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Abstract
The foraging of items and returning them to a specific deposit site is a canonical task for
investigating the collective behaviour of a swarm of robots. In addition to being a suitable
task for investigating robot capabilities such as vision, inter-robot communication and task
allocation, it has many real-world applications in search and rescue, planetary exploration,
hazardous waste clean up, agriculture and litter picking that make it attractive for swarm
robots deployment. The state-of-the-art in swarm robotics research has done little to study in
detail the impact that imperfections in robot vision and communication have on the collective
behaviour of a swarm of robots. This research changes that by extensively studying the
impact of such imperfections and proposing a novel foraging algorithm that is robust to them.

The Repulsion-Attraction (RepAtt) algorithm proposed in this thesis takes inspiration
from the chemotaxis search behaviour observed in biological organisms. The design approach
for RepAtt emphasises simplicity of the algorithm to demonstrate the effectiveness of this
minimalist bio-inspired chemotaxis-based search, reduce the hardware requirements of
robots and remove complexities in inter-robot communication. RepAtt utilises temporal
gradients of attractant and/or repellent signals to increase the probability of tumbles when
conditions are unfavourable (increasing repulsion or decreasing attraction intensities), or
suppressing tumbles as conditions progressively improve. Hardware experiments using
sound were conducted to model the signals the robots used for their chemotaxis search and
also to quantify a realistic noise level in the signal. Using this communication model and
noise levels, extensive simulation studies were conducted for the swarm under ten different
foraging environments. The results indicate that with realistic noisy communication, the
RepAtt algorithm significantly improved the swarm’s collective behaviour by reducing the
foraging time by up to 70% in comparison to the Random Walk algorithm. The RepAtt
algorithm also scaled well with increasing swarm size and was robust to changes in the
distribution of targets and world sizes.

An elaborate study was also conducted to model the swarm robots’ vision system using
state-of-the-art deep neural networks object detection algorithms. The outcome of this aspect
of the research was a probabilistic vision model that is representative of the performance
of object detection algorithms and can easily be applied to a wider variety of swarm tasks
that involve target detection. This probabilistic vision model was studied using extensive
simulations on Random Walk and RepAtt swarm foraging algorithms. The results showed
that, despite the negative influence of imperfect vision system, RepAtt still exhibited superior
foraging performance in comparison to Random Walk even for object detection probabilities
as low as 0.2. At fast vision update rates, the negative impact of the imperfect vision on the
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swarms’ collective behaviour when using the RepAtt algorithm was most significant. This
was because increasing the vision update rate increased the rate robots switched between
broadcasting repulsion and attraction signals. The level of this impact increased as the robots’
detection accuracy approached 0.5 and was most noticeable for the high vision update rate
of 40 Hz. The results showed that minimising these fluctuations between repulsion and
attraction broadcasting improved the swarm’s robustness to the imperfections in the robots’
vision system, and consequently reduced the foraging time.

The chemotaxis-based algorithm was also extended to implement a virtual fencing
mechanism to prevent a swarm of exploring robots from drifting away from their work area
near a stationary or mobile nest. This aspect of the research was important for handling
swarm deployment in the numerous unbounded environments they encounter in real-world
applications, which is a less studied area in swarm robotics. The results of extensive
simulation and hardware validation showed that the virtual fence was a practical means of
keeping the swarm within the desired work area and was as effective as a physical wall,
which is only applicable in controlled environments.
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Chapter 1: Introduction
1.1 Background

A team of two or more autonomous robots working together to accomplish a common task
is called a Multi-Robot System (MRS) [2]. An MRS provides a unique advantage over
single robots in tasks that would be impractical or inefficient for a single agent acting alone.
Task deemed suitable for MRS include [3] tasks that: are inherently distributed, have high
complexity when using a single robot, can benefit from multi-robot parallelism to significantly
reduce completion time, and are easier to solve using multiple simple robots than with a
single powerful/complex robot. A major characteristic of MRS is that individual robots in
the system are far less capable on their own. However, the system is most effective when
these robots cooperate with each other during task execution [2]. Types of MRS include:

1. Reconfigurable (or modular) robots, where agents can physically attach to each other
in different configurations for purposes of navigation or manipulation [4].

2. Networked robots, where communication network infrastructure is used by robots, sen-
sors, embedded computers and human users to coordinate and cooperate to accomplish
a specified task [3].

3. Cooperative manipulators, where two or more robotic arms manipulate a common
object [5].

4. Multiple mobile robot systems, which is made up of robots that move within an
environment, such as ground, aerial or underwater vehicles [3].

Multiple mobile robot systems has grown within the past two decades to cover a large
body of research. In general, techniques for implementing multiple mobile robot systems
fall into either intentionally cooperative or collective swarm systems [3]. In intentionally
cooperative systems, robots have access to global knowledge of state, actions or capabilities
of all robots in the environment and use these information to select actions that accomplish
the team’s goal.

Collective swarm systems, on the other hand, emphasise robot autonomy through decen-
tralised control and emergent behaviours. The system uses robots that have limited abilities
and are only able to sense their immediate environment and communicate with nearby swarm
members [6]. This approach to multiple mobile robot systems is the focus of this thesis, and
will thus be explained more extensively.
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Collective swarm systems or swarm robotics are inspired from biological swarm colonies.
They use simple rules to achieve emergent collective behaviours without any central leader
[7]. Several such systems exist in nature, examples of which include ant colonies, termite
colonies, bee hives and, to a lesser extent, fish schools, bird flocks, locust swarms and herds
of mammals like wildebeests. These natural swarms make use of local interaction between
members and their environments to, among other goals, forage for food, build nests, clean
their nests, navigate their environments and escape from predators [7–9]. The successes of
natural swarms in performing tasks that are too complex for a single agent (and inefficient,
or sometimes impossible, for multiple agents acting on their own) have motivated research in
the development of robot systems that exhibit swarm behaviours. Some benefits for adopting
swarm-based strategies for problem solving in robotics include:

1. Robustness to failure of a swarm member or disturbance in the environment [10]. This
is because swarm systems incorporate redundancy, simplicity of agent interactions (or
algorithms), decentralisation of swarm coordination and multiplicity of environment
sensing [11].

2. Distributed workload among members that make up the swarm. This makes it possible
to perform tasks that cover large spatial areas and provide wide situational awareness
for the swarm system [10].

3. Flexibility in problem solving because the swarm offers solutions to tasks by utilising
coordination strategies that can adapt to changes in the environment [11]. For example,
during foraging, bees are able to switch to richer sources of nectar when the quality of
their current foraging site degrades [8]. The autonomy of swarm members and simple
interaction algorithms also help swarms adapt to different environment constraints or
setups.

4. Scalability of swarm coordination scheme which is not significantly impacted by
changes in swarm population [11]. Individual swarm members can join or quit the task
without disrupting the swarm objectives [12].

5. Parallel task execution by a large number of swarm members performing their respec-
tive tasks simultaneously without dependence on a leader or global state of swarm
members and information about progress on task execution [10, 12].

Extensive research in swarm robotics largely motivated by the features outlined above
have been conducted. A significant amount of work in this research area involves observ-
ing tasks accomplished by biological swarms and adapting them to applications that solve
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real-world problems using non-biological swarm agents. The range of collective tasks imple-
mented in swarm robotics include [13]: flocking, self-organised aggregation, foraging, object
clustering and sorting, collective navigation, path formation, self-deployment, collaborative
manipulation, task allocation, odour source localisation, object assembly, self-assembly and
morphogenesis, coordinated motion, group size estimation, distributed rendezvous, collec-
tive decision-making, and human-swarm interaction. Of the aforementioned swarm tasks,
foraging is the most used test bed application for swarm robotics systems [14].

Foraging is a term generally used to describe a process where individuals making up
the swarm explore an environment in search of one or more objects and transport them to
designated nest location [14]. This is best exemplified by the food search activities studied
in some ant and bee colonies. Some ants are able to search and collect food located long
distances from their nest by leaving pheromone trails on the path to found food sources
[9]. Similarly, honeybees forage by utilising unique dance patterns to communicate the
quality, direction and distances of food that are as far as 10 km from their nest to other
members of the swarm [8]. In swarm robotics research, foraging has been used to investigate
interference amongst swarm members, and as a test bed for collective exploration, transport
and decision-making [14]. Foraging can be considered an abstraction for many real-world
applications such as picking litter, demining, planetary exploration and search and rescue
operations. In both natural and robotic swarms, each foraging agent needs the ability to
navigate its environment, detect, manipulate and transport targets to a designated site. In
addition, agents also use local communication and sensing to improve the foraging strategy
of the swarm.

1.2 Motivation

The Self-Repairing Cities Project [15], where robot technologies are developed to identify,
diagnose and repair infrastructure in the society with the aim of eliminating disruption in
services in UK cities, serves as the main motivation for this research. The aim of this research
is to examine the application of swarm robotics technology for cleaning up litter within open
urban spaces, such as parks and squares (Fig. 1.1). Swarm robots tasked with collecting litter
in an environment need to efficiently explore the search area and exploit litter clusters.These
robots are faced with numerous challenges including communication, computer vision, object
manipulation, terrain navigation, task allocation and energy management. For example, the
communication channel among the robots could be noisy, which means robots at the receiving
end of communicated information need a reliable noise-filtering mechanism. Imperfections
in robot vision system means they could fail to detect litter objects or wrongly classify
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Fig. 1.1 A test model representation of a group of swarm robots tasked with collecting litter
in a residential area.

non-litter objects as litter, thus, causing them to misrepresent their local environment. This
thesis focuses on the vision and communication subset of these challenges to inform design
choices in the development of a robust and scalable swarm foraging algorithm. In order to
conform with the existing swarm robotics framework, this thesis emphasises the following
key areas:

• bio-inspired robot search algorithms;

• minimal robot capabilities in sensing, communication, computation and complexity;

• autonomy of individual robot agent;

• emergent collective behaviour through decentralised control.

These choices were used within a design framework that models robot communication
and vision systems from real-world experiment data to develop a novel swarm foraging
algorithm. This hardware-based modelling approach helped maintain focus on the real
world deployment of the technology, and consequently aiding in the elimination of unrealistic
algorithmic design choices. Furthermore, this design method greatly assisted in the realisation
of a flexible, scalable and robust swarm algorithm capable of handling practical imperfections
in visual sensing and communication.



5

1.3 Aim and Objectives

This research aims to develop a simple, scalable swarm foraging algorithm that is robust to
realistic noise levels in robot communication and vision. This will be achieved through the
realisation of the following objectives:

1. The development of a simple swarm foraging algorithm using inspiration from biologi-
cal systems.

2. The use of experimental data to develop a realistic communication model to aid
collective behaviour of the robot swarm that use the biologically inspired foraging
algorithm. The model should also quantify the noise level in the communication
channel.

3. The implementation of a vision system for the robots that reflects the performance and
properties of state-of-the-art algorithms in computer vision for object detection.

4. Conducting an in depth analysis of the impact of uncertainties in robot communication
and vision on the foraging performance of the swarm.

1.4 Contributions Made

A considerable part of this research comprises of extensive simulation tests that account for
hardware constraints and other related limitations. The following highlighted contributions
have been made to the body of knowledge in swarm robotics and to help bridge the existing
gaps in the field:

1. Development of a swarm foraging algorithm adopted from the chemotactic navigation
behaviour of biological organisms such as Caenorhabditis elegans and Escherichia
coli;

2. Extensive study using simulation techniques to investigate the impact of noisy com-
munication and imperfections in robot vision systems on the collective behaviour of
swarm foraging robots.

3. Development of a probabilistic vision model from the performance characteristics
of deep neural network based object detection algorithms. The model also takes
into consideration the constrained computation hardware limitations of swarm robot
platforms.
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4. Implementation of a chemotaxis-based virtual fence for keeping swarm of exploration
robots from drifting away from a desired work area near a stationary or mobile nest in
unbounded environment;

1.5 Thesis Outline

Chapter 2 reviews literature and concepts that form the foundation for algorithms and models
developed in the thesis. These include the biological inspiration for swarm robots foraging
and the state-of-the-art in foraging algorithms and robot vision systems.

The Repulsion-Attraction algorithm (RepAtt) for a swarm of foraging robots is presented
in Chapter 3. Also included is the development of swarm communication model and
experiments to analyse RepAtt’s foraging performance, robustness to changes in swarm
search space and scalability with increasing swarm size.

Chapter 4 focuses on the modelling of noise in the communication system used by
the swarm of foraging robots. It also develops a simple filtering system that mitigates the
negative impact of the noise and improve the swarm’s foraging performance, scalability and
robustness.

In Chapter 5, a probabilistic vision model and its effects on swarm foraging is studied in
detail. The vision model is based on the performance of deep neural networks when trained
to detect litter in a robot’s visual scene. The chapter extensively studies the impact of robot
detection accuracy and vision processing rate on the foraging performance of the swarm.

Chapter 6 details the use of virtual fence to restrict swarm robots from drifting away
from a work area in unbounded environments. The virtual fence takes inspiration from the
chemotaxis search behaviour of Caenorhabditis elegans and is effective for both stationary
and mobile nest robot when tested on an environment exploration task. In addition, the
virtual fence is more practical than a physical wall that contains robots within the work area.

Chapter 7 summarises the contributions of the thesis, draws conclusions and provides
recommendations for future research in the area.
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Chapter 2: Literature Review
2.1 Introduction

Swarm foraging is an important benchmark for many multi-robot tasks. This chapter dis-
cusses the biological inspiration of swarm recruitment strategies in Section 2.2. It serves
as the foundation for most swarm foraging algorithms discussed in Section 2.4. The differ-
ent technologies used by researchers to implement the recruitment of robots on hardware
platforms is discussed in Section 2.5. Random search strategies, which form the basis for
many swarm algorithms are discussed in Section 2.3. A critical feature required by foraging
robots is the ability to detect targets of interest in their surroundings. Thus, it is important
to discuss the state-of-the-art in object detection in swarm robotics and computer vision
research (Section 2.6). A survey of previous and existing work on the utilisation of robots
for handling litter in an environment is discussed in Section 2.7. The various metrics used
in measuring the performance of swarm foraging algorithms are discussed in Section 2.8.
These topics form the body of research that are relevant for the development of the swarm
foraging algorithm in this thesis. Section 2.10 summarises the chapter.

2.2 Recruitment Strategies in Swarms

Recruitment is a means of getting one or more swarm members to join in exploiting a
resource. There are various means of recruitment found in biological swarms with the
strategies found in ants and bees receiving the most attention.

2.2.1 Recruitment in ants

Depending on the recruitment strategy and ant species, ants recruit other nest mates using
mechanisms such as chemicals, sight and/or antennation. The collective strategies used by
ants when foraging food vary from solitary foraging to mass recruitment [9].

In solitary or individual foraging, ants leave nest individually and forage food to the
nest without any cooperation or communication with other foraging ants. This strategy is
useful if food is distributed, unpredictable and can be carried back by a single forager. In
such situations, the cost of recruiting other foragers outweighs the benefit to be gained from
collecting the resource alone. It is a strategy found in many species of ants in the genera
Harpegnathos, Pachycondyla and Cataglyphis [9]. Solitary foraging is considered to be the
simplest strategy possible for a swarm [16].
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A second strategy is tandem running, where a successful forager (scout) leads a nest mate
(follower) to the discovered food source. The scout recruits the nest mate using antenna
contact or using odour signals. The two ants then keep a physical contact with each other as
the scout leads the way to the food site [17]. In turn, the follower also recruits a nest mate
during its next foraging trip. This way, information about the food source is cascaded to more
members of the swarm [18]. This recruitment strategy is slow, but useful for recruiting ants
to hard-to-find sites. Tandem running has been observed in species of genera Temnothorax
and Pachycondyla [9]. Related to tandem running is group recruitment, where the successful
forager recruits two or more nest mates to the resource location. It often involves both motor
and chemical signals from the recruiting forager [17]. This has been observed in ants of
genera Camponontus [9].

Pheromone trail is a popular recruitment strategy studied in literature and is considered to
be the most complex [17]. In this strategy, scouts randomly explore the environment in search
of food. Successful scouts then lay chemical (also known as pheromone) trails that connects
the food source to the nest. Nest mates are attracted to these trails and also lay pheromones
on them, thus reinforcing the path connecting the food source to the nest. It is a means of
mass recruitment of nest mates to rich, but short-lived, food resource. Depending on the
volatility of the pheromone, a certain minimum number of ants are necessary to maintain
the trail, because the trails evaporate and diffuse over time. This makes it dependent on the
amount of positive reinforcements the trail gets from other ants, to make it last longer [9].
Pharaoh’s ants (Monomorium pharaounis) have been observed to recruit using pheromone
trails.

Food resource sites are, sometimes, stable such that the swarm could forage continuously
from the same site for a prolonged period. Examples include tree leaves and extrafloral
nectaries. In such cases, the foraging activity can lead to stable trunk trails that connect nest
to the food location [9]. This trunk can also branch into small trails to cover the foraging
area. Foraging ants follow these trails to collect food and return to the nest. This has been
observed in ants of genera Atta, Forelius and Pogonomyrmex.

Army ant ‘raids’ is a strategy which involves large numbers of ants, often up to 200,000,
moving in a unified foraging front that sweeps a tract of forest [19]. They also form a trail
network that could exceed 100 m behind the swarm which consolidates into a single column
of traffic for returning food to the nest and allows foragers to return to the raid. The strategy
gives army ants strength in numbers to overpower their prey and forage them to the swarm’s
nest.

Team transport involves two or more ants cooperatively transporting items from resource
location back to the nest [20]. This is useful for foraging large or cumbersome items which
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cannot be effectively transported by a single ant. A related strategy known as ‘bucket
brigading’ involves foragers that only transport items for a short distance to a ‘cache station’,
where it is picked up by another ant that transport it to the next station closer to the nest
[9]. This way, the foraged items continuously change stations until they are deposited in the
nest. While team transport requires multiple ants collaborating simultaneously, the bucket
brigading involves sequential transfer of items from one ant to another. Bucket-brigading has
been observed in ants of the genera Acromyrmex and Atta.

2.2.2 Recruitment in bees

The most popular recruitment strategy in bees is the dance communication language of
honeybees, Apis mellifera. Bees are well known for their roles in pollination and production
of honey and beeswax [21]. Their amazing ability to forage nectar, pollen and water from
sites located hundreds of metres from their nest has intrigued researchers for centuries [22].
In the following paragraphs, the recruitment strategies of honeybees, stingless bees and
bumblebees are discussed.

Foraging honeybees are categorized into: scout bees which leave the nest to search for the
food resource in the environment; and reticent bees (40-90% of forager population) which
wait in the beehive to be recruited to the found food source(s) [23]. The dance language
paradigm states that successful scouts communicate their findings to reticent bees at the nest
using a waggle dance routine. The duration of the dance encodes distance information of
the food source, while the alignment of the dancing bee’s body relative to the sun’s current
azimuth contains goal direction information. By observing the dance pattern of the scout bee,
reticent bees get these distance and direction information of the scout’s finding, which they
use to navigate to the food source [8]. In addition, the bees are able to optimise their foraging
rewards by adapting to change in quality of food sources, such that they always forage from
high-quality sources of nectar [24]. The bees navigate between food sources and their hives
by keeping a map-like spatial memory of their environment using sun compass, landmarks
and other sensory information [25].

The second paradigm for honeybee recruitment success during foraging hypothesises
that reticent bees get recruited through scent. The proponents of this paradigm argue that
bees are primarily recruited by odour of the successful scout and the dance is simply to gain
attention of reticent bees. Recruited bees then follow the odour trail to locate the food source
[22]. The bees are able to follow the trail because they have a well refined olfactory system
that can recognise a vast array of different compounds at parts per trillion, which is the
reason for research into methods and technologies of using honeybees as living biosensors
for chemical signals [22]. Though the two paradigms to recruitment in honeybees differ in
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many ways, they share some fundamental similarities. Scout bees leave the hive in search
of resource, successful scouts return to the nest and recruit reticent bees to the resource site.
Once recruited, bees continue to forage from the same site until the resource is exhausted,
weather conditions become unfavourable, there is abundance of resource in the hive or they
get recruited to a more profitable resource site [23].

Stingless bees (Hymenoptera, Apidae, Meliponini) are the largest group of social bees and
have more than 400 species. Only a small fraction of stingless bees species have been studied
in detail [26]. These bees live in populous permanent colonies and are able to coordinate
worker’s actions and respond to the spatio-temporal changes of food availability in their
environment without any centralised control function [26]. An individual stingless bee makes
foraging decisions based on a variety of information sources which can be intrinsic to the
bee (spontaneous preference and memory) or extrinsic (colony state, nest mates, conspecific
non-nest mates and heterospecific bees in the field) [26]. Just as in honeybees, naive stingless
bees are primarily recruited at the nest. However, unlike honeybees, stingless bees have
diverse systems of recruitment. For example, in several stingless bee genera, recruits directly
follow foragers the entire distance to food sources (also known as piloting) or follow scent
trails laid on surfaces by foragers [27]. Stingless bees in the nest also use information such as
the availability of pollen in the nest, sounds, movement patterns, trophallaxis (direct transfer
of food between bees) and odour of forager bees to intensify or increase their chances of
leaving the hive in search of food source [26].

In bumblebees (Bombus terrestris), recruits are not given information of direction and/or
location of food sources. Bees that succeed in foraging make frenzied movement in the nest
to distribute alert pheromones that increases bee activity in the nest. This process informs
bees at the nest about the general availability and the scent of rewarding food sources [28].
Reticent bees use this pheromone information and nutritional status (amount of food in the
nest) to make individual decisions to start foraging activity [29]. The response to pheromone
is stronger for low nectar reserves in the nest, while if there are high volumes of nectar in
the nest, only a few bees get recruited. Foraging patterns for bumblebees in the field has
been described using Lévy flight, which involves a combination of foraging from nearby and
distant flowers for nectar [30].

2.3 Biological Search Strategies

The survival of many organisms, from microbes to large animals, depends on their ability to
detect, integrate and process varieties of internal and external cues when navigating complex
environments for purposes such as locating food, avoiding predators or attracting mates
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(a) Unbiased random walk (b) Lévy walk (c) Biased random walk

Fig. 2.1 Three types of random walk. Blue and green circles represent starting and stopping
locations respectively, while the dotted lines represent the path of the agent. In (c), the brown
gradient represents change in concentration of an attractant signal the agent measures to
inform its biased search toward the signal source.

[31]. One of the most popular navigation behaviours is the random walk — a Brownian-like
motion in which the organism follows a fairly straight path and randomises its movement
direction at random intervals. This motion could be pure random walk, where the straight
motions and random angles are sampled from a uniform distribution (it results in movement
pattern similar to Fig. 2.1a). A second class of random walk, known as Lévy walk (or flight),
observed in biological systems is such that the agent makes localised random motions with
occasional long straight motions [32, 33] as illustrated in Fig. 2.1b. The agent’s movement
path-length can be described using a Lévy distribution. A third class is the biased random,
where the agent’s random walk is biased based on some signal it senses in its environment
(shown in Fig. 2.1c). An example of biased random walk is the chemotaxis search observed
in organisms such as Escherichia coli bacteria and Caenorhabditis elegans nematode where
the agent’s movement is in response to the temporal gradient of the concentration of attractant
or repellent chemicals they sense as they explore the environment [34, 35].

In unbiased random walk and Lévy walk, the organism search behaviour is controlled by
some internal cue (or state). Thus, within a swarm foraging context, each agent performs
independent exploration of the search space to locate targets and when found, they do
not recruit others to the found resource. It has been shown that Lévy walk significantly
outperforms unbiased random walk for foraging tasks, especially when targets are sparsely
and randomly distributed within the search space [36, 37]. This is because it reduces the
probability that an agent will revisit areas it has already explored.

Chemotaxis-based search in E. coli and C. elegans have attracted a considerable amount
of interest from researchers. Some work have focused on understanding biological and
chemical parameters for chemotaxis [34, 35, 38, 39], control systems and mathematical
modelling of the organisms’ chemotactic movement [31, 40–42] or using it as inspiration
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for robot navigation behaviour [33, 43, 44]. When using chemotaxis, the organism uses
its chemoreceptors to continuously sense its environment during exploration. The motion
can broadly be classed into two: swim mode – characterised by nearly straight forward
movement; and tumble mode – used by the organisms to change their direction [43]. The
organism’s decision to modulate its swim is informed by the temporal gradient of signal
concentration it senses. When it senses positive concentration gradient of an attractant
chemical (or a negative gradient in a repellent chemical), the organism will tend to make
longer swims. However, when it senses negative temporal gradient of the attractant chemical,
the organism makes short swims, thus causing it to make frequent tumbles of up to 180◦. This
change in direction increases the chances that the organism will detect a positive attractant
gradient and swim toward it [38, 45–47].

The chemotaxis search described in the preceding paragraph specifically describes organ-
isms’ modulation of its random search based on the change in chemical gradient. Broadly
speaking, many biological organisms can modify their movement or exploration behaviour
in response to change of some parameter they can sense in their environment. For exam-
ple, when organisms modulate their movement in response to light, it is termed phototaxis
[44, 48]; responding in similar manner to temperature gradient is thermotaxis [49, 50]; and
when responding to sound, it is termed phonotaxis [51, 52]. These navigation behaviours are
generally more complex than those observed in C. elegans and E. coli chemotactic behaviour.
For example, in phonotaxis observed in crickets, female crickets track the specific calling
song to localise the male crickets instead of randomly exploring the environment based on
intensity of the sound signal.

2.4 Swarm Robots Foraging Algorithms

Most modelling studies of foraging algorithms assume correlated random walk rather than
a systematic search strategy [9]. This random walk pattern of the foraging agent may be
modified to become straighter in response to congestion in its local environments to minimise
inter-robot interference and explore new regions in the environment. It can also be more
tortuous (larger turn angles), keeping the forager within a region’s vicinity thus causing a
region to be thoroughly explored. Optimal tortuosity of the search path is dependent on
factors such as target distribution and number of cooperative searchers [9]. In addition,
while searching, foragers need to track their nest location to enable them return there. A
standard model used for tracking the nest is the ant Cataglyphis bicolor. These ants use path
integration algorithm (continuous update of distance and direction of nest from distance and
direction ant has walked) to keep track of their homing vector [9]. Swarm robotics foraging
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research has led to the development of a number of algorithms, which in many cases build
upon the correlated random walk. Some specific goals focused on in swarm robots foraging
literature include minimising foraging time, maintaining swarm energy level and minimising
inter-robot interference to eliminate overcrowding within the environment. In subsequent
paragraphs, some swarm robots foraging algorithms are discussed briefly.

The multi-robot foraging algorithm without communication in [53] is one of the earliest
works in the area. The robots used were controlled using move-to-goal, avoid-static-obstacle
and noise motor schemas. Each of these schemas were represented as vectors (i.e. they
have magnitude and direction), which were dependent on whether the robot was in foraging,
acquire or deliver state. A robot’s motion was defined as the resultant of the motor schemas.
Robots in the foraging state used random walk to search for attractors (because the noise
motor schema had the highest magnitude in this state and randomly generated paths the robot
took). When the robot locates an attractor, it switches to move-to-goal state to pick it up and
transport it to a central nest. In subsequent improvements of the algorithm, robots recruited
other swarm members to the attractor’s site by broadcasting its location on a shared memory
accessible to all swarm members [54, 55].

In [56], two swarm foraging algorithms were developed to investigate the role of recruit-
ment in swarm of foraging robots to determine conditions that favoured collective foraging
and those that did not. This was necessary because there are associated costs in algorithm
and hardware design when collective strategies are employed for foraging. The two strategies
were termed individualist and collective foraging. In the individualist approach, robots used
random walk to search for targets and transport them to the nest (they located the nest by
following a home beacon). Upon returning a target to the nest, a robot assessed the energy
efficiency of the returned target, which it then used to decide whether to return to previous
foraging location or resume a random walk search for new targets. For the collective foraging
approach, robots communicated the energy efficiency and locations of targets they find with
nearby robots. Robots got recruited to target locations if the energy efficiency of targets
communicated to them were better than their target goal or when they have been unsuccessful
in locating any target. The results indicated that collective foraging is advantageous when
it solves the problem of congestion and when targets are hard to find (because they are
clustered within small areas). The individualist foraging approach was more cost effective
where resources were easy to locate, information were unreliable, resources were abundant
or additional investment cost for implementing collective behaviour outweighs benefits to be
gained from improved foraging performance.

In later work in [57], a bee-inspired algorithm, where robots only communicate resource
location at the nest was developed. The nest area is divided into unloading region to drop
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off foraged targets and dance floor for recruiting observer robots. Robots started out as
observers that performed random walk within the dance floor. With a fixed probability,
observers transitioned to scout robots, which left the nest and used Lévy walk to search
for foraging material. An unsuccessful scout returned to the dance floor as an observer,
while successful foragers estimated the energy efficiency of targets they found, dropped
them off at the unloading region and went to the dance floor to recruit observer robots
within communication range. The experiments investigated the effect of information flow to
measure how swarms self-organised collectively or adapt individual behaviours in order to
cope with changing foraging conditions. Simulation results indicated that swarms were able
to switch to more profitable foraging sites when robots used short range communication and
were able to measure the rate of change of resource quality of the sites they foraged from.
Other strategies such as long range communication and relying on foraging experience of
other robots were only good for specific foraging scenarios, thus were not suitable for cases
where swarms needed to easily adapt to wide variety of foraging conditions.

An artificial recurrent neural network robot controller whose weights were updated online
by robots during foraging was proposed in [58]. The swarm task was for two robots to
collectively pick up targets in their environment. Once picked up, the target reappeared in
a random location and each robot involved in the pick up got assigned a score. The neural
network controller defined the genome of each robot behaviour and the genome’s fitness
encoded the number of targets the robot had picked up using the genome. Robots executed
this genome to search for targets for a limited time while sharing the fitness and genome
data with other robots it encounters. At the expiration of the time assigned for executing the
genome, each robot assessed its genome and those it had collected. The robot then selected
the genome with the best fitness to mutate and use for the next time-limited exploration. The
approach helped all robots in the swarm to continuously update their strategy to optimize
their foraging efficiency.

In [59], each robot in the swarm was represented as a particle in a Particle Swarm
Optimization (PSO) algorithm. The dimensions of the each particle was modelled as the
8 sensors with which the robot measured the potential in its immediate environment. The
potential field computation was dependent on attraction and repulsion weights. The attraction
weight is a linear equation dependent on the proportion of the targets found by the swarm,
while the repulsion weight was computed based on the percentage of the search space that
had been explored by the swarm. This meant that the PSO algorithm required global update
of total targets in the environment, number of targets left and how much of the environment
had been explored by the swarm. In addition, robots in the swarm also had access to the



15

global best fitness, which it used as part of the equation to compute its movement direction,
based on the PSO algorithmic steps.

Inspired by desert seed-harvester ants, Hecker and Moses [60] developed the Central
Place Foraging Algorithm (CPFA) for swarm of robots searching for and retrieving items
in their environment. These ants searched for food items independently using memory
of their foraging experience and occasionally laid pheromones to recruit other ants when
they discovered a large deposit of food in a location. In CPFA, robots leaving the nest
randomly selected a region to forage from within the search space, navigated to that location
and performed a localised search for targets there (known as informed search). The robot
gradually widened its search area to explore a wider space if it had been unsuccessful in
finding targets near the chosen site (known as uninformed search). While searching, the
robot’s decision to return to the nest was controlled by a time dependent probability of giving
up the search. When the robot located targets during search, it picked it up, noted the location
it found the target and estimated the density of targets within that region. The robot then
returned the found target to the nest and probabilistically decided whether to lay pheromone
waypoint at the nest to point to its last foraging location or refrain from doing so. The robot
also decided whether to return to previous foraging location, random location or make use of
pheromone waypoint laid by other robots at the nest. In swarm design approach, the nest
served as a location to deposit targets and get information about pheromone waypoints laid
by robots in the swarm, thus robots recruitment is facilitated by the nest. To mitigate the
effects of diminishing returns encountered in tasks where robots were to locate and forage all
resources in the environment, in [61] the CPFA was extended to help the swarm estimate the
number of target clusters in the environment and allocate search areas to different clusters
based on the estimated size of each cluster.

The Multi-Place Foraging Algorithm (MPFA) was proposed in [62] as an extension of
CPFA. In MPFA, foraging robots selected from multiple depots to drop foraged materials,
based on which was closest to them. One motivation of MPFA was that it helped the swarm
cover a wide area and minimised the time spent by robots returning foraged items to a central
location. For depositing targets at a central nest, MPFA was extended in [63] by making the
multiple depots transport the items deposited in them to the central nest. Additionally, the
depots autonomously determined areas to position themselves within the search space in
order to minimise the journey performed by exploring swarm robots. They showed through
extensive simulations that the multi-depots approach outperformed classic CPFA when the
search area was large. It also reduced the congestion at the nest experienced when robots
used only CPFA for foraging.
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In [64, 65], the swarm of foraging robots adapt their search strategy based on the distance
of targets resource from the nest. Initially, robots left the nest in search of targets to forage
using random walk. During this search, some robots decide to form beacon networks that
will provide gradient information toward the nest for robots involved in the search for the
target. If the target is found, information about its location is relayed as a gradient through
the beacon network for other robots who use the gradient information to locate the target
deposit. If no target was found and all robots have transitioned to a beacon network, the
swarm transitions to the sweeping algorithm. The sweeping algorithm increases the swarm’s
reach in the search space by forming a one-dimensional chain of robots that form a gradient
from the nest to the end of the chain. This chain then makes a clockwise sweep using the
nest as the centre. If the swarm locates a target deposit, foraging robots follow the gradient to
pick up targets and return them to the nest. On the other hand, if the sweep was unsuccessful
in locating targets, the swarm disbands the chain and all agents perform independent random
walk search for targets and also use random search to locate the nest once they find a target.

The Cooperative-Color Marking Foraging Agents (C-CMFA) algorithm was proposed in
[66]. In the model, robots used stigmergy to forage within a grid environment, where they
can either move in up, left, right or down direction. When robots leave the nest, they explore
the environment in square spiral format while leaving a trail on each grid cell they visit. This
trail is an integer hop count from the nest to the cell, which resulted in an artificial potential
field. Upon encountering a target, the robot picks it up and follows the negative gradient of
the potential field to the nest, while laying pheromone trails on this path to create an optimal
route from nest to target location. Robots cooperate with other swarm members by avoiding
cells that have been visited by other robots and following pheromone trails they encounter.

In [67], the Distributed Deterministic Spiral Search Algorithm (DDSA) for foraging
swarm robots was proposed. DDSA operates by making each robot in the swarm follow a
square spiral path starting from the nest such that the space between each spiral is no more
than the sensing distance of individual robots. Such search pattern eliminated resampling of
areas already covered by other robots in the swarm and guaranteed that the whole environment
would be covered in a deterministic fashion. When a robot locates a target, it returned the
target to the nest and resumed exploration from where it left off. DDSA performed well for
swarms of 6 to 15 robots, but continuously got worse when tested on larger swarm sizes. In
addition, the algorithm was well suited for environments that have targets located near the
nest and gave poorer performance when targets were far off.

In [68], robots made foraging decisions by adaptively responding to the amount of food
available in the environment. The robots used a sigmoid function and response threshold to
decide between three states: Resting (remaining at the nest), Searching and Interacting (leave
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the nest to forage targets and communicate with other swarm members), and Returning (return
to the nest to deposit targets or recharge battery). In the proposed method, a robot at the nest
decides to go foraging when the stimulus was high. The robot then performed random search
of the arena and interacted with its neighbours by exchanging state information with them.
Through direct communication, the robot learned of the foraging success of its neighbours,
which helped it estimate its chances of successfully finding targets to forage. Once the robot
found a target or ran out of battery, it returned to the nest. The robot’s subsequent decision to
leave or remain at the nest is dependent on its foraging experience and that of other robots
it had interacted with during its last foraging expedition. The result of this adaptive role
selection by the robots in the swarm resulted in adaptively resizing the number of foraging
robots in response to availability of targets in the environment so as to optimise the foraging
efficiency of the swarm.

The response threshold-based approach was also used in [69], where the swarm’s goal
was to maintain a desired food level at the nest. The robots did not communicate with each
other, but were able to sense the level of food at the nest, and individually decided to continue
waiting at the nest or leave the nest in search of food, based on the stimulus level. The
stimulus in the proposed work was the difference between desired food level and current food
level at the nest. Initially, all robots wait at the nest and routinely checked the nest’s food
level. If the stimulus was high (critically low food level in comparison to desired level), the
robots were more likely to leave the nest in search for food. Upon returning to the nest, robots
default to the waiting state and routinely checked the food level. When level of food at the
nest was close to or more than desired level, the robots had little propensity to go out foraging.
In the tests (using simulated and e-puck robots), food items were placed randomly in the
environment, and level of food at the nest decreased over time to simulate food consumption.

Bucket brigading is also a common swarm foraging approach used in literature, which
involve robots transporting targets through a chain of handovers between multiple intermedi-
ate robots from the resource location to the nest. In [70], robots started at arbitrary locations
in the search space and explored the environment to locate an Ants Colony Optimization
(ACO) algorithm generated trajectory that connected resources to the nest. Once on the ACO
trajectory, the robot autonomously balanced its work time with the robots on its left and right
in the chain. They do this by local communication of work time between each robot and their
intermediate neighbours, and use the information to compute appropriate time/distance to
travel when loaded. In this way, over time, the robots in the chain reach a consensus work
time where no swarm member was overloaded.

In [71], a cost function was proposed which robots used to determine the path length
they should travel when they transported the foraged objects toward the nest. In this task
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partitioning approach, robots did not communicate directly with other swarm members, but
searched for targets using random walk. The first time a robot found a target, it transported it
directly to the nest, and estimated the cost of this transport and determined a path length it
would use on its next foraging trip. During subsequent trips, the robot transported targets for
only short distances before depositing them for other robots to pick up and transport to the
next location based on their individual path length (or to the nest if the robot was near the
nest). Robots used odometry information to return to their last foraging location to perform
localised search for more targets. They search wider areas if no more targets were found in
their last foraging location.

Random walk search was used in [72] (robots move forward and stochastically change
their direction) to locate targets to forage and return to the central nest. To specifically
solve the problem of congestion at the nest location and conserve energy, role division and
searching space division was introduced. For role division, the swarm was divided into
collecting and conveying robots. The collecting robots randomly searched for uniformly
distributed targets in the environments and deposited them at intermediate temporary stores,
while the conveying robots picked up targets from temporary stores and conveyed them to
the central nest. The addition of temporary stores (near the nest) in the search space divided
it into two regions such that areas between nest and temporary storage were explored by
conveying robots, while regions beyond the store were explored by collecting robots. In
addition to reducing congestion around the nest region, the approach also improved energy
efficiency of the swarm because collecting robots did not have to make the long journey to
the nest to deposit targets before resuming their search, and conveying robots only needed to
search for targets within a limited area. Additionally, robots adaptively switched between
roles based on time thresholds for each role. This helped the swarm adaptively balance
between collecting and conveying robots.

Congestion of robots on paths that lead to the nest is one of the issues reported in
swarm foraging literature. When robots converge to a path that connects nest to resources,
the inter-robot interference increases due to the congestion. In [73] and [74], the Robot
Probabilistic Cellular Automata Ant Memory (RPCAAM) was proposed, where robots used
pheromone-based communication to locate and recruit swarm members to a targets source.
When in the homing state, a successful robot chose one out of multiple nest locations to
return the target to by using a probabilistic decision function that considered the robot’s
distance from the nest nearest to it. The function assigned high probability to the robot’s
neighbourhood cell that had the shortest distance to the nest, and lower probabilities to other
neighbourhood cells. Thus, using this probabilistic decision process, the robot sometimes
followed a suboptimal path and reduced congestion along the shortest path to the nest.
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2.5 Recruitment in Swarm Robots

Recruitment is the means by which swarms of robots cooperate with other swarm members.
It plays the major role in improving swarm efficiency, scalability and robustness when
accomplishing tasks such as foraging, aggregation, collective transport, swarm navigation
among other swarm tasks. Many of the strategies used in swarm robotics are based on
several biological phenomena. In swarm robotics, recruitment is mediated by some form of
communication. Much research has gone into various technologies that can aid decentralised
recruitment of robots using both stigmergy and direct means of recruiting swarm members.

2.5.1 Stigmergy-based communication

Stigmergy-based communication refers to the use of markings in the environment (for exam-
ple leaving pheromone trails) as a medium of communication. Many ant-inspired approaches
model the pheromone-based recruitment. In [75], an arena covered with phosphorescent
paint that glowed in the dark for several minutes after exposure to ultraviolet light source was
used. Robots were equipped with a downward facing ultraviolet LED, which they used to
stimulate the phosphorescence on the floor beneath them as they traversed the arena between
the nest and target source during foraging. Robots were able to get recruited to the foraging
path using light sensors. In [76], a 6 m × 9 m parquet floor and approximately 1,500 RFID
tags placed underneath the floor were used to store and update pheromone information.
The Augmented Reality for Kilobots (ARK) system was used with a swarm of 100 - 200
Kilobots to demonstrate pheromone recruitment on robot platforms in [77]. The ARK system
allowed custom extensions to Kilobots with sets of virtual sensors and actuators which are
not available on the minimalist robot platform. The setup consisted of an overhead camera
array to track the Kilobots, an IR-OHC for communication and a base control station to
simulate the virtual environment [78]. The ARK communicates with robots in real time
to update their behaviours. This system acts as a central server that managed pheromone
information for the robots - Kilobots communicated with the ARK system to deposit and get
pheromone information.

A different approach, which used a set of mobile deployable and movable sensor nodes
was proposed in [79]. Robots communicated with the nodes using UDP multicast over a
802.15.4 communication standard. These nodes stored pheromone values which acted as
waypoints to establish gradients robots can follow to connect nest to resource locations.
Additionally, they can store indicators which robots read to determine the states of the nodes
(inactive, faulty or deployed). Foraging robots were also able to move the nodes in the
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environment to optimise the foraging paths followed by recruited robots. Na et al. [80] used a
horizontally placed 42" flat LCD screen to display pheromone information which robots can
read using light sensors. The setup also included an overhead USB camera connected to a
computer that tracked the robots and managed the pheromone system. Similarly, [81] used a
65" high resolution LCD to display pheromone information processed using a base computer
station. Robots also used colour sensors to read pheromone information. In a different
approach in [82], robots communicated pheromone deposit intention to a tracking device by
using LED light. The tracker processes the information and displays it on the arena via a
projector device. The pheromone communication experiment was performed on a swarm
of 5 Alice robot platforms. In a clustering behaviour inspired by how bees cluster around
regions of favourable temperatures, [83] implemented a decentralised clustering algorithm
where Jasmine robots used photosensors to sense light intensities and cluster around brightest
spots projected from a light source.

Some researchers have resorted to using chemical signals for pheromone laying and
equipping robots with sensors to detect the presence of such chemicals. In an early work
by [84], trails of camphor were laid on the floor and a robot that executed a trail-following
algorithm observed in Lasius fuliginosus by using silicone OV-17 for sensing the presence
of camphor on the robot’s path. A more recent work by [85] used ethanol (C2H5OH) as
the pheromone signal which robots lay and sense while performing a cooperative transport
task. The properties of ethanol that motivate its use include volatility at normal temperature
and its diffusion, which correspond to the actual pheromone properties used by ants. Their
experiments involved up to 10 real robots to demonstrate the effectiveness of ethanol as
pheromone substance for recruitment and indirect communication among robots.

To avoid difficulty in the realisation of pheromone-like substances for hardware robot
platforms, alternate approaches have resorted to dividing the swarm into mobile and beacon
robots. The beacons hold pheromone information utilised by the mobile robots when
executing swarm tasks. For example, in [64], robots decide to become beacons when they
sense less than 3 beacons in their neighbourhood. This approach forms a beacon network
that holds gradient information in the form of hop counts between resource and nest. Mobile
robots can then follow the gradients when performing foraging tasks. In a similar approach in
[86], a swarm of ground robots (footbots) and aerial robots (eyebots) were used. The footbots
navigate from nest to resource site by following gradient information communicated to them
by pre-deployed eyebots that attach themselves to the ceiling. In [87], a swarm of networked
robots communicate messages, known as virtual ants, among themselves to optimise the path
that connects resource location to the nest. The virtual ants deposit pheromone information
on the robots. This information is used by the networked robots to decide a shortest path
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connecting resource to the nest. Robots in the network that do not form part of this path,
stop being beacons and become foraging robots that follow the shortest path during foraging.
Experimental validation of their approach was conducted on a swarm of 20 e-puck robots
that use infrared sensors to communicate the virtual ants.

2.5.2 Direct communication

With inspiration from the trophallactic behaviour (mouth-to-mouth feedings) observed in
social insects such as bees, [88] developed a recruitment strategy that is based on direct
signalling between robots without the need for central unit for communication. In their ap-
proach, robots maintain two dynamically updated internal states that represent their gradient
values which point to resource and nest sites. Robots used infrared to communicate internal
states with nearby neighbours, which is exploited by the recruits to choose its direction of
motion. In [89], robots used LED lights to communicate with other swarm members that
search for suitable locations to extend a chain from the nest. The searching robots used their
camera to process the LED colour displayed by the last robot in the chain in order to choose
its appropriate colour upon joining the chain. Robots transporting foraged items to the nest
used the LED light patterns to determine nest’s direction. In a swarm of cleaning miniature
robots, photodiodes were used by the robots to sense LED-based communication signals
from other robots in [90]. Within the context of social odometry (swarm of robots sharing
position estimates with neighbours in order to optimise navigation between two endpoints),
in [91], robots estimated the distance and orientation of their neighbours in order to optimise
their paths between multiple goal locations. The platform used was the marXbot swarm
robots [92], whose range and bearing sensor gives distance and angle between nearby robots
and also allows neighbouring robots to send messages to one another. In [93], e-puck robots
used peer-to-peer local communication during foraging to collectively select the shortest path
between resource site and central nest. The robots locally exchange target and nest location
estimates with their neighbours whenever they are within communication range (e-puck
robots use a range and bearing board, which is similar to those of marXbots, to estimate
neighbour’s pose and exchange short messages).

2.5.3 Impact of noise on recruitment

Imperfection in recruitment signal can impact the success of cooperation among swarms of
robots. This noise could be imperfection in location of targets communicated to other swarm
members and/or uncertainty in the recruitment information sent to neighbouring robots
among others. Although hardware implementation of swarm robot algorithms can reflect the
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impact noise has on swarm foraging, little research has been conducted on the quantification
of the effect of noisy recruitment. For example, in [60], where robots recruited swarm
members by informing them of the resource location, positional errors were used to simulate
noisy recruitment. The robots used odometry measurements for localising themselves with
respect to resource locations. Experiments using iAnt robot platforms estimated this error to
be a function of distance between the robot and resource location. In the response threshold
foraging model in [69], noise in sensing the level of food in the nest was used to investigate
the impact of noisy sensing. The inclusion of noise significantly impacted the survival rate of
the swarm. In [87], communication error was simulated as corruption or loss of virtual ant
passed between robots in the swarm to help them select the shortest path to target deposit.
As the percentage error increased, the swarm’s ability to select the shortest path gradually
degraded until they were unable to distinguish between near and distant resource deposits.

2.6 Detecting Target Objects

Object detection is an important and challenging aspect of computer vision that deals with
analysing a visual scene to localise the presence of a certain class of objects (such as
humans, cars, animals, litter or buildings) within the scene [94]. Computer vision has broad
applications in satellite imaging, cancer research, surveillance, self-driving cars and robotics
among others. Given an image frame, the objective of object detection is to use computational
models and techniques to answer the question of what objects are in the scene and where
they are located within the given image [94].

For real world deployment of swarm robot platforms, it is important to use realistic
targets for robots to detect and study how the detection inaccuracies of the robots impact the
swarm algorithm. Not all swarm robotics applications require robots to have cameras for
vision. Many tasks such as aggregation, flocking and swarm navigation can be implemented
without need for a vision processing system. However, vision is important for swarm tasks
such as foraging, collective transport and object clustering. It is common in swarm robotics
research to abstract robotic vision and give robots 100% accuracy in their vision system. This
is because researchers have generally focused on developing algorithms that are effective in
accomplishing swarm tasks without considering how imperfections in robot vision systems
could impact their algorithm. In addition, when working with hardware platforms, the target
models used are usually simplified to beacons, coloured cubes, encoded materials and similar
technologies to make it easy for robots to detect them. The impact of imperfections on
the vision system of robots that make up the swarm can go a long way in revealing the
benefit of swarm algorithms when they are deployed in real world environments. In Section
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2.6.1, target detection approaches in swarm robotics are reviewed; Section 2.6.2 reviews the
state-of-the-art in object detection – deep neural network object detection – used extensively
in computer vision research; and Section 2.6.3 details the steps in building an object detection
model for robot platforms.

2.6.1 Individual target detection

In many simulations, robots detect objects based on their relative distance from the objects.
These simulated robots generally have omnidirectional detection capability and they usually
have 100% object detection accuracy within their target sensing range [57, 65, 66, 72, 88].

When implementing detection on hardware, the targets are usually of a single type. In
some cases that involve clustering, objects of different colours are used [13]. In general the
objects to be detected are simplified. The iAnt robot platform in [60] used a downward-facing
camera to detect modelled targets as QR matrix barcode tags in the environment and used
OpenCV library to process the frame images. When iAnt robots detected QR tags by aligning
the robot with the tag, they detected the tags 55% of the time. However, if the detection
was done by searching for neighbouring resources by simply rotating 360◦ about its axis
and analysing the frames as it rotates, the robot was successful 43% of the time. Colour
detection cameras were used to detect blue cylindrical food tokens in [69, 75] when using a
swarm of e-puck robots. When using Kilobots in [78], the Augmented Reality for Kilobots
(ARK) system was used to include virtual camera sensors to the robot. The Kilobots used
their virtual camera to detect targets and ‘pick’ them up when they reach the target’s location.
Barcode beacons were used in [79] to represent targets which a robot scans with its camera
to update a successful target pick up.

2.6.2 Deep neural network for object detection

The revolution caused by the deep neural networks has resulted in significant transformation
within computer vision research (and in particular object detection) leading to systems that
are able to detect thousands of different object classes in images. Deep neural network based
object detection is at the moment the de facto means of object detection in the computer
vision community. Although deep neural networks based detection methods were developed
within the past six years, research in object detection predates this period. Within the past
twenty years there has been a number of algorithms developed based on handcrafting of
features of objects to be detected. One of such algorithms is the Viola Jones Detector [95]
used for detecting human faces in images. Their approach simplified the computations of
sliding windows of all possible scales and locations of the human face in the image by
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incorporating integral image, feature selection and detection cascades techniques to speed up
the image processing task. The Histogram of Oriented Gradients (HOG) feature descriptor,
motivated by the task of pedestrian detection, computed descriptors on the dense grid of
uniformly spaced cells and used local contrast normalisation to improve accuracy [96].
Another popular algorithm predating the use of deep neural networks is the Deformable Part-
based Model (DPM), which won the VOC-07, VOC-08 and V0C-09 detection challenges,
used the principle of ‘divide and conquer’ to learn proper ways of decomposing objects
to separate features [97]. Thus, the detection of the objects within an image was based on
ensemble of detections on different parts of the objects [94].

These object detection algorithms represent the major algorithms used for object detection
prior to deep neural networks based approaches started to dominate the field. They made
use of techniques such as image segmentation [98], template matching [99], knowledge-
based and object-based image analysis [100] for the purpose of detecting specific objects
in images. By 2010, the performance of hand-crafted features for detecting objects in
images plateaued, where further improvements did not result in any significant impact on
performance of the detectors [94]. In addition, with increasing number of object categories,
their detection accuracy decreases, while the inference time increases [101]. This reduces the
wide adoption of these approaches to tasks that involve many object classes. For example,
autonomous vehicles are tasked with detecting a wide variety of objects such as other road
users, pedestrians and traffic signs at a very high level of accuracy. The arrival of deep neural
networks based object detection brought about a significant improvement in the detection
accuracies and number of object categories that could be detected within a single algorithm –
a single detector can be used to detect hundreds of different object types within an image at a
high degree of accuracy [102].

These deep convolutional networks gained popularity for their superior performance when
learning high-level feature representations of data. This performance played a role in the drive
to use it for object detection in images and resulted in the first deep neural network based
object detector known as Regions with Convolutional Neural Networks features (RCNN)
[103]. Since then, the field of computer vision has continued to be dominated by deep neural
network based approaches grouped into ‘two-stage detection’ and ‘one-stage detection’.

RCNN is a two-stage detection approach initiated with the extraction of candidate object
bounding boxes developed using selective search. These proposed object bounds are then
rescaled to a fixed size image and fed into a CNN model trained on the ImageNet dataset
to extract object features. Finally, linear support vector machine classifiers are used to
predict object’s presence within each region [94]. Although RCNN improved mean Average
Precision (mAP) from 33.7% to 58.5% when compared to DPM on VOC-07 dataset, RCNN
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was very slow. This led to subsequent improvements of accuracy and speed to develop
Fast RCNN [104] and Faster RCNN [105] in subsequent iterations of the approach. Spatial
Pyramid Pooling Networks (SPPNet) [106] and Feature Pyramid Networks (FPN) [107] are
two more examples of two-stage detectors.

The one-stage detection propose boxes from input images directly without need for
region proposal step used in two-stage detectors, thus making them more time efficient [108].
Although, two-stage detectors have high object recognition and localisation accuracies,
they are less popular than one-stage detectors in real-time object detection tasks because
they are slower. You Only Look Once (YOLO) is a popular one-stage object detector
that divides the image into regions and predicts object bounding boxes and probabilities
simultaneously using a single neural network [109]. YOLO significantly improved inference
time of object detections, but suffered a drop in localisation accuracy, which was the focus
of future revisions of the algorithm in [102] and [110]. Single Shot MultiBox Detector
(SSD) introduced multi-reference and multi-resolution detection techniques to improve the
accuracy of one-stage detectors when detecting small objects [111]. Two-stage detectors
were consistently more accurate than one-stage detectors because of extreme foreground-
background class imbalance encountered during the training of dense detectors according
to [112]. This led to the development of RetinaNet, which used a new loss function termed
‘focal loss’ during training to help one-stage detectors attain similar performance to two-stage
detectors without compromising their inference time [94].

One key constraint to adopting deep neural network approaches to object detection,
especially on swarm robots platforms, is the computational requirements of these networks.
Swarm robots are generally developed with minimal processing capabilities. This helps to
minimise cost of developing swarms since there could be hundreds or even thousands of them
deployed for solving swarm tasks. As the field of object detection using deep neural networks
evolved, there has been some modifications to detectors in order to reduce their computational
requirements and make them attain more frame rates on constrained computational devices
such as embedded systems and mobile phones. Examples include the light-weight versions of
SSD and YOLO known as MobileNet-SSD [113] and tiny-YOLO [114], respectively. These
small sized networks can be run on devices such as Raspberry Pi at multiple frames per
second. These networks generally have reduced performance when compared to their larger
sized counterparts. However, their detection accuracies are reasonably good and because of
multiplicity of sensing from multiple robots in the swarm, targets missed by one robot could
be detected by other member(s) of the swarm.
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2.6.3 Deploying deep neural network based object detectors on robots

The processes undertaken to develop and deploy deep neural network object detectors on
robots are generally same for most robot types and application areas. For localised processing
of visual information to detect targets, a robot needs a camera to sense its environment and
enough computation power to process the information using a deep neural network algorithm.
This is an essential requirement for both single or multi-robot system tasks. The only
difference being that the model is deployed on one robot processor for single robot tasks,
while for multi-robot systems, the detection model is deployed on each robot that make up
the system. The steps for deploying deep neural network object detectors on robots are as
follows:

1. Source for dataset: Deep neural networks need a large number of representative
dataset in order for them to generalise properly. Datasets can be sourced from online
databases such as ImageNet [1], PASCAL-VOC [115], MS-COCO [116], which
contain millions of images that cover thousands of object classes [117]. Search engines
such as Google, Flickr and Bing have also made it easier to find relevant datasets for use.
In addition, a number of researchers have made their datasets freely available online for
the community of other researchers to use for benchmarking their work. Alternatively,
individuals can generate custom datasets by taking photos (or crowdsourcing for
photos) of the objects they intend to train their network on.

2. Annotate dataset: Annotation is the process of specifying bounding box (or sometimes
pixel masks) of the region occupied by objects of interest. Some datasets such as the
PASCAL-VOC and MS-COCO are already annotated, so the researcher only needs
to download the images and their corresponding annotations. However, some images
such as those custom generated or found on ImageNet, will need to be annotated by
the researcher using tools such as crowdsourcing on Amazon Mechanical Turk [118].
Alternatively, open source software such as CVAT [119] and Openlabelling [120] can
be used to manually annotate the dataset, especially when they are not too much for a
single (or few) individual(s) to do.

3. Training and testing: After annotations, the next step involves dividing the dataset
into training and testing data. Training data is used for updating the network’s weights,
while testing data is used to compute the performance (compute a loss function) of the
network at the current iteration. Training process is usually performed on GPU enabled
platforms, which significantly speeds up the process in comparison to it being done on
a CPU [121]. During the training process, the accuracy of the detector improves over
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time and it can be terminated based on some predetermined criteria. For example, the
network can be trained until its loss function converges or until a maximum number of
iterations is reached [111].

4. Deployment: The trained network weights are saved and deployed on the computer
that controls the robot [122]. Within the robot’s control algorithm, the object detector
network takes an image (from the robot’s camera) as input, processes it and produces
an output as reference as to where objects of interest occur within the input image
(or information regarding absence of the target objects). Based on the results from
the detector, the robot can then respond accordingly. Depending on the computation
power of the robot’s computer, there could be a mismatch between the rate at which
the network receives input and outputs a result, and such issues need to be taken into
consideration during the design. For example, the input to the network could be at
50 Hz, and because of low processing power of the robot, its corresponding output
could be at 3 Hz.

2.7 Robots for Picking Litter

The job of foraging litter, within a park for example, is an interesting swarm task that can
be extended to other foraging applications such as search and rescue in disaster scenarios,
harvesting resources in an environment and demining an area. These tasks have a number of
overlapping problems for the robots:

1. The number of targets to forage and their distribution within the search space are
unknown.

2. The search area could cover a wide space which potentially makes it difficult to survey
from a single location.

3. The terrain of the search space can vary from one region to another, and it could contain
structures such as trees and other mobile and stationary obstacles.

4. The area could potentially be unfenced.

5. Central communication infrastructure could be unavailable.

While this list is by no means exhaustive, the point is that swarm robots are likely to face
similar challenges when solving any of the tasks in a foraging scenario. So in this research,
foraging litter has been chosen as a good real world application for swarm robots. Other
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inspiration for choosing litter include: alignment with the smart cities project where robots
are deployed to manage city infrastructure, and foraging litter (in a park at least) is far easier
to setup for the swarm without compromising the challenge level of the task at hand for the
robot swarm.

Some research has been done in using robots to clean an environment. One of the earliest
research that used multi-robot team for collecting litter was reported in [123], which won
the Office Cleanup event at the 1994 AAAI Robot Competition and Exhibition. In their
system, robots searched independently for litter within the search area and identified litter
and other features using a camera. In the multi-robot system, robots avoided each other by
analysing their visual feed and avoiding regions that have other robots within view. The
approach developed separate reactive behaviours that accomplish specific tasks (such as
get litter, find litter, move the litter etc) that were triggered in appropriate sequence by a
behaviour manager. DAVID was developed in [124] for cleaning up offices in addition to
collecting and delivering mail and stationary. The system used a single robot to forage tennis
balls within a partially mapped office environment. In [125], the design and experimental
results of using DustCart for door-to-door refuse collection within an urban environment was
presented. DustCart was able to safely navigate round Peccioli, a small town of Tuscany
in Italy, using beacons in its environment to localise its position and interact with users to
collect their refuse and deposit the waste at a designated area. The robot was managed by
a centralised Ambient Intelligence system (AmI) through a wireless network. In [126], the
DustCart and DustClean (designed for cleaning pedestrian areas) robots were equipped with
Air Monitoring Module (AMM) for collecting environmental data used for evaluating air
quality while performing their tasks. A number of studies have focused on the design of
robot platforms for cleaning an environment [127, 128]; improving the obstacle avoidance
behaviour of robotic vacuum cleaners [129] by using infrared line projections instead of
relying on vision; use of fuzzy inference system on user input to self-reconfigurable floor
cleaning robot to balance area coverage and energy consumption [130]; and the challenge of
knowledge representation for an autonomous robotic platform for picking up litter [131]. In
a recent work, a single robot programmed with deep neural network based object detection
was employed to explore an environment to locate and pick up litter in an outdoor park [132].
Their results indicate that the robot was able to pick up all litter quicker when it used a
methodical approach to search for litter instead of random exploration of the environment.
Within a swarm robotics context, urban waste management system where robots used a
stigmergy-based approach to collect litter from bins and deposit them in multiple deposit
(or nest) locations was developed in [133]. GAMA, the realistic agent-based simulation tool
model of the Kendall area in Cambridge, MA, USA was used to test the feasibility of the
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swarm foraging system. Refuse bins were equipped with RFID tags for handling pheromone
information and placed at intersections within the city. Robots explore the environment by
navigating between refuse bins to empty them, deposit and read pheromone information from
RFID beacons, transport picked up litter bins at the nearest deposit location and proceed to
the nearest recharge stations when running low on battery power. Their results show that
the swarm system was efficient in managing the waste in the environment, with the use of
multiple deposit sites producing better results than when robots transported the refuse bins to
a central deposit location.

2.8 Swarm Foraging Metrics

Swarm foraging algorithms performance are usually ranked based on the designer’s desired
criteria. The algorithm’s performance is also compared to what is attainable by other
competing algorithms. The following subsection outlines some metrics measured in swarm
foraging literature and algorithm baselines that will be used to analyse the algorithms
proposed in this thesis.

2.8.1 Metrics measurement

Measuring the performance of swarm foraging algorithm is important for determining how
accurate its design objectives are realised. Several studies in swarm foraging focus on
estimating the amount of targets foraged (either the time taken to forage certain percentage
of the targets or fraction of the total targets that were foraged within a specific time period)
[57, 63–66]. For foraging algorithms with primary emphasis on task allocation, the energy
efficiency of the swarm [68, 72] and minimisation of inter-robot interference [70] are common
metrics used to measure the algorithm’s performance. New metric such as the information
cost reward framework have also been proposed to analyse the underlying mechanisms of
recruitment that are suitable for swarm tasks [134].

In addition to foraging performance, swarm specific features such as robustness and
scalability are also important indicators of an algorithm’s performance. Robustness is usually
measured based on analysing the swarm performance under different target distribution [56],
noisy or imperfect recruitment information [67] and varying the swarm size [56, 66, 67].
Scalability of the swarm can be measured under the context of whether computational
requirements of the system increases with swarm size or how a change in swarm size affects
foraging efficiency. For example, in [60], scalability was defined as the relative improvement
of foraging efficiency of the swarm in comparison to when a robot acts alone, where efficiency
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is a measure of the contribution of one robot to the total number of resources collected by the
swarm.

2.8.2 Baseline algorithms

It is common practice to compare swarm foraging algorithms with a scenario where robots in
the swarm act independently without communicating or recruiting other swarm members
[56, 65, 67]. Another approach, used in [63], was to compare multiple variants or extensions
of a base algorithm in order to analyse the effects of iterative improvements to the algorithm.
In [61], the approach used was to measure the proposed algorithm’s foraging performance
with two extremes: a scenario where robots foraged using random walk without recruiting
other swarm members; and a setup where location of targets to forage were known a priori by
the swarm. This is the approach adopted in this thesis since it is able to clearly demonstrate
the improvement gain achieved by the swarm, and makes it easier to estimate the closeness of
the swarm algorithm to a centrally coordinated swarm system which would produce optimal
results.

The centralised swarm coordination system used in this thesis is the Adaptive Large
Neighbourhood Search (ALNS) heuristic proposed in [135]. ALNS is a very effective
route optimisation algorithm used to solve the problem of handling multiple transportation
requests using a limited number of vehicles. Each request has a pick up and drop off location,
and each vehicle is limited by the size, weight or quantity of goods it can carry. The aim
of the algorithm is to construct routes for the vehicles such that all pick up and drop off
locations (known as nodes) are arranged along the same route. The resulting route followed
by the vehicle is such that pick up tasks are performed before corresponding deliveries. The
algorithm starts by constructing routes that connect vehicles to all the pick up and drop off
tasks. The ALNS algorithm controls which heuristics are used to remove and insert nodes
that make up a vehicle’s route. The steps that make up the ALNS algorithm include:

1. Request removal: ALNS implements three removal heuristics, which are Shaw, worst
and random removal. The Shaw heuristic selects routes to remove based on their
similarity; the worst heuristic focuses on removal of the worst routes; and the random
heuristic randomly selects a specified number of routes to remove.

2. Inserting requests: routes are updated based on either a basic greedy heuristic or a
regret heuristic. For the basic greedy heuristic, the nodes that result in least cost are
inserted first, while the regret heuristic performs a look ahead step to implement the
route insertion. The regret heuristic overcomes the problem of leaving ‘high cost’
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insertion requests to the end by looking ahead for a specified number of iterations to
decide whether an insertion request is a good choice in the long run.

3. Choosing a removal and an insertion heuristic: ALNS alternates between the different
removal and insertion heuristics to result in a more robust overall heuristic. To select a
heuristic, ALNS assigns weights to the different heuristics and uses a roulette wheel
selection principle.

4. Adaptive weight adjustment: the weight of each heuristic is automatically adjusted
using statistics from earlier iterations. This is achieved by keeping track of the per-
formance score for each heuristic such that a high score corresponds to a successful
heuristic. This is then used as the basis for weight adjustment.

5. Acceptance and stopping criteria: ALNS then uses a simulated annealing algorithm as
the acceptance criteria for route removal and insertion requests. The algorithm stops
when a specified number of iterations of the steps have passed.

Over time, the ALNS algorithm optimises the routes followed by the vehicles for the pick up
and drop off tasks. When applied to foraging, ALNS uses the location of targets as pick up
locations and the nest as the drop off location for each target. The algorithm then iteratively
optimises the allocation of targets each robot in the swarm picks up when it leaves the nest
with a goal of optimising the time spent by the swarm to complete the foraging task.

2.9 Gaps in Body of Knowledge

A crucial point that has been highlighted in this chapter is that, even though robotic swarms
are inspired from nature, they do not focus on developing a perfect representation of the
biological behaviour [64]. Therefore, the swarm robots foraging algorithms generally have
significant differences with their biological counterparts. In addition, swarm robots foraging
algorithms generally focus on a small aspect of the foraging goal. In some algorithms, the
aim was to minimise interference in the swarm through path decongestion [73, 74] or task
allocation [70–72]. Some other algorithms placed emphasis on using response threshold
model to achieve a specific swarm goal such as maintaining an energy (food) level for the
swarm [69] or responding to the amount of food in the environment [68]. These algorithms
were inadequate for studying the social interactions of robots in the swarm and the resulting
impact it has on the swarm’s ability to locate and retrieve targets within different target
distribution scenarios and world sizes. There are many algorithms that considered swarm
social interaction, where robots communicated with other swarm members through the nest
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[61, 62], shared memory [54, 55] or robot-to-robot communication [56–59], to improve the
collective behaviour of swarms during foraging. Some of these algorithms have also been
implemented in hardware [60, 123] as a validation technique. The promising results thus
far together with further improvements is a strong indication that deployment of swarms for
real world problems is a realistic achievement in the near future. However, the handling of
multiple simultaneously communicated signals is yet to be accounted for. For example, in
[57] and [60], robots were constrained to selecting one out of multiple foraging sites, and
their choices were not based on the integration of the information about the multiple sites.
The stigmergy based algorithms in [64] and [66] do not scale well with increase in search
space size as pointed out in Section 2.5.1.

The review also revealed that minimal work has been done on studying the effects of
imperfect sensing and communication on the collective behaviour of swarm robots. The
implementation of the swarm algorithms on robot hardware platforms served as a good
indicator of how these sensing and communication uncertainties impact the deployment of
algorithms on real world environments. However, the state-of-the-art in hardware realisation
of swarm foraging algorithms simplify the communication and vision system used by the
robots. So they do little to reflect the challenges the swarm will face when deployed in real
world environments.

From the body of literature reviewed in this chapter and to the best of my knowledge,
at the time of writing, the state-of-the-art in swarm robots foraging has not addressed the
following issues:

1. A simplified swarm coordination system that takes advantage of real world physics to
handle communication with multiple neighbours simultaneously.

2. An extensive analysis of the impact of realistic noise level on the performance of swarm
foraging robots and the implementation of a simplified filtering system to mitigate the
effect of the noise. This also includes the impact of noise on swarm scalability and
robustness.

3. Scalability of swarm foraging algorithm with increase in the size of the swarm’s search
space, including the common real world scenario where swarms are deployed in an
unbounded search space.

4. The development of robot’s vision system using the state-of-the-art of computer vision
algorithms that also take into consideration a robot’s vision processing power.

5. An extensive analysis of the impact of imperfect vision system or vision processing
ability on the performance of a swarm of foraging robots.
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2.10 Summary

This chapter has discussed foraging strategies found in biological and robotic swarms. The
hardware technologies used to study recruitment on real robot platforms, and the existing
research in the swarm robotics field that account for imperfections in communication and
vision systems of robots to study their impact on swarm foraging algorithms are also described.
The state-of-the-art in computer vision (which had been virtually ignored in the swarm robots
foraging research community) was also reviewed, owing to the fact that vision plays a vital
role in helping swarm robots handle real world visual scenes, such as the tasks and challenges
robots are expected to face when foraging litter in an environment. Techniques used by
researchers to assess the performance of swarm foraging algorithms formed the conclusive
remarks detailed in this chapter.

To address the gaps in the body of knowledge, this thesis proposes a new foraging
algorithm, termed Repulsion-Attraction (RepAtt) algorithm. RepAtt is introduced n Chapter
3 and describes, in depth, the social interaction that improves the foraging efficiency of
a swarm of collective robots. RepAtt significantly simplifies the search algorithms used
by the swarm and hardware features necessary to realise the algorithm on real robots. By
selecting this simplified solution, RepAtt is capable of solving the problem of concurrent
communication with multiple robots in the swarm, efficient scalability with increasing search
space, adequate noise management in the communication channel and effective performance
in imperfect robot vision systems. In addition, this thesis presents a novel and extensive
study of the impact of noisy inter-robot communication and deep neural network based noisy
vision model on the collective behaviour of a swarm of foraging robots.
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Chapter 3: The RepAtt Swarm Foraging Algorithm
3.1 Introduction

The Repulsion-Attraction (RepAtt) algorithm proposed in this thesis was inspired by the
chemotactic search of C. elegans nematode. The search behaviour was modified to fit a
foraging scenario that involved both attractive and repulsive chemotaxis. One key modifica-
tion is that the robots serve as the source of the two chemotactic (attraction and repulsion)
signals that degrade with distance. Each robot in the swarm is also capable of sensing the
intensity of the attractive and repulsive signals which it then uses to modulate its search
behaviour. This chapter describes the algorithm development and presents the result analysis
of its effectiveness for swarm foraging.

The features of the robot used in the simulation study are described in Section 3.2.
The model for attraction and repulsion communication signal the robots use for RepAtt is
introduced in Section 3.3, while the concept of the RepAtt algorithm is discussed in Section
3.4. Chemotaxis search behaviour of the robots is based on tumble probability multipliers and
divisors. The effects of these parameters on the robot’s movement are discussed in Section
3.5. Gazebo simulation platform setup used in all experiments are detailed in Section 3.6. A
parameters search approach discussed in Section 3.7 was used to determine the chemotaxis
parameters that offered the best foraging performance. The optimised chemotaxis parameters
were then used to conduct foraging time analysis in Section 3.8, robustness studies in Section
3.9 and the analysis of RepAtt’s scalability in Section 3.10.

3.2 The Robot Model

A robot model with minimal features was used for this study. The robot is equipped with:

• mechanisms for vision based detection of targets to forage;

• means of radially broadcasting and sensing attraction and repulsion signals;

• sensing obstacles in its path using front, left and right contact/bump sensors;

• wheel-based locomotion.

The robot’s vision is controlled by detection distance (Cd) and field of view (CFoV )
which represent the linear and angular detection range of the robot, respectively. As Cd −→
∞, the robot gains global target detection distance, and as CFoV −→ 2π the robot gains



36

omnidirectional view of its environment. To detect obstacles in its path, the robot uses three
contact sensors to sense the presence of obstacles on its left, right and front followed by a
response based on the obstacle avoidance behaviour, which is described in Section 3.4. For
locomotion, the robot uses two driving (left and right revolute) and two stability (front and
back caster) wheels. In all simulations, the robot’s movement was characterised by straight
movements and rotating on the spot to change its orientation.

3.3 The Communication Model

To perform chemotaxis, agents need to sense the intensity of a signal that changes with
distance. The nature of this signal change can be linear, logarithmic or exponential. In
chemotaxis, the agent is concerned with any detected change in the intensity of the signal
between two consecutive measurements as it explores its environment. This dependence
on change in the signal’s intensity, by extension, means that the most important feature
of a signal that can be used for chemotaxis is how consistent the signal’s change with
distance is. Examples of scenarios that exhibit such properties include decrease in chemical
concentration with increasing distance from source location, reduction in light intensity with
distance, decrease in sound intensity with increasing distance and several electromagnetic
signals such as Wi-Fi, Bluetooth and radio frequency.

For the purpose of using hardware to inform the model, sound-based communication
whose degradation was modelled as a negative exponential function of distance was used to
develop the swarm communication mechanism. Sound was chosen because:

• it can be interfaced with the robots using readily accessible hardware (microphone and
speaker);

• it does not require any ‘coupling’ of source and receiver devices (unlike technologies
such as Bluetooth and Wi-Fi);

• it relies on environmental physics to handle the sensing of the resultant sound intensity
from multiple signal sources;

• working with sound was easier for observing the experiments (for example, when
using light, the experiments would have to be conducted in a dark environment, which
made visual observations difficult).

Equation 3.1, adapted from [136] (where a sound intensity bias parameter Ae has been
added), was used to represent sound degradation as a function of distance. In Equation 3.1,
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A(d) is the sound intensity d metres away from the sound source, while α and A0 represent
the attenuation factor and sound intensity of the speaker respectively. Next, the steps taken
to estimate the parameters of the sound model equation used in the simulation studies are
described.

A(d) = A0e−αd +Ae (3.1)

SPEAKER

MICROPHONE

ROBOT

(a) Experiment setup (b) Sound degradation

Fig. 3.1 An experimental test model of white noise sound signal intensity degradation with
distance.

The experimental setup shown in Fig. 3.1a was used to collect modelling data. It involved
using a Turtlebot2 robot equipped with an omnidirectional microphone to listen to white noise
sound signal from a directional speaker. In this experiment, the Turtlebot2 was programmed
to move away from the speaker at a velocity of 0.1 metre per second for 15 metres. It logged
the sound data at 40 Hz and used odometry to compute the distance travelled. This process
was repeated 5 times. The next step computes the unknown parameters of Equation 3.1.
This was achieved by evaluating the least square error fit between the collected data and
Equation 3.1 using MATLAB’s non-linear curve-fitting function. The parameter estimates
at the end of the optimisation process were A0 = 299.1793, α = 0.1039 and Ae = 48.1824.
Fig. 3.1b shows the plot of 1000 data points sampled from the experimental data and their
corresponding values when their distances were used to compute signal intensity using
Equation 3.1.

To account for the total signal intensity in a situation where multiple sound sources are
broadcasting sound, the linear sum of the intensities shown in Equation 3.1 was used. This
is a reasonable assumption since our experiments show that multiple (white noise) sound
sources always add up to give a higher amplitude. A sample waveform produced from an
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experiment involving two sound sources is shown Fig. 3.2. One source broadcast sound
continuously for 130 seconds, while the second only broadcast sound for 20 seconds at
intervals of 10 seconds. The peaks of the waveform occurred when the two sound sources
were broadcasting at the same time, while the troughs occurred when only one sound source
was active. The low intensity values at the beginning and end of the experiment represent the
ambient sound level at the time of the experiment.
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Fig. 3.2 Sound intensity output from two white noise sources.

The communication model described in the preceding paragraphs can be employed for
swarm application where multiple robots broadcast distance-degrading signals radially to
communicate useful information to neighbouring swarm members. Consider a scenario
where robot i, located di j metres away from signal source j that broadcasts signal of type
k, the subscripts and superscripts can be used to identify the specific signals. Equation 3.1
can be rewritten as Equation 3.2 when multiple robots are involved in the communication,
where α = 0.1039, A0 = 299.1793 and Ae = 48.1824 are model constants. Thus the model
assumes that signal intensity at the source and ambient sound level the robots sense are the
same for all robots in the swarm and for all communication signal types used by the swarm.
The total signal of type k at time t from multiple sources j = 1,2,3, ..,n, where n is total
number of signal sources, is given in Equation 3.3. The change in k signal intensity between
t and (t −1) which the robot i needs for chemotactic search, ∆Ik

i , is therefore Equation 3.4.
For the RepAtt algorithm, only two signal types – repulsion (k = r) and attraction (k = a) –
can be broadcast and sensed by the robots.

Ak
i j = A0e−αdi j +Ae (3.2)

Ik
i (t) =

n

∑
j=1

Ak
i j where j ̸= i (3.3)

∆Ik
i (t) = Ik

i (t)− Ik
i (t −1) (3.4)
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In practice, when using sound-based communication (or some other media), the attraction
and repulsion signals will occupy different frequency bands. For example, repulsion signal
could occupy low frequency band, say from 500 Hz to 8,000 Hz while attraction signal
could occupy 10,000 Hz to 18,000 Hz. This way, the listening robot can use hardware-based
low-pass and high-pass filters to separate the two signal types so as to compute their gradients
separately.

3.4 Algorithm Description

The main function of RepAtt in a swarm of foraging robots is to improve their coordination
during the search for targets they forage to the nest. These robots can carry only limited
quantity of targets and can only detect nearby targets which they search for using random
walk algorithm. RepAtt improves robots’ random walk search by equipping them with the
ability to broadcast repulsion and attraction signals that other swarm members can use to
perform chemotaxis-based search. Algorithm 1 is the pseudocode description of RepAtt
algorithm executed by individual robots that make up the swarm. A robot’s behaviour in
RepAtt depends on whether it is in the obstacle avoidance, homing, acquiring or searching
state. These states are shown in Algorithm 1 and further explained in the paragraphs below.

In Obstacle Avoidance State, robots avoid static (nest or walls) and dynamic (other
robots) obstacles when any of the three front contact sensors get activated. When a robot
bumps into an obstacle on either the left or right contact sensors, the robot changes its
direction by 45 degrees rightwards or leftwards respectively. However, when the front contact
sensor gets activated, the robot makes a random turn at an angle greater than 90 degrees.
Upon changing its direction, the robot then makes a random linear motion between 0 and 1
metre before making the switch to searching, acquiring or homing state. The state the robot
switches to depends on its local environment and the amount of space it has to carry more
targets.

A robot enters the Homing State when its capacity, cap, is full. Within this state, the
robot heads to the central nest to deposit all targets it has collected. For simplicity, it is
assumed that robots know the direction of the central nest (which in practice can be a homing
signal or nest beacon that is visible to all the robots within the foraging search space). In
the homing state, a robot ignores attraction and repulsion signals from other robots until it
successfully unloads all its foraged targets at the nest.

When a robot detects a target to forage within it sensing range, it enters the Acquiring
State. In this state, the robot also ignores all communication signals from other swarm
members, stops broadcasting repulsion signal, navigates to the nearest target and picks it
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Algorithm 1 RepAtt Swarm Foraging Algorithm
1: Initialise Parameters: base tumble probability Pb, robot capacity

cap, attraction multiplier am, attraction divisor ad , repulsion mul-
tiplier rm, repulsion divisor rd , tumble mean µ , tumble deviation
σ

2: while true do
3: if obstacle encountered then
4: Obstacle Avoidance State
5: Avoid obstacle on path
6: else if cap == 0 then
7: Homing State
8: Go home and drop collected targets
9: else if f ound > 0 then

10: Acquiring State
11: Go and pick up closest target
12: if f ound > cap then
13: Broadcast Attraction Aa

i

14: else
15: Searching State
16: Pt = Pb, Gr = 1, Ga = 1
17: Broadcast Repulsion Ar

i

18: if ∆Ir
i > 0 then

19: Gr = rm
20: else if ∆Ir

i < 0 then
21: Gr = 1÷ rd

22: if ∆Ia
i > 0 then

23: Ga = 1÷ad
24: else if ∆Ia

i < 0 then
25: Ga = am

26: Pt = Pb ×Gr ×Ga

27: if rand(0,1) < Pt then
28: Make turn of θ ∼ N(µ,σ2) radians
29: else
30: Make straight motion

up. During this process, the robot counts the number of targets within its visual range to
determine whether to broadcast attraction signals or refrain from doing so. If the targets it
detects exceeds its current carrying capacity, f ound > cap, the robot broadcasts the attraction
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signal, which other robots within communication range listen to. Otherwise, the robot refrains
from broadcasting any signal.

Searching State is when a robot does not sense any target item to forage within its
detection range. In this state, the robot listens to signals communicated by other swarm
members, broadcasts a repulsion signal and executes random walk algorithm to search for
targets. The random walk is controlled by a uniform distribution rand(0,1) and a tumble/turn
probability, Pt such that if rand(0,1) < Pt , the robot turns a random angle. Otherwise, the
robot makes a straight motion. The robot’s goal within this state is to improve its chances
of finding targets and minimise its visit to regions being explored by other robots. This is
achieved by adapting the robot’s tumble probability in order to minimise the repulsion (Ir)

and maximise the attraction (Ia) signals it senses. Using the change in signal intensities the
robot senses (Equation 3.4), the robot increases its turn/tumble probability when moving
in the wrong direction (that is, when ∆Ir > 0 or ∆Ia < 0). On the other hand, when the
robot is moving in the desired direction (that is, when ∆Ir < 0 or ∆Ia > 0), the robot
reduces turn/tumble probability which in turn helps the robot to maintain its current direction
(making longer swims). The turn/tumble probability, Pt , a robot uses for random walk in the
search state is modulated by five predefined constants: base tumble probability Pb, repulsion
multiplier rm ≥ 1, repulsion divisor rd ≥ 1, attraction multiplier am ≥ 1 and attraction divisor
ad ≥ 1. These are termed the ‘chemotaxis parameters’ and play significant roles in how
the robots utilise the attraction and repulsion signals they sense. The special case where
rm = rd = am = ad = 1 gives the random walk algorithm with constant turn probability,
Pt . In such a scenario, the robot does not use the attraction and repulsion signals it senses
to improve its search strategy, thus making communication unnecessary. In other cases
where rm > 1, rd > 1, am > 1 and ad > 1, the robot’s turn probability, Pt , will vary based on
gradients (∆Ir and ∆Ia) sensed by the robot. How the values of the chemotaxis parameters
impact robot’s behaviour will be explained in more detail in Section 3.5

3.5 Chemotaxis Parameters

As a robot explores the environment when in search for targets, it constantly updates its
attraction and repulsion gradients (∆Ia and ∆Ir respectively). The chemotaxis parameters
play an important role on how the robot updates its tumble probability, Pt , in order to benefit
from the gradient information it computes. The am and ad are chosen based on attraction
gradient ∆Ia, while rm and rd are chosen based on repulsion gradient ∆Ir. Furthermore, am

and rm increase tumble probability (Pt), thereby resulting in the robot making more frequent
turns, while ad and rd decrease Pt and helps the robot make longer straight motions (longer
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Forward Reverse

Fig. 3.3 One-dimensional Environment

Algorithm 2 One-dimensional Chemotactic search for an attrac-
tive signal source

1: Initialise Parameters: tumble probability Pb = 0.0025 per
time step, am and ad

2: while true do
3: Pt = Pb, Ga = 1
4: if ∆Ia > 0 then
5: Ga = 1÷ad
6: else if ∆Ia < 0 then
7: Ga = am

8: Pt = Pb ×Ga
9: if rand(0,1) < Pt then

10: Reverse
11: else
12: Forward

swims). To understand the effect of these ‘parameters’, consider a robot in a one-dimensional
world shown in Fig. 3.3, the robot can only make forward and reverse movements, d metres
from a signal source that can either broadcast attraction or repulsion signal that degrades
with distance. The signal peaks at the signal source, and degrades in intensity as d → ∞.

To investigate how chemotaxis parameters individually affects the forward (toward
signal) and reverse (away from signal) motion of the robot, a simple Gazebo simulation was
conducted. In the experiment, am, ad , rm and rd were individually varied from 1 - 10, while
other parameters were set to 1. For this one-dimensional chemotaxis experiment, Gazebo
time step was set to 25 ms, Pb = 0.0025 per time step and simplified version of Algorithm
1 shown in Algorithm 2. The results of the experiment is shown in Fig. 3.4, where each
bar represent normalised mean path length for 30 independent repetitions of each parameter
combination. Each bar was normalised using the forward motion mean path length for
random walk (i.e. am = ad = rm = rd = 1, which is the top left bar of each plot).
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(a) am = vertical axis, ad = rm = rd = 1 (b) ad = vertical axis, am = rm = rd = 1

Fig. 3.4 One-dimensional robot simulation using chemotaxis to move toward attractive signal.

When the stationary signal source (Fig. 3.3) broadcasts attraction, forward motion of
the robot increases attraction intensity sensed by the robot, thus resulting in ∆Ia > 0, while
reverse motion results in ∆Ia < 0 because the robot moves away from the attractive source. In
Fig. 3.4a, only the attraction multiplier, am, varied from 1 - 10, while ad = rm = rd = 1. This
had the effect of reducing mean path length for reverse motion of the robot, while forward
mean path length remained fairly constant. Reverse motion was approximately equal to
forward motion when am = 1, however, it reduced to about 10% of forward motion when
am = 10. A reverse motion caused Pt to increase by a factor dependent on the value of am,
which in effect helps the robot minimise its motion in the ‘wrong’ direction. As am → ∞,
the mean path length away from an attractive signal approaches 0 m, because the robot will
more quickly tumble in order to orient itself toward the attractive signal.

In Fig. 3.4b, ad was varied from 1 - 10, while am = rm = rd = 1. The effect, as illustrated
in Fig. 3.4b, is a gradual increase in the mean path length of the robot as ad increases,
reaching a factor of approximately 10 when ad = 10. Thus the mean path length toward
signal source will approach infinity as ad → ∞ because ad will increasingly suppress tumbles
when robot moves forward, causing it to ‘swim’ more toward the signal source.

When the stationary signal source in Fig. 3.3 is changed to broadcast repulsion, forward
motion increases repulsion intensity sensed by the robot (∆Ir > 0), while reverse motion
decreases repulsion intensity (∆Ir < 0). The results indicate that when rm was varied from 1
– 10, its effect mirrors that of am in Fig. 3.4a (that is, forward movements were reduced in
proportion to am). Similarly, varying rd from 1 – 10 was a mirror of the effect of varying ad

(that is, mirror of Fig. 3.4b, where reverse movements increased proportionately).
From the description above, the chemotaxis parameters can be divided into tumble

enhancers (am and rm) and swimming enhancers (ad and rd). Increasing tumble enhancers
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minimises the robot’s movement in the wrong direction, while swimming enhancers maximise
its movement in the desired direction. The effect of these parameters also depends on whether
the signal gradients are positive or negative. Desired chemotactic behaviours can also be
achieved by combining the effect of these parameters. For example, high values of am and ad

(and rm = rd = 1) will help in minimise movement away from attractive signal and maximise
movement toward the signal, while the robot will remain unaffected by repulsion signals.

3.6 Swarm Foraging Simulation Setup

Algorithm testing was largely done using the Gazebo simulator – one of the most popular
physics-based simulation platform for robotics research [137]. Gazebo was set to 25 ms time
step to improve its speed for multi-robot simulations. Multiple distributions of 200 targets
shown in Fig. 3.5 were used to test the effectiveness of the RepAtt foraging algorithm. For
the Half50m and Half100m worlds, 100 targets were placed in a cluster, and the rest of the
targets were randomly distributed in the 50 m × 50 m space around the nest. To ensure
reliability of the results, each simulation was repeated 30 times. For each robot, the chosen
simulation constants are: velocity of 0.605 m/s, time taken to process target during pick up is
5 seconds, number of targets a robot can carry is cap = 5, target detection distance Cd = 3
metres, omnidirectional robot field of view CFoV = 2π radians, base tumble/turn probability
Pb = 0.0025 per time step, tumble angle mean µ = π radians and tumble angle deviation
σ = π/2 radians. These parameters were used for all simulations unless stated otherwise.
The swarm’s task is to forage all targets in the environment, with a metric that measures the
mean time it took the swarm to pick up 90% of targets used to evaluate the algorithms. Time
taken to deposit targets at the central nest was not used to measure foraging performance
because robots only returned to the nest when their capacity was full. This meant that with
a cap > 1, there could be a trap where a robot never returns to the nest because it was
unable to locate enough targets to fill its storage capacity. This could potentially be solved
by implementing a ‘give up’ behaviour (similar to the one proposed in [61], where robots
returned to nest if they were unsuccessful for a fixed time). The ‘give up’ behaviour could be
useful for real-world foraging tasks such as picking litter, where robots need to: return to nest
when the environment is clean, be recruited by successful forager robots, deposit foraged
litter whenever they are near the nest but not yet full, and recharge batteries if their energy
level reduces to some critical value. However, this was not implemented because it would
involve searching for an optimal ‘give up’ strategy, which is could be task-dependent. Thus,
time to pick up targets was used to measure foraging performance since it was an easier
alternative for avoiding the ‘trap’ situation.
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(a) One50m (b) Two50m (c) Four50m (d) Half50m (e) Uniform50m

(f) One100m (g) Two100m (h) Four100m (i) Half100m (j) Uniform100m

Fig. 3.5 Plot of initial target distributions, nest and robot locations for 10 test environments. (a)
- (e) and (f) - (j) are 50m × 50m and 100m × 100m world boundary dimensions respectively.
The 200 targets to forage are purple, black ‘+’ is central nest and yellow blob represent the
robots.

The RepAtt communication model used in the simulations presented in this chapter is
based on Equation 3.2. This model ignored noise in the communication channel and the
robots updated the signal they sensed at every time step. This thesis differentiates this perfect
communication channel from a noisy version (which will be introduced in Chapter 4) using
the notation N0-Q1, indicating 0% noise and communication update at every time step. The
choice of this notation will be discussed further in Chapter 4 where noisy communication is
added to the simulation. The N0-Q1 notation has been introduced here in order to make it
consistent with the subsequent chapters.

3.7 Parameter Optimisation

It is evident from Section 3.5 that chemotaxis parameters are essential to a robot’s ability to
use foraging information. These parameters can make or break the foraging performance
of the swarm when using RepAtt. With this in mind, an extensive parameter search was
conducted in Gazebo to investigate the influence of these chemotaxis parameters on the
swarm within a foraging scenario to determine which combinations of am, ad , rm and rd

performed best for swarm of 36 foraging robots under the 10 world setups shown in Fig. 3.5.
The multipliers am and rm were selected from 1, 2, 4, 6, 8 and 10, while the divisors were
selected from 1, 10, 50, 100 and 1000. This resulted in 900 different combinations of the
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Fig. 3.6 Sorted foraging times normalised using the mean time for A1m1d-R1m1d for the
corresponding world setup.

chemotaxis parameters (i.e. 6×6×5×5 = 900). The notation used to represent the specific
combination of these parameters is Aammadd-Rrmmrdd. Each combination was repeated 30
times on the 10 world setups, giving 900×10×30 = 270,000 total simulations performed
to search for the best performing parameters for the RepAtt algorithm.

The goal in each simulation was for the swarm to pick up 90% of 200 targets in the
environment. The metric used is the time to complete these pick ups, with the combination
having the least time ranked as the best. The performance of each of the 900 combinations
was sorted according to average time from 30 simulation repetitions. The scoring system
used is based on foraging time. The combination with smallest mean time was given a score
of 1, while the longest received a score of 900. The total score for each combination was
computed by summing their respective scores across the 10 world setups it was tested in,
with the best parameter combination being the one that attained the lowest overall score. This
approach ensures that only the parameter combinations that are able to perform well in both
clustered and uniformly distributed environments are ranked higher than those that perform
best in only specific world setups.

The resulting rankings for One100m and Uniform50m are shown in Fig. 3.6. These were
chosen because they represented the world setups that took the longest and shortest times it
took the swarm to complete the foraging task (rankings for all simulations are available in
Appendix A). From Fig. 3.6, it is evident that the improvement on Random Walk (A1m1d-
R1m1d) is much larger in One100m (1−0.11 = 0.89) in comparison to the improvement
observed in Uniform50m (1− 0.62 = 0.38). This indicates that appropriate selection of
chemotaxis parameters is crucial in clustered environments, where resources/targets are
more challenging for the robots to locate. On the other hand, when resources are abundant,
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robots have an equal chance of locating targets wherever they are in the environment (for
example in Uniform50m). This in effect means that poor choice of chemotaxis parameters
can have a higher negative impact on the swarm’s foraging performance as evident from
Fig. 3.6b, where the worst parameter setting of A10m1000d-R1m1d took 1.54 times more
time than Random Walk. The impact of communication when resources are scarce versus
when they are abundant has already been discussed by other researchers [57], and Fig. 3.6 is
consistent with what has been reported in swarm literature. It is, however, important to note
that chemotaxis parameters selection can also result in significant improvement in swarm’s
performance even when targets/resources are abundant. This is noticeable from Fig. 3.6b
that an improvement of up to 38% (1−0.62 = 0.38) can be gained over pure Random Walk
(i.e when robots do not cooperate with other swarm members).

In the One100m world (Fig. 3.6a), A6m1000d-R2m1d were the parameter combinations
that gave the best performance. This suggests that parameters that encouraged clustering of
robots during chemotaxis (am and ad) helped the swarm to exploit the cluster of targets to
minimise foraging time, especially when the effect of repulsion was minimal (that is, rm and
rd values were low). For the Uniform50m world (Fig. 3.6b), A1m1d-R1m1000d, delivered
the best foraging performance. This suggests that combinations that helped robots maximise
their path length when moving away from repulsion signals (rd >> 1), consequently aiding
dispersal in the process, was good for the swarm in this uniformly distributed environment
setup. In addition, Fig. 3.6b suggests that parameters that increased robot tumbles (am and rm)
did not help improve swarm foraging performance in Uniform50m world. The combinations
that resulted in the lowest score across the 10 world setups was A10m50d-R1m100d. This is
interesting because it indicates that the combinations that performed well in all the tested
distributions were those that can aid robot attraction to rich resource locations (am > 1 and
ad > 1) and helped swarm dispersal (rd > 1). It is clearly the merger or integration of
parameters that offered the best performance in clustered and uniformly distributed world
setups. The paragraphs that follow explore in more details the influence of the chemotaxis
parameters for the One100m, Uniform50m and also their combined effect across the 10
world setups.

The heat maps in Figs. 3.7, 3.9 and 3.11 present the foraging performance of the 900
different combinations of chemotaxis parameters in One100m, Uniform50m and combined
rank for ten world setups respectively. Only the colours, and not the text in the cells, are
needed for interpreting the heat maps in the figures. The heat maps for all the worlds are
available in Appendix A. They have been grouped according to am (each row) and ad (each
column), where each heat map represents rm (inverted y-axis) and rd (x-axis) combinations.
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Fig. 3.7 Effect of the chemotaxis parameters on the foraging performance of a swarm of 36
robots foraging 180 out of 200 targets in the One100m targets distribution. Best combination
for this distribution is am = 6, ad = 1000, rm = 2, rd = 1.

The colour of each cell indicates its rank, with brighter colours representing highest/best
ranks and darker colours indicating lowest/worst combinations.

For One100m world setup in Fig. 3.7, as ad increases (move from left to right column),
more cells become brighter in the heat maps as well as for when am increases (move from
top to bottom row). This suggests that for clustered environments, foraging performance
is approximately directly proportional to am and ad . However, observing the general trend
of each heat map of Fig. 3.7, brighter cells occur on the left which become darker when
progressing to the right side. This indicates that foraging performance is inversely propor-
tional to rd . The effect of rm is inconclusive for large values of ad , whereas for ad = 1 and
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10 it can be estimated that rm is also inversely proportional to foraging performance. Using
the logic explained so far, the expected best parameter combination would be A10m1000d-
R1m1d for the One100m world. However, this combination was ranked 23rd with a mean
of 0.114± 0.005 (0.005 as 95% confidence interval), which placed it in the top 2.5% of
the 900 different combinations. The best ranked combination for the One100m world was
A6m1000d-R2m1d with a mean of 0.108±0.003, and represents only 5.3% difference in
mean time when compared with A10m1000d-R1m1d. The enhanced view of the heat maps
that presented the best and worst ranked combinations are shown in Fig. 3.8 for the One100m
world setup results from the results of Fig. 3.7.

(a) am = 6, ad = 1000 (b) am = 1, ad = 1

Fig. 3.8 Enhanced view of the heat map highlighting the location of the best and worst
parameter combinations in the One100m distribution. The annotations show the normalised
foraging time with the corresponding ranking in brackets.

The Unform50m world setup is the type of environment that can easily be negatively
impacted by communication [57]. Fig. 3.9 shows the heat maps of the 900 different
combinations of the chemotaxis parameters. Unlike in the One100m world, Uniform50m
is negatively impacted by increasing am, and to a lesser extent, increase in ad . In addition,
the data also reveals that increasing rm also had a similar effect on the foraging performance
(within each heat map, moving downwards results in the cells becoming darker). Therefore,
for Uniform50m, foraging performance is inversely proportional to rm. However, increasing
the rd parameter resulted in improved swarm foraging performance (cells generally become
brighter when progressing from left to right in each heat map). Based on these observations,
the expected best parameter combination for the Uniform50m is A1m1d-R1m1000d, which
is indeed the case when considering the top-right heat map of Fig. 3.9. Fig. 3.10 shows
the heat maps that contains the best and worst combinations of the chemotaxis parameters.
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Fig. 3.9 Effect of the chemotaxis parameters on the foraging performance of a swarm of
36 robots foraging 180 out of 200 targets in the Uniform50m targets distribution. Best
combination for this distribution is am = 1, ad = 1, rm = 1, rd = 1000.

The result indicates that the worst combination is A10m1000d-R1m1d, which represents a
combination that maximises the use of attraction information while ignoring repulsion signal
that helps quick swarm dispersal and prevent robot clustering.

It is evident (and also intuitive) from studying Figs. 3.7 (OneCluster100m) and 3.9
(Uniform50m) that the best parameter combinations when targets/resources are clustered in
the search space are generally the worst parameters for when targets/resources are uniformly
distributed in the search space. This suggests that knowledge of the resource distribution
within the search space is paramount for the setup of swarm parameters. In some applications,
for example searching for source of gas leak, it is practical to assume or estimate the resource
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(a) am = 1, ad = 1 (b) am = 10, ad = 1000

Fig. 3.10 Enhanced view of the heat map where the best and worst parameter combinations
occur in the Uniform50m distribution.

distribution and thus the swarm designer can conveniently select parameters that optimise the
swarm’s search strategy. This in turn raises the question of whether a methodical-centralised
search would be better than a decentralised swarm search strategy. In many practical
applications for example, picking litter, planetary exploration, search and rescue, resource
distribution information is not always available (and usually not easy to approximate), which
makes it important to generalise swarm parameters design in order for the swarm to be robust
(or easily adaptable) to differing resource distributions. This compromise to make RepAtt
algorithm generally applicable for different resource distributions is shown in Fig. 3.11,
where the chemotaxis parameters combinations are based on the scoring system described
earlier in this section. The heat maps show that am and ad are directly proportional to foraging
performance. The effect of rm suggests an inverse relation to foraging performance, however,
this effect is not strong. For the rd parameter, what is evident in most of the heat maps is
that rd = 1 is definitely not good for swarm foraging. As rd increases, it appears to peak
and then start to degrade swarm foraging performance as rd approaches 1000. The resulting
combinations that ranked highest across the 10 world setups is A10m50d-R1m100d, while
A1m1d-R1m1d (Random Walk) gave the worst performance. The enhanced view of the heat
maps showing the point of these occurrences is presented in Fig. 3.12.

In subsequent simulations in this chapter, am = 10, ad = 50, rm = 1 and rd = 100 will
be used as chemotaxis parameters for RepAtt algorithm because the combination resulted
in the highest rank out of 900 competing options and 10 world setups. As a side note, it is
entirely possible for a different parameter setup to perform best when foraging settings such



52

am
ad 1 10 50 100 1000

1

2

4

6

8

10

Fig. 3.11 Effect of the chemotaxis parameters on the foraging performance of a swarm of 36
robots foraging 180 out of 200 targets in the ten environment setups. Best combination for
this distribution is am = 10, ad = 50, rm = 1, rd = 100.

as tumble probability (Pt), robot capacity (cap) and so on change, however, these general
concepts will still remain valid:

1. When targets are highly clustered and difficult to locate by a swarm, effective use
of attraction signal will significantly improve swarm’s foraging performance. Thus,
large values of am and ad parameters will play a major role in improving the swarm’s
performance.

2. In world setups where targets are abundant or uniformly distributed in the search
space, each swarm member has a high probability of encountering/locating targets
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(a) am = 10, ad = 50 (b) am = 1, ad = 1

Fig. 3.12 Enhanced view of the heat map where the best and worst parameter combinations
occur when sorted according to rank scores across the 10 environment setups.

irrespective of its position. This is especially true in the early phases of robots foraging
task. The communication of repulsion signals is the most useful information for
improving swarm foraging in such environments. Large rd parameter, which helps
swarm dispersal, improves how the robots in the swarm use the repulsion signal during
the foraging process.

3. To design swarm parameters that can perform well in both clustered and uniform
environments, a selection of robot parameters that are good for these two extreme
environments is the best approach.

3.8 Swarm Foraging Time Analysis

A subset of the simulations presented in Section 3.7 is to investigate the performance gain
RepAtt gives a swarm of foraging robots across the ten different world setups in comparison
to uncoordinated algorithm (Random Walk) and the centrally coordinated ALNS algorithm.
The optimised route for the ALNS algorithm were supplied by Dr. Philip Kilby of the
Australian National University. These routes were then applied to the swarm of 36 robots to
guide the path they followed during the execution of the foraging task. The RepAtt algorithm,
shown as N0-Q1 in the results in this section, used am = 10, ad = 50, rm = 1 and rd = 100
chemotaxis parameters. Scatter plots showing the foraging progress of a swarm of 36 robots
foraging targets in One100m and Uniform50m world setups are shown in Figs. 3.13 and 3.14
respectively.
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N0-Q1

picked 14 in 50s picked 30 in 100s picked 48 in 150s picked 62 in 200s

targets
searching
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ALNS

picked 32 in 50s picked 160 in 100s picked 180 in 150s picked 180 in 200s

targets
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homing
nest

Fig. 3.13 Scatter plot of simulation progress of a swarm of 36 robots foraging 200 targets in
the One100m world setup.

In the One100m world simulation (Fig. 3.13), the robots using Random Walk took a
long dispersal time in covering the search area. The lack of communication also meant the
robots did not recruit swarm members to target clusters they located. When the robots used
N0-Q1, repulsion communication helped the swarm to disperse faster and locate the targets
cluster. Once a robot locates the targets cluster, it broadcasts an attraction signal to recruit
nearby robots to exploit the cluster, thus, increasing the number of robots that are around the
targets cluster region. The ALNS algorithm eliminates the targets search phase. The robots
executed the predefined paths they were programmed to follow to pick up their individual
targets. It was therefore unsurprising that the swarm was able to pick up 180 targets within
200 seconds.

In the Uniform50m world simulation snapshots shown in Fig. 3.14, the robots did not
spend much time searching for targets. This also means that, even with Random Walk, robots
would have better success rates in locating targets than in the One100m world setup. The
swarm using Random Walk was successful in picking up 150 targets within 200 seconds. The
robots using N0-Q1 were slightly more successful than Random Walk because the repulsion



55

RW

picked 39 in 50s picked 97 in 100s picked 121 in 150s picked 150 in 200s

targets
searching
acquiring
homing
nest

N0-Q1

picked 58 in 50s picked 123 in 100s picked 157 in 150s picked 174 in 200s

targets
searching
acquiring
homing
nest

ALNS

picked 77 in 50s picked 182 in 100s picked 185 in 150s picked 194 in 200s

targets
searching
acquiring
homing
nest

Fig. 3.14 Scatter plot of simulation progress of a swarm of 36 robots foraging 200 targets in
the Uniform50m world setup.

signals played an auxiliary role in helping the swarm disperse within the 50 m × 50 m search
space. When using ALNS algorithm, the robots were able to pick up 194 of the targets within
200 seconds.

The bar plot in Fig. 3.15 shows the average time taken to pick up 90% of targets by
the swarm of 36 robots in the ten world setups. Each bar represents the mean value for
30 simulation repetitions, while the error bars are 95% confidence intervals. The data
shows that, in comparison to Random Walk, RepAtt decreased foraging time by improving
swarm coordination in all world setups. In the 50 m × 50 m world size (Fig. 3.15a), the
improvement in foraging time was 77% in the One50m world, making it relatively closer to
the ALNS’s 90% improvement over Random Walk. Similarly, RepAtt significantly reduced
swarm foraging time in the remaining four world setups of Fig. 3.15a with the weakest
effect (of 35% improvement) in the Uniform50m targets distribution. In the 100 m × 100 m
world size, the search space was quadrupled to make it more challenging for the swarm.
Even in this situation, Fig. 3.15b shows that RepAtt was, again, positively impactful on the
swarm’s coordination, thus reducing foraging time by 81% (One100m), 70% (Half100m),
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(a) 50m × 50m (b) 100m × 100m

Fig. 3.15 Time taken by swarm of 36 robots to pick up 90% of targets for different world
setups, normalised using the time taken by Random Walk.

62% (Two100m), 41% (Four100m) and 31% (Uniform100m) in comparison to Random
Walk. This is in comparison with ALNS’s values of 94%, 90%, 88%, 79% and 70% in the
respective distributions.

The results reinforce the theory that coordination and communication have greater
beneficial effect for highly clustered target distributions in situations where it is difficult for
robots to locate the target deposits. This is the reason for larger performance gaps between
Random Walk and ALNS in the one, two and half clustered target distributions and relatively
smaller margins for the less clustered four clusters and uniform distribution worlds. Fig. 3.15
shows that with the inclusion of just communication and excluding complex localisation
mechanisms for robots, the swarm’s foraging time improves significantly.

3.9 Robustness of RepAtt

One key advantage of autonomy of individual robots that make up the swarm is their
robustness to changes in swarm size and world setups. How swarm size affects task execution
for RepAtt is covered in Section 3.10, while this section focuses on what effects changing the
distribution of targets have on swarm’s foraging ability (in terms of time taken to complete
the foraging task). Fig. 3.16 is a box plot showing the variability in foraging time for N0-Q1,
Random Walk and ALNS algorithms. Random Walk displayed the highest variability in Fig.
3.16, indicating that it is the least robust (or adaptable) to variation in target distributions
and world sizes. Thus, the performance of Random Walk is highly dependent on the kind
of problem, making it a more specialised solution that is not generally applicable to a wide
variety of conditions. ALNS showed the least variability in target distributions, thus making
it more generally applicable. However, ALNS requires a priori knowledge of the search
space, which impacts its wider applicability. RepAtt displayed good performance across
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Fig. 3.16 Change in swarm foraging times across the ten target distributions. Foraging time
was normalised based on distribution with shortest time, which was for the Uniform50m
world, for the corresponding algorithms.

the different target distributions and did not result in any outlier when tested across the ten
world setups. Foraging time variation across the ten world setups was 7.91 in Random Walk,
2.27 in RepAtt and 1.49 in ALNS. This implies that RepAtt was able to improve swarm’s
robustness by 71.25% in comparison to ALNS’s 81.12%. This improvement is significant
because it is quite close to what is attainable by a centrally coordinated algorithm with perfect
knowledge of the environment, while RepAtt is a decentralised system that uses only local
information of the environment to improve swarm foraging during task execution.

3.10 Scalability of RepAtt

Major advantages for using swarm robotics include its potential for improving the efficiency
in accomplishing tasks that are too complex for a single robot. To test how RepAtt’s efficiency
scales with increase in swarm size, the efficiency improvement was computed as the number
of robots varied from 1 to 100. For this foraging task, efficiency is defined as the time to
pick up 1 target per robot. This is shown in Equation 3.5, where n is the swarm size, p is
number of targets picked up, tp is the time to pick up p targets. The relative efficiency, Er,
shown in Equation 3.6 is used to determine whether an algorithm improved the efficiency of
completing a task in comparison to when the task was performed by a single robot. Thus,
for n = 1, relative efficiency is Er = 1, while Er > 1 and Er < 1 represent improvement and
degradation in efficiency respectively.
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1 9 16 25 36 49 64 81 100
Swarm Size

0.0

0.5

1.0

1.5
Re

la
ti

ve
 E

ff
ic

ie
nc

y
N0-Q1 RW

(d) Uniform100m

Fig. 3.17 Relative efficiency computed based on p = 180 out of 200 total targets. Each
simulation was repeated 30 times and error bars represent 95% confidence interval. RepAtt
parameters of am = 10, ad = 50, rm = 1 and rd = 100 were used.

En =
p
n
× 1

tp
(3.5)

Er =
En

E1
(3.6)

The effect of swarm size on relative efficiency for uniform and one cluster worlds is
shown in Fig. 3.17, representing four out of the ten different test worlds (complete results
are given in Appendix A). Results obtained using ALNS are not included because it would
have involved performing the route optimisation for each swarm size and targets distribution.
For the one cluster distributions (Fig. 3.17a and 3.17b), it is evident that RepAtt significantly
improved foraging efficiency, with peak value of 4.17 (9 robots in One50m) and 5.16 (25
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robots in One100m). However, in the same distribution, Random Walk was at best able
to maintain relative efficiency at approximately 1. This is because, with Random Walk,
the majority of the robots in the swarm never encounter the cluster of targets and spend
the whole time searching for targets, whereas in RepAtt, the communication of attraction
signals helped in directing more robots to the cluster to exploit the deposit. For the uniform
distribution worlds (Fig. 3.17c and 3.17d), relative efficiency progressively degraded below
1 with increasing swarm size for the Random Walk algorithm, while RepAtt was able to
maintain good efficiency improvement, especially in the Uniform100m world. The efficiency
improvement from RepAtt was relatively lower in uniform distribution in comparison to the
one cluster world setups, due to the lesser impact communication has when targets are easily
locatable by swarms (as explained in previous sections).

In general, swarm efficiency is expected to drop as swarm size increase beyond some
acceptable bound. This is due to factors such as increase in the interference between robots,
size of search area and limited resources available for robots to forage. Excessively large
swarm size cause robots to spend more time avoiding each other instead of focusing on the
foraging task. Figs. 3.17a and 3.17c in comparison to Figs. 3.17b and 3.17d respectively
show that increasing swarm size has a more negative impact on the 50 m × 50 m world size
than on the 100 m × 100 m variant. This shows that increasing the search area reduces robot-
to-robot interference, although it increases the number of robots required to achieve peak
efficiency with RepAtt algorithm. Also, because the number of targets remained constant
(pickup 180 out of 200 targets) in all the simulation results of Fig. 3.17, the number of
resources (targets) does not increase to meet the need of the increased swarm population.
This has the effect of increasing the number of robots that are unsuccessful in locating any
targets, thus reducing swarm efficiency.

3.11 Summary

This chapter has introduced the RepAtt swarm foraging algorithm. A robot using RepAtt
communicates with neighbouring robots by broadcasting attraction or repulsion signals
depending on the presence or absence of targets within its sensing range. Hardware-based
experiments were used to collect data for modelling the communication signal robots used
in the simulations. Robots using RepAtt searched for targets using chemotaxis to move
toward other companion robots within the swarm that broadcast attraction signals and/or
move away from those that broadcast repulsion. The chemotaxis search is defined by am,
ad , rm and rd parameters, which control the robots’ efficient use of attraction and repulsion
gradients. Through extensive parameters search, the combination where am = 10, ad = 50,
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rm = 1 and rd = 100 produced best foraging performance for the swarm when considering
the ten test environments. The simulations also indicate that RepAtt significantly improved
swarm foraging performance in all the world setups, while also being robust to changes in
targets distribution and in addition to excellent scalability with increasing swarm size.
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Chapter 4: Noisy Communication
4.1 Introduction

In the sound data experiments described in Chapter 3, specifically the results of Fig. 3.1b,
the sound sensed by the robot as it approaches the speaker had significant variations such
that the sound level increase was not consistent for data points that were near each other. The
fluctuations can also be observed even when the robot was stationary as shown in Fig. 3.2.
In this chapter, the variations in the sound model are quantified and modelled as noise in the
communication signal that robots sense. The steps taken to mitigate the effects of the noise
using a basic average filter (Section 4.2) will also be discussed. A new batch of chemotaxis
parameter optimisation experiments were then conducted and presented in Section 4.3 to
investigate which setups performed best under noisy communication. The effects of varying
the filter queue size on swarm foraging is presented in Section 4.4 and the effects of noise on
RepAtt’s robustness and scalability are discussed in Sections 4.5 and 4.6 respectively.

4.2 Noise and Filter Modelling

To quantify the noise level in the sound data sensed by the Turtlebot2 robot, the data from
all five robot experiments were divided into segments corresponding to one metre of robot
movement. A line-fit was then performed on each of these one metre segments as shown in
Fig. 4.1a. This was followed by computing the noise in the data as the difference between
the line fit segments and the corresponding sound data for each segment (see Fig. 4.1b). The
observation from Fig. 4.1b is that as the sound level increases, the variation of the sound
data from the line fit also increases. The next step performed was to compute the standard
deviation of the noise level (Fig. 4.1c) and compute its ratio to the mean sound intensity
for each segment (Fig. 4.1d). It is evident that, although the noise level increased with
sound intensity, the ratio of the deviation to the corresponding sound intensity remained
fairly constant at about 0.06, thus indicating that the noise level is proportional to the sound
intensity. A normal distribution was then used to model the noise component of the signal,
such that the mean, µ = 0, and standard deviation, σ = 0.06. Equation 4.1 represents the
noisy version (Bk

i j) of the swarm communication model, where Ak
i j is the noiseless model in

Equation 3.2 used in Chapter 3 and x is a percentage used to scale the modelled noise. The
x term has the effect of simulating the quality of the sensing hardware used by the robot to
sense attraction and repulsion signals: x > 100% means the noise is amplified (thus meaning
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Fig. 4.1 (a) Line fitted to every one metre segment of the experimental data. (b) Difference
between sound measurements and corresponding line in the segment. (c) Standard deviation
of the sound variations from the fitted line. (d) Ratio of the deviation of each segment to
mean of sound data for the corresponding segment is fairly consistent.

a poor microphone in this sound modelling context), x < 100% means better hardware than
the one used for the sound experiments, and x = 100% is the current noise model with µ = 0
and σ = 0.06. Equation 4.1 refactors to Equation 4.2, which then gives Equation 4.3 when
Ak

i j from Equation 3.2, µ and σ are substituted. Fig. 4.2 plots the resulting noisy sound
model and data obtained using the Turtlebot2 experiments. This figure confirms a strong
correlation between the variation in the model and the data obtained from the experiment.
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Bk
i j = Ak

i j − xAk
i jN(µ,σ2) (4.1)

Bk
i j = Ak

i j
(
1− xN(µ,σ2)

)
(4.2)

Bk
i j =

(
A0e−αdi j +Ae

)
×
(
1− xN(0,0.062)

)
(4.3)
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Fig. 4.2 The modelled noise data fits strongly with the level of noise expected from experiment
data.

It is intuitive to expect the introduction of noise to have a detrimental impact on the
effectiveness of any algorithm. It is, however, beneficial to include noise in order to study
such impact and its negative effects to improve the algorithm’s robustness so that it is able to
withstand real world conditions. For RepAtt, the introduction of communication noise means
that robots have lesser chance of accurately measuring temporal gradients. In Fig. 4.3a,
using the sound data from the Turtlebot2 experiments, it can be seen that consecutive sound
intensities have approximately 50% chance of increasing (purple markers) or decreasing
(orange markers). This means that a robot sensing this signal for chemotaxis has a 50%
chance of measuring a positive/negative change, which will be demonstrated in Sections
4.3 and 4.4 to have a significantly negative impact on swarm using RepAtt for foraging. A
simple noise filtering process was introduced to mitigate the negative impact of this noise.
The filter is based on computing the average sound intensity over a limited queue of multiple
consecutive instantaneous measurements of sound intensities which the robot maintains. The
robot uses this average of intensities as the current signal intensity level and compares this
value with the preceding average computation to determine the intensity change of the signal.
The notation Nx-Qy is used to represent x% of modelled noise value and y consecutive
instantaneous sound measurements in the queue maintained by the robot (that is, queue
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size) for computing average intensity. Substituting Bk
i j into Equation 3.3 and extending it to

compute the mean of y consecutive sound measurements gives Equation 4.4. Equation 4.5 is
used for computing the change in signal intensity while accounting for the queue size.

Ik
i (t) =

t
∑

b=t−y+1

(
n
∑
j=1

Bk
i j(b)

)
y

where j ̸= i (4.4)

∆Ik
i (t) = Ik

i (t)− Ik
i (t − y) (4.5)

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Distance in metres

0

100

200

300

400

500

So
un

d 
In

te
ns

it
y

Increase = 50%
Decrease = 50%

(a) Queue size y = 1

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Distance in metres

0

100

200

300

400

500

So
un

d 
In

te
ns

it
y

Increase = 68%
Decrease = 32%

(b) Queue size, y = 40
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Fig. 4.3 Queue size variation of the average filter. Increasing size of queue reduces number
of negative gradient when traversing from 15m to 1m

The application of the average filter to the Turtlebot2 experiment data improved the
fraction of transitions that were positive while moving towards a sound source. Increasing
the filter queue size from 1 (in Fig. 4.3a) to 40 (in Fig. 4.3b) increased the positive transitions
by 18%. With queue size of 120, a further 22% increment in positive transitions was
registered. This shows that the average filter can help improve the percentage of correct
gradient measurements by a robot. Fig. 4.4 shows a bar plot of percentage of positive and
negative gradients for both the modelled noisy sound and data obtained from the Turtlebot2
experiments. The data indicates that as the queue size increases, the proportion of positive
gradients increase at a similar rate, thus suggesting that the model is a good representation
of the experimental data. Although increasing the queue size improves the accuracy of the
gradient computation, a large queue size reduces the rate at which the robots in the swarm
update the repulsion and attraction signals they sense. This reduced rate means robots are
not able to react quickly to changes in signal intensities, thus causing them to react based on
outdated information. An appropriate queue size is, therefore, important for helping robots
respond quicker while being able to compute reliable gradients. Balancing update rate with
the computation of reliable gradient will be discussed in detail in Section 4.4.
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Fig. 4.4 Queue size versus percentage increase/change of the experimental (raw) and modelled
data. Error bars represent standard deviation across the five experiments.

4.3 Parameter Optimisation

With the introduction of noisy communication, the chemotaxis parameters that offered
good performance in Chapter 3 will not necessarily perform well. For example, when
the A10m50d-R1m100d combination was used for foraging with noisy communication in
One100m and Uniform100m world setups, RepAtt’s performance degraded substantially.
Table 4.1 shows the extent of degradation when noise was introduced to the RepAtt algorithm,
where the times were normalised using the foraging time of Random Walk. This raises the
question of whether this setup is best suitable for RepAtt in the noisy communication setup.
To further investigate this, two sets of parameter search simulations were performed. In the
first simulation test, robots used instantaneous measurements of the noisy communication
signal during foraging (N100-Q1), while in the second set, the robots used an average filter
with queue size, y = 40, (i.e. N100-Q40) to improve their gradient computation.

Table 4.1 The foraging performance of RepAtt when using chemotaxis parameters am = 10,
ad = 50, rm = 1 and rd = 100 for both noiseless and noisy communication. Each value
represents mean and 95% confidence interval for 30 repetitions of each simulation.

One100m Uniform100m

N0-Q1 0.192±0.007 0.690±0.036
N100-Q1 0.946±0.063 1.073±0.029
N100-Q40 0.375±0.021 0.782±0.035
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(a) One100m (b) Uniform100m

Fig. 4.5 Sorted foraging times for 900 combinations of chemotaxis parameters normalised
using the mean time for Random Walk for the corresponding world setup. The swarm of 36
robot foraged used noisy communication without any noise filtering system (i.e. N100-Q1)

The experiments for determining the best chemotaxis parameters for the N100-Q1 version
of RepAtt were conducted for the One100m and Uniform100m environments. The normalised
foraging time for the 900 combinations of the parameters is shown in Fig. 4.5, where
the data was sorted from minimum to maximum. The top performing combinations were
A1m50d-R1m1000d (for One100m), A1m10d-R1m100d (for Uniform100m) and A1m1000d-
R1m1000d (based on the combined score of One100m and Uniform100m). Random walk
ranked 109 out of 900, which represents a significant decrease in RepAtt’s performance. In
the One100m world setup, A1m50d-R1m1000d produced best performance with normalised
foraging time of 0.59. Furthermore, many of the worst performing combinations did not
forage up to 90% of the targets within the allocated two hours runtime for each simulation
on the High Performance Computer by the job scheduler. For the Uniform100m, A1md10-
R1m100d with a foraging time of 0.77 performed best while A8m10d-R10m1d was ranked
last with a foraging time of 4.5. The data shows that there is a more significant difference
between the best and worst ranked parameters in N100-Q1 in comparison to the parameter
search for N0-Q1. In both tested environmental setups tested, N100-Q1 performed best
when the robots minimised the effects of chemotaxis parameters that increased tumbles when
moving in wrong direction (am and rm), and only relied on the effects of ad and rd . This
occurs because the noise essentially randomised the gradient computation (also obvious
from Fig. 4.4 for queue size 1) from one time step to the other. As a result, this created a
huge number of undesired tumbles when am and rm are large, which in turn wasted time. By
employing the scoring system used for the N0-Q1 RepAtt setup, the 900 combinations were
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Fig. 4.6 Effect of the chemotaxis parameters on the performance of a swarm of 36 robots
foraging 180 out of 200 targets in the One100m and Uniform100m targets distributions and
using N100-Q1 version of RepAtt. Best combination from the scoring system is am = 1,
ad = 1000, rm = 1, rd = 1000.

ranked from lowest to highest based on their ranking in individual test environments. The
rankings are shown in the heat maps in Fig. 4.6.

Table 4.6 illustrates how the chemotaxis parameters affect swarm foraging in both
One100m and Uniform100m worlds (similar heat maps for each of the two worlds are
available in Appendix B). The rows and columns represent am and ad respectively, while
within each heat map, rm varies from 1 to 10 along the rows and rd varies from 1 to 1000
along the columns. The data are colour graded by rank such that higher ranked cells are
brighter, while poorly ranked cells are darker. Only the colours are needed for interpreting
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(a) am = 1, ad = 1000 (b) am = 8, ad = 10

Fig. 4.7 Enhanced view to heat map where the best (a) and worst (b) parameter combinations
occur when sorted according to rank scores across the 10 environment setups.

the data. The data indicates that foraging performance is inversely proportional to am and
rm (because cells get darker with increasing am and rm). On the other hand, cells in the
heat maps get brighter with increasing ad and rd . Thus for the N100-Q1, the best parameter
combinations are those that minimise am and rm while maximising ad and rd . This is also
evident from the heat maps where the best (A1m1000d-R1m1000d) and worst (A8m10d-
R10md1) combinations for N100-Q1 occurred as shown in Fig. 4.7.
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Fig. 4.8 Sorted foraging times for 900 chemotaxis parameter combinations normalised using
the mean time for Random Walk for the corresponding world setup.

The parameter search simulation experiments for determining the best-performing chemo-
taxis parameters for the N100-Q40 RepAtt setup was conducted for the 10 world setups of
Fig. 3.5. The ranking of the foraging times for One100m and Uniform50m are shown in Fig.
4.8, where the foraging times were normalised by that of Random Walk (A1m1d-R1m1d) in
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the corresponding world (the plots for all the ten test environments are available in Appendix
B). The foraging performance for the corresponding combinations of N0-Q1 RepAtt setup
have also been included to visualise its correlation with N100-Q40 foraging performance.
A4m1000d-R1m1d with a mean foraging time of 0.31 performed best in the One100m
environment. This shows that the robots used attraction signals to aid cooperation with other
swarms to exploit the clustered deposit of targets, similar to what was observed in Chapter
3 for the N0-Q1 parameter optimisation. However, the attraction multiplier, am = 4, that
exhibited the best performance for N100-Q40 was lower than the am = 6 in N0-Q1. With the
best performance in most clustered environment for N100-Q1 having am = 1, it suggests that
the chemotaxis’ reliance on the am parameter is affected by the noise level in the signal. In
the clustered environment, excessive noise in N100-Q1 meant the optimal solution was one
that ignores the effects of am by setting it to 1 in order to prevent unnecessary tumbles. Using
the average filter to improve the accuracy of the swarm’s estimate of the temporal gradient in
N100-Q40 meant that the optimal solution was one that increased the effect of am by setting
it to 4, and when noise was absent the swarm had 100% confidence in the temporal gradients
it computes from the attraction signal. Thus for N0-Q1, a higher am ≥ 6 generally performed
better than lower am for the swarm in the highly clustered One100m environment.

In the Uniform50m world, which is the least clustered of the ten test worlds, the best
performance for N100-Q40 was recorded in the A1m100d-R1m50d parameter combination.
Only swimming parameters (ad and rd) played a role in improving the swarm’s performance.
Considering that attraction signals are of less significance when resources can easily be
located by robots in the swarm (as in Uniform50m environment), the ad = 100 parameter
would only have little effect on the swarm’s foraging ability. Thus, it is logical to conclude
that the most influential factor in improving the swarm’s performance was the rd = 50
parameter. This is similar to the results recorded for N0-Q1, where A1m1d-R1m1000d
produced best performance for the Uniform50m world setup.

The scoring system used to identify the best parameters for N0-Q1, which involved
summing the ranks of each combination across the ten worlds, was applied to the simulation
results for N100-Q40. The ranking of the scores is summarised in the heat maps in Fig. 4.9
(the heat maps for the ranking of the individual worlds are available in Appendix B). Moving
from left to right in Table 4.9 shows an increase in the number of brightly coloured cells
in the heat maps, indicating that increasing rd improves the swarm’s foraging performance.
In addition, as am increases, the lower parts of the heat maps become darker, suggesting
that large values of am and rm together have a negative impact on swarm foraging. Similar
to ad , increasing rd has a positive impact on swarm foraging performance the cells get
brighter when moving from left to right within each heat map). The combined effect of the
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Fig. 4.9 Effect of the chemotaxis parameters on the foraging performance of a swarm of
36 robots foraging 180 out of 200 targets in the ten test worlds. Best combination for this
distribution is am = 4, ad = 100, rm = 1, rd = 10.

chemotaxis parameters across the ten world setups resulted in A4m100d-R1m10d delivering
the best foraging performance score for the N100-Q40 RepAtt setup, while the worst ranked
combination was A10m1d-R10m1d (where robots relied only on the tumble promoting
parameters and ignored tumble suppressing parameters). The heat maps in Fig. 4.10 show the
enhanced view for the heat map where the best and worst parameter settings for N100-Q40
occurred. In all subsequent simulations, the best performing parameters for the N100-Q40
RepAtt setup, A4m100d-R1m10d, will be used because it generated superior performance
when using realistic communication noise and the simple average noise filtering system.



71

(a) am = 4, ad = 100 (b) am = 10, ad = 1

Fig. 4.10 Heat map where the best and worst parameter combinations occur when sorted
according to rank scores across the ten environment setups.

4.4 Foraging with Noisy Communication

In this section, the performance of a foraging swarm using A4m100d-R1m10d RepAtt
parameters and noisy communication is studied under varying filter queue sizes in order
to identify the most appropriate queue size for the swarm. The swarm size was 36 robots
and the queue size was varied from 1 to 120 and the foraging task was conducted on the 10
environment setups of Fig. 3.5.

Scatter plots showing simulation snapshots for N100-Q1, N100-Q40 and N0-Q1 are
presented in Figss 4.11 and 4.12 for One100m and Uniform50m environments respectively.
In the One100m, where attraction communication was an important factor, robots foraging
with N100-Q1 were unable to disperse effectively using repulsion, and their use of attraction
signal to cooperate with other robots was less efficient. Thus, after 200 seconds of foraging,
they were only able to pick up 49 out of 200 targets. Using the average filter in N100-Q40,
robots were able to disperse more effectively and had an improved ability to make use of
attractive signals to exploit the targets cluster. Within 100 seconds, the swarm was able to
cover the 100 m × 100 m search space and after 200 seconds, more of the robots were able to
locate the clustered targets by using chemotaxis to maximise the attraction they sensed. In the
absence of noise (N0-Q1), the robots were most effective in using chemotaxis to locate the
attracting robots, thus improving their ability to locate and forage the target cluster. Within
200 seconds, the robots were already able to pick up 50% of the targets and many robots in
the swarm were able to come within the region of the targets cluster.
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Fig. 4.11 Scatter plots for One100m simulation snapshots. The optimized chemotaxis
parameters for N100-Q40 am = 4, ad = 100, rm = 1 and rd = 10 for all the simulations in
this table.

In the simulation scatter plots in Fig. 4.12 for the Uniform50m world, the performance
of N100-Q1, N100-Q40 and N0-Q1 were indistinguishable within the first 50 seconds. This
is because most robots were able to locate targets to forage as they left the nest. However,
when targets became scarce in the later part of the simulations, the robots needed to conduct
effective dispersal in order to help them explore a wider search space. At this stage, N100-
Q1 began to lag in performance behind N100-Q40 and N0-Q1. Thus, as the simulation
approaches 200 seconds, N100-Q1 was able to pick up 148 targets, while N100-Q40 and
N0-Q1 were able to pick up 172 and 178 targets respectively. This emphasises the need for
the swarm to be capable to effective use of communication signals when targets are difficult
to locate in the search space.

When robots in the swarm communicate attraction and repulsion signals under noisy
conditions, the data so far indicates that it has a negative effect on the swarm foraging
performance compared to perfect communication. However, with the inclusion of the simple
average filtering system, the robots were able to improve their use of communication signals.
Should the average filter queue then be made as long as possible in order to ensure the robots
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Fig. 4.12 Scatter plots for Uniform50m simulation snapshots. The optimised chemotaxis
parameters for N100-Q40 am = 4, ad = 100, rm = 1 and rd = 10 for all the simulations in
this figure.

are able to measure temporal gradient with 100% accuracy under noisy conditions? To
answer this, Fig. 4.13 shows the simulation results of RepAtt (using parameter combinations
A4m100d-R1m10d), where the queue was varied from 1 to 120 and tested on the ten
environmental setups.

The data in Fig. 4.13 shows that initial queue size increments have a positive effect on
the swarm foraging performance, but performance degrades again once the queue becomes
excessively long. The effect of queue size is more pronounced in the clustered environments,
where attraction communication plays an important role in improving swarm foraging, and
in the 100 m × 100 m worlds, where the search space was quadrupled (in comparison to
the 50 m × 50 m worlds). In the three most clustered environments of the 50 m × 50 m
world size (One50m, Half50m and Two50m), the foraging performance improved as the
filter queue size approached 40, and then started to degrade as the queue size was increased
further. In the Four50m and Uniform50m worlds, there was no notable improvement in
swarm foraging performance beyond a queue size of 20, but there was no significant decrease
in performance beyond this queue size either. For the 100 m × 100 m world size, the
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(b) 100m × 100m

Fig. 4.13 Varying queue size and its effect on foraging time. The optimised chemotaxis
parameters combination of am = 4, ad = 100, rm = 1 and rd = 10 was used for all simulations.
Each bar shows the mean of 30 simulation repetitions and error bars represent 95% confidence
interval.

swarm foraging performance in response to increase in queue size was similar to that of
50 m × 50 m for the one, two, half and uniform distributions (the primary difference was
a relatively larger response in the 100 m × 100 m clustered environments). However, for
the Four100m world, there is a noticeable degradation in foraging performance as the queue
size increases beyond 20 (whereas for the Four50m, there was no noticeable effect in the
corresponding range). These data (in Fig. 4.13) show that it is important for robots in the
swarm to increase queue size to help them compute reliable temporal gradients for both
repulsion and attraction signals while simultaneously keeping the queue short so they make
timely response to changes in these gradients. The velocity of the robots in the swarm was
0.6 m/s and they sensed sound intensity at a rate of 40 samples per second. Thus, a queue
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size of 40 means the robots updated their intensity measure once every second (or once every
0.6 m). The results show that using the noisy sound model with a queue size of 40 was most
appropriate for the 10 test environments, given the distance the robots would have covered
within that time. In subsequent studies, RepAtt with queue size of 40 (N100-Q40) will be
used when swarm communication is noisy.

In comparison to N0-Q1, in Fig. 4.13, N100-Q40 had reduced swarm foraging perfor-
mance. This was most significant in the One100m world where N100-Q40 was 43% less
effective than N0-Q1. The smallest degradation in performance was 8%, which was observed
in the Uniform100m world. The coordination of the swarm when using N100-Q40 was
greatly significant nonetheless, because it improved foraging performance by up to 70%
in comparison to Random Walk on the One100m test environment and had a minimum
foraging time improvement of 23% in the Uniform50m world setup. This shows that under
realistic noise conditions, RepAtt would maintain its effectiveness in environments that rely
heavily on communication (One100m) and in those where communication is less relevant
(Uniform50m).

4.5 Robustness of RepAtt

In Section 3.9 it was shown that the variation in the foraging time of N0-Q1 was 2.27 across
the 10 world setups (A10m50d-R1m100d was used in that simulation), while the centralised
ALNS algorithm varied by only 1.49. Fig. 4.14 shows the box plots of how swarm foraging
time varied across the 10 world setups with RepAtt parameters of A4m100d-R1m10d, where
foraging times were normalised by the shortest time taken for that communication model
across all environments (which occurred in the Uniform50m). From Fig. 4.14, the variation
in foraging time across the ten world setups for N0-Q1 and N100-Q40 were 1.90 and 2.91
respectively. This represents a 53% reduction in the algorithm’s robustness measure (using
the foraging time variation as the metric). Even with the decrease, N100-Q40, was still
much more robust than Random Walk whose variation was 7.91 (that is, 172% less robust in
comparison to N100-Q40). In comparison to the A10m50d-R1m100d robustness analysis
conducted in Section 3.9 for N0-Q1, the A4m100d-R1m10d parameters combination was
16% more robust, thus, indicating that the chemotaxis parameters were also influential in
RepAtt’s robustness to changes in the foraging search space.
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Fig. 4.14 Change in swarm foraging times across the ten target distributions. Each simulation
was repeated 30 times, with y-axis showing mean time to pick up 90% of 200 targets
(normalised based on distribution with shortest mean time for each algorithm, which is
Uniform50m in all cases).

4.6 Scalability of RepAtt

The scalability study conducted for N0-Q1 and Random Walk in Section 3.10 showed that
the A10m50d-R1m100d chemotaxis parameters demonstrated impressive scalability with
increasing swarm size. Fig. 4.15 shows how N0-Q1, N100-Q40 and Random Walk (RW)
scale with increase in swarm size for A4m100d-R1m10d chemotaxis parameters. The plots
for the ten test worlds are available in Appendix B. From Fig. 4.15, the largest improvement
in the swarm’s efficiency was attained in the clustered environments, with N0-Q1 improving
efficiency by a factor of up to 5.82, while N100-Q40 attained 3.18 (in One100m environment).
As the swarm size increased up to 100 robots, the N100-Q40 further was able to maintain
foraging efficiency by a factor of up to 2. In the uniform worlds, the difference in performance
improvement between N0-Q1 and N100-Q40 was less evident, with N0-Q1 achieving up to
1.61 with a swarm size of 25, while N100-Q40 attained 1.44 for the corresponding swarm
size in the Uniform100m world.

4.7 Summary

RepAtt’s performance relies on the ability of robots to compute accurate gradients to aid
their chemotactic search for targets in their environment during foraging. This chapter has
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Fig. 4.15 Relative efficiency computed based on p = 180 out of 200 total targets (using Equa-
tion 3.6). Each simulation was repeated 30 times and error bars represent 95% confidence
interval. RepAtt parameters of am = 4, ad = 100, rm = 1 and rd = 10 were used.

investigated how noise in communication of attraction and repulsion signals among robots
impact their foraging performance. The noise was modelled from hardware experiments
and integrated into the simulations. In addition, a simple noise filtering system based on
computing the average across a queue of instantaneous measurements of the attraction and
repulsion signals was implemented. This filtering system significantly improved the swarm’s
ability to mitigate the negative effects of noise in their communication during foraging.
Through extensive series of simulations and analysis, RepAtt was confirmed to be capable of
improving swarm foraging performance in all the test environments in a robust and scalable
manner.
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Chapter 5: Uncertainty in Foraging Robot Vision
5.1 Introduction

The uncertainty in a robot’s visual perception and how it affects performance at a swarm level
is one of the least studied area of swarm robotics. It is expected that this uncertainty will
have a negative impact on the swarm. However, whether this impact completely ‘breaks’ the
collective behaviour of the swarm is yet to be addressed. This chapter develops a probabilistic
robot vision model based on real-world experiments using state-of-the-art machine learning
object detection algorithms for the detection of litter in a moderately realistic environment
such as a local park. The model was used to extensively study the impact of imperfect vision
on a swarm of robots foraging with or without communication. Developing the vision model
involved a series of necessary steps summarised in Fig. 5.1.The subsections that follow
will describe the modelling steps in detail before the model’s application for swarm robots
foraging.

The first step was to collect training and testing data (Section 5.2), followed by cleaning
and annotation of the dataset (Section 5.3). The steps in training and testing the object
detection models are described in Section 5.4. During testing, metric information needed
for developing the probabilistic model was collected. This data was then used in Section
5.5 to develop the probabilistic model. Section 5.6 describes the validation process of the
imperfect vision model. After validation, the vision model was included in the swarm
simulation for RepAtt and Random Walk in Section 5.7. A study of the vision model
was conducted in Section 5.8 to simulate variation in object detection hardware (through
controlling model probabilities and rate at which robots update their vision system) and apply
it for the investigation of its impact on the effectiveness of the swarm algorithms. The data
collection, dataset preparation, training and testing steps (Sections 5.2 – 5.4) are generic steps
taken to optimise the deep neural networks for object detection. The major contributions of
this research for development of the probabilistic vision model for the swarm foraging robots
are detailed from Section 5.5 to Section 5.8

5.2 Data Collection

Data collection involved randomly placing 35 litter objects (made up of soda cans, juice
boxes, plastic bags, paper bags and plastic containers) in St. George’s Park on the University
of Leeds campus and using a mobile robot to explore the litter area while recording the scene
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Randomly place 35 litter objects (paper bags, soda cans, juice cans, plastic bottles 
and bags) in St. George’s Park and use a mobile robot with an attached camera to 
record the litter from a robot’s perspective. A total of 1115 seconds of video were 
recorded.

Create a training dataset from 519 images from ImageNET and 128 images from 
one of the recorded videos. Draw bounding boxes around each litter object in each 
training images. The test set is made up of the frames of the remaining video 
recordings, which were not included in the training set. Mirrored images of the test 
dataset were also created to double the amount of test data.

Use the training dataset to train the YOLOv3, Tiny-YOLOv3 and MobileNet-SSD on 
a High Performance Computing platform. YOLOv3 is a larger(and more accurate) 
network that will be used as baseline for comparing the smaller Tiny-YOLOv3 and 
MobileNet-SSD networks. Unlike YOLOv3, the smaller networks can run on 
constrained computational processors used for swarm robots.

Test the trained YOLOv3 network on the test dataset and use it to assign a unique 
ID to all litter objects in the videos.
Test Tiny-YOLOv3 and MobileNet-SSD on the test dataset and output detections to 
text files.

Prune YOLOv3 detections to litter objects that appear from top and disappear at 
edges of frames. This is important for only working with reliable data that appeared 
on the horizon and leave robot’s field of view at a closer range.
Measure how Tiny-YOLOv3 and MobileNet-SSD detections differ from those of 
YOLOv3 and extract metrics for model probabilities.

Use computational simulation of model probabilities to validate how well they agree 
with experimentally derived probabilities.

Use the modelled detection probabilities and camera properties within a swarm 
foraging scenario to investigate how imperfect object detection affects swarm 
foraging performance.
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foraging performance.

Foraging using 
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models

Fig. 5.1 Development workflow for the robot vision model and the investigation of the effects
of imperfect vision on a swarm of foraging robots.
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with an attached camera. A total of 23 separate videos were recorded. The total recording
time across all videos was about 20 minutes. Fig. 5.2 shows a schematic diagram of the
mobile robot setup used for the data collection. The camera was elevated at 44 cm from
ground level and oriented at 35◦ facing downwards. The camera model used was a GoPro
Hero 5 set to record at a full HD resolution of 1920×1080 pixels, wide angle field of view
(at 118◦ and 69.5◦ horizontal and vertical view angles), and 50 frames per second recording
rate. After the recording exercise, all the litter were picked up and binned.

35 25

0.20m

0.
44
m

30

Fig. 5.2 Robot setup for collecting data of litter objects in St. George’s Park.

5.3 Dataset Preparation

Deep neural networks based object detection algorithms such as YOLO (You Only Look
Once) and SSD (Single Shot Detector) need to be trained with images that contain the objects
they need to detect. These images also need to be annotated by specifying bounding boxes
around the regions of interest occupied by the object. A training dataset needs to cover a
wide range of visualisation angles of the object, different zoom levels, under different light
conditions and also partially occluded images of the object(s) to be detected. These variations
in the object’s view will help the network to better generalise the features of the objects of
interest, thus, improving its ability to detect the objects in different contextual scenarios. No
pre-annotated images of litter were found on the Internet, so a custom dataset was created
for training the networks for litter detection. The training dataset comprised of 519 images
downloaded from ImageNET [1] and 128 frames obtained from one of the litter recording
videos.

The images were annotated using the Openlabelling annotation tool [120] by manually
drawing bounding boxes around each litter object in the images. The result from this process
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Fig. 5.3 Sample images of images used as training dataset with litter objects annotated using
red bounding boxes. The first two rows are images downloaded from ImageNET [1] and the
third row are sample images from litter recording in St. George’s Park.

is a text file with the same name as the image. Each line in the file is a representation of
the top left and bottom right coordinates of the bounding box of a specific litter. Thus, an
image containing 10 litters has 10 lines in the corresponding text file. In total, there were
2609 bounding box annotations spread across the 647 images that make up the training set.
The annotation process took more than 6 hours. Fig. 5.3 shows the annotations of 15 sample
images used for training the object detection networks.

The video recordings used for testing the networks were flipped horizontally in order to
increase the number of test data. This resulted in more than 100,000 images (video frames)
used to test the networks. It was not feasible to annotate bounding boxes on each frame of the
videos within the limited time for the research. So, the approach adopted for measuring the
performance of the test network was to use the larger, more accurate YOLOv3 detections as
pseudo ground truth data. The less accurate smaller networks (Tiny-YOLOv3 and MobileNet-
SSD) performance were then measured based on their agreement with YOLOv3’s detections.
To make the YOLOv3 detections more reliable, further post-processing involving optical
flow tracking were used to interpolate locations of missed detections.

5.4 Training and Testing

The three object detection networks (YOLOv3, Tiny-YOLOv3 and MobileNet-SSD) used
in this research to develop the model were trained on the Advanced Research Computing 3
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High Performance Computing (ARC3 HPC) for 20,000 iterations. The trained weights were
then copied from the ARC3 HPC to the local machine for testing and model development.

The first testing phase was broken down into multiple steps that involved horizon masking,
litter ID assignment and detections pruning in order to extract YOLOv3 detections that were
reliable to use as baseline (or pseudo ground truth). The second testing phase was used to
extract relevant metric information for developing the vision models based on the smaller
networks. It involved using two sizes of each network, determining inference time in
constrained computational environments, metric data extraction and logging the detections
by the networks.

5.4.1 Testing phase 1: preparing YOLOv3 as baseline

The tasks performed in preparing the YOLOv3 baseline data are as follows:

1. Use the YOLOv3 network to detect litter in the test dataset and save the detection data
for each frame as a text file (Fig. 5.4a shows detections on a sample frame). Each line
in the text file represents the top-left and bottom-right corners of detected litter in the
video frame.

2. With the robot stationary on a flat surface in St. George’s Park, measure off five metres
from centre of bottom edge to the left, middle and right edges of the robot’s field of
view. Use this measurement to form a circular five metres horizon, then, filter out litter
objects that are outside the manually generated horizon. Fig. 5.4b shows the effect
of applying the horizon. This step was necessary to eliminate detections that were so
distant and essentially ‘spots’ in the frames.

(a) Video frame (b) Horizon applied to frame

Fig. 5.4 Detecting litter using YOLOv3 and applying five-metre horizon to it.

3. All detections that are within the five-metre horizon get assigned unique IDs used for
tracking them across multiple frames in a video. These IDs are assigned when the first
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litter comes into view. The litter is assigned a new ID whenever it leaves and re-enters
the frame. For the first frame, assign unique ID to all detections in a video’s first frame
and move on to subsequent frames to assign IDs based on the following guide:

(a) Check for litter objects in current frame with the most overlap with detections in
the preceding frame by computing the intersection over union (IOU) value for
each litter. Detections in current frame with the most overlaps in the preceding
frame are assigned the IDs of the litters they overlap with.

(b) For detections that were present in the previous frame and absent in the current
frame (because they do not overlap with detections in the present frame), use
optical flow to estimate their new positions in the current frame, while retaining
their IDs.

(c) Assign new unique IDs to detections that do not overlap with any litter in previous
frame and those that had less overlap, in cases where multiple litter in current
frame overlap with one litter in the previous frame.

The resulting process assigns unique IDs to all the litters detected in all the test dataset
videos. Fig. 5.5 shows a sample frame where L169 litter is a new litter, L165 was
tracked using optical flow, while L147 and L159 are examples of detections that
overlapped with those of a preceding frame. A total of 13,449 unique litter IDs were
assigned across the whole test dataset. Fig. 5.6a shows the pixel locations of all the
litter objects across all the test videos within the robots field of view.

Fig. 5.5 Sample image showing the different tags a litter can have in a frame. Pink box
represents the new litter with ID L169, blue boxes are for litters that were tracked using IOU,
while red boxed litter is tracked using optical flow.
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4. The last step in preparing the baseline data involved pruning the detections with a goal
to eliminate unreliable data and use only the most reliable information as metrics for
evaluating the performance of the smaller networks and developing the vision model
for the swarm. The first pruning step involved extracting litter detections that were
tracked using IOU for 70% or more of the frames in which they appeared. This reduced
unique litter IDs from 13,449 to 9,899, representing a 26% decrease in the number
of unique litter objects (Fig. 5.6b). However, there were many litter objects whose
first appearance was not on the five metres horizon (the robot’s motion was forward
with occasional turns to the right or left, so litter should generally appear from the
horizon or the sides of the frame). An additional observation was that many litter
objects appear and disappear on the five metres horizon because the park’s surface was
not entirely smooth, so this was caused by the wobbling of the robot as it traverses the
park. Based on these observations, the last pruning step involved extracting only litter
objects whose first appearance was within 30 pixels of the horizon and last appearance
was within bottom 600 pixels of the frame and within 30 pixels of the bottom, left or
right edges of the video frames. This pruning step reduced the unique litter IDs from
9,899 to 679, which represented 5% of the 13,449 original litter IDs count (Fig. 5.6c).
Fig. 5.6 shows the bounding box centres for the first, last and all occurrences of the
litter objects in frames of the test dataset videos.

(a) 13,449 unique IDs (b) 9,899 unique IDs (c) 679 unique IDs

Fig. 5.6 The path of each litter detected by YOLOv3 within the videos. Black spots are first
appearance of litter, red are positions tracked using optical flow, blue are positions tracked
using IOU and green are last location of litter within the frame.

5.4.2 Testing phase 2: extracting metrics data for smaller networks

The detections using the two smaller networks (Tiny-YOLOv3 and MobileNet-SSD) also
involved a number of steps, which were used to extract modelling information. These steps
are described below:
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1. Use two input resolution setups for Tiny-YOLOv3 (128× 128 and 224× 224) and
MobileNet-SSD (124×124 and 220×220). The lower resolutions are less accurate,
but have shorter inference times, while the higher resolutions are more accurate at
the expense of longer inference times. This is useful for investigating speed versus
accuracy objectives on constrained computational environments. The input resolutions
for Tiny-YOLOv3 and MobileNet-SSD are different because their deep neural network
architectures impose which resolutions align well with the transformations the input
image undergoes as it progresses through the network layers. Using input resolutions
that do not align well negatively impacted the ability of the network to localise the
its detections on the input image. Thus, the input resolutions for Tiny-YOLOv3 and
MobileNet-SSD were chosen to be as close to each other as possible.

2. The networks were tested on Erle-Brain 3 (robot controller based on Raspberry Pi 3)
and a Raspberry Pi 4 computer to measure the inference time (time taken to produce
an output for a given an input image), shown in Table 5.1. These platforms were
chosen because they were of relatively low cost for the development of swarm of field
robots, and also possess the computational ability for performing object detection using
lightweight neural networks.

Table 5.1 Inference time (in seconds) for Raspberry Pi 4 (Pi4) and Erle-Brain 3 (Pi3)
computers. The values represent the mean inference time and standard deviation for a
selected video in the test dataset.

MobileNet-SSD Tiny-YOLOv3
124×124 220×220 128×128 224×224

Pi4 0.0638±0.0110 0.1562±0.0219 0.0611±0.0064 0.2000±0.0225
Pi3 0.4282±0.0357 1.1913±0.1362 0.4965±0.0488 1.6000±0.0470

3. Confirm that the detection of the network for a specific visual scene is consistent
across all test platforms (on Raspberry Pi and ARC3 HPC). This was an important step
because if the detections are same, then using the HPC for inference will significantly
reduce the time needed to perform detections on all the test dataset.

4. Use each of the two input sizes of the Tiny-YOLOv3 and MobileNet-SSD to detect
litter in all frames of the test dataset and store the detections data in a text file (one text
file per frame) such that each line in the text file represents the top-left and bottom-right
corners of the detections bounding boxes. Fig. 5.7 shows sample detections by the
networks.
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(a) Tiny-YOLOv3 128×128 (b) Tiny-YOLOv3 224×224

(c) MobileNet-SSD 124×124 (d) MobileNet-SSD 220×220

Fig. 5.7 A sample detection using two sizes of Tiny-YOLOv3 ((a) and (b)) and MobileNet-
SSD ((c) and (d)). The larger input sizes are more successful in detecting litter, however,
they usually have longer inference time because of the increased computational requirement.

5. Working with only detections that fall within a five-metre horizon, compare the net-
work’s detection in each frame with that of YOLOv3 using intersection over union
measurement (IOU). Use an IOU of at least 0.0001 as a positive detection to effectively
account for bounding box positioning mismatch between YOLOv3 detection and those
of the smaller networks.

6. Class all IOU above the 0.0001 threshold as True Positive (TP) detection by the
smaller network. The detections in YOLOv3 that were missed by the smaller networks
are classed as False Negatives (FN) and detections present in the smaller network
and absent in the YOLOv3 are classed as False Positive (FP). The classifications of
detections in Fig. 5.7 are shown in Fig. 5.8.

7. The detection data are logged in a tabular format and saved in two separate text files:

(a) TP and FN file, where the litter id (from YOLOv3) data were represented as the
rows, and each column represented the frames in the video. For each litter, a
value of 1 is assigned to every frame the smaller network detects it (TP) and 0 for
frames where detection is unsuccessful (FN). If the litter was not within the field
of view of the robot in a particular frame, its cell is left blank for that frame.
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(a) Tiny-YOLOv3 128×128 (b) Tiny-YOLOv3 224×224

(c) MobileNet-SSD 124×124 (d) MobileNet-SSD 220×220

Fig. 5.8 The data from Tiny-YOLOv3 and MobileNet-SSD are compared with corresponding
data from YOLOv3. All detections that match (shown in blue) are True Positives; False
Negative detections are shown in pink; while the red box represents False Positive detections.

(b) FP file, also uses a similar tabular format to assign 1, 0 or leave blank for
appearance of the False Positive data in the frames of the videos.

The resulting detection performance of the networks based on the 679 litters in YOLOv3 is
shown in Fig. 5.9. The green dots represent true positive detections, while missed detections
are represented as red dots. It is obvious that the MobileNet-SSD variants outperformed the
Tiny-YOLOv3 network (because they have more green dots).

5.5 Model Development

The detections data while testing the object detection networks showed that once a litter was
detected by the network in the current frame, it was highly likely that it would be detected in
the next frame. However, if the network failed to detect the litter in the present frame, it was
unlikely for the network to detect that litter in the next frame. This was because the change
in visual scene between consecutive frames was generally small, considering that the videos
were recorded at 50 frames per second and the robot was driven at a slow pace. Thus, the
data showed that detections on consecutive frames were not statistically independent. From
observing this detection pattern of the networks, a probabilistic vision model was developed
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(a) Tiny-YOLOv3 128×128
TP = 19,160, FN = 152,893

(b) Tiny-YOLOv3 224×224
TP = 36,573, FN = 135,480

(c) MobileNet-SSD 124×124
TP = 68,801, FN = 103,252

(d) MobileNet-SSD 220×220
TP = 103,887, FN = 68,166

Fig. 5.9 Representation of the matching accuracy of detections in the smaller networks against
those of YOLOv3. Red spots are missed detections (FN) while green spots are matching
detections (TP). The data was generated from the positions of all 679 unique litter IDs across
all video frames used for testing the networks.

to provide a representative approximation of the detection pattern. The model was based on
the computation of two transition probabilities:

1. Probability that the object detector will detect the litter in the current frame when the
object was unseen in the previous frame. This could be because the object in question
had just entered the robot’s field of view or it was classified as a false negative in the
preceding time step. The probability controls the transition of an object from being
unseen to it being seen and is represented as Pu2s

2. Probability that a detection in the preceding time step is detected in the current time
step. This probability controls how the detection of an object can persist in a seen state
across multiple consecutive frames or time steps. This probability is represented as
Ps2s.

The computation of these probabilities for the Tiny-YOLOv3 (both 128×128 and 224×224
network input resolution) and MobileNet-SSD (both 124×124 and 220×220) were based
on analysing the 679 litter objects that were filtered through the pruning process of the
baseline YOLOv3 network detections. These steps were followed to arrive at the model:



90

1. Tally all the seen to seen (s2s), seen to unseen (s2u), unseen to seen (u2s) and unseen
to unseen (u2u) transitions for all the 679 litter objects. Also, tally the number of
frames the litters were detected (s) and undetected (u) by the network. These values
can easily be computed from the logged data by analysing the ones (seen) and zeros
(unseen) values for each litter across the frames of the test dataset.

2. From the tallied data, compute the transition probabilities for each litter using Equations
5.1 for Pu2s and 5.2 for Ps2s. Use the u and s data to compute the detection probability
of each litter as shown in Equation 5.3.

Pu2s =
u2s

u2s+u2u
(5.1)

Ps2s =
s2s

s2s+ s2u
(5.2)

Ps =
s

s+u
(5.3)

3. Compute the mean and standard deviation of the Pu2s, Ps2s and Ps from those computed
for each litter. The end result of this process is shown in Table 5.2

Table 5.2 Analysis of the MobileNet-SSD and Tiny-YOLOv3 performances and metrics
computation by analysing all frames of the test dataset where the 679 filtered litter objects
visible (that is, analysis of the data at the full frame rate of 50fps).

MobileNet-SSD Tiny-YOLOv3
124×124 220×220 128×128 224×224

seen 68801 103887 19160 36573
seen2seen 59380 91994 16622 31840
seen2unseen 9397 11840 2538 4728
unseen 103252 68166 152893 135480
unseen2seen 9394 11807 2535 4699
unseen2unseen 93203 55733 149679 130107
never seen 11 0 238 146
always seen 0 0 0 0
nlitter 679 679 679 679
Ps2s 0.7896±0.1824 0.8558±0.1002 0.4358±0.3954 0.5462±0.3667
Pu2s 0.1293±0.1031 0.2567±0.1586 0.0224±0.0325 0.0563±0.0725
Ps 0.4078±0.2304 0.6104±0.2156 0.1101±0.1655 0.2102±0.2456

From the probabilities computed in Table 5.2, it can be seen that there is a significant
difference between Ps2s and Pu2s probabilities. All the networks have a low Pu2s, which means
that the networks have a low chance of detecting previously unseen litter. However, when the
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litter has been detected by the network, there is a high likelihood for the network to detect it in
consecutive frames that follow the detection, which is represented by the relatively high Ps2s

probability. The MobileNet-SSD networks, with Ps = 0.4078±0.2304 and 0.6104±0.2156
for input sizes 124×124 and 220×220 respectively, performed better than the Tiny-YOLOv3
networks. Therefore, in subsequent analysis, only the MobileNet-SSD networks will be used.

One other key observation is the large standard deviation of the probabilities. This is an
indication that the litter objects have varied detectability by the networks. Such detectability
can be due to distance, view angle, properties of the litter itself or some other factor. This
aspect of variable detectability across multiple litter objects has not been accounted for in
this model in order to simplify the model, since variable target types were not used in the
simulations.

The detection rates on the Raspberry Pi platforms were not up to the 50 frames per second
recording used to collect litter data (inference time shown in Table 5.1 are much longer than
0.02 second). To account for this mismatch in frame rate, the YOLOv3, Tiny-YOLOv3 and
MobileNet-SSD detections data were resampled at frame rates measured on the Raspberry Pi
platforms. This was done as a post processing step, where only a subset of the detections
by each network were used for computing the model probabilities for each deep neural
network. The choice of which detections should be utilised in model development or not was
based on the frame rates measured on the Raspberry Pi platforms. The resulting data were
used to compute new probability values for Pu2s, Ps2s and Ps for the new frame rates. The
probabilities resulting from this resampling step are shown in Table 5.3, for the MobileNet-
SSD 124×124 and 220×220, whose names were shortened to mSSD124 and mSSD220
respectively. The registered observation is that as frame rates reduced, the Pu2s increased,
while Ps2s decreased. Using the Raspberry Pi frame rates resulted in an increase in the time
between two consecutive frames and, therefore, increasing the dissimilarity between them.
Thus, it is expected for Pu2s to increase because the relatively substantial change between the
frames improved a network’s chances of detecting litter objects it failed to detect in preceding
frames. Conversely, the increased dissimilarity between two consecutive frames negatively
impacted a network’s ability to detect a litter it successfully detected in the preceding frame,
thus, causing a decrease in the Ps2s probability. The probability of detection (Ps), however,
remained fairly constant for all frame rates tested. Ps remaining fairly constant is an expected
characteristic because at a fundamental level, the detections on each frame is independent
of those of other frames. Since Ps is a reflection of how well the network detects litter,
resampling the data does not affect its value in any significant way.

The False Positive data was not used for developing the probabilistic vision model.
This was done because the False Positive data appeared for only short periods, with more
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Table 5.3 Modelling data from testing MobileNet-SSD on resampled data based on frame
rates observed on the Raspberry Pi 4 (Pi4) and Erlebrain (Pi3) platforms.

Pi4 Pi3
mSSD124 mSSD220 mSSD124 mSSD220

FPS 14.66 6.49 2.13 0.81
seen 20194 13530 2908 1672
seen2seen 15988 10443 1849 942
seen2unseen 4054 2772 657 231
unseen 30271 8797 4438 1123
unseen2seen 4168 2913 1002 476
unseen2unseen 25576 5520 3159 467
never seen 14 3 54 42
always seen 0 3 12 148
nlitter 679 679 679 679
Ps2s 0.7006±0.2254 0.7364±0.1971 0.5823±0.3715 0.5962±0.4440
Pu2s 0.2038±0.1686 0.4955±0.2905 0.3685±0.3042 0.7081±0.3450
Ps 0.4081±0.2316 0.6127±0.2185 0.4064±0.2475 0.6079±0.2943

than 90% of this data appearing for less than 10 frames. The mean and standard deviation
of detection probability, Ps, computed from the False Positive data were 0.0566±0.0193,
0.0710± 0.0185, 0.0794± 0.0948 and 0.1202± 0.1631 for mSSD124, mSSD220, Tiny-
YOLOv3 128×128 and 224×224 respectively. These Ps values are low in comparison to
those shown in Table 5.2. Thus, in the interest of simplifying the model, the occurrence
of false positives in the vision model was not included. This decision helped to focus on
studying the scenario where a robot in the swarm probabilistically fails to detect targets in its
local environment.

5.6 Model Validation

A Monte Carlo simulation was performed using the model probabilities in order to validate its
correlation with the experimental data. The metric used for this validation is the probability
of detection (Ps). In the Monte Carlo simulation, the mean Pu2s and Ps2s probabilities were
applied to 100 virtual litter objects for 1000 time steps. At each time step, if a litter was
detected, it was assigned a value of 1, otherwise 0 was assigned. The modelling steps in
Section 5.5 were used to compute the Pu2s, Ps2s and Ps probability values. Since Pu2s and Ps2s

were used to as input to the simulation, it would be expected that the Monte Carlo simulation
values would correspond with those of the experimental data. However, the goal is to check
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if these model probabilities result would approximate the Ps obtained from the experimental
data.

Table 5.4 Comparison of the model probabilities of Tables 5.2 and 5.3 with Monte Carlo
simulations using the corresponding Pu2s and Ps2s probabilities.

50fps Pi4 Pi3
mSSD124 mSSD220 mSSD124 mSSD220 mSSD124 mSSD220

Vision Modelling from Experimental Data

Ps2s 0.7896±0.1824 0.8558±0.1002 0.7006±0.2254 0.7364±0.1971 0.5823±0.3715 0.5962±0.4440
Pu2s 0.1293±0.1031 0.2567±0.1586 0.2038±0.1686 0.4955±0.2905 0.3685±0.3042 0.7081±0.3450
Ps 0.4078±0.2304 0.6104±0.2156 0.4081±0.2316 0.6127±0.2185 0.4064±0.2475 0.6079±0.2943

Monte Carlo Simulation of Probabilities

Ps2s 0.7871±0.0195 0.8560±0.0150 0.6995±0.0229 0.7351±0.0181 0.5835±0.0214 0.5952±0.0189
Pu2s 0.1301±0.0124 0.2624±0.0242 0.2024±0.0164 0.4952±0.0251 0.3654±0.0188 0.7133±0.0243
Ps 0.3794±0.0301 0.6445±0.0335 0.4022±0.0274 0.6514±0.0202 0.4673±0.0171 0.6380±0.0138

Table 5.4 shows the resulting Ps2s, Pu2s and Ps from the modelling process described in
Section 5.5 in the first three rows of Table 5.4 and their corresponding probabilities from
the Monte Carlo experiments in the bottom three rows of Table 5.4. The probability of
detection, Ps, resulting from the Monte Carlo simulation shows reasonable agreement with
those computed from the vision experimental data. The Ps estimate from the Monte Carlo
simulation shows that they were consistent with analysis of the vision experimental data.
A maximum deviation of 15% from the vision experimental data was obtained from the
Monte Carlo simulation for the Raspberry Pi 4 model probabilities using the MobileNet-SSD
220×220 network. Nonetheless, it is useful to note that Pu2s and Ps2s underestimated the
Ps value in the 50 fps mSSD124 column, closely approximates the Ps in the Pi4, mSSD124
column, and over estimated the probabilities in all other columns. These underestimates and
overestimates could be due to some modelling errors cascaded through the steps or variability
in the detectability of specific litter objects which caused large standard deviation in the Ps

value computed for the experimental data.

5.7 Simulation using Network Models

Gazebo simulations were conducted using Ps2s and Pu2s model parameters based on the
MobileNet-SSD detector to investigate the effect(s), if any, of imperfect vision on foraging
performance. The Tiny-YOLOv3 model was not used because it had low values of Ps at
similar inference time with MobileNet-SSD. A swarm size of 36 robots were tested on the
10 world setups. The robots’ field of view and detection distance were modified to 120◦ and
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5 metres respectively to match the parameters used for the litter detection experiments. Each
simulation setup was repeated 30 times and the chemotaxis parameters of am = 4, ad = 100,
rm = 1 and dd = 10 were used for N0-Q1 and N100-Q40 versions of RepAtt. Four sets of
simulations were conducted in this section:

1. Simulation of swarm robots with perfect vision system that was updated at every time
step. This was added as a baseline for understanding how imperfect vision affects
Random Walk, N0-Q1 and N100-Q40.

2. Swarm robots with imperfect vision using model probabilities obtained from the
analysis of all frames with robots vision system at every time step (Section 5.7.1).

3. Swarm robots with imperfect vision using model probabilities obtained from resam-
pling the frames based on Raspberry Pi 4 inference time, and robots update their vision
system based on the detector’s inference time (Section 5.7.2).

4. Swarm robots with imperfect vision using model probabilities obtained from resam-
pling the frames based on Raspberry Pi 3 inference time, and robots update their vision
system based on the detector’s inference time (Section 5.7.3).

In Section 5.7.4, the effect of vision update rate has on Random Walk, N0-Q1 and
N100-Q40 will be discussed based on the results presented in Sections 5.7.1, 5.7.2 and 5.7.3.

5.7.1 Full frame rate model

For this simulation, modelling probabilities in Table 5.2 were used, where Ps2s = 0.7896 and
Pu2s = 0.1293 were for mSSD124, and Ps2s = 0.8558 and Pu2s = 0.2567 for mSSD220. The
robots updated their vision system at every time step (which was 40 Hz, based on simulation
step size). The simulation results for using these MobileNet-SSD vision models on Random
Walk, N0-Q1 and N100-Q40 are shown in Fig. 5.10, where the last three columns are
versions of the algorithms with perfect vision that updated the robot’s view at every time
step.

The results in Fig. 5.10 show that with imperfect vision system, RepAtt still improved
the swarm’s coordination when foraging with perfect (N0-Q1) and noisy communication
(N100-Q40). As observed in previous simulations, greater improvements were recorded
in highly clustered environments than in less clustered ones. Introducing the imperfect
vision model into Random Walk algorithm did not affect swarm foraging performance,
except in the uniform worlds for mSSD124 vision model where there were increments of
16% and 14% in foraging times for Uniform100m and Uniform50m worlds respectively.
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Fig. 5.10 The swarm foraging performance and corresponding Ps shown in brackets. Foraging
times were normalised by the performance of Random Walk algorithm, where robots used
pure vision to forage. Full frame rate model probabilities were used and columns were
colour-coded based on Random Walk, N0-Q1, N100-Q40 algorithm types.

This indicates that Random Walk was robust to the change in robots’ vision model. This
robustness is due to robots’ independent search for targets without using memory to return to
previous foraging sites. This meant that robots use a large proportion of their foraging times
searching for targets and spent significantly shorter time in the other states (acquiring and
homing). The reduction in foraging performance of the robots due to poorer vision quality
was small in comparison to the time robots spend searching for targets using Random Walk,
therefore, leading to negligible change in the swarm’s foraging time. It would be expected
that as the robots’ vision system continues to degrade, it would reach a point where the poor
vision system of the robots begin to impose a significant impact on the swarms’ foraging
performance. This data shows that that point is much lower for a swarm of 36 robots using
Random Walk to forage targets in clustered environments. However, the vision system based
on the mSSD124 model shows significant change in foraging time for the swarm in the
Uniform100m and Uniform50m worlds, where foraging times increased by 16% and 14%
respectively.

For the N0-Q1 and N100-Q40 setups of RepAtt, the quality of the robots vision impacts
their communication because it causes them to send ‘incorrect’ signals to the rest of the



96

Fig. 5.11 The swarm foraging performance and corresponding Ps shown in brackets. Foraging
times were normalised by the performance of Random Walk algorithm, where robots used
pure vision to forage. Raspberry Pi 4 update rate model probabilities were used and columns
were colour-coded based on Random Walk, N0-Q1, N100-Q40 algorithm types.

swarm based on their faulty perception of their environment. This caused a noticeable
reduction in foraging performance as vision quality degrade. Thus, for the 10 world setups
in Fig. 5.10, swarm foraging with mSSD124 was consistently outperformed by mSSD220,
which in turn was outperformed by robots using perfect vision during foraging. The results
for N0-Q1 and N100-Q40 were, thus, consistent with the sort of behaviour expected from a
swarm with reduced quality of local sensing.

5.7.2 Raspberry Pi 4 model

For this simulation, modelling probabilities in Table 5.3 were used, where Ps2s = 0.7006 and
Pu2s = 0.2038 were for mSSD124, and Ps2s = 0.7364 and Pu2s = 0.4955 were for mSSD220.
The robots updated their vision at a rate of 14.66 Hz and 6.49 Hz for mSSD124 and mSSD220
respectively. The simulation results for using these MobileNet-SSD vision models on
Random Walk, N0-Q1 and N100-Q40 are shown in Fig. 5.11, where the last three columns
are versions of the algorithms with perfect vision that updated a robot’s view at every time
step.



97

The trends in performance of Random Walk, N0-Q1 and N100-Q40 in Fig. 5.11 is similar
to those already discussed in Section 5.7.1 for Fig. 5.10. One major difference observed for
N0-Q1 and N100-Q40 is the performance improvement in foraging when using mSSD220
vision model in place of mSSD124 model has reduced. For example, N0-Q1 foraging time
improved by 34.48% in the One100m in Fig. 5.10 when the vision system changed from
mSSD124 to mSSD220, while for the same setting in Fig. 5.11, the improvement was
16.67%. Similar patterns were observed for N0-Q1 and N100-Q40 for the remaining 9 world
setups. Seeing that all simulation parameters except vision update rates were the same in
both scenarios and the Ps probabilities were similar in both figures, this deterioration in
performance can be attributed to the change in the vision update rates. The results suggest
that the faster vision update rate of mSSD124 (that is, 14.66 Hz) helps it compensate for its
lower Ps accuracy in comparison to mSSD220 that has increased detection accuracy, with a
halved vision update rate of 6.49 Hz. The second major observation when comparing Figs.
5.10 and 5.11 is the improvement in foraging times of the latter for N0-Q1 and N100-Q40
RepAtt algorithm setup. This aspect will be discussed separately in Section 5.7.4.

5.7.3 Raspberry Pi 3 model

For this simulation, modelling probabilities in Table 5.3 were used, where Ps2s = 0.5823 and
Pu2s = 0.3685 were for mSSD124, and Ps2s = 0.5962 and Pu2s = 0.7081 were for mSSD220.
The robots updated their vision system at a rate of 2.13 Hz for mSSD124 and 0.81 Hz for
mSSD220. The simulation results for using these MobileNet-SSD vision models on Random
Walk, N0-Q1 and N100-Q40 are shown in Fig. 5.12, where the last three columns are
versions of the algorithms with perfect vision that updated the robots view at every time step.

The Raspberry Pi 3 based vision model results in Fig. 5.12 were consistent with what
was discussed in Sections 5.7.1 and 5.7.2. The performance difference between mSSD124
and mSSD220 has diminished further such that in 6 of the 10 world setups, the foraging
times were hardly distinguishable. For N100-Q40, the performance difference between
mSSD124 and mSSD220 were minimal for the uniform distribution worlds (Uniform100m
and Uniform50m).

One key observation in Fig. 5.12 (also reasonable agreement with the Monte Carlo
simulation in the results shown in Table 5.4) is that probability of detection, Ps were generally
larger than those derived from analysing the MobileNet-SSD vision experiment data. These
values suggest that the probabilistic vision model does not ‘perfectly’ represent the experi-
ment data. The difference between the modelled Ps and the value computed from the vision
experiments increases as the frame rate decreases. It is still unclear whether this deviation
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Fig. 5.12 The swarm foraging performance and corresponding Ps shown in brackets. Foraging
times were normalised by the performance of Random Walk algorithm, where robots used
pure vision to forage. Raspberry Pi 3 vision update rate model probabilities were used and
columns were colour-coded based on Random Walk, N0-Q1, N100-Q40 algorithm types.

from experimental data was because the model was derived from a less-than-perfect ground
truth data or due to some other parameter not included in the model.

5.7.4 Effect of vision update rate on swarm foraging

For a particular MobileNet-SSD target detection model, one of the interesting observations
as the vision update rate reduces for N0-Q1, and to a lesser extent in N100-Q40, was that
the foraging performance improved. Using the One100m world setup and vision model of
mSSD124 as an example, in Fig. 5.10, the normalised foraging time was 0.29±0.01(0.39±
0.04), where the Ps is shown in parentheses. The corresponding foraging times for Fig. 5.11
and 5.12 are 0.24±0.01(0.41±0.11) and 0.21±0.01(0.47±0.10) respectively. Although
the improvement in foraging time can be attributed to the increase in Ps as observed in Figs.
5.10, 5.11 and 5.12, it should also be noted that the Ps values all fall within the same standard
deviation range, suggesting that the values were not so different from each other. One factor
that could have had a major impact on the swarm foraging performance was the vision update
rate, which was (for mSSD124) 40 Hz in Fig. 5.10, 14.66 Hz in Fig. 5.11 and 2.13 Hz in Fig.
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5.12. Because of the varying Ps as the vision update rate decreased, the factors that caused
this unexpected change in foraging performance was unclear. In Section 5.8, an extensive
study that involved 196 combinations of Ps2s and Pu2s probabilities and 3 vision update rates
were conducted. This helped to further explore the impact the vision model probabilities
have on the performance of swarm of foraging robots.

5.8 Exploring the Effects of Model Probabilities

This section explores the influence of model probabilities (Pu2s and Ps2s) on a robot’s proba-
bility of detecting objects (Ps) and the robot’s use of communication signals during RepAtt
and swarm foraging performance. In all experiments, the Pu2s and Ps2s were varied from
0.001 to 1.0 to simulate variation in accuracy of the object detector while the vision update
rate was varied from 40 Hz to 4 Hz to 1 Hz to simulate different qualities of computer vision
hardware. These set of simulations investigate the trade-off between the quality of the object
detection system and the robot’s processing power and how these choices affect a swarm of
foraging robots.

5.8.1 Effects of Pu2s and Ps2s on Ps

The Monte Carlo simulation described in the imperfect vision model validation in Section 5.6
was performed for several combinations of Pu2s and Ps2s for 100,000 time steps. The mean
Ps resulting from the combinations of the modelling probabilities are shown in Fig. 5.13.
The data shows that increasing Ps2s and Pu2s increases the Ps probability. When Ps2s = 1, Ps

varied from 0.3304 (Pu2s = 0.001) and sharply approached 1.0 (when Pu2s > 0.001). This is a
special case where once the object is detected by the agent, it will always be seen by the agent
as long as it is within detection range. Thus, in this scenario, Ps → 1.0 as time approaches
infinity as long as Pu2s > 0 (when Pu2s = 0, the agent will never detect the object and Ps will
always be 0). When Ps2s = 0.001, Ps gradually increased from 0.001 to 0.5003 as Pu2s varied
from 0.001 to 1.0. The value of Ps → 0.5 in this scenario because as Ps2s → 0 the ability of
the agent to detect the object for at least two consecutive frames reduces. The special case
where Ps2s = 0 and Pu2s = 1.0 will lead to Ps = 0.5 because the agent is only able to detect
the target once every two time steps. When Pu2s = 0.001, Ps had minor increments until Ps2s

became greater than 0.99, where a steep rise in Ps was observed. This huge increase in Ps is
attributed to the near perfect ability of the agent to retain its previously detected targets.

Along the diagonals of the linear range of 0.1 to 0.9, it is evident that there is a linear
relationship between the contributions of Ps2s and Pu2s to the value of Ps. In addition,
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Fig. 5.13 Monte Carlo simulation for 100,000 time steps showing the mean Ps for various
combinations of Pu2s and Ps2s.

these model probabilities complement each other in such a way that the Ps value can be
approximated as the average of the Pu2s plus Ps2s probabilities.

5.8.2 Effects of Pu2s, Ps2s and vision update rate on RepAtt

A simplified one-dimensional simulation, similar to the version used in Section 3.5 to study
the chemotaxis parameters, was employed to study the impact of Pu2s and Ps2s on RepAtt
algorithm. In this simplified simulation setup, it was assumed that a robot acting as the signal
source should be broadcasting attraction signal, but will repel instead if it fails to detect
the target(s) within its detection proximity (the vision was controlled using Pu2s and Ps2s

probabilities). The listening robot senses the intensity and type (attraction or repulsion) of
this signal and uses it to perform chemotaxis-based choice to move forward (toward the signal
source) or reverse (away from the signal source). The signal source’s choice to broadcast
attraction or repulsion was controlled by the Pu2s and Ps2s values such that combinations with
low Ps caused the source to mostly broadcast repulsion while higher values of Ps would cause
it to broadcast attraction most times. In addition, the rate at which the signal source applied
the Pu2s and Ps2s probabilities was controlled by a detection frequency of 40 Hz, 4 Hz or 1 Hz
to simulate varying inference times of the object detection vision system. The N0-Q1 version
of RepAtt with am = 4, ad = 100, rm = 1 and rd = 10 was used for all simulations and each
simulation lasted 5,000 seconds.



101

Fig. 5.14 The average proportion of forward movements by a one-dimensional robot as Ps
increased. The Pu2s and Ps2s probabilities were applied at either 1 Hz, 4 Hz or 40 Hz. The
robot used N0-Q1 with chemotaxis parameters am = 4, ad = 100, rm = 1 and rd = 10 RepAtt
setup to respond to the signal source.

The ratio of forward movements (that is, towards the signal source) by the robot to total
distance travelled (sum total of all forward and reverse movements) is shown in Fig. 5.14.
The data shows that proportion of forward movements consistently increased with increasing
Ps probability for vision update rates of 1 Hz and 4 Hz. For the 40 Hz update rate, the
proportion of forward movements were the same as those observed for the lower update rates
when Ps < 0.2 and Ps > 0.9. However, for 0.2 < Ps < 0.9, there was a noticeable distribution
of proportion of forward movements such that many of the Pu2s and Ps2s combinations for
a specific Ps consistently gave lower path lengths. This distribution peaked at Ps = 0.5
for 40 Hz and continuously reduced leftwards and rightwards from the Ps = 0.5 until its
performance approached that of 1 Hz and 4 Hz update rates. A further look at the data for
40 Hz vision update rate indicates that the distribution is due to different combinations of the
model probabilities that result in similar Ps (for example, in Fig. 5.13, most combinations of
Pu2s and Ps2s along the top-left to bottom-right diagonal result in Ps u 0.5). In Fig. 5.15, a heat
map was used to colour-code the Ps2s (in Fig. 5.15a) and Pu2s (in Fig. 5.15b) probabilities.
The data shows that for a specific Ps value, a high Ps2s probability combined with a low Pu2s

value performed better than combinations where Ps2s was low and Pu2s was high.
As alluded to in Chapter 3, robots using RepAtt respond to change in intensity of the

attraction and repulsion signals. In N0-Q1 setup, robots respond to change between two
consecutive time steps. Thus, for the robot to effectively utilise an attraction (or repulsion)
signal it needs to sense it for at least two consecutive time steps before it can appropriately
adapt its tumble probability. A high Ps2s value will help the signal source to continue
broadcasting a specific signal, thus reducing the frequency at which it switches between
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(a) Coloured according to Ps2s (b) Coloured according to Pu2s

Fig. 5.15 Percentage of forward movement with varying Ps2s and Pu2s probabilities at 40Hz
vision update rate. Colour gradients show the variation in model probabilities.

broadcasting attraction or repulsion signal. The effect on a robot listening to this signal
and searching using N0-Q1 RepAtt setup is that the robot will be able to measure the
intensity of the attraction or repulsion signal for multiple consecutive time steps. On the
other hand, when Ps2s → 0, the signal source increases its frequency of switching between
broadcasting repulsion or attraction (worst case is when Ps2s = 0, where it would alternate
between attraction and repulsion signal broadcasting). The effect this has on a listening
robot is such that it measures an intensity that alternates between zero and some other value
(based on listening robot’s distance from signal source). It is the frequency of this alternation
between attraction and repulsion the robot senses when Pu2s is high and Ps2s is low that causes
the significant reduction in the proportion of forward movements the robot makes toward the
signal source.

One way to minimise the impact of this alternating effect is to reduce the rate at which
the signal source switches between broadcasting attraction and repulsion signals. This
was achieved by reducing the vision update rate from 40 Hz to 4 Hz or 1 Hz (which was
originally meant to simulate constrained computational environments that will naturally
process object detection algorithms at slower rates). The proportion of transitions logged
during the simulations are shown in Fig. 5.16. The transitions for vision update rates of
1 Hz and 4 Hz have a near linear relationship with change in Ps: attraction-to-attraction
transitions were directly proportional to Ps; repulsion-to-repulsion transitions were inversely
proportional to Ps; and attraction-to-repulsion and repulsion-to-attraction transitions varied
only slightly as Ps increased. For the 40 Hz update rate, however, the ‘spread’, due to
different combinations of Pu2s and Ps2s that give a specific Ps value, increased as Ps → 0.5
and decreased beyond 0.5 as Ps → 1.0. At both extremes where Ps is close to 0 or 1, the
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(a) attraction-to-attraction ( aa
aa+ar+ra+rr ) (b) repulsion-to-repulsion ( rr

aa+ar+ra+rr )

(c) attraction-to-repulsion ( ar
aa+ar+ra+rr ) (d) repulsion-to-attraction ( ra

aa+ar+ra+rr )

Fig. 5.16 The transitions of the signal source when it is updated at 1Hz, 4Hz or 40Hz. The
data indicates that for combinations of Pu2s and Ps2s that result in a particular Ps, the variability
of the transitions increases with increase in vision update frequency.

proportion of each of the transitions was similar to those observed at lower update rates. The
level of spread observed in the 40 Hz update rate transitions is similar to those observed
when measuring the proportion of forward movements made by the robot.

The data from this simplified simulation shows that when selecting an object detection
system for a swarm of robots, the detection accuracy and inference time are important. For
very poor (Ps u 0) and excellent (Ps u 1.0) detection system, the inference time will have
little or no impact on the swarm’s ability to use communicated information for chemotaxis.
However, for detection systems with performance somewhere between the extreme cases,
the inference time and detection persistence (Ps2s) become more relevant as Ps → 0.5.
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Fig. 5.17 Mean normalised time to pick up 90% of 200 targets by a swarm of 36 robots
(y-axis) and Ps on the x-axis. Foraging times were normalised using the time taken by
Random Walk with Pu2s = Ps2s = 1.0 for the corresponding world and vision update rate
setups.
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5.8.3 Effects of Pu2s, Ps2s and vision update rate on swarm foraging

The combinations of the Ps2s and Pu2s model probabilities were also used to examine the
foraging performance for a swarm of 36 robots foraging 200 targets in One50m, One100m,
Uniform50m and Uniform100m environments. The vision update rate of the robots in each
simulation was either 1 Hz, 4 Hz or 40 Hz in order to study the effects of object detection
update rates on the swarm. In all simulations, the chemotaxis parameters of am = 4, ad = 100,
rm = 1 and rd = 10 were used. Simulations for each model probabilities combination was
repeated 30 times and the time it took for the swarm to pick up 180 targets was averaged
across the repeated simulation runs.

The foraging times for vision update rates of 1 Hz, 4 Hz and 40 Hz are shown in Fig. 5.17
for Random Walk, N0-Q1 and N100-Q40 algorithms. The foraging times were normalised
using the performance of Random Walk with perfect vision for the corresponding worlds. For
Random Walk, the impact of imperfect vision was more obvious in the uniform worlds and
vision update rate of 1 Hz. However, at higher vision update rates (and in the single cluster
worlds), imperfect vision had no noticeable effect until Ps < 0.2, which was the point at
which search time increases due to poor targets detection, resulting in a longer total foraging
time.

For the RepAtt algorithm, imperfect vision affects both the robots’ ability to sense the
presence of targets and choice of signal to communicate. A very low Ps means robots will
broadcast repulsion signals when they ought to be attracting, which in turn negatively impacts
the recruitment of other swarm members to clusters of litter objects. This is why the impact
of imperfect vision on swarm foraging is noticeable for slight reductions in Ps values, with
stronger effects observed in the one cluster environments. RepAtt outperformed Random
Walk for Ps ≥ 0.1 in all the test environments and vision update rates, which indicates that
the swarm was still able to exhibit some level of cooperation to help improve their foraging
efficiency.

The impact of vision update rates on Random Walk, N0-Q1 and N100-Q40 uniform
and one cluster environments is shown in Fig. 5.18 (this is same data as in Fig. 5.17,
but grouped differently). For Random Walk, the general trend was that in all the test
environments, increasing the vision update rates reduced foraging time for specific Ps values.
This behaviour was expected because the robots had more attempts at detecting the targets
as vision update rate increased. In the single cluster environments, increasing the vision
update rate negatively impacted N0-Q1 foraging performance. The reason for this interesting
behaviour was because the ability of searching robots to respond to attraction signals was
significantly impacted negatively by the alternating attraction-repulsion behaviours of the
robots that located targets cluster (as discussed in Section 5.8.2). For N100-Q40, the effect
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Fig. 5.18 Mean normalised time to pick up 90% of 200 targets by a swarm of 36 robots
(y-axis) and Ps on the x-axis. Foraging times were normalised using the time taken by the
40 Hz vision update rates version of the algorithms with perfect vision (Pu2s = Ps2s = 1.0)
for the corresponding world and vision update rate setups.
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of increasing the vision update rate was similar to those observed for the Random Walk
algorithm. This ‘normalised’ effect was mainly due to the average filter used by the searching
robots to reduce the influence of communication noise. By computing the average of multiple
intensity measurements, the robots reduced both attraction-to-repulsion and repulsion-to-
attraction transitions, thus, helping them to use single gradient computation for longer periods
(in comparison to per time step update of N0-Q1). As a result, reducing the fluctuations in
transitions between attraction and repulsion, whether at the source of the signal or by the
listening robot, generally had an overall effect of improving the swarm recruitment using
RepAtt to targets cluster, consequently reducing swarm foraging time.

5.9 Summary

This chapter has discussed the steps taken to implement a probabilistic vision model using
state-of-the-art machine learning-based object detection networks. The vision model is based
on two transition probabilities (Pu2s and Ps2s), which control a robot’s ability to detect a
target to forage. Using real-world data, this model was validated against the observations in
computer vision experiments. Through extensive simulation experiments, it was found that
robots that foraged using RepAtt algorithms need a mechanism that minimises fluctuations
between attraction and repulsion signals in order to overcome the effect of the imperfect
vision system on swarm foraging. This can be achieved by reducing the vision update rate
of the broadcasting robot or using an average filter by the listening robot. Therefore, when
designing a vision system for a swarm of robots, both the detection accuracy and vision
update rate need to be carefully accounted for in order to minimise the impact of imperfect
vision on the foraging performance of the swarm.
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Chapter 6: Chemotaxis-Based Virtual Fence
6.1 Introduction

In practice, swarm robots can be deployed to areas where there is no infrastructure to keep
them within a desired region of interest. For example, robots deployed in outdoor search and
rescue operations, planetary exploration or picking litter in an unfenced park. Much work in
swarm robotics have developed algorithms that focused on task execution with an underlying
assumption that there is a physical structure or boundary that keeps the swarm within a
working area. Examples include works presented in [63] and [73], where swarm robots
foraged within bounded simulation environments. This approach is unrealistic given that a
fencing structure will usually not be feasible in many applications and it does not take into
consideration that the swarm working area can change over time. In addition, swarm robots
typically are incapable of performing simultaneous localisation and mapping of the search
space because the complexity and memory requirements would be excessive for a single robot
in the swarm to handle. This problem has been resolved by proposing a chemotaxis-based
virtual fencing mechanism for a swarm of robots deployed in an unbounded search area.
The algorithm is simple, scalable and can be implemented on hardware robot platforms. It
represents a different, but related, application of chemotactic search to a swarm robotics.

The chemotaxis-based algorithm is introduced in section 6.2, followed by the description
of the simulation setup in section 6.3. In Section 6.4, experiments to develop a model
equation for a number of robots within the work area are presented, while the effects of
chemotaxis parameters and nest velocity on the chemotactic fence are explored in section
6.5. Section 6.6 investigates the robots’ ability to effectively explore a work area within
unbounded environments for both stationary and moving nests. Experiments using real robots
are described in section 6.7, and section 6.8 summarises the findings of this chapter.

6.2 Exploration in Unbounded Environments

The design involves a nest that broadcasts a homing signal that degrades with distance and
a swarm of mobile robots that actively sense this signal’s intensity while executing their
individual tasks as shown in Fig. 6.1a. These mobile robots perform pure random walk (with
constant tumble probability, Pt) or chemotactic-search depending on which region around the
nest they are situated (a robot’s region is informed by the intensity of the homing signal it
senses). The region surrounding the nest (also known as guide robot when it is mobile) is
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Fig. 6.1 In (a), the nest (N) broadcasts a homing signal that degrades with distance (green
gradient), which mobile robots (R) listen to. Robots within the working area (< dc) perform
random walk with constant tumble probability Pt , while robots within the chemotaxis region
(≥ dc) use chemotactic search to return to the working area. White circles represent robots
in working area, while black circles represent robots in chemotaxis region. During nest
exploration, the nest moves in vertical (b) and horizontal (c) pattern in the search area.

divided into a work area (< dc) and a chemotactic region (≥ dc), where dc is the distance
that corresponds to chemotaxis activation threshold, A(dc). Within the work area, the robot
executes the swarm task (abstracted in the current work as random exploration), however,
when a robot enters the chemotactic region, it uses the C. elegans inspired chemotactic
behaviour to return to the work area. Thus, the chemotactic region serves as a fencing
mechanism to prevent swarm robots from continuously drifting away from the work area
around the nest. Algorithm 3 shows the steps executed by individual mobile robot within
each time step.

The robot first senses the intensity of the nest signal, At , from its current location and
sets its tumble probability, Pt , to a pre-determined base probability, Pb. If At is below the
chemotaxis activation threshold, (A(dc)), the robot updates its Pt based on whether there is
an increase or decrease in the signal’s intensity between the current intensity (At) and the last
measurement (A(t−1)). The attraction multiplier, am, and divisor, ad , chemotaxis parameters
are the only parameters the robot needs in this algorithm since the nest broadcasts only an
attractive homing signal. The robot uses Pt to then determine whether to tumble (rand(0,1)
< Pt) or swim (rand(0,1) ≥ Pt) at a constant velocity vr. The rand(0,1) term is a function that
randomly generates numbers from a uniform distribution having minimum and maximum
values of 0 and 1 respectively. During a tumble, the robot randomly selects the size of angle
to rotate from a normal distribution with mean µ = 180◦ and standard deviation σ = 90◦.
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Algorithm 3 Random Walk with chemotaxis activation
1: Sense nest signal, At
2: Initialize Pt = Pb to default value
3: if At < A(dc) then
4: if At < At−1 then
5: Pt = Pb ×am
6: else if At > At−1 then
7: Pt = Pb ÷ad

8: if rand(0,1) < Pt then
9: make random turn of N(µ,σ2)

10: else
11: make straight motion
12: At−1 = At

In the basic simulation setup, the nest is stationary within the environment. However,
to extend the work area to cover a wider search space beyond those around a stationary
nest. Without a physical boundary to restrict the swarm, the nest itself can move within the
unbounded environment. While doing this, the nest continuously updates the work area as it
broadcasts its homing signal, thereby guiding the exploration of the mobile robots during
the process. In the work presented here, the nest’s basic movement is linear from a starting
location to a destination point, where it moves at a constant velocity, vn, that is relative to
that of the exploring swarm robots. The nest waits (stops briefly) whenever it senses robots
within dn metres of its front region in order to avoid collisions with exploring robots. Given a
two-dimensional search area, the nest robot repeatedly performs a sweep of the environment
using the search pattern illustrated in Fig. 6.1b and 6.1c until a stopping criteria is met.
Maximum simulation time, tmax, is used as the stopping criterion for the swarm to halt the
sweep.

The movement of the nest extends the swarm’s capability to explore a wide search area in
an unbounded environment. However, it also raises concerns regarding optimal nest velocity
that will balance the swarm’s exploration speed, accuracy (or efficiency or thoroughness
of the exploration) and minimise the number of robots that go adrift of the search area
due to their inability to reliably sense the gradient of the nest signal. These questions are
investigated in subsequent sections.
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6.3 Simulation Setup

Gazebo simulation platform was also used to analyse the swarm performance. A swarm
size of 10 mobile robots moving at vr = 0.605 m/s was used. Simulation time step of 25 ms
and base tumble probability was Pb = 0.0025 per time step were used in all simulations. A
single nest with velocity, vn is expressed as being relative to vr in all experiments. The nest
stops whenever a robot is within dn = 0.1 m in its front region. The nest signal used in all
simulations was the noisy version of the negative exponential model of the sound signal
(Equation 4.3 in Chapter 4), where the simulation uses the distance of robots from the nest to
compute the signal intensity each robot senses. An average filter with queue size of 40 was
used in all simulations.

6.4 Determining the Chemotactic Region

The first set of simulations use a stationary nest and 10 exploration robots that start out from
the nest and perform random walk to explore the nest region. The simulation’s goal was to
determine the chemotaxis activation intensity, A(dc), needed to keep swarm robots within
a specified radius (dr) around the the nest. In these simulations, the chemotaxis activation
distance, dc, was varied from 6 to 14 metres from the nest. The maximum simulation time
tmax = 1500 seconds for each dc was used. Each simulation setup was repeated 30 times and
the average number of robots within varied distances from the nest (dr) was computed as
shown in Table 6.1.

Table 6.1 Chemotaxis activation distance dc versus robots distances from nest dr. Each value
represents the mean number of robots and 95% confidence interval for 30 repetitions of
each simulation. Maximum simulation time was tmax = 1500 seconds, swarm size was 10,
am = 10 and ad = 1000.

dr

dc 6 m 8 m 10 m 12 m 14 m

6 m 4.4±0.03 - - - -
8 m 7.9±0.02 5.3±0.04 - - -
10 m 9.4±0.01 8.3±0.02 6.0±0.04 - -
12 m 9.8±0.01 9.5±0.01 8.6±0.02 6.5±0.04 -
14 m 10.0±0.00 9.8±0.01 9.6±0.01 8.8±0.02 6.7±0.04
16 m 10.0±0.00 10.0±0.00 9.9±0.01 9.7±0.01 8.7±0.03
18 m 10.0±0.00 10.0±0.00 10.0±0.00 9.9±0.00 9.6±0.01
20 m 10.0±0.00 10.0±0.00 10.0±0.00 10.0±0.00 9.9±0.01
22 m 10.0±0.00 10.0±0.00 10.0±0.00 10.0±0.00 10.0±0.00
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The results show that as dc increases, the number of robots within the work area also
increases, starting from about 44% of swarm size when dc = 6 m to 67% of exploring
robots when dc = 14 m. This has more to do with reduction in inter-robot interference as
dc increases. When dc is small, the work area is small, and robots collide more frequently
with each other and end up frequenting the chemotaxis region more often. However, when
dc is large the mobile robots have a wider area to explore, which reduces interference from
other robots. The results also indicate that the chemotactic region is effective in keeping
approximately 95% of the exploring robots within dc +4 metres radius around the nest for
all the dc tested in Table 6.1. Thus, for design purposes, when the goal is to keep at least
95% of swarm robots within dw meters around a stationary nest, the chemotaxis activation
distance can be computed using Equation 6.1.

dc = dw −4 (6.1)

6.5 Effects of Probability Multiplier and Divisor

As previously discussed in Chapters 3 and 4, the chemotaxis parameters (am and ad in this
case) play an important role in the robots’ ability to make use of the signal intensity they
sense. For a stationary nest, only multiplier am, divisor ad and chemotaxis activation distance
impact the virtual fence’s effectiveness. However, for a mobile nest, the nest’s velocity, vn,
relative to the exploring robots is also important, because if the nest is too fast, the exploring
robots could get left behind and trapped within the chemotactic region. To investigate the
effect of these parameters, the chemotaxis activation threshold distance was set to dc = 10 m,
nest’s relative velocities of vn = 0,0.125vr or 0.25vr, tumble probability multiplier (am)
varied from 1 - 50 and divisors ad varying from 1 to 1000 were used. The heat maps of
Fig. 6.2 show the result of these simulations, where each cell in the heat map represents the
mean number of robots within dr metres of the nest, averaged across 30 repetitions for each
parameter setting. When vn > 0 in Fig. 6.2, the nest was programmed to follow a linear path
for 100 metres.

As expected, the data in Fig. 6.2 show that the tumble probability multiplier am and
divisor ad can have significant impact on the number of robots that are able to remain
within the working area around the nest robot. A small value of am reduced the robots’
responsiveness to decreasing intensity of the nest’s attraction signal when they are in the
chemotactic region. This makes the virtual fence elastic since exploring robots are able to
move further into the chemotactic region before making a tumble that helps them return
to the work area. On the other hand, when am is large, exploring robots become more
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(c) vn = 0, dr = 16 m
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(e) vn = 0.125vr, dr = 14 m
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(g) vn = 0.25vr, dr = 10 m
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Fig. 6.2 Effects of nest relative velocity, vn, probability multiplier, am, and divisor, ad , on the
average number of robots within a specific distance, dr from the nest/guide robot. Chemotaxis
activation distance was 10m for all simulations. The background colours range from dark to
light, indicating low to high values respectively.

responsive to decreasing nest signal intensity once in the chemotactic region. This means that
within a short distance of entering the chemotactic region, exploring robots make tumble(s)
that change their direction in order to help them return to the working area. However, an
excessively large am, caused the robots to tumble too frequently in the chemotactic region,
thus preventing them from making sufficient linear motion to compute a reliable gradient
for the noisy nest signal. This is the reason for the sudden decrease in the number of robots
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within the work area when am = 50 in comparison to when am = 10 (that is, number of robots
within 10 metres of the nest in Fig. 6.2a dropped from approximately 6 to 5). Note that if the
nest’s signal is perfect (noiseless), a large am poses no problem since the robot will always
compute a reliable gradient.

The tumble probability divisor ad , has comparatively less impact on the number of
exploring robots in the working area. The results in Fig. 6.2 show that the number of robots
within the work area generally increase with ad . A low ad will reduce a robot’s ability to
swim longer distances when the robot senses positive gradient while in the chemotactic
region. Thus, a large ad is generally good as it will guarantee that the robot makes longer
swims when moving toward the working area. These descriptions of the impact of am and
ad on the effectiveness of the chemotactic fence for stationary nest suggests that parameter
setting am = 10 and ad = 1000 will give best results. This is indeed the case when nest’s
relative vn = 0 and to a large extent vn = 0.125vr. However, when values for vn = 0.25vr,
am = 6 and ad = 1000 produced the best performance in retaining robots within the working
area.

It is intuitive to expect more robots to find it difficult to ‘catch up’ with the nest when
the nest’s velocity increases (as shown in Fig. 6.2). In terms of the impact of am and ad ,
as the nest relative velocity increases, the value of am typically offering good performance
reduces (from 10 when vn = 0 to 6 when vn = 0.25vr), while ad = 1000 remained a good
choice. During the simulation, the number of robots around the nest varies over time. For a
stationary nest, a good combination of am and ad will guarantee that no robot in the swarm
gets trapped in a chemotactic region where it would be unable to make its way back to the
work area near the nest. However, when the nest is mobile, the velocity of the nest vn can
play a vital role in determining how quickly robots get trapped within a chemotactic region
where they are unable to use chemotaxis to return to the nest’s work area. Such a scenario is
illustrated in Fig. 6.3.

In Figs. 6.3a and 6.3b, vn = 0, and throughout the 2,500 seconds long simulation,
approximately all the 10 exploring robots remained within 16 metres of the nest’s position.
However, when vn > 0 in Figs. 6.3c - 6.3f, the swarm’s ability to remain near the nest changes
dramatically depending on the choice of am and ad . By using a lower attraction multiplier
am = 6 (Fig. 6.3c and 6.3e), the swarm was able to minimise the rate at which robots got left
behind as the nest makes its 100 metres journey. The negative impact of a large attraction
multiplier value am = 50 became more pronounced as vn increases. As mentioned earlier, this
is because as robot’s distance from the nest increases, its computation of intensity gradient of
the nest attraction signal becomes less reliable due to noise in the signal. The large am, thus,
caused the robot to tumble almost immediately when it sensed a negative gradient (which
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(b) vn = 0, am = 50, ad = 1000
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(c) vn = 0.125vr, am = 6, ad = 1000
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(d) vn = 0.125vr, am = 50, ad = 1000
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(e) vn = 0.25vr, am = 6, ad = 1000

0 20 40 60 80 100
Distance in metres

0

2

4

6

8

10

N
um

be
r 

of
 r

ob
ot

s

Distance (m)
0 - 10
10 - 12
12 - 14
14 - 16
> 16

(f) vn = 0.25vr, am = 50, ad = 1000

Fig. 6.3 Effects of nest relative velocity, vn, tumble probability multiplier, am, and divisor, ad ,
on the average number of robots within a specific distance, dr ranges from the nest/guide
robot.

in reality could be a positive gradient if the robot had delayed the tumble). As a result, the
lower am = 6 was more successful in helping exploring robots keep up with the moving nest
because a low value of am meant robots were able to delay tumbles for much longer time
(and distance), which increased their chances of computing more reliable gradient values
when in the chemotactic region.
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6.6 Investigating Exploration Effectiveness

The chemotactic fence is important for keeping exploration robots from continuously drifting
away from the nest region, as has been previously elaborated on. However, being close to the
nest region is not a sufficient or decisive factor because robots also need to be able to fully
explore the search space around the nest. This means robots need to minimise the time they
spend in the chemotactic region in order to effectively utilise their time within the working
area. This section tests the swarm’s ability to explore the work area by giving the exploration
robots a target search and pick up task for both stationary and moving nest. The task in each
simulation is for the swarm of 10 robots to locate and pick up 100 targets that are uniformly
distributed within the search space. Robots in this simulation had unlimited capacity and
were only able to detect targets that were directly beneath them. Two environmental setups
were used as baseline tests: Bounded where robots used random walk to search for targets
within a physically bounded area; Unbounded where the physical boundary was removed
and robots searched using random walk without chemotaxis activation. In all simulations
with chemotaxis activation, the physical boundary was removed and robots relied on the
chemotactic behaviour to remain near the nest. Each simulation was repeated 30 times and
averaged.

In the first set of simulations, the nest was stationary and the 100 targets were uniformly
distributed within a 14 m radius search area around the nest. Chemotaxis activation distance,
dc, of 10, 12 and 14 metres were used to test the exploration performance of the robots
using am = 10 and ad = 1000 to perform chemotactic search of the work area once they
found themselves within the chemotactic region. Table 6.2 shows simulation snapshots for
all the five test cases (the maximum simulation time tmax = 1200 seconds). With a physical
boundary (Bounded row) of 14 m radius, the exploring robots always remain within search
space and ‘bounce’ off the walls whenever they encounter it. However, when the boundary
was removed (Unbounded row), the robots quickly drift from the 14 m region where the
targets were located. This is expected because there was no mechanism with which to
restrict the robots within the 14 m region, and the robots only had local knowledge of their
environment and no localisation capability. Thus, they continuously searched for targets
using random walk within an unlimited search space and over time drifted away from where
they could easily locate the targets. When dc = 10 m (in third row of Table 6.2), the robots
were able to remain within the 14 m search area. They used chemotaxis to ensure that they
did not continue to stray from the nest area, thus restricting their search to where they could
locate targets. Similarly, when dc = 12 and 14 metres, the exploring robots also remained
within the nest area.
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Table 6.2 Scatter plot of a sample simulation showing a swarm of 10 robots searching for
100 targets uniformly distributed within a 14 m radius search area.
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Measurements of the swarm’s exploration performance after 30 repetitions of the sim-
ulations are shown in Table 6.3. The results indicate that the when a boundary is used to
restrict swarm movement so that they always remained within the desired area, the robots
were able to locate and pick up 95.2% of the targets after 1000 seconds. In the absence of
the wall restriction and no chemotaxis, the swarm’s exploratory ability dropped, and robots
were only able to pick up 50.5% of the targets. The results also imply that the presence



119

Table 6.3 Comparison of number of targets found within a circular search area of radius 14 m
and dc of 10, 12 and 14 metres in unbounded world. Chemotaxis parameters were am = 10
and ad = 1000. Each value represents the mean of 30 independent simulations and 95%
confidence interval.

t
dc Bounded Unbounded 10 m 12 m 14 m

200 s 49.4±2.32 34.0±1.72 49.2±1.32 46.7±1.43 45.3±1.12
400 s 71.2±2.27 39.0±2.18 69.1±1.66 68.3±1.72 64.7±1.50
600 s 84.5±1.81 43.9±3.11 79.3±1.33 81.1±1.40 77.0±1.55
800 s 91.2±1.25 47.0±3.43 85.5±1.07 88.4±1.27 85.7±1.47
1000 s 95.2±0.97 50.5±3.79 88.7±0.98 93.5±0.78 90.7±1.17

of the chemotactic fence significantly improved the swarm’s performance in the absence
of a wall, causing them to pick up 93.5% when dc = 12 m. In the presence of the virtual
chemotactic fence, dc = 12 m offered best balance between searching for targets within the
chemotactic region (12 to 14 metres from the nest) and the work area (which is within a
12-metre radius around the nest), making it almost as good as the swarm’s performance
when there was a physical boundary (Bounded world setup). The performance drop when
dc = 10 m was because it only allowed the swarm to effectively pick up nearby targets (within
10 m of the nest), but made the robots’ exploration less efficient for picking up targets that
were further into the chemotactic region (between 10 m and 14 m from the nest). However,
when dc = 14 m, robots had a wider search area where they only performed random walk in
addition to a chemotactic region that was more than 14 m from the nest. Another factor that
negatively impacted exploration when dc = 14 m is the reliability of the nest signal intensity
the robots sensed becomes less accurate as they moved further away from the nest (the rate
of change for the negative exponential equation decreases with distance), which is further
compounded by the noise in the communicated signal.

In the second set of exploration simulations, the task was for the swarm to forage 100
targets within a 100 m × 100 m search space. To reliably explore this wide area, the nest
was modelled to follow a predefined pattern within the environment (nest movement pattern
is as shown in Fig. 6.1), and as such, making the working area of the swarm dynamic. As
stated earlier, this is one of the advantages of the virtual chemotactic fence. In the simulation
setup, the nest robot continuously makes vertical and horizontal sweeps within the 100 m
by 100 m search space for tmax = 10,000 seconds. The simulations were conducted where
nest’s velocity, vn was between 0.1vr and 0.25vr, dc = 12 m, am = 6 and ad = 1000. Just
as in the stationary nest simulations, the baseline conditions used here were Bounded and
Unbounded versions of the world where robots performed pure random walk without making
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Table 6.4 Scatter plot of a sample simulation showing swarm searching for 100 targets
uniformly distributed within a 100 m × 100 m search area.
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Table 6.5 Targets found as exploration time, t, progresses. dc = 12 m, am = 6 and ad =
1000 for chemotaxis based approach. Each value represents the mean of 30 independent
simulations and 95% confidence interval.

t
vn Bounded Unbounded 0.1vr 0.125vr 0.167vr 0.25vr

2,000 s 35.1±1.21 21.3±1.57 17.9±0.84 19.3±1.29 22.9±1.30 21.9±1.45
4,000 s 56.0±1.65 27.0±2.02 34.8±0.87 38.9±1.45 45.2±1.79 41.3±2.06
6,000 s 69.0±1.69 31.4±2.28 51.7±1.11 57.9±1.60 61.9±2.03 55.2±2.18
8,000 s 78.6±1.37 34.3±2.45 72.5±1.38 71.3±1.75 72.4±1.87 62.8±2.62
10,000 s 86.1±1.30 36.9±2.53 80.8±1.09 78.4±1.61 79.1±1.53 70.9±2.68

use of any chemotactic signal. Each simulation setup was also repeated 30 times in order to
obtain reliable results of the exploration metric.

Sample simulation snapshots are shown in Table 6.4 for all the tested setups. As expected,
the Bounded and Unbounded tests behaved similarly to those of the first set of simulations
where the nest was stationary. The wall kept robots within the search area, while its absence
meant robots drifted away from the 100 m by 100 m targets distribution region over time in
the Bounded and Unbounded cases respectively. When the nest was mobile and chemotactic
fence activated, the robots were more successful in remaining within the 100 m by 100 m
working region. Within the 10,000 seconds simulation time, the nest was barely able to
complete one sweep of the environment when vn = 0.1vr; when vn = 0.125vr, the nest’s
sweep was approximately 1.5; when vn = 0.167vr, the nest completed 2 sweeps; and when
vn = 0.25vr, the nest was able to conveniently complete 2.5 sweeps. While faster movements
can help the nest complete multiple sweeps of the environment, it is also true that the
exploration robots would not be able to keep up with the nest’s pace. In addition, the
exploratory ability of a robot is less effective when it is in the chemotactic region because
it tumbles more frequently, limiting its exploratory capability to only localised regions.
Therefore, a slowly moving nest ends up being more effective in confining exploring robots
to its working area. This consequently helps the robots thoroughly and more efficiently
explore the area compared to a nest moving at a faster velocity.

Table 6.5 shows the mean number of targets picked up by the swarm over time. With the
physical wall present, the swarm was able to pick up 86% of targets, while they were only
able to pick up 37% when the wall was removed. With the chemotactic fence mechanism, the
exploration performance of the swarm improved significantly in unbounded environments.
They were able to pick up 81% of targets when the nest’s velocity was vn = 0.1vr. The
relationship between vn and the number of targets picked up can be seen by observing
the exploration performance of the swarm at different velocities shown in Table 6.4 (more
evident when comparing vn = 0.1vr and 0.167vr). After 2,000 seconds, vn = 0.167vr did
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much better than vn = 0.1vr because the nest was able to explore more area of the search
space. However, as the simulation progressed, the performance of vn = 0.1vr caught up in
exploration performance because the swarm was able to carry out a more thorough sweep
of the environment than when the nest moved at vn = 0.167vr. In some applications, it is
important to find the right balance between maximising the number of robots close to the nest
and fast exploration of the search space. A slow moving nest more efficiently utilises robots
close to the nest, resulting in thorough exploration of the work area, while a fast moving nest
minimises exploration time at the expense of the number of robots that are able to remain
within the nest’s work area. Multiple sweeps of the search space by the fast moving nest can
compensate for the poor performance of swarm exploration. However, this is not always
possible in some applications. The exploration of the search space using a nest guiding
swarm of robots is significant because it is a realistic solution for deploying robots in open or
boundless areas, where it can be impractical to build walls around such regions or erect a
mobile wall to guide the swarm’s work area. It is also useful for applications where robots
are constrained to be near the nest while tasked to search areas further from the nest’s region.

6.7 Real Robot Experiments

Two Turtlebot2 robots were used to validate the chemotaxis behaviour on hardware-based
platforms. One robot was equipped with a microphone and programmed to execute Algorithm
3, while the other acted as the nest. Since the nest’s signal was broadcast radially around the
nest, the directional speaker was housed within a 3D printed platform that reflected sound
signals from an upward facing speaker. The setup, shown in Fig. 6.4a, uses an inverted cone
that is supported on at two ends on a 3D-printed speaker casing. Reflecting the sound from
the speaker resulted in a drop in the sound intensity sensed by the microphone (and used to
develop the sound model used in the simulations) as shown in Fig. 6.4b. Notwithstanding,
Fig. 6.4b shows a gradual drop in sound intensity with distance for the omnidirectional
speaker (at a much slower rate in comparison to directional sound data points)

The exploration robot’s velocity, vr was set to 0.1m/s, attraction multiplier am = 6,
attraction divisor ad = 1000, base tumble probability Pb = 0.0025 per time step (the size of
each time step was 25 ms). The exploration and nest robots used for the experiments are
shown in Fig. 6.5a. Since the signal from the omnidirectional speaker is much lower than
those used in the simulation model, chemotaxis activation intensity A(dc) was set to 180 for
both stationary and moving nest experiments. Each experiment setup was repeated five times.

For the stationary nest experiment (vn = 0), the nest was placed at the centre of a 3 m by
6.4 m space and tmax = 600 seconds. The exploration robot was then left to move within the
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Fig. 6.4 (a) Omnidirectional speaker setup (b) Switching from directional to omnidirectional
speaker resulted in general reduction in the sound intensity sensed by the mobile robot.
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Fig. 6.5 Robots used for the experiment and photos of exploration robot following the moving
nest

environment using random walk while sensing the sound signal using its microphone. As a
baseline, a version of the experiment was repeated where the exploration robot performed
pure random walk without chemotaxis. The mean distance of the exploration robot from
the nest robot in blocks of 100 seconds is shown in Fig. 6.6a. The result indicates that, by
using chemotaxis, the exploration robot was reasonably successful in remaining near the
stationary nest. When using chemotaxis, the mean distance of the robot from the nest was
of 0.9 metre for the first 100 seconds and 1.2 metres between the 500 to 600-second period
of the experiment. However when using random walk, the corresponding distances were
1 metre and 1.9 metres respectively. The result shown in Fig. 6.6a reveals that chemotaxis
moderately aided the exploring robot in remaining close to the nest, and that the robot was
not just simply performing a random exploration of the environment.
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Fig. 6.6 Real robot validation of chemotaxis behaviour to remain close to a nest. Experiments
were repeated 5 times, and error bars represent 95% confidence interval.

In the second phase of hardware experiments, the robot’s ability to remain close to a
moving nest of relative velocity vn = 0.125vr for 10 metres was tested. The arena for the
experiment was a 3-metre wide hallway, where the nest started at one blocked edge of the
arena and moved toward the open end. Fig. 6.5b shows photos of a sample experiment of the
nest making the 10-metre journey while the exploring robot used chemotaxis to follow it. Fig.
6.6b shows the mean distance of the exploring robot from the nest in one metre windows for
both chemotaxis-based and pure random walk exploration algorithms. In comparison to the
distances recorded for random walk, within the first 6 metres, the chemotaxis-based algorithm
recorded less distance from the nest robot. However, beyond 6 metres, the chemotaxis was
less effective. Several factors could have contributed to this poor performance. Some of these
include impact of echoes from the surrounding structures, reduced intensity of the sound
signal for the omnidirectional speaker and sudden changes in ambient noise. These factors
suggest that the conditions of the experiment’s environmental setup need to be improved or
better controlled to mitigate such negative influences. Notwithstanding, the results obtained
from hardware-based experiments were promising and show that the algorithm can be
deployed for real robots.

Statistical test for significant difference between the results of the chemotaxis-based
and random walk algorithms were not conducted. This was because the experimental
data were few (five experiment repetitions for each algorithm) and would make any T-test
computation unreliable. Thus, further experiment repetitions would be required before
drawing conclusions about any significant differences between the chemotaxis-based and
random walk algorithms.
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6.8 Summary

When swarms are deployed in real world environments, they do not necessarily have to
operate within a confined (walled) search space assumed in many research publications in
the area. This chapter has presented a swarm design where exploring robots use the intensity
of the nest signal they sense as a virtual fencing mechanism that prevents them from drifting
from the nest over time. The extensive simulation studies show that with appropriate selection
of chemotaxis parameters, the virtual fence is as effective as a physical wall when the nest is
stationary, while also providing competitive results when the nest is mobile. Using white
noise sound as the nest’s signal, experiments on hardware-based robot platforms show that
the algorithm can be replicated in real world scenarios. The results from the hardware tests
show that further work is required to improve the experimental setup, and research into other
technologies such as Wi-Fi, RFID and ultrasound could prove useful as alternate broadcast
signals for the nest. Nonetheless, the results from the hardware experiments are encouraging
and represent the first steps in the deployment of chemotaxis-based virtual fence for real
robots (and by extension, could be modified to demonstrate the practical implementation of
the swarm foraging RepAtt algorithm).
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Chapter 7: Conclusions and Future Directions
7.1 Summary

The focus of this research has been on the development of chemotaxis-based swarm foraging
algorithm followed by the analysis of the impact of imperfections in communication and
target detection on the collective behaviour of the swarm robots. This study has provided
valuable insight into chemotaxis parameters that substantially bolstered the cooperative
operation and functionality of a swarm of robots while undertaking foraging tasks. Through
realistic modelling of communication noise based on hardware experiments, the results from
this research revealed the extent of the impact that this realistic communication has on the
swarm. State-of-the-art machine learning based object detection was used as a fundamental
tool for developing probabilistic vision model for robots swarm that conforms with recorded
observations of real-world object detection data. The study also extended the application of
the chemotaxis-based navigation technique to cover and address a swarm robotics area that
has seen only little research in previous years, that is, the use of a virtual fencing mechanism
to keep robots within a working area in unbounded environments.

In the RepAtt swarm foraging algorithm, robots searched for targets to forage using biased
random walk and adaptively changed their turn/tumble probabilities based on attraction and
repulsion signals they sensed. The algorithm presented a new approach for robots to use
chemotaxis to improve their foraging performance. In RepAtt, the robots themselves acted
as the source for attraction and repulsion signals whose intensity degraded exponentially
with distance. This exponential degradation of the signal was modelled from real world
experiments using white noise sound signal. The performance of RepAtt was tested on ten
environmental setups that varied in size and nature of targets distribution in the search space.
At the start of the foraging task, the robots leave the central nest in search for targets to
pick up and, during the search phase, broadcast a repulsion signal to help the swarm spread
out quickly to cover the search area. Once a robot locates a large deposit of targets beyond
its carrying capacity, it broadcasts an attraction signal, which unsuccessful neighbouring
swarm members sense and then use chemotaxis to locate the target cluster(s). The parameters
that optimises a robot’s chemotaxis behaviour were subdivided into attraction multiplier
am, attraction divisor ad , repulsion multiplier rm and repulsion divisor rd . An extensive
parameters search of 900 combination of these chemotaxis parameters was conducted to
obtain suitable values that optimise the swarm’s foraging performance in the ten environment
setups. By using optimised parameters, the swarm’s foraging performance was significantly
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improved over the initial parameters. The most significant improvements were observed in
highly clustered environments where communication was important for the swarm to exploit
targets that were difficult to locate. In addition, scalability and robustness tests on RepAtt
showed that it improved foraging efficiency with increasing swarm size and was robust to
changes in targets distribution and world size.

Noisy communication was included in RepAtt to investigate its impact and how robots in
the swarm could mitigate this unwanted but realistically present parameter. The noise model
is based on the amount of deviation computed from real world sound experiments, which
showed that it was approximately 6% of the average intensity of the sound signal at specific
distance from the sound source. The integration of this noise model into the RepAtt algorithm
initially had a significant negative impact on the swarm’s foraging performance, making it
no better than the uncoordinated Random Walk algorithm. However, with the inclusion of a
simple noise filtering system based on computing average of limited queue of instantaneous
signal intensity measurements, the swarm’s performance during foraging notably improved.
This improvement, which did not eliminate the negative impact the noise had on swarm
foraging, was substantial, reducing foraging time by up to 70% when compared to Random
Walk. In addition, the improvements in foraging efficiency as swarm size increased and
the swarm’s robustness to change in world setups showed that the RepAtt algorithm can
significantly boost swarm foraging under realistic noisy communication conditions.

A comprehensive study on the effects of imperfect vision on a swarm of foraging robots
has also been presented in this thesis. For this particular area of the research, a vision
model based on observations of detection patterns of deep neural networks object detection
models (tiny-YOLOv3 and MobileNet-SSD) was developed. The vision system model
used two transition probabilities (Pu2s and Ps2s) to determine what a robot detected at every
time step. The inference times of the object detection networks on Raspberry Pi 3 and 4
computers was also taken into consideration within swarm foraging simulations in order
to ensure and maintain realistic conditions. The results show that RepAtt demonstrated
further improvements on swarm foraging by a substantial magnitude when compared to
Random Walk. The vision model was extended to cover a wider range of object detection
quality and computational power to study their influence on swarm foraging and determine
the point at which RepAtt’s improvement over Random Walk would be insignificant. The
variation in vision quality was achieved by performing simulations with about 196 different
combinations of Pu2s and Ps2s probabilities. The variation in robots computational power was
achieved by simulating vision update rates of 1 Hz, 4 Hz and 40 Hz. The results indicated
that RepAtt still exhibited superior swarm foraging performance in comparison to Random
Walk at detection probabilities as low as 0.2. This is good because it shows that RepAtt
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is able to adequately support swarm coordination in highly uncertain vision environments.
The results also indicated that lower computational processors, where vision system was
updated at lower frequency, impact swarm foraging in different ways depending on how
robots used communicated signals. With no communication, increasing vision update rate
helped the swarm improve performance during swarm foraging as robots vision quality
degrades. However, when robots communicate with each other, increasing the vision update
rate could have a negative impact on the swarm in certain scenarios. As the object detection
probability Ps approaches 0.5, fast vision update rate could be detrimental for swarm’s ability
to cooperate during foraging because it increases the frequency of fluctuations between
attraction and repulsion signal communication among the robots. These fluctuations could be
minimised by reducing the rate at which robots decide which signal they broadcast (reducing
vision update rates) or by applying a smoothing/average filter on the listening robot. Thus,
improvement of vision quality is more important than investing in more expensive hardware
that increases vision update rate (especially when no mechanism is in place to reduce the
negative effect of imperfect vision on swarm recruitment).

In practical applications of swarm robotics such as space exploration, search and rescue
operations, agriculture and other areas of field robotics, physical fencing mechanisms may
not be present or feasible. In Chapter 6, a chemotaxis-based approach for keeping swarm of
exploring robots within a desired work environment is described. Extensive simulations were
used to show that the chemotactic fencing mechanism was as effective as a physical wall,
and admissibly more practical. The chemotaxis approach used a nest to broadcast a homing
signal that was sensed by exploring swarm robots. These robots activated a chemotactic
navigation scheme which helped them return to the nest area whenever the signal intensity
reduced beyond a threshold. The virtual fence was effective for both stationary and mobile
nest. The system was also implemented on hardware robot platforms which involved using
two robots (one nest and one explorer). The nest used an inverted cone to broadcast white
noise sound, which the explorer robot sensed and used to perform chemotaxis to maximise
its intensity instead of deviating from the nest over time.

The works presented in this thesis from Chapter 3 to 6 and summarised in the preceding
paragraphs were instrumental in achieving the key objectives set out for this doctoral research.
The following objectives have been attained:

1. A swarm foraging algorithm, called RepAtt, was implemented using inspiration from
chemotaxis search behaviour of C. elegans nematode.

2. A swarm communication model was developed based on real world experiments with
white noise sound signal. The model represented how sound signal degrades with
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distance, quantified the level of noise in the communication channel and also specified
how sound from multiple sources constructively superimpose on each other.

3. The swarm communication model was used in the RepAtt algorithm to analyse how it
improves the swarm’s foraging performance, scalability and robustness. The algorithm
used an average filtering system to mitigate the impact of noise on the swarm’s
coordination.

4. A robot vision system was developed from analysing the detection characteristics of
deep neural network based object detection algorithms. Real world experiments with a
litter dataset was used to test the object detection algorithms and use the test analysis
to implement a probabilistic robot vision model.

5. The vision model was used to extensively study the impact a robot’s vision quality and
processing power have on the collective behaviour of swarm foraging robots.

7.2 Conclusion

The extensive studies conducted on the chemotaxis search behaviour within the context
of swarm robotics provide the basis for the following conclusions:

1. RepAtt provides a means of simplifying swarm foraging algorithms and robot hardware.
The algorithm is scalable given that it does not require central coordination, neither
does it require the use of ad hoc networks, nor beacons. It does not impose any
complex mapping or localisation requirements on the swarm, thus simplifying hardware
requirements for the swarm.

2. Studying RepAtt under noisy communication and imperfect vision revealed that the
algorithm is robust under these conditions, thus making it more attractive for real-world
implementations. The resulting vision model and to a lesser extent, a communication
model will serve as a useful tool for other researchers in the field with which to test
and examine the effect of realistic noise models on the performance of their algorithms.
Therefore, providing beneficial and informative insight on the practicality of their
proposed algorithmic solutions.

3. For swarm robots applications in unbounded environments, chemotaxis-based virtual
fencing is an effective means of restraining robots from drifting from their work areas.
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7.3 Further Work

The promising results obtained from the chemotaxis-based algorithm strongly suggests
there is great potential for further work in this technically intriguing area. Recommendations
for future advancements are summarised as follows:

1. An important aspect of the RepAtt algorithm is the communication of attraction and
repulsion signals that degrade with increasing distance. In this thesis, white noise
sound was used to represent this signal. However, an extensive comparative study of
alternative technologies such as radio frequency, ultrasound, and Zigbee will be useful
for finding the most suitable or scalable communication technology.

2. Implementing swarm foraging algorithm on hardware platform to solve real-world
problems has always been the ultimate goal for swarm robotics. Since RepAtt lends
itself to basic hardware features for the swarm robots, it would be beneficial to conduct
thorough hardware-based experiments involving multiple robots.

3. Extending the RepAtt algorithm to include other features such as memory of previously
visited sites is another area of interest and potential improvement. This additional
feature could enhance RepAtt’s robustness and foraging performance for certain appli-
cations where localisation is feasible and beneficial.

4. The RepAtt algorithm could also be applied to a foraging task in three-dimensional
world. For example, the goal could be for a swarm of unmanned aerial vehicles tasked
with foraging some desired targets in the environment. This could be interesting
because Pólya’s random walk constants states that random walk has less than unity
probability of reaching all points in 3-dimensional search spaces [138, 139]. Thus,
swarm foraging ability could be much worse in this search space, thus making a
stronger case for the need of communication among swarm members.

5. One aspect that was not considered in this thesis is how the swarm robots reach a
consensus on the time to stop or end the foraging task. This could be at an individual
level where a robot gives up searching for targets and returns to the nest, or the swarm
robots collectively decide that the foraging goal has been achieved. Further work can
be done to explore different possibilities of achieving this behaviour in an optimal and
realistic way.
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Appendix A: RepAtt: Noiseless Communication
This appendix contains all results for parameters optimization and scalability simulations in
Chapter 3. Only a few of the results were included in the body of the thesis for the purpose
of readability. All results presented here are based on 30 repetitions of each simulation.

A.1 Parameters Optimisation

Task is for swarm of 36 robots to forage 180 out of 200 targets in the specified environments.
The chemotaxis parameters optimization involves a parameter sweep experiment where am

and rm were selected from 1, 2, 4, 6, 8 and 10, while ad and rd were selected from 1, 10, 50,
100, 1000. This resulted in 900 different combinations of the chemotaxis parameters. All the
foraging time results were normalised using Random Walk foraging time.
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Fig. A.1 Sorted foraging times normalized using the mean time for A1m1d-R1m1d for
the corresponding world setup. Swarm size of 36 robots and 900 different combinations
of chemotaxis parameters were used. Each marker represents the mean of 30 simulation
repetitions of each chemotaxis parameters combination.
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(b) Two50m

Fig. A.2 Sorted foraging times normalized using the mean time for A1m1d-R1m1d for
the corresponding world setup. Swarm size of 36 robots and 900 different combinations
of chemotaxis parameters were used. Each marker represents the mean of 30 simulation
repetitions of each chemotaxis parameters combination.
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(b) Four50m

Fig. A.3 Sorted foraging times normalized using the mean time for A1m1d-R1m1d for
the corresponding world setup. Swarm size of 36 robots and 900 different combinations
of chemotaxis parameters were used. Each marker represents the mean of 30 simulation
repetitions of each chemotaxis parameters combination.
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(b) Half50m

Fig. A.4 Sorted foraging times normalized using the mean time for A1m1d-R1m1d for
the corresponding world setup. Swarm size of 36 robots and 900 different combinations
of chemotaxis parameters were used. Each marker represents the mean of 30 simulation
repetitions of each chemotaxis parameters combination.
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Fig. A.5 Sorted foraging times normalized using the mean time for A1m1d-R1m1d for
the corresponding world setup. Swarm size of 36 robots and 900 different combinations
of chemotaxis parameters were used. Each marker represents the mean of 30 simulation
repetitions of each chemotaxis parameters combination.
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Fig. A.6 Effect of chemotaxis parameters on foraging performance in the One50m targets
distribution. Best combination for this distribution is am = 10, ad = 1000, rm = 1, rd = 1.
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Fig. A.7 Effect of chemotaxis parameters on foraging performance in the One100m targets
distribution. Best combination for this distribution is am = 6, ad = 1000, rm = 2, rd = 1.
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Fig. A.8 Effect of chemotaxis parameters on foraging performance in the Two50m targets
distribution. Best combination for this distribution is am = 10, ad = 50, rm = 4, rd = 50.
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Fig. A.9 Effect of chemotaxis parameters on foraging performance in the Two100m targets
distribution. Best combination for this distribution is am = 10, ad = 50, rm = 2, rd = 10.
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Fig. A.10 Effect of chemotaxis parameters on foraging performance in the Four50m targets
distribution. Best combination for this distribution is am = 4, ad = 50, rm = 6, rd = 1000.
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Fig. A.11 Effect of chemotaxis parameters on foraging performance of swarm in the
Four100m targets distribution. Best combination for this distribution is am = 10, ad = 1000,
rm = 1, rd = 10.
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Fig. A.12 Effect of chemotaxis parameters on foraging performance of swarm in the Half50m
targets distribution. Best combination for this distribution is am = 4, ad = 100, rm = 4,
rd = 10.
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Fig. A.13 Effect of chemotaxis parameters on foraging performance of swarm in the
Half100m targets distribution. Best combination for this distribution is am = 8, ad = 50,
rm = 4, rd = 10.
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Fig. A.14 Effect of chemotaxis parameters on foraging performance of swarm in the Uni-
form50m targets distribution. Best combination for this distribution is am = 1, ad = 1, rm = 1,
rd = 1000.
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Fig. A.15 Effect of chemotaxis parameters on foraging performance of swarm in the Uni-
form100m targets distribution. Best combination for this distribution is am = 6, ad = 1000,
rm = 4, rd = 100.
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Fig. A.16 Effect of chemotaxis parameters on foraging performance of swarm in the One100m
targets distribution. Best combination for this distribution is am = 10, ad = 50, rm = 1,
rd = 100.
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A.2 Scalability of RepAtt
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(b) One100m

Fig. A.17 Relative efficiency computed based on p = 180 out of 200 total targets. Each
simulation was repeated 30 times and error bars represent 95% confidence interval. RepAtt
parameters of am = 10, ad = 50, rm = 1 and rd = 100 were used.

1 9 16 25 36 49 64 81 100
Swarm Size

0.0

0.5

1.0

1.5

2.0

Re
la

ti
ve

 E
ff

ic
ie

nc
y

N0-Q1 RW

(a) Two50m

1 9 16 25 36 49 64 81 100
Swarm Size

0.0

1.0

2.0

3.0

Re
la

ti
ve

 E
ff

ic
ie

nc
y

N0-Q1 RW

(b) Two100m

Fig. A.18 Relative efficiency computed based on p = 180 out of 200 total targets. Each
simulation was repeated 30 times and error bars represent 95% confidence interval. RepAtt
parameters of am = 10, ad = 50, rm = 1 and rd = 100 were used.
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(a) Four50m
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(b) Four100m

Fig. A.19 Relative efficiency computed based on p = 180 out of 200 total targets. Each
simulation was repeated 30 times and error bars represent 95% confidence interval. RepAtt
parameters of am = 10, ad = 50, rm = 1 and rd = 100 were used.
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(a) Half50m
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(b) Half100m

Fig. A.20 Relative efficiency computed based on p = 180 out of 200 total targets. Each
simulation was repeated 30 times and error bars represent 95% confidence interval. RepAtt
parameters of am = 10, ad = 50, rm = 1 and rd = 100 were used.
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(a) Uniform50m
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(b) Uniform100m

Fig. A.21 Relative efficiency computed based on p = 180 out of 200 total targets. Each
simulation was repeated 30 times and error bars represent 95% confidence interval. RepAtt
parameters of am = 10, ad = 50, rm = 1 and rd = 100 were used.
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Appendix B: Noisy Communication
This appendix contains all results for parameters optimization and scalability simulations
in Chapter 4. All the results were not included in the body of the thesis for the sake of
readability. All results presented here are based on 30 repetitions of each simulation.

B.1 Parameters Optimisation (N100-Q1)

Task is for swarm of 36 robots to forage 180 out of 200 targets in the specified environments.
The chemotaxis parameters optimization involves a parameter sweep experiment where am

and rm were selected from 1, 2, 4, 6, 8 and 10, while ad and rd were selected from 1, 10, 50,
100, 1000. This resulted in 900 different combinations of the chemotaxis parameters. All the
foraging time results were normalised using Random Walk foraging time.

(a) One100m (b) Uniform100m

Fig. B.1 Sorted foraging times normalized using the mean time for Random Walk for the
corresponding world setup. Swarm size of 36 robots and 900 different combinations of
chemotaxis parameters were used. Each marker represents the mean of 30 simulation
repetitions of each chemotaxis parameters combination. The robots foraged using noisy
communication without using any noise filtering system (i.e. N100-Q1)
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Fig. B.2 Effect of the chemotaxis parameters on the foraging performance of a swarm in the
One100m targets distribution and using N100-Q1 version of RepAtt. Best combination from
the scoring system is am = 1, ad = 1000, rm = 1, rd = 1000.
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Fig. B.3 Effect of the chemotaxis parameters on the foraging performance of a swarm in the
Uniform100m targets distribution and using N100-Q1 version of RepAtt. Best combination
from the scoring system is am = 1, ad = 1000, rm = 1, rd = 1000.
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Fig. B.4 Effect of the chemotaxis parameters on the foraging performance of a swarm in
the One100m and Uniform100m targets distributions and using N100-Q1 version of RepAtt.
Best combination from the scoring system is am = 1, ad = 1000, rm = 1, rd = 1000.
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B.2 Parameters Optimisation (N100-Q40)
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Fig. B.5 Sorted foraging times normalized using the mean time for A1m1d-R1m1d for
the corresponding world setup. Swarm size of 36 robots and 900 different combinations
of chemotaxis parameters were used. Each marker represents the mean of 30 simulation
repetitions of each chemotaxis parameters combination.
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(b) Two50m

Fig. B.6 Sorted foraging times normalized using the mean time for A1m1d-R1m1d for
the corresponding world setup. Swarm size of 36 robots and 900 different combinations
of chemotaxis parameters were used. Each marker represents the mean of 30 simulation
repetitions of each chemotaxis parameters combination.
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(a) Four100m
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(b) Four50m

Fig. B.7 Sorted foraging times normalized using the mean time for A1m1d-R1m1d for
the corresponding world setup. Swarm size of 36 robots and 900 different combinations
of chemotaxis parameters were used. Each marker represents the mean of 30 simulation
repetitions of each chemotaxis parameters combination.
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(a) Half100m
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(b) Half50m

Fig. B.8 Sorted foraging times normalized using the mean time for A1m1d-R1m1d for
the corresponding world setup. Swarm size of 36 robots and 900 different combinations
of chemotaxis parameters were used. Each marker represents the mean of 30 simulation
repetitions of each chemotaxis parameters combination.
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(a) Uniform100m
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Fig. B.9 Sorted foraging times normalized using the mean time for A1m1d-R1m1d for
the corresponding world setup. Swarm size of 36 robots and 900 different combinations
of chemotaxis parameters were used. Each marker represents the mean of 30 simulation
repetitions of each chemotaxis parameters combination.
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Fig. B.10 Effect of the chemotaxis parameters on the foraging performance of a swarm in the
One100m targets distribution. Best combination for this distribution is am = 10, ad = 1000,
rm = 1, rd = 1.
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Fig. B.11 Effect of the chemotaxis parameters on the foraging performance of a swarm in the
One100m targets distribution. Best combination for this distribution is am = 6, ad = 1000,
rm = 2, rd = 1.
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Fig. B.12 Effect of the chemotaxis parameters on the foraging performance of a swarm in
the One100m targets distribution. Best combination for this distribution is am = 10, ad = 50,
rm = 4, rd = 50.
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Fig. B.13 Effect of the chemotaxis parameters on the foraging performance of a swarm in
the One100m targets distribution. Best combination for this distribution is am = 10, ad = 50,
rm = 2, rd = 10.
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Fig. B.14 Effect of the chemotaxis parameters on the foraging performance of a swarm in
the One100m targets distribution. Best combination for this distribution is am = 4, ad = 50,
rm = 6, rd = 1000.
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Fig. B.15 Effect of the chemotaxis parameters on the foraging performance of a swarm in the
One100m targets distribution. Best combination for this distribution is am = 10, ad = 1000,
rm = 1, rd = 10.
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Fig. B.16 Effect of the chemotaxis parameters on the foraging performance of a swarm in
the One100m targets distribution. Best combination for this distribution is am = 4, ad = 100,
rm = 4, rd = 10.
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Fig. B.17 Effect of the chemotaxis parameters on the foraging performance of a swarm in
the One100m targets distribution. Best combination for this distribution is am = 8, ad = 50,
rm = 4, rd = 10.
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Fig. B.18 Effect of the chemotaxis parameters on the foraging performance of a swarm in
the One100m targets distribution. Best combination for this distribution is am = 1, ad = 1,
rm = 1, rd = 1000.
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Fig. B.19 Effect of the chemotaxis parameters on the foraging performance of a swarm in the
One100m targets distribution. Best combination for this distribution is am = 6, ad = 1000,
rm = 4, rd = 100.
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Fig. B.20 Effect of the chemotaxis parameters on the foraging performance of a swarm in
the One100m targets distribution. Best combination for this distribution is am = 10, ad = 50,
rm = 1, rd = 100.
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B.3 Scalability of RepAtt
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(a) One50m
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(b) One100m

Fig. B.21 Relative efficiency computed based on p = 180 out of 200 total targets. Each
simulation was repeated 30 times and error bars represent 95% confidence interval. RepAtt
parameters of am = 10, ad = 50, rm = 1 and rd = 100 were used.
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(a) Two50m
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(b) Two100m

Fig. B.22 Relative efficiency computed based on p = 180 out of 200 total targets. Each
simulation was repeated 30 times and error bars represent 95% confidence interval. RepAtt
parameters of am = 10, ad = 50, rm = 1 and rd = 100 were used.
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(a) Four50m
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(b) Four100m

Fig. B.23 Relative efficiency computed based on p = 180 out of 200 total targets. Each
simulation was repeated 30 times and error bars represent 95% confidence interval. RepAtt
parameters of am = 10, ad = 50, rm = 1 and rd = 100 were used.
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(a) Half50m
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(b) Half100m

Fig. B.24 Relative efficiency computed based on p = 180 out of 200 total targets. Each
simulation was repeated 30 times and error bars represent 95% confidence interval. RepAtt
parameters of am = 10, ad = 50, rm = 1 and rd = 100 were used.
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(a) Uniform50m
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(b) Uniform100m

Fig. B.25 Relative efficiency computed based on p = 180 out of 200 total targets. Each
simulation was repeated 30 times and error bars represent 95% confidence interval. RepAtt
parameters of am = 10, ad = 50, rm = 1 and rd = 100 were used.
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Appendix C: Imperfect Vision
This appendix contains extra results for the vision modelling process in Chapter 5. All the
results were not included in the body of the thesis for the sake of readability.

C.1 False Positive Data

Table C.1 Analysis of the MobileNet-SSD and tiny-YOLOv3 performances and metrics
computation by analysing all frames of the test dataset and extracting data based on the false
positive detections on the test dataset. These were not used in the vision model presented in
the thesis in order to simplify the model and focus on scenarios where robots vision system
fails to detect targets in its immediate surrounding.

MobileNet-SSD Tiny-YOLOv3
124×124 220×220 128×128 224×224

seen 17287 22545 361 1003
unseen 276393 300077 3830 16101
seen2seen 9087 11785 288 629
seen2unseen 8198 10739 73 374
unseen2seen 5494 6616 34 147
unseen2unseen 268195 289338 3757 15727
Ps 0.0566±0.0193 0.0710±0.0185 0.0794±0.0948 0.1202±0.1631
Ps2s 0.4730±0.1019 0.5039±0.0699 0.4066±0.3738 0.3895±0.2959
Pu2s 0.0200±0.0057 0.0227±0.0057 0.0128±0.0205 0.0202±0.0545

C.2 Effects of Pu2s, Ps2s and Vision Update Rate on Swarm
Foraging

Varying the Ps2s and Pu2s between 0.001 – 1 and visualising their effects on swarm of 36
foraging robots tasked with picking up 90% of 200 targets distributed in 10 test environments.
Each robot had 120◦ field of view and a detection distance of 5 metres. For the N0-Q1 and
N100-Q40 RepAtt algorithms, chemotaxis parameters used were am = 4, ad = 100, rm = 1
and rd = 10. In all the figures, the y-axis is the average foraging time, while x-axis is the
corresponding Ps value computed from the simulations. Each data point represents mean of
30 simulation repetitions.
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C.2.1 Algorithms foraging performance

This section compares Random Walk, N0-Q1 and N100-Q40 for varying vision update rates.
The foraging times shown on the y-axis have been normalised using performance of Random
Walk algorithm with perfect vision for the corresponding world.
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Fig. C.1 One cluster environments
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Fig. C.2 Half cluster environments
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Fig. C.3 Two clusters environments



191

World 1 Hz 4 Hz 40 Hz

Fo
ur

50
m

Fo
ur

10
0m

Fig. C.4 Four clusters environments
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Fig. C.5 Uniform environments
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C.2.2 Effects of update rates

In this visualisation (of same simulations), the effect of varying vision update rate on each
algorithm is shown separately for Random Walk, N0-Q1 and N100-Q40. Foraging time on
y-axis was normalised using corresponding algorithm with perfect vision and 40 Hz update
rate.
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Fig. C.6 One cluster environments
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Fig. C.7 Half cluster environments
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Fig. C.8 Two clusters environments
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Fig. C.9 Four clusters environments
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Fig. C.10 Uniform environments
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