
 
 

 

 

 

 

 

 

THE DETERMINANTS OF INDIVIDUAL LOAD 

CARRIAGE ECONOMY 

 

SEAN ASHLEY HUDSON 

 

 

Submitted in accordance with the requirements for the degree of Doctor of 

Philosophy. 

 

The University of Leeds 

Leeds Trinity University, School of Social and Health Sciences 

 

July 2020 

 

 

 

 



2 
 

I confirm that the work submitted is my own, except where work has formed part 

of jointly authored publications has been included. The contribution of the 

candidate and the other authors to this work has been explicitly indicated below. 

I confirm that the appropriate credit has been given within the thesis where 

reference has been made to the work of others. 

 

Chapter 4 

Hudson, S., Cooke, C. and Lloyd, R., 2017. The reliability of the Extra 

Load Index as a measure of relative load carriage 

economy. Ergonomics, 60(9), pp.1250-1254. 

 

I was responsible for the conception and design of the study, conducted 

all experiments, processed and analysed the data, interpreted the results 

and wrote and edited the manuscript. Professor Carlton Cooke and 

Professor Ray Lloyd assisted with interpreting the results and edited and 

approved the manuscript. 

 

Chapter 5 

Hudson, S., Cooke, C., Davies, S., West, S., Gamieldien, R., Low, C., & 

Lloyd, R. (2018). A comparison of economy and sagittal plane trunk 

movements among back-, back/front- and head- 

loading. Ergonomics, 61(9), 1216-1222. 

 

I completed a secondary analysis of data collected prior to the start of my 

PhD, which involved processing and analysing the data, interpreting the 

results and writing the manuscript. Professor Ray Lloyd was responsible 

for conception and design of the study. Professor Ray Lloyd, Professor 

Simeon Davies, Dr. Sacha West and Mr. Raeeq Gamieldien conducted 

the experiments. Professor Ray Lloyd, Professor Carlton Cooke and Dr. 

Chris Low assisted with interpreting the results. All authors edited and 

approved the manuscript.  

 

 



3 
 

Hudson, S., Cooke, C., Davies, S., West, S., Gamieldien, R., Low, C., & 

Lloyd, R. (2020). Inter-individual variability in load carriage economy and 

comparisons between different load conditions. Applied Ergonomics, 82, 

102968. 

 

This publication was also part of the secondary analysis of data collected 

prior to the start of my PhD. The author contributions were the same as 

stated for the first publication from Chapter 5. 

 

Chapter 7 

 

Hudson, S. Low, C. Cooke, C. Vanwanseele, B. and Lloyd, R., 

(2020), The effects of step width control on load carriage economy. 

Proceedings of the 38th International Conference of Biomechanics in 

Sports. Liverpool, UK: International Society of Biomechanics in Sports 

 

I was responsible for the conception and design of the study, conducted 

all experiments, processed and analysed the data, interpreted the results 

and wrote and edited the conference paper. Professor Benedicte 

Vanwanseele facilitated data collection at KU Leuven. Professor Carlton 

Cooke, Professor Ray Lloyd and Dr. Chris Low assisted with interpreting 

the results. All authors edited and approved the paper. 

 

 

This copy has been supplied on the understanding that it is copyright material 

and that no quotation from the thesis may be published without proper 

acknowledgement. 

 

The right of Sean Ashley Hudson to be identified as the author of this work has 

been asserted by him in accordance with the Copyright, Designs and Patents 

Acts 1988. 

 



4 
 

Acknowledgements 

Firstly, I would like to express my sincere appreciation to my PhD supervisors, 

Professor Ray Lloyd and Professor Carlton Cooke. Their knowledge, guidance 

and mentorship during my studies has been invaluable. I would also like to thank 

Dr Chris Low for his guidance and support throughout the course of this project 

and Dr Martin Barwood for his support and feedback in the final stage of this work. 

I have learned so much about the research process from you all and I hope we 

continue to collaborate with each other in the years to come. 

 

I would like to thank Professor Benedicte Vanwanseele for inviting me to conduct 

research at KU Leuven and helping me to complete the final study of this thesis. 

My time as a visiting scholar was an incredible experience and greatly improved 

the quality of my research.  

 

I would also like to give my sincere thanks and gratitude to all of the participants 

who volunteered to undertake long periods of testing in this series of studies. 

Their time, patience and efforts are greatly appreciated.  

 

Thank you to my fellow PhD students in AF5, past and present, you made long 

days in the office thoroughly enjoyable and I miss our daily interactions. My 

particular thanks to Tom, Jo, Rebecca and Piotr.  

 

To my family, thank you for all of your support and encouragement throughout 

the project. You have kept me going through the more stressful periods of the 

PhD process. 

 

Finally, and most importantly, to Natalie, your love and support through the many 

highs and lows of the last six years have made this work possible. I simply cannot 

express how grateful and lucky I am to have you in my life. I love you so much 

and this work is dedicated to you.  

 

 



5 
 

Abstract 

Energy saving phenomena have been identified for load carriage on the head, 

the back, and evenly distributed between the back and front of the torso 

(back/front-loading), but the mechanics explaining these phenomena are 

unknown. This research aimed to identify the determinants of individual load 

carriage economy. Three empirical studies and the development of a theoretical 

deterministic model (TDM) are presented. Study 1 showed that the Extra Load 

Index (ELI), a measure of relative load carriage economy, and loaded walking 

gait kinematics have good test-retest reliability with 7 and 20 kg (e.g. largest 

coefficients of variation (CV) = 4.17%). Study 2 showed that there is no significant 

difference in ELI for head-, back- and back/front-loading across a range of load 

mass (3 – 20 kg) for experienced head-loaders. However, there were significant 

differences in gait kinematics between methods. For example, forward lean 

increased from 3 to 20 kg for back- (10.7°) and back/front-loading (2.4°) but 

decreased for head-loading (-2.2°). Study 2 also supported the existence of 

considerable inter-individual variation for both ELI (e.g. CV of up to 16%) and load 

carriage kinematics (e.g. change in forward lean from unloaded walking of +24% 

to –8% for back-loading with 20 kg). The TDM provides a framework to analyse 

the biomechanics of load carriage, as in study 3. Study 3 showed that a 

combination of reduced trunk movement and stride pattern perturbations from 

unloaded walking are associated with an improved economy for some load 

conditions (back/front-loading with 20 kg and head-loading with 12 kg), however 

this finding was not consistent across all load method and masses. In conclusion, 

a loaded walking gait closer to that of unloaded walking is beneficial for some 

load carriage conditions and may be an important determinant of load carriage 

economy. However, this does not explain individual load carriage economy 

variability.  
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The requirement for humans to manually carry external load remains prevalent 

throughout the modern world. It is an occupational necessity for personnel in the 

military and emergency services (Knapik et al., 1996). It is a daily activity for 

school children (Singh and Koh, 2009, Motmans et al., 2006) and individual’s 

living in rural areas of developing countries where transport infrastructure is poor 

(Lloyd et al., 2010d). It is also a convenient way of transporting external load for 

recreational outdoor pursuits such as hiking and mountaineering (Lobb, 2004). 

Consequently, many scientific investigations have attempted to document the 

physiological, biomechanical and subjective perceptual effects of load carriage. 

Within these studies, various methods of load carriage have been considered 

(Soule and Goldman, 1969, Datta and Ramanathan, 1971, Lloyd and Cooke, 

2000b), with walking speed (Harman et al., 2001, Hsiang and Chang, 2002), 

gradient (Lloyd and Cooke, 2000b), load placement (e.g. Obusek et al., 1997) 

and load mass (Harman et al., 2000) often manipulated.  

 

Research examining the physiological consequences of load carriage has 

predominantly focused on the associated metabolic energy cost. Carrying 

external load does not simply change the mass of the carrier; if this was the case 

then the energetic cost of load carriage would simply increase in direct 

proportionality with all load carriage methods. Instead, altering the method (e.g. 

in a backpack, in the hands or on the head) appears to alter the associated 

economy of energy expenditure (e.g. Datta and Ramanathan, 1971, Lloyd et al., 

2010b, Soule and Goldman, 1969). As such, differences in how an external load 

interacts with the locomotor system, when carried in different locations on the 

body, is likely to explain differences in economy between load carriage methods. 

For the purpose of this thesis, load carriage economy is defined as the mass 

specific rate of oxygen consumption required to support and move a given 

external load at a given walking velocity, where the oxygen consumption serves 

as a proxy for the metabolic energy demand.  

 

It is generally accepted that carrying a load further from the body’s centre of mass 

(COM), such as in the hands or on the feet, results in a worse load carriage 

economy compared to the same load carried closer to the body’s COM, such as 

in a backpack (Soule and Goldman, 1969, Datta and Ramanathan, 1971, Legg 
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and Mahanty, 1985, Abe et al., 2004). The metabolic energy cost required to 

transport a load close to the COM of the body tends to rise in proportion to the 

mass of the additional load (Datta and Ramanathan, 1971, Taylor et al., 1980, 

Huang and Kuo, 2014). Yet, energy saving phenomena have been reported for 

loads carried on the head, which places the load directly above the body’s COM 

(Maloiy et al., 1986, Charteris et al., 1989), on the back (Abe et al., 2004), and 

evenly distributed between the back and front of the torso (back/front-loading) 

(Lloyd and Cooke, 2000b) when carried at walking speeds of ~3 km.h-1. Despite 

attempts to identify the potential mechanisms that may contribute to the energy 

saving phenomena observed in these methods of loading (Jones et al., 1987, 

Heglund et al., 1995, Abe et al., 2004, Lloyd and Cooke, 2011), the determinants 

remain unclear.  

 

Research by Lloyd et al. (2010b), Lloyd et al. (2010c) and Lloyd and Cooke 

(2011) highlighted a large magnitude of individual variability in load carriage 

economy when different methods of load carriage are compared. Despite this, all 

previous literature in this area has focused on mean data, with no mention of 

variability within or between individuals. Therefore, the determinants of the 

variability reported by Lloyd et al. (2010b), Lloyd et al. (2010c) and Lloyd and 

Cooke (2011)  are, as yet, unknown. Lloyd and Cooke (2011) also identified a 

large level of individual variation in walking gait adaptations to load carriage. 

Understanding how different individuals adapt their walking gait to load carriage 

and how different gait adaptations can influence economy, could help to elucidate 

why large individual differences in load carriage economy appear to exist for 

different methods. To investigate the extent to which load carriage induced 

walking gait adaptations can influence economy, an approach that considers both 

loaded and loaded walking seems appropriate. Therefore, measures of relative 

load carriage economy that account for unloaded walking, such as the Extra Load 

Index (ELI) (Lloyd et al., 2010a), seem more appropriate to investigate the 

determinants of individual load carriage economy than measures that only 

consider the metabolic cost associated with loaded conditions (e.g. gross 

metabolic rate). 
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The design of load carriage systems, particularly backpacks, has evolved over 

time to improve the physiological, biomechanical and perceptual responses to 

carrying a load (Seay, 2015, Orr, 2010). For example, most modern backpacks 

now include internal frames, hip belts and improved shoulder straps to reduce 

compression under the armpits. Furthermore, methods that more evenly 

distribute load around the trunk, such as the doublepack, appear to be more 

prevalent, with research identifying potential benefits for this method over more 

traditional backpacks (Datta and Ramanathan, 1971, Kinoshita, 1985, Lloyd and 

Cooke, 2000b, Dahl et al., 2016). An improved understanding of the determining 

factors for individual differences in load carriage economy and walking gait 

patterns could help to inform the development of future load carriage systems, 

perhaps through an increased degree of customisation. 

 

 

1.1. Aim and Objectives 

 

The review of existing literature in Chapter 2 reveals equivocal evidence for the 

economy associated with head-loading, and a large level of individual variation in 

load carriage economy with head- and back-loading methods. The aim of this 

thesis was to identify the key biomechanical factor(s) that determine an 

individual’s load carriage economy with methods that place the load close to, or 

in alignment with, the centre of mass of the body.  

 

To achieve the aim, the objectives for this research project were: 

 

1. To assess the suitability of the Extra Load Index (ELI) as a measure of 

relative load carriage economy.  

2. To establish the extent of individual variation in load carriage economy and 

walking gait alterations as a consequence of load carriage, for methods 

that place load close the centre of mass of the body, or in vertical 

alignment. 

3. To identify potential determinants of individual load carriage economy 

through the analysis of load carriage economy and alterations in walking 

gait characteristics caused by carrying external load.  
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4. To conduct cause and effect trials on the identified determinants of load 

carriage economy, manipulating the identified key determinants in an 

attempt to manipulate individual load carriage economy. 

 

To address Objective 1, the test-retest reliability of the ELI was investigated using 

light (7 kg) and heavy (20 kg) loads, at slow (3 km.h-1), fast (6 km.h-1) and self-

selected walking speeds (Chapter 4).  

 

Objective 2 was addressed in two phases. Firstly, the research in Chapter 4 was 

designed to investigate the magnitude of day-to-day variations in the ELI and 

walking gait alterations as a consequence of load carriage. The day-to-day 

variations could then be factored into the interpretation of the magnitude of 

individual variation. Secondly, the research in Chapter 5 was designed to assess 

inter-individual differences in economy and walking gait characteristics in three 

common methods of load carriage (back-, back/front- and head-loading) with a 

range of load mass (3 – 20 kg). 

 

In order to address Objective 3, relationships were assessed between load 

carriage economy and sagittal plane kinematics frequently reported in the load 

carriage literature (Chapter 5). Based on a lack of strong relationships between 

ELI and kinematic variables from the work in Chapter 5, a theoretical deterministic 

model for walking speed was created in Chapter 6, to use as a framework to 

assess the biomechanical walking gait perturbations to load carriage. The 

biomechanical factors identified in the deterministic model were measured in the 

research in Chapter 7 to assess relationships between load carriage economy 

and factors that might improve economy.  

 

Objective 4 was to show causation for the factors identified as potential candidate 

variables for improved load carriage economy from the correlation analysis in 

Chapter 5. The final study (Chapter 7) was designed to allow for manipulation of 

a variable identified as a potential key determinant of load carriage economy. As 

no candidate variables for improved economy were identified in Chapter 5, 

objective 4 was addressed by selecting candidate variables from factors included 

in the deterministic model in Chapter 6. 
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1.2. Structure of this thesis 

 

This introductory chapter outlines the rationale, aims and objectives for this 

research. The next chapter (Chapter 2) is a review of existing literature, which 

provides a synthesis of what is currently known about load carriage economy and 

its determinants, and what is unknown or equivocal. The general methods used 

in multiple experimental studies within this thesis are detailed in Chapter 3. 

Chapters 4, 5 and 7 are the three experimental studies that were conducted to 

achieve the aims of this this thesis, while Chapter 6 is a theoretical chapter that 

details the development of a deterministic model used as an analysis tool in the 

subsequent experimental study (Chapter 7). The findings of the three 

experimental studies and the theoretical model developed in Chapter 6 are 

brought together in a general discussion (Chapter 8), along with a reflection of 

the aims set out here in the introduction (Chapter 1), conclusions, limitations and 

directions for future research. Appendices are also included with information to 

support the main thesis. Each item included in the appendices is cited in the 

relevant chapters of this thesis. 
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Chapter 2. Literature Review 
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The purpose of this review is to evaluate literature on the metabolic economy of 

load carriage and its potential biomechanical determinants. This informs the 

subsequent experimental chapters in this thesis. 

 

 

2.1. Exercise economy 

 

Economy can be defined as the metabolic cost of exercise, measured as the rate 

of oxygen consumption (V̇O2) per kilogram per minute for a given locomotion 

speed and gradient (Cooke, 2013). Measurements of exercise economy are 

based on the calculation of oxygen consumption from expired air under steady 

state conditions (Poole and Jones, 2011). This can be achieved by using indirect 

calorimetry to measure pulmonary gas exchange between V̇O2 and carbon 

dioxide production (V̇CO2) during exercise (Poole and Jones, 2011, Winter et al., 

2006, Eston and Reilly, 2013). At a constant sub-maximal exercise intensity, V̇O2 

reaches a level that is sufficient to meet the energy demands of the tissues. Other 

physiological variables such as heart rate, cardiac output and breathing 

frequency also plateau and a steady-state condition is achieved (Waters and 

Mulroy, 1999). Measuring the rate of oxygen consumption at this point provides 

a reflection of the energy expenditure required for an activity. During moderate 

exercise intensities (VO2 < 2 litres.min-1) at a constant work rate, the rate of 

oxygen consumption appears to reach a steady-state value within approximately 

2-3 minutes from a resting baseline in healthy young individuals (Poole and 

Jones, 2011). The deficit between energy demand and oxygen uptake prior to 

achieving a steady-state value is covered by intramuscular oxygen stores, and 

depletion of phosphocreatine (Jones et al., 2013). In line with this, studies 

investigating the economy of load carriage energy expenditure have measured 

V̇O2 after 3 minutes of exercise at a constant work rate (Lloyd and Cooke, 2000b, 

Lloyd et al., 2010b, Abe et al., 2004, Huang and Kuo, 2014). 

 

Most of the energy consumed during human locomotion can be attributed to the 

energy consumed by the muscles to generate force and perform mechanical work 

(Fedak et al., 1982). Williams and Cavanagh (1987) reported that several 

mechanical factors relate to economy when running, including postural 
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excursions, COM oscillations, step parameters and ground reaction force-time 

curves. Thus, running mechanics appear to directly affect the metabolic energy 

cost. Given the kinematic adaptions that occur in response to carrying an external 

load (Kinoshita, 1985, Lloyd and Cooke, 2011), it seems reasonable to speculate 

that mechanical adaptions to load carriage could influence economy when 

walking. 

 

 

2.2. Measuring load carriage economy 

 

Load carriage economy has been reported as V̇O2 in absolute terms (Chung et 

al., 2005), relative to body mass (Lloyd and Cooke, 2000b, Legg and Mahanty, 

1985, Quesada et al., 2000) and relative to the combined mass of the body and 

external load (Balogun et al., 1986). In order to provide a better measure of the 

energy expenditure attributable to the action of walking, some authors have 

reported economy as the net energy cost by subtracting the V̇O2 when stood at 

rest from the V̇O2 when walking (Abe et al., 2004, Bastien et al., 2005, Browning 

and Kram, 2009).  Metabolic rate, often reported as metabolic power normalised 

to mass (W/kg), has also been used as a measure of load carriage economy, in 

order to account for substrate utilisation (Huang and Kuo, 2014, Kipp et al., 2018). 

Measures of metabolic rate calculate the rate of energy production from 

measured V̇O2 and V̇CO2 by including coefficients for V̇O2 and V̇CO2 based on 

the assumptions for energy release from carbohydrates and lipids. The Brockway 

equation (Equation 1; Brockway, 1987) appears to be the most cited measure of 

metabolic rate used in walking, running and load carriage research (Browning 

and Kram, 2009, Arellano and Kram, 2011, Huang and Kuo, 2014).  

Metabolic rate = 16.58 V̇O2 + 4.51 V̇CO2 - 5.90 N                                Equation 1 

 

The limitation with these methods when calculating load carriage economy is that 

they do not account for the energy expenditure of unloaded walking. In an attempt 

to mitigate this limitation, the logic of calculating net energy cost has been further 

extended with the development of the ELI (Equation 2) as a measure of relative 

load carriage economy (Lloyd et al., 2010a).  
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                                         Equation 2 
 

 

Equation 2 mlO2L refers to oxygen consumption for the combined mass of the 

individual and external load at a given walking speed. mlO2U refers to oxygen 

consumption for unloaded walking at the same given walking speed. 

 

The ELI, developed from the seminal work of Taylor et al. (1980) (Equation 3), 

accounts for the rate of oxygen consumption during unloaded walking, providing 

a better understanding of the oxygen consumption attributable to supporting and 

moving an external load (Lloyd et al., 2010a). 

 

         

Equation 3 

 

Equation 3 V̇O2L refers to oxygen consumption for the combined mass of the 

individual and external load at a given walking speed. V̇O2 is the oxygen 

consumption at the same given walking speed without a load. mL is the combined 

mass of the individual and the external load. m is the mass of the individual. 

 

An ELI value of 1 indicates that the additional energy expenditure required to 

carry a load is increased in direct proportion to the mass of the additional load 

supported by the muscles. An ELI >1 indicates a reduced economy, while an     

ELI <1 indicates an improved economy (Lloyd et al., 2010a). Lloyd et al. (2010a) 

conceptualized the energetic cost of load carriage as: the energy cost of unloaded 

walking at a given speed + the energy cost required to support and move a given 

external load ± the net change in the energy cost of movement due to changes 

in the kinematics and kinetics of movement as a result of the interaction between 

the load mass, speed and load carriage method. The final term in this expression 

reflects changes in movement economy associated with loaded locomotion. 

When this final term is 0, the ELI will be 1 (i.e. the cost of carrying the external 

load has risen in proportion to the mass of the load being supported). In this 

ELI = 
mlO2L . kg total mass-1 .  min-1 

mlO2U . kg body mass-1 . min-1 

V̇O2L/ V̇O2 

mL/m 
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instance, it is possible that there are no changes in the kinetics or kinematics of 

movement with load carriage or, more likely, the positive and negative effects 

cancel out. Any deviation from an ELI value of 1 suggests that the final term is 

not 0 and, thus, the changes in the kinematics and kinetics of movement have 

had a net positive or negative effect on load carriage economy. Based on this 

concept, the ELI appears to be a more appropriate measure of load carriage 

economy compared to measures that do not account for the energy cost of 

unloaded walking, particularly for research investigating the determinants of load 

carriage economy. 

 

Few load carriage studies include a measure of unloaded oxygen consumption 

or energy expenditure and it could be argued that this is a serious omission from 

much of the current load carriage literature. Any additional energy expenditure 

above that required for unloaded walking, when carrying external load, is likely 

associated with biomechanical changes that are perturbations from an 

individual’s normal gait pattern (Lloyd and Cooke, 2011). Based on ELI values 

calculated from previously published literature, Lloyd et al. (2010a) demonstrated 

that the ELI is sensitive enough to differentiate between load placements. They 

found higher ELI values for load carried on the feet (ELI values ranging from 1.45 

– 1.73) and in the hands (ELI values ranging from 1.07 – 1.32) compared to on 

the back (ELI values ranging from 0.97 – 1.01) and evenly distributed around the 

trunk (ELI values ranging from 0.96). Lloyd et al. (2010a) also reported that the 

ELI is independent of the magnitude of external load (with loads of 10 – 30% of 

body mass), body composition and walking speed by finding no strong 

correlations between any of these variables and ELI. Consequently, the ELI could 

represent a useful tool for comparing the relative economy of different load 

carriage systems. As yet, no studies have assessed the reliability of the ELI. 

Knowledge of the ELI’s reliability is important if the measure is to be used with 

confidence.  
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2.3. Load placement and walking economy 

 

There is a substantial amount of literature on the physiological demands 

associated with load carriage. However, many studies have focused on a single 

method of load carriage and there are often differences in the walking speed and 

load mass employed. This makes it difficult to directly compare the findings of 

these studies and evaluate the effect of different load placements on economy. 

In order to make such comparisons, ELI values can be calculated for studies that 

include a measure of unloaded oxygen consumption. Table 1, an adapted version 

of the table from Lloyd et al. (2010a), shows that loads carried more distally (e.g. 

in the hands or on the feet) appear to result in a worse relative economy (higher 

ELI values) (Soule and Goldman, 1969, Kamon and Belding, 1971) compared to 

loads carried closer the body’s centre of mass (COM), which produce a more 

proportional response (ELI values of approximately 1.00) (Legg and Mahanty, 

1985, Lammert and Garby, 1985). This is in agreement with earlier studies 

comparing the effect of different load placements on economy (Soule and 

Goldman, 1969, Datta and Ramanathan, 1971, Legg, 1985), all of which 

concluded that the optimum methods of load carriage place the COM of the 

external load close to the COM of the body. Of these early studies, Datta and 

Ramanathan (1971) compared economy in the largest range of load carriage 

methods (n = 7) which included a traditional backpack, doublepack (load split 

evenly between the front and back of the torso), rice bag (sack held by hands 

over each shoulder), yoke (load supported by a bamboo pole across shoulders), 

in the hands, directly on the head and indirectly on the head (load placed on back 

and supported by a head strap). The study included seven male participants and 

although load carriage experience was not reported, six of participants were 

reported to have sedentary jobs whilst the seventh was employed in unskilled 

manual work.  For each mode, 30 kg was carried for 1 km on level ground at a 

speed of 5 km.h-1. The authors reported clear differences in economy between 

the modes, with the doublepack being the most economical (V̇O2 = 1.01 l.min-1) 

and in the hands being the least (V̇O2 = 1.46 l.min-1). The doublepack was 

associated with significantly better economy than all other methods, except for 

direct head-loading. The percentage increases in V̇O2 above the doublepack 

method were 2.8% for direct head-loading, 9.5% for backpack, 14.7% for indirect 
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head-loading, 20.9% for rice bag, 28.8% for yoke and 45% for hands. 

Unfortunately, Datta and Ramanathan (1971) did not include a measure of 

unloaded walking economy, and as such, it is not possible to make direct 

comparisons between their findings and those of the studies included in Table 1.  

 

In agreement with Datta and Ramanathan (1971), Lloyd and Cooke (2000b) 

found a 6-9% decrease in V̇O2 when carrying 25.6 kg in a commercially available 

doublepack system (load evenly distributed between the front and back of the 

trunk) compared to a backpack, on flat and uphill gradients (up to 20%). Legg 

and Mahanty (1985) compared five modes of carrying load close to the trunk 

(35% of body mass, mean load mass: 24.9 kg) and found no significant difference 

between any of the load carriage devices. However, they did report that a 

doublepack was associated with a 6.4% decrease in V̇O2 compared to the load 

carried on the back. Based on this evidence, evenly distributing a heavy load (>20 

kg) around the trunk appears to be more economical than carrying the load on 

the back alone. Although more subtle differences between trunk loading 

methods, such as external versus internal frames, appear to produce minimal 

differences in economy (Holewijn, 1990, Kirk and Schneider, 1992).  

 

 



 
 

Table 1. Calculated mean ELI values from previously published data for different forms of load carriage (Adapted from Lloyd et al. 

(2010a); BM = Body Mass). Standard deviations could not be calculated for ELI due to a lack of individual data. 

Reference 
Loading Methods 

Participants Speed 
(km.h-1) 

ELI Comments 
Position Mass 

Soule and 
Goldman 
(1969) 

Feet 12 kg 
(6 kg on 

each foot) 

10 males 4.0, 4.8 & 
5.6 

1.57 – 1.86 Increase in ELI with increase in speed. ELI = 1.57, 1.79 
& 1.87 for 4.0, 4.8 & 5.6 km.h-1, respectively.  

Soule and 
Goldman 
(1969) 

Hands 8 & 14 kg 
(4 & 7 kg in 
each hand) 

10 males 4.0, 4.8 & 
5.6 

1.08 – 1.26 ELI increased with load mass increase but not with 
increase in speed. Lowest ELI with 8 kg was 1.08 at 4.8 
km.h-1. Lowest ELI with 14 kg was 1.22 at 4.8 km.h-1.  

Kamon and 
Belding 
(1971) 

Hands 10, 15 & 
20 kg 

3 males 4.0 & 5.0 1.07 – 1.32 4.0 & 5.0 km.h-1, Increasing ELI with increasing load 
from 10 - 20kg on 0% gradient.  

Francis and 
Hoobler 
(1986) 

Hands 1.82 & 
3.62 kg 

5 males, 
5 females 

4.8 & 5.6 1.02 – 1.05 Light loads – 1.82 and 3.64 kg. No difference in ELI 
between load mass. Small difference in ELI between 
walking speeds (1.02 for 5.6 km.h-1 and 1.05 for 4.8 
km.h-1). 

Gordon et 
al. (1983) 

Back 20%, 30%, 
40% & 

50% BM 

10 males 4.8 0.97 - 1.01 Small decrease in ELI with increasing load. All walking 
performed at a 10% gradient. 

Legg and 
Mahanty 
(1985) 

Back 35% BM 5 males 4.5 1.02 ELI value of 1.02 reported for a military backpack with 
an internal frame and the same backpack without a 
frame.  
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Reference 
Loading Methods 

Participants Speed 
(km.h-1) 

ELI Comments 
Position Mass  

Legg and 
Mahanty 
(1986) 

Back 35% BM 5 males 4.5 1.02 35% BM of the average participant represents 24.9 kg. 
ELI = 1.34 with 30% BM carried in backpack and 5% 
BM in weighted boots (2.5% on each foot). 

Rorke 
(1990) 

Back 20% & 
40% BM 

10 males 4.8 & 6.1 0.93 - 1.05 20% & 40% BM, 4.8 & 6.1 km.h-1, increasing ELI with 
increases in speed and load.  

Quesada et 
al. (2000) 

Back 15% & 
30% BM 

12 males 6.0 1.04 - 1.05 ELI values of 1.04 and 1.05 for 15% and 30% BM, 
respectively.  

Lloyd and 
Cooke 
(2000b) 

Back 25.6 kg 5 males, 
4 females 

3.0 1.12 - 1.27 Varying gradients from -27% to 20%. 25.6 kg was 35% 
of the average body mass.  

Lloyd et al. 
(2010b) 

Back 10-70% 
BM 

24 females SS 
(mean = 

3.08) 

0.93 - 1.09 Load mass increased until voluntary secession. Seven 
participants manged to carry 70% BM. No significant 
change in ELI between load mass. All participants 
manged 10-25% BM with ELI range of 0.94 - 0.99.  

Hinde et al. 
(2017) 

Back 18.2 kg 7 males, 
4 females 

4.0 0.97 – 0.99 Loads carried at 0% (ELI = 0.99) and 10% (ELI = 0.97) 
gradient. Study included temperatures of -10°C - 20°C 
(only 20°C data is reported here). 
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Reference 
Loading Methods 

Participants 
Speed 
(km.h-1) 

ELI Comments 
Position Mass 

Prado‐
Nóvoa et al. 
(2019) 

Back 5, 10 & 

15 kg 

27 males, 

21 females 

 

4.0 0.93 – 0.99 No difference in economy between males and females. 
Lowest ELI values occurred with 15 kg for males (0.93) 
and females (0.95). 

Vickery-
Howe et al. 
(2020) 

Weighted 
vest 

20% & 
40% BM 

15 males, 
15 females 

SS 
(mean = 

4.7) 

0.95 – 1.00 No difference in self-selected speed between males and 
female or load carriage conditions (including unloaded 
walking). No difference between males and females. 
20% body mass represented 14.8 kg and 12.3 kg for 
males and females, respectively. 40% body mass 
represented 29.7 kg and 24.6 kg for males and females, 
respectively. 

Legg and 
Mahanty 
(1985) 

Back/ 
Front 

35% BM 5 males 4.5 0.96 Half of the load carried in a military backpack. The other 
half carried in a front pack (slightly smaller commercially 
available pack carried on the chest). 

Lloyd and 
Cooke 
(2000b) 

Back/ 
Front 

25.6 kg 5 males, 
4 females 

3.0 1.04 - 1.24 Varying gradients from -27% to 20%. 25.6 kg was 35% 
of the average body mass. ELI increased as the 
gradient increased up to 20%. 

Soule and 
Goldman 
(1969)  

Head 14 kg 10 males 4.0, 4.8 
& 5.6 

0.99 - 1.04 14 kg (steel helmet with added lead weights. ELI = 1.02, 
0.99 & 1.04 for 4.0, 4.8 & 5.6 km.h-1, respectively. 
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Reference 
Loading Methods 

Participants 
Speed 
(km.h-1) 

ELI Comments 
Position Mass 

Nag and 
Sen (1979) 

Head 60, 80 & 
100 kg 

4 males 3.2 & 3.7 0.87 - 1.22 Head strap method (forehead strap) Increase in ELI with 
increase in load and increase in walking speed. At 3.2 
km.h-1, ELI = 0.87 – 1.06. At 3.7 km.h-1, ELI = 0.96 – 
1.22. 

Lloyd et al. 
(2010b) 

Head 10-70% 
BM 

24 females SS 
(mean = 

3.08) 

0.95 - 1.11 Direct head loading. Load mass increased until 
voluntary secession. Experienced (n = 13) and 
inexperienced (n = 11) head-loaders. Two participants 
(experienced) manged to carry 70% BM. No significant 
change in ELI with increase in load. All participants 
managed 10-15% BM with ELI range of 1.03 - 1.07. 

* BM = Body mass; SS = self-selected 

 



 
 

Table 1 shows some consistency in the literature for the economy associated with 

load carried on the trunk, close to the body’s COM, with the energetic cost 

increasing roughly in proportion to the mass of the additional load. This is 

indicated by ELI values of approximately 1.00 (e.g. a load of 20% body mass 

would result in a 20% increase in energy expenditure) across a range of walking 

speeds and load mass when walking at 0% gradient. There is, however, one form 

of load carriage, head-loading, that has produced inconsistent findings in the 

literature. Head-loading positions the load either directly over the body’s COM 

(direct head-loading) or on the back supported by a strap around the forehead 

(indirect head-loading). Both methods are widely used in Africa and Asia. For 

inexperienced head-loaders, Soule and Goldman (1969) showed a proportional 

increase in V̇O2 to load carried directly on head-loading (Table 1), and Datta and 

Ramanathan (1971) found no significant difference in V̇O2 between head-loading 

(both direct and indirect methods) and back-loading.  

 

In contrast, Maloiy et al. (1986) and Charteris et al. (1989) reported that head-

loading can be a very economical method of load carriage for experienced head-

loaders. Maloiy et al. (1986) reported that African women (of the Luo and Kikuyu 

tribes) with head-loading experience are able to carry loads of up to 20% body 

mass on the head with no additional energy expenditure (assessed via V̇O2) 

above that required for unloaded walking. Furthermore, Maloiy et al. (1986) 

showed that these women could carry loads above 20% body mass with a 

proportional increase in energy expenditure (e.g. a load of 30% of body mass 

would result in a 10% increase in energy cost). Carrying 20% of body mass with 

no additional energy expenditure above that required for unloaded walking would 

imply an ELI value of 0.83, which is somewhat lower than the ELI reported for 

other methods of load carriage or indeed other head-loading studies (Table 1). 

The findings by Maloiy et al. (1986) were supported by Charteris et al. (1989), 

who reported that loads of up to 25% of body mass can be carried directly on the 

head by African (Xhosa) women with several years of head-loading experience 

before energy expenditure increased above that required for unloaded walking. 

This phenomenon has been termed the ‘free-ride’ hypothesis (Charteris et al., 

1989).  
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2.4. The ‘free-ride’ hypothesis 

 

Based on the work of Soule and Goldman (1969), Datta and Ramanathan (1971), 

Maloiy et al. (1986) and Charteris et al. (1989), it would appear that the free-ride 

hypothesis might be explained by head-loading experience. This is further 

supported by the work of Maloiy et al. (1986) who, in addition to investigating 

head-loading economy in African women, also compared back-, head- and 

combined back and head-loading for three inexperienced head-loaders. They 

found the same proportional increase in V̇O2 for head-loading (ELI of 1.00 ± 0.04), 

back-loading (ELI of 1.00 ± 0.04) and combined back and head-loading (ELI of 

1.00 ± 0.04). Maloiy et al. (1986) suggested that experienced head-loaders might 

have some form of mechanical advantage when head-loading and/or might have 

some anatomical adaptation as a result of carrying load since childhood, which 

could account for the improved economy. However, research by Das and Saha 

(1966) on professional Nepalese porters (n = 6), who regularly carry load on the 

head, found no advantage for direct or indirect head-loading compared to back-

loading. They reported an increased V̇O2 above that required for back-loading of 

7.3% (0% gradient), 7.7% (10% gradient) and 3.3% (20% gradient) for indirect 

head-loading and 4.5% (0% gradient), 28.5% (10% gradient) and 23.6% (20% 

gradient) for direct head-loading. Das and Saha (1966) provide no explanation 

for the poor economy associated direct head-loading. It may be that walking on 

an incline gradient while balancing a load on top of the head requires more effort 

to maintain posture compared to back-loading or indirect head-loading.  

 

The free-ride hypothesis is based on limited data, with very small participant 

numbers of five and six used by Maloiy et al. (1986) and Charteris et al. (1989). 

Furthermore, Maloiy et al. (1986) allowed participants to carry load in their 

customary manner, with three women carrying load on top of the head (direct 

head-loading) while two carried the load on the back supported by a strap around 

the forehead (indirect head-loading). As such, the energy saving phenomenon 

reported by Maloiy et al. (1986) appears to be independent of head-loading 

method. This is unexpected as the kinematics of the two methods appear to be 

very different, with indirect-head-loading likely to evoke a greater increase in 

forward lean, which is a factor associated with reduced economy (Lloyd and 
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Cooke, 2000c). However, no studies have directly compared the kinematics of 

the two methods. The proposed mechanism for improved load carriage economy 

are explored in the next section of this literature review (section 2.5). 

 

Lloyd et al. (2010c) attempted to provide a more comprehensive investigation of 

the ‘free-ride’ hypothesis. They assessed the physiological consequences of 

head-loading compared to back-loading for twenty-four Xhosa women, thirteen 

of which had at least 10 years of head-loading experience and eleven had no 

head-loading experience. The authors reported a large level of individual 

variation in load carrying economy, regardless of method, with some women 

more economical for head-loading while others were more economical in back-

loading. Interestingly, Lloyd et al. (2010c) also found head-loading economy to 

be independent of experience with three of the four most economical head 

loaders being inexperienced. Of the individuals that were more economical at 

head-loading than back-loading (9 of the 24 participants), five were experienced 

head-loaders and four were inexperienced. The difference in findings between 

Lloyd et al. (2010c) and those of Maloiy et al. (1986) and Charteris et al. (1989) 

might be explained by differences in sample size. Lloyd et al. (2010c) showed 

that it is possible to select a subset of women who achieved remarkable levels of 

economy, similar to those reported in earlier studies (Maloiy et al., 1986, Charteris 

et al., 1989). This shows that the ‘free-ride’ is not a generalisable finding when 

testing a larger sample of women and is not explained by head-loading 

experience. 

 

An energy saving phenomenon similar to the ‘free-ride’ has also been reported 

with light loads (~10 - 15% body mass) carried on the back at slow walking 

speeds of 2.4 km.h-1 to 3.6 km.h-1 (Abe et al., 2004). Furthermore, Lloyd and 

Cooke (2000b) demonstrated that carrying a heavy load (25.6 kg) evenly 

distributed between the anterior and posterior trunk appears to be more 

economical than carrying the same heavy load on the back alone. Both of these 

studies indicated that freedom of movement in the trunk could be an important 

factor for improved load carriage economy, with light loads carried on the back 

allowing for a similar level of trunk angle excursion to unloaded walking, while 
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combined back and front loading appears to allow for increased trunk angle 

excursion compared to back loading with a heavy load (Lloyd and Cooke, 2000b).  

 

 

2.5. Proposed mechanisms for improved load carriage economy 

 

Despite evidence that the ‘free-ride’ is not a generalisable finding (Lloyd et al., 

2010b, Lloyd et al., 2010c), previous attempts to explain the phenomenon  have 

resulted in a number of proposed mechanisms for improved load carriage 

economy, particularly when head-loading (Maloiy et al., 1986, Jones et al., 1987, 

Heglund et al., 1995). Considering these proposed mechanisms might be useful 

in attempting to elucidate the key factors associated with an individual’s load 

carriage economy and could help explain the individual variation reported by 

Lloyd et al. (2010b), (2010c).  

 

Maloiy et al. (1986) suggested that experienced head-loaders might be able to 

carry a load on the head more steadily, without it moving or accelerating and 

decelerating as much as the body, allowing it to be carried without additional 

energy cost. However, there is no data to show whether African women can move 

loads more steadily. In any case, reducing the movement of the load would not 

guarantee an energetic advantage if dependent on additional muscle activity to 

alter walking gait mechanics, in order to reduce load movement. Maloiy et al. 

(1986) also suggested that carrying loads on the head from early childhood might 

lead to anatomical adaptations, allowing individuals to support loads < 20% body 

mass using non-metabolizing structural elements. However, Alexander (1986) 

argued that the spine would have to be soft enough to compress by 0.25 metres 

in order to make the body compliant enough to prevent vertical movement of the 

load moving while walking, which does not seem feasible.  

 

Jones et al. (1987) proposed that body composition might be responsible for 

African women being more economical head loaders. They reported that leaner 

women from a sample of eight Mandinka women (with body fat ranging between 

16-34%) appeared to exhibit the ‘free ride’ phenomenon identified by Maloiy et 

al. (1986) for direct head-loading, while women with a higher percentage of body 
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fat produced a more proportional response. Jones et al. (1987) concluded that 

Mandinka women (from Keneba, Gambia) can carry up to 40% of their fat free 

mass as either body fat, an external load or as a combination of both, before 

needing to increase their energy expenditure above that associated with 

unloaded walking. However, the findings of Lloyd et al. (2010c) contradict this 

conclusion as the eleven most economical head loaders in their study (average 

ELI values below 0.9)  were women with a body mass index that showed them to 

be slightly overweight (BMI = 26.0 ± 4.1 kg/m2). Therefore, given the small 

number of participants used by Jones et al. (1987) (n = 8), the findings might have 

been a consequence of one or two individuals in the lean group being very 

economical with this method. Unfortunately, only mean data were reported. Lloyd 

et al. (2010c) reported that three out of the four most economical head-loaders in 

their study were women with no previous head-loading experience, which 

suggests that anatomical adaptations to head-loading are also unlikely to explain 

head-loading economy.  

 

Heglund et al. (1995) speculated that some of the energy required to accelerate 

and decelerate the body when walking could be conserved from an improved 

exchange of energy between potential and kinetic forms, which would reduce the 

required mechanical work during each step. This exchange is similar to that of an 

inverted pendulum (Cavagna et al., 1977), with the body’s COM vaulting up and 

over the support leg during the gait cycle. In a perfect system, as the body rises 

and falls through each step, the energy transfer from kinetic energy to potential 

energy and then back to kinetic energy would be complete (100%). However, in 

humans, the energy transfer has been estimated to be up to 65% during the stride 

cycle (Cavagna et al., 2002, Cavagna et al., 1977) and, as such, muscle activity 

is required and energy is expended to propel the body forward. Using the inverted 

pendulum theory, Heglund et al. (1995) proposed that African women might have 

a more complete energy transfer between potential and kinetic energy when head 

loading, allowing them to do less mechanical work. However, no evidence exists 

for how this improved energy transfer occurs when a load is placed on the head, 

and therefore how mechanical efficiency can be improved. Furthermore, Heglund 

et al. (1995) only analysed the kinetic and potential energies of the body’s COM, 

which is a method of walking gait analysis that has been criticised by Winter 
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(1979) because it does not account for the energy exchanges that occur in the 

reciprocal movements of the limbs. 

 

Abe et al. (2004) proposed that an energy saving phenomenon when walking at 

slow speeds (2.4 - 3.6 km.h-1) with a light loads of 9 and 12 kg (~10 - 15% body 

mass) carried on the back could be caused by increased rotative torque about 

the lower limb (rotative torque = radius of rotation between the COM of the body 

and load x load mass). This theory suggests that light loads do not constrain 

posture as much as heavy loads, allowing for increased flexion/extension in the 

trunk. Having an additional load on the back without constrained trunk movement 

could contribute to an increased momentum of the torso in the sagittal plane, 

which could increase forward momentum through the gait cycle. Although no 

empirical evidence exists to support this, theoretically, an increase in momentum 

would reduce the propulsive force that the muscles need to generate for a given 

walking speed, reducing the metabolic energy cost. Therefore, an increased 

freedom of movement in the trunk with a load carried on the torso might be a 

factor in understanding the determinants of load carriage economy with methods 

that load the trunk. However, it does not explain how some individuals can be 

more economical when head-loading, a method that appears to constrain posture 

in an upright position in order to balance a load on the head.  

 

The individual variation in load carriage economy identified by Lloyd et al. (2010c) 

and Lloyd and Cooke (2011) indicates that the focus of load carriage research 

may benefit from focusing on mechanisms to explain the variation in economy 

between methods to focusing on why some individuals are more economical with 

certain methods of load carriage than others. Research on unloaded walking has 

shown that alterations in an individual’s natural walking gait can influence energy 

expenditure (Donelan et al., 2001, Högberg, 1952, Heinert et al., 1988). It seems 

reasonable to hypothesis that differences in gait alterations between individuals 

when carrying an external load might provide an explanation for the individual 

variation in load carriage economy previously reported. Even acute perturbations 

to an individual’s gait associated with a particular load carriage system could be 

an important factor when investigating the mechanisms that determine individual 

load carriage economy. The subsequent sections of this literature review will 
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consider the biomechanical adaptations associated with load carriage systems 

that place the load close the body’s COM to try and elucidate the factors that 

might determine individual load carriage economy. 

 

 

2.6. Postural adjustments to load carriage  

 

Joint angle kinematics have been frequently reported in load carriage research 

designed to examine postural alterations with load carriage. Movements of the 

trunk, hip, knee and ankle appear to be the most frequently investigated 

parameters, probably because this is where most movement occurs during the 

human walking gait. The perturbations caused by load to each of these joint 

angles from unloaded walking, and how perturbations might influence economy, 

will be considered in this section.  

 

2.6.1. Trunk movement 

As with physiological research on load carriage, biomechanical research has 

focused on the back-loading method, with few studies investigating the 

biomechanics of other trunk loading methods or head-loading. Many studies have 

found that back-loading increases forward lean in a load dependent manner 

(Kinoshita, 1985, Martin and Nelson, 1986, Goh et al., 1998, Harman et al., 2000, 

Lloyd and Cooke, 2000b, Attwells et al., 2006) (Table 2). For example, Attwells 

et al. (2006) reported an increase in mean forward lean during the stance phase 

of 17.8° for a 50 kg load, of which ~ 42 kg was carried on the back (with 8 kg 

carried in the form of a rifle and helmet), compared to an 8 kg load consisting of 

a helmet and a military rifle carried in the arms.  

 

Backpacks shift the COM of the combined body and backpack system (combined 

system) in the posterior direction and forward lean appears to occur in an attempt 

to counter the posterior shift and improve postural stability (Kinoshita, 1985, 

Martin and Nelson, 1986, Goh et al., 1998, Harman et al., 2000). From a 

mechanical perspective, forward lean may help to propel the body forward into 

the next step (Kinoshita, 1985) and be necessary in reducing the risk of falling by 

keeping the COM of the combined system over the base of support (Harman et 
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al., 2001). It may also help to keep the COM lower, which is likely to increase 

stability, particularly if the individual is walking over uneven terrain (Harman et 

al., 2001).  

 

There is little data on the forward lean associated with load carriage methods that 

distribute the load around the trunk. Kinoshita (1985) reported that both back-

loading and back/front-loading are associated with increased forward lean but 

that the forward lean associated with back-loading (11°) was greater than 

back/front-loading (4°) when carrying 40% of body mass. Lloyd and Cooke (2011) 

also found a greater increase in forward lean for back-loading (22°) compared to 

back/front-loading (9°) when carrying 25.6 kg. The findings of Kinoshita (1985) 

and Lloyd and Cooke (2011) seem logical given that evenly distributing a load 

between the anterior and posterior of the trunk will not shift the combined system 

COM from the body’s unloaded position as much compared to back- loading. 

Further, Lloyd and Cooke (2011) also showed that the reduced forward lean for 

back/front-loading compared to back-loading alone occurs across the stance 

phase, with at least 9° less forward lean for back/front-loading at heel-strike, mid-

support and toe-off gait events. 
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Table 2. A summary of forward lean values reported in load carriage literature. 

Reference 
Loading Methods 

Participants Speed  
(km.h-1) 

Forward 
Lean 

Trunk 
ROM 

Comments 
Position Mass  

Martin and 
Nelson 
(1986) 

Back 0, 9.5, 17.7, 
30, 36.8 kg 

11 males, 
11 females 

6.4 -1.2 – 
6.6° 

- Increase in forward lean with 30 kg and 36.8 
kg. No significant difference between males 
and females. 

Goh et al. 
(1998) 

Back 0, 15% and 
30% BM 

10 males 
(infantry 
soldiers) 

4.40 - 4.72 -8.38 – 
4.26° 

4.72 – 
5.51° 

Increase in forward lean with increased 
mass. No significant difference ROM. -
8.3±1.4° reported for unloaded walking. 
 

Attwells et 
al. (2006) 

Back 8, 16, 40 and 
50 kg 

(including rifle 
and helmet) 

20 male 
soldiers 

SS for each 
condition 

(mean = 5.4) 

-4.8 - 
13° 

- Rifle carried in the arms and helmet in all 
conditions (8 kg). Increase in forward lean 
with increase in mass. No difference in 
ROM (values not reported). 

Wood and 
Orloff (2007) 

Back 15% BM 13 females 4.68 10° - No change in forward lean during 30 
minutes of walking. 

Singh and 
Koh (2009) 

Upper back; 
Lower back 

0, 10%, 15%, 
20% BM 

17 boys SS 
(mean data 

not reported) 

2.23 – 
11.75° 

- Increase in forward lean with increase in 
mass. No significant difference in forward 
lean between upper and lower back 
configurations. 

Kinoshita 
(1985) 

Back; B/F 0%, 20%,  
40% BM 

10 males 
(infantry 
soldiers) 

4.5 Back = 
7-11º; 

B/F = 4° 

4° Back-loading = 7° with 20% BM, 20º with 
40% BM. 
B/F = 4° with both 20% and 40% BM.  
No difference in ROM between methods. 

Lloyd and 
Cooke 
(2011) 

Back; B/F 0, 25.6 kg 9 males 3 9 - 22° - 9° forward lean in the B/F condition and 22° 
in the Back condition. 

* SS = self-selected; ROM = Range of motion; B/F = back and front combined loading.  

* Negative values represent trunk extension; positive values represent trunk flexion.  



51 
 

 

To date, Lloyd and Cooke (2011) are the only authors to have investigated the 

relationship between forward lean and load carriage economy. They reported a 

strong negative relationship (r = -0.867) between ELI and increased forward lean 

from heel-strike to mid-support when using a doublepack (back/front-loading) that 

was not present when carrying the same load with a backpack (r = 0.454). 

Economical load carriage systems that evenly distribute load around the trunk, 

such as the doublepack, are associated with more upright postures (reduced 

forward lean) compared to back loading (Kinoshita, 1985, Lloyd and Cooke, 

2011). Lloyd and Cooke (2011) found that a doublepack allowed for a slightly 

greater freedom of movement in the sagittal plane of the trunk from heel-strike to 

mid-support compared to back loading. They tentatively suggested that the 

increased change in forward lean and associated increase in momentum through 

the stance phase might act as an energy saving mechanism. Furthermore, Lloyd 

and Cooke (2011) found that the differences in trunk angle at heel-strike, mid-

support and toe-off events between unloaded walking and back-loading was 

strongly related to a worse economy (r = 0.643, r = 0.670 and r = 0.794 for heel-

strike, mid-support and toe-off, respectively).  

 

Trunk movements associated with head-loading have not been reported in the 

literature. It would seem logical to suggest that direct head-loading requires an 

upright posture (minimal forward lean) and minimal trunk ROM in order to balance 

the load on the head. As such, it is unlikely that any mechanical benefits from 

increased forward lean or trunk ROM would explain individual load carriage 

economy when head-loading. Further research is required to establish the 

relationship between freedom of movement of the trunk in the sagittal plane and 

load carriage economy. 

 

The postural adjustments of the trunk with load carriage are likely to be 

associated with a change in muscle activity. Collecting the activity patterns of 

muscle during load carriage can be challenging, particularly using surface 

electromyography, due to interactions between the external load and the 

electrodes often interfering with the signal. Nevertheless, the muscle activity 

associated with some load carriage conditions have been reported. Carlsöö 
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(1964) found that back loading reduces sacrospinalis and erector spinae activity, 

while increasing the activity of the rectus abdominus. Carlsöö (1964) also noted 

that the activity of the erector spinae increased as forward lean increased. 

Motmans et al. (2006) investigated the muscle activity associated with a number 

of load carriage methods (unloaded, shoulder bag, backpack, front pack and 

doublepack) and found the doublepack to be closest to that of unloaded walking 

in terms of muscle activation, with similar muscle activity in both the rectus 

abdominus and erector spinae. In agreement with Carlsöö (1964) they found that 

carrying additional loads in a backpack significantly reduced erector spinae 

activity and concomitantly increased the activity of the rectus abdominus. To date, 

no peer-reviewed study has investigated muscular activation during head 

loading. For direct head loading, the upright posture that is likely required to 

balance the load on the head might be expected to be associated with greater 

erector spinae activity and reduced rectus abdominus activity compared to back 

loading. Due to the relatively low absolute level of activity in the postural muscles, 

and the trade-off in muscular activity associated with forward lean between the 

anterior and posterior muscle of the torso, it is unlikely that changes in muscle 

activation associated with forward lean explain differences in economy between 

different load carriage methods and individuals. However, an interaction between 

forward lean and other joint positions might be important in determining load 

carriage economy and is worthy of future study.  

 

2.6.2. Hip, knee and ankle kinematics 

Along with trunk angle, many studies focusing on the biomechanics of load 

carriage have also reported hip, knee and ankle joint angles (e.g. Kinoshita, 1985, 

Harman et al., 2000, Attwells et al., 2006, Majumdar et al., 2010). Furthermore, 

most studies have reported angular displacements in the sagittal plane for these 

joints because these changes are the most pronounced displacements in the 

walking gait (Kinoshita, 1985, Attwells et al., 2006, Majumdar et al., 2010). Table 

3, Table 4 and Table 5 show a summary of some of the load carriage literature 

that has included measures of hip, knee and ankle angle in the sagittal plane, 

respectively. 
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Sagittal plane hip angle appears to decrease (larger hip flexion) at heel-strike and 

increase at toe-off (larger hip extension) as the mass of a load increases when 

carried on the back, causing an overall increase in hip angle range of motion (also 

known as hip angle excursion) across the stance phase (Harman et al., 2000, 

Majumdar et al., 2010, Wang et al., 2013). This is supported by a meta-analysis 

from Liew et al. (2016) which demonstrated that back-loading tends to increase 

hip range of motion compared to unloaded walking. This might be expected given 

the increased trunk forward lean associated with loads carried solely on the back. 

Evenly distributing the load around the torso (via a weighted vest) has been 

associated with peak flexion angles of 30° - 34° for loads of 10 - 40% of body 

mass  (Silder et al., 2013, Wills et al., 2019, Vickery-Howe et al., 2020). In 

comparison, back-loading has been associated with larger hip flexion angles than 

those reported in the weighted vest studies, with Wang et al. (2013) showing a 

hip flexion angle of 45° at heel-strike with 32 kg. However, no studies have 

directly compared hip angle with back/front-loading compared to a back-loading. 

Hip angles have not been reported in literature for head-loading, but it might be 

expected that head-loading results in a greater level of hip extension compared 

to back- and back/front-loading to create a more upright posture to balance a load 

directly on the head. However, further research is warranted to assess hip 

movements with head-loading, particularly as sagittal plane motions of the trunk 

might contribute to load carriage economy in back- (Abe et al., 2004) and 

back/front-loading (Lloyd and Cooke, 2011). 

 

Load carriage methods that position the load on the trunk have been shown to 

consistently increase knee flexion during the stance phase compared to unloaded 

walking (Table 4) (Harman et al., 2000, Silder et al., 2013, Vickery-Howe et al., 

2020, Wang et al., 2013). Vickery-Howe et al. (2020) reported a significant 

increase in knee flexion of 3.5° with load from 0% - 40% of body mass carried 

using a weighted vest, which evenly distributed load around the torso. This 

supports the earlier work of Silder et al. (2013) who reported a 4° increase in knee 

flexion with load from 0% - 30% body mass carried with a weighted vest. For 

back-loading, Wang et al. (2013) found an increase in peak knee flexion of 6° 

from 0 – 32 kg when unfatigued, which increased with fatigue. Although no 

studies have directly compared knee flexion with different load carriage methods   
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Birrell and Haslam (2009) found that sagittal plane knee kinematics were not 

altered until heavier loads of 24 and 32 kg were carried, although the authors did 

not provide data. With heavier loads carried on the trunk, Birrell and Haslam 

(2009) suggested that knee angle ROM decreased as the mass of the load 

increased. A similar decrease in knee ROM for back-loading has also been 

reported by Harman et al. (2000). No previous research has assessed the knee 

angle movements associated with head-loading. It seems reasonable to 

speculate that head-loading would be associated with similar knee flexion angles 

to those reported with a weighted vest, as both Vickery-Howe et al. (2020) and 

Silder et al. (2013) reported an upright posture with this method, which would also 

be expected for direct head-loading in order to balance load on the head. 

Dynamic walking gait simulations have predicted that unloaded walking with 

increased knee flexion requires increased muscle activity (Steele et al., 2010), 

which is likely to result in an increase in metabolic cost (Waters and Mulroy, 

1999). Furthermore, Ortega and Farley (2005) found that simultaneously 

increasing, hip, knee and ankle flexion during unloaded walking, to flatten the 

COM trajectory, doubled the metabolic cost compared to normal walking. While 

it’s likely that an increased knee flexion could result in a greater metabolic cost, 

no experimental data exists to support the influence of isolated knee joint flexion 

on the metabolic cost of walking. 

 

Load carriage with a backpack appears to increase ankle dorsiflexion at heel-

strike and through the stance phase, and increase in plantarflexion during the 

initial part of the swing phase  (Attwells et al., 2006, Majumdar et al., 2010). This 

leads to an increased ankle ROM compared to unloaded walking. Majumdar et 

al. (2010) suggested that an increase in dorsiflexion of the ankle during the stance 

phase might help absorb an increase in the impact forces that occur with 

increased load and facilitate increased knee flexion to further help absorb impact 

forces. More evenly distributing load around the torso (via weighted vests) has 

been shown to not alter peak ankle plantarflexion or dorsiflexion from unloaded 

walking when carrying up to 40% of body mass (Silder et al., 2013, Vickery-Howe 

et al., 2020) (Table 5). The role of the ankle joint in unloaded walking economy 

has been the subject of previous investigations, with impaired ankle movement 

at push-off appearing to require a greater level of energy expenditure to walk at 
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a given speed (Doets et al., 2009, Van Engelen et al., 2010). Huang et al. (2015) 

restricted ankle plantarflexion during unloaded walking using a modified ankle-

foot orthosis. This reduced the amount of work performed by the ankle during the 

push-off phase, leading to greater mechanical work by the knee and ankle joints 

during mid-stance and a greater overall metabolic cost. As such, if load carriage 

reduces ankle plantarflexion during push-off, it’s possible that this could worsen 

an individual’s load carriage economy. 

 

Although changes to the hip, knee and ankle angles with load carriage have been 

studied for back-loading, the relationship between these changes and the 

metabolic energy requirements for carrying additional load have not been 

reported. A major contributor to the metabolic cost of walking is the mechanical 

work performed by the muscles to propel the body forward from one step to 

another (Donelan et al., 2002a). Huang and Kuo (2014) reported the estimated 

work performed at the hip, knee and ankle joints during loaded walking, which 

might provide an insight into the role these joints have in the energy expenditure 

associated with load carriage. The authors used inverse dynamics to estimate 

joint work with loads of up to 40% body mass carried in a backpack. They reported 

a large increase in positive work per stride for loaded walking compared to 

walking unloaded, which they attributed to the ankle joint at push-off and the knee 

joint after impact. The largest increase in positive work was attributed to the ankle 

during push-off. Huang and Kuo (2014) found that positive work and metabolic 

cost increased linearly with increased load and concluded that most of the 

increased metabolic cost with load carriage was explained by increased positive 

mechanical work, particularly at the ankle and knee. While this provides a useful 

indication of the distribution of work among the lower limb joints, the use of 

inverse dynamics to measure actual muscle work is imperfect and does not 

necessarily indicate the actual metabolic cost of exercise because it does not 

account for passive work performed through the passive stretching and 

shortening of tendons (Dean and Kuo, 2011). 
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Table 3. A summary of sagittal plane hip angles reported in the literature 

*MOLLE = Modular Lightweight Load-Carrying Equipment; ALICE = All-Purpose Lightweight Individual-Carrying Equipment; SS = self-selected 
*Data from Harman et al. (2000) did not use anatomical zero. Negative values = extension; positive values = flexion.  

Reference  
Loading Methods 

Participants Speed 
(km.h-1) 

Flexion (º) Extension (º) ROM (º) 
Position Mass 

Vickery-Howe 
et al. (2020) 

Weighted 
vest 

0%, 20% 
& 40% BM 

15 males, 
15 females 

SS 
(mean = 

4.7) 

Female peak angle (SD) = 
33 (7), 34 (7), 33(9) for 0%, 
20% and 40%, respectively.  

Male peak angle (SD) =  
33 (8), 33 (7), 34(5) for 0%, 
20% and 40%, respectively. 

Female peak angle (SD) = 
-9 (5), -10(7), -11(7) for 
0%, 20% and 40%, 
respectively.  

Male peak angle (SD) =   
-7(6), -8(6), -8(6) for 0%, 
20% and 40%, 
respectively. 

Female ROM calculated 
from peak values =  
42, 44, 44 for 0%, 20% 
and 40%, respectively. 

Male ROM calculated 
from peak values =  
42, 44, 44 for 0%, 20% 
and 40%, respectively. 

 
Wills et al. 
(2019) 

Weighted 
vest 

23 kg 13 males 5.5 Peak angle (SD) = 34(7) 

Heel-strike = 32(6) 

Peak angle (SD) = -16(7) Calculated from peak 
values = 50  

        
Silder et al. 
(2013) 

Weighted 
vest 

0%, 10%, 
20% and 
30% BM 

17 males,  
12 females 

SS 
(mean = 
4.64 ± 
0.28) 

Peak angle (SD) =  
29(5), 30(6), 30(5), 32(5) for 
0%, 10%, 20% and 30%, 
respectively.                             

Peak angle (SD) =  
-16(7), -16(7), -17(6), -
16(6) for 0%, 10%, 20% 
and 30%, respectively.   

Calculated from peak 
values = 45, 46, 47, 48 
for 0%, 10%, 20% and 
30%, respectively.    

Wang et al. 
(2013) 

Back 
(MOLLE) 

0, 32 kg 18 males 6 At heel-strike = 32(4) and 
45(5) for 0 kg and 32 kg 
walking, respectively. 
 

- - 

Harman et al. 
(2000) 

Back 
(ALICE) 

6, 20, 33,  
47 kg 

16 males 4, 4.8, 
5.4 

114(7), 140(7), 137(7), 
133(6) for  
6 kg, 20 kg, 33 kg and 47 kg. 

1946), 192(6), 191(6),  
188(6) for 6 kg, 20 kg, 33 
kg and 47 kg, respectively.                                                                                     

ROM (SD) = 50(5), 52(5), 
54(5), 55(5) for  
6 kg, 20 kg, 33 kg and 47 
kg, respectively. 
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Table 4. A summary of sagittal plane knee angle reported in literature. 

Reference  
Loading Methods 

Participants Speed (km.h-1) Flexion (°) Extension (°) ROM (°) 
Position Mass 

Vickery-
Howe et al. 
(2020) 

Weighted 
vest 

0%, 20% 
& 40% BM 

15 males, 
15 females 

SS 
(mean = 4.7) 

Females peak angle (SD) = 
23(12), 25(12), 29(14) for 0%, 
20% and 40%, respectively.  

Males peak angle (SD) = 
21(6), 21(6), 22(6) for 0%, 
20% and 40%, respectively. 

- - 

Wills et al. 
(2019) 

Weighted 
vest 

23 kg 13 males 5.5 Peak angle (SD) = 72(6) 

Heel-strike = 8(3) 

Peak angle (SD) =  
-2(3) 

- 

Silder et al. 
(2013) 

Weighted 
vest 

0%, 10%, 
20% and 
30% body 

mass 

17 males, 
12 females 

SS (mean = 
4.64 ± 0.28) 

Peak during stance (SD) = 
22(5), 23(6), 24(6), 26(6) for 
BW, 10%, 20% and 30%, 
respectively. 

Peak during swing (SD) = 
70(5), 70(5), 71(4), 71(6) for 
BW, 10%, 20% and 30%, 
respectively. 

- - 

Wang et al. 
(2013) 

Back 
(MOLLE) 

0, 32 kg 18 males 6 Heel-strike = -3(3) and 4(3) 
for 0 kg and 32 kg, 
respectively. 

Peak knee flexion (SD) at 
stance 19(3) and 25(5) for 0 
kg and 32 kg, respectively. 

- - 
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Reference 
 

Loading method 
Participants Speed (km.h-1) Flexion (°) Extension (°) ROM (°) 

Position Mass 

Harman et 
al. (2000) 

Back 
(ALICE) 

6, 20, 33, 
47 kg 

16 males 4, 4.8, 5.4 Peak knee flexion (SD) = 
111(3), 112(4), 113(5), 112(5) 
for  
6 kg, 20 kg, 33 kg and 47 kg, 
respectively. 

Peak knee extension 
(SD) = 178(5), 
178(5),  
179(6) and 179(6) for 
6 kg, 20 kg, 33 kg 
and  
47 kg, respectively. 

Knee ROM (SD) = 
67(6), 66(5), 66(6) 
and 65(6) for 6 kg, 
20 kg, 33 kg and 
47kg, respectively. 

Attwells et 
al. (2006) 

Back 7.95, 
15.95, 
39.95, 

50.05 kg 

20 male 
soldiers 

SS - - Approximately 21, 
23, 26 and 26 for 
7.95, 15.95, 39.95, 
50.05 kg, 
respectively (actual 
values not reported 
by Attwells et al. 
(2006)). 

*MOLLE = Modular Lightweight Load-Carrying Equipment; ALICE = All-Purpose Lightweight Individual-Carrying Equipment. SS = self-selected 
*Data from Harman et al. (2000) did not use anatomical zero. Negative values = extension; positive values = flexion
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Table 5. A summary of sagittal plane ankle angles reported in literature.  

*MOLLE = Modular Lightweight Load-Carrying Equipment; ALICE = All-Purpose Lightweight Individual-Carrying Equipment. SS = self-selected 
* Negative values = extension; positive values = flexion

Reference  
Loading Methods 

Participants 
Speed 
(km.h-1) 

Dorsiflexion (°) Plantarflexion (°) ROM (°) 
Position Mass 

Vickery-
Howe et 
al. (2020) 

Weighted 
vest 

0%, 20% & 
40% BM 

15 males, 
15 females 

SS 
(mean = 

4.7) 

Females peak angle (SD) 
= 13(5), 14(5), 13(5) for 
0%, 20% and 40%, 
respectively.  

Males peak angle (SD) =  
11(4), 11(3), 11(4) for 0%, 
20% and 40%, 
respectively. 

Females peak angle 
(SD) = -21(6), -21(8),  
-22(7) for 0%, 20% 
and 40%, respectively.  

Males peak angle (SD) 
= -22(6), -22(5),  
-23(6) for 0%, 20% 
and 40%, respectively. 

Female ROM calculated 
from peak values =  
34, 35, 35 for 0%, 20% 
and 40%, respectively. 

Male ROM calculated 
from peak values = 33, 
33, 34 for 0%, 20% and 
40%, respectively. 

 
Wills et al. 
(2019) 

Weighted 
vest 

23 kg 13 males 5.5 Peak dorsiflexion (SD) = 
8(3) 

Heel-strike = 1(4) 

Peak angle (SD) =  
-22(7) 

Calculated from peak 
values = 30 

Silder et 
al. (2013) 

Weighted 
vest 

10%, 20% 
and 30% 

body mass 

17 males, 
12 females 

SS 
(mean = 
4.64 ± 
0.28) 

Peak dorsiflexion (SD) = 
13(4), 13(4), 13(4) and 
14(4) for BW, 10%, 20% 
and 30%, respectively. 

Peak plantarflexion 
(SD) = -12(5), -13(6), 
-12(5), -12(5) for BW, 
10%, 20% and 30%, 
respectively. 

Calculated from peak 
values = 25, 26, 25, 26 
for 0%, 10%, 20% and 
30%, respectively.    

Wang et 
al. (2013) 

Back 
(MOLLE) 

0, 32 kg 18 males 6 Dorsiflexion (SD) at heel-
strike = 8(2) and 7(3) for 
unloaded and loaded 
walking, respectively. 

- - 

Harman et 
al. (2000) 

Back (ALICE) 6, 20, 33, 47 
kg 

16 males 4, 4.8, 
5.4 

Peak dorsiflexion (SD) = 
108(3), 108(5), 108(5), 
108(5) for 6 kg, 20 kg,  
33 kg and 47 kg, 
respectively. 

Peak plantarflexion 
(SD) = 137(5), 137(6), 
138(6) and 139(6) for 
6kg, 20 kg, 33 kg and 
47 kg, respectively. 

Ankle ROM (SD) = 29(4), 
29(3), 30(3) and 30(3) for 
6 kg, 20 kg, 33 kg and 47 
kg, respectively 
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Much of the load carriage literature has focused on joint angle kinematics in the 

sagittal plane, and as such there is a general lack of data for how load carriage 

influences kinematics in the frontal and transverse planes. This is presumably 

because most movement occurs in the sagittal plane for walking and running 

gaits (Whittle, 2014). Trunk loading methods that constrain posture in the sagittal 

plane, such as back-loading with heavy load mass, are likely to have a similar 

effect on movements in the transverse plane. Indeed, a few studies have reported 

a decrease in pelvic rotation from unloaded walking with the back-loading method 

(LaFiandra et al., 2002, Sharpe et al., 2008, Birrell and Haslam, 2009). LaFiandra 

et al. (2002) found that back-loading with 40% body mass at 2.16 - 5.76 km.h-1 

resulted in a decrease in transverse plane pelvic and trunk rotation, but an 

increase in upper body torque of 225% compared to unloaded walking. It’s 

possible that an increase in freedom of movement of the trunk in the transverse 

plane could benefit load carriage economy, by allowing for a walking gait pattern 

that is closer to that of unloaded walking. However, increasing rotational 

movements in the upper body with heavy loads could also increase upper body 

torque, which increases the potential for low back injury and would require an 

increase in muscular effort to counteract the torque (LaFiandra et al., 2002). As 

such, it’s possible that an increase in upper body rotation with heavy loads could 

have a negative impact on load carriage economy. The use of a hip belt when 

back-loading transfers ~30% of the vertical load from the shoulders to the hips 

during level walking (LaFiandra and Harman, 2004) and allows for greater 

amplitudes of pelvic and trunk rotation with heavy load (40% body mass) 

compared to not using a hip belt (Sharpe et al., 2008). This increase in trunk and 

pelvic rotation with a hip belt could be due to the reduced vertical load on the 

shoulders, lessening the upper body torque associated with back-loading.  

 

Hip abduction appears to increase from unloaded walking for back-loading, with 

greater abduction as the mass of the load carried increases (Birrell and Haslam, 

2009). An increase in hip abduction with an increase in the load carried could be 

a consequence of increased step width, widening the base of support to increase 

stability. Donelan et al. (2001) showed that young healthy individuals preferred 

an energetically optimal step width of 0.13 ± 0.03 L, where L is step width 

expressed as a fraction of leg length, compared to wider and shorter steps widths 
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which require a greater metabolic cost. Forced perturbations to widen step width 

increase the energy cost of unloaded walking by increasing the mechanical work 

required to redirect the centre of mass from step-to-step (Donelan et al., 2001, 

Donelan et al., 2002a). Narrow step widths (through forced perturbations), when 

step widths are narrower than the width of the foot, appear to increase the 

mechanical work required laterally to move the swing leg to avoid the stance leg 

which increases the energy cost of unloaded walking (Shorter et al., 2017). As 

such, alterations in step width with load carriage could lead to alterations in 

economy, particularly if load carriage causes an individual to take much wider or 

narrower steps than their preferred unloaded walking step width. Previous 

research on the effect of load carriage on step width has found no difference in 

step width as a percentage of stature with weighted vests between 10-30% body 

mass (Silder et al., 2013). However, no studies have assessed the association 

between step width and economy in head-loading or back-loading, which might 

require an increase in lateral stabilisation compared to other methods that evenly 

distribute load around the torso. 

 

 

2.7. Spatiotemporal walking gait adjustments to load carriage 

 

Spatiotemporal parameters of the human walking gait describe the timing and 

positional characteristics. They include factors such as step length and cadence, 

as well as timings of specific phases of the gait cycle (Bowker and Messenger, 

1988). The perturbations caused by load to these spatiotemporal variables from 

unloaded walking, and how perturbations might influence economy, will be 

considered in this section 

 

2.7.1. Stride length and cadence 

The most economical stride length/stride frequency combination when walking 

unloaded is suggested to be similar to the one freely chosen by an individual 

(Högberg, 1952, Cotes and Meade, 1960, Knuttgen, 1961, Cavanagh and 

Williams, 1982). Furthermore, when walking at a given speed, individuals appear 

to choose a stride frequency that minimises energy expenditure (Cotes and 

Meade, 1960, Zarrugh et al., 1974). Literature on unloaded walking and running 
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has indicated a U-shaped relationship between the stride length/frequency 

combination and energy expenditure, for a given speed (Högberg, 1952, Cotes 

and Meade, 1960, Cavanagh and Williams, 1982). Therefore, smaller deviations 

from the optimal stride length/stride frequency combination appear to result in a 

smaller effect on V̇O2 compared to larger deviations.  

 

Table 6 provides a summary of studies that have investigated the effect of load 

carriage on stride length. Most studies have found little change in stride length 

between load carriage conditions (e.g. Goh et al., 1998, Harman et al., 2000, 

Wood and Orloff, 2007, Silder et al., 2013, Huang and Kuo, 2014). The relatively 

few that have reported a change in stride length with load carriage appear to have 

found a slight shortening, compared to unloaded walking at 0% and uphill 

gradients (Martin and Nelson, 1986, Harman et al., 2000, LaFiandra et al., 

2003b). For a given walking speed, this would mean that as the load mass 

increases, stride length decreases with a concomitant increase in stride 

frequency. These studies have tended to find a shortening of stride length under 

heavy load carriage and/or fast walking speed conditions. Studies comparing 

different methods of trunk loading have found little difference in the stride length 

– cadence combination (Kinoshita, 1985, Lloyd and Cooke, 2011). There appears 

to be differences in loaded stride length between males and females (Martin and 

Nelson, 1986), which as might be expected, appears to not be the case when 

stride length is normalised to stature (Silder et al., 2013). Like much of the load 

carriage literature, nearly all studies examining stride length/stride frequency 

have only reported mean data. Lloyd and Cooke (2011) reported a high level of 

individual variability for change in stride length (+12% to -6%) from unloaded to 

loaded (with 25.6 kg) when walking on the flat. Thus, considering individual 

differences in stride length alterations from load carriage might be useful when 

attempting to determine individual differences in economy. While small 

perturbations are unlikely to affect the energy cost of load carriage with any 

particular method (Högberg, 1952, Knuttgen, 1961, Heinert et al., 1988), larger 

alterations might be detrimental. When Maloiy et al. (1986) first reported the free 

ride phenomenon, they found no difference in stride frequency between head-

loading and unloaded walking. It is possible that the most economical method of 
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load carriage for an individual is one that causes no change in stride parameters 

from unloaded walking.  
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Table 6. A summary of stride length values reported in load carriage literature. 

Reference 
Loading Methods 

Participants 
Speed 
(km.h-1) 

Stride Length (m) Comments 
Position Mass 

Martin and 
Nelson 
(1986) 

Back 0, 9, 17, 
29, 36kg 

11 males, 
11 females 

6.4 M = 0.88 – 0.90 

F = 0.82 – 0.86 

Significant decrease in stride length as 
load mass increased. Women had 
significantly shorter stride lengths 
(increased cadence). 

Goh et al. 
(1998) 

Back 0, 15% and 
30% body 

mass 

10 males 
(infantry 
soldiers) 

SS (range = 
4.40 - 4.72) 

1.27 – 1.43 No difference in stride length between 
loads. 

Harman et 
al. (2000) 

Back 6, 20, 33, 
47kg 

16 4, 4.8, 5.4 1.57 – 1.60 (ALICE) US military backpack. No 
difference in stride length between 
load mass from 6 - 33 kg. Significant 
reduction with 47 kg. 

LaFiandra 
et al. 
(2003b) 

Back 0 and 40% 
BM 

5 males, 
7 females 

2.16, 2.88, 
3.60, 4.32, 
5.04, 5.76 

L = 0.85 – 1.37 
U = 0.89 – 1.42 

Increased walking speed significantly 
increased stride length. Significant 
decrease from unloaded (U) to loaded 
(L). 

Wood and 
Orloff 
(2007) 

Back 15% body 
mass 

13 females 4.68 1.40 -1.41 No change in stride length over a 30-
minute period of walking. 
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Reference 
Loading Methods 

Participants 
Speed 
(km.h-1) 

Stride Length (m) Comments 

Position Mass 

Singh and 
Koh (2009) 

Back 10%, 15%, 
20% body 

mass 

17 boys (9     
± 1.58 
years) 

SS 
(absolute 

velocity not 
reported) 

- Absolute stride length values not 
reported. No significant differences 
between in normalised stride length 
between loads. 

Huang and 
Kuo (2014) 

Back 0, 10.6, 
15.1, 19.6, 

24.2 kg 

6 males, 
2 females 

4.5 - Absolute stride length values not 
reported. Normalised step length did 
not change with an increase in load 
mass. 

Kinoshita 
(1985) 

Back; B/F 0%, 20%, 
40% BM 

10 males 
(infantry 
soldiers) 

4.5 1.46 – 1.48 No difference in stride length between 
methods or mass. 

Lloyd and 
Cooke 
(2011) 

Back, B/F 0, 25.6 kg 5 females, 
4 males 

3 - No difference in stride length between 
unloaded, backpack and doublepack 
when walking on the flat. 

Silder et al. 
(2013) 

Weighted 
vest 

0, 10%, 
20% and 
30% body 

mass 

17 males, 
12 females 

SS (mean = 
4.64 ± 0.28) 

- Absolute stride length values not 
reported. No differences in normalised 
stride length between males and 
females or loads. 

*U = unloaded; L = loaded; M = males; F = females; BM = body mass; SS = self-selected; B/F = Back and Front combined. 
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2.7.2. Stance time 

Load carriage appears to result in longer walking gait stance times compared to 

unloaded walking (Kinoshita, 1985, Kram et al., 1987, Lloyd and Cooke, 2000a, 

Birrell et al., 2007, Birrell and Haslam, 2010, Silder et al., 2013). A longer stance 

time would suggest that the normal function of the lever system of the foot is 

impeded during the push-off phase of walking. A longer stance time could be 

accounted for by the need to apply greater forces with increased load if there is 

no change in the rate of force application. It has also been suggested that a longer 

stance time is necessary when an extra load is being carried due to the need for 

extra stability (Schiffman et al., 2006), particularly if the load carriage system 

causes the COM to be shifted further away from the body’s normal unloaded 

position (Birrell and Haslam, 2010). Kinoshita (1985) reported no change in 

stance time between a backpack and a doublepack with 20% or 40% body mass.  

However, on closer examination of the mean data, there was a shorter stance 

time with the doublepack compared to the backpack when carrying both 20% 

body mass (0.737 s backpack versus 0.730 s doublepack) and 40% body mass 

(0.745 s backpack versus 0.737 s doublepack). A shorter stance time when 

carrying load in a doublepack compared to a backpack is supported by the work 

of Lloyd and Cooke (2000a) who also found slightly shorter stance times with a 

commercially available doublepack compared to a traditional backpack. Stability 

is suggested to play an important role in stance time (Schiffman et al., 2006), with 

increased stability likely to reduce stance time. This might be explained the 

difference in findings between the conditions, with the even loading of the 

doublepack between the front and back of the torso likely to increase stability and 

reduce stance time compared to uneven loading with a backpack.  

 

Additionally, the doublepack has been associated with a more upright posture 

compared to the backpack. This reduces the time it takes for the COM to pass 

over the foot during each stride, reducing stance time (Birrell et al., 2007). Birrell 

and Haslam (2010) observed shorter stance times for a backpack with webbing 

that distributed some of the load around the trunk compared to a standard 

backpack when a light load (8 kg) was carried. However, in contrast to previous 

research, the authors reported that stance time was significantly shorter when 

carrying heavier loads (24 kg and 32 kg) in the standard backpack compared to 
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loads more evenly distributed around the trunk. They suggested that an increased 

perceived discomfort with the heavier load in the backpack compared to other 

conditions might have been responsible for the findings by causing the 

participants discomfort to alter their walking gait, overriding the biomechanical 

effects such as changes in the COM position or forward lean. To date, only Lloyd 

et al. (2011) have reported stance time as a parameter when investigating the 

effects of head-loading on the walking gait. They reported that stance time when 

head-loading did not change from unloaded walking while stance time when 

back-loading was significantly longer than unloaded walking (an increase of 

0.031 seconds). This could be a consequence of the upright posture required to 

balance the load directly on top of the head while walking, which has been shown 

to decrease stance time compared to load carriage methods that are associated 

with greater forward lean. 

 

 

2.8. Load carriage kinetics 

 

Force platforms provide a means of recording and measuring the three 

components (vertical, antero-posterior, and medio-lateral) of foot-floor reaction 

force during human locomotion (Bowker and Messenger, 1988). Carrying an 

additional load increases the vertical and antero-posterior force produced during 

the walking gait (Kinoshita, 1985, Lloyd and Cooke, 2000a, Harman et al., 2000, 

Birrell and Haslam, 2008, Tilbury-Davis and Hooper, 1999).  

 

Previous studies comparing the anteroposterior forces between loading 

conditions have tended to find no difference when there are only subtle 

differences in design between load carriage systems (e.g. different types of 

backpack) (Harman et al., 1999, LaFiandra et al., 2003a, Birrell et al., 2007). 

However, differences have been reported when there are substantial differences 

between load carriage methods (e.g. different load placements) (Kinoshita, 1985, 

Birrell and Haslam, 2010, Lloyd and Cooke, 2000a). Birrell and Haslam (2010), 

Kinoshita (1985) and Harman et al. (2000) all identified a smaller maximum 

braking force (in the antero-posterior direction) with load evenly distributed 

around the torso compared to the same load positioned on the back. Kinoshita 
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(1985) reported that peak braking force increased from unloaded walking by 45% 

for back-loading compared to 39% for back/front-loading when carrying 40% 

body mass. Birrell and Haslam (2010) found a 10% increase in braking force for 

back-loading compared to back/front-loading with a 32 kg load. A larger braking 

force for back-loading is likely to be a consequence of increased forward lean 

that has also been associated with backpack load carriage compared to 

doublepack (load evenly distributed around the torso) loading. In contrast, Lloyd 

and Cooke (2000a) identified no difference in maximum braking force between 

backpack and doublepack conditions but did find a larger maximum propulsive 

force with a backpack. The authors suggested that the larger propulsive force 

with a backpack could have resulted from a decrease in trunk movement through 

the stride cycle compared to a greater freedom of movement in the trunk with a 

doublepack. With this theory, more movement in the trunk could lead to an 

increase in momentum of the upper body, which could reduce the propulsive 

force requirements (Lloyd and Cooke, 2000a). Yet, there is conflicting evidence 

for reduced propulsive force with load evenly distributed around the torso 

compared to a backpack, with Kinoshita (1985) finding no difference in propulsive 

forces associated with either a backpack or a doublepack. Theoretically, a 

reduced propulsive force (for a given speed) could be beneficial to load carriage 

economy, as it would suggest that less energy is required to propel the body 

forward.  

 

Birrell and Haslam (2008) suggested that load carriage methods restricting arm 

movement could increase both maximum braking and propulsive force compared 

to load carriage methods that did not impede the arms. The authors suggested 

that the mechanism for this could be a reduced involvement of the arms to drive 

the body forward (Birrell and Haslam, 2008). This concept could have implications 

for head loading, where the arms are usually required to be in a fixed position in 

order to support the load. Lloyd et al. (2011) found no difference in maximum 

braking and propulsive force between head loading and back loading. It might be 

that the greater trunk range of motion associated with more upright postures are 

neutralised by the need to restrict trunk motion in order to balance a load on the 

head (Lloyd et al., 2011). 
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Regarding vertical force, there is consistent evidence showing that the magnitude 

of peak vertical forces are approximately equal to the added load, even when 

different load carriage methods are concerned (Kinoshita, 1985, Tilbury-Davis 

and Hooper, 1999, Birrell et al., 2007, Birrell and Haslam, 2010, Lloyd and Cooke, 

2000a, Lloyd et al., 2011). This implies that the increased peak vertical force with 

load carriage is predominantly due to the static effect of the load rather than 

changes in the acceleration of the system (combined body and load). The vertical 

force minimum (vertical force at mid-stance), however, does appear to be 

sensitive to differences in load carriage method. Kinoshita (1985), Lloyd and 

Cooke (2000a) and Birrell and Haslam (2008) all identified a significantly greater 

minimum vertical force associated with a back/front-loading compared to back-

loading. This could be caused by the more upright posture associated with a 

doublepack resulting in a more vertical application of force. Given the position of 

the COM when head loading, this method might also be expected to increase the 

minimum vertical force compared to the same load carried on the back. In line 

with this, Lloyd et al. (2011) reported a slightly smaller force minimum for back-

loading compared to head-loading. Birrell and Haslam (2010) reported a 

significant reduction in peak vertical force at the toe-off gait event (2nd vertical 

peak) with load placed on the back compared to the same load more evenly 

distributed around the trunk. However, this is not a consistent finding in the 

literature with Kinoshita (1985) and Lloyd and Cooke (2000a) both finding no 

difference in the 2nd peak vertical force between back- and back/front-loading. 

Furthermore, LaFiandra et al. (2003a) also reported no difference in the 2nd peak 

vertical force between three different backpack designs.  

 

Few studies have reported the medio-lateral forces associated with load carriage. 

This could be due to the large variability that has been reported (Lloyd et al., 

2011), making changes in this force component when carrying load difficult to 

interpret. The available evidence suggests that mediolateral force is more 

sensitive to changes in speed than changes in load (Harman et al., 2000, Harman 

et al., 2001). Birrell et al. (2007) reported significant increases in medio-lateral 

impulse for load carried in front of the body (rifle carriage), which could imply less 

stability with this method of load carriage. The authors suggested that an increase 

in medio-lateral impulse occurs if the load being carried shifts the body’s COM 
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further away from its usual position when unloaded. Indeed, reducing the amount 

the COM is displaced has been shown to increase static stability when supporting 

a load (Schiffman et al., 2006).  

 

To date, only one study has explored relationships between ground reaction force 

variables and load carriage economy (Lloyd and Cooke, 2011). Comparing a 

backpack to a doublepack system, Lloyd and Cooke (2011) reported that a better 

load carriage economy with a doublepack was associated with a smaller lateral 

impact peak force and a smaller maximum braking force. Additionally, a smaller 

difference in maximum braking force between loaded (with 25.6 kg) and unloaded 

walking with a doublepack is strongly related to improved economy (r = 0.797) 

(Lloyd and Cooke, 2011). A smaller difference in ground reaction forces from 

unloaded walking relating to better economy supports the concept that an 

individual’s normal walking gait represents the most economical for that individual 

(Martin and Morgan, 1992). Individual variation in load carriage economy might, 

in part, be a consequence of some individuals being able to walk more naturally 

with certain methods of load carriage than others. 

 

Lloyd and Cooke (2000a) identified large intra- and inter- individual variations in 

the ground reaction forces for load carriage with a backpack and doublepack. 

However, they did not quantify this variation as part of their study. Individual 

variability in the responses of kinetic variables to load carriage have not been 

reported elsewhere. Given the level of individual variation in load carriage 

economy and kinematic variables reported by Lloyd et al. (2010c) and Lloyd and 

Cooke (2011), respectively, it might be expected that a large level of individual 

variation exists for ground reaction forces during load carriage.  

 

 

2.9. Subjective perceptions of load carriage 

 

Analysing subjective responses could assist in differentiating between different 

methods of load carriage when physiological and biomechanical differences are 

indistinguishable (Legg et al., 1997). Furthermore, subjective perceptions are an 

important determinant for individuals when selecting a method of load carriage 
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(Legg et al., 1997). A variety of methods have been employed to assess 

perceptual responses to load carriage, these include whole body Rating of 

Perceived Exertion (RPE) (Legg, 1985, Legg and Mahanty, 1985), Differentiated 

RPE (Kirk and Schneider, 1992), Visual Analogue Scales (VAS) (Ling et al., 

2004), Category Rating Scales (CRS) (Mackie et al., 2003) and interviews (Birrell 

and Hooper, 2007). 

 

As might be expected, RPE scores appear higher when carrying a load compared 

to unloaded walking and to significantly increase as the mass of a load increases 

(Gordon et al., 1983). The nature of whole body RPE makes it an overall measure 

of exertion, which may mask local effects at certain body positions. Thus, more 

sensitive methods might be required to gain a greater understanding of subjective 

perceptions associated with subtle differences between load carriage methods. 

Using differentiated RPE, Kirk and Schneider (1992) showed that despite a 

constant metabolic cost, the RPE increased throughout an hour of exercise for 

both the shoulders and legs when carrying a backpack. Visual Analogue Scales 

allow individuals to rate perceived pain/discomfort at different areas of the body 

during load carriage (Lloyd et al., 2010d). Mackie et al. (2003) suggested that 

subjective scores given by participants might reflect psychological 

characteristics, such as a willingness to use extremes on a scale. However, Lloyd 

et al. (2010d) argued that raw values provided by the VAS are suitable if a 

repeated measures design is used as the comparison is effectively intra-

participant and the researchers acknowledge that values will mirror an 

individual’s pain sensitivity and psychological characteristics. When the 

difference between load carriage conditions are minimal (e.g. mass distribution 

with a load carriage device), more sensitive methods of perceived comfort than 

VAS might be required. Legg and Mahanty (1985) found that VAS failed to 

distinguish between a backpack with or without a frame. However, short 

questionnaires administered immediately after carrying each load indicated that 

the backpack with the external frame was the easiest load carriage system to put 

on and take off. 

 

While most research has focused on the perceived exertion associated with back-

loading, Lloyd et al. (2010d) compared both head-loading and back-loading. They 
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found a general preference for back loading compared to head loading, in 

experienced head-loaders, primarily due to the greater feeling of stability. 

Moreover, using VAS, Lloyd et al. (2010d) provided evidence that head loading 

invoked a level of neck pain that outweighed the greater discomfort in most other 

areas of the body associated with back loading. Measures of perceived exertion, 

particularly VAS scales, might be useful when trying to explain differences 

between individual gait adaptations to load carriage if there are differences in 

pain/discomfort. Differences in walking gait adaptations due to pain/discomfort 

differences could impact individual load carriage economy, although this has not 

been reported previously in the literature. 

 

 

2.10. Summary of the literature review 

 

The physiological and biomechanical consequences of load carriage have been 

widely studied. Despite this, the economy associated with different methods of 

load carriage remains equivocal. Carrying a load closer to the COM of the body 

has generally been associated with a better economy compared to loads carried 

more distally (i.e. in the hands or on the feet). However, literature on the metabolic 

energy cost associated with methods that place the load close to the body’s COM 

is more equivocal, particularly for head-loading. The early work of Das and Saha 

(1966), Soule and Goldman (1969) and Datta and Ramanathan (1971) found that 

energy expenditure for head-loading increased in proportion to the mass of the 

load. In contrast, Maloiy et al. (1986) and Charteris et al. (1989) showed an 

energy saving phenomena for head-loading for individuals with experience of 

using this method. A limitation of these studies is the small sample sizes used (n 

≤ 6); in a larger sample (n = 24; 13 experienced and 11 inexperienced head-

loaders) Lloyd et al. (2010c) found considerable individual variation in load 

carriage economy, from which a subset of participants demonstrated the energy 

saving phenomenon reported by Maloiy et al. (1986) and Charteris et al. (1989). 

Interestingly, Lloyd et al. (2010c) also found head-loading economy to be 

independent of head-loading experience, with 38.5% of the experienced head-

loaders group being more economical in head-loading than back-loading and 

36.4% of an inexperienced group showing the same tendency. Previous work has 
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attempted to identify mechanisms that may contribute to improved head-loading 

economy (e.g. Jones et al., 1987, Heglund et al., 1995), yet the determinants 

remain unclear. Much of the research on head-loading has focused on the 

physiological response and there is very little research examining the associated 

biomechanics, with those that have focusing on stride frequency (Maloiy et al., 

1986, Charteris et al., 1989)  and ground reaction forces (Lloyd et al., 2011). A 

better understanding of the kinematics and kinetics associated with head-loading 

might help elucidate factors that determine economy with this method. 

 

Energy saving phenomena have also been reported with light loads (~10-15% 

body mass) carried on the back (Abe et al., 2004) and heavy loads (~ 25 kg) 

evenly distributed between the front and back of the torso (Lloyd and Cooke, 

2000b). It’s possible that the energy saving phenomenon reported for these trunk 

loading methods are associated freedom of movement of the trunk. Abe et al. 

(2004) suggested that light loads carried on the back might contribute to forward 

momentum during the gait cycle because they do not constrain posture as much 

as heavy loads (i.e. lighter loads might allow for a similar level of trunk 

flexion/extension to unloaded walking). A similar mechanism might be 

responsible for the improved economy reported for back/front-loading compared 

to back-loading with heavy loads (Lloyd and Cooke, 2000b), with evenly 

distributing a load between the front and the back of the torso possibly allowing 

for a greater freedom of movement in the trunk compared to the same load 

carried on the back alone. A greater momentum associated with a greater 

freedom of movement of the trunk might contribute to a lower peak propulsive 

force, which was reported for back/front-loading compared to back-loading by 

(Lloyd and Cooke, 2000a). As such, understanding the role of trunk movements 

in determining load carriage economy warrants further research, particularly for 

methods that place the load on the torso. 

 

A considerable degree of individual variation has been identified for load carriage 

economy in head- and back-loading (Lloyd et al., 2010c), and for the change in 

stride length from unloaded walking for back- and back/front-loading (Lloyd and 

Cooke, 2011). Few studies have reported individual variation, possibly due to 

small sample sizes. Individual variation in load carriage economy and the 
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kinematics and kinetics associated with load carriage warrants further attention. 

It’s possible that different factors might combine in individuals to influence 

economy rather than a single set of factors for each method. If this is the case, 

further research is needed to establish the nature of the factors and how they 

interact in individuals. This could help to establish why some individuals appear 

to be more economical with certain methods of load carriage compared to others. 

 

Returning to the objectives for this research project set out in the introduction 

chapter, this review of literature has highlighted that the ELI appears to be the 

most suitable measure of load carriage economy for making comparisons 

between different individuals and loading methods because it accounts for the 

metabolic energy cost attributable to unloaded walking. The ELI has been shown 

to be a valid measure of relative load carriage economy (Lloyd et al., 2010a), but 

it’s reliability is unknown. As such, assessing the suitability of the ELI for the 

research in this thesis, by investigating its test-retest reliability, was the first 

objective. The second objective of this research project was to establish the 

extent of individual variation in load carriage economy and walking gait alterations 

as a consequence of load carriage, for methods that place load close the centre 

of mass of the body, or in vertical alignment. This objective was based on the 

large individual variation in load carriage economy reported by Lloyd et al. 

(2010c) and the small sample sizes (n < 10) used by studies that have reported 

energy saving phenomena for load carried on the head (Maloiy et al., 1986, 

Charteris et al., 1989), back (Abe et al., 2004) and in a doublepack (Lloyd and 

Cooke, 2000b). This review of literature identified several proposed mechanisms 

for improved load carriage economy (e.g. Heglund et al., 1995), yet there is a lack 

of empirical evidence for the relationships between load carriage economy and 

the walking gait adaptations to load carriage, particularly for methods that place 

load on the head. As such, the third objective was to identify potential 

determinants of individual load carriage economy through the analysis of load 

carriage economy and alterations in walking gait characteristics caused by 

carrying external load. The final objective of the research in this thesis was to 

conduct cause and effect trials on the identified determinants of load carriage 

economy, manipulating the identified key determinants in an attempt to 

manipulate individual load carriage economy. 
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Chapter 3. General methods and 

methodological considerations 
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3.1. Introduction 

 

This chapter details the methodological considerations for the studies in Chapters 

4, 5 and 7, and describes the methods that are consistent across those studies. 

The individual experimental protocols are detailed in the methods section of each 

experimental chapter. Data collection for Chapter 5 was conducted prior to this 

PhD by Professor Ray Lloyd and colleagues from the Cape Peninsula University 

of Technology (Professor Simeon Davies, Dr Sacha West and Raeeq 

Gamieldien). As such, the methods of data collection for Chapter 5 are briefly 

described but the focus is on the secondary analysis of the data, conducted as 

part of this PhD research.  

 

A summary of the sample size, participant sex and the loading carriage conditions 

across all studies is provided in Table 7. A justification for the chosen participant 

population and loading conditions described in each experimental chapter is 

provided in section 3.3 and 3.6, respectively. 

 

Table 7. A summary of participants and the load carriage conditions for each 

experimental Chapter. 

 
Chapter 4 Chapter 5 Chapter 7 

Participants 
12 males,  
5 females 

18 females 
10 males,  
5 females 

Load carriage 
method 

Back 
Back, Back/Front, 

Head 

Back, 
Back/Front, 

Head 

Load carriage 
mass 

7 & 20 kg 
3, 6, 9, 12, 15  

& 20 kg 
3, 12 & 20 kg 

Head-loading 
experience 

- Yes (≥ 5 years) No 

Back-loading 
experience 

Yes (≥ 5 years) Yes Yes (≥ 5 years) 

Back/Front-
loading 
experience 

- No No 
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3.2. Ethical approval 

 

All experimental research received ethical approval. Experiments in Chapter 4 

were approved by the departmental ethics committee at Leeds Trinity University 

(Appendix A) and experiments in Chapter 7 were approved by the school ethics 

committee at Leeds Trinity University (Appendix B). Experiments in Chapter 7 

were also approved by the institutional ethics committee at KU Leuven (Appendix 

C). The nature and purpose of each investigation was clearly outlined in 

participant information sheets (Appendix D and E) and explained verbally to all 

volunteers. Each participant completed a health screening questionnaire 

(Appendix F) and were verbally informed of any potential risks or discomforts 

before being accepted into the studies. Participants were given the opportunity to 

ask questions and then gave consent when they were satisfied with the study 

requirements. Participants were excluded if they were suffering from any 

musculoskeletal pain/discomfort or had a history of neck or back injury, as this 

could have been further aggravated by load carriage, and impacted walking gait 

alterations with load carriage. All participants were asked to provide written and 

verbal consent (Appendix G and H), while retaining the right to withdraw from the 

studies without having to provide an explanation. Consent to scientific illustration 

was obtained when video was recorded in Chapters 4 and 7 (Appendix I). 

 

 

3.3. Participants 

 

All participants were aged between 18-50 years, apparently healthy, free from 

any known injury or illness, and had no history of back or neck pain. Participants 

physical characteristics are detailed in each experimental Chapter. Male and 

female volunteers were recruited for the research in Chapters 4 and 7. It was 

considered unlikely that sex differences would exist for load carriage economy 

because males and females have been reported to have similar waking gait 

adaptations to load carriage (Silder et al., 2013, Krupenevich et al., 2015). This 

has since been supported with evidence from Prado‐Nóvoa et al. (2019), who 

found no difference in load carriage economy between males and females for the 

same relative load, and Godhe et al. (2020), who provided evidence that the 
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dominant factor in the V̇O2 required to carry heavy load (≥ 20 kg) is body mass, 

not sex differences.  

 

The inclusion criteria for participant recruitment for the research described in 

Chapter 5 was Xhosa women with a minimum of 5 years of head-loading 

experience and accustomed to carrying 20 kg on the head. A secondary analysis 

of the data collected enabled the assessment of the physiological, biomechanical 

and subjective perception responses to load carriage for African women with 

several years of head-loading experience, a population for which there is some 

evidence of a reduced energy expenditure for head-loading  (Maloiy et al., 1986) 

and large individual variation for head- and back-loading economy (Lloyd et al., 

2010b). 

 

Load carriage experience was assessed through a questionnaire (Appendix I). 

The participants in all of the studies reported in this thesis had experience of 

back-loading and no experience of back/front-loading. The participants in the 

research in Chapters 4 and 7 had no experience of head-loading. The decision 

to investigate head-loading economy with inexperienced head-loaders in Chapter 

7 was based on evidence from Lloyd et al. (2010c) that showed a large amount 

of individual variation in head-loading economy for both experienced (ELI value 

range = ~0.8 – 1.4) and inexperienced (ELI value range = ~0.9 – 1.4) head-

loaders. Furthermore, Lloyd et al. (2010c) reported that 36.4% of participants with 

no head-loading experience exhibited better head-loading economy than back-

loading, whilst 38.5% of experienced head-loaders exhibited the same tendency. 

It was also more feasible to recruit inexperienced head-loaders for Chapter 7, as 

the study took place in Belgium, where the head-loading method of load carriage 

is uncommon.  

 

 

3.4. Preliminary measures 

 

In every experiment, stature was measured using a portable stadiometer (Seca 

217, Seca Ltd, UK) on the first visit to the laboratory. Body mass (barefoot) was 

measured at the beginning of every trial so that dependant variables, such as 
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V̇O2, could be normalised to body mass or total mass (body mass plus the mass 

of the load carriage device). Body mass was recoded using calibrated digital 

scales in the studies described in Chapter 4 (Seca 813, Seca Ltd, UK) and 

Chapter 7 (Seca 875, Seca Ltd, UK). 

 

 

3.5. Experimental design 

 

All investigations used a repeated measures experimental design. Unloaded 

walking was assessed in every trial which allowed for analysis of loaded walking 

relative to unloaded walking. The independent and dependant variables selected 

for each experiment are described in the experimental chapters. For all trials, 

periods of walking lasted 4 minutes, in order to achieve a steady state of oxygen 

consumption measured in the final minute of each stage. Poole and Richardson 

(1997) demonstrated that, for a constant work rate at moderate intensity (an 

intensity where there is an equilibrium between blood lactate production and 

clearance), healthy individuals achieve a steady state of V̇O2 within 3 minutes. 

Furthermore, four-minute walking periods have previously been used to assess 

load carriage economy for walking (Lloyd and Cooke, 2000b, Lloyd et al., 2010b). 

Where trial conditions were randomised, a Latin square design was used to 

ensure a balanced order.  Participants were always asked to maintain a similar 

diet and refrain from moderate-vigorous exercise and alcohol consumption in the 

24 hours prior to each test.  

 

 

3.6. Load carriage conditions 

 

3.6.1. Load carriage devices 

The research reported in this thesis is focused on the economy associated with 

load carriage methods that position the load close to, or in vertical alignment with, 

the centre of mass of the body. Specifically, back-loading, combined back and 

front-loading, and head-loading were chosen for the research in this thesis 

because evidence of a reduced metabolic energy expenditure has been reported 

for each of these methods (Abe et al., 2004, Lloyd and Cooke, 2000b, Maloiy et 
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al., 1986, Charteris et al., 1989). Abe et al. (2004) provided evidence of a reduced 

metabolic energy expenditure for back-loading using a backpack device, however 

this device was not described in detail by the authors (the make and model of the 

backpack was not provided). Back-loading in this thesis used commercially 

available backpacks with hip belts for support. The backpack devices differed 

between studies but all shared common design features including an internal 

frame, hip belt and adjustable padded shoulder straps. The research in Chapter 

4 used two backpack devices, one to carry 7 kg (Prototype Featherlight Freedom 

- without front balance pockets, AARN, New Zealand) and another to carry 20 kg 

(Jura 35, Karrimor, UK). Two separate backpacks were used to avoid adjusting 

the mass of the packs between load mass conditions (load mass conditions are 

described in the next section, 3.6.2), which could have altered the position of the 

load within the device between the test/retest conditions. 

 

The backpack device used for the research in Chapter 5, conducted prior to this 

PhD, was a Karrimor device (Karrimor, UK). The backpack device used in 

Chapter 7 (Aeon pack, Lowe Alpine, USA) was smaller (25 litres) than the 

backpack devices used in Chapter 4 (35 litres and 50 litres), to allow anatomical 

markers to be positioned on the posterior superior iliac spine for three-

dimensional motion capture. The technical specifications of the backpacks used 

in Chapter 4 and Chapter 7 can be seen in Appendix K. 

 

Lloyd and Cooke (2000b) provided evidence of a reduced metabolic energy 

expenditure for carrying heavy load (25.6 kg) with a device that evenly distributed 

load between the back and front of the torso (back/front-loading) compared to 

back-loading alone. The back/front-loading device they used was an AARN 

balance pack (AARN design ltd, New Zealand) which is a back-loading system 

with front balance pockets that attach to the shoulder straps and hip belt. This 

type of load carriage design allows for a load to be evenly distributed between 

the anterior and posterior of the torso. The study described in Chapter 5 used an 

AARN balance pack (Prototype Featherlite Freedom, AARN design ltd, New 

Zealand) similar to the one used by Lloyd and Cooke (2000b). For the study 

described in Chapter 7, the back/front-loading device was made up from the Aeon 

backpack, used for the back-loading condition, with balance pockets from the 
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prototype AARN balance pack, attached to the shoulder straps and hip belt of the 

backpack. This allowed anatomical markers to be positioned on the posterior 

superior iliac spine for three-dimensional motion capture. For the back- and 

back/front-loading methods, shoulder straps and hip belts were tightened to 

participant comfort.  

 

For head-loading, neither Maloiy et al. (1986) or Charteris et al. (1989) describe 

the device they used for direct head loading in any detail. Other research on the 

direct head-loading method has used a plastic bucket (Lloyd et al., 2011) or a 

crate (Lloyd et al., 2010b, Lloyd et al., 2010c) to carry load on the head. The 

studies described in Chapter 5 and 7 used a 20-litre plastic bucket with a piece 

of cloth used as a cushion between the head and the bucket.  

 

3.6.2. Load mass 

Load carriage research has used absolute loads (e.g. Harman et al., 2000) and 

relative loads representing a percentage of body mass (e.g. Lloyd et al., 2010b). 

Absolute load was preferred to relative load in all experiments in this thesis 

because absolute load was deemed more ecologically valid. Individuals are 

unlikely to pack load carriage systems to a percentage of their body mass, 

particularly personnel in the military services and individuals living in developing 

countries. For these populations, the mass of the load is dependent on the task 

and not the individual’s body size. For example, in some developing countries, 

lack of safe water access results in domestic water carrying that typically consists 

of 20-25 litres being transported per trip, using the head-loading method (Geere 

et al., 2010).  

 

The study in Chapter 4 included loads of 7 kg and 20 kg, to represent a light and 

heavy load, respectively. Loads of 10% of body mass (Lloyd et al., 2010b), 6 kg 

(Harman et al., 2000) and 8 kg (Birrell and Haslam, 2010) have been previously 

used in load carriage research to represent a light load. As such, the mass of the 

light load for this research is in line with published literature (7 kg is 10% of body 

mass for a 70 kg participant). The study was originally designed with 35 kg for 

the heavy load (50% of body mass for a 70 kg individual), however, it became 

clear in pilot testing that some individuals could not complete the protocol with a 
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load mass above 20 kg. Previous research, particularly those on military 

personnel, have used loads in excess 40 kg (Harman et al., 2000), however, 20 

kg loads have been used to represent a heavy load in the literature (e.g. Lloyd et 

al., 2011, Birrell and Haslam, 2009) and deemed appropriate due to the untrained 

nature of some participants in terms of load carriage. The mass of the loads in 

Chapters 4 and 5 were made up of the load carriage system plus sandbags, 

measured to the nearest 50 g using digital scales (Seca 813, Seca Ltd, UK). For 

the research in Chapter 4, the sandbags were placed in plastic food storage 

containers to evenly distribute the load within the load carriage device. Three food 

containers containing sandbags, each 3.6 litres in size, were stacked vertically 

inside each backpack device.  

 

The experiments described in Chapter 5 used loads of 3, 6, 9, 12, 15 and 20 kg, 

which enabled the investigation of load carriage physiology, biomechanics and 

subjective perceptions across a range of light and heavy loads. The study in 

Chapter 7 included loads of 3, 12 and 20 kg. These loads were chosen because 

they represented a very light (3 kg), medium (12 kg) and heavy (20 kg) load from 

the range of loads investigated in Chapter 5. The mass of the loads in Chapter 7 

were made up of the load carriage system plus rubber weights (between 1 and 5 

kg) and metal weights from a Monark cycle ergometer (Monark Exercise AB, 

Sweden) (between 0.1 and 0.5 kg), to the nearest 100 g using digital scales (Seca 

875, Seca Ltd, UK). Plastic food storage containers (3 litres in size) were used to 

evenly distribute the load in the back-loading conditions (backpack and back-

loading component of the back/front method). Weights were placed directly in the 

bucket for the head-loading method and directly in the front balance pockets for 

the back/front-loading method. The study in Chapter 7 used a portable gas 

analysis system (Oxycon Mobile, Jaeger, Germany), because it was the only 

system available at the location of the experiments. The portable system was 

carried on the anterior of the trunk in all load carriage conditions and had a total 

mass of 1kg (including housing vest). For the Back/Front-loading method, the 

portable gas analysis system sat in the centre of the chest, with the front balance 

pockets positioned on the shoulder straps either side. Figure 1 shows the 

configuration of the front balance pockets and portable gas analysis system in 

the Front/Back-loading condition in Chapter 7. 
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Figure 1. Balance pocket configuration for Back/Front-loading in Chapter 7. 

 

 

3.7. Walking speed 

 

Changes to walking gait mechanics during load carriage have been investigated 

at controlled speeds (e.g. Huang and Kuo, 2014, Harman et al., 2001) and self-

selected speeds (e.g. Attwells et al., 2006, Majumdar et al., 2010). Although 

allowing participants to adjust their self-selected speed in response to the load 

would be more ecologically valid, particularly when investigating recreational load 

carriage, doing so it makes it difficult to decouple the effects of load and walking 

speed. As such, controlled walking speeds were used for the research described 

in the thesis. The walking trials described in Chapters 5 and 7 were conducted at 

3 km.h-1. This speed was selected based on the work of Maloiy et al. (1986), 

Charteris et al. (1989), Abe et al. (2004) and Lloyd and Cooke (2000b) who 

provided evidence for improved load carriage economy at speeds of ~3 km.h-1. 

Furthermore, this energy saving phenomenon has not been reported at faster 

walker speeds (Abe et al., 2004). The walking trials described in Chapter 4 were 

conducted at a range of walking speeds (3 km.h-1, 6 km.h-1 and a self-selected 

Front balance 

pockets attached 

to the shoulder 

straps and hip belt. 

Portable gas 

analysis 

system. 
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pace) to provide a robust assessment of the reliability of the ELI. All walking trials 

were conducted on motorised treadmills (Chapter 4: Mercury, HP Cosmos, 

Germany; Chapter 5: Genesis, South Africa; Chapter 7: Forcelink, Motekforce, 

Netherlands). Walking on a treadmill was preferred to over-ground because it 

allowed for speed to be tightly controlled over each period of walking, which made 

it easier to achieve steady-state conditions for the measurement of load carriage 

economy. Furthermore, any variability in gait across strides was then 

independent of variations in average walking speed and terrain. 

 

3.7.1. Treadmill speed verification 

In Chapter 4, treadmill speed was verified at 3 km.h-1, 4 km.h-1, 5 km.h-1 and 6 

km.h-1 prior to the start of the investigation. The procedure for this involved 

measuring the length of the treadmill belt (3.33 metres), measuring the total 

distance travelled by the belt in 20 revolutions (66.6 metres) and the time taken 

for the belt to complete 20 revolutions at the four speeds. Speed was the 

calculated using the known formula: 

 

Speed = Distance/Time                                                                         Equation 4 
 

This process was repeated 3 times at each speed with and without an 84 kg male 

carrying a heavy (20 kg) rucksack (combined mass = 104 kg) (trial 1). This 

process was then repeated one week later (trial 2), and the results are presented 

in Table 8. Raw data from the treadmill verification process for the study in 

Chapter 4 is presented in Appendix K. 

 

In Chapter 7, treadmill speed was verified at 3 km.h-1 because this was the 

walking speed used in that experiment (Table 9). The procedure for measuring 

treadmill speed was identical to the procedure described above for the research 

in Chapter 4, except that the protocol was not repeated after seven days because 

the focus of the investigation in Chapter 7 was not test-retest reliability. The 

treadmill used for the experiment described in Chapter 7 was a dual-belt treadmill, 

and the speed of both belts was assessed. An 86.2 kg male participated in the 
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treadmill speed verification. The participant walked on the treadmill unloaded and 

carrying a 20 kg rucksack (total combined mass = 106.2 kg). 

 

Table 8. Mean ± SD treadmill speeds for the test-retest verification and reliability 

in experimental Chapter 4. 

 Unloaded treadmill  Loaded treadmill (104 kg) 
 Trial 1 Trial 2   Trial 1 Trial 2  

Displayed 
speed 
(km.h-1) 

Actual 
speed 

(km.h-1) 

Actual 
speed 

(km.h-1) 

Mean 
difference 

from 
displayed 

speed 
(km.h-1) 

 

Actual 
speed 

(km.h-1) 

Actual 
speed 

(km.h-1) 

Mean 
difference 

from 
displayed 

speed 
(km.h-1) 

3.00 
3.04 ± 
0.00 

3.03 ± 
0.00 

0.03 
 2.95 ± 

0.01 
2.96 ± 
0.00 

-0.05 

4.00 
4.08 ± 
0.00 

4.05 ± 
0.04 

0.06 
 4.01 ± 

0.01 
4.01 ± 
0.01 

0.01 

5.00 
5.09 ± 
0.00 

5.09 ± 
0.00 

0.07 
 5.06 ± 

0.01 
5.04 ± 
0.01 

0.04 

6.00 
6.07± 
0.01 

6.08 ± 
0.01 

0.07 
 5.99 ± 

0.00 
6.03 ± 
0.01 

0.01 

* Trial 1 = Initial verification test; Trial 2 = Repeat verification test 

 

Table 9. Mean ± SD Treadmill speeds for verification of treadmill speed in the 

experiment reported in Chapter 7. 

 Displayed 
Speed (km.h-1) 

Unloaded 
Treadmill Speed 

(km.h-1) 

Unloaded 
Walking Speed 

(km.h-1) 

Loaded 
Walking Speed 

(km.h-1) 

Belt 1 3.00 3.03 ± 0.03 2.99 ± 0.01 2.99 ± 0.00 

Belt 2 3.00 3.03 ± 0.01 2.99 ± 0.01 2.99 ± 0.01 

* Mass for unloaded walking = 86.2 kg; Mass for loaded walking = 106.2 kg 

 

Chapter 5 involved a secondary analysis of data collected prior to the beginning 

of this PhD. The verification of treadmill speed for Chapter 5 was completed in an 

manner similar to those described above, as verified by the principal investigator 

who is one of the supervisors of this work. 
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3.8. Familiarisation protocol 

 

Every experiment included a familiarisation period prior to completing the first 

trial, to reduce any possible effects of trial order and ensure participants were 

able to complete all load carriage conditions. During the familiarisation, 

participants were screened for any potential contraindications to exercise, and for 

the studies described in Chapters 5 and 7, participants were asked to complete 

questionnaires relating to their load carriage history. Participants were then 

habituated to the experimental protocol and equipment. A typical habituation 

period lasted approximately 20 minutes and involved participants waking on the 

treadmill at the walking speed(s) for the experiment, with and without each of the 

load carriage systems. The facemask for the online gas analysis system was also 

fitted, in order for participants to become accustomed to breathing through it. 

 

 

3.9. Physiological measurements  

 

3.9.1. Collection and analysis of expired air 

Expired air variables were measured using online gas analysis systems. Different 

systems were used in Chapters 4, 5, and 7 because the studies described in each 

Chapter took place in different laboratories (Chapter 4: Metalyzer 3B, Cortex, 

Germany; Chapter 5: K4b2, COSMED, Italy; Chapter 7: Oxycon Mobile, Jaeger, 

Germany). Despite the different manufacturers, the online gas analysis systems 

measured pulmonary gas exchange in the same way by measuring expired gas 

volumes continuously using a volume transducer fixed to a facemask and 

measuring expired oxygen and carbon dioxide concentrations sampled 

continuously through a sample line attached to the volume transducer. Fifteen 

minutes prior to the commencement of exercise in each trial, the online gas 

analysis systems were calibrated in accordance with the manufacturer’s 

guidelines. Briefly, this involved running a calibration reference gas through the 

systems via a sample line (Metalyzer 3B system = 17.05% O2, 4.98% CO2, 

balance N2; Oxycon Mobile system = 15.99% O2, 5% CO2, balance N2) and then 

verifying the calibration gas against ambient air (20.93% O2 and 0.03% CO2). A 

volume calibration was then performed for both devices using a standard 3-litre 
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syringe (Hans Rudolph, Inc., USA). Expired air was collected continuously 

throughout each period of exercise. On the completion of each test, the data was 

averaged for 60-second intervals and data from the final minute of exercise was 

analysed in line with previous load carriage economy studies (Lloyd et al., 2010b, 

Lloyd et al., 2010a, Hinde et al., 2017). Means and standard deviations were 

calculated for V̇O2 (l.min-1) and any other pulmonary gas exchange variables of 

interest. Relative load carriage economy was calculated using the ELI as follows: 

 

 

                                   Equation 5 

  

where mlO2L refers to oxygen consumption when carrying an additional load and 

mlO2U refers to oxygen consumption when walking unloaded. The ELI was 

preferred to other measures of load carriage economy such as V̇O2 in absolute 

or relative (to body mass or total mass) terms and net energy cost, which 

subtracts the V̇O2 required for standing from the V̇O2 required for walking, 

because the ELI accounts for the energy expenditure required for unloaded 

walking and provides a single value for economy. The reliability of the ELI is 

evaluated in Chapter 4 of this thesis. 

 

3.9.2. Heart rate 

Heart rate (HR) was measured continuously throughout all trials in each 

experimental study using a Polar heart rate monitoring system (Polar, Finland). 

In Chapters 4 and 7, heart rate was measured during the rest period to monitor 

recovery and ensure participants had returned to their resting HR before 

beginning the next bout of load carriage. 

 

 

3.10. Subjective Perceptions 

 

Subjective perceptions of load carriage were recorded and analysed in all 

experimental studies. Ratings of Perceived Exertion (RPE) and Visual Analogue 

Scales (VAS) were used to measure perceptions of whole-body exertion and 

localised pain/discomfort, respectively. Ratings of perceived exertion were 

ELI = 
mlO2L. kg total mass-1 . min-1 

mlO2U . kg body mass-1 . min-1 
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measured using a whole body RPE scale (Borg, 1982) and has been used in 

previous load carriage research (e.g. Holewijn et al., 1992, Lloyd et al., 2010d). 

Visual Analogue Scales (VAS) were used to measure the participant’s perceived 

degree of pain/discomfort for fifteen areas of the body, following each period of 

exercise. The VAS used were identical to those created by Lloyd et al. (2010d), 

consisting of body pictures with clearly shaded areas and a 100mm scale below 

each image with anchor points of ‘No Pain’ at one end and ‘Pain as bad as it 

could possibly be’ at the other end (Figure 2). The sheets were laminated, and 

participants were asked to mark each VAS using a fine point washable marker 

pen, to indicate the pain/discomfort. The marked point on each scale was then 

measured to the nearest millimetre to identify a pain score for each region of the 

body (Neck, back of shoulders, front of shoulders, chest, upper back, abdomen, 

lower back, hips, buttocks, front of thigh, back of thigh, knees, lower leg, ankles 

and feet).  

 

 

 

 

 

 

 

 

 

On the Scale below indicate the amount of pain/discomfort you feel in the area 

indicated 

Front of Thigh         Back of Thigh 

 

Figure 2. Sample VAS data collection sheet (Quadriceps and Hamstrings). 
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3.11. Kinematic measurements 

 

Previous research has analysed the kinematics of load carriage using two-

dimensional (2D) video-based motion analysis (e.g. Lloyd and Cooke, 2011, 

Harman et al., 2000) and three-dimensional (3D) motion analysis (e.g. Birrell and 

Haslam, 2009, Wills et al., 2019). Two-dimensional video-based motion analysis 

was used to record sagittal plane kinematics for the studies presented in 

Chapters 4 and 5. The deterministic model developed in Chapter 6 highlighted 

the need for a 3D analysis of load carriage kinematics for the research in Chapter 

7, to gain a better understanding of the potential biomechanical determinants of 

load carriage economy. 

 

3.11.1. Two-dimensional motion analysis 

 Filming procedures 

Sagittal plane kinematics were assessed using a standard digital video camera 

(Chapter 4: Casio EX-ZR700, Japan; Chapter 5: Panasonic, Japan), set at 50Hz 

and placed perpendicular to the treadmill. To avoid aliasing error, the sampling 

frequency used for the studies in Chapters 4 and 5 were roughly ten times greater 

than the anticipated highest frequency in the signal (Payton and Burden, 2017). 

In both studies, the distances from the lens of the camera and the treadmill and 

the lens of the camera and the floor were measured and kept constant for all 

trials. A calibration instrument (1m x 1m) for the vertical and horizontal axis was 

placed on the treadmill and recorded prior to each trial for the study in Chapter 4. 

For the study in Chapter 5, the treadmill was marked on the vertical (0.5m) and 

horizontal (1m) axis and recorded prior to each trial for calibration. Video footage 

was collected during the final 60 seconds of each exercise stage, in line with the 

analysis of expired air data. 

 

 Marker placement 

Superficial joint markers were placed on the shoulder, hip, knee, ankle and toe 

on the side of the body facing the camera, in order to measure trunk, hip, knee 

and ankle angles at heel-strike and toe-off. Data from Plagenhoef (1971) were 

used to identify the exact position of each marker. The shoulder marker was 

placed 5cm inferior to the acromion process, midway between the anterior and 
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posterior surface. The hip marker was placed 3 cm superior and 1 cm anterior to 

the greater trochanter. The knee marker was placed at the midpoint of the femoral 

epicondyles. The ankle marker was placed at the most distal point of the lateral 

malleolus. The toe marker was placed on the lateral side of the head of the 5th 

metatarsal. 

 

 Digitising procedures 

Video files collected for the research in Chapters 4 and 5 were uploaded to SIMI 

motion (SIMI motion 8.5.6, Germany) to be manually digitized by a single 

observer. Intra-observer reliability of digitising was assessed by repeatedly 

digitising a single video frame at heel-strike and toe-off 10 times each for one 

participant. Intra-observer measurement error of digitising was assessed using a 

calculation for technical error of measurement (TEM) (Goto and Mascie-Taylor, 

2007). This process was repeated one week later to assess day-day 

measurement error.  

 

Absolute TEM = √
∑ మ

ଶ
                                                                           Equation 6 

 

where D is the difference between the two measurements taken on the 

independent measurements and n is the number of measurements used. 

Absolute TEM was then be transformed into relative TEM in order to obtain the 

error expressed as a percentage corresponding to the total average of the 

variable analysed. Relative TEM was calculated according to the following 

equation: 

 

Relative TEM (%) = 
𝑻𝑬𝑴

𝒙
 x 100                                                               Equation 7 

 

where 𝑥 is the variable average value. A relative TEM of less than 1% was 

deemed as acceptable (Perini et al., 2005). The results for digitising reliability are 

provided in each experimental chapter and the raw data is available in Appendix 

M and N. 
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Following tests of intra-observer reliability, the calibration files for each trial were 

digitised to provide a scale for the trial videos. Videos for each trial were then 

manually digitised, frame by frame, to obtain two-dimensional coordinates for 

each of the anatomical landmarks specified with markers, for six consecutive 

strides. The analysis of six stance phases is in line with other load carriage 

research that have investigated the biomechanics of load carriage using between 

3-10 stance phases to achieve a representative sample of the walking gait (Lloyd 

and Cooke, 2011, Harman et al., 2000, Silder et al., 2013, Birrell and Haslam, 

2009, Wills et al., 2019, Chow et al., 2005). Once the reconstruction was 

complete, joint angles were calculated by the software for each step at two events 

of the step cycle (heel-strike and toe-off). Step events were visually identified 

from the video footage. Heel-strike was identified as the frame where the foot 

appeared to make contact with the treadmill and toe-off was identified as the 

frame where the foot appeared to no longer be in contact with the treadmill. 

Arellano et al. (2009) indicated that the walking gait pattern while carrying 

external load is less stable in the sagittal plane during the stance phase than the 

swing phase. As such, the focus of the analysis was the stance limb because this 

appears to be the part of the gait cycle where the body directly experiences the 

effects of additional load in the sagittal plane. Joint angle excursion was 

measured as the change in joint angle from heel-strike to toe-off in each step.  

 

 Joint angle and spatiotemporal measurements 

Joint angle kinematics and spatiotemporal gait parameters measured in the 

research in Chapters 4 and 5 were selected for analysis based on previous 

literature assessing the sagittal plane biomechanics associated with backpacks 

and back/front-loading (e.g. Lloyd and Cooke, 2011, Harman et al., 2000, 

Kinoshita, 1985). Figure 3 illustrates the sagittal plane joint angles used to 

analyse dynamic posture for the studies described in Chapter 4 and Chapter 5. 

Angles of the trunk, hip, knee and ankle joints were measured. Trunk forward 

lean was measured as the angle of the trunk from the horizontal. Therefore, 90º 

represents a vertical trunk position and angles less than 90º indicate forward lean. 
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Figure 3. Sagittal plane joint angles used to analyse posture through the stride 

cycle. 

 

Gait events were visually identified from the video footage. Heel-strike was 

identified as the frame where the foot appeared to make initial contact with the 

treadmill and toe-off was identified as the frame before the foot appeared to no 

longer be in contact with the treadmill. For the research presented in Chapter 4 

and Chapter 5, step cadence was defined as the average step time across 12 

consecutive steps. Step length was then calculated from the known walking 

speed and step cadence by dividing the speed of the treadmill by step cadence. 

Stance time was calculated as the average contact time over the six strides on 

the right leg. The contact time for each stance phase was measured as the time 

between initial contact of the right foot to the final frame before the right foot broke 

contact with the treadmill belt, at the point of take-off. Step time was measured 

as the duration of time taken from one-foot contact to the consecutive 

contralateral foot contact. Durations of double stance were measured as the time 

taken between heel-strike with one foot to the consecutive toe-off with the 

opposite foot. Single stance durations were measured as the time taken between 

toe-off with one foot to the subsequent heel-strike with the same foot. 

 

 

A 

H

K 

T 

T = Trunk angle: angle between trunk 

and a horizontal line. 

H = Hip angle: the absolute angle 

between the thigh and the trunk 

segments. 

K = Knee angle: dorsal angle between 

the shank and thigh segments. 

A = Ankle angle: the absolute angle 

between the foot and the shank 

segments. 
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3.11.2. Three-dimensional motion capture 

Three-dimensional motion capture was used to record the 3D kinematics of load 

carriage for the research in Chapter 7. The methodological considerations for 

recording and analysing 3D kinematics of the whole-body, are outlined in this 

section. The experimental protocol used to record 3D kinematics is described in 

the method section of Chapter 7.  

 

 Coordinate systems 

To quantify the three-dimensional motion of each participant, reference systems 

were fixed to the environment and each body segment. The reference system 

fixed to the environment is known as the Global Coordinate System (GCS). The 

GCS represents the three-dimensional space in which motion capture occurs, 

also known as the capture volume. The reference system fixed to each body 

segment is known as the Local Coordinate System (LCS). Two methods to track 

the position and orientation of the segment LCS are the six degrees of freedom 

(6 DOF) method (also known as segment optimisation) and Inverse Kinematics 

(IK) (also known as global optimisation) (Robertson et al., 2013). The six DOF 

method refers to the independent coordinates required to characterise a body, or 

systems, position (Zatsiorsky, 1998). A rigid body, freely suspended, has a 

maximum of six degrees of freedom. It can translate along, and rotate about, 

three independent axis (longitudinal, vertical, frontal). With the six DOF method, 

each segment requires a minimum of three non-collinear tracking markers in 

order to define the segments’ position and orientation (Bartlett and Payton, 2008). 

For example, markers can be placed on the proximal and distal ends of a bone 

to define a segment, and a third non-collinear marker can be used to define the 

orientation of the vector between the two endpoints. The six DOF approach tracks 

each segment independently, decoupling the calculation of a segment’s 

orientation from an adjacent segment, without imposing joint constraints (Schmitz 

et al., 2016). This method assumes that segments are linked implicitly by the 

motion capture data and that the segments will not dislocate because the 

participants joints did not come apart when the motion was captured. However, 

because the six DOF method does not constrain the endpoints of the proximal 

and distal segment, some segment dislocation can occur, predominantly as a 

result of soft tissue artefact (Lu and O’connor, 1999, Leardini et al., 2017). Soft 
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tissue artefact is the discrepancy between the movements of the marker attached 

to the skin moving, relative to the underlying bone (Bartlett and Payton, 2008). It 

can result from muscle contraction and relaxation, and skin sliding across joints, 

particularly joints with large rotations (Leardini et al., 2017).  

 

The IK method uses a least squares approach to search, in each data frame, for 

an optimal pose of the multi-link model that minimises the differences between 

the measured and model-determined marker coordinates across all body 

segments (Lu and O’connor, 1999). In contrast to the six DOF method, the IK 

approach includes joint constraints that restrict the relative motion between 

segments, minimising the effects of surface tissue artefact and measurement 

error. However, it is important to determine the appropriateness of applying joint 

constraints. IK is an extension of the six DOF position and orientation estimation 

because if a joint is ascribed six degrees of freedom, the outcome is the same as 

the six DOF method. For analysis of load carriage and the walking gait, the six 

DOF method was preferred to IK because IK uses a best fit across all the 

markers, so the head markers can affect the position and orientation estimation 

of the feet segments, and vice versa. 

 

 Marker set 

For three-dimensional analysis, a marker set is simply a configuration of markers 

that are used to establish the LCS for a body segment. The British Association of 

Sports and Exercise Science (Payton and Burden, 2017) recommended, based 

on the work of Cappozzo et al. (1995), that marker sets should adhere to the 

following criteria: 

 

 A minimum of three non-collinear markers are required per rigid segment. 

 Movement should be minimised between markers and the underlying 

bone. 

 Markers should be clearly visible to at least two cameras at every instant 

during the recording. 
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Standardised marker sets, such as the Plug-in Gait and Helen Hayes model 

(Davis et al., 1991, Kadaba et al., 1990) have been developed to analyse the 

walking gait. An advantage of these marker sets is that they have been tested in 

many laboratories and included in many studies over the past 30 years. A 

limitation of these marker sets is that they use a relatively small number of 

markers, particularly on the foot and shank which only have two markers each. 

As such, while these marker sets may be good for analysing the walking gait, 

they may not be valid for many other sporting movements. An alternative method 

is to design a custom marker set. This would allow the limitations of the 

standardised marker sets to be overcome. A limitation of developing a custom 

marker set is that additional measures of accuracy and reliability would be 

required to ensure the marker set is appropriate. As the research in this thesis is 

based on the walking gait, the Plug-in gait,  based on the work of Bell et al. (1990), 

Davis et al. (1991), Kadaba et al. (1989) and Kadaba et al. (1990), was deemed 

appropriate for the analysis of upper and lower body movements for the research 

in Chapter 7. Additional markers were included to improve segment tracking and 

the identification of joint centres at the knee and ankle. 

 

 Calculation of joint angles 

Two common methods to measure joints angles in three-dimensional space are 

Cardan/Euler angles (Davis et al., 1991) and helical angles (Woltring, 1991). The 

most widely used method are Cardan/Euler angles (Robertson et al., 2013). 

Using a Cardan rotation sequence, the orientation of one LCS with respect to 

another LCS can be represented by three successive rotations about unique axis 

(Figure 4). The choice of rotation order can affect the joint angles calculated and 

the x-y-z rotation sequence, recommended by the International Society of 

Biomechanics (Wu and Cavanagh, 1995), is the most commonly used in 

biomechanics research (Robertson et al., 2013). The Cardan rotation sequence 

x-y-z involves the first rotation about the x-axis, which leads to new orientations 

of the y- and z-axes (y1 and z1). The x-axis stays in the same orientation and 

becomes x1. The second rotation about the y1-axis leads to new positions for the 

x1- and z1-axes (x2 and z2). The third rotation about the z2-axis leads to new 

orientations for the x2- and y2-axes (x3 and y3) (Robertson et al., 2013). 
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Figure 4. Cardan x-y-z rotation sequence. First (a) the x-axis about the stationary 

coordinate system (α); then (b) about the new y1-axis (β); finally (c) about the z2-

axis (γ) (Robertson et al., 2013). 

 

Helical angles are an alternative method of defining the orientation of one LCS to 

another LCS (Woltring, 1991). This technique is based on the finite helical axis 

(Woltring et al., 1985) in which a position vector and an orientation vector are 

defined. Briefly, a finite helical axis is defined from the translation (t) and rotation 

(θ) about the helical axis (n) from point (P1) to point (P2) (Figure 5) (Spoor and 

Veldpaus, 1980, Woltring et al., 1985).  

 

 

Figure 5. A finite helical axis (Woltring et al., 1985) 

 

a. c. b. 
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An advantage of the finite helical method is that it does not exhibit gimbal lock, 

which occurs when two axis systems achieve the same position. Robertson et al. 

(2013) suggested that this is a bigger issue in the upper extremity than the lower 

extremities and is unlikely to occur for the walking gait, which involves minimal 

motion of the upper extremities. An advantage of Cardan angles over helical 

angles is that helical angles are very sensitive to noisy coordinate data, which 

needs to be substantially smoothed before helical angles can be calculated 

(Robertson et al., 2013). Cardan angles are also widely used in biomechanics 

and provide a well-understood representation of joint angles (Robertson et al., 

2013), which allows for direct comparisons between studies that have used 

Cardan angles. As such, Cardan angles with an x-y-z rotation sequence were 

used for the research in Chapter 7 

 

 Body segment inertial parameters 

For the study in Chapter 7, body segment inertial parameters (BSIP) (mass, 

centre of mass and moment of inertia) were estimated using data from Zatsiorsky 

(1990) that were adjusted by De Leva (1996). Most early methods developed to 

estimate body segment parameters are based on cadaver studies (Dempster, 

1955, Clauser et al., 1969, Chandler et al., 1975). A disadvantage of these 

methods is that the density of tissue of cadavers may differ from living tissue. The 

decision to use the De Leva (1996) model to estimate BSIP was based on 

Zatsiorsky (1990) using a gamma ray scanning technique to quantify the density 

of each segment of live, young males and females (100 males, 15 females; mean 

ages: 24 and 19 years, respectively), enabling estimations of mass and COM for 

each segment. The age of the population used by Zatsiorsky (1990) is similar to 

the participants in the studies in this thesis, which is important because muscle 

mass and bone density decreases as the body ages, decreasing the density of 

body segments. However, Zatsiorsky (1990) used bony landmarks as reference 

points to define the segment lengths with some of the bony landmarks a 

considerable distance from the actual joint centre (De Leva, 1996). De Leva 

(1996) adjusted the mean relative COM positions and the radii of gyration from 

Zatsiorsky (1990)  data so that they were referenced to joint centres instead of 

bony landmarks. Another method of estimating inertial properties of human body 

segments is mathematical modelling (Hanavan Jr, 1964, Hatze, 1980). This 
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method models segments as rigid bodies represented by geometric shapes and 

assumes that mass is uniformly distributed within each segment. An advantage 

of scanning and imaging techniques, such as Zatsiorsky (1990), over 

mathematical modelling is that they quantify the density of each segment. 

 

 

3.12. Signal processing 

 

Common smoothing methods for raw digitized data in biomechanics include 

digital low pass filters (e.g. Butterworth filter), spline curve fitting (e.g. Quintic 

spline) and frequency domain techniques (e.g. Fourier series truncation) (Winter, 

2009). Research on walking gait and load carriage kinematics typically use a 

Butterworth filter to low-pass filter displacement data with a cut-off frequency of 

6 Hz (e.g. Lloyd and Cooke, 2011, Dames and Smith, 2015). As such, a 2nd order 

Butterworth filter was applied to raw data in the studies described in Chapters 4, 

5 and 7. A limitation of low pass filters, such as the Butterworth filter, is that they 

are inefficient when processing signals with frequencies that vary dramatically 

over time, such as the dramatic accelerations and decelerations associated with 

kicking a soccer ball (Nunome et al., 2006). However, the signal frequencies 

associated with the loaded and unloaded walking do not change dramatically over 

time as with quicker movements like sprinting or kicking a soccer ball, therefore 

low pass filtering appears appropriate for load carriage at walking speeds.  

 

For the kinematic data in Chapters 4, 5 and 7, the residual analysis method 

recommended by Winter (2009) was used to determine the appropriate cut-off 

frequencies by comparing the difference between raw and filtered signals over a 

range of cut-off frequencies (1 – 20 Hz). Figure 6 shows a theoretical plot for the 

residual between filtered and unfiltered signals over a range of cut-off frequencies 

(fc). In order to estimate the optimal cut-off frequency from the residual plot, a line 

is drawn from point e (residual at the highest cut-off frequency) that mirrors the 

gradient of the plot at the higher frequencies (e to d) and continues until 

intercepting the vertical axis at point a. A second line is then drawn perpendicular 

to the vertical axis at point a. Finally, a vertical line is drawn from point b, where 

the drawn perpendicular line from point a on the vertical axis intersects the 
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residual line (point b), to the horizontal axis. The fc1 frequency represents the 

chosen optimal cut-off frequency with bc representing the signal distortion at this 

frequency. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Residual plot between an unfiltered and filtered signal as a function of 

the filter cut-off frequency. The cut-off frequency is shown on the horizontal axis 

(fc). The residual is shown on the vertical axis (mm). Image taken from Winter 

(2009). 

 

A residual analysis was performed on horizontal and vertical displacement data 

for one joint marker on each segment digitised for studies in Chapters 4 and 5, 

and for one tracking marker for each of the 15 segments modelled for the study 

in Chapter 7. A residual analysis calculator provided by the British Association of 

Sport and Exercises Sciences (BASES) (https://members.bases.org.uk/spage-

resource_library-practitioner_and_researcher_resource_centre.html) was used 

to estimate the optimal cut-off frequencies for each joint angle/body segment. In 

each experimental chapter, a comparison was made between three separate 

participants using the same loading method to estimate the appropriate cut-off 

frequencies for each segment. The results from the residual analysis for each 

experimental chapter and the raw data are available in Appendix L. The estimated 

cut-off frequencies were similar (within 2 Hz) between participants for both the 

horizontal and vertical displacement values from markers on the same 
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segment/joint angle for all experimental Chapters. Based on these data, a cut-off 

frequency of 6 Hz was determined to be most appropriate for each experimental 

Chapter and was used for all participants across all conditions. Further, the 

estimated cut-off frequency of 6 Hz in the present research is in line with the low 

pass filter frequency of 6 Hz used in previous literature on walking with load 

carriage (e.g. Dames and Smith, 2015, Lloyd and Cooke, 2011, Vickery-Howe et 

al., 2020). 

 

Using different cut-off frequencies for force and position data can cause artefacts, 

particularly for high impact movements (Bisseling and Hof, 2006, Kristianslund et 

al., 2012). Kristianslund et al. (2012) suggested that force and movement data 

should be processed with the same filter and at the same cut-off frequency in 

order to reduce error. As such, the kinetic data presented in Chapter 7 were 

filtered at the same frequency as the kinematic data in the study in Chapter 7, 

using a low pass second order Butterworth filter.  

 

 

3.13. Data analysis 

 

In line with the conclusions of Lloyd et al. (2010a), all physiological, kinematic 

and kinetic data measured during loaded walking trials were analysed as the 

change from (Δ) unloaded walking, to accommodate for individual differences in 

unloaded walking gait. Another method used to distinguish between individual 

gait patterns is the scaling of gait data to body size by creating dimensionless 

numbers relating to gait mechanics (Hof, 1996, Pierrynowski and Galea, 2001, 

Pinzone et al., 2016). This removes variability due to physical characteristics such 

as leg length and body mass. Although non-dimensional normalisation of gait 

data is favourable when making comparisons between the unloaded walking 

gaits of different individuals, it was deemed unnecessary for the research in this 

thesis because of the repeated measures design employed in each of the studies 

to focus on how the addition of different external loading conditions can alter 

individual gait patterns from that of unloaded walking.  

 

 



101 
 

3.14. Statistical analysis 

 

The statistical analysis performed on the data from each experiment is detailed 

in the appropriate chapter. Briefly, all statistical tests were conducted using SPSS 

version 24 (IBM SPSS Statistics, SPSS inc., Chicago, IL, USA). Descriptive 

statistics (mean ± SD) were calculated for all outcome measures. All mean data 

in the subsequent experimental studies were tested for normality of distribution 

using Shapiro-Wilk as this test has more power to detect differences from 

normality for samples sizes of less than n = 50 compared to the Kolmogerov-

Smirnov test, another common test to assess if data is normally distributed (Field, 

2013). Data were also checked for outliers by visually exploring boxplots and 

histograms. A repeated-measures two-way (method x mass) or three-way 

(method x mass x body position) analysis of variance (ANOVA) was used to test 

for differences between several means. If sphericity was violated, then the 

Greenhouse-Geisser correction was used ε < 0.75, with Huynh-Feldt corrections 

used for less severe asphericity. Post-hoc tests were employed using a 

Bonferroni correction for multiple comparisons. The Bonferroni correction was 

used to control the Type I error rate. The Bonferroni was used over Tukey’s test 

because the Bonferroni has more power when the number of comparisons is 

small (Field, 2013).  Effect sizes are also reported in Chapters 5 and 7 using 

partial eta squared (η2 ), with partial η2 classified as small (0.010 - 0.059), medium 

(0.060 - 0.137) and large (>0.138) (Richardson, 2011). For correlations in the 

studies presented in Chapters 4, 5 and 7, a Pearson’s product moment 

correlation coefficient was used. The correlation coefficients were interpreted 

using intervals of negligible correlation (0.0-0.09), weak correlation (0.10-0.39), 

moderate correlation (0.40-0.69), strong correlation (0.70-0.89) and very strong 

correlation (>0.90) (Schober et al., 2018). In addition, the coefficients of 

determination (r2) expressed as a percentage were calculated from the r value. 

Statistical significance was set at p < 0.05 in all experimental chapters. Where p 

< 0.10, the results are reported as being close to statistical significance.  
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Chapter 4. The reliability of the 

Extra Load Index, loaded walking 

kinematics and subjective 

perceptions 
 

 

Part of this work has been published in a peer-reviewed journal: 

Hudson, S., Cooke, C. and Lloyd, R., 2017. The reliability of the Extra Load Index 

as a measure of relative load carriage economy. Ergonomics, 60(9), pp.1250-

1254. 
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4.1. Introduction 

 

The ELI appears to be a useful and valid tool to measure relative load carriage 

economy (Lloyd et al., 2010a) but its reliability has yet to be reported. Knowledge 

of reliability is important if ELI is to be used with confidence. The reproducibility 

of the rate of oxygen consumption (V̇O2) during treadmill running has been 

frequently reported (e.g. Brisswalter and Legros, 1994, Pereira and Freedson, 

1997, Pereira et al., 1994), however, few studies have determined the day-to-day 

variation of walking economy in healthy populations. Furthermore, no studies 

appear to have assessed the reliability of load carriage economy. Of those that 

have reported the reproducibility of walking economy in healthy adult populations 

(Wergel‐Kolmert and Wohlfart, 1999, de Mendonça and Pereira, 2008), the day-

to-day variation appears to be less reliable compared to running economy, with 

a coefficients of variation (CV) between ~ 8 - 9% and ~ 1.5 - 5% for walking and 

running economy, respectively. Furthermore, the reliability of V̇O2 appears to 

decrease at lower intensities of both running (Pereira et al. 1994) and walking (de 

Mendonça and Pereira, 2008). A number of different exercise intensities have 

been employed in the load carriage literature with walking speeds ranging from ~ 

3 km.h-1 (Maloiy et al., 1986, Lloyd et al., 2010b) to ~ 6 km.h-1 (Quesada et al., 

2000), and loads ranging from 10% body mass (Abe et al., 2004, Singh and Koh, 

2009) to in excess of 50% body mass (Lloyd et al., 2010b). For this reason, 

knowledge of the reproducibility of load carriage economy across a range of 

exercise intensities would be beneficial, particularly at lower intensities were the 

reliability of V̇O2 appears to be lessened. 

 

The reliability of both 2D and 3D kinematic analysis has been assessed for a 

range of different movements, including the unloaded walking gait (McGinley et 

al., 2009). In healthy individuals, unloaded walking kinematics appear to have 

good reliability both within (Wilken et al., 2012) and between (Benedetti et al., 

2013) laboratories. However, the reproducibility of walking gait kinematics with 

load carriage do not appear to have been reported in the literature. In order to 

investigate the biomechanical factors that could determine load carriage 

economy, knowledge of the loaded walking gait’s reliability could be beneficial to 
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help understand the variable effect of loading. As such, investigating the reliability 

of load carriage kinematics seems warranted. 

 

The reliability of subjective perceptions of load carriage have also not been 

reported in the literature. Whole body rating of perceived exertion (RPE) is a 

method frequently used to assess the subjective perceptions of load carriage 

(e.g. Goslin and Rorke, 1986, Lloyd et al., 2010d, Simpson et al., 2011). The 

reliability of whole body RPE has been questioned during progressive treadmill 

exercise, starting at an intensity of 12.8 km.h-1 (Lamb et al., 1999), but it has been 

suggested to be a reliable measure of perceived exertion during a range of 

activities including cycling, stepping, walking and jogging (Stamford, 1976). As 

such, investigating the reliability of loaded walking RPE appears warranted. 

Balogun et al. (1986) and Lloyd et al. (2010d) reported that whole body RPE was 

not sensitive enough to differentiate between different load carriage conditions. 

Visual analogue scales (VAS), to measure pain/discomfort in a number of 

locations on the body, appear to be a better measure of subjective perceptions in 

terms of differentiating between different loads and load carriage methods (Lloyd 

et al., 2010e; Simpson et al., 2011). However, the reliability of VAS scales to 

assess load carriage has not been reported. 

 

The aim of this study was to establish the reliability of the ELI, kinematics and 

subjective perceptions associated with load carriage, across a range of walking 

speeds (slow, self-selected and fast) with both light and heavy loads. It was 

hypothesised that the rate of oxygen consumption (V̇O2) and relative load 

carriage economy would show good reliability between repeated trials when 

walking unloaded and when carrying loads of 7 kg and 20 kg at slow, fast and 

self-selected walking speeds. It was also hypothesised that there would be good 

reliability between test-retest trials for loaded walking kinematics and subjective 

perceptions when walking unloaded and carrying loads of 7 kg and 20 kg. 
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4.2. Methods 

 

4.2.1. Participants 

Seventeen apparently healthy volunteers (12 males, 5 females) took part in the 

study (age 29 ± 10.7 years, mass 77.5 ± 13.9 kg, stature 1.77 ± 0.09 metres). All 

volunteers had no history of back pain and gave written informed consent to 

participate. The study received approval from the institutional ethics committee 

at Leeds Trinity University.  

 

4.2.2. Experimental design 

All trials were conducted at Leeds Trinity University. Participants attended the 

laboratory on six occasions in order to complete test-retest reliability of three 

different trial conditions. Trial conditions differed in walking speed, with a slow 

speed (3 km.h-1), fast speed (6 km.h-1) and a self-selected speed (4.4 ±                   

0.7 km.h-1). Trial conditions were completed in a randomised order, separated by 

a minimum of 48 hours and repeated identically seven days later. The order in 

which trial conditions were undertaken was randomised via a Latin square design 

with participants randomly assigned (by drawing lots) to one of three speeds. 

Trials involved 4x4 minute periods of walking, each separated by 5 minutes of 

rest. The initial stage was performed unloaded followed in a randomised order by 

a second unloaded period and walking with backpacks of 7 kg and 20 kg. The 

order of loading was identical for each of the initial trial and repeat trials. In an 

attempt to control for possible circadian variations in walking economy, test-retest 

trails were performed at approximately the same time of day for each individual. 

Participants were also asked to maintain a similar diet and refrain from moderate-

vigorous exercise and alcohol consumption in the 24 hours’ prior to each test.  
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Figure 7. Overview of the experimental design in Chapter 4. 
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4.2.3. Experimental procedures 

 Treadmill speed verification 

The procedures and results from the treadmill speed verification in this study are 

presented in Chapter 3. 

 

 Loading methods 

For each loading condition, participants were fitted with a traditional back-loading 

rucksack, with a hip belt for support (7 kg = Featherlight freedom, AARN, New 

Zealand; 20 kg = Karrimor Jura 35, Karrimor, UK) (Figure 8). The mass of the 

load was made up of the rucksack itself plus sandbags and water bottles, stored 

in plastic containers to help evenly distribute the load and improve stability within 

the rucksack. Participants were asked to wear a t-shirt, shorts and the same 

footwear during each test, in order to minimise the influence of clothing.  

 

 

 

 

 

 

 

 

 

 

Figure 8. (A) Sagittal plane view of a participant completing the 7 kg condition. 

(B) Sagittal plane view of a participant completing the 20 kg condition. 

 

 Initial screening and habituation 

The first laboratory visit included an initial screening of participants for any 

contraindications to exercise. Body mass and stature were measured, followed 

by a habituation period lasting ~ 20 minutes, which involved walking on the 

motorised treadmill (Mercury, HP Cosmos, Germany) at each of the walking 

speed conditions, with and without the 7 kg and 20 kg backpacks. The facemask 

for the online gas analysis system (Metalyzer 3B, Cortex, Germany) was also 

A B 
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fitted, in order for participants to become accustomed to breathing through it. The 

self-selected walking speed established during the habituation period, recorded 

as the speed at which participants felt most comfortable while walking unloaded, 

was used as the self-selected walking speed in subsequent trials. 

 

 Main trials 

Each trial began with the recording of the participant’s body mass in order to 

calculate the ELI for that trial. Resting heart rate (Polar, H7, Finland) and oxygen 

uptake were then measured for two minutes prior to exercise. Exercise began 

with participants walking unloaded at 0% gradient for four minutes at a speed 

determined by the trial condition. After four minutes, there was a five-minute rest 

period, during which, participants stepped off the treadmill and removed the 

facemask. Heart rate was monitored during the rest period to ensure that 

participants returned to the baseline resting level established before exercise 

began. The final minute of each rest period was used to refit the facemask and 

rucksack. The procedure of four minutes walking followed by five minutes of rest 

was then repeated with the light load, heavy load and unloaded walking for a 

second time, in a randomised order if it was the first trial or in an identical order 

to the first test if it was a repeat trial.  

 

 Physiological measures and subjective perceptions 

V̇O2 (l.min-1) was recorded for each period of walking and was used to calculate 

the ELI for each load carriage condition. RPE was recorded in the final 30 

seconds of each period of walking. Pain/discomfort for each area of the body was 

recorded using VAS during each rest period.  

 

 Kinematic data 

Sagittal plane kinematics were measured for the 3 km.h-1 trials to assess the test-

retest reliability of walking gait perturbations caused by load carriage. The 

reliability at this walking speed was assessed to inform the future studies in this 

thesis, which are all performed at 3 km.h-1, in line with previous research that has 

demonstrated energy saving phenomena for load carriage (Maloiy et al., 1986, 

Lloyd and Cooke, 2000b, Abe et al., 2004). Sagittal plane kinematics were 

measured for six consecutive strides with each trial. Video files were manually 
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digitised by a single observer using SIMI motion (SIMI 8.5.6, Germany). Intra-

observer reliability of digitising was assessed using video files from one 

participant (20 kg loading condition for participant 1). Overall, there was good 

intra-observer reliability for the digitising of trunk, hip, knee and ankle angles at 

heel-strike and toe-off. The largest deviation occurred in trunk angle with a 

relative technical error of measurement of 0.2% at heel-strike and 0.2% at toe-

off. The full results from the intra-observer reliability test are presented in 

Appendix M.  

 

Raw joint angle data were filtered using a 2nd order Butterworth filter set at 6 Hz. 

Results from a residual analysis conducted on three participants to determine the 

optimal cut-off frequency of the filter are presented in Appendix L. Step time, 

double stance time and single stance time were also measured by visually 

inspecting each video for time periods between heel-strike and toe-off gait events.  

 

4.2.4. Statistical analysis 

Paired samples t-tests were used to test for significant differences between test-

retest trials for each loading condition for ELI, V̇O2, spatiotemporal variables, joint 

angle kinematics and subjective perceptions. Bland-Altman plots were generated 

to assess the systematic bias and 95% limits of agreement limits of agreement 

(LoA) were measured as the mean of the differences  1.96 SD of the differences 

for each trial condition (Bland and Altman, 1986). Prior to creating the Bland-

Altman plots, heteroscedasticity was formally assessed by plotting the absolute 

differences between the two trials against the individual means and calculating 

the correlation coefficient. Coefficient of variation (CV) and standard error of 

measurement (SEM) were also assessed following the guidelines of Atkinson and 

Nevill (1998). Test/retest intraclass correlation coefficients (ICC) were measured 

using a freely available Microsoft Excel spreadsheet 

(www.sportsci.org/2015/ValidRely.htm) (Hopkins, 2017). CV’s <10% were 

considered as showing good absolute reliability (Atkinson and Nevill, 1998). 

Atkinson and Nevill (1998) suggested that, while some researchers have 

interpreted CV’s of 10% or below as an indicator of good reliability, this measure 

should be interpreted with caution because CV reflects the repeated test error of 
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the average individual and not all individuals. As such, CV’s were interpreted 

alongside LoA, SEM and ICC. ICC’s were interpreted using the guidelines from 

Koo and Li (2016) with values of less than 0.5, between 0.5 - 0.75, between 0.75 

and 0.90 and greater than 0.90 indicating poor, moderate, good and excellent 

reliability, respectively. 
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4.3. Results 

 

4.3.1. Oxygen consumption and relative load carriage economy  

ELI values did not differ significantly between test-retest trials in any of the 

walking speed conditions with either of the additional loads (all conditions, p > 

0.05). Following confirmation that heteroscedasticity was not present in any of 

the trial conditions (Figure 9), the systematic bias and 95% LoA were determined 

and are presented in Table 10 and Figure 10. Table 10 also shows the CV and 

SEM, which were small in all conditions with the highest CV (4.17%) and SEM 

(0.04), recorded when walking at 3 km.h-1 with 7 kg.  ELI values did increase 

significantly with walking speed (p = 0.018). 

 

Table 10. Reliability measures for the ELI at different walking speeds with 7 kg 

and 20 kg loads. 

 
3 km.h-1 

 Self-selected 

speed 

 
6 km.h-1 

   

 7 kg 20 kg  7 kg 20 kg  7 kg 20 kg 

Trial 1 0.94 0.95  0.98 0.99  0.97 1.00 

Trial 2 0.95 0.95  0.96 0.96  0.98 1.00 

Systematic Bias -0.01 0.00  0.01 0.03  -0.02 0.00 

95% LoA () 0.11 0.10  0.05 0.09  0.09 0.07 

CV (%) 4.17 2.74  1.75 3.42  3.51 2.51 

SEM 0.04 0.03  0.02 0.03  0.03 0.03 

LoA = limits of agreement; CV = coefficient of variation; SEM = standard error of 

measurement 
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Figure 9. Absolute difference plots between the tests and the individual means 

for the examination of heteroscedasticity for each of the walking speeds (A = 3 

km.h-1; B = self-selected; C = 6 km.h-1) with the light (i) and heavy loads (ii). 
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Figure 10. Bland-Altman plot illustrating systematic bias and 95% limits of 

agreement for each of the walking speeds (A = 3 km.h-1; B = self-selected; C = 6 

km.h-1) with the light (i) and heavy loads (ii).  
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There was no significant difference in V̇O2 between the two unloaded periods of 

walking performed in each of the trial conditions (p = 0.235). The variations in 

V̇O2 between the unloaded periods of walking in each trial are presented in Table 

11. There was no significant difference in V̇O2 between test-retest trials (all 

conditions, p > 0.05). Walking at 6 km.h-1 with a load of 20 kg produced the largest 

LoA and SEM of ± 0.19 l.min-1 and 0.06 l.min-1, respectively (Table 12). The 

largest CV (4.50%) was measured for the self-selected speed when carrying 20 

kg. V̇O2 did significantly increase with an increase in walking speed (p = 0.001) 

and when the mass of the load carried increased (p = 0.001).  

 

Table 11. Reliability measures for V̇O2 (l.min-1) between repeated bouts of 

unloaded walking within the same trial. 

 3 km.h-1  
Self-selected 

speed 
 6 km.h-1 

 Trial 1 Trial 2  Trial 1 Trial 2  Trial 1 Trial 2 

V̇O2 (l.min-1) unloaded 1 0.69 0.70  0.87 0.89  1.27 1.24 

V̇O2 (l.min-1) unloaded 2 0.67 0.68  0.87 0.88  1.25 1.24 

Systematic Bias -0.02 -0.02  0.00 -0.01  -0.01 0.00 

95% LoA () 0.07 0.07  0.06 0.06  0.06 0.09 

CV 3.62 3.68  2.30 2.63  1.86 2.72 

SEM 0.02 0.03  0.02 0.02  0.02 0.03 

LoA = limits of agreement; CV = coefficient of variation; SEM = standard error of 

measurement 
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Table 12. Reliability measures for V̇O2 (l.min-1) at different walking speeds with 7 kg and 20 kg loads. 

 
3 km.h-1  Self-selected speed  6 km.h-1 

 
U1 U2 7 kg 20 kg  U1 U2 7 kg 20 kg  U1 U2 7 kg 20 kg 

Trial 1 V̇O2 (l.min-1) 0.69 0.67 0.71 0.83  0.87 0.87 0.93 1.09  1.27 1.25 1.34 1.59 

Trial 2 V̇O2 (l.min-1) 0.70 0.68 0.72 0.84 
 

0.89 0.88 0.94 1.08 
 

1.24 1.24 1.33 1.56 

Systematic Bias -0.01 -0.01 -0.02 -0.01  -0.02 -0.01 -0.01 0.01  0.03 0.01 0.01 0.03 

95% LoA () 0.06 0.07 0.05 0.09  0.07 0.09 0.08 0.14  0.16 0.15 0.14 0.19 

CV (%) 3.78 4.08 3.59 4.32  3.62 4.05 3.62 4.50  3.80 4.01 3.58 3.64 

SEM 0.03 0.03 0.03 0.04  0.03 0.04 0.03 0.05  0.05 0.05 0.05 0.06 

ICC 0.96 0.95 0.96 0.94 
 

0.96 0.96 0.97 0.94 
 

0.95 0.95 0.96 0.94 

U1 = Unloaded; U2 = Unloaded 2; LoA = limits of agreement; CV = coefficient of variation; SEM = standard error of 

measurement; ICC = intraclass correlation coefficients 
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4.3.2. Subjective perceptions 

There were no significant differences between the test-retest trials for RPE in any 

of the loading conditions at 3 km.h-1, self-selected speed and 6 km.h-1 (all 

conditions, p > 0.05), although the difference between the repeat trials was close 

to significance with 20 kg at 3 km.h-1 (p = 0.051) and 6 km.h-1 (p = 0.083). After 

confirming that heteroscedasticity was not present in any of the trial conditions, 

the systematic bias, 95% LoA, SEM and CV’s were determined and are 

presented in Table 13. RPE increased as the load mass increased at all speeds, 

except for the 6 km.h-1 repeat trial with 20 kg, where the mean RPE was the same 

between the 7 kg and 20 kg conditions. The largest systematic bias (0.88), LoA 

(± 3.39), SEM (1.22) and CV (13.27%) all occurred with the 20 kg load at                    

3 km.h-1. 

 

There was no pain/discomfort (value of 0) reported for any of the 15 areas of the 

body during the unloaded walking trials at 3 km.h-1 or at the self-selected walking 

speed. There was also no pain/discomfort walking at 3 km.h-1 with 7 kg at the 

knees, ankles and feet. There were large test-retest differences in 

pain/discomfort scores at the upper body sites with the 20 kg load when walking 

at 3 km.h-1. The LoA and SEM with 20 kg were large in the neck (LoA ± 12.26 

mm; SEM = 4.42 mm), front shoulders (LoA ± 19.00 mm; SEM = 6.86 mm), back 

shoulders (LoA ± 10.08 mm; SEM = 3.64 mm), upper back (LoA ± 20.26 mm; 

SEM = 7.31 mm), chest (LoA ± 10.57 mm; SEM =3.81 mm) and lower back (LoA 

± 21.25 mm; SEM 7.67 mm). 
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Table 13. Ratings of perceived exertion with each load and speed combination. 

  3 km.h-1  Self-selected speed  6 km.h-1 

  U1 U2 7 kg 20 kg 
 

U1 U2 7 kg 20 kg 
 

U1 U2 7 kg 20 kg 

Trial 1 6 6 7 9 
 

7 7 8 10 
 

9 8 10 13 

Trial 2 6 6 8 10 
 

7 7 8 10 
 

8 8 10 12 

Bias 0.12 0.12 0.29 0.88 
 

0 0.06 0.12 0.12 
 

-0.29 -0.18 0.18 -0.53 

95% LoA (±) 1.18 1.18 1.51 3.39 
 

1.39 1.47 2.29 2.58 
 

1.93 2.52 2.22 2.31 

CV (%) 6.74 6.74 7.33 13.27 
 

7.46 7.78 10.54 8.95 
 

8.25 10.93 8.27 6.8 

SEM 0.42 0.42 0.55 1.22 
 

0.5 0.53 0.82 0.93 
 

0.7 0.91 0.8 0.83 

ICC 0.18 0.18 0.92 0.76  0.49 0.61 0.72 0.86  0.87 0.75 0.88 0.86 

U1 = Unloaded; U2 = Unloaded 2; LoA = limits of agreement; CV = coefficient of variation; SEM = standard error of 

measurement; ICC = intraclass correlation coefficients 
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4.3.3. Spatiotemporal variables 

There were no significant differences between test-retest trials for step time (all 

conditions, p > 0.05), double stance time (all conditions, p > 0.05) or single stance 

time (all conditions, p > 0.05) when walking at 3 km.h-1. At 3 km.h-1 the 20 kg 

produced the largest 95% LoA for step time (± 0.04 seconds), double stance time 

(± 0.02 seconds) and single stance time (± 0.03 seconds). The largest CV 

(4.55%) was measured for the single stance time with the 20 kg load (Table 14).  

 

Table 14. Step time, double stance time and single stance time reliability at              

3 km.h-1. 

  3 km.h-1 

  U1 U2 7 kg 20 kg 

Step time (seconds) 
Trial 1 0.41 0.4 0.41 0.41 
Trial 2 0.4 0.4 0.4 0.4 
Systematic Bias 0.01 0 0 0.01 

95% LoA (±) 0.03 0.04 0.03 0.04 

CV (%) 2.6 3.3 3.03 3.12 
SEM 0.01 0.01 0.01 0.01 
ICC 0.86 0.67 0.69 0.74 

Double stance time (seconds) 
Trial 1 0.17 0.17 0.17 0.18 
Trial 2 0.16 0.17 0.17 0.17 
Systematic Bias 0 0 0 0 
95% LoA (±) 0.02 0.01 0.01 0.02 
CV (%) 4.37 2.85 3.15 3.61 
SEM 0.01 0 0.01 0.01 
ICC 0.70 0.55 0.83 0.81 

Single stance time (seconds) 
Trial 1 0.24 0.24 0.24 0.23 
Trial 2 0.24 0.23 0.23 0.23 
Systematic Bias 0 0.01 0 0 
95% LoA (±) 0.02 0.03 0.03 0.03 
CV (%) 3.41 4.3 4.13 4.55 
SEM 0.01 0.01 0.01 0.01 
ICC 0.86 0.52 0.75 0.68 
U1 = Unloaded; U2 = Unloaded 2; LoA = limits of agreement; CV = coefficient 
of variation; SEM = standard error of measurement; ICC = intraclass 
correlation coefficients  
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4.3.4. Sagittal plane joint kinematics 

The test-retest differences in the measured sagittal plane joint angles for walking 

at 3 km.h-1 are presented in Table 15. There were no significant differences in 

joint angles between test-retest trials (all conditions, p > 0.05). The LoA, CV and 

SEM were small for all joint kinematics at both heel-strike and toe-off. 

Considering all load conditions, the largest LoA and SEM were in hip angle at 

both heel-strike and toe-off. The largest systematic bias occurred for hip angle at 

heel-strike with 7 kg (1.72º). The largest LoA occurred for hip angle at toe-off with 

7 kg (± 10.73º). The largest CV and SEM occurred for trunk angle at heel-strike 

when unloaded (CV = 3.03%) and hip angle at toe off with 7 kg (SEM = 3.87º), 

respectively. The ICC values showed moderate to good reliability (ICC = 0.5 - 

0.9) for all kinematic variables, except for hip angle at heel-strike in the second 

unloaded walking, 7 kg and 20 kg conditions which all showed poor reliability 

(ICC < 0.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



120 
 

Table 15. Trunk, hip, knee and ankle angle reliability at heel-strike and toe-off in 

the 3 km.h-1 condition. 

 Heel-strike  Toe-off 

 U1 U2 7 kg 20 kg  U1 U2 7 kg 20 kg 

Trunk angle (º) 
     

Trial 1 91.59 91.55 86.81 80.1  89.43 89.57 86.97 80.77 

Trial 2 91.74 91.64 86.47 80.76  89.35 89.52 86.55 81.11 

Bias 0.15 0.09 -0.34 0.66  -0.08 -0.05 -0.43 0.35 
95% LoA (±) 6.81 7.43 6.76 5.61  5.84 6.42 6.29 5.38 
CV (%) 2.78 3.03 2.61 2.03  2.32 2.56 2.43 1.96 
SEM 2.46 2.68 2.44 2.03  2.11 2.32 2.27 1.94 
ICC 0.65 0.55 0.45 0.66  0.75 0.58 0.58 0.65 

Hip angle (º)      
Trial 1 163.79 163.97 158.82 150.05  174.48 174.31 172.55 166.75 
Trial 2 164.42 163.98 157.1 150.48  173.44 173.47 170.87 167.07 
Bias -0.63 0 1.72 -0.43  1.04 0.84 1.68 -0.32 
95% LoA (±) 9.38 10.63 10.04 10.65  8.53 9.73 10.73 10.01 
CV (%) 2.06 2.34 2.29 2.56  1.77 2.02 2.25 2.16 
SEM 3.38 3.83 3.62 3.84  3.08 3.51 3.87 3.61 
ICC 0.58 0.37 0.38 0.36  0.77 0.66 0.60 0.51 

Knee angle (º)      
Trial 1 177.1 177.4 176.95 172.48  122.8 122.18 122.98 122.73 
Trial 2 178.31 178.34 176.5 172.54  121.66 121.27 121.56 122.26 
Bias -1.21 -0.94 0.45 -0.06  1.14 0.9 1.41 0.46 
95% LoA (±) 6.06 6.51 6.85 10.46  4.96 3.24 5.82 7.07 
CV (%) 1.23 1.32 1.4 2.19  1.46 0.96 1.72 2.08 

SEM 2.19 2.35 2.47 3.77  1.79 1.17 2.1 2.55 

ICC 0.77 0.69 0.62 0.50  0.68 0.91 0.70 0.54 

Ankle angle (º)      
Trial 1 117.57 118.17 118.44 116.91  124.66 125.39 124.58 125.76 
Trial 2 118.65 119.24 119.13 117.59  124.11 125.57 125.26 125.35 
Bias -1.08 -1.07 -0.69 -0.68  0.56 -0.17 -0.69 0.41 
95% LoA (±) 6.75 8.25 5.93 5.93  6.82 8.43 6.86 5.59 
CV (%) 2.06 2.51 1.8 1.82  1.98 2.42 1.98 1.61 
SEM 2.44 2.97 2.14 2.14  2.46 3.04 2.48 2.02 
ICC 0.61 0.52 0.61 0.58  0.71 0.67 0.77 0.82 
U1 = Unloaded; U2 = Unloaded 2; LoA = limits of agreement; CV = coefficient of variation; 

SEM = standard error of measurement; ICC = intraclass correlation coefficients; Bias = 

Systematic Bias 
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4.3.5. Summary of the results 

 

The reliability of the ELI: 

 Neither V̇O2 or ELI differed significantly between test-retest trials in any of 

the walking speed or load conditions. 

 The ELI demonstrated good reliability across the walking speed and load 

conditions. The largest systematic bias (0.03) occurred with 20 kg at a self-

selected walking speed (4.4 ± 0.7 km.h-1). The largest LoA (± 0.11) and 

the highest CV (4.17%) and SEM (0.04) were recorded for the 3 km.h-1 

speed with 7 kg (Table 10). 

 

The reliability of subjective perceptions: 

 Considering RPE, the largest systematic bias (0.88), LoA (± 3.39), SEM 

(1.22) and CV (13.27%) all occurred with the 20 kg load at 3 km.h-1 (Table 

13). 

 The largest test-retest differences for pain/discomfort scores occurred at 

the upper body sites with the 20 kg load when walking at 3 km.h-1. The 

front shoulders (LoA ± 19.00; SEM = 6.86), upper back (LoA ± 20.26; SEM 

= 7.31) and lower back lower back (LoA ± 21.25; SEM 7.67) exhibited the 

largest test-retest differences.    

 

The reliability of sagittal plane kinematics at 3 km.h-1: 

 Spatiotemporal variables and sagittal plane joint angles did not differ 

significantly between test-retest trials in any of the walking speed or load 

conditions.  

 Of the spatiotemporal measures, single stance time when carrying 20 kg 

was associated with the largest CV (4.55%) and step time when carrying 

20 kg was associated with the largest LoA (± 0.04 seconds) (Table 14). 

 Considering joint angles, the largest systematic bias (1.72º), LoA (± 

10.73º) and SEM (3.87º) occurred for hip angle with the 7 kg load. The 

largest CV occurred for trunk angle when walking unloaded (CV = 3.03%) 

(Table 15). 
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4.4. Discussion 

 

The aim of this study was to establish the reliability of the ELI, kinematics and 

subjective perceptions associated with load carriage. 

 

This discussion is split into three parts. The first part is focused on the reliability 

of the ELI as a measure of relative load carriage economy (section 4.4.1). The 

second part is focused on the reliability of load carriage kinematics (section 

4.4.2). The third part is on the reliability of subjective perceptions (section 4.4.3). 

 

4.4.1. The reliability of the ELI 

This is the first study to examine the reliability of the ELI as a measure of relative 

load carriage economy. The ELI demonstrated good reliability at slow, fast and 

self-selected walking speeds with both a relatively light and heavy load. The 

systematic bias was small in all conditions, with the largest LoA within  0.11, the 

largest SEM was 0.04 and the highest magnitude of CV was 4.17%. The ELI was 

found to be most reliable at the self-selected speed with the light load (95% LoA 

= 0.05; CV = 1.75%; SEM = 0.02). The self-selected speed (4.4 ± 0.7 km.h-1) was 

also the only condition where the CV appeared larger when carrying the heavy 

load than the light load. This is, perhaps, because the speed-load combination of 

the self-selected speed with a light load was closest to representing the 

participant’s natural walking pattern, and therefore, the between day variation 

was smallest in this condition. Additionally, the self-selected speed was chosen 

unloaded, which might have led to greater variability with the heavier load. 

 

The ELI was assessed across a range of walking speeds with both relatively light 

and heavy loads because a range of speed-load combinations are employed in 

a variety of applied scenarios. Individuals in the military services are regularly 

required to carry heavy loads in excess of 30 kg at walking speeds of between 5 

- 6 km.h-1 (Harman et al., 2001), while school children and individuals in rural 

areas of developing countries often adopt a slower walking pace of around 3 

km.h-1 with both light and heavy loads (Singh and Koh, 2009, Lloyd et al., 2010b). 

Although previous research, particularly those on military personnel, have used 
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loads in excess 40 kg (Harman et al., 2000), 20 kg was chosen in this study due 

to the untrained nature of some participants and because similar loads have been 

frequently used to represent a heavy load in the literature (e.g. Lloyd et al., 2011, 

Birrell and Haslam, 2009). As much of the literature on unloaded exercise 

suggests that reliability of energy expenditure increases as the exercise intensity 

increases and there was no difference in the reliability of ELI across a range of 

exercise intensities in the present study, we would expect ELI values to 

demonstrate good reliability with loads in excess of 20 kg. 

 

As expected, given the ELI results, V̇O2 also demonstrated good test-retest 

reliability with the largest LoA within  0.19 l.min-1, a highest SEM of 0.06 l.min-1 

and a highest CV of 4.50% (Table 12). Furthermore, there appears to be little 

difference in test-retest reliability between unloaded and loaded V̇O2. This 

demonstrates a better level of reliability than previously reported for walking 

economy at speeds of 4-5 km.h-1 (Wergel‐Kolmert and Wohlfart, 1999, de 

Mendonça and Pereira, 2008) and is similar to the CV of 4.4% reported when 

walking intensity is increased by gradients up to 10% (de Mendonça and Pereira, 

2008). In the present study, the CV for V̇O2 did not reduce as a result of increasing 

walking speed or when carrying an external load. Furthermore, the present study 

showed that the LoA and SEM were lower at 3 km.h-1 compared to 6 km.h-1, which 

is somewhat unexpected, given that previous research has suggested that an 

increase in exercise intensity increases reliability of V̇O2 (Pereira et al., 1994, de 

Mendonça and Pereira, 2008). However, the difference in V̇O2 between 3 km.h-1 

and 6 km.h-1 in LoA and SEM were small and there was no difference in CV 

between speeds. 

 

Unloaded V̇O2 was measured twice in each trial to assess its reliability between 

repeated bouts of walking on the same day because of its important role as the 

denominator in the calculation of the ELI. Based on previous literature, it was 

predicted that V̇O2 during unloaded walking might be less reliable than V̇O2 during 

loaded walking, as the exercise intensity is lower. However, there was no 

difference in V̇O2 between the two unload periods in each trial (Table 11) and as 
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such, V̇O2 from the first unloaded period of each trial was used in the calculation 

of the ELI.        

 

4.4.2. The reliability of load carriage kinematics 

The results of this study show that step parameters exhibit good reliability at a 

slow walking speed of 3 km.h-1 with both a light and heavy load. Studies that have 

shown an economical advantage for a particular method of load carriage, in 

comparison to others, have done so at slow walking speeds of ~ 3 km.h-1 (Maloiy 

et al., 1986, Charteris et al., 1989, Lloyd and Cooke, 2000b, Abe et al., 2004). As 

such, the reliability of load carriage kinematics in this study were assessed at 3 

km.h-1, which informs all studies in this thesis that focus on load carriage economy 

at this walking speed. Studies examining the reliability of unloaded gait analysis 

in healthy adults have shown good reliability for step parameters (Stolze et al., 

1998) and both 2D and 3D joint angle kinematics (McGinley et al., 2009, Ross et 

al., 2015). Single stance time was slightly less reliable between tests, with both 

the light and heavy load, compared to double stance time and overall step time. 

This is in line with the findings of Stolze et al. (1998), who found the swing phase 

time of the gait to be the least reliable of all step parameters in healthy individuals 

walking unloaded.   

 

This study focused on the sagittal plane trunk, hip, knee and ankle joint angles 

because this is where most movement occurs in the human walking gait and, as 

such, are the variables that have been assessed in many reliability studies for the 

unloaded walking gait (Besier et al., 2003, Growney et al., 1997, Kadaba et al., 

1989, Wilken et al., 2012, Tsushima et al., 2003, Ross et al., 2015). Measures of 

hip joint angle at both heel-strike and toe-off, but particularly heel-strike, 

appeared to be the least reliable of the kinematic measures. The systematic bias, 

CV and SEM measures suggest a good level of reliability for hip angle at heel-

strike. However, the ICC suggests poor reliability and the LoA are higher for this 

joint angle compared to the others. The decreased reliability of the hip joint 

measure could be, in part, a consequence marker reapplication error due to the 

increased difficulty in locating the hip joint centre compared to that of the knee 

and ankle. Indeed, in a comparison of gait analysis between seven different 

laboratories, Benedetti et al. (2013) found hip angle measures to have the highest 
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inter-laboratory differences and suggested that this was due to difficulties in 

modelling the thigh segment and locating the hip joint centre. A number of studies 

have assessed the between assessor reliability of walking gait data kinematic 

because differences in marker placement accuracy can influence results (Besier 

et al., 2003, McGinley et al., 2009). In this study, the same researcher applied all 

of the markers, so measures of inter-assessor reliability were not applicable. 

Ensuring that the hip joint centre is accurately marked when the load carriage 

device includes a hip belt is important for accurate and reliable measures of hip 

joint angle. In the present study, the marker for hip joint centre was positioned 

just below the backpack hip belt (Figure 8). However, for some trials, the arm 

obstructed the hip joint centre marker, particularly at heel-strike, which might 

have increased the error of locating the actual hip joint centre during the digitising 

process.  

 

4.4.1. The reliability of subjective perceptions 

Ratings of perceived exertion appeared to be reliable with load carriage and 

tended to be slightly less reliable with the 20 kg load compared to 7 kg. The least 

reliable condition for RPE was 20 kg at a walking speed of 3 km.h-1. This finding 

is in line with previous research suggesting that the test-retest reliability of RPE 

using the Borg scale decreases as the intensity of exercise increases (Lamb et 

al., 1999). RPE increased as the load mas increased. A similar finding was 

reported by Goslin and Rorke (1986) who showed that RPE increased linearly 

from 20%-40% carried in a backpack. The use of visual analogue scales to 

measure pain/discomfort of loaded walking at various body sites appears to lack 

reliability. This is somewhat expected given the subjective nature of visual 

analogue scales. Given the lack of reliability in pain/discomfort using visual 

analogue scales found here, the results of subjective pain/discomfort associated 

with load carriage in future studies should be interpreted with caution. Despite 

this, subjective measures could still be a useful tool to identify if large changes in 

an individual loaded walking biomechanics are a consequence of pain or 

discomfort to a particular area of the body. The test-retest reliability of 

pain/discomfort are only reported for 3 km.h-1, to inform the other studies 

presented in this research.  
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4.5. Conclusion 

 

Based on the evidence provided in the chapter, the ELI appears to be a reliable 

measure of relative load carriage economy that can be easily interpreted by 

developers and manufacturers as well as scientific researchers. As such, the ELI 

represents a useful and reliable tool for comparing the relative economy of 

different load carriage systems. The test-retest reliability of sagittal plane joint 

angles at the trunk, knee and ankle appear reliable at heel-strike and toe-off gait 

events during load carriage. Measurements of test-retest 2D hip angle showed 

less reliability than the other angles and should be interpreted with caution. This 

could have been caused by the arms obstructing the hip marker, and not 

necessarily a lack of reliability in the true value for hip angle and heel-strike. Step 

parameters and whole body RPE during short duration, steady-state load 

carriage tasks also appear to demonstrate a good level of reliability. VAS scales 

with load carriage appear less reliable in the upper body than lower body sites 

with load carriage but this is likely to be dependent on the load carriage method 

employed. 
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Chapter 5. A comparison of 

economy and sagittal plane 

kinematics among back-, back/front- 

and head-loading. 

 
Parts of this work has been published in peer reviewed journals: 

Hudson, S., Cooke, C., Davies, S., West, S., Gamieldien, R., Low, C., & Lloyd, 

R. (2018). A comparison of economy and sagittal plane trunk movements among 

back-, back/front-and head-loading. Ergonomics, 61(9), 1216-1222. 

 

Hudson, S., Cooke, C., Davies, S., West, S., Gamieldien, R., Low, C., & Lloyd, 

R. (2020). Inter-individual variability in load carriage economy and comparisons 

between different load conditions. Applied ergonomics, 82, 102968. 

 

 

 

 



128 
 

5.1. Introduction 

 

The research described in Chapter 4 showed that the ELI has good test-retest 

reliability at slow (3 km.h-1), fast (6 km.h-1) and self-selected walking speeds with 

light (7 kg) and heavy (20 kg) loads. As such, the ELI is used for the research in 

this study to assess if the relative economy associated with loads carried on the 

head, back and evenly distributed between the back and front of the torso can be 

explained by alterations in sagittal plane kinematics from unloaded walking as a 

consequence of the load carried.  

 

Energy saving phenomena have been reported with loads carried on the head 

(Maloiy et al., 1986, Charteris et al., 1989), back (Abe et al., 2004) and evenly 

distributed between the front and back of the torso (Lloyd and Cooke, 2000b). 

Much work has been done to identify potential mechanisms that may contribute 

to these energy saving phenomena (e.g. Jones et al., 1987, Heglund et al., 1995, 

Abe et al., 2004, Lloyd and Cooke, 2011), yet the determinants remain unclear. 

Abe et al. (2004) and Lloyd and Cooke (2000b) identified potential energy saving 

mechanisms for back and back/front-loading, respectively. Abe et al. (2004) 

proposed that back-loading can be very economical with light loads (up to 12kg) 

at low speeds (2.4 – 3.6 km.h-1), due to a mechanism that they characterised as 

the contribution of rotative torque about the lower limb. Prior to the findings of 

Abe et al. (2004), Lloyd and Cooke (2000b) had reported back/front-loading to be 

more economical than back-loading with heavier loads, due to a mechanism that 

they characterised as the contribution of trunk momentum to the energy required 

for walking. Although characterised slightly differently, these proposed 

mechanisms appear similar and suggest that increased sagittal plane trunk 

movement during load carriage might act as an energy saving mechanism. 

Indeed it seems plausible that increased trunk movement through the step cycle, 

when carrying a load at slow speeds, could contribute to forward momentum, 

thus reducing the amount of force required to propel the body forward with each 

step (Lloyd and Cooke, 2000a, Lloyd and Cooke, 2011).  

 

Unlike back and back/front-loading, head-loading is likely to require a 

constrained, upright posture to maintain equilibrium of the load, regardless of the 
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mass. If constraining the trunk increases the energy cost of load carriage, then 

head-loading, in theory, would be less economical than methods that load the 

trunk. Yet, research on head-loading economy is equivocal. Some studies have 

reported that the energy cost of head-loading rises in proportion to the mass of 

the external load (Soule and Goldman, 1969, Datta and Ramanathan, 1971, 

Datta et al., 1973, Lloyd et al., 2010b, Lloyd et al., 2010c), while others have 

reported that head-loading could represent a remarkably economical method for 

certain individuals, with African women able to carry loads of up to 20% body 

mass on their head with no additional energy cost above that required for 

unloaded walking (Maloiy et al., 1986, Charteris et al., 1989). However, these 

latter studies used small sample sizes (n ≤ 6) and are not generalisable. More 

recently, Lloyd et al. (2010c) demonstrated a large level of individual variation in 

economy for both head- and back-loading, with some individuals being 

remarkably economical at head-loading, while others were very economical at 

back-loading. Furthermore, they investigated load carriage economy in both 

experienced (n = 13) and inexperienced (n = 11) head-loaders and found that 

38.5% of experienced head-loaders had better economy in head-loading than 

back-loading, while 36.4% of inexperienced head-loaders exhibited the same 

tendency. This led Lloyd et al. (2010c) to suggest that load carriage economy 

with head-loading might be independent of previous experience and, therefore, 

not a result of structural adaptation. As the mechanisms underpinning individual 

variation in energy cost of load carriage are yet to be established, examining the 

role of postural adjustments associated with transporting a load seems 

warranted, particularly given the potential energy saving role of sagittal plane 

trunk movements that have been suggested for methods that load the trunk and 

the remarkable levels of economy that have been reported for head-loading in 

some individuals and small sample studies. 

 

Despite the substantial individual variation in load carriage economy reported by 

Lloyd et al. (2010c), to date, it has not been reported elsewhere. Individual 

variation in energy expenditure could help explain the contradictory evidence that 

exists for load carriage economy with different methods, particularly given the 

small sample sizes (n < 10) used in previous studies (Maloiy et al., 1986, Lloyd 

and Cooke, 2000b, Abe et al., 2004). Lloyd and Cooke (2011) also reported a 
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high level of individual variation in step parameters when carrying load on the 

back and back/front, with changes in stride length from those associated with 

unloaded walking ranging from +12% to -6%. As with load carriage economy, 

individual variation in loaded walking gait kinematics has not been reported 

elsewhere. Information on the presence and extent of individual variation in 

loaded walking gait kinematics could help to elucidate why there appears to be 

individual variation in load carriage economy. It could also, perhaps, explain why 

some individuals are more economical with certain methods of load carriage. 

 

There were two main aims for this study. The first aim was to assess the economy 

and sagittal plane kinematics associated with three methods of load carriage that 

have all been reported as economical, but all constrain posture differently. The 

second aim was to assess the amount of inter-individual variation in economy 

and sagittal plane kinematics associated with each method of load carriage. It 

was hypothesised that the load carriage method that allowed for the greatest 

freedom of movement of the trunk, for a given load mass, would be associated 

with the best associated economy. Head-loading was expected to constrain 

posture in an upright position, and, as such, be the least economical method. 

Combined back/front-loading was expected to allow for greater movement for the 

trunk with heavier loads compared to back-loading (i.e. closer to that of unloaded 

walking) and therefore, be more economical at heavier loads. It was also 

hypothesised that that, in a larger sample of participants than reported in much 

of the published load carriage literature, there would be a considerable amount 

of inter-individual variation in load carriage economy and load carriage 

kinematics. 
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5.2. Methods 

 

A secondary analysis was conducted on data collected prior to this PhD by one 

of my PhD supervisors, Professor Ray Lloyd, and colleagues from the Cape 

Peninsula University of Technology (Professor Simeon Davies, Dr Sacha West 

and Raeeq Gamieldien). This section provides an outline of the methods that 

were used for data collection, as reported by Professor Ray Lloyd, and a detailed 

description of the methods used for secondary analysis. 

 

5.2.1. Outline of data collection methods 

 Participants 

Eighteen apparently healthy female volunteers with a minimum of 5 years’ 

experience of head load carriage were recruited (age 23 ± 3.8 years, mass 61.1 

± 10.7 kg, stature 1.59 ± 0.08 metres). All participants were accustomed to 

carrying 20 kg loads on the head (typical load for water carrying; Porter et al., 

2013). All volunteers gave written informed consent to participate. A post hoc 

power calculation performed using G*Power© software determined that 95% 

power was achieved using a sample size of 18, based on an anticipated medium 

effect size (Richardson, 2011). 

 

 

 Experimental design 

All trials were conducted at the Human Performance Laboratory at Cape 

Peninsula University of Technology. Figure 11 provides an overview of the study 

design. Participants attended the laboratory on four separate occasions in order 

to complete a habituation session and three different trial conditions. Trial 

conditions differed in load carriage method, with load carried on directly the head 

(Head), on the back (Back) and evenly distributed between the front and back 

(Back/Front). Each participant chose, at random, the loading method for each 

experimental trial (via the picking of a marked piece of paper from a hat). Trials 

involved seven, four-minute periods of walking at 3 km.h-1, with each period 

separated by two minutes of rest. The initial stage was performed unloaded, 

followed by loads of 3, 6, 9, 12, 15 and 20 kg. Participants were asked to maintain 
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a similar diet and refrain from moderate-vigorous exercise and alcohol 

consumption in the 24 hours prior to each test.  

 

Overview of the study: 

 

 

 

 

 

 

 

 

 

 

 

       

       

       

 

 

 

 

 

 

         

 

 

 

         

 

 

 

Figure 11. Overview of the experimental study design in Chapter 5 
 

Informed Consent, screening questionnaire and 
load carriage history questionnaires 
administered. Participants selected. 

Habituation to load carriage methods, gas 
analysis equipment.   

Initial expression of interest by potential 
participants in response to study advertisement  

Experimental protocol Condition A. 
Treadmill walking at 3.0 km.h-1 with loads of 0, 
3, 6, 9, 12, 15 and 20 kg, loading presented in 
an increasing fashion. Four minutes at each 

load, expired air collected throughout 4-minute 
period.  Two-minute rest between loads while 

subjective perceptions assessed, and load 
adjusted.  All tests were video recorded to 

assess sagittal plane joint kinematics. 
 

Experimental protocol Condition B 
 

Experimental protocol Condition C 
    

72-96 hours 

 

72-96 hours 

Order Randomised 
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 Experimental procedures 

 Loading methods 

A traditional 45 litre rucksack (Karrimor, UK) was used for back-loading, a 20 litre 

plastic bucket was used for head-loading and a load carriage system with front 

balance pockets was used for front/back loading (AARN design, New Zealand) 

(Figure 12). A piece of rolled up material was allowed to provide a cushion 

between the head and the bucket when head-loading. The mass of the load was 

made up of the load carriage device itself plus sandbags to the nearest 50 g.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Still images showing the load carriage devices used in each condition. 

(A) Sagittal plane view of the Back condition. (B) Sagittal plane view of the 

Back/Front condition. (C) Sagittal plane view of the Head condition. 

 

 Main trials: 

Each trial began by measuring the participant’s body mass in order to calculate 

the ELI for that trial. Participants were then fitted with a face mask and a heart 

rate monitor (Polar, Finland) and asked to walk unloaded on the treadmill at 3 

km.h-1 for four minutes at 0% gradient. After four minutes, there was a two-minute 

rest period during which the participants were fitted with the appropriate loading 

device for the trial. The initial load was set at 3 kg. At the end of the rest period, 

A B C 
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participants recommenced walking at the same speed for a further four minutes. 

This pattern of work and rest continued with loads of 6, 9, 12, 15 and 20 kg being 

carried in subsequent stages. Ratings of perceived exertion were recorded in the 

final 30 seconds of each stage and VAS were completed in between each period 

of walking to assess subjective perceptions of perceived pain/discomfort. 

 

5.2.2. Secondary analysis methods 

 Expired gas analysis 

V̇O2 in the final minute of each walking period was used to calculate the ELI and 

the energy cost of walking per unit distance (Cw; Equation 8; Abe et al., 2004) 

for each loading condition  

 

Cw = ml / [BM + L] / m                                                                          Equation 8 

 

where ml refers to millilitres of V̇O2, BM refers to the body mass of the participant, 

L is the additional load mass and m is the distance covered in metres.  

 

The gross metabolic rate per kilogram of body mass (W/kg) was also calculated 

from V̇O2 and V̇CO2 using the Brockway (1987) equation and assuming zero 

protein metabolism. 

 

 Kinematic analysis 

Video files were manually digitised to analyse sagittal plane kinematics (SIMI 

8.5.6, Germany). Six steps from the final minute of each stage were digitized. 

Intra-observer digitising reliability was completed prior to the full digitisation of 

trials. Overall, there was a good level of reliability with a highest relative TEM of 

0.6% for trunk angle when walking unloaded at heel-strike. The full results of 

intra-observer digitising reliability conducted prior to digitising can be seen in 

Appendix L. Once the reconstruction was complete, raw data were filtered using 

a 2nd order Butterworth filter at 6 Hz. Joint angles were for each step at two events 

of the step cycle (heel-strike and toe-off).  

 

Trunk, hip, knee and ankle joint angles were calculated by the SIMI motion 

software (SIMI motion, Germany) at heel-strike, mid-support and toe-off gait 
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events. A single value for each joint angle was also calculated as the average 

from the three events each step cycle. Joint angle excursions were measured as 

the change in angle from heel-strike to toe-off in each step. Step length, cadence, 

step time, double stance time and single stance time were measured by visually 

inspecting each video for time periods between heel-strike and toe-off gait 

events. 

 

 Data and statistical analysis: 

Mean, SD and CV were calculated for each dependant variable. Joint angles, 

joint angle excursions and step parameters were analysed as the change from 

unloaded to loaded walking. Normal distribution of data was verified using the 

Shaprio Wilk test and visually exploring boxplots. A one-way ANOVA with 

repeated measures was used to test for significant main effects of method for all 

unloaded walking variables. To assess for differences between conditions, a two-

way repeated measures ANOVA (load method x load mass) was conducted to 

establish any significant main effects and interactions. A three-way repeated 

measures ANOVA was used to assess VAS data (method x mass x body 

position). Post-hoc tests for significant main effects were conducted using a 

Bonferroni correction. Pearson’s Product Moment Correlation Coefficients were 

calculated to explore the relationships between ELI values and joint angles, joint 

angle excursions and step parameters for each loading condition. Statistical 

significance was set at p < 0.05 in all experimental chapters. Where p < 0.10, the 

results are reported as being close to statistical significance. 

 

As well as SD and CV to assess inter-individual variation, linear multi-level 

models (MLM), using maximum likelihood estimation, were created for V̇O2, ELI, 

Cw and gross metabolic data with each method of load carriage. The MLM’s were 

used to estimate the variance between participants (σ2u) and the variance 

between the load masses (σ2e) for each load carriage method. Intra-class 

Correlation Coefficients (ICC) were calculated from the variance components in 

each MLM to represent the proportion of total variability in the outcome that was 

attributable to individual differences between participants. The range of 

percentage change from unloaded walking across participants was also 

assessed for all joint angles and step parameters. 
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5.3. Results 

 

There were no significant differences between trial conditions when walking 

unloaded for any of the physiological or biomechanical variable assessed               

(p > 0.05, Table 16). 

 

Table 16. Mean ± SD differences in V̇O2, V̇E, joint angles, joint angle excursions 

and step parameters between trial conditions (Head, Back, Back/Front) when 

walking unloaded. 

* DST = Double stance time; SST = Single stance time 
 

 

 

 

 

 Trial Condition 
p value  Head Back Back/Front 

V̇O2 (l.min-1) 0.62 ± 0.14 0.63 ± 0.13 0.63 ± 0.13 0.760 

V̇O2 (ml.kg-1.min-1) 10.20 ± 1.50 10.35 ± 1.42 10.42 ± 1.18 0.761 

V̇E (l.min-1) 17.50 ± 3.79 17.72 ± 3.05 17.38 ± 3.79 0.847 

Trunk forward lean (°) 87.9 ± 2.6 87 ± 3.5 87.4 ± 2.9 0.570 

Trunk angle excursion (°) 4.1 ± 1.9 3.9 ± 1.5 4.3 ± 1.8 0.767 

Hip angle (°) 166.3 ± 10.0 165.9 ± 9.6 166.4 ± 8.6 0.946 

Hip angle excursion (°) 19.2 ± 3.4 17.7 ± 4.4 16.6 ± 3.8 0.127 

Knee angle (°) 152.2 ± 17.3 152.7 ± 17.7 152.8 ± 17.6 0.927 

Knee angle excursion (°) -33.5 ± 8.1 -34.8 ± 7.3 -36.5 ± 6.0 0.292 

Ankle angle (°) 99.9 ± 6.8 100.1 ±7.4 100.2 ± 7.1 0.987 

Ankle angle excursion (°) 4.1 ± 3.3 3.9 ± 4.0 4.7 ± 4.1 0.717 

Step length (metres) 0.50 ± 0.02 0.50 ± 0.03 0.49 ± 0.03 0.646 

Cadence (steps.sec-1) 1.67 ± 0.08 1.69 ± 0.09 1.69 ± 0.11 0.659 

Step time (seconds) 0.60 ± 0.03 0.60 ± 0.03 0.59 ± 0.04 0.713 

DST (seconds) 0.23 ± 0.02 0.23 ± 0.02 0.22 ± 0.02 0.232 

SST (seconds) 0.37 ± 0.03 0.37 ± 0.03 0.37 ± 0.03 0.994 
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5.3.1. Physiological variables 

 Rate of oxygen consumption (V̇O2) 

There were no significant differences in V̇O2 between the three loading methods 

(main effect of load carriage method, p = 0.814, η2 = 0.012) but V̇O2 did increase 

significantly as the mass of the load increased (main effect of load mass, p < 

0.001, η2 = 0.743). Post-hoc analysis indicated that V̇O2 significantly increased 

from unloaded walking with the 9, 12, 15 and 20 kg loads (p < 0.05). Figure 13 

shows the interactions between load mass and the three loading methods. The 

pattern of response was similar between the three load methods and this was 

confirmed by a lack of interaction effect between load method and load mass (p 

= 0.151, η2 = 0.089).  

 

 

Figure 13. Mean ± SD rate of oxygen consumption (ml.kg-1.min-1) values for each 

loading condition and load mass. 
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all load mass were 0.95 ± 0.11, 0.93 ± 0.08 and 0.94 ± 0.06 for head, back and 

back/front, respectively. There was a significant difference in ELI between the 

load masses (main effect of load mass, p = 0.001, η2 = 0.328). However, there 

was no significant load method x load mass interaction (p = 0.094, η2 = 0.107). 

Figure 14 shows that in the Back condition, economy decreased as the mass of 

the load increased from 3 kg (ELI = 0.95 ± 0.06) to 9 kg (ELI = 0.90 ± 0.07) and 

then increased again as the load mass increased from 9 kg to 20 kg (ELI = 0.94 

± 0.11). For Back/Front, the ELI values decreased from 3 kg (ELI = 0.99 ± 0.06) 

as the load mass increased up to 15 kg (ELI = 0.91 ± 0.07). For Head, ELI was 

highest with 3 kg (ELI = 1.03 ± 0.08) and lowest with 12 kg (0.92 ± 0.09).  

 

 

Figure 14. Mean ± SD ELI values for each loading method and load mass. 

 

Figure 15 shows the results for load carriage economy presented as the energy 

cost of walking per unit distance (Cw). There was no significant difference in Cw 

between loading methods (main effect of load carriage method p = 0.802, η2 = 

0.013). The Cw was significantly different between the load masses (main effect 

of load mass, p < 0.001, η2 = 0.421), with post-hoc analysis revealing a significant 

decrease in Cw from unloaded to loaded walking (p < 0.05). The largest decrease 
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in Cw from unloaded walking was for the Back method with 9 kg (-0.021 ml.kg-

1.metre-1). For Head and Back/Front, the largest decrease from unloaded was 

with 12 kg (-0.017 ml.kg-1.metre-1) and 15kg (-0.018 ml.kg-1.metre-1), respectively. 

There was no significant interaction effect between load method and load mass 

(p = 0.113, η2 = 0.096). 

 

Figure 15. Mean ± SD the energy cost of walking per unit distance (Cw) for each 

load method and load mass. 

 

 Gross metabolic rate 

The metabolic rate per kilogram body mass (W/kg) was not significantly different 

between load carriage methods (main effect of load carriage method, p = 0.893, 

η2 = 0.005). The metabolic rate increased significantly with an increase in load 

mass (main effect of load mass, p < 0.001, η2 = 0.752) with post-hoc analysis 

indicating that that the metabolic rate increased significantly from the unloaded 

walking condition with 6, 9, 12, 15 and 20 kg (p < 0.05). There appeared to be a 
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was confirmed by a lack of interaction between load carriage method and load 

mass (p = 0.224, η2 = 0.089). 

 

 Minute ventilation, breathing frequency and tidal volume 

Minute ventilation significantly increased as the mass of the external load 

increased (main effect of load mass, p < 0.001, η2 = 0.735; Figure 16) with all 

loading methods. However, there was no significant difference between the three 

methods (main effect of load carriage method, p = 0.323, η2 = 0.062). There was 

a similar pattern of response to increasing load mass for breathing frequency, 

with an increase as the mass of the load increased (main effect of load mass p < 

0.001, η2 = 0.641) but no difference between methods (main effect of load 

carriage method, p = 0.553, η2 = 0.034). Tidal volume was larger for unloaded 

walking when carrying 20 kg in all loading methods (main effect of load mass, p 

= 0.004, η2 = 0.260), with increases of 0.07 ± 0.10 litres, 0.02 ± 0.06 litres and 

0.04 ± 0.10 litres for Head, Back and Back/Front, respectively. There was no 

significant difference in tidal volume between load carriage methods (main effect 

of load carriage method, p = 0.076, η2 = 0.141), although there was a tendency 

for tidal volume to increase from unloaded in the Head condition compared to 

Back and Back/Front. The average Δ tidal volume from unloaded walking across 

all load mass was 0.04 ± 0.08 litres, 0.00 ± 0.06 and 0.02 ± 0.08 for Head, Back 

and Back/Front, respectively.  
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Figure 16. Mean ± SD minute ventilation (l.min-1) for each load method and load 

mass. 

 

 

5.3.2. Kinematic variables 

 Trunk movement 

Figure 17 shows ∆ trunk forward lean with each of the three loading methods and 

each load mass. The ∆ trunk forward lean was significantly different between 

loading methods (main effect of load carriage method, p < 0.001, η2 = 0.847) and 

load mass (main effect of load mass, p < 0.001, η2 = 0.715). Post-hoc analysis 

revealed significant differences in trunk forward lean between all three methods 

(p < 0.05). There was also significant interaction effect between load method and 

load mass (p < 0.001, η2 = 0.754). In both the Back and Back/Front methods, ∆ 

trunk forward lean increased each time the external mass increased. This 

increase was much greater in the Back method, (10.7° increase from 3 kg to 20 

kg) compared to the back/front method (2.4° increase from 3 kg to 20 kg). In the 

Head method, ∆ trunk forward lean decreased as the load mass increased (-2.2° 

decrease from 3 kg to 20 kg). 
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The ∆ trunk angle excursion during the stance phase (heel-strike to toe-off) 

(Figure 18) was significantly different between loading methods (main effect of 

load carriage method, p = 0.021, η2 = 0.203) and load mass (main effect of load 

mass, p = 0.004, η2 = 0.183). Post hoc analysis showed no significant pairwise 

comparisons but there was a tendency for reduced trunk angle excursion for Back 

(all mass pooled = -2.2°) compared to Head (all mass pooled = -1.5°) (p = 0.059). 

There was also a significant interaction effect between load method and load 

mass (p = 0.001, η2 = 0.165). In the Back method, ∆ trunk angle excursion 

decreased as the mass of the load increased (-3.2° from 0 – 20 kg). The ∆ trunk 

angle excursion also decreased with both the Back/Front and Head methods, 

although there was not a consistent pattern of response for these two methods 

across the different load masses. 

 

 

Figure 17. Mean ± SD change in trunk forward lean (degrees) from the unloaded 

condition for each loading method and each of the load masses. Positive and 

negative values indicate increased and decreased forward lean, respectively. 
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Figure 18. Mean ± SD Trunk angle excursion (degrees) values during the stance 

phase from heel-strike to toe-off with each loading method and each of the load 

masses. 
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to loaded walking but there was little difference between the load masses (the 

largest difference between load mass was 0.8° between 9 kg and 20 kg). There 

was a significant interaction effect between load method and load mass (p = 

0.001, η2 = 0.652).  

 

The ∆ hip angle excursion during the stance phase (Figure 19) was significantly 

different between loading methods (main effect of load carriage method, p < 

0.001, η2 = 0.750) and load mass (main effect of load mass, p = 0.001, η2 = 

0.328). There was also a significant interaction effect between load method and 

load mass (p < 0.001, η2 = 0.285). Post-hoc analysis revealed significant 

differences in Δ hip angle excursion between all three methods (p < 0.05). In the 

Back condition, ∆ hip angle excursion increased as the mass of the load 

increased (∆ hip angle excursion = 4.3° and 13.2° for 3 kg and 20 kg, 

respectively). There was an increase in hip angle excursion from unloaded to 

loaded walking in the Back/Front condition, however this did not change with an 

increase in load mass. With the 3 kg load, ∆ hip angle excursion was similar 

between Back and Back/Front (4.3° vs 4.4° for Back and Back/Front, 

respectively). As the mass of the load increased, the ∆ hip angle excursion in the 

Back/Front condition did not concomitantly increase. There was little difference 

in ∆ hip angle excursion with any of the loads in the Head condition (largest 

difference = -2.7° with 6 kg). 

 

 Knee movement 

Knee angle decreased (increased knee flexion) from unloaded walking in all 

loading conditions (Figure 19) but there was no significant difference in ∆ knee 

angle from unloaded walking between loading methods (main effect of load 

carriage method, p = 0.961, η2 = 0.002). There was large variation in knee angle 

as indicated by the standard deviation (Figure 19). Knee flexion increased 

significantly as the mass of the load increased (main effect of load mass, p < 

0.001, η2 = 0.440). The largest increase in knee flexion from unloaded walking 

occurred with the 20 kg load in all methods (head = -2.7°, back = -3.3°, back/front 

= -2.4°). 
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The pattern of response for the ∆ knee angle excursion during the stance phase 

to increasing load mass was similar to that of the ∆ hip angle excursion in all 

loading methods (Figure 19). The ∆ knee angle excursion during the stance 

phase was significantly different between load carriage methods (main effect of 

load carriage method, p < 0.001, η2 = 0.380) and load mass (main effect of load 

mass, p < 0.001, η2 = 0.321). There was also a significant interaction effect 

between load method and load mass (p = 0.028). In the Back and Back/Front 

loading methods, there was an increase in knee angle excursion from heel-strike 

to toe-off compared to unloaded walking. For Head, knee angle excursion tended 

to decrease from unloaded walking. The largest Δ knee angle excursion occurred 

with 6 kg in the Head condition (-3.5°), 20 kg in the Back condition (3.4°) and 9 

kg in the Back/Front condition (9.8°). 

 

 Ankle movement 

There was no significant difference between load carriage methods for the Δ 

ankle angle from unloaded walking (main effect of load carriage method, p = 

0.301 , η2 = 0.065; Figure 19). There was also no significant difference in the Δ 

ankle angle between different load mass (main effect of load mass, p = 0.142, η2 

= 0.101). The ∆ ankle angle excursion during the stance phase (Figure 19) was 

not significantly different between load carriage methods (main effect of load 

carriage method, p = 0.198, η2 = 0.093) but there was a significant difference 

between load mass (main effect of load mass, p = 0.018, η2 = 0.176). Post-hoc 

analysis revealed that there was a significant difference in Δ ankle angle 

excursion between the 3 kg and 12 kg mass (p = 0.048), and the 3 kg and 20 kg 

mass (p = 0.002). There was no significant interaction effect between load 

method and load mass (p = 0.149). In the Back and Head methods, the largest Δ 

ankle angle excursion from unloaded to loaded walking occurred with 20 kg (Back 

= 4.5°, Head = 2.5°). There was very little change from unloaded walking with the 

Back/Front method, with the exception of the 9 kg load (∆ ankle angle excursion 

with 12 kg = 3.2°). Two participants had a large ∆ ankle angle excursion in the 

Back/Front 12 kg condition, which is responsible for the increase in angle ankle 

for this loading condition compared to others. 
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Figure 19. Mean ± SD change in joint angle from unloaded walking for the hip, 

knee and ankle for each loading condition. For the left column of figure, positive 

and negative values indicate extension and flexion, respectively. 
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 Step length and cadence: 

The Δ step length from unloaded walking was significant with load mass (main 

effect of load mass, p = 0.028, η2 = 0.135) but not across load carriage methods, 

although the difference between methods was close to statistical significance 

(main effect of load carriage method, p = 0.063, η2 = 0.150). Post-hoc analysis 

revealed that there were significant differences in Δ step length from unloaded 

walking between 3 kg and 9 kg loads (p = 0.041), 3 kg and 15 kg (p = 0.022) and 

6 kg and 15 kg (p = 0.017).  There was no significant interaction effect between 

load method and load mass (p = 0.236, η2 = 0.077). The change in step length 

from unloaded to loaded walking was small in all conditions; the largest change 

occurred with 15 kg in the Back condition (0.012 ± 0.014 metres). Although the 

difference in step length was not significant between methods, step length 

consistently increased from unloaded for back-loading but decreased for 

Back/Front (Figure 20). The lack of interaction effect between method and mass 

could be due to the magnitude of the standard deviations in all load carriage 

conditions. For Head, the Δ step length did not show a consistent pattern with 

alterations to load mass  

 

Step cadence showed an inverse pattern to step length in all conditions (Figure 

20). The Δ step cadence from unloaded walking was not significantly different 

between loading method, although the difference was close to statistical 

significance (main effect of load carriage method, p = 0.061, η2 = 0.152), or load 

mass (main effect of load mass, p = 0.121, η2 = 0.096). There was also no 

significant interaction effect between load method and load mass (p = 0.225, η2 

= 0.080). As with step length, although the difference in cadence was not 

significant between methods, there were consistent differences in methods 

across load mass with cadence decreasing from unloaded for Back but 

increasing for Back/Front. 
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Figure 20. Mean ± SD step length and cadence for each loading condition and 

change in step length and cadence from unloaded walking for each loading 

condition. 

 

 Step time, double stance time and single stance time 

There was no significant difference between load carriage methods for the Δ step 

time from unloaded walking, although the difference was close to statistical 

significance (main effect of load carriage method, p = 0.059, η2 = 0.153). There 

was also no significant difference between load mass for Δ step time from 

unloaded walking, although the difference was again close to statistical 

significance (main effect of load mass, p = 0.061, η2 = 0.132). There was no 

significant interaction effect between load method and load mass (p = 0.292, η2 
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= 0.069). There was a tendency for the Back method to result in an increase in 

step time from unloaded walking and the Head method to result in a decreased 

step time from unloaded walking (Figure 21). 

 

The Δ double stance time from unloaded walking was significantly different 

between load carriage methods (main effect of load carriage method, p = 0.018, 

η2 = 0.210) and load mass (main effect of load mass, p = 0.001, η2 = 0.666). 

Double stance time increased as the mass of the load increased (Figure 21), with 

a larger increase in the back-loading method compared to both Head and 

Back/Front. With 20 kg, the Δ double stance time from unloaded walking was 

0.028 ± 0.018 s, 0.018 ± 0.012 s and 0.014 ± 0.013 s for Back, Back/Front and 

Head, respectively. The Δ single stance time from unloaded walking was not 

significantly different between load carriage methods (main effect of load carriage 

method, p = 0.313, η2 = 0.066) but there was a significant difference between 

load mass (main effect of load mass, p < 0.001, η2 = 0.403). There was a 

tendency for single stance time to decrease as the mass of the load increased in 

all load carriage methods (Figure 21). Post-hoc analysis showed significant 

differences in Δ single stance time from unloaded walking between 3 kg and 15 

kg (p = 0.044), 3 kg and 20 kg (p = 0.002), 6 kg and 12 kg (p = 0.030), 6 kg and 

15 kg (p = 0.003), 6 kg and 20 kg (p < 0.001), and 9 kg and 20 kg (p = 0.001). 
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Figure 21. Mean ± SD step time, double stance time, single stance time for each 

loading condition and change in step time, double stance time and single stance 

time from unloaded walking for each loading condition. 
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5.3.3. Relationships 

 Physical characteristics and load carriage economy 

There were no significant moderate (r = 0.4 – 0.7) or strong relationships (r > 0.7) 

between ELI values and stature, body mass or body mass index (BMI) for any of 

the methods or load mass. The strongest relationship between ELI and physical 

characteristics was a negative correlation between ELI and BMI for the Back 

method with 20 kg (r = -0.319, r2 = 10.17%, p = 0.196).  

 

 Joint angles and load carriage economy 

Considering relationships between ∆ trunk movement and ELI values, there was 

a significant moderate negative relationship between ELI and ∆ trunk angle 

excursion with the 20 kg load carried using the Back method (r = -0.507, r2 = 

25.70%, p = 0.032). Whereas in the Back/Front method, there was a significant 

moderate relationship between ELI and ∆ trunk forward lean with 9 kg (r = -0.491, 

r2 = 24.11%, p = 0.039). In the Head method, there were no moderate-strong 

relationships between any of the trunk movement variables and ELI (the 

strongest relationship between ELI and ∆ trunk angle excursion was with 3 kg; r 

= -0.322, r2 = 10.37%, p = 0.193).  

 

There was a significant strong relationship between ∆ hip angle excursion and 

ELI in the 20 kg Back condition (r = -0.773, r2 = 59.72%, p = 0.001). There were 

also moderate relationships between ∆ hip angle and ELI in the 6kg and 12 kg 

Back conditions (r = 0.450, r2 = 20.25%, p = 0.061 and r = 0.416, r2 = 17.31%, p 

= 0.086 for 6kg and 12kg, respectively). Considering the Back/Front method, 

there was a significant moderate relationship between ∆ hip angle and ELI with 

the 9 kg load (r = 0.534, r2 = 28.52, p = 0.023). 

 

The only significant relationships between knee movement and ELI was in the 20 

kg Back condition. In this condition, there were significant moderate relationships 

between ELI and change in knee angle from unloaded walking (r = -0.505, r2 = 

25.05, p = 0.032), and ELI and ∆ knee angle excursion (r = -0.589, r2 = 34.69, p 

= 0.010). 
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The difference between ankle angle from unloaded to loaded walking was 

moderately, and sometimes significantly, related to ELI for the Head method with 

3 kg (r = -0.405, r2 = 16.40%, p = 0.095), 6 kg (r = -0.454, r2 = 20.61%, p = 0.058), 

15 kg (r = -0.579, r2 = 33.52%, p = 0.012) and 20 kg (r = -0.479, r2 = 22.94%, p = 

0.44). In the Back/Front method, the ∆ ankle angle and ∆ ankle angle excursion 

were also significantly and moderately related to ELI in the 15 kg condition (r = 

0.627, r2 = 39.31%, p = 0.005 and r = - 0.485, r2 = 23.52%, p =0.042 for ∆ ankle 

angle and ∆ ankle angle excursion, respectively).  

 

 Step parameters and load carriage economy 

There were significant moderate relationships between ELI and the change in 

time in double stance from unloaded to loaded walking with 15 kg in the Head 

condition (r = -0.639, r2 = 40.83%, p = 0.004) and back-loading condition (r = 

0.547, r2 = 29.92%, p = 0.019). Considering the Back/Front method, there were 

moderate relationships between ELI and unloaded to loaded walking step time 

with 9 kg (r = -0.463, r2 = 21.44%, p = 0.053), and ELI and unloaded to loaded 

walking step length with 15 kg (r = 0.458, r2 = 20.98%, p = 0.056).   

 

 

5.3.4. Subjective perceptions 

 Ratings of perceived exertion (RPE) 

RPE scores significantly increased each time the mass of the external load was 

increased (main effect of load mass, p < 0.001, η2 = 0.656). The mean RPE for 

all load mass combined was 10 ± 4, 10 ± 4 and 9 ± 4 for Head, Back and 

Back/Front, respectively. The difference between methods for change in RPE 

scores from unloaded walking was close to statistical significance (main effect of 

load carriage method, p = 0.064, η2 = 0.149).   

 

 Pain/discomfort scores: 

There was no significant difference between load carriage methods for the 

change in pain/discomfort scores from unloaded to loaded walking, although the 

difference between methods was close to statistical significance (main effect of 

load carriage method, p = 0.345, η2 = 0.056). As the load mass increased, the 

change in pain/discomfort from unloaded walking significantly increased (main 
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effect of load mass, p = 0.009, η2 = 0.331). There was also a significant difference 

in pain/discomfort between body segments (main effect of body position, p = 

0.012; η2 = 0.177). Table 17 shows the total pain/discomfort scores for each 

loading condition through the addition of pain/discomfort scores from all body 

areas. Overall pain/discomfort was similar between methods with the exceptions 

of the 15 kg Back/Front condition, which was associated with less overall 

pain/discomfort compared to the other methods (68 ± 13 mm, 81 ± 13 mm and 

89 ± 13 mm for Back/Front, Head and Back, respectively), and the 20 kg Back 

condition, which associated with more overall pain/discomfort than the Head and 

Back/Front methods (148 ± 20 mm, 113 ± 17 mm and 111 ± 17 mm for Back, 

Head and Back/Front, respectively). 

 

Table 17. Mean ± SD Sum total pain/discomfort scores (mm) from all body 

segments combined for each loading condition. 

 0 kg 3 kg 6 kg 9 kg 12 kg 15 kg 20 kg 

Head 0 ± 0 3 ± 1 9 ± 2 19 ± 4 42 ± 7 81 ± 13 113 ± 17 

Back 1 ± 1 3 ± 1 7 ± 2 18 ± 4 40 ± 7 89 ± 13 148 ± 20 

Back/Front 0 ± 0 1 ± 1 5 ± 2 15 ± 4 37 ± 7 68 ± 13 111 ± 17 

 

 

The difference in pain/discomfort scores between body segments is highlighted 

in Table 18, which shows the difference in scores for each body segment 

between methods with the 20 kg load. The largest difference between methods 

occurred at the neck with an increase in pain/discomfort of 21 and 22 mm for the 

Head method compared to the Back and Back/Front methods, respectively. Table 

18 also shows that there were notably lower pain/discomfort scores for 

Back/Front compared to the other methods at the back of the shoulders, the front 

of the shoulders and the upper back with 20 kg. Further, the Head method was 

associated with lower pain/discomfort scores for the lower limbs compared to the 

other methods. 
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Table 18. Mean ± SD RPE and pain/discomfort scores (mm) for the 20kg load for 

each method. Values  

 
Head Back Back/Front 

RPE 13 ± 5 13 ± 5 12 ± 6 

Neck 24 ± 27 3 ± 3 2 ± 2 

Back Shoulders 13 ± 27 19 ± 21 8 ± 15 

Front Shoulders 21 ± 32 17 ± 22 7 ± 14 

Chest 4 ± 10 1 ± 4 2 ± 8 

Upper Back 23 ± 28 17 ± 26 8 ± 17 

Abdomen 4 ± 10 2 ± 6 7 ± 15 

Lower Back 4 ± 12 12 ± 23 12 ± 20 

Hips 2 ± 5 6 ± 22 12 ± 24 

Buttocks 1 ± 5 6 ± 16 5 ± 11 

Quadriceps 3 ± 7 12 ± 23 11 ± 23 

Hamstrings 1 ± 3 12 ± 22 9 ± 21 

Knees 5 ± 13 7 ± 21 7 ± 18 

Calves 2 ± 6 13 ± 25 7 ± 20 

Ankles 1 ± 4 10 ± 23 6 ± 10 

Feet 6 ± 14 12 ± 23 7 ± 15 

Total 113 ± 17 148 ± 20 111 ± 20 

 

 

5.3.5. Individual variation 

 V̇O2 

The magnitude of standard deviations and coefficients of variation indicates the 

variability in V̇O2 across the different methods (Table 19).The mean CV for V̇O2 

between the three unloaded walking trials was 13%. The MLM analysis showed 

a significant difference in estimated variance between participants V̇O2 with the 

Head method (σ2u = 2.34, standard error = 0.81, p = 0.004), the Back method 

(σ2u = 2.26, standard error = 0.79, p = 0.004) and the Back/Front method (σ2u = 

2.00, standard error = 0.67, p = 0.004). The estimated variance in V̇O2 between 

load mass conditions was also significant for Head (σ2e = 0.64, standard error = 

0.08, p < 0.001), Back (σ2e = 0.80, standard error = 0.10, p < 0.001) and 
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Back/Front (σ2e = 0.43, standard error = 0.06, p < 0.001). The ICC values for 

individual differences in V̇O2 as a proportion of the total variance were 0.78, 0.74 

and 0.82 for Head, Back and Back/Front, respectively.  

 

Table 19. Mean, standard deviation (SD) and coefficient of variation (CV) for V̇O2 

(ml.kg-1.min-1) values for each loading method and load mass. 

 
0 kg 3 kg 6 kg 9 kg 12 kg 15 kg 20 kg 

Head        

V̇O2  10.20 10.97 10.71 11.09 11.25 11.73 12.73 

SD 1.50 1.59 1.65 1.73 1.85 1.80 2.09 

CV (%) 14.71 14.49 15.41 15.60 16.44 15.35 16.42 

Back 

V̇O2  10.35 10.34 10.63 10.70 11.39 12.10 12.99 

SD 1.42 1.59 1.63 1.49 1.74 2.09 2.25 

CV (%) 13.72 15.38 15.33 13.93 15.28 17.27 17.32 

Back/Front 

V̇O2  10.42 10.88 11.01 11.19 11.63 11.91 12.79 

SD 1.18 1.47 1.45 1.57 1.74 1.69 1.95 

CV (%) 11.32 13.51 13.17 14.03 14.96 14.19 15.25 

 

 

 ELI 

Table 20 shows the mean, standard deviation and coefficients of variation for ELI 

values with each loading condition. The large magnitude of standard deviations 

and coefficients of variation indicates the large variability in ELI values across the 

different methods. The magnitude of the standard deviation and coefficients of 

variation increased as the mass of the external load increased with all loading 

methods. Of the three methods, the highest deviation and variation values 

occurred in the Head method, with the lowest occurring in the Back/Front method. 

There was significant variance between participants for ELI values with Head (σ2u 

= 0.008, standard error = 0.002, p = 0.006), Back (σ2u = 0.003, standard error = 
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0.001, p = 0.015) and Back/Front (σ2u = 0.002, standard error = 0.001, p = 0.013). 

The estimated variance in ELI between load mass conditions was also significant 

for Head (σ2e = 0.005, standard error = 0.001, p < 0.001), Back (σ2e = 0.004, 

standard error = 0.001, p < 0.001) and Back/Front (σ2e = 0.002, standard error = 

0.001, p < 0.001). The ICC values for individual differences in ELI as a proportion 

of the total variance were 0.63, 0.42 and 0.44 for head-, back- and back/front-

loading, respectively.  

 

Table 20. Mean, standard deviation (SD) and coefficient of variation (CV) for ELI 

values for each loading method and load mass. 

 3 kg 6 kg 9 kg 12 kg 15 kg 20 kg 

Head       

ELI 1.03 0.96 0.95 0.92 0.93 0.94 

SD 0.08 0.08 0.11 0.09 0.15 0.14 

CV (%) 7.61 8.21 11.49 9.90 16.46 15.21 

Back 

ELI 0.95 0.93 0.90 0.92 0.93 0.94 

SD 0.06 0.06 0.07 0.10 0.10 0.11 

CV (%) 6.39 6.88 7.34 10.76 11.17 11.77 

Back/Front 

ELI 0.99 0.96 0.93 0.93 0.91 0.92 

SD 0.06 0.06 0.05 0.05 0.07 0.09 

CV (%) 6.01 6.32 5.16 5.75 7.55 9.72 

 

There was a difference between methods in the load mass with which the majority 

of the 18 participants had their lowest ELI value (Figure 22). In the back-loading 

method, most participants had their lowest ELI value (most economical) with the 

9 kg load (n = 7). In the back/front condition, the majority of participants were 

most economical with the 20 kg load (n = 10). In the head-loading condition, 20 

kg was the most economical load (n = 5) but there was little difference between 

the 20 kg load and 6 kg (n = 4), 12kg (n = 4) and 15kg (n = 3) loads in this 

condition.   
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Figure 22. The load mass where participants had their lowest ELI value (most 

economical) for each method of load carriage. 

 

Considering the most economical method for each load mass, the majority of 

participants had their best economy for 3 kg (n = 12), 9 kg (n = 9) and 12 kg (n = 

7) with the Back method. For 6 kg, eight participants had their best economy with 

the Head method and eight participants had their best economy with the Back 

method. For 15 kg and 20 kg, the majority of participants had their best economy 

with the Head method (n = 10 and n = 7 for 15 kg and 20 kg, respectively). 

 

Figure 23 shows the ELI values for each participant in each method across all 

load mass (pooled load mass). With load mass pooled, seven participants had 

their lowest ELI value with the Head method, six had their lowest ELI value with 

the Back method and five had their lowest ELI with the Back/Front method.  
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Figure 23. Mean ± SD ELI values for each participant in each condition across 

loads of 3 - 20 kg. 

 

Figure 24 shows that for each of the loading methods, most participants had their 

highest ELI values (least economical) with 3 kg. Nine participants had their least 

economical bout of load carriage (highest ELI) with the Head method, four had 

their least economical bout with the Back method and five were least economical 

with the Back/Front method.  
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Figure 24. The load mass where participants had their largest ELI (least 

economical) value for each method of load carriage. 

 

 

 Gross metabolic rate 

Table 21 shows the mean, standard deviation and coefficients of variation for the 

metabolic rate across all loading conditions. The variance between participants 

for metabolic rate was significant with the Head method (σ2u = 0.25, standard 

error = 0.09, p < 0.01), the Back method (σ2u = 0.25, standard error = 0.01, p < 

0.01) and the Back/Front method (σ2u = 0.21, standard error = 0.07, p < 0.01). 

Between load mass conditions, the estimated variance in metabolic rate was also 

significant for Head (σ2e = 0.08, standard error = 0.01, p < 0.01), Back (σ2e = 0.09, 

standard error = 0.01, p < 0.01) and Back/Front (σ2e = 0.05, standard error = 0.01, 

p < 0.01). The ICC values for individual differences in metabolic rate were 0.77, 

0.73 and 0.80 for head-, back- and back/front-loading, respectively.  
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Table 21. Mean, standard deviation (SD) and coefficient of variation (CV) values 

for metabolic rate (W/kg) with each load method and mass combination. 

 
0 kg 3 kg 6 kg 9 kg 12 kg 15 kg 20 kg 

Head        

Metabolic rate (W/kg) 3.44 3.70 3.64 3.76 3.82 3.99 4.34 

SD 0.48 0.54 0.52 0.57 0.62 0.60 0.69 

CV (%) 14.06 14.55 14.35 15.26 16.22 14.99 15.79 

Back 
Metabolic rate (W/kg) 3.51 3.51 3.61 3.65 3.88 4.12 4.44 

SD 0.48 0.55 0.56 0.50 0.57 0.69 0.75 

CV (%) 13.67 15.54 15.55 13.63 14.60 16.74 16.87 

Back/Front 

Metabolic cost (W/kg) 3.50 3.68 3.71 3.77 3.95 4.03 4.33 

SD 0.39 0.47 0.48 0.52 0.56 0.55 0.63 

CV (%) 11.03 12.90 12.93 13.67 14.25 13.58 14.53 
 

 

 Kinematic measures 

The range of percentage change for kinematic variables from unloaded walking 

are presented in Table 22 and Table 23. For step parameters (Table 22), the 

largest range occurred for the change in double stance time from unloaded to 

loaded walking with all methods. The largest range for change in double stance 

time from unloaded walking occurred in the Back 20 kg (+39% to +3%). Table 23 

shows that the largest range of percentage change for joint angles from unloaded 

walking. The largest ranges occurred in for the trunk for the Back 12kg (+18% to 

-5%), 15kg (+20% to -6%) and 20kg (24% to -8%) conditions.
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Table 22. Range of percentage change from unloaded walking for step length, cadence, stance time, double stance time and single 

stance time. 

 3 kg 6 kg 9 kg 12 kg 15 kg 20 kg 

Head       

Step length (m) +4% to -8% +9% to -8% +12% to -9% +10% to -8% +14% to -6% +10% to -7% 

Cadence (steps.s-1) +9% to -4% +9% to -8% +9% to -10% +9% to -9% +7% to -13% +8% to -9% 

Step time (s) +4% to -8% +9% to -8% +12% to -9% +10% to -8% +15% to -6% +10% to -7% 

Double stance time (s) +13% to -11% +11% to -9% +15% to -7% +15% to -11% +15% to -4% +18% to -3% 

Single stance time (s) +7% to -4% +10% to -10% +11% to -11% +9% to -13% +13% to -16% +8% to -12% 

Back 

Step length (m) +6% to -5% +5% to -6% +12% to -3% +6% to -1% +7% to -3% +10% to -4% 

Cadence (steps.s-1) +5% to -6% +6% to -4% +3% to -11% +2% to -6% +3% to -7% +4% to -9% 

Step time (s) +6% to -5% +5% to -6% +12% to -3% +6% to -1% +7% to -3% +10% to -4% 

Double stance time (s) +14% to -8% +15% to -5% +23% to -5% +29% to -4% +29% to 0% +39% to +3% 

Single stance time (s) +9% to -7% +6% to -8% +9% to -6% +4% to -8% +5% to -11% +5% to -11% 

Back/front 

Step length (m) +6% to -7% +9% to -5% +4% to -5% +6% to -7% +5% to -6% +8% to -7% 

Cadence (steps.s-1) +8% to -6% +6% to -8% +5% to -4% +8% to -6% +6% to -4% +8% to -8% 

Step time (s) +6% to -7% +9% to -5% +4% to -5% +6% to -7% +5% to -6% +8% to -8% 

Double stance time (s) +8% to -6% +15% to -9% +8% to -8% +11% to -4% +16% to 0% +22% to +1% 

Single stance time (s) +13% to -10% +10% to -7% +10% to -8% +5% to -11% +6% to -13% +6% to -12% 
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Table 23. Range of percentage change from unloaded walking for trunk, hip, knee and ankle angle during the stance phase. 

 
3 kg 6 kg 9 kg 12 kg 15 kg 20 kg 

Head  
   

 
 

Trunk angle (º) +4% to -8% +3% to -7% +3% to -9% +3% to -12% +2% to -10% -1% to -10% 

Hip angle (º) +5% to -3% +3% to -2% +4% to -3% +6% to -2% +5% to -2% +4% to -2% 

Knee angle (º) +2% to -6% +1% to -9% +2% to -9% +3% to -11% +3% to -8% -1% to -8% 

Ankle angle (º) +3% to -3% +4% to -4% +4% to -6% +3% to -6% +2% to -6% +5% to -6% 
 

Back 

Trunk angle (º) +5% to -1% +9% to -1% +12% to -3% +18% to -5% +20% to -6% +24% to -8% 

Hip angle (º) +1% to -6% +5% to -5% -2% to -7% -3% to -9% -4% to -10% -5% to -13% 

Knee angle (º) +3% to -5% +9% to -3% +1% to -4% +3% to -5% +2% to -4% +2% to -7% 

Ankle angle (º) +3% to -2% +18% to -3% +6% to -4% +4% to -3% +5% to -5% +5% to -5% 
 

Back/Front 

Trunk angle (º) +8% to -1% +6% to -2% +7% to -3% +8% to -4% +8% to -1% +10% to +1% 

Hip angle (º) +2% to -5% +1% to -5% +1% to -5% +2% to -6% +1% to -7% +1% to -8% 

Knee angle (º) +1% to -1% 0% to -3% +1% to -4% +3% to -3% +1% to -5% +2% to -4% 

Ankle angle (º) +4% to -4% +2% to -3% +2% to -3% +15% to -3% +2% to -5% +2% to -3% 
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5.3.6. Summary of the results 

 

Analysis of group data: 

 There was no significant difference in ELI values between head- (0.95 ± 

0.11 with load mass pooled), back- (0.93 ± 0.08 with load mass pooled), 

and back/front-loading (0.94 ± 0.06 with load mass pooled) (p = 0.483, 

η2 = 0.042; Figure 14).  

 There was a significant difference between the three loading methods 

for the mean joint angle of the trunk (p < 0.001, η2 = 0.847) and hip (p < 

0.001, η2 = 0.754) across the stance phase. Forward lean increased from 

3 to 20 kg for back- (10.7°) and back/front-loading (2.4°), but decreased 

for head-loading (-2.2°) (Figure 17). 

 There was also a significant difference between the three loading 

methods for joint angle excursion from heel-strike to toe-off at the trunk 

(p = 0.021, η2 = 0.203), hip (p < 0.001, η2 = 0.750), and knee (p < 0.001, 

η2 = 0.750). The largest excursions from unloaded walking occurred with 

20 kg in the back-loading method which decreased trunk angle excursion 

(-3.2 ± 0.9°) and increased hip (13.2 ± 5.2°) and knee (9.8 ± 8.1°) angle 

excursion (Figure 18 and Figure 19). 

 There were large effect sizes, but no statistically significant difference, 

between loading methods for the change in step length (p = 0.059, η2 = 

0.153), cadence (p = 0.061, η2 = 0.152) or step time (p = 0.059, η2 = 

0.153) from unloaded walking. The change in double support time was 

significantly different between methods (p = 0.018, η2 = 0.210) (Figure 

20 and Figure 21). The largest change in spatiotemporal variables from 

unloaded walking occurred with the back-loading method. For this 

loading method, with load mass pooled, there was increased step length 

(1.4%), step time (1.4%) and double stance time (7.6%) from unloaded 

walking, while cadence decreased (-1.3%).  

 There were no moderate (r = 0.4 – 0.7) or strong relationships (r > 0.7) 

between ELI values and stature, body mass or BMI. For back-loading 

with 20 kg, ELI significantly correlated with the Δ trunk angle excursion 

(r = -0.507, p = 0.032), the Δ hip angle excursion (r = -0.773, p = 0.001), 
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the Δ knee angle (r = -0.505, p = 0.032) and the Δ knee angle excursion 

r = -0.589, p = 0.010) from unloaded walking. For back/front-loading with 

9 kg, there was a moderate relationship between ELI and ∆ trunk forward 

lean (r = -0.491, p = 0.039) and the ∆ step time (r = -0.463, p = 0.053) 

from unloaded walking. 

 There was no significant difference in pain/discomfort scores between 

loading methods. However, there was a notably larger total 

pain/discomfort (sum of all body segments) for back-loading (148 ± 20 

mm) compared to the other methods (Head = 113 ± 17mm; Back/Front 

= 111 ± 17mm) with 20 kg (Table 18). 

 

Analysis of inter-individual variation: 

 The largest CV for V̇O2 occurred with the 20 kg back-loading condition 

(17%). The largest CV’s for the head and back/front methods occurred 

with 12 kg (16%) and 20 kg (15%), respectively. Inter-individual 

differences accounted for the largest proportion of the total variance for 

V̇O2, with ICC values of 0.78, 0.74 and 0.82 for head-, back-, and 

back/front-loading, respectively. 

 The CV’s for ELI were larger for the head-loading conditions compared 

to the other two methods with largest magnitudes of 16%, 12% and 10% 

for head-, back-, and back/front-loading, respectively (Table 21). The 

ICC values for individual differences in ELI as a proportion of the total 

variance were 0.63, 0.42 and 0.44 for head-, back- and back/front-

loading, respectively. 

 For back-loading, most participants had their lowest ELI with 9 kg (n = 

7). For back/front-loading, most participants had their lowest ELI with 20 

kg (n = 10). For head-loading, most participants had their lowest ELI with 

20 kg (n = 5) (Figure 22). 

 Considering spatiotemporal variables, the largest range for the 

percentage change from unloaded walking occurred for double stance 

time (3 – 39% for back-loading with 20 kg) (Table 22). Trunk angle had 

the largest range of response between individuals for the joint angles 

measured (Table 23). The largest range for the change in trunk angle 
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from unloaded walking was +24% to – 8% for the back-loading 20 kg 

condition. 
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5.4. Discussion 

 

The aims of this study were: 

1. To assess the economy and sagittal plane kinematics associated with 

three methods of load carriage that have all been reported as 

economical, but all constrain posture differently.  

2. To assess the amount of inter-individual variation in economy and 

sagittal plane kinematics associated with each method of load carriage. 

 

This discussion is split into two parts. The first part is focused on the group 

data for load carriage economy and the sagittal plane walking gait kinematics 

associated with back-, back/front- and head-loading (section 5.4.1). The 

second part is focused on the individual variation in economy and walking gait 

kinematics for the three methods of load carriage (section 5.4.2). 

 

5.4.1. Group data for load carriage economy and walking gait 

kinematics 

The main findings of the group data in the present study were that load 

carriage economy was not significantly different between back-, back/front- 

and head-loading with loads ranging from 3 – 20 kg (Figure 14), despite there 

being significant differences in sagittal plane kinematics between the three 

methods.  

 

The pattern of response for load carriage economy was similar between ELI 

(Figure 14) and Cw (Figure 15). Cw was calculated to allow for direct 

comparisons between the findings of this study and those of Abe et al. (2004), 

who reported improved economy with 9 kg and 12 kg carried on the back when 

walking at speeds of 2.4 – 3.6 km.h-1. The Cw results for back-loading in this 

study are similar to those of Abe et al. (2004), with a decrease of -0.02          

ml.kg-1.metre-1 from unloaded to loaded walking when 9 kg was carried on the 

back. As such, the findings of this study support the theory that back-loading 

is more economical with moderate loads of 9-12 kg than either lighter or 

heavier loads. In line with the findings of Lloyd and Cooke (2000b), the lowest 

values for both Cw and ELI in the back/front-loading method occurred at a 
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heavier load than in the back-loading method. Therefore, although there were 

no significant differences between back- and back/front-loading, the pattern of 

response to increasing load mass with these methods lends some support to 

the suggestion that back-loading is economical with relatively light (up to 12 

kg), but not heavy loads, and with heavy loads, back/front-loading appears to 

be more economical than back-loading. The economy data in this study also 

show that head-loading was as economical as both back-loading and 

combined back/front-loading. The head-loading data reported here are 

consistent with the ELI values reported by Lloyd et al. (2010c) and previous 

studies that have investigated the metabolic cost of head-loading (Lloyd et al., 

2010b, Soule and Goldman, 1969, Nag and Sen, 1979). 

 

Female volunteers with head-loading experience were recruited so that direct 

comparisons could be made with the research of Maloiy et al. (1986) and 

Charteris et al. (1989), both of which reported that African women with several 

years of head-loading experience were able to carry loads of up to 20% body 

mass with no additional energy expenditure above that required for unloaded 

walking. Lloyd et al. (2010c) showed that relative load carriage economy is 

independent of experience, with a similar percentage of experienced and 

inexperienced head-loaders  being more economical at carrying a load on the 

head than on the back (38.5% vs 36.4% for experienced and inexperienced, 

respectively). As such, it is unlikely that experience influenced economy in the 

present study, although this was not controlled for. Increasing the mass of the 

load resulted in significantly increased V̇O2 with all methods (Figure 13). 

Therefore, the mean V̇O2 data presented here do not support the existence of 

an energy-saving phenomenon for experienced head-loaders as suggested 

by Maloiy et al. (1986) and Charteris et al. (1989). The difference in findings 

between this study and those of Maloiy et al. (1986) and Charteris et al. (1989) 

is likely to be explained by differences in sample size. The findings of Maloiy 

et al. (1986) and Charteris et al. (1989) were based on samples of five women 

and six women, respectively. Lloyd et al. (2010c) showed that, with a larger 

sample of participants (n = 24), it is possible to select a subset of women who 

can achieve remarkable levels of head-loading economy, similar to those 

reported in earlier studies (Maloiy et al., 1986, Charteris et al., 1989), despite 
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mean group data showing that the energy cost of head-loading rises in 

proportion to mass of the load carried. Furthermore, Maloiy et al. (1986) The 

findings of this study support those of Lloyd et al. (2010c) with some women 

demonstrating better economy when head-loading, while others were more 

economical at back-loading or back/front-loading (Figure 23), despite there 

being no difference in economy between methods when comparing the mean 

data. 

 

Trunk forward lean increased from unloaded walking in the back and 

back/front methods (Figure 17), with a considerably larger increase for back-

loading compared to back/front-loading (8.6 ± 2.5° and 3.5 ± 2.7° when all load 

masses are combined for back-loading and back/front-loading, respectively). 

Figure 18 shows a load dependent increase in forward lean in the back-loading 

condition, with forward lean increasing each time the external mass increased. 

An increase in ∆ trunk forward lean with back-loading compared to evenly 

distributing the load around the trunk is consistent with previous research 

comparing backpacks and back/front packs (Kinoshita, 1985, Lloyd and 

Cooke, 2011). The addition of external mass to the back will have resulted in 

a greater posterior displacement of the COM of the whole system compared 

to the back/front condition. Therefore, the increased trunk forward lean when 

back-loading is likely to have occurred to counter this posterior shift in an 

attempt to restore the COM of the combined system to the original COM of the 

body when walking unloaded to improve postural stability (Kinoshita, 1985, 

Martin and Nelson, 1986, Goh et al., 1998, Harman et al., 2001).  

 

There is a paucity of research examining the postural adjustments associated 

with transporting a load on the head. The findings of this study show that head-

loading causes a decrease in trunk forward lean from unloaded walking. This 

is likely to be a consequence of the need to balance the load on top of the 

head requiring individuals to adopt a more upright posture. It was expected 

that smaller perturbations from the unloaded condition would be associated 

with an improved economy. However, larger increases in ∆ trunk forward lean 

with the back-loading method were not accompanied by a higher energy 

expenditure compared to the other conditions. Given the lack of association 
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between trunk forward lean and load carriage economy in this study, it seems 

unlikely that forward lean alone is directly responsible for any differences in 

load carriage economy. This is supported by research that has shown 

relatively low absolute levels of activity in postural muscles associated with 

forward lean (Motmans et al., 2006, Al-Khabbaz et al., 2008) and suggests 

that leaning forward to counteract the posterior shift in the position of the COM 

when back-loading is not a sole determinant for economy with this method of 

load carriage. 

 

The ∆ trunk angle excursion from unloaded walking during single foot contact 

(heel-strike to toe-off) decreased in all conditions (Figure 18). A decreased 

trunk angle excursion in the back-loading condition was associated with a 

concomitant increase in trunk flexion angle each time mass was added, which 

has been a consistent finding in the literature (Harman et al., 2000, Harman et 

al., 2001, Attwells et al., 2006, Liew et al., 2016, Yen et al., 2011). With 

back/front-loading, the trunk angle excursion appeared to be greater than 

back-loading with 12, 15 and 20 kg loads. Lloyd and Cooke (2000a) 

demonstrated a requirement for lower peak propulsive force with a back/front 

load compared to back-loading, which they suggested could represent an 

energy saving mechanism with back/front-loading, caused by increased 

momentum associated with a greater joint angle excursion in the trunk. 

However, in this study, the relationships between ∆ trunk angle excursion and 

ELI for the back/front method with heavier load masses (12, 15 and 20 kg) 

were weak. In the head-loading condition, trunk angle excursions were largest 

for most of the loads. This was a surprising finding given that head-loading 

requires the load to be balanced on top of the head, and it was expected that 

this would constrain posture in an upright position. Arm movement was not 

controlled in the present study, with some participants using one or both arms 

to support the load on the head, while others walked without supporting the 

load with arms. At first, it was thought that supporting the load with the hands 

might allow for a greater trunk angle excursion when head-loading. However, 

there was only a moderate relationship between how the load was supported 

on the head (no hands, one hand or both hands) and trunk angle excursion (r 
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= -0.465, p = 0.052), and a weak relationship between how the load was 

supported on the head and ELI (r = 0.316, p = 0.202).  

 

Given the significant differences found in trunk movement between methods, 

it is not unexpected that sagittal plane hip angle and sagittal plane hip angle 

excursion were also significantly different between methods. There was a 

significant difference between methods for both ∆ hip and ∆ knee angle 

excursion from unloaded walking. For both variables, the largest change from 

unloaded walking occurred in the 20 kg back-loading condition (13.2° and 9.8° 

for ∆ hip and ∆ knee angle excursion, respectively). The findings from a meta-

analysis by Liew et al. (2016) suggest that back-loading is associated with 

increased sagittal plane hip and ankle angle excursion, with no change in knee 

angle excursion. In contrast, an increase in knee angle excursion was found 

in the present study. Previous studies have reported both increased (Harman 

et al., 2000, Attwells et al., 2006) and unchanged (Majumdar et al., 2010) knee 

flexion angles  in response to back-loading. These equivocal findings are 

likely, in part, to be caused by differences in study design with differences in 

walking speed and load mass employed between studies. Individual variation 

in loaded walking gait kinematics could also be partly responsible for the 

equivocal findings of previous studies, particularly given the large standard 

deviations that can be seen in this study (Figure 19). 

 

Back-loading was associated with a small increase in step length (and 

concomitant decrease in cadence), while back/front-loading was associated 

with a very small decrease in step length at a set walking speed of 3 km.h-1. 

Similarly, previous studies have indicated that back- and back/front-loading 

only produce small changes in stride/step length. Back-loading has been the 

most studied method, with some reporting a slight shortening (Martin and 

Nelson, 1986, LaFiandra et al., 2003b), no change (Wood and Orloff, 2007, 

Singh and Koh, 2009) or a slight lengthening of stride length (Lloyd and Cooke, 

2011). These equivocal findings could be caused by individual variation in 

response to load carriage, with Lloyd and Cooke (2011) reporting a change in 

stride length ranging from +12% to -6% during level walking with 25.6 kg using 

back- and back/front-loading. In the present study, the change in step length 
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from unloaded walking with 20 kg ranged from +10% to -4% for back-loading, 

+10% to -7% for head-loading and +8% to -7% for back/front-loading (Table 

22). Given that both increases and decreases in stride length have been 

associated with increases in energy expenditure (Högberg, 1952, Heinert et 

al., 1988, Cotes and Meade, 1960, Cavanagh and Williams, 1982), Lloyd and 

Cooke (2011) speculated that fairly large perturbations would have some 

impact on load carriage economy. However, they found no strong relationships 

between the change in stride length and economy with load carriage and 

concluded that perturbations in stride length are insufficient alone to explain 

differences in load carriage economy between methods. The findings of this 

study add further support to the suggestion that changes in step/stride length 

are insufficient in themselves to explain individual differences in economy 

between back-, back/front- and head-loading.  

 

There was no difference in overall subjective perceptions between head-, 

back- and back/front-loading. The subjective perception results for back- and 

head-loading are broadly consistent with those reported by Lloyd et al. (2010d) 

who also found no significant difference in terms of overall RPE or 

pain/discomfort scores. However, again similar to (Lloyd et al., 2010d), the 

present study did find significant differences between the loading methods for 

the scores of each body segment. In line with the findings of Lloyd et al. 

(2010d), head-loading was associated with larger pain/discomfort at the neck 

compared to the other methods, while back-loading was associated with larger 

pain/discomfort for the shoulders. Table 17 shows the general pattern of 

response for increasing pain/discomfort with increasing load, which is also a 

consistent finding in the literature (Mackie and Legg, 2008, Lloyd et al., 

2010d). One particularly interesting finding in the subjective perception data 

was the lower pain/discomfort at the shoulders for back/front-loading with 20 

kg compared to the head-loading method. It’s possible that, for head-loading, 

using the arms to balance the load on the head led to a large magnitude of 

discomfort at the shoulders, which was equal to that of the pain/discomfort 

recorded for the back-loading condition with 20 kg. All subjective perception 

data presented here exhibits a high degree of variability as indicated by the 

standard deviations. This is likely to be due to several factors including 
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individual pain thresholds as well as individual differences in interpreting the 

VAS scales. 

 

 

5.4.2. Individual variation in load carriage economy and walking gait 

kinematics 

Although there was no difference in load carriage economy between methods 

when comparing the group data, the standard deviations and CV’s in Table 20 

indicate that there was large inter-individual variation. The highest coefficients 

of variation were 16%, 12% and 10% for head-, back- and back/front-loading, 

respectively. The study in Chapter 4 showed that the day-day reliability (CV) 

for ELI when walking with a rucksack at 3 km.h-1 is 4% and 3% for 7 kg and 20 

kg, respectively. As such, the variation in load carriage economy found in this 

study for back-loading cannot be explained by the day-to-day variation in an 

individual’s economy when carrying a load. As such, the individual variation in 

back-loading economy found in this study cannot be explained by day-to-day 

variation. This is also likely to be the case for both back/front- and head-

loading, particularly given the large coefficients of variation for V̇O2 for both 

back/front-loading (highest CV = 15%) and head-loading (highest CV = 16%) 

compared to the day-to-day variation of ~ 5 - 9% previously reported for 

unloaded walking (de Mendonça and Pereira, 2008, Wergel‐Kolmert and 

Wohlfart, 1999, Blessinger et al., 2009, Darter et al., 2013). Furthermore, the 

CV in V̇O2 (Table 19) and ELI (Table 20) increased as the mass of the load 

increased with all methods, indicating that inter-individual variation in load 

carriage economy increased as the mass of the load is increased. To account 

for individual differences in substrate oxidation, the metabolic rate (metabolic 

power per kg body mass) was also measured. Table 21 shows that the group 

means for metabolic rate displayed a similar pattern of response to the V̇O2 

data, with the metabolic rate tending to increase as the mass of the load 

increased in all loading methods. However, there was little difference in the 

metabolic rate between the three methods. The CV’s for metabolic cost were 

similar to those for the V̇O2 indicating that the variability in metabolic costs was 

not related to differences in substrate utilisation. 
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Only one participant was most economical with the same load mass across all 

loading methods, which suggests that economy with one method does not 

predict economy with another. Figure 22 shows that in the back/front condition, 

the majority of participant’s were most economical with the 20 kg load (n = 10). 

This finding offers some support to studies that have found back/front-loading 

to be more economical than back-loading when carrying heavier loads (Datta 

and Ramanathan, 1971, Legg and Mahanty, 1985, Lloyd and Cooke, 2000b, 

Lloyd and Cooke, 2011). In the back-loading condition, the majority of 

participants were most economical when carrying the 9 kg load (n = 7). Abe et 

al. (2004) reported that a load of 9 kg (~15% body mass for their participants) 

carried on the back yielded a better economy compared to loads of 6 and 12 

kg. However, unlike Abe et al. (2004) who selected participants based on their 

physical characteristics (average body mass in Abe et al. (2004) was 62.1 ± 

1.2 kg), the participants in the present study varied in body mass, with a range 

of 47.9 – 72.6 kg for individuals who were most economical with 9 kg carried 

on the back. Therefore, the good economy associated with the 9 kg load does 

not appear to be a consequence of the load representing a particular 

percentage of body mass. This also appears to be the case for the economy 

associated with the 20 kg load in the back/front-loading condition, with the 

body mass of the participant’s most economical with this load ranging from 

48.8 – 85.4 kg.  

 

The lack of moderate or strong relationships between ELI values and body 

mass, stature or BMI indicates that individual differences in physical 

characteristics were not related to the individual differences in relative load 

carriage economy. This data is in line with the findings of Lloyd et al. (2010a) 

who showed that ELI is independent of body composition and the magnitude 

of the external load carried. The lack of significant correlation between ELI and 

physical characteristics is also likely to explain the difference in interclass 

correlation coefficients between the ELI data and both the V̇O2 and metabolic 

rate data. The intraclass correlation coefficients from the MLM’s indicate that 

variance between individuals represented the largest proportion of the total 

variance in the V̇O2 (ICC = 0.78, 0.74 and 0.82 for head-, back- and back/front-

loading, respectively) and metabolic rate data (ICC = 0.77, 0.73 and 0.80 for 
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head-, back- and back/front-loading, respectively). The high proportion of 

variance assigned to individual differences in V̇O2 and metabolic rate is likely, 

in part, to be a result of individual differences in body mass (CV = 17.6%). 

Relative to body mass, the 20 kg load condition represented 23.4% of heaviest 

participant and 41.5% of the lightest participant, with an average of 33.6% ± 

5.6%. It is well established that the energy cost of load carriage increases 

linearly as the mass of the load increases with both absolute and relative loads 

(Quesada et al., 2000, Bastien et al., 2005, Christie and Scott, 2005). 

Therefore, differences in the relative loads between participants is likely to 

account for some of the large variance in V̇O2 found in this study.  

 

There was an overall trend for the standard deviation and coefficients of 

variation for relative load carriage economy to increase as the mass of the 

external load increased, with all loading methods. This finding suggests that 

the magnitude of individual variation in load carriage economy is dependent 

on the mass of the load. It is possible that the magnitude of walking gait 

perturbations, as a consequence of increased load mass, varies between 

individuals, which could then lead to an increased variance in relative load 

carriage economy with heavier loads.  

 

There was a large amount of individual variation present in all of the sagittal 

plane kinematic data, which is indicated by the large standard deviations and 

large range of percentage change from unloaded walking. Yet, the lack of 

strong relationships between ELI and ∆ joint angles, ∆ joint angle excursions 

and ∆ step parameters from unloaded walking indicate that none of these 

variables alone were associated with determining individual load carriage 

economy. Given the variability in all kinematic variables, it’s possible that 

several factors might align in individuals to influence economy rather than 

there be a single set of generalizable factors applicable to all individuals for 

each method.  

 

A slow speed of 3 km.h-1 was used in this study to enable comparisons with 

previous research that have reported an energy saving phenomenon with load 

carried at slow walking speeds (Maloiy et al., 1986, Lloyd and Cooke, 2000b, 
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Abe et al., 2004). However, not permitting participants to walk at a self-

selected speed might have perturbed the individuals normal gait pattern 

(Martin and Morgan, 1992) and could have contributed to individual variation. 

The results obtained from controlled laboratory conditions are valuable, but it 

is important to note that real life load carriage tasks are often performed on 

uneven terrain at non-constant, self-selected speeds. This may cause 

additional metabolic costs and biomechanical challenges compared to the 

laboratory environment and, as such, is a limitation of this research and all 

laboratory-based load carriage research.  

 

 

5.5. Conclusion 

 

Based on the mean data presented here, there appears to be no significant 

difference in load carriage economy between back, back/front and head-

loading loading, despite significant differences between the methods in the 

change in sagittal plane kinematics from unloaded to loaded walking. There 

was, however, a considerable amount of individual variation in both load 

carriage economy and sagittal plane kinematics. This study showed no strong 

correlations between alterations in sagittal plane kinematics caused by load 

carriage and ELI values. It’s likely that biomechanical factors combine to 

influence load carriage economy rather than there be a single set of 

generalizable factors, applicable to all individuals for each method.  

 

This chapter highlights the need for a framework to identify and analyse the 

key biomechanical factors associated with individual load carriage economy. 

As a single sagittal plane kinematic factor does not appear to determine 

individual load carriage economy, it is important to understand how 

mechanical factors interact during load carriage for different individuals. 

Identifying individual differences in these interactions with different methods of 

load carriage could be important in discovering the individual determinants of 

load carriage economy, particularly as modifications in walking mechanics 

have been shown to influence the energy cost of locomotion (e.g. Cavanagh 

and Williams, 1982, Donelan et al., 2001). 
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Chapter 6. The development of a 

deterministic model to identify the 

biomechanical determinants of load 

carriage economy 
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6.1. Introduction 

 

Chapter 5 highlighted the need for a framework to identify and analyse the key 

biomechanical factors associated with individual load carriage economy. 

Theoretical and statistical modelling techniques have been used to identify key 

biomechanical parameters in performance-related research (Chow and 

Knudson, 2011, Lees, 2002, Glazier et al., 2006). Systematic models have 

been used in qualitative analysis to identify the key characteristic of a skill (e.g. 

Hay and Reid, 1988, Knudson and Morrison, 2002). The most widely used of 

these is the deterministic model (Hay and Reid, 1988), also known as 

hierarchical model (Bartlett, 2014) or a factors-results model (Adrian and 

Cooper, 1995). This type of model was originally introduced to provide a 

theoretical basis for identifying the mechanical aspects of athletic performance 

(Hay and Reid, 1988). Hay and Reid (1988) outlined four basic steps: 

i. The development of a model (block diagram) showing the 

relationships between the result and the factors that produce the 

outcome measure (Figure 25). 

ii. Observation of performance. 

iii. Evaluation of the relative importance of the factors that predict the 

outcome measure. 

iv. Instruction of the performer in accord with the conclusions reached 

in the course of the analysis. 

The principles that dictate the structure of deterministic models have since 

been described by many biomechanists (Lees, 2002, Glazier et al., 2006, 

Chow and Knudson, 2011). The key features that should be adhered to in the 

creation of a deterministic model are that the top level should be the primary 

performance outcome measure, it should only incorporate mechanical factors 

and each factor in the model should be determined by the factors that appear 

in the level directly below it (Figure 25).  
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Figure 25. The deterministic model proposed by Hay and Reid (adapted from 

Hay and Reid, 1988) 

 

Glazier and Robins (2012) suggested that deterministic models are models of 

performance and not models of technique. Therefore, they can be used to 

identify factors that are relevant to performance but not necessarily technique. 

In other words, deterministic models provide information on the performance 

parameters that are important but not how the performance parameters are 

generated. Indeed, it is possible to have alternative techniques that can lead 

to the same performance outcome. However, the conclusions of Glazier and 

Robins (2012) seem limited because if a deterministic model defines the 

outcome variables and how they relate to each other row by row, then it would 

be possible to assess variations in both technique and performance (Hay and 

Reid, 1988, Lees, 2002).  

 

An advantage of deterministic models is that they can be used to provide a 

theoretical basis for statistical modelling (Bartlett, 2014, Chow and Knudson, 

2011). Partial correlations and multiple regression analysis can be used to 

define factors that are meaningful in determining the outcome variable. 

However, a concern when using this method for statistical modelling is that a 

large sample of participants and trials is required to achieve an acceptable 

power value, particularly for well-developed models with many levels of factors 

(Chow and Knudson, 2011). For example, Hay et al. (1981) recruited 194 

participants to identify the factors that determine vertical jumping. Recruiting a 

similarly large number of participants is unfeasible for the research in this 
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thesis given the repeated measures study designs and walking durations 

required to assess economy.  

 

Several authors have developed deterministic models to provide a theoretical 

basis for identifying the mechanical aspects of a movement, without examining 

the strength of relationships between factors in the model (e.g. Sanders and 

Kendal, 1992, Ham et al., 2007, Paradisis and Cooke, 2001, Hay and Reid, 

1988). This approach uses the deterministic model as a framework to 

understand and quantitatively analyse factors relating to performance and 

technique. A rigorously developed deterministic model enables performance 

parameters to be selected and justified based on a theoretical rationale 

(Glazier et al., 2006, Chow and Knudson, 2011). Therefore, the use of a 

hierarchical modelling approach could be considered superior to randomly 

selecting performance parameters because the model helps to ensure all 

important variables are included while any trivial variables are excluded. 

 

Deterministic models have been developed for a range of activities including 

sprinting (Hay and Reid, 1988, Hunter et al., 2004, Paradisis and Cooke, 

2001), long jump (Hay, 1993, Chow and Hay, 2005, Hay, 1986), vertical jump 

(Hay et al., 1981), swimming (Guimaraes and Hay, 1985, McLean et al., 2000, 

Pai et al., 1984), and the discus throw (Leigh et al., 2008). However, no 

deterministic models have been published for walking or load carriage 

activities.  

 

6.1.1. Aims 

The aim of the work in the chapter was to develop a theoretical deterministic 

model that can be used as a framework to analyse gait alterations from 

unloaded walking as a consequence of carrying additional load in different 

load carriage methods. From this, the principle mechanics of loaded walking 

could be identified and tested in the subsequent chapter.  
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6.2. Existing theories for reducing the metabolic cost associated 

with human walking 

 

Before developing a model for load carriage economy, it is useful to examine 

existing theories for reducing the metabolic cost of the human walking gait. 

There are two longstanding predominant theories for minimising the energy 

cost of walking. These theories are termed the six determinants of gait and the 

inverted pendulum (Figure 26). The six major determinants in normal gait are 

kinematic factors (pelvic rotation, pelvic tilt, knee flexion in the stance phase, 

foot mechanics, knee mechanics and lateral displacement of the pelvis) 

proposed to minimise the mechanical energy cost of locomotion by reducing 

the vertical displacement of the COM of the body (Inman and Eberhart, 1953). 

This is based on the premise that larger vertical displacements of the COM 

require a greater energetic cost to elevate the COM over the stance leg. In 

contrast, the inverted pendulum theory states that mechanical energy is 

reduced if the stance leg is kept relatively straight during the stance phase, 

acting like a pendulum (Cavagna et al., 1977). The inverted pendulum motion 

provides a mechanical energy exchange between potential and kinetic forms 

that is proposed to reduce the metabolic energy cost of walking. 

 

 

Figure 26. The two predominant theories of minimising the energy cost of 

human walking. (a) The six determinates of gait (Inman and Eberhart, 1953). 

(b) The inverted pendulum theory (Cavagna et al., 1977). Figure adopted from 

(Kuo, 2007). 
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The six determinants of gait have been included in a number of scientific 

textbooks (Rose and Gamble, 1994, Whittle, 2014, Perry and Burnfield, 1992). 

Yet, Gordon et al. (2003), Ortega and Farley (2005) and Wurdeman et al. 

(2017) all showed that modifying the human gait to reduce the vertical 

displacement of the COM increases the metabolic cost of walking. 

Furthermore, knee flexion during the  stance phase (Gard and Childress, 

1999), pelvic rotation about the vertical axis (Kerrigan et al., 2001) and pelvic 

tilt (Gard and Childress, 1997) might only provide a negligible contribution to 

reducing the vertical displacement of the COM.  

 

The inverted pendulum theory might better explain the human gait. As humans 

walk, the body rises and falls in each stride, gaining and losing potential 

energy. They body also speeds up and slows down in each stride, gaining and 

losing kinetic energy (Alexander, 1996). This results in an inverted pendulum 

like motion of the body’s COM. The theory predicts that the inverted pendulum 

motion of the COM will act conservatively, with an exchange between potential 

and kinetic energy forms that reduces the metabolic cost of walking (Cavagna 

et al., 1977). While this is an attractive idea, Cavagna et al. (1977) appears to 

be the only author that has provided data to support an energy exchange 

between kinetic and potential forms, with a conservation of energy of up to 

65% for walking. Despite the lack of data, the inverted pendulum theory has 

been accepted by many authors (e.g. Donelan et al., 2002b, Kuo et al., 2005). 

This is perhaps due to the visible pendular motion of the body’s COM during 

the walking gait.  

 

As the human gait is not a frictionless freely swinging pendulum, consideration 

of how walking deviates from a pendulum like behaviour might be useful in 

understanding the economy of walking, as it could be the deviations that cost 

metabolic energy. One such deviation is the step-to-step transition, with an 

energy requirement to redirect the COM of the body from one pendular arc to 

the next in the transition between steps (Donelan et al., 2002a). The step-to-

step transitions are unlikely to be the only energy requirement of walking. Both 

the inverted pendulum and six determinants of gait theories only consider work 

performed on the COM with massless legs, however, human legs have 
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substantial mass and the forced motion of the legs relative to the torso will 

require a metabolic cost. Kuo (2001) suggested that the metabolic cost of 

walking could increase as a function of step frequency and that the cost of 

forced leg motion could act as a trade-off against the cost of step-to-step 

transitions, to minimise the overall cost at an intermediate combination of step 

length and step frequency. 

 

In summary, it appears that attempting to flatten the trajectory of the COM 

results in a greater metabolic cost than a pendular trajectory, as it requires a 

greater amount of joint torque and work (Gordon et al., 2003, Ortega and 

Farley, 2005, Wurdeman et al., 2017). However, a pendular trajectory of the 

COM requires transitions between pendulum like steps, with the leading and 

trailing legs performing negative and positive work on the COM, respectively, 

to redirect its velocity between steps. Reducing the mechanical work required 

to redirect the COM between steps could reduce the energy cost of walking.  

 

 

6.3. Theoretical development of a walking deterministic model. 

 

6.3.1. Outcome measure 

The first step in the development of the deterministic model was to identify the 

outcome measure at the top of the block diagram. For many skills/movements, 

the outcome is an objective measure of the performance. Since load carriage 

economy is a physiological factor, it is not solely determined by mechanical 

quantities and therefore could not be the outcome measure at the top of the 

model. Instead, a suitable outcome measure was identified using 

mathematical models for predicting load carriage energy expenditure (Givoni 

and Goldman, 1971, Pandolf et al., 1977). Givoni and Goldman (1971) created 

a predictive equation for the metabolic rate of carrying additional load 

(Equation 9) that accounts for body mass, external load, walking speed, 

walking gradient and terrain. Pandolf et al. (1977) later revised this equation 

(Equation 10) to enable predictions of metabolic rate during standing and 

slower walking speeds (< 2.5 km.h-1). 
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M = η (W + L) [2.3 + 0.32(V - 2.5)1.65 + G (0.2 + 0.07(V - 2.5))]      Equation 9    

 

M = 1.5 W + 2.0 (W + L) (L / W)2 + η (W + L) (1.5 V2 + 0.35 VG)   Equation 10 

 

where M is metabolic rate (watts), W is the mass of the participant (kg), L is 

the mass of the load carried (kg), V is the walking speed (m.s-1), G is the 

walking gradient (%) and η is the terrain factor (η = 1.0 for treadmill).  

 

Equations 9 and 10 both identify body mass, external load mass, walking 

speed, walking gradient and the type of terrain as the key mechanical 

determinants of metabolic rate during load carriage (Figure 27) with both of 

these equations designed to predict the metabolic cost of back loading in 

military personnel.  Furthermore, walking speed, walking gradient, body mass, 

and external load have also been included as key factors in more recent 

predictive equations for the metabolic cost of load carriage (Ludlow and 

Weyand, 2017, Santee et al., 2001). It is worth noting that the Pandolf equation 

has been reported to underestimate the energy expenditure of load carriage 

(Bach et al., 2017, Drain et al., 2017, Ludlow and Weyand, 2016). Drain et al. 

(2017) found that the Pandolf equation under-predicted the metabolic cost of 

load carriage (22.7 and 38.4 kg carried as a combination of a backpack, body 

armour, webbing and a replica assault rifle) by 12-17% at walking speeds of 

4.5 km.h-1 and by 21-33% at slower and faster speeds of 2.5 and 6.1 km.h-1, 

respectively. Although the Pandolf equation appears to under-estimate 

metabolic cost in a laboratory environment, Vine et al. (2020) showed that the 

Pandolf equation more accurately predicts the metabolic cost of load carriage 

using military personnel in a field based environment with 40 and 50 kg at 4.8 

km.h-1 compared to other predictive equations including the Givoni and 

Goldman (1971) equation and more recent equations by Santee et al. (2001) 

and Ludlow and Weyand (2017). However, Vine et al. (2020) also found that 

the Pandolf equation under- and over-predicted metabolic cost for other load-

speed combinations, while other predictive equations consistently under-

estimated metabolic cost for all of load-speed combinations tested (Givoni and 

Goldman, 1971, Ludlow and Weyand, 2017, Santee et al., 2001). It is not 

surprising that the metabolic cost of load carriage is difficult to accurately 
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predict with a single equation given the differences in energy expenditure 

associated with different load placements (e.g. in the hand, on the feet, close 

to the body’s COM) and the individual variation reported by Lloyd et al. (2010c) 

and the research in this thesis.  

 

Load placement has also been shown to influence load carriage economy (e.g. 

Soule and Goldman, 1969, Datta and Ramanathan, 1971), and is another 

mechanical variable that should be considered as a factor influencing load 

carriage economy. Exercise economy is measured at a set velocity and, as 

such, the influence of different load carriage conditions on walking mechanics 

can be assessed through maintaining a constant walking speed. Therefore, 

walking speed was selected as the outcome measure at the top of the 

deterministic model. The model applies to walking at a constant speed by 

identifying the combination of underlying mechanical variables that produce 

the constant walking speed. To assess load carriage, the underlying 

mechanical variables that produce the constant walking speed for unloaded 

and loaded walking conditions can be compared.  

 

 

 

 

 

 

 

 

 

 

 

Figure 27. A deterministic model for load carriage economy using factors 

included in the predictive equation by Pandolf et al. (1977) and load placement 

to account for changes in metabolic rate with different load placements. 
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Result/Outcome factor definition: 

Walking Speed: The distance covered by the whole body per unit of time. 

Measured in metres per second (m.s-1).  

 

The second step in the process of developing the deterministic model was to 

identify the factors that produce the outcome measure (Hay and Reid, 1988). 

Where possible, each factor in the model was completely determined by the 

factors linked to it in the level below. All factors in the model were identified 

through the application of fundamental mechanics. Previously established 

models for running (Paradisis and Cooke, 2001, Hunter et al., 2004) (Figure 

28), along with suggested mechanical principles of energy expenditure when 

walking (Cavagna et al., 1977, Alexander, 1991, Donelan et al., 2002a, Kuo, 

2007, Inman and Eberhart, 1953) were considered to help identify the factors 

that should be included in the model. The description of factors in each level 

and how they were calculated is provided in the following sections of this 

chapter.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



186 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28. Deterministic models for running speed adapted from (A) Hunter et 

al. (2004) and (B) Paradisis and Cooke (2001). 

 

6.3.2. Level 2 

For a body moving at a constant velocity, speed can be calculated as the 

distance travelled divided by the time taken. As such, walking speed can be 

calculated from the horizontal displacement of the COM of the body divided 

by the time taken. Deterministic models for running speed have used 

stride/step length and stride/step frequency as the two determining factors of 

speed (Hay and Reid, 1988, Hunter et al., 2004, Paradisis and Cooke, 2001), 

with running speed calculated as the product of stride/step length multiplied 

by stride/step frequency (Figure 28). This principle also applies to other human 

A 

B 
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gaits such as walking. A larger step length will result in an increased horizontal 

displacement of the COM per step (Kuo and Donelan, 2010)(Figure 29) and, 

for a given step length, an increased step cadence will result in less time per 

step. As such, it is unnecessary to include COM displacement and time in level 

2 of the model (Figure 30). 

 

 

 

 

 

 

 

 

 

 

Figure 29. An illustration of centre of mass trajectories (dashed line) with (A) 

shorter and (B) longer step lengths. Adapted from Kuo and Donelan (2010). 

 

Level 2 factor definitions, calculations and model (Figure 30): 

Step length: The linear distance travelled from one heel-strike to the 

subsequent opposite foot heel-strike. Measure in metres. 

Cadence: The number of steps taken every second, measured in steps per 

second.  

 

Walking Speed = Step Length x Cadence 
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Figure 30. A deterministic model with factors that immediately determine 

walking speed. (A) Speed determined by displacement and time. 

Displacement and time are then determined by step length and cadence, 

respectively. (B) A condensed version of the model. 

 

6.3.3. Level 3 

The third level of the model is concerned with the determinants of step length 

and cadence. Perry and Burnfield (1992) defined step length as the distance 

between the initial contact by one foot and the subsequent initial contact be 

the contralateral foot. To identify the determinants of step length and cadence, 

it is useful to consider the different phases of each gait cycle (or stride), which 

comprises of two successive steps (Figure 31). Each gait cycle includes one 

stance and one swing period for each leg. Stance is the period in which the 

foot is in contact with the ground, starting at initial contact and ending at toe-

off. Swing is the period that the foot is off the ground while the limb advances 

during the gait cycle, starting at toe-off and ending at initial contact. The stance 
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phase is further divided into three phases (Figure 31). The first subdivision of 

stance is an initial period of double stance, were both legs are in contact with 

the ground (initial double-limb stance). Initial double-limb stance starts from 

initial contact with one foot and ends at the subsequent toe-off of the 

contralateral foot. The second subdivision of stance is single-limb stance, 

which occurs once the opposite foot is lifted for swing and one leg supports 

the body. The third, and final, subdivision is a second period of double stance 

(terminal double-limb stance). Terminal double-limb stance begins when the 

contralateral leg ends its swing phase by making initial contact with the ground 

and continues until toe-off of the original stance limb. 

 

 

Figure 31. Subdivisions of the gait and their relationship to the pattern of 

bilateral foot contact. Adapted from (Perry and Burnfield, 1992). 

 

The length of each step during human walking appears to be determined by 

the distance that the limb advances during the swing phase and movements 

of the contralateral stance foot while in contact with the ground (most likely 

from low foot-floor friction coefficients, Figure 32). Indeed, step length is 

reduced when anticipating slippery floors and lower frictional forces (Cham 

and Redfern, 2002). For a given walking speed, cadence will be determined 

by the time duration of each step. 
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Figure 32. An illustration of walking gait step parameters. 

 

Level 3 factor definitions, calculations and model (Figure 33): 

Foot ahead distance: The distance of the leading foot in front of the trailing 

foot (one heel-strike to the successive foot heel-strike). 

Foot movement: Determined by the horizontal distance the stance foot 

moves while in contact with the ground. This is often minimal but depends on 

the friction coefficients between the foot and the surface. 

Step time: Step time is the time take from one heel-strike to the contralateral 

heel-strike, measured in seconds. 

 

Step length = Foot ahead distance + Foot movement  

Calculation: Cadence = Duration of time taken to complete n steps / n steps.  

 

 

 

 

 

 

 

 

 

Figure 33. A three-level deterministic model for walking speed. 
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6.3.4. Level 4 

The factors in level four should determine foot ahead distance of the limb in 

the swing phase, movement of the stance and step time. The determinants of 

step time were the simplest to identify. Each step involves a period of double 

stance followed by a period of single stance. In healthy walking gaits for men, 

Murray et al. (1964) found that the stance phase accounts for approximately 

60% of the gait cycle, while the swing phase accounts for approximately 40%. 

The duration of the stance phase appears to have an inverse relationship with 

walking speed, with the duration decreasing as walking speed increases 

(Andriacchi et al., 1977). There is a concomitant single stance time to each 

swing phase that is of equal duration. As such, step time is determined by the 

sum of double stance time and single stance time. 

 

Determining foot ahead distance is more complex than step time, due to the 

number of factors that contribute to the movement. In a model for running 

speed, Hay and Reid (1988) use the terms ‘Physique’ and ‘Body position’ to 

determine take-off and landing distance for stride length (p. 282, Hay and 

Reid, 1988). They referred to physique as the anthropometric details of the 

performer and body position as the position of the limbs. Lees (2002) 

suggested that Hay and Reid (1988) broke their own rules of deterministic 

models by introducing the terms physique and body position because they do 

not fully determine the factor in the level above mathematically. While it is 

difficult to determine step length mathematically, mechanical relationships can 

be used, and have been used by Hay and Reid (1988). Mechanically, the foot 

ahead distance is determined in part by the lengths, masses and the location 

of the centres of mass of each of the individual’s body segments. These factors 

will be represented in the model by the term ‘physique’. The foot ahead 

distance is also determined in part by how the segments of the performer’s 

body are positioned through the step, particularly the joints angles of the entire 

lower limb. The factors that describe the position of the segments and the 

relative angles of the segments are represented in the model by the term 

‘change in posture during step’.  
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Most deterministic models focus on movement in a single plane of motion and 

models for running speed have focused on motion in the sagittal plane (Hunter 

et al., 2004, Paradisis and Cooke, 2001), where most movement occurs. The 

majority of motion also occurs in the sagittal plane for walking, but it could also 

be important to consider movement in all planes of motion in order to identify 

the key determinants of load carriage. Indeed, LaFiandra et al. (2002) 

identified differences in rotational movements of the pelvis and torso between 

loaded (backpack) and unloaded walking. Step width (Figure 34), a frontal 

plane motion, is another factor that appears to be influenced by load carriage, 

with a linear increase in step width variability as load mass increases (Huang 

and Kuo, 2014). Step width also appears to influence the energy cost of 

walking with an individual’s preferred step width minimising the metabolic cost 

of unloaded walking (Donelan et al., 2001). In early versions of the 

deterministic model, step width was incorrectly included on level 5 as a 

determining factor of change in posture during each step. For a given walking 

speed and step length, an increase in step width would increase the distance 

between the feet (Figure 34) and could influence the distance that one foot is 

placed ahead of another. As such, step width was moved to level 4 as a 

determining factor of foot ahead distance. 

 

 

Figure 34.  Measurements of step length and step width using initial contact of 

each foot. 
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Level 4 factor definitions, calculations and model (Figure 35): 

Physique: The lengths, masses and the location of the centres of gravity of 

each of the individual’s body segments.  

Change in posture during step: The factors that describe the position of the 

segments and the relative angles of the segments. 

Step width: The medio-lateral separation of the feet. The distance between 

the heels is used as the point on the feet for the basis of measurement. 

Double stance time: The time spent with both feet in contact with the ground 

during a step, measured in seconds. 

Single stance time: The time spent with a single foot in contact with the 

ground during a step, measured in seconds. 

 

Foot ahead distance is dependent on the mechanical relationships between 

an individual’s physiques, change in posture through each step and the width 

of the step. 

 

Step Time = Double Stance Time + Single Stance Time 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 35. A four-level deterministic model for walking speed. 
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6.3.5. Level 5 

The overall change in posture during each step is determined from the change 

in position of all body segments. As the aim of this model is to facilitate the 

analysis of unloaded and loaded walking, the factors included in the level 

directly below ‘change in posture during step’ will be kinematic factors that are, 

theoretically, the major determinants of walking posture with and without load. 

Walking, as with other forms of locomotion, requires angular motion at the 

joints for linear motion of the COM to occur (Herr and Popovic, 2008). Studies 

of the mechanics of human walking are useful in considering the key changes 

in posture that occur during each step. The six determinants, outlined by 

Inman and Eberhart (1953), to reduce the amplitude of oscillations of the COM 

along its vertically arced path are:  

 Pelvic rotation: The pelvis rotates about a vertical axis, to the right and 

to the left, relative to the line of progression. Rotation of the pelvis 

allows the pelvis to contribute to step length. 

 Pelvic tilt: Relative to the horizontal plane, the pelvis tilts downward on 

the opposite side to the weight-bearing limb. Pelvic tilt is largest at the 

mid-point of a step, when the COM is vertically above the stance foot. 

 Knee and hip flexion during stance: The knee joints undergo flexion 

during stance when body weight passes over the stance leg. 

 Knee and Foot mechanics: These two determinants are concerned with 

the smoothing of the COM pathway when the pendular arcs intersect 

from step-to-step. Inman and Eberhart (1953) suggested that the 

angular displacements of the ankle, foot and knee are intimately related 

(Figure 36). 

 Lateral displacement of the pelvis: If the limbs were parallel, there 

would be excessive lateral displacement of the COM form step-to-step. 

Tibiofemoral angle and hip joint adduction prevent excessive lateral 

displacement. 
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Figure 36. Related motion arcs for the hip, knee and ankle during the stance 

phase. This figure is adopted from Inman and Eberhart (1953). 

 

While these factors are not determinants of change in posture during each 

step, they provide a good indication of the primary kinematic factors involved 

in walking. Inman and Eberhart (1953) started their investigation by using a 

compass gait model, which is the simplest model to analyse bipedal 

locomotion (Alexander, 1991). The compass gait model considers lower limb 

and COM motion in the sagittal plane, which is where the majority of motion in 

the walking gait occurs. Ortega and Farley (2005) demonstrated that 

simultaneously increasing hip, knee and ankle flexion in the stance limb 

reduces the vertical displacement of the COM, however, contrary to the 

hypothesis of Inman and Eberhart (1953), they found that the combined flexion 

of these joint angles doubled the metabolic cost of walking. As such, it is clear 

that sagittal plane movements of the main lower limb joints (hip, knee and 

ankle) do influence walking economy and it is important to include these 

factors in the deterministic model to assess changes in lower limb posture 

during each step with external loads.  

 

Inman and Eberhart (1953) included pelvic rotation as a key determinant in 

reducing the vertical displacement of the COM when walking. However, 

Kerrigan et al. (2001) estimated that pelvic rotation only accounts for 12% (2.5 
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mm) of a reduction in COM vertical displacement. Increasing the amplitude of 

pelvic rotations clearly increases step length (Nottrodt, 1982, Huang et al., 

2010) and, as such, pelvic rotation is included in level 5 of the model. 

Movement of the hip joint in the frontal plane (abduction/adduction) is also 

included at this level of the model to account for lateral displacement of the 

pelvis, which was identified by Inman and Eberhart (1953) as a factor that 

could lead to increased energy expenditure if the displacement of the body’s 

COM is displaced from the line of progression due to increased muscular effort 

(Perry and Burnfield, 1992). Lin et al. (2014) quantified the medio-lateral 

displacement of the COM and indicated that hip adduction contributes 

significantly to the displacement of the COM in the frontal plane during the 

walking gait.   

 

To describe the basic functions of gait, Perry and Burnfield (1992) divided the 

body into two sections; a passenger section and a locomotor section. In this 

description of the gait, the head, neck, trunk and arms are grouped in the 

passenger unit because they are carried rather than contributing to walking 

locomotion. The locomotor unit consists of the two lower limbs and the pelvis 

with 11 joints involved (lumbosacral, both hips, knees, ankles, subtalars and 

metatarsophalangeal joints).  While motions of the lower limbs are the 

predominant factors in human locomotion, Chapter 5 clearly demonstrated 

that trunk motion can be influenced by additional load, particularly with loads 

placed directly on the trunk. As such, trunk motion has been included in this 

level of the deterministic model to facilitate the analysis of different load 

placements. 

 

Ground reaction forces have been used extensively to analyse human 

locomotion. Increased walking speed coincides with an increase in the 

magnitude of all three components of ground reaction force (vertical, antero-

posterior and medio-lateral) and shorter force periods (Nilsson and 

Thorstensson, 1989). As such, and as would be expected, ground reaction 

force appears to influence the periods of double-limb and single-limb stance 

and the duration of each gait phase appears to be determined by the time that 

ground reaction forces are applied. 
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Level 5 factor definitions, calculations and model (Figure 37): 

Pelvic rotation: Measured as the internal and external rotation of the hip 

during each step. 

Hip flexion/extension: Measured as the angle at the hip marker between the 

trunk and the thigh. 

Hip adduction/abduction: Frontal plane hip movements. Measured as the 

medial and lateral alignment of the thigh. 

Knee flexion/extension: Measured as the absolute angle between the shank 

and thigh. 

Ankle plantarflexion/dorsiflexion: Measured as the absolute angle between 

the foot and the shank 

Time forces act (both legs in contact): The total amount of time that forces 

are exerted on the ground during double support. 

Time forces act (single leg in contact): The total amount of time that forces 

are exerted on the ground during single stance. 

 

Change in posture during step is determined by the change in position of all 

body segments during the step. The relevant kinematic factors, based on 

previous literature, have been included in the model to analyse the walking 

gait and load carriage. 

 

Single stance time = Time forces act with a single leg on the ground. 

Double stance time = Time forces act with both legs on the ground. 
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Figure 37. A five-level deterministic model for walking speed. 
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6.3.6. Level 6 

Simple models of dynamic walking (such as Figure 26 in section 6.2) have 

predicted that work must be performed to redirect the COM velocity for each 

step-step transition (Alexander, 1991, Kuo, 2002). COM work rate during 

walking is often assessed as the inner product of ground reaction force of each 

leg and the COM velocity (Cavagna, 1975, Donelan et al., 2002a, Huang and 

Kuo, 2014), with COM velocity measured from the integration of ground 

reaction force (Cavagna, 1975). As such, both the impulse-momentum 

relationship and the work-energy relationship, when used to assess the 

walking gait, are built on ground reaction force and COM velocity.  

 

The time that the resultant ground reaction force (GRF) acts for a given 

walking speed can be determined using the impulse-momentum relationship. 

According to this relationship, the change in momentum of the body is equal 

to the impulse that it produces (Equation 11)  

 

I = mvf - mvi                                                                                                                                 Equation 11 

 

where I is the impulse, mvf is the final momentum and mvi is the initial 

momentum. This mechanical relationship can be used to determine the time 

that forces act during the double limb stance and single limb stance of the gait 

cycle. Impulse is the integral of the resultant force over a time interval 

(Equation 12)  

 

I = ∫ F.∆t                                                                                           Equation 12 

 

where F is force and t is time. Thus, 

 

∆t =  mvf - mvi                                                                                  Equation 13   
              F 

 

Walking, like all forms of locomotion, requires angular motion of each body 

segment for translation of the whole body to occur.  Therefore, segmental 

angular momentums are required to provide linear momentum of the COM. 
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Whole body angular momentum during the walking gait appears to be small, 

not deviating substantially from zero, despite large segmental angular 

momentums (Herr and Popovic, 2008). This indicates that large segmental 

momentums cancel each other out. Herr and Popovic (2008) found that 

segmental angular momentums cancelled each other out ~95% in the medio-

lateral, ~80% in the vertical and ~70 in the antero-posterior directions in 

normal unloaded walking. For a set walking speed, the momentum of the body 

at the end of each single stance period will influence the net external force 

impulse required during the subsequent double stance period. Using the same 

premise, the momentum at the end of each double support period will 

influence the net external force impulse required during the subsequent single 

stance period. 

 

 

Level 6 factor definitions, calculations and model (Figure 38): 

Net Force Exerted: The amount of time that forces are exerted on the ground. 

Determined by the net of braking and propulsive force. 

Whole body momentum from single stance phase (going into double 

stance): The momentum of the whole body carried into double stance from 

the single stance phase. 

Whole body momentum from double stance (going into single stance): 

The linear momentum of the whole body carried into single support from the 

double support phase. 

 

Time forces act (double stance) = Whole body linear momentum from single 

stance / Net force exerted during double stance 

Time forces at (single stance) = Linear Momentum from double stance / Net 

force exerted during double stance 
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Figure 38. A six-level deterministic model for walking speed. 
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6.3.7. Level 7  

Walking involves accelerations and decelerations, even during steady state 

walking, to maintain a constant speed (Peterson et al., 2011). Antero-posterior 

impulses appear to modulate walking speed (Nilsson and Thorstensson, 1989) 

and both braking and propulsive impulses increase with increases in walking 

speed (Nilsson and Thorstensson, 1989, Peterson et al., 2011). Peak antero-

posterior GRFs and impulses increase with increasing step length for a set 

walking speed (Martin and Marsh, 1992). As such, presumably increased 

cadence during a set walking speed reduces the antero-posterior impulses 

due to the GRF’s being applied over a shorter period. 

  

 

Level 7 factor definitions, calculations and model (Figure 39):  

Braking force (front leg): The force applied by the front leg at heel-strike 

during the braking phase.  

Propulsion force (rear leg): The force applied by the rear leg to propel the 

body forward. 

Whole body horizontal linear momentum: Mass multiplied by the change in 

velocity of the centre of mass. 
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Figure 39. A seven-level deterministic model for walking speed. 

Ankle 
plantarflex
/dorsiflex 

Hip 
flex/ext 

Knee 
flex/ext 

Pelvic 
rotation 

Double 
stance time 

Single 
stance time 

Segment 
lengths 

Change in posture 
during step 

Foot ahead distance Foot movement 

Step length Cadence Level 2 

Level 3 Step time 

Level 4 

Level 5 

Level 1 

Level 6 

Walking speed 

Level 7 

Net AP force 
exerted during 
single stance 

Net AP force 
exerted during 
double stance 

Horizontal 
momentum in 
single stance  

Trunk 
flex/ext 

Step 
width 

Hip 
add/abd 

Horizontal COM 
velocity in 

double stance 

Braking 
force  

(lead leg) 

Propulsive 
force  

(trail leg) 

Braking force 
in single 
stance  

Propulsive 
force in 

single stance 

Segment 
masses 

Body mass/ 
total mass 

Horizontal COM 
velocity in 

single stance 

Horizontal 
momentum in 
double stance  

Time forces act 
(double stance) 

Time forces act 
(single stance) 



204 
 

6.4. Chapter summary 

 

The work in this chapter describes the development of a novel theoretical 

deterministic model for walking speed. The model can be used to facilitate the 

analysis of the mechanical factors involved in loaded and unloaded walking at 

constant and varying locomotion speeds. Using the created model (Figure 39) 

as a framework to analyse the mechanical determinants of load carriage 

economy does not allow for statistical modelling (partial correlation or multiple 

regression analysis) because a constant value is required for walking speed 

in order to measure economy. However, the model does provide a more 

systematic approach for identifying factors that might affect walking economy 

and ensure that no factors are overlooked. It also enables the analysis of how 

mechanical factors interact during load carriage.   

 

Factors in the model such as step width, pelvic rotation and net force during 

different gait cycle phases highlight the need for subsequent experimental 

chapters to include measures of ground reaction force and three-dimensional 

motion analysis to analyse the walking gait. The model shows that step length 

and cadence are important determining factors for walking at a specific speed. 

Assessing how these factors, and the factors that determine them, change 

from unloaded walking when an external load is carried could provide an 

insight into the causes of individual differences in load carriage economy. It’s 

possible that a combination of different magnitudes of different mechanical 

changes could produce the same outcome measure of walking speed, but 

account for increases, decreases or no change in economy. 
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Chapter 7. The biomechanical 

responses to back-, back/front- and 

head-loading and their relationship 

with economy 

 
Part of this work has been accepted for a peer-reviewed conference paper: 

Hudson, S. Low, C. Cooke, C. Vanwanseele, B. and Lloyd, R., (2020), The 

effects of step width control on load carriage economy. Proceedings of the 

38th International Conference of Biomechanics in Sports. Liverpool, UK: 

International Society of Biomechanics in Sports 
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7.1. Introduction 

 

The overarching aim of this PhD research was to identify the key 

biomechanical factor(s) that determine an individual’s load carriage economy 

with methods that place the load close to, or in alignment, with the centre of 

mass of the body. The research described in Chapter 5 provides evidence that 

load carriage economy for head-, back- and back/front-loading is not solely 

explained by sagittal plane trunk, hip, knee or ankle kinematics. As a result of 

the findings from Chapter 5, the deterministic model described in Chapter 6 

was developed to provide a framework that can be used to identify walking 

gait adaptations to different load carriage conditions. The research in this 

chapter uses the deterministic model to identify walking gait adaptations to 

load carriage and investigate the relationship between these adaptations and 

relative load carriage economy. 

 

Investigating correlations between load carriage economy and loaded walking 

gait perturbations can identify potential determinants of load carriage economy 

but does not show causation. As such, one of the objectives of this PhD 

research was to conduct cause and effect trials by manipulating variables that 

are identified as potential candidates for determining load carriage economy. 

This objective was based on identifying candidate variables that might 

determine load carriage economy from the research described in Chapter 5. 

However, none of the variables analysed in that study explained differences 

in economy between load carriage methods or individual variation in load 

carriage economy. Several factors described in the deterministic model were 

not assessed in Chapter 5, these factors include step width, pelvic rotation, 

braking and propulsive ground reaction forces (GRF) and whole-body 

horizontal momentum. Out of these factors, step width appears a most likely 

candidate variable, based on the walking gait literature, to influence individual 

differences in walking economy. Donelan et al. (2001) showed that young 

healthy individuals preferred an energetically optimal step width of 0.13 ± 0.03 

L, where L is step width expressed as a fraction of leg length, compared to 

wider and shorter steps widths which require a greater metabolic cost. 

Donelan et al. (2001) reported a 45% increase in metabolic cost for a step 
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width of 0.45L compared to the preferred step width condition. They also 

reported an 8% increase in metabolic cost when step width was decreased to 

0.00 - 0.10L. Wide step widths appear to increase the energy cost of unloaded 

walking by increasing the mechanical work required to redirect the centre of 

mass from step-to-step (Donelan et al., 2002a, Donelan et al., 2001). Narrow 

step widths, when step widths are narrower than the width of the foot (width of 

the foot in the Donelan et al. (2001) study was 0.11L), appear to increase the 

mechanical work required laterally to move the swing leg to avoid the stance 

leg which increases the energy cost of unloaded walking (Shorter et al., 2017). 

Alterations in step width as a consequence of load carriage could therefore 

lead to alterations in load carriage economy, particularly if load carriage 

causes an individual to take much wider or narrower steps than their preferred 

step width when walking unloaded. Previous research on the effect of load 

carriage on step width has found no difference in step width expressed as a 

percentage of stature, with weighted vests between 10-30% body mass (Silder 

et al., 2013). Kinoshita (1985) also reported no differences in step width from 

unloaded walking with 20% and 40% body mass evenly distributed around the 

torso, but did find a significant increase in step width of 2.6 cm from unloaded 

walking with 40% body mass (~ 25 kg) carried in a backpack. To the author’s 

knowledge no studies have assessed the effect of step width on economy for 

back-loading or head-loading, which could have an increased requirement for 

lateral stabilisation compared to methods that evenly distribute load around 

the torso.  

 

The deterministic model includes anteroposterior GRF and whole-body linear 

momentum as factors that determine the duration of double and single stance 

time. To date, Lloyd and Cooke (2011) are the only authors that have reported 

relationships between kinetic variables and load carriage economy. They 

found a moderate negative relationship between ELI values and maximum 

braking force (r = -0.661) for back/front-loading (with 25.6 kg), which suggests 

that lower ELI values (better economy) are associated with smaller braking 

forces for that method. Furthermore, Lloyd and Cooke (2011) found a strong 

relationship between ELI and the difference between loaded and unloaded 

maximum braking force (r = 0.797) for back/front-loading, showing that smaller 
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loaded-unloaded differences for maximum braking force are associated with 

improved economy. This supports the notion that improved load carriage 

economy might be due to smaller unloaded to loaded walking gait adaptations, 

particularly for back/front-loading with heavy loads.  

 

A benefit of using the deterministic model to assess walking gait adaptation to 

load carriage is that the model provides an opportunity to understand how 

variables interact for a specific load method and mass combination, and how 

those interactions might differ between individuals. This could be an important 

aspect of understanding the determinants of individual load carriage economy, 

particularly given the large amount of individual variation in sagittal plane 

kinematics and step parameters that were highlighted in Chapter 5.  

 

There were two main aims for the research in this chapter. The first aim was 

to use the deterministic model developed in Chapter 6 as a framework to 

compare the walking gait adaptations to head-, back- and back/front-loading, 

and assess relationships between the walking gait adaptations and load 

carriage economy, to try and identify the determinants of load carriage 

economy. The second aim was to assess the effect of step width control on 

load carriage economy. There were three hypotheses for this study. The first 

hypothesis was that there would be no difference in load carriage economy for 

head-, back-, and back/front-loading. The second hypothesis was that the 

most economical participants with each load carriage condition would exhibit 

the smallest walking gait perturbations from unloaded walking. The third 

hypothesis was that manipulating step width to the preferred unloaded width 

would improve load carriage. 
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7.2. Methods 

 

 

7.2.1. Participants 

Fifteen apparently healthy volunteers (10 males, 5 females) took part in this 

study (age 26 ± 3 years, mass 73.6 ± 10.1 kg, stature 1.78 ± 0.07 metres). 

Participants were recruited from the student population at KU Leuven, 

Belgium. An a priori power calculation performed using G*Power© software 

determined that a sample size of 15 was required for 80% power and to detect 

significance, based on an anticipated medium effect size (Richardson, 2011). 

 

 

7.2.2. Experimental design 

All trials were conducted in the Movement and Posture Analysis Laboratory 

Leuven, which is part of the Faculty of Movement and Rehabilitation Sciences 

at KU Leuven. Figure 40 provides an overview of the experimental design. 

Participants attended the laboratory on two separate occasions in order to 

complete a familiarisation and three main trial conditions. The first visit 

involved the familiarisation and one of the trial conditions. The remaining two 

trial conditions were completed in the second visit. Trial conditions differed by 

load carriage method, with load carried on the head (Head), back (Back) or 

evenly distributed between the back and front of the torso (Back/Front). The 

order in which the trial conditions were completed was randomised (via the 

picking of a marked piece of paper from a hat). Each trial condition involved 

eight, four-minute periods of walking at 3 km.h-1. The eight periods of walking 

were split into two blocks of four, separated by 10 minutes of rest. In the first 

block of four, participants walked unloaded, followed by walking with loads of 

3, 12 and 20 kg. Each of these walking periods was separated by 2 minutes 

of rest. In the second block of four, the unloaded and loaded walking stages 

(3, 12, 20 kg) were repeated, but this time step width was controlled to match 

the participants preferred unloaded step width while carrying load. Visits to the 

laboratory were separated by 3-4 days. In the 24 hours prior to each test 

participants were asked to maintain a similar diet, refrain from alcohol 

consumption and refrain from moderate-vigorous exercise. Participants 
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walked barefoot in all trials. This allowed markers to be placed directly on the 

skin, closer to the underlying bone, reducing the influence of marker 

movement artefacts.  
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Figure 40. An overview of the experimental design of the study in Chapter 7. 

Each experimental protocol condition represents one of the three load carriage 

methods (Head, Back, Back/Front), completed in a randomised order. 
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7.2.3. Experimental procedures 

 Loading methods 

Figure 41 shows the Head, Back and Back/Front methods.  Each load carriage 

condition was described in detail in Chapter 3. The bucket used for the Head 

condition was attached to the ceiling using a safety harness to ensure that it 

would not hit the ground if dropped (Figure 41, image A). A portable 

computerised online gas analysis system (Oxycon Mobile, Jaeger) was worn 

on the anterior of the trunk and had a total mass (including the housing vest) 

of 1 kg. This device was worn during the unloaded and loaded walking trials. 

As such, the additional 1 kg was not included in the calculation of load carriage 

economy because it does not alter the calculated ELI value for each load 

carriage condition.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 41. Sagittal plane images of the Head (A), Back (B) and Back/Front (C) 

load carriage conditions. 

 

 Main trials 

Each trial began with a measurement of the participant’s body mass. 

Participants were then fitted with retroreflective markers, a facemask for the 

gas analysis system and a heart rate monitor and asked to walk unloaded on 

the treadmill at 3 km.h-1 for four minutes at 0% gradient. After four minutes 

A B C 
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there was a two-minute rest period during which the participants were fitted 

with the appropriate loading device for the trial. The initial load was set at 3 kg. 

At the end of the rest period, participants recommenced walking with the load 

at a speed of 3 km.h-1 for a further four minutes. This pattern of work and rest 

continued with loads of 12 and 20 kg being carried in the subsequent stages. 

There was then a 10-minute rest period, after which, the loaded walking stages 

(3, 12, 20 kg) were repeated (4 minutes of walking followed by 2 minutes of 

rest), but this time step width was controlled. The rate of oxygen consumption 

(V̇O2) and heart rate were measured at the end of each rest period to ensure 

participants had returned to baseline.  

 

 Expired gas analysis 

Expired gas measurements were made continuously throughout each period 

of exercise using a portable computerised online gas analysis system (Oxycon 

Mobile, Jaeger). The V̇O2 in the final minute of each unloaded and loaded 

walking period was used to calculate the ELI for each load carriage condition. 

 

 Subjective perceptions 

Ratings of perceived execution were measured in the final 30 seconds of each 

walking period. During each rest period, participants were asked to rate 

pain/discomfort for 15 areas of the body (as described in Chapter 3) by 

marking visual analogue scales for each body area. 

 

 Biomechanical data collection 

Kinematic and kinetic data were collected to assess the factors in the 

deterministic model developed in Chapter 6 (Figure 42, repeated here for ease 

of reference). It was assumed that there would be high frictional coefficients 

between the foot and treadmill belt so movement during the foot-floor contact 

would be minimal. As such, foot movement at level 2 of the model was not 

measured and step length was solely determined by foot ahead distance. 

Without considering foot movement, foot ahead distance and step length are 

the same value, so only step length is reported in this study. The time forces 

act in double stance and single stance are identical to the durations of double 
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stance and single stance, respectively. As such, only double and single stance 

time are reported in this study. 

 

Whole body motion and ground reaction forces were measured for six 

consecutive strides during the final minute of each walking period. A similar 

number of strides have been used to analyse the biomechanics of load 

carriage in previous research  (Lloyd and Cooke, 2011, Harman et al., 2000, 

Silder et al., 2013, Birrell and Haslam, 2009, Wills et al., 2019, Chow et al., 

2005). Whole body motion was measured using a motion capture system 

(Vicon, Oxford Metrics, UK). Thirteen infra-red cameras (sampling frequency 

of 100 Hz) were used to capture the trajectories of sixty-five spherical reflective 

markers (14 mm in diameter), attached to the participant in accordance with 

the modified full body Plug-in Gait model. A full description of the modifications 

to the Plug-in Gait model is provided in Appendix O. Markers were attached 

bilaterally to anatomical landmarks on the head, upper limbs, trunk, pelvis and 

lower limbs to define joint centres and track body segments. Ground reaction 

forces for the left and right legs were measured synchronously with the motion 

capture system using a floor mounted split-belt instrumented treadmill 

(Forcelink, Motekforce, Netherlands), with two force plates (AMTI, Watertown, 

US) sampling at 1000 Hz. 
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Figure 42. The deterministic model for walking speed developed in Chapter 6. Dark grey boxes indicate variables that were not measured in this study. Light 

grey boxes indicate variables not reported in this study because the linked factor in the level above is the same value. AP is anteroposterior. 
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The Vicon system was calibrated prior to each trial using a calibration wand ( 

Figure 43), consisting of four markers mounted in known locations. The 

calibration wand was used to define the origin and orientation of the GCS and 

to calibrate the capture volume, which was set at x = 2 m, y = 3 m, z = 4 m 

over the treadmill. A static trial was recorded for each participant at the 

beginning of each experimental protocol condition. The static trial involved the 

capture of a single frame with the participant in a stationary pose.  

 

 

Figure 43. Images of the calibration wand in place at the centre of the treadmill 

to define the orientation of the global coordinate system. 

 

 Coordinate systems 

The GCS was a Cartesian right-handed orthogonal coordinate system with a 

fixed origin. The six DOF method was used to define the LCS of each segment, 

with a minimum of three non-collinear markers used to create each rigid 

segment. The LCS was also a Cartesian right-handed orthogonal system fixed 

to each segment, so that it moved with the segment. The orientation of the 

LCS with respect to the GCS defined the orientation of the segment in the 

GCS and changed as the segment moved through the capture volume 

(Zatsiorsky, 1998). This allowed for the calculation of segment displacements 
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and velocities. Using the right-hand rule for the GCS and each LCS, the 

positive z-axis was vertically upwards, positive y-axis were directed from 

posterior to anterior and positive x-axis was pointed to the right in a medial to 

lateral direction. 

 

 Marker set 

A modified version of the Vicon full body Plug-in Gait marker set (Vicon, Oxford 

Metrics, UK) was used to measure 3D whole body kinematics. The 

modifications included the use of non-collinear marker clusters to improve 

segment tracking of the upper arm, lower arm, pelvis, thigh and shank, and 

additional markers on the medial knee and ankle joint axes to improve joint 

centre location. Further detail of the modifications to the full-body Plug-in Gait 

are outlined in Appendix O. The marker set can be seen in Figure 44. 

 

 

 

 

 

 

 

 

 

 

 

Figure 44. Anterior and posterior views of the full body marker set with the 

participant performing the static calibration pose. 

 

The considerations for defining each body segment and joint centre location 

for whole-body 3D motion analysis of load carriage, using a modified Plug-in 

Gait marker set, are described below. 

 

Head segment: 

Four markers attached to a headband were used to define the head segment 

during the calibration and motion trials. The headband was positioned so that 
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two markers were placed on the anterior head over the left (left front head) 

and right temples (right front head), and the other two markers were placed on 

the posterior head, on the same transverse plane as the two anterior head 

markers (left and right back head). 

 

Upper arm segments:  

The marker positions outlined for the upper arms were identical for both the 

left and right arms. To define the upper arm, a marker was placed on the 

shoulder at the acromio-clavicular joint to define to proximal end and on the 

lateral epicondyle of the humerus to define the distal end. A three non-collinear 

marker cluster was also midway between the proximal and distal markers to 

track the motion of the segments.  

 

Lower arm and hand segments: 

The marker positions outlined for the lower arms and hands were identical for 

both the left and right sides of the body. The marker on the lateral epicondyle 

of the humerus was used to define the proximal end of the lower arm. To define 

the distal end of the lower arm, markers were placed on the radius-styloid 

process and the ulna-styloid process. A three non-collinear marker cluster was 

placed midway between the proximal and distal points of the lower arm. To 

define the distal end of the hand segment, a marker was placed on the head 

of the third metacarpal.  

 

Thorax segment and glenohumeral joint centre location: 

To define the thorax segment during the static trials, markers were placed on 

the left and right acromio-clavicular joints, the 7th cervical vertebrae (spinous 

process of the 7th cervical vertebrae), the 10th thoracic vertebrae (spinous 

process of the 10th vertebrae), the clavicle (suprasternal notch where the 

clavicles meet the sternum), the sternum (xiphoid process of the sternum) and 

on the right upper back right back (scapula). The marker on the 10th vertebrae, 

sternum and right upper back were removed for the motion trials to allow for 

the back- and back/front-load placements. 
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Due to the need to remove markers on the thorax segment for some loading 

conditions, the thorax was modelled based on the Rab upper extremity model 

(Rab et al., 2002, Petuskey et al., 2007), which represents a minimal marker 

set for the upper extremities that is useful for gait analysis but it is insufficient 

more complex upper body movements, such as throwing activities. This 

method of modelling the thorax segment requires markers on the clavicle, 7th 

cervical vertebrae, left and right acromio-clavicular joint and markers on the 

pelvic segment (detailed below), which enabled the torso to be modelled with 

the addition of the portable gas analysis system, and back and back/front 

loading conditions.  

 

In accordance with the Rab upper extremity model, the glenohumeral joint 

centre (GHJ) was located as an axial plane offset of -17% of the markers on 

the left and right acromio-clavicular joint (Rab et al., 2002). Rab et al. (2002) 

determined the magnitude of this offset from direct measurements of two 

participants and anatomical data available in the literature, based on seven 

cadavers (Van der Helm et al., 1992). Campbell et al. (2009) suggested that 

regression equations based on magnetic resonance imaging from healthy 

participants might provide a more accurate estimation for the GHJ location 

than those based on data from cadavers. However, this method is based on a 

cluster of markers placed on the acromion, which would have interfered with 

the shoulder straps in the back and back-loading methods.  

 

Pelvis segment: 

Markers were placed on the pelvis in accordance with the Plug-in Gait model. 

This places markers on the, right and left posterior superior iliac spine (PSIS) 

and sacrum (placed mid-way between the left and right posterior superior iliac 

spine). Visual3D’s (c-motion, USA) CODA pelvis was used to model the pelvis 

segment. In this model, the origin of the pelvis’s local coordinate system is 

defined as the mid-point between the left and right ASIS markers. Creating a 

CODA pelvis segment in Visual3D automatically creates landmarks for the hip 

joint centres (HJC) based on predictive equations from Bell et al. (1989), Bell 

et al. (1990). These predictive equations define the location of the right and 
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left hip joint centres (RHJC and LHJC, respectively) using the following 

coordinates: 

 

RHJC = (ML = 0.36*ASIS_Distance; AP = -0.19*ASIS_Distance; Axial = 

0.30*ASIS_Distance)  

LHJC = (ML = -0.36*ASIS_Distance; AP = -0.19*ASIS_Distance; Axial = -

0.3*ASIS_Distance) 

 

where ML is medio lateral, AP is anteroposterior and ASIS_Distance is the 3D 

distance between the right and left ASIS. Instead of using the  automatic HJC 

locations, the Harrington et al. (2007) predictive equations for HJC were used 

in this study as they are based on magnetic resonance imaging and have been 

shown to be more accurate than the predictive equations of Bell et al. (1989) 

and Davis et al. (1991) when compared to computer tomography (Anderson 

et al., 2013). The Harrington et al. (2007) predictive equations define the 

location of the right and left hip joint centres (RHJC and LHJC, respectively) 

using the following coordinates: 

 

RHJC = (ML = 0.33*ASIS_Distance+0.0073; AP = -0.24*RVP_Depth-0.0099; 

Axial 0.3*ASIS_Distance– 0.0109)  

LHJC = (ML = -0.33*ASIS_Distance+0.0073; AP = -0.24*RVP_Depth-0.0099; 

Axial-0.3*ASIS_Distance) 

 

where RVP_Depth is the 3D distance between the mid-point of the ASIS and 

the mid-point of the PSIS. In addition, functional approaches to estimating the 

hip joint centre such as the geometric fit method (Sangeux et al., 2014) only 

performs marginally better (3 to 6mm) than the Harrington et al. (2007) 

equations (Kainz et al., 2015). As such, the Harrington et al. (2007) prediction 

equations were used to estimate the position of hip joint centre instead of a 

functional approach, which requires the collection of additional functional 

calibration trails, and medical imaging techniques such as X-ray, magnetic 

resonance imaging and computer tomography due to the high financial costs 

of using these techniques. Furthermore, although pelvis is known to have 

considerable morphological differences between sexes, Hara et al. (2016) 
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found that hip joint location is not one of them. Therefore, the same predictive 

equation was used to calculate the hip joint centre for both males and females. 

 

Thigh segments: 

The marker positions outlined for the thighs were identical for both the left and 

right legs. The estimated RHJC and LHJC locations defined the proximal ends 

of the right and left thigh segments, respectively. The distal joint centre of the 

thigh segment was defined as the midpoint between markers placed on the 

medial and lateral epicondyles of the femur. A three non-collinear marker 

cluster was placed on the centre region of the thigh for segment tracking.  

 

Shank segments: 

The proximal joint centres of the right and left shank segments were defined 

as the mid-point between the medial and lateral epicondyle markers on the 

right and left femurs, respectively. The joint centres at the distal end of the left 

and right shank segments were defined as the mid-point between markers 

placed on the lateral and medial malleolus of the tibia and fibula, respectively. 

A three non-collinear marker cluster was placed on the centre region of both 

shanks to track the motion of the segments. 

 

Foot segments: 

Markers were place on the first and the fifth metatarsal heads, and on the 

calcaneous at the same height above the plantar surface of the foot as the 

metatarsal markers. The distal joint centre of each foot segments was defined 

as the mid-point between the metatarsal head markers. 

 

  Data processing 

The static pose was used to create a 15-segment model in Visual 3D (Visual 

3D, C-Motion, Inc. Germantown, USA) (Figure 45) by using the marker 

positions to define body segment coordinate systems, tracking marker 

locations, joint centres and segment lengths for each participant. The default 

mass and centre of mass location for each segment in Visual3D is based on 

regression equations by Dempster (1955) using data from eight cadavers. As 

outlined in Chapter 3, the default settings in Visual3D were altered to the 
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adjusted values of De Leva (1996) to estimate body segment inertial 

parameters in this study.  

 

Figure 45. Anterior and posterior views of the three-dimensional, 15-segment 

model created in Visual3D using a static trial. 

 

Gait events of heel-strike and toe-off where automatically identified in Visual 

3D using the vertical GRF data, with detection thresholds set to 20 N, and 

used to determine spatiotemporal variables. Marker trajectories were low pass 

filtered at 6 Hz using a 2nd order Butterworth filter. The same filter was also 

used on the kinetic data. Using different cut-off frequencies for force and 

position data can cause artefacts, particularly for high impact movements 

(Bisseling and Hof, 2006, Kristianslund et al., 2012). Kristianslund et al. (2012) 

suggested that force and movement data should be processed with the same 

filter and at the same cut-off frequency in order to reduce error in terms of 

differences between how the two signals are processed. 

 

Joint angles of the trunk, hip, knee and ankle were measured using an x-y-z 

Cardan rotation sequence in Visual3D software (Visual 3D, C-Motion, Inc. 

Germantown, USA), in line with the International Society of Biomechanics 

(ISB) recommendations’ for reporting joint motion (Wu and Cavanagh, 1995). 

The x-y-z Cardan rotation sequence for the hip, knee and ankle was 
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flexion/extension-abduction/adduction-axial rotation. Baker (2001) showed 

that the sequence of rotations for the Cardan angle sequence of the pelvis 

relative to the GCS is more accurate as axial rotation-obliquity-tilt. As such, 

the sequence of rotations would be z-y-x, and this was the Cardan sequence 

of rotations used for the pelvis segment angles in this study. 

 

Biomechanical variables associated with factors in the deterministic model 

were also measured. These variables included vertical and mediolateral 

GRF’s, vertical impulse, stance time and trunk axial rotation. Ground reaction 

force data were presented as absolute values and normalised to total mass                            

(N . kgTM-1), which was the combined mass of the participant and the external 

load carriage device. This allowed  for comparisons to be drawn between 

participants by mitigating any influence of body mass (Birrell et al., 2007, Birrell 

and Haslam, 2010).  

 

Whole body horizontal linear momentum in the anteroposterior direction was 

calculated as the product of the mean horizontal velocity of the body’s COM 

and body mass (or total mass for load carriage conditions) in Visual 3D. COM 

velocity was determined from the ground reaction forces using the method 

outlined by Cavagna (1975). First, the acceleration of the body’s COM in the 

anteroposterior direction was calculated from the anteroposterior ground 

reaction force component using the equation: 

 

∑𝑭 = m𝒂                                                                                          Equation 14 

 

where ∑𝐹  is the average net force, m is body mass and 𝑎 is average 

acceleration. The COM velocity was then calculated from the time integral of 

the COM accelerations. Average acceleration is the change in velocity over 

time, and as such, the equation for force can be stated as:  

 

∑𝑭 = mቀ
∆𝒗

∆𝒕
ቁ                                                                                   Equation 15 
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where ∆v is change in velocity and ∆t is change in time. Multiplying both sides 

of the equation by ∆t provides the impulse-momentum relationship: 

 

∑𝑭 ∆t = m ∆𝐯                                                                                 Equation 16 

 

 Step width measurement and control procedures 

Step width was measured as the average medio-lateral distance between 

heel-marker positions at heel-strike for 12 steps during the final minute of 

walking. Step width control was achieved using constant visual feedback, 

similar to the methods of Arellano and Kram (2011). First, the participants’ 

preferred unloaded walking step width was measured and marked out at the 

rear of the treadmill using two pieces of tape, with each piece of tape an equal 

distance from the centre of the treadmill belt (Figure 46, image B). A digital 

camera (JVC Everio, Japan) was positioned 1.5 metres behind the treadmill, 

to record the heel markers and the tape at the end of the treadmill belt. The 

camera was linked to a monitor placed 3.5 metres in front of the participants 

while walking on the treadmill (Figure 46, image A). The monitor was 

positioned on an adjustable shelf which was altered in order to place the 

monitor at the height of each participant’s eye-line. Participants were asked to 

align the heel markers to the taped lines at the back of the treadmill and given 

additional verbal feedback on their foot placements.   
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Figure 46. Images of the experimental set-up to control step width. Image A 

shows the monitor which provided images of the participants foot placements. 

Image B shows a participant walking with their heel markers aligned with the 

tape positioned at the rear of the treadmill, which was used to signify the 

participants required foot placements. 

 

7.2.4. Inter-individual analysis of biomechanical variables 

Between-participant standard deviation (SDb) and within-participant standard 

deviation (SDw) about the mean were calculated for spatiotemporal variables, 

joint angle kinematics and ground reaction forces. To assess the level of within 

participant variability, SDw for each variable represents the standard deviation 

about the mean of six consecutive strides. Where significant relationships 

were identified between ELI and loaded walking gait adaptations, participants 

were ranked in order of economy (from lowest ELI to highest ELI) for all 

adaptations on the same level of the deterministic model to assess for 

interactions.  

 

7.2.5. Statistical analysis 

Descriptive statistics (mean ± SD) were calculated for all outcome measures. 

A one-way ANOVA with repeated measures was used to test for significant 

main effects of method for all unloaded walking variables. A two-way ANOVA 

with repeated measures was used to test for significant main effects and 

interactions in physiological and biomechanical variables between load 

carriage methods and load mass (method x mass). A three-way ANOVA with 

A B 
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repeated measures was used to assess VAS data (body position x method x 

mass). Post-hoc tests for significant main effects were conducted using a 

Bonferroni correction. Statistical significance was set at p < 0.05 in all 

experimental chapters. Where p < 0.10, the results are reported as being close 

to statistical significance. Pearson’s product moment correlation coefficients 

were used to assess relationships between ELI values and the physical 

characteristics of participants (body mass, stature and BMI). Relationships 

were also calculated between ELI and the mechanical variables at each level 

of the deterministic model for walking speed presented in Chapter 6.  

 

To assess inter-individual variation, linear multi-level models (MLM), using 

maximum likelihood estimation, were created for V̇O2, and ELI with each 

method of load carriage. The MLM’s were used to estimate the variance 

between participants (σ2u) and the variance between the load masses (σ2e) for 

each load carriage method. Intra-class Correlation Coefficients (ICC) were 

calculated from the variance components in each MLM to represent the 

proportion of total variability in the outcome that was attributable to individual 

differences between participants. CV’s and SD were also used to assess inter-

individual variation for V̇O2, and ELI. Between participant standard deviation 

(SDb) and within participant standard deviation (SDw) were calculated for 

spatiotemporal, joint angle and ground reaction force data to assess inter- and 

intra- individual variation 
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7.3. Results 

 

7.3.1. Physical characteristics 

There was no significant difference between trial conditions for body mass (p 

= 0.361) or BMI (p = 0.365). As such, there was no significant difference 

between load carriage methods for the absolute load as a percentage of body 

mass for 3 kg (p = 0.168), 12 kg (p = 0.394) or 20 kg (p = 0.279). The 3 kg, 12 

kg and 20 kg conditions represented 4 ± 1%, 17 ± 2% and 28 ± 4% of the 

participants’ body mass, respectively. The range of body mass was 59.3 – 

96.4 kg with the 3 kg, 12 kg and 20 kg loads represented a range of 3 – 5%, 

12 – 20% and 21 – 34% of body mass, respectively. On average, the male 

participants were heavier and taller (Male: mass 76.7 ± 9.5 kg, stature 1.81 ± 

0.05 metres) than female participants (Female: mass 67.3 ± 9.1 kg, stature 

1.72 ± 0.05 metres). 

 

7.3.2. Rate of oxygen consumption (V̇O2) 

There was no significant difference between trials for the three load carriage 

methods when walking unloaded for absolute V̇O2 (761.8 ± 133.7, 721.3 ± 

103.7 and 728.4 ± 99.2 ml.min-1 for Head, Back and Back/Front, respectively, 

p = 0.238) and V̇O2 normalised for body mass (10.3 ± 1.2, 9.9 ± 1.4 and 10.0 

± 1.2 ml.kg-1.min-1 for Head, Back and Back/Front, respectively, p = 0.390). 

 

V̇O2 significantly increased as the mass of the load increased (main effect for 

load mass, p < 0.001, η2 = 0.857) and there was a significantly larger increase 

in V̇O2 for the Head method compared to the two trunk loading methods (main 

effect for load method, p < 0.001, η2 = 0.440) (Figure 47). The method x mass 

interaction was significant (p = 0.001, η2 = 0.350). The largest difference in 

V̇O2 between loading methods occurred with the heaviest load (20 kg), with an 

increase in V̇O2 from unloaded walking of 4.14 ± 2.10 ml.kg-1.min-1, 2.42 ± 1.14 

ml.kg-1.min-1 and 1.91 ± 0.93 ml.kg-1.min-1 for Head, Back and Back/Front, 

respectively. There was no significant difference for V̇O2 between the Back 

and Back/Front methods (p = 1.000).  
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Figure 47. Mean ± SD V̇O2 for each loading method and load mass with 

preferred step width. * denotes a significant difference compared to the other 

load carriage methods. # denotes a significant difference compared to the 

previous load mass.  

 

7.3.3. Relative load carriage economy 

There was a significant main effect of load method for ELI values (p = 0.002, 

η2 = 0.423) with significantly larger values for Head compared to Back (p = 

0.014) and Back/Front (p = 0.010). The largest difference between Head and 

the two trunk loading methods occurred with the 20 kg mass (ELI = 1.10 ± 

0.15, 0.98 ± 0.09 and 0.94 ± 0.08 for Head, Back and Back/Front, 

respectively). The difference in ELI values between the Back and Back/Front 

methods was not significant (p = 1.000).  

 

No significant difference was observed for ELI values between load mass 

(main effect for load mass, p = 0.410, η2 = 0.054), however there was a 

significant method x mass interaction effect (p = 0.030, η2 = 0.211). Figure 48 

illustrates that ELI increased as the load mass increased for the Head method 
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(1.06 ± 0.09, 1.07 ± 0.11 and 1.10 ± 0.15 for 3 kg, 12 kg and 20 kg, 

respectively) and decreased as the load mass increased for the Back/Front 

method (1.01 ± 0.06, 0.95 ± 0.07 and 0.94 ± 0.08 for 3 kg, 12 kg and 20 kg, 

respectively). The ELI for Back remained constant (0.98 ± 0.06, 0.98 ± 0.07 

and 0.98 ± 0.09 for 3 kg, 12 kg and 20 kg, respectively). With sex included in 

the two-way repeated measures ANOVA as a between subjects’ factor, there 

was no significant interaction effect between loading method and sex (p = 

0.872) or load mass and sex (p = 0.134). With load mass pooled, males had 

ELI values of 1.08 ± 0.03, 0.99 ± 0.00 and 0.97 ± 0.04 for head-, back- and 

back/front-loading, respectively. Females has ELI values of 1.08 ± 0.04, 0.95 

± 0.01 and 0.96 ± 0.01 for head-, back- and back/front-loading, respectively. 

 

   

Figure 48. Mean ± SD ELI values for each loading method and load mass with 

preferred step width. * denotes a significant difference compared to the other 

load carriage methods. 

 
 

7.3.4. Spatiotemporal gait parameters 

Table 24 shows the spatiotemporal measures for each load carriage condition. 

No significant differences were observed for any of the measured 

spatiotemporal gait parameters between unloaded walking trials (p > 0.05). 
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A significant main effect for load method was observed for the Δ step length 

(p = 0.045, η2 = 0.198), Δ cadence (p = 0.001, η2 = 0.391), Δ step time (p = 

0.013, η2 = 0.268) and Δ single stance time (p = 0.010, η2 = 0.283) from 

unloaded walking. Specifically, cadence was significantly slower for Back 

compared to Head (p = 0.010) and Back/Front (p = 0.032), with Δ cadence 

decreasing from unloaded walking for Back (-0.02 ± 0.05 steps.s-1) and 

increasing for Head (0.04 ± 0.06 steps.s-1) and Back/Front (0.01 ± 0.03      

steps.s-1). However, post hoc adjustment showed no significant difference in 

Δ step length from unloaded walking between any of the methods. There were 

significant method x mass interaction effects for Δ step length (p = 0.008, η2 = 

0.216) and Δ cadence (p = 0.001, η2 = 0.292). For Head, there was a decrease 

in step length and concomitant increase in cadence as the mass of the load 

increased, whilst for Back, step length increased (with a concomitant decrease 

in cadence) as the load mass increased. The Δ step length and cadence from 

unloaded walking across load mass was minimal for the Back/Front method 

(Table 24).  

 

There was a tendency for decreased step times from unloaded walking for 

Head compared to Back (-0.01 ± 0.02 s vs. 0.01 ± 0.02 s p = 0.058). The Δ 

single stance time from unloaded was significantly decreased for Head 

compared to Back (-0.02 ± 0.02 s vs. 0.00 ± 0.02 s, p = 0.026) and there was 

also a tendency for reduced single stance time for Head compared to 

Back/Front (Back/Front = -0.01 ± 0.02 s, p = 0.070). Significant main effects 

for load mass were observed for single stance time (p < 0.001, η2 = 0.458) and 

double stance time (p < 0.001, η2 = 0.808). Post hoc analysis showed that 

single stance time significantly decreased from unloaded walking by -0.01 s 

with 12 kg compared to 3 kg (p = 0.049) and by -0.02 s with 20 kg compared 

to 3 kg (p = 0.002). Double stance time significantly increased from unloaded 

walking with each increase in load mass (p < 0.05).  
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Table 24. Mean ± SD magnitudes for spatiotemporal gait parameters unloaded walking and each load carriage condition. Significance values are for the change from unloaded 

walking for each variable.  

Spatiotemporal 
variable 

0kg    3kg    12kg    20kg   p - value 

H B B/F   H B B/F   H B B/F   H B B/F  Method Mass 

Step length 
(metres) 

0.54  
± 0.03 

0.54  
± 0.03 

0.53  
± 0.03 

 0.53  
± 0.03 

0.53  
± 0.03 

0.53  
± 0.03 

 0.53  
± 0.03 

0.54 
± 0.04 

0.53  
± 0.03 

 0.52  
± 0.04 

0.55  
± 0.04 

0.54  
± 0.03 

 

 0.045  0.374 

Cadence 
(steps.s-1) 

1.56  
± 0.08 

1.56  
± 0.09 

1.56  
± 0.08 

 1.58  
± 0.09 

1.56 
 ± 0.09 

1.57  
± 0.08 

 1.59  
± 0.10 

1.54  
± 0.09 

1.57  
± 0.09 

 1.61  
± 0.12 

1.53  
± 0.10 

1.56  
± 0.07 

 

0.001 0.729 

Step time (s) 
0.64  

± 0.03 
0.64  

± 0.03 
0.64  

± 0.03 
 0.64  

± 0.04 
0.64  

± 0.04 
0.64  

± 0.03 
 0.63  

± 0.04 
0.65  

± 0.04 
0.64  

± 0.04 
 0.62  

± 0.05 
0.65  

± 0.04 
0.64  

± 0.04 

 

0.013 0.591 

Single stance 
time (s) 

0.46 
± 0.03 

0.45  
± 0.03 

0.45  
± 0.03 

 0.45  
± 0.03 

0.46 
 ± 0.03 

0.45  
± 0.03 

 0.44  
± 0.03 

0.46  
± 0.03 

0.44  
± 0.03 

 0.43  
± 0.03 

0.45  
± 0.03 

0.44  
± 0.02 

 

0.010 < 0.001 

Double stance 
time (s) 

0.18  
± 0.02  

0.19  
± 0.02 

0.19  
± 0.02 

 0.19  
± 0.01 

0.19  
± 0.02 

0.19  
± 0.02 

 0.20  
± 0.02 

0.20 
 ± 0.02  

0.20  
± 0.02 

 0.20  
± 0.02 

0.20  
± 0.01 

0.21  
± 0.02 

 

0.743 < 0.001 

H = Head, B = Back, B/F = Back/Front
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7.3.5. Joint angle kinematics 

Mean ± SD peak sagittal plane joint angles and joint angles at heel strike and 

toe off are presented in Table 25 and Table 26, respectively. No significant 

difference was observed between methods for any of the measured joint 

angle kinematics for unloaded walking trials (p > 0.05). 

 

There was a significant main effect of load method for all of the Δ trunk (p ≤ 

0.003, η2 ≥ 0.347) and the Δ hip (p ≤ 0.002, η2 ≥ 0.432) angle variables from 

unloaded walking, except for the Δ trunk angle excursion between heel strike 

to toe off from unloaded walking, although this was close to statistical 

significance (p = 0.094, η2 = 0.180). The Head method was associated with 

a more upright posture compared to the Back and Back/Front methods, with 

significantly less peak trunk flexion from unloaded walking for Head (-7.42 ± 

3.39°) compared to Back (3.76 ± 3.19°, p < 0.001) and Back/Front (1.93 ± 

1.47°, p < 0.001). Furthermore, the Back method was associated with a 

larger Δ peak trunk flexion angle (p = 0.003) and Δ peak hip flexion angle 

(4.19 ± 3.53° vs. 3.12 ± 2.07°, p = 0.004) from unloaded walking compared 

to the Back/Front method. The largest difference between methods for joint 

angle kinematics occurred with 20 kg. Figure 49 illustrates the sagittal plane 

joint angles over the gait cycle for each load carriage method with 20 kg.  

 

Considering the Δ knee and the Δ ankle angles from unloaded walking 

between load methods, the was a significant main effect of method for the Δ 

knee angle at toe off (p < 0.001, η2 = 0.465), the Δ knee angle excursion from 

heel strike to toe off (p < 0.001, η2 = 0.597), the Δ peak ankle plantarflexion 

(p = 0.021, η2 = 0.283) and the Δ ankle angle at heel strike (p = 0.009, η2 = 

0.286) from unloaded walking. Post hoc analysis revealed significantly 

greater knee flexion at toe-off for Head compared to Back (p = 0.004) and 

Back/Front compared to Back (p = 0.010) (Table 26). The Δ knee angle 

excursion from heel strike to toe off from unloaded walking was significantly 

smaller for Back/Front (0.3 ± 2.5°) compared to Head (-1.3 ± 2.6°, p = 0.004) 

and Back/Front compared to Back (2.2 ± 3.0°, p = 0.012). The difference in 

Δ knee angle excursion from unloaded walking was also significant between 

Head and Back (p < 0.001). Post hoc adjustment showed that for the Δ peak 
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ankle plantarflexion from unloaded walking, there was a significant increase 

in plantarflexion from unloaded for Back (-1.3 ± 2.0°) compared to Back/Front 

(0.1 ± 1.6°, p = 0.003) and a tendency for increased plantarflexion from 

unloaded walking for Back compared to Head (0.5 ± 2.7°, p = 0.061). For the 

Δ ankle angle at heel strike from unloaded walking, there was significantly 

greater dorsiflexion from unloaded walking for the Head method (0.86 ± 

1.01°) compared to Back/Front (0.04 ± 0.74°, p = 0.016).  

 

There was a significant main effect of load mass for the change in all sagittal 

plane joint angles from unloaded walking at heel strike and toe off (p ≤ 0.046; 

η2 ≥ 0.198) (Table 26). There was also a significant main effect of load mass 

for the change in all peak joint angle variables from unloaded walking (p ≤ 

0.039; η2 ≥ 0.250), except for peak hip extension, knee ROM and peak ankle 

dorsiflexion (Table 25). Flexion angles of the trunk and hip increased as the 

mass of the load increased for the Back and Back/Front methods and 

decreased as the load mass increased for the Head method.  

 

There were also significant method x mass interactions for the Δ peak trunk 

flexion angle from unloaded walking (p = 0.001, η2 = 894) and the Δ peak 

trunk extension angle from unloaded walking (p = 0.001, η2 = 861). Trunk 

flexion increased as the mass of the load increased for Back-loading while 

trunk extension increased as the mass of the load increased for Head-

loading. 
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Table 25. Mean ± SD magnitudes for kinematic joint angles for unloaded walking and each load carriage condition. Main effects of load carriage method and 
load mass are reported for the change from unloaded walking for each variable. Negative values represent extension, positive values represent flexion. 

Joint kinematics 
0kg    3kg    12kg    20kg    p - value 

H B B/F   H B B/F   H B B/F   H B B/F   Method Mass 

Trunk                   
 Peak Flexion (°) 3.03 

± 2.82 
2.75 

± 2.40 
2.98 

± 2.57 
 -3.23 

± 2.80 
3.70 

± 3.06 
3.71 

± 2.78 
 -4.58 

± 3.51 
6.43 

± 3.10 
5.20 

± 2.61 
 -5.35 

± 3.55 
9.39 

± 3.87 
5.82 

± 3.50 
 < 0.001 < 0.001 

 Peak  
Extension (°) 

-1.12 
± 2.64 

-1.17 
± 2.44 

-1.24 
± 2.55 

 -7.23 
± 2.62 

-0.75 
± 3.11 

-0.30 
± 2.67 

 -8.73 
± 3.27 

1.65 
± 2.96 

0.86 
± 2.53 

 -9.59 
± 3.43 

4.30 
± 3.62 

1.22 
± 3.21 

 < 0.001  0.002 

 ROM (°) 4.15 
± 1.17 

3.91 
± 1.04 

4.22 
± 0.84 

 4.00 
± 0.76 

4.46 
± 1.48 

4.01 
± 0.96 

 4.15 
± 0.90 

4.78 
± 0.90 

4.34 
± 1.15 

 4.24 
± 0.92 

5.09 
± 0.86 

4.61 
± 1.10 

 0.003 0.001 

Hip 
                  

 Peak Flexion (°) 22.72 
± 3.37 

23.10 
± 2.91 

22.86  
± 3.07 

 16.42  
± 2.92 

24.57 
± 2.94 

23.98  
± 3.25 

 15.45 
± 3.42 

28.16 
± 3.26 

26.26  
± 2.94 

 15.28  
± 3.84 

31.31  
± 4.18 

27.71 
± 3.66 

 < 0.001 < 0.001 

 Peak  
Extension (°) 

-14.74 
± 3.88 

-14.06 
± 3.96 

-14.86 
± 3.37 

 -20.88  
± 3.40 

-14.23 
± 4.71 

-13.94 
± 3.37 

 -22.22 
± 3.93 

-12.72 
± 4.08 

-13.17  
± 3.55 

 -22.90 
± 4.35 

-10.88  
± 4.55 

-13.32 
± 4.56 

 < 0.001 0.291 

 ROM (°) 
37.46 
± 2.50 

37.16 
± 2.49 

37.73 
± 2.16 

 
37.30 
± 3.18 

38.80 
± 2.97 

37.92 
± 2.36 

 
37.67 
± 2.97 

40.88 
± 2.42 

39.43 
± 2.84 

 
38.18 
± 3.00 

42.19 
± 2.56 

41.03 
± 3.12 

 < 0.001 < 0.001 

Knee 
                  

 Peak Flexion (°) 
54.04 
± 4.51 

55.22 
± 4.22 

54.75  
± 4.43 

 54.23  
± 3.66 

55.62 
± 4.74 

55.15  
± 4.43 

 55.23 
± 3.25 

56.28  
± 4.54 

55.70  
± 4.16 

 55.98  
± 3.49 

56.61  
± 4.35 

56.35 
± 4.43 

 0.862 < 0.001 

 Peak  
Extension (°) 

-0.61  
± 2.77 

0.27  
± 3.47 

-0.13  
± 3.24 

 -0.47  
± 2.72 

0.35  
± 3.42 

-0.09  
± 3.14 

 0.17  
± 2.85 

0.71  
± 2.98 

0.34  
± 3.34 

 1.13  
± 2.87 

1.19  
± 3.18 

0.46  
± 3.18 

 0.523 0.039 

 ROM (°) 54.65 
± 4.45 

54.95 
± 4.64 

54.88 
± 4.05 

 54.70 
± 3.80 

55.27 
± 4.94 

55.24 
3.90 

 55.06 
± 3.05 

55.47 
± 4.72 

55.36 
± 3.74 

 54.85 
± 3.30 

55.42 
± 5.10 

55.89 
± 3.84 

 0.824 0.603 

Ankle 
                  

 Peak  
Dorsiflexion (°) 

9.55  
± 2.52 

9.47  
± 2.52 

9.69  
± 2.08 

 9.81  
± 2.60 

9.48  
± 2.31 

10.26  
± 2.62 

 10.05 
± 2.66 

9.35  
± 2.50 

10.00  
± 2.18 

 10.32  
± 2.54 

9.21  
± 2.80 

10.12 
± 2.24 

 0.106 0.776 

 Peak 
Plantarflexion (°) 

-16.14 
± 6.29 

-15.38 
± 5.29 

-15.65 
± 4.93 

 -15.36  
± 6.17 

-15.94 
± 5.97 

-15.23 
± 4.95 

 -15.41 
± 5.41 

-16.71 
± 5.44 

-15.64  
± 4.78 

 -16.16 
± 5.57 

-17.45  
± 5.82 

-15.84 
± 5.02 

 0.021 0.031 

  ROM (°) 
25.69 
± 6.12 

24.85 
± 4.48 

25.34 
± 4.16 

 
25.17 
± 4.60 

25.43 
± 5.07 

25.49 
± 4.20 

 
25.46 
± 3.97 

26.05 
± 3.85 

25.64 
± 4.41 

 
26.49 
± 4.43 

26.66 
± 4.27 

25.96 
± 4.53 

 0.205 0.024 

H = Head, B = Back, B/F = Back/Front 
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Table 26. Mean ± SD magnitudes for kinematic joint angles for unloaded walking and each load carriage condition. Significance values are for the change from 
unloaded walking for each variable. Negative values represent extension, positive values represent flexion. 

Joint kinematics 
0kg    3kg    12kg    20kg    p - value 

H B B/F   H B B/F   H B B/F   H B B/F   Method Mass 

Trunk                   
 Pose at heel 

strike (°) 
1.92 

± 2.74 
1.79 

± 2.41 
1.80 

± 2.61 
 -4.20 

± 2.67 
2.36 

± 2.98 
2.57 

± 2.71 
 -5.72  

± 3.42 
5.31 

± 3.04 
4.02 

± 3.31 
 -6.46 

± 3.44 
8.14 

± 3.73 
4.56 

± 3.31 
 < 0.001 < 0.001 

 Pose at toe off (°) 
-0.48 
± 2.60 

-0.60 
± 2.48 

-0.62 
± 2.49 

 
-6.73 
± 2.68 

-0.06 
± 3.18 

0.33 
± 2.70 

 
-8.15 
± 3.34 

2.47 
± 3.04 

1.67 
± 2.53 

 
-8.88 
± 3.47 

5.20 
± 3.60 

1.99 
± 3.25 

 < 0.001 < 0.001 

 Heel strike to toe 
off excursion (°) 

2.40 
± 0.80 

2.39 
± 0.56 

2.41 
± 0.70  

2.53 
± 0.65 

2.42 
± 0.79 

2.24 
± 0.71  

2.43 
± 0.78 

2.83 
± 0.56 

2.35 
± 0.80  

2.42 
± 0.72 

2.94 
± 0.40 

2.57 
± 0.69  0.094 0.026 

Hip 
                  

 Pose at heel 
strike (°) 

19.45 
± 3.68 

19.84 
± 3.98 

19.83  
± 3.76 

 
13.21  
± 3.15 

21.03 
± 4.62 

21.12  
± 3.82 

 
12.17 
± 3.66 

24.90  
± 4.86 

23.66  
± 3.84 

 
12.09 
 ± 4.14 

28.34  
± 5.36 

25.07 
± 4.17 

 < 0.001 < 0.001 

 Pose at toe off (°) 
-6.23 
± 3.90 

-3.62 
± 5.64 

-5.84 
± 3.13  

-12.01 
± 3.31 

-3.13 
± 6.09 

-4.15 
± 3.31  

-12.39 
± 3.98 

-1.05 
± 5.81 

-2.75 
± 3.11  

-12.67 
± 4.33 

1.53 
± 6.20 

-2.36 
± 3.85  < 0.001 0.002 

 Heel strike to toe 
off excursion (°) 

25.69 
± 4.04 

23.47 
± 6.83 

25.67 
± 3.58 

 25.21 
± 4.34 

24.16 
± 7.35 

25.29 
± 3.61 

 24.56 
± 4.62 

25.95 
± 7.30 

26.41 
± 3.66 

 24.76 
± 4.07 

26.81 
± 7.70 

27.43 
± 3.67 

 0.002 < 0.001 

Knee 
                  

 Pose at heel 
strike (°) 

2.50 
± 3.19 

3.32 
± 3.90 

3.15 
± 3.74 

 2.79 
± 2.97 

3.99 
± 3.52 

3.66 
± 3.26 

 3.57 
± 3.12 

5.60 
± 3.59 

4.80 
± 3.61 

 4.75 
± 3.04 

6.91 
± 3.05 

5.64 
± 3.85 

 0.192 < 0.001 

 Pose at toe off (°) 
37.67 
3.95 

38.83 
4.11 

38.76 
4.30  

38.75 
3.67 

38.64 
4.39 

39.69 
3.95  

40.44 
3.99 

38.84 
3.92 

39.85 
3.93  

41.31 
3.54 

38.96 
3.77 

40.54 
3.74  < 0.001 0.001 

 Heel strike to toe 
off excursion (°) 

35.17 
4.46 

35.51 
4.27 

35.61 
4.60 

 
35.96 
3.99 

34.66 
4.48 

36.03 
3.80 

 
36.87 
3.91 

33.24 
3.70 

35.05 
3.75 

 
36.56 
3.11 

32.05 
3.17 

34.90 
3.91 

 < 0.001 0.046 

Ankle 
                  

 Pose at heel 
strike (°) 

-4.25 
± 3.08 

-4.36 
± 2.73 

-4.06 
± 2.88 

 -3.79  
± 2.96 

-4.46  
± 2.87 

-4.06  
± 2.67 

 -3.26  
± 2.96 

-4.03  
± 2.71 

-4.05  
± 2.91 

 -3.13 
± 3.12 

-3.44  
± 2.60 

-3.96  
± 2.80 

 0.009 0.002 

 Pose at toe off (°) -12.67 
5.37 

-12.69 
4.53 

-12.49 
4.03 

 -13.03 
5.27 

-12.69 
4.53 

-12.06 
4.04 

 -13.03 
5.27 

-14.19 
4.76 

-12.88 
4.08 

 -13.86 
5.32 

-14.93 
5.02 

-13.17 
4.22 

 0.337 0.001 

  
Heel strike to toe 
off excursion (°) 

8.42 
3.75 

8.51 
4.47 

8.43 
2.18 

 
8.78 
3.66 

8.23 
2.92 

8.00 
2.23 

 
9.78 
3.60 

10.17 
2.97 

8.83 
2.54 

 
10.73 
3.76 

11.49 
3.41 

9.21 
2.77 

 0.158 0.001 

H = Head, B = Back, B/F = Back/Front 
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Figure 49. Trunk, hip, knee and ankle sagittal plane kinematics while carrying 3, 12 and 20 kg. Red lines represent the head-loading method, green lines 

represent the back-loading method and blue lines represent the doublepack method. The shaded areas represent standard deviations. Unloaded walking 

kinematics for each method are included as dashed lines in each figure. Vertical lines indicate the end of the stance phase.  
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There was a significant main effect of load method for the Δ trunk axial rotation 

from unloaded walking (p < 0.001, η2 = 0.621, Figure 50). There was a 

significant decrease in trunk axial rotation for Head (-4.14 ± 2.61°) compared 

to Back (-1.37 ± 1.82°, p = 0.001) and Back/Front (-1.00 ± 2.07°, p < 0.001). 

There was also a significant main effect of load mass for the Δ trunk axial 

rotation from unloaded walking (p = 0.015, η2 = 0258). However, post hoc 

adjustment showed no significant difference between any of the load masses, 

although the 2.71° decrease from 3 to 20 kg was close to achieving 

significance (p = 0.061). 

 

 
Figure 50. Mean ± SD trunk angle axial rotation for each load carriage 

condition. * indicates a significant difference from the other methods 

 

The Δ pelvic axial rotation from unloaded walking was significantly different for 

method (main effect of load method, p = 0.001, η2 = 0.373, Figure 51). Post 

hoc analysis revealed that pelvic rotation significantly decreased from 

unloaded walking for Back (-1.58 ± 1.57°) and Back/Front (-1.67 ± 1.54°) 

compared to Head (0.10 ± 1.95°) (Back vs. Head, p = 0.014; Back/Front vs. 

Head, p = 0.015). There was also a significant main effect of mass on pelvic 

rotation (p = 0.013, η2 = 0.331). Post hoc analysis between the load mass 
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conditions showed a significant decrease in pelvic rotation between 3kg and 

12kg (-0.64° ± 1.89 vs. -1.25° ± 1.85, p = 0.016).  

 

 

  

Figure 51. Mean ± SD pelvic axial rotation (degrees) in each load carriage 

condition. * indicates a significant difference from the other methods. 
 

7.3.6. Ground reaction forces  

No significant differences were observed between unloaded walking trials for  

any of the measured ground reaction force variables (p > 0.05) (Table 27). 

 

Significant main effects of load method were observed for the Δ minimum 

vertical force (p < 0.001, η2 = 0.536) and Δ 2nd peak component of vertical 

force (p < 0.001, η2 = 0.486) from unloaded walking as absolute values  and 

normalised to total mass (minimum force: p = 0.001, η2 = 0.469; 2nd peak: p = 

0.003, η2 = 0.339) (Table 27). The difference in the Δ propulsive force between 

methods was also close to significance (p = 0.059, η2 = 0.183). Specifically, 

post hoc analysis of the Δ 2nd peak vertical force relative to total mass revealed 

a significantly lower magnitude of force for Head compared to Back/Front (p = 

0.011) (pooled load mass, Head = 10.24 ± 0.28 N.kgTM-1 vs Back/Front = 

10.43 ± 0.26 N.kgTM-1). For the Δ minimum vertical force from unloaded 

walking relative to total mass, post hoc analysis of revealed significantly 
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greater minimum force for Head (pooled load mass = 8.99 ± 0.17 N.kgTM-1) 

compared to Back (pooled load mass = 8.88 ± 0.17 N.kgTM-1) (p = 0.035) and 

Back/Front (pooled load mass = 8.83 ± 0.19 N.kgTM-1) (p = 0.002). Although 

the difference in propulsive force was not significantly different between 

methods, there was a tendency for Back-loading to be associated with a larger 

Δ peak propulsive force from unloaded walking compared to the other 

methods (pooled load mass of -14.86 ± 11.50 N, -18.93 ± 12.72 N and -15.65 

± 11.58 N for Head-, Back- and Back/Front, respectively). 

 

There were significant main effects of load mass observed for the majority of 

measured ground reaction force variables (p < 0.05, η2 > 0.295) (Table 27), 

except for propulsive force normalised to total mass, lateral force and medial 

force normalised to total mass. The magnitude of force significantly increased 

as the mass of the load increased for the Δ peak vertical forces as absolute 

values from unloaded walking (p < 0.001). When normalised to total mass, the 

Δ 1st peak vertical force significantly increased as the mass of the load 

increased (p ≤ 0.031) but for the Δ 2nd peak vertical the only significant 

difference was between the 3 kg and 20 kg (p = 0.002). Post hoc analysis 

showed that the Δ peak propulsive force from unloaded walking increased with 

each increase in mass (p ˂ 0.05). For peak propulsive force with 20 kg, the 

absolute increase from unloaded walking was -25.15 ± 10.12 N, -32.23 ± 

6.56N and -27.43 ± 7,71 N for Head, Back and Back/Front-loading, 

respectively. The difference in Δ peak propulsive force from unloaded walking 

between load mass disappeared when normalised to total mass. Considering 

the Δ peak medial force from unloaded walking, post hoc analysis revealed 

significant differences in Δ peak medial force from unloaded walking for 3 kg 

(1.24 ± 0.76 N) compared to 12 kg (5.93 ± 1.58 N; p = 0.014), 3 kg compared 

to 20 kg (10.44 ± 1.34 N; p = 0.001) and 12 kg compared to 20 kg (p = 0.041). 
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Table 27. Mean ± SD magnitudes for ground reaction forces for unloaded walking and each load carriage condition. Significance values are for the change from unloaded walking for each variable.  

Peak kinetic 
variables 

0kg    3kg    12kg    20kg    p - value 

H B B/F   H B B/F   H B B/F   H B B/F   Method Mass 

Vertical GRF                   

 1st Peak 
(N.) 

743.7 
± 99.7 

740.2 
± 98.4 

738.7  
± 95.31 

 775.2 
± 101.3 

772.4 
± 104.8 

767.2  
± 96.5 

 854. 
± 95.12 

859.2  
± 110.5 

850.6  
± 103.8 

 924.1 
± 109.5 

927.0  
± 107.7 

929.6  
± 104.3 

 0.435 < 0.001 

 2nd Peak 
(N) 

772.6 
± 101.3 

773.4  
± 103.1  

770.8  
± 104.2 

 792.1 
± 100.5 

807.3 
± 104.2 

802.3  
± 102.3 

 878.1 
± 94.9 

894.7  
± 101.7 

889.6  
± 103.0 

 948.6  
± 105.0 

967.6  
± 104.5 

971.3 
± 102.2 

 < 0.001 < 0.001 

 
1st Peak 
(N.kgTM-1) 

10.1  
± 0.2 

10.1  
± 0.2 

10.1 
± 0.2 

 
10.1 
± 0.2 

10.1 
± 0.2 

10.0 
± 0.3 

 
10.0 
± 0.3 

10.1 
± 0.3 

9.9 
± 0.2 

 
9.9  

± 0.3 
9.9 

± 0.3 
9.9 

± 0.3 
 0.512 < 0.001 

 
2nd Peak 
(N.kgTM-1) 

10.5 
± 0.3 

10.5  
± 0.3 

10.5 
± 0.3 

 
10.3 
± 0.3 

10.6 
± 0.2 

10.5 
± 0.3 

 
10.3  
± 0.3 

10.5 
± 0.2 

10.4 
± 0.3 

 
10.1 
± 0.3 

10.4 
± 0.2 

10.4 
± 0.2 

 0.003 0.001 

AP GRF                   

 
Braking  
(N) 

76.4  
± 14.9 

75.6  
± 14.0 

78.3  
± 16.9 

 
83. 8 
± 17.4 

80.4 
± 14.8 

82.5  
± 17.4 

 
95.0  

± 17.9 
93.5  

± 17.0 
93.1 

± 18.8 
 

104.4  
± 17.7 

106.5  
± 17.4 

103.9  
± 18.2 

 0.163 < 0.001 

 
Propulsive 
(N) 

-97.8 
± 13.3 

-99.5 
± 12.3 

-99.5 
± 12.4 

 
-102.6  
± 14.4 

-104.6  
± 11.8 

-102.6  
± 13.7 

 
-112.5 ± 

11.5 
-119.0  
± 12.4  

-115.9 ± 
12.6 

 
-123.0  
± 14.6 

-131.7  
± 12.0 

-127.0  
± 13.5 

 0.059 < 0.001 

  Braking 
(N.kgTM-1) 

1.0 
 ± 0.2 

1.0  
± 0.2 

1.1  
± 0.2  

 1.1 
± 0.2 

1.1  
± 0.2 

1.1 
± 0.2 

 1.1  
± 0.2 

1.1  
± 0.2 

1.1 
± 0.2 

 1.1  
± 0.1 

1.1  
± 0.2 

1.1 
± 0.2 

 0.253  0.008 

 
Propulsive 
(N.kgTM-1) 

-1.3 
± 0.2 

-1.4 
± 0.2 

-1.4 
± 0.2 

 
-1.3  
± 0.2 

-1.4 
± 0.1 

-1.4  
± 0.2 

 
-1.3  
± 0.2  

-1.4 
± 0.2 

-1.4 
± 0.2 

 
-1.3  
± 0.1 

-1.4  
± 0.2 

-1.4 
± 0.2 

 0.147  0.645 

ML GRF                   

 Medial  
(N.) 

50.1  
± 14.2 

51.4 
± 14.3 

47.0 
± 14.5 

 52.5  
± 12.5 

51.1  
± 14.6 

48.6 
± 14.5 

 59.4  
± 13.6 

53.5 
± 15.4 

53.4 
± 16.9 

 62.7 
± 13.0 

61.3 
± 16.4 

55.8 
± 16.1 

 0.133 < 0.001 

 
Lateral  
(N) 

12.3  
± 5.4 

10.5 
± 3.7 

15.9  
± 10.4 

 
14.9  
± 6.5 

13.0 
± 4.8 

16.8  
± 10.9 

 
13.9  
± 5.3 

12.8 
± 5.2 

16.9 
± 8.5 

 
13.5 
± 4.2 

12.0 
± 5.0 

19.5 
± 11.8 

 0.958 0.829 

  
Medial 
(N.kgTM-1) 

0.7  
± 0.1 

0.7 
± 0.1 

0.6 
± 0.1 

 
0.7 

± 0.1 
0.7 

± 0.1 
0.6 

± 0.1 
 

0.7 
± 0.1 

0.6 
± 0.1 

0.6 
± 0.1 

 
0.7 

± 0.1 
0.7 

± 0.1 
0.6 

± 0.1 
 0.135 0.357 

 
Lateral 
(N.kgTM-1) 

0.2 
± 0.1 

0.1 
± 0.1 

0.2 
± 0.1 

 
0.2 

± 0.1 
0.2 

± 0.1 
0.2 
±0.1 

 
0.2 

± 0.1 
0.2 

± 0.1 
0.2 

± 0.1 
 

0.1 
± 0.1 

0.1 
± 0.1 

0.2  
± 0.1 

 0.649 0.004 

H = Head, B = Back, B/F = Back/Front, GRF = Ground reaction forces, AP = Anteroposterior, ML = Mediolateral, TM = Total mass (combined body mass and external load) 
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Figure 52. Vertical (A), anteroposterior (B) and mediolateral (C) forces for 

unloaded walking and 20kg in each load carriage method. 
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 Force and momentum in double and single stance 

Table 28 shows the mean ± SD values for anteroposterior force, impulse and 

momentum in double and single stance for all load carriage conditions. The Δ 

net antero-posterior GRF from unloaded walking for double support time was 

significantly different for method (main effect of load method, p = 0.049, η2 = 

0.214) with post-hoc analysis showing a significant difference for Head-loading 

compared to Back/Front-loading (p = 0.012). This difference was the result of 

an increase in propulsive force in the Back/Front-loading method from 

unloaded walking (load mass pooled, Back/Front = -2.33 ± 5.19 N) in contrast 

to an increase in braking force from unloaded walking in the Head-loading 

condition (load mass pooled, Head = 0.22 ± 3.83 N). The increase in the Δ net 

whole body horizontal momentum was also significantly different between 

methods (main effect of load method, p = 0.037, η2 = 0.244). Post hoc analysis 

indicated that there was a smaller Δ momentum from unloaded walking in 

double stance for the Head compared to Back (load mass pooled, 0.23 ± 0.75 

kg.m/s-1 vs. 0.76 ± 0.73 kg.m/s-1, p = 0.029), and Head compared to 

Back/Front (load mass pooled for Back/Front, 0.73 ± 1.13 kg.m/s-1, p = 0.012). 

 

During single stance, the only significant difference between methods was for 

the Δ mean braking impulse from unloaded walking, which significantly 

reduced for Head loading compared to the two trunk loading methods (main 

effect of load mass, p = 0.004, η2 = 0.322).  

 

The Δ anteroposterior force, impulse and momentum variables for double 

stance from unloaded walking significantly increased as the mass of the load 

increased for all variables (main effect of load mass, p ≤ 0.017, η2 ≥ 0.303). 

For single stance, mean braking and propulsive force variables significantly 

increased as the mass of the load increased (main effect of load mass p < 

0.001, η2 ≥ 0.762).  There was a significant main effect of load mass for the Δ 

single stance form unloaded for braking impulse (p < 0.001, η2 = 0.618) and 

propulsive impulse (p < 0.001, η2 = 0.673) with significant increases in both 

impulse variables each time load mass increased (all p < 0.05). 
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Table 28. Mean ± SD magnitudes for force, impulse and momentum in double stance and single stance gait phases for unloaded walking and each load carriage condition. 
Significance values are for the change from unloaded walking for each variable.  

Variable 
0kg    3kg    12kg    20kg    p - value 

H B B/F   H B B/F   H B B/F   H B B/F   Method Mass 

Double stance phase                  

 Mean braking 
force (N) 

42.4 
± 11.5 

41.3 
± 11.3 

42.9  
± 12.2 

 46.9  
± 12.5 

43.7 
± 11.8 

46.1 
± 12.6 

 54.1 
± 12.0 

52.6 
± 11.3 

51.9 
± 12.1 

 60.1 
± 12.6 

60.9 
± 10.5 

59.4 
± 13.0 

 0.391 < 0.001 

 
Mean propulsive 
force (N) 

-69.6  
± 10.2 

-70.7  
± 8.9 

-70.4  
± 9.4 

 
-73.6  
± 10.7 

-74.0 
± 10.2 

-72.9 
± 11.0 

 
-80.1 
± 7.3 

-84.3 
± 9.4 

-82.8 
± 9.2 

 
-88.1 
± 10.4 

-92.8 
± 9.0 

-91.4 
± 9.5 

 0.345 < 0.001 

 Net AP force  
(N) 

-27.1  
± 5.6 

-29.3  
± 6.2 

-27.5  
± 7.2 

 -26.7  
± 5.9 

-30.3 
± 5.9 

-26.8  
± 7.5 

 -26.1 
± 7.6 

-31.7 
± 6.4 

-30.8 
± 6.9 

 -28.0 
± 7.3 

-31.9  
± 6.1 

-32.0 
± 7.5 

 0.034 0.017 

 
Mean braking 
impulse (N.s-1) 

7.9  
± 2.4 

7.6  
± 2.3 

8.0  
± 2.5 

 
8.8 

± 2.6 
8.2  

± 2.4 
8.7 

± 2.7 
 

10.7 
± 2.9 

10.5 
± 2.5 

10.3 
± 2.8 

 
12.1 
± 3.0 

12.5 
± 2.4 

12.2 
± 3.0 

 0.287 < 0.001 

 Mean propulsive 
impulse (N.s-1) 

-12.8  
± 2.3 

-13.0  
± 2.1 

-13.1  
± 2.1 

 -13.8  
± 2.4 

-13.9 
± 2.3 

-13.6 
± 2.4 

 -15.7 
± 2.3 

-16.7 
± 2.4 

-16.3 
2.4 

 -17.7 
± 2.9 

-19.0 
± 2.2 

-18.7 
± 2.6 

 0.121 < 0.001 

 
Mean momentum 
(kg.m/s-1) 

4.97 
± 0.96 

5.4 
± 1.1 

5.1 
± 1.2 

 
5.0 

± 1.0 
5.7 

± 1.1 
5.0 

± 1.2 
 

5.0 
± 1.2 

6.3 
± 1.3 

6.0 
± 1.2 

 
5.6 

± 1.4 
6.5 

± 1.2 
6.5 

± 1.4 
 0.037 < 0.001 

Single stance phase                  

 
Mean braking 
force (N) 

34.2 
± 4.8 

34.0 
± 5.3 

34.2 
± 4.5  

35.2 
± 6.2 

36.1 
± 4.2 

35.0 
± 5.4  

38.1 
± 4.5 

39.2 
± 5.3 

38.3 
± 5.4  

40.4 
± 5.6 

42.8 
± 6.2 

42.7 
± 6.6  0.321 < 0.001 

 
Mean propulsive 
force (N) 

-30.5 
± 6.3 

-29.4 
± 7.2 

-30.4 
± 6.1 

 
-31.5 
± 6.1 

-30.1 
± 7.1 

-31.5 
± 6.6 

 
-34.4 
± 5.8 

-35.2 
± 7.4 

-34.7 
± 6.6 

 
-36.8 
± 6.7 

-39.7 
± 6.5 

-38.6 
± 7.3 

 0.325 < 0.001 

  
Net AP force  
(N) 

3.7  
± 5.2 

4.6 
± 5.3 

3.8 
± 4.8 

 
3.7 

± 5.1 
6.0 

± 4.8 
3.6 

± 3.3 
 

3.6 
± 5.4 

3.9 
± 5.2 

3.6 
± 4.7 

 
3.6 

± 5.2 
3.1 

± 6.8 
4.0 

± 4.7 
 0.986 0.447 

 
Mean braking 
impulse (N.s-1) 

9.4 
± 1.6 

9.5 
± 1.8 

9.2 
± 1.5 

 
9.1 

± 1.7 
9.7 

± 1.4 
9.1 

± 1.6 
 

9.4 
± 1.4 

10.7 
± 1.6 

10.0 
± 1.7 

 
9.7 

± 1.7 
11.3 
± 1.5 

10.9 
± 1.8 

 0.004 < 0.001 

 Mean propulsive 
impulse (N.s-1) 

-5.7  
± 1.4 

-5.4 
± 1.8 

-5.8 
± 1.7 

 -5.9 
± 1.5 

-5.7 
± 1.6 

-5.9 
± 1.7 

 -6.6 
± 1.4 

-6.5 
± 1.8 

-6.4 
± 1.6 

 -6.8 
± 1.6 

-7.3 
± 2.0 

-7.1 
± 1.7 

 0.442 < 0.001 

 
Mean momentum 
(kg.m/s-1) 

-1.7 
± 2.3 

-2.1 
± 2.4 

-1.7 
± 2.1 

 
-1.6 
± 2.2 

-2.7 
± 2.1 

-1.6 
± 1.4 

 
-1.6 
± 2.3 

-1.8 
± 2.3 

-1.6 
± 2.1 

 
-1.6 
± 2.2 

-1.4 
± 2.9 

-1.8 
± 2.0 

 0.977 0.364 

H = Head, B = Back, B/F = Back/Front. Negative anteroposterior force values indicate propulsion, positive values indicate braking. 
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7.3.7. Relationships between economy and walking gait variables 

 Physical characteristics and ELI 

There were no significant strong correlations (r > 0.7) between ELI values and 

stature, body mass or BMI for any of the load carriage methods or load mass. 

There was a moderate positive correlation for ELI and body mass (r = 0.409, 

r2 = 16.72%, p = 0.082), and ELI and BMI (r = 0.401, r2 = 16.08%, p = 0.095) 

in the 12 kg Back condition. 

 

 Variables in the deterministic model and ELI 

All significant (p < 0.05) or close to significant (p < 0.1) relationships between 

factors included in the deterministic model and ELI for each load method are 

presented in Table 29, Table 30 and Table 31. 

 

Table 29. Relationships between the change in model factors from unloaded 

and ELI for each load carriage method with 3 kg. 

 
 3 kg 

Model 
level 

Independent variable Head ELI Back ELI B/F ELI 

5 Δ Trunk angle TO  0.467  

5 Δ Peak hip extension  0.447  

5 Δ Knee angle HS  0.472  

5 Δ Knee ROM HS-TO  -0.522*  

5 Δ Ankle ROM  0.507  

5 Δ Trunk rotation -0.609*   

5 Δ Pelvic rotation 0.539*   

6 Δ Momentum in DS  -0.488  

6 Δ Momentum in SS -0.449   

7 Δ COM velocity in DS  -0.500  

7 Δ Propulsive force in SS -0.459   

* indicates a significant relationship, HS = heel-strike, TO = Toe off, SS = Single 
stance phase, DS = Double stance phase 
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Table 30. Relationships between the change in model factors from unloaded 

and ELI for each load carriage method with 12 kg. 

 
 12 kg 

Model 
level 

Independent variable Head ELI Back ELI B/F ELI 

2 Δ Step length -0.650*   

2 Δ Cadence 0.574*   

3 Δ Step width  0.484  

4 Δ DST -0.651* 0.648*  

5 Δ Trunk ROM HS-TO 0.465  0.462 

5 Δ Knee ROM HS-TO  -0.528*  

5 Δ Trunk ROM -0.561*   

5 Δ Ankle ROM  0.475  

6 Δ Momentum in SS -0.485   

6 Δ Net AP force in SS -0.460   

7 Δ COM velocity in SS -0.533*   
* indicates a significant relationship. DST = Double stance time, HS = heel-strike, TO 
= Toe off, AP = Anteroposterior, SS = Single stance phase 
 
 
Table 31. Relationships between the change in model factors from unloaded 

and ELI for each load carriage method with 20 kg. 

 
 20 kg 

Model 
level 

Independent variable Head ELI Back ELI B/F ELI 

4 Δ DST  0.644*  

5 Δ Peak trunk flexion   0.578* 

5 Δ Peak trunk extension   0.535* 

5 Δ Trunk angle HS   0.593* 

5 Δ Trunk angle TO   0.647* 

5 Δ Peak hip extension   0.506 

5 Δ Hip angle TO   0.507 

5 Δ Knee angle HS   0.571* 

5 Δ Knee ROM HS-TO   -0.519* 

5 Δ Ankle angle HS -0.487   

5 Δ Ankle angle TO -0.523*   

6 Δ Net AP force in DS -0.572*   

6 Δ Momentum in DS -0.520*   

7 
Δ Propulsive force in DS 
(trail leg) 

  0.450 

7 Δ COM velocity in DS -0.457   
* indicates a significant relationship, DST = Double stance time, HS = heel-strike, TO 
= Toe off, AP = Anteroposterior, DS = Double stance phase 
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For Head-loading with 3 kg, there was a significant positive correlation for ELI 

and Δ Pelvic ROM (r = 0.539, r2 = 29.05%, p = 0.038) and a significant negative 

correlation for ELI and Δ Trunk ROM (r = -0.609, r2 = 37.09%, p = 0.016). For 

head-loading with 12 kg, there were significant moderate negative correlations 

for ELI and ∆ step length (r = -0.650, r2 = 42.25%, p = 0.009), ∆ double stance 

time (r = -0.650, r2 = 42.25%, p = 0.009), ∆ COM velocity in single stance (r = 

-0.533, r2 = 28.40%, p = 0.041) and Trunk ROM (r = -0.561, r2 = 31.47%, p = 

0.029). There was also a significant moderate positive correlation for the ∆ 

cadence from unloaded walking with 12 kg carried on the Head (r = 0.574, r2 

= 32.94%, p = 0.023. For head-loading with 20 kg, there were significant 

moderate negative correlations for ELI and Δ ankle angle at toe off (r = -0.523, 

r2 = 27.35%, p = 0.045), Δ net anteroposterior force in double stance (r = -

0.572, r2 = 32.72%, p = 0.026) and Δ momentum in double stance (r = -0.520, 

r2 = 27.04%, p = 0.047). 

 

For Back-loading, with 3 kg there was a significant moderate relationship 

between ELI and ∆ knee angle excursion from unloaded walking (r = -0.519, 

r2 = 26.94% p = 0.047). There were significant moderate positive correlations 

between ELI and ∆ double support time from unloaded walking with 12 kg (r = 

0.648, r2 = 41.99% p = 0.009) and 20 kg (r = 0.644, r2 = 41.47% p = 0.010). 

There were no significant relationships between ELI and the change in step 

width from unloaded walking, however there was a moderate positive 

relationship for the Back method with 12 kg (r = 0.484, r2 = 23.42% p = 0.067). 

With 12 kg there was a significant moderate correlation for ELI and the ∆ knee 

angle excursion from unloaded walking (r = 0.530, r2 = 29.09%, p = 0.042).  

 

For the Back/Front method, there was a moderate negative correlation 

between ELI and ∆ step length from unloaded walking (r = -0.485, r2 =23.52% 

p = 0.067) with the 12 kg load. All significant relationships for ELI and joint 

angle kinematics in the Back/Front condition occurred with the 20 kg load. 

There was a significant positive correlation for ELI and Δ peak trunk flexion (r 

= 0.578, r2 = 33.41%, p = 0.024), and Δ peak trunk extension (0.535, r2 = 

28.62%, p = 0.040) from unloaded walking. There were also significant positive 

relationships between ELI and Δ forward lean from unloaded at heel strike (r 
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= 0.593, r2 = 35.16%, p = 0.019) and toe off (r = 0.647, r2 = 41.86%, p = 0.009). 

ELI and the Δ knee angle at heel strike from unloaded walking were 

significantly related (r = 0.571, r2 = 32.60%, p = 0.026) as well as ELI and the 

Δ knee angle excursion from unloaded walking (r = -0.519, r2 = 26.94%, p = 

0.048).  

 

 Additional biomechanical measures and ELI 

All significant (p < 0.05) or close to significant (p < 0.1) relationships between 

additional biomechanical measures and ELI for each load method are 

presented in Table 32 and Table 33. There were no relationships between the 

Δ the additional measures from unloaded walking and ELI for any load method 

with the 3 kg mass. 

 

Table 32. Relationships between the additional biomechanical measures and 

ELI for each load carriage method with 12 kg. 

 12 kg 

Independent variable Head ELI Back ELI B/F ELI 

Δ 1st Peak Vertical N.kgTM-1   -0.497 

Δ Peak Propulsive N.kgTM-1  -0.457  

Δ Peak Medial   0.539*  

Δ Peak Medial N.kgTM-1  0.531*  

Δ Mean Braking Impulse DS -0.522*   

Δ Mean Propulsive Impulse DS -0.600*   
* indicates a significant relationship, DS = double stance 

 

Table 33. Relationships between the change in model factors from unloaded 

and ELI for each load carriage method with 20 kg. 

 20 kg 

Independent variable Head ELI Back ELI B/F ELI 

Δ 2nd Peak Vertical    -0.629* 

Δ 2nd Peak Vertical N.kgTM-1   -0.603* 

Δ Peak Lateral    0.484 

* indicates a significant relationship 
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Considering the Head loading 12 kg condition, there were significant moderate 

negative relationships between ELI and the Δ mean braking impulse (r = -

0.522, r2 = 27.24% p = 0.046) and mean propulsive impulse (r = -0.600, r2 = 

36.00% p = 0.018) during the double stance phase. For the Back method, 

there was a significant positive relationship for ELI and the Δ peak medial force 

from unloaded walking with 12 kg (r = 0.539, r2 = 29.05% p = 0.038). There 

was also significant correlation between ELI and the Δ in medial force relative 

to total mass (N . kgTM-1) from unloaded walking with 12 kg (r = 0.531, r2 = 

28.19%, p = 0.042). For the Back/Front method with 20kg, there was a 

significant negative relationship for ELI and the Δ 2nd peak of vertical force 

from unloaded walking (r = - 0.629, r2 = 39.56% p = 0.012). There was a 

significant correlation between ELI and the Δ 2nd peak vertical force relative to 

total mass (N . kgTM-1) from unloaded walking (r = -0.603, r2 = 36.36%, p = 

0.017) with 20 kg.  

 

To further explore the multiple significant correlations, present in the Head 12 

kg and Back/Front 20 kg conditions, participants were ranked in order of 

economy for the variables significantly related to ELI. The ranking figures for 

the Head method with 12 kg and the Back/Front method with 20 kg are shown 

in Figure 53 and Figure 54, respectively.  

 

 

 

 

  

 

 

 

 

 

 

 



249 
 

 

 

Figure 53. Step length, cadence, double stance time and trunk range of motion 

for head-loading with 12 kg ranked in order of the most of least economical 

participants. 
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Figure 54. Step length, peak trunk flexion, peak trunk extension, trunk angle 

at heel strike (HS) and toe off (TO), and 2nd peak vertical force for back/front-

loading with 20 kg ranked in order of the most of least economical participants.  
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7.3.8. Subjective perceptions 

 Ratings of perceived exertion (RPE) 

RPE significantly increased as the mass of the load was increased (main effect 

load mass, p = 0.001, η2 = 0.798). There was also a significant difference in 

RPE between the methods of load carriage (main effect load method, p = 

0.006, η2 = 0.307). Post hoc analysis showed that the Head method was 

associated with significantly higher RPE compared to Back/Front (10 ± 6 vs. 9 

± 4, p = 0.013) and there was a tendency for higher RPE for the Head method 

compared to the Back method (10 ± 6 vs 9 ± 5 p = 0.059).  

 

 Pain/discomfort scores 

Table 34 shows the total pain/discomfort scores for each load carriage 

condition (all body areas combined). Pain/discomfort scores significantly 

increased as the mass of the load increased for all methods (main effect of 

load mass, p = 0.003, η2 = 0.425). There was a significant main effect of load 

carriage method on the change in pain/discomfort scores from unloaded 

walking (p = 0.007, η2 = 0.296). Specifically, there was significantly less 

pain/discomfort for the Back/Front method compared to the Head method (p = 

0.026). Table 35 show the difference in pain discomfort scores between 

methods with 20 kg, which is where the largest difference in overall 

pain/discomfort exists between methods occurred. The largest difference 

between methods occurred at the neck with 20 kg (19 ± 17mm, 4 ± 6mm and 

4 ± 6mm for Head, Back and Back/Front, respectively). Most pain/discomfort 

occurred in the upper body, closer to the position of the load. There was a 

significant difference in pain/discomfort between body positions (main effect 

of body position, p = 0.002, η2 = 0.406), with significantly higher pain scores 

for the neck compared to the chest (p = 0.047) and the neck compared to the 

quadriceps (p = 0.05). 
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Table 34. Mean ± SD total pain/discomfort (mm) scores from all body 

segments combined for each loading condition. Less pain/discomfort is 

indicated by a lower score. 

 0 kg 3 kg 12 kg 20 kg 

Head 11 ± 3 22 ± 3 57 ± 9 75 ± 12 

Back 8 ± 2 12 ± 2 35 ± 6 73 ± 11 

Back/Front 13 ± 2 14 ± 2 35 ± 6 49 ± 8 

 

 

Table 35. Mean ± SD RPE and pain/discomfort scores (mm) for the 20 kg load. 

Less pain/discomfort is indicated by a lower score. 

 
Head Back Back/Front 

RPE 14 ± 3 13 ± 3 12 ± 3 

Neck 19 ± 17  4 ± 6  4 ± 6  

Back Shoulders 17 ± 26 16 ± 19  13 ± 17  

Front Shoulders 15 ± 21 16 ± 17  14 ± 17  

Chest 1 ± 2  5 ± 11  2 ± 4 

Upper Back 7 ± 11  11 ± 18  7 ± 13  

Abdomen 1 ± 2  4 ± 9  0 ± 1 

Lower Back 5 ± 9 4 ± 7 4 ± 5 

Hips 1 ± 3  3 ± 4  1 ± 2 

Buttocks 1 ± 3 2 ± 5 0 ± 1 

Quadriceps 1 ± 2 3 ± 6 1 ± 2 

Hamstrings 1 ± 2  1 ± 2 1 ± 2 

Knees 3 ± 6 1 ± 2 1 ± 3 

Calves 1 ± 3  1 ± 2  0 ± 1 

Ankles 1 ± 4  1 ± 2  0 ± 1 

Feet 2 ± 4  2 ± 3  1 ± 2 

Total 75 ± 12 73 ± 11 49 ± 8 
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7.3.9. Individual variation 

 V̇O2 

The SD’s and CV’s shown in Table 36 indicate the magnitude of inter-

individual variation in V̇O2 across the different methods. The mean CV for V̇O2 

between the three unloaded walking trials was 13%. The inter-individual 

variation increased as the mass of the load increased and the magnitude of 

increase was smaller for the Back/Front method (change in CV of 0.47% from 

0 – 20 kg) compared to the Head (change in CV of 6.67% from 0 – 20 kg) and 

Back (change in CV of 2.42% from 0 – 20 kg) methods. 

 

Table 36. Mean, standard deviation (SD) and coefficient of variation (CV) for 

V̇O2 (ml.kg-1.min-1) values with each load method and load mass. 

 0 kg 3 kg 12 kg 20 kg 

Head     

V̇O2 10.34 11.41 12.97 14.48 

SD 1.15 1.75 2.01 2.58 

CV (%) 11.12 15.38 15.47 17.79 

Back   

V̇O2 9.90 10.05 11.31 12.33 

SD 1.41 1.33 1.73 2.06 

CV (%) 14.26 13.26 15.28 16.68 

Back/Front   

V̇O2 9.97 10.50 10.99 11.88 

SD 1.21 1.19 1.44 1.50 

CV (%) 12.11 11.32 13.14 12.58 

 

 

The MLM analysis showed a significant difference in estimated variance 

between participants V̇O2 with the Head (σ2u = 2.31, standard error = 0.95, p 

= 0.016), the Back (σ2u = 2.22, standard error = 0.85, p = 0.009) and the 

Back/Front loading conditions (σ2u = 1.34, standard error = 0.52, p = 0.010). 

The estimated variance in V̇O2 between load mass conditions was also 

significant for Head (σ2e = 1.22, standard error = 0.25, p < 0.001), Back (σ2e = 

0.41, standard error = 0.08, p < 0.001) and Back/Front (σ2e = 0.34, standard 



254 
 

error = 0.07, p < 0.001). The ICC values for individual differences in V̇O2 as a 

proportion of the total variance were 0.65, 0.84 and 0.79 for Head, Back and 

Back/Front, respectively.  

 

 ELI 

The inter-individual differences in ELI (SD and CV) for all loading conditions 

are presented in Table 37. The inter-individual variation in ELI follow a similar 

pattern of response to the V̇O2 data with the magnitude of inter-individual 

variation increasing as the mass of the load increase for all load methods. 

However, unlike the V̇O2 data, for ELI the magnitude of increase from 

unloaded walking to 20 kg was similar between the Back (CV increase of 

2.5%) and Back/Front (CV increase of 2.8%) methods. Inter-individual 

variation in ELI was larger for the Head method (CV increase of 5.7%) 

compared to the Back and Back/Front methods. 

 

Table 37. Mean, standard deviation (SD) and coefficient of variation (CV) for 

ELI values with each load method and load mass. 

 3 kg 12 kg 20 kg 

Head    

ELI 1.06 1.07 1.10 
SD 0.09 0.11 0.15 
CV (%) 8.18 10.24 13.92 

Back 
ELI  0.98 0.98 0.98 
SD 0.06 0.07 0.09 
CV (%) 6.29 6.97 8.79 

Back/Front 
ELI  1.01 0.95 0.94 
SD 0.06 0.07 0.08 
CV (%) 5.69 7.80 8.53 

 

 

There was significant variance between participants for ELI values with head-

loading (σ2u = 0.005, standard error = 0.003, p = 0.050) and back-loading (σ2u 

= 0.003, standard error = 0.001, p = 0.015). The variance between participants 

for and back/front-loading was close to significance (σ2u = 0.002, standard 
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error = 0.001, p = 0.068). The estimated variance in ELI between load mass 

conditions was also significant for Head (σ2e = 0.007, standard error = 0.001, 

p < 0.001), Back (σ2e = 0.001, standard error = 0.001, p < 0.001) and 

Back/Front (σ2e = 0.002, standard error = 0.001, p < 0.001). The ICC values 

for individual differences in ELI as a proportion of the total variance were 0.45, 

0.72 and 0.41 for Head, Back and Back/Front, respectively. 

 

Figure 55 shows the most economical load mass with each load carriage 

method. Most participants had their best economy with 3 kg for the Head 

method (n = 8), with 12 kg for the Back method (n = 7) and with 20kg for the 

Back/Front method (n = 8).  

 

 

Figure 55. The most economical load mass for individuals for each load 

carriage method.  
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 Within- and between- participant variability for walking gait 

adaptations 

For spatiotemporal variables, single stance time had a larger magnitude of 

SDw (within participant standard deviations) than SDb (between participant 

standard deviations) for all load masses in the head- and back- loading 

methods, indicating that with-participant variability was greater than inter-

individual variability. The largest difference between SDw and SDb for single 

stance occurred for back-loading with 12 kg (mean = 0.2 s, SDw = 0.04 s, SDb 

= 0.02 s). Overall, the largest difference between SDw and SDb for 

spatiotemporal variables occurred for cadence with the head-loading method 

and 20 kg (mean = 1.61 steps.s-1, SDw = 0.18 steps.s-1, SDb = 0.12 steps.s-1). 

Step length was also associated with larger SDw than SDb for all methods 

with the 20 kg load. Step length was also associated with larger SDw than 

SDb for back-loading with the 20 kg load and had the same magnitude for 

SDw and SDb with 20 kg for head- and back/front-loading  (Head: SDw = 0.04 

m, SDb = 0.04 m; Back: SDw = 0.06 m, SDb = 0.04 m Back/Front: SDw = 0.03 

m, SDb = 0.03 m).  

 

For ground reaction forces, lateral force had greater SDw than the SDb for the 

head- and back-loading methods. The largest increases in SDw compared to 

SDb for lateral force occurred with 20 kg for head-loading (mean = 13.53N, 

SDw = 7.22N, SDb = 4.23N) and 12 kg for back-loading (mean = 12.82N, SDw 

= 7.16N, SDb = 5.23N). Posterior force also had greater SDw than SDb for 

head-loading with 12 kg (mean = -112.5N, SDw = 13.51N, SDb = 11.49N).  

and back-loading with 20 kg (mean = -131.7N, SDw = 12.53N, SDb = 11.99N). 

Considering vertical force, the magnitude of SDb was greater than SDw 

indicating that inter-individual variability was greater than within-participant 

variability. 

 

For all joint angle kinematics, the magnitude of SDb was greater than SDw. 

The largest magnitude of SDb in the joint angle data occurred for ankle 

plantarflexion with 0 kg (peak plantarflexion angle = -16.14°, SDb = 6.29°, SDw 

= 3.31°). SDb and SDw for all spatiotemporal variables, joint angle kinematics 
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and ground reaction forces for each load carriage condition are shown in 

Appendix P. 

 

The largest differences for the magnitude of change in walking gait 

perturbations between participants occurred for the spatiotemporal variables, 

with the largest difference occurring with 20 kg for double and single stance 

times. With 20 kg the range of change in double stance time from unloaded 

walking between participants was +18% to -4%, +22% to -15% and +17% to - 

3% for head-, back- and back/front- loading, respectively. For single stance 

with 20 kg, the range was +2% to -15%, +17% to -11% and +10% to - 10% for 

head-, back- and back/front- loading, respectively. For step length, the largest 

range of change from unloaded walking occurred for head-loading with 20 kg 

(+7% to -13%). This was also the case for cadence, with a largest range of 

change from unloaded of +10% to -6% for head-loading with 20 kg. 

Considering trunk angle, the range between participants increased as the 

mass of the load increased. With 20 kg, the change in trunk angle at heel-

strike from unloaded walking ranged from -3% to -18%, +3% to +11% and -

1% to +5% for Head, Back and Back/Front, respectively. The change in trunk 

angle at toe off from unloaded walking with 20 kg from -4% to -18%, +1% to 

+10% and 0% to +5% for Head, Back and Back/Front, respectively. 

 

7.3.10. Step width and load carriage economy 

Table 38 shows the difference between preferred step width and controlled 

step width with each of the load carriage conditions. The change in step width 

from unloaded walking with preferred step width was significantly different 

between load carriage methods (main effect of load carriage method, p = 

0.004, η2 = 0.330) but there was no significant difference for load mass (main 

effect of mass, p = 0.563, η2 = 0.040). Post-hoc analysis revealed significant 

differences for Head versus Back (p = 0.013) and Head versus Back/Front (p 

= 0.015). The largest difference between methods for Δ step width from 

unloaded walking occurred with 20kg (0.02 ± 0.02 m, 0.00 ± 0.02 m and 0.00 

± 0.02 m for Head, Back, and Back/Front, respectively). There was a tendency 

for a method x mass interaction effect (p = 0.059, η2 = 0.147), with step width 

increasing for heavier load in Head-loading but not in the other two methods. 
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With step width controlled, there was no significant difference in step width for 

loading method (main effect of load carriage method, p = 0.506, η2 = 0.051) or 

load mass (main effect of mass, p = 0.211, η2 = 0.113).  

 

 

Table 38. Mean ± SD and coefficients of variation (CV) for step width in the 

preferred step width and controlled step width conditions with each load 

method and mass combination. 

 
Uncontrolled Step Width  Controlled Step Width 

 0 kg 3 kg 12 kg 20 kg  0 kg 3 kg 12 kg 20 kg 

Head          

Step width (m) 0.14 0.15 0.16 0.16  0.15 0.15 0.15 0.15 

SD 0.02 0.03 0.03 0.02  0.02 0.02 0.02 0.02 

CV (%) 11.93 18.60 16.96 14.83  11.19 12.02 11.33 9.85 

Back   

Step width (m) 0.15 0.14 0.14 0.15  0.15 0.14 0.14 0.14 

SD 0.02 0.02 0.02 0.02  0.02 0.02 0.02 0.02 

CV (%) 12.46 13.08 13.09 10.50  14.48 12.65 10.43 10.58 

BF   

Step width (m) 0.14 0.14 0.14 0.14  0.15 0.15 0.15 0.15 

SD 0.01 0.01 0.02 0.02  0.02 0.02 0.01 0.02 

CV (%) 7.84 10.29 12.96 16.98  14.72 14.44 9.86 10.64 

 

 

The ΔV̇O2 from unloaded walking with step width controlled displayed a similar 

pattern of response to the uncontrolled step width condition. The difference 

between preferred and controlled step width for V̇O2 was not significant for 

load carriage method (main effect of load carriage method, p = 0.345) or load 

mass (main effect of load mass, p = 0.939).  
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Figure 56 shows ELI values for preferred and controlled step width for each 

load carriage condition. With step width controlled, ELI values were 

significantly different for loading method (main effect of load carriage method, 

p = 0.001, η2 = 0.507). Head-loading was associated with larger ELI values 

with every load mass compared to the other methods. The largest difference 

in ELI values between head-loading and the other methods was with 20 kg 

(1.11 ± 0.14, 0.94 ± 0.09 and 0.94 ± 0.07 for head, back and back/front, 

respectively). The difference between preferred and controlled step width for 

ELI was not significant between methods (main effect of load carriage method, 

p = 0.301, η2 = 0.088) or load mass (main effect of load mass p = 0.872, η2 = 

0.011). The largest change in ELI values between the two step width 

conditions occurred when carrying 12 kg (change in ELI from preferred to 

modified step with = -0.05 ± 0.09) and 20 kg (change in ELI from preferred to 

modified step with = -0.04 ± 0.10) on the back.  

 

 

 

Figure 56. Mean SD ELI values for each load carriage condition with preferred 

and controlled step width 
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7.3.11. Summary of the results 

 

Analysis of group data: 

 ELI values were significantly higher for head-loading (1.08 ± 0.12 with 

load mass pooled) compared to back- (0.98 ± 0.07 with load mass 

pooled) and back/front-loading (0.97 ± 0.07 with load mass pooled) 

(main effect for load method, p < 0.001, η2 = 0.440; Figure 48). 

 There was a significant difference between methods for the Δ step 

length (p = 0.001, η2 = 0.391), Δ cadence (p = 0.045, η2 = 0.198), Δ 

step time (p = 0.013, η2 = 0.268) and Δ single support time (p = 0.010, 

η2 = 0.283) from unloaded walking (Table 24). Specifically, head-

loading was associated with an increase in cadence and decrease in 

step length, step time and single support time compared to back- and 

back/front-loading.   

 There were several significant differences in kinematics between the 

load carriage methods, with the largest differences occurring at the 

trunk and hip joints (Table 25, Table 26 and Figure 49): 

o Considering trunk angle, there was a significant difference 

between methods for all measured variables (p ≤ 0.003, η2 ≥ 

0.347), except for the Δ trunk angle excursion, which was close 

to statistical significance and had a large effect size (p = 0.094, 

η2 = 0.180). Specifically, head-loading was associated with 

increased trunk extension from unloaded walking compared to 

the other loading methods. With pooled load mass, peak trunk 

forward lean values were -7.42 ± 3.39°, 3.76 ± 3.19° and 1.93 ± 

1.47° for head-, back-, and back/front-loading, respectively. 

Trunk ROM significantly increased from unloaded walking for 

back-loading (0.86 ± 0.91° with pooled load mass) compared to 

head- (-0.02 ± 0.72° with pooled load mass) and back/front-

loading (0.10 ± 0.76° with pooled load mass) (Back vs. Head, p 

= 0.028; Back vs Back/Front, p = 0.002). 

o Hip angle followed a similar pattern to the trunk, with significantly 

increased hip extension from unloaded walking for head-loading 
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compared to the back and back/front methods. With pooled load 

mass, peak hip extension values were -7.26 ± 4.40°, 1.44 ± 2.91° 

and 1.39 ± 1.39° for head-, back-, and back/front-loading, 

respectively (main effect for load method, p < 0.001, η2 = 0.760). 

o Trunk axial rotation was significantly reduced from unloaded 

walking for head-loading (-4.14 ± 2.61° with pooled load mass) 

compared to back- (-1.37 ± 1.82° with pooled load mass, p = 

0.001) and back/front-loading (-1.00 ± 2.07° with pooled load 

mass, p < 0.001) (Figure 50). Pelvic rotation significantly 

decreased from unloaded walking for back- (-1.58 ± 1.57° with 

pooled load mass) and back/front-loading (-1.67 ± 1.54° with 

pooled load mass) compared to head-loading (0.10 ± 1.95° with 

pooled load mass) (Back vs. Head, p = 0.014; Back/Front vs. 

Head, p = 0.015; Figure 51). 

 There was a significant difference for the increase in minimum vertical 

force (p = 0.001, η2 = 0.469) and 2nd peak vertical force (p = 0.003, η2 

= 0.339) from unloaded walking between the loading methods (Table 

27 and Figure 52). Specifically, head-loading produced a greater 

minimum force (with pooled load mass, Head = 8.99 ± 0.17 N.kgTM-1 

vs. Back = 8.88 ± 0.17 N.kgTM-1 vs. Back/Front = 8.83 ± 0.19 N.kgTM-

1) and lower 2nd vertical peak (with pooled load mass, Head = 10.24 ± 

0.28 N.kgTM-1 vs. Back = 10.47 ± 0.23 N.kgTM-1 vs. Back/Front = 10.43 

± 0.26 N.kgTM-1) compared to the other methods. 

 Head-loading was associated with significantly lower net 

anteroposterior force (main effect for load method, p = 0.034, η2 = 

0.214) and horizontal momentum (main effect for load method, p = 

0.037, η2 = 0.244) during the double stance phase compared to the two 

trunk loading methods (Table 28).  

 There was a significant difference in pain/discomfort scores between 

the loading methods (p = 0.007, η2 = 0.296), with lower total 

pain/discomfort (sum of all body segments) for back/front-loading (49 ± 

8 mm) compared to the other methods (Head = 75 ± 12 mm; Back =  73 
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± 11 mm) with 20 kg. Head-loading also had higher total pain/discomfort 

scored compared to the other the methods with 3 and 12 kg (Table 34) 

 

Relationships between ELI and walking gait adaptations: 

 ELI significantly correlated with the Δ cadence (r = 0.574, p = 0.025), 

the Δ step length (r = -0.650, p = 0.009), Δ double support time (r = -

0.651, p = 0.009), Δ COM velocity in single stance (r = -0.533, p = 

0.041) and the Δ trunk angle ROM (r = -0.560,  p = 0.030) from 

unloaded walking with 12 kg carried on the Head (Table 30).  

 Figure 53 show that a smaller adjustment from unloaded-loaded 

walking for these variables appears to be beneficial for Head loading 

economy with 12 kg. 

 ELI for Back/Front carrying 20 kg was significantly correlated with the 

Δ maximum (r = 0.578, p = 0.024) and the Δ minimum (r = 0.535,  p = 

0.040) sagittal plane trunk angles from unloaded walking, and the 2nd 

peak of vertical force (r = -0.600, p = 0.018) from unloaded walking 

(Table 31). It appears from the relationships and ranking figure (Figure 

54) that smaller unloaded-loaded adjustments for upper body 

movements in the sagittal plane are beneficial for economy Back/Front 

economy with 20 kg. 

 For back-loading, ELI was significantly correlated with the Δ double 

stance time from unloaded walking with 12 kg (r = 0.648, p = 0.009) and 

20 kg (r = 0.644, p = 0.010).  

 

Analysis of inter-individual variation: 

 The largest CV for V̇O2 occurred with the 20 kg head-loading condition 

(17.79%). The largest CV’s for the back and back/front methods 

occurred with 20 kg (16.68%) and 12 kg (13.14%), respectively (Table 

36). Inter-individual differences accounted for the largest proportion of 

the total variance for V̇O2, with ICC values of 0.65, 0.84 and 0.79 for 

head-, back-, and back/front-loading, respectively. 

 The CV’s for ELI were larger for the head-loading conditions compared 

to the other two methods with largest magnitudes of 13.92%, 8.79% 



263 
 

and 8.53% for head-, back-, and back/front-loading, respectively (Table 

37). The ICC values for individual differences in ELI as a proportion of 

the total variance were 0.45, 0.72 and 0.41 for head-, back- and 

back/front-loading, respectively. 

 For back-loading, most participants had their lowest ELI with 9 kg (n = 

7). For back/front-loading, most participants had their lowest ELI with 

20 kg (n = 8). For head-loading, most participants had their lowest ELI 

with 3 kg (n = 8) (Figure 55). 

 Considering biomechanical variables, the largest range for the 

percentage change from unloaded walking occurred for double stance 

time (-15 to +22% for back-loading with 20 kg). SDw was larger than 

SDb for single stance time with all load mass in the head- and back-

loading conditions (SDw = 0.04 s vs. SDb = 0.02 s, for Back 12 kg). The 

largest difference between SDw and SDb occurred for cadence with 20 

kg using the head-loading method (mean = 1.61 steps.s-1, SDw = 0.18 

steps.s-1, SDb = 0.12 steps.s-1).  

 

The effect of step width on load carriage economy: 

 There was no difference in ELI values between the preferred and 

controlled step width conditions (p = 0.301, η2 = 0.088) (Figure 56). 

 Preferred step width was significantly larger for head-loading compared 

to back- (p = 0.013) and back/front-loading (p = 0.015), with a largest 

difference between methods of 0.01 m with the 20 kg load (Table 38). 

 

 

 

 

 

 

 

 

 

 



264 
 

7.4. Discussion 

 

The aims of this chapter were:  

1. To compare the economy and walking gait adaptations associated with 

head-, back-, and back/front-loading, and assess relationships between the 

walking gait adaptations and economy.  

2. To investigate the effect of step width control on load carriage economy. 

 

This discussion is split into three parts. The first part is focused on discussing 

the group data for load carriage economy and walking gait adaptations 

(section 7.4.1). The second part is focused on the individual variation in 

economy and walking gait adaptations (section 7.4.2). The final part of this 

discussion is on the effect of manipulating step width on load carriage 

economy (section 7.4.3). 

 

7.4.1. Group data for load carriage economy and walking gait 

adaptations. 

This is the first study to assess both the kinematic and kinetic differences 

associated with head-, back-, and back/front-loading and their relationship to 

economy. The main findings of the group data were that head-loading was 

associated with significantly worse economy compared to the two trunk 

loading methods. With load mass pooled, the ELI values were 1.08 ± 0.12, 

0.98 ± 0.07 and 0.97 ± 0.07 for head-, back- and back/front-loading, 

respectively. There were also significant differences in the walking gait 

adaptations associated with each method. The most noticeable difference 

occurred for joint angle kinematics at the trunk and hip joints (Table 25, Table 

26 and Figure 49). The significant relationships found between ELI and 

walking gait adaptations to load carriage show that smaller unloaded-loaded 

changes in the sagittal plane motion of the trunk is beneficial for back/front-

loading economy when carrying 20 kg. Further, smaller unloaded-loaded 

changes in step patterns, with accompanying increases in double stance time 

and trunk motion, appear to be beneficial for head-loading economy when 

carrying 12 kg. However, these relationships were not evident across all 

method/load combinations. 
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The significantly higher ELI values for head-loading compared to the two trunk 

loading methods was unexpected given that no change in ELI was found 

between these methods in Chapter 5. One of the main methodological 

differences between this study and the research in Chapter 5 was the 

difference in participant population. The participants in Chapter 5 were a group 

of healthy females (n = 18) with a minimum of 5 years’ head-loading 

experience, whilst the participants in this study were healthy males (n = 10) 

and females (n = 5) with no head-loading experience. Few studies have 

investigated head-loading economy in individuals with no experience of using 

the method. Of those that have, Maloiy et al. (1986) found that inexperienced 

head-loaders had the same economy when carrying a load on the head, on 

the back or on the back and head combined. They reported that V̇O2 increased 

in proportion to the mass of the additional load for all methods (ELI = 1.00). 

The study by Maloiy et al. (1986) was underpowered with only three 

inexperienced participants, but their findings are consistent with earlier studies 

that reported data on head-loading economy for inexperienced individuals. 

Soule and Goldman (1969) found a proportional increase in V̇O2 in respect to 

the load mass carried on the head for a group of ten inexperienced head-

loaders. Datta and Ramanathan (1971) found no significant difference in V̇O2 

between head-loading (both direct and indirect methods) and back-loading for 

seven inexperienced head-loaders. In agreement with these studies, Lloyd et 

al. (2010b) found no difference in V̇O2 between head- and back-loading with 

10-30% body mass (10% and 30% represented 6.74 kg and 20.22 kg for the 

average body mass, respectively) in nine female participants from the British 

Territorial Army with no head-loading experience. Based on this existing 

evidence, the significantly larger ELI values found for head-loading compared 

to back- and back/front-loading in the present study are unlikely to be a 

consequence of load carriage experience. Interestingly, the ELI values 

calculated from the data provided by Lloyd et al. (2010b) for women from the 

British Territorial Army were 1.07, 1.10 and 1.15 for 10% (~ 6.7 kg), 20% (~ 

13.5 kg) and 30% (~ 20.2 kg) of body mass, respectively. These values are 

similar to the ELI values in the present study (1.06 ± 0.09, 1.07 ± 0.11 and 
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1.10 ± 0.15, for 3, 12 and 20 kg, respectively) and show the same pattern of 

response, with worsening economy as the mass of the load increased. 

 

It is possible that the poor head-loading economy in the present study was, in 

part, a result of some individuals being very uneconomical when head-loading, 

with five participants having ELI values of >1.20, yet no participants had ELI 

values of that magnitude with the back- or back/front-loading methods.  There 

was also a general tendency for most individuals to be less economical when 

head-loading, with ten participants having an ELI >1.10 in one or more of the 

head-loading conditions. In the back- and back/front loading methods, only 

two participants had an ELI >1.10. Inter-individual variation in ELI was also 

larger for head-loading (10% and 14% for 12 and 20 kg, respectively) 

compared to back-loading (7% and 9% for 12 and 20 kg, respectively) and 

back/front-loading (8% and 9% for 12 and 20 kg, respectively). Notably, the 

three least economical participants with the head-loading method were in the 

top five for highest ratings of perceived pain/discomfort in the neck region and 

the least economical head-loader also had the highest pain scores for the front 

and back of the shoulders with the head method. It’s possible that an increased 

discomfort with the head-loading method could be linked to the higher energy 

expenditure with this method. 

 

The physiological and biomechanical data from the male and female 

participants in the present study were combined and analysed together. On 

average, male participants were heavier and taller than the female 

participants. However, there was no interaction effect between sex and load 

carriage method or sex and load mass for the ELI data. This supports the 

findings of Lloyd et al. (2010a), who reported that the ELI is independent of 

body mass and stature. The lack of difference in relative load carriage 

economy between males and females in the present study is also in 

agreement with the recent work of Prado‐Nóvoa et al. (2019), who found no 

difference in load carriage economy between males and females for load mass 

relative to body mass. Further, Godhe et al. (2020), provided evidence that the 

dominant factor in the V̇O2 required to carry heavy load (≥ 20 kg) is body mass, 

not sex difference, and Vickery-Howe et al. (2020) have found no difference 
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between sexes for V̇O2 relative to body mass when carrying 20% and 40% 

body mass. Similar walking gait adaptations to load carried  carriage have also 

been reported for males and females with load (22 kg) carried on the back 

(Krupenevich et al., 2015) and load (10 – 40% body mass) evenly distributed 

around the torso (Silder et al., 2013, Vickery-Howe et al., 2020). While none 

of these studies directly investigated male and female responses to head-

loading, evidence from trunk-loading studies consistently shown that body 

mass, not sex specific characteristics, is responsible for differing responses 

between males and females to load carriage with absolute load masses. As 

such, the combined use of males and females in the present study is unlikely 

to have influenced the different findings for head-loading economy between 

this study and the study in chapter 5.  

 

In agreement with the findings of Chapter 5, the relationship between body 

mass and ELI was not strong in the present study, which provides further 

evidence that body mass alone does not determine an individual’s economy 

when carrying an absolute load. Furthermore, Lloyd et al. (2010a) has shown 

that the ELI is independent of body composition and, as such, it is unlikely that 

muscle and fat mass explain the difference in head-loading economy between 

Chapters 5 and 7. However, body composition was not assessed directly in 

the present study. The present study also did not account for the participants 

prior physical condition, which Wills et al. (2019) demonstrated can effect load 

carriage task performance when wearing a weighted vest. As such, it is 

possible that the physical condition of the participants could account for some 

of the difference in head-loading economy between the two studies. However, 

head-loading economy does not appear to be determined by any physical 

conditioning that occurs through regularly carrying load on the head (Lloyd et 

al., 2010b, Lloyd et al., 2010c). 

 

As with the economy data, there were also contrasting findings for trunk angle 

kinematics between the present study and the results from Chapter 5. 

Specifically, there was a noticeable difference in trunk angle extension with 

the head-loading method between studies. For the 20 kg condition, the Δ trunk 

angle from unloaded walking at heel strike was -7.6 ± 3.4° in the present study 
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and -2.4 ± 3.4° for the study in Chapter 5. Based on this finding, it appears that 

the group of inexperienced head-loaders in the present study exhibited a 

greater magnitude of trunk extension when head-loading compared to the 

group of experienced head-loaders that took part in the research in Chapter 5. 

The difference in measurement techniques between studies could account for 

some of the variance in trunk angle. However, Schurr et al. (2017) reported 

good agreement for joint displacement between 2D and 3D in the sagittal 

plane, with a mean difference of 1.68° for the trunk. To date, no studies have 

investigated the effect of load carriage experience on walking gait kinematics 

and it appears, based on a comparison of the findings in the present and those 

of Chapter 5, that experienced individuals have a posture closer to that of 

unloaded walking when head-loading compared to those with no experience. 

It is possible that this could partly account for the difference in head-loading 

economy between this study and the work in Chapter 5. However, based on 

the results of Chapter 5, it is unlikely that the differences in sagittal plane trunk 

movements alone explain the difference in head-loading economy found 

between the studies in this thesis. This is supported by the lack of moderate 

or strong relationships between trunk flexion/extension and head-loading 

economy in the present study. 

 

The magnitude of trunk forward lean for back-loading was also smaller in the 

present study (6.36 ± 2.82° at heel-strike with 20 kg) compared to the results 

from Chapter 5 (14.2 ± 3.8° at heel-strike with 20 kg). The different backpack 

systems used between the studies is unlikely to account for the 8° difference 

between studies, as this is a magnitude of forward lean that would be expected 

between different load carriage methods or load masses. For example, 

Kinoshita (1985) and Lloyd and Cooke (2011) reported differences in forward 

lean of 7° and 9°, respectively, between back- and back/front-loading 

methods. The difference in forward lean for the back-loading method between 

the studies in this thesis might be partly explained by the difference in physical 

characteristics between the participant groups. In the present study, the 20 kg 

load was equivalent to, on average, 27.7% body mass. For the study in 

Chapter 5, the same load was equivalent to 33.8% body mass, on average. 

Wood and Orloff (2007) reported 10° of forward lean whilst carrying 15% body 
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mass on the back. It’s also possible that the portable gas analysis system, 

positioned on the anterior of the trunk, could have influenced the reduced 

forward lean found for back-loading in the present study, although the total 

mass of the was only 1 kg (including the housing vest).  

 

This study was the first to assess three-dimensional kinematics for head-

loading. As such, the reduction in trunk axial rotation for head-loading 

compared to the two trunk loading methods is a novel finding and is likely to 

be a consequence of the need to balance the load on the head. This decrease 

in trunk rotation for head-loading was accompanied by increased pelvic 

rotation compared to the two trunk loading methods. LaFiandra et al. (2003b) 

has previously suggested that the coordination between the relative rotations 

of the torso and pelvis combine to reduce the net angular momentum of the 

body. This would explain the pattern of response observed between the axial 

rotation of the pelvis and trunk in the present study. LaFiandra et al. (2003b) 

also suggested that a key factor in decreased stride length during load 

carriage is a decrease in pelvic rotation, with an increase in step cadence to 

compensate when walking at a set speed. In line with this, head-loading was 

associated with a decrease in step length and single stance time, and an 

increase in cadence compared to the other methods.  

 

The shorter step length and increased cadence found for head-loading in the 

present study again differ to those from Chapter 5,  which showed little change 

in step length (0.00 ± 0.02 m with load mass pooled) and cadence (0.00 ± 0.02 

steps.sec-1 with load mass pooled) from unloaded walking for the head-loading 

method. The difference in gait event detection methods between the studies 

could account for some of the difference in spatiotemporal variables between 

these studies. The vertical ground reaction force method used in the present 

study is considered as a gold standard measure (Zeni Jr et al., 2008) and is 

likely to have been more accurate than the technique of visually inspecting 

video files used in Chapter 5, although no data exists for the level of agreement 

between these methods. Maloiy et al. (1986) suggested that stride frequency 

is not altered by head-loading for either trained (n = 5) or untrained head-

loaders (n = 3) at a walking speed of 3 km.h-1. However, the present study 
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contradicts the evidence of Maloiy et al. (1986) by showing that head-loading 

alters cadence from unloaded walking for inexperienced head-loaders. 

Individual changes in cadence from unloaded ranged from +10% to -6% when 

head-loading, with five participants having a decreased cadence and ten 

participants increasing their cadence. As such, it’s possible that the results 

from Maloiy et al. (1986), could have been influenced by individual responses 

to head-loading. Furthermore, the increase in cadence and decrease in step 

length found for head-loading compared to unloaded walking in the present 

study is consistent with the stride patterns observed for head-loading while 

walking over ground (Charteris, 1985, Charteris et al., 1986). 

 

Despite head-loading being more uneconomical than the other two load 

carriage methods, a larger Δ step length and a smaller Δ cadence from 

unloaded walking significantly correlated with improved load carriage 

economy for head-loading with 12 kg (ELI and Δ cadence, r = 0.574; ELI and 

Δ step length, r = -0.650). Cooke et al. (1991) suggested that shorter stride 

lengths may improve economy and stability with vertical loading through 

reduced vertical oscillations of both the COM and the added load  While an 

increased cadence and decreased step length combination might improve 

stability and reduce vertical COM oscillations, an increased cadence might 

also increase the metabolic cost of walking, as the motion of swinging the leg 

has been estimated to account for ~30% of the overall energy cost of 

locomotion (Doke et al., 2005, Umberger, 2010). As such, it’s possible that 

there could be an optimal step length and cadence combination that allows for 

an overall improvement in energy cost through reducing the vertical 

oscillations of the COM without substantially increasing cadence, and the 

associated metabolic cost of swinging the legs. Figure 53 shows that the most 

economical participants for the head-loading 12 kg condition tended to have a 

step length and cadence closer to that of unloaded walking compared to less 

economical participants. This would suggest that the optimal step 

length/cadence combination to reduce energy cost might be close to that of 

unloaded walking. This adds support to the theory that the unloaded walking 

gait might provide an optimal strategy for an individual when carrying load. 

Research on unloaded walking has established that the stride length-stride 
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frequency combination freely chosen for a given speed is close to optimal in 

terms of economy and that acute perturbations in stride length/stride 

frequency result in an increase in V̇O2 (Högberg, 1952, Cotes and Meade, 

1960, Knuttgen, 1961, Cavanagh and Williams, 1982).  

 

An improved economy for head-loading with 12 kg was also associated with a 

greater in trunk ROM from unloaded walking. The role of trunk movement for 

head-loading economy has not been previously reported. It’s possible that an 

increased freedom of movement in trunk for head-loading with a moderate 

load of 12 kg would provide the same mechanism for improved load carriage 

economy as that suggested for the back-loading method (Abe et al., 2004, 

Lloyd and Cooke, 2011). An increase in double support time was also 

associated with improved economy (r = -0.651; Figure 53) for head-loading 

with 12 kg. This suggests a possible contribution of improved stability when 

head-loading on improved head-loading economy, as an increased double 

stance time shows that more economical individuals spent longer periods of 

each stance phase with both feet in contact with the ground. Based on the 

deterministic model, the increased double stance time associated with 

improved economy was determined by an increased velocity of the body’s 

COM in the single stance phase, which was also significantly related to 

improved economy (r = -0.533).  

 

The small improvement in relative load carriage economy found for back/front-

loading (ELI = 0.94 ± 0.08) compared to back-loading (ELI = 0.98 ± 0.09) with 

the heaviest load (20 kg) is consistent with the previous work in this thesis and 

the work of others (Lloyd and Cooke, 2000b). The improved relative load 

carriage economy for back/front-loading with increased load mass in the 

present study (ELI of 1.01 ± 0.06 to 0.94 ± 0.08 for 3 to 20 kg) is also consistent 

with the findings of Chapter 5 (ELI of 0.99 ± 0.06 to 0.92 ± 0.09 for 3 to 20 kg). 

Furthermore, most individuals had their best relative economy for the 

back/front-loading method with 20 kg (8 out of 15) compared to the other load 

masses. It has been suggested that a greater freedom of movement of the 

trunk, with load evenly distributed around the trunk compared to load carried 

on the on the back alone, could be responsible for this improved economy with 
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heavy load (Lloyd and Cooke, 2011). In comparison of the sagittal kinematics 

between methods in the present study, Figure 49 shows that both trunk and 

hip motions where closer to that of unloaded walking for back/front-loading 

with 20 kg, compared to back-loading and head-loading. In support of this, 

improved load carriage economy for back/front-loading with 20 kg was 

associated with a smaller change in peak trunk flexion (r = 0.578), peak trunk 

extension (r = 0.535) and trunk angle at heel strike (r = 0.535) and toe off (r = 

0.535) in the present study. This provides support for the theory that smaller 

unloaded-loaded walking gait adaptations might be beneficial for improved 

load carriage economy, particularly for movements in the upper body where 

walking gait perturbations appear largest for methods that place the load close 

to, or in direct alignment, with the body COM.  

 

Back-loading was associated with a 30% increase in trunk angle ROM over 

the gait cycle compared to unloaded walking and produced the largest trunk 

ROM of the methods assessed in this study (Table 25). Given that an 

increased freedom of movement of the trunk has been suggested to improve 

load carriage economy, it might be expected that a larger trunk ROM would 

be beneficial for economy with this method. However, ELI remained 

unchanged across the load mass for back-loading (0.98 ± 0.06, 0.98 ± 0.07 

and 0.98 ± 0.09 for 3, 12 and 20 kg, respectively). A such, it appears that and 

increased movement in the upper body, above that associated with unloaded 

walking, when carrying load over the stride does not lead to improved 

economy. It’s possible that increasing rotational movements in the upper body 

with heavy loads could have a negative impact on load carriage economy by 

requiring an increase in muscular effort to counteract the movements and 

redirect the COM between steps (LaFiandra et al., 2002). A greater number of 

individuals had their best relative economy with 12 kg (n = 7) in the back-

loading method compared to the other load masses. Abe et al. (2004) reported 

an energy saving phenomenon for load mass of 9 -12 kg (10-15% of body 

mass) carried on the back compared to lighter and heavier loads. They 

suggested that a possible explanation could be that this moderate load might 

add to the momentum of body through the stance phase. Theoretically, an 

increase in momentum would reduce the propulsive force that the muscles 
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need to generate for a given walking speed, reducing the metabolic energy 

cost. However, this energy saving phenomenon was not found in the group 

data in the present study. Furthermore, the present study did not find any 

significant and/or strong relationships between improved load carriage 

economy and propulsive force or linear momentum during double and single 

stance.  

 

The deterministic model for walking speed identified anteroposterior ground 

reaction forces as a key determinant of stance phase durations to achieve a 

given speed of walking. The increased magnitude of peak anteroposterior 

forces found in the present study as a result of increased additional load is 

consistent with previous load carriage research (Kinoshita, 1985, Harman et 

al., 2000, Lloyd et al., 2011, Huang and Kuo, 2014). The tendency for peak 

propulsive force to be greater than peak braking force in this study is also 

consistent with previous literature on back- and back/front-loading methods 

(Harman et al., 2000, Lloyd et al., 2011) and has been suggested to be a 

protective mechanism to reduce potentially harmful impact peaks with 

additional load (Harman et al., 2000). The present study found no significant 

difference between load carriage methods for peak anteroposterior forces and 

mean anteroposterior forces (during double and single stance). There was a 

tendency for the back-loading method to be associated with higher propulsive 

force compared to the head and back/front method (Table 27), with an 

increase in propulsive force from 0 - 20 kg of 32% for back-loading compared 

to 26% and 28% for the head and back/front methods. However, when force 

was normalised to total mass, there was no tendency for back-loading to be 

associated with greater propulsive force compared to the other methods. Lloyd 

and Cooke (2000a) have previously found that peak propulsive force 

increased by 68% and 40% for back- and back/front-loading, respectively, with 

25.6 kg compared to unloaded walking. They speculated that a greater 

freedom of movement of the trunk for back/front-loading might be associated 

with greater momentum which would contribute to a lower peak propulsive 

force. However, this in not supported by the momentum data in the present 

study, which did not find a greater horizontal momentum of the body’s COM 

for back-loading compared to the other methods. 
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There is a paucity of research on head-loading kinetics and this is only the 

second study to compare the kinetics associated with head-loading and other 

load carriage methods. The first authors to do so were Lloyd et al. (2011) who 

compared the kinetics associated with head-loading and back-loading. In line 

with the findings of the present study, they also reported no difference in peak 

anteroposterior forces between head-loading and back-loading when forces 

were normalised to total mass. Analysis of the mean anteroposterior forces 

and horizontal momentum over the double stance phase shows that there was 

a lower net anteroposterior force and whole-body horizontal momentum from 

unloaded walking during double stance for head-loading compared to the 

other methods back/front-loading compared to head-loading. Based on the 

deterministic model, the reduced momentum for head-loading during double 

stance is likely to explain the significantly reduced single stance time also 

found for head-loading compared to the back- and back/front- methods. 

 

The strongest significant relationship found between load carriage economy 

and the kinetic variables was between ELI and the Δ 2nd peak of vertical force 

(r = -603) in the back/front method with 20 kg. This shows that an improved 

load carriage economy was associated with a larger Δ 2nd peak of vertical force 

from unloaded walking for this loading condition. Birrell and Haslam (2010) 

reported a significantly smaller 2nd peak of vertical force with load placed on 

the back compared to load more evenly distributed around the trunk. The 

authors suggested that the smaller vertical force at toe-off with a backpack 

was likely to be a result of the increased forward lean associated with this 

method. However, this is not a consistent finding in the literature with Kinoshita 

(1985) and Lloyd and Cooke (2000a) both finding no difference in the 2nd peak 

vertical force between back- and back/front-loading. Furthermore, the findings 

of the present study show that the smallest vertical force at toe-off occurred 

for head-loading, which suggests that changes in this kinetic variable are not 

explained by forward lean. As such, it is unclear why a larger Δ 2nd peak of 

vertical force was associated with improved economy for back/front-loading 

with 20 kg in this study. The finding is likely, in part, to be a result of a smaller 

Δ 2nd peak of vertical force for participants 15 and 9, who were uneconomical 
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in this loading condition, although it’s unclear why these participants had a 

smaller Δ 2nd peak of vertical force compared to others (Figure 54).  A smaller 

Δ peak medial force from unloaded walking was also associated with improved 

economy for back-loading with 12 kg (r = 531). The magnitude of medial forces 

has been linked to stability, with increased medial forces indicating less 

stability when carrying load (Birrell et al., 2007). As such, it’s possible that 

improved economy for back-loading with 12 kg was linked to better stability, 

indicated by smaller peak medial force from unloaded walking. However, 

mediolateral forces are associated with large variability (Lloyd et al., 2011) and 

a rarely reported in the load carriage literature. Indeed, the SDb and SDw for 

mediolateral forces in the present study showed that intra-individual variation 

in lateral force was often larger than the magnitude of inter-induvial variation 

for head and back-loading.  

 

  

7.4.2. Individual variation in load carriage economy and walking gait 

biomechanics 

The level of variation in relative load carriage economy was large with all 

loading methods. While the group data showed that, on average, head-loading 

was the least economical method of load carriage (ELI = 1.06 ± 0.09, 1.07 ± 

0.11  and 1.10 ± 0.15 for 3, 12 and 20 kg, respectively), the range of ELI values 

for head-loading were 0.86 – 1.15 for 3 kg, 0.88 – 1.21 for 12 kg and 0.80 – 

1.29 for 20 kg. This shows that, although most individuals were uneconomical 

head-loaders, some were very economical. A similar pattern of variability was 

also present for the other methods, with the largest range of ELI values 

occurring with the 20 kg load for back-loading (0.86 - 1.15) and back/front-

loading (0.82 – 1.16) with 20 kg. The largest CV’s for V̇O2 and ELI also 

occurred with the heaviest load in each method. The CV for these variables 

increased with all methods as the mass of the load increased (Table 37). The 

highest CV for ELI was 14%, 9% and 9% for head-, back-, back/front- loading, 

respectively, which all occurred with the 20 kg load. This supports the findings 

of Chapter 5 and provides further support for the individual variation in load 

carriage economy observed by Lloyd et al. (2010c).  
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The increased variation in economy with increasing load mass might be 

explained by the individual variation in walking gait perturbations from 

unloaded walking (identified via standard deviations), which also increased 

with the increase in load mass in the present study. Furthermore, the range of 

individual responses in spatiotemporal and joint angle variables also increased 

as the mass of the load increased. The largest differences occurred for head-

loading with 20 kg, with a range of +7 to -13%, +10 to -6% and -3% to -18% 

for the change in step length, cadence and trunk angle from unloaded walking, 

respectively. Future research might benefit from using heavier loads than 

those used in the present study, in order to produce larger variance between 

participants for both economy and walking gait adaptations. Large variance 

might help to elucidate the key determinants for improved economy with 

different load carriage methods. Indeed, the use of inexperienced head-

loaders in the present study might have resulted in the larger changes in trunk 

motion and spatiotemporal variables from unloaded walking in this study 

compared to the research in Chapter 5. These larger perturbations, in turn, 

might have contributed to the significant relationships found between improved 

economy and specific spatiotemporal variables for head-loading with 12 kg. 

 

The lack of significant relationships between ELI values and body mass, 

stature or BMI indicate that individual differences in physical characteristics 

were not related to the individual differences in load carriage economy. The 

ICC’s indicate that the individual differences in ELI as a proportion of the total 

variance were 0.45, 0.72 and 0.41 head-, back- and back/front-loading, 

respectively. As such, the variability in ELI values for each method due to the 

different load mass was 0.55, 0.28 and 0.59 for head-, back- and back/front-

loading, respectively. The smaller variance in ELI for back-loading attributable 

to the load mass compared to the other methods is unsurprising given the 

consistency of the mean ELI values for back-loading from 3 – 20 kg. Similar to 

the research in Chapter 5, the variance between individuals represented the 

largest proportion of the total variance in the V̇O2 data (ICC = 0.65, 0.84 and 

0.79 for head-, back-, and back/front-loading, respectively). The higher 

proportion of variance assigned to individual differences in V̇O2 compared to 
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ELI is likely to be a result of inter-individual differences in body mass (CV of 

13.78%). 

 

Much of load carriage research has focused on discrete measures at specific 

events in the gait cycle (e.g. heel strike and toe off) to assess the spatial-

temporal characteristics, joint kinematics and ground reaction forces 

associated with loaded walking (e.g. Liew et al., 2016). Discrete measures at 

specific points in the gait have enabled the identification of different gait 

adaptations between different methods of load carriage and different load 

mass carried in the same load carriage system (e.g. Kinoshita, 1985, Lloyd 

and Cooke, 2000a, Lloyd et al., 2011). For example, it appears that carrying 

heavy loads (≥ 20kg) on the back increases forward lean (decreased trunk 

angle) at heel-strike and toe-off events compared to carrying the same load 

evenly distributed between the anterior and posterior of the trunk (Lloyd and 

Cooke, 2011) or carried on the head.  Indeed, this study showed significant 

differences in spatiotemporal characteristics (Table 24), joint kinematics 

(Table 25) and ground reaction forces (Table 27) between load carriage 

systems and load mass. However, the findings of this study, along with the 

finding of Chapter 5, demonstrate that the biomechanical adaptations that 

clearly distinguish individual load carriage economy with a particular method 

appear less consistent. Using the deterministic model developed in Chapter 6 

as a framework to identify the key determinants of load carriage economy has 

not provided a clear set of adaptations to load carriage that align with a better 

or worse load carriage economy for each load method and mass combination. 

It is possible that focusing on measurements at specific events in the walking 

gait does not effectively capture the complexity of the coordinated motion of 

the body during loaded walking and as a result some of the individual 

differences in gait adaptations to load carriage that lead to individual difference 

in economy could have been omitted from the analysis. In line with this 

possibility, this study found that step parameters and medio-lateral ground 

reactions forces, particularly step length, single stance time and lateral force, 

were subject to within participant variability, assessed via standard deviations, 

that was close to or greater than the between participant variability (Appendix 

P). This level of within participant step-to-step variability might have influenced 
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the individual differences found in load carriage economy, particularly as 

increased step variability has been linked to an increased energetic cost of up 

to 9% when walking unloaded walking (O’Connor et al., 2012).  

 

Techniques to measure coordination variability, such as dynamical systems 

theory (Hamill et al., 1999), have been used to detect skill-dependant changes 

in movement execution (Bartlett et al., 2007, Wilson et al., 2008, Preatoni et 

al., 2010) and could be useful in future loaded walking analysis to assess 

coordinative synergies between elements of the walking gait that are key to 

performance. The use of techniques such as dynamical systems theory in 

future load carriage research might elicit whether individual differences in 

movement variability in response to load results in the individual variation in 

load carriage that have been found in this thesis and reported in some of the 

literature (Lloyd and Cooke, 2011, Lloyd et al., 2010c). The number of gait 

cycles analysed in the present study are probably not appropriate to accurately 

assess kinematic variability using techniques such as dynamical systems 

theory, with a 400-step minimum being identified as suitable for such 

assessments by Owings and Grabiner (2003). The aim of this study was not 

to assess within participant gait variability, however future studies on the 

variability of spatial and temporal step kinematics with different load carriage 

conditions and the associated economy appear to be warranted.  

 

7.4.3. The effect of step width control on load carriage economy 

Load carriage has been suggested to place an increased demand on balance, 

indicated by an increase in step width variability (Huang and Kuo, 2014). 

O’Connor et al. (2012) suggested that variability in walking gait step width and 

step length could increase the energy expenditure in unloaded walking gaits. 

Increasing step width above and below an individual’s preferred step width has 

also been shown to increase the metabolic cost of unloaded walking (Donelan 

et al., 2001). As such, it was hypothesised that individual differences in step 

width from the preferred unloaded width, as a consequence of carrying 

additional load, could align to individual differences in load carriage economy.  

However, this study found no difference in relative load carriage economy 

between the preferred and controlled step width conditions. 
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The lack of significant difference in ELI between the two step width conditions 

(preferred and controlled) suggests that alterations in step width and medial-

lateral stability due to load carriage does not solely explain differences in load 

carriage economy between head-, back- and back/front-loading. In the 

uncontrolled condition, step width was wider for head-loading with all load 

mass compared to the other methods. An increase in step width has been 

associated with an increased requirement for medio-lateral stability (Young 

and Dingwell, 2012), which suggests that individuals required wider steps to 

maintain stability when head-loading. However, the pattern of response for ELI 

was similar in both step width conditions, which suggests that the alterations 

in step width when head-loading were not solely responsible for the increased 

ELI values. 

 

Step width was controlled to each participant’s preferred width when walking 

unloaded because, for unloaded walking, both widening and narrowing step 

width from an individual’s preferred width appears to increase the energy cost 

of walking (Donelan et al., 2001, Shorter et al., 2017). Furthermore, it has been 

suggested that an individual’s normal walking gait may represent an optimal 

solution for that individual in relation to their economy (Martin and Morgan, 

1992). As such, it was hypothesised that larger adjustments from the preferred 

unloaded walking gait, as a consequence of load carriage, could worsen 

economy. It’s likely that the small difference in step width between the 

controlled and preferred conditions seen in this study were not large enough 

to influence economy. Donelan et al. (2001) showed a 45% increase in 

metabolic cost for unloaded walking when step width was increased from 

preferred (0.14 m) to 0.42 m. The largest difference found in this study 

between controlled and uncontrolled step width was 0.01 metres. As such, it’s 

likely that when walking on even terrain, the alterations in step width induced 

by load carriage are not large enough to cause an alteration in relative load 

carriage economy. This is also likely to explain for the lack difference in medial 

and lateral ground reaction force between the conditions. 
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The method used to control step width in this study relied on the successful 

alignment of heel-markers with markers at the rear of the treadmill. While most 

participants were able to consistently align their heels with the markers, two 

participants produced narrower step widths in the back 12 kg condition (0.03 

metres from the desired width in the controlled condition). As such, the 

average step width for this load carriage condition was lower than other 

conditions. Similar real-time visual feedback methods have also reported 

slightly narrower than target step widths when running (Arellano and Kram, 

2011). 

 

 

7.5. Conclusion 

 

This study found that head-loading was less economical, for a group of 

inexperienced head-loaders, compared to back- and back/front-loading 

methods. There was, however, large individual variation for the biomechanical 

responses and load carriage economy associated with head-, back-, and 

back/front- loading methods.  

 

Using the deterministic model described in Chapter 6 as a framework to 

analyse load carriage economy, this study found that smaller unloaded to 

loaded walking adjustments in step length and cadence, along with increased 

sagittal trunk range of motion and double stance time, were beneficial for 

participants with improved economy when carrying a moderate load on the 

head (12 kg). This study also found that smaller unloaded to loaded walking 

adjustments in trunk and hips from unloaded walking are beneficial for an 

improved economy when carrying 20 kg using the Back/Front method.  

 

Load carriage induced alterations in step width from unloaded walking are not 

large enough to influence load carriage economy when walking on even terrain 

and, as such, step width does not solely explain individual differences in the 

economy associated with head-, back-, or back/front-loading. 
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This study was unable to find a common strategy of walking gait alterations 

from unloaded to loaded walking that can account for improved economy or 

worse economy for each load carriage condition. While the deterministic 

model was effective for comparing and understanding the walking gait 

adaptations that occur for different load carriage methods, this approach has 

not been able to fully explain the individual determinants of load carriage 

economy for each load method and load mass combination in this study. It’s 

possible that only considering the unloaded to loaded adaptations of the body 

to load carriage with discrete measures has limitations for fully explaining the 

determinants of load carriage economy. Given the individual variation found in 

load carriage economy and unloaded to loaded walking gait adaptations, 

future research might benefit from assessing the role of individual differences 

in movement variability and coordinative synergies between elements of the 

walking gait in response to load, to see if there is a link to energetic cost. 

Furthermore, it might also be useful for future load carriage research to assess 

the motions of the body and load carriage device separately, as well as a 

combined system, to understand how different gait adaptations might alter the 

load carriage devices motion and the link this could have to improved load 

carriage economy. 
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Chapter 8. General discussion 
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8.1. Introduction 

 

The aim of this thesis was to investigate the determinants of individual load 

carriage economy, with a focus on walking gait biomechanics and load 

carriage methods that position the load close to the COM of the body, or in the 

case of head-loading, in vertical alignment with the body’s COM. To achieve 

this aim, the objectives of this thesis were: (i) To assess the suitability of the 

ELI as a measure of relative load carriage economy; (ii) To establish the extent 

of individual variation in load carriage economy and walking gait alterations as 

a consequence of load carriage; (iii) To identify factor(s) that could determine 

an individual’s load carriage economy; (iv) Demonstrate cause and effect by 

manipulating the identified potential determinant(s) to influence load carriage 

economy. To achieve the aim and objectives, a total of three studies were 

conducted, along with the creation of a theoretical deterministic model. This 

chapter provides a synthesis and interpretation of the research presented in 

this thesis, as well as discussion of the limitations of the thesis and directions 

for future research.  

 

 

8.2. Summary of main findings and original contributions to the 

research area 

 

The review of literature in Chapter 2 identified the ELI as the most suitable 

method for measuring load carriage economy. The advantage of using the ELI 

over other widely used approaches, such as assessing the rate of oxygen 

consumption (e.g. Legg and Mahanty, 1985, Quesada et al., 2000) or the 

energy cost of walking (e.g. Abe et al., 2004, Bastien et al., 2005), is that the 

ELI accounts for V̇O2 when walking unloaded and provides a single unitless 

value. The ELI has been shown to be a valid measure (Lloyd et al., 2010a) but 

the research in Chapter 4 was the first study to investigate its reliability. 

Overall, the ELI demonstrated good test-retest reliability for 7 kg and 20 kg 

carried on the back at 3 km.h-1, 6 km.h-1 and a self-selected walking speed (4.4 

± 0.7 km.h-1). The systematic bias, LoA, CV and SEM were small in all trial 

conditions with the largest LoA (± 0.11), highest CV (4.17%) and SEM (0.04) 
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recorded when walking at 3 km.h-1 with the 7 kg load. As such, a novel finding 

of this study was that the ELI is a reliable measure of relative load carriage 

economy for light (7 kg) and heavy (20 kg) loads carried on the back at a range 

of walking speeds (3 km.h-1 – 6 km.h-1). From a practical perspective, evidence 

of the ELI’s reliability could be useful for researchers and developers of load 

carriage systems, particularly given the ELI’s utility in allowing for simple 

comparisons of economy between different load carriage systems and study 

designs. 

 

The research in Chapter 5 was designed to assess potential determinants of 

the energy saving phenomena previously reported for loads carried on the 

head (Maloiy et al., 1986), back (Abe et al., 2004) and evenly distributed 

between the back and front of the torso (Lloyd and Cooke, 2000b) when 

walking at a speed of 3 km.h-1. The findings presented in Chapter 5 provide 

novel evidence that sagittal plane trunk movements, previously postulated to 

be a determinant of load carriage economy for back- and back/front-loading 

(Lloyd and Cooke, 2000b, Abe et al., 2004), do not solely explain load carriage 

economy. Despite finding no difference in economy between load carriage 

methods, this research did show a considerable degree of inter-individual 

variation for both ELI and sagittal plane kinematics and is the first study to 

report this variation for head-loading compared to back- and back/front-loading 

methods. A novel finding from the measures of inter-individual variation is that 

increasing the mass of the load appears to increase the magnitude of inter-

individual variation for economy, which is likely to be caused by the increase 

in inter-individual variability in gait perturbations with increasing load mass. 

Assessing individual differences highlighted that the majority of participants 

were most economical when carrying 9 kg (7 out of 18 participants) for the 

back-loading condition. This supports the work of Abe et al. (2004), who 

reported that a load of 9 kg carried on the back yielded a better economy 

compared to lighter or heavier loads. In the back/front-loading condition, the 

majority of participant’s were most economical with 20 kg (10 out of 18 

participants). This finding provides further evidence to support studies that 

have found back/front-loading to be more economical than back-loading when 
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carrying heavier loads (Datta et al., 1973, Legg and Mahanty, 1985, Lloyd and 

Cooke, 2000b).  

 

The development of the deterministic model in Chapter 6 provides a 

theoretical understanding of the biomechanical factors that interact when 

walking at a given speed. The model provides a framework that can be used 

by researchers and developers to assess walking gait perturbations produced 

by load carriage compared to unloaded walking. Step width, pelvic rotation, 

antero-posterior ground reaction force and horizontal momentum were all 

identified, using the model, as factors not measured in Chapter 5 that could 

be important factors in determining individual load carriage economy.  

 

The research in Chapter 7 used the deterministic model developed in Chapter 

6 as a framework to assess walking gait perturbations in response to head-, 

back- and back/front-loading at a walking speed of 3 km.h-1. Relationships 

were assessed between ELI and gait perturbations from unloaded walking for 

each load carriage method to try and identify determinants of the energy 

saving phenomenon previously reported for these methods of load carriage 

(Maloiy et al., 1986, Abe et al., 2004, Lloyd and Cooke, 2000b). The study 

provided evidence that reduced gait perturbations from unloaded walking 

appear to be beneficial for improving economy, Specifically, improved relative 

load carriage economy when carrying a moderate load (12 kg) on the head 

was significantly related to a smaller change in step length (r = -0.650, p = 

0.009) and cadence (r = 0.574, p = 0.025) from those associated with unloaded 

walking, along with a larger change in sagittal plane trunk range of motion (r = 

-0.560,  p = 0.030), double stance time (r = -0.651, p = 0.009) and mean COM 

velocity in single stance (r = -0.533, p = 0.041) from unloaded walking. This 

study also provided evidence that reduced alterations in trunk movement from 

unloaded walking appear to be beneficial for an improved economy for 

back/front-loading with heavier load mass (20 kg). For this load carriage 

condition, smaller changes in peak trunk extension (r = 0.535, p = 0.040), peak 

trunk flexion (r = 0.578, p = 0.024), trunk angle at heel strike (r = 0.593, p = 

0.020) and trunk angle at toe off (r = 0.647, p = 0.009) from those associated 

with unloaded walking were all related to improved load carriage economy. 
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The research in Chapter 7 also showed that the changes in step width 

associated with different load carriage methods at a range of loads do not 

provoke changes in step width large enough, on their own, to be an 

explanatory factor for load carriage economy. 

 

 

8.2.1. Summary of the original contributions to knowledge and 

understanding of load carriage 

 

 The research in this thesis provides novel evidence that the ELI is a 

reliable measure of relative load carriage economy with light (7 kg) and 

heavy (20 kg) loads at a range of walking speeds (3 km.h-1 – 6km.h-1). 

As such, the ELI can be used with confidence by researchers, 

developers and manufacturers as a useful tool for comparing the 

relative economy of different load carriage systems. 

 

 The research in this thesis is the first to compare the magnitude of inter-

individual variability in load carriage economy and walking gait 

adaptations for head-, back- and back/front-loading across a range of 

load masses. A larger level of inter-individual variation for ELI values 

was found for a group of experienced head-loaders when carrying 

(largest CV = 16.%, 12% and 10% for head-, back-, and back/front-

loading, respectively) compared to a group of inexperienced head-

loaders (largest CV= 14%, 9% and 9% for head-, back-, and back/front-

loading, respectively), however this should be interpreted with caution 

as the data was collected in separate studies. The large inter-individual 

variation found in two of the experimental studies builds on the findings 

of Lloyd et al. (2010c) and  Lloyd and Cooke (2011), who first showed 

the existence of large inter-individual variation for economy and step 

parameters with a heavy load (25.6 kg) carried on the back and evenly 

distributed around the torso (back/front). The evidence presented in this 

thesis also provides evidence to show that the magnitude of this inter-
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individual variation in economy in relation to gait perturbations 

increases as the mass of the load increases.  

 

 Novel evidence shows that load carriage economy is not solely 

determined by an increase in the freedom of movement in the trunk in 

the sagittal plane, which has previously been postulated to be a 

prominent factor in determining load carriage economy for back- and 

back/front-loading conditions. This novel evidence was extended by 

showing that individually self-selected reduced perturbations from 

unloaded walking for sagittal plane trunk motion are associated with an 

improved economy when carrying heavy load (20 kg) using the 

back/front method. Further, the final study provides novel evidence that 

an improved head-loading economy with a moderate load (12 kg), for a 

group in inexperienced head-loaders, is associated with self-selected 

reduced perturbations in step length and cadence from unloaded 

walking, along with increased double stance time and range of motion 

of the trunk in the sagittal plane. 

 

 A deterministic model for walking speed has been developed that can 

be used as a framework to assess changes from unloaded to loaded 

walking gait for a given walking speed. The model can be used to 

systematically analyse the biomechanics of load carriage, which should 

be useful to researchers and developers in further exploring the walking 

gait adaptations to different load carriage systems and designs.  

 

 The experimental work from the final study also provides novel 

evidence that self-selected step width adjustments to head-, back- and 

back/front-loading are not large enough to effect load carriage economy 

in a general and predictable way and as such, the difference in 

economy between methods is not solely determined by step width.  
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8.3. Optimal walking gait adaptations for improved load carriage 

economy. 

 

The research in this thesis provides evidence that smaller perturbations from 

unloaded walking for sagittal plane trunk and hip movements when carrying 

external load might be beneficial for improved load carriage economy. This is 

particularly evident when carrying a heavy load (20 kg) using the back/front 

method, for which an improved load carriage economy was associated with 

smaller perturbations in trunk and hip movements from unloaded walking. This 

finding builds on the work of Lloyd and Cooke (2011), who found that reduced 

forward lean for back/front-loading compared to back-loading with  25.6 kg 

was correlated significantly with improved economy. Abe et al. (2004) showed 

that carrying a light load on the back (10 - 15% body mass) at slow walking 

speeds (2.4 - 3.6 km.h-1) was more economical than carrying heavier loads 

and/or walking at a faster pace. They suggested that an increase in rotative 

torque of the trunk in the sagittal plane with light loads compared to heavy 

loads was likely to be the mechanism responsible, as heavy load on the back 

constrains posture in a position of greater forward lean. The findings from this 

thesis show that an increase in trunk movement (i.e. increased rotative torque) 

is not generally beneficial for load carriage economy, as an increased trunk 

range of motion for back-loading in the final study, above that associated with 

unloaded walking, was not related with improved economy. It’s possible that  

an increase in rotative torque, above that associated with unloaded walking, 

could lead to an increase in the muscular effort required to counteract the 

torque in the upper body in order to transition from one step to the next, 

particularly with heavy loads. This would increase energy expenditure with a 

concomitant negative impact on economy.   

 

It was surprising that no difference in economy was found in Chapter 5 

between head-, back- and back/front-loading given that these methods perturb 

the posture of the trunk differently. Despite the lack of significant differences 

in economy between load carriage methods in Chapter 5, there was a 

tendency for improved economy with back/front-loading compared to back-

loading with heavy loads in both Chapter 5 and Chapter 7. The heaviest load 
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used in this research project (20 kg) was lighter than the load employed by 

Lloyd and Cooke (2000b), (2000c) (25.6 kg) and it’s possible that the 

difference in economy between back- and back/front-loading might be more 

visible with heavier loads than those used in the research in this thesis. As 

such, future research comparing the economy of different trunk loading 

methods, such as back- and back/front-loading, might benefit from employing 

heavier load masses than those used in the present research in order to 

identify the advantages of one method compared to another. This might be 

particularly beneficial in an occupational setting, such as the military services, 

were loads masses in excess of 20 kg are routinely carried (Knapik et al., 

2012).  

 

In Chapter 7, head-loading for a group of inexperienced head-loaders was 

associated with a reduction in step length and a concomitant increase in 

cadence from unloaded walking. For vertical loading, shorter strides have 

been suggested to improve stability and may improve economy through 

reducing the vertical oscillations of both the COM of the body and added load 

(Cooke et al., 1991) (Figure 57).  

 

 

Figure 57. Illustration of increased vertical oscillation of the centre of mass with 

an increase in step length. Adopted from Kuo and Donelan (2010). 

 

While an increased cadence/decreased step length combination might be 

beneficial for improving stability and vertical COM oscillations, Kuo (2001) 

suggested that the metabolic cost of walking might increase as a function of 

step frequency because the legs are not massless and the forced motion of 
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the legs relative to the torso will require a metabolic cost. This idea is 

supported by Doke et al. (2005) who suggested that the swinging motion of 

the legs might account for one third of the net energy required to walk at             

1.3 m.s-1 (4.68 km.h-1). In a comparison of the energetic costs associated with 

the swing phase and the stance phase, Umberger (2010) suggested that leg 

swing represented 29% of the muscular cost, while step-to-step transitions, 

where reduced vertical oscillations of the COM would be beneficial, accounted 

for 37% of the muscular cost. It’s possible that there could be an optimal step 

length and cadence combination that allows for an overall improvement in 

energy cost through reducing the vertical oscillations of the COM without 

substantially increasing cadence, and the associated metabolic cost of 

swinging the legs. The findings from Chapter 7 of this thesis show that, for a 

group of inexperienced head-loaders, improved load carriage economy for is 

associated with smaller changes in step length and step cadence with 

unloaded walking. It could be that for an individual, the optimal step length-

step cadence combination for reduced load carriage economy is close the 

preferred combination when walking unloaded. This would fit the established 

theory that, for unloaded walking, the stride length-stride frequency 

combination freely chosen for a given speed is close to optimal in terms of 

economy and that acute perturbations in stride length/stride frequency result 

in an increase in V̇O2 (Högberg, 1952, Cotes and Meade, 1960, Knuttgen, 

1961, Cavanagh and Williams, 1982).  

 

In Chapter 5 and Chapter 7, it was possible to select a sub-set of participants 

that demonstrated a similar level of load carriage economy to the free-ride 

phenomenon (ELI = ~0.80) (Maloiy et al., 1986) with either back-, back/front 

or head-loading, despite the group data often demonstrating a more 

proportional increase in energy expenditure relative to the added mass. This 

adds further evidence to show that the ‘free-ride’ hypothesis is not a 

generalisable finding. Future research investigating load carriage economy 

and any potential energy saving phenomena, should employ larger samples 

than those employed in the early studies of Maloiy et al. (1986) (n = 5) and 

Charteris et al. (1989) (n = 6). This is further supported by the analysis in 

Chapters 5 and 7 on the variation in load carriage economy attributable to 
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differences between individuals and the variation attributable to differences 

between the load mass conditions, for each load carriage method. For 

example, for the head-loading method in 20 kg, the study in Chapter 5 found 

a CV of 16% for the ELI data with individual differences accounting for 63% of 

the variance in load carriage economy for a group of experience head-loaders 

(47% attributable to the mass of the load).  

 

The work in Chapter 5 showed that individual load carriage economy is not 

determined by a single sagittal plane kinematic variable for load carried on the 

head, on the back and evenly distributed between the back and front of the 

torso, for a group of African women with head-loading experience. The study 

highlighted that biomechanical factors are likely to act in combination to 

influence load carriage economy. The ranking figures created in Chapter 7 

(Figure 53 and Figure 54) to explore the associations between economy and 

walking gait adaptations showed that the most economical individuals for 

head-loading with 12 kg, in a group of inexperienced head-loaders, had the 

smallest change in step patterns from unloaded walking and the largest 

increase in double stance time and sagittal plane trunk ROM. While step 

patterns and joint angle motions of the sagittal plane trunk and hip angle 

movements from unloaded walking appear beneficial for load carriage 

economy, a common combination/interaction of biomechanical factors for the 

most economical load carriers for each load carriage condition was not found.  

 

The perturbations in stride pattern were relatively small with the loads used in 

this research. This might explain why the determinants of individual 

differences in load carriage economy for some of the light loads (3 – 9 kg) 

could not be determined by reduced perturbations in walking gait from 

unloaded walking. Furthermore, the relationships between improved head-

loading economy and biomechanical factors found in Chapter 7, but not 

Chapter 5, might also be partly explained by the difference in the magnitude 

of the walking gait perturbations, on average, found between the studies. For 

example,  for head-loading there was, on average, an increase in trunk angle 

extension (Chapter 5: -2.0° ± 0.6 with pooled mass; Chapter 7: -7.3 ± 3.7°  with 

pooled mass) and larger step cadence (Chapter 5: 0.00 ± 0.02 steps.sec-1 with 
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pooled mass; Chapter 7: 0.04 ± 0.06 steps.sec-1 with pooled mass) from 

unloaded walking for the group of inexperienced head-loaders in Chapter 7 

compared to the experienced head-loaders in Chapter 5. Closer examination 

of the standard deviations for the change in trunk extension and cadence from 

unloaded walking between the studies also shows a greater magnitude of 

variability between participants for these variables in the study in Chapter 7 

compared to that of Chapter 5. It is possible that the larger perturbations and 

greater variability in a group of less economical participants, on average, made 

the walking gait adaptations that lead to improved economy easier to identify. 

The role of long-term experience and/or training on walking gait perturbations 

in response to load carriage does not appear to have been previously 

investigated. The research in this thesis shows that, for head-loading, long-

term (a minimum of 5 years) experience appears to reduce the variability of 

response for joint angle kinematics of the trunk and spatiotemporal variables 

between participants. As such, future research investigating the 

biomechanical determinants of improved load carriage economy for a 

particular loading method might benefit from assessing, and making 

comparisons between, relatively experienced and inexperienced participant 

groups with the load carriage method in question.  

 

The research in this thesis focused on unloaded to loaded walking gait 

perturbations to identify the determinants of relative load carriage economy. 

This approach is beneficial for understanding the perturbations that relate to 

the ELI, which is also an assessment of load carriage that uses unloaded 

locomotion as a point of reference. This approach has shown that self-selected 

reduced gait alterations from unloaded walking, that are closer reduced gait 

perturbations from unloaded walking tend to have improved load carriage 

economy, particularly when considering trunk movement and stride patterns 

associated with carrying a heavy load. However, this approach has not 

revealed a common combination/interaction of biomechanical factors for the 

most economical individuals with each load carriage condition. It’s possible 

that examining the role of movement variability, might help to tease out the 

determinants of individual differences in economy across different load 

carriage conditions, particularly for light loads that elicit smaller changes to the 
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walking gait from unloaded walking. Indeed, the larger magnitude of intra-

individual variation, assessed via standard deviations, for single support time, 

step length and cadence compared to the standard deviations between 

participants in the final study shows that, along with large inter-individual 

variation, there was also large within participant movement variability for some 

of the spatiotemporal variables. This particularly evident for single support time 

which has been linked to decreased gait stability in elderly populations 

(Hollman et al., 2007). Reduced step-to-step variability has been shown to 

reduce the metabolic cost of unloaded walking by up to 9% (O’Connor et al., 

2012, Donelan et al., 2004). Although these studies involved forced 

perturbations to effect step variability, it’s possible that individual differences 

in movement variability could account for some of the variance in load carriage 

economy between individuals that has been found in this thesis. The use of 

techniques such as dynamical systems theory in future load carriage research 

might elicit if individual differences in movement variability, in response to load 

carriage, contributes to the individual variation in load carriage economy found 

in this thesis and reported in the literature (Lloyd and Cooke, 2011, Lloyd et 

al., 2010c). 

 

An approach to examining load carriage energetics and biomechanics that 

considers the movement of the load, separately to movements of the body, 

might also be beneficial to fully understand the determinants of load carriage. 

Research on the walking gait has focused on identifying the source of energy 

loss during a stride to explain the requirement for the addition of energy, which 

has led to a focus on the energy cost of step to step transitions (Kuo et al., 

2005, Ruina et al., 2005, Adamczyk and Kuo, 2009, Kuo, 2007). Much of this 

research has focused on the energy required to perform mechanical work in 

these transitions to redirect the COM velocity from a forward and downward 

trajectory to a forward and upward trajectory. Theoretically, reducing the 

directional changes in COM velocity would be beneficial in reducing the 

amount of work required for step to step transitions and reduce energy cost 

(Inman and Eberhart, 1953). However, this would require gait adaptations to 

achieve the reduction in directional changes of the COM, which incur 

additional energetic costs above those of normal walking (Gard and Childress, 
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1997, Gard and Childress, 1999, Kerrigan et al., 2001). Although gait 

adaptations to flatten the COM trajectory when walking unloaded have been 

shown to worsen economy, Usherwood and Bertram (2016) demonstrated, 

using data from published head-loading studies (Heglund et al., 1995, Maloiy 

et al., 1986, Charteris et al., 1989) that reducing the trajectory path of the load 

(i.e. reduced collision geometry between step-to-step transitions) could reduce 

the collision cost for step-to-step transitions and improve load carriage 

economy. As such, it seems reasonable to speculate that load carriage 

strategies that flatten the arc of the trajectory for the external load during the 

gait cycle, without incurring a large metabolic penalty as a result of walking 

gait perturbations required to flatten the arc, might be beneficial for load 

carriage economy. Rome et al. (2006) found a reduced metabolic cost of 6.2% 

when walking with 27 kg compared to 0 kg using a backpack designed to 

reduce the vertical oscillations of the load relative to the body. This reduction 

in metabolic cost is closer to the 6-9% decrease in V̇O2 reported by Lloyd and 

Cooke (2000b) for back/front-loading compared to back-loading, than the 

larger magnitude of reduced metabolic cost purported for the free-ride 

hypothesis (Maloiy et al., 1986). Using the unloaded and loaded walking data 

from Rome et al. (2006), estimated ELI values for the locked backpack and 

spring backpack (reduced vertical oscillation) were 1.05 and 0.98, 

respectively. As such, the specially designed backpacks from Rome et al. 

(2006) appear to save a similar level of energy as back/front-loading compared 

to back-loading with a traditional backpack. To fully understand the role of load 

and body COM movements, future load carriage research should consider the 

motion of the load carriage device and motion of the body separately, and in 

combination, to better understand interactions between the body and different 

load carriage methods. 

 

 

8.4. Practical implications of the research presented 

 

The advantage of using the ELI to assess load carriage economy over other 

widely used approaches, such as assessing the rate of oxygen consumption 

(e.g. Legg and Mahanty, 1985, Quesada et al., 2000) or the energy cost of 
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walking (e.g. Abe et al., 2004, Bastien et al., 2005), is that the ELI accounts 

for unloaded walking energy expenditure and provides a single unitless value 

allowing for simple comparisons between different load carriage systems and 

study designs. However, the ELI has not been widely adopted by researchers 

investigating load carriage economy since its development (Lloyd et al., 

2010a), with only Godhe et al. (2017) employing the measure directly and 

Prado‐Nóvoa et al. (2019) employing a similar measure which they referred to 

as the Carrying Cost Index. Load carriage research often involves a single 

method and the ELI is perhaps deemed unnecessary by authors working on 

such studies that do not make comparisons between load carriage conditions, 

as an extra measure of V̇O2 for unloaded walking is required. It’s also possible 

that the ELI has not been widely adopted due to a lack of knowledge on the 

measure’s reliability. Chapter 4 provides a robust assessment of ELI reliability 

with light and heavy loads across a range of walking speeds. This evidence 

that the ELI is a reliable measure of relative load carriage economy may 

contribute to its increased use in scientific literature might increase, particularly 

for studies comparing the economy associated with different load carriage 

systems or different walking parameters (e.g. different walking speeds).  

 

The magnitude of individual variation in load carriage economy and walking 

gait perturbations suggest that a ‘one size fits all’ approach to load carriage 

design is not appropriate. For commercial products, increasing the ability to 

customise a load carriage system appears to be beneficial, particularly if the 

individual customisation allows load to be carried in a way that reduces gait 

perturbations from unloaded walking, particularly in relation to trunk 

movements in the sagittal plane. While bespoke designs might not be 

appropriate for the commercial market, individually fitted systems might be 

appropriate for specialized markets (e.g. military and emergency services), 

perhaps with additional gait analysis for personnel during the initial fitting 

process to assess individual gait perturbations from unloaded walking and 

ensure adjustable components of a load carriage system are fitted to 

minimizes these gait perturbations. Designing load carriage systems to be 

more customizable is not a new concept. Load carriage systems currently exist 

that include front balance pockets that can be attached to the front of a 
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backpack and allow load to be more evenly distributed around the trunk 

compared to the back alone (e.g. AARN pack, New Zealand). Duluth 

backpacks (Duluth Pack, USA) also include a tumpline that can be used to 

provide additional support a via the head and neck. 

 

The level of inter-individual variation in load carriage economy and gait 

perturbations found in this work might be an important consideration for 

recruitment and employment standards in occupations that require load 

carriage. When evaluating the impact of load carriage on job related 

performance in these roles, it might be important to understand how a 

particular load condition perturbs an individual’s gait, rather than assuming 

that the same gait perturbations will occur for all individuals. This could be 

particularly relevant from an injury prevention perspective given the individual 

variation in postural adjustments to load carriage found in the research in this 

thesis, which could lead to different types of load carriage related injury and 

prevalence of injuries between individuals. For example, inter-individual 

variability in knee angle motion in response to load carriage is likely to lead to 

individual variation in knee moments. Increased total knee joint moments have 

been suggested as a causative factor of knee osteoarthritis among military 

personal (Krajewski et al., 2020). 

 

 

8.5. Strengths and Limitations 

 

There were some strengths and limitations to the research in this thesis, which 

are outlined in the section.  

 

A strength of this research was the development of a deterministic model to 

facilitate the analysis of loaded and unloaded walking in Chapter 7. The use 

of a rigorously developed deterministic meant that the selected performance 

parameters in Chapter 7 were based on a theoretical rationale, which could 

be considered superior to randomly selecting performance parameters. 

Another strength of the research in this thesis was the use of the ELI to assess 

load carriage economy because it accounts for the energy cost of unloaded 
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walking. Lloyd et al. (2010a) conceptualized the energetic cost of load carriage 

as: the energy cost of unloaded walking at a given speed + the energy cost 

required to support and move a given external load ± the net change in the 

energy cost of movement due to changes in the kinematics and kinetics of 

movement as a result of the interaction between the load mass, speed and 

load carriage method. Based on this concept, the ELI appears to be a more 

appropriate measure of load carriage economy compared to measures that do 

not account for the energy cost of unloaded walking, particularly for research 

investigating the determinants of load carriage economy. Furthermore, all load 

carriage data in this thesis was presented as the change from unloaded to 

loaded walking, which is more appropriate than reporting absolute values 

because it accounts for the individual variation in the walking gait 

biomechanics associated with unloaded walking (Whittle, 2014). 

 

Although the free-ride hypothesis was first identified over 30 years ago for 

African women with several years of head-loading experience (Maloiy et al., 

1986), there is a paucity of load carriage research for this population. A 

strength of this thesis was the analysis of head-loading economy and walking 

gait kinematics in a sample of experienced head-loading women, which 

provided a robust investigation on the determinants of head-loading economy 

in a sample of participants from the population for which the free-ride 

hypothesis was first reported. Although it was not feasible to also assess 

experienced head-loaders in the research in Chapter 7, the use of a force 

instrumented treadmill alongside a motion capture system could also be 

considered a strength of the research in this thesis. Few studies investigating 

the biomechanical determinants of load carriage economy have assessed the 

associated kinematics and kinetics, and of those that have (Lloyd and Cooke, 

2011, Huang and Kuo, 2014), only Huang and Kuo (2014) measured the 

kinematics and kinetics in the same walking trials.  

 

One potential limitation to this body of work is the controlled walking speed 

employed in experimental studies 2 and 3 (Chapter 5 and 7). A speed of             

3 km.h-1 was selected to make comparisons with research that has previously 

demonstrated energy saving phenomenon for load carriage methods (Maloiy 
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et al., 1986, Charteris et al., 1989, Lloyd and Cooke, 2000b, Abe et al., 2004). 

However, using a set speed, rather than a self-selected speed, might have 

affected some individuals’ natural walking gait pattern more than others 

(depending on an individuals preferred unloaded walking speed) and this 

could have contributed to some of the high levels of individual variation noted 

in this thesis for both load carriage economy and loaded walking gait 

characteristics. This also limits the relevance of the findings for the 

determinants of improved economy for certain populations, such as those in 

the military and emergency services, who are regularly required to walk at 

speeds in excess of 5 km.h-1 when carrying loads (Knapik et al., 2012).  

 

While the results from experiments in controlled laboratory conditions are 

valuable for improving the knowledge and understanding of load carriage 

performance, it is important to note that load carriage tasks are often 

performed on uneven terrain at non-constant, self-selected speed. This will 

lead to additional metabolic costs and biomechanical challenges compared to 

a laboratory environment. As such, the lack of field assessments could be 

deemed a limitation to this body of work and is an under researched area when 

considering the biomechanics of load carriage. Load masses of 3 – 20 kg were 

used for the research in this thesis as energy saving phenomenon have been 

reported for similar loads within this range. However, some populations such 

as those in the military services (Knapik et al., 2012) regularly carry loads in 

excess of 20 kg, and, as such, the findings of this research are not directly 

applicable to those populations. Future research seems warranted to assess 

the magnitude of inter-individual variation for economy and walking gait 

perturbations to load carriage for increased load mass, faster walking speeds 

and longer walking durations, along with mechanisms to improve load carriage 

economy under these conditions. 

 

Perhaps another limitation to this research project was the mixed use of 

experienced and inexperienced head-loaders in Chapters 5 and 7, 

respectively, without a direct comparison between experienced and 

inexperienced load carriers. Lloyd et al. (2010c) showed no difference 

between experienced and inexperienced head-loaders. However, this thesis 
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showed no difference in mean ELI values between methods in Chapter 5 with 

experienced head-loaders, but a significant difference between mean head-

loading economy compared to economy with the other methods for the 

inexperienced head-loaders in Chapter 7. A study including a direct 

comparison between experienced and inexperienced head-loaders was not 

deemed unfeasible for this research project, given the difficulty of recruiting 

individuals with experience of head-loading in the location of the investigation 

for Chapter 7 (Leuven, Belgium).  

 

 

8.6. Directions for future research 

 

The results from the present research project give rise to a number of 

important research questions, the most pertinent of which are outlined below. 

 

Further work is required to identify the determinants of inter-individual variation 

in load carriage economy. The research in this thesis identified a large level of 

individual variation in loaded walking gait characteristics but there was a lack 

of strong relationship between economy and biomechanical variables. 

O’Connor et al. (2012) found that increased variability in walking gait step 

width and step length increased the metabolic energy cost of unloaded 

walking. The findings of Chapter 7 suggest that variability in loaded walking 

step width is unlikely to solely explain individual differences in load carriage 

economy. It is possible, however, that individual variation in the amount of 

movement in a number of walking gait characteristics could explain some of 

the individual variation in load carriage economy. This is an avenue of 

research that appears worthy of exploration through techniques that measure 

coordination variability such as dynamical systems theory to assess 

movement variability. 

 

Most load carriage activities occur on uneven terrain and surfaces that are not 

smooth (e.g. grass, sand, snow). Walking and running unloaded on uneven 

terrain have been shown to be more energetically costly than walking on 

smooth ground (Voloshina et al., 2013, Voloshina and Ferris, 2015). As might 
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be expected, Voloshina et al. (2013) demonstrated that walking unloaded on 

even terrain significantly increased step length and step width variability. The 

research in this thesis has quantified the inter-individual variation in load 

carriage economy and loaded walking gait perturbations on smooth, even 

surfaces. The next step would be to quantify individual variation in these 

parameters on uneven terrain, where most load carriage activities occur. This 

could provide useful information for optimal load carriage strategies and load 

carriage system designs for outdoor environments. 

 

Many recreational and occupational load carriage activities occur over longer 

distances and durations of time than examined in this thesis. Both load 

carriage and fatigue have been shown to influence gait characteristics (Qu and 

Yeo, 2011). Given the level of individual variation reported in this thesis for 

both load carriage economy and loaded walking gait characteristics, the 

influence of experience and fatigue on individual differences in the 

physiological and biomechanical variables associated with load carriage 

appears to warrant further attention. This could provide useful information for 

the design of future load carriage systems. Occupational load carriage (e.g. 

military and emergency services) also regularly occurs at faster walking 

speeds than those explored in this thesis. To achieve faster walking speeds, 

individuals with a shorter stature and shorter leg length could be forced to alter 

their gait to a less efficient movement pattern which could increase individual 

differences in the energy cost associated with load carriage. To date, large 

individual variation in load carriage economy has only been reported at 

walking speeds of ~3 km.h-1. Understanding individual differences in the 

energy cost of load carriage at fast walking speeds, and the potential influence 

of individual physical characteristics on the magnitude and effect of individual 

differences, might be of interest to military populations who are required to 

march at faster speeds. 

 

The research in this thesis, and much of the load carriage literature, has 

focused on acute responses to load carriage for both walking perturbations 

and economy. As such, the effect of chronic changes in response to load 

carriage training are less well known. Future research could build on the recent 
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work of Wills et al. (2019) who found a decrease in the work performed at the 

knee joint (4.2%) and an increase in the work perform at the ankle (3.7%) 

during a 5 km loaded march following a targeted 10 week resistance training 

programme. The change in walking gait perturbations to chronic load carriage 

activities is not well reported in the literature and research on this and the 

associated load carriage economy may be of interest to individuals who are 

required to carry load regularly as part of their occupation. 

 

 

8.7. Conclusions 

 

This research project has made considerable progress in identifying factors 

that determine individual load carriage economy and excluding factors that do 

not. Of the walking gait perturbations measured in this thesis, the freedom of 

movement of the trunk with back- and back/front-loading conditions was 

considered to be the most likely candidate for reduced energy expenditure 

based on the research of Abe et al. (2004) and Lloyd and Cooke (2000b), 

(2000c). The findings of this thesis show that individual perturbations alone, 

such as differences in trunk movement or differences in step width, do not 

solely explain economy for loads ≤ 20 kg at a walking speed of 3 km.h-1. An 

economical advantage for back/front-loading with heavy loads was a 

consistent finding in this research. The most economical individuals for this 

load carriage condition self-selected reduced perturbations of the upper body 

in the sagittal plane from unloaded walking. It is likely that the mechanical 

advantage for back/front-loading with heavy load is due to movements of the 

trunk that closely resemble those of unloaded walking. Other instances were 

individuals were more economical with a particular load carriage condition are 

also likely to be a result of reduced perturbations from unloaded walking for 

posture (particularly at the trunk and hip) and step patterns. This was 

particularly evident for head-loading with a moderate load for individuals with 

no previous experience of head-loading.  

 

The research in this thesis was not able to identify a combination or interaction 

of gait perturbations that improved economy across all load conditions and/or 



302 
 

individuals. Given the large magnitude of inter-individual variability for load 

carriage economy and gait perturbations found in this research, it’s possible 

that load carriage economy is not determined by a consistent set of 

biomechanical factors for each method of loading, are generalizable to all 

individuals. The large difference between step variability (within-participant 

variability larger than between participant variability) found for some of the 

spatiotemporal variables in Chapter  7 suggest that future research might 

benefit from investigating the role that step to step variability and coordination 

variability have on load carriage economy.  
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Introduction 
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is because previous research has used a variety of different calculations 
to measure energy expenditure along with a variety of different testing 
protocols (e.g. different walking speeds or different weight carried)  
 
Identifying a method that requires less energy to carry a load is 
beneficial as it may allow an individual to carry a load for longer without 
feeling discomfort and may also allow for more to be carried. 
Additionally, a method that requires less energy may also reduce the 
risk of injury occurring as a consequence of carrying a load for long 
period of time. 
 
In this study, we will test the reliability of a measure that is designed 
to allow for direct comparisons between how much energy is used to 
carry a load in different ways. This measure is called the Extra Load 
Index. If we find it reliable, the Extra Load Index could prove useful for 
companies that design load carrying devices such as backpacks and 
consumers who carry items for long periods of time, such as 
recreational hikers. 
 
The Extra Load Index is a calculation shown below.  
 
ELI = mlO2L/kg total mass per min                   

  mlO2U/kg body mass per min 
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In this calculation, mlO2U refers to oxygen consumption when walking 
without carrying anything and mlO2L refers to oxygen consumption 
when carrying a load. Oxygen consumption is used as a way to assess 
the amount of energy that has been used. 
 
As shown by the calculation above, the Extra Load Index takes into 
account the energy used when walking without carrying anything which 
is an important consideration when identifying the energy it takes to 
carry a load. The Extra Load Index has the potential to become a 
standard measure when comparing different methods of load carriage.  
 
Study Aim 
The aim of this study is to assess the reliability of the Extra Load Index 
in order to determine its practicality as a means of comparing different 
load carrying methods. 
 
Study Requirements 
You will be a healthy male or female volunteer aged between 18-55 
years. You will be asked to attend the human performance laboratory 
at Leeds Trinity University on seven separate occasions. You will 
complete an initial visit to familiarise yourself with the main trial 
protocol and the equipment that will be used. This session will last 
approximately 30 minutes. The next 6 visits will be to complete the 
main trials, with each visit lasting no more than 45 minutes. 
 
You will be able to withdraw from the study at any time during the 
testing, without having to provide an explanation. 
 
Location 
Sport and Exercise Science laboratory (Sports Laboratory) in the 
Department of Sport, Health & Nutrition at Leeds Trinity University, 
Brownberrie Lane, Horsforth, Leeds, West Yorkshire, LS18 5HD 
 
Restrictions During Testing 
You will be asked to maintain similar training patterns throughout 
testing. You will also be asked to maintain a similar diet and to refrain 
from moderate-vigorous exercise and alcohol consumption in the 24 
hours before each test. We will confirm these points with you verbally. 
 
Testing Protocol 
Initial Visit 
In the initial visit, you will be asked to walk on the treadmill until you 
feel comfortable with the equipment. You will then be asked to repeat 
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this while also carrying a rucksack and wearing the face mask used to 
analyse the air you breathe out. This visit will also be used to establish 
a self-selected walking speed that you are most comfortable with. 
 
Main Trials 
You will be asked to attend the laboratory on 6 more occasions in order 
to complete the main trials, with 48 hours between each visit. The first 
3 main trials will be to complete each of the 3 experimental conditions 
in a randomised order. The 3 experimental conditions will then be 
repeated in the final 3 visits to test for reliability. For each trial, you 
will be fitted with a face mask (to collect the air you breathe out) and 
walk on the treadmill while carrying different amounts of weight. To 
begin you will be asked to walk without carrying anything for 4 minutes 
followed by a 5-minute rest period. You will then be asked to repeat 
this process of 4 minutes exercise followed by 5 minutes of rest, 
carrying a light load (7kg in backpack), a heavy load (35kg in a 
backpack) and finally, again without carrying anything. The speed you 
walk at in each trial will either be a slow speed (3km.h-1), a fast speed 
(6km.h-1) or a self-selected speed, this be depends on the trial 
condition. 
 
Potential Benefits to You 
You will be provided with information on your energy expenditure when 
walking and when walking while carrying both light and heavy loads.  
 
Potential Risks to You 
There are always potential risks associated with performing any 
physical activity. However, you will be physically active and you are 
reminded that you should cease exercise immediately if you begin to 
feel unwell or unduly distressed. 
 
Contacts 
 
Principal Investigator:  Other Investigators: 
Sean Hudson Professor Ray Lloyd 
Leeds Trinity University Leeds Trinity University 
Horsforth, Leeds Horsforth, Leeds 
LS18 5HD LS18 5HD                     
S.Hudson@leedstrinity.ac.uk Ray.Lloyd@leedstrinity.ac.uk  

Telephone number: 
07878336168 
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Appendix E: Chapter 7 participant information sheet 

 

                      Participant Information Sheet  
 
 

Determining the energy required for different load carrying methods 
 
 
Introduction 
You are being invited to take part in a research study. Before you decide whether or not 
you would like to take part in the study it is important for you to understand why the 
research is being done and what it will involve. This information sheet should give you 
an idea of what the research is about and what your participation will involve. Ask us if 
there is anything that is not clear or if you would like more information.  Take time to 
decide whether or not you wish to take part. 
 
Thank you for reading this. 
 
Purpose of the study 
Companies around the world are trying to design ways of carrying loads that are more 
comfortable and more energy efficient than existing methods whilst scientists are trying 
to find out what makes certain methods of carrying loads better than others. In Africa, 
and some other parts of the world, women regularly carry heavy loads on their heads.  
This was thought to be a very energy efficient way of carrying loads but this now doesn’t 
seem to be the case. In the western world, loads are regularly carried on the back and 
around the front and back of the torso. Again, some have suggested that this is a very 
energy efficient way of carrying loads, however there appears to be a substantial amount 
of variation between individuals. In this study we want to compare carrying loads on the 
head, on the back and spread between the back and front of the torso to see which 
requires the least energy and find out why some individuals appear to be more energy 
efficient with certain methods compared to others. 
 
 
Why have I been chosen? 
We are seeking volunteers for this study.  We want to look at the difference in energy 
expenditure and how the body moves when carrying loads in three different ways.  To 
do this we need a group of about 20 individuals who are similar in age (between 18 and 
40).  Since you fit into such a group you could be included in the study if you wish. 
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Do I have to take part? 
No - it is up to you to decide whether or not to take part.  If you do decide to take part 
you will be given this information sheet to keep and be asked to sign a consent form.  If 
you decide to take part you are still free to withdraw at any time and without giving a 
reason.   
 
 
What will I have to do? 
To be part of the study you will need to visit the Movement and Posture Analysis 
Laboratory Leuven twice. Each time you come you will have to walk on a treadmill, 
carrying loads either in a backpack, on your head or in a backpack that also has pockets 
at the front. We will place markers on you so that we can capture your movements on 
the treadmill using our 3D motion capture system. We will also ask you to wear a face 
mask so that we can measure how much energy you are using. The first visit will last 
approximately 2 hours and the second visit will last approximately 2.5 hours. Each time 
you visit you will do the same thing, the only difference will be how you carry the loads.   
 
When you first arrive at the lab, we will weigh you and then attach the markers using 
double sided sticky tape that peels off easily.  It is best if you can bring with you shorts 
and a T-shirt to wear during the test as it is easier to mark the joints if you are not 
wearing too many clothes.   
 
We will then check the method of carrying load that you are to use.  If it is in a backpack 
or backpack with front balance pockets we will put the pack on you and adjust it until it 
fits properly and is comfortable.  We will then take it off until it is needed.  You will then 
take your place on the treadmill and have the face-mask fitted. The speed of the 
treadmill will be set at 3 km/h (a slow walking speed) and you will walk for four minutes. 
At the end of 4 minutes you will have 2 minute rest.  During this time you will be asked 
to complete some questions about discomfort and your first load will be fitted.  The first 
load will be 3 kg.  Once this is fitted you will walk for 4 minutes as before and again there 
will be a 2 minute rest while you answer the questions and the next load is prepared.  
The second load will be 12 kg.  Once again you will walk for 4 minutes followed by a 2 
minute rest when the load will be changed and you will answer the questions about any 
discomfort you feel. This process will be repeated with a 20 kg. If you are finding it too 
difficult to carry any load you may stop at that time and we will end the test. You will 
then have a 10 minute rest before repeating the load carrying procedure but this time 
we will slightly modify how you walk when carrying the load to see if there is any 
difference in your energy consumption. For example, we might ask you to put on a brace 
to change the angles of your hip, knee or ankle joints. We might ask you to change the 
speed at which you swing your arms or the number of steps you complete, or we might 
ask you to alter the width of your steps or how far you lean forward when walking.  
 
When you return 3-4 days later the whole process is repeated but you will carry the load 
in the two remaining ways.  
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If you are interested in taking part you can spend some time today looking at the 
equipment we will use and try it out. You will have the opportunity to get used to walking 
on the treadmill, as well as wearing a face mask, and we will show you the information 
that is recorded.  You will also be able to try out carrying loads in the backpack, the front 
and back pack and the bucket for your head.  Finally, if you are still interested in the 
study, we will ask you to fill out some forms to make sure it is ok for you to take part in 
the study and to find out how much experience you have of carrying loads on your back 
and your head. You will be free to ask any questions you wish. 
 
 
Restrictions during testing 
You will be asked to maintain similar training patterns throughout testing. You will also 
be asked to maintain a similar diet and to refrain from moderate-vigorous exercise and 
alcohol consumption in the 24 hours before each test. We will confirm these points with 
you verbally. 
 
Potential Benefits to you 
Most of the benefits of this study relate to increasing our knowledge of what makes one 
way of carrying a load better than other ways for each individual. You will be able to see 
your own results for all the experiments. You will be provided with information on your 
energy expenditure when walking and when walking while carrying both light and heavy 
loads.  
 
Potential Risks to you 
Whenever you take part in any physical activity there are some risks but for this study 
they are quite small and we have made every effort to reduce them even further.  The 
risks include muscular injury caused by walking with a load and cardiovascular 
complications caused by exercise.  The risk of muscular injury is most likely when you 
are carrying relatively heavy loads on your head or back, especially if you are not used 
to doing this.  The heaviest load used in this experiment is 20kg, which is the same as a 
bucket of water. The risk of cardiovascular complications is relatively small in healthy 
adults and we will only let you take part in the study if you have no history of such 
difficulties and are feeling well on the day of the test. 
 
 
Confidentiality and Anonymity  
All participant information will remain confidential and you will not be identified in any 
of the outputs associated with the research project. Data will be recorded and stored on 
a computer requiring password entry for up to 10 years. Following the completion of the 
research and potential publication, any documents containing your personal details will 
be destroyed by permanently deleting files from the computer. Any of your data 
recorded on paper will be shredded immediately after being transferred onto a 
computer requiring password entry.  
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Thanks for taking the time to read this.  If you wish to take part in the study you will need 
to sign the consent form and you will be given a copy of both this information sheet and 
the consent form to keep. 
 
 
Contacts 
 
Principal Investigator:  
 
Sean Hudson 
Leeds Trinity University 
Horsforth, Leeds 
LS18 5HD                     
S.Hudson@leedstrinity.ac.uk 
Telephone number: 07878336168 
 
 
Other Investigators: 
 
Professor Benedicte Vanwanseele 
KU Leuven  
Benedicte.vanwanseele@kuleuven.be 
 
Professor Ray Lloyd 
Leeds Trinity University 
Horsforth, Leeds 
LS18 5HD                     
Ray.Lloyd@leedstrinity.ac.uk  
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Appendix F: Health screen questionnaire 

Health screening questionnaire        

Name:________________________________________________ 

Risk factors Risk 
factor 

No risk 
factor 

1. Age= __________ years           male ≥45  
                                                                    female ≥55  

2. Have any of your parents, brothers or sisters had a heart 
attack, bypass surgery, angioplasty, or sudden death 
prior to 55 years (male relatives) or 65 years (female 
relatives) * 

Yes No 

3. Do you currently suffer from lower back pain or have a 
history of lower back pain regularly occurring? 

Yes No 

4. Do you currently suffer from neck pain or have a history 
of neck pain regularly occurring? 

Yes No 

5. Have you recently suffered from any musculoskeletal 
injury or have a history of musculoskeletal injuries 
regularly occurring? 

Yes No 

6. Are you currently a smoker- have you quit within the past 
6 months- are you exposed to environmental tobacco 
smoke? 

Yes No 

7. In the past 3 months have you performed at least 30 
minutes of moderate intensity physical activity or 
equivalent on at least 3 days of the week? 

No** Yes 

8. Do you take blood pressure medication? Yes No 

Resting blood pressure: SBP=________mmHg, 
DBP=___________mmHg 

 140/90*** < 140/90 

Total number of risk factors 
If yes to early sudden death in family history advise pre-
participation screening 
Avoid maximal testing if currently sedentary 
If BP ≥140/90mmHg treat as high risk and advise pre-
participation screening 

  

 

Signs or symptoms 
9. Do you ever have pain or discomfort in your chest or 

surrounding areas (neck, jaw, arms or other areas)? 
Yes No 
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10. Are you short of breath at rest or with mild exertion?  Yes No 
11. Have you ever experienced dizziness or loss of 

consciousness during or shortly after exercise? 
Yes No 

12. Do your ankles ever become swollen (other than as a 
result of an injury)? 

Yes No 

13. Do you ever suffer from cramp-like pains in your legs, 
brought on by exertion and relieved after 1-2 minutes of 
rest? 

Yes No 

14. Do you ever have palpitations (= the unpleasant 
awareness of the heart beating in your chest) or an 
unusual period of rapid heart rate? 

Yes No 

15. Have you ever been short of breath at rest in the 
recumbent position or had an attack of breathlessness in 
the middle of the night which was relieved by sitting up? 

Yes No 

16. Has a doctor ever said you have a heart murmur? Yes No 
17. Do you feel unusually fatigued or find it difficult to breathe 

with usual activities? 
Yes No 

SIGNS OR SYMPTOMS OF DISEASE Yes/No 
  

Personal History of disease 
Heart disease Yes No 
Peripheral vascular disease Yes No 
Cardiovascular disease Yes No 
Chronic obstructive pulmonary 
(emphysema/chronic bronchitis) 

Yes No 

Asthma Yes No 
Interstitial lung disease Yes No 
Cystic fibrosis  Yes No 
Diabetes mellitus Yes No 
Thyroid disorder Yes No 
Renal disease Yes No 
Liver disease Yes No 
HISTORY OF DISEASE Yes/No 

 

Other Conditions 
Do you have any bone or joint 
problems such as arthritis or a past 
injury that might get worse with 
exercise and/or carrying an 
additional load? 

Yes No 
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Do you have any other problem that 
might make it difficult for you to carry 
an additional load and/or do 
strenuous exercise? 

Yes No 

Are you or have you been recently 
pregnant? 

Yes No 

Are you on any prescription 
medications?   

Yes No 

 

I confirm that the above information which I have provided to Leeds Trinity University is 
true and accurate to the best of my knowledge and belief and I understand that I must 
notify promptly of any changes to the information. 

I understand that the information I have provided above may be used as part of an 
anonymised dataset by staff or students from SHN for competition of coursework or for 
research or audit purposes (with the appropriate ethical approval in place)  

Signature:___________________________ 

Date:_______________ 

Witness signature:_________________________ 

Date:___________________________ 
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Appendix G: Chapter 4 written informed consent 

 
 

Statement of consent to participate in the investigation entitled: 
 

 
 

The reliability of the Extra Load Index 
 
 

1. I, ………………………………………………………… agree to partake as a subject in the above study. 
 

2. I understand from the participant information sheet, which I have read in full, and from 
my discussion(s) with Sean Hudson that this will involve me completing an initial visit 
to familiarise myself with the study protocol and the equipment followed by 4 further 
visits to complete the 4 main trial conditions, as detailed in the subject information 
sheet. 

 
3. It has also been explained to me by Sean Hudson that the risks and side effects which 

may result from my participation are as follows: There are potential risks associated 
with performing moderate-vigorous exercise, although I am familiar with performing 
some type of moderate-vigorous exercise and the investigators will remind me to cease 
exercise immediately should I begin to feel unwell or unduly distressed. 

 
4. I confirm that I have had the opportunity to ask questions about the study and, where 

I have asked questions, these have been answered to my satisfaction 
 

5. I understand that I must abide by University regulations and the advice of researchers 
regarding safety.  

 
6. I am aware that I can withdraw my consent to participate in the study at any time and 

for any reason, without having to explain my withdrawal. 
 

7. I understand that any personal information regarding me, gained through my 
participation in this study, will be treated as confidential and only handled by 
individuals relevant to the performance of the study and the storing of information 
thereafter.  Where information concerning myself appears within published material, 
my identity will be kept anonymous.  

 
8. I confirm that I have been informed of the University’s policy relating to the storage 

and subsequent destruction of sensitive information. I understand that sensitive 
information I have provided through my participation in this study will be handled in 
accordance with this policy. 

 
9. I confirm that I have completed the health questionnaire and I know of no reason, 

medical or otherwise that would prevent me from partaking in this research. 
 
 
Subject signature: ……………………………………………………………   Date:_____________ 
 
Independent witness signature: ……………………………………………    Date:_____________ 
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Appendix H: Chapter 7 written informed consent 

 
Statement of consent to participate in the investigation entitled: 

 
The determinants of individual load carriage economy 

 
10. I, _______________________________ agree to partake as a participant in the above study. 

 
11. I understand from the participant information sheet, which I have read in full, and from my 

discussion(s) with Sean Hudson that this will involve me completing an initial visit to familiarise 
myself with the study protocol and the equipment followed by 3 further visits to complete the 3 
main trial conditions, as detailed in the participant information sheet. 

 
12. It has also been explained to me by Sean Hudson that the risks and side effects which may result 

from my participation are as follows: There are potential risks associated with performing 
moderate-vigorous exercise, although I am familiar with performing some type of moderate-
vigorous exercise and the investigators will remind me to cease exercise immediately should I 
begin to feel unwell or unduly distressed. 

 
13. I confirm that I have had the opportunity to ask questions about the study and, where I have 

asked questions, these have been answered to my satisfaction 
 

14. I understand that I must abide by University regulations and the advice of researchers regarding 
safety.  

 
15. I am aware that I can withdraw my consent to participate in the study at any time and for any 

reason, without having to explain my withdrawal. 
 

16. I understand that any personal information regarding me, gained through my participation in this 
study, will be treated as confidential and only handled by individuals relevant to the performance 
of the study and the storing of information thereafter.  Where information concerning myself 
appears within published material, my identity will be kept anonymous.  

 
17. I confirm that I have been informed of the University’s policy relating to the storage and 

subsequent destruction of sensitive information. I understand that sensitive information I have 
provided through my participation in this study will be handled in accordance with this policy. 

 
18. I confirm that I have completed the health questionnaire and I know of no reason, medical or 

otherwise that would prevent me from partaking in this research. 
 
 
Subject signature: __________________________________________    Date:  ____________ 
 
Independent witness signature: _______________________________    Date:  ____________ 
 
Primary Researcher signature: ________________________________    Date:  _____________ 
 
 
 
 
 



349 
 

Appendix I: Consent to scientific illustration 
 
 

 
 
 

FOR USE WHEN STILL OR MOVING IMAGES WILL BE RECORDED 
Consent to scientific illustration 
I hereby confirm that I give consent for photographic and/or videotape and 
sound recordings (the 'material') to be made of me.  I confirm that the purpose 
for which the material would be used has been explained to me in terms which 
I have understood and I agree to the use of the material in such circumstances.  
I understand that if the material is required for use in any other way than that 
explained to me then my consent to this will be specifically sought. 
 
 
1.  I understand that the material will form part of my confidential records and 
has value in scientific assessment and I agree to this use of the material. 
 
Signed........................................................           
Date......................................... 
 
Signature of Parent / Guardian in the case of a minor  
 
......................................................................................... 
 
2.  I understand the material has value in teaching and I consent to the material 
being shown to appropriate professional staff for the purpose of education, staff 
training and professional development. 
 
Signed........................................................           
Date......................................... 
 
Signature of Parent / Guardian in the case of a minor  
 
......................................................................................... 
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I hereby give consent for the photographic recording made of me 
on....................... to be published in an appropriate journal or textbook.  It is 
understood that I have the right to withdraw consent at any time prior to 
publication but that once the images are in the public domain there may be no 
opportunity for the effective withdrawal of consent. 
 
Signed ........................................................           Date 
......................................... 
 
Signature of Parent / Guardian in the case of a minor  
 
......................................................................................... 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



351 
 

 
Appendix I: Load carriage experience questionnaire 

 

Load Carriage Experience 
 
Participant Number: __________ 

Date of Birth: _____ /_____ / _____ 
Height:                cm 
Weight:                kg 
Telephone: _____________________                                   

 
1) Do you have experience of carrying loads on your head?  Yes 
 No 
 
If yes, please answer questions 2 – 8. If no, please move to question 9. 
 
2) How old were you when you first carried loads on your head? 

_____________________________ 

 

3) How old were you when last carried loads on your head? 
___________________________________ 

 

4)  How often did you carry loads on your head as a young child (under 5 years of age) 
and what sort of loads did you carry?  

__________________________________________________________________________________________________________

__________________________________________________________________________________________________________

__________________________________________________________________________________________________________

__________________________________________________________________________________________________________

_____________________________________________________________________________ 

 

5)  How often did you carry loads on your head as a young child (Age 6-10) and what 
sort of loads did you carry?  

__________________________________________________________________________________________________________

__________________________________________________________________________________________________________

__________________________________________________________________________________________________________

__________________________________________________________________________________________________________

_____________________________________________________________________________ 
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6)  How often did you carry loads on your head between the ages of 11 and 17 and 
what sort of loads did you carry? 

__________________________________________________________________________________________________________

__________________________________________________________________________________________________________

__________________________________________________________________________________________________________

__________________________________________________________________________________________________________

_____________________________________________________________________________ 

 
7) If you are still carrying loads on your head, how often do you do this and what sort 
of loads do you carry?  

__________________________________________________________________________________________________________

__________________________________________________________________________________________________________

__________________________________________________________________________________________________________

__________________________________________________________________________________________________________

_____________________________________________________________________________ 

 

8) What are the heaviest loads you have carried on your head?  

__________________________________________________________________________________________________________

__________________________________________________________________________________________________________

__________________________________________________________________________________________________________

__________________________________________________________________________________________________________

_____________________________________________________________________________ 

 
9) Do you have experience of carrying loads in a backpack?  Yes 
 No 
 
If yes, please answer questions 10 – 16. If no, please move to question 17. 
 
 
10) How old were you when you first carried loads in a backpack? 
__________________ 

 

11) How old were you when last carried loads in a backpack? -

_________________________________ 

 

12)  How often did you carry loads in a backpack as a young child (under 5 years of age) 
and what sort of loads did you carry?  

__________________________________________________________________________________________________________

__________________________________________________________________________________________________________

__________________________________________________________________________________________________________
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__________________________________________________________________________________________________________

_____________________________________________________________________________ 

 
13) How often did you carry loads in a backpack as a child (age 6-10) and what sort of 
loads did you carry?  

__________________________________________________________________________________________________________

__________________________________________________________________________________________________________

__________________________________________________________________________________________________________

__________________________________________________________________________________________________________

_____________________________________________________________________________ 

 

14)  How often did you carry loads in a backpack between the ages of 11 and 17 and 
what sort of loads did you carry? 

__________________________________________________________________________________________________________

__________________________________________________________________________________________________________

__________________________________________________________________________________________________________

__________________________________________________________________________________________________________

_____________________________________________________________________________ 

 
15) If you are still carrying loads in a backpack, how often do you do this and what sort 
of loads do you carry?  

__________________________________________________________________________________________________________

__________________________________________________________________________________________________________

__________________________________________________________________________________________________________

__________________________________________________________________________________________________________

_____________________________________________________________________________ 

 

16) What are the heaviest loads you have carried in a backpack?  

__________________________________________________________________________________________________________

__________________________________________________________________________________________________________

__________________________________________________________________________________________________________

__________________________________________________________________________________________________________

_____________________________________________________________________________ 

 
 
17) Do you have experience of carrying loads in a doublepack?  Yes 
 No 
 
If yes, please answer questions 17 – 16. If no, you have finished the questionnaire. 
Thank you for your assistance. 
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18) How old were you when you first carried loads in a doublepack? 
__________________ 

 

19) How old were you when last carried loads in a backpack? -

_________________________________ 

 

20)  How often did you carry loads in a doublepack as a young child (under 5 years of 
age) and what sort of loads did you carry?  

__________________________________________________________________________________________________________

__________________________________________________________________________________________________________

__________________________________________________________________________________________________________

__________________________________________________________________________________________________________

_____________________________________________________________________________ 

 
21) How often did you carry loads in a doublepack as a child (age 6-10) and what sort 
of loads did you carry?  

__________________________________________________________________________________________________________

__________________________________________________________________________________________________________

__________________________________________________________________________________________________________

__________________________________________________________________________________________________________

_____________________________________________________________________________ 

 

 
22)  How often did you carry loads in a doublepack between the ages of 11 and 17 and 
what sort of loads did you carry? 

__________________________________________________________________________________________________________

__________________________________________________________________________________________________________

__________________________________________________________________________________________________________

__________________________________________________________________________________________________________

_____________________________________________________________________________ 

 
23) If you are still carrying loads in a doublepack, how often do you do this and what 
sort of loads do you carry?  

__________________________________________________________________________________________________________

__________________________________________________________________________________________________________

__________________________________________________________________________________________________________

__________________________________________________________________________________________________________

_____________________________________________________________________________ 
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24) What are the heaviest loads you have carried in a doublepack?  

__________________________________________________________________________________________________________

__________________________________________________________________________________________________________

__________________________________________________________________________________________________________

__________________________________________________________________________________________________________

_____________________________________________________________________________ 

 
 
 
Thank you for your assistance 
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Appendix J: Treadmill verification data for the study in Chapter 4 

 

Unloaded (nobody walking)     

 Time (s)   

Speed (km/h) Trial 1 Trial 2 Trial 3 Mean 
Actual 

Speed (m/s) 
Actual Speed 

(km/h) 
3 79.09 78.97 78.87 78.98 0.84 3.04 

4 58.82 58.79 58.84 58.82 1.13 4.08 

5 47.07 47.06 47.09 47.07 1.41 5.09 

6 39.09 39.09 39.03 39.07 1.70 6.14 

       
Loaded       
Total mass = 84kg body mass + 20kg Backpack 

 Time (s)   

Speed (km/h) Trial 1 Trial 2 Trial 3 Mean 
Actual 

Speed (m/s) 
Actual Speed 

(km/h) 
3 82.14 81.72 81.44 81.77 0.81 2.93 

4 59.71 59.87 59.62 59.73 1.11 4.01 

5 47.38 47.42 47.49 47.43 1.40 5.06 

6 40.03 40.03 40.01 40.02 1.66 5.99 

              
Unloaded Repeated (nobody walking)    

 Time (s)   

Speed (km/h) Trial 1 Trial 2 Trial 3 Mean 
Mean Actual 
Speed (m/s) 

Actual Speed 
(km/h) 

3 79.06 79.09 79.13 79.09 0.84 3.03 

4 59.93 58.87 58.94 59.25 1.12 4.05 

5 47.09 47.07 47.12 47.09 1.41 5.09 

6 39.16 39.09 39.12 39.12 1.70 6.13 

       
Loaded Repeated      
Total mass = 84.3kg body mass + 20kg Backpack 

 Time (s)   

Speed (km/h) Trial 1 Trial 2 Trial 3 Mean 
Actual 

Speed (m/s) 
Actual Speed 

(km/h) 
3 81.63 81.53 81.53 81.56 0.82 2.94 

4 59.56 59.72 59.93 59.74 1.11 4.01 

5 47.71 47.52 47.54 47.59 1.40 5.04 

6 39.88 39.71 39.75 39.78 1.67 6.03 
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Appendix K: Backpack device specifications used for the research in Chapter 4 

and Chapter 7 

 

Chapter 4  
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Chapter 7 
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Appendix L: Residual analysis data 

 
 

Table 39.  Estimated cut-off frequencies from a residual analysis conducted for 

the research in Chapter 4 on data from two participants with each load mass at 3 

km.h-1 (0 kg, 7 kg and 20 kg). 

    Cut-off frequency (Hz) 

Segment Axis 
P1  

0 kg 
P2  

0 kg 
P1  

7 kg 
P2  

7 kg 
P1  

20 kg 
P2  

20 kg 

Head 
Centre 

X 6 6 5 6 6 6 

Y 6 6 6 5 6 6 

Left 
Shoulder 

X 6 6 5 6 6 5 

Y 5 6 6 6 5 7 

Left Hip 
X 6 6 6 6 6 6 

Y 6 6 6 6 6 6 

Left Knee 
X 6 5 6 6 5 6 

Y 6 6 6 6 6 6 

Left Ankle 
X 6 6 6 6 5 6 

Y 7 6 6 6 6 6 

Left Foot 
Tip 

X 6 6 6 7 6 6 

Y 7 7 6 7 7 6 

* P = Participant 
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Table 40.  Estimated cut-off frequencies from a residual analysis conducted for 

the research in Chapter 5 on data from three participants with each loading 

method and a range of loads (3 kg, 9 kg and 20 kg). 

  
Back cut-off 

frequency (Hz) 
Back/front cut-off 
frequency (Hz) 

Head cut-off 
frequency (Hz) 

Segment Axis 
P13 
3 kg 

P8  
9 kg 

P4  
20 kg 

P13  
3 kg 

P8  
9 kg 

P4  
20 kg 

P13  
3 kg 

P8  
9 kg 

P4  
20 kg 

Head 
Centre 

X 5 5 6 5 5 6 5 5 5 

Y 6 6 6 6 6 6 6 6 6 

Right 
Shoulder 

X 5 6 6 6 6 6 6 6 6 

Y 5 6 6 6 6 6 6 6 6 

Right 
Elbow 

X 6 6 5 6 6 6 6 6 6 

Y 6 6 6 6 6 6 6 6 6 

Right 
Wrist 

X 6 6 6 7 6 6 6 6 6 

Y 6 6 6 6 6 6 6 6 6 

Right 
Finger 

X 6 6 6 7 6 6 6 6 5 

Y 7 6 6 7 6 6 6 6 6 

Right 
Hip 

X 6 6 6 5 6 5 5 6 5 

Y 6 6 6 6 6 6 6 6 5 

Right 
Knee 

X 6 6 6 5 6 5 5 6 6 

Y 6 6 6 5 6 6 6 6 6 

Right 
Ankle 

X 6 6 6 5 6 6 5 6 6 

Y 6 6 7 6 6 6 6 7 7 

Right 
Foot Tip 

X 6 6 6 5 6 6 6 6 6 

Y 7 6 7 6 6 6 6 7 7 

* P = Participant 

 

 



361 
 

Table 41.  Estimated cut-off frequencies from a residual analysis conducted for the research in Chapter 7 on data from three 

participants with each loading method and each load mass (3 kg, 12 kg and 20 kg). 

    
Unloaded walking cut-

off frequency (Hz) 
Back cut-off frequency 

(Hz) 
Back/front cut-off frequency 

(Hz) 
Head cut-off frequency (Hz) 

Segment  Axis P1  P2  P3 
P1  

3 kg 
P2  

12 kg 
P3 

20 kg 
P1  

3 kg 
P2  

12 kg 
P3  

20 kg 
P1  

3 kg 
P2  

12 kg 
P3  

20 kg 

Head  
X 5 5 6 6 6 6 6 5 6 5 5 6 

Y 5 6 6 6 6 6 6 6 6 6 6 6 

Right upper 
arm 

X 6 7 6 6 5 6 6 6 5 6 6 6 

Y 6 6 5 6 6 6 6 6 6 6 6 6 

Right lower arm 
X 6 6 6 6 6 6 6 7 6 6 6 6 

Y 6 6 6 6 6 6 7 6 6 6 6 6 

Right hand 
X 6 6 5 6 4 6 5 6 5 6 6 6 

Y 6 6 6 7 6 6 6 6 6 7 6 5 

Left upper arm 
X 6 7 6 6 6 6 6 6 7 5 6 6 

Y 6 6 6 6 5 6 6 6 6 6 6 6 

Left lower arm  
X 5 6 6 6 6 6 6 6 6 6 6 6 

Y 6 6 7 6 6 6 6 7 7 6 6 6 

Left hand  
X 6 6 6 6 6 6 6 6 6 5 6 6 

Y 5 6 7 6 6 6 7 7 7 6 6 6 

Thorax  
X 6 6 5 6 6 6 4 6 6 4 5 5 

Y 6 6 6 6 5 6 6 6 6 6 6 6 
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Pelvis  
X 5 6 5 5 6 6 6 6 6 6 6 6 

Y 6 6 6 5 6 6 6 6 6 6 5 6 

Right thigh 
X 6 6 6 5 6 6 6 6 6 6 6 6 

Y 6 6 6 6 6 6 6 6 6 6 6 6 

Right shank 
X 6 6 6 6 6 6 5 6 6 6 5 6 

Y 6 6 7 6 6 6 6 7 6 8 6 6 

Right foot 
X 6 6 6 6 6 5 6 6 5 6 6 6 

Y 7 6 7 6 6 6 7 7 6 7 6 6 

Left thigh 
X 6 6 6 6 4 6 6 6 6 5 6 6 

Y 6 6 6 6 6 6 6 6 6 6 6 6 

Left shank 
X 6 6 6 7 6 6 6 6 6 7 6 6 

Y 6 6 6 7 6 7 6 6 6 8 6 6 

Left foot 
X 6 6 6 6 6 6 6 6 6 6 5 6 

Y 7 6 7 7 7 6 7 6 6 8 6 6 

* P = Participant 
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Appendix M: Chapter 4 intra-observer digitising reliability tables 

 

Table 42. Intra-observer reliability for manual digitisation of trunk angle at heel-strike and toe-off for a single participant walking with 
20 kg. 

TEM = Technical error of measurement; ∑ = summation; VAV = Variable average value  

 Measurement number 

 1 2 3 4 5 6 7 8 9 10 

Trunk angle at heel strike (˚)       
1st measurement  80.2 80.4 81.0 80.2 79.1 80.2 80.4 80.7 79.8 78.9 
2nd measurement  81.0 80.3 79.8 79.9 80.6 80.3 80.6 81.1 79.9 80.0 
Deviations -0.8 0.1 1.2 0.3 -1.5 -0.1 -0.2 -0.4 -0.1 -1.1 
(Deviations)2 0.6 0.0 1.4 0.1 2.3 0.0 0.0 0.2 0.0 1.2 
∑(Deviations)2 5.9          

Absolute TEM 0.5          

VAV 80.2          

Relative TEM % 0.7          

Trunk angle at toe off (˚)        
1st measurement  81.3 80.8 80.5 81.2 81.5 80.9 81 80.7 81.5 81 
2nd measurement  80.9 80.2 79.7 80.5 81.1 80.6 80.3 81 80.7 80.4 
Deviations 0.4 0.6 0.8 0.7 0.4 0.3 0.7 -0.3 0.8 0.6 

(Deviations)2 0.16 0.36 0.64 0.49 0.16 0.09 0.49 0.09 0.64 0.36 

∑(Deviations)2 3.5          

Absolute TEM 0.4          

VAV 80.8          

Relative TEM % 0.5          



364 
 

Table 43. Intra-observer reliability for manual digitisation of hip angle at heel-strike and toe-off for a single participant walking 
with 20 kg.  

 Measurement number 

 1 2 3 4 5 6 7 8 9 10 
Hip angle at heel strike (˚)  
1st measurement  155.1 155.8 155.7 155.7 155.3 155 155.1 155.8 155.6 155.6 
2nd measurement  155.3 155.8 155.1 155.9 155.8 154.9 155.6 155.7 155.9 155.9 
Deviations -0.2 0 0.6 -0.2 -0.5 0.1 -0.5 0.1 -0.3 -0.3 
(Deviations)2 0.04 0 0.36 0.04 0.25 0.01 0.25 0.01 0.09 0.09 
∑(Deviations)2 1.1          

Absolute TEM 0.2          

VAV 155.5          
Relative TEM % 0.2          

Hip angle at toe off (˚)    
1st measurement  165.6 165.8 165.9 166.4 166.2 166.8 166.3 166.5 165.9 166.1 

2nd measurement  166.2 166.3 166.6 165.8 166 166.4 166 165.9 166.6 166.8 

Deviations -0.6 -0.5 -0.7 0.6 0.2 0.4 0.3 0.6 -0.7 -0.7 

(Deviations)2 0.36 0.25 0.49 0.36 0.04 0.16 0.09 0.36 0.49 0.49 

∑(Deviations)2 3.1          

Absolute TEM 0.4          

VAV 166.2          
Relative TEM % 0.2          

TEM = Technical error of measurement; ∑ = summation; VAV = Variable average value  
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Table 44. Intra-observer reliability for manual digitisation of knee angle at heel-strike and toe-off for a single participant 
walking with 20 kg. 

 Measurement number 

 1 2 3 4 5 6 7 8 9 10 

Knee angle at heel strike (˚)       
1st measurement  162 162 161.8 161.5 162 162.3 161.7 162.1 162.3 161.9 
2nd measurement  162.8 162.3 162.3 162.4 162.8 162.1 162.9 162.5 162 162.8 
Deviations -0.8 -0.3 -0.5 -0.9 -0.8 0.2 -1.2 -0.4 0.3 -0.9 
(Deviations)2 0.64 0.09 0.25 0.81 0.64 0.04 1.44 0.16 0.09 0.81 
∑(Deviations)2 4.97          
Absolute TEM 0.50          
VAV 162.2          
Relative TEM % 0.31          

Knee angle at toe off (˚)        
1st measurement  116.1 116.4 116.7 116.8 116.8 116.4 116.9 116 117.1 116.1 

2nd measurement  115.8 115.9 115.7 116.2 116.9 116.8 116.7 116.8 116.3 116.2 

Deviations 0.3 0.5 1 0.6 -0.1 -0.4 0.2 -0.8 0.8 -0.1 

(Deviations)2 0.09 0.25 1 0.36 0.01 0.16 0.04 0.64 0.64 0.01 

∑(Deviations)2 3.2          
Absolute TEM 0.4          
VAV 116.4          
Relative TEM % 0.3          

TEM = Technical error of measurement; ∑ = summation; VAV = Variable average value  
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Table 45. Intra-observer reliability for manual digitisation of Ankle angle at heel-strike and toe-off for a single participant 
walking with 20 kg. 

 Measurement number 

 1 2 3 4 5 6 7 8 9 10 

Ankle angle at heel strike (˚)       
1st measurement  118.1 118.4 117.7 117.8 118 118.5 118.4 117.7 118.2 118.1 
2nd measurement  117.9 117.7 117.7 117.7 118.1 118.4 118.2 118.3 118.2 118.1 
Deviations 0.2 0.7 0 0.1 -0.1 0.1 0.2 -0.6 0 0 
(Deviations)2 0.04 0.49 0 0.01 0.01 0.01 0.04 0.36 0 0 
∑(Deviations)2 1.0          
Absolute TEM 0.2          
VAV 118.1          
Relative TEM % 0.2          

Ankle angle at toe off (˚)        
1st measurement  124.6 124.8 124.7 124.9 125.1 125 124.7 124.5 124.9 125 

2nd measurement  125.3 125.5 124.8 124.7 124.8 125.1 124.9 124.8 124.9 125.1 

Deviations -0.7 -0.7 -0.1 0.2 0.3 -0.1 -0.2 -0.3 0 -0.1 

(Deviations)2 0.49 0.49 0.01 0.04 0.09 0.01 0.04 0.09 0 0.01 

∑(Deviations)2 1.3          
Absolute TEM 0.3          
VAV 124.9          
Relative TEM % 0.2          

TEM = Technical error of measurement; ∑ = summation; VAV = Variable average value  
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Appendix N: Chapter 5 intra-observer digitising reliability 

 

Table 46. Intra-observer reliability for manual digitisation for the research in Chapter 5. Measurement reliability data is for 
trunk angle at heel-strike and toe-off for participant 1 in the back-loading method with 20 kg. 

TEM = Technical error of measurement; ∑ = summation; VAV = Variable average value  

 Measurement number 

 1 2 3 4 5 6 7 8 9 10 

Trunk angle at heel-strike (˚)       
1st measurement  82.1 82.5 82.5 82.5 82.5 82.5 82.1 82.1 82.1 82.1 
2nd measurement  83.2 82.8 82.7 83.2 83.2 83.2 83.2 83.2 82.8 82.8 
Deviations -1.1 -0.3 -0.2 -0.7 -0.7 -0.7 -1.1 -1.1 -0.7 -0.7 
(Deviations)2 1.21 0.09 0.04 0.49 0.49 0.49 1.21 1.21 0.49 0.49 
∑(Deviations)2 6.21          
Absolute TEM 0.56          
VAV 82.67          
Relative TEM % 0.67          

Trunk angle at toe off (˚)        

1st measurement  83 83 82.9 83.3 83.4 83.4 83.4 83.4 83.5 83.5 

2nd measurement  83.2 82.9 83 83 83 82.8 82.9 82.9 82.9 83 

Deviations -0.2 0.1 -0.1 0.3 0.4 0.6 0.5 0.5 0.6 0.5 

(Deviations)2 0.04 0.01 0.01 0.09 0.16 0.36 0.25 0.25 0.36 0.25 

∑(Deviations)2 1.78          
Absolute TEM 0.30          
VAV 83.12          
Relative TEM % 0.36          
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Table 47. Intra-observer reliability for manual digitisation for the research in Chapter 5. Measurement reliability data is for 
knee angle at heel-strike and toe-off for participant 1 in the back-loading method with 20 kg. 

TEM = Technical error of measurement; ∑ = summation; VAV = Variable average value  

 

 

 Measurement number 

 1 2 3 4 5 6 7 8 9 10 

Knee angle at heel-strike (˚)       
1st measurement  161.7 160 160.7 161.7 162.2 162 162.6 161.6 161.6 161.7 
2nd measurement  162.2 162.2 161.6 161.6 161.1 161.6 161.6 161.4 161.6 161.6 
Deviations -0.5 -2.2 -0.9 0.1 1.1 0.4 1 0.2 0 0.1 
(Deviations)2 0.25 4.84 0.81 0.01 1.21 0.16 1 0.04 0 0.01 
∑(Deviations)2 8.33          
Absolute TEM 0.65          
VAV 161.62          
Relative TEM % 0.40          

Knee angle at toe off (˚)        
1st measurement  132.8 133.1 133.5 133.8 133.3 134 133.7 133.2 133.2 133.1 
2nd measurement  133.5 132.9 132.5 133.2 133.2 133.6 133.2 133.6 133.6 133.2 
Deviations -0.7 0.2 1 0.6 0.1 0.4 0.5 -0.4 -0.4 -0.1 

(Deviations)2 0.49 0.04 1 0.36 0.01 0.16 0.25 0.16 0.16 0.01 
∑(Deviations)2 2.64          
Absolute TEM 0.36          
VAV 133.31          
Relative TEM % 0.27          



369 
 

Table 48. Intra-observer reliability for manual digitisation for the research in Chapter 5. Measurement reliability data is for 
ankle angle at heel-strike and toe-off for participant 1 in the back-loading method with 20 kg. 

TEM = Technical error of measurement; ∑ = summation; VAV = Variable average value 

 

 Measurement number 

 1 2 3 4 5 6 7 8 9 10 

Ankle angle at heel-strike (˚)       
1st measurement  111.1 111.8 111.8 110.8 111.2 111.5 110.7 111.3 110.9 111.3 
2nd measurement  110.7 110.9 111.1 110.7 111.5 111.1 111.4 110.2 111.6 111.4 
Deviations 0.4 0.9 0.7 0.1 -0.3 0.4 -0.7 1.1 -0.7 -0.1 
(Deviations)2 0.16 0.81 0.49 0.01 0.09 0.16 0.49 1.21 0.49 0.01 
∑(Deviations)2 3.92          
Absolute TEM 0.44          
VAV 111.15          
Relative TEM % 0.40          

Ankle angle at toe off (˚)        

1st measurement  128.4 127.8 127.8 128 128.1 128.4 128.2 128.4 128.4 127.9 
2nd measurement  128.7 128.5 128.5 128.5 128.1 127.9 128.3 128 128.5 128.2 
Deviations -0.3 -0.7 -0.7 -0.5 0 0.5 -0.1 0.4 -0.1 -0.3 
(Deviations)2 0.09 0.49 0.49 0.25 0 0.25 0.01 0.16 0.01 0.09 
∑(Deviations)2 1.84          
Absolute TEM 0.30          
VAV 128.23          
Relative TEM % 0.24          
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Appendix O: Modifications to the full body plug-in gait used for the research in 

Chapter 7 

 

Table 49. A summary of the modifications made to the full body plug-in gait 

marker set 

Marker 

position 

Full body Plug-in Gait 

Model 

Modification Justification 

Upper Arm A single marker on 

the upper lateral 

surface of the right 

and left upper arms. 

A three marker non-

collinear cluster on the 

upper lateral surface of 

the right and left upper 

arms. 

To improve segment 

tracking 

Lower Arm A single marker on 

the lower lateral 

surface of the right 

and left forearm 

A three marker non-

collinear cluster on the 

upper lateral surface of 

the right and left 

forearms. 

To improve segment 

tracking 

Pelvis Markers on the ASIS, 

PSIS and Sacrum 

Markers on the ASIS, 

PSIS, sacrum and a 

three marker non-

collinear cluster on the 

iliac crest. 

To improve segment 

tracking with load 

carriage devices 

that include a hip 

belt 

Thigh A single marker on 

the lower lateral 

surface of the right 

and left thigh 

A three marker non-

collinear cluster on the 

lower lateral surface of 

the right and left thigh 

To improve segment 

tracking 
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Tibia A single marker on 

the lower lateral 

surface of the right 

and left shank 

A three marker non-

collinear cluster on the 

lower lateral surface of 

the right and left shank 

To improve segment 

tracking 

Knee A marker on the 

lateral flexion-

extension axis of the 

left and right knee. 

A marker on the lateral 

and medial flexion-

extension axis of the left 

and right knee. 

To improve joint 

centre location 

identification 

Ankle  A marker on the 

lateral malleolus of 

the left and right 

ankle. 

A marker on the lateral 

and medial malleoli of 

the left and right ankle. 

To improve joint 

centre location 

identification 

Toe A marker on second 

metatarsal head 

A marker on the first 

and fifth metatarsal 

heads 

To improve segment 

definition 
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Appendix P: Between- and within- participant variation for spatiotemporal, joint angle and ground reaction force variables from the 

research in Chapter 7 

 
Table 50. Mean, between-participant standard deviation (SDb) and within-participant standard deviation (SDw) for step parameters 
for each load carriage condition (* indicates were SDw values were greater than SDb) 
  Head Back Back/Front 
Step Parameter  0kg 3kg 12kg 20kg 0kg 3kg 12kg 20kg 0kg 3kg 12kg 20kg 

Step length 
Mean 0.54 0.53 0.53 0.52 0.54 0.53 0.54 0.55 0.53 0.53 0.53 0.54 

SDb  0.03 0.03 0.03 0.04 0.03 0.03 0.04 0.04 0.03 0.03 0.03 0.03 
SDw 0.02 0.03 0.03 0.04* 0.03 0.04* 0.04 0.06* 0.03 0.03* 0.03 0.03* 

Cadence 
Mean 1.56 1.58 1.59 1.61 1.56 1.56 1.54 1.53 1.56 1.57 1.57 1.56 
SDb  0.08 0.09 0.10 0.12 0.09 0.09 0.09 0.10 0.08 0.08 0.09 0.07 
SDw 0.03 0.03 0.04 0.18* 0.03 0.03 0.03 0.05 0.03 0.03 0.03 0.10* 

Step width 
Mean 0.14 0.15 0.16 0.16 0.15 0.14 0.14 0.15 0.14 0.14 0.14 0.14 
SDb  0.02 0.03 0.03 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.02 0.02 
SDw 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02* 0.01 0.01 0.01 0.01 

Step time 
Mean 0.64 0.64 0.63 0.62 0.64 0.64 0.65 0.65 0.64 0.64 0.64 0.64 
SDb  0.03 0.04 0.04 0.05 0.03 0.04 0.04 0.04 0.03 0.03 0.04 0.04 
SDw 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.06* 0.02 0.02 0.02 0.02 

Double stance 
time 

Mean 0.46 0.45 0.44 0.43 0.45 0.46 0.46 0.45 0.45 0.45 0.44 0.44 

SDb  0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 

SDw 0.02 0.02 0.03 0.03 0.02 0.02 0.03 0.03 0.02 0.02 0.02 0.03* 

Single stance 
time 

Mean 0.18 0.19 0.20 0.20 0.19 0.19 0.20 0.20 0.19 0.19 0.20 0.21 

SDb  0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.02 

SDw 0.02* 0.02* 0.02* 0.02* 0.02 0.02* 0.04* 0.02* 0.02 0.02* 0.02 0.02 
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Table 51. Mean, between-participant standard deviation (SDb) and within-participant standard deviation (SDw) for peak sagittal plane 
joint angles of the trunk, hip, knee and ankle for each load carriage condition. 

Peak Joint Angles  
 Head Back Back/Front 

 0kg 3kg 12kg 20kg 0kg 3kg 12kg 20kg 0kg 3kg 12kg 20kg 

Peak Trunk Flex 
(º) 

Mean 3.03 -3.23 -4.58 -5.35 2.75 3.70 6.43 9.39 2.98 3.71 5.20 5.82 
SDb  2.82 2.80 3.51 3.55 2.40 3.06 3.10 3.87 2.57 2.78 2.61 3.50 
SDw 0.70 0.70 0.88 0.83 0.74 1.01 0.71 0.94 0.70 0.70 0.68 0.72 

Peak Trunk Ext (º) 
Mean -1.12 -7.23 -8.73 -9.59 -1.17 -0.75 1.65 4.30 -1.24 -0.30 0.86 1.22 
SDb  2.64 2.62 3.27 3.43 2.44 3.11 2.96 3.62 2.55 2.67 2.53 3.21 
SDw 1.01 0.83 0.97 1.11 0.89 0.88 0.91 1.01 0.89 0.80 0.83 0.99 

Peak Hip Flex (º) 
Mean 22.72 16.42 15.45 15.28 23.10 24.57 28.16 31.31 22.86 23.98 26.26 27.71 
SDb  3.37 2.92 3.42 3.84 2.91 2.94 3.26 4.18 3.07 3.25 2.94 3.66 
SDw 1.37 1.18 1.41 1.57 1.24 1.63 1.33 1.48 1.35 1.51 1.50 1.64 

Peak Hip Ext (º) 
Mean -14.74 -20.88 -22.22 -22.90 -14.06 -14.23 -12.72 -10.88 -14.86 -13.94 -13.17 -13.32 
SDb  3.88 3.40 3.93 4.35 3.96 4.71 4.08 4.50 3.37 3.94 3.55 4.56 
SDw 1.67 1.64 1.95 2.27 1.96 1.73 1.84 2.39 1.69 1.61 1.73 2.19 

Peak Knee Flex 
(º) 

Mean 54.04 54.23 55.23 55.98 55.22 55.62 56.18 56.61 54.75 55.15 55.70 56.35 
SDb  4.51 3.66 3.25 3.49 4.22 4.74 4.54 4.35 4.43 4.43 4.16 4.43 
SDw 2.14 2.01 2.40 2.41 2.12 2.11 2.24 2.28 2.14 2.25 2.44 2.42 

Peak Knee Ext (º) 
Mean -0.61 -0.47 0.17 1.13 0.27 0.35 0.71 1.19 -0.13 -0.09 0.34 0.46 
SDb  2.77 2.72 2.85 2.87 3.47 3.42 2.98 3.18 3.24 3.14 3.34 3.18 
SDw 1.60 1.62 1.80 1.88 1.46 1.75 1.77 2.03 1.39 1.45 1.68 2.18 

Peak Ankle Flex 
(º) 

Mean 9.55 9.81 10.05 10.32 9.47 9.48 9.35 9.21 9.69 10.26 10.00 10.12 
SDb  2.52 2.60 2.66 2.54 2.52 2.31 2.50 2.80 2.08 2.62 2.18 2.24 
SDw 1.51 1.48 1.51 1.75 1.31 1.44 1.48 1.57 1.64 1.58 1.70 1.82 

Peak Ankle Ext (º) 
Mean -16.14 -15.36 -15.41 -16.16 -15.38 -15.94 -16.71 -17.45 -15.65 -15.23 -15.64 -15.84 
SDb  6.29 6.17 5.41 5.57 5.29 5.97 5.44 5.82 4.93 4.95 4.78 5.02 
SDw 3.31 2.60 3.07 3.35 3.13 3.20 3.02 3.20 3.15 3.23 3.80 3.35 
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Table 52. Mean, between-participant standard deviation (SDb) and within-participant standard deviation (SDw) for antero-posterior, 
vertical and medio-lateral ground reaction forces (GRF) for each load carriage condition (* indicates were SDw values were greater 
than SDb). 

 

   Head Back Back/Front 
GRF 
variable  0kg  3kg 12kg  20kg  0kg  3kg 12kg  20kg  0kg  3kg 12kg  20kg  

Braking 
(N) 

Mean 76.44 83.79 95.04 104.38 75.55 80.36 93.46 106.48 78.34 82.53 93.10 103.91 
SDb  14.90 17.41 17.90 17.69 14.01 14.80 17.02 17.41 16.88 17.40 18.82 18.15 
SDw 6.88 7.27 10.95 12.49 9.34 7.83 10.64 11.68 8.10 10.20 11.65 10.90 

Propulsive 
(N) 

Mean -97.84 -102.62 -112.51 -122.99 -99.52 -104.57 -119.02 -131.74 -99.52 -102.69 -115.87 -126.96 
SDb  13.32 14.40 11.49 14.62 12.33 11.83 12.39 11.99 12.42 13.72 12.60 13.50 
SDw 8.43 9.45 13.51* 13.92 7.07 10.41 11.23 12.53* 6.97 7.79 9.36 12.23 

1st 
Vertical 
Peak (N) 

Mean 743.68 775.24 854.24 924.11 740.15 772.37 859.02 926.99 738.71 767.17 850.57 929.59 
SDb  99.69 101.29 95.12 109.45 98.40 104.76 110.45 107.66 95.31 96.48 103.84 104.30 
SDw 13.00 12.90 16.02 15.62 13.94 14.91 17.43 20.78 12.92 14.63 18.17 22.15 

Force 
minimum 
(N) 

Mean 657.32 686.57 775.72 839.62 654.90 677.98 759.45 830.57 654.93 674.50 753.09 828.55 
SDb  96.24 89.73 86.95 92.21 91.35 89.03 88.59 88.67 88.81 88.57 88.78 83.79 
SDw 8.61 8.67 12.97 13.78 10.32 11.01 13.04 19.49 10.56 9.67 13.98 18.31 

2nd 
Vertical 
Peak (N) 

Mean 772.55 792.12 878.09 948.56 773.40 807.27 894.68 967.55 770.81 802.30 889.66 971.31 
SDb  99.58 100.48 94.91 104.94 103.11 104.21 101.69 104.51 104.21 102.25 103.01 102.19 
SDw 13.95 15.18 16.83 20.50 12.06 14.11 18.07 24.40 17.22 14.80 18.76 23.05 

Medial (N) 
Mean 50.07 52.48 59.38 62.68 51.44 51.12 53.45 61.27 46.95 48.56 53.41 55.84 
SDb  14.18 12.47 13.58 13.01 14.25 14.55 15.44 16.41 14.48 14.47 16.91 16.12 
SDw 3.08 3.45 4.51 4.43 3.25 3.40 3.24 3.78 3.18 3.47 3.88 4.02 

Lateral 
(N) 

Mean 12.28 14.91 13.92 13.53 10.54 12.97 12.82 12.04 15.99 16.84 16.95 19.55 
SDb  5.36 6.51 5.26 4.23 3.72 4.76 5.23 5.01 10.43 10.87 8.48 11.76 
SDw 4.73 4.95 5.85* 7.22* 4.08* 4.78* 7.16* 6.73* 4.55 5.44 5.31 6.02 


