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Abstract

One of the cornerstones of modern software development that enables the creation of
sophisticated software systems is the concept of reusable software components. Especially
the fast-paced and business-driven web ecosystem is in need of a robust and safe way of
reusing components. As it stands, however, the concepts and functions needed to create
web components are spread out, immature, and not clearly defined, leaving much room
for misunderstandings.

To improve the situation, we need to look at the core of web browsers: the Document
Object Model (DOM). It represents the state of a website with which users and client-side
code (JavaScript) interact. Being in this central position makes the DOM the most
central and critical part of a web browser with respect to safety and security, so we
need to understand exactly what it does and which guarantees it provides. A well-
established approach for this kind of highly critical system is to apply formal methods to
mathematically prove certain properties.

In this thesis, we provide a formal analysis of web components based on shadow roots,
highlight their short-comings by proving them unsafe in many circumstances, and propose
suggestions to provably improve their safety. In more detail, we build a formalisation
of the Core DOM in Isabelle/HOL into which we introduce shadow roots. Then, we
extract novel properties and invariants that improve the often implicit assumptions
of the standard. We show that the model complies to the standard by symbolically
evaluating all relevant test cases from the official compliance suite successfully on our
model. We introduce novel definitions of web components and their safety and classify
the most important DOM API accordingly, by which we uncover surprising behavior and
shortcomings. Finally, we propose changes to the DOM standard by altering our model
and proving that the safety of many DOM API methods improves while leading to a less
ambiguous API.
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1 Introduction

1.1 Motivation
For many years now, software is everywhere. It runs on every car, keeps planes in the
air, assists surgeries, manages investments, and much more. Ensuring that software
performs these tasks reliably and correctly is crucial to the safety of many people and
has thus been a focus of research for decades. The use of formal methods has been
one of the proposed solutions, one which couples software engineering with the rigorous
methods of mathematical modelling and logic. When applied, they reduce ambiguities of
specifications, increase developer productivity by leveraging powerful automated static
and dynamic code analysers, and provide mathematical proofs that algorithms have been
implemented according to their specification.

However, this rigorous design of software systems is expensive. It can take a lot of
time and expertise to formally verify even small software systems. Even though tools
supporting such formal developments of software have been around for over 40 years,
they have started only recently to see wide-spread use also on larger scale software
projects [60] such as the seL4 micro-kernel [42] or a “conference management system
with verified document capabilities” [40], both formalised in Isabelle/HOL. Still, the size
of modern software systems has also increased, so often a compromise must be reached,
concentrating formalisation efforts on the most critical parts.

Therefore, in order to leverage formal methods also for modern, large software systems,
it is crucial that they are built modularly, supported by a robust component system.
Then, one can concentrate their verification and testing efforts on the critical parts of
the system while being able to rely on the interface specifications of its dependencies,
knowing that they will be enforced by the component system. This kind of approach
can alleviate the need for formal verification of the whole system while still providing
formal guarantees of security and safety properties. Well specified and loosely coupled
components, therefore, can then be analysed in isolation before composing the results to
achieve the desired guarantees about the whole system.

One area that has not seen much attention from the formal methods community is the
web. We have now reached a point, however, where the web browser has become the most
heavily used program on personal computers and mobile phones. People use web browsers
for many sensitive tasks such as emails and banking, involving much privacy-critical
information. Other information, such as a user’s browsing history, which is not necessarily
directly related to these activities themselves, can be even more sensitive [38]. Since web
browsers have become ever more complex, it is almost impossible to trust them to keep
information private and display websites honestly. Therefore, we need to find ways to
break down this complexity and provide more guarantees. As web browsers become more

1



1 Introduction

and more similar to operating systems [69], adopting formal method approaches that are
already established there seems logical.

The business-driven and fast-paced web ecosystem has seen an increase in the number of
developers almost unlike any other field, with many of them being relatively inexperienced.
Therefore, a robust and safe way of reusing components created by others is of great
value. As it stands, the ability to create components is spread across four different
specifications: the ECMAScript Language Specification, which is implemented by, e. g.,
JavaScript; the Hypertext Markup Language (HTML) standard, which provides a way
to write and exchange websites; the Custom Elements standard defining a mechanism
for users to introduce new HTML elements; and the Document Object Model (DOM)
standard. Besides their definitions being spread out, their notion of web components
is still rather immature, ambiguous, and has been added to the specifications as an
afterthought, leaving much room for misunderstandings. Some of this is due to the
history of the official DOM standard being complicated. The Web Hypertext Application
Technology Working Group (WHATWG) and the World Wide Web Consortium (W3C),
as well as various web browser vendors, have created standardization documents and
collaborated to various degrees over the years. Recently, however, those parties have
agreed [67] upon one standardization document managed by the WHATWG, which we
will refer to as the official DOM standard [71]. It is continuously updated (“Living
Standard”), which means that we refer to a specific immutable snapshot of this document,
which we cite in [71].

In practice, a common way of building and using web components today is the use
of certain JavaScript patterns, i. e., attaching all functionality of a module to a single
object and then exporting it, along with a package managing system such as npm [53].
This is often coupled with HTML custom elements and templates, which can be used
to encapsulate some functionality also on the DOM level. However, such unenforced
patterns, together with other properties of JavaScript, are making it impossible to safely
include third-party code, especially since they do not separate access to one fundamental
data structure that is shared by all JavaScript code: the DOM.

The tree-like structure of the DOM lies at the core of web browsers. It represents the
state of a website which users and client-side code (JavaScript) interact with. The part of
the DOM that is concerned with web components is shadow roots, a mechanism to build
a multi-tiered tree that prevents access to certain parts of the tree. Being in between the
user and the client-side code makes the DOM the most central and critical part of a web
browser, so we need to understand exactly what it does and which guarantees it provides.

A well-established approach for this kind of highly critical system is, as we have
seen earlier, to apply formal methods and verification to mathematically prove certain
properties. One popular tool to aid the formalisation of such software standards is
interactive theorem prover Isabelle/HOL [52]. It provides an environment where one can
create new types and definitions and prove properties about them using an expressive
higher-order logic, while at the same time only having a small set of axioms and code
base that the user needs to trust. Therefore, it is an ideal starting point to create a
technical basis for a proof system for the DOM standard that 1. provides a consistency
guarantee, 2. enables definitions that are executable and can therefore be connected to,

2
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for example, the compliance test suite of web browsers, and 3. remains extendable in the
sense of [19], so more and more concepts from the core of web browsers can be added
with ease.

1.2 Contributions
In this thesis, we present our formal model and analysis of the DOM with shadow roots
on which we base a novel definition of web components. Using this formal framework,
we then provide proofs of important component separation properties and finally give
recommendations for improvements of the standard and possible tools that could aid the
safe development of third-party libraries. In more detail, as our contributions, we

1. extract novel definitions of web components and their safety and classify the most
important DOM APIs accordingly, by which we uncover surprising behaviour and
shortcomings;

2. introduce shadow roots into our model of the DOM as an iterative extension and
extract novel properties and invariants that improve the often implicit assumption
of the official DOM standard;

3. propose changes to the DOM standard by altering our model and proving that the
safety of many DOM API methods improves while leading to a less ambiguous API;

4. show that the model complies to the standard by symbolically evaluating all relevant
test cases from the official compliance suite [68] successfully on our model; and
finally,

5. build an executable and extendable formalisation of the Core DOM in Isabelle/HOL,
based on mathematical logic, that we call fDOM , short for formal Document Object
Model.

This research advances the state-of-the-art in formal development of standard-based
software by providing a a significant extension to the DOM standard in a formally verified
way, adding a new, safe component mechanism to a major web standard.

The Isabelle theory files on which this thesis is based are all available online in the
Archive of Formal Proofs (AFP). We split them into six submissions, as different parts
might be useful for different purposes, besides using them to explore the content of
this thesis in greater depth: 1. The Core DOM [16], which covers Chapter 3 and the
Core DOM-related test cases from Chapter 5. This entry is well suited as an entry
point for users that are interested learning more about our way of formalising object-
oriented standards in general, or are interested in starting with a standard compliant
Core DOM formalisation and extending it into a different direction besides shadow roots
and components. 2. The Shadow DOM [14], which covers Chapter 4 and the Shadow
DOM-related test cases from Chapter 5. This entry is well suited as an entry point for
users that are interested in exploring shadow roots and their algorithms in more detail.

3
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3. The Web Components [11], which covers Chapter 6 and contains everything related to
our definition of web components. While the shadow roots-related part remains faithful
to the standard, the addition of web components is not based upon the standard, but
part of our contribution. 4. The Safely Composable DOM [17], which covers parts of
Chapter 7 and thus contains a version of the DOM that is modified as described. This
entry is best compared with the Core DOM entry on a file-by-file basis, highlighting the
difference in the data model and the resulting difference in the proofs. 5. The Safely
Composable Shadow DOM [15], which covers parts of Chapter 7 and contains a version of
the Shadow DOM that is built upon our safely composable DOM. This entry is similar
to [14] except only necessary changes to the proofs, so this entry is also best compared
on a file-by-file basis. 6. The Safely Composable Web Components [10], which covers the
main part of Chapter 7 and formalises the goal of the modified DOM: a definition of
web components that we proof to be safe according to our definition in this chapter.

1.3 Thesis Structure

After introducing Isabelle and higher-order logic (HOL) as well as the DOM and HTML
standards briefly in Chapter 2, we introduce the formal data model of the DOM and
operations over the DOM in Chapter 3. In Chapter 4, we add shadow roots to our model,
serving as the algorithmic basis for our web components. In the following Chapter 5, we
leverage the official compliance test suite of the DOM standard to increase the confidence
that until this point, we have developed a faithful model of the DOM and shadow roots.

Afterwards in Chapter 6, we depart from the DOM standard to add our own definitions
of web components into fDOM and prove that the natural approach implied by shadow
roots–given a standard-compliant DOM with shadow roots–falls short of our expectations.
In order to improve upon this situation, we slightly modify fDOM in Chapter 7, update
our definitions of web components to more sophisticated ones, and finally prove that
those changes indeed improve upon the guarantees of web components–all being backed
by the strong guarantees given by Isabelle/HOL. In the end, we will take a look at
related work in Chapter 8 and conclude in Chapter 9.

1.4 Externally Reviewed Parts

This thesis contains contributions that have already been presented in form of three
conference publications:

1. A conference paper presenting the formalisation of the Core DOM (Chapter 3):

Achim D. Brucker and Michael Herzberg. ‘A Formal Semantics of the Core DOM in
Isabelle/HOL’. in: Companion Proceedings of the The Web Conference 2018. WWW
1́8. Lyon, France: International World Wide Web Conferences Steering Committee,
2018, pp. 741–749. isbn: 978-1-4503-5640-4. doi: 10.1145/3184558.3185980
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1.4 Externally Reviewed Parts

2. A conference paper describing our approach for combining test and proof in the
context of software specifications, i. e., combining compliance test suites with
symbolic execution (Chapter 5):

Achim D. Brucker and Michael Herzberg. ‘Formalizing (Web) Standards - An
Application of Test and Proof’. In: Tests and Proofs - 12th International Conference,
TAP 2018, Held as Part of STAF 2018, Toulouse, France, June 27-29, 2018,
Proceedings. Ed. by Catherine Dubois and Burkhart Wolff. Vol. 10889. Lecture
Notes in Computer Science. Springer, 2018, pp. 159–166. doi: 10.1007/978-3-
319-92994-1_9

3. A conference paper introducing shadow roots into our DOM formalisation and
presenting our novel notion of web components (Chapter 4 and Chapter 6):

Achim D. Brucker and Michael Herzberg. ‘A Formally Verified Model of Web
Components’. In: Formal Aspects of Component Software - 16th International Con-
ference on Formal Aspects of Component Software, 23-25 October 2019, Amsterdam,
Proceedings. 2019

In addition, the underlying Isabelle/HOL formalisation has been published in the
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2 Background

2.1 Isabelle/HOL
2.1.1 Basic Definitions
Isabelle/HOL [52] is an interactive theorem prover implemented in the functional program-
ming language SML and supporting Higher-order Logic (HOL). It supports conservative
extensions of definitions, datatypes, primitive and well-founded recursion, and powerful
generic proof engines based on rewriting and tableau provers.

HOL [23, 3] is a classical logic with equality and enriched with total parametric-
polymorphic higher-order functions. HOL is strongly typed, i. e., each expression e has a
type 'a, written e :: 'a. In Isabelle, we denote type variables with a prime (e. g., 'a)
instead of Greek letters (e. g., α) that are usually used in textbooks. The type constructor
for the function space is written infix: 'a ⇒ 'b. HOL is centered around the extensional
logical equality _ = _ with type 'a ⇒ 'a ⇒ bool, where bool is the fundamental type of
the logic.

The type discipline rules out paradoxes such as Russel’s paradox in untyped set theory.
Sets of type 'a set can be defined as isomorphic to functions of type 'a ⇒ bool; the
element-of-relation _ ∈ _ has the type 'a ⇒ 'a set ⇒ bool and corresponds basically
to the function application. In contrast, the set comprehension {_ . _} (usually written
{_ | _} in textbooks) has type 'a set ⇒ ('a ⇒ bool) ⇒ 'a set and corresponds to
the λ-abstraction.

Isabelle/HOL supports defining abstract datatypes. For example, the following state-
ment introduces the option type:

datatype 'a option = None | Some 'a

Besides the constructors None and Some, there is the match-operation

case x of None ⇒ F | Some a ⇒ G a

which acts as a case distinction on x :: 'a option (x of type 'a option). Moreover, the
option type allows us to represent partial functions (often called maps) as total functions
of type 'a ⇒ 'b option. For this type, we introduce the short-hand 'a ⇀ 'b. We can
define dom f, called the domain of a partial function f, by the set of all arguments of f
that do not yield None. By restricting the domain of a map to be finite, we can define a
type that represents finite maps:

typedef ('a, 'b) fmap = {m. finite (dom m)} :: ('a ⇀ 'b) set

By using the product type (_ × _) and the sum type (_ + _), it is possible to create
type polynoms representing complex types. Since long type polynoms can negatively
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affect the readability of definitions and other constructs, we introduce a short-hand
notation that hides type variables when they are identical to the declaration of a datatype
or a type definition. For example, we will write (_) fmap instead of ('a, 'b) fmap. This
short-hand notation is provided as an Isabelle theory [16] and thus fully supported by
the framework.

In Isabelle, properties are stated using the lemma keyword. For example, to express
that any arbitrary, but fixed x :: 'a option is either None or that it contains a value, we
can write

lemma not_None_eq: "x ≠ None ⟷ (∃y. x = Some y)"

by (induct x) auto

Most notation in Isabelle is purposefully kept close to the mathematical notation that
one might find in textbooks.

Now, to prove such a property, Isabelle does not only support simple forward and
backward chaining of specific facts, but also more powerful and automated proof tactics.
For example, not_None_eq can be shown by induction on the variable x from the lemma
over the datatype option, followed by the use of the proof tactic auto that automatically
applies a whole range of previously proven lemmas to the proof goal.

2.1.2 Extending Logics

When extending logics, two approaches can be distinguished: the axiomatic method and
conservative extensions. Extending the HOL core via axioms, i. e., introducing new,
unproven laws seems to be the easier approach but it easily leads to inconsistency. Given
the fact that in any major theorem proving system the core theories and libraries contain
several thousand theorems and lemmas, the axiomatic approach is not needed in practice.
In contrast, a conservative extension introduces new constants (via constant definitions)
and types (type definitions) only by using a particular schema of axioms; the (meta-level)
proof that axioms of this schema preserve consistency can be found in [32]. For example,
a constant definition introduces a “fresh” constant symbol and a non-recursive equality
axiom with the new constant on the left and a closed expression on the right-hand side.
Thus, the new constant can be viewed as an abbreviation of previously defined constructs.

When embedding a language inside a logic, there are again two techniques that can be
distinguished: First, using a deep embedding of the language into the logic, which means
that the abstract syntax is represented as a datatype, which means that we then need to
define a semantic function I from syntax to semantics. Second, shallow embeddings define
the semantics directly; each construct is represented by some function on a semantic
domain. Shallow embeddings have the downside, however, that certain characteristics can
not easily be referred to, e. g. one could not easily speak about the variables occurring in
an expression.

Assume we want to embed a simple language that consists of the two mathemat-
ical operators Add _ _ and Mul _ _ representing the common addition and multiplic-
ation on natural numbers, respectively, into HOL. The semantics then is a function
I :: "'a expr ⇒ 'a env ⇒ nat" that maps expressions and environments to nat, where
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environments 'a env = "'a ⇒ nat" map variables to natural numbers. Using a shallow
embedding, we define directly:

definition "Add x y ≡ λe. x e + y e"

definition "Mul x y ≡ λe. x e ∗ y e"

Shallow embeddings allow for direct definitions in terms of semantic domains and
operations on them. In a deep embedding, we define the syntax as a recursive datatype

datatype 'a expr =

Var 'a

| Add "'a expr" "'a expr"

| Mul "'a expr" "'a expr"

and the explicit semantic function I

primrec I :: "'a expr ⇒ 'a env ⇒ nat"

where

"I (Var x) = (λe. e x)"

| "I (Add x y) = (λe. I x e + I y e)"

| "I (Mul x y) = (λe. I x e ∗ I y e)"

This example reveals the main drawback of deep embeddings: the language is more
distant to the underlying meta language HOL, i. e., semantic functions represent obstacles
for deduction. However, for conducting certain meta-theoretic analysis, deep-embeddings
have advantages. Since we are interested in a concise semantic description of the DOM
and efficient proof support and not in meta-theoretic proofs, we chose a shallow embedding
for the work presented in this thesis.

Functions in HOL are curried and pure, i.e., they take exactly one argument, return
exactly one result, and cannot produce side effects. To simulate functions with more
than one argument, we let these functions again return a function. Therefore, when
reading curried function definitions, it can be helpful to interpret the chain of function
definitions in the following way: the last type definition represents the “return value” of
the function, whereas the other types in the chain represent arguments to the function.
When modeling stateful functions, such as in our case, we usually define functions that
take an argument that represents the state and return an updated version (i.e., a map
that contains an additional entry) that represents the state change. In practice, one
usually uses syntactic sugar to hide these details.

2.1.3 Monads

A common way to aid the definition of imperative-style definitions in functional program-
ming languages is the use of monads, in particular the state-exception-monad, which is
often used to hide the state passing from function to function which would otherwise
have to be done explicitly. We use the implementation presented in [16]. Here, a function,
or program, is encoded as a function taking a heap (or, more generally, a mutable state)
and returning either an exception, or a result and a new heap:
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Table 2.1: Syntax introduced to aid the proofs involving monadic functions. All state-
ments are boolean predicates. We use the turnstile notation to resemble a
notion of “given the following state, …”.

Function f, invoked in heap h with argument x,
returns value y h ⊢ f x →r y

returns new state h' h ⊢ f x →h h'

throws exception ex h ⊢ f x →e ex

terminates without an error h ⊢ ok f x

datatype ('heap, 'e, 'result) prog =

Prog (the_prog: "'heap ⇒ 'e + 'result × 'heap")

As an example, let us assume we define the following program h by first calling program
f and then calling program g:

definition f :: "'a ⇒ ('heap, 'e, 'b) prog" where ...

definition g :: "'b ⇒ ('heap, 'e, 'c) prog" where ...

definition h :: "'a ⇒ ('heap, 'e, 'c) prog"

where

"h x = do {

y ← f x;

z ← g y;

return z

}"

We use the do-notation to define the program. The expression y ← f x; calls program
f with argument x and binds the result to the local variable y, which is of type 'b. If f
“throws” an error of type 'e, h immediately returns with the same error, skipping the call
of g, since only the first error is propagated. If f does not throw an error, the execution
continues with passing the possibly changed state to the call of g (hidden by the monad
syntax), along with the argument y. The result of the execution is then the result of g.

Additionally, we introduce new syntax to ease proofs when monadic functions are
involved, which can be found in Table 2.1. This gives us a convenient way to reason
about parts of programs while maintaining good proof support and syntax that is similar
to the definition of the functions.

2.1.4 Locales
Locales [4] are one of Isabelle’s mechanism to enable the writing of parametrised theories.
To get an idea of how this works, let us consider a small example first. Assume we want
to capture the fact that if we assume a predicate P :: "int ⇒ bool" which is true for
argument 0 and which remains true for all successive values once it has been true, then
we also know that the predicate is certainly true for all values greater or equal than 0,
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especially for the value 42. Now if we want to derive these two properties for multiple
predicates, we do not want to repeat these proofs for every concrete P. Therefore, we
define the following locale which captures this proof once for a general predicate P:

locale l_P =

fixes P :: "int ⇒ bool"

assumes P_zero: "P 0"

assumes P_remains_true: "P n ⟹ P (n + 1)"

begin

lemma P_greater_equals_zero_true: "n ≥ 0 ⟹ P n"

using P_zero P_remains_true int_ge_induct by blast

lemma P_fourty_two: "P 42"

using P_greater_equals_zero_true by simp

end

We prefix the name of the locale with l_ in order to more easily distinguish the locale
from the predicate P. As we can see, the lemma P_greater_equals_zero_true follows
from our two assumptions and int_ge_induct, a lemma which enables the automatic
application of simple induction proofs. By using this lemma, property P_fourty_two is
also proven in a straight-forward manner.

Locales provide their own context, opened with begin and closed with end, inside which
one can make use of the specified types and assumptions. This effectively introduces new
axioms, but only inside the environment of this locale.

In order to make use of our new lemmas also on the theory level outside of the locale,
we need to interpret the locale with a concrete P and show the made assumptions:

interpretation P_minus_six: l_P "λn. −6 < n"

proof

show P_zero: "(− 6::int) < 0"

by simp

next

show P_remains_true: "⋀n::int. − 6 < n ⟹ − 6 < n + 1"

by linarith

qed

Here, we use the predicate that evaluates to true for all values greater than minus six.
The interpretation keyword leaves us with the locale assumptions as proof obligations,
which in this case, are easily proven. As a result, we get the lemmas from the locale
interpretation on the theory level:

thm P_minus_six.P_fourty_two (∗ Output: − 6 < 42 ∗)

As we can see, with locales we can prove properties over functions in an abstract way
without the need to refer to the actual definition of it. This is especially useful if we
have multiple functions that differ only slightly from each other, so we leverage their
common properties to prove lemma only once, but gain them for every concrete definition
by simply interpreting them.
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Besides “generating” lemmas, we can also use this mechanism to easily create new
definitions that are similar to each other. This works in the same way as for lemmas.

Another feature of locales that will be important for us later is the extension of locales
with other locales. We could now, for example, create a new locale and import our
example locale l_P. By doing so we gain access to its assumptions, proven lemmas, and
defined functions:

locale l_Q = l_P +

fixes ...

When using locales in this way, we can create a compositional hierarchy of lemmas
and function definitions that can reduce duplication and make the theory files easier to
read and maintain.

2.1.5 Code Generator

Isabelle/HOL features an extensive code generator setup which is able to convert datatype
and function definitions into SML, Haskell, Scala, and other (functional) programming
languages [34]. Not all definitions are suitable, however; since Isabelle supports the full
expressivity of higher-order logic, not all definitions can be converted into executable
programs. Since we want to make use of the code generator at various points, we will
ensure that most of our definitions will be suitable, or will at least provide equivalent
substitutions.

In addition to generating code for different languages to be used outside of Isabelle/HOL,
there also exist Isabelle proof tactics that can make use of executable definitions. For us,
these are mainly the following two:

Using code_simp instructs the simplifier to only use code equations. These are usually
equations which define new functions, but also equations that, for example, convert a set
comprehension into a filtering of all values of a given type. This tactic does not generate
any actual code, but works similar to symbolic execution, which means it is comparatively
slow. Still, as it only uses the simplifier, we do not introduce any complex additional
dependencies that would need to be trusted in addition to the Isabelle/HOL core.

With eval, Isabelle/HOL internally generates and executes SML code from the current
proof goal. It is therefore faster than the simplifier, but has the additional “trust burden”
of the code translator, because there might be errors in the implementation of the SML
infrastructure.

We will use this kind of proof tactic to prove “test cases” for our DOM API specifications,
i. e. lemmas that involve concrete DOM heaps instead of arbitrary, but fixed ones. In those
cases, we can calculate the concrete heap states after each method by using code_simp.
For prototyping proofs, we use eval instead to achieve faster execution times, but change
all occurrences to code_simp afterwards to achieve a higher trust level.
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<!DOCTYPE html>
<html class=e>
<head>
<title>Aliens?</title>

</head>
<body>Why yes.</body>

</html>

(a) HTML

Why yes.

(b) Rendering

DOCTYPE: html
HTML class=e

HEAD
TITLE

text: Aliens?
BODY

text: Why yes.

(c) DOM

Figure 2.1: A simple example of a DOM instance: (a) shows a textual representation
using HTML syntax, (b) a visualization of the node-tree of the DOM, and
(c) shows the result of rendering this DOM, e.g., by a rendering engine of a
web browser.

2.2 Web Standards

2.2.1 Document Object Model (DOM)

At its core, the Document Object Model (DOM) defines a tree-like data structure for
representing documents in general and HTML documents in particular. Figure 2.1
illustrates a small example: Figure 2.1a shows the textual representation of a simple
document (using HTML as syntax), Figure 2.1c shows the visualization of the DOM
node-tree, and Figure 2.1b shows the rendered output (e. g., in a web browser).

The history of the official DOM standard is complicated; the Web Hypertext Application
Technology Working Group (WHATWG) and the World Wide Web Consortium (W3C),
as well as various web browser vendors, have created standardization documents and
collaborated to various degrees over the years. For us only the fact that those parties
have since agreed [67] upon one standardization document managed by the WHATWG
is relevant, which we will refer to as the official DOM standard [71]. It is continuously
updated (“Living Standard”), which means that we refer to a specific immutable snapshot
of this document, which we cite in [71].

The full standard document is very large, however, and contains many related features
and algorithms, not all of which are strictly necessary to specify a simple document.
Since we cannot hope to formalise such a big software standard in its entirety, we need
to extract and focus on the core of the DOM. We will refer to those parts that we deem
relevant for this purpose as the core DOM ; this must not be mistaken for the “DOM
Core Level 1“ [22] and successive documents, which is the way how the standard has
been developed previously to the adoption of the “Living Standard”.

It is important to note that the standard does not limit the application domain of
the DOM to web browsers–besides HTML, the DOM also provides the basis for XML.
Similarly, the standard only specifies an API and is therefore not limited to using
JavaScript as an implementation language, even though it certainly is among the most
wide-spread ones.
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2.2.2 Hypertext Markup Language (HTML) and JavaScript
The Hypertext Markup Language (HTML) is the standard mark-up language for the
modern web, and is also standardized by the WHATWG. For us, it is important to keep
HTML separate from DOM, since HTML only describes the “serialization format” of the
DOM. We focus on the behavior and API defined by the DOM standard. Nevertheless,
DOM and HTML are closely linked, as we will see in Chapter 5 that the official DOM test
suite uses HTML and JavaScript to test the DOM implementation inside web browsers.

Summary
In this section, we have learned about Isabelle/HOL, the interactive theorem prover
upon which we base our DOM formalisation, and therefore we rely quite heavily on it.
While we gave a short introduction into the specific features and notations of Isabelle
that we use, some familiarity with Isabelle or at least similar tools such as Coq is
definitely recommended to fully understand the following chapters. Also, we introduced
the Document Object Model (DOM), which is standardised by a standardisation authority
and a cornerstone of the web.
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3 A Formal Core DOM: fDOM
In this chapter, we will introduce our formal core DOM : fDOM . It is a version of the
Document Object Model (DOM) standard that has been reduced to its most essential
parts: the node tree. We will present our approach on how to formalise such a software
standard in Isabelle/HOL and describe our design decisions. While all claims regarding
the DOM have been fully proven within Isabelle/HOL (the theory files can be found
online [16]), we will only show excerpts in this thesis, since the full formalisation document
is multiple hundred pages long. In this chapter, therefore, we will gain new insights into
the DOM itself from a formal methods perspective; its contributions are three-fold:

Firstly, as we build our fDOM , we will gain new insights into the DOM standard as
such. Being a popular standard that is multiple decades old, we can not reasonably
expect to unearth serious inconsistencies; our insights will have a clarifying character,
which we consider to be of great value, too, as the official DOM standard leaves many
things implicit. For example, we will mine a set of invariants that tree-modifying methods
need to satisfy in order to leave the node tree in a “proper” state.

Secondly, the fDOM will enable us to verify the functional correctness of common
functions that manipulate the node tree, e. g., insertBefore. In addition, we will prove
that these functions actually preserve these invariants and see which seemingly innocuous
conditions of the DOM API are responsible for that.

Thirdly, we will see how the fDOM will provide a formal foundation for further
analysis of higher-level properties and additions to the standard. For this purpose, we
will see features of the fDOM , such as its extensibility (extending without the need of
re-proving already proven properties) and executability (generating executable code from
our specification), which we will introduce abstractly in this chapter, but it will not be
until Chapter 4 and Chapter 5, respectively, that we will see these features in action.

On a technical level, the extensibility is achieved mainly by using name mangling
and Isabelle’s locale mechanism. Following the idea from [19], we iteratively build our
formalisation document by extending our universe one theory file at a time, although not
all extensions are equal. For example, we will have multiple extensions for our datatypes
(one datatype per extension), before we will have an extension introducing new methods.
The following sections will introduce this mechanism in more detail and with examples,
although we won’t see the real power of this way of extending until we introduce shadow
roots in Chapter 4.

3.1 The Core DOM Data Model
Our goal is to model the core part of the DOM: the node tree. Normally, one would
model a tree in HOL in a similar way as in a functional programming language; storing
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datatype

object = Object and

node = Node and

element = Element (tagName: string)

(childNodes: "(element + character_data) list")

(attributes: "string ⇀ string") and

character_data = CharacterData (data: string) and

document = Document (doctype: string) (documentElement: "element option")

(disconnectedNodes: "(element + character_data) list")

definition "example = Document ''html'' (

Some (Element ''html'' [

Inl (Element ''head'' [

Inl (Element ''title'' [

Inr (CharacterData ''Aliens?'')

] Map.empty)

] Map.empty),

Inl (Element ''body'' [

Inr (CharacterData ''Why yes.'')

] Map.empty)

] (map_of [(''class'', ''e'')]))

) []"

Figure 3.1: An attempt to represent the Core DOM basic model using a purely functional
tree encoding, using the example from Figure 2.1a. Besides lacking many
other features such as type inheritance, it is unclear how a function such as
insert_before would be implemented, given that it would need the ability to
refer to an arbitrary node in the tree in a unique manner.

the values directly in the datatypes. An example of how such a formalisation could
look like can be found in Figure 3.1. It could have a separate datatype for each kind
of node that we have, such as element and character_data, and instead of references
to other nodes, we store them directly in the datatype itself, e. g., element contains
a childNodes attribute of type (element + character_data) list, instead of a separate
pointer datatype or even a simple numbered reference.

For our purposes, however, this standard approach is not suitable. We would like to
stay as close to the official DOM standard as possible, which specifies the node tree as an
object-oriented data structure, using typed pointers and objects that are stored inside a
heap. In addition, with the purely functional approach, we would be unable to distinguish
identical sub-trees, which would make it impossible to model many DOM API functions
that use node references to, e. g., determine which node should get deleted. One could
add identifiers to the datatypes that would help to distinguish identical sub-trees, but
this would require additional constraints that are foreign to the DOM standard and move
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the data model further away from it. Also, features like type inheritance are difficult to
implement in this way.

Instead, we add an additional argument to all functions that we use to pass a heap of
node trees, which is a finite set of pairs of pointers and objects and represents the state
of the DOM. In our data model and DOM API methods, we will then use pointers that
can be resolved using this heap. It must be noticed, however, that this design decision
comes at a cost: Compared to the purely functional approach, we will need to introduce
additional constraints in order to keep our trees well-formed, e. g., we need to make sure
that the pointered structures do not contain cycles. In addition, many proofs involving
functions that recurse over the tree will become more complicated as we will need to
ensure that the functions terminate. Still, while this way of modelling the state increases
the complexity of proofs, the DOM, as specified in the standard, shares many of these
drawbacks, so we will later see that the additional effort results in more useful properties.

Note that formalising pointer-based data structures in higher-order logic within Isa-
belle/HOL has been done before by, e. g., Mehta et. al [49], where “heaps are modelled
as mappings from addresses to values, and pointer structures are mapped to higher-level
data types”. One of the key design decisions of our DOM formalisation, however, is using
a typed pointer hierarchy including sub-typing and polymorphism to model the DOM,
staying close to the official specification. The second key difference between our work
and similar ones, such as Tuch et. al [64] combining “Types, Bytes, and Separation Logic”
into a separation logic-based framework implemented inside Isabelle/HOL, is the fact
that we do not need to handle low-level details of a C-style memory layout, but are
able to use a much higher-level abstraction where a heap stores typed pointers that are
numbered separately from pointers of other types. It is also important to keep in mind
that our goal is to research how suitable our chosen way of formalising the DOM is and
how, for example, the frame conditions could look like, rather than to provide an efficient
DOM or even JavaScript verification tool.

3.1.1 Classes as Datatypes

Before we can formalise the API, we need to find a suitable formalisation of the underlying
data model. As the DOM models a tree-like data structure, it is natural that the core
datatypes of the DOM specifications are Document and the datatype Node with the
two specializations Element and CharacterData. Figure 3.2 shows the set of core
datatypes of fDOM using Web IDL [44], the notation used by the WHATWG. In our
data model, we omit attributes that can be computed from others, e.g., the parent
attribute which represents the inverse relation already represented by the childNodes and
documentElement attributes, so that we do not need to specify a lot of additional well-
formedness constraints. For the same reason we, instead of storing the ownerDocument
of a Node, we store the list of disconnected nodes in disconnectedNodes. Figure 3.3
visualises the type hierarchy of the types that we use.

In Isabelle/HOL, records are the natural way of representing such hierarchical types
with associated attributes. They are similar to ordinary datatypes, but additionally
provide a convenient syntax for accessing and updating individual attributes and can
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interface Object {};
interface Node : Object {};
interface Element : Node {

readonly attribute DOMString tagName;
readonly attribute NodeList childNodes;
readonly attribute NamedNodeMap attributes;

};
interface CharacterData : Node {

attribute DOMString data;
};
interface Document : Object {

readonly attribute DocumentType? doctype;
readonly attribute Element? documentElement;
readonly attribute NodeList disconnectedNodes;

};

Figure 3.2: The IDL specification of the data model of the core DOM. We omit at-
tributes that can be computed from others, such as parent. Instead of
the ownerDocument of nodes, we store the list of disconnected nodes in
disconnectedNodes. The question mark indicates a “nullable” type. We
introduced Object to have a common super-interface.

Object

Node

Element CharacterData

Document

Figure 3.3: The type hierarchy of our DOM data model.
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Document
doctype: ’html’
disconnectedNodes: []
documentElement: e1

Element
tagName: ’html’
childNodes: [e2, e3]
attributes: class -> ’e’

Element
tagName: ’head’
childNodes: [e4]
attributes:

Element
tagName: ’title’
childNodes: [c1]
attributes:

CharacterData
data: ’Aliens?’

Element
tagName: ’body’
childNodes: [c2]
attributes:

CharacterData
data: ’Why yes.’

e1

e2 e3

e4

c1

c2

Figure 3.4: Schematic tree-representation of Figure 2.1a that demonstrate the use of the
interfaces and attribute of Figure 3.2.

extend other records, which means that they inherit all of their attributes. This makes
them ideally suited for our purposes, as these properties keep our definitions that might
exhibit different behaviour depending on the actual class more readable. The main benefit
though is that records keep the attributes organised in a hierarchical way, much like the
DOM specification.

Therefore, we define one record for each class:

type_synonym DOMString = string

type_synonym doctype = DOMString

type_synonym attribute_key = DOMString

type_synonym attribute_value = DOMString

type_synonym attributes_type = "(attribute_key, attribute_value) fmap"

type_synonym tag_type = DOMString

record RObject =

nothing :: unit

record RNode = RObject +

nothing :: unit

record _ RElement = RNode +

nothing :: unit

tag_name :: tag_type

child_nodes :: "_ node_ptr list"

attributes :: attributes_type
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record RCharacterData = RNode +

nothing :: unit

data :: DOMString

record _ RDocument = RObject +

nothing :: unit

doctype :: doctype

document_element :: "_ element_ptr option"

disconnected_nodes :: "_ node_ptr list"

We add the prefix R to distinguish each type from its corresponding type synonym later.
Due to technical constraints of the record package, we need to introduce an attribute
nothing for classes that do not define at least one attribute themselves. We also define
some useful type abbreviations for some of the types of the record fields to closely model
our WebIDL specification in Figure 3.2. RObject acts as our base record type from which
all other records inherit.

Given these definitions, we can, e.g., define a concrete CharacterData object as follows,
using the record syntax to create a new instance:
definition "CharacterDataExample =

⦇RObject.nothing = (),

RNode.nothing = (),

RCharacterData.nothing = (),

data = ''Why yes.'',

… = ()

⦈"

As we can see, each RCharacterData also contains the fields from RNode and RObject,
which, in this case, are only the nothing fields, though we will have a class later that
makes use of this mechanism. The last assignment, … = (), assigns the unit value to
the extension slot of RCharacterData, which basically closes the slot and forbids any
further extensions. This is part of the extension mechanism provided by records, which
allows us to define HOL functions that take an argument of type RNode, which we can fill
with either RElement or RCharacterData — a core mechanism known from object-oriented
programming. As it stands, support of the record package for this is limited, though,
as we have access only to fields from RNode and RObject in this case, but not to either
RElement or RCharacterData!

Thankfully, we can improve upon this shortcoming. By default, the record package
hides the type variable of the extension slot, so if we specify a function argument type of
RNode, we do not have any type information about possible extensions. We can, however,
encode our type hierarchy into this extension type variable and later create new type
synonyms for them. With the usage of sum types, we can determine the concrete class of
the instance at runtime and handle these cases differently. In addition, we also use the
option type in this construction to distinguish “abstract” classes whose concrete instances
can not exist on their own, but will always need to have another, more concrete class.
For example, we can define a HOL function that returns True if and only if a given RNode

is actually a RElement:
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definition is_element_kind ::

"((_, 'Element option) RElement_ext + 'Node) RNode_scheme ⇒ bool"

where

"is_element_kind node =

(case RNode.more node of

Inl element ⇒ True |

Inr _ ⇒ False)"

Isabelle’s record package creates for each record an additional datatype with the suffix
_ext and _scheme, which refer to only the extension slot and to the original datatype,
but with the possibility to specify the desired type of the extension as a type argument.
More information regarding the inner workings of records can be found in the Isabelle
documentation [70]. By specifying the type sum in the type argument to RNode_scheme,
we force the extension slot of node to either be an element, or a yet-to-be-specified 'Node.
In both cases, the node class will be “abstract”, i. e., will always have an extension. In
contrast, our element type has 'Element option in its extension slot, so it could either
have another extension 'Element, or none at all. The construction that enhances the
record extensibility with support for runtime “down-casting” is rather technical and
requires a number of type synonyms not shown here, so we refer the interested reader to
the full Isabelle proof document for further details.

In summary, this essentially models an object-oriented data model of a tree-like data
structure, which is called node-tree in the DOM standard, where 1. the root of the tree is
an instance of Document, 2. instances of the class Element can be internal nodes or leaves,
and 3. instances of the class CharacterData can only appear as leaves. As an added
benefit, we can use our record construction later to easily extend our type universe with
more types, e. g., ShadowRoot, without having to modify any existing theories or redefine
all of our functions. Functions that use our assembled record types using the _ext and
_scheme variants can be written in a more generic way and can contain a fallback case
that handles types that are not yet known.

However, before we can actually represent node trees, we not only need objects, but
also pointers and a heap to store the mappings from pointers to objects. When we define
the DOM methods later, we will only deal with typed pointers and the heap directly, but
not with the object types. This allows us to hide much of the complexity of the type
hierarchy encoding.

3.1.2 Pointer datatypes
Now, we continue by defining the datatypes required for our pointers, the second part
of the datatypes that are necessary to represent a reference-based graph structure. In
essence, we try to mimic the structure and inheritance mechanism introduced for the
object records, with the main difference being that we do not need fields except for a
single natural number that will act as an “address” within our heap. Since we use a finite
map as our heap, the only purpose of this address is to distinguish different pointers
from each other, because using HOL equality, two objects are equal if all their fields are
equal. The location that a pointer references never changes, and we never actually need
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to retrieve it, so we do not need the additional complexity of the record package. We
will therefore use the more basic datatype for our pointer type definitions:

type_synonym ref = nat

datatype 'object_ptr object_ptr = Ext 'object_ptr

datatype 'node_ptr node_ptr = Ext 'node_ptr

datatype 'element_ptr element_ptr = Ref ref | Ext 'element_ptr

datatype 'character_data_ptr character_data_ptr = Ref ref

| Ext 'character_data_ptr

datatype 'document_ptr document_ptr = Ref ref | Ext 'document_ptr

Again, we see that object_ptr and node_ptr are visibly different from the other
definitions; they only have one type constructor, Ext, which takes a single value of the
type of the type parameter. On the other hand, element_ptr, for example, also has the
Ref constructor that takes a natural number and thus creates finally a “concrete” pointer
to an object. The actual type hierarchy is not encoded in these datatype definitions yet.

We use these datatypes to introduce type synonyms representing the actual pointer
types for our DOM model inside the current type universe. The actual type hierarchy
gets encoded into the type variable polynomials. For example, when adding element_ptr,
'node_ptr gets replaced by 'element_ptr element_ptr + 'node_ptr:

datatype 'element_ptr element_ptr = Ref (the_ref: ref) | Ext 'element_ptr

type_synonym ('node_ptr, 'element_ptr) node_ptr

= "('element_ptr element_ptr + 'node_ptr) node_ptr"

type_synonym ('object_ptr, 'node_ptr, 'element_ptr) object_ptr

= "('object_ptr, 'element_ptr element_ptr + 'node_ptr) object_ptr"

At this point, only the Object and Node pointer types exist yet. After the initial
declaration of the element_ptr type, we continue to overload the node_ptr and object_ptr

types with synonyms according to our construction. The type hierarchy gets encoded by
constructing the type polynomials accordingly.

The type polynomials are constructed in such a way that the HOL types for pointers of
sub-classes in the object-oriented model are instances of the HOL type of their super-class.
This is key to an extensible formalisation. By re-defining all existing datatypes and type
synonyms for each universe extension, every name always refers to the most up-to-date
version.

From here on, we will use an underscore to denote the tuple of type variables of the
type constructors for pointer and object types. For example, we will write _ node_ptr

instead of ('node_ptr, 'element_ptr, 'character_data_ptr) node_ptr and assume that
type variables of the same name are instantiated with the same types.

Finally, we will tie together our pointer and object types and fix the type hierarchy by
defining a heap for storing node-trees, i.e., instances of our DOM data model, that we
will use for all further definitions. We will usually take a pointer of any type, up-cast it
to an object_ptr by using the appropriate type constructors (note that pointer reference
itself is stored in the most concrete type), resolve it by using the heap, take the retrieved
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definition aliens_heap :: heap_final where

"aliens_heap = create_heap [

(cast (document_ptr.Ref 1),

cast (create_document_obj html (Some (cast (element_ptr.Ref 1))) [])),

(cast (element_ptr.Ref 1),

cast (create_element_obj ''html'' [cast (element_ptr.Ref 2),

cast (element_ptr.Ref 4)] (fmap_of_list [(''class'', ''e'')]) None)),

(cast (element_ptr.Ref 2),

cast (create_element_obj ''head'' [cast (element_ptr.Ref 3)]

fmempty None)),

(cast (element_ptr.Ref 3),

cast (create_element_obj ''title'' [cast (character_data_ptr.Ref 1)]

fmempty None)),

(cast (character_data_ptr.Ref 1),

cast (create_character_data_obj ''Aliens%3F'')),

(cast (element_ptr.Ref 4),

cast (create_element_obj ''body'' [cast (character_data_ptr.Ref 2)]

fmempty None)),

(cast (character_data_ptr.Ref 2),

cast (create_character_data_obj ''Why%20yes.''))]"

Figure 3.5: The formal representation of a heap containing our simple example DOM
(recall Figure 2.1). We use the overloaded function cast to convert pointer
and object types into other types up and down the type hierarchy. The finite
map is then created from the shown list of tuples of pointers and objects.

object and access whichever field we are interested in. Therefore, we define a DOM heap
as is a finite map from object pointers to objects:

datatype ('object_ptr, 'Object) heap = Heap

(the_heap: "((_) object_ptr, (_) Object) fmap")

type_synonym heap_final = "(unit, unit) heap"

Here, _ Object is the type synonym for the instantiated super-type of object (similar
to the construction for pointers). In addition to heap, we also introduce the shorthand
heap_final, which refers to a closed heap that does not allow any further type extensions.
We will use such heaps to work with concrete DOM instances.

Figure 3.5 illustrates how the simple document from our example in Figure 2.1 can be
expressed in our formal DOM heap. We use adhoc_overloading to overload a function
cast to convert pointer and object types into other types up and down the type hierarchy.
In most cases, the type inference engine of Isabelle is able to calculate the correct cast
function without user guidance. The create_ functions provide a short-hand to create
new instances of our objects by mapping the first argument to the first record field, and
so on.

Another important concept regarding the extensibility of our type universe is the
notion of a known pointer. We consider a concrete instance of a pointer known if it
does not contain any reference to a free type variable. We will try to keep the types of
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our definitions as generic as possible so that they can also be applied on a heap that
potentially contains pointer and object types that were not defined yet when the method
was defined. For example, for the definition of a getter function retrieving a certain
attribute from an element it is not relevant which other, more concrete types of document
there might be in the heap. Using our generic heap type, we do not need to redefine such
function definitions just to be type-compatible with the new heap. However, there are
also functions whose behavior depends on the concrete type at runtime and might not
have a default behavior. In these cases, we often want to conduct proofs assuming that
we do not have “undefined behavior”. For this purpose, we define a predicate known_ptr

for each extension of our type universe:

definition known_ptr :: "(_) object_ptr ⇒ bool"

where

"known_ptr ptr ⟷ CharacterDataClass.known_ptr ptr ∨ is_document_ptr ptr"

This particular predicate is the version of the most recent extension, the one in which
RDocument was added. It therefore asserts that the given ptr is either a document_ptr (and
not a possible extension of it) or a known pointer in one of the previous extensions. In a
similar way, we “re-define” a number of different definitions to keep them up-to-update
with the most recent extension of our type universe.

Summary
In this section, we have described a construction that maps object-oriented sub-typing and
inheritance to polymorphic HOL types. To achieve that, we have defined our datatypes for
pointers, objects, and the heap that stores mappings from pointers to objects. Together,
this provides us with the basis to store our node-tree—we can now store reference-based
graphs in HOL. The types that we used are flexible enough so that we can easily extend
our type universe later with new types, without having to redefine all of our functions.
We can define them once in a generic way so that they can also take types from later
type universe extensions. However, if we want to add new functionality based on these
new types, we will have to define a new function for that, but we will still be able to
reuse previous functionality.

3.2 Defining Operations and Queries on Node-Trees
In the following we will define the DOM methods for creating, querying, and modifying
the node-trees that are stored in a DOM heap. We define the following functions formally
in Isabelle/HOL. Figure 3.6 provides an overview of their formal type signatures.

All operations use the state-exception-monad introduced in Section 2.1.3. This gives us
a convenient and visually similar way to model DOM operations and programs involving
them since they are typically written in an imperative style and use exceptions. This
similarity helps us to stay as close as possible to the DOM standard. We use our newly
defined type heap as our heap datatype and introduce a simple datatype exception that
represents all different exceptions that the DOM API uses:
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create_element :: "tag_type ⇒ _ document_ptr ⇒ _ dom_prog"

get_attribute :: "_ element_ptr ⇒ attributes_key ⇒ _ dom_prog"

set_attribute :: "_ element_ptr ⇒ attributes_key

⇒ attributes_value option ⇒ _ dom_prog"

get_child_nodes :: "_ object_ptr ⇒ _ dom_prog"

get_parent :: "_ node_ptr ⇒ _ dom_prog"

remove_child :: "_ object_ptr ⇒ _ node_ptr ⇒ _ dom_prog"

get_element_by_id :: "_ object_ptr ⇒ attributes_value ⇒ _ dom_prog"

adopt_node :: "_ document_ptr ⇒ _ node_ptr ⇒ _ dom_prog"

insert_before :: "_ object_ptr ⇒ _ node_ptr ⇒ _ node_ptr option

⇒ _ dom_prog"

Figure 3.6: The formal type signatures of the methods for creating, querying, and modi-
fying the core DOM.

datatype exception = NotFoundError | HierarchyRequestError | NotSupportedError

| SegmentationFault | AssertException | NonTerminationException

| InvokeError | TypeError

type_synonym (_, 'result) dom_prog = "((_) heap, exception, 'result) prog"

There are many reasons why a dom_prog might throw an exception: NotFoundError,
HierarchyRequestError and NotSupportedError are described in the DOM standard and
are thrown on errors, e. g. when an operation would violate one of the well-formedness
constraints. We throw a SegmentationFault whenever a caller tries to dereference a
pointer that does not exist in the current heap, AssertException is used to model test
cases, we use NonTerminationExceptions to model potentially non-terminating functions in
HOL, which requires all functions to terminate, InvokeErrors for our method overloading
mechanism, and finally, InvokeError whenever we encounter a pointer-object-pair in the
heap which types do not match (e. g., an element pointer that does not point to an
element). Generally, however, we are more interested in the fact that no errors occur,
rather then which specific exception gets thrown.

Now, we illustrate our approach of formalising a DOM method from the standard using
the insertBefore method as an example. The standard contains a mix of structural
English describing the behaviour of the DOM methods and the formal type signatures
using Web IDL. The interface of insertBefore is given in Web IDL:

interface Node {
Node insertBefore(Node node, Node? child);

}

The behavior of this method is described in the standard using structural English:

insertBefore:
The insertBefore(node, child) method, when invoked, must return the
result of pre-inserting node into context object before child.
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This descriptions refers, using hyperlinks, to the concepts pre-inserting and context ob-
ject. Without a clear understanding of these concepts, we cannot formalise insertBefore.
Therefore, we continue with the concept of pre-inserting, which is described in a way
that closely resembles pseudocode. The excerpt describing the pre-inserting algorithm
looks as follows:
pre-insert:
To pre-insert a node into a parent before a child, run these steps:

1) Ensure pre-insertion validity of node into parent before child.
2) Let reference child be child.
3) If reference child is node, set it to node's next sibling.
4) Adopt node into parent's node document.
5) Insert node into parent before reference child.
6) Return node.

Again, several new concepts are introduced. To fully understand the behaviour of
insertBefore, we need to understand and formalise these concepts as well. After
considering which ones are important for the core DOM, we formalise the insertBefore
as follows:

definition insert_before :: "(_) object_ptr ⇒ (_) node_ptr

⇒ (_) node_ptr option ⇒ (_, unit) dom_prog"

where

"insert_before ptr node child = do {

ensure_pre_insertion_validity node ptr child;

reference_child ← (if Some node = child

then next_sibling node

else return child);

owner_document ← get_owner_document ptr;

adopt_node owner_document node;

disc_nodes ← get_disconnected_nodes owner_document;

set_disconnected_nodes owner_document (remove1 node disc_nodes);

insert_node ptr node reference_child

}"

A node that should be inserted needs to fulfil certain well-formedness criteria. This is
checked using the ensure_preinsertion_validity function which formalises the concept
of pre-insertion validity from the DOM standard (Figure 3.7). Then, the “reference child”
needs to be determined, which is the node before which the to-be-inserted node should
be placed. Then, we adopt the node into the (possibly new) node-tree and finally insert
the node into either the child_nodes or document_element attributes. Figure 3.8 shows
the effect of insertBefore on a small example.

We apply this approach of formalising DOM methods to any method that is related to
the node tree. In the following, we will summarize the most common methods to give a
better idea about their type signatures and their behavior.

The function create_element takes an (owner)document and the tag name of the new
element. It returns the updated heap that includes the new element with no children
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To ensure pre-insertion validity of a node into a parent before a child,
run these steps:

1. If parent is not a Document, DocumentFragment , or Element node,
throw a "HierarchyRequestError" DOMException.

2. If node is a host-including inclusive ancestor of parent, throw
a "HierarchyRequestError" DOMException.

3. If child is not null and its parent is not parent, then throw a
"NotFoundError" DOMException.

4. If node is not a DocumentFragment , DocumentType , Element, Text,
ProcessingInstruction , or Comment node, throw a
"HierarchyRequestError" DOMException.

5. If either node is a Text node and parent is a document, or node
is a doctype and parent is not a document, throw a
HierarchyRequestError" DOMException.

6. If parent is a document, and any of the statements below,
switched on node, are true, throw a "HierarchyRequestError"
DOMException.

DocumentFragment node
If node has more than one element child or has a Text node child.

Otherwise , if node has one element child and either parent has
an element child, child is a doctype, or child is not null and
a doctype is following child.

element
parent has an element child, child is a doctype, or child is not
null and a doctype is following child.

doctype
parent has a doctype child, child is non-null and an element is
preceding child, or child is null and parent has an element child.

Figure 3.7: The semi-formal specification of the concept “pre-insertion validity” from the
official standard [71].
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Document

Element
tag: html

Element
tag: head

Element
tag: body

Element
tag_type: div

CharacterData
Some text

Figure 3.8: An example tree illustrating the possible effects of calling insert_before. If
the content of the red dashed box gets inserted below the body element, the
whole sub-tree gets moved to the new location (the red solid box).

and no attributes along with a reference to the new element, which is stored in the first
free location in the heap. This ensures that it will not change any existing locations in
the heap, which we will prove later. Additionally, the new element is added to the list of
disconnected nodes of the given document, as it is not yet part of the node tree.

The function get_child_nodes takes a heap and a pointer to a node and returns a list
of pointers to its children. For elements, it returns the children list that is stored in the
datatype. For text nodes, it returns the empty list. For documents, we convert their
document element into the appropriate node list.

The function get_attribute looks up the given attribute in the element’s attribute map.
It returns Some attr if there exists an attribute with the given key, and None otherwise.
The official specification also has a concept called “reflected content attribute,” which
basically returns the stored attribute of the same name, but returns the empty string if
the attribute is not present.

The function set_attribute updates the given attribute of the pointer in the heap. In
the official specification, it is not allowed to set the attribute to None or null, respectively,
to delete the attribute. We generalize this definition by allowing this behaviour.

The function get_parent_node takes a pointer to a node and returns a pointer to its
parent, or None, if the node does not have a parent. The case where a node does not
have a parent can only occur in disconnected node trees, which we will discuss later. Our
API does not accept documents, since they can never have a parent. Having the types as
narrow as possible, i. e. allowing as few possible types as possible, will enable easier proofs.
The function get_parent_node is an example of a method where the official specification
leaves much room for interpretation regarding the implementation. It neither provides
an algorithm explaining to how obtain a parent, given a node, nor does it specify that
the parent reference should be stored in the objects. To avoid specifying additional
consistency constraints that would be needed if both children and parent references were
stored, we defined get_parent_node by searching the whole heap for any node whose
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get_child_nodes contains the given reference.
The function remove_child is rather close to the official specification; if child’s parent

is different from the passed pointer, we then “throw” a NotFoundError. Otherwise, we
add the removed child to the disconnected node list of its owner document and remove it
from either the document_element or the child_nodes attribute.

The function get_element_by_id searches in tree order (depth-first, left-to-right) for
the first element with the given id. Our definition is more general than the official
specification, as we dropped the requirement that get_element_by_id should only be
available on documents, which is a legacy requirement.

The method adopt_node removes a node from its parent, if it had any, and assigns it
to the new ownerDocument as a disconnected node. First, it tries to retrieve the parent of
the node to be adopted. If the node has a parent node, it removes the node from the
children list, otherwise it removes it from the list of disconnected nodes of the previous
owner document. Finally, the node is now added to the disconnected nodes of the new
document. Since this is a rather complicated, but also important method, we now show
our formalisation of it:

definition adopt_node :: "(_) document_ptr ⇒ (_) node_ptr

⇒ (_, unit) dom_prog"

where

"adopt_node document node = do {

old_document ← get_owner_document (cast node);

parent_opt ← get_parent node;

(case parent_opt of

Some parent ⇒ do {

remove_child parent node

} | None ⇒ do {

return ()

});

(if document ≠ old_document then do {

old_disc_nodes ← get_disconnected_nodes old_document;

set_disconnected_nodes old_document

(remove1 node old_disc_nodes);

disc_nodes ← get_disconnected_nodes document;

set_disconnected_nodes document (node # disc_nodes)

} else do {

return ()

})

}"

Summary

So far, we have defined the core of what makes up fDOM ; the underlying data structures
to represent node trees and the functions to create, inspect, and modify them. Most of
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the design decisions have been made to try and stay as close to the DOM standard as
possible. However, the heap datatype is not restrictive enough yet to accurately capture
the constraints of a node tree. These kinds of restrictions can not be easily pushed into
the used types, however, so we will look into what kinds of invariants are still missing in
the next section.

3.3 Well-Formedness of the DOM Heap
Our DOM heap is a finite map from pointers to objects. A finite map alone, however,
would allow numerous “illegal” heaps. Two features of our formalisation rule out many,
but not all, misconfigurations: Our data model is typed and, thus, rules out illegal heaps
such as one that contains a document with a character data object as its only child.
Additionally, our data model omits some fields of the standard, such as parentNode,
which we calculate by using the heap and get_child_nodes.

Still, some possible illegal heap configurations remain. For example, a heap could still
have a cyclic get_child_nodes relationship, which would result in a graph that is not
a tree anymore. Thus, we need further well-formedness constraints. Additionally, we
need to show that the DOM methods preserve these well-formedness constraints, which
is why we will also call these constraints invariants. We will now introduce predicates
that validate whether a given heap conforms to the standard.

This is not just necessary for our formalisation; by doing so we uncover invariants that
also need to be obeyed by the official standard, even though they are not mentioned
there, not even within non-normative sections. The invariants are only being preserved
implicitly by the DOM methods.

3.3.1 Node Sharing
The DOM standard assumes that a node cannot be the child of more than one node. This
property of heaps is informally implied by the official standard, and all tree-modifying
methods ensure that such a DOM cannot be built. We, however, must deal with all
heaps that conform to our heap type. Therefore, we formally define the following heap
predicate:

definition distinct_lists :: "(_) heap ⇒ bool"

where

"distinct_lists h = distinct (concat (

(map (λptr. |h ⊢ get_child_nodes ptr|r)

|h ⊢ object_ptr_kinds_M|r)

@ (map (λdocument_ptr. |h ⊢ get_disconnected_nodes document_ptr|r)

|h ⊢ document_ptr_kinds_M|r)

))"

The definition first builds a list of all children and disconnected nodes in any objects
in the current heap and then asserts that this list does not contain any duplicates by
using the distinct predicate. This not only prevents parents from sharing children or
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Document

Element

Element Element

Element CharacterData CharacterData

Element

Element CharacterData

Figure 3.9: A schematic DOM instance with a visible document (gray) and a disconnected
runtime tree (white).

documents from sharing disconnected nodes, but also ensures that no nodes are child
and disconnected node at the same time. In addition, this predicate ensures that we do
not have duplicate pointers in our lists, which is important for the proper functioning of
DOM methods such as removing a child.

3.3.2 The Owner Document
The DOM specifications requires that each node is owned by exactly one document:
its owner document. Moreover, each node participates in a tree with regards to the
get_child_nodes-relation. A DOM might–and usually will–consist of several trees, i. e., a
DOM is a forest of trees. We call the tree that has the main document as root the visible
document, as this is the part of the DOM that would be rendered, e. g., by a web browser.

Figure 3.9 illustrates this relationship for an example: the gray nodes (connected to the
node document by solid arrows that visualize the get_child_nodes-relation) represent the
visible document. The white nodes (connected to the node document by dotted arrows
that visualize the get_owner_document relationship) are forming a temporary runtime
tree. Runtime trees are not serialized (e. g., in an HTML or XML document) and only
exist at runtime.

We define get_owner_document of a node to be the root, if the root is a document;
otherwise, we return that document whose disconnected_nodes contains the given node.
In order for this definition to be well-formed, we need the following predicate:

definition owner_document_valid :: "(_) heap ⇒ bool"

where

"owner_document_valid h ⟷ (∀node_ptr ∈ fset (node_ptr_kinds h).

((∃document_ptr. document_ptr |∈| document_ptr_kinds h

∧ node_ptr ∈ set |h ⊢ get_disconnected_nodes document_ptr|r)

∨ (∃parent_ptr. parent_ptr |∈| object_ptr_kinds h

∧ node_ptr ∈ set |h ⊢ get_child_nodes parent_ptr|r)))"

This predicate, together with distinct_lists, guarantees that the set of nodes in all
disconnected_nodes fields is exactly the set of nodes that do not have a document as their
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root. It asserts that for each node_ptr in the heap, we either have a document_ptr that
is in the heap and has node_ptr as a disconnected node, or that we have a parent_ptr

that is in the heap and has node_ptr as one of its children. The distinct_lists predicate
ensures this or is actually an exclusive or.

3.3.3 Restricting DOMs to Trees

So far, we do not restrict the relation given by get_child_nodes to be acyclic, which is
possible since we use pointers. To prevent this, we can use the following definitions:

definition parent_child_rel :: "(_) heap

⇒ ((_) object_ptr × (_) object_ptr) set"

where

"parent_child_rel h = {(parent, child). parent |∈| object_ptr_kinds h

∧ child ∈ cast ` set |h ⊢ get_child_nodes parent|r}"

definition acyclic_heap :: "(_) heap ⇒ bool"

where

"acyclic_heap h = acyclic (parent_child_rel h)"

First, we define parent_child_rel, which returns a relation of all parent-child pairs in
the heap. In other words, it is the set of all solid black arrows in Figure 3.9. Then, we
leverage the definition of acyclicity on relations, acyclic, to assert that all parent-child
pair in a given heap h indeed represent an acyclic relation.

3.3.4 Pointer Validity

Moreover, we need to ensure that objects do not contain invalid pointers, i. e., pointers
that do not point to an object stored in the heap. Otherwise, whenever we work with our
pointers, we would have to deal with the possibility of a “null-pointer exception”. Thus,
we require:

definition all_ptrs_in_heap :: "(_) heap ⇒ bool"

where

"all_ptrs_in_heap h ⟷

(∀ptr ∈ fset (object_ptr_kinds h).

set |h ⊢ get_child_nodes ptr|r ⊆ fset (node_ptr_kinds h)) ∧

(∀document_ptr ∈ fset (document_ptr_kinds h).

set |h ⊢ get_disconnected_nodes document_ptr|r

⊆ fset (node_ptr_kinds h))"

The only place where we can find pointers (without arbitrarily constructing them,
which should be avoided) is in one of the datatype fields. Therefore, for all pointers in
the heap, we retrieve the corresponding object, and check whether all pointers stored in
applicable fields (childNodes, document_element, and disconnected_nodes) are present in
the heap.

32



3.4 Reasoning over the DOM

3.3.5 Heaps are Strongly Typed

As we model typed pointers and objects, we want to assure that a pointer of a certain type
actually maps to an object of the related type in a given heap, e. g., that a document_ptr

actually maps to a document. The following predicate assures that this holds for the
whole heap:

definition type_wf :: "(_) heap ⇒ bool" where

"type_wf h = (CharacterDataClass.type_wf h ∧

(∀document_ptr ∈ fset (document_ptr_kinds h).

getDocument document_ptr h ≠ None))"

This predicate is built alongside our type universe, which means that when we are
building the Document extension, we only need to check for all document pointers, in
addition to the predicate of the previous universe extension, which is CharacterDataClass

in this example. For more information about this extension mechanism, see Section 3.1.1.
We check that for all pointers of a given type in the heap, we actually are able to retrieve
an object of the appropriate type.

3.3.6 Well-Formed Heaps

To put it all together, we define a well-formed heap as a heap that satisfies all discussed
constraints:

definition heap_is_wellformed :: "(_) heap ⇒ bool" where

"heap_is_wellformed h ⟷

acyclic_heap h ∧ all_ptrs_in_heap h

∧ distinct_lists h ∧ owner_document_valid h"

This combined predicate is of central importance to fDOM . It encapsulates the most
important properties of a well-formed node tree. These properties are not explicitly
described in the official standard, but only implied by the specifications of the methods,
which contain some checks to ensure that, for example, no cycles are introduced into
the tree. This formal predicate now gives us one possible set of such explicit invariants.
They are immensely useful for many purposes, such as generating useful test cases that
can check in isolation whether a given implementation respects all invariants.

However, we still need to give a formal justification for why this set of predicates
deserve to be called invariants. In the next section, we will see that these predicates
provide us assumptions for our functional correctness proofs that are strong enough, as
well as that all of our DOM methods do actually preserve them.

3.4 Reasoning over the DOM

Up to this point, we have mainly set up the infrastructure that we need to reason about
the DOM in Isabelle: we defined new syntax, types, and program definitions. For this,
we could have used any normal functional programming language. In the following, we
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will use the Isabelle/HOL prover to conduct many different kinds of proofs over the basis
that we have, which is one of the benefits of using such a tool: combining high-level
and easy-to-read functional-style definitions with proofs of functional correctness in a
powerful higher-order logic. We will classify the DOM methods according to whether
they are side-effect free and which heap locations (identified by pointer and attribute of
the object) they read, or which heap locations they modify if they do so. Together with
more specialized lemmas about the DOM methods, we will then show that all DOM API
methods do indeed preserve all our invariants and how they do so. In addition, we will
see that a number of lower-level methods sometimes break these invariants, highlighting
the need to carefully consider which API to expose in order to ensure that the consistency
and well-formedness of the heap is preserved.

It is important to recall that our focus here lies on the DOM and important properties
that we are able to prove about DOM methods. While we touch on some topics that
have been discussed in the area of separation logic for many years, such as “locality” of
DOM methods or specifying exactly what parts of the heap are read and written by
them, ultimately we do not need their full power, complexity, and level of automation to
reach our goal: creating a lightweight proving-infrastructure of DOM methods and web
components. In the future, however, it might well be worth the effort to extend, e. g.,
a powerful Abstract Separation Logic framework such as Smallfoot [65] with support
for richer heaps and methods to underpin our fDOM in order to gain a higher degree of
proof automation.

3.4.1 Locality of Heap Modifications
Before we can start to reason about the behavior of whole programs, we need to have
a closer look at how our heaps change during the execution of our programs. Most
heap-modifying functions do not modify the heap arbitrarily. Many functions even set
only one attribute of only one object, i. e., setters such as set_attribute. Others are
more complicated; methods such as insert_before modify attributes of multiple objects,
adding and deleting nodes from lists. Still, the modified attributes and objects can be
precisely specified.

When it comes to pure, or “read-only”, functions, we might not need to worry about how
the heap is modified, but characterizing the result can also be tricky. For example, after
calling insert_before, the new child node surely will appear in the list of nodes returned
by get_child_nodes on the same pointer. But what happens if we call set_attribute in
between these two calls? Or what happens if we add another call of insert_before, but
on a separate part of the heap?

To answer these questions, we first introduce two predicates that characterize a function
by specifying which locations (pointers) and fields are being read or written, respectively:
definition reads :: "('heap ⇒ 'heap ⇒ bool) set ⇒ ('heap, 'e, 'result) prog

⇒ 'heap ⇒ 'heap ⇒ bool"

where

"reads S getter h h' ⟷ (∀P ∈ S. reflp P ∧ transp P)

∧ ((∀P ∈ S. P h h') ⟶ preserved getter h h')"
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definition writes :: "('heap, 'e, 'result) prog set ⇒ ('heap, 'e, 'result2) prog

⇒ 'heap ⇒ 'heap ⇒ bool"

where

"writes S setter h h' ⟷ (h ⊢ setter →h h'

⟶ (∃progs. set progs ⊆ S ∧ h ⊢ iterate_M progs →h h'))"

The reads predicate takes a set of predicates and a getter function; the set of predicates
basically encodes the conditions under which the given getter will behave in the same
manner across different heaps. For example, get_child_nodes will return the same result
if the childNodes and documentElement fields across all objects in heaps h and h' are
the same. We can be even more specific: the method called on a pointer ptr will behave
the same across two heaps if the fields of the object referenced by ptr do not change.

In contrast, the writes predicate works differently: it takes a set of programs and a
setter function. The predicate then holds if the setter can be substituted for a chain of
programs (executed by using iterate_M) from the given set progs. This then allows us to
characterize a heap-modifying method by the pointers and attributes that are changed
by it. For example, for the get_attribute and set_attribute DOM methods we prove
the following two lemmas:

lemma get_attribute_reads:

"reads {preserved (get_M element_ptr attrs)}

(get_attribute element_ptr k) h h'"

This lemma says that a call of get_attribute only “reads” the attrs attribute of the
element class, i. e., whenever we can show that the attrs attribute remains unchanged
between two heaps h and h', we know that get_attribute remains unchanged, too, and
will exhibit the same behaviour on both heaps. Such lemmas will be very useful whenever
we want to show that certain modifications do not affect certain getters.

lemma set_attribute_writes:

"writes (all_args (put_M element_ptr attrs_update))

(set_attribute element_ptr k v) h h'"

This lemma says that set_attribute only changes the attrs attribute of the element
referred to by element_ptr, and makes no other changes to h' compared with h. We will
use such lemmas mainly whenever we want to replace a complex DOM method by just
the locations and attributes that it modifies.

We prove such lemmas for every one of our DOM methods. In essence, these lemmas
characterize the behaviour of all methods by means of their use of getter (get_M) and
setter (put_M) functions. In this example, attrs is the method provided by the record
package to retrieve the attrs field from a record; attrs_update is used to set it.

Table 3.1 shows which methods access which attributes. We distinguish two kinds of
accesses: fields of objects that are referenced by the function call, and fields of objects that
are “further away”, highlighting potentially unexpected field accesses. It also provides a
measure for the complexity of the given method.
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Table 3.1: DOM functions (top part) and internal helper functions (bottom part), and
which attributes they read (if the function is pure) or write (if the function
modifies the heap). A bold tick indicates that the attribute is not just read
from the pointers explicitly passed to the function, but also from other pointers
in the heap.
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get_child_nodes 3 3

get_parent_node 4 4

get_root_node 4 4

get_element_by_id 4 4 4

get_owner_document 4 4 4

get_attribute 3

get_data 3

get_tag_name 3

create_element 3 3 3 3

create_character_data 3 3

create_document 3 3

set_attribute 3

remove_child 3 3 4

adopt_node 4 4 3

insert_before 4 4 4

append_child 4 4 4

set_child_nodes 3

get_disconnected_nodes 3

set_disconnected_nodes 3

set_tag_name 3

set_data 3
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3.4.2 Exceptions and Non-Termination
All our functions can throw exceptions, i. e., they return a sum type of exception and
their real return type, which is a common way of modelling exceptions in functional
languages. Therefore, we can provide lemmas that show under which preconditions
our functions will return their normal result and not throw an exception. Most DOM
functions will throw an exception under exactly one circumstance: if they try to resolve a
pointer on the given heap which does not have an object of the same type stored in that
location, i. e., the lookup returns None. This is expected, since most functions will need
to do something with the object, and not just the pointer to the object. For example, we
show:
lemma set_attribute_ok:

assumes "type_wf h"

assumes "element_ptr |∈| element_ptr_kinds h"

shows "h ⊢ ok (set_attribute element_ptr k v)"

The method set_attribute does not return an error if the heap is well-typed, i. e., the
types of all pointers and their objects match, and if the argument element_ptr to the
function is present in the heap.

Another, less common source of errors is non-termination. As we have a heap structure
with pointers, any function that iterates along the graph could potentially loop infinitely.
Normally, Isabelle provides enough automatic support that termination need not be
worried about for simple recursive methods, e. g., methods that simply “unpack” datatypes.
In our case, however, it is not always obvious why a function should terminate. In heaps
that do not fulfil our well-formedness predicates, there are potentially many situations
where a function that iterates along the node graph does not terminate. Our heap
datatype alone is not sufficient to prevent these cases, as we have seen earlier.

We define recursive DOM methods by using Isabelle’s partial_function command.
Despite the name, the resulting function is still total, but maps the case of non-termination
to a special datatype instead of preventing the definition altogether. Naturally, Isabelle
is unable here to generate many of the useful equations for us that we get for, e. g.,
definition, since many of them now require additional preconditions. For example, the
formalisation of the “tree order” of the standard looks as follows:
partial_function (dom_prog) to_tree_order :: "(_) object_ptr

⇒ (_, (_) object_ptr list) dom_prog"

where

"to_tree_order ptr = do {

children ← get_child_nodes ptr;

treeorders ← map_M to_tree_order (map cast children);

return (ptr # concat treeorders)

}"

Isabelle allows us to define many kinds of recursive functions that way without the need
to worry about termination (during the definition). We configured partial_function

in a way that effectively maps the case of non-termination to a specific value of our
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dom_prog type–more specifically, the NonTerminationException. Of course, to prevent
inconsistencies in the logic, we only get few lemmas to work with from this kind of
definition. Therefore, before we can use this kind of definition in proofs, we need to show
that the given method call does not return an error, for which we use the ok predicate
from our monad theory. These proofs are more complicated now, though, and involve
the use of the heap well-formedness predicates (guaranteeing an ayclic node tree) in
conjunction with well-founded induction. In more detail, one of the key lemmas for our
termination proofs is the following:

lemma heap_wellformed_induct:

assumes "heap_is_wellformed h"

assumes step:

"⋀parent. (⋀children child. h ⊢ get_child_nodes parent →r children

⟹ child ∈ set children ⟹ P (cast child)) ⟹ P parent"

shows "P ptr"

It basically says that whenever we have a wellformed heap h we can proof any property
P by induction over the children relationship, i. e. if we can show that when a property P

holds for all children of a pointer parent it also holds for parent itself, then P holds for any
pointer. This induction lemma itself itself holds because the heap-wellformedness provides
us with a well-founded relation parent_child_rel (which is built from get_child_nodes),
which we use to leverage transfinite induction on the children relationship.

3.4.3 Functional Correctness
One goal of our formalisation of the DOM is to prove the functional correctness of
the most common API methods. Especially complex functions such as adopt_node and
insert_before, which modify the heap in a non-local way, are of interest, because they
have the rather surprising behaviour of removing a node first before inserting another
node. This behaviour also has the potential to leave a misshapen node tree. Doing
this analysis in Isabelle/HOL also has the advantage that the look of the properties are
relatively close to how they could be presented, for example, as part of the WebIDL
specifications in the official standard.

In the following, we will show two of many important properties about insert_before.
First, we will show that using insert_before never leads to duplicates among the node’s
children, even if a pointer is being inserted that is already in this node’s children. Second,
we will show that insert_before also never introduces cycles into the node tree. Both
properties are important for the well-formedness invariants in Section 3.3.

We start by showing that insert_before never leads to duplicates in a child node list.
Since we use HOL lists (as opposed to, e. g., ordered sets), which can contain duplicate
pointers, the type alone does not provide the desired constraint. Therefore, to show that
if we start with a well-formed heap, we will never end up with duplicate pointers, we
show the following lemma:

lemma insert_before_children_remain_distinct:

assumes "heap_is_wellformed h" and "known_ptrs h" and "type_wf h"
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assumes "h ⊢ insert_before ptr new_child child_opt →h h'"

shows "⋀ptr' children'.

h' ⊢ get_child_nodes ptr' →r children' ⟹ distinct children'"

The conclusion is to be read as follows: After the use of insert_before (represented
by state h'), all lists of children of all pointers will be distinct. To prove such a property
about the behavior of the DOM method, we first recall its definition earlier. It contains
two crucial heap-modifying methods: adopt_node and insert_node, an auxiliary method
that is not part of the standard, but which we use to facilitate the actual insertion of the
node into the list. Now, fortunately the lemma that we intend to prove also holds for
these two methods.

For adopt_node, the situation is relatively simple, since the method only removes a
child:

lemma adopt_node_removes_child:

assumes "heap_is_wellformed h" and "known_ptrs h" and "type_wf h"

assumes "h ⊢ adopt_node owner_document node_ptr →h h'"

shows "⋀ptr' children'.

h' ⊢ get_child_nodes ptr' →r children' ⟹ node_ptr ∉ set children'"

Therefore, we can immediately continue to show that adopt_node never introduces
duplicates:

lemma adopt_node_children_remain_distinct:

assumes "heap_is_wellformed h" and "known_ptrs h" and "type_wf h"

assumes "h ⊢ adopt_node owner_document node_ptr →h h'"

shows "⋀ptr' children'.

h' ⊢ get_child_nodes ptr' →r children' ⟹ distinct children'"

Since adopt_node only ever removes nodes from lists of children, this property is simpler
to prove. Showing that property for insert_node, however, is more challenging:

lemma insert_node_children_remain_distinct:

assumes "heap_is_wellformed h" and "known_ptrs h" and "type_wf h"

assumes "h ⊢ insert_node ptr new_child reference_child_opt →h h'"

assumes "h ⊢ get_child_nodes ptr →r children"

assumes "new_child ∉ set children"

shows "⋀children'.

h' ⊢ get_child_nodes ptr →r children' ⟹ distinct children'"

Since insert_node inserts the node without any checks, we need to introduce the
additional assumption that new_child was not already in the list of children beforehand.
Equipped with these three lemmas, we can go back to prove our original lemma. This
is a common proof schema that we use for many DOM methods; if we want to prove a
property for a method, we can then prove said property for each other method that the
definition depends on. Once that is done, we can then prove the original lemma by first
fixing all necessary variables, usually using obtain, and then establishing the property
step by step starting from the original state h to the final state h'. To keep already
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established properties across these different heaps, the reads and writes lemmas from
Section 3.4.1 are especially useful. Using this technique, we now prove that the children
of all nodes remain distinct after insert_before as been called anywhere in the heap:

lemma insert_before_children_remain_distinct:

assumes "heap_is_wellformed h" and "known_ptrs h" and "type_wf h"

assumes "h ⊢ insert_before ptr new_child child_opt →h h'"

shows "⋀ptr' children'.

h' ⊢ get_child_nodes ptr' →r children' ⟹ distinct children'"

proof −
obtain reference_child owner_document h2 h3 disconnected_nodes_h2 where

reference_child: "h ⊢ (if Some new_child = child_opt then

next_sibling new_child else return child_opt) →r reference_child" and

owner_document: "h ⊢ get_owner_document ptr →r owner_document" and

h2: "h ⊢ adopt_node owner_document new_child →h h2" and

disconnected_nodes_h2:

"h2 ⊢ get_disconnected_nodes owner_document →r disconnected_nodes_h2" and

h3: "h2 ⊢ set_disconnected_nodes owner_document

(remove1 new_child disconnected_nodes_h2) →h h3" and

h': "h3 ⊢ insert_node ptr new_child reference_child →h h'"

using assms(4)

by ...

have "⋀ptr children. h2 ⊢ get_child_nodes ptr →r children

⟹ distinct children"

using adopt_node_children_remain_distinct ...

by blast

moreover have "⋀ptr children. h2 ⊢ get_child_nodes ptr →r children

⟹ new_child ∉ set children"

using adopt_node_removes_child ...

by blast

moreover have "⋀ptr children. h2 ⊢ get_child_nodes ptr →r children

= h3 ⊢ get_child_nodes ptr →r children"

using get_child_nodes_reads set_disconnected_nodes_writes h3

by ...

ultimately show "⋀ptr children. h' ⊢ get_child_nodes ptr →r children

⟹ distinct children"

using insert_node_children_remain_distinct

by ...

qed

First, we unfold the definition of insert_before to get a handle to the individual
statements. Additionally, we obtain h2 and h3, which are the intermediate heap in
between adopt_node and set_disconnected_nodes and in between set_disconnected_nodes

and insert_node, respectively.
Second, we prove that after adopt_node, in addition to all children lists still being
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distinct (we only remove one child from one list), the child will not be part of any of these
as it has been removed from the only children list that contained it. For this proof, we
can use two properties of adopt_node that we proved earlier, adopt_node_removes_child
and adopt_node_children_remain_distinct.

Third, since we know that before the use of insert_node all children lists are distinct
and do not contain the node to be inserted, we can prove that all children lists will remain
distinct, as we only insert the given node and nothing else. Again, for this proof, we can use
a previously proven property about insert_node; insert_node_children_remain_distinct.

Now, we move on to a property about insert_before that is more complicated: We
want to analyse exactly how the specification of insert_before ensures that it does
not introduce any cycles into the node tree as an example of a functional correctness
proof. For this purpose, we will look at various lemmas to help us prove two important
observations: After calling insert_before, we will 1. never have a node twice in the node
tree, and 2. receive an error if we try to insert a node into the children of one of its
descendants.

The first observation is achieved by insert_before removing nodes from its previous
parent before inserting it into the list of children:

lemma insert_before_removes_child:

assumes "heap_is_wellformed h" and "known_ptrs h" and "type_wf h"

assumes "h ⊢ insert_before ptr node child →h h'"

assumes "ptr ≠ ptr'"

shows "⋀children'.

h' ⊢ get_child_nodes ptr' →r children' ⟹ node ∉ set children'"

We again fix two heaps, h and h', representing the state before and after the call
to insert_before, respectively. Then, we fix a pointer ptr' that is different from ptr

on which we called the method. Finally, we show that in state h', this other pointer
ptr' certainly does not have node as one of its children. Note that we do not make any
further assumptions, besides our usual well-formedness predicates. It does not matter
whether node was previously child of some other node, or perhaps a disconnected node.
The specification of insert_before ensures that in any case, the node does not appear
anywhere in the node tree besides as part of the children of ptr, thus preventing any
duplicate occurrence of node.

The removal of the node prior to insertion is actually achieved by calling adopt_node in
the specification of insert_before, which removes a given node from the node tree and
places it in the list of disconnected nodes, which we have already seen for the previous
example.

Before we show the second observation, we will have a closer look at the “pre-insertion
validity” from the standard, which we give verbatim in Figure 3.7 and as an Isabelle func-
tion in Figure 3.10. For us of interest is especially Line 7 until Line 9, which retrieves the
list of ancestors of the reference node parent, and then returns a HierarchyRequestError

if the node node, which is to be inserted, is already an ancestor of parent. The intention
of this check is to prevent the introduction of cycles, although it is never clearly specified,
and it is not clear whether that is enough, on its own, to achieve that goal.
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1 definition ensure_pre_insertion_validity :: "(_) node_ptr

2 ⇒ (_) object_ptr ⇒ (_) node_ptr option ⇒ (_, unit) dom_prog"

3 where

4 "ensure_pre_insertion_validity node parent child_opt = do {

5 (if is_character_data_ptr_kind parent

6 then error HierarchyRequestError else return ());

7 ancestors ← get_ancestors parent;

8 (if cast node ∈ set ancestors

9 then error HierarchyRequestError else return ());

10 (case child_opt of

11 Some child ⇒ do {

12 child_parent ← get_parent child;

13 (if child_parent ≠ Some parent

14 then error NotFoundError else return ())}

15 | None ⇒ return ());

16 children ← get_child_nodes parent;

17 (if children ≠ [] ∧ is_document_ptr parent

18 then error HierarchyRequestError else return ());

19 (if is_character_data_ptr node ∧ is_document_ptr parent

20 then error HierarchyRequestError else return ())

21 }"

Figure 3.10: The formalisation of “pre-insertion” validity (Figure 3.7) in Isabelle/HOL as
a program that terminates correctly if fulfilled, and throws the appropriate
exception if not.
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Finally, with these two observations proven, we can attempt to prove the lemma that
we maintain an acyclic heap, i. e., the relation parent_child_rel h remains acyclic:

lemma insert_before_preserves_acyclitity:

assumes "heap_is_wellformed h" and "known_ptrs h" and "type_wf h"

assumes "h ⊢ insert_before ptr node child →h h'"

shows "acyclic (parent_child_rel h')"

To prove this property, our approach of simply lifting the proofs from the “smaller”
definitions to the more complicated ones does not work, as the unchecked node insertion
of insert_node certainly could lead to cycles. Therefore, we will now look at the proof
skeleton, which uses lemmas related to relations (the full proof is, as always, part of the
formalisation document):

1 proof −
2 obtain ancestors reference_child owner_document h2 h3

3 disconnected_nodes_h2

4 where

5 ancestors: "h ⊢ get_ancestors ptr →r ancestors" and

6 node_not_in_ancestors: "cast node ∉ set ancestors" and

7 reference_child:

8 "h ⊢ (if Some node = child then next_sibling node

9 else return child) →r reference_child" and

10 owner_document: "h ⊢ get_owner_document ptr →r owner_document" and

11 h2: "h ⊢ adopt_node owner_document node →h h2" and

12 disconnected_nodes_h2: "h2 ⊢ get_disconnected_nodes owner_document

13 →r disconnected_nodes_h2" and

14 h3: "h2 ⊢ set_disconnected_nodes owner_document

15 (remove1 node disconnected_nodes_h2) →h h3" and

16 h': "h3 ⊢ insert_node ptr node reference_child →h h'"

17 by ...

18 ...

19 have "cast node ∉ {x. (x, ptr) ∈ (parent_child_rel h2)∗}"

20 using adopt_node_removes_child

21 using ancestors node_not_in_ancestors

22 using ...

23 by blast

24 then have "cast node ∉ {x. (x, ptr) ∈ (parent_child_rel h3)∗}"

25 by ...

26 moreover have "parent_child_rel h'

27 = insert (ptr, cast node) (parent_child_rel h3)"

28 by ...

29 ultimately show "acyclic (parent_child_rel h')"

30 by ...

31 qed

43



3 A Formal Core DOM: fDOM

The proof script has two main parts: In the upper half, we use the obtain command to
divide the definition of insert_before into its parts so we can reference them in the proof.
Most importantly, we introduce the intermediate heaps h2 and h3 so we can reference the
changes to the heap in a more fine-grained manner. We reference our first observation
by lemma name in Line 20 and Line 21, whereas the second observation follows directly
from the definition of insert_before, so it is part of the obtain construction in Line 5
and Line 6. Then, the proof script contains two critical steps: in Line 19, we prove that
after calling adopt_node (in h2), node does not appear as a parent anywhere in the heap.
Afterwards, Line 26 characterizes our helper method insert_node, which does the actual
work of inserting the node into the list. After it, we have a new pair (ptr, cast node)

as part of our parent_child_rel relation. As we know that it did not contain any other
pair ending with cast node, we can finally conclude that we have not introduced a cycle.

3.4.4 Well-Formedness of the Heap Methods
With the groundwork done, we can now tackle the goal of verifying that all DOM API
methods preserve the heap well-formedness invariants. This would also mean that any
exception-free sequence of DOM methods creates a well-formed DOM heap.

To achieve this goal, we need to prove a lemma of this form for all methods:

lemma insert_before_heap_is_wellformed_preserved:

assumes "heap_is_wellformed h" and "known_ptrs h" and "type_wf h"

assumes "h ⊢ insert_before ptr node child →h h'"

shows "heap_is_wellformed h'" and "known_ptrs h'" and "type_wf h'"

All variables in lemmas are all-quantified, meaning they can take all possible values of
their types, only restricted by the assumes statements. As the predicate heap_is_wellformed
is a conjunction of more specific predicates (e. g., acyclic_heap), we can prove that they
are preserved separately. We have shown two of such proofs in the previous section. In
addition, Table 3.2 shows a more detailed view, listing which DOM methods preserve
which invariant. While the DOM API methods all do so, not all of our “internal” functions
do, demonstrating why many more primitive methods are missing from the DOM API.

Summary
In this chapter, we have built a formal model of the core DOM, the fDOM , in Isa-
belle/HOL. We have seen a formal description of the properties of the node-tree, the
central data structure at the heart of the DOM. One of the shortcomings of the of-
ficial standard is the lack of properties that hold for the DOM methods, making the
semi-formal descriptions difficult to grasp. The well-formedness predicates that we have
seen in this section improve this situation by providing a concise specification of these
implicit assumption, all founded in higher-order logic. Additionally, the fDOM provides
us with an analysis framework that we will use in the following chapters to analyse
further properties in this style of shadow roots, as well as concepts that lie beyond what
is specified in the standard and will result in our proposal for safer web components.
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Table 3.2: DOM functions (top part) and internal helper functions (bottom part), and
which well-formedness predicates they preserve. We added functions that we
use internally in fDOM , but are not part of the DOM API, to demonstrate
the problem that would arise if all getter and setter functions part of the DOM
API.
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get_child_nodes 3 3 3 3 3 3

get_parent_node 3 3 3 3 3 3

get_root_node 3 3 3 3 3 3

get_element_by_id 3 3 3 3 3 3

get_owner_document 3 3 3 3 3 3

get_attribute 3 3 3 3 3 3

get_data 3 3 3 3 3 3

get_tag_name 3 3 3 3 3 3

create_element 3 3 3 3 3 3

create_character_data 3 3 3 3 3 3

create_document 3 3 3 3 3 3

set_attribute 3 3 3 3 3 3

remove_child 3 3 3 3 3 3

adopt_node 3 3 3 3 3 3

insert_before 3 3 3 3 3 3

append_child 3 3 3 3 3 3

set_child_nodes

get_disconnected_nodes 3 3 3 3 3 3

set_disconnected_nodes 3

set_tag_name 3 3 3 3 3 3

set_data 3 3 3 3 3 3
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Now that we have established a formal foundation of the DOM, we can focus on exploring
those parts of the DOM specification that are suitable for component-based programming.
While there are also parts that are relevant for using components in other specifications,
e. g., the HTML standard, the fundamental mechanisms for that are (now) part of the
DOM standard. To be more specific, what was previously called “Shadow DOM” and has
now been integrated into the DOM, is basically the concept of shadow roots. A shadow
root is a new type of root node, similar to a Document, but it has to be “embedded” into
an Element and thus begins a new kind of sub-tree starting from this Element. In a way,
this additional kind of node adds another “dimension” to the node tree that we thoroughly
discussed in the previous chapter. If we imagine the node tree as a two-dimensional plane,
shadow roots allow us to extend that tree into a third dimension by layering node trees
into related, but separate sub-trees. However, the new data model is only the smaller
part of the changes that we will see in this chapter. We will also introduce new DOM
API into fDOM that will make use of these shadow roots, handling them differently than
the rest of the tree and thus enabling a kind of behaviour that we set out to find: parts
of the node tree that are shielded from being manipulated from certain DOM methods,
enabling components at the fundamental level. All Isabelle definitions and proofs of this
chapter can be found online [14].

In this chapter, therefore, we will present the following contributions towards our goal
of a formally verified model of components at the DOM level (i. e., components that are
concerned with nodes and their relationship to each other):

First, we introduce an extension to fDOM containing the data model and DOM
methods that are necessary to represent shadow roots. We will do this as a clean
extension, meaning that we will not need to make any changes to the proof documents of
the previous chapter. Using some features of Isabelle/HOL such as locales, we will be
able to maintain the previous definitions and proofs with minimal effort in our new type
universe–an enormous boon to the readability and maintainability of such large proof
documents.

Second, we present a formalisation of the new algorithms that come with the introduc-
tion of shadow roots, along with the verification of the functional correctness of them.
Most notably, this includes a formalisation of the “rendering view” as far as shadow
roots are concerned, which is similar to what a web browser might render, in order to
facilitate a better analysis of related algorithms. The standard introduces new concepts
such as slotting that are responsible for the new behaviour of the DOM API that make
components possible. It is a relatively new and complex concept and, unfortunately,
described in the standard only in an imperative way, lacking any sort of guarantees that
can be obtained by using them. Gaining a better understanding of them is therefore

47



4 A DOM with Shadow Roots

(a) User view

<fancy-tabs>
<button slot="title">Politics</button>
<button slot="title" selected>Sports</button>
<button slot="title">Culture</button>
<section>content panel 1</section>
<ul>

<li>News Item 1 <button>Share</button></li>
<li>News Item 2 <button>Share</button></li>
<li>News Item 3 <button>Share</button></li>

</ul>
<section>content panel 3</section>

</fancy-tabs>

(b) Consumer view

Figure 4.1: Our running example: Fancy Tab, a reusable component for tab-based navig-
ation layouts.

crucial to our goal, and a formalisation of them will also prove useful later when we
formalise our definition of web components.

4.1 Motivating Example

A shadow root is a new kind of node, similar to a Document, but with two key differences:
First, shadow roots get embedded inside an Element (its host), instead of being a free-
standing root node like a Document. Second, shadow roots can have a special kind of
child element, a slot, which receives certain elements from other sub-trees as temporary
children–only for rendering purposes in a final web page, however, no roots get actually
moved. By using shadow roots, a library producer can develop reusable and consumer-
customizable web components using HTML and a few lines of JavaScript.1 In order to
demonstrate the various concepts involved in using shadow roots, we will now introduce a
small running example: Fancy Tab. It is multi-tab navigation view based on a simplified
version of a similar widget found in [6].

Figure 4.1 demonstrates Fancy Tab: Figure 4.1a shows the end result, what the end-
user will see in their browser, while Figure 4.1b shows how the consumer (the developer
using the widget in his application) embeds the Fancy Tab HTML widget. To make it
clearer what parts of the UI internally belongs to the component, we color those parts
in red. For example, the two buttons on the bottom, “previous Tab” and “next Tab”,
belong to Fancy Tab, as those kind of buttons could be seen as functionality that is
common to all kinds of tab-based navigation widgets. Our implementation of Fancy Tab
provides a custom HTML tag <fancy-tabs>, which takes its children and rearranges
them according to their “slot” attribute through a process called slotting. Shadow roots
1While shadow roots are specified within the DOM standard, which naturally contains no references to
HTML or JavaScript, we are not aware of any implementation other than those in web browsers using
HTML and JavaScript.
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additionally provide separation of executed client-side code: code running in the main
web page should not interfere with code running in the context of Fancy Tab and vice
versa. For example, widget code that changes the style attributes of the “previous Tab”
and “next Tab” buttons in the lower corners of the widget should not affect buttons
belonging to any parts belonging to the library consumer. Similarly, code that changes
the styles of buttons outside of Fancy Tab should not have any effect on its buttons, even
in the case of duplicate identifiers.

Sadly, the DOM standard neither defines the concept of web components nor specifies
the safety properties that web components should guarantee. Consequently, the standard
does not discuss how and if the methods for modifying the node tree respect component
boundaries either. Thus, shadow roots are only the very first step in defining a safe web
component model. In particular, the DOM standard lacks a formal definition of web
components and precise specifications of the safety guarantees they can provide.

Now, we will discuss the inner workings of our running example Fancy Tab from
Figure 4.1 in more detail. Figure 4.2a focuses on the HTML part of defining Fancy Tab.
As the DOM standard does not allow creating shadow roots statically (i. e., using pure
HTML), the definition of shadow roots requires JavaScript to create them at run-time. In
our example, we assign the actual definition to innerHTML of an already created shadow
root.

Figure 4.2b shows an attempt to provide the functionality of Fancy Tab without using
shadow roots. While this alternative definition would show no visible difference to the
end-user, it does not provide any form of run-time separation.

We now assume that a consumer of Fancy Tab, who is unfamiliar with its inner
workings, would like to change the appearance of some of their buttons. In particular,
we assume that they would like to change all their button texts to upper case and thus
use code similar to the snippet shown in Figure 4.3c.

Now, let us observe the results: Figure 4.3b shows the version without shadow roots;
here, all buttons, including the navigation buttons on the bottom, became upper case,
as they are part of the same “scope”. We consider this undesired behavior, because the
developer inadvertently modified the internal representation of Fancy Tab. However, to
deserve the label “component”, we would like the Fancy Tab developer to be protected
from these kinds of effects.

Figure 4.3a shows the rendering of the version with shadow roots, where we can see
that the navigation buttons on the bottom remain unaffected, because they are not part
of the same scope (i. e., they are not part of the scope document).

In order to understand the difference better, we will look at the DOM representation of
our example with shadow roots, shown in Figure 4.4, which contains one additional small
detail: a disconnected node, on the right-hand side of the figure, which could be present
because, for example, the developer consuming Fancy Tab is currently creating new
elements using JavaScript. By calling document.getElementsByTagName("button"), we
enumerate all buttons, starting from the root document, and thus traverse the tree along
the solid arrows (childNode relation). The method getElementsByTagName traverses
the tree in depth-first pre-order (called tree order in the DOM standard), which does not
descend along the dotted lines (shadowRoot or disconnectedNode relation).
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shadowRoot.innerHTML = '
<style >...</style>
<div id="tabs">

<slot id="tabsSlot" name="title">
</slot>

</div>
<div id="panels">

<slot id="panelsSlot">
</slot>

</div>
<button id="left">

Previous Tab
</button>
<button id="right">

Next Tab
</button>

';

(a) Excerpt of the source of the Fancy Tab wid-
get. We assign the HTML definition to the
innerHTML of an already created shadow
root.

<div>
<style>...</style>
<div id="tabs">

<button slot="title">
Politics

</button>
<button slot="title" selected>

Sports
</button>
<button slot="title">

Culture
</button>

</div>
<div id="panels">

<section>
content panel 1

</section>
<ul>

<li>News Item 1
<button>Share</button></li>

<li>News Item 2
<button>Share</button></li>

<li>News Item 3
<button>Share</button></li>

</ul>
<section>

content panel 3
</section>

</div>
<button id="left">

Previous Tab
</button>
<button id="right">

Next Tab
</button>

</div>

(b) Defining Fancy Tab without shadow roots
would require mixing the code of Fancy Tab
and the consuming application, losing any
kind of separation properties.

Figure 4.2: The source code of the Fancy Tab widget with shadow roots (left) and without
(right).
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(a) Styling Fancy Tab with shadow root only
affects buttons outside of Fancy Tab.

(b) Styling fancy tabs without shadow root af-
fects also buttons inside of Fancy Tab.

for (let btn of document.getElementsByTagName("button")) {
btn.innerText = btn.innerText.toUpperCase();

}

(c) A simple JavaScript snippet that converts all button labels to
upper case.

Figure 4.3: Modifying a website that uses shadow roots versus one that does not.

Document

…

Element
tag: fancy-tabs

… Element
tag: ul

…Element
tag: button
slot: title

…

CharacterData
Sports

Element
tag: li

…

Element
tag: button

CharacterData
News Item 1

CharacterData
Share

ShadowRoot
mode: open

Element
tag: div
id: tabs

Element
tag: slot
id: tabsSlot
name: title

Element
tag: div
id: panels

Element
tag: slot
id: panelsSlot

Element
tag: div

childNode shadowRoot

disconnectedNode

Figure 4.4: Representation of the internal DOM structure of our running example Fig-
ure 4.1, with the addition of a single disconnected node.
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interface ShadowRoot : Object {
readonly attribute ShadowRootMode mode;
readonly attribute Element host;
readonly attribute NodeList childNodes;

}

get_shadow_root :: "(_) element_ptr ⇒ (_, (_) shadow_root_ptr option) dom_prog"

get_mode :: "(_) shadow_root_ptr ⇒ (_, shadow_root_mode) dom_prog"

get_host :: "(_) shadow_root_ptr ⇒ (_, (_) element_ptr) dom_prog"

Figure 4.5: The updated data model and DOM API specification including shadow roots.

To put it in a nutshell, the use of shadow roots to provide separation is orthogonal to the
use of JavaScript. While there are plenty of patterns and mechanisms in the JavaScript
ecosystem that provide some sort of separation, they can only separate JavaScript methods
and fields from third-party code. When it comes to the access to the node tree, and the
(possibly sensible) data that is stored in there, all JavaScript would have unrestricted
access to read and modify. Therefore, shadow roots provide some kind of access control
to already existing API methods by introducing new kinds of edges in the tree that are
intentionally difficult to cross unless the developer already has access to pointers of this
sub-tree.

4.2 Data Model and Basic Accessors
We will now use our fDOM from the previous chapter and extend it with support for
shadow roots. First of all, we need to consider the data model, i. e., how shadow roots
will be represented in a node tree. The official standard specifies that the shadow root is
similar to a document in some ways, but is ultimately a different kind of node. Following
the intuition from Figure 4.4, a shadow root represents the root node of a new kind of
sub-tree, which is also called a shadow tree. A shadow root can also never exist on its
own, as it must always be attached to an element. This element, in turn, is also special
from the perspective of the shadow tree and is, together with its descendants, sometimes
referred to as the light tree. These two terms are always relative to a given shadow root,
so a shadow tree can indeed also contain a light tree of a different shadow root.

In order to extend the fDOM with such a new node type, we need to define a new
record with new attributes. From a type hierarchy point of view, none of our existing
types can be substituted by a shadow root, so we will define it at the top-most level right
under objects. Using Web IDL, the interface of a shadow root is given in Figure 4.5.

Shadow roots can only be contained in an Element, where they behave as a special kind
of child (successor) node. Instead of using the methods get_child_nodes and get_parent,
we will introduce the methods get_shadow_root and get_host, respectively, that act
similarly. The formal signatures of the basic methods for accessing shadow roots and
their attributes are contained in Figure 4.5 as well.
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A shadow root has a flag mode that indicates whether the sub-tree shall be accessible
from the outside. For this purpose, the flag affects methods such as get_shadow_root,
which will not return any node if the shadow tree is closed. If a shadow tree is closed, cer-
tain DOM methods can not access the shadow tree from the outside, i. e., get_shadow_root
and get_assigned_slot. Figure 4.4 illustrates how the new node fits into the concept of
a tree structure, as defined by the fDOM .

Additionally, a shadow root manages a list of children, exactly like an Element does,
which is to be returned by the already existing get_child_nodes accessor. However,
while the existing get_child_nodes method from fDOM takes indeed an object_ptr, if
we were to pass a shadow_root_ptr to it, we would receive an error, since the existing
implementation of get_child_nodes does not know yet about our newly introduced
childNodes field of shadow roots. Therefore, we will make use of our extension mechanism
as introduced previously, which means that we will extend the previous definition by
creating a new one, with the same name, that calls the old one internally. Thanks to the
extension mechanism, we will be able to keep code and proof duplication to a minimum.

In the following, we will explain this mechanism in more detail. Fundamentally, we use
Isabelle’s locales to create parametrised theories. Inside these locales, we define functions
and prove lemmas as usual. Every function that we depend on, however, is not used
directly, but is declared as a parameter to the locale. This is the main idea behind the
way we use locales: when creating definitions and lemmas, we try to avoid referring to
concrete definitions as much as possible. Instead, we will add and use locale assumptions
that characterise the function only as much as necessary. As a result, because we have
many DOM methods that might get extended later on, but keep their main behaviour
intact, we can “generate” the appropriate lemmas for each such extension by, first, proving
that the characterisations that we used remain valid, and, second, simply interpreting
the locales with the new definition. Without that way of using locales we would have to
re-state and re-prove many lemmas during the course of our extension, even though the
function definitions barely change.

Additionally, we use a few other techniques as well that play into this pattern: For each
DOM method, we create at least two locales: one containing the definitions, and another
one containing the lemmas. This split helps to keep more control about introducing
the definitions and lemmas into the global theory context when interpreting them later.
Also, we create a helper function invoke that makes extending DOM functions easier by
factoring out behaviour depending on the pointer type.

For example, when we extend the definition of get_child_nodes, we create a new
locale l_get_child_nodesShadow_DOM_defs, define the implementation of get_child_node for
the case of shadow roots (get_child_nodesshadow_root_ptr), and update the other methods
relevant to our function definitions:

locale l_get_child_nodesShadow_DOM_defs =

CD: l_get_child_nodesCore_DOM_defs

begin

definition get_child_nodesshadow_root_ptr :: "(_) shadow_root_ptr ⇒ unit

⇒ (_, (_) node_ptr list) dom_prog" where
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"get_child_nodesshadow_root_ptr shadow_root_ptr _

= get_M shadow_root_ptr RShadowRoot.child_nodes"

definition a_get_child_nodes_tups

:: "(((_) object_ptr ⇒ bool) × ((_) object_ptr ⇒ unit

⇒ (_, (_) node_ptr list) dom_prog)) list" where

"a_get_child_nodes_tups ≡ [(is_shadow_root_ptrobject_ptr,

get_child_nodesshadow_root_ptr ∘ the ∘ cast)]"

definition a_get_child_nodes :: "(_) object_ptr

⇒ (_, (_) node_ptr list) dom_prog" where

"a_get_child_nodes ptr = invoke (CD.a_get_child_nodes_tups

@ a_get_child_nodes_tups) ptr ()"

definition a_get_child_nodes_locs :: "(_) object_ptr

⇒ ((_) heap ⇒ (_) heap ⇒ bool) set" where

"a_get_child_nodes_locs ptr ≡

(if is_shadow_root_ptr_kind ptr

then {preserved (get_M (the (cast ptr)) RShadowRoot.child_nodes)}

else {}) ∪

CD.a_get_child_nodes_locs ptr"

end

We prefix many definitions with an a_ which stands for abstract, because these defini-
tions typically refer to other placeholder definitions instead of real ones. Only when we
interpret the locale and thus fill in the “real” definitions, we will get a “non-abstract”
definition in the Isabelle context. The invoke helper method acts as a kind of “virtual
method table” and takes conditions and implementations in a list, allows us to simply
append the implementation for shadow roots. This structure allows us to later split
proofs into two cases: assuming that either the definition from the core DOM or the
shadow root extension is called.

But first, we need to extend the main locale, l_get_child_nodesShadow_DOM. While the
previous locale contained only definitions, this locale will contain lemmas. This split is
done to improve the reuseability of lemmas, whereas with definitions that is not a concern.
This locale depends on a number of other locales: on the one hand, the locales l_type_wf

and l_known_ptr “import” the respective definitions–this time to be instantiated with
the versions for the shadow root universe–, but on the other hand also on the main locale
from the previous universe in order to leverage its already proven lemmas. Locales from
the previous universe might also depend on locales such as l_type_wf, which we must not
mix up with locales meant to be instantiated from the current universe (recall that we
redefine some definitions each extensions), or otherwise we will not be able to instantiate
our locale, as predicates such as type_wf or known_ptr are weaker in this universe. We
therefore must rename all parameters stemming from core DOM locales. The locale
specification for get_child_nodes with support for shadow roots looks as follows:
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locale l_get_child_nodesShadow_DOM =

l_type_wf type_wf +

l_known_ptr known_ptr +

l_get_child_nodesShadow_DOM_defs +

l_get_child_nodes_defs get_child_nodes get_child_nodes_locs +

CD: l_get_child_nodesCore_DOM type_wfCore_DOM known_ptrCore_DOM

get_child_nodesCore_DOM get_child_nodes_locsCore_DOM

for type_wf :: "(_) heap ⇒ bool"

and known_ptr :: "(_) object_ptr ⇒ bool"

and type_wfCore_DOM :: "(_) heap ⇒ bool"

and known_ptrCore_DOM :: "(_) object_ptr ⇒ bool"

and get_child_nodes :: "(_) object_ptr ⇒ (_, (_) node_ptr list) dom_prog"

and get_child_nodes_locs :: "(_) object_ptr

⇒ ((_) heap ⇒ (_) heap ⇒ bool) set"

and get_child_nodesCore_DOM :: "(_) object_ptr

⇒ (_, (_) node_ptr list) dom_prog"

and get_child_nodes_locsCore_DOM :: "(_) object_ptr

⇒ ((_) heap ⇒ (_) heap ⇒ bool) set" +

assumes known_ptr_impl: "known_ptr = ShadowRootClass.known_ptr"

assumes type_wf_impl: "type_wf = ShadowRootClass.type_wf"

assumes get_child_nodes_impl: "get_child_nodes = a_get_child_nodes"

assumes get_child_nodes_locs_impl:

"get_child_nodes_locs = a_get_child_nodes_locs"

With this construction, lemmas such as get_child_nodes_pure can now be proven for
our updated definition without having to consider all the implementations for elements
and other classes. To do so, we leverage the splitter rule CD.get_child_nodes_splits

from the previous universe to obtain two cases: one where we can assume a pointer from
the previous universe, in which case we can immediately finish the proof by using the
previous lemma, and one where we know that we have a pointer of our new type:

lemma get_child_nodes_pure [simp]:

"pure (get_child_nodes ptr) h"

unfolding get_child_nodes_def a_get_child_nodes_tups_def

proof(split CD.get_child_nodes_splits, rule conjI; clarify)

assume "known_ptrCore_DOM ptr"

then show "pure (get_child_nodesCore_DOM ptr) h"

by simp

next

assume "¬ known_ptrCore_DOM ptr"

then show "pure (invoke [(is_shadow_root_ptrobject_ptr,

get_child_nodesshadow_root_ptr ° the ° castobject_ptr2shadow_root_ptr)] ptr ()) h"

by(auto simp add: get_child_nodesshadow_root_ptr_def

intro: bind_pure_I split: invoke_splits)

qed
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After interpreting the locale, we can obtain our new definitions and lemma as before,
with the ones from the Core DOM universe being shadowed, but still being accessible by
their fully-qualified name (e. g., Core_DOM.get_child_nodes).

4.3 Graph Relations
The data model given in the DOM standard describes a directed object graph, but not
necessarily a tree-like data structure. The fact that a valid DOM needs to be a tree-like
data structure is only given implicitly. The standard informally defines the concept of
a tree order as “pre-order depth-first search”. The tree order is defined in two variants:
(shadow-excluding) tree order and shadow-including tree order. The former ignores shadow
root sub-trees while the latter traverses (open) shadow roots prior to traversing its child
nodes. While not part of the DOM API, it is an important concept that many other
methods rely on, which is why we formalise it. We have seen this difference in Figure 4.3
already, where the code snipped was subject to the shadow-including tree order in the
example that used shadow roots, which meant that, for example, the buttons on the
bottom were skipped. We formalise this concept as as a partial_function, because it
can potentially loop infinitely on a heap that contains cycles. Only in proofs containing
the proper well-formedness assumptions can we actually use the definition then in a
meaningful way. The definition looks as follows:
partial_function (dom_prog) to_tree_order_si :: "(_) object_ptr

⇒ (_, (_) object_ptr list) dom_prog"

where

"to_tree_order_si ptr = (do {

children ← get_child_nodes ptr;

shadow_root_part ← (case cast ptr of

Some element_ptr ⇒ do {

shadow_root_opt ← get_shadow_root element_ptr;

(case shadow_root_opt of

Some shadow_root_ptr ⇒ return [cast shadow_root_ptr]

| None ⇒ return [])

} |

None ⇒ return []);

treeorders ← map_M to_tree_order_si (map cast children @ shadow_root_part);

return (ptr # concat treeorders)

})"

While not explicitly stated in the standard, it implicitly assumes that the algorithm
computing a shadow-including tree order always terminates. In our formalisation, this
is expressed as the property that “for all well-formed heaps, the (partial) function
to_tree_order_si does not produce an error”, i. e., non-termination is mapped to a value
of our error type. Therefore, for any meaningful proof involving this function, we again
use well-founded induction stemming from the acylicity of our combined childNodes
and shadowRoot relations.
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Instead of using partial_function, we could also use regular (total) functions to some
extent. The main difference that would be required is the presence of a guard clause
in the definition of the function itself to ensure the totality of the function. The guard
clause would then check the well-formedness of the heap before proceeding with the
actual computation, or would return an error value if the heap is not well-formed. While
this might seem like a simple way to avoid using partial functions, which are generally
trickier to handle, this approach would have the disadvantages of, first, cluttering the
function definition with information that we consider to be more appropriate in the forms
of proofs, second, merely shifting termination proofs from separate lemmas into Isabelle’s
function termination framework and, third, creating references from function definitions
to our big well-formedness predicates, constraining the way in which we order definitions
and lemmas in our proof document.

The model of our running example, shown in Figure 4.4, demonstrates the three
different kinds of edges that we now have in our node tree: children, shadow roots, and
disconnected nodes. In the next section, we will see updated well-formedness predicates
that assure that all these relations form an acyclic graph, among other properties, some
of which we have seen in the previous chapter. Using these updated predicates, we can
show that, for example, to_tree_order_si always terminates on a well-formed heap.

4.4 Heap Invariants
As we have seen with the core DOM in Section 3.3, a well-formed heap needs to fulfill
several properties that can either be modelled as type constraints or predicates. An
example for the former is the property “an element has at most one attached shadow
root”, which is, both in the DOM standard and our formalisation, enforced by the type
system. As an example for the latter, we model the requirement that “shadow roots in a
node tree are always attached to a valid host” by using a predicate:
abbreviation "safe_shadow_root_element_types ≡ {''article'',

''aside'', ''blockquote'', ''body'', ''div'', ''footer'',

''h1'', ''h2'', ''h3'', ''h4'', ''h5'', ''h6'', ''header'',

''main'', ''nav'', ''p'', ''section'', ''span''}"

definition shadow_root_valid :: "(_) heap ⇒ bool"

where

"shadow_root_valid h = (∀shadow_root_ptr ∈ fset (shadow_root_ptr_kinds h).

(∃host ∈ fset(element_ptr_kinds h).

|h ⊢ get_tag_name host|r ∈ safe_shadow_root_element_types ∧

|h ⊢ get_shadow_root host|r = Some shadow_root_ptr))"

The constraint shadow_root_valid is described in the standard informally as the require-
ment that a DOM instance does not contain “disconnected” shadow roots. Unfortunately,
many of these kind of invariants are only implicit in the standard, which makes it difficult
to grasp what exactly are the allowed states of a heap. This invariant, along with the
ones that follow, have all been extracted from the DOM specification and formalised as
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soon as they were needed for proofs. This means we ended up with a small set of only
the most critical invariants.

Another invariant required that shadow roots cannot belong to more than one host:

definition distinct_lists :: "(_) heap ⇒ bool"

where

"distinct_lists h = distinct (concat (

map (λelement_ptr. (case |h ⊢ get_shadow_root element_ptr|r of

Some shadow_root_ptr ⇒ [shadow_root_ptr] |

None ⇒ []))

|h ⊢ element_ptr_kinds_M|r

))"

We also would like to ensure that all elements only ever refer to shadow roots that
actually exist in the heap:

definition all_ptrs_in_heap :: "(_) heap ⇒ bool"

where

"all_ptrs_in_heap h = (∀host shadow_root_ptr.

(h ⊢ get_shadow_root host →r Some shadow_root_ptr) ⟶

shadow_root_ptr |∈| shadow_root_ptr_kinds h)"

Finally, to ensure that any DOM instance with shadow roots is a tree-like data structure,
we need to ensure that the underlying object-graph is acyclic. In HOL, we model this in
two steps. First, we define a relation between hosts and shadow roots:

definition host_shadow_root_rel :: "(_) heap

⇒ ((_) object_ptr × (_) object_ptr) set"

where

"host_shadow_root_rel h = (λ(x, y). (cast x, cast y)) ` {(host, shadow_root).

host |∈| element_ptr_kinds h

∧ |h ⊢ get_shadow_root host|r = Some shadow_root}"

This relation captures the requirement that the “link” between shadow roots and hosts
is a reversible relation. Second, we make use of the pre-defined acyclic predicate of
HOL for arbitrary relations to postulate that this relation, together with the childNodes
relation, is acyclic.

Now, we can formally capture the concept of a well-formed heap:

definition heap_is_wellformed :: "(_) heap ⇒ bool"

where

"heap_is_wellformed h ⟷ CD.heap_is_wellformed h ∧

acyclic (CD.parent_child_rel h ∪ host_shadow_root_rel h) ∧

all_ptrs_in_heap h ∧

distinct_lists h ∧

shadow_root_valid h"

58



4.5 Interfacing Shadow Trees: Slotting

More precisely, a well-formed heap requires that the regular parent-child relation
together with the shadow root-host relation is acyclic, so we combine them and need
CD.parent_child_rel h ∪ host_shadow_root_rel h to be acyclic.

We can now formally prove in Isabelle/HOL that the method to_tree_order_si will
always terminate for well-formed heaps, meaning its execution is error-free (captured by
the predicate ok):

lemma to_tree_order_si_ok:

assumes "heap_is_wellformed h" and "known_ptrs h" and "type_wf h"

assumes "ptr |∈| object_ptr_kinds h"

shows "h ⊢ ok (to_tree_order_si ptr)"

This lemma ensures termination, since to_tree_order_si is a partial functions in
Isabelle/HOL that maps the case of non-termination to a value of our error type.

Additionally, we introduce a short-hand predicate valid_heap for the three predicates
that occur in most lemmas. It captures heap_is_wellformed, ensures that the heap
only contains pointers and objects whose types correspond (type_wf), and permits only
“known” pointers (known_ptrs), a property related to the extensibility of the formal model:

definition valid_heap :: "(_) heap ⇒ bool" where

"valid_heap h = heap_is_wellformed h ∧ known_ptrs h ∧ type_wf h"

Of course, we also show that all our DOM methods preserve the valid_heap predicate,
i. e., if the predicate held before the method was called, it also holds on the modified
heap returned by the method. All these proofs can be found in the full formalisation
document.

4.5 Interfacing Shadow Trees: Slotting
The DOM standard describes a dedicated mechanism for allowing a restricted form of
interaction between a shadow root and its host (and therefore also the tree containing
the hosting Element). The interface mechanism allowing this kind of interaction is called
slotting, which “virtually maps” nodes (slotables) from one sub-tree into slots of another
sub-tree without actually re-attaching them to other nodes. We have already seen in
Figure 4.1 how slotting works in practice and will now have a more detailed look.

A slot is an Element with a slot tag. Slots must only occur inside shadow trees and
provide a container for other nodes. A slot has a name attribute, which can later be
referred to in order to reference the slot. If a slot has no name, it becomes the default
slot. If a slot does not receive any slotables during slotting, its children will be rendered
instead.

A slotable is any Node that is a direct child of a shadow root host. Slotables can have
a slot attribute (in the case of an Element) which specifies the target slot. If no such
attribute is present, the slotable will be slotted into the default slot.

The two most important methods defined in the DOM standard for inspecting the
slotting mechanism are getting the assigned slot and assigned nodes. The method
assigned_slot takes a node, i. e., either an Element or CharacterData, and returns the
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slot that it will be assigned to, if any. Additionally, it takes a boolean flag that indicates
whether it should obey the mode of the shadow tree: if the shadow root is closed,
assigned_slot will return None.

The formalisation of assigned_slot can be found in Listing 4.1. Until Line 12, we
ensure that the given node does indeed have a parent with a shadow root, which we
obtain. If the shadow tree is open, we search the shadow tree in tree-order (Line 15)
for the correct slot; that is, the first element with a slot tag and a name attribute that
matches the slot attribute of the given slotable. These checks are carried out from
Line 26 onward.

The method for getting the assigned nodes, assigned_nodes in our formalisation, takes
an Element (the slot) and returns the list of nodes that will later be rendered in place
of its children. If the passed element is not a slot, it will return an error. We formalise
get_assigned_nodes in Isabelle/HOL as follows:

definition assigned_nodes :: "(_) element_ptr ⇒ (_, (_) node_ptr list) dom_prog"

where

"assigned_nodes slot = do {

tag ← get_tag_name slot;

(if tag ≠ ''slot''

then error HierarchyRequestError

else return ());

root ← get_root_node (cast slot);

if is_shadow_root_ptr_kind root

then do {

host ← get_host (the (cast root));

children ← get_child_nodes (cast host);

filter_M (λslotable. do {

found_slot ← assigned_slot False slotable;

return (found_slot = Some slot)}) children}

else return []}"

Basically, the method definition works by going from slot to its root node root, then
to root’s host, and finally iterating over host’s children and calling assigned_slot to find
all nodes that would return the given slot slot as their assigned slot. This algorithm
follows the specification from the DOM standard.

Since the definitions are relatively complex, we will now try to describe assigned_slot

and assigned_nodes by using a few properties to show what they do rather than how.
One useful property is that if one tries to invoke assigned_nodes on an element that is
not a slot, one will get an error. Or, to put it the other way round, if assigned_nodes
terminates without an error, the reference element was indeed a slot:

lemma assigned_nodes_slot_is_slot:

assumes "h ⊢ ok (assigned_nodes slot)"

shows "h ⊢ get_tag_name slot →r ''slot''"
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Listing 4.1: Formalisation of assigned_slot
1 definition assigned_slot :: "bool ⇒ (_) node_ptr

2 ⇒ (_, (_) element_ptr option) dom_prog" where

3 "assigned_slot open_flag slotable = do {

4 parent_opt ← get_parent slotable;

5 (case parent_opt of

6 Some parent ⇒

7 if is_element_ptr_kind parent

8 then do {

9 shadow_root_ptr_opt ← get_shadow_root (the (cast parent));

10 (case shadow_root_ptr_opt of

11 Some shadow_root_ptr ⇒ do {

12 shadow_root_mode ← get_mode shadow_root_ptr;

13 if open_flag ∧ shadow_root_mode ≠ Open

14 then return None

15 else first_in_tree_order (cast shadow_root_ptr)

16 (λptr. if is_element_ptr_kind ptr

17 then do {

18 tag ← get_tag_name (the (cast ptr));

19 name_attr ← get_attribute (the (cast ptr))

20 ''name'';

21 slotable_name_attr ←

22 (if is_element_ptr_kind slotable

23 then get_attribute (the (cast slotable))

24 ''slot''

25 else return None);

26 (if (tag = ''slot''

27 ∧ (name_attr = slotable_name_attr

28 ∨ (name_attr = None

29 ∧ slotable_name_attr = Some '''')

30 ∨ (name_attr = Some ''''

31 ∧ slotable_name_attr = None)))

32 then return (Some (the (cast ptr)))

33 else return None)}

34 else return None)}

35 | None ⇒ return None)}

36 else return None

37 | _ ⇒ return None)}"
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Figure 4.6: Visualisation of the nodes that get assigned to their slots during the slotting
process. The sub-trees surrounded by the dashed boxes indicate the slotables
that get displayed as if they were located in the solid boxes of the same colour.
Elements e1 and e2 are the only assigned nodes for e3 and e4, respectively,
and e3 and e4 are the assigned slots of e1 and e2. The slotting algorithm
uses the slot and name attributes to calculate these matchings.

The proof is actually straight forward, as this property is checked by the specification
of assigned_nodes within the first few lines. Therefore, we simply need to unroll the
definition for the proof.

Another important property of assigned_nodes is the following: assigned nodes never
overlap. To be more precise, we prove that if we have two calls to assigned_nodes given
slots slot and slot' that return the assigned nodes nodes and nodes', respectively, then
these two lists will share no single pointer if the slots were different:

lemma assigned_nodes_different_ptr:

assumes "h ⊢ assigned_nodes slot →r nodes"

assumes "h ⊢ assigned_nodes slot' →r nodes'"

assumes "slot ≠ slot'"

shows "set nodes ∩ set nodes' = {}"

In order to demonstrate the relationship between slots and their assigned nodes, we
highlight the pairings in the tree figure of our running example in Figure 4.6. It is
important to remember that the slotables never actually get moved into the children
of their assigned slots. It is only during the flattening, which is part of the rendering
process in a web browser, that these slotables get displayed in their assigned position.
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4.6 Flattening Shadow Trees

Slots and slotting are a concept with subtle corner cases. To provide a semantics of
shadow trees and slotting in terms of a DOM without shadow roots, we formalise a
method flatten_dom. This method takes a node tree with slots and slotables and produces
a flattened node tree without shadow trees. Roughly speaking, we formalise the process
that lead us to Figure 4.2b: we combine Figure 4.1b with Figure 4.2a.

While flattening is not described in the DOM standard, we see two benefits in form-
alising it: first, it provides a semantics of shadow trees and slots in terms of a DOM
without shadow trees and, second, by proving properties of the flattening algorithm we
are strengthening the understanding of standard methods such as assigned_nodes and
assigned_slot, which build the basis of our flattening definition. Moreover, the flattened
version of a node tree can also be understood as a “rendering presentation” that could,
theoretically, be used by a rendering engine that does not support shadow trees.

The formalisation of the flattening algorithm contains a number of map statements,
which can perhaps be more easily understood by interpreting them as loops. The
definition looks as follows:

definition flatten_dom :: "(_, unit) dom_prog" where

"flatten_dom = do {

tups ← element_ptr_kinds_M ⤜ map_filter_M2 (λelement_ptr. do {

tag ← get_tag_name element_ptr;

nodes ← assigned_nodes element_ptr;

(if tag = ''slot'' ∧ nodes ≠ []

then return (Some (element_ptr, nodes))

else return None)});

forall_M (λ(slot, nodes). do {

get_child_nodes (cast slot) ⤜ forall_M remove;

forall_M (append_child (cast slot)) nodes

}) tups;

shadow_root_ptr_kinds_M ⤜ forall_M (λshadow_root_ptr. do {

host ← get_host shadow_root_ptr;

get_child_nodes (cast host) ⤜ forall_M remove;

get_child_nodes (cast shadow_root_ptr)

⤜ forall_M (append_child (cast host));

remove_shadow_root host

});

return ()}"

The definition can be grouped into three parts: first, we build a list of all slots along
with the nodes that they will receive as returned by assigned_nodes. Second, we clear all
children from the slots and then insert the assigned nodes, moving them into the place of
the cleared children. Third, we remove all shadow roots after replacing the children of
their hosts with the children of the shadow roots.

The main effect of this flattening algorithm is the fact that children appear to be in
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a different place after slotting took place. We capture this observation in the following
lemma which states that every element in a heap that has at least one assigned node
before flattening, will have these nodes as children afterwards:

lemma flatten_dom_assigned_nodes_become_children:

assumes "valid_heap h"

assumes "h ⊢ flatten_dom →h h'"

assumes "h ⊢ assigned_nodes slot →r nodes"

assumes "nodes ≠ []"

shows "h' ⊢ get_child_nodes (cast slot) →r nodes"

The proof idea stems from the line forall_M (append_child (cast slot)) nodes in the
definition, which adds all assigned nodes to the now child-free slot.

Properties such as flatten_dom_assigned_nodes_become_children could be used to
supplement the DOM standard to provide a precise characterisation of the flattening
algorithm. They would serve as additional documentation for developers trying to
understand the algorithm, but could also be used to derive concrete test cases that could
then be evaluated on real DOM implementations. Coming up with more properties that
would be useful for these purposes is a difficult task in general, however, similar to the
challenge of coming up with useful test cases for regular software development.

Summary
In this chapter, we have seen how we can extend our formal model of the core DOM
with shadow roots. Using our extension mechanism in Isabelle/HOL, we were able to
do so in an iterative manner, which allowed us to stay as close to the official standard
as possible while benefiting from a higher-order logic. In the process, we have gained
new insights and a better understanding of the DOM with shadow roots in general, thus
also being applicable to implementation of the standard in the wild. It is important to
keep in mind that our main interest of shadow roots stems from the fact that they are
the main component mechanism of the DOM standard. Now, we can start to explore
formally how suitable shadow roots are for that purpose, and whether any changes or
additions to the standard might be useful–all being backed by our model and the strong
guarantees of using higher-order logic and proofs.
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In the previous two chapters, we have built a formal model of the DOM and presented
our approach of how to translate descriptions in semi-structured English into HOL
functions. However, there remains the possibility that we introduced errors during this
translation, which would limit the applicability of any proof and analysis results to the
official standard. Therefore, before we continue with the introduction of web components
into our model, we will seek ways to reduce the possibility of translation errors.

Thankfully, there is an approach that we can use to strengthen the connection between
standard document written in prose and our formal document. The standardisation body
not only provides the specification document, but also a comprehensive test suite to be
used by implementations that wish to confirm their compliance to the standard. While
the creation of such a suite has been a manual effort, too, it is being maintained by
some of the people that are involved in the standard itself. In addition, this suite is also
used by popular web browser implementations such as Mozilla Firefox [51] or Google
Chrome [31] to confirm their compliance.

In this chapter, therefore, we will show that the formal model that we built in the
previous two chapters is not simply inspired by the official DOM standard, but does
indeed pass all relevant test cases from the official test suite which is also used by modern
web browsers to show their compliance to the standard. After giving an overview of
our approach, we, first, identify all relevant test cases, which are written in HTML and
JavaScript. Since most of them follow a relatively simple pattern, we can, second, employ
a straight-forward, semi-automatic translation from these test cases into HOL predicates,
so we can then use symbolic execution to show that our formalisation passes these test
cases. We consider a test successfully passed if we can prove that the corresponding HOL
predicate holds, given the concrete heap from the test case. Finally, we give an outlook
of how this infrastructure can be used in turn to enhance both fDOM and the official
specification document. All Isabelle lemmas in this chapter can be found online as part
of the Core DOM [16] or Shadow DOM [14] entry.

5.1 Formal Software Standards

Most popular technologies are based on informal or semi-formal standards that lack a
rigid formal semantics. Typical examples include web technologies such as the DOM
or HTML. While there might be API specifications and test cases meant to assert the
compliance of implementations, the actual standard is rarely accompanied by a formal
model that would lend itself for, e. g., verifying the security or safety properties of real
systems.
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Figure 5.1: Using test and proof for establishing strong links between formal standards,
compliance test suites, and implementations.

Even when such a formalisation of a standard exists, two important questions arise:
first, to what extent does the formal model comply with the standard and, second, to
what extent does a concrete implementation comply with the formal model and the
assumptions made during the verification of certain properties?

In this section, we present an approach that brings all three involved artefacts–the
(semi-)formal standard, the formalisation of the standard, and the implementation–closer
together by combining verification, symbolic execution, and specification-based testing.
We will then apply this approach to show the compliance of fDOM with shadow roots to
the official DOM specification.

Figure 5.1 illustrates the overall scenario for both traditional development of standards
(upper part) and the integration of “test and proof”-activities (lower part).

First, let us recall the process and challenges of developing informal or semi-formal
standards and implementations and their implementations: most standards are developed
as a text document that contains technical details, e. g., in the form of interface specifica-
tions or pseudo-code, that implementations need to comply with. Such semi-formal or
informal standards usually contain many inconsistencies. Tool support for ensuring the
syntactic consistency of the standard is sometimes available in a limited form, but the
semantic consistency is an open problem. Also, linking standards to implementations is,
in the best case, only supported by the possibility of automatically extracting interface
definitions (APIs), if the standard defines a (software) system. Alternatively, if the
standard defines a data format (or a language) it might possible to extract grammar
definitions for the abstract or concrete syntax of the defined data format or language. A
good standard also includes an extensive set of compliance test cases. These compliance
test cases are usually specified manually by experts. Hence, manually developed test
cases cannot guarantee to cover all important cases and, thus, they can only provide a
weak compliance-relationship between standard and implementation. Nevertheless, they
are the only machine-checkable artefact for vendors to validate the compliance of their

66



5.2 Selecting Test Cases

product to the standard.
Second, let us discuss how test and proof can improve the situation and address the

consistency and compliance challenges of semi-formal and informal standard develop-
ment. In the following, we assume that an executable formalisation (e. g., expressed in
Isabelle/HOL; a formalisation that we can extract code from) of the standard exists. Of
course, if we start with an informal standard, the question arises to which extent the
formalisation is a faithful representation of the informal (or semi-formal) standard, i. e.,
the compliance of the formalisation. As we assume an executable model, we can–similarly
to implementations–use symbolic execution to show the compliance of the formal model
to the semi-formal standard (or, more precisely, the manually developed compliance test
suite). In addition, we can use the formal model to actually prove important properties of
the standard (e. g., proving the correctness of the algorithms presented in the standard).
We can also generalize test cases provided in the compliance test suite and turn them
into proof obligations for our formal model. Using symbolic specification-based test case
generation techniques (e. g., as presented in [20]), we could automatically generate new
compliance test cases that, e. g., guarantee branch coverage on the level of the specification.
Finally, we could generate a reference implementation using code generators available in
systems such as Isabelle.

In the following, however, we will focus on the “Symbolic Test Execution” arrow from
Figure 5.1 to strengthen the trust in the compliance of fDOM to the standard.

5.2 Selecting Test Cases

The official test suite of the of the W3C, “web-platform-test” [68], covers a variety of
features relevant for W3C standards. It contains over 30 000 HTML files, which all
represent one test of some group of features or API of a standard and are not necessarily
limited to the DOM. Each test, then, is divided into a number of sub-tests, which
can range from just a few to tens of thousands per test, each one consisting of a few
lines of JavaScript testing one specific feature or condition as specified in the standard.
Relevant for us are the dom and shadow_dom test groups, which contain 262 and 123
HTML files, respectively. Even those, however, cover large parts of the DOM and also
HTML specifications, much more than supported in fDOM . Recall that the fDOM
focuses on the node-tree and methods that create, inspect, or modify its nodes. Examples
of unsupported parts include events, e. g., executing JavaScript when the user clicks on a
Button, or certain data classes such as NodeList, which is a live collection interface of
the DOM, modeled in the fDOM as ordinary HOL lists, meaning that test cases from the
official suite are not applicable. The full list of relevant tests can be found in Table 5.1,
which we have all translated; the tests that we deemed irrelevant according to above
criteria can be found in Table 5.2.

Each test is divided into sub-tests, of which not every single one is necessarily relevant
or expressible in fDOM . Examples of such tests are ones that test each and every step
of an algorithm, which is relevant, but might also check that a certain attribute related
to an unsupported feature is present, which is not relevant. We therefore deemed a test
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Table 5.1: All test cases from the official suite that are relevant have been translated.
Since the fDOM focuses on the node-tree and related methods, most of the
translated test cases are concerned with these methods.

Test Name Relevance

/dom/interface-objects.html relevant
/dom/nodes/CharacterData-appendChild.html relevant
/dom/nodes/CharacterData-appendData.html relevant
/dom/nodes/CharacterData-data.html relevant
/dom/nodes/CharacterData-deleteData.html relevant
/dom/nodes/CharacterData-insertData.html relevant
/dom/nodes/CharacterData-remove.html relevant
/dom/nodes/CharacterData-replaceData.html relevant
/dom/nodes/CharacterData-substringData.html relevant
/dom/nodes/ChildNode-after.html relevant
/dom/nodes/ChildNode-before.html relevant
/dom/nodes/ChildNode-replaceWith.html relevant
/dom/nodes/Document-adoptNode.html relevant
/dom/nodes/Document-constructor.html relevant
/dom/nodes/Document-createElement.html relevant
/dom/nodes/Document-doctype.html relevant
/dom/nodes/Document-getElementById.html relevant
/dom/nodes/Document-getElementsByTagName.html relevant
/dom/nodes/Element-childElement-null.html relevant
/dom/nodes/Element-childElementCount-dynamic-add.html relevant
/dom/nodes/Element-childElementCount-dynamic-remove.html relevant
/dom/nodes/Element-childElementCount-nochild.html relevant
/dom/nodes/Element-childElementCount.html relevant
/dom/nodes/Element-firstElementChild.html relevant
/dom/nodes/Element-getElementsByClassName.html relevant
/dom/nodes/Element-getElementsByTagName.html relevant
/dom/nodes/Element-lastElementChild.html relevant
/dom/nodes/Element-nextElementSibling.html relevant
/dom/nodes/Element-previousElementSibling.html relevant
/dom/nodes/Element-remove.html relevant
/dom/nodes/Element-siblingElement-null.html relevant
/dom/nodes/Element-tagName.html relevant
/dom/nodes/Node-appendChild.html relevant
/dom/nodes/Node-childNodes.html relevant
/dom/nodes/Node-contains.html relevant
/dom/nodes/Node-insertBefore.html relevant
/dom/nodes/Node-isConnected.html relevant
/dom/nodes/Node-parentElement.html relevant
/dom/nodes/Node-parentNode.html relevant
/dom/nodes/Node-removeChild.html relevant
/dom/nodes/Node-replaceChild.html relevant
/dom/nodes/Node-textContent.html relevant
/dom/nodes/ParentNode-append.html relevant
/dom/nodes/ParentNode-prepend.html relevant
/dom/nodes/append-on-Document.html relevant
/dom/nodes/insert-adjacent.html relevant
/dom/nodes/prepend-on-Document.html relevant
/dom/nodes/remove-and-adopt-crash.html relevant
/dom/nodes/rootNode.html relevant
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Table 5.2: Test cases from the official suite that are not relevant to our formalisation,
either due to covering DOM features that we do not support or JavaScript
specific issues.

Test Name Relevance

/dom/(events|traversal|ranges|lists|collections|abort)/.* irrelevant
/dom/historical.html irrelevant
/dom/interfaces.html?exclude=Node irrelevant
/dom/nodes/(Text|ProcessingInstruction|DocumentType|DOMImplementation).* irrelevant
/dom/nodes/.*(̇xhtml|xvg|xml|svg) irrelevant
/dom/nodes/CharacterData-surrogates.html irrelevant
/dom/nodes/Comment-constructor.html irrelevant
/dom/nodes/Document-URL.html irrelevant
/dom/nodes/Document-characterSet-normalization.html irrelevant
/dom/nodes/Document-contentType/.* irrelevant
/dom/nodes/Document-createAttribute.html irrelevant
/dom/nodes/Document-createComment.html irrelevant
/dom/nodes/Document-createElement-namespace.html irrelevant
/dom/nodes/Document-createElementNS.html irrelevant
/dom/nodes/Document-createProcessingInstruction.html irrelevant
/dom/nodes/Document-createTextNode.html irrelevant
/dom/nodes/Document-createTreeWalker.html irrelevant
/dom/nodes/Document-getElementsByClassName.html irrelevant
/dom/nodes/Document-getElementsByTagNameNS.html irrelevant
/dom/nodes/Document-implementation.html irrelevant
/dom/nodes/Document-importNode.html irrelevant
/dom/nodes/Element-children.html irrelevant
/dom/nodes/Element-classlist.html irrelevant
/dom/nodes/Element-closest.html irrelevant
/dom/nodes/Element-firstElementChild-namespace.html irrelevant
/dom/nodes/Element-getElementsByTagName-change-document-HTMLNess.html irrelevant
/dom/nodes/Element-getElementsByTagNameNS.html irrelevant
/dom/nodes/Element-hasAttributes.html irrelevant
/dom/nodes/Element-insertAdjacentElement.html irrelevant
/dom/nodes/Element-insertAdjacentText.html irrelevant
/dom/nodes/Element-matches.html irrelevant
/dom/nodes/Element-removeAttributeNS.html irrelevant
/dom/nodes/Element-webkitMatchesSelector.html irrelevant
/dom/nodes/MutationObserver.* irrelevant
/dom/nodes/Node-baseURI.html irrelevant
/dom/nodes/Node-cloneNode.html irrelevant
/dom/nodes/Node-compareDocumentPosition.html irrelevant
/dom/nodes/Node-constants.html irrelevant
/dom/nodes/Node-isEqualNode.html irrelevant
/dom/nodes/Node-isSameNode.html irrelevant
/dom/nodes/Node-lookupNamespaceURI.html irrelevant
/dom/nodes/Node-nodeName.html irrelevant
/dom/nodes/Node-nodeValue.html irrelevant
/dom/nodes/Node-normalize.html irrelevant
/dom/nodes/Node-properties.html irrelevant
/dom/nodes/NodeList-Iterable.html irrelevant
/dom/nodes/ParentNode-children.html irrelevant
/dom/nodes/ParentNode-querySelector-All-xht.xht irrelevant
/dom/nodes/ParentNode-querySelector-All.html irrelevant
/dom/nodes/attributes.html irrelevant
/dom/nodes/case.html irrelevant
/dom/nodes/getElementsByClassName.* irrelevant
/dom/nodes/query-target-in-load-event.html irrelevant
/dom/nodes/remove-unscopable.html irrelevant
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relevant if the majority or core of the test applies to fDOM . Nevertheless, we are able to
capture all relevant functional tests for the fDOM .

Another reason for exclusion is the fact that we cannot easily utilize test cases regarding
type checks, as we decided to formalise a strongly typed model. The official compliance
test suite contains many typing-related tests, mainly because of one of two reasons:

1. Dynamic typing and prototype-based inheritance of JavaScript leads to many tests
that, for example, check the behavior of functions when passed null or undefined,
whereas we in HOL only allow None in places where the DOM standard actually
permits it.

2. We model a simplified version of the core DOM. We turned many classes that
extend the Node interface and, thus, participate in the node tree, into attributes of
other interfaces. For example, the DOM standard defines DocumentType as a node
that must appear in exactly one location of the node tree: it must be the first child
of a Document. We model the document type as a field of a Document. Many tests
of the official suite test that constraint, which we therefore did not formalise.

5.3 Translating Test Cases
The W3C test cases are written in JavaScript, which is embedded into the DOM instance
under test. Most of them follow the same pattern: each sub-test consists of a call to
a method test from the test harness, which takes a single function that queries and
modifies the current DOM instance. Additionally, the test function calls various assert
functions, that–if the check fails–throw an exception and cause the whole sub-test to fail.
If the function reaches the end, the test is deemed successful. Figure 5.2 contains an
example of such a sub-test for the function insertBefore and its translation into HOL.
It checks whether the DOM method throws a certain exception if called with a certain
combination of arguments. We formalised this test into our state-exception-monad and
use a predicate test to convert the program to an Isabelle proof goal, with the proof
obligation of showing the absence of exceptions.

It is important to note that we do not employ a full-featured JavaScript-to-HOL
translator, which would be very complex; instead, we limit ourselves to this semi-
automatic approach which is able to detect a number of patterns used by the test cases
and maps them to pre-defined fDOM and state-monad constructs. The converter that
we built is written in JavaScript itself and uses a JavaScript parsing library to parse
the abstract syntax trees (AST) of the test cases. We then iterate the AST to detect
constructs such as calls to the test() method, variables assignments, or method calls,
which we then translate into methods of our HOL test framework, such as the do syntax
for monads. For the construction of the heap, we simply use an HTML parser to parse
the HTML file containing the test case and then a tree walker on the node tree to output
our HOL finite map that represents the heap.

For the actual Isabelle proof showing that the given program does not result in an
error, we have multiple possible options. The key difference between these test cases
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test(function() {
var a = document.createElement('div');
var b = document.createElement('div');
var c = document.createElement('div');
assert_throws('NotFoundError', () => {

a.insertBefore(b, c);
});

},'Calling insertBefore with a reference' +
'child whose parent is not the context' +
'node must throw a NotFoundError.')

(a) Sub-test from the W3C test suite, written in
JavaScript.

lemma "test (do {

a ← document.createElement(''div'');

b ← document.createElement(''div'');

c ← document.createElement(''div'');

assert_throws(NotFoundError,

(cast a).insertBefore(cast b,

Some (cast c)))

}) Node_insertBefore_heap"

by code_simp

(∗Calling insertBefore with a reference

child whose parent is not the context

node must throw a NotFoundError.∗)

(b) The same sub-test translated into HOL
for fDOM .

Figure 5.2: Translating a sub-test from the W3C test suite into HOL.

and our “regular” lemmas is that the translated test cases all start with a concrete
heap (Node_insertBefore_heap in Figure 5.2b), derived from the HTML document that
contained the original sub-test, which leaves us with no free variables in our proof goal.
Therefore, the traditional approach of using the simplifier with a few definitions and
additional lemmas is possible, but tedious. Instead, we employ symbolic evaluation in
Isabelle as the tactic code_simp, which uses the simplifier internally together with a set of
pre-defined equations that are suitable for symbolic execution, and eval, which generates
and executes ML code for the proof. More detailed information about the proof tactics
and their configuration can be found in the Isabelle manual [70] or the code generator
documentation [34]. In general, code_simp is slower, but more trustworthy than using
eval, since the latter adds the whole code generator setup to the amount of code that is
outside of the trust guarantees of Isabelle. Table 5.3 shows the run-times for our core
DOM test cases and Table 5.4 for the tests related to shadow roots, which all show
that eval is orders of magnitudes faster than code_simp. All benchmarks have been run
on a single core of a Intel Core i7-6600U CPU @ 2.60GHz of a laptop and have been
run three times, of which we took the median value for each test. We have translated
all sub-tests that we deemed relevant, and we have proven all translated sub-tests to
terminate without error, meaning that fDOM passes all relevant test cases.

5.4 Beyond Compliance: Enhancing the Specification

The test suite is an important part of showing the compliance of any implementation.
Now that we have established reasonable confidence in the compliance of our model,
we can actually use our formalisation to also contribute back, towards fDOM , the test
suite, and also the underlying specification itself. Tests are a very limited way of showing
important properties, as they only do so for concrete input values, such as a simple DOM
instance. Since we do not have this kind of limitation in Isabelle, we can–inspired by the
test cases–generalise them to generic theorems that show the corresponding property for
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Table 5.3: Execution times of all translated test cases of the core DOM in seconds. The
Description is directly taken from the test cases.

Method Description teval tcode_simp

adoptNode Adopting an Element called ’x<’ should work. 4.88 67.74
adoptNode Adopting an Element called ’:good:times:’ should work. 2.27 42.97
getElementById Document.getElementById with a script-inserted ele-

ment
2.57 69.93

getElementById update ‘id‘ attribute via setAttribute/removeAttribute 2.82 63.31
getElementById Ensure that the id attribute only affects elements

present in a document
2.45 51.97

getElementById in tree order, within the context object’s tree 2.64 83.99
getElementById Modern browsers optimize this method with using in-

ternal id cache. This test checks that their optimization
should effect only append to ‘Document‘, not append
to ‘Node‘.

2.54 32.12

getElementById changing attribute’s value via ‘Attr‘ gotten from ‘Ele-
ment.attribute‘.

2.67 59.69

getElementById update ‘id‘ attribute via element.id 2.57 59.81
getElementById where insertion order and tree order don’t match 2.82 466.99
getElementById Inserting an id by inserting its parent node 2.45 73.97
getElementById Document.getElementById must not return nodes not

present in document
2.47 81.37

insertBefore Calling insertBefore an a leaf node Text must throw
HIERARCHY\_REQUEST\_ERR.

2.22 0.95

insertBefore Calling insertBefore with an inclusive ancestor of
the context object must throw HIERARCHY\_RE-
QUEST\_ERR.

4.93 10.78

insertBefore Calling insertBefore with a reference child whose parent
is not the context node must throw a NotFoundError.

2.20 3.75

insertBefore If the context node is a document, inserting a document
or text node should throw a HierarchyRequestError.

2.66 46.68

insertBefore Inserting a node before itself should not move the node 2.14 32.00
removeChild Passing a detached Element to removeChild should not

affect it.
2.05 4.70

removeChild Passing a non-detached Element to removeChild should
not affect it.

2.27 12.27

removeChild Calling removeChild on an Element with no children
should throw NOT\_FOUND\_ERR.

2.26 13.29

removeChild Passing a detached Element to removeChild should not
affect it.

2.36 26.61

removeChild Passing a non-detached Element to removeChild should
not affect it.

2.41 39.59

removeChild Calling removeChild on an Element with no children
should throw NOT\_FOUND\_ERR.

2.44 42.26

removeChild Passing a value that is not a Node reference to re-
moveChild should throw TypeError.

1.73 1.56
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Table 5.4: Execution times of all translated test cases of shadow roots in seconds. Tests
were terminated after a maximum of 10 minutes. The Description is directly
taken from the test cases.

Method Description teval tcode_simp

slots ’Slots: Basic.’ 6.31 >600.00
slots ’Slots: Basic, elements only.’ 6.26 >600.00
slots ’Slots: Slots in closed.’ 6.79 >600.00
slots ’Slots: Slots in closed, elements only.’ 6.33 >600.00
slots ’Slots: Slots not in a shadow tree.’ 6.06 >600.00
slots ’Slots: Slots not in a shadow tree, elements only.’ 9.13 >600.00
slots ’Slots: Distributed nodes for Slots not in a shadow tree.’ 6.49 >600.00
slots ’Slots: Name matching’ 5.88 >600.00
slots ’Slots: No direct host child.’ 9.45 >600.00
slots ’Slots: Default Slot.’ 6.23 >600.00
slots ’Slots: Slot in Slot does not matter in assignment.’ 9.46 >600.00
slots ’Slots: Slot is assigned to another slot’ 11.53 >600.00
slots ’Slots: Open > Closed.’ 9.19 >600.00
slots ’Slots: Closed > Closed.’ 6.82 >600.00
slots ’Slots: Closed > Open.’ 8.89 >600.00
slots ’Slots: Complex case: Basi line.’ 9.22 >600.00
slots ’Slots: Mutation: appendChild.’ 13.95 >600.00
slots ’Slots: Mutation: Change slot= attribute 1.’ 7.15 >600.00
slots ’Slots: Mutation: Change slot= attribute 2.’ 12.28 >600.00
slots ’Slots: Mutation: Change slot= attribute 3.’ 6.35 >600.00
slots ’Slots: Mutation: Remove a child.’ 9.47 >600.00
slots ’Slots: Mutation: Add a slot: after.’ 7.32 >600.00
slots ’Slots: Mutation: Add a slot: before.’ 13.56 >600.00
slots ’Slots: Mutation: Remove a slot.’ 7.02 >600.00
slots ’Slots: Mutation: Change slot name= attribute.’ 6.68 >600.00
slots ’Slots: Mutation: Change slot slot= attribute.’ 6.66 >600.00
slots_fallback ’Slots fallback: Basic.’ 2.80 243.71
slots_fallback ’Slots fallback: Basic, elements only.’ 2.81 202.66
slots_fallback ’Slots fallback: Slots in Slots.’ 2.89 >600.00
slots_fallback ’Slots fallback: Slots in Slots, elements only.’ 2.78 >600.00
slots_fallback ’Slots fallback: Fallback contents should not be used if a

node is assigned.’
3.03 >600.00

slots_fallback ’Slots fallback: Slots in Slots: Assigned nodes should be
used as fallback contents of another slot’

2.90 >600.00

slots_fallback ’Slots fallback: Complex case.’ 3.04 >600.00
slots_fallback ’Slots fallback: Complex case, elements only.’ 3.25 >600.00
slots_fallback ’Slots fallback: Mutation. Append fallback contents.’ 3.81 >600.00
slots_fallback ’Slots fallback: Mutation. Remove fallback contents.’ 3.44 >600.00
slots_fallback ’Slots fallback: Mutation. Assign a node to a slot so that

fallback contens are no longer used.’
3.83 >600.00

slots_fallback ’Slots fallback: Mutation. Remove an assigned node from
a slot so that fallback contens will be used.’

3.44 >600.00

slots_fallback ’Slots fallback: Mutation. Remove a slot which is a
fallback content of another slot.’

3.69 >600.00
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all possible inputs. For our example property, we generalize the test as follows:

lemma insert_before_ok:

assumes "valid_heap h"

assumes "parent |∈| object_ptr_kinds h"

assumes "node |∈| node_ptr_kinds h"

assumes "¬is_character_data_ptr_kind parent"

assumes "cast node ∉ set |h ⊢ get_ancestors parent|r"

assumes "h ⊢ get_parent ref →r Some parent"

assumes "is_document_ptr parent ⟹ h ⊢ get_child_nodes parent →r []"

assumes "is_document_ptr parent ⟹ ¬is_character_data_ptr_kind node"

shows "h ⊢ ok (insert_before parent node (Some ref))"

Instead of creating three concrete elements, we can quantify over all possible elements.
The assumptions give additional insight into the behaviour of insert_before; for example,
the test would fail if the argument were a CharacterData or included in the reference’s
ancestors, because these circumstances are checked earlier and cause different exceptions.

Many kinds of test cases could be generalized in this manner. In general, we start by
using an unspecified heap h instead of the concrete heap from the DOM under test–most
likely, this change will lead to the failure of the test case. Now we look closer at the
condition that lead to the failure of the test case and begin to add them to the assumptions
of the lemma until the test case lemma can be proven correct again. This change will
hopefully give a clearer picture of the necessary preconditions of the test than a concrete
heap. In the same way, parts of the test case itself, e. g. the creation of a certain element,
could be replaced as well. For each such replacement, the effect on the clarity of the
whole test case has to be considered, since sometimes the use of a single DOM method
can be more descriptive than trying to find a characterization in higher-order logic.

In order to assess which DOM methods in the standard would benefit the most
from such generalized test cases, we assessed the state of the test suite with regards to
their complexity and coverage, which is shown in Table 5.5. Some methods, such as
insertBefore, are rather complex, i. e., they involve modifications to various nodes in
the tree and feature many checks, but unfortunately only have little test coverage. Such
methods are in need of a more complete test suite, which could be achieved by creating
such generalized test cases and then using other techniques, e. g. test case generation, to
complement existing tests. We only used rough, manual assessments of complexity and
coverage, which can certainly be improved with more sophisticated methods, but our
general approach remains the same. The official test suite is developed manually and,
thus, it is not surprising that the test cases vary in style and quality. For example, the
compliance test for the tree-modifying method insertBefore consists of 26 test cases,
of which only five are relevant for our formalisation. This indicates that the test authors’
concern is mostly testing the absence of run time errors and, to a lesser extent, the
correctness of this rather complex method.

In many cases, the methods defined in the DOM standard need to fulfil important
properties. These properties are neither spelled out explicitly nor does the compliance
test suite contain test cases for them. During the formalisation of the standard, these
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Table 5.5: The number of sub-tests regarding our supported DOM methods that are
available from the official suite and relevant for us. Additionally, we present
a rough estimate of the complexity of the tested function along with the
coverage of the tests to estimate how much each function would benefit from
automatically generated tests. A function with high complexity but low
coverage would therefore profit substantially.

# Sub-Test
in Scope

Function
Complexity

Function
Coverage

assignedNodes 24 high high
assignedSlot 24 high high
insertBefore 5 high low
getElementByID 10 medium medium
removeChild 8 medium medium
attachShadow 2 medium medium
createElement 49 medium low
adoptNode 2 medium low
getRoot 3 medium low
childNodes 2 low medium
parentNode 3 low medium
shadowRoot 2 low low
host 1 low low
getOwnerDocument 0 low –
getAttribute 0 low –
setAttribute 0 low –
nextSibling 0 low –
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properties often emerge as proof obligations that need to be shown to be able to prove
the high-level properties specified in the standard.

An example for such an important property is that after a successful call of insert_before,
the list of child nodes remains distinct, even if the new child was already a child of that
node:

lemma insert_before_children_remain_distinct:

assumes "valid_heap h"

assumes "h ⊢ insert_before ptr new_child child_opt →h h'"

assumes "h' ⊢ get_child_nodes ptr →r children"

shows "⋀ptr' children'.

h' ⊢ get_child_nodes ptr' →r children' ⟹ distinct children'"

Intuitively, this is true because insert_before first removes the new child from its old
parent before inserting it into the child node list of the new parent.

While the verification as such is important to ensure the consistency and implement-
ability of the standard, it also forms the basis for developing an improved compliance
test suite. Using a specification-based or theorem prover-based test-case generation ap-
proach [20], the proven lemmas could be systematically turned into additional compliance
test cases that ensure that actual implementations fulfil these crucial properties.

Summary
In this chapter, we have put our DOM formalisation into the bigger picture. We have
increased the confidence in our model that it is a faithful representation of the standard.
In addition, we have presented multiple other benefits of combining the fDOM with
the compliance test suite, even though we leave most of them for future work; we can
generalize test cases to HOL theorems, which inspires new theorems that might not
necessarily be useful for bigger proofs, but can nevertheless provide properties that the
test suite author deemed useful. These generalized theorems can then, together with
other theorems, be used to generate more test cases, thus improving the compliance test
suite and therefore also other implementations of web browsers.
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In the previous chapters, we have built a formal model of the DOM that complies to
the standard and contains shadow roots as a technical basis for separating sub-trees
from each other. However, as we will see in this chapter, if we take a step back and
consider their use case more carefully, we will see that they fall short of this expectation
of providing a modern component mechanism for several reasons.

Both producers and consumers of shadow root sub-trees are faced with the question:
what guarantees come with these sub-trees, and how are these guarantees affected by the
used DOM API methods? The DOM standard, as it stands, answers neither of these
questions satisfactorily. In this chapter, therefore, we will focus on the semantics of web
components. While the DOM standard introduces the API for working with shadow
trees, it neither defines the concept of a component nor specifies the safety guarantees
that should be provided to authors and consumers of components. We will start by
formally defining DOM-Components and what it means for DOM methods to respect
them, a concept which we will call DOM-Component safety. Then, we will classify the
most important DOM methods according to that definition of safety, and we will finally
see that shadow trees–in its current form–provide a quite unsatisfactory situation. All
Isabelle definitions and proofs of this chapter can be found in [11].

6.1 A Formal Definition of Web Components
Many DOM methods, e. g., get_element_by_id and get_root_node, traverse the node
tree exclusively along the childNodes relation (i. e., in shadow-excluding tree order
or bottom-up, respectively). These methods will not traverse the DOM along the
shadowRoot relation. Intuitively, the shadowRoot relation acts as a component boundary
that can only be crossed by explicitly calling a method that is defined to traverse the
shadowRoot relation.

6.1.1 Definition
The standard informally introduces a (shadow-excluding) tree order computation that
returns, in depth-first pre-order, all nodes reachable from a given node by traversing
the childNodes relation. In the standard, this is an abstract concept, i. e., not a method
available directly to web developers. We formalised it nevertheless as to_tree_order,
which we use to provide a formal definition of DOM-Components:

Definition 6.1.1 (DOM-Component). A DOM-Component of an object pointer ptr is
defined as the list of all objects in (shadow-excluding) tree order that are reachable from
the root node of ptr.
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Document
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Figure 6.1: Running example from Figure 4.1 including a visualisation of DOM-
Components.

In Isabelle, we define the following function for this definition of components:

definition get_dom_component :: "(_) object_ptr ⇒

(_, (_) object_ptr list) dom_prog"

where

"get_dom_component ptr = do {

root ← get_root_node ptr;

to_tree_order root

}"

In other words, an object pointer ptr belongs to a DOM-Component T if and only if ptr
is in the list of nodes that are reachable from the root of T via the childNodes relation.
We show our updated running example in Figure 6.1), where we show how our component
definition divides all pointers intro three separate trees T1, T2, and T3.

6.1.2 Different Kinds of DOM-Components
In the example, we can see that not all components are of the same kind–our component
definition naturally allows distinguishing three different types of components, based on
the type of their root node:

Definition 6.1.2 (Document DOM-Component). A Document DOM-Component is a
DOM-Component whose root node is of type Document.

In Isabelle, we define this as follows:
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definition is_document_component :: "(_) object_ptr list ⇒ bool"

where

"is_document_component c = is_document_ptr_kind (hd c)"

Since an object of type Document can only occur as the root node of a node tree, a
document component can be considered the main part of a node tree.

Definition 6.1.3 (Shadow Root DOM-Component). A Shadow Root DOM-Component
is a web component whose root node is of type ShadowRoot.

definition is_shadow_root_component :: "(_) object_ptr list ⇒ bool"

where

"is_shadow_root_component c = is_shadow_root_ptr_kind (hd c)"

A shadow root component might be considered the “canonical component”. It encapsu-
lates its contained nodes from outside components and uses slots and slotables to interact
with the outer component.

Finally, we define a disconnected component as a component only containing discon-
nected nodes , i. e., nodes that are not reachable by traversing the DOM (not even in
shadow-including tree order) from its ownerDocument.

Definition 6.1.4 (Disconnected DOM-Component). A Disconnected DOM-Component
is a web component whose root node is of type Node.

definition is_disconnected_component :: "(_) object_ptr list ⇒ bool"

where

"is_disconnected_component c = is_node_ptr_kind (hd c)"

Disconnected components are not part of the main node tree and thus will not take
part in the rendering of the final node tree. Usually, disconnected components are
freshly created object graphs, e. g. by using create_element, that will become a part of a
“regular” DOM instance by passing them as argument to methods such as append_child.
On the other hand, all nodes that are serialized into an HTML page are not disconnected,
because the successor relationship of this XML-based tree structure directly corresponds
to the childNodes relationship of the DOM tree, and since the topmost element of the
page becomes the documentElement of the main document, they are all connected.

6.1.3 Properties of DOM-Components
In the following, we will “test” our new definition of DOM-Components by proving some
properties about them to convince ourselves that they behave as expected.

Let us start with the property that any arbitrary, but fixed pointer is actually inside
its own component:

lemma get_dom_component_ptr:

assumes "valid_heap h"

assumes "h ⊢ get_dom_component ptr →r c"

shows "ptr ∈ set c"
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The proof is less obvious than it might first seem. Recall that in order to calculate
the component for a given object pointer ptr, we first obtain its root and then iterate
downwards again–the lemma shown states that we will eventually reach our pointer ptr

again. The proof skeleton looks as follows:

1 proof(insert assms(1) assms(4), induct ptr rule: heap_wellformed_induct_rev)

2 case (step child)

3 then show ?case

4 proof (cases "is_node_ptr_kind child")

5 case True

6 obtain node_ptr where node_ptr: "castnode_ptr2object_ptr node_ptr = child"

7 ...

8 then obtain parent_opt where

9 parent: "h ⊢ get_parent node_ptr →r parent_opt"

10 ...

11 then show ?thesis

12 proof (induct parent_opt)

13 case None

14 ...

15 then show ?case

16 ...

17 next

18 case (Some parent_ptr)

19 ...

20 then have "parent_ptr ∈ set c"

21 ...

22 show ?case

23 ...

24 qed

25 next

26 case False

27 then show ?thesis

28 ..

29 qed

30 qed

We start the proof by initiating an induction bottom-up inside a well-formed node
tree. This means that we can assume if child has a parent and the component of the
parent is c, then we know that the parent is inside that component. Now, given that c is
also the component of child, we need to show that also child is inside the component.
There are a few edge cases to consider, with the main proof path leading into Line 20,
where we establish that the parent is indeed in c. Finally, we can use a lemma about
to_tree_order that says that if a parent is in any given result from to_tree_order, its
children will also be.

Another important fact, which will later be useful to prove that get_child_nodes is
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strongly DOM-Component safe, is that for any DOM-Component c, any pointer is in c if
and only if its children are in the same DOM-Component:
lemma get_dom_component_get_child_nodes:

assumes "valid_heap h"

assumes "h ⊢ get_component ptr →r c"

assumes "h ⊢ get_child_nodes ptr' →r children"

assumes "child ∈ set children"

shows "cast child ∈ set c ⟷ ptr' ∈ set c"

Perhaps most interestingly, it is impossible to have two different DOM-Components
that overlap–any two DOM-Components either share all their nodes or none at all:
lemma get_dom_component_no_overlap:

assumes "valid_heap h"

assumes "h ⊢ get_dom_component ptr →r c"

assumes "h ⊢ get_dom_component ptr' →r c'"

shows "set c ∩ set c' = {} ∨ c = c'"

This important observation allows us to partition any node tree, such as our example
in Figure 6.1, into separate components without getting intro trouble.

6.2 Definition of DOM-Component Safety
Ultimately, web components should provide a certain form of safety guarantee to both
component developers and consumers. Neither should a component unintentionally
modify the consuming web application nor vice versa.

To address this issue, we introduce the notion of DOM-Component safety for DOM
methods that captures which part of a DOM can be modified and accessed by a method.
We distinguish three types of methods; methods that

1. only operate within the DOM-Components of their arguments, as one could argue
that it is expected that the method operates within their proximity (i. e., their
DOM-Component). We will call these methods strongly DOM-Component-safe.

2. only operate within the DOM-Components of their arguments, in addition to
any newly created DOM-Components. While these methods operate outside
their perceived boundaries, they at least leave other, existing DOM-Components
untouched. We will call these methods weakly DOM-Component-safe.

3. operate on arbitrary parts of a DOM instance. We will call these methods unsafe.

It would theoretically be possible to also use other measures of “proximity”, for example,
one parent- or child-step away instead of anywhere within the DOM-Component, or
perhaps even a whole DOM heap way. However, using units of DOM-Components has the
advantage that they are naturally divided by boundaries such as the host-shadowRoot
boundary, which is also meant to separate code coming from different developers and
thus might have different levels of trust.
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6.2.1 Strong DOM-Component Safety
For strong DOM-Component safety, we define the following predicate in Isabelle:
definition is_strongly_dom_component_safe :: "(_) object_ptr set ⇒

(_) object_ptr set ⇒ (_) heap ⇒ (_) heap ⇒ bool"

where

"is_strongly_dom_component_safe Sarg Sresult h h' = (

let removed_pointers =

fset (object_ptr_kinds h) − fset (object_ptr_kinds h') in

let added_pointers =

fset (object_ptr_kinds h') − fset (object_ptr_kinds h) in

let arg_components =

⋃ptr ∈ (⋃ptr ∈ Sarg. set |h ⊢ get_dom_component ptr|r) ∩

fset (object_ptr_kinds h). set |h ⊢ get_dom_component ptr|r) in

let arg_components' =

(⋃ptr ∈ (⋃ptr ∈ Sarg. set |h ⊢ get_dom_component ptr|r) ∩

fset (object_ptr_kinds h'). set |h' ⊢ get_dom_component ptr|r) in

removed_pointers ⊆ arg_components ∧

added_pointers ⊆ arg_components' ∧

Sresult ⊆ arg_components' ∧

(∀outside_ptr ∈ fset (object_ptr_kinds h) ∩ fset (object_ptr_kinds h')

− (⋃ptr ∈ Sarg. set |h ⊢ get_dom_component ptr|r).

preserved (get_M outside_ptr id) h h'))"

Before we have a look into the details of this definition, let us consider an example first.
To show that get_child_nodes is strongly DOM-Component safe, we prove the following
lemma:
lemma get_child_nodes_strongly_dom_component_safe:

assumes "valid_heap h"

assumes "h ⊢ get_child_nodes ptr →r children"

assumes "h ⊢ get_child_nodes ptr →h h'"

shows "is_strongly_dom_component_safe {ptr} (cast ` set children) h h'"

The first argument of is_strongly_dom_component_safe is Sarg, which is the set of
all pointers that are arguments to the DOM method call in question–in the case of
get_child_nodes, that is only ptr. The second argument is Sresult, the set of all pointers
that are returned by the method, for example, the returned children, after they have
been appropriately cast to object pointers. The last two arguments, h and h' refer to the
heap states before and after the method call. For get_child_nodes they will both be the
same, which will make the proof much easier.

The predicate is_strongly_dom_component_safe then works as follows. First, we build
four sets of interesting pointers: removed_pointers and added_pointers refer to the
pointers that have been removed from and added to the heap h' (compared to heap h),
respectively, followed by arg_components and arg_components', which contain all pointers
that are in any of the components of the “argument pointers” Sarg. The normal and
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primed version of the set capture the components in h and h', respectively, which can be
quite different. For example, when append_child moves one of its arguments from one
part of the DOM tree to another, that argument can switch components, which leads
to very different arg_components and arg_components'. Second, we use these pointer sets
to require that the following four statements hold: 1. All pointers that get removed
were part of the argument pointers’ components in the original heap, 2. all pointers that
get added will be part of the argument pointers’ components in the new heap, 3. also,
all pointers that the function returns (Sresult) must be part of the argument pointers’
components in the new heap, and finally, 4. all pointers that have been in either heap and
are not part of the argument pointers’ components must remain unmodified (preserved).

Note that a method that would somehow have all pointers in their arguments and thus
in Sarg would be trivially strongly DOM-Component safe. However, we do not consider
this to be a problem for the usefulness of our safety definition, because if the developer is
able to gather all available pointers before the call to this hypothetical method, then he
has already been able to access all these parts of the node tree anyway.

6.2.2 Weak DOM-Component Safety
One class of DOM methods is inherently not strongly DOM-Component safe: constructors.
All four constructors create a new component that is unrelated (using our definition
of DOM-Component) to the argument of the constructor, as they will create a new
disconnected node, a new, separate document, or a new shadow root, respectively,
which all breaks our definition of strong safety. While this has potential for unexpected
behaviour, we consider it “not quite as bad” as arbitrarily modifying the DOM instance.
Formally, the definition is very close to the one of strong DOM-Component safety:
definition is_weakly_dom_component_safe :: "(_) object_ptr set ⇒

(_) object_ptr set ⇒ (_) heap ⇒ (_) heap ⇒ bool"

where

"is_weakly_dom_component_safe Sarg Sresult h h' = (

let removed_pointers =

fset (object_ptr_kinds h) − fset (object_ptr_kinds h') in

let added_pointers =

fset (object_ptr_kinds h') − fset (object_ptr_kinds h) in

let arg_components =

(⋃ptr ∈ (⋃ptr ∈ Sarg. set |h ⊢ get_dom_component ptr|r) ∩

fset (object_ptr_kinds h). set |h ⊢ get_dom_component ptr|r) in

let arg_components' =

(⋃ptr ∈ (⋃ptr ∈ Sarg. set |h ⊢ get_dom_component ptr|r) ∩

fset (object_ptr_kinds h'). set |h' ⊢ get_dom_component ptr|r) in

removed_pointers ⊆ arg_components ∧

Sresult ⊆ arg_components' ∪ added_pointers ∧

(∀outside_ptr ∈ fset (object_ptr_kinds h) ∩ fset (object_ptr_kinds h')

− (⋃ptr ∈ Sarg. set |h ⊢ get_dom_component ptr|r).

preserved (get_M outside_ptr id) h h'))"
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The only two differences are that we do not put any constraint upon the added_pointers,
and that weaken the restriction on sresult by also allowing the method to return added
pointer that are not part of the argument components. In other words, weak DOM-
Component safety allows methods to additionally create and return new pointers, covering,
for example, constructors.

6.3 Component Safety Classification of the DOM Methods

In the following, we will discuss to what extend the methods defined in the DOM standard
are component-safe. By doing this we effectively evaluate how suitable shadow roots
are for providing separation. We will see that some methods, especially append_child,
break our separation in unexpected ways. An overview of the safety levels of the DOM
methods is shown in Table 6.1.

6.3.1 Getters and Simple Recursive DOM Methods

Most simple DOM methods are strongly DOM-Component safe. By simple, we mean
methods that basically iterate the node tree along the childNodes relation. We have
already seen that get_child_nodes is strongly DOM-Component safe, but omitted the
proof idea. Essentially, the proof utilizes the fact that the definition of a DOM-
Component is built upon to_tree_order, which simply iterates the tree by calling
get_child_nodes recursively. Therefore, it is hardly surprising that for any object pointer,
its children reside within the same component as the pointer itself, which follows from
get_child_nodes_strongly_dom_component_safe. The method get_parent is also strongly
DOM-Component safe, which follows from a similar argument.

The recursive variants, get_root_node, get_element_by_id, and similar methods, are
also strongly DOM-Component-safe. For example, we state the lemma for the method
get_element_by_id as follows:

lemma get_element_by_id_is_strongly_dom_component_safe:

assumes "valid_heap h"

assumes "h ⊢ get_element_by_id ptr id →r Some result"

assumes "h ⊢ get_element_by_id ptr id →h h'"

shows "is_strongly_dom_component_safe {ptr} {cast result} h h'"

Note that this is the variant for the case that such an element pointer, result, is indeed
found. The case that no such element is found is a separate lemma and trivial to prove.
The proof idea for this group of lemmas is similar; any object has the same root as its
parent, and any node found by get_element_by_id has the same root as the anchored
object–from the definition of get_dom_component it then follows that they also have the
same component. As these methods do not modify the heap, this is all we need to show
for strong DOM-Component safety.
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Table 6.1: Classification of the most important DOM methods into whether they are
strongly or weakly component-safe, or not at all. The last column (closed)
classifies the methods for the special case that the DOM instance only contains
closed shadow roots.

Method Component Safety

open closed

get_child_nodes strong strong
get_parent strong strong
get_root_node strong strong
get_element_by_id strong strong
get_elements_by_class_name strong strong
get_elements_by_tag_name strong strong

create_element weak weak
create_character_data weak weak
create_document weak weak
attach_shadow_root weak weak

get_shadow_root unsafe strong
assigned_slot unsafe strong
get_host unsafe unsafe
get_composed_root_node unsafe unsafe
assigned_nodes unsafe unsafe

get_owner_document unsafe unsafe
adopt_node unsafe unsafe
remove_child unsafe unsafe
insert_before unsafe unsafe
append_child unsafe unsafe
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6.3.2 Constructors

In general, methods that create new objects are weakly DOM-component safe, because
most of them return a new object which is not part of any component yet, since it has just
been created. Our constructors are create_element (creating a new disconnected compon-
ent), create_character_data (creating a new disconnected component), create_document
(creating a new document component), and attach_shadow_root (creating a new shadow
root component).

First, we will show that they are not strongly DOM-Component safe. For example, for
create_element we show the following lemma:

lemma create_element_not_strongly_dom_component_safe:

obtains h :: heap_final and h' and document_ptr

and new_element_ptr and tag

where

"valid_heap h" and

"h ⊢ create_element document_ptr tag →r new_element_ptr →h h'" and

"¬ is_strongly_dom_component_safe

{cast document_ptr} {cast new_element_ptr} h h'"

On a technical level, the structure of this kind of lemma is different from the lemmas
showing the safety; we use the Isabelle obtains construction to show that there exists at
least one heap for which the method is not (strongly or weakly) DOM-Component safe. It
is also important to note that we prove this lemma outside of our locale construction (for
more details, refer to Section 4.2)—we do so because we will use concrete heaps with closed
extension slots (hence the usage of heap_final) in this kind of counter-example proof, on
which we will symbolically evaluate a range of our DOM methods. Since inside our locales,
we only have a few concrete definitions available, we conduct the proof outside, where the
full range of exported definitions is available. The overhead of potentially duplicating this
kind of proof over multiple extensions of our type universe is small, however, as we will
see now in the case of the proof of create_element_not_strongly_dom_component_safe:

proof −
let ?h0 = "Heap fmempty :: heap_final"

let ?P = "create_document"

let ?h1 = "|?h0 ⊢ ?P|h"

let ?document_ptr = "|?h0 ⊢ ?P|r"

show thesis

apply(rule that[where

h = "?h1" and

document_ptr = "?document_ptr" and

new_element_ptr = "|?h1 ⊢ create_element ?document_ptr|r" and

h' = "|?h1 ⊢ create_element ?document_ptr|h"])

by code_simp+

qed
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The proof works as follows: First, we programmatically construct a heap that will
serve as our counterexample, starting from the empty heap Heap fmempty (recall that our
heap datatype is basically a finite map, hence the use of fmempty). On this empty heap,
we then invoke create_document to create the main document. The resulting new heap
and document pointer are then bound to the proof-local variables h and document_ptr,
respectively. Before we can obtain them, however, Isabelle requires us to prove that the
given program terminates without error and such heap and document pointer actually
exist. Since we have a concrete start heap given and access to all method definitions, we
can simply use code_simp to symbolically execute the statement and show that it evaluates
to true (for more information about our use of the code generator, see Section 2.1.5).
Finally, we can plug our concrete h and document_ptr into that, which refers to the
lemma statement and has schematic placeholders for all arbitrary, but fixed variables.
We do not need to fill in every variable, as the simplifier will be able to calculate them
automatically, or ignore them if they are not necessary to proof the lemma. Then, we
can invoke simplification by using code theorems (i. e., theorems that Isabelle generates
from definitions to use them for code generation) again to finish the proof.

It is interesting to note that this proof pattern allows us to work with concrete heaps
without ever having to state them manually, which would be tedious and clutter our
proof text, especially for larger heaps. If we inspect the proof status of Isabelle, we will
see the concrete values of both h and document_ptr:

document_ptr = document_ptr.Ref 1 ∧

h = Heap (fmap_of_list [

(object_ptr.Ext (Inr (Inl (document_ptr.Ref 1))),

⦇RObject.nothing = (),

… = Inr (Inl ⦇RDocument.nothing = (), doctype = [],

document_element = None, disconnected_nodes = [], … = None⦈)⦈)

])

Nevertheless, for most of our non-safety proves we will use the formalisation of our
running example in Figure 6.1 (created using a list of mappings from pointers to objects) as
our base counter-example heap instead of the empty heap, which allows us to understand
the counter-example more easily, especially when a more complex one is needed. In the
end, any approach proves the same lemma in Isabelle, so it is more a matter of personal
preference.

Even though create_element is not strongly DOM-Component safe, it is weakly safe:

lemma create_element_is_weakly_dom_component_safe:

assumes "valid_heap h"

assumes "h ⊢ create_element document_ptr tag →r result →h h'"

shows "is_weakly_dom_component_safe {cast document_ptr} {cast result} h h'"

The proof idea is that the only object (that existed in h) that gets changed is
document_ptr, which adds the newly created element to its list of disconnected nodes.
The new element pointer forms its own DOM-Component and therefore cannot interfere
with any already existing ones.
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The proofs and counter-proofs for the other constructors work in a similar manner and
are all contained in the full Isabelle proof document.

6.3.3 Shadow Root Methods

The next class of methods includes ones that concern shadow roots or slotting directly,
which are, in general, unsafe, which is expected. In case of a closed shadow tree (mode
is set to Closed), methods trying to look inside Shadow Root DOM-Components (i. e.,
get_shadow_root and assigned_slot) will return an error, making them strongly DOM-
component-safe in this case. Unaffected by the mode are methods trying to break
out (i. e., get_host, get_composed_root_node, and assigned_nodes), thus they remain
unsafe. For example, the lemma showing that assigned_slot is, in general, not weakly
DOM-Component safe (and therefore also not strongly safe), can be stated as follows:

lemma assigned_slot_not_weakly_dom_component_safe:

obtains h :: dom_final and node_ptr and slot_opt and h'

where

"valid_heap h" and

"h ⊢ assigned_slot node_ptr →r slot_opt →h h'" and

"¬ is_weakly_component_safe {cast node_ptr} (cast ` set_option slot_opt) h h'"

We use the same construction as for create_element_not_strongly_dom_component_safe,
but now for the predicate is_weakly_component_safe. We use set_option to convert the
return value of assigned_slot into a pointer set, so we can allow both possible outcomes
of the method call–whether a slot has been found or not. Recall that we are constructing
a counter example here, so we only need to find one valid instantiation of variables. The
proof follows the usual schema, with the difference that we now use our running example
as the counter-example heap:

proof −
let ?h = fancy_tabs_heap

let ?node_ptr = "|?h ⊢ do {

elements ← get_elements_by_tag_name fancy_tabs_document ''fancy−tabs'';

children ← get_child_nodes (cast (elements ! 0));

return (children ! 0)

}|r"

show thesis

apply(rule that[where

h = "?h" and

node_ptr = "?node_ptr" and

slot_opt = "|?h ⊢ assigned_slot ?node_ptr|r" and

h' = "|?h ⊢ assigned_slot ?node_ptr|h"

])

by code_simp+

qed
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We bind our running example heap to ?h, and then obtain the first child of the
<fancy-tabs> element and bind it to ?node_ptr. We know that assigned_slot will
return one of the slots in T2, which we do not need to state here explicitly as the code
generator is able to calculate the correct slot itself. Since the argument for our method
call, ?node_ptr, came from T1, we have shown that assigned_slot is indeed unsafe.

While assigned_slot is unsafe in general, we can show that for the special case that
all shadow roots in the current heap are closed, assigned_slot is indeed strongly DOM-
Component safe:

lemma assigned_slot_strongly_dom_component_safe:

assumes "valid_heap h"

assumes "h ⊢ assigned_slot node_ptr →r slot_opt →h h'"

assumes "∀shadow_root_ptr ∈ fset (shadow_root_ptr_kinds h).

h ⊢ get_mode shadow_root_ptr →r Closed"

shows "is_strongly_dom_component_safe

{cast node_ptr} (cast ` set_option slot_opt) h h'"

The proof basically follows from the definition of assigned_slot, which checks whether
the involved shadow root has the Open flag set. If not, the method returns None, which—
together with the fact that assigned_slot does not modify the heap–makes it trivially
strongly DOM-Component safe.

A similar argument can be made for get_shadow_root. The other methods of this
category, get_host, get_composed_root_node, and assigned_nodes are always unsafe,
which we show with a similar counter-example heap to the one used in the proof
of assigned_slot_not_weakly_dom_component_safe, with the exception that the counter-
example works even if the shadow root is closed.

6.3.4 Heap-Modifying and Global Methods

The last category of DOM methods includes the methods adopt_node, remove_child,
insert_before, append_child and get_owner_document, which involve multiple pointers
and traverse the node tree in various ways, and some also modify it in different locations.
Surprisingly and unfortunately, they all operate across DOM-Component boundaries
in unexpected ways, making them all unsafe. From a web application development
perspective, the fact that get_owner_document is unsafe is particularly worrisome: if the
root node of a given pointer is not a document, then this method will return a document
that is outside of the current component. If a library developer were to use this method
for setting up their component, they might inadvertently break out and change objects
outside of their component.

The example heap that we use for the counter-example proof is the same for each
DOM method of this category: In fact, we can use the heap of our running example
(Figure 6.1) again to proof that the methods are unsafe:

• get_owner_document, called on any of the nodes inside the Shadow Tree (T2) will
return the root document, which lies outside the shadow root DOM-Component.
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• adopt_node and remove_child, called on any of the nodes inside T2, will remove the
node from the component and add it to the list of the root document’s disconnected
nodes, thus modifying an object (the document) outside of T2.

• insert_before and append_child, used to add the disconnected node in T3 to any
node inside the Shadow Tree T2, will again modify the document in order to remove
the node from its disconnected node list, which is outside of both T2 and T3.

The Isabelle proofs follow the same pattern as the other proofs showing the non-weak
DOM-Component safety.

The fact that these important DOM methods are unsafe with regards to DOM-
Components is undesirable, as this means that these methods break the expectations
that a developer might have when working with shadow root components.

Summary
In this chapter, we have seen that web components based on shadow trees are an import-
ant step forward for a component-based web development approach. They allow web
developers to define components with well-defined interfaces (called slots) for interacting
with the embedding application or other components (components can be nested arbitrar-
ily). However, our formal analysis shows that there are subtle ways to accidentally break
the component boundaries: most prominently, the enclosing owner document is easily
accessible from inside a shadow root component by using the ownerDocument() method
on any node of that component, which corresponds to the ubiquitous document reference
in any (Web) JavaScript context. We suggest changing this behavior and instead provide
a reference to the root of the current component, thus strengthening the component
separation against accidental interference with other components. This would, on the one
hand, remove the most unexpected way of breaking up the component boundaries and,
on the other hand, simplify the overall definition of web components. This change would
also simplify the notion of component safety by removing boundary cases for disconnected
nodes. In the next chapter, we will explore these and other possible remedies in more
detail.
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If one examines the DOM methods from the previous section that we deem unsafe more
closely, it becomes apparent that the owner document is of special importance to many
operations. Therefore, if one could ensure that the owner document is always inside the
same DOM-component as the other nodes involved, then we would not easily break out
anymore.

In this chapter, we will explore ways how we could achieve that. We will see how
small changes to our previous definition of components and the specification of the DOM
itself lead to a situation where our DOM methods fulfil our expected (refined) notion of
safety, meaning only those DOM methods violate the component boundary that cross
the shadowRoot boundary explicitly. Therefore, the motivation underlying all changes
proposed in this chapter is the search for a better component model that allows the safe
composition of components within the DOM.

These changes, however small, are not backed by the informal specification document of
the official DOM, even though, as we will later see, our changes still pass the compliance
test suite. All considerations, definitions, and proofs in this section are therefore beyond
what the official specification at the time of writing encompasses, but are to be understood
as a proposal for enhancing the standard. All previous proofs and definitions, unless
mentioned otherwise, remain valid. All Isabelle definitions and lemmas presented in this
chapter can be found online; the modified Core DOM theories [17], the modified Shadow
DOM theories [15], and the safely composable web component theories [10].

7.1 Making the DOM Safely Composable
Before we can refine our components and their definition of safety, we need to make
some changes to the specification of the DOM itself. Intuitively, we will strengthen
the separation between shadow root components and their surrounding sub-tree against
unexpected traversal from within the shadow root component. In order to achieve this,
we will “promote” our ShadowRoot class to a Document, which means we will change our
type hierarchy such that our ShadowRoot inherits from Document instead of Object. As
a result, ShadowRoot instances will then be able to function as owner documents for all
their nodes.

It is interesting to note that with these proposed changes, and all other changes that
become necessary, our changed specification remains compliant to the official DOM
standard, as it still passes the official compliance test suite–however, we consider the
reason for this to be an underspecified test suite.
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In the following, we will first see which changes are necessary to our datatypes, followed
by our heap invariants and general methods. Finally, we will summarise our changes to
the DOM, the result of which we will call Safely Composable Document Object Model
(SCDOM).1

7.1.1 Data Model

The following definition shows our new RShadowRoot. Besides being compatible with all
methods that require a document, the shadow root also gains the attributes doctype,
document_element, and a disconnected_nodes list.

record ('node_ptr, 'element_ptr, 'character_data_ptr) RShadowRoot

= "('node_ptr, 'element_ptr, 'character_data_ptr) RDocument" +

nothing :: unit

mode :: shadow_root_mode

child_nodes :: "('node_ptr, 'element_ptr, 'character_data_ptr) node_ptr list"

Note that this change is an actual change of our theory files and not an extension
as we have done when we introduced shadow roots originally into the fDOM . This is
done because we do not want to keep any definitions or lemmas that were defined with a
dependency on the old shadow root definition. Figure 7.1 shows our running example
with the updated shadow root node, which is now much closer to being a document, i. e.,
it can have its own disconnected nodes.

7.1.2 Heap Invariants

All heap invariants from the DOM remain valid and necessary to describe a valid heap.
Only one additional requirement is needed: We need the relation induced by the

disconnected_nodes attribute to remain acyclic, too. This has not been necessary so far
because the only node that could have disconnected nodes was the root node, so acyclicity
was guaranteed by the type system. We therefore need to introduce a new predicate
that preserves this guarantee even when shadow roots, which are in the middle of the
node tree, gain disconnected_nodes. We therefore define a new relation and augment our
well-formedness predicate:

definition ptr_disconnected_node_rel :: "(_) heap

⇒ ((_) object_ptr × (_) object_ptr) set"

where

"ptr_disconnected_node_rel h = (λ(x, y). (cast x, cast y))

` {(document_ptr, disconnected_node).

document_ptr |∈| document_ptr_kinds h ∧

disconnected_node ∈ set |h ⊢ get_disconnected_nodes document_ptr|r}"

1On a technical level, we keep all changes necessary for the SCDOM in a separate software repository,
which is a fork of the one that contains the DOM. This allows us to easily compare both versions and
to add changes to both variants in a similar way, where applicable, keeping the changes documented
and small.
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Finally, we can define our predicate to ensure that our instance of an SCDOM is
wellformed:

definition heap_is_wellformed :: "(_) heap ⇒ bool"

where

"heap_is_wellformed h ⟷ CoreDOM.heap_is_wellformed h ∧

acyclic (parent_child_rel h ∪ host_shadow_root_rel h

∪ ptr_disconnected_node_rel h) ∧

all_ptrs_in_heap h ∧

distinct_lists h ∧

shadow_root_valid h"

7.1.3 Methods

Before we can continue with describing the necessary changes to our DOM methods,
we need to introduce a new helper construct, get_ancestors_di, which enumerates all
ancestors of a given node in a document-including manner. We define it similarly to
get_ancestors and get_ancestors_si:

partial_function (dom_prog) get_ancestors_di

:: "(_::linorder) object_ptr ⇒ (_, (_) object_ptr list) dom_prog"

where

"get_ancestors_di ptr = do {

check_in_heap ptr;

ancestors ← (case castobject_ptr2node_ptr ptr of

Some node_ptr ⇒ do {

parent_ptr_opt ← get_parent node_ptr;

(case parent_ptr_opt of

Some parent_ptr ⇒ get_ancestors_di parent_ptr

| None ⇒ do {

document_ptr ← get_disconnected_document node_ptr;

get_ancestors_di (cast document_ptr)

})

}

| None ⇒ (case cast ptr of

Some shadow_root_ptr ⇒ do {

host ← get_host shadow_root_ptr;

get_ancestors_di (cast host)

} |

None ⇒ return []));

return (ptr # ancestors)

}"

For the most part, we can use the definitions of our DOM methods and their proofs
also in the SCDOM. However, we will need to make small changes to three of them, so
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that they preserve our new wellformed-ness predicate. In the following, we will describe
these necessary changes.

Before we can safely remove a shadow root from our heap, we now need to additionally
ensure that it does not have any disconnected nodes left. Otherwise, we would violate the
heap well-formedness condition that all nodes either have a parent or are a disconnected
node recorded in a document. We have highlighted the changes compared to the version
in the DOM:

definition remove_shadow_root :: "(_) element_ptr ⇒ (_, unit) dom_prog"

where

"remove_shadow_root element_ptr = do {

shadow_root_ptr_opt ← get_shadow_root element_ptr;

(case shadow_root_ptr_opt of

Some shadow_root_ptr ⇒ do {

children ← get_child_nodes (cast shadow_root_ptr);

disconnected_nodes ← get_disconnected_nodes

(cast shadow_root_ptr);

(if children = [] ∧ disconnected_nodes = []

then do {

set_shadow_root element_ptr None;

delete_M shadow_root_ptr

} else do {

error HierarchyRequestError })

} |

None ⇒ error HierarchyRequestError)}"

Another method that requires changes is adopt_node. Previously, we were able to
re-use adopt_node from our DOM. Now, however, with the addition of a document that
is not guaranteed to be a root node any longer, adopt_node is able to introduce cycles
into our node tree. Therefore, we add a check that fails if the node that is to be adopted
is already in the document’s document-including ancestors. This check is very similar to
the one used in insert_before. Our new definition looks as follows:

definition adopt_node :: "(_) document_ptr ⇒ (_) node_ptr ⇒ (_, unit) dom_prog"

where

"adopt_node document node = do {

ancestors ← get_ancestors_di (cast document);

(if cast node ∈ set ancestors

then error HierarchyRequestError

else CoreDOM.adopt_node document node)}"

The definition of get_owner_document for shadow roots also needs to change. Since a
shadow root inherits from a document now, we want it to behave like a document, which
means it is no longer appropriate to continue searching the tree upwards for the next
document. Therefore, we change it to simply to return itself, which is what we do for
documents as well:
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definition get_owner_documentshadow_root_ptr :: "(_) shadow_root_ptr ⇒ unit

⇒ (_, (_) document_ptr) dom_prog"

where

"get_owner_documentshadow_root_ptr shadow_root_ptr

= CoreDOM.get_owner_documentdocument_ptr (cast shadow_root_ptr)"

7.2 A New Kind of Component

Our previous definition of components and their safety carries over to our SCDOM
without issue, meaning that the list of nodes for every given component does not change
based on whether we use the DOM or SCDOM. However, the switch to the SCDOM alone
makes our methods only a little safer; while, for example, append_child, called from within
a shadow root component, will now completely stay inside that same component since
its shadow root is now also its owner document, we gain nothing if one of the arguments
is inside a disconnected component, which will never contain its owner document.

This observation leads us to the second necessary change: One possible way to achieve
strong component safety for the DOM methods in question is to define a new kind of
component that includes all nodes which are reachable in tree order from the owner
document instead of the root node as we did for DOM-components. On first glance, it
might seem that we simply broaden our definition of safety. However, if we accept that a
disconnected component shares the same level of trust as the component of its owner
document, then our modified definition of a component captures our intention more
precisely. Alas, we define components in our new model as follows:

Definition 7.2.1 (SCDOM-Component). An SCDOM-Component of pointer p is the
list of all pointers reachable in shadow-excluding tree order starting from the owner
document of p, plus all pointers that are reachable in shadow-excluding tree order starting
from each disconnected node of p. Formally, we define it as follows:

definition get_scdom_component:: "(_) object_ptr

⇒ (_, (_) object_ptr list) dom_prog"

where

"get_scdom_component ptr = do {

document ← get_owner_document ptr;

disc_nodes ← get_disconnected_nodes document;

tree_order ← to_tree_order (cast document);

disconnected_tree_orders ← map_M (to_tree_order ∘ cast) disc_nodes;

return (tree_order @ (concat disconnected_tree_orders))

}"

Note that one could also attempt to apply the definition of SCDOM-Components
to the standard DOM; however, since the shadow roots there do not have their own
owner document, our component definition would collapse into one big component per
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document, which would include all containing shadow roots and their sub-trees, which is
too much.

The idea is very similar to the one of our normal components; instead of just traversing
the childNode-relation, we also traverse the disconnectedNode-relation. Therefore,
get_owner_document brings us to the root of that sub-tree, from which on we include all
node in tree-order reachable from the document itself, or from any of its disconnected
nodes.

This component definition distinguishes only two different types of components: docu-
ment and shadow root components. Compared to our DOM-components, we do not have
a disconnected component anymore, since our definition is broader and does not stop
traversing the tree upwards at a Node anymore. Alas, we define:

Definition 7.2.2 (Document SCDOM-Component). A Document SCDOM-Component
is an SCDOM-component whose root node is of type Document, but not of type ShadowRoot.
Formally, we define:

definition is_document_scdom_component :: "(_) object_ptr list ⇒ bool"

where

"is_document_scdom_component c =

is_document_ptr_kind (hd c) ∧ (¬is_shadow_root_ptr_kind (hd c))"

Again, this kind of component captures the “main part” of the tree, as this kind of
node still can only occur at the very top.

Definition 7.2.3 (Shadow Root SCDOM-Component). A Shadow Root SCDOM-
Component is an SCDOM-component whose root node is of type ShadowRoot. Formally,
we define:

definition is_shadow_root_scdom_component :: "(_) object_ptr list ⇒ bool"

where

"is_shadow_root_scdom_component c = is_shadow_root_ptr_kind (hd c)"

This definition is in line with the one for the DOM, and again can be considered the
“canonical” component.

We define SCDOM-Component safety in a similar way to DOM-Component safety, but
use the SCDOM-component instead of the DOM-component.

Definition 7.2.4 (SCDOM-Component Safety). A DOM method is SCDOM-Component
safe if and only if all returned pointers and modifications are confined to exactly those
SCDOM-Components given by its arguments. In Isabelle, we define:

definition is_strongly_scdom_component_safe :: "(_) object_ptr set ⇒

(_) object_ptr set ⇒ (_) heap ⇒ (_) heap ⇒ bool"

where

"is_strongly_scdom_component_safe Sarg Sresult h h' = (

let removed_pointers =

fset (object_ptr_kinds h) − fset (object_ptr_kinds h') in
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Figure 7.1: SCDOM-Components also include any potential disconnected tree. Here, S2

includes both T2 and T3.

let added_pointers =

fset (object_ptr_kinds h') − fset (object_ptr_kinds h) in

let arg_components =

(⋃ptr ∈ (⋃ptr ∈ Sarg. set |h ⊢ get_scdom_component ptr|r) ∩

fset (object_ptr_kinds h). set |h ⊢ get_scdom_component ptr|r) in

let arg_components' =

(⋃ptr ∈ (⋃ptr ∈ Sarg. set |h ⊢ get_scdom_component ptr|r) ∩

fset (object_ptr_kinds h'). set |h' ⊢ get_scdom_component ptr|r) in

removed_pointers ⊆ arg_components ∧

added_pointers ⊆ arg_components' ∧

Sresult ⊆ arg_components' ∧

(∀outside_ptr ∈ fset (object_ptr_kinds h) ∩ fset (object_ptr_kinds h') −
(⋃ptr ∈ Sarg. set |h ⊢ get_scdom_component ptr|r).

preserved (get_M outside_ptr id) h h'))"

The formal definition is similar to the one given for strong DOM-component safety,
with the difference that we use get_scdom_component instead of get_dom_component.

For SCDOM-Components, we do not need to treat DOM methods that create new object
separately, as we will see that we are able to proof that they are SCDOM-Component
safe.
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Figure 7.1 shows the difference between DOM-Components and SCDOM-Components
using our running example in the SCDOM model. Since the main difference between both
kinds of components is that any potential disconnected tree is now included, the document
DOM-Component T1 is equivalent to its surrounding document SCDOM-component S1,
since their root node was already identical to their owner document. T2 and T3, however,
are now both captured by a single shadow root SCDOM-component S2 = T2 ∪ T3.

7.3 General Properties of SCDOM-Components

Now that we have ensured that our new components are well defined, we will have a
closer look at some important characterisations, especially regarding the relationship
between DOM-Components and SCDOM-Components. Figure 7.1 gave us already an
intuition, but we want to be more precise.

First of all, we can show that for all nodes, the nodes of their DOM-Component form
a subset of those from their SCDOM-Component. In Isabelle, we prove the following
lemma:

lemma get_scdom_component_subset_get_dom_component:

assumes "valid_heap h"

assumes "h ⊢ get_scdom_component ptr →r sc"

assumes "h ⊢ get_dom_component ptr →r c"

shows "set c ⊆ set sc"

For any given node, its root node either inherits from Document, in which case it is both
the node’s owner document and root node, or it is not, in which case it must inherit from
Node and be disconnected. In the first case, SCDOM-Component and DOM-Component
are identical; in the second case, the root must be in the list of disconnected nodes from
its owner document, which is covered by our definition of a SCDOM-Component.

Furthermore, we can show that all nodes are within the same SCDOM-Component as
their owner document:

lemma get_scdom_component_owner_document_same:

assumes "valid_heap h"

assumes "h ⊢ get_scdom_component ptr →r sc"

assumes "ptr' ∈ set sc"

obtains owner_document where

"h ⊢ get_owner_document ptr' →r owner_document" and

"cast owner_document ∈ set sc"

This is another important property, without which we would not be able to justify the
term “component”. The main proof observation is that all children have the same owner
document as their parents, and therefore all pointers in the list returned by to_tree_order

share the same owner document.
Another interesting property is that there can be at most one owner document per

SCDOM-Component:
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lemma get_scdom_component_different_owner_documents:

assumes "valid_heap h"

assumes "h ⊢ get_owner_document ptr →r owner_document"

assumes "h ⊢ get_owner_document ptr' →r owner_document'"

assumes "owner_document ≠ owner_document'"

shows "set |h ⊢ get_scdom_component ptr|r ∩

set |h ⊢ get_scdom_component ptr'|r = {}"

We state this property as follows: given two get_owner_document calls of pointers ptr

and ptr', that return different owner documents, we show that the SCDOM-Components
of ptr and ptr' are completely disjunct. The proof mainly uses the observation that all
pointers in such a component must have the same owner document.

7.4 Updated DOM Method Classification
With the new definition of SCDOM-Components, we can now re-classify our DOM
methods accordingly. The overview of results are shown in Table 7.1.

Most notably, adopt_node, remove_child, insert_before, and append_child are now
strongly SCDOM-Component-safe, which therefore fulfills the requirements with which
we started our improvement efforts.

For example, the lemma for adopt_node looks as follows:

lemma adopt_node_is_strongly_scdom_component_safe:

assumes "valid_heap h"

assumes "h ⊢ adopt_node document_ptr node_ptr →r node_ptr2 →h h'"

shows "is_strongly_scdom_component_safe

{cast document_ptr, cast node_ptr} {cast node_ptr2} h h'"

The proof idea uses the fact that the disconnected node of node_ptr is now always
within the same SCDOM-Component as node_ptr itself.

The situation for our constructor methods has also improved; create_element and
create_character_data are now strongly SCDOM-Component safe, which is desirable.
The other two constructors, attach_shadow_root and create_document are still only weakly
SCDOM-Component safe, however, as they both still create new SCDOM-Components.
Therefore, we could not really expect an improvement there.

Summary
In this chapter, we set out to find a solution to the unsatisfactory guarantees provided
by standard shadow roots. The idea to promote them to a full-fledged document is
not revolutionary–in the official standard, they are already a DocumentFragment, which
indicates already some level of independence. However, using our formalisation, we could
explore this change using a simplified model on a formal basis. We learned that a few
changes to the model are necessary to preserve the guarantees that we carefully build in
the previous chapter, but overall, these changes are small. In the end, we achieved our
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Table 7.1: Classification of the most important DOM methods into whether they are
SCDOM-component safe or not. The last column (closed) classifies the methods
for the special case that the DOM instance only contains closed shadow roots.

Method Component Safety

open closed

get_child_nodes strong strong
get_parent strong strong
get_root_node strong strong
get_element_by_id strong strong
get_elements_by_class_name strong strong
get_elements_by_tag_name strong strong

create_element strong strong
create_character_data strong strong
create_document weak weak
attach_shadow_root weak weak

get_shadow_root unsafe strong
assigned_slot unsafe strong
get_host unsafe unsafe
get_composed_root_node unsafe unsafe
assigned_nodes unsafe unsafe

get_owner_document strong strong
adopt_node strong strong
remove_child strong strong
insert_before strong strong
append_child strong strong
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goal of confining all non-shadow root related methods to our notion of component, even
though we had to widen our component definition a bit.

Of course, the official standard associates a lot more with a document than we do,
such as an origin, i. e., the URL of the website. Would a shadow root then also get all
these attributes, and if yes, how would they be set? For example, one could think about
whether the origin of a shadow root component could even be related to the author of
component. We will leave these considerations for future work.
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The work presented in this thesis combines approaches from multiple disciplines; we
combine interactive theorem proving in a higher-order logic with real-world software
standards, test suites, and component-based software engineering. We therefore group
the related work into multiple, loosely related sections.

8.1 Formal Models of Software Standards

Most software in existence has been specified prior to implementation in one way or
another, ranging from a few use cases that have been sketched out in natural English
for a small utility script to full-fledged requirements engineering and a specification of
all APIs that has been machine-checked for inconsistencies. The first part of this thesis
seeks to improve upon one specific kind of specification for one specific kind of software:
The Document Object Model, which is an interface that can be used to work with
tree-based structures and which is specified by a description of its algorithms and APIs
in structured English contained in a standardization document. Our approach is therefore
best compared with efforts that share these three criteria. We consider therefore, for
example, specifications of programming languages such as ECMAScript as out-of-scope,
as well as means of specifying concrete software products such as the Java Modeling
Language (JML) [45] or the Z notation [1], since we believe these approaches are too
different to be successfully compared to ours.

The most relevant works are ones that also address the DOM standard. There is a
number of authors who also identified the DOM as one of the center pieces of web browser
security, and thus chose to focus their formalisation efforts on it. Gardner et al. [30,
29, 62, 59] propose a non-executable, non-extensible, and non-mechanized operational
semantics of a minimal DOM (Core DOM Level 1) and show how this semantics can
be used for Hoare-style reasoning for analysing heaps of DOMs. The authors focus on
providing a formal foundation for reasoning over client-side JavaScript programs that
modify the DOM; JavaScript is out of our scope, and unfortunately their logic is not
powerful enough for our considerations around node trees and their shapes and conditions.
In addition, neither of these works defines formally the concept of web components nor
the definition and verification of component safety properties.

In a similar spirit, the authors of Featherweight Firefox [7] create a simpler
operational specification of the node-tree related DOM API methods. They attempt
to provide a more complete formal model of a browser by including “cookies, HTTP
requests and responses, user input, and a minimal scripting language” in their model,
with similar characteristics as the one of Gardner et al..
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Other DOM formalisations have been proposed in [33, 39], which are, however, rather
lightweight and imprecise. For example, they can not distinguish multiple elements in a
DOM instance with the same ID. This is due to the authors focusing on providing static
analysis for JavaScript web applications, whereas we focus on the DOM side.

Another formal model of the DOM can be found in [57], which has also been created
to support static analysis of JavaScript programs. The authors’ framework allows for
exchanging their DOM model with other ones, such as the one from Gatekeeper [33] and
Tajs [39]. Still, their DOM model is tightly coupled with their static analysis framework.
Another contribution of [57] is an empirical study showing the most frequently used
DOM fields and API methods on the top 10 000 websites, justifying our focus on those
DOM API methods that we chose to model.

A different kind of DOM model is proposed by Lerner et al. [48]. The authors do not
focus on JavaScript, but rather on the reactive nature of the DOM and therefore mainly
model closely after the Events API of the DOM, which we exclude. Being a Redex [27]
model, it is also executable, and the authors generated test cases from their model to
find bugs related to events in real browsers. The authors also formulate invariants that a
DOM instance will obey; however, they are mostly related to events and rather informal.

There are also other, related software specifications that we consider relevant. In [63],
the authors present an “XML library” for Isabelle/HOL. The purpose of this library is
to provide XML parsing and pretty printing facilities for Isabelle. As such, it is not a
formalisation of XML or XML-like data structures in Isabelle/HOL.

Another software standard that has been formalised in Isabelle/HOL is the Object
Constraint Language (OCL) [18], which is a formalism that can be used to specify
additional constraints on objects of UML diagrams. The formalisation has been used to
find a number of inconsistencies in the OCL standard and is similar in many ways to
fDOM . In particular, it uses a similar way of extending its type universe in an iterative
manner without having to re-prove already proven properties.

8.2 Program Verification

Our approach shares many similarities with established approaches and logics from the
area of program verification, especially separation logic [54]. Separation logic is an
extension of Hoare logic [36] that mainly considers programs with lookup, update, and
other operations on a heap memory model, e. g., programs using linked lists. It offers
an assertion language with Hoare-style pre- and postconditions along with special rules
that enables reasoning without having to consider the whole heap (“frame rule”). Our
reads and writes predicates from Section 3.4.1 also capture precisely those pointers and
even attributes that are read or modified by a particular DOM method, from simple
getters to complex modifications in multiple locations. Together with our reads_writes

lemmas we can then easily show that, for example, a get_child_nodes call will never
be affected by set_tag_name, as they access different attributes of our data model. The
focus of our work lies more on exploring questions such as: What is a useful measure
of “local modifications” in the context of DOM programs, which needs to be answered
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before we could even consider a more efficient calculus. Therefore, we consider our work
complementary to separation logic and its advancements.

There have also been a number of efforts to introduce the benefits of annotating code
with pre- and postconditions to industrial-scale programming systems. For example,
Spec# [5], a programming system based on C#, uses the Boogie verifier [47] to permit
the “specification and reasoning about object invariants even in the presence of callbacks”.
Such approaches would certainly be useful for giving developers of DOM programs better
tools to reason about them, especially when it comes to pre- and postconditions that are
concerned with the safety of DOM components as proposed by us. However, creating
such industrial-scale reasoning tools that make use of our findings are certainly out of
our scope currently.

8.3 Formal Approaches to Object-Orientation
The specification of the DOM makes heavy use of object-orientation to define the node-
tree, the central data structure of the DOM, which can pose significant challenges for
some formal methods. Our work shares a common goal with ownership type systems [24].
For example, [58] use type annotations to give objects in object-oriented programs a
notion of ownership. This enables them to allow certain components only read-access to
an object, while the owner might have full read and write-access. This line of work is
orthogonal to ours; it is certainly possible to create an access-control layer on top of our
web components, but we are more concerned with components inside a tree-like structure
and how a given set of methods behave regarding the boundary induced by shadow roots.

While the core idea of formalising object-oriented data models in an extensible way
follows the construction presented in [19, 8], we differ significantly in aspects such as
the modeling of typed pointers (references) and late binding of method invocations. In
particular, we use a data model encoding based on Isabelle records, which are part of the
standard framework and therefore well supported and documented, instead of creating a
new datatype package which increases complexity. Also, we encoded DOM methods in a
way that easily allows extensions by providing extension slots and modular proofs that
can be reused, instead of a Java/C++ style method invocation table.

8.4 Iframes and Shadow Roots
Overall, shadow roots seem to achieve a very similar goal as the <iframe>-tag of the
HTML standard. However, the motivation for both differ significantly: while iframes
were introduced to allow the secure integration of content from different websites, shadow
roots were introduced to allow component-based web development similar to, for example,
using components in the .NET framework. Still, there have been attempts such as [66] to
add policies to inter-iframe communication to enforce a client-side policy for iframe-based
web mashups. We chose to approach the issue of web components in the DOM from the
direction of shadow roots, as we believe their goal to be more closely aligned to what we
consider a useful notion of components.
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In [35], the authors present ShadowCrypt, a design paradigm for web developers to
utilise shadow roots to secure and isolate user input fields on web sites. The attempt to
achieve this mainly by altering some JavaScript properties on DOM objects and setting
them to null. However, as shown in [28], there are many ways how the guarantees of
ShadowCrypt can be broken; for example, by using less-frequently used input fields
which are not covered by the tool. Others, such as [61], have also tried to use shadow
roots for hiding additional information from client-side applications, but struggled in a
similar way to [35].
Beeswax [46] is a similar approach to provide private components in real-world web

browsers, but also relies on tediously keeping track on all different ways in which one can
break the security assumptions of current shadow roots. As seen with ShadowCrypt,
this is an error-prone process and requires constant updating in order to stay up-to-date
with changing browser APIs.

[55] offers a more applied approach combining shadow roots to automatically turn
multi-page applications into single-page applications.

These lines of work show that there is clearly a demand for secure web components
that are less restrictive than iframes, but still offer certain security guarantees. We
believe that current shadow roots are on the right track, but have ultimately a different
goal [37], so we believe that more fundamental work, such as our SCDOM-Components,
is necessary.

8.5 Components in General
Components are, of course, one of the pillar of any kind of software engineering. There
are a lot of works, such as [41, 25], that formalise component-based designs and use a
π-calculus and temporal logic together with model checking. This kind of approach as
also been applied to components in the web ecosystem, for example by [56], where the
author proposes a π-calculus-based model with operational semantics for more abstract
web components, consisting of protocol specifications using interfaces such as ports. They
work on a much higher level of abstraction and do not model the DOM, node tree, or
tree manipulation language.

Other authors, such as those of [50, 43, 2], provide a more practical approach to web
components by developing domain-specific languages or frameworks to make the use of
shadow roots and related technologies easier, but also lack formal foundations.

In general, we use a very narrow definition of components, one that refers to sub-trees
of nodes together with special nodes that guide the behavior of the involved functions. We
believe that for this reasons, many other approaches to other definitions of components
are therefore not applicable.
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In this thesis, we have seen multiple contributions that all achieved their common goal
of providing a safe component system for the web. We have achieved this by using our
formal model and analysis of the DOM with shadow roots to build a novel definition
of web components. Using this definition together with our formal framework, we have
provided proofs of important component separation properties to give recommendations
for improvements of the standard and possible tools that aid the safe development of
libraries. In addition, we have shown that these improvements would actually result in
only small changes to the DOM standard, i. e., a small change in the type hierarchy of a
shadow root together with changes in affected method definitions.

In more detail, we have extracted novel definitions of web components and their safety
and have classified the most important DOM API methods accordingly. By doing so, we
have uncovered that in particular methods involving the owner document are problematic
and easily break out of what is supposed to be a component. We were able to conduct
this kind of analysis by using our formal model of the DOM enriched with shadow roots,
which serves as a robust and easily extendable formal framework and which we also
used for other purposes, e. g., for extracting novel properties and invariants such as
our well-formedness invariants that make the assumptions about the DOM much more
explicit. With all these properties, we were then able to show that the proposed changes
to the DOM are very small and manageable, improve the safety of the DOM API, and
lead to a less ambiguous API. In order to ensure that all comments and suggestions
regarding the official DOM standard are applicable, we have shown that our model
complies to the official DOM standard. We have done so in the same way as, for example,
implementations of the DOM in web browsers do, by symbolically evaluating all relevant
test cases from the compliance test suite on our model. Finally, our formal analysis has
been conducted inside the Isabelle/HOL framework, which is based on mathematical logic
and which allowed us to build the formal model in an executable, extendable, re-usable
and automatically checked way.

Concretely, besides clarifications regarding shadow roots and related algorithms such as
slotting, we contribute a new kind of component definition with strong safety guarantees
to the DOM standard: If shadow roots were to get traits from documents (such as
disconnected nodes), they would provide components that are safe with regards to
accidental access and modification from the most common DOM methods.

We see several lines of future work. We consider tightening the link between the
formal specification and the actual implementations used by various web browsers as
the most important line of future work. One promising approach to achieve this goal
is the systematic generation of test cases from the formal specification using test case
generation techniques that are integrated into Isabelle/HOL [20]. The generated test
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cases can, as the already existing manually developed test cases, be used for validating
the compliance of actual browser implementation and be added to the official compliance
test suite.

Furthermore, there is another promising area with regards to extending the scope
of our formalisation: using the extensibility of our formalisation to add support for
HTMLElement (and its sub-types such as HTMLIFrameElement). As the concept of iframes
is fundamental for restricting information flow between parts of a website originating
from different security domains, such a formalisation would allow us to reason over web
security properties in Isabelle/HOL and compare them with shadow roots. On the first
glance, the two concepts do not have much in common. However, having a closer look
reveals that the concepts are in fact closely related. Therefore, one could approach the
goal of safe web components from both directions, meaning that, on the one hand, it
seems desirable to introduce security concepts to shadow roots and, on the other hand,
iframes would clearly benefit from interfaces allowing web developers to adapt certain
aspects of an included iframe. Thus, the question emerges whether shadow roots can, in
the long term, replace iframes. To answer this question, we plan to formalise the core of
the HTML standard on top of our DOM formalisation. This allows us to compare both
concepts formally and also investigate the impact of adding security features to shadow
roots.
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