. Second, the
statistical measures that were used to both compare the ISMs and measure the strength of
information-sharing that they imposed are described.

5.7.1.1 Information-sharing methods

Application of ‘methods identification framework’

For the Identification step, the direct (adult) and indirect (paediatric) evidence was
identified in the literature according to the methods described in Section 5.4. As described
in Section 5.4.2, the extended evidence base comprised of 17 ‘direct’ studies on adults (the
same studies that were included in Soares et al., 2012) and 11 new ‘indirect’ studies in
paediatric patients including a large multi-center study that enrolled 85% (n = 3493) of
all the paediatric patients.

In the Parametrisation step, a variable was chosen to distinguish between direct and
indirect evidence. This was straightforward in our case, because the only option was a
binary variable where one value (say 0) indicates that a study enrolled adults, whilst the
other (say 1) indicates that a study enrolled paediatric patients. Since there was no prior
expectation on which population would exhibit a larger relative effect, the binary variable
was unordered. Had there been any evidence or biological justification to suggest that
one of the two populations should exhibit a larger relative effect, an ordered variable that
reflected this a priori assumption could have been chosen.

In the Base-model selection step, alternative model parametrisations and meta-regression
models were fit to the extended evidence base to identify the best-fitting models for each
evidence set. When the same effect modifiers were identified for both evidence sets,
meta-regression models that assumed a common effect modification coefficient were
implemented to achieve increased precision in the coefficient estimate. This process was
undertaken in Section 5.6 and led to the selection of 4 base-models that are shown in
Table 5.10.

In the Eligibility step, I went through all the models that were described in Chapter 4
and consulted Table 4.2 and Table 4.3 to identify which methods were eligible for the
type of variable that we were using to distinguish between direct and indirect evidence.
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Note that RE base-models would be eligible for more methods than FE base-models,
because they provide the heterogeneity component that can be shared using alternative
assumptions.

In the Plausibility step, methods that imposed unrealistic assumptions were eliminated,
as well as methods that had data requirements which could not be accommodated by
the available data. Regarding assumptions, this work considered all alternative models
to make explicit the strength of information-sharing that would be imposed had all the
models been considered plausible. Regarding data requirements, given that no single
study reports results for both populations, meta-regression models would not impose
any information-sharing and hence were not be considered here. Additionally, since an
unordered variable was used to describe the types of evidence available, random-walks
were not be applied because when only one indirect evidence set is used, the random-walk
model is very similar to a multi-level model. Lastly, methods that shared information on
the between-studies heterogeneity could only be used for the RE base-models.

Table 5.11: Applicable methods for each base-model of Table 5.10.

Method T3b RE
T3b FE M-reg

(duration)
T3b FE M-reg
(sample size)

T2 RE M-reg
(Jadad)

Lumping
Common Heterogeneity X X
Multi-level
Informative prior
Mixture prior
Power-prior
Commensurate prior
Prior on heterogeneity X X

Finally, in the Implementation step all the remaining methods shown in Table 5.11 were
applied. Note that for RE base-models, the predictive distribution was used rather than
the posterior distribution of the mean. This is because in the presence of heterogeneity,
the predictive distribution better represents uncertainty10 (Dias et al., 2011b). A plain
language explanation of how the ISMs used here work, see (subsection B.5) on page 227
of the Appendix.

10It incorporates uncertainty due to heterogeneity on top of the uncertainty around the point estimate.
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Specification of implemented models
As noted in Section 4.4, some of the ISMs allow further flexibility, by including

parameters that influence information-sharing, and hence additional decisions were made
regarding their specification. In particular, power-prior models were applied for all α

values between 0 and 1 in 0.1 increments. Mixture priors were used assuming that
the weights of the prior components are uncertain parameters estimated in the model.
Commensurate priors were implemented assuming that the Bernoulli trials had a fixed
50% change of yielding the ‘spike’ or the ‘slab’ hyper-prior. Finally, for RE models, the
predictive distribution was used as an informative prior for the two-step models instead
of the posterior mean distribution, and the lumping model which analyses direct and
indirect evidence under a single random-effect (i.e. with common d and τ) since it is the
most commonly used in the literature.

It should also be highlighted that the ISMs developed in Chapter 4 consider only
the simple case where no effect modifiers are taken into account in the direct or the
indirect evidence. However, here, most base-models were meta-regression models. This
complicates the use of ISMs because, under meta-regression models, the relative effect
comprises of two parts; a component that is only due to the effect modifier considered
(i.e. the β slope) and depends on its value, and another component that is independent
of particular variables. The need to extend ISMs to appropriately accommodate this
additional complexity was overcome here by choosing to center the covariate at the
value on which we wanted to relate the two evidence sets. For instance, say we wanted
to express the assumption that the predictions for the relative effect of the direct and
indirect evidence were equal at the effect modifier value of X = 5. Then, instead of
extending methods to share information on both relative effect components (d + β), we
could just center the covariate at X = 5 and share information only on d using the
methods developed in Chapter 4. This is further explained on page 228 in the Appendix.
Here, the ‘hybrid’ base-model that considered the duration of treatment related the RTE
of the indirect evidence with the predicted RTE of the direct evidence for three days of
treatment, as this was the treatment duration in most adult studies. The base-model that
considered Jadad score related the predicted RTE of the direct and indirect evidence for
a study of the highest quality (i.e. Jadad = 5). Finally, the base-model that considered
sample size related the predicted RTE of the direct and indirect evidence for a treatment
arm of n = 339, which was the largest treatment arm found amongst the adult studies.

All models were programmed in R (R Development Core Team, 2010) and estimation
was undertaken in WinBUGS (MRC Biostatistics Unit, 2010) using the R2Winbugs package
(Sturtz et al.) and the coding developments that were introduced in Chapter 4.
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5.7.1.2 Measuring the ‘strength of information-sharing’

The inclusion of the indirectly related data in the analysis implies that we are allowing
the paediatric evidence to influence the adults estimates. Here, the focus is only on the
influence of the indirect evidence on the relative effectiveness parameter that pertains to
the population considered by the decision. To quantify the extent of influence allowed by
each ISM, deviations from the no-sharing/only adults splitting method, which is here
considered the base-case, were measured. It should be highlighted that since we do not
know what the true adult relative effect is, we have no way of assessing which estimate
is closer to the truth. Hence, the only divergence that we can calculate is the distance
from the estimate that is produced using only the adult information to the estimate that
is produced using the extended evidence base after implementing each ISM. This section
describes in detail the three strength-of-sharing measures that will subsequently be used
in this chapter.

Point Estimate Divergence
The first measure is the Point Estimate Divergence (PED), evaluating the absolute

difference in the adult relative effectiveness posterior mean between the no-sharing/only
adults splitting method (dmodel0

ad ) and each of the j alternative ISMs (d
modelj
ad ). Mathematically,

this is defined as:
PEDj = |d

modelj
ad − dmodel0

ad | (5.1)

where a larger PEDj implies a larger difference in the adult point estimate between the
no-sharing/only adults splitting method and ISM j.

Precision Increase
To capture changes in the standard error between the no-sharing/only adults splitting

method (sdmodel0
dad

) and each of the j ISMs (sd
modelj
dad

), Precision Increase (PrI), which was
introduced in Jackson et al., 201711, is used. This is defined as:

PrIj = 1−
sd

modelj
dad

sdmodel0
dad

(5.2)

where PrI ∈ (−∞, 1]. Negative PrI values indicate that information-sharing has led
to increased uncertainty, and a value of 0 that information-sharing results in the same
uncertainty as the no-sharing/only adults splitting method. In contrast, as information-
sharing leads to more precision gains compared to splitting, PrI tends to 1.

11Note that in Jackson et al., 2017 this measure is termed BoS. However, here, multiple measures are used
and hence this measure is renamed to better reflect the quantity that it is calculating.
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Kullback-Leibler divergence
Finally, a measure that simultaneously considers changes in the posterior mean

and standard deviation was used. This is based on the notion of ‘divergence’ used in
information theory12 to derive information criteria (McElreath, 2016) and in the context
of our example can be defined as the additional uncertainty that is induced by using
the probability distribution of d

modelj
ad to describe the probability distribution of dmodel0

ad . A
metric that suits this description is Kullback-Leibler Divergence13 (Kullback and Leibler,
1951) and is defined as:

DKL(p, q) =
∫
[p(x)× log(p(x))− p(x)× log(q(x))] d(x) (5.3)

where p is the target distribution that we aim to describe (here dmodel0
ad ), and q the distribu-

tion that we use in doing so (here d
modelj
ad ).

The integral is calculated in R with adaptive quadrature which is a method of numeri-
cal integration using the ‘integrate’ command of the ‘stats’ package. It is important to
highlight that interpretation of KL differences is challenging (i.e. it is tough to establish
whether a KL value is high or low in absolute terms), and it is here used only in relative
terms to compare the KL of different ISMs. An illustration of KL-divergence from a
standard normal distribution is provided in the Appendix in Figure B.5.1 and the R code,
which is based on a previous application of this metric by Jackson, 2019, can be found in
https://github.com/NikolaidisGFZ/PHD.git.

12Information entropy is defined as the uncertainty that is contained in a probability distribution and is
described as H(p) = −∑n

i=1 pilog(pi). Cross-entropy is the additional uncertainty that is induced when
events appear based on p(x), but we are instead using q(x) to predict them i.e. H(p, q) = −∑n

i=1 pilog(qi).
The difference between cross-entropy H(p, q) and the entropy H(p) is the Kullback-Leibler divergence i.e.
DKL = H(p, q)− H(p) .

13Although, this was originally outlined by Harold Jeffreys in Theory of probability in 1948.
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5.7.2. Results

The resulting log-odds ratio estimates across all ISMs are displayed in Figure 5.6. In the
main text only two base-models are discussed: the first is the T3b FE meta-regression on
the treatment duration (days), henceforth referred to as the Duration FE base-model. This
base-model is shown because it is the best-fitting base-model. The second base-model
shown here is the T2 RE meta-regression on Jadad score, henceforth referred to as the
Jadad RE base-model. This base-model is shown because it allows us to see how the ISMs
also impact RE base-models, and is also likely to be of interest to decision-makers since
it can produce the predicted RTE for a study of the best possible quality (i.e. Jadad =
5). The remaining results of the T3b FE meta-regression on sample size and the T3b RE
model are included in Table B.5.1 and Table B.5.2 of the Appendix respectively.

Note that in Figure 5.6, the x-axes of the two base-models are differently scaled; an
illustration under a common scale is provided in Figure B.5.2 of the Appendix. Black
lines correspond to the original estimate used in Soares et al., 2012; red lines to the
no-sharing/only adults splitting method; green lines to the estimate of the most extreme
ISM i.e. lumping; and grey lines to the estimates of the remaining ISMs. The graphs on
the right (A2, B2) depict estimates produced using the Power-prior and α values from 0.1
to 1 in 0.1 increments, while the graphs on the left (A1, B1) show the estimates of the
remaining ISMs. Despite the fact that the x-axes are not equally scaled, it can be inferred
that for the Duration FE base-model results seem less similar across ISMs (A1) than for
the Jadad RE base-model (B1). Furthermore, in the power-prior FE models (A2), as α

increases, estimates ‘smoothly’ move from splitting to lumping, whilst in RE power-prior
models (B2), estimates are always similar to lumping (even for small α values), and may
actually exceed it (i.e. the resulting log-odds ratios of some ISMs as indicated by the grey
lines are not contained in the range defined by splitting and lumping).
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Figure 5.6: Resulting estimates of all ISMs for the Duration FE and the Jadad RE base-models.

:  FE, all models except power-priors

:  RE, all models except power-priors :  RE, only power-priors

:  FE, only power-priors

Figures on the left illustrate all non-power-prior methods while the right figures all the Power-prior methods
with α = 0.1, 0.2, ..., 1. Black estimates correspond the original estimates from Soares et al., 2012; red to the
no-sharing/only adults splitting method in this work; green to lumping; and grey to the various remaining
ISMs.
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The fact that power-prior models under RE can produce more extreme results (not con-
tained in the spectrum defined by splitting and lumping) is also apparent in Table 5.1214.
DICs are reported only for those ISMs that use the same data within a single model and
can therefore be compared15.

Table 5.12: Predictions across all eligible ISMs for the T3b Duration FE and the T2 Jadad RE base-models.

T3b Duration
FE base-model

T2 Jadad
RE base-model

ISM RTE sd DIC RTE sd DIC
Base-case (no sharing/only adults) -0.31 0.13 280.1 -0.55 0.31 290.8

Lumping -0.08 0.06 283.3 -0.36 0.24 289.8
Multi-level -0.28 0.12 279.8 -0.50 0.29 290.5
Commensurate prior -0.27 0.11 281.7 -0.44 0.28 293.1
Informative prior -0.09 0.06 - -0.50† 0.29† -
Mixture prior -0.11 0.10 - -0.51† 0.29† -
Common Heterogeneity n/a -0.55 0.29 289.3
Prior on Heterogeneity n/a -0.58 0.30 -
Power-prior (a=0.1) -0.23 0.11

-

-0.26 0.27

-

Power-prior (a=0.2) -0.19 0.10 -0.25 0.26
Power-prior (a=0.3) -0.16 0.09 -0.26 0.25
Power-prior (a=0.4) -0.14 0.08 -0.27 0.25
Power-prior (a=0.5) -0.12 0.08 -0.27 0.24
Power-prior (a=0.6) -0.11 0.07 -0.29 0.25
Power-prior (a=0.7) -0.10 0.07 -0.30 0.25
Power-prior (a=0.8) -0.09 0.07 -0.31 0.24
Power-prior (a=0.9) -0.08 0.06 -0.33 0.25
Power-prior (a=1) -0.08 0.06 -0.35 0.25
The estimates correspond to studies of the best quality (i.e. Jadad = 5) and 3 days of treatment duration
respectively. The symbol † indicates that the result pertains to the use of the predictive distribution of
the indirect evidence. Light red shading indicates the base-case no-sharing/only adults splitting method
for comparison purposes. ISM: Information-sharing method.

Interestingly, in the Jadad RE base-model, for low values of α, the power-prior yields
results which share information more strongly than lumping, and as α gets closer to 1,
the estimates get closer to lumping. This is here attributed to the way that the power-
prior operates and to the nature of the indirect evidence. Specifically, there are only
two paediatric studies that contribute directly to the comparison of interest (ALB vs

14The resulting estimates of the two remaining base-models can be found in the Appendix in Table B.5.1
and Table B.5.2.

15For example, informative priors cannot be compared with lumping because the first method is a two-step
process where, in the first step, the relative effect is estimated for the indirect evidence and, in the second
step, the direct evidence are solely analysed using a prior that was derived from the first step. Hence, the
second analysis of the two-step process uses less data and its DIC cannot be compared with lumping that
combines the whole of the extended evidence base in a single step.
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IVIG/IVIGAM) (see Table 5.3) and their findings differ. In the big study (Brocklehurst
et al., 2011), an odds-ratio of 1.00 was observed suggesting that there is no effect, and in
the very small study (Weisman et al., 1992) with an Odds-ratio of 0.39 suggesting that
IVIG is associated with a larger reduction in mortality than ALB. For small α values, the
likelihood16 of the big study gains some weight, whilst the likelihood of the small study
remains negligible. Hence, as illustrated in Figure 5.7, the combined estimate is initially
excessively pulled towards the neutral effect of the big study and we observe the most
extreme estimate for α ≈ 0.2. As α values increase, the likelihood of the small study which
suggests a large effect, becomes non-negligible and starts influencing the estimates pulling
them towards the effect that is observed under lumping. This explanation perfectly aligns
with the idea that RE models give higher weight to small studies. Essentially, for small
α values the Brocklehurst et al., 2011 study is a small-study and is therefore assigned
a disproportionately large weight, whilst the small paediatric studies are practically
non-existent. A thorough explanation of this is provided in the Appendix on page 235.

Figure 5.7: The predicted relative effects (IVIG/IVIGAM vs ALB) for Jadad = 5 of power-prior models
with varying alpha values between 0 (no-sharing/only adults) and 1 (full sharing).
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16The word ‘likelihood’ here refers to the Bayesian ‘likelihood function’.
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5.7. Sharing information between adult and paediatric evidence

The relative and absolute values of the ‘strength-of-borrowing’ measures are depicted
for the Duration FE base-model using coloured bars in Figure 5.8. ISMs are listed on the
left in descending KL-divergence order. The x-axis displays relative values (i.e. a ratio
of each model’s value divided by the maximum value observed for each measure) and
therefore ranges from 0 (min value) to 1 (max value). Each bar represents the relative
value for a strength of sharing measure. For example, in Figure 5.8 the precision increase
(green bar) that is achieved by the commensurate prior model is 21% of the maximum
precision increase across all models (which is observed for the informative prior). The
absolute values of the three strength-of-sharing measures (i.e. PED, PrI, and KL) are
noted in text to the right of each bar. For instance, the point estimate divergence (red) of
the mixture prior method is 0.19 in the log-odds ratio scale.

The additional coloured axes at the bottom of the graph indicate the point at which
each strength of sharing measure is estimated for a power-prior model with the corre-
sponding α. For a power-prior model with any α, its corresponding bars span from the
beginning of the axis up to the point where the α value of interest is displayed on the
axis. For instance, PED of the power-prior model with α = 0.5 would span from the
beginning of the red axis up to the point where the value 0.5 is displayed on this axis. By
representing power-prior models with varying α in this way, the reader can ‘map’ the
various ISMs to particular α values of the power-prior models. For example, the mixture
prior model achieves a KL-divergence (blue) similar to that of the power-prior model
with α = 0.4. Hence, in this case-study mixture priors share information as strongly as a
power-Prior model with α = 0.4 (this can be intuitively understood by drawing a vertical
line from the end of the blue bar of the mixture prior model and noticing that it cuts the
blue x-axis close to 0.4).

As expected, multi-level models and commensurate priors —both of which rely on
the exchangeability assumption17 —produce the lowest strength of sharing according to
all three measures in this case-study. Also, as expected, for the Duration FE base-model,
across all measures, the informative prior imposes a very similar strength of sharing with
that of lumping. Finally, in this case-study mixture priors impose less information-sharing
than informative priors, but the level of sharing is not consistent across metrics (i.e. they
impose around 80% of lumping’s PED, but only around 40% of Lumping’s PrI).

17Recall that the commensurate prior is essentially a random-walk where a spike-and-slab hyperprior is
imposed on the precision parameter, encouraging or discouraging information-sharing.
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5.7. Sharing information between adult and paediatric evidence

Figure 5.8: Statistical measures of ISMs used in the FE meta-regression on duration base-model.
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The additional coloured bars in the bottom display, in a compact way, the strength of sharing measures of
all the power-prior models with α between 0 and 1. For example, a power-prior model with α = 0.5 would
produce a red bar spanning from the beginning of the current red bar up to the point where the value 0.5 is
displayed.

123



5.7. Sharing information between adult and paediatric evidence

The same chart for the Jadad RE base-model is displayed in Figure 5.9. Some counter-
intuitive features are observed here. In particular, the power-prior model with α = 0.2
achieves the maximum PED and KL divergence across all models. As a result, none of
the ISMs listed on the left has a red or blue bar reaching up to 1. Furthermore, all power-
prior models with α > 0.2 exhibit lower values across all measures than the model with
α = 0.2. In particular, as α increases beyond 0.2 all measures decrease. This is indicated in
Figure 5.9 by the longer lines used to display the α indicating that a power-prior using an
α > 0.2 achieves a lower absolute (and relative) value for the measure in question than
the power-prior model with α = 0.2. This feature is again a reflection of the issue that was
highlithed in Table 5.12 and explained in Figure 5.7 and in the Appendix on page 235.

Not surprisingly, lumping the two evidence sets under a common random-effect
leads to the highest precision gains (as indicated by PrI), although its PED and KL are
surpassed by almost all power-prior models above with α > 0.1. Lumping direct and
indirect evidence only on heterogeneity seems to also considerably increase precision
(PrI), with minimal changes in the posterior mean (PED). In this case-study, the mixture
prior shares less information than the informative prior. This should be expected because
once the informative part is mixed with the vague component, the resulting prior is less
informative and therefore does not influence the results as much as when it is used on
its own. With regards to the two models that share information on the between-studies
heterogeneity, assuming a common parameter for direct and indirect evidence leads to
higher KL and precision gains (PrI), but lower PED compared to using the heterogeneity
estimate from the indirect evidence on a log-normal prior. All the remaining methods
seem to impose similar information-sharing across all measures, except for power-priors
which even for very small values of α impose comparably very strong information-sharing,
as explained on page 121.

It is worth noting that under this RE base-model informative priors and mixture
priors share much less information relative to lumping compared to the FE base-model
(Figure 5.8). The reason for this somewhat counter-intuitive result is that the predictive
distribution of the indirect evidence is used to form the prior distribution in the Jadad RE
base-model, whilst the posterior mean distribution of the indirect evidence in necessarily
used in the FE base-model.
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5.7. Sharing information between adult and paediatric evidence

Figure 5.9: Statistical measures of ISMs used in the Jadad RE base-model.

The additional coloured bars in the bottom display in a compact way the performance measures of all the
Power-prior models with α between 0 and 1. For example, a Power-prior model with α = 0.5, would produce
a red bar that would span from the beginning of the red axis up to the point where the value 0.5 is displayed.
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5.7. Sharing information between adult and paediatric evidence

Table 5.13 ranks all ISMs except for power-priors18 according to all three ‘strength-
of-sharing’ measures, across all base-models. A lower number indicates that a method
imposes stronger information-sharing in terms of the measure in question and hence ranks
higher. For FE base-models, the results are consistent across the two base-models. The
information-sharing spectrum is clearly defined by lumping and splitting and there is no
discrepancy in how the various methods compare to the spectrum extremes. Specifically,
informative priors —being almost equivalent to lumping —rank second, followed by
mixture-priors that rank third. Commensurate priors rank consistently in the fourth
place, imposing more information-sharing than multi-level models due to the additional
assumption on the variance, followed by multi-level models that rank fifth and impose
the least information-sharing.

Regarding RE base-models, amongst non-power-prior ISMs, the extremes of the
spectrum are again clearly defined by lumping and splitting; however methods do not
rank within that spectrum as consistently as under FE. Common heterogeneity seems
to rank high in terms of precision gains (PrI), but very low in terms of changes in
the point estimate (PED). However, this is not the case for the log-normal prior on
heterogeneity, which leads similarly minor changes in the mean, but also lower precision
gains. Furthermore, informative and mixture priors behave similarly with multi-level
models and hence rank lower than commensurate priors. This could potentially be
attributed to their use of the predictive rather than the posterior mean distribution, and is
an issue we is explored in depth in Chapter 7.

Table 5.13: Relative ranking of ISMs in descending order (1 is the highest).

ISM
FE Mregr

on duration
FE Mregr
on sample

RE (Predictive
distrib)

RE Mregr on Jadad
(Predictive distrib)

Lumping 1-1-2 1-1-1 1-1-1 1-1-1
Common heterogeneity - - 2-6-2 3-7-2
Multi-level 5-5-5 5-5-5 4-3-7 5-3-6
Commensurate prior 4-4-4 4-4-4 3-2-3 2-2-3
Informative prior 2-2-1 2-2-2 5-4-4 4-4-4
Mixture prior 3-3-3 3-3-3 6-5-6 7-6-5
Prior on heterogeneity - - 7-7-5 6-5-7

Base-case
(no-sharing)

6 - 6 - 6 6 - 6 - 6 8 - 8 - 8 8 - 8 - 8

The first number (blue) ranks methods according to their KL-divergence, the second (red) according to
their PED, and the third (green) according to their PrI. Power-prior models are not listed here because
they can accommodate various degrees of sharing. ISM: Information-sharing method.

18This is because they accommodate a range of possible degrees of information-sharing.
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5.8. Discussion

This chapter describes a case-study in which strength is borrowed from indirect evidence,
using several methods, with the aim of strengthening inferences. In particular, evidence
from an indirect population (paediatric patients) is employed to estimate the relative
effectiveness of the population of interest (adult patients). To achieve that, direct evidence
from a previous secondary analysis by Soares et al., 2012 was used, indirectly related
studies were identified by the means of a systematic review, heterogeneity in the extended
evidence base was re-explored, and finally, the two evidence sets were combined using
all the applicable ISMs introduced in Chapter 4. The various methods were compared
according to a list of predefined ‘strength-of-sharing’ measures which sought to account
for changes in the point estimate and its uncertainty separately and simultaneously.

To re-explore heterogeneity in the extended evidence base, the framework that was
provided in Welton et al., 2015 was extended to allow for the simultaneous exploration
of heterogeneity in multiple evidence sets. Interestingly, the inclusion of the indirect
evidence enabled better characterisation of heterogeneity by leading to more precise
estimation of the extent of the various covariates’ effect-modification and consequently
more definite conclusions about the best performing base-models. As a result, compared
to Welton et al., 2015, a slightly modified list of best performing base-models was used.

The results of the application of power-prior models revealed that, even though their
behaviour was as expected under FE base-models, this is not necessarily the case for RE
base-models. In particular, we should not necessarily expect the estimated relative effect
to move monotonously from the splitting to the lumping as α increases in the power-prior
model (i.e. more information is borrowed from the indirect evidence). Scenario analyses
showed that the sizes of the individual indirect studies need to be closely considered
when using power-priors under RE base-models, because by discounting their likelihoods
small studies may be negligible, whilst larger studies might still exert influence on the
overall effect; particularly given that RE models assign disproportionately large weights
to smaller studies.

This work also extends ISMs for meta-regression base-models by choosing to centre
both evidence sets at the covariate value for which the predicted relative effects of the two
sources are associated. However, this method does not generalise to other cases where we
might want to relate predictions of different evidence sets that pertain to different covariate
values (e.g. lumping the adult relative effect at three days of treatment duration with
the paediatric relative effect at five days of treatment duration). Furthermore, it should
be highlighted that for RE base-models, not all lumping options were attempted (see
Section 4.4.1.1), but only those models that would be most likely to be used in the policy
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context (e.g. lumping all direct and indirect evidence under a common random-effect).
Also, for RE base-models, two-step ISMs (i.e. informative priors, mixture priors) used
only the predictive distribution (not the posterior mean) of the indirect evidence to inform
the second step, as it incorporates uncertainty resulting from the between-indirect-studies
heterogeneity. The impact of all the aforementioned limitations is explored in Chapter 7.

Overall, in this case-study, findings on how methods compare to each other in terms
of the strength of sharing that they impose broadly align with expectations. In particular,
it seems that lumping and splitting define a strength-of-sharing spectrum within which
the various alternative ISMs can be positioned. However, under RE base-models, some
exceptions were observed and were here attributed to the heterogeneity in study sizes and
the RTEs suggested by the alternative studies. Also, informative priors seem to always
impose stronger information-sharing than mixture priors which is expected based on
their specification. Further, informative priors that use the posterior mean RTE of the
indirect evidence (here implemented only under FE base-models) are almost equivalent
to lumping. In addition, commensurate priors and multi-level models impose only subtle
information-sharing, a feature that may be partially attributed to the fact that in this
case-study there were only two evidence sets: one direct and one indirect. Finally, the
value of α in power-priors does not necessarily relate to the imposed strength of sharing
in a linear manner, and its interpretation may not be straightforward. Consequently,
structured elicitation exercises that may potentially seek to elicit α can be challenging.

In conclusion, this chapter provided an example of the process that needs to be
followed in order to combine direct and indirect evidence, it then implemented all
possible ISMs, and finally provided insights into how the various methods compare
under FE and RE, illustrating that the choice of ISM can have a significant impact on
relative effectiveness estimates. However, it should be highlighted that the findings of
this case-study do not necessarily generalise to other cases, and extensive simulation
experiments need to be conducted to assess how different characteristics of the available
evidence impact how methods compare in terms of the imposed strength of sharing. This
is the focus of Chapter 7. Also, even more important than differences across methods on
RTE estimates, is how these differences may impact policy, and in particular if they can
lead to different adoption and/or research prioritisation decisions. This question will be
the focus of Chapter 6.
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Chapter 6

Policy-implications of information-sharing:
cost-effectiveness and value of information analyses

6.1. Chapter aims and structure

In the previous chapter, the use of alternative ISMs was introduced in a case-study that
sought to evaluate the effectiveness of IVIG/IVIGAM as an adjunctive therapy to the
SoC for adult patients with severe sepsis and septic shock. The key features of the
case-study relate to the unexplained heterogeneity within the available adult studies and
the uncertainty associated with the effect modifiers and the RTEs. Indirect evidence was
sought from studies exploring the use of the same intervention on paediatric patients.
Heterogeneity was re-explored in the extended evidence base and applicable ISMs were
identified using the step-by-step process introduced in Section 4.5. The findings suggested
that different ISMs impose different degrees of information-sharing, and lead to different
RTE estimates for adult patients. That said, whether or not the RTE differences are
significant can only be ascertained by examining whether they could lead to different
adoption decisions and/or further research recommendations.

This chapter uses a decision-model that was originally developed by Soares et al., 2012
in order to answer the following questions:

1. What is the impact of using different ISMs on adoption decisions?

2. What is the impact of using different ISMs on further research recommendation
decisions?

The remainder of this chapter is structured as follows: In Section 6.2.1 the structure
and parameters of the decision-model are detailed, while in Section 6.2.2 the policy
measures that will be considered are explained. Section 6.3 describes the results of using
estimates resulting from different ISMs on the policy measures, and differences in the
results among methods are explored and explained. Finally, in Section 6.4 the findings of
this chapter along with strengths and limitations are discussed.

129



6.2. Methods

6.2. Methods

6.2.1. Decision model

This section summarises the basic characteristics of the decision model that was used
in this work. The model was originally developed in Soares et al., 2012 and the reader
is directed to Soares et al., 2012, (Chapter 5) for a more detailed description of the
model’s technical characteristics. The model sought to assess the cost-effectiveness of two
alternative strategies for adult patients with severe sepsis and septic shock: IVIG/IVIGAM
as an adjunctive therapy to standard of care (SoC), which includes antibiotics or ALB, vs
SoC alone. Outcomes were expressed in Quality-adjusted Life Years (QALYs) and costs
reflect 2009 UK prices from the perspective of the NHS. An annual discount rate of 3.5%
was applied to both. Expected costs and outcomes were compared by the means of ICERs,
effectively expressing the additional cost per QALY gained. ICER thresholds of both
£20,000 and £30,000 per QALY gained were used as they represent the range of approval
norms used by NICE.

The model evaluated the lifetime prognosis of severe sepsis and septic shock in order
to capture the lifetime costs and consequences associated with the natural history in
the absence of IVIG/IVIGAM. To achieve this the model is comprised of two distinct
components which are shown in Figure 6.1:

Figure 6.1: A simplified representation of the decision-model.

The decision tree that captures the short-term effects and on which the relative effect is applied, and the
Markov-model that captures the lifetime prognosis conditional on survival in the short-term. This figure is
adopted from Soares et al., 2014b.
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1. A short-term decision tree: This component of the model evaluates the conse-
quences of the initial hospitalisation period (in either critical on non-critical care)
following the first sepsis episode, by quantifying the probability of an event (death)
during this period. Baseline mortality for standard of care was sourced from the
Intensive Care National Audit and Research Centre (ICNARC) Case Mix Program
Database (CMPD) (Harrison et al., 2006). The relative treatment effect was only
applied at this stage.

For the T3b base-models, the relative effect of interest was IVIG/IVIGAM vs ALB
whilst for the T2 base-models the comparison of interest was IVIG/IVIGAM vs
ALB/PLA. Essentially, for each ISM estimated as part of every base-model, the
corresponding log-odds ratio estimated in Section 5.7.2 was combined with the
baseline mortality to produce an absolute probability of an all-cause mortality event
under IVIG/IVIGAM.

2. A long-term Markov model: A simple Markov model with two mutually exclusive
health states (dead & alive) and annual cycles was designed to capture the long-term
consequences of sepsis survivors from the initial hospitalisation period. Even though
the relative treatment effect was only applied in the short-term model, the long-term
model allowed the lifetime costs and QALY consequences associated with mortality
differences captured in the short-term model to be accumulated. Long-term survival
estimates were based on a UK multicenter observational study of sepsis survivors
(Cuthbertson et al., 2010). In Soares et al., 2012, several parametric survival models
were fitted, assuming that the long-term mortality of a patient with sepsis cannot
become lower than that of the general population at any point (see Figure C.1.1).
This work considers only a Weibull model that controls for age at admission as this
model provided the best fit in the original analysis.

Parameters where inserted into the model as probability distributions in order to
appropriately reflect parameter uncertainty. Probabilistic Sensitivity Analysis1 (PSA) was
then used to jointly propagate uncertainty in the model inputs through the decision
model and allow estimation of the uncertainty surrounding the results. A list of the most
important inputs that where used to populate the model is provided in Table 6.1, but for
a more detailed description the reader is referred to the original HTA report (Soares et al.,
2012, chap. 4). In this work the decision model was re-evaluated for each of the relative
effects estimated under each ISM of the four base-models included in the final list (see
Table 5.11).

15000 Monte Carlo Samples.
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Table 6.1: Key decision-model inputs.

Cohort characteristics
Parameter Value Source

Mean age of severe sepsis
patients at admission

63
ICNARC CMPD (Harrison

et al., 2006)

Proportion of males 53%
ICNARC CMPD (Harrison

et al., 2006)
Short-term outcomes

Baseline-risk i.e. probability
of dying in the hospital

under treatment with SoC
40.6%

ICNARC CMPD Harrison
et al., 2006

Odds-ratio for
IVIG/IVIGAM compared

with ALB (T3b) or ALB/PLA
(T2)

All sharing method-specific
estimates as presented in

Table 5.12, Table B.5.1,
Table B.5.2

Synthesis of direct and
indirect evidence of

Chapter 5 of this work

Long-term outcomes

Probability of death
conditional on survival

Time-dependent. Based on
the Weibul model of

Figure C.1.1
Cuthbertson et al., 2010

Costs

Cost of SoC £0.00
Assumed to be 0 as they are
applied in the IVIG/IVIGAM

arm as well

Cost of IVIG £5,539.05
British National Formulary

(BNF)
Cost of 1 day in ICU (for a

severe sepsis patient)
£1,393.00

NHS reference costs
(Department of Health)

Cost of 1 day in ward (for a
severe sepsis patient)

£196.00
NHS reference costs

(Department of Health)
Utilities

HRQoL weight (for an
in-hospital severe sepsis

patient)
0.53 Drabinski et al., 2001

Other

Incidence of severe sepsis 66 · 10−5 ICNARC CMPD (Harrison
et al., 2006)

Table adopted from Soares et al., 2014b.
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6.2.2. Policy-related outcome measures

To understand the policy-implications of the use of different ISMs, the following measures,
which are commonly used to inform adoption decisions and further research prioritisation
decisions, are used:

1. Incremental Cost-Effectiveness Ratio

As explained in subsection 2.2.3 (Equation 2.14), the ICER provides an estimate of
the value-for-money of the new intervention. Here, it represents the additional cost
per QALY gained under the IVIG/IVIGAM strategy compared to ALB, and is using
the mean costs and benefits of each intervention, across the 5000 PSA iterations.

2. Decision

The final adoption decision is based on a simple decision rule that uses a cost-
effectiveness threshold (cut-off value). This threshold (k) represents an expectation
of the amount of resources that displace a single QALY elsewhere in the health care
system. For example, an explicitly estimated threshold of k = 30, 000 £/QALY means
that the maximum price that the health care system should pay for a technology
that offers one QALY, without displacing more health than the health gained, is
£30,000 (i.e. this is the marginal productivity of the health care system). Here, both
£20,000 and £30,000 thresholds were used to represent the threshold range that is
adopted by NICE (Appleby et al., 2007). If the estimated ICER is below £20, 000 the
technology is considered cost-effective and therefore is assumed to be approved,
while if the ICER is above £30, 000 it is not cost-effective and therefore rejected.
Finally, if the ICER falls between £20, 000 and £30, 000 the technology is considered
borderline cost-effective.

3. Probability of IVIG/IVIGAM being cost-effective

This is calculated here by counting the number of PSA iterations in which the Net
Monetary Benefit of the IVIG/IVIGAM strategy (calculated with k = £30, 000) is
larger than the Net Benefit of ALB, and then dividing that by 5000 (i.e. the total
number of simulations 5000).
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4. Population Expected Value of Perfect Information (EVPI)

To estimate the EVPI for the whole adult population who may be affected by severe
sepsis during the lifetime of the technology (assumed to be 10 years), we need to
appropriately discount future costs and consequences, as explained in Section 2.2.5.
This is done in the following manner:

Pop.EVPI = EVPI
T

∑
t=1

It

(1 + r)t (6.1)

where T is the lifetime of the technology, It the incidence rate at year t (Table 6.1)
and r the discount rate (3.5%). The 2009 estimate of the UK adult population (aged
16 years or over) was used (50,243,000 people) and an incidence of 66/100,000
people/year totalling 33,160 patients/year. Population EVPI calculations assumed
that information generated by further research will be used to inform reimbursement
decisions over a period of 10 years and will not be relevant thereafter.

5. Expected Value of Perfect Information of the relative effectiveness parameter

Given that information-sharing here is only realised on the relative effectiveness
parameter, we are primarily considered with the impact of using different methods
on the EVPPI of relative effectiveness, and hence no EVPPI estimates for other
parameters were calculated. A detailed explanation of the EVPPI calculation process
is provided in subsection C.1 on page 236.

6. Expected Value of Sample Information

As explained in Section 2.2.5.3 the process of calculating EVSI is computationally
intensive, because it contains two nested expectations (i.e. an integration within
a maximisation). However, given that the relative effect is only applied on the
short-term model, the net-benefits of the two treatments can be expressed as a
multi-linear function of the model inputs. Hence, one loop can be avoided by
estimating the net-benefits using the expectations of the various model inputs.
Further, to calculate the expected log-odds ratio and then the expected probability
of death in the short-term model, a Taylor series approximation with two terms was
used. Finally, in combining the new data with the prior on the relative treatment
effect, normal-normal closed form solutions were used to derive the parameters of
the posterior distributions. These methods closely follow the directions described
previously in the literature by Ades et al., 2004. For more details regarding the
derivations of the aforementioned quantities in the decision-model, the reader is
referred to Soares et al., 2012, (Chapter 6, Appendix 5).
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6.3. Results

In this section, the results of the decision-model calculations are presented for all ISMs
that were applicable to the two following base-models: 1. the Duration FE base-model and
2. the Jadad RE base-model. The results for the remaining base-models are shown in the
Appendix in Table C.2.1 and Table C.2.2. For RE base-models, the predictive distribution is
used, because it incorporates the uncertainty that is due to between-studies heterogeneity.

6.3.1. ICERs and decisions

Figure 6.2 illustrates the ICERs and decisions of all the applicable ISMs across the Duration
FE (top) and the Jadad RE (bottom) base-models. The ICERs along with estimates of total
costs and QALYs for IVIG/IVIGAM are also shown in Table 6.2. Note that differences
across the ICERs of the various models are solely due to differences in the point estimate
and are irrelevant to the methods’ precision gains/losses. In the top graph, apart from
the base-case (i.e. no-sharing/only adults), six ISMs were applied, whilst in the bottom
graph eight ISMs were applied. Since the power-prior allows us to specify the power (α)
that the likelihood of the indirect evidence is raised to, values of α between 0 and 1 were
considered in increments of 0.1. The graphs’ lines correspond to the ICERs (y-axis) that
result from the use of power-prior models with various α weights (x-axis). The ICERs of
the remaining ISMs are shown next to the main y-axis.

Regarding the Duration FE base-model, ICERs vary considerably from £20,542 per
QALY gained under the base-case (no sharing/adults only) to £55,316 per QALY gained
under lumping. ISMs that impose more moderate sharing assumptions (Multi-level
models, Commensurate priors) produce ICERs closer to the base-case. This is also
observed in the Power-prior models where ICERs increase with α and become identical to
lumping for α = 1. Given the variation in the ICER values, the fact that different ISMs
lead to potentially different decisions is not surprising.

The results of the Jadad RE base-model paint a similar picture. However, even though
more ISMs were applicable, ICERs varied less (from £15,900 per QALY gained when a
prior is imposed on heterogeneity to £25,530 per QALY gained under the Power-prior with
α = 0.2). This might seem unexpected since the ranges of the estimated mean RTEs across
ISMs are similar for the two base-models (Duration FE base-model [-0.31,-0.08], Jadad RE
base-model [-0.55, -0.25]) according to Table 5.12 on page 120. However, under the Jadad
RE base-model, estimates suggest larger relative effects. This implies that the probability
of death under the new treatment is lower and the QALYs gained under IVIG/IVIGAM
are overall higher. As a result, the denominator of the ICER (i.e. the QALYs) is larger and
the resulting ICERs less variable.
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Figure 6.2: ICERs and Decisions for all applicable ISMs across the Duration FE and Jadad RE base-models.
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The results of the application of power-prior models are shown in the plotted line for varying values of α
(x-axis). Results for other ISMs are marked in the y-axis.
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Interestingly, in the Jadad RE base-model, some power-prior models result in ICERs
that are greater than under lumping. This is a consequence of the very big paediatric study
that showed no effect (see page 235). Furthermore, the Jadad RE base-model does not
produce the same ICER value with the power-prior model where α = 1. This is because the
power-prior model only shares information on relative effectiveness, whilst the lumping
model imposes a random-effect across all studies, effectively sharing information on
relative effects, heterogeneity and imposing exchangeability across all studies included in
the direct and the indirect evidence base. Hence, it imposes stronger information-sharing
that the power-prior model with α = 1, which is why the graph implies that lumping
could map to a power-prior model with α > 1. Lastly, the decision again varies among
ISMs, although the results now suggest that IVIG/IVIGAM is either clearly cost-effective,
or borderline cost-effective.

Table 6.2: ICERs, total costs, and total QALYs for all applicable ISMs.

T3b FE Meta-Regression
(on duration of treatment)

T2 RE Meta-Regression
(on Jadad score)

ISM ICER Tot. C Tot.Q ISM ICER Tot.C Tot.Q
Base-case 20,542 54,996 4.36 Prior on heterogeneity 15,910 57,413 4.65

Power-prior α = 0 20,539 54,994 4.36 Common heterogeneity 16,216 57,169 4.62
Multi-level 21,392 54,744 4.33 Base-case 16,430 57,012 4.60
Commensurate prior 21,954 54,593 4.31 Power-prior α = 0 16,458 57,084 4.59
Power-prior α = 0.1 24,204 54,102 4.26 Multi-level 17,131 56,546 4.54
Power-prior α = 0.2 27,723 53,562 4.19 Commensurate prior 18,066 56,029 4.48
Power-prior α = 0.3 31,381 53,175 4.15 Mixture prior 19,071 55,574 4.43
Power-prior α = 0.4 34,863 52,907 4.11 Informative prior 19,272 55,493 4.42
Power-prior α = 0.5 38,176 52,710 4.09 Lumping 20,110 55,183 4.38
Mixture prior 40,809 52,586 4.08 Power-prior α = 1 20,826 54,955 4.35
Power-prior α = 0.6 41,603 52,548 4.07 Power-prior α = 0.9 21,428 54,781 4.33
Power-prior α = 0.7 44,871 52,421 4.06 Power-prior α = 0.8 21,983 54,634 4.32
Informative prior 47,365 52,337 4.05 Power-prior α = 0.7 22,737 54,454 4.29
Power-prior α = 0.8 47,393 52,338 4.05 Power-prior α = 0.6 23,484 54,292 4.27
Power-prior α = 0.9 50,907 52,238 4.03 Power-prior α = 0.5 24,460 54,104 4.25
Power-prior α = 1 54,116 52,161 4.03 Power-prior α = 0.4 24,472 54,101 4.25
Lumping 56,314 52,114 4.02 Power-prior α = 0.1 25,200 53,976 4.24

Power-prior α = 0.3 25,424 53,939 4.23
Power-prior α = 0.2 25,536 53,921 4.23

ISM: Information-sharing method, ICER: Incremental cost-effectiveness ratio (in £/QALY), Tot.C: Total
costs (in £), Tot.Q: Total QALYs. ISMs are ranked in ascending ICER values. The informative and
mixture priors under the random-effect base-model use the predictive distribution of the indirect
evidence. Base-case (no sharing/adults only) results are shaded in red for comparison purposes. ISM:
Information-sharing method.
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6.3.2. Probability of being cost-effective and EVPI

Table 6.3 ranks, in ascending order, the ISMs for each base-model according to the
probabilities that IVIG/IVIGAM is cost-effective compared to ALB at a threshold of £30,000
per QALY gained and also displays their corresponding population EVPI estimates.

Table 6.3: Probability of IVIG/IVIGAM being cost-effective (pCE) and population EVPI at 10 years.

T3b FE Meta-Regression
(on duration of treatment)

T2 RE Meta-Regression
(on Jadad score)

ISM pCE Pop.EVPI ISM pCE Pop.EVPI
Lumping 0.10 33 Power-Pr. α = 0.2 0.54 1709
Power-Pr. α = 1 0.11 39 Power-Pr. α = 0.3 0.54 1714
Power-Pr. α = 0.9 0.13 51 Power-Pr. α = 0.1 0.54 1732
Informative prior 0.15 55 Power-Pr. α = 0.4 0.55 1642
Power-Pr. α = 0.8 0.17 71 Power-Pr. α = 0.5 0.55 1644
Power-Pr. α = 0.7 0.20 90 Power-Pr. α = 0.6 0.56 1584
Power-Pr. α = 0.6 0.25 128 Power-Pr. α = 0.7 0.57 1542
Mixture prior 0.30 209 Power-Pr. α = 0.8 0.58 1480
Power-Pr. α = 0.5 0.31 175 Power-Pr. α = 0.9 0.59 1459
Power-Pr. α = 0.4 0.37 252 Power-Pr. α = 1 0.60 1419
Power-Pr. α = 0.3 0.46 366 Lumping 0.62 1273
Power-Pr. α = 0.2 0.57 373 Commensurate prior 0.66 1213
Power-Pr. α = 0.1 0.68 286 Multi-level 0.68 1155
Commensurate prior 0.76 220 Informative prior 0.68 1125
Multi-level 0.77 226 Mixture prior 0.69 1112
Base-case 0.80 207 Base-case 0.70 1091

Power-Pr. α = 0 0.80 206 Power-Pr. α = 0 0.70 1091
Common heterogeneity 0.72 908
Prior on heterogeneity 0.72 955

All calculations assume a threshold of £30,000 per QALY gained and are rounded to the nearest million £.
ISMs are ranked in ascending order of the pCE. The informative and mixture priors under the random-
effect base-model use the predictive distribution of the indirect evidence. Base-case (no sharing/adults
only) results are shaded in red for comparison purposes. ISM: Information-sharing method.

The choice of the ISM seems to significantly impact probabilities, however the results
seem to be much less variant under the Jadad RE base-model than the Duration FE
base-model. ISMs that impose stronger sharing assumptions do not necessarily result in
lower probabilities as evidenced by the power-priors in the Jadad RE base-model. Under
the Jadad RE base-model, ISMs that suggest a higher probability of IVIG/IVIGAM being
cost-effective also see lower population EVPI estimates. In contrast, under the FE Duration
base-model, the relationship between the probability of IVIG/IVIGAM being cost-effective
and population EVPI is not monotonous. This is because all ISMs under the Jadad RE

138



6.3. Results

base-model suggest that IVIG/IVIGAM should be adopted , and pCE is consistently
above 0.5, whilst under the Duration FE base-model the decision is not consistent across
all ISMs , with pCE varying between 0.1 and 0.8.

Figure 6.3 depicts how the probabilities change as the threshold increases up to
£100,000 per QALY gained. The red and the green lines correspond to the base-case (no
sharing/only adults) and the lumping case respectively. Dotted grey lines correspond
to power-prior models with varying α weights, and solid grey lines to the remaining
non-power-prior ISMs.

Figure 6.3: Cost-effectiveness acceptability curves of all the applicable ISMs in the FE meta-regression on
treatment duration and the RE meta-regression on Jadad score.
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In the FE base-model (Figure 6.3A), as α increases CEACs move from the no sharing/
only adults (red) case to lumping (green). The two ISMs that are very close to the no
sharing/only adults (red) CEAC are the multi-level model and the commensurate prior,
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whilst the two lines that are close to lumping (green) are the informative prior and the
mixture prior. The CEACs of the RE model (Figure 6.3B) are somewhat more difficult to
interpret. Firstly, two models produce CEACs which fall above the space that is defined
by no sharing/only adults (red) and lumping (green). These are the two ISMs that
do not share information directly on the relative effectiveness parameter but only on
heterogeneity (i.e. common heterogeneity, and prior on heterogeneity). Hence, there is no
particular reason to expect them to fall between the no sharing/only adults (red) and the
lumping (green) models that share information only on relative effectiveness.

Furthermore, power-prior models produce CEACs which are below lumping (green)
(i.e. information-sharing is stronger than lumping). These correspond to the power-prior
models with low values of α, which disproportionately assign a high weight to the large
Brocklehurst et al., 2011 study (which showed no effect of IVIG in paediatric patients) –
see explanations on page 121 and page 235 for more details. The larger that α is, the closer
the CEAC is to lumping (green). Finally, the CEAC shows a kink point that is observed
for low threshold values close to £10,000 per QALY. This is attributed to the fact that
for the Jadad RE base-model the joint distribution of the differences in costs and effects
falls in all four quadrants (see bottom of Figure 6.4). North-east (NE) and south-west
(SW) quadrants reflect potentially cost-effective probability mass (Fenwick et al., 2004).
As the threshold increases from k = £0 / QALY to around £5, 500 / QALY, cost-effective
probability mass is lost from the SW quadrant without any gains in the NE. However, for
larger threshold values, large amounts of cost-effective mass is gained very quickly in the
NE rendering the losses in SW negligible.

Regarding EVPI, Table 6.3 shows the population EVPI estimates assuming a 10 year
intervention lifetime. For the Duration FE base-model, models that impose stronger
information-sharing result in lower EVPI estimates. This is because as more strength is
borrowed, we estimate a lower probability of IVIG/IVIGAM being cost-effective, implying
that it becomes increasingly more certain that IVIG/IVIGAM should be rejected.
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Figure 6.4: Cost-effectiveness plane of the FE meta-regression on treatment duration FE and the Jadad RE
base-models in the no sharing/only adults case (i.e. no information-sharing).
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Figure 6.5: Per person EVPIs of the various ISMs for the FE meta-regression on duration and the RE
meta-regression on Jadad score base-models.
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Red lines correspond to the base-case (no sharing/only adults); green to lumping; dotted grey lines to
power-prior models; black lines to the remaining ISMs.

In contrast to the Duration FE base-model, under the Jadad RE base-model, population
EVPI estimates are more similar across ISMs with almost all models leading to EVPI
estimates above £1 billion. This is because the CEACs of the Jadad RE base-model plateau
around a probability of 0.8 (Figure 6.3B), implying that even for very high thresholds
the model assigns a 20% probability of IVIG/IVIGAM being less cost-effective than ALB.
This is expected given that Figure 5.6 B2 on page 119 showed that the log-odds ratio
estimates span the region both below and above zero and there is always a chance that
IVIG/IVIGAM is harmful compared to ALB. As a result, when the threshold increases,
health is valued more, and the consequences of clinical uncertainty soar, producing EVPI
curves that increase indefinitely (Figure 6.5 B).

Overall, it seems that the choice of ISM is not only strongly influencing the probabilities
of a treatment strategy being cost-effective (with some ranging between 0.1 and 0.8 among
different models), but is also significantly impacting estimates of the value of further
research.
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6.3.3. EVPPI and EVSI

In this section the focal parameter is the EVPPI of the relative effect, which is the main
parameter we would gain information on if we prioritised an RCT that enrolled adult
patients into two arms: one receiving IVIG/IVIGAM and one ALB.

The EVPPI estimates for the ISMs implemented under the Duration FE base-model
are shown in Figure 6.6. The black line shows the EVPPI estimates from power-prior
models with their corresponding α shown on the x-axis. The estimated EVPPIs using
the remaining ISMs are also displayed on the y-axis. The red dashed line depicts the
cost of a randomised clinical trial2 of the optimal sample size (i.e. the sample size which
maximises the expected net-benefit of the sample) for the corresponding power-prior
model. The vertical distance between the red line and the black line corresponds to the
maximum ENBS of the power-prior model that uses the α values on the x-axis. This is
simply the difference between EVSI and the cost of the trial of the optimal sample size for
a power-prior model with given α. The maximum ENBS and the optimal sample of all
the ISMs is also listed in Table 6.4 in ascending optimal sample size order. Among ISMs
suggesting that an RCT should be prioritised (i.e. max.ENBS > 0), the optimal sample
sizes range between 1940 and 3400. Power-prior models with α > 0.7 suggest that the
cost of a new trial of any sample size is greater than the consequences of the existing
uncertainty, suggesting that a trial should not be prioritised.

Contrary to the Duration FE base-model, under the Jadad RE base-model, all ISMs
estimate that there is considerable value in prioritising a new trial in adults, with EVPPI
estimates reaching well above £1 billion (Figure 6.7); effectively, rendering the costs3 of
that trial negligible. The estimated optimal arm sample sizes are more homogeneous
than under the Duration FE base-model (Table 6.4), with estimates ranging between 1040
and 1500 per patient per arm. Contrary to the Duration FE base-model, under the Jadad
RE base-model we see that ISMs imposing stronger assumptions suggest that trials of
larger sizes should be conducted. This implies that in the former, as more strength is
borrowed from the paediatric evidence we become increasingly confident about what the
cost-effective strategy is, whilst in the latter significant uncertainty remains regardless
of the imposed strength of sharing. As a result the cost of adding patients to the trial is
overcome by the value of the potential uncertainty consequences.

In conclusion, the impact of different ISMs on further research prioritisation deci-
sions, and on the design of a future trial again seems to be substantial, rendering the
considerations and transparency surrounding the choice of ISM very important.

2Trial costs assume a fixed £2 million cost for the trial and a further £2,000 per patient enrolled. Treating
with IVIG/IVIGAM incurs an additional cost of £5,500 per patient.

3A two-arm trial enrolling 1000 patients per arm is assumed to cost around £15 million.
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Figure 6.6: Population EVPPI at 10 years for the Duration FE base-model.
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Calculations assume k = £30, 000. The black line corresponds to the EVPPI estimates (y-axis) of the Power-
prior models that use the α weight in the x-axis. The red line is the cost of a trial of the optimal sample size
(shown in parenthesis) for power-prior models of every alpha. Hence, the distance between the black and the
red line corresponds to the ENBS. The EVPPI of the non-power-prior models is shown on the y-axis.
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Figure 6.7: Population EVPPI at 10 years for the Jadad RE base-model.
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is shown on the y-axis. The informative and mixture priors use the posterior predictive distribution of the
indirect evidence.
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Table 6.4: ISMs for each base-model ranked according to optimal sample size in ascending order.

T3b FE Meta-Regression
(on duration)

T2 RE Meta-Regression
(on Jadad score)

ISM
Optimal
Sample

max.
ENBS

ISM
Optimal
Sample

max.
ENBS

Lumping No-RCT <0 Base-case 1040 936
Informative prior No-RCT <0 Pr-Power α = 0 1040 936
Pr-Power α = 0.7 No-RCT <0 Common Heterogeneity 1120 751
Pr-Power α = 0.8 No-RCT <0 Multi-level 1190 1008
Pr-Power α = 0.9 No-RCT <0 Mixture prior 1270 961
Pr-Power α = 1 No-RCT <0 Prior on Heterogeneity 1300 796
Base-case 1940 41.3 Informative prior 1350 976

Pr-Power α = 0 1940 41.3 Pr-Power α = 0.1 1370 1638
Multi-level 2150 60 Pr-Power α = 0.7 1370 1435
Commensurate prior 2250 51.6 Pr-Power α = 0.2 1380 1616
Pr-Power α = 0.6 2300 9.64 Pr-Power α = 0.3 1380 1620
Pr-Power α = 0.5 2600 36.2 Pr-Power α = 0.4 1400 1544
Mixture prior 2750 70.9 Pr-Power α = 0.5 1460 1546
Pr-Power α = 0.1 2800 118 Pr-Power α = 1 1480 1132
Pr-Power α = 0.4 2900 89.2 Lumping 1490 1150
Pr-Power α = 0.2 3400 213 Commensurate prior 1490 1074
Pr-Power α = 0.3 3400 179 Pr-Power α = 0.8 1490 1369

Pr-Power α = 0.6 1500 1481
Pr-Power α = 0.9 1520 1345

Maximum ENBS, in millions Pounds Sterling (£) is displayed for each method. All calculations assume
k = 30, 000 £. The informative and mixture priors under the random-effect base-model use the predictive
distribution of the indirect evidence. Base-case (no sharing/adults only) results are shaded in red for
comparison purposes. ISM: Information-sharing method.
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6.4. Discussion

This chapter explored the impact of the choice of ISM on decisions that relate to both
the implementation of a technology and prioritisation of further research. Relative
effectiveness was estimated using different ISMs described in Chapter 5 and applied here
in a decision-model developed by Soares et al., 2012. Commonly used quantities for
policy-making such as ICERs, the probability that the new intervention is cost-effective,
and the optimal sample size of a future randomised trial that would seek to gain more
information on the relative effectiveness parameter were then calculated. This work is the
first to investigate the impact of a set of systematically identified ISMs on policy decisions.

Irrespective of policy measure, the findings consistently suggest that the choice of ISM
can impact decisions. This implies that using only a subset of ISMs does not adequately
capture the potential impact of using indirect evidence. Hence, it is vital that applicable
ISMs are systematically identified. In the IVIG/IVIGAM case, the indirect evidence was
sourced from a population (paediatric patients) on which the evidence suggested that
IVIG/IVIGAM is less effective than in the directly relevant population (adults). Therefore,
the inclusion of the paediatric evidence makes IVIG/IVIGAM less cost-effective. However,
as seen for the Jadad RE base-model, we should not necessarily infer that the stronger
information is borrowed from the indirect evidence, the higher the ICER. Instead, methods
that impose moderate information-sharing can lead to relative effect estimates that are
beyond the range defined by lumping and splitting, leading to ICER estimates outside of
this range. It should also be noted that the impact of the ISM is very much dependent on
the base-model which may imply that the impact of using different methods is context-
specific and general conclusions cannot be drawn with respect to how different methods
affect decision-making.

In terms of the power-prior models, it seems that the characteristics of the indirect
studies should be closely considered when interpreting the results. Specifically, when the
indirect evidence base consists of (one or more) large studies that present a more extreme
result than the whole body of evidence together, interpretation can be challenging. If that
is the case, at least under RE models, the analyst should expect larger studies to influence
the overall results more heavily for low α values, and potentially yield estimates that fall
beyond the range that is defined by splitting and lumping.

This case-study found that the implications of ISM choice on VoI and further research
prioritisation can be substantial. Under the Duration FE base-model, some methods
suggested that there is no value in a future RCT that would seek to resolve uncertainty
in relative effectiveness, whilst other ISMs suggested that a trial can resolve uncertainty
worth more than £10 million. The inconsistency among methods suggestions implies
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that it is paramount to ensure that all applicable ISMs have been implemented, and that
decision-makers scrutinise the assumptions underpinning each method.

An important issue, which is not addressed here, relates to the appropriate calculation
of the value of information when the evidence that is included in the analysis pertains
to more than one decision. Here, although transferability of the evidence is assumed
between adults and paediatric patients, the value of information calculations do not
reflect how further research in adults may affect decisions in paediatric patients; instead,
population EVPI only considers adult patients. However, since VoI seeks to estimate
the value of resolving existing uncertainty in treatment choice, and further evidence in
adults may also resolve uncertainty for the cost-effectiveness of treatments for paediatric
patients, VoI calculations should, in principle, reflect the total benefits of collecting data.
That is, they should take account of the contribution of the collected data to all decisions
they will affect, directly or indirectly. In the simplest case, if information was completely
transferable across the two populations the upper bound for future research could be
simply calculated as the sum of the population-specific EVPPI of the subset of parameters
for which uncertainty will be resolved by the research. However, information is likely to
be only partially transferable and therefore appropriate VoI calculations would be more
complicated. Further research could try to show how information-sharing considerations
could be appropriately incorporated in VoI calculations. Such considerations are not
only relevant for decisions that pertain to indirect populations/subgroups, but may
also be relevant for decisions that consider the use of an intervention that belongs to
the same class as the one assessed in the trial, and even to decisions made in other
countries/jurisdictions (Woods et al., 2018).

Whilst the choice of ISM appears to have significant implications for policy-making
in this case-study, the findings of this chapter are not adequate to result in more general
conclusions. This is due to the fact that, whether policy recommendations are impacted
by the inclusion of indirectly related evidence or not, relies on the characteristics of both
the direct and indirect evidence. In particular, characteristics such as the number of direct
and indirect studies, the total number of patients in the direct and indirect evidence base,
the between-studies heterogeneity of each evidence set, and the disagreement in their
summary estimate, can play a significant role in determining both the significance of
method choice and how strongly alternative methods share information. These dimen-
sions will be further explored in the next chapter with the purpose of drawing more
generalisable conclusions about comparability of the alternative ISMs.
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Chapter 7

Comparing information-sharing methods: a simulation

7.1. Chapter aims and structure

The results of previous chapters illustrated that when strength is borrowed from indirect
evidence the choice of ISM is crucial. In Chapter 5, the combination of direct and indirect
evidence under different methods led to significantly different RTE estimates. When these
were used in a decision-model to inform a policy question (Chapter 6), they resulted in
discrepant suggestions regarding the adoption of the technologies under consideration
and the value of further research. Hence, ISMs that impose different assumptions and
consequently borrow more or less strength from the indirect evidence can influence RTE
estimates and policy recommendations.

However, it is not always easy to judge how methods compare to one another in
terms of the strength of sharing they impose. Sometimes it is clear how the assumptions
underlying the different methods compare. For instance, lumping imposes a stronger
assumption (direct and indirect evidence inform the exact same RTE parameter) —and will
impose larger degrees of information-sharing —than methods that make more moderate
assumptions (e.g. direct and indirect evidence inform different, yet exchangeable, RTE
parameters). In other cases, the relationships are not as clear. For example, it is unclear
how methods using commensurate priors compare to multi-level models. Furthermore,
in many cases, the level of borrowing may depend on the features of the datasets.

This chapter aims to use simulated scenarios to address the following question:
How do the following features of the evidence influence how methods compare in terms
of the strength of sharing they impose? 1. the difference in RTE estimate mean between
direct and indirect evidence; 2. their differences in the between-studies heterogeneity;
and 3. their difference in the number of patients included in each evidence set.

The remainder of this chapter is structured as follows. In Section 7.2 the methods used
in the simulation and synthesis of datasets are explained, along with the approach taken
in comparing the results. Subsequently, the results of the analysis are described separately
for the FE and RE models. Finally, in Section 7.4 a synopsis of the most important findings
is provided, the limitations of the experiment are discussed, and directions for further
research are suggested.
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7.2. Methods

The purpose of this work was to firstly investigate the degree of sharing imposed by the
various ISMs, and secondly to lay the ground work for the stimulation of further research.
In particular, this study aimed to determine how the different ISMs rank according to
how strongly they borrow strength from the indirect evidence. This was considered by
the means of a number of carefully devised scenarios. The scenarios were constructed to
explore how particular characteristics of the indirect evidence influence methods’ ranking.

Importantly, this simulation used probabilistic scenarios to allow the estimation of
credible intervals around the strength of sharing measures. In this way, it was feasible to
assess whether methods were consistently ranked in particular positions, and gain insight
into the way that sampling variation affects how methods compare to one another. Also,
the use of probabilistic scenarios will assist the generalisability of findings in the context
of sampling uncertainty.

Most ISMs can be used under FE or RE models and the case-study of Chapter 5
showed that the ranking of methods may differ under FE and RE base-models. Therefore,
two separate simulation studies are conducted here: one under a FE and one under a RE
base-model, to allow potential differences to be identified.

In this simulation study, the scenarios considered a direct evidence set that is loosely
based on the adult evidence of the case-study in Chapter 5 (see page 98). In determining
the strength of information-sharing, it is critical how the evidence sets compare to one
another. Hence, the relative difference between the two evidence sets is a more important
consideration than the absolute values assumed for each evidence set’s underlying
parameters). Therefore, for convenience, here the characteristics of the direct data were
set to be similar to those in the case-study presented in Chapter 5 and, importantly, the
data generating model for the indirect evidence was defined relative to the characteristics
of the direct evidence set. Each scenario varied a characteristic of the indirect evidence
such as the extent of heterogeneity, the sample size, and the point estimate, —always in
relation to the characteristics of the direct evidence set. It was further assumed that there
were only two competing treatments (i.e. one control and one treatment arm) to eliminate
information-sharing occurring indirectly via the consistency equations.

This section follows the ‘Aims, Data-generating mechanisms, Estimands, Methods, Perfor-
mance measures’ (ADEMP) structure for simulation experiments, as suggested by Morris
et al., 2019.
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7.2.1. Simulation aims

1. To investigate how ISMs compare to each other according to the degree of information-
sharing that they impose under a set of pre-defined scenarios. These scenarios would
vary the following dimensions:

(a) The distance between the RTE means of the direct and the indirect evidence
sets.

(b) The difference across the between studies heterogeneity of the direct and the
indirect evidence sets.

(c) The difference between the sample sizes of the direct and the indirect evidence.

2. To generalise conclusions regarding the comparison of ISMs in the context of
sampling uncertainty.

3. To understand the properties of the various ISMs and check models’ stability across
various evidential scenarios in order to identify potential circumstances under which
model fitting and model convergence could become challenging.

4. To stimulate further, more focused, simulation experiments that would seek to
confirm tentative statements regarding the relative comparison of ISMs resulting
from this simulation.

7.2.2. Data generating mechanisms

7.2.2.1 Direct evidence

The data-generating model for the direct evidence is outlined in eqs. (7.1) to (7.4). For each
direct evidence dataset, study-specific relative treatment effects ddiri (log-odds ratios) were
randomly drawn from a normal distribution with mean ddir and between-studies standard
deviation τdir (Equation 7.1). The parameter τdir was based on the estimated heterogeneity
of a pairwise RE meta-analysis of the adult direct evidence in the case-study of Chapter 5.
Furthermore, for each direct evidence dataset, study-specific baseline log-odds (µi) were
drawn from a normal distribution with mean (µdir = −0.5) and variance (sd2

µdir
= 0.52)

that were estimated by fitting a normal distribution to the control arm of the direct
evidence in the case-study of Chapter 5 (Equation 7.2). The number of events in the
control arm (rcontrol

i ) was drawn from a binomial distribution in which the probability
of an event was based on both the aforementioned randomly drawn baseline log-odds
and the size of the control arm (Equation 7.3). A binomial distribution was also used
to draw the number of events in the treatment arm, however the probability parameter
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was based on both the simulated baseline log-odds and the simulated relative treatment
effects (Equation 7.4). No alternative scenarios were used for the direct evidence because
the degree of sharing, which is the main consideration in this work, is expected to be
driven by the relative difference between direct and indirect evidence sets. Hence, all
direct evidence was generated based on the aforementioned process and properties.

ddiri ∼ N(ddir, τ2
dir) (7.1)

µi ∼ N(µdir, sd2
µdir

) (7.2)

rcontrol
i ∼ Binomial(inverse.logit(µi),

ssdir

2 · ndir
) (7.3)

rtrt
i ∼ Binomial(inverse.logit(µi + ddiri),

ssdir

2 · ndir
) (7.4)

In total 5000 direct datasets were simulated, each one including as many patients
as the direct evidence of the case-study (i.e. ssdir = 2300). The number of datasets was
chosen to ensure that the standard deviation of the strength of sharing measures was
stable (see Appendix on page 240 for more details). Each direct dataset comprised of
ndir = 17 studies (i.e. as many direct studies as in the case-study) of equal size (2300/17).
Note that the study-specific sample sizes of the case-study were not used because the
existence of small studies would require zero-cell adjustments which could affect the
stability of the simulations, and could bias estimates (Higgins and Green, 2011). It was
assumed that there were only two competing treatments (i.e. control and treatment) and
that, across studies, control and treatment arms were of equal size (2300/ (17*2)). The
point estimate ddir was based on a FE meta-analysis without any covariates of the adult
evidence used in the case-study of Chapter 5, where SoC and Albumin had been lumped
as comparator treatments and IVIG and IVIGAM had been lumped as active treatments
(i.e. network T2 of Figure 5.1). The uncertainty surrounding the point estimates was
assumed to be different between the FE and the RE simulations. Specifically, the standard
errors of the RTE of the direct evidence in the FE and RE simulations (i.e. sedirFE , sedirRE )
were based on the corresponding standard errors of the RTEs of the pairwise FE and RE
meta-analyses of the direct evidence in the case-study. Overall, the point estimates and
their associated standard errors were assumed ∼ N(ddir = −0.43, sedirFE = 0.11) for the
FE simulation and ∼ N(ddir = −0.43, sedirRE = 0.22) for the RE simulation.

152



7.2. Methods

7.2.2.2 Indirect evidence —alternative scenarios

Indirect datasets were comprised of nindir = 10 studies1, which were simulated using
the same data-generating model as the direct evidence, and in accordance with the
properties of the various scenarios that were defined. It was expected that the degree of
information-sharing would be affected by the following three key features of the evidence
base:

1. The point estimate of the indirect evidence

2. The number of patients included in the indirect evidence

3. The heterogeneity of the indirect evidence

In the base-case, the heterogeneity of the indirect evidence is assumed equivalent
to the heterogeneity of the direct evidence (i.e. τindirbase−case = τdir = 0.56), and the
number of patients equivalent to the number of patients in the direct evidence (i.e.
ssindirbase−case = ssdir = 2300). In contrast, the point estimate of relative treatment effect
dindirbase−case was not assumed equivalent to that of the direct evidence (i.e. ddir = −0.4),
because the two evidence sets would effectively be equivalent. Instead, the point estimate
of the relative effect for the indirect evidence in the base-case was that which yielded a
50% overlapping coefficient2 (OVL) when compared with ddir, and in the direction of ‘no
effect’ (i.e. FE: -0.281, RE: -0.13). Note that under RE the RTE estimate of direct evidence
was assumed to have a larger standard error, and it is for this reason that a 50% OVL
under RE produces an estimate that is further away from ddir than under FE.

Additional levels for the heterogeneity were loosely based on the desired between-
studies heterogeneity I2 of the indirect evidence. General rules of thumb suggest that
I2 6 25% means that there is low heterogeneity, 25% < I2 6 50% medium-low, 50% <

I2 6 75% medium-high, and I2 > 75% very high (Higgins and Green, 2011). Here,
two heterogeneity scenarios were defined; one where the indirect evidence was quite
homogeneous (i.e. I2 ≈ 12.5%) and one where it was quite heterogeneous (i.e. I2 ≈ 87.5%).
The corresponding τ values were 0.24 and 0.65 respectively. More details about the τ

calculation process can be found in the Appendix on 245.

1The choice was made to include 10 direct studies. This was primarily because it is close to the number of
indirect studies included in the case-study (i.e. 11), while it also allows us to easily control the proportion of
indirect patients that will be included in each of the studies. The importance of this will become evident in
the scenario run under the RE simulation where this proportion is modified.

2The overlapping coefficient is defined here according to Weitzman, 1970 as the area lying under both
the density curves of ddir and dindirbase−case

. Further details for the calculation of the overlapping coefficient,
including R code, are provided in the Appendix on 241.
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Regarding the number of patients included in the indirect evidence, two additional
scenarios were considered. One in which the indirect evidence was modelled to have four
times as many patients as the direct (N = 2300 ∗ 4 = 9200) —and therefore expected to
yield a RTE estimate with half the standard error of that of the direct evidence3 —and
the second scenario wherein the indirect evidence was modelled to have half as many
patients as the direct evidence (N = 2300/2 = 1150). No scenarios were considered where
the number of patients in the indirect evidence was fewer than half of the patients in the
direct evidence, because such a scenario would be unlikely to motivate any borrowing
strength from the indirect evidence.

Additional levels for the point estimate of the relative treatment effect where defined
based on OVL (Weitzman, 1970). Specifically, in one scenario the direct and the indirect
RTE estimates only minimally overlapped (OVL = 5%), and in another scenario they
majorly overlapped (OVL = 75%). As mentioned above, the estimates that yielded the
desired OVL were different across FE and RE simulations because a larger standard error
for ddir was used for the RE simulation.

Finally, for the RE model simulation, an extreme scenario was defined in which the
indirect evidence included eight times as many patients as the direct evidence and one
big study contained 85% of all the indirect patients, while the remaining nine studies
were modelled with equal size. Additionally, the big study was assumed to suggest a
very different relative effect to that of the small studies4. The purpose of this scenario was
to mimic situations where a number of studies in an indirect population might motivate
the conduct of a large multi-center randomised clinical trial that would go on to show no
effect; just as in the case-study of Chapter 5.

Importantly, drawing random samples for such a scenario is challenging and requires
some necessary simplifications. In particular, given that we want to preserve the overall
properties of the indirect evidence (i.e. dindir, τindir), we need to initially draw the relative
effect of the big study (dindirBIG ) from the right tail of the overall predictive distribution for
the indirect evidence. We can subsequently ‘back-calculate’ the relative treatment effect of
the remaining studies dindirSMALL that preserves the overall dindir and yields roughly the
same τindir. To make such calculations easier, the assumption was made that all small
indirect studies had exactly the same relative treatment effect dindirSMALL , and that there
was no heterogeneity amongst them. The back-calculation process is explained in detail
on page 243 of the Appendix.

3Because se = σ√
N

where se is the standard error, σ the population variance, and N the sample size.
4Here it is assumed that the big study is drawn from the right tail (beyond the 90% percentile) of the

predictive distribution that is defined by dindir, τindir and hence yields a positive log-odds ratio that suggests
that the new treatment is less effective than the comparator.
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Table 7.1: Properties of direct and indirect evidence across scenarios in FE and RE simulations.

Dimension Direct Evidence
Indirect Evidence

(Base-case)
Indirect Evidence

(Additional Scenarios)
Fixed-effect simulation

Number of studies 17 10 -

Number of patients 2300 2300
1. 2300*4,
2. 2300/2

Heterogeneity τ = 0.56 τ = 0.56
1. τ = 0.24
2. τ = 0.65

Point estimate
Log-odds ratio = -0.43

(i.e. OR = 0.65)

-0.281 i.e. OR = 0.76
(i.e. that which yields

50% overlapping
coefficient)

1. 0.003 (5% OVL)
i.e. OR=1.003

2. -0.36 (75% OVL)
i.e. OR=0.7

Proportion of patients
in one study

Each study contains
1/17 of the overall
number of patients

equally split
across arms

Each study contains
1/10 of the overall
number of patients

equally split
across arms

-

Random-effects simulation

Number of studies 17 10 -

Number of patients 2300 2300
1. 2300*4,
2. 2300/2

Heterogeneity τ = 0.56 τ = 0.56
1. τ = 0.24
2. τ = 0.65

Point estimate
Log-odds ratio = -0.43

(i.e. OR = 0.65)

-0.13 i.e. OR = 0.87
(i.e. that which yields

50% overlapping
coefficient)

1. 0.45 (5% OVL)
i.e. OR= 1.57

2. -0.29 (75% OVL)
i.e. OR= 0.74

Proportion of patients
in one study

Each study contains
1/17 of the overall
number of patients

equally spread
across arms

Each study contains
1/10 of the overall
number of patients

equally split
across arms

One study contains
85% of all the

indirect patients
(i.e. 8*2300*0.85),

and all the remaining
studies contain

8*2300*0.15 equally
split among them
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This scenario was only tested under the RE model because FE models give lower
weights to smaller studies and therefore the back-calculation process sometimes results in
no solution (i.e. there is no dindirSMALL which when combined with dindirBIG recovers the
overall dindir).

To obtain a feasible number of scenarios, dimensions were varied one-by-one, instead
of factorially, despite this process not allowing us to explore the effect of dimension
interactions. The simulation experiment was run twice: once under a FE model and once
under a RE model. Overall, including the base-case, seven scenarios were run for the FE
model and eight for the RE. A summary of the various scenarios tested under the FE and
RE models is provided in Table 7.1.

7.2.3. Target quantity

We wish to compare the direct RTE estimate under the splitting method (method0), d0
dir,

which does not borrow any strength from the indirect evidence with the direct RTE
estimate from each one of the available ISMs (method1, ..., methodj), dj

dir, which combines
the direct and the indirect evidence under different assumptions. Figure 7.1 shows in red
the two relative effect quantities that we are interested in comparing (i.e. d0

dir and dj
dir).

Figure 7.1: An illustration of the two RTE quantities of interest.

ddir
0

ddir
j dIndir

j

dIndir
0

Separate analyses
- splitting-

Sharing information
with model j

Direct studies

Indirect studies

1, 2, ... ,17

18,19, ... , 27

Where d0
dir corresponds to the ‘un-strengthened’ RTE estimate that pertains to the direct evidence and is

produced by synthesising only the direct evidence, and dj
dir corresponds to the ‘strengthened’ RTE estimate

that pertains to the direct evidence and results from synthesising both direct and indirect evidence using
information-sharing modelj.
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7.2.4. Information-sharing methods

Table 7.2 lists separately all the ISMs that were used under the FE and RE simulations.
More details regarding all these methods can be found in Chapter 4 where all methods
are explained in detail in the context of NMA. In this simulation only two treatments are
compared and therefore all methods are reduced to the pairwise meta-analysis case.

As explained in Chapter 4, not all ISMs are applicable under both FE and RE models.
This is because RE models define the between-studies heterogeneity on which further
ISMs can be imposed. In brief, the following methods may differ between FE and RE
models:

1. Lumping: Even though under FE models only one lumping approach can be used
(i.e. that which imposes a common RTE mean across direct and indirect evidence
—i.e. lumping (d only) —), under RE models several lumping approaches may be
adopted depending on which parameters of the direct and the indirect evidence are
lumped. One approach is to lump only the RTE mean between direct and indirect
evidence —i.e. lumping (d only). Another approach is to analyse all studies (direct
and indirect) using a common random-effect allowing information-sharing on both
the RTE mean and the between-studies heterogeneity, that is lumping (d & τ).
Finally, one may choose to only share information on between-studies heterogeneity,
that is lumping (τ only). All three of these approaches to lumping are implemented
in the RE simulation.

2. Informative and mixture priors: When the indirect evidence is initially analysed
using a RE model, the analyst can choose to use either the posterior distribution of
the mean of the RTE, or its predictive distribution as a prior. Here, both approaches
are used in order to assess how they compare to each other in terms of the strength
of sharing that they impose.

Finally, it is noted that mixture priors were used with the assumption that the weights
of the prior components were uncertain parameters estimated in the model, and commen-
surate priors were implemented assuming that the Bernoulli trials had a fixed 50% chance
of yielding the ‘spike’ or the ‘slab’ hyper-prior.
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Table 7.2: ISMs used in the FE and RE simulations.

Information-sharing method FE RE
Lumping (only d)
Direct and indirect evidence are assumed to have the same RTE mean
ddir = dindir
Lumping (d & tau)
A random-effect is imposed across all studies regardless of whether they
provide direct or indirectly related evidence
ddir = dindir; τdir = τindir

X

Constraint
ddir < dindir
Multi-level model
ddir, dindir ∼ N(doverall , τ2

overall)
Random-walk
ddir ∼ N(dindir, η2)
where a vague prior is imposed on η

Commensurate prior
ddir ∼ N(dindir, η2)

where 1
η ∼

{
N(20, 1) ,if c = 0
Gamma(0.1, 0.1)I(0.1, 5) ,if c = 1

and c ∼ Bernoulli(p), with p = 0.5
Informative-prior on the relative effect of the direct evidence based on
the estimated posterior mean distribution of the indirect evidence
ddir ∼ N(dindir, se2

dindir
)

Mixture-prior on the relative effect of the direct evidence based on the estimated
posterior mean distribution of the indirect evidence and a vague component
ddir ∼ p · N(dindir, sed2

indir
) + (1− p) · N(0, 1002)

with p estimated within the model
Informative-prior on the relative effect of the direct evidence based on the
estimated predictive distribution of the indirect evidence
ddir ∼ N(dindir, τ2

indir)
X

Mixture-prior on the relative effect of the direct evidence based on the estimated
predictive distribution of the indirect evidence and a vague component
ddir ∼ p · N(dindir, τ2

indir) + (1− p) · N(0, 1002)
with p estimated within the model

X

Power-prior on the relative effect of the direct evidence based on the
relative effect of the indirect evidence and α = 0.5
π(d|Datadir, Dataindir, α) ∝
L(d|Datadir) · {∏

last−indirect−study
i=1st−indirect−study L(d|Dataindir)

α} · π0(d)
Lumping (only on τ)
τdir = τindir

X

Informative prior on the heterogeneity
τdir ∼ Lognormal(µindir, σ2

indir)
µindir, σindir are derived from fitting a log-normal distribution to the coda of τindir

X

More details about the methods listed can be found in Chapter 4.
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7.2.5. Strength-of-sharing measures

Simulation experiments usually follow a very specific process. They assume an underlying
truth for a population parameter (say θ), they use θ in their data-generating model to
produce a set of randomly drawn data, they then analyse the resulting data using a
particular method (e.g. an estimator, say θ̂), and then finally they evaluate the performance
of θ̂ using a set of measures such as bias, mean-squared error, or coverage (Morris et al.,
2019).

Here, as is also the case in policy-making, we do not have access to the underlying true
RTE of the population that we are directly interested in, and perhaps more importantly,
we do not have an understanding of the nature of the true relationship between the
indirect evidence and the true RTE for the direct evidence. Instead, we have only a set of
studies conducted in the direct population and another set of studies conducted in an
indirect population. Therefore, when we combine the two evidence sets using different
ISMs, we cannot use the classic performance measures to evaluate how the estimate that
results from the combination of the two evidence sets using ISM j (i.e. dj

dir) compares
to the true parameter. Instead, we can only evaluate how dj

dir compares to the estimate
that is produced when only the direct evidence is used (i.e. d0

dir). In other words, we can
only assess how much dj

dir diverges from d0
dir, or in other words, how much strength is

borrowed from the indirect evidence.

The two measures that were previously introduced on page 116 are also used here
to assess the degree of information-sharing imposed by ISM j compared to splitting.
Namely, these measures are firstly the Point estimate divergence (PED), which is defined as
PED = |dj

dir − d0
dir|, and secondly the Precision Increase (PrI) where PrI = 1− sedj

dir
/sed0

dir
.

Note that Kullback-Leibler divergence is not used here because, as shown on page 230, it
is not transparent in the way that it weighs changes in the point estimate and the precision
and here we want to make such trade-offs explicit.

However, it should be noted that PED and PrI are influenced by the absolute magnitude
of the simulated RTEs and their uncertainty. For instance, when the direct and indirect
RTEs happen to be simulated such that they have similar RTE point estimates, all methods
will inevitably lead to low PED values. In contrast, when the direct and indirect RTEs
happen to be simulated so that they are quite distant in their RTE point estimates, most
methods will produce much higher PED values. However, it may be the case that a given
method is imposing a similar degree of information-sharing in both cases i.e. in both
cases a particular method may impose a PED that is 50% of the PED imposed by lumping.
Hence, PED and PrI are affected by the variability across simulated datasets. Therefore,
ranking ISMs according to PED and PrI would add unnecessary noise to conclusions.
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Given that the primary aim here is to understand how methods performed relative
to one another (while not directly interested in the variability across datasets beyond
their influence on the degree of sharing), additional metrics were developed which were
standardised to the anchor points of lumping and splitting.

To evaluate how each method compares to lumping in terms of the point estimate
divergence that it imposes, the PED-ratio (i.e. proportion of lumping’s PED) is used,
defined as PED− ratioj =

PEDj
PEDlumping

. When PED− ratioj = 1, method j is leading to the
same changes in the point estimate as lumping, whilst when it is close to 0, method j is
producing very similar point estimates with a splitting approach. For PED-ratio values
below 1, method j is causing smaller changes in the point estimate than lumping, whilst
for values above 1, method j is leading to larger shifts in the point estimate than lumping.

In what concerns relationships between the precision of the estimates, a ratio of
PrI cannot be used to assess how each method compares to lumping in terms of the
precision of the resulting relative effect estimate. This is because PrI can be either positive
or negative and hence a positive PrI-ratio could result from either both method j and
lumping yielding positive PrI, or alternatively from both method j and lumping yielding
negative PrIs. Instead, to enable comparison of the precision under lumping and ISM
j, a simple ratio of the standard errors (SeR) under lumping and ISM j is defined as
LumpingSeR =

seLumping
sej

. When lumping SeR is equal to 1, ISM j results in RTE estimates of
the same precision as lumping. When Lumping SeR is above 1 it means that ISM j results
in more precise estimates than lumping, whilst when Lumping SeR is below 1 it indicates
that ISM j leads to more uncertain estimates for the mean relative effect than lumping.

A disadvantage of using Lumping SeR is that we have no way of understanding
where the precision that corresponds to splitting lies, and we would like to be able to
identify cases where an ISM is producing more uncertain estimates than splitting i.e.
when information-sharing leads to precision losses. To accommodate this objective a very
similar Splitting SeR can be constructed that would compare the standard error of ISM
j to that of splitting, so that SplittingSeR =

sesplitting
sej

. When Splitting SeR is equal to 1 it
indicates that when using ISM j the uncertainty surrounding the RTE mean is the same
as in the splitting case. In contrast, a Splitting SeR above 1 indicates that ISM j is leading
to precision gains, whilst a Splitting SeR below 1 that ISM j is leading to precision losses.

Overall, the following five strength of sharing measures are used: PED, PrI, PED-ratio,
Lumping SeR, Splitting SeR.

160



7.2. Methods

7.2.6. Software and implementation

The simulation experiment was run in the York Advanced Research Computing Cluster
(YARCC), using R version 3.5.1 (R Development Core Team, 2010) to simulate the datasets,
and OpenBUGS (MRC Biostatistics Unit, 2010) version 3.2.3 to analyse the datasets using
the various ISMs. Package R2OpenBUGS (Sturtz et al.) was used to call OpenBUGS
from R. All models were run using three MCMC chains with different starting values.
Model convergence was checked using the Gelman-Rubin diagnostic5 and in particular
the multivariate potential scale reduction factor (psrf statistic) (Gelman and Rubin, 1992).
The experiment was divided into multiple ‘jobs’ which were then allocated to different
cores in the cluster. The overall computing time in the cluster was 20,000 hours.

7.2.7. Presentational methods

This simulation aims to rank ISMs according to the strength of information-sharing that
they impose. To do this, multiple datasets were simulated and subsequently analysed
using all applicable ISMs. Each method’s strength of sharing was then calculated by
comparing its resulting ‘strengthened’ RTE estimate with the ‘un-strengthened’ splitting
estimate that was obtained by solely analysing the direct evidence. The various methods
were then ranked within each simulated dataset according to each strength of sharing
measure, and the overall probability of each method being ranked at each position across
all simulated datasets was calculated.

This process is analogous to the process commonly used to rank treatments in NMA
models according to their effectiveness. Essentially, instead of ISMs, in NMA there are
treatments, and instead of ranking methods according to the imposed strength of sharing,
in NMA treatments are ranked according to their log-odds ratios (if a binary outcome is
used). Several methods to rank treatments in NMA have been suggested in the literature
including rankograms and surface under the cumulative ranking area (SUCRA) values
(Salanti et al., 2011; Chaimani et al., 2013). Rankograms illustrate the probability of each of
the treatments being ranked at each of the positions across MCMC iterations. Sucra values
provide an overall measure of which treatment is the best by calculating the cumulative
area under the ranking curves, with higher values indicating better treatments. Here,
these methods are adapted to rank ISMs according to strength of sharing measures rather
than treatments in terms of their effectiveness.

5The Gelman-Rubin diagnostic provides the scale reduction factor for each parameter specified in the
model. Essentially, it compares the within-chains variance with the between-chains variance, with a scale
reduction factor of 1 implying that within- and between- chains variances are equal. To avoid checking the
reduction factor for each parameter, the multi-variate reduction factor was used, which was able to take into
account all parameters specified in the model.
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Table 7.3: A summary of the main characteristics of the simulation.

Aim
To understand how particular statistical characteristics
influence the relative ranking of ISMs.

Dimensions

The following dimensions were varied only for the indirect
evidence and defined in relation to the values implemented for
the direct evidence:
1. Point estimate
2. Number of patients
3. Heterogeneity
4. Proportion of the overall patients included in a single study.
(only applicable for RE)
The levels that were used within each dimension can be found in
Table 7.1.

Simulation
characteristics

5000 datasets were simulated per scenario.
Dimensions were varied ‘one-by-one’.
Two simulation experiments were run: one under FE;
and another under RE base-models.

Target quantity dj
dir (see Figure 7.1)

Strength-of-sharing
measures

1. Point Estimate Divergence (PED)
2. Precision Increase (PrI)
3. PED-ratio (i.e. Proportion of Lumping’s PED)
4. Lumping Standard error Ratio (Lumping SeR)
5. Splitting Standard error Ratio (Splitting SeR)

ISMs See Table 7.2

Presentational
methods

1. Sucra values
2. Rankograms
3. Forest plots of PED-ratios, Lumping SeR and Splitting SeR.

ISM: Information-sharing method.

A summary of the main characteristics of the simulation is provided in Table 7.3
and a step-by-step explanation of the simulation process is detailed in the Appendix on
page 246.
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7.3. Results

7.3.1. Fixed-effect simulation

7.3.1.1 Base-case scenario

Table 7.4 shows the sucra values of PED and PrI for the base-case scenario of the FE
simulation. Higher sucra values indicate that a method is more often ranked higher in
terms of the corresponding strength of sharing measure. Lumping and the informative-
prior yield the highest sucra values and are practically equivalent as discussed on page 74.
The mixture prior borrows-strength relatively strongly and, compared to the power-
prior, it leads to a slightly higher PED and somewhat lower PrI. Given that in the
base-case scenario direct and indirect evidence overlap by an OVL coefficient of 50%,
the constraint imposes non-negligible information-sharing. Despite ranking close to the
bottom, commensurate priors borrow more strength than random-walks in terms of both
measures due to the additional assumptions they impose on the variance component.
Finally, the multi-level models rank last imposing the least information-sharing across
both measures.

Table 7.4: Sucra values of the two strength-of-sharing measures (PED, PrI) used in the analysis of the
base-case scenario under a FE model.

Information-sharing method PED Sucras PrI Sucras
Lumping (d only) 0.75 0.81
Informative-prior ‡ 0.75 0.81
Mixture-prior ‡ (p estimated in model) 0.53 0.45
Power-prior (α = 0.5) 0.47 0.51
Constraint 0.39 0.41
Commensurate prior (p fixed at 0.5) 0.26 0.24
Random-walk 0.23 0.15
Multi-level 0.1 0.1

Methods are arranged in a descending PED sucras. ‡: under FE only the posterior estimate for the RTE
of the indirect evidence can be used as an informative prior for the analysis of the direct evidence.

Despite their conciseness, sucra values are only useful in providing an overall hierarchy
of the various methods. To understand exactly how methods accumulate sucras, one has
to look at the rankograms which reveal exactly how each method’s ranking probability is
distributed across different ranks. Figure 7.2 illustrates the rankograms of each method
for both measures side by side. The y-axis is the probability of ranking at the position
shown in the x-axis.
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Figure 7.2: Rankograms of ISMs used in the base-case scenario of the FE simulation.
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Graphs are organised in pairs, showing the rankings according to the two strength-of-sharing measures (PED
and PrI) side by side to reveal commonalities and differences. The y-axis depicts the probability of ranking in
the position shown in the x-axis.
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The rankograms show that methods do not always rank in the same position, but
they fluctuate between similar/adjacent positions. In general, methods rank in similar
positions for both measures which implies that PED and PrI are often in agreement. Two
exceptions can be observed. The first is that mixture priors have around 20% probability
of being ranked last in terms of PrI but not in terms of PED. This is because mixture priors
have the capacity to lead to significant precision losses; this feature will be discussed in
detail later in the chapter.

The second exception relates to the constraints (top-right in Figure 7.2). Constraints
seem to most often rank in the extremes for PED but almost never for PrI, suggesting that
they always offer some precision gains, but have the potential to either majorly shift the
point estimate or leave it almost unaffected. The latter happens when the simulated direct
and indirect evidence end up being even more separated, and the direction of the relative
effects is that which is to be expected by the constraint (i.e that the direct evidence is more
negative —i.e. on the left —of the indirect). The former case arises when the simulated
direct and indirect evidence suggests that the indirect relative effect is more negative than
the direct. This comes in contrast to the specified direction of the constraint, and in order
to satisfy the specified direction of relative effects, the model majorly shifts direct and
indirect means so that the specified constraint is only marginally satisfied.

An example relating to one of the simulated datasets is presented in Figure 7.3. This
shows the simulated direct and indirect evidence of Dataset 38 of the base-case scenario.
The solid lines depict the RTE estimates when separately analysing the direct (black)
and the indirect (red) evidence with a simple FE model (i.e. splitting). Note that in this
dataset the direct evidence indicates a more positive effect than the indirect, whilst the
characteristics of the base-case scenario suggest the opposite. Therefore, when these two
sources are simultaneously analysed imposing the constraint that expects the indirect to
be more positive, the direction of effects is swapped and precision gains are preserved.
The resulting RTE estimates are shown in dotted lines.

It is important to note at this point that it may be hard to justify imposing a constraint
that is of the opposite direction of what the data suggest. However, the existing evidence
may suggest a counter-intuitive direction due to sampling error and/or between-studies
heterogeneity. Therefore, if there is a robust clinical rationale suggesting a particular
direction of effects, it may still be reasonable to express it in the synthesis model. For
instance, if we are analysing studies that used different dosages of the same drug, it may
be reasonable to assume that as the dosage increases the relative effect also increases, even
if this is not supported by the existing evidence, but rather from clinical experts only.
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Figure 7.3: A case where the simulated data suggest the opposite direction of relative effects than the
specified constraint (Dataset 38 of the base-case scenario).
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When the simulated direct and indirect studies are analysed on their own (solid lines) they suggest a more
positive relative effect for the direct evidence, even though the scenario characteristics specify the opposite. A
simultaneous analysis of the two evidence sets using the expected constraint that is indicated by the scenario
characteristics leads to a major shift in their means in order to conform to the specified direction of the
constraint.
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To get a sense of the magnitude of each method’s information-sharing, boxplots
for both measures calculated across all simulated datasets of the base-case scenario are
shown (Figure 7.4). Note that a method that has a larger median PED and PrI than
another method across all simulations, does not necessarily have larger PED or PrI within
each simulation. The various methods result in median PEDs between 0.01− 0.1, with
extreme outlier values reaching up to 0.6 in the log-odds ratio scale. In terms of the
base-case scenario this means that when strength is borrowed from the indirect evidence
the odds-ratio can change from OR = 0.65 up to OR = 0.71 on average if the two sources
are lumped, but also up to OR = 1.18 in extreme cases. Regarding PrI, all methods
yield positive median PrI, suggesting that, on average, they reduce the standard error
for the RTE by 0.1% to 30%. Although infrequently, commensurate priors, random-
walks, and multi-level models can result in minimal precision loses compared to splitting,
while mixture priors may lead to considerable precision losses (this is more thoroughly
discussed and illustrated in Figure 7.6).

Figure 7.4: Absolute values of PED and PrI across all simulations in the base-case scenario under FE.

PED values are in the log-odds ratio scale.
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Figure 7.5 shows how the various methods compare, within simulations, to lumping
and splitting in terms of both PED and precision. The plot on the left depicts the PED-ratio
(i.e. the ratio of a method’s PED divided by lumping’s PED) and the solid grey and dotted
black lines illustrate where splitting and lumping fall respectively. The plot in the middle
shows Lumping SeR (i.e. the ratio of lumping’s standard error of the RTE divided by the
standard error of the RTE which is estimated using each ISM) and the plot on the right
displays the Splitting SeR (i.e. the ratio of splitting’s standard error of RTE divided by the
standard error of the RTE which is estimated using each ISM).

Figure 7.5: Forest plots of PED-ratios, Lumping SeR, and Splitting SeR across ISMs.

0 0.5 0.50.51 111.5 1.5

The ‘Proportion of Lumping PED’ (i.e. PED-ratio) reflects a methods PED divided by lumping’s PED.
‘Lumping SeR’ is the ratio of a method’s standard error divided by lumping’s standard error. ‘Splitting SeR’
is the ratio of a method’s standard error divided by splitting’s standard error.

Except for mixture priors and constraints, most methods’ credible intervals are quite
narrow implying that, across simulations, they relate to lumping and splitting in a specific
way that does not vary considerably across simulated datasets. Informative priors are
practically equivalent to lumping across all measures, whilst power-priors (α = 0.5)
impose more moderate information-sharing; these do not however correspond to 50% of
lumping. This suggests that interpreting the α value in power-priors may be challenging
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as the extent of information-sharing may not be linearly related to α. Commensurate-
priors, random-walks and multi-level models impose minimal information-sharing, with
their PED ranging between 0-25% of the lumping’s PED, and their Splitting SeR falling
very close to 1, indicating that they often do not lead to precision gains compared to
splitting. Interestingly, the constraints show considerable density beyond 1 for the PED-
ratio, suggesting that they can lead to larger changes in the point estimate than lumping
(this is a reflection of the phenomenon discussed in Figure 7.3), but they never offer higher
precision gains than lumping, nor precision losses.

Perhaps the most interesting feature of Figure 7.5 relates to the mixture priors. Even
though mixture priors, on average, lead to very similar PED and precision gains to
informative priors (and by extension to lumping), their confidence bands cover the whole
range between lumping and splitting, and sometimes even result in more uncertain
estimates than splitting. This means that information-sharing can vary considerably and
the actual characteristics of the direct and indirect evidence may dictate how strongly
mixture priors will actually share information. This finding is in line with previous work
by Roever et al., 2019 which suggested that mixture priors are robust to ‘prior data conflict’,
meaning that when direct and indirect evidence are substantially different, mixture priors
do not share any information across the two sources.

Figure 7.6 explores further the features of mixture prior models. The top graph in
Figure 7.6 plots for each simulation the PED-ratio against the actual difference between
simulated direct and indirect point estimates. Informative priors (red), always impose the
same degree of information-sharing as lumping regardless of how distant the simulated
direct and indirect evidence is; hence PED-ratios are always close to 1. In contrast, mixture
priors impose a degree of sharing that depends on the actual difference between the two
evidence sets. When the actual difference is low (i.e. there is agreement between the
two evidence sets), mixture priors behave like informative priors, imposing maximum
information-sharing. However, as the actual difference increases, the degree of sharing
that is imposed by mixture priors rapidly falls, up to the point where no information is
borrowed at all. Regarding precision, in this scenario informative priors always yield more
precise estimates than splitting (i.e. Splitting SeR > 1), reducing the width of credible
intervals by around 30%6. In contrast, mixture priors offer precision gains when the direct
and indirect evidence is similar, but these decline as the two sources become more distant.
Interestingly, this relationship is not strictly decreasing, and the model is ‘borrowing
weakness’ (i.e. leads to less precise estimates than no borrowing at all) up until the point
that the two sources become distant enough to prevent any information-sharing.

6The informative prior reduces the standard error by ≈ 30% because sesp
sein f−prior

= 1.4, hence sej
sesp

= 0.714.
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Figure 7.6: Actual difference between direct and indirect LOR plotted against the PED-ratio (top) and
Splitting SeR (bottom) for mixture priors under FE.
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In the top, a scatter plot with the actual difference between direct and indirect evidence mean LORs (when
analysed alone using a FE model) against the ratio of the PED that is imposed by a given method and the
PED that is imposed by lumping. The red points pertain to the informative prior, and the black to the mixture
of prior. In the bottom, the same graph is displayed for Splitting SeR i.e. the ratio of splitting’s standard
error of RTE to the corresponding method’s standard error.
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7.3.1.2 Alternative scenarios

With respect to the scenarios that assumed different levels of heterogeneity of the indirect
evidence, Figure D.2.1 (see Appendix, page 247) illustrates that heterogeneity does not sig-
nificantly influence the degree of sharing that the various methods impose. Contrariwise,
for different sample sizes of the indirect evidence, Figure 7.7 shows that some measures
are affected. In particular, across all models, as sample size increases, Lumping SeR
decreases, suggesting that methods offer less increase in precision than what would be
achieved by lumping. This is not surprising given that lumping imposes a much stronger
assumption compared to most methods, and as the sample size of the indirect evidence
increases, more information is contained in the indirect evidence, and lumping also
borrows more strength. This can be observed in the Splitting SeR plot, where lumping
achieves the largest increase in precision gains as sample size increases.

Figure 7.7: Forest plots of PED-ratios, Lumping SeR, and Splitting SeR across all methods for three
scenarios with different sample size of the indirect evidence.

Large Sample SizeMid Sample Size (Base-case)Small Sample Size

0 00.5 0.50.51 111.5 1.5 2 2.5

The ‘Base-case scenario’ corresponds to a sample size of 2300, the ‘small sample size scenario’ to a sample
size of 2300/2, and the ‘large sample size scenario’ to a sample size of 2300 ∗ 4. The ‘Proportion of Lumping
PED’ (i.e. PED-ratio) reflects a methods PED divided by lumping’s PED. ‘Lumping SeR’ is the ratio of a
method’s standard error divided by lumping’s standard error. ‘Splitting SeR’ is the ratio of a method’s
standard error divided by splitting’s standard error.
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Regarding PED-ratios, power-priors seem to be more sensitive to the sample size
changes implemented in these scenarios. In fact, the results suggest that as sample size
increases, a power-prior model with a given α value (here α = 0.5) shares information
more similarly with lumping. This result motivated a further post-hoc short simulation
where for 10 different equidistant sample sizes between 2,300 and 23,000 the power-prior
model with α = 0.5 and lumping were applied and compared. As shown in Figure 7.8
the same pattern is observed and increasing sample size of the indirect evidence increases
the proportional sharing of the power-prior model in the PED-ratio. In other words, as
the sample size of the indirect evidence increases, the strength of sharing of the power-
prior becomes more similar to that under lumping even though the value of α remains
unchanged. This finding further supports that interpretation of α is not straightforward.

Figure 7.8: The relationship between the degree of sharing imposed by the power-prior with α = 0.5 and
sample size of the indirect evidence for PED.

The ‘Proportion of Lumping PED’ (i.e. PED-ratio) reflects the ratio of power-priors’s PED divided by
lumping’s PED.
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Finally, the extent of overlap between direct and indirect evidence seems to primarily
affect constraints and mixture priors (Figure 7.9). As expected, when the overlap is
high, on average constraints impose a higher PED-ratio, retaining the potential to exceed
lumping’s PED. This is because in this scenario, simulated datasets more often ‘violate’
the direction of relative effects suggested by the scenario characteristics. In these cases the
need to conform to the direction dictated by the constraint —which is the opposite of the
direction suggested by the data —leads to a major shift in the direct and indirect evidence
means. This issue was also discussed in Figure 7.3. Regarding mixture priors, when direct
and indirect evidence overlaps minimally, mixture priors yield very low PED-ratios and on
average do not offer any precision gains from splitting. On the other hand, when direct
and indirect evidence overlaps majorly, mixture priors are effectively equivalent to the
informative priors and to lumping. This finding further supports the argument developed
on page 170 regarding the robustness of mixture priors to ‘prior data conflict’.

Figure 7.9: Forest plots of PED-ratios, Lumping SeR, and Splitting SeR across all methods for three
scenarios with different overlapping coefficient between direct and indirect evidence.

Low Overlap Mid Overlap (Base-case) High Overlap

0 0.5 0.5 0.51 1 11.5 1.5

‘Base-case scenario’ corresponds to an overlapping (OVL) coefficient of 50%, ‘Low Overlap scenario’ to an
OVL of 5%, and ‘High Overlap scenario’ to an OVL of 75%. The ‘Proportion of Lumping PED’ (i.e. PED-ratio)
reflects a methods PED divided by lumping’s PED. ‘Lumping SeR’ is the ratio of a method’s standard error
divided by lumping’s standard error. ‘Splitting SeR’ is the ratio of a method’s standard error divided by
splitting’s standard error.

173



7.3. Results

7.3.2. Random-effects simulation

7.3.2.1 Base-case scenario

As described in Section 7.2.4, under RE lumping can take different forms depending
on which parameters of the direct and indirect evidence (d and τ) are pooled together.
Table 7.5 shows sucra values for PED and PrI. In the base-case scenario, the method
that only lumps the RTE mean —i.e. Lumping (d only) —shows a slightly higher PED
and considerably lower PrI than the method that lumps all studies together under a
single random-effect —i.e. Lumping (d & τ). Despite showing results for all lumping
approaches, in this work the main lumping approach is Lumping (d only) because most
methods only share information on the RTE mean; hence, they should be compared with
the lumping approach that imposes the strongest assumption on the same parameter.

Table 7.5: Sucra values for PED and PrI in the base-case scenario of the RE simulation.

Information-sharing method PED Sucra PrI Sucra
Lumping (d only) 0.83 0.69
Lumping (d & τ) 0.8 0.83
Power-prior (α = 0.5) 0.76 0.66
Informative prior —posterior — 0.75 0.82
Mixture prior —posterior —(p estimated in model) 0.64 0.64
Commensurate prior (p fixed at 0.5) 0.5 0.38
Random-walk 0.35 0.36
Informative prior —predictive — 0.33 0.35
Constraint 0.32 0.34
Mixture prior —predictive —(p estimated in model) 0.29 0.31
Multi-level 0.28 0.15
Lumping (τ only) 0.08 0.26
Prior on heterogeneity 0.04 0.2

Methods arranged in descending PED Sucra values.

Contrary to the fixed-effect simulation, the informative prior that uses the posterior
RTE mean distribution is not exactly equivalent to Lumping (d only) in terms of PED and
PrI sucra values. However, the informative priors that use the predictive distribution of
the RTE rank much lower in terms of both measures. The power-priors, despite using
an α = 0.5, share only slightly less information than lumping, and rank close to the top.
Generally, as expected according to their assumptions, commensurate priors rank above
random-walks, and informative priors above the mixture priors. Multi-level models seem
to rank lower in terms of PrI than in terms of PED. However this feature should not be
over-interpreted because this model imposes a random-effect at the top level only on
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two parameters. This may lead to considerably uncertain conclusions, and accordingly it
should not be generalised to situations where more than two indirect evidence sets are
available. Finally, methods that share information only on the heterogeneity rank last,
which is not surprising particularly given that direct and indirect evidence is similarly
heterogeneous in the base-case scenario.

Rankograms (see Figure D.2.2 in the Appendix, page 248) show that the PED and PrI
are broadly in agreement with the exception of constraints. This was discussed in the
previous section, and is here also attributed to simulations were the direction of relative
effects is reversed between direct and indirect evidence. Compared to FE, under RE,
methods seem to fluctuate more between similar ranking positions. This is however not
surprising given that more methods can be used under RE leading more easily to ranking
changes and to increased ranking uncertainty.

Figure 7.10 shows how the various methods compare to splitting and lumping (only
d) for the base-case scenario. Regarding PED, methods can be grouped into two groups:
those which yield comparable PED with lumping (top of the graph), and those which
lead to much lower PED (bottom of the graph). Within each group, methods are similar
in their PED-ratio means but less similar in terms of the PED-ratio credible intervals.
For instance, across datasets, the mixture prior that uses the predictive distribution of
the indirect evidence may impose a PED that is between 10% and 50% of the PED of
lumping. It is worth further noting that in the group that imposes similar PED with
lumping, some methods have the potential to yield higher PED that lumping (i.e. their
credible interval spans above the dotted line at 1). Further investigation showed that for
lumping (d & τ) and power-priors such cases primarily arise when the simulated direct
and indirect evidence are very similar in terms of their point estimate (see Figure D.2.3
in Appendix). In these cases, lumping the two sources results in practically the same
estimate for the mean and hence the PED of lumping is almost zero. Therefore, when we
take the ratio of a method’s PED to the PED of lumping (only d), the resulting number
is enlarged because the denominator tends to zero. With respect to precision, methods
that shared less strongly on PED, also yield, on average, less precise estimates than
lumping (i.e. their median Lumping SeR is on the left of the dotted bar). No single
method can be distinguished since their credible intervals majorly overlap. However, it
needs to be highlighted that the majority of methods have the potential to produce more
precise estimates than those under lumping, albeit infrequently. Finally, based on the
splitting SeR graph, all methods on average result in precision gains when compared to
splitting (i.e. their median Splitting SeR is on the right of the dotted bar), but mixture
priors, random-walks, and methods that share only on the heterogeneity parameter, have
significant potential to yield precision losses.
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Figure 7.10: RE simulation. Forest plots of PED-ratios, Lumping SeR, and Splitting SeR, across all ISMs
used in the base-case scenario.
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(d & tau)

‘Proportion of Lumping PED’ (i.e. PED-ratio) reflects a methods PED divided by lumping’s PED. ‘Lumping
SeR’ is the ratio of a method’s standard error divided by lumping’s standard error. ‘Splitting SeR’ is the ratio
of a method’s standard error divided by splitting’s standard error.

7.3.2.2 Alternative scenarios

The sample size of the indirect evidence does not influence how methods compare to
lumping (Figure D.2.4 —Appendix). Heterogeneity primarily affects prior-based methods
that use the predictive distribution and lumping (d & τ) (Figure 7.11). In particular,
informative and mixture priors using the predictive distribution yield lower PED-ratios
as heterogeneity increases, because the predictive distribution becomes more vague
(i.e. a less informative prior). In contrast, lumping (d & τ) yields higher PED-ratios
for increasing heterogeneity. This is because, as shown in Figure D.2.5, lumping (only
d) yields a reduced PED for increasing heterogeneity, while lumping (d & τ) remains
unaffected; hence, only the denominator of the PED-ratio is reduced and the PED-ratio
increases. According to Splitting SeR, heterogeneity impacts how methods compare to
splitting, with increasing heterogeneity leading to more moderate precision gains.
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Figure 7.11: RE simulation. Forest plots of PED-ratios, Lumping SeR, and Splitting SeR across ISMs
used in the three heterogeneity scenarios.

Low Heterogeneity Mid Heterogeneity (Base-case) High Heterogeneity

(d & tau)

‘Base-case scenario’ corresponds to a τ = 0.56, ‘Low Heterogeneity scenario’ to τ = 0.24, and ‘High
heterogeneity scenario’ to τ = 0.65. The ‘Proportion of Lumping PED’ (i.e. PED-ratio) reflects a methods PED
divided by lumping’s PED. ‘Lumping SeR’ is the ratio of a method’s standard error divided by lumping’s
standard error. ‘Splitting SeR’ is the ratio of a method’s standard error divided by splitting’s standard error.

Percentage overlap also seems to affect how methods compare to lumping and splitting
(Figure 7.12). Regarding PED, for low overlap, lumping (d & τ) and the informative
prior that uses the posterior mean of the relative effect of the indirect evidence, on
average lead to larger changes in the point estimate than lumping (only d). This is not
observed, however, when overlap is higher. In addition, constraints yield proportionately
larger PEDs as overlap increases because of the phenomenon described in Figure 7.3.
For low overlap, just as in the fixed-effect simulation, mixture priors again show the
capacity to share information in the whole range between splitting and lumping; this
characteristic was previously attributed to robustness of mixture priors to ‘prior data-
conflict’. Interestingly, Lumping SeR figures show that for low overlap on average most
methods result in more precise estimates than lumping (i.e. the median Lumping SeR is
beyond the dotted line), whilst for higher percentage overlap lumping is more precise.
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This suggests that when direct and indirect evidence have very different RTE point
estimates, Lumping (only d) is less likely to produce precision gains copmpared to other
methods. According to Splitting SeR and Figure D.2.6, lumping (only d), power-priors,
and mixture priors can lead to estimates more uncertain than splitting when the two
evidence sets are far apart.

Figure 7.12: RE simulation. Forest plots of PED-ratios, Lumping SeR, and Splitting SeR across all ISMs
used in the three percentage overlap scenarios.

(d & tau)

Low Overlap Mid Overlap (Base-case) High Overlap

‘Base-case scenario’ corresponds to an overlapping (OVL) coefficient of 50% (LOR:-0.13, OR:0.87), ‘Low
overlap scenario’ to OVL 5% (LOR: 0.45, OR: 1.57), and ‘High overlap scenario’ to OVL 75% (LOR: -0.29, OR:
0.74). The ‘Proportion of Lumping PED’ (i.e. PED-ratio) reflects a methods PED divided by lumping’s PED.
‘Lumping SeR’ is the ratio of a method’s standard error divided by lumping’s standard error. ‘Splitting SeR’
is the ratio of a method’s standard error divided by splitting’s standard error.

In the last scenario, the impact of the distribution of indirect patients across the indirect
studies was tested. The reduced variance in all measures that is observed in Figure 7.13
should not be over-interpreted since it is attributed to the way that data was simulated
for this scenario7. Overall, results do not differ considerably across scenarios for most

7Recall that in this scenario the relative effects for the big study are simulated from a small part of the
right tail of N(−0.281, 0.562); hence draws do not differ much from one another. Also, all the small studies
are assumed to exhibit equal relative effects, therefore the simulated indirect datasets are quite similar.
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methods. However, this is not the case for power-priors. As speculated in Chapter 5,
when power-priors are used to down-weight the effect of an indirect source of data, we
need to consider the sizes of the indirect studies. In particular, when there is a study with
a much larger size which also suggests a very different relative effect to the other indirect
studies, using power-priors with small α values may lead to excessive borrowing from
the big study. This is because for low α it is the only indirect study with a non-negligible
Bayesian likelihood. As expected, this feature is also apparent in Figure 7.13, suggesting
that in contrast to the base-case scenario, the power-prior yields a PED that is on average
considerably larger than that of lumping.

Figure 7.13: RE simulation. Forest plots of PED-ratios, Lumping SeR, and Splitting SeR across all ISMs
used in the two scenarios where the indirect patients are differently distributed across studies.

(d & tau)

The ‘Proportion of Lumping PED’ (i.e. PED-ratio) reflects a methods PED divided by lumping’s PED.
‘Lumping SeR’ is the ratio of a method’s standard error divided by lumping’s standard error. ‘Splitting SeR’
is the ratio of a method’s standard error divided by splitting’s standard error.
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7.3.3. Summary of results

The main results of the simulation are listed below:

1. Across all scenarios evaluated, multi-level models, random-walks and commensurate
priors impose relatively low degrees of information-sharing leading to relatively
small changes in the point estimate and relatively low precision gains. For RE
models, prior-based approaches that use the predictive distribution of the indirect
evidence, and methods that share information only on heterogeneity fall into the
same group. In contrast, power-priors and informative priors that use the posterior
mean estimate of the indirect evidence can impose a much stronger degree of
information-sharing, comparable to that of lumping.

2. Constraint models most often lead to moderate precision gains but have the potential
to result in major shifts of the point estimate. This happens when the direction
of direct and indirect effects that is dictated by the constraint (e.g. ddir 6 dindir) is
different from the direction suggested by the available data (e.g. ddir > dindir).

3. Mixture priors can modify the degree of information-sharing that they impose based
on the similarity of the direct and indirect evidence; hence, it can be thought of as
an ‘adaptive’ method. When direct and indirect evidence are alike (i.e. with similar
point estimates) information-sharing is encouraged and mixture priors essentially
become standard informative priors. In contrast, when direct and indirect evidence
is considerably different, information-sharing is discouraged with mixture priors
becoming more like splitting and sometimes even leading to precision losses.

4. For power-priors, interpretation of α is not straight-forward. In particular, α should
not necessarily be viewed as a proxy for the imposed degree of sharing, nor as
how the power-prior compares to lumping. Furthermore, the relationship between
strength of sharing measures and α may be non-linear. Finally, characteristics of
the indirect evidence such as the number of patients in the indirect evidence set
can affect how a power-prior model with a given α value compares to lumping (see
Figure 7.8).

5. In general, under RE models, methods resulted in wider credible intervals for the
various strength of sharing measures. This implies that the way that the methods
relate to lumping and splitting (and hence the strength of the assumption that they
impose) is more uncertain under RE models. In contrast, under FE, the ratio statistics
that compared each method with lumping and splitting resulted in narrower credible
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intervals; hence, the degree of information-sharing that each method imposes can
be characterised more accurately under FE.

6. Under FE, lumping most often imposes the strongest information-sharing and
only the constraints have the capacity to impose a larger degree of sharing under
specific circumstances. In contrast, under RE, lumping (d & τ), power-priors, and
informative and mixtures priors that use the posterior mean of the indirect evidence
can lead to larger PEDs than lumping. Under RE, most methods also have the
capacity to lead to higher precision gains than lumping.

7. Under FE, informative priors that use the posterior mean distribution of the RTE
are equivalent to Lumping (only d). In contrast, under RE informative priors that
use the posterior mean distribution of the RTE can impose a stronger degree of
information-sharing than Lumping (only d).

8. Under FE, power-priors with α = 0.5 impose strength of sharing slightly above
50% of that of lumping across all metrics, with very narrow credible intervals on
sampling uncertainty. As a result, power-priors with α = 0.5 never exceed the
strength of sharing of lumping. In contrast, under RE, power-priors with α = 0.5
yield large credible intervals for all strength of sharing measures implying that they
do not relate to lumping in a specific manner across samples. Furthermore, across
samples, power-prior models with α = 0.5 impose on average a similar degree of
sharing with lumping.

9. Under FE, sample size impacts on how methods compare to lumping and splitting
with increasing sample size rendering power-priors more similar to lumping in
terms of PED. Also, as sample size increases most methods yield proportionately
smaller precision gains compared to lumping. In contrast, sample size barely seems
to exert any influence on how methods compare to lumping and splitting under RE
models.

10. Under FE, the tested levels of heterogeneity do not impact how methods compare
to lumping and splitting. However, under RE some methods are affected. These are
the methods that share information on both the RTE mean and on the heterogeneity
parameter.
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7.4. Discussion

In this chapter, a simulation experiment was conducted to investigate how alternative
methods share information between direct and indirect evidence. The characteristics
of the indirect evidence were varied (in relation to the direct) in a number of scenarios.
This work focused on quantifying the degree of information-sharing and explored how
this may be influenced by particular characteristics of the indirect evidence. Direct and
indirect datasets were generated according to scenario characteristics and these were
subsequently synthesised using all the applicable ISMs that were introduced in Chapter 4
(reduced to the pairwise meta-analysis case). The simulation was run twice; once under
FE and once under RE models to ensure that potential differences between the two types
of models are identified. To my knowledge, this is the first attempt to compare ISMs in
terms of the strength of sharing that they impose in a simulation context.

Overall, results were broadly consistent with expectations. Under FE models, three
distinct categories are observed. The first is methods that strongly share information
across all scenarios explored and includes lumping and informative priors; the second is
methods that only minimally shared information and include random-walks, multi-level
models, and commensurate priors8. The last category comprised of more flexible methods
(mixture priors, power-priors, constraints) that can share information in an adaptive
manner depending on the characteristics of direct and the indirect evidence sets. Under
RE, this classification becomes less clear because the various strength of sharing measures
result in large credible intervals. This indicates that, across simulations, it harder to
determine how each method compares to lumping and splitting.

In the base-case scenario, we saw that constraints have the potential to be considerably
more influential than lumping. This happens when the two evidence sets suggest a
direction for the relative effects which is not in accordance with the direction specified by
the constraint. This implies that when separate analyses of direct and indirect evidence
indicate that the direction of their relative effect means is the opposite from the direction
which is assumed by the constraint, we can expect constraints to lead to considerable
shifts in the relative effect means and hence to very strong information-sharing. It should
be noted that if there is a robust biologic or clinical rationale to support an a priori
expected ordering of effects, constraints may be used even if the expected ordering is not
reflected in the available evidence. This is because the existing state of the evidence may

8Fixed 50% weights in the spike-and-slab hyper-prior were used for the commensurate priors and therefore
we did not allow the method to show its potential to borrow strength in an adaptive manner. There is
a chance that commensurate priors can also flexibly share information if the aforementioned weight is
considered an uncertain parameter and hence estimated within the model. Therefore commensurate priors
may also belong in the last category.
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be due to extensive sampling error or heterogeneity across studies.

Mixture priors also exhibited interesting features. In particular, in line with previous
findings by Roever et al., 2019, mixture priors were robust to ‘prior data conflict’. In
this work, it is shown that when direct and indirect evidence are indeed similar, mixture
priors behave like regular informative priors and borrow strength strongly from the
indirect evidence. However, when direct and indirect evidence are not similar (i.e. are in
disagreement or in conflict), mixture priors impose minimal information-sharing, if any.
This implies that mixture priors offer an adaptive degree of borrowing which may be a
desirable property when the appropriate degree of borrowing is unknown. However, it
should be highlighted that the way mixture priors determine the degree of borrowing is
not necessarily transparent and it may be preferable to retain control of the strength of
sharing than allowing it to determined by the model.

Power-priors, which allow the analyst to specify the extent to which the likelihood of
the indirect evidence is discounted, also produced some interesting findings. Specifically,
the interpretation of α is not directly associated with the extent of information-sharing
as that is measured by the metrics used in this chapter. For instance, under FE, the
power-prior model with α = 0.5 does not share half as much as lumping in terms of any
of the metrics used, but more around 60-70%. Furthermore, when the number of patients
in the indirect evidence set increases, for the same α, the power-prior imposes larger
degree of sharing and is hence more similar to lumping. Under RE, even for α = 0.5, on
average, the power-prior imposes the same strength of sharing as lumping and often even
more. Given the difficulty in relating the α value to the degree of sharing the implication
is that it may not be easy to describe α in a straightforward manner that allows it to be
obtained from experts in structured elicitation exercises.

The additional scenarios aimed to identify characteristics of the evidence base that may
affect how methods compare to lumping. In general, increasing the level of heterogeneity
of the indirect evidence can lead to reduced information-sharing for prior-based methods
that use the predictive distribution of the indirect evidence and for methods that share
information directly on the heterogeneity component. Also, increasing the sample size
of the indirect evidence set can result in power-priors, with a given α value, producing
results more similar to lumping. Finally, increasing the percentage overlap (i.e. similarity)
between point estimates of the direct and indirect evidence sets can considerably increase
the degree of information-sharing imposed by constraints and mixture priors.

This work has a number of limitations. First of all, despite that indirect evidence were
simulated according to the properties of various scenarios, the same was not the case for
the direct evidence which were all simulated based on the same properties. However,
what is critical is how the direct and indirect evidence sets compare to each other, and
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not so much the absolute values of their underlying parameters. This is because the
strength of sharing measures (PED, PrI) only consider the relative nature of the two
evidence sets; therefore, when the absolute values of the characteristics of the two sources
evidence change but their relative difference is preserved, we expect to observe very
similar results in terms of strength of sharing. Second, instead of varying dimensions
factorially, dimensions were varied here ‘one-by-one’ to restrict the number of scenarios
and the time required in the computing cluster (which already required 20,000 hours).
As a result, it cannot be determined how methods strength of sharing is affected by the
interaction of dimensions. Finally, only three dimensions were varied (the percentage
overlap between direct and indirect evidence, the heterogeneity of the indirect evidence
and the sample size of the indirect evidence) and hence there may have been other
dimensions could influence methods ranking but were omitted from this study.

Further work could seek to address the limitations of this experiment by potentially
exploring more dimensions and varying them factorially to observe the effect of dimension
interactions. In addition, researchers could further explore how the characteristics of the
evidence make power-priors impose higher or lower degrees of information-sharing and
how the value of α should be appropriately interpreted and elicited. Furthermore, in
this simulation, only two evidence sets were used. This implies that methods such as
the multi-level models cannot, by definition, impose strong degrees of sharing because
in the top level they assume a random-effect on just two parameters. Hence, further
work could investigate whether the inclusion of additional indirect sources renders multi-
level models more comparable to lumping and how they may affect mixture of priors
which would require more than two components. Finally, commensurate priors were
used only with a fixed 0.5 weights on the spike-and-slab hyper-prior in order to assist
parameter identification. This does not allow this method to show if it has the potential to
identify differences in the two evidence sets and impose adaptive borrowing accordingly.
Consequently, further work may try to compare the ‘adaptability’ of mixture of priors
and commensurate priors.
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Chapter 8

Discussion

8.1. Thesis summary

This thesis aimed to address issues that stem from evidence sparsity by using sophisticated
evidence synthesis methodologies which facilitate information-sharing between direct
and indirect evidence in order to strengthen inference. Chapter 1 provided the necessary
background, introducing relevant concepts and highlighting how information-sharing
problems have been dealt with to date, and Chapter 2 offered an introduction to the
standard methods that are used in HTA for evidence synthesis and decision modelling.
Subsequent chapters used this introductory material as a foundation in order to describe
approaches that build on those standard methods. What follows in this section is a
summary of the scope, main findings, and contributions of each of these chapters.

First, Chapter 3 sought to systematically identify methods that have been used in the
biostatistics literature to combine evidence directly and indirectly relating to a research
question. To my knowledge, this topic has not been previously reviewed. The identified
methods were classified according to the main assumption each method makes to facilitate
information-sharing into four distinct ‘core’ categories: 1. functional relationships, 2.
exchangeability-based relationships, 3. prior-based relationships, and 4. multivariate
relationships. This classification highlights that there are several alternative methodologi-
cal options that can facilitate information-sharing and also provides a structured way of
thinking around such methods. Papers were categorised according to the main synthesis
challenge that they dealt with, allowing researchers faced with specific synthesis issues
to get insight into the main contributions in each particular synthesis issue. A further
categorisation of papers according to the PICOS level that the external evidence were
indirect to was provided in order to reveal specific information-sharing patterns and areas
for methods development. This categorisation showed that some types of relationships
have not been used to share information on specific PICOS levels. This suggests that
there is scope for extending methods that have been used to share information on one
PICOS level to other PICOS levels. A non-technical description of the various methods
and papers was given, providing a plethora of citations for readers who may want to
delve deeper into a particular topic.
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Subsequently, in Chapter 4, methods identified in Chapter 3 were adapted to a specific
synthesis problem which is common in HTA i.e. the borrowing of strength from aggregate-
level evidence pertaining to an indirectly relevant population. Thorough mathematical
descriptions and explanations of the different methods were provided along with coding
suggestions. Consequently, researchers facing similar synthesis issues can consult this
chapter for both a theoretical understanding of the various ISM options and practical
suggestions for their implementation. Furthermore, a step-by-step framework that allows
the systematic identification of applicable ISMs was introduced. This framework can be
used by both researchers who seek to find methods applicable to their own synthesis
issues and by appraisers who need to ensure that no applicable method is unjustifiably
excluded. The work of this chapter provided the necessary foundation upon which the
ISMs used in the subsequent applied chapters were based.

Chapter 5 was an applied case-study where strength was borrowed from paediatric
patients to inform inferences in adult patients. In addition to its main contribution —the
illustration of the impact of using different ISMs on relative effectiveness estimates —this
chapter also suggested methods for exploring heterogeneity in the extended evidence
base, and on implementing ISMs when covariate effects need to be considered. Several
measures were used to understand how strongly the various methods borrowed strength
from the indirect evidence, and how they compared with the two extremes (i.e. lumping
and splitting). This work showed that different methods can influence RTE estimates
in different ways, such as by modifying point estimates and/or affecting precision,
and to different magnitudes. This implies that the use of different methods may lead to
different conclusions for HTA, and therefore highlights the need to systematically consider
several alternative options. Furthermore, this work illustrates that an information-sharing
‘spectrum’ can be defined based on the two extremes (i.e. lumping and splitting) and
ISMs can generally be mapped within that spectrum, except for specific situations. Such
exceptions include RE power-priors with α < 1 which can impose a degree of information-
sharing that is higher than that of lumping under models. This finding implies that
the characteristics of the indirect studies should be carefully examined before applying
power-priors, particularly. The findings of this chapter motivated Chapter 7 in which the
methods’ properties and imposed strength of sharing were investigated in further detail.

Chapter 6 considered the application of the RTE estimates, which were produced
in Chapter 5 using the various ISMs, into an existing decision model. In this way, this
chapter revealed the implications of using different ISMs for policy-making, considering
both the impact on adoption decisions (approve/reject), and on further research recom-
mendations. The results highlight that the choice of method can result in different policy
recommendations, further demonstrating the need for transparency in the choice of ISMs.
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Finally, Chapter 7 described a simulation that sought to understand how ISMs compare
with lumping and splitting, and which characteristics of the evidence can influence this
relationship; all methods explained in Chapter 4 were applied. Given that the results
of Chapter 5 suggested that ISMs may perform differently under FE and RE models,
two simulations were run (one under FE and one under RE). The results of Chapter 7
can be used by analysts trying to determine the extent of information-sharing that each
method imposes in specific evidential scenarios. However, establishing how methods
compare to each other —and to lumping and splitting —may be easier under FE than
under RE models. Methods could be broadly categorised into three categories: those
that generally shared information only weakly resembling splitting, those that generally
shared information strongly resembling lumping, and those that could alter their strength
of sharing based on the state of the direct and indirect evidence. ISMs sharing information
weakly included multi-level models, random-walks, commensurate priors, methods
sharing only the heterogeneity parameters, and informative/mixture priors utilising
the predictive distribution of the indirect evidence. ISMs sharing information strongly
included informative priors using the posterior mean RTE of the indirect evidence and
power-prior models with high α values; finally, the only adaptive method was the mixture
prior which had the potential of behaving either like lumping or like splitting depending
on how similar the direct and indirect evidence were i.e. whether or not there was
‘prior-data conflict‘. In addition, constraints were found to have the potential to share
information more strongly than lumping. This implies that constraints can be very
informative and researchers should ensure that there is a robust scientific rationale before
imposing such models since they may considerably affect both RTE and cost-effectiveness
estimates. Finally, results showed that the interpretation of α in the power-priors is not
straightforward as the degree of sharing imposed by a power-prior with a given α might
be influenced by the characteristics of the direct and the indirect evidence. Strikingly,
under RE, even power-prior models with low α were very often similar to lumping. This
implies that the power-prior model should not be viewed as a method that allows the
analyst to specify the extent of information-sharing, as the choice of α is not related to the
imposed information-sharing in a straightforward manner. Therefore, analysts seeking to
elicit α should first determine how α relates to the extent of information-sharing under
the conditions of their extended evidence base, and should proceed with the elicitation
only if this relationship is clear.
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8.2. Recommendations

This section details a set of recommendations for the use of ISMs in HTA practice. These
include 1. situations during which the use of indirect evidence may be useful which
are based on the general motivation for information-sharing; 2. ways of identifying
and selecting ISMs which are based on the general theory behind ISMs; 3. advice for
the specification and the implementation of ISMs which are based on the findings of
Chapter 7 and could also be useful for the application of ISMs beyond cost-effectiveness
analysis and HTA research; 4. suggestions for presentation and reporting of the results of
the various ISMs which are based on general principles for good HTA practice and finally,
5. recommendations for further research which are based on remaining uncertainties and
realisations made through the thesis.

Situations when indirect evidence may be valuable

In principle, when making a decision all relevant evidence should be considered. This
implies that indirect evidence, when available, should always be included to appropriately
reflect uncertainty and ensure prioritisation of efficient research. However, this may not be
practical in cases when information-sharing is technically challenging, or may be deemed
unnecessary when the direct evidence base is sufficiently robust to inform a decision, or
when indirect evidence would be unlikely to impact a decision.

Undoubtedly, to even start contemplating using indirect RTE evidence for decision-
making three fundamental requirements need to be fulfilled. First, indirect evidence
must be relevant to our decision (so that information-sharing is plausible) and must
provide information beyond what is provided by the direct evidence (so that information-
sharing has the potential to be meaningful). Second, relative effectiveness needs to
be a key parameter for cost-effectiveness, so that changes in RTE estimates can affect
decisions. Third, indirect evidence should only be considered when we expect that it
will have important implications for the RTE estimate of interest. For cases in which the
aforementioned requirements are fulfilled, a list of some specific examples where using
indirect evidence may be beneficial for decision-making is provided below:

1. When the direct evidence is sparse, leading to imprecise estimates for relative
effectiveness, and there is an indirect source of information with a richer evidence
base and well characterised RTE estimates.

2. When the direct evidence is of low quality (e.g. there is only observational evidence
or RCTs in high risk-of-bias) and its internal validity is questionable —giving rise to
bias considerations —, and there is an indirect source of information comprising

188



8.2. Recommendations

studies of better quality e.g. high quality RCTs.

3. When heterogeneity cannot be appropriately explored because the majority of the
direct studies do not report the suspected effect modifier, and there is an indirect
source of information thought to be influenced by the same effect modifier to a
similar extent, and the studies comprising it report complete information.

4. When there is inconsistency between relative effects suggested by direct and indi-
rect evidence even though both sources are thought to comprise of good quality
studies and relevance of the indirect evidence is established. This may indicate
that some important characteristic of the evidence has been overlooked and/or that
heterogeneity has not been appropriately explored.

Identifying and selecting information-sharing methods

1. Analysts should be aware that lumping —despite being the simplest available
—is not the only information-sharing option. There are a plethora of methods
that use different assumptions, often more moderate, imposing various degrees of
information-sharing.

2. The process of identifying applicable ISMs should be transparent and the exclusion
of models should be adequately justified based on model assumptions and/or data
requirements. The step-by-step framework proposed in Section 4.5 may be useful in
this process.

3. ISM choice should not be solely guided by model ‘goodness of fit’. This is because
methods that impose stronger degrees of information-sharing may naturally yield
higher residual deviance and DIC. Also, not all methods yield comparable DICs as
some analyse direct and indirect evidence in separate steps, and hence less data are
used in the final step.
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Specification and implementation of information-sharing methods

1. Analysts should provide all the necessary details regarding the specification of the
ISMs used, and where applicable, justify specific parameter choices. For instance,
when a lumping approach is adopted it should be clear which parameters are
‘lumped’ (i.e. RTE mean and/or between-studies heterogeneity). Also, when
informative/mixture priors are used for RE base-models, analysts should state
whether they used the posterior mean distribution or the predictive distribution
of the indirect evidence. In addition, when prior distributions are mixed (e.g. in
mixture priors or commensurate priors), it should be clear whether the weights are
specified by the analysts or estimated within the synthesis model. Finally, when
power-priors are used the value of α should be explicitly stated.

2. Analysts should try where possible to implement several, if not all, applicable ISMs
to understand whether decisions are robust to method choice. If the number of
methods needs to be restricted, a judgement is required to determine the appropriate
degree of information-sharing. If the extended evidence base is similar to one of
the scenarios considered in Chapter 7, then the results of that chapter can then be
used to identify methods that impose the desirable degree of sharing. Alternatively,
if a judgement cannot be made, at least a model that is expected to impose a high
degree of sharing, a model that is expected to impose a low degree of sharing, and
a model that shares information in an adaptive manner should be implemented.

3. Analysts using power-priors should be careful not to interpret α directly as the
degree of information-sharing. Under FE, the relationship between the sample
size of the direct and indirect evidence is very important in predicting how the
power-prior compares to lumping, and under RE the interpretation of α becomes
very hard. Hence, given the nature of the α parameter (i.e. a power weight on a
likelihood), α does not seem to always easily map to the degree of sharing in a
predictable way.

4. If analysts and policy-makers seek to inform the degree of information-sharing
using a structured expert elicitation process, they should be aware that none of the
existing flexible models which include parameters controlling borrowing of strength
can be easily mapped to the degree of information-sharing spectrum. One option
may be to elicit the probability that information is completely transferable between
direct and indirect evidence, and model average between lumping and splitting.
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Presentation and reporting

1. The assumptions imposed by all ISMs should be interpreted in the context of the
synthesis problem at hand, and the limitations of models including uncertainty
regarding the imposed assumptions and strength of sharing should be recognised.

2. A summary of all the parameters information was shared on between direct and in-
direct evidence should be routinely reported along with the models used to facilitate
information-sharing on each parameter and justifications for models excluded.

3. Presentation of results from using alternative ISMs should illustrate the impact on
all aspects of relative effectiveness estimates (i.e. point estimate and uncertainty
surrounding the mean relative effect) using measures such as PED and PrI, as well
as on policy relevant quantities such as ICERs, and VoI parameters.

Remaining uncertainties and further research

1. Further research is required to determine the usefulness of ISMs developed in the
trial-design field and their capacity to be extended to the MA/NMA field.

2. Further research is required to determine how indirect evidence can be system-
atically identified, and how information-sharing considerations can be explicitly
incorporated in the comprehensive algorithm for approval of health technologies.

3. Further research should try to produce explicit guidance on how ISM choice should
be conducted when the degree of information-sharing that each model imposes is
unclear.

4. Further research should try to develop ISMs that include parameter(s) which de-
scribe the degree of sharing and could be readily elicited from experts.
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8.3. Strengths of the thesis

This section provides a general overview of the main strengths of this thesis. More
detailed discussions were presented in the final sections of each individual chapter.

First, this is the only work that compares a wide range of ISMs in terms of not only
the estimates produced, but also the degree of information-sharing that they impose. In
Chapter 5 all the applicable ISMs were used to borrow strength from an indirect evidence
set. The resulting estimates were compared using several borrowing-of-strength measures
which tried to capture —separately and simultaneously —all policy-relevant aspects of
the estimates such as changes in the point estimate and its uncertainty.

Second, in contrast to most existing work on information-sharing which primarily
focuses on the biostatistical aspects of information-sharing, this thesis has a clear policy
focus. To that end, in Chapter 6, the RTE estimates produced by several ISMs were
applied in a decision model developed as part of an HTA, and the implications of
methods choice on both adoption and further research recommendation decisions were
illustrated. Furthermore, the simulation undertaken in Chapter 7 makes the assumes that
we do not know the precise relationship between the true RTE in the direct and the indirect
evidence. Hence there is no way of knowing what the appropriate degree of information-
sharing is, and classical performance measures —such as bias —cannot be used. In
contrast, Chapter 7 compares ISMs with lumping and splitting, and therefore focuses
on the imposed degree of information-sharing, as would be the case in policy-making.
To date, this is the only simulation that has sought to compare a set of systematically
identified ISMs, under several policy-relevant scenarios in terms of measures that retain
their relevance for decision-making.

Third, despite the policy focus which is of primary interest here, the methodological
developments detailed in this thesis are also useful beyond cost-effectiveness and HTA.
For instance, this work is useful for regulatory bodies such as FDA and EMA, which
in the process of licensing new interventions for specific patient groups (e.g. children)
often face evidence sparsity issues and need to borrow-strength from existing evidence
on other relevant populations (e.g. adults) (Food and Drug Administration and Center
for Devices and Radiological Health, 2016; European Medicines Agency, 2016). Also,
ISMs are relevant to the work undertaken by international research societies, such as the
Cochrane collaboration, which is interested in producing guidance on the appropriate use
of methods for health care research. Furthermore, the use of indirect evidence can be of
interest to funding bodies such as the NIHR Evaluation, Trials and Studies Coordinating
Centre (NETSCC) which is faced with the task of prioritising research proposals with
minimal or no direct information on the relative effectiveness of the proposed comparison
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in the population of interest. In addition, appropriate methods for information-sharing can
be useful for statisticians working in the trial-design field who may prefer to take account
of existing indirect evidence when designing RCTs, and to pharmaceutical companies
which could benefit by making use of relevant evidence in the drug-development process.
Overall, the work undertaken in this thesis can be useful for anyone, within or outside
health research, who seeks to inform decisions using a comprehensive evidence base in
an efficient manner; yet, the relevance and the implications of the ISMs should be always
be judged in the context of the field/decision-problem that they are applied to.

Fourth, while avoiding excessive focus on specific synthesis problems, this thesis
provides a comprehensive list and categorisation of ISMs that are expected to prove useful
for analysts. This was achieved by initially adopting a general perspective in Chapter 3,
identifying ISMs used across several synthesis problems to enable information-sharing
on many model parameters (e.g. relative efficacy, baseline event rate, between-study
heterogeneity). This allowed information-sharing patterns to emerge, and enabled a
succinct categorisation of ISMs into four ‘core’ types of relationships each one pertaining
to a different type of assumption.

Fifth, in Chapter 4, this thesis ‘translated‘ the methods and code that had been
developed for a variety of synthesis problems to a single synthesis problem common in
HTA. Mathematical descriptions have been provided alongside thorough discussions of
the assumptions used by each method and the technical aspects of their implementation.
Despite having been developed for a specific synthesis problem, most methods can also
be used for other evidence synthesis problems with only minor modifications. As such,
Chapter 4 can be a resource for analysts who seek to obtain a deep understanding of
these methods and apply them in their synthesis projects.

Finally, this thesis aids transparency in ISMs choice. To date, there is no systematic pro-
cess of identifying applicable ISMs and consequently, analysts are usually either unaware
of the plethora of options available or prefer to use methods they know better over more
complex methods that may potentially be more appropriate. The step-by-step methods
identification process developed in Chapter 4 contributes towards the systematisation of
ISMs choice. As such, it forces analysts to think through all potentially applicable options,
and eliminate methods based on specific reasons (e.g. implausible assumptions). The
need for a transparent process was also established in Chapter 5 and Chapter 6 where it
was illustrated that different methods can impose varying degrees of information-sharing,
and subsequently lead to different adoption and research prioritisation decisions. The
current lack of knowledge in the scientific community on the use of appropriate ISMs
renders this step-by-step process a necessary tool in assisting transparency in methods
choice and consequently in decision-making.
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8.4. Limitations and directions for future research

This section discusses the main limitations of this thesis and suggests specific types of
research that might be undertaken to address them. The various suggestions are separated
in two categories: 1. Methods-related research and 2. Policy-related research.

8.4.1. Methods-related research

First, even though this thesis included a thorough citation-mining review of ISMs in MA
and NMA, other fields may also have used similar methods. For instance, in trial-design,
relevant methodologies have recently been developed for the analysis of basket trials.
These methods combine information from multiple patient subgroups without assuming
completely homogenous or unrelated effects (Leon-Novelo et al., 2012; Neuenschwander
et al., 2016; Fujikawa et al., 2020). Relevant methods have also been used in ecology
(Poole and Raftery, 2000). Although these methods still fall under the existing four
‘core’ relationships, conducting a review that would seek to identify ISMs developed in
non-health research fields may motivate the adaptation of more methods to MA/NMA.
Conversely, adapting the ISMs described in this thesis to be suitable for more general use
has the potential to provide considerable methodological developments in other fields,
beyond HTA, that have historically been interested in the concept information-sharing.

Second, this thesis has only described methods that can be used to borrow strength
from indirect studies conducted on a relevant population. This implies that direct and
indirect evidence can be distinguished using a study-level covariate to which patients
have not been randomised. Hence, the described methods are easily transferable to other
cases where indirectness stems from another PICOS level as long as a similar variable
can be used to distinguish the evidence sets. However, if a different variable needs to
be used, methods may require modifications. For instance, if we wanted to relate the
RTEs of different interventions to which patients have been randomised, we may need
to adapt the methods to consider that direct and indirect evidence are distinguished
with an arm-level variable. Also, when strength is borrowed from indirectly related
outcomes, the methods developed in Chapter 4 have limited applicability, and instead
multivariate methods that correlate the various outcomes, as well as methods that describe
how outcomes are functionally related, are more useful. Finally, this work did not address
more complex situations where there may be multiple indirect evidence sets pertaining
to different PICOS levels, and therefore the combination of several evidence sets using
perhaps different methods under the same synthesis model is a matter for further research.

Third, even though Chapter 7 compared several ISMs under a variety of conditions,
further simulation experiments are required to obtain a deeper understanding of some
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high-level methods features. For instance, Chapter 7 only considered multi-level models in
which the top level random-effect was imposed on just two group-specific basic parameters.
Given that a potentially unrealistic variance is likely to be estimated for such a random-
effect, it is not surprising that multi-level models were consistently ranked at the bottom
of the information-sharing spectrum; that is closer to splitting (i.e. no sharing). In contrast,
if more indirect evidence sets were included, the random-effect would be applied on more
parameters, and perhaps multi-level models would result in stronger information-sharing.
Therefore, the relationship between the degree of information-sharing and the number of
indirect evidence sets requires further research. Furthermore, in Chapter 7 commensurate
priors were not allowed to exhibit their ‘adaptive’ character because a fixed probability
of 0.5 was used in the ‘spike-and-slab’ hyper-prior. Alternatively, the probability could
be considered an uncertain parameter and estimated within the model, based on the
similarity between direct and indirect evidence. Hence, simulation experiments can try to
assess the commensurate priors’ ability to modify the degree of information-sharing they
impose under ‘prior data conflict’ conditions, and perhaps compare it with the mixture
priors which were also found to be robust to prior data conflict. Such simulations would
reveal whether any of the two adaptive approaches bear any benefits against the other.

Fourth, this work showed that the α likelihood weight in the power-priors does not
have a straightforward interpretation, particularly under random-effect models, and does
not necessarily link to the imposed degree of sharing in an intuitive manner. Similarly,
none of the other flexible methods (i.e. mixture priors, commensurate priors) contain
parameters that can intuitively be linked with the imposed degree of sharing. Therefore,
developing methods that allow more straightforward mapping between a user-controlled
parameter and the degree of information-sharing is warranted.

Finally, further research could describe how methods for structured elicitation could be
used to allow experts’ beliefs to determine the appropriate degree of information-sharing.
Existing guidance (Bojke et al., 2019) suggests that elicitation should focus on simple
observable quantities and therefore quantities elicited should at least have some intuitive
interpretation. However, given that none of the existing ISMs contain parameters that can
be intuitively linked to the extent of information-sharing, the development of elicitation
methods is not straightforward and requires further research. In light of this, perhaps
a solution would be to elicit the probability that information is completely transferable
between the two sources —since this quantity retains some intuitive interpretation ISMs,
and subsequently model average lumping and splitting based on that elicited probability.
Alternatively, eliciting the probability that RTE parameters pertaining to the indirect
evidence are exchangeable with those of the direct evidence may enable the use of partial
exchangeability frameworks (e.g. Neuenschwander et al., 2016).
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8.4.2. Policy-related research

Whenever evidence is collected with the ultimate purpose of informing a decision-making
process, it is vital that all relevant direct and indirect evidence is utilised, so that the
evidence base is comprehensive and decision uncertainty is appropriately reflected.
However, in practice it may not always be easy to identify all relevant evidence or
implement all applicable ISMs. This implies that in these situations decision-makers
would need to make value judgements regarding the most appropriate/realistic course of
action and do so in a transparent manner that makes judgements explicit. In what follows,
areas for further policy research are outlined emphasising the required value judgements
that would need to be made.

How should the use of indirect evidence be formally considered?

Despite most reimbursement bodies still making dichotomous decisions (approve
or reject), existing algorithms suggest more options such as ‘Only in Research’ (OIR)
and ‘Approval with Research’ (AWR) should be considered. Specifically, the algorithm
suggested by McKenna et al., 2015 and Claxton et al., 2016 describes key principles and
assessments required to inform reimbursement decisions and formally consider whether
additional research is worthwhile, and can be conducted with/without approval.

Carrying out additional research requires valuable resources which could have been
devoted to improving patients’ care. It is therefore crucial to inform the decision-making
process with the best available estimates. This implies that all relevant evidence (including
indirect evidence) should be considered when deriving the required estimates because
otherwise uncertainty may not be appropriately represented and decisions may be biased.

Furthermore, additional research often requires considerable time during which only
a limited number of patients have access to the technology. However, different types
of research require considerably different time and resources. For instance, in order
to gain more information about the relative effectiveness of a technology, an expensive
and time-consuming RCT could be conducted. Alternatively, if an external source of
evidence is available and is considered indirect yet relevant to the decision problem,
borrowing strength from indirect evidence may provide us with a considerably quicker
and cheaper alternative type of research. Consequently, when further research is deemed
worthwhile, information-sharing may provide an option that minimises the opportunity
cost of research and may be preferred over more expensive and time-consuming types
of research. Further research could attempt to formally incorporate information-sharing
considerations into the comprehensive algorithm for the approval of technologies, and
identify circumstances where information-sharing may be preferable over other types of
research that resolve uncertainty in relative effectiveness.
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How can indirect evidence be identified?

Even though extending the evidence base to incorporate indirect evidence has the
potential to result in several advantages and influence conclusions, there is not yet much
work on trying to determine how we can systematically search for indirect evidence.
Instead, researchers are usually informed about the existence of such evidence either by
clinicians who have expertise on a disease and follow relevant updates, or by systematic
reviewers who encounter articles including indirect evidence in the process of screening
databases and defining inclusion/exclusion criteria.

Of course the identification of indirect evidence is inevitably going to be easier in
some situations than others. For instance, adult evidence is a common indirect source for
decisions that consider children, but other sources may exist as well. Decision-makers
would therefore often need to judge ‘how far we should go’ to identify indirect evidence.
To date, he only work that has specifically developed systematic review strategies to
identify indirect evidence was conducted by Hawkins et al., 2009 and only considered the
identification of evidence on indirectly related interventions. Further research could try
to develop similar strategies in order to systematise the process of identifying indirect
evidence on other PICOS levels.

Which information-sharing methods are more appropriate?

Although Chapter 4 provided a step-by-step approach to identify potentially applicable
ISMs, ways of choosing amongst the applicable methods were not suggested. This is
because the appropriateness of a method relies on the plausibility of its assumptions
which cannot be assessed without information on the true relationship between the direct
and indirect RTEs. Unfortunately, such information is rarely available in HTA. Therefore,
the appropriateness of each method would have to be based on a judgement about the
plausibility of each method’s assumption and its expected degree of information-sharing.
Importantly, in decision-making such judgements should be in a transparent manner
that makes all the necessary assumptions explicit. As noted in the previous section,
this information could potentially be elicited from clinical experts who not only have
knowledge of differences between patients, treatments and outcomes from their clinical
practice, but also often have experience in generating both direct and indirect evidence.

If the preferred degree of sharing can be established, and direct and indirect evidence
fall in one of the scenarios explored in Chapter 7, then we may be able to select methods
that impose the desired borrowing of strength. However, as illustrated in Chapter 7, ISMs
cannot always be mapped to the information-sharing spectrum because the way that they
relate to lumping and splitting is in itself uncertain. Therefore, under such circumstances,
the point at which each method sits on the information-sharing spectrum is unclear and
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even obtaining knowledge on the desired or appropriate degree of sharing may not prove
helpful in refining the ISMs list.

One way to move forward then is perhaps by applying at least one method from each
strength of sharing category i.e. a method expected to impose strong information-sharing,
such as an informative prior; a method expected to impose minimal information-sharing,
such as a multi-level model; and finally a method that shares information in an adaptive
manner, such as a mixture prior. This could be considered as a sensitivity analysis
to different ISMs. If all the selected methods lead to similar policy recommendations,
decision-makers may confidently infer that the imposed strength of information-sharing
is not a key driver of cost-effectiveness. However, if alternative ISMs suggest different
conclusions, decision-makers would need to make further value judgements. Specifically,
they would need to assess the plausibility of the assumptions imposed by each ISM in
the context of interest, and derive the appropriate degree of information-sharing between
direct and indirect evidence in order to implement only specific ISMs that impose the
desired degree of information-sharing.

Overall, although this thesis has provided a detailed description of ISMs, the con-
siderations that analysts must take into account, and the potential implications for
decision-making, significant uncertainties still remain. In particular, shedding more light
on the issues around the appropriateness of each ISM and the strength of sharing they
impose will be challenging. Although simulations may better characterise how some
methods compare to one another under specific circumstances, they are unlikely to pro-
vide knowledge of how all methods compare to each other in any situation; let alone,
which method imposes the most appropriate strength of sharing. Further research could
attempt to find alternative ways of incorporating considerations around the appropriate
degree of information-sharing into the methods choice process.
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8.5. Concluding remarks

In conclusion, this thesis has demonstrated that when indirect evidence is used in HTA
to strengthen inference, lumping and splitting are not the only options. Instead, there
are a plethora of more sophisticated methods, which bridge the gap between lumping
and splitting by imposing more moderate —and perhaps more appropriate —degrees of
information-sharing. Researchers working in the field of HTA should therefore consider
expanding their toolbox to include more ISMs. To that end, a step-by-step approach to
methods identification was suggested. This may be useful for analysts and appraisers who
want to ensure that all relevant methodological options were considered. Furthermore,
through an application in an existing economic evaluation, it was shown that the use
of different ISMs can lead to different adoption and research prioritisation decisions.
This highlights that method choice has the potential to considerably influence policy
recommendations, and implies that the plausibility of methods’ assumptions should be
carefully assessed. Finally, by the means of a simulation, it was shown that it may not
always be easy to predict the degree of information-sharing that each method imposes.
Hence, judgements about the appropriate degree of information-sharing should be associ-
ated with particular ISMs only cautiously. Overall, this thesis is to date the first piece of
work that has attempted to compile an exhaustive list of ISMs, retaining a clear focus on
policy, and with the ultimate purpose of providing a structured way of thinking about
information-sharing problems in HTA.
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review

A. Appendix to Chapter 3: Classifying information-sharing methods: a
citation-mining review

A.1. Methods

Exclusion criteria
Papers were excluded from the search if they fell in any of the categories below:

1. Methods or applications developed outside health research field (e.g. ecology).

2. Applications of standard MA/NMA methods without any extensions or develop-
ments to accommodate the inclusion of indirect information.

3. Irrelevant papers. Examples in that category include the following:

• Papers that developed graphical/presentational methods for MA/NMA.

• Papers that developed methods intended to assess consistency of the evidence.

• Papers that aimed to introduce basic concepts and methods of MA/NMA,
without any focus on advanced methods that extend the standard models to
accommodate the inclusion of indirect evidence.

• Reviews of the quality of the methods used to conduct MA/NMA.

• Papers that develop methods to combine sources of information outside the
field of MA/NMA. For example, methods that aim to utilise evidence from his-
torical controls in the design of future trials or outside the field of comparative
effectiveness research.

4. Protocols for the conduct or analysis of a future study.

5. Articles in which the University of York could not provide access to the full-text.
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A.2. Results

Table A.2.1: A brief summary of the papers included in the citation-mining review.

Reference Summary

1 Achana et al., 2014 They extend network meta-analytic models to the multiple out-
comes setting, allowing for strength to be borrowed across dif-
ferent outcomes. They also explain how the constant potency as-
sumption, originally proposed by (Dumouchel and Harris, 1983),
can be used to share information across interventions and out-
comes simultaneously.

2 Achana et al., 2013 They extend methods that adjust for baseline-risk imbalances
from the meta-analysis to the network meta-analytic framework.
The models that they impose on the study-specific baselines,
effectively share information across studies that enrol different
populations (hence the baseline imbalances). They also describe
models that can be imposed on the comparison-specific meta-
regression slopes thus also sharing information across treatment
comparisons.

3 Ades et al., 2010 They describe models that simultaneously analyse multiple mutu-
ally exclusive outcomes, specifically accounting for the negative,
within-trial, correlations that are induced by this data structure.

4 Ades et al., 2008 This was one of the seminal papers included in the citation-
mining review. The authors discuss multi-parameter evidence
synthesis and the concept of borrowing strength describing mod-
els that have been suggested in the literature such the confidence
profile method, hierachical models and multi-variate approaches.

5 Ades et al., 2006 This was one of the seminal papers included in the citation-
mining review. The authors discuss the role of Bayesian methods
that can accommodate borrowing of strength in cost-effectiveness
analysis. They conceptually describe methods that can simultane-
ously analyse multiple outcomes, that share information across
patient subgroups, that incorporate observational evidence and
that can be used for bias-adjustment.
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6
Ades and Sutton,

2006
They describe approaches for multi-parameter evidence synthesis
including the confidence profile method, cross-design synthesis,
hierarchical models and functions of parameters.

7
Bujkiewicz et al.,

2016
They suggest multivariate models that simultaneously analyse
surrogate and final outcomes. The models they suggest can
impose structure to the covariance matrix to accommodate both
cases where all outcomes are related to each other and cases
where some outcomes are conditionally independent.

8
Bujkiewicz et al.,

2014
They expand the evidence base by adding evidence on outcomes
different than the target outcomes and simultaneously synthesise
them using multivariate methods; thus, borrowing strength from
related outcomes. In addition, they utilise a different dataset
to derive informative prior distributions for the between study
correlations.

9
Chaimani and
Salanti, 2012

They describe models that estimate and adjust for small-studies
bias, thus sharing information across studies of different designs.
They also suggest models that can be imposed on the comparison-
specific coefficients (i.e. the comparison-specific extend of the
small-study effect modification), hence sharing information across
treatment comparisons.

10 Cooper et al., 2009 They propose modelling approaches for the comparison-specific
effect modification coefficients (i.e. slopes) in meta-regression
models.

11 Copas et al., 2018 They explore the combination of primary and secondary out-
comes using multivariate RE meta-analytic models. They further
show that, usually, the extent of the information gain using mul-
tivariate approaches is only modest.

12 da Costa et al., 2017 They describe an application of network meta-analytic models in
which they assume a linear (on the modelling scale —log relative
dosage) dose-response curve; thus, sharing information across
treatment comparisons. They also impose a random-walk across
different the relative effects of different follow-ups hence sharing
information across different outcomes.

203



A. Appendix to Chapter 3: Classifying information-sharing methods: a citation-mining
review

13 Dakin et al., 2011 They describe models to relate outcomes that pertain to mea-
surements taken at different parts during the day (This is here
considered sharing information across different endpoints). They
further model treatments within classes, allowing strength to
be borrowed from interventions that function through similar
mechanisms.

14
Daniels and Hughes,

1997
They propose multivariate meta-analytic models that evaluate
the association between surrogate markers and final outcomes.
Information is shared across the two outcomes by modelling their
correlation structure.

15
Del Giovane et al.,

2013
They describe network meta-analytic models that relate the rela-
tive effects of different dosages of the same treatment. Specifically,
they explore lumping all dosages, imposing random-walks, con-
straints, dose-response curves and class-effects.

16 Dias et al., 2010b They describe meta-regression type models that simultaneously
analyse studies in different levels of risk-of-bias (This is consid-
ered here as studies of different design). Their model can esti-
mate and internally adjust for biases that are due to both active
vs inactive treatment comparisons and active vs active treatment
comparisons.

17 Dias et al., 2011a They set out the basic model for NMA in which the between-
trial heterogeneities are assumed to be comparison independent;
Hence, information is then shared across different treatment
comparisons both as part of the consistency equations of the
model and as part of the common heterogeneity component.

18 Dias et al., 2011b They describe models that explore and explain heterogeneity
by accounting for specific effect modifiers. They also describe
models that can be imposed on the comparison-specific effect
modification coefficients to assist their identification.

19 Dias et al., 2011c They describe models that can imposed across the study-specific
baseline parameters such as a simple random-effect across all
baselines. This is considered here as sharing information amongst
different populations, because the baseline imbalances may be
indicative of different types of populations enrolled in different
trials.
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20 Ding and Fu, 2013 They describe a longitudinal model that combines information
from studies that report at multiple/different follow-ups periods
without the need for data reconstruction, whilst allowing predic-
tion of relative effects pertaining to follow-ups that have not been
observed.

21 Dominici et al., 1999 They describe a meta-analytic model that allows the relative
treatment effects of interventions that fall under the same ‘class’ to
shrink towards their class-specific mean. Hence, this assumptions
shares information across multiple treatment comparisons.

22 Duarte et al., 2017 Even though they seek to make a decision for a paediatric pop-
ulation, the authors extend the evidence base to include adult
evidence and analyse the full evidence set assuming no differ-
ences across adult and paediatric patients.

23 Eddy et al., 1990 They describe the confidence profile method which adjusts for
known sources of bias by directly modifying the likelihood func-
tion. This is categorised here as enabling information-sharing
across studies pertaining to different designs.

24
Efthimiou et al.,

2014
They describe two multivariate approaches to simultaneously
model multiple outcomes in the NMA setting. The first models
within- and between- trial correlations separately, and the second
expands the alternative model suggested by (Riley et al., 2008),
which only models the overall correlation, from MA to NMA.

25
Efthimiou et al.,

2017
They describe models to simultaneously synthesise evidence
pertaining to several study-designs. The suggested models in-
clude hierarchical models, informative prior models and design-
adjusted models.

26
Efthimiou et al.,

2015
They describe multivariate approaches to simultaneously model
multiple outcomes in the NMA.

27
Gamalo-Siebers

et al., 2017
They describe prior-based and hierarchical methods (including
power-priors) to combine paediatric and adult evidence; thus,
sharing information amongst multiple populations.
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28
Higgins and

Whitehead, 1996
They describe the standard RE NMA model and in addition,
suggest a method for using historical information to derive an
informative prior for the between-studies heterogeneity. This
can be particularly helpful when evidence is sparse and the
heterogeneity cannot be appropriately estimated.

29 Hong et al., 2018a They improve the alternative model suggested by (Riley et al.,
2008) by suggesting a robust variance estimator.

30 Hong et al., 2016 They describe contrast-based and arm-based parametrisations
of a framework that allows simultaneous synthesis of multiple
outcomes. This framework assumes that all studies can contain
all treatment arms and hence considers missing arms as missing
data and imputes for them.

31 Hong et al., 2018b Described power and commensurate prior methods to combine
aggregate-level and individual-patient level evidence in NMA.

32
Hwang and

DeSantis, 2018
They demonstrate that, just as in the MA setting, the use of mul-
tivariate methods has the capacity to reduce outcome reporting
bias under several outcome missingness scenarios in the NMA
setting as well.

33 Jackson et al., 2011 They explained multivariate meta-analysis for multiple outcomes,
including within- and between- studies level models and dis-
cussed potential benefits and areas of application as well as
assumptions and disadvantages.

34 Jackson et al., 2013 They propose a method for multivariate RE meta-analysis that
is also able to accommodate the inclusion of covariates through
meta-regression.

35 Jackson et al., 2014 They propose a multivariate method to model studies that re-
port survival outcomes at multiple/different follow-up points.
Their method models the between-study covariance matrix across
different time periods.
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36
Jackson and Riley,

2014
They extend a refined method, previously developed by (Hartung
and Knapp, 2001) in the univariate setting, to the multivariate
setting where multiple outcomes are simultaneously modelled.
This method is particularly useful when only few studies are
included in the MA causing problems in the estimation of the
between-studies covariance matrix.

37 Jackson et al., 2017 They describe multivariate NMA methods and further propose
a method for calculating the extent of strength that is borrowed
across outcomes. Their method is based on a comparison of the
precision of the estimates under the univariate and the multivari-
ate approach.

38 Jackson et al., 2018 They extend univariate NMA methods to the multivariate setting
where multiple outcomes are simultaneously synthesised. Their
model further allows for two types of variance components. One
that is due to between-study heterogeneity and one that is due to
inconsistency.

39 Kirkham et al., 2012 They show that multivariate meta-analytic methods have the
capacity to reduce outcome reporting bias under several outcome
missingness mechanisms.

40 Langford et al., 2018 They developed methods to meta-analyse studies reporting for
different/multiple dosages of the same treatment; hence, sharing
information across the relative effectiveness of different treatment
comparisons. Their method utilises the Emax model that is com-
monly employed in pharmacology and has several advantages
over other, unbounded, approaches such as linear dose-response
models.

41 Liu et al., 2018 They develop a multivariate method for simultaneous synthesis of
multiple outcomes where within- and between-trials correlations
are accounted using copulas.

42 Lu et al., 2007 They extend NMA methods to accommodate cases where the
available studies report for multiple/different fixed follow-up
periods; hence, their methods borrows strength across different
endpoints which is considered here as information-sharing across
different outcomes.
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43 Lu and Ades, 2009 They model between-trial variance structures that are compatible
with consistency assumptions and allow one to incorporate prior
information on correlations between treatment arms.

44 Lu et al., 2014 They suggest methods to model the treatment comparison-
specific between-trials heterogeneities such as the use of triangle
inequalities which stem from second order consistency.

45 Madan et al., 2014 They develop a method to simultaneously analyse multiple out-
comes reported at different/several follow-ups of complex inter-
ventions. Their model shares information across outcomes and
treatment comparisons simultaneously

46 Mak et al., 2009 They use observational evidence to derive an informative prior
that is used for the analysis of the available randomised trials.
This is a two-step process which results in information-sharing
across studies of different designs.

47
Mavridis and
Salanti, 2013

They provide a thorough introduction to multivariate meta-
analytic methods and a tutorial on how to simultaneously analyse
multiple outcomes.

48 Mavridis et al., 2013 They describe an extension of a selection model, previously sug-
gested by (Copas, 1999) that can be used in MA to account for
publication bias that at is due to studies’ treatment effect size and
precision. This is considered here as sharing information across
studies that of different designs.

49
Mawdsley et al.,

2016
They describe model-based NMA that simultaneously analyses
trials that report for multiple dosages of a specific treatment.
Their model enables information-sharing across multiple treat-
ment comparisons using the Emax model which is commonly
used in pharmacology/pharmacokinetics.
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50
McCarron et al.,

2010
They describe methods to combine randomised and non-
randomised evidence adjusting for imbalances across study arms,
within studies. Two approaches are used. One that extends the
model previously suggested by (Prevost et al., 2000) and is essen-
tially a three-level hierarchical model, and another that initially
meta-analyses the non-randomised evidence and subsequently
uses the posterior conclusions as informative priors for the analy-
sis of the randomised evidence.

51
McCarron et al.,

2011
They describe a simulation study that compares the methods
presented in McCarron et al., 2010. These include multi-level
models and prior-based methods to combine randomised and
non-randomised evidence, that share information across different
designs, accounting for imbalances across study arms.

52
Melendez-Torres

et al., 2015
They discuss emergent methods for modelling complex interven-
tions by grouping them into ‘clinically meaningful units’ or, in
other words, according to the components of interventions that
they include.

53 Mills et al., 2012 They described methods that model complex interventions by
assuming additivity of the relative effects of the various compo-
nents on the modelling scale. This approach shares information
across treatment comparisons and also enables the evaluation of
treatment combinations that have not been used in practice.

54 Moreno et al., 2011 They propose a meta-regression method that accounts for publi-
cation bias and small-study effects by regressing the treatment
effect on its associated variance. The model simultaneously anal-
yses evidence pertaining to 12 interventions, all of which fall into
the same ‘class’ of antidepressants. Their meta-regression model
also assumes exchangeability across the treatment comparison-
specific meta-regression slopes. Overall, it shares information
across different study-designs (small/large studies) and treatment
comparisons (class of antidepressants)
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55
Musekiwa et al.,

2016
They describe a generalised linear mixed model that can simul-
taneously model studies reporting at multiple pre-determined
timepoints (i.e. follow-ups) accounting for within- and between-
studies correlations. This model is considered to share informa-
tion across several outcomes.

56 Nam et al., 2003 They suggest multivariate models that can simultaneously model
and share information across multiple outcomes. Two of their
models, extend the traditional univariate approach and differ
in the assumptions they make at the between-studies level; the
third model is a mixed model approach. They compare their
approaches using a simulation experiment.

57 Nixon et al., 2007 They suggest methods to model complex interventions. These
include meta-regression approaches that assume additive effects
among treatment components and also a bivariate approach. They
also try a class-effects model where treatments are lumped within
classes. All their models share information across parameters
pertaining to different treatment comparisons.

58 Owen et al., 2015 They develop a multi-level approach that models interventions
within classes of treatments allowing the relative effects of each
treatment to shrink toward their class-specific mean. They also
impose constraints on the dosages, forcing larger dosages to
exhibit larger relative effects. Their models primarily share in-
formation across parameters that pertain to different treatment
comparisons.

59 Prevost et al., 2000 They suggest a hierarchical, multi-level, approach to model stud-
ies pertaining to different study-designs (e.g. randomised and
non-randomised studies). This includes initially modelling stud-
ies within each design and subsequently modelling allowing all
design-specific hyperparameters to shrink towards an overall
design-independent hypermean. This approach also allow for
separate heterogeneity components to be estimates within each
design and across all designs. Their model shares information
across studies of different designs.
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60 Pullenayegum, 2011 They suggest the use of informative prior distributions for the
between-study heterogeneneity when RE meta-analyses analyse
sparse evidence. Their priors are derived based on previous meta-
analyses and hence this is a meta-epidemiological approach.

61 Ren et al., 2018 They develop a method to elicit informative prior distributions
that can be used for the between-trials heterogeneity in RE meta-
analyses.

62 Rhodes et al., 2015 They use previous meta-analyses to obtain informative priors that
can be used for the between-trials heterogeneity when the number
of studies analysed with a random-effect is small and estimation
of the between-studies heterogeneity becomes problematic.

63 Rietbergen, 2016 They describe the use of power-priors in many settings. In one
of their applications they demonstrate how power-priors can
be used to combine randomised and observational evidence by
discounting the likelihood of the observational data. Their models
share information across multiple study-designs.

64 Riley et al., 2007a They describe how standard bivariate meta-analysis models can
be used and compare them with the univariate approach under a
set of scenarios where studies report either complete information
on all outcomes or some outcomes are missing at random.

65 Riley et al., 2007b They describe multivariate RE meta-analytic methods to model
simultaneously multiple outcomes and further focus on issues
that arise with the estimation of the between covariance matrix,
particularly when only few studies are available and the within-
study variance is large.

66 Riley et al., 2008 They describe an alternative bivariate random-effect model to
analyse multiple outcomes when within-trial correlations are un-
known. This model does not distinguish between within-trials
and between-trials correlations, and models it as a single correla-
tion, so requires the same data as required for separate univariate
meta-analyses. (Hong et al., 2018a) showed that this model may
not always appropriately estimate variance and suggested a ro-
bust variance estimate that improved on this model.
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67 Rodgers et al., 2011 This is an HTA where the authors analysed studies that reported
at different follow-up periods without accounting for this dif-
ference and effectively lumping across follow-ups. Even though
they assumed that all studies reported the same outcome, since
different length of follow-ups can be considered essentially dif-
ferent endpoints, here, it is considered that the authors lumped
across multiple outcomes.

68 Roever et al., 2019 They demontrate how mixture priors can be used to combine
adult and paediatric evidence where the adult evidence are part
of the prior. They further show that this approach is robust
to ‘prior data conflict’ (that is cases where direct and indirect
evidence are in disagreement) and that therefore mixture priors
facilitate adaptive borrowing of strength.

69 Salanti et al., 2010 They develop network meta-regression models to estimate and ad-
just for novelty bias in which the effectiveness of newer treatments
is potentially exaggerated. This is considered here as sharing
information across studies pertaining to different designs.

70 Salanti et al., 2009 They develop a network meta-regression model that estimates
and adjusts for the effect modification caused by the year of
publication. This is considered here a characteristic of the study-
design and hence this model shares information across studies of
different designs.

71 Schmitz et al., 2013 They suggest modelling approaches to combine randomised
and non-randomised studies. These include a simple lumping
approach where no differences are considered, using the non-
randomised evidence as prior information and analysing both
sources with a three-level model that initially models studies
within each design and subsequently combines the design-specific
hyperparameters.

72 Soares et al., 2014a They describe modelling approaches that can be used to overcome
issues relating to evidence sparsity. Amongst the suggested
models there are methods that lump across different population
subgroups (patients of different disease severity) and methods
that impose a ‘class-effect’ on intervention functioning through
the same mechanism.
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73
Spiegelhalter and

Best, 2003
They describe a modelling approach that can be used in random-
effect meta-analysis to adjust for internal and external biases and
therefore combine studies that may pertain to several different
study-designs.

74 Tan et al., 2018 They use a bivariate meta-analytic model to obtain estimates
required for decision-making that have not been reported and
would not be obtainable using standard methods.

75 Thorlund et al., 2013 They conduct a simulation experiment to compare different mod-
els, originally suggested by (Lu and Ades, 2009), that can be
imposed on the treatment comparison-specific between-trial het-
erogeneities. These models share information across different
treatment comparisons.

76 Trinquart et al., 2012 They describe meta-regression models, similar to those suggested
by (Chaimani and Salanti, 2012) that can be used, to estimate and
adjust for reporting bias. This is assumed to be linked with the
study size and therefore their models share information across
studies of different designs.

77 Turner et al., 2015 They utilise meta-epidemiological data from previous meta-
analyses in order to obtain ‘of-the-shelf’ informative priors for the
between-trials heterogeneity in RE meta-analyses. These informa-
tive priors are particularly useful when there are only few studies
in the meta-analysis and the estimation of the between-studies
heterogeneity becomes problematic.

78 Turner et al., 2009 They suggest bias-adjustment methods which allow synthesis of
studies that differ in rigour (i.e. internal validity) and relevance
(i.e. external validity). Their approaches allow for both additive
and proportional biases on the modelling scale. These models
share information across different study-designs.

79
van Houwelingen

et al., 2002a
They describe extensions to the univariate approach (that can
only model one outcome at a time). These include bivariate
methods that simultaneously model two outcomes and allow
information to be shared across outcomes at the within- and the
between-studies level.
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80
Van Houwelingen

et al., 1993
This is one of the seminal papers included in the citation-mining
review. The authors set the initial ideas around the use of multi-
variate meta-analysis to simultaneously model multiple outcomes
allowing strength to be borrowed across them through their cor-
relation structure.

81 Warren et al., 2014 They describe how hierarchical, multi-level, methods can be used
to model multiple dosages of the same interventions and multiple
treatments that fall under the same ‘class’ (i.e. mechanism of
action). Furthermore, they show how dosage constraints can
be imposed assuming that larger dosages exhibit larger relative
effects.

82
Wei and Higgins,

2013a
They suggest an approach that can be used for multivariate
models to approximate within-study covariances when their es-
timation is problematic because the within-trial correlations are
either unknown or cannot be estimated using IPD.

83
Wei and Higgins,

2013b
They set out to extend bivariate meta-analytic methods to cases
where more than two outcomes are simultaneously modelled.
They further suggest alternatives to the Wishart prior for the
variance-covariance matrix and explore simplifying assumptions
that can be imposed on the variances and the correlations when
their number increases due to additional outcomes included in
the analysis.

84 Welton et al., 2009b They suggest NMA meta-regression approaches that can be used
to model complex interventions with multiple treatment compo-
nents. On top of simple additive -on the modelling scale- relative
effects, they also show how synergistic or antagonistic effects can
be incorporated in the model.

85 Welton et al., 2009a They suggest hierarchical models that can be used to simul-
taneously model studies in high and low risk of bias using a
bias-adjustment approach; hence, their models share information
across multiple study-designs. They further show how external
evidence can be used to derive informative priors for the bias
component.
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86 Welton et al., 2008 They suggest models that simultaneously synthesize two struc-
turally related time-to-event outcomes. They use constraints to
reflect that one outcomes needs to be reached before the other
and they also model their between-studies covariance using mul-
tivariate methods.

87 Welton et al., 2010 They develop a multi-parameter evidence synthesis framework
to model multiple time-to event outcomes. They reflect structural
relationships among outcomes by forcing their relative treatment
effects to differ by a fixed component term. They also reflect
the between-study correlation structure amongst outcomes using
multivariate methods.

88
Wolpert and Kerrie,

2004
They suggest models, similar to those developed by (Eddy et al.,
1990), to model multiple studies pertaining to several designs by
directly modelling sources of bias using adjusted likelihoods.

89 Wu et al., 2018 They describe methods for model-based meta-analysis of biologic
products using a linear dose-response relationship where the
dosage is proportional to the relative effect -on the modelling
scale- and also using the commonly employed in the pharma-
cokinetics field non-linear Emax model. Their models share
information across treatment comparisons (i.e. the relative effects
of different dosages of the same treatment).
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B. Appendix to Chapter 5: Borrowing strength from paediatric patients to
inform relative effectiveness in adults: a case-study

B.1. Previous work

Table B.1.1: Characteristics of the interventions used in the included studies.
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HAS: Human Albumin Serum, SC: standard of care (i.e. a combination of antibiotics), PLAC: Placebo.
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B.2. Systematic review update

Table B.2.1: Search in Ovid MEDLINE(R).

# Searches Results
1 immunoglobulins/ 42452
2 immunoglobulin$.tw. 141513
3 ivig.tw. 6165
4 1 or 2 or 3 165054
5 sepsis/ 53622
6 sepsis.tw. 83096
7 septic shock/ 20856
8 septic shock.tw. 18886
9 septicemia/ 53622

10 septicaemia.tw. 6055
11 septicemia.tw. 12227
12 5 or 6 or 7 or 8 or 9 or 10 or 11 139261
13 4 and 12 1778
14 randomized controlled trial.pt. 464602
15 controlled clinical trial.pt. 92507
16 randomized.ab. 407222
17 placebo.ab. 187477
18 drug therapy.fs. 2031668
19 randomly.ab. 288588
20 trial.ab. 423856
21 groups.ab. 1779563
22 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 4192834
23 exp animals/ not humans.sh. 4475707
24 22 not 23 3617942
25 13 and 24 553

Ovid MEDLINE(R) 1946 to July Week 3 2018, Ovid MEDLINE(R) In-Process & Other Non-Indexed
Citations July 31, 2018.
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Table B.2.2: Search in EMBASE.

# Searches Results
1 immunoglobulins/ 115815
2 immunoglobulin$.tw. 163890
3 ivig.tw. 14191
4 1 or 2 or 3 235251
5 sepsis/ 137769
6 sepsis.tw. 125463
7 septic shock/ 44807
8 septic shock.tw. 29733
9 septicemia/ 16197
10 septicaemia.tw. 6613
11 septicemia.tw. 13638
12 5 or 6 or 7 or 8 or 9 or 10 or 11 229315
13 4 and 12 5007
14 random.tw. 268899
15 placebo.mp. 407475
16 double-blind.tw. 170545
17 14 or 15 or 16 716448
18 17 and 13 306
19 animals/ not (animals/ and humans/) 1348142
20 18 not 19 306

EMBASE 1980 to 2018 Week 31.
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Table B.2.3: Current evidence totality comprising from RCTs on both adult and paediatric patients.

# Reference Soares et al.,
2012 M(-09) E(-09) M(10-) E(10-)

Alejandria
and

Marissa,
2013

Population

1 Behre et al., 1995 n/a n/a n/a n/a Adults
2 Burns et al., 1991 n/a n/a n/a n/a Adults
3 Darenberg et al., 2003 n/a n/a n/a n/a Adults
4 De Simone et al., 1988 n/a n/a n/a n/a Adults
5 Dominioni et al., 1996 n/a n/a n/a n/a Adults
6 Grundmann and Hornung, 1988 n/a n/a n/a n/a Adults
7 Hentrich et al., 2006 n/a n/a n/a n/a Adults
8 Karatzas et al., 2002 n/a n/a n/a n/a Adults
9 Lindquist et al., 1981 n/a n/a n/a n/a Adults

10 Masaoka et al., 2000 n/a n/a n/a n/a Adults
11 Rodriguez et al., 2005 n/a n/a n/a n/a Adults
12 Schedel et al., 1991 n/a n/a n/a n/a Adults
13 Spannbrucker et al., 1987 n/a n/a n/a n/a - Adults
14 Tugrul et al., 2002 n/a n/a n/a n/a Adults
15 Werdan et al., 2007 n/a n/a n/a n/a Adults
16 Wesoly et al., 1990 n/a n/a n/a n/a Adults
17 Yakut et al., 1998 n/a n/a n/a n/a Adults

18 Chen, 1996 n/a n/a n/a Neonates
19 Erdem et al., 1993 n/a - n/a n/a Neonates
20 Haque et al., 1988 n/a - n/a n/a Neonates
21 Mancilla-Ramirez et al., 1992 n/a - n/a n/a Neonates
22 Samatha et al., 1997 n/a - - n/a n/a Neonates
23 Shenoi et al., 1999 n/a n/a n/a Neonates
24 Weisman et al., 1992 n/a n/a n/a Neonates
25 Akdag et al., 2014 n/a n/a n/a n/a Neonates
26 Brocklehurst et al., 2011 n/a n/a n/a Neonates
27 Kola et al., 2014 n/a n/a n/a - NA young children
28 Yildizidas et al., 2005 n/a - - n/a n/a young children

The various columns indicate which steps identified which studies. M and E abbreviate Medline and
Embase respectively. (-09) indicates that studies where searched for up to December 2009, and (10-) that
studies where searched from January 2010 onwards. n/a suggests that a study could not have been
identified in this step, while ‘-‘ that a study could have been identified but was not.
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B.3. Naive analyses

Figure B.3.1: FE meta-analysis separately within each population and across both populations.

The plot was created using Review Manager 5.4 (Copenhagen: The Nordic Cochrane Centre, The Cochrane
Collaboration, 2014).
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Figure B.3.2: Funnel-plot including all studies. Adult studies in black circles and paediatric studies in red
diamonds.

The plot was created using Review Manager 5.4 (Copenhagen: The Nordic Cochrane Centre, The Cochrane
Collaboration, 2014).
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B.4. Heterogeneity re-exploration

Table B.4.1: Step 2. T2 Network results of meta-regression models on covariates shown in the first column.

covariate Model τAD τPE βAD βPE Dres DresAD DresPE DIC

NULL
FE n/a n/a - - 77.02 51.43 25.59 303.36
RE 0.56∗ 0.47 - - 51.97 30.82 21.14 289.31

Duration

FE sep n/a n/a −0.38∗ 0.36 61.39 37.11 24.27 289.70
FE com n/a n/a −0.27∗ −0.27∗ 69.01 38.12 30.90 296.34
RE sep 0.37‡ 0.46 −0.29‡ 0.25 54.01 32.40 21.61 290.33
RE com 0.43‡ 0.57‡ -0.18 -0.18 53.28 31.71 21.57 290.52

Jadad

FE sep n/a n/a 0.29∗ 0.09 64.83 39.24 25.59 293.15
FE com n/a n/a 0.20∗ 0.20∗ 66.55 39.87 26.68 293.87
RE sep 0.44‡ 0.55 0.20 0.01 53.78 32.33 21.46 291.51
RE com 0.47∗ 0.49 0.12 0.12 53.59 31.53 22.06 290.83

Sample

FE sep n/a n/a −6.64∗ −2.98∗ 58.83 36.55 22.29 287.16
FE com n/a n/a −4.52∗ −4.52∗ 60.49 37.32 23.17 287.83
RE sep 0.35 0.44 −5.26∗ -2.64 53.61 32.56 21.05 288.94
RE com 0.37‡ 0.39 −4.05∗ −4.05∗ 53.00 31.87 21.13 287.92

Dosage

FE sep n/a n/a -0.18 0.40 77.72 52.22 25.50 306.05
FE com n/a n/a 0.09 0.09 77.89 52.27 25.62 305.23
RE sep 0.59∗ 0.51 -0.16 0.22 52.94 31.31 21.63 292.05
RE com 0.58∗ 0.50 0.03 0.03 52.51 31.19 21.31 290.86

Year

FE sep n/a n/a 0.07∗ 0.03‡ 59.86 35.90 23.96 288.18
FE com n/a n/a 0.05∗ 0.05∗ 61.48 36.50 24.98 288.77
RE sep 0.32 0.47 0.05∗ 0.02 54.36 32.93 21.43 289.87
RE com 0.36‡ 0.46 0.04∗ 0.04∗ 53.55 32.02 21.52 288.97

∗ indicates a value that is significant at the 5% level, whilst a ‡ at the 10% level. Blue and red shading
indicate low and high within-column values respectively. The NULL model refers to the corresponding
network without any covariates as that is presented in Table 5.5. Sample size, N, is modelled as 1/

√
N.
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Table B.4.2: Step 2. T3a Network results of meta-regression models on covariates.

covariate Model τAD τPE βAD βPE Dres DresAD DresPE DIC

NULL
FE n/a n/a - - 71.11 50.12 20.99 299.45
RE 0.60∗ 0.35∗ - - 51.89 31.23 20.67 289.50

Duration

FE sep n/a n/a −0.37∗ 0.29 58.24 37.57 20.67 288.55
FE com n/a n/a −0.27∗ −0.27∗ 63.53 38.25 25.28 292.85
RE sep 0.42‡ 0.37 −0.28‡ 0.31 53.14 32.63 20.51 290.34
RE com 0.49‡ 0.44 -0.14 -0.14 53.55 31.90 21.65 291.56

Jadad

FE sep n/a n/a 0.34∗ -0.03 61.59 39.63 21.95 291.92
FE com n/a n/a 0.17∗ 0.17∗ 66.80 41.91 24.88 296.11
RE sep 0.46‡ 0.42 0.23 -0.04 53.86 32.70 21.16 291.90
RE com 0.54∗ 0.43 0.08 0.08 53.09 31.63 21.46 291.51

Sample

FE sep n/a n/a −7.17∗ -1.28 58.91 37.36 21.55 289.20
FE com n/a n/a −4.28∗ −4.28∗ 62.38 38.73 23.64 291.70
RE sep 0.38 0.48 −5.41‡ -1.05 53.97 33.09 20.89 291.22
RE com 0.44‡ 0.45 -3.69 -3.69 52.99 32.06 20.93 290.27

Dosage

FE sep n/a n/a -0.18 -0.04 72.93 50.91 22.03 303.28
FE com n/a n/a -0.12 -0.12 71.95 50.49 21.46 301.27
RE sep 0.63∗ 0.42 -0.17 -0.03 53.10 31.71 21.39 292.81
RE com 0.61∗ 0.38 -0.10 -0.10 52.50 31.49 21.01 291.06

Year

FE sep n/a n/a 0.07∗ 0.01 58.14 36.49 21.65 288.45
FE com n/a n/a 0.04∗ 0.04∗ 61.26 37.61 23.66 290.57
RE sep 0.36 0.42 0.05‡ 0.02 54.06 33.14 20.92 290.66
RE com 0.43‡ 0.44 0.03 0.03 53.12 32.18 20.93 290.29

∗ indicates a value that is significant at the 5% level, whilst a ‡ at the 10% level. Red shading indicates
high within-column values. The NULL model refers to the corresponding network without any covariates
as that is presented in Table 5.5. Sample size, N, is modelled as 1/

√
N.
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Table B.4.3: Step 2. T4 Network results of meta-regression models on covariates.

covariate Model τAD τPE βAD βPE Dres DresAD DresPE DIC

NULL
FE n/a n/a - - 65.57 43.58 22.00 295.92
RE 0.53∗ 0.46∗ - - 52.99 31.90 21.08 291.76

Duration

FE sep n/a n/a −0.41∗ 0.54 50.88 28.80 22.08 283.23
FE com n/a n/a −0.36∗ −0.36∗ 53.29 28.85 24.44 284.61
RE sep 0.21 0.50 −0.40∗ 0.54 50.42 29.15 21.27 286.72
RE com 0.22 0.57 −0.36∗ −0.36∗ 51.10 29.14 21.97 287.43

Jadad

FE sep n/a n/a 0.32∗ 2.99 60.45 38.43 22.01 291.78
FE com n/a n/a 0.33∗ 0.33∗ 60.43 38.42 22.01 291.76
RE sep 0.46‡ 0.47 0.22 5.57 54.04 32.93 21.10 292.85
RE com 0.46‡ 0.47 0.23 0.23 53.96 32.91 21.05 292.67

Sample

FE sep n/a n/a −8.07∗ -4.07 55.67 33.67 22.00 287.92
FE com n/a n/a −6.97∗ −6.97∗ 55.46 33.60 21.85 286.81
RE sep 0.30 0.49 −7.05∗ -4.35 53.57 32.29 21.27 291.08
RE com 0.30 0.45 −6.31∗ −6.31∗ 52.94 31.92 21.02 289.53

Dosage

FE sep n/a n/a −1.44∗ 2.04 58.89 36.77 22.11 291.29
FE com n/a n/a −1.19∗ −1.19∗ 60.74 36.82 23.93 292.09
RE sep 0.41‡ 0.50 −1.26‡ 2.11 52.94 31.72 21.22 291.87
RE com 0.43‡ 0.54 -0.98 -0.98 53.27 31.58 21.69 292.27

Year

FE sep n/a n/a 0.08∗ 0.05 57.67 35.56 22.11 290.06
FE com n/a n/a 0.08∗ 0.08∗ 56.87 35.38 21.49 288.16
RE sep 0.35 0.51 0.06 0.06 54.64 33.37 21.27 292.77
RE com 0.35 0.44 0.06‡ 0.06‡ 54.04 33.20 20.84 291.19

∗ indicates a value that is significant at the 5% level, whilst a ‡ at the 10% level. Blue indicates low
and high within-column values. The NULL model refers to the corresponding network without any
covariates as that is presented in Table 5.5. Sample size, N, is modelled as 1/

√
N.
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Table B.4.4: Results of meta-regression models on sample size for all network parametrisations.

covariate Model τAD τPE βAD βPE Dres DresAD DresPE DIC

T2

FE sep n/a n/a −6.64∗ −2.98∗ 58.83 36.55 22.29 287.16
FE com n/a n/a −4.52∗ −4.52∗ 60.49 37.32 23.17 287.83
RE sep 0.35 0.44 −5.26∗ -2.64 53.61 32.56 21.05 288.94
RE com 0.37 0.39 −4.05∗ −4.05∗ 53.00 31.87 21.13 287.92

T3a

FE sep n/a n/a −7.17∗ -1.28 58.91 37.36 21.55 289.20
FE com n/a n/a −4.28∗ −4.28∗ 62.38 38.73 23.64 291.70
RE sep 0.38 0.48 -5.41 -1.05 53.97 33.09 20.89 291.22
RE com 0.44 0.45 -3.69 -3.69 52.99 32.06 20.93 290.27

T3b

FE sep n/a n/a −7.49∗ -4.48 55.98 33.09 22.89 286.28
FE com n/a n/a −6.70∗ −6.70∗ 55.56 32.95 22.61 284.92
RE sep 0.29 0.50 −6.70∗ -4.51 53.22 31.57 21.65 289.36
RE com 0.27 0.45 −6.22∗ −6.22∗ 52.78 31.47 21.31 287.71

T4

FE sep n/a n/a −8.07∗ -4.07 55.67 33.67 22.00 287.92
FE com n/a n/a −6.97∗ −6.97∗ 55.46 33.60 21.85 286.81
RE sep 0.30 0.49 −7.05∗ -4.35 53.57 32.29 21.27 291.08
RE com 0.30 0.45 −6.31∗ −6.31∗ 52.94 31.92 21.02 289.53

∗ indicates a value that is significant at the 5% level, whilst a ‡ at the 10% level. Blue shading indicates
low within-column values with stronger shading indicating lower values.

Table B.4.5: Results of Meta-Regression models on Jadad for all network parametrisations.

covariate Model τAD τPE βAD βPE Dres DresAD DresPE DIC

T2

FE sep n/a n/a 0.29∗ 0.09 64.83 39.24 25.59 293.15
FE com n/a n/a 0.20∗ 0.20∗ 66.55 39.87 26.68 293.87
RE sep 0.44 0.55 0.20 0.01 53.78 32.33 21.46 291.51
RE com 0.47∗ 0.49 0.12 0.12 53.59 31.53 22.06 290.83

T3a

FE sep n/a n/a 0.34∗ -0.03 61.59 39.63 21.95 291.92
FE com n/a n/a 0.17∗ 0.17∗ 66.80 41.91 24.88 296.11
RE sep 0.46 0.42 0.23 -0.04 53.86 32.70 21.16 291.90
RE com 0.54∗ 0.43 0.08 0.08 53.09 31.63 21.46 291.51

T3b

FE sep n/a n/a 0.26∗ 1.97 61.07 38.23 22.85 290.39
FE com n/a n/a 0.26∗ 0.26∗ 61.09 38.20 22.88 290.41
RE sep 0.44 0.45 0.18 -3.18 53.86 32.43 21.43 291.07
RE com 0.43 0.47 0.19 0.19 53.84 32.46 21.38 291.10

T4

FE sep n/a n/a 0.32∗ 2.99 60.45 38.43 22.01 291.78
FE com n/a n/a 0.33∗ 0.33∗ 60.43 38.42 22.01 291.76
RE sep 0.46 0.47 0.22 5.57 54.04 32.93 21.10 292.85
RE com 0.46 0.47 0.23 0.23 53.96 32.91 21.05 292.67

∗ indicates a value that is significant at the 5% level, whilst a ‡ at the 10% level. Blue shading indicates
low within-column values.
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Comparison of the final base-models of this work and of the HTA
The final list of base-models is illustrated in Table B.4.6 and the two differences from

the original list in the HTA are highlighted in yellow. The meta-regression model on
sample size (1/

√
N) model is quite different from the one in Soares et al., 2012 because it is

a FE T3b model with common effect modification among the two populations. In contrast,
the Jadad model is only slightly different and this is due to the common effect modification
coefficient which already imposes some degree of information-sharing among adults and
paediatric patients. The divergence from the base-models that were used in the original
HTA (Soares et al., 2012) is shown in Figure B.4.1.

Table B.4.6: The final lists of models in Soares et al., 2012 and after the inclusion of the paediatric studies.

(HTA) Models for CEA (Adult + paediatric patients) Models for CEA DIC
T3b : FE + dur T3b : FE + duration (adults), FE (paediatric patients) 280.1

T2 : RE + sample size T3b : FE + sample size (common) 284.9
T3b : RE T3b : RE 290.3

T2 : RE + Jadad T2 : RE + Jadad (common) 291.1
DICs correspond to the models of this work which are listed in the second column.

Figure B.4.1: A comparison of the final list of base-models included in Soares et al., 2012 (black) and those
included after the heterogeneity re-exploration in this work (red).
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B.5. Sharing information between adults and paediatric patients

A plain language brief description of the ISMs used in Chapter 51

1. Lumping: All relative effects are assumed equivalent between adults and paediatric
patients. All studies are analysed under a common fixed- or random- effects model;
depending on the type of the base-model.

2. Common Heterogeneity: The between-studies heterogeneities are assumed equivalent
between the adult and paediatric evidence sets.

3. Multi-level model: The adult and the paediatric relative treatment effects are assumed
to be exchangeable.

4. Informative prior: The paediatric evidence is initially analysed. The paediatric
posterior relative effect mean estimate is then used as an informative prior for the
relative effect in the analysis of the adult evidence. Under RE models the predictive
distribution of the paediatric evidence is used as a prior for the analysis of the adult
evidence.

5. Mixture prior : As the informative prior, only now the prior is a combination of the
informative component and a new vague component. A hyper-prior that weights
the two components 50-50 is imposed and updated by the model.

6. Power-prior: The likelihood of the adults is kept at face value, but the likelihood
of the paediatric studies is down-weighted according to a pre-specified weight α.
For α = 0 paediatric evidence are fully disregarded, while for α = 1, the paediatric
evidence are considered at face value.

7. Commensurate prior: Adult and paediatric evidence are simultaneously analysed.
Even though a vague prior is used for the paediatric evidence, a prior that is centered
around the paediatric relative effect is used for the adult relative effect. the extent of
information-sharing is controlled by imposing a mixture (spike-and-slab) hyperprior
on its variance.

8. Prior on Heterogeneity: The paediatric evidence is initially analysed with a RE model.
The estimated between-studies posterior heterogeneity is then used as an informative
prior for the heterogeneity parameter in the analysis of the adult evidence.

1For more details see Chapter 4.
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Extending Information-sharing method (ISM)s described in Chapter 4 to accom-
modate information-sharing under meta-regression models

Consider the case where the base-models for both evidence sets account for the same
covariate X. Then the synthesis model for the direct evidence would take the following
form:

ri,k ∼ Bin(pi,k, ni,k)

logit(pi,k) = θi,k = µib + δi,bk + βDir · (Xi − XDir)

δi,bk ∼ N(dDir
bk , τDir2

)

dDir
bk = dDir

1k − dDir
1b

dDir
11 = 0

where dDir
bk , dDir

1k , τDir are the relative treatment effects, basic parameters, and between-
studies heterogeneity specific to the direct evidence. Xi is the study-specific value for
covariate X and XDir is the covariate value at which we center. Similarly the synthesis
model for the indirect evidence is defined by specifying dIndir

bk , dIndir
1k , τ Indir, and XIndir.

The prediction for the relative treatment effect of the direct evidence at a covariate
value of, say, X = 3 is:

mDir
1k [3] = dDir

1k − βDir · XDir + βDir · 3

which implies that if we choose to center at XDir = 3, then two two last components
cancel out and

mDir
1k [3] = dDir

1k

Similarly, for the indirect evidence the prediction for the relative effect at X = 3, if we
choose to also center at XIndir = 3 is

mIndir
1k [3] = dIndir

1k

This implies that we can still use the ISMs that were developed in Chapter 4, without
any modifications to accommodate the fact that the relative effect now comprises from
two components, even if different β coefficients are used in the two evidence sets, as long
as we are willing to center both sources’ meta-regression models at the covariate value at
which we want to relate them.
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An illustration of KL divergence

Figure B.5.1 illustrates KL-divergence from a standard normal distribution. The top
left figure, shows the KL divergence from a standard normal for distributions with sd = 1
and means varying between −1 and 1, while the top right graph for distributions with
mean = 0 and standard deviations varying between 0.4 and 1.6. It is immediately apparent
that KL seems to be symmetrical for divergent means, but more sensitive to lower -than
the reference distribution- standard deviations. This feature is also revealed in the bottom
graph by the non-circular shapes of the oval KL levels lines. The R code that shows the
integration process for the KL calculation is provided in the Appendix and follows the
steps that were detailed in Jackson, 2019 for KL calculation of beta distributions.
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Figure B.5.1: An illustration of KL divergence from the standard normal distribution.

The top left and right graphs show the KL divergence for distribution with varying means and varying
standard deviations respectively. The graph in the bottom incorporates both changes simultaneously and
reveals the non-symmetrical nature in which KL weights changes in the mean and the standard deviation.
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Table B.5.1: ISMs results for the T3b FE meta-regression on sample size base-model.

Method m.ad.339 sd.339 m.ad.infty sd.infty B.ad B.ad.sd resdev.ad DIC
Base-case 0.023 0.149 0.384 0.228 -6.654 2.031 32.929 284.847

Lumping -0.127 0.063 0.148 0.084 -5.069 1.431 34.444 284.847
Multi-level -0.042 0.139 0.281 0.212 -5.946 1.939 33.353 285.338
Commensurate prior -0.074 0.130 0.233 0.196 -5.642 1.854 33.679 287.900
Informative prior -0.108 0.098 0.149 0.150 -5.804 1.837 34.084
Mixture prior -0.105 0.100 0.153 0.151 -5.825 1.840 34.085
Pr-Power (a=0.1) -0.040 0.116 0.301 0.183 -6.276 1.924 32.906
Pr-Power (a=0.2) -0.075 0.099 0.242 0.152 -5.843 1.772 33.057
Pr-Power (a=0.3) -0.093 0.089 0.210 0.133 -5.582 1.667 33.236
Pr-Power (a=0.4) -0.105 0.082 0.190 0.119 -5.442 1.603 33.442
Pr-Power (a=0.5) -0.112 0.076 0.178 0.109 -5.346 1.544 33.581
Pr-Power (a=0.6) -0.118 0.073 0.168 0.103 -5.264 1.522 33.806
Pr-Power (a=0.7) -0.121 0.069 0.161 0.097 -5.200 1.504 33.982
Pr-Power (a=0.8) -0.124 0.067 0.156 0.092 -5.155 1.462 34.096
Pr-Power (a=0.9) -0.127 0.065 0.151 0.087 -5.108 1.451 34.301
Pr-Power (a=1) -0.128 0.063 0.147 0.084 -5.061 1.433 34.457

Predictions for treatment arm sizes of n = 339, n = ∞. Light red shade indicates the base-case (no
sharing/only adults) model for comparison purposes.

Table B.5.2: ISMs results for T3b RE base-model without any covariates.

ISM m.ad sd m.ad.pred sd.pred tau.ad resdev.ad DIC
Base-case (no sharing) -0.551 0.276 -0.550 0.599 0.486 31.705 290.391

Common Heterogeneity -0.525 0.256 -0.525 0.528 0.430 31.914 289.229
Lumping -0.420 0.232 -0.420 0.512 0.424 32.820 289.842
Multi-level -0.500 0.248 -0.501 0.570 0.471 31.749 289.845
Commensurate prior -0.473 0.242 -0.473 0.557 0.456 31.934 294.683
Informative prior -0.516 0.238 -0.517 0.561 0.468 31.617
Mixture prior -0.521 0.241 -0.521 0.569 0.471 31.643
Prior on heterogeneity -0.550 0.262 -0.549 0.563 0.468 31.402
Pr-Power (a=0.1) -0.433 0.244 -0.434 0.560 0.458 32.093
Pr-Power (a=0.2) -0.402 0.243 -0.404 0.554 0.452 32.347
Pr-Power (a=0.3) -0.395 0.241 -0.397 0.556 0.454 32.406
Pr-Power (a=0.4) -0.380 0.244 -0.378 0.561 0.455 32.553
Pr-Power (a=0.5) -0.383 0.245 -0.382 0.569 0.464 32.489
Pr-Power (a=0.6) -0.380 0.244 -0.379 0.570 0.463 32.545
Pr-Power (a=0.7) -0.388 0.242 -0.387 0.562 0.459 32.562
Pr-Power (a=0.8) -0.375 0.247 -0.375 0.570 0.465 32.684
Pr-Power (a=0.9) -0.391 0.247 -0.390 0.573 0.470 32.631
Pr-Power (a=1) -0.415 0.242 -0.415 0.525 0.431 32.790

Informative and mixture priors use the predictive distribution of the indirect evidence (not the posterior
mean). Light red shade indicates the base-case (no sharing/only adults) model for comparison purposes.
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Figure B.5.2: ISMs (except power-prior) of the FE Duration Meta-regression model and the RE Jadad
base-models.

Predictions refer to 3 days of duration and Jadad=5 respectively. The vague distributions correspond to
the RE model predictions, whilst the narrower distributions to the FE model predictions. Black estimates
correspond the original estimates from Soares et al., 2012, red to the splitting -only adults / no sharing-
base-case in this work, green to lumping, and gray to the various remaining ISMs.
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Table B.5.3: ISMs for T2 RE meta-regression on Jadad score.

ISM m.ad sd m.ad.pred sd.pred B.ad B.ad.sd tau.ad resdev.ad DIC
Base-case (no sharing) -0.546 0.312 -0.544 0.606 0.117 0.106 0.473 31.490 290.758

Common Heterogeneity -0.549 0.288 -0.547 0.550 0.110 0.100 0.434 31.506 289.333
Lumping -0.358 0.242 -0.360 0.504 0.135 0.099 0.398 32.466 289.814
Multi-level -0.498 0.291 -0.497 0.588 0.121 0.101 0.463 31.609 290.544
Commensurate prior -0.443 0.277 -0.445 0.561 0.131 0.103 0.438 31.929 293.130
Informative prior -pred- -0.498 0.291 -0.498 0.580 0.124 0.104 0.456 31.726
Mixture prior -pred- -0.510 0.294 -0.511 0.587 0.118 0.104 0.462 31.578
Pr-Het -0.580 0.300 -0.578 0.589 0.102 0.104 0.476 31.178
Pr-Power (a=0.1) -0.261 0.272 -0.259 0.525 0.231 0.118 0.394 32.820
Pr-Power (a=0.2) -0.254 0.261 -0.253 0.513 0.217 0.110 0.387 32.872
Pr-Power (a=0.3) -0.257 0.252 -0.255 0.516 0.205 0.107 0.391 32.850
Pr-Power (a=0.4) -0.268 0.251 -0.268 0.512 0.196 0.106 0.390 32.814
Pr-Power (a=0.5) -0.269 0.245 -0.268 0.512 0.189 0.103 0.390 32.884
Pr-Power (a=0.6) -0.285 0.246 -0.285 0.513 0.181 0.103 0.394 32.755
Pr-Power (a=0.7) -0.301 0.247 -0.299 0.517 0.168 0.102 0.400 32.737
Pr-Power (a=0.8) -0.314 0.244 -0.314 0.516 0.160 0.099 0.401 32.745
Pr-Power (a=0.9) -0.326 0.249 -0.328 0.524 0.153 0.102 0.408 32.678
Pr-Power (a=1) -0.343 0.249 -0.344 0.528 0.147 0.104 0.414 32.568

Predictions for Jadad = 5 (i.e. a study of the best quality). Informative and mixture priors use the
predictive distribution of the indirect evidence (not the posterior mean). Light red shade indicates the
base-case (no sharing/only adults) model for comparison purposes.
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B.6. Power-prior

In the 3 treatments network which is found to fit the best to our data (i.e. T3b), the
treatment comparison of interest is IVIG/IVIGAM vs ALB. The indirect (paediatric) evi-
dence base contains only 2//11 studies that provide information on this comparison. One
small study (Weisman et al., 1992) that suggests a strong effect favouring IVIG/IVIGAM,
and one very big multi-center study (Brocklehurst et al., 2011) which suggests that
IVIG/IVIGAM is no better than ALB.

Using these data, the resulting relative effects of the power-priors that discount the
likelihood of the indirect evidence with a range of α weights is shown in Figure B.6.1A.
Interestingly, as α increases (i.e. more and more weight is given to the paediatric evidence)
the relative effect does not follow a monotonous increasing function. Instead, for low
values of α it reaches a maximum which is more extreme than lumping and then follows a
gradually decreasing trend to reach a value identical for α = 1 that is identical to lumping.

Counter-intuitive as this may seem, it is due to the nature of the indirect evidence and
the way the power-prior model works. Initially, for very low values of α, the big study
(Brocklehurst et al., 2011) acquires significant weight and thus pulls the overall relative
effect closer to its suggested effect (relative effect close to 0). For those low values of α the
likelihood of the aforementioned small study is negligible. However, as α increases beyond
0.4 this small study starts influencing the overall estimate and thus pulling towards it
suggested strong effect.

This explanation is confirmed by modifying the data and plotting the same graph
for two scenarios. In Figure B.6.1B the big study (Brocklehurst et al., 2011) is altered to
exhibit a strong effect similar to the small study. The results show the expected shape
which is a monotonous decreasing function. Similarly, in Figure B.6.1C, the small study
(Weisman et al., 1992) is altered to suggest a similar effect with the big study (i.e. no
effect) and the result is a monotonous increasing function. It is hence confirmed that the
observed shape in Figure B.6.1A appears because of the disagreement between the two
studies informing the relative effect of interest and the fact that they differ significantly in
size and therefore start influencing the overall results at different α values.
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Figure B.6.1: Relative treatment effect (IVIG/IVIGAM vs ALB) estimates (y-axis) of re-running power-
prior models for different α values (x-axis), for the Jadad RE base-model, under different
scenarios for the indirect evidence.
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B: Big study similar to small
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C: Small studies similar to big

Figure A illustrates the results using the original indirect evidence base. In Figure B the big indirect study
(Brocklehurst et al., 2011), which in the original data suggested a RTE of 0, is changed to suggest a similar
RTE with the small indirect study (Weisman et al., 1992) (i.e. that IVIG/IVIGAM leads to a considerably
lower all-cause mortality than ALB). In Figure C the small indirect study(Weisman et al., 1992) , which in the
original data suggested a strong effect, is changed to suggest a similar RTE with the big study (Brocklehurst
et al., 2011) (i.e. a RTE close to 0).
These scenarios provide further support of the interpretation given on page 121 which suggested that the
heterogeneity of the indirect studies in the study sizes and the RTEs they suggest is causing power-prior
models to produce results outside the spectrum defined by splitting and lumping.

235



C. Appendix to Chapter 6: Policy-implications of information-sharing:
cost-effectiveness and value of information analyses

C. Appendix to Chapter 6: Policy-implications of information-sharing:
cost-effectiveness and value of information analyses

C.1. Methods

We wish to understand how knowledge of the exact relative effectiveness (IVIG/IVIGAM
vs ALB) reduces the expected cost of uncertainty. However, the relative effect is uncertain
in itself. In this process, we are repeatedly fixing the parameter of interest to a determin-
istic value and calculating the expected value of perfect information of the remaining
probabilistic parameters. The steps are detailed below:

1. For the parameter of interest (relative effectiveness here), randomly draw a value
from its distribution.

2. Fix the parameter of interest to the deterministic value drawn in Step 1, whilst
allowing all the remaining parameters to be probabilistic. Run the PSA for 1000
PSA-iterations.

3. Record the average strategy-specific Net Benefits across all 1000 PSA-iterations as
well as the maximum average Net Benefit across all strategies.

4. Repeat steps 1-3 for N=1000 times (i.e. for 1000 random draws from the relative
effect distribution).

5. Average all quantities recorded in Step 3 across all replications of Step 4

6. Deduct the maximum of the average (across the replications of Step 4) strategy-
specific average (across the PSA iterations) Net Benefits from the average (across the
replications of Step 4) of the maximum average (across PSA iterations) Net Benefits.
Multiply the resulting number with the effective population to get the EVPPI of the
parameter of interest.
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Figure C.1.1: Long-term survival of patients who experienced a severe sepsis or septic shock episode.
Comparison of different parametric survival curves.

All models make the additional assumption that the a patient’s probability of death cannot drop below that
of the general population.
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C.2. Results

Table C.2.1: Policy measures for ISMs under the T2 RE Jadad meta-regression base-model.

T2 RE meta-regression on Jadad score
ISM ICER pCE Pop.EVPI Pop.EVPPI max.ENBS Opt.sample
Base-case 16,316 0.29 1,052 918 895 1,170
Common Heterogeneity 16,466 0.29 889 758 734 1,150
Lumping 18,423 0.34 1,113 999 976 1510
Multi-level 17,003 0.31 1,086 958 936 1,180
Informative prio 16,695 0.30 1,014 884 861 1,300
Mixture prior 16,665 0.30 1,029 898 876 1,290
Commensurate prio 17,455 0.32 1,116 993 971 1,470
Prior on heterogeneity 16,224 0.29 942 809 785 1,150
Pr-Power α = 0.1 18,295 0.35 1,237 1,122 1,101 1,490
Pr-Power α = 0.2 19,048 0.37 1,314 1,206 1,183 1,310
Pr-Power α = 0.3 19,229 0.37 1,340 1,234 1,211 1,250
Pr-Power α = 0.4 19,831 0.38 1,422 1,321 1,298 1,320
Pr-Power α = 0.5 19,757 0.38 1,441 1,339 1,317 1,370
Pr-Power α = 0.6 19,867 0.38 1,453 1,353 1,330 1,290
Pr-Power α = 0.7 19,554 0.38 1,395 1,291 1,269 1,520
Pr-Power α = 0.8 19,995 0.39 1,469 1,369 1,347 1,380
Pr-Power α = 0.9 19,538 0.38 1,427 1,323 1,301 1,380
Pr-Power α = 1 19,421 0.38 1,426 1,321 1,299 1,130

All measures assume k = 30, 000 £. Population EVPI and EVPPI further assume that the technology
will be relevant for 10 years. All measures have been calculated using the predictive distribution of the
relative effect for a study of Jadad = 5 (i.e. of the best possible quality). Light red shade indicates the
base-case (no sharing/only adults) model for comparison purposes.
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Table C.2.2: Policy measures for all ISMs used under the T3b Duration FE base-model.

T3b FE meta-regression on sample size
ISM ICER pCE Pop.EVPI Pop.EVPPI max.ENBS Opt.sample
Base-case -117,615 0.89 83 50 20 1,620
Lumping 36,936 0.69 148 52 12 2,500
Multi-level 99,484 0.81 162 100 62 2,300
Informative prior 37,883 0.7 150 52 13 2,600
Mixture prior 39,870 0.72 156 61 16 2,500
Commensurate prior 58,832 0.76 203 123 83 2,550
Pr-Power α = 0.1 97,905 0.85 102 54 20 1,850
Pr-Power α = 0.2 56,188 0.80 122 59 22 2,200
Pr-Power α = 0.3 46,763 0.76 137 63 24 2,300
Pr-Power α = 0.4 42,601 0.74 146 64 24 2,600
Pr-Power α = 0.5 40,325 0.72 153 64 24 2,600
Pr-Power α = 0.6 38,893 0.71 155 63 23 2,600
Pr-Power α = 0.7 37,762 0.70 159 63 22 2,600
Pr-Power α = 0.8 37,141 0.69 159 61 20 2,500
Pr-Power α = 0.9 36,831 0.69 155 57 16 2,600
Pr-Power α = 1 36,590 0.69 153 55 14 2,500

All measures assume k = 30, 000 £. Population EVPI and EVPPI further assume that the technology will
be relevant for 10 years. All measures have been calculated using the prediction for the relative effect
of a study of treatment arm sample size of 339 patients. Light red shade indicates the base-case (no
sharing/only adults) model for comparison purposes.

D. Appendix to Chapter 7: Comparing information-sharing methods: a
simulation

D.1. Methods

Determining the appropriate number simulations needed

Since the aim is to compare the different methods according to a set of strength of
sharing measures, we need to ensure that each method’s strength of sharing is accurately
estimated. Therefore, to determine the required number of simulations, the two most
heavily parametrised and hardest to converge models (i.e. the multi-level model and
the mixture of priors) were run for a varying number of simulations to check when the
standard deviation of the strength of sharing measures is stabilised. The four graphs that
follow show how the standard deviation of PED and PrI change with sample size. It is
apparent that standard deviations are stabilised at around 3000 simulations and hence ,
conservatively, 5000 simulations are used in the experiment.
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Figure D.1.1: Standard deviation of strength of sharing measures (PED, PrI) for two ISMs (Multi-level,
Mixture priors) under FE.
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Overlapping coefficient
The overlapping coefficient between two density curves, say f (x), g(x) is defined as

the area lying under the density of both curves. Mathematically, if the f (x), g(x) are
defined in (−∞,+∞) the overlapping coefficient (OVL) is:

OVL =
∫ +∞

−∞
min{ f (x), g(x)}dx (1)

To calculate OVL in R the following code is used:

# Define a function that sources the two density curves

# and gives the minimum density of the two for any x

min.f1f2 <- function(x, mu1, mu2, sd1, sd2) {

f1 <- dnorm(x, mean=mu1, sd=sd1)

f2 <- dnorm(x, mean=mu2, sd=sd2)

pmin(f1, f2)

}

# Define the two densities here

mu1 <- -0.43; sd1 <- 0.1106100

mu2 <- -0.281; sd2 <- 0.1106100

# Integrate the function

integrate(min.f1f2, -Inf, Inf, mu1=mu1, mu2=mu2, sd1=sd1, sd2=sd2)

Here, to calculate the point estimate for the indirect evidence (i.e. mu2) given the
point estimate and standard error of the relative treatment effect of the direct evidence
(i.e. mu1 , sd1 respectively), it is assumed that sd2=sd1 i.e. direct and indirect evidence
yield relative treatment effect estimates of equal standard errors. Albeit strong, this
assumption is not unrealistic, particularly given the fact that in the base-case direct and
indirect evidence are assumed to include an equal number of patients. It needs to be
highlighted as a limitation that in the scenarios which modify the sample size of the
indirect evidence this assumption is less defendable and may lead to slightly lower that
50% overlap between direct and indirect evidence.

Given the assumption of the common standard deviation the only unknown is mu2.
Its value is decided here by a trial-and-error approach i.e. attempting multiple different
values until the desired overlapping coefficient of 50% is reached. The densities specified
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above are shown in Figure D.1.2. The solid line corresponds to the direct evidence of
the case-study analysed using a simple FE model (mu1, sd1) and the dotted line to the
distribution that yields a 50% overlapping coefficient and falls on right i.e. towards the
line of no effect where the log-odds ratio is zero.

Figure D.1.2: An illustration of two distributions with a 50% overlapping coefficient.
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The solid line corresponds to the direct evidence of the case-study analysed using a FE model (mu1, sd1) and
the dotted line to the distribution that yields a 50% overlapping coefficient and falls on right i.e. towards the
line of no effect.
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Back-calculation process

For this scenario we want to simulate a set of 10 indirect studies which, when
synthesised all together, produce a given relative treatment effect estimate dall and
heterogeneity τall ; these are the overall scenario characteristics of the indirect evidence.
Of these 10 studies we want 9 small studies (say studies 1-9) which together include 15%
of the indirect patients, and 1 big study (say study 10) which, on its own, includes 85% of
the indirect patients, as this was the situation in the case-study. Furthermore, we want the
big study to suggest an extreme relative effect estimate. That is because if the big study
and the small studies suggest the same relative effect we will not be able to understand
whether or not the overall relative effect is disproportionately influenced by the big study.
Here we want the big study’s effect to fall at the right tail of the predictive distribution
that is defined by dall and τall and, hence, suggest that the new treatment is less effective
than the comparator. The challenge now is to create a process by which we can simulate
such datasets, preserving the overall characteristics of the indirect evidence dall , τall .

To simplify the problem we will assume that all small studies (i.e. studies 1-9) have
exactly the same relative treatment effect (i.e. d1 = d2 = ... = d9 = dsmall). In the first step,
we draw the relative effect (log-odds ratio) for the big study (i.e. d10 = dbig) from the right
tail of the predictive distribution (randomly from the 95th-98th percentile) and assuming
a probability of an event in the control arm to be pctl = 0.3662, we calculate the probability
of an event in the treatment arm pbig

trt. Therefore, since the study sizes (Nbig, Nsmall) are
known, we can calculate the number of events in each arm and the variance of the dbig

with the following formula:

σ2
big =

1

pctl ·
Nbig

2

+
1

(1− pctl) ·
Nbig

2

+
1

pbig
trt · Nbig

2

+
1

(1− pbig
trt) · Nbig

2

(2)

The inverse-variance weights for the big study under FE and RE model can then be
calculated as wbig = 1

σ2
big

and w∗big = 1
σ2

big+τ2
all

respectively (Borenstein et al., 2009).

For the small studies, which are all assumed identical the same formula can be used
to calculate the variance of dsmall as follows:

σ2
small =

1

pctl · Nsmall
2

+
1

(1− pctl) · Nsmall
2

+
1

psmall
trt · Nsmall

2

+
1

(1− psmall
trt) · Nsmall

2

(3)

However, all parameters are known except for psmall
trt and hence σsmall , wsmall , w∗small

can be calculated only once psmall
trt is determined.

2sourced from the control arm of the direct studies in the case-study
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The overall relative effect across all studies dall under a FE model is defined as follows:

dall =
∑10

n=1 wi · di

∑10
n=1 wi

(4)

which can be decomposed to

dall =
∑9

n=1 wi · di + w10 · d10

∑9
n=1 wi + w10

(5)

and given that all small studies are assumed identical

dall =
9 · wsmall · dsmall + wbig · dbig

9 · wsmall + wbig
(6)

where the only unknowns are wsmall and dsmall ; both being functions of merely the
same unknown parameter i.e. psmall

trt. Therefore, since dall is known (i.e. the parameter
that we want to preserve), psmall

trt can be calculated from this equation and subsequently
converted to dsmall given pctl .

Under a RE model, the process for calculating psmall
trt is the same as above with the

only difference that instead of wsmall , we need to use w∗small .
As a final step, we need to re-calculate τ2

all to ensure that it has not diverted significantly
from its desired value due to the randomly drawn dbig. To do that we use its formula as
that was described in Borenstein et al., 2009, where all components are known.

τ2
all =

Q− d f
c

=
∑10

1 wi · d2
i −

(∑10
1 wi ·di)

2

∑10
1 wi

− 9

∑10
1 wi − ∑10

1 w2
i

∑10
1 wi

(7)

It is important to note that as dbig is drawn from a more extreme part of the predictive
distribution (e.g. further at its right tail) there is going to be a point at which the back-
calculation process gives us a solution for psmall

trt under a RE model, but not under a
FE model. That is because RE models give higher weights to smaller studies (i.e. the 9
non-extreme studies here) and can therefore recover the desired dall . Contrariwise, FE
models give lower weights to smaller studies and result easier in no solution. This is
exactly the reason why this scenario was explored only under a random-effects model (i.e.
to guarantee the stability of the simulation process).

The R code for the back-calculation process is provided in https://github.com/

NikolaidisGFZ/PHD.git
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Calculating τ2 based on the desired I2

In a meta-analytic process that uses inverse-variance weights as that is detailed in
Borenstein et al., 2009 τ2 and I2 are defined as follows:

τ2 =
Q− d f

C
, I2 =

Q− d f
Q

Therefore, τ2 and I2 can be related through the following formula

τ2 =
I2 ·Q

C
where

Q =
k

∑
1

wi · d2
i −

(∑k
1 wi · di)

2

∑k
1 wi

, C =
k

∑
1

wi −
∑k

1 w2
i

∑k
1 wi

where wi are the study-specific inverse-variance fixed-effect weights and di are the
study-specific relative treatment effects.

Here, Iaim to derive τ2 values based on the desired I2 values. This can easily be done
if we simplify the problem, by assuming that Q/C remains constant as I2 changes. Even
though Q/C is unlikely to remain constant, here we only want to obtain indicative values
for τ given particular I2.

Q/C can be calculated given the estimated τ2 = 0.562 and I2 = 68% in the case-study.
Then the scenario-specific τ2 is derived based on the desired I2.
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Step-by-step simulation process

1. Re-analyse the direct evidence of the sepsis case-study, using both FE and RE models
to obtain dFE, dRE, τ

2. Draw 5000 x 17 random samples for the study-specific relative treatments effects
(log-odds ratios) of the direct evidence. For the FE simulation use the following
sampling distribution ddiri ∼ (dFE, τ2), whilst for the RE simulations the following
ddiri ∼ (dRE, τ2).

3. Draw 5000 x 17 random samples for the study-specific baseline (log-odds) nuisance
parameters of the direct evidence from the following sampling distribution µi ∼
(0.5, 0.52). This distribution was estimated using the log-odds of the control arms of
the 17 direct studies of the sepsis case-study of Chapter 5).

4. Using the random samples of the two previous parameters, draw study-specific
numbers of events for the control and the treatment arms of the direct studies
(rctl

diri
, rtrt

diri
) as shown in the data-generating mechanism. (eqs. (7.1) to (7.4))

5. Organise the drawn numbers of events along with the fixed studies samples sizes
(nctl

diri
, ntrt

diri
) into 5000 direct evidence datasets, each one comprising of 17 direct

studies.

6. Define the properties of the indirect evidence sampling distribution, according to
scenario characteristics. For example, for the base-case scenario that would be
∼ N(−0.281, τ2) for the FE simulations and ∼ N(−0.511, τ2) for the RE simulations.

7. Repeat steps 2-5 to obtain rctl
indiri

, rtrt
indiri

and construct 5000 indirect evidence datasets,
each one comprising from 10 indirect studies.

8. Combine the direct datasets obtained in Step 5, with the indirect datasets obtained
in Step 7, to construct 5000 hybrid datasets, each one comprising from 27 studies
(i.e. 17 direct studies and 10 indirect).

9. For every hybrid dataset, combine the direct and the indirect studies using all the
applicable ISMs, including lumping and splitting, and record the method-specific
‘strengthened‘ estimate for the direct relative treatment effect.

10. For each method applied in each dataset, calculate PED and PrI by comparing
the dataset- and method-specific ‘strengthened‘ relative treatment effect with the
relative treatment effect that is obtain by splitting the corresponding dataset and
only considering the dataset-specific direct evidence.
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11. For each method applied in each dataset, rank methods according to the calculated
PED and PrI.

12. For each additional scenario repeat Steps 6-11, according to scenario characteristics.

D.2. Results

Figure D.2.1: FE simulation. PED-ratios, Lumping SeR, and Splitting SeR across all the attempted
methods for three scenarios characterised by different heterogeneity of the indirect evidence.

Low Heterogeneity Mid Heterogeneity (Base-case)High Heterogeneity

0 0.5 0.50.51 111.5 1.5

‘Base-case scenario’ corresponds to an overlapping (OVL) coefficient of 50% (LOR:-0.281, OR:0.76), ‘Low
overlap scenario’ to OVL 5% (LOR: 0.003, OR: 1.003), and ‘High overlap scenario’ to OVL 75% (LOR: -0.36,
OR: 0.7). The ‘Proportion of Lumping PED’ (i.e. PED-ratio) reflects a method’s PED divided by lumping’s
PED. Lumping SeR is the ratio of a method’s standard error divided by lumping’s standard error. Splitting
SeR is the ratio of a method’s standard error divided by splitting’s standard error.
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Figure D.2.2: Rankograms of all ISMs used in the base-case scenario of the RE simulation.

The graphs are organised in pairs, showing the rankings according to the two strength-of-sharing measures
side by side to reveal commonalities and differences. The y-axis depicts the probability of ranking in the
position shown in the x-axis.
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Figure D.2.3: PED-ratios for a set of ISMs against the actual point estimate difference in the simulated
direct and indirect evidence.
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8.4. Appendix to Chapter 7: Comparing information-sharing methods: a simulation

Figure D.2.4: RE simulation. PED-ratios, Lumping SeR, and Splitting SeR of the various ISMs under
three scenarios characterised by a different sample size in the indirect evidence.

Small Sample Size Mid Sample Size (Base-case) Large Sample Size
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Figure D.2.5: RE simulation. Absolute values for PED of a subset of methods under three scenarios for the
heterogeneity of the indirect evidence.
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Figure D.2.6: RE simulation. Standard error of relative effect estimates using different ISMs for three
different scenarios. One where direct and indirect evidence exhibit very low percentage
overlap (5%), one with medium (50%), and one with high (75%).
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Acronyms

CBM Contrast-based Model. 25, 27

CEAC Cost-Effectiveness Acceptability Curve. 10, 39

DAM Decision Analytic Model. 17

DIC Deviance Information Criterion. 29, 85, 86, 189

DSA Deterministic Sensitivity Analysis. 38

EBM Evidence-based Medicine. 35

EMA European Medicines Agency. 19, 192

ENBS Expected Net Benefit of Sample. 42

EVPI Expected Value of Perfect Information. 40–42

EVPPI Expected Value of Perfect Parameter Information. 40–42

EVSI Expected Value of Sample Information. 40, 42

FDA U.S. Food and Drugs Administration. 19, 192

FE Fixed-Effects. 8–12, 23, 25–27, 30, 60, 62, 64, 68, 74, 75, 81, 87, 101, 104, 106, 108, 111,
112, 114, 118, 123, 124, 126–128, 139, 149, 150, 152, 154–158, 162–165, 167, 170, 175,
180–183, 187, 190, 220, 226, 231, 240, 242–244, 246, 247

HTA Health Technology Assessment. 2, 18, 19, 21–24, 31, 42, 43, 61, 88, 185, 186, 188,
192–194, 197, 199

ICER Incremental Cost-Effectiveness Ratio. 36, 37

IPD Individual-patient data. 30, 60, 87, 214

ISM Information-sharing method. 2, 8–13, 22–24, 43, 44, 47, 57–60, 64, 79, 80, 85–88, 93,
101, 102, 111, 113–120, 122–129, 131, 133, 135–140, 142, 143, 146–151, 156–164, 168,
174, 176–179, 182, 186–199, 227, 228, 231–233, 238–240, 246, 248–250, 252
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8.4. Acronyms

MA Meta-Analysis. 18, 23, 24, 27–29, 43–45, 47, 56, 191, 194, 201, 205–208

MCMC Markov Chain Monte Carlo. 29

NB Net-Benefit. 37, 38, 40, 42

NETSCC NIHR Evaluation, Trials and Studies Coordinating Centre. 192

NHS National Health Service. 16, 20

NICE National Institute for Health and Care Excellence. 16, 20, 35, 37, 39, 130, 133

NMA Network Meta-Analysis. 10, 18, 19, 22, 23, 27–30, 43–45, 47, 54, 56, 60, 68, 69, 74–77,
157, 161, 191, 194, 201, 204–208, 214

partSA Partition Survival Models. 34

PSA Probabilistic Sensitivity Analysis. 10, 38, 39, 41

QALY Quality-Adjusted Life-Year. 35, 37

QoL Quality of Life. 16–18, 35

RCT Randomised Controlled Trial. 8, 18, 35, 90, 96, 143, 147, 188, 189, 193, 196, 219

RE Random-Effects. 7–13, 23, 25–27, 29, 30, 53, 54, 60, 62, 64, 68, 74, 75, 81, 84, 87, 101–104,
106, 112, 114, 115, 118, 120, 121, 124, 126–128, 135, 139, 147, 149–158, 162, 174–183,
186, 187, 190, 203, 206, 211, 213, 227, 231, 233, 243, 244, 246, 248, 250–252

RTE Relative Treatment Effect. 7, 11, 16–19, 21, 23, 25–30, 35, 42, 52–54, 60, 64–68, 70, 74,
75, 79, 82, 83, 85, 88, 93, 101, 115, 118, 128, 129, 135, 149, 151–154, 156–161, 163, 165,
167, 168, 170, 174, 178, 181, 186–188, 190, 192, 194, 195, 197, 235

UK United Kingdom. 37

WTP Willingness to Pay. 37
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