
Stock Forecasting using Neural Network
with Graphs

Shuyi Peng

Master of Science

University of York

Computer Science

May 2021

.

Abstract

Due to the complex characteristic in the stock market, it is always a chal-
lenge and interesting topic to predict stock price. With the development
of neural network models, deep learning has become a popular way to
solve the stock prediction problem. Many of the current studies focus on
how the stock own historical information which will affect the stock price
in the future. Although the individual historical features are essential,
the stock price is also affected by the other stocks.

To capture such internal relations and influence, we propose to join
stock graphs with the neural network model. The reason we choose to use
graphs is that the connected graph structure can compress such relation
between stocks. We investigate different graph construction methods so
that we can describe the stock relation in a comprehensive way. Although
graph convolutional network(GCN) has already been proved effective
in the prediction of stock movement, it only considers one single graph.
Here, we build a combination model based on the GCN that the model
can deal with multiple graph features. Apart from GCN, we also applied
the transformer-based model to learn the correlation between the stocks.
Transformer is a popular model for natural language processing and the
implementation in stock prediction is focus on dealing with the public
mood. In our research, we applied the stock graph as a mask to attention
layer so that the transformer can have prior knowledge.

Our experiment applies the stock data from the New York stock ex-
change. We propose our model using graphs outperforms the recurrent
neural network or other methods which do not take the graph structure
into account. In the experiment, we investigate how various type of
graphs influence the prediction result. The results show that the combin-
ation of multiple graphs effectively improves accuracy. But it does not
outperform the general GCN model due to the quality of our constructed
graphs. Furthermore, we introduced three graph construction methods
and examined their impacts on stock prediction problem. The result
indicates that the correlation graph is the optimal choice among them.
Both multi-graph GCN and transformer with graph mask outperform
the LSTM model. Besides, pure transformer+LSTM also produces a
better result than the LSTM model. The result reveals our assumption
that the internal relation provides sufficient improvements for the stock
prediction problem.

4

Acknowledgements

I would like to express gratitude to my supervisors Dr James Cussens
and Dr Suresh Manandhar. This thesis would not have been possible
without the valuable suggestion and supports that I received from them.
I also want to thanks the college that provides me with a comfortable
learning atmosphere and resources. Besides, I also want to thanks my
friend Marcelo Sardelich and Zongyu Yin who gave me lots of support
and inspiration during the research.

6

Declarations

I declare that this thesis is a presentation of original work and I am
the sole author. This work has not previously been presented for an
award at this, or any other, University. All sources are acknowledged as
References.

8

Contents

1 Introduction 13
1.1 Background . 13

1.2 Research Objective . 14

1.3 Contributions . 16

1.4 Problem Analysis . 16

1.5 Report Structure . 17

2 Literature Review 19
2.1 Introduction to the stock market 19

2.2 Graph Construction . 20

2.2.1 Sector graph . 20

2.2.2 Correlation graph . 21

2.2.3 Dynamic time warping 22

2.3 Graph Neural Network . 24

2.3.1 General graph neural network 24

2.3.2 Graph convolutional neural network 27

2.4 Transformer . 28

3 Research Data and Methodology 31
3.1 Datasets . 31

3.2 Feature Selection . 32

3.2.1 Single Stock Prediction 32

3.2.2 Multiple Stock Prediction 33

3.3 Stock Graph Construction 35

3.3.1 Sector graph . 36

3.3.2 Correlation graph . 37

3.3.3 DTW graph . 37

3.4 Model for Benchmark . 38

3.4.1 GCN Prediction with Graph Only 39

3.4.2 GCN Prediction with Graphs and Features 40

3.4.3 LSTM + GCN . 41

3.4.4 Transformer + GCN 42

9

Contents

3.4.5 Sample results . 43

4 Implementation 45
4.1 GCN with multiple graphs 45

4.2 Transformer for stock prediction 46

4.2.1 Transformer + LSTM 47

4.2.2 Transformer with graph masks 50

5 Experiment and Evaluation 51
5.1 Preparation for Experiment 51

5.2 Results of Using Various Graphs 52

5.3 Parameter Setting . 53

5.4 Multi-graph GCN Results and Evaluation 56

5.5 Transformer with Graphs Results and Evaluation 57

5.6 Summary . 59

6 Conclusion 60
6.1 Summary . 60

6.2 Advantages and Limitation 60

6.3 Future Work . 62

Bibliography 63

10

List of Figures

1.1 Architecture overview . 15

2.1 Two time sequences xi and xj 22

2.2 GNN model . 26

2.3 Encoder Structure . 29

3.1 Loss of LSTM model with multiple stocks 34

3.2 Loss of LSTM model with prepocessed multiple stocks . . 36

3.3 Sector based graph and the correspoding adjacency matrix 37

3.4 Correlation graph and the correspoding adjacency matrix 38

3.5 DTW graph and the correspoding adjacency matrix 39

3.6 Accuracy of GCN with correlation graph only 40

3.7 Structure of LSTM+GCN . 42

3.8 Structure of Transformer+GCN 43

4.1 Structure of Multi-graph GCN 46

4.2 Plot of price change of two stocks that in the same sector
over the same time period. 48

4.3 Structure of tranformer+LSTM 49

5.1 Accuracy histogram of LSTM+GCN with different length
of historical . 54

5.2 Accuracy histogram of LSTM+GCN with different neurons 55

5.3 Accuracy histogram of LSTM+GCN with different number
of GCN layers . 56

.1 Histogram of accuracy of different models on different
datasets . 71

11

List of Tables

3.1 Sector abbreviations . 32

3.2 Results of using simple GCN model and joint encoder and
GCN model. The test is on small sample datasets. 44

5.1 Average percentage of increase in stocks’ price 52

5.2 Split of datasets . 52

5.3 Accuracy of GCN with different stock graphs 52

5.4 Accuracy of LSTM+GCN with different length of historical
features . 54

5.5 Experiment results of on stock price movement with multi-
graph GCN compared with benchmark 57

5.6 Experiment results of on stock price movement with trans-
former compared with benchmark 58

12

1 Introduction

1.1 Background

It is always a challenging problem to forecast the stock prices. The
reason for it is so difficult is because of inherently unstable factors and a
complicated market outlook. The stock market reflects many influences,
rendering particular circumstances challenging to evaluate. For example,
while a newly published policy will impact specific sectors, precisely
measuring the extent to which this policy will influence the sectors
remains elusive. Any policy-driven influence on a primary industry will
also reflect in the stock prices of secondary and tertiary sectors. Previous
literature discussed that the stock price movement is a random process
and stock performance is unpredictable[1, 2]. According to the Efficient
Market Hypothesis(EMH) proposed in 1970, investors cannot get excess
profits above the market average, and it is impossible to predict the
direction of the market in the coming days or weeks[3]. The market is
efficient means that the behaviour of investors are rational, and investors
can respond reasonably to all market information quickly. Though the
EMH is widely accepted, by the start of the twenty-first century, more
people believe that the stock prices are at least partially predictable based
on their past performance[4, 5].

White is the first person who implemented the neural network model
to the stock prediction problem[6]. He used feedforward to decode
nonlinear regularities in price movement. The results showed that a
simple feedforward network is unable to refute the EMH hypothesis.
With the improvement, the follwoing papers proved that the neural
networks and other machining learning methods outperform statistical
and traditional regression methods[7, 8].

Apart from the EMH hypothesis, behavioural finance is also widely
discussed, and many of the current deep learning methods are based on
this concept. The behavioural finance proposes that stock prices are not
only determined by the value of the enterprise but also influenced by
investors behaviours. The investors’ behaviours are correlated with the
public mood. Several papers collected information from social media,

13

1 Introduction

such as Twitter, and feed this mood information as the training features[9,
10, 11][12]. The model uses natural language process methods such as
transformer to encode the public mood information and combine theses
with stock features, such as close prices. The joint features feed the
combined features to the neural network for prediction. This neural
network varies, such as self-organizing fuzzy neural network(SOFNN),
capsule network, convolution neural network(CNN), etc.

Although public mood is widely used in stock prediction problem,
many studies still focus on the past performance of stocks. Since the
features of stocks are time-sequential, recurrent neural network(RNN) is
a widely used NN method for stock prediction[13][14]. One of the most
popular RNN models is LSTM, and research shows that the performance
of LSTM is better than the multiple layer perceptron[15]. Nevetheless,
RNN is not the only choice to the stock prediction problem using histor-
ical information and it has many drawbacks[16]. Many other methods
are invented to replace RNN in stock prediction problem such as genetic
fuzzy neural networks(GFNN)[17], wavelet neural network and etc[18].

However, the stock market is very complicated. All current methods
only focus on the information about the individual stock, which neglects
the correlative information between different stocks. Actually, the stocks
in the market will interact with each other. Such an interaction is hard to
be caught by looking at their own history. So our research is aimed to
predict the stock prices including the internal correlative information.

1.2 Research Objective

The information in the stock prices not only relates to themselves but
also are influenced, either positively or negatively, by the performance of
other stocks in the market. Our research aimed to identify this kind of
relation between stocks and use this relationship to develop models in
stock price prediction.

The historical performance of stocks usually refers to past stock prices
and trading volume. In our research, we want to develop the graph
structure to represent the correlation between stocks, and apply the
price-performance as the training feature. Previous study shows that
graph convolutional neural networks(GCN) has been used for stock
prediction, and the corresponding result can improve the prediction
accuracy[19]. In our research, we want to use the transformer to resolve
graphs information and combined graphs and historical stock features

14

1.2 Research Objective

Figure 1.1: Architecture overview

to do some predictions. Presently, the transformer model is popular
in solving natural language processing problem. It is more used for
analysing public mood instead of deal with historical features in the
stock prediction problem[10].

The focus of this project is to construct the graphs in the stock forecast-
ing problem. It is a vital factor to find a way to represent such relations
between stocks in this investigation. The first step is to build graphs
where the edges represent the relationships and the nodes indicate the
stocks. Because stocks can exhibit various relations with other stocks, it
is essential to discuss the different ways of generating the graphs and
evaluate how different graphs influence prediction. As mentioned, re-
lationships will influence performance, but the historical performance
pertaining to stock itself is equally important or possibly more critical to
prediction. Consequently, it was our goal to create a useful tool based on
this relationship along with information that pertains to stock prices to
assist in the prediction of stock performance.

As shown in Figure 1.1, we need to build a graph neural network model
that can combine stock graphs and their historical features to accomplish
our aim. Besides, we design to encode historical features to improve
model accuracy. GNN networks facilitated combining the model with the
generated graphs in the stock. In addition, we introduce transformers
to train the stock graphs. We expect that the various generated graphs
could increase the accuracy of prediction.

15

1 Introduction

1.3 Contributions

In our paper, we investigate how graphs help the prediction of the stock
price. We used different methods to build stock graphs and to evaluate
the influence of graph in the prediction of stock prices. Our contribution
is as follows:

• We used multiple graphs convolution neural network to predict the
stock price. Current GCN used a single graph for stock prediction,
while we proposed a model to deal with multiple graphs to improve
accuracy. Drawing on the fact that graphs produced by different
methods contain varying information, we want the training process
to include as much useful information as possible, so that we can
analyse the stock market in a comprehensive way.

• We investigate how various stock graphs can influence the predic-
tion. Drawing on the fact that various graphs provide different
information, we investigate how the stock graph structure and the
relation between stocks influence and prediction accuracy.

• Instead of using GCN, we used transformer architecture to deal
with the stock graphs. Transformer is widely used for process public
mood or event information, but not used for exploring the relation
between stocks. In our research, we discussed how the attention
module in the transformer works on the explore the stocks’ internal
relation and how to apply graph as masks to the transformer model.

1.4 Problem Analysis

The aim of this project is to use graphs to assist in prediction of stock
performance. We conclude three main problems that we will face how
we will solve in this research:

1. The datasets we are using do not include stock graphs, so we
need to use the accessible information to generate stock graphs.
The correlation-based stock graph is the most widely used stock
presentation. However, we want to involve multiple stock graphs
in the training process, so we need various graphs construction
method besides correlation. For all graphs we construct, we want
them to be reasonable for the prediction problem. In the literature
review part, we have introduced three graph construction methods.

16

1.5 Report Structure

For each method, we will explain what the relation the graph
represents is.

2. Not all stock features are useful in prediction. Especially in the
case of the neural network, too much information may mislead the
final prediction. In one example of using the past stock price as
the input feature, year-old stock price information is not helpful
for predicting the current stock price. Besides, the stock price is
influenced by various factors; the feature we can obtain from the
datasets are limited. In terms of stock features, we will limit the
time range that each stock feature contains. For example, for each
stock feature, we will only input the stock price for the most recent
three months. Therefore, the prediction will be affected by recent
stock performance. In the methodology part, we will test different
input feature combination, and select the optimal setting for the
later experiment.

3. Defining the output is also a problem. The most straightforward
approach is to compare the next day’s price with the current price.
However, stocks have different reaction times in terms of the mar-
ket. Due to the characteristic of the stock market, the daily stock
performance is almost random. Such a prediction may suffer from
low accuracy. Because this project aims to predict stocks’ perform-
ance, the next day’s price is not the only indicator. As long as
the defined target reasonably shows stock performance, we can
try different settings and find the most predictable setting through
experimentation.

1.5 Report Structure

The report is divided into six parts: literature review, problem analysis,
theory, design and implementation, evaluation and a conclusion.

The literature review provides a brief introduction to the method and
theory that this project employed. Three aspects of existing concepts
include an introduction to the stock market, methods to build stock
graphs and a description of the neural network used in the project. We
introduced three graph construction method in this section. Besides, we
mentioned how the graph neural process the graph information and
we also introduced the transformer model structure, and how this can
process graph information.

17

1 Introduction

The methodology section contains an introduction to datasets and
description to aid in facilitating reproducing the existing methods; it also
analyses how features selection and preprocessing impacted the predic-
tion. Since there exists very few GCN methods on the stock predicton
problem, we want to set these methoda as benchmark so that we could
compare our methods with the current way of combining stock graphs
in the stock prediction.

The implementation part discusses how we combined the existing
method with new ideas and focuses on a way to align multiple stock
graphs with the neural network algorithm. Moreover, we introduce
the transformer method and use graphs as masks to accomplish the
prediction in this section.

The result and evaluation part provides an analysis of how different
model and settings affected the results of the experiment. This section
presents a comparison of the differences between methods and discussed
possible reasons for the given outcomes.

In the conclusion, an overall summary describes the performance of
the various methods on the real data and evaluates whether the new
idea offers improved prediction capability. In addition, some of the
experimental findings may come into consideration in later work. We
also summarized potential investigations that may positively impact the
prediction model in the future.

18

2 Literature Review

2.1 Introduction to the stock market

The performance of a stock reflects a reaction on the part of investors.
In other words, prices largely depend on investors’ expectations for one
or more stocks. Such expectations are influenced not only by the actual
changes happening in the sectors but also by information that investors
glean from the news, social media, etc. However, these information
sources could be unreliable and cause difficulties in stock forecasting[20].
The existing research has already revealed main factors that cause stock
price changes. Here, we briefly introduce how the market works and the
main features to focus on in making a prediction.

People commonly consider that news reports and large trading volumes
have a significant impact on stock prices. Theoretically, the price moves
when new information becomes available to market participants who in
turn respond to this informations[21]. According to this theory, the price
should jump upon release of a piece of new news, meaning that news
should be the primary determinant of price volatility. However, evidence
shows that the volatility process is random.[22]. Only a small amount of
stocks in the market will react to political and world events. The other
evidence shows that the large transaction volumes are not responsible
for the large jump in the stock price. In fact, the volume available in
the market is very small compared to stock capitalisation. Only a small
number of stocks in the market tend to react to political and world events.
Other evidence reveals that large transaction volumes are not responsible
for a large jump in stock price. In fact, the volume available in the market
is small compared to stock capitalisation. The market is ‘liquid’; the
inference is that the price is established when liquidity dries out.

However, macroeconomic news such as interest rates, taxes and new
policies can still influence the market, and these large events will lead
to price jumps. The authors of ‘Trading volume and serial correlation in
stock returns’[23] note the influence of daily trading volumes on stock
performance, showing that a stock price is more likely to decline on high-
volume days when buyers’ expectations for the stock price increase. In

19

2 Literature Review

the short term, then, trading volume can be valuable in stock forecasting.
This project focuses on short-term prediction. Therefore, for the price

of each stock along with trading volume as the input feature, news will
not be considered in the model.

2.2 Graph Construction

Graphs can be generated in different ways. To define a stock market
graph, we should define what the vertices and edges represent. In our
case, the vertices (or nodes) are the selected stocks, and the edges are
the intended area. Since we aim to use the graphs to assist in prediction,
the definition of the edges may have different effects on the prediction.
The binary sector- or industry-based graph is the most straightforward
graph, in which the edges between the stocks represent whether the
stocks belong to the same sectors or industry. Moreover, we attempted to
include more complex graphs containing more meaningful information.

2.2.1 Sector graph

The concept of a sector graph is to collect the stock in the same sector.
The data obtained from Yahoo Finance include the types of sector and
industry related to the stock. The sector is the parent class of the industry
type, i.e. two stocks can both be classified as healthcare sector, however,
one belongs to the medical devices industry and the other one is related
to the drug manufacturing industry. The sector graph GS = (V, ES) is
defined as follow:

S = {s1, s2, . . . , sn} (2.1)

eij =

{
1 i f vi ∈ sn, vj ∈ sn

0 i f vi ∈ sn, vj /∈ sn
(2.2)

Where S denote the set of sectors and the vertices(nodes) vi and vj
are stocks. The eijis the value of edge between node i and j, 1 if the two
vertices belong to the same sector, and 0 if they belongs to a different
sector. If stocks we chose are all from the same type of sector, the edge
will depends on the type of industry.

The sector graph is strong since it contains the information not been
considered by the historical feature.

20

2.2 Graph Construction

2.2.2 Correlation graph

The concept of correlations between the closing prices of stocks, com-
monly utilized to construct networks (graphs) for the stock market, is
introduced in the paper[24]. As mentioned, the nodes are stocks, and the
edges connecting each node are calculated by cross-correlations of the
variations in stock prices.

The cross-correlation is based on the return price of the stocks. Assume
pi(t) is the closing price of a stock i on day t. The function of the return
price is defined as:

ri(t) := ln
[

pi(t)
pi(t− 1)

]
(2.3)

Let xi(t) and xj(t) be the return price of stock i and stock j respectively
on day t, where 1 ≤ t ≤ T and T is the number of days we used for
evaluation(i.e the size of the sequence). The method comparing two time
series without any relative time shift. The correlation based stock graph
is denoted by GC = (V, EC) and the value of edge between nodes i and j
is equal to cross-correlation value. The correlation cij between sequence
xi and xj is defined as:

cij :=
∑t
[
(xi(t)− x̄i)(xj(t)− x̄j)

]√
∑t(xi(t)− x̄i)2

√
∑t(xj(t)− x̄j)2

(2.4)

Wherex̄iand x̄j are the means of the return price sequence xi and
xjrespectively, over the period t = 0 to t = T.

According to the definition of cross-correlation, the result of correlation
should be between 1 and -1, where 0 indicates two variables do not
correlate, negative correlation means one variable increases as the other
one decreases and positive correlation means two variables increase
simultaneously. The correlation for the stock network according to the
defination is scaled to 0 to 1 as this measures only the positive impact
between two stocks.

A positive fractional number ρ < 1 is chosen as the threshold. The
stocks i and j are only connected if cij > ρ. Therefore, the constructed
graph will be an unweighted graph where the edge has no value assigned.
The lower the threshold, the more connection exists between stocks. The
experiment result shows that the network will be randomly connected
if the ρ value is small. Therefore, we would like to choose a relatively

21

2 Literature Review

high threshold value, i.e. ρ = 0.9 according to the sample in the paper, to
make the connection reasonable.

The correlation-based network formed scale-free graphs(unweighted
graph). The degree distribution of this graph can reflect the fluctuation
in the market[25]. Thus, this graph contains information useful for our
stock price prediction. The disadvantage of correlation graphs is that
a scale between 0 and 1 loses information when the two stocks are
correlated negatively. This information is also useful for predicting the
stock performance since a reduction in the price of one stock will yield a
signal of increase in the other stock.

2.2.3 Dynamic time warping

Dynamic time warping(DTW) is an algorithm utilized to discover an
optimal alignment between two time-dependent sequences[26]. This
technique was originally used for speech recognition to compare the
difference between two speech patterns with different lengths. Using
dynamic time warping is advantageous since it allows the algorithm
to capture the difference between two sequences from a more macro
perspective.

Figure 2.1: Two time sequences xi and xj

In Fig 2.1 displays how this technique measures the distance from
peak to peak instead of measuring the distance along with a timeline.
The input sequences do not need to be identical. Assume two stock
feature sequence xi = (a1, a2, a3, ..., an), xj = (b1, b2, b3, ..., bm), where n
and m are the sizes of the corresponding sequence and they are not
necessarily equal. We build a feature space base on xi, xj denoted by F,
and an, bm ∈ F. Based on this feature space we can have a cost matrix
C ∈ Rn×m to measure the local cost between features a, b ∈ F, where each
element in the cost matrix is defined by C(n, m) = c(xn, ym). The c is a
function as follow:

22

2.2 Graph Construction

c : F× F → R≥0 (2.5)

The local cost measure normally uses absolute value of the difference.
If the two features x, y are similar the cost c(x, y) is low; in contrast, the
cost is high if they are different from each other. With this cost matrix,
we can find the alignment between xi and xj that minimizes the costs[27].

Assume the an (n, m)warping path p = (p1, p2, . . . , pL), pl can be
consider as the coordinate where pl = (nl , ml) for l ∈ [1 : L]. There’s
three rules restricting alignment of the optimal path:

1. The path must starts at the beginning points of two sequences and
stops at the ends of the sequences, i.e p1 = (1, 1), pL = (n, m).

2. The path can not go backwards. If pl = (5, 5), pl+1 = (4, 6) is
invalid since pl+1 must be greater or equal than nl .

3. The step size is one for each search movement. For example, when
pl = (5, 5), pl+1 = (7, 6) is invalid as it moves two steps. The only
possible value for pl+1 in this example is (6, 6), (6, 5), (5, 6).

These three rules must be satisfied simultaneously. The overall cost of a
warping path between two sequence xi and xj is defined as :

Csum(xi, xj) =
L

∑
l=1

(c(anl , bml)) (2.6)

Where c(xnl , yml) is the cost of the two corresponding features. There-
fore, the optimal alignment is to minimize the warping costs overall.

Bring into the stocks data we are using, the size of feature sequences are
equal. We use the DTW method to calculate the costs between the feature
sequences, and the return of cost algorithm represents the similarity
between the stock sequences. We define the graph of using DTW method
as GD = (V, ED), and the ED is an edge matrix where ED ∈ RN×N and
N is the number of stocks. Elements eij for i, j ∈ [1 : N] in ED is equal
to the return of the warping cost function, and the graph GD can be
considered as the similarity stock graph. However, since we want to use
graph to shows the relation between stock, the higher the weight on the
edges means that the performances of two stocks are more similar[28].
In contrast, if the edge equals to the warping cost, the higher cost means
that two stocks sequences have less similarity between them, which is in
contradiction to what we expect. Therefore the edge value eij should be
defined as follow:

23

2 Literature Review

eij =
1

min
(
Csum(xi,xj)

) (2.7)

So that the higher cost results in less weights on edges, which means
that stocks sequences with higher warping costs have less connection
between each other.

Compared to the correlation method, the time complexity is higher.
Nevertheless, since each stock has a different reaction time to a change
in the market, this method could more accurately test the similarity in
two stocks’ reaction to the change in the market. Besides, since the cost
of warping path is always positive, we can avoid information loss when
building the graphs.

2.3 Graph Neural Network

The graph neural network(GNN) model is first introduced in 2008[29].
The wide use of graph representation motivates the research of GNN. The
GNN model is an extended version of current neural network methods
that allows the model to deal with the data in graph domain. Currently,
the GNN has been further extended into more specific models such as
graph convolutional neural networks, graph attention networks, etc. The
choice of graph type (directed graph, weighted graph, etc.) should drive
the choice of the GNN model.

2.3.1 General graph neural network

Traditional machine learning uses a preprocessing algorithm that maps
the graph structure into a simple representation to deal with graph-
structured data. This preprocessing will omit critical information, such as
topological dependency, which the final goal of the model may depend on.
A GNN, in comparison, is an extended version of existing neural network
methods and is designed for processing graph-structured data. In a GNN,
the goal of learning can be represented as functionτ(G, n) ∈ Rm whereτ
is the function map graph G and n is one of its nodes into a vector of
real numbers. The application of a GNN can be classified into two areas:
graph focused and node focused[30].

1. Graph focused application: The function τ is independent from the
node and classification (or regression) only depends on the graph
structure.

24

2.3 Graph Neural Network

2. Node Focused application: The function τ depends on the inform-
ation of nodes and the aim of the classification (or regression)
depends on the nodes.

In the GNN model a state xn ∈ R is attached to each node, where n is the
attached node and the state contains the information based on the node’s
neighbour. The state xn is used to produce an output on, and the output
function determines the meaning of this output. The detailed definition
is as follow:

xn = fw(ln, lco[n], xne[n], lne[n]) (2.8)

on = gw(xn, ln) (2.9)

Where fw represents the local transition function that summarizes the
information of the node’s neighbour, while gw is the local output function
that defines the output. The l represents the label, meaning ln is the label
of the current nodes and o[n] is the set of edges that connect to node n,
thus lco[n] is the label of the edges. The set of neighbour nodes connected
with n is denoted by ne[n], so that the xne[n] and lne[n] represents the
states of the node’s neighbours and labels of neighbours respectively. The
equation can be re-written into the following format by stacking all the
parameters together:

x = Fw(x, l) (2.10)

o = Gw(x, lN) (2.11)

Where Fw is called the global transition function and Gw is the global
output function. N is the numbers of the stacked elements. The model
now takes a graph as an input and produces an output for each node.

An iterative scheme is applied to solve the above non–linear equation.
For each state xn, an iteration state t is attached to it.

x(t + 1) = Fw(x(t), l) (2.12)

X(t) is the state under tth iteration. Now the state x(t) is considered as
the state updated by the transition function based on the previous state.
Therefore the output is written as:

on(t) = gw(xn(t), ln) (2.13)

25

2 Literature Review

Figure 2.2: GNN model

The above two equations 2.12 and 2.13 can be used for the neural
network unit. The model of GNN is shown in Figure2.2 which is similar
to the recursive neural network model. Each unit stores the current state
information, and the transition function active current unit. The output
function is another unit that produces an output for each unit.

According to our problem, we aim to predict the performance of each.
Therefore, the task is node-focused, and supervision is taken on every
node. The learning algorithm for GNN is based on gradient descent,
containing a forward and a backward function. To learn the parameters
of f and g, we need a loss function, which is defined as follows:

loss =
p

∑
i=1

(ti − oi) (2.14)

Where p is the number of supervised nodes and ti is the target inform-
ation for a specific node. The states xn are iteratively updated until they
approach the fixed point where x(T) ' x at time T. The gradient will
learn from the loss function, and the weight will be updated according
to the gradient.

In the GNN model, the transition function fw is critical. The model
has abundant power to handle most types of graphs. However, since the
type of graph that we are using is fixed, this model is a bit surplus for
our problem. Besides the neighbours’ information, we want the model to
focus on the features that individual nodes (stocks) contain. Moreover,
we want to choose a simpler model to deal with the graph information.

26

2.3 Graph Neural Network

2.3.2 Graph convolutional neural network

The graph convolutional neural network(GCN) is a graph neural network
that is based on an efficient variant convolutional neural networks and
it has a very good performance in chemistry problem[31] and paper
classification problem[32]. The GCN model is inspired by first-order
approximation of spectral graph convolutions[33]. The hidden layers
learnt in the model encode the graph structure and the attributes of each
node. The filter parameter is shared over all locations in the graph.

For the GCN model, the aim is to learn a function that takes the
features on the graph as input and produces an output combining both
nodes and graph information[32]. Therefore two necessary inputs are
required:

1. A feature matrix X: this matrix has size N × D where N is the
number of nodes and D is the number of node features. For each
node ni, it has features (x1, x2, ..., xd) where d = D.

2. A graph matrix A: an adjacency matrix that represents the structure
of the graph. The size of A should be N × N.

The output of this function is also a matrix denoted byZ ∈ RN×k where k
is the size of the output feature; this size is defined manually based to
the requirement.

Therefore, each GCN layer can be written as:

H(l+1) = f (H(l), A) (2.15)

Where H0 = X and HL = Z, the L is the number of layers.
The following is the basic form of a layer-wise propagation function:

f (H(l), A) = σ(AH(l)W(l)) (2.16)

Where A and H(l) is the graph matrix and the feature matrix as,
respectively, mentioned above. W(l) is the l-th layer trainable weight
matrix, and the σ is the activation function. The multiplication between
adjacency matrix and feature matrix delivers the node information to
their neighbour nodes. For each layer, it updates the node information
for the next GCN layer. This propagation function has a main limitation
that the adjacency matrix A is not normalised; thus, the multiplication
between A and H will have an excessive change on the origin scale of the
feature. Moreover, if the matrix does not contain self loops, it will lose

27

2 Literature Review

features on the node itself. (As the diagonal of the matrix is 0, the result
of multiplication on the diagonal will be 0.) Therefore, the layer-wise
propagation function should be rewritten as:

Â = A + I (2.17)

f (H(l), A) = σ(D̂−
1
2 ÂD̂−

1
2 H(l)W(l)) (2.18)

Where D is the diagonal node degree matrix of Â and I is the identity
matrix. σ is the active function chosen manually. The propagation of the
GCN is classified as the convolutional aggregator.

The propagation rule of the GCN can be considered as a combination
of local transition function and local output function in the GNN. The
propagation function of GCN integrates information from other nodes
and produce an output for each node. Compared to the general GNN
model, the GCN model is more concise. Although it is not as powerful
as the general GNN, this is enough to process stock graphs.

The GCN is not a popular choice in stock prediction problem as the
input of GCN requires historical feature and the stock graphs and the
stock graphs are not provide directly from stock source. The paper[19]
combine the LSTM and GCN, where LSTM is used to encode the input
features, i.e. historical price and trading volume. According to their
result, the GCN outperform the LSTM and linear regression model, and
the joint LSTM and GCN model performs the best overall. In our research,
we choose to use the GCN model as the benchmark, and we want to
use this approach to investigate more on how graph improves the stock
prediction.

2.4 Transformer

The attention mechanism was first proposed in 2014[34], has become
popular in deep learning. The transform is a neural network that consists
of attention mechanism; more precisely, the transformer block consists
of self-attention and a feed-forward neural network. A trainable neural
network model based on the transformer can attain a more accurate
prediction by stacking the transformer block. The attention mechanism
overcomes the limitation of a recurrent neural network (RNN) where the
calculation of the current time step is highly dependent on the previous
time in a RNN; the attention allows the calculation to process in parallel.

28

2.4 Transformer

Figure 2.3: Encoder Structure

The transformer is essentially an encoder-decoder structure. The input
enters the encoder block that consists of two sub-layers: a multi-head
self-attention layer and a fully connected feed-forward network[35]. The
structure of an encoder block is shown in Figure 2.3, and every encoder
block is connected by a residual connection. The decoder layer is similar
to the encoder layer apart from an additional attention layer. The encoder
only receives a list of input-embedding vectors at the bottom encoder.
The self attention layer takes the input X = x1, x2, . . . , xn and produces
an output Z = z1, z2, . . . , zn. The self-attention feature allows each vector
to look at the positions of other input vectors, which can facilitate better
encoding.

To calculate self-attention, three vectors are needed: a query vector, a
key vector and a value vector(The vector sets are denoted by Q, K and V
respectively).

Attention = so f tmax
(

QKT
√

dk

)
V (2.19)

29

2 Literature Review

Where the QKT produces a score and this score defines how much
focus on other positions is needed. The score is then divided by the
dimension of the key vector. This paper chooses to divide by the square
root of the dimension in order to achieve a more stable gradient. The
score needs to be normalised by passing through a softmax operation.
The final operation involves multiplying the normalised score by the
value vectors. In the actual training, for the bottom encoder, each of the
Q, K ,V values are generated by multiplying the input vector with three
weight matrices WQ, WK, WV respectively.

The multi-head attention mechanism is to generate multiple different
self-attention and concatenate the result matrix of self-attention. The
concatenated matrix needs to be multiplied with a weight matrix to
produce the final output of the multi-head attention layer.

The transformer model is highly efficient for training. The drawback of
the transformer is that the model is not sensitive to positional information
unless we use position embedding to fill this gap. This is an issue for
sequential inputs if we use daily price information as the input. Never-
theless, this is not a problem if we use this model for the graph. Different
from natural language processing(NLP) problem, the information we
want to encode is undirect graphs. The swap between nodes should not
affect the result. Take NLP problem as an example, according to the
structure graph we showed in Figure 2.3, if we change the input feature
order, i.e. swap the value of input word feature in x1 and x2, the mean-
ing of the sentence will be different. However, since the self-attention
mechanism is only sensitive to the input feature embedding, the change
in word position does not affect the prediction result and the this not the
result we expect in NLP. For example, “Alice likes dog” and “Dog likes
Alice” will mean the same, if the position encoding is not given. In our
stock prediction problem, the input order of nodes information is fixed,
i.e. the stock we input always follow the alphabet order, we will not face
the position problem as NLP. Besides, the change in node order does not
affect the overall topological structure of an undirect graph.

30

3 Research Data and Methodology

3.1 Datasets

Before resorting to the new methods, we should set up a benchmark for
this experiment. We used the data from the Yahoo Finance website. Since
the stock market closes on weekends, the web page records five days of
prices each week. Thus, the daily information for each stock over one
year is roughly 260. We selected 504 stocks in total based on the Sector
SPDR ETFs covering the stocks in different fields. The historical features
for each stock include the daily open, high, low, close price, and trading
volume. The research shows that these features provide a better result
than using close price only[36]. The open price is related to the time
when the markets open in the day. The high price refers to the highest
price reached by the stock on that day and the low price is the lowest
reached that day. The close price is the stocks price when the market is
closed on that day. The trading volume is the total number of securities
or contracts traded on that day.

The information for each stock covered the period from when the stock
entered the market until 2018/08/27. Due to entering different stocks
into the market at different times, some stocks only reflected the data
from 2017, resulting in the problem of unequal sample size. Furthermore,
the sample size for stocks recently entering the market was too small
to comprise a training sample. Hence, 487 stocks were included in our
final selection of experimental data sets from 2013 to 2018. In this section,
we tested the quality of the stock features, hence, we selected 200 stocks
starting from 2007 to 2012 as validation datasets to choose the model for
the ultimate analysis.

In this test, 1131 days were used in total. Moreover, to analyse how
sectors might affect a model’s accuracy, we also selected different sectors
to test if any specific sector might be more predictable than others. Due
to the limited number of stocks, only eight stocks were contained in
some sectors in total. Thus, we chose only five sectors of healthcare (61

stocks), industrials (71 stocks), consumer cyclical (80 stocks), technology
(62 stocks), and financial services (74 stocks). These selected stocks were

31

3 Research Data and Methodology

Table 3.1: Sector abbreviations
HC stocks belong to healthcare sector
IN stocks belong to industrial sector
CC stocks belong to consumer cyclical sector
TC stocks belong to technology sector
FS stocks belong to financial services sector

not included in the 487 stocks Dataset, for which the abbreviation is
represented in Table 3.1.

3.2 Feature Selection

3.2.1 Single Stock Prediction

The first attempt is to predict the direction of the next stock close price
on a single stock based on its past stock prices and volumes utilizing
LSTM. Every input sample is denote by X = (x1, x2, . . . , xn) where n is
the size of historical features. We chose to use all the features that we
obtained from the website (daily open, high, low, close price and the
trading volume) and used a min-max normalization to normalise all the
input features. The reason of using normalization is that the original
value of price and volume is too big for back-propagation, and this may
cause the problem of gradient vanishing. The normalization can scale the
value into the interval [0, 1]. The formula for min-max normaliztion is as
below:

x̂ =
x−min(x)

max(x)−min(x)
, x ∈ X (3.1)

Where x̂ is the normalized feature value, max(x) and min(x) denote
the maximum and minimum value among the feature and the feature is
calculated separately, i.e. the normalization of close price and volume
where takes the maximum and minimum value of close price and volume
respectively.

Our aim is to predict the next day price movement of the stock. The
binary output Y is defined as:

Y =

{
1 i f xclose(t) > xclose(t− 1)
0 i f xclose(t) ≤ xclose(t− 1)

(3.2)

32

3.2 Feature Selection

The model consisted of two LSTM layers and an output dense layer.
The activation function for LSTM was a rectified linear activation function
(ReLU), and the sigmoid was chosen for the final dense layer as we were
solving classification problems.

The result for predicting the stock price movement on single stock had
about 50.11% accuracy. The result showed that the historical information
for a single stock was not enough to predict the quote changes and it is
hard to identify the optimal length of historical feature.

Instead, we chose to use data from multiple stocks to predict a single
stock price. Hence, each sample was denoted by matrix X with size N and
N represented the number of stocks that were used to assist for prediction
of the chosen stock. The result of using multiple stock features to predict
single stock performance was about 50.12%. This outcome showed that
the method could not improve accuracy. Two possible reasons include
the following: because stocks are independent, the performance of other
stocks did not influence the chosen stock, and LSTM was incapable of
processing the other stocks’ information. Since the stock price is not
independent, interaction should exist between stocks; therefore, it is
more likely that the LSTM model caused a problem.

3.2.2 Multiple Stock Prediction

The experiment aimed to predict multiple stocks’ price performance.
Although the results showed that the LSTM model did not effectively
improve a single stock prediction given information from other stocks,
we decided to use a time distributed function to predict multiple stocks
where weights were shared for all stocks during training instead of using
other stocks’ features for a single stock. This represented an extended
model of predicting a single stock price given its past information.

The other reason we chose to use LSTM was because it could test
whether the preprocessing on input features was correct for training. For
this LSTM model, each sample was a matrix; each row of the matrix
was the stock denoted by XN = (x1, x2, . . . , xn), and n was the number
of features under consideration and N is the number of stocks. The
feature included normalised daily closed price and trading volume. The
procedure for generating the features of each stock sample was similar to
the inputs of the previous single stock prediction model.

The model used three LSTM layers to solve a classification problem.
The output was binary, denoted by Y, where Y = (y1, y2, ..., yn), n is the
number of stocks, yn = 1 if the next day stock price is greater or equal

33

3 Research Data and Methodology

to the current day, or yn = 0 if the price decreased. For this experiment,
we selected 200 stocks, and the sample size was 1000. Besides, for each
historical feature(i.e. close price) of the stock, we take ten days of data
so that the n is equal to 50 as we have five different type of historical
features.

Figure 3.1: Loss of LSTM model with multiple stocks

The loss of using LSTM was as follows in Figure 3.1. The plot shows
that the test loss did not converge although the training loss converged.
One possible cause for the problem was that the normalised past prices
and volumes did not make many contributions to the prediction of price
for the next. Instead of using min-max normalisation, we defined a
function that compared the daily price and volume:

Xn = x1, x2, . . . , xd (3.3)

xi = ln
(

xt − x(t−1)

)
, 0 < i < d d ∈N, xi ∈ Xn (3.4)

34

3.3 Stock Graph Construction

Where Xn is the feature vector of stock n with size d. xi was the
return price, and xt is the stock price of at time t. The reason to use
natural logarithm is to scale down the feature values to avoid vanishing
in gradient. A similar comparison processing was performed for the
volume of trading before adding it to the training. In addition, the size of
the dimension of the input increased to three to include more information.
The return not only compared the current price with that of the previous
day but also made additional comparisons with prices from three and
five days before. The days is chosen because there evidence shows that
release of learning report will have impact on the stock price return and
the level of the impacts is related to the lag time[37]. The lag time of
the interim report is about three days and lag time of annual earning
report will take a week. Therefore, the feature for a stock was defined as
follows:

x = (x1, x2, x3) (3.5)

x1 = {(x1, x2, ..., xd)} , n ∈N | xi = ln(xt − xt−1), 0 < i < d (3.6)

x2 = {(x1, x2, ..., xd)} , n ∈N | xi = ln(xt − xt−3), 0 < i < d (3.7)

x3 = {(x1, x2, ..., xd)} , n ∈N | xi = ln(xt − xt−5), 0 < i < d (3.8)

Now for each stock, the feature was a 3× N matrix. The loss of using
adjusted inputs with t = 10 was as showed in Figure 3.2. Compare to
feature using only the min-max normalisation on the value, the loss of
test sets decreases. The loss shows that the increment in price is a better
input feature for the stock prediction problem.

3.3 Stock Graph Construction

The input for GCN consists of two parts: a graph and a feature matrix.
Graphs of the stocks were not available on the websites; thus, we attemp-
ted to use the methods introduced in the literature review section to

35

3 Research Data and Methodology

Figure 3.2: Loss of LSTM model with prepocessed multiple stocks

generate graphs and compare how different graphs might influence the
model’s accuracy. Compared to the LSTM model, the GCN model was
capable of processing the internal information for stocks via the graph.
Accordingly, we expected to see an improvement in accuracy.

3.3.1 Sector graph

We decided to use three different methods to generate stock graphs. The
idea was to compare three different types of graphs generated by distinct
methods: sector-based, correlation distance and DTW.

The sector-based graph is the most straightforward graph as it only
considers whether the stocks belong to the same sector. This type of
graph is only partially fully connected if two stocks are in the same
sector. Moreover, the sector graph has no weight on the edges, so the
corresponding adjacency matrix is a binary matrix. A sample of the
sector graph and the corresponding adjacency matrix is shown in Figure
3.3.

36

3.3 Stock Graph Construction

0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 1 1
0 0 1 0 1 1
0 0 1 1 0 1
0 0 1 1 1 0

Figure 3.3: Sector based graph and the correspoding adjacency matrix

3.3.2 Correlation graph

Note that the correlation graph is not fully connected, and for this study,
a threshold was set to make the stock graph unweighted. Differ from
the sector-based graph that is fully connected when the stocks are in
the same sector, the correlation graph is partially correlated, where the
stock has an indirect dependency on other stocks[38]. For each stock, we
used 60 days of return close prices to calculate the correlation as three
months has been proved the optimal setting for building a correlation
graph[39]. The return price function is ri(t) = ln

[
pi(t)

pi(t−1)

]
,where the t is

the day and p(t) is the price on that day. The return price is equal to the
natural logarithm of the current price and the price from the previous day.
Correlation revealed that the threshold we were using for the edges was
set to 0.85. A sample graph according to the paper and the corresponding
adjacency matrix is shown in Figure 3.4.

3.3.3 DTW graph

The DTW method measured the similarity between two stocks’ price se-
quence. The edges of the DTW-based graph indicated whether the stock
price range was consistent. The input for DTW was similar to the correla-
tion method, which took 60 days’ values for each stock price. Although
the DTW method allowed unequal input length, defining a different time

37

3 Research Data and Methodology

0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 1 1
0 0 0 1 0 1 0
0 0 0 1 1 0 0
0 0 0 1 0 0 0

Figure 3.4: Correlation graph and the correspoding adjacency matrix

range for each stock would be difficult and even unreasonable. Since the
correlation graph was unweighted and partially connected, to increase
the diversity of graph types, we kept the edge values of the DTW-based
graph, causing the graphs to be fully connected and weighted. A sample
graph and corresponding adjacency matrix are shown in Figure 3.5.

3.4 Model for Benchmark

The benchmark for the experiment used LSTM and GCN, and the model
aimed to predict whether the stock price would increase the next day
compared to the current price. The reason for choosing the RNN model
was that the input feature for the stock was chronologically formed and
the RNN model was suitable for time-dependent data[40]. The future
performance of a stock is relevant to its past performance, and LSTM
was able to catch that hidden information during training. The GCN has
been applied to stock prediction and proved effective. Since the datasets
we are using differ from that in the paper[19], the setting will be slightly
different.

38

3.4 Model for Benchmark

0 0.7 0.5 0.6
0.7 0 0.9 0.6
0.5 0.9 0 0.3
0.6 0.6 0.3 0

Figure 3.5: DTW graph and the correspoding adjacency matrix

3.4.1 GCN Prediction with Graph Only

The first attempt used three GCN layers with the graph only to predict
the direction of the next day’s stock close price movement(i.e. whether
the stock close price for the next day would increase). The layer setting we
use is similar to the paper[19]. The graph was denoted by matrix G =(V,E)
where V is the vertices(nodes) of the graph and E is the set of edges.
A is the adjacency matrix of G with size N, where N was the number
of stocks. Each row of A indicated how the current node connected
with other nodes (i.e. the relation between nodes). According to Kipf’s
paper[32], the GCN layer without feature input already evidences an
excellent performance on the Zachary karate club network[41].

The accuracy plot shown in Figure 3.6 uses correlation graph only.
In this experiment we selected 200 stocks, the sample size was 1000,
the graphs were correlation-based and the days taken for generating
graph is 60 according to the paper[39]. Therefore, according to the GCN
propagation rule in Formula 2.13, the matrix multiplication for each GCN
layer fully depended on the normalised adjacency matrix.

However, the accuracy plot indicates that GCN without the feature
information cannot present a precise prediction on the future direction
of the stocks. This result may be caused by two possible causes. First,
unlike Zachary’skarate club problem with a graph displaying a clear
and distinct cluster, the stock market graph generated by the correlation
method changed over time, causing unclear and unstable clusters (the

39

3 Research Data and Methodology

Figure 3.6: Accuracy of GCN with correlation graph only

same stock may belong to different clusters over time). We also tested the
sector-based graph and DTW graph. Although the sector-based graph
was fixed for the entire training process, the result was similar to the
correlation-based graph in terms of accuracy less than 50%. This proves
that the edges’ information does not provide enough information in stock
prediction. In the stock price prediction problem, the information about
the stock itself was more important than the graph. Thus, it is essential
to include stock features, and the graphs should work as an inductive
bias rather than a major indicator.

3.4.2 GCN Prediction with Graphs and Features

According to the propagation rule mentioned in 2.3.2, the input feature
size must be N × D, where D is the number of features. Therefore,
each stock feature required a vector instead of a matrix. To reduce the
dimension of stock feature, we could choose to flatten the matrix into
vector form or alternatively add an encoding layer before putting the
features into the GCN layers. In this section relates how we chose to
flatten the matrix simply, because we want to test how the LSTM based

40

3.4 Model for Benchmark

encoding improves the accuracy in the later section.
The model was formed of three GCN layers; the active function used

ReLU for the first two layers and sigmoid for the output layer. The
graphs needed to feed into each GCN layer. For the sector-based graph,
the feed-in graph did not change throughout the training, while for the
remaining types of graph, the graph changed based on the sample. The
model with three GCN layer meets the following form:

Ã = D̂−
1
2 ÂD̂−

1
2 (3.9)

Y = so f tmax(ÃReLU(ÃReLU(ÃXW(0))W(1))W(2)) (3.10)

Features included trading volumes, return open, high, low and close
prices. The preprocessing step was the same as mentioned in section
3.2.2 with the exception that the output matrix the feature size is N × D,
where N represented the number of days selected.

3.4.3 LSTM + GCN

Hence, was indicated that GCN produces a better result than the LSTM
model. The original input feature utilized for LSTM is a matrix giving
the input 4 dimensions (batch size, number of stocks, 3xN feature). As
mentioned, the input feature requires a vector instead of a matrix; thus,
we flattened the matrix into a vector form. Instead of flattening the matrix,
we add an LSTM before the GCN layers. The LSTM layer performs as an
encoder layer, producing an embedding for each stock. The LSTM result
is brought into the GCN layer with the stock graph as the input. The
model structure is represented in Figure 3.7.

The main mechanism in LSTM was the input, forget and output gate.
The forget gate allowed LSTM to determine whether the information was
useful. As LSTM has proved powerful on long-term dependent data,
the LSTM layer was expected to produce a better stock representation
than the normalized features. In the code, the return sequence was set to
true so that LSTM could generate an output at each neuron. The GCN
layer integrated the encoded stock information, and the updated stock
information was then passed to the next GCN layer. In the experiment,
we chose to use three GCN layers, which could each be considered as
a walk process. An increasing number of layers meant more in terms
of what each node could receive from other nodes. Since the GCN
layer updated each node based on neighbour- and self-information, the

41

3 Research Data and Methodology

Figure 3.7: Structure of LSTM+GCN

increase in layers allowed the node to learn information that was not
directly connected to it. However, nodes having no direct connection
meant that the impact on the target node was relatively small compared
to that of the neighbour nodes. Therefore, the number of GCN layers
should be limited.

The main mechanism in LSTM included the input, forget, and output
gates. The forget gate allows LSTM to determine whether the information
was useful. As LSTM is proved powerful on long-term dependent data,
the LSTM layer was expected to create a better stock representation
than the normalized features. In the code, the return sequence is set to
true so that LSTM could generate an output at each neuron. The GCN
layer integrates the encoded stock information, then, the updates stock
information is passed to the next GCN layer. An increasing number of
layers meant more in terms of what each node could receive from other
nodes. Since the GCN layer updates each node based on neighbor- and
self-information, the increase in layers allows the node to learn directly
connected information. However, nodes with no direct connection means
that the impact on the target node was relatively small compared to that
of the neighbor nodes. Therefore, the number of GCN layers should be
limited.

3.4.4 Transformer + GCN

Instead of using LSTM, the second attempt sought to replace LSTM via
the transformer to learn the embedding of stocks. Since the transformer

42

3.4 Model for Benchmark

block could not process the matrix-formed feature, we flatten the matrix
into vector form in preprocessing, yielding a three-dimensional input
with shape as the number of stocks and the features (vector). The struc-
ture of this model is shown in Figure 3.8, which was similar to that of the
LSTM + GCN model except for LSTM replaced by a transformer block.

Figure 3.8: Structure of Transformer+GCN

The transformer is essentially an encoder-decoder structure. The input
for the first encoder layer was the stocks’ feature (normalised open, close,
high, low price and volume in vector form). Each encoder contains self-
attention and there is a residual connection between encoder and decoder
in each encoder layer. In the NLP field, this should be well provided to
encode information than the LSTM[35].

3.4.5 Sample results

Before we go to the larger data sets, we should check the effect of using
the encoding technique. We test the model on samples with 200 stocks
and used three GCN layers for all models, for which the results are
presented in Table 3.2.

The results proved that the accuracy was enhanced by the encoding
layer. Keeping the same number of GCN layers, we placed an LSTM layer
before the GCN as an encoder. The accuracy of the transformer model
resembled that of the LSTM+GCN model on this set.

Running all methods using sample data involving 200 stocks yielded
better results compared to the normal GCN model. Although we expected
that the transformer could lead to further improvement than LSTM,

43

3 Research Data and Methodology

Table 3.2: Results of using simple GCN model and joint encoder and
GCN model. The test is on small sample datasets.

Model Accuracy(%)
GCN 52.78

LSTM+GCN 53.95

transformer+GCN 54.12

the results indicate that the transformer and LSTM exhibited similar
performance. In terms of the time complexity, the transformer takes
longer than LSTM. Although the transformer performed well in natural
language processing(NLP), the ability to encode stock features is not as
powerful as expected. This could be caused by two possible reasons.
First, the transformer model typically performs much better than LSTM
on most of the problems, especially on NLP, however, the experimental
results demonstrated that the transformer did not surpass LSTM on small
datasets[42]. The transformer performance is limited, and the model is
easily overfitted when applied to a small dataset. Second, the main part
of this model is still based on GCN. As a result, the advanced encoding
method has no significant impact on the final prediction accuracy.

44

4 Implementation

4.1 GCN with multiple graphs

A traditional GCN input only takes one graph because the relation
between nodes is consistent. Our idea is to give GCN multiple graphs,
instead. The graphs generated for stocks in our work had different
meanings on their edges. Thus, various graphs should be provided for
the model with different information. The method used concatenation
of the output of GCN with different graphs and applied a feed-forward
layer to the concatenated output.

According to the propagation rule of GCN in Formula 2.16, the normal-
ized adjacency matrix will be multiplied with the feature matrix, where
the size of the normalized adjacency matrix is N × N and the feature
matrix is N × D. Then, the multiplication with a weight matrix of size
D× k is connected and the size of the GCN output should then be N × k.
Instead of inputting only one graph, we concatenated the normalized
adjacency matrices of graphs for the prediction. For each stock graph, we
applied the GCN layer to it, and we concatenated the output of the GCN
layer to produce a new vector. The structure of the model is shown in
Figure 4.1. We let the output of each last GCN layer with the size N × 1,
hence, the size after concatenation will be S× 1, where the value of S is
the number of input graphs times N.

Since the output should produce a vector denoting whether the stock
price increased or not, the output size should be N × 1. Therefore, we
connected a feed-forward layer to the GCN to produce an output with a
size of N × 1.

Compared to the normal GCN model utilizing only one graph as input,
the combination of various graphs should provide the model with more
information. With the help of multiple graphs, we expect to outperform
the traditional GCN model by the result.

45

4 Implementation

Figure 4.1: Structure of Multi-graph GCN

4.2 Transformer for stock prediction

The reason for using the GCN in our work is to allow the model not only
to focus on the stock’s own features but also to learn from other stocks’
features. The results of using LSTM shows that the model is not suitable
for processing multiple stocks. The multiplication in the GCN allows the
nodes to pass information to each other. The attention mechanism has a
similar function in terms of passing others’ information.

In other words, we were seeking a model to learn stock embedding
using both self and neighbors’ information. The attention mechanism in
the transformer, which is extensively used in the natural language pro-
cessing field, will allow the model to locate the critical feature. Treating
each stock as the words in a sentence, the attention mechanism learns
a weight for each word in the sentence. Different weights on a word
indicate the degree of influence on the current word. Thus, attention can

46

4.2 Transformer for stock prediction

find the degree of influence of other stocks on the current stock.
The “limitation” of the GCN is the fixed graphs. It means that the

information exchange from nodes to nodes is pre-defined. Therefore,
the method requires the graphs to have a strong relation to the predic-
tion aim. This limitation is not important in Kipf’s paper[32] since the
graphs normally utilized in the GCN provide critical information to the
prediction. The problem presented in Kipf’s paper[32] is related to paper
classification in which the problem is the graphs based on the paper
citations. The difference between stock graphs and citation graphs is
that the citation graphs have a direct impact on a paper’s classification.
Papers with the same citations are more likely to be in the same field.
Moreover, the example involves semi-supervised learning where the la-
bel for some of the nodes is already known and the aim is to predict
the remainders’ paper type. However, the stock graphs generated in
our work had a direct contribution to the next day price performance.
Furthermore, it is not reasonable to have a stock graph with some of the
node’s label known since the movement of the stock price can not be
known in advance. Figure 4.2 represents the close price changes of two
stocks in the same sector. The plot shows that it is hard to determine
if one stock will increase based on the change in the other stock in the
same sector.

Even though the graphs could enhance the information not contained
in the features, it is difficult to judge whether the defined relations
between stocks have significant impacts on stock performance. For
instance, the sector graphs indicate whether the stocks are in the same
sectors, however, the stock performance varied even for stocks in the
same sectors. Although some sectors performs generally better than
others, it is difficult to apply this information to the daily stock price. The
results of using correlation graphs were better since the highly correlated
stocks were more likely to provide important information, however, it
is difficult to assert that such graphs are optimal selections for the price
predicting problem.

4.2.1 Transformer + LSTM

Compared to how a GCN passes information from nodes to nodes,
transformers eliminate the prior knowledge. As a first step, we created
three vectors for each stock: query, key and value. The first step is to
create these three vectors by multiplying the original stock embedding
by the corresponding trainable matrix. The second step is to calculate

47

4 Implementation

Figure 4.2: Plot of price change of two stocks that in the same sector over
the same time period.

the score, in which the information from other stocks was incorporated.
This score determines the degree to which the model should focus on
other parts. In other words, this was equivalent to building a stock graph.
Assuming the score denoted by vector S, the size of the score is N where
N is the number of stocks in our problem. Each stock has a query and key
vector, denoted by q and k respectively. The elements in Sn are defined as
follows:

Sn = (s1, s2, ..., sN) (4.1)

sn = qnkn, 0 < n < N n ∈N, (4.2)

where n represents the nth stocks. The third step includes dividing the
score by the key dimension to have a stable gradient and pass the results
through a softmax function. The score generates by the softmax function
indicated the extent to which each stock is expressed under the current
stock. Normally, we try to place more attention on the current stocks. The

48

4.2 Transformer for stock prediction

Figure 4.3: Structure of tranformer+LSTM

fourth step is to multiply the value vectors by the corresponding softmax
output to produce two new vectors with the same size as the value vector.
In this step, the attention mechanism integrates information from other
stocks. The ultimate step sums these two vectors and produces the self-
attention output for the nth stock. In practice, these are all performed in
matrix form to enhance the processing speed.

The multi-head attention makes the transformer different from normal
attention mechanisms, allowing the attention to combining information
from different aspects. This function is similar to what we expected with
the multiple-graph GCN. [43]The Figure 4.3 shows the structure of joint
transformer and LSTM model.

Using this simple model structure, we connect the transformer with
LSTM. Pure LSTM presents a problem where the model only concentrated
on the current stock; in contrast, the input feature through the transformer
already contained the information from other stocks. Thus, the result
should be improved in comparison to the pure LSTM model. Within
the transformer, we utilized 20 self-attention layers. Problems such
as the natural language processing problem normally require position
embeddings to record the order of the inputs since the order of words
in sentences is critical and the words in different positions will have
different references. Nevertheless, the order of stock was not important
since a change in stock position should not influence the prediction result.
Therefore, position embedding is not used in the present model.

We examined this model on the same datasets (200 stocks), yielding an
accuracy of 54.25%. In comparison to the model using transformer+GCN,
a similar performance revealed that the transformer can replace the
way for GCN passing the information. It proves our presumption that
the GCN model needed the input graph to be highly correlated with
the prediction aim. We expect that the result could be better on larger
datasets.

49

4 Implementation

4.2.2 Transformer with graph masks

The transformer’s results on small samples demonstrated its ability to
solve the stocks prediction problem without using graphs. Contrary
to using the graphs fed into the GCN model in the present work, as a
medium to convey information, we employed graphs as a filter instead.
The possible reason for the non-optimality of GCN for stock graphs
is that the GCN model relies on the information given by the graphs.
However, owing to the complicated character of the stock market, it
is difficult to have a graph able to summarize the whole market stock
relation. Therefore, we used a graph to assist the transformer rather than
having graphs as the main factor. In other words, the idea is to apply the
graph as a mask to the score matrix to make a sparse tranformer[44].

According to the formula of attention, multiplying between the query
matrix and the key value will produce a matrix output with size N where
N is the number of the stock. This is where we could apply a mask: a
matrix that would decide the possibility of obtaining information from
the original source.

In the NLP problem, the mask is applied on the upper triangle of the
matrix since, in practice, words at the beginning of a sentence should not
contain information related to words not yet appeared in the sentence.
Our idea is to replace the masks with a binary stock graph. Taking sector
graphs as an example, when applying the sector graphs to the score
matrix, the stock will only learn the embedding from the stocks in the
same sector. The function is as follows:

Attention = so f tmax
(

QKT
√

dk
· A
)

V, (4.3)

where Q, K and V are the matrix form of query, key and value, respect-
ively. The adjacency matrix (must be binary) was denoted by A, and k
denotes the dimension of the key. The dot product removed scores not
taken into consideration. The graph mask and multiplication between
normalized stock graphs and features were different since the score mat-
rix of stocks was trainable, however, the multiplication of normalized
stock graphs and features was fixed.

50

5 Experiment and Evaluation

5.1 Preparation for Experiment

We use the stock data from the New York Stock Exchange and the data
generated from the Yahoo Finance website. We selected 487 stocks based
on Sector SPDR ETFs for testing (each containing data between 2013.11.18

and 2018.8.27). The details are explained in Section 3.1. Moreover, we also
selected five sectors, healthcare (61 stocks), industrials (71 stocks), con-
sumer cyclical (80 stocks), technology (62 stocks), and financial services
(74 stocks), to test more predictability of the specific sector.

For each sample stock, the features included the stocks’ trading volume,
open, high, low, and close price. Preprocessing is required for all input
features according to Section 3.2.2.

We utilized the LSTM and GCN joint with LSTM as a benchmark.
For the GCN model, we will test with different graphs generated from
Section 3.3 and chose the optimal result as the benchmark.

The prediction target is a binary vector recording whether the close
price incremented in comparison with the open price.

Since more than 50% of the stocks could face a price increase, we
need to calculate the average percentage of increase to avoid an extreme
case where the model was not learning, i.e. the model would consider
increasing all the stock prices. We expect the model accuracy to exceed
the percentage of the price increase. The average percentage of increment
in the testing sets is shown in Table 5.1.

All the models are built-in Python utilizing the Tensorflow framework.
The main objective of the experiment is to examine the improvement
of prediction accuracy by the constructed graphs. We expect that the
result of the proposed model using graph information surpasses the
result produced by the model without using graphs. Moreover, we want
to examine whether the outcome of the model with the information of
multiple graphs can outperform the general GCN model. Additionally,
the experimental data including different sectors can examine if certain
sectors are more predictable than others. We split the datasets into
training, validation, and testing parts. The details of the split are shown

51

5 Experiment and Evaluation

Table 5.1: Average percentage of increase in stocks’ price
Sectors Percentage of increase in price(%)

Healthcare(HC) 50.13

Industrials(IN) 50.21

Consumer Cyclical(CC) 50.21

Technology(TC) 49.97

Financial Services(FS) 50.23

487 stocks 50.31

in Table 5.2.

Table 5.2: Split of datasets
Sectors Training Validation Testing

Healthcare(HC) 48,251 7,991 12,749

Industrials(IN) 56,161 9,301 14,839

Consumer Cyclical(CC) 71,190 11,790 18,810

Technology(TC) 49,042 8,122 12,958

Financial Services(FS) 58,534 9,694 15,466

487 stocks 385,217 63,797 101,783

5.2 Results of Using Various Graphs

The graphs generated in the present work follows the method presented
in Section 3.3. we tested these graphs with a pure GCN model on the 487

stocks. The test model included three GCN layers and we used binary
cross-entropy as the loss.

Table 5.3: Accuracy of GCN with different stock graphs
Graph Type Accuracy(%)
Sector based 51.87

Unweighted correlation 52.78
DTW (fully connected) 52.13

52

5.3 Parameter Setting

The compared results are presented in Table 5.3. The accuracy of
GCN with scale-free correlation graphs is around 52.78%. The weighted
fully connected DTW graphs and sector graphs could not play a positive
way in the prediction. Since the definition of matrix normalization that
summary of each element in the row is unity, the values in the matrix
after normalization are very small. In addition, the fully connected graph
remain non-zero elements. The model utilized multiplication between
the normalized matrix and the features matrix to merge information
from other stocks. Therefore, multiplication between features and the
normalized matrix caused the elements in the output matrix to split
evenly. Although the weight matrix is added in the propagation, the
model lost its focus since the values in the matrix were almost evenly
distributed. Compared to the weighted graphs, the unweighted correla-
tion(binary) graph produced a better result. In the paper[25], it compares
the weighted and unweighted correlation. The experiment in the paper
indicates that weighted correlation makes the connection of the graph
become completely random and causes the learning become difficult to
concentrate on the critical information.

The result of using sector-based graph is the worst thus far. Although
both sector-based graphs and unweighted correlation graphs are partially
connected and binary, the sector-based graphs are fixed and unchangeable
throughout the time. Since the market information is changing over time,
the sector may not provide enough information to support the prediction.
This result revealed that the sector-based the graph was not appropriate
for the price prediction problem.

5.3 Parameter Setting

In section 3.2.2, we explain how the historical feature selection and pre-
processing affect the training loss. We tried various setting on the number
of days data included in the stock feature(5, 10, 20, 60 days denote one
week, two weeks, one month, and three months respectively, one week
include only five days data as the market closes on weekends). We want
to select the optimal feature set for the model. Table 5.4 represents the
result of using the various lengths of historical features.

53

5 Experiment and Evaluation

Table 5.4: Accuracy of LSTM+GCN with different length of historical
features

Length Accuracy(%)
5 days 52.13

10 days 54.23
20 days 53.78

40 days 53.57

60 days 53.32

According to the accuracy table, the GCN using a 10-days historical
feature performs well than others. We also plotted a histogram in Figure
5.1 indicating the 5-days of past performance is not enough for the
prediction. However, the increase in the length of days does not enhance
the accuracy necessarily. The best setting for lookback window is 10 days
where the accuracy is 54.23%. The accuracy decreases gradually after the
10-days length and this may due to excessive information. From the rest
of the experiment, we will use the 10-days of historical information as
the input feature size.

Figure 5.1: Accuracy histogram of LSTM+GCN with different length of
historical

54

5.3 Parameter Setting

According to the GCN propagation rules, we can define the output
size of each GCN layer manually. The size of the output will become the
feature size of the next GCN layer. In the experiment, we evaluate the
model with different size of output. The model we use for evaluation is
consists of two GCN layer, so we adjust the output size for the first GCN
layer. The output size of the second layer is always fixed according to the
required target format. From the histogram in Figure 5.2, the result of
having 128 as input size produce the best result 53.93%. The increase in
dimension of output does not necessarily produce a better result. The
worst performance from our result is 52.78% when the output dimension
is 256. From the plot, we can see that the accuracy gradually decreases
after it reaches its best performance.

Figure 5.2: Accuracy histogram of LSTM+GCN with different neurons

Apart from the neurons, the number of GCN layers also influences
the prediction accuracy. Each GCN layer is a process of aggregating the
information from the neighbour stocks, and the increase in GCN layers
is equivalent to increasing the length of a walk in the graph. In graph
theory, the length of a walk is the number of edges included in a walk
and walk is a finite or infinite sequence of edges and vertices[45]. The
increase in GCN layers means that the nodes can gather information
from the nodes that are not directly connected to it and the range it can

55

5 Experiment and Evaluation

Figure 5.3: Accuracy histogram of LSTM+GCN with different number of
GCN layers

reach depends on the number of GCN layers. However, the distant nodes
should have less impact on current node, so the increase in layers not
always improves the accuracy.

Then, we build an LSTM+GCN model to evaluate the impact of layers.
In our model, the number of neurons is identical in each GCN layer
except the last one. We start from two GCN layers to examine the model
with a different number of layers and test five different configuration in
total. The corresponding histogram is shown in Figure 5.3. The model
reaches its best performance, 54.32%, when using three GCN layer, and
the accuracy gradually decreases after that.

Overall, the best parameter setting for GCN model is using three layers
with 10-days of lookback window and 128 layer-wise output size.

5.4 Multi-graph GCN Results and Evaluation

In this part, we test the multi-graph GCN model on six different datasets
compared to our benchmark, i.e. LSTM, and GCN. Since the stocks
in the same sector is a fully connected graph, we use industry type to
distinguish the stocks as mentioned in section 2.2.1. According to the

56

5.5 Transformer with Graphs Results and Evaluation

discussion in Section 5.4, we choose to use the combination of sector
graphs, the correlation graph, and DTW graphs. Although the sector
graphs have not produced a good result, we still keep it for the only
graph that contains information unrelated to stock prices and trading
volumes.

Table 5.5: Experiment results of on stock price movement with multi-
graph GCN compared with benchmark

Accuracy(%)
Model HC IN CC TC FS 487 stocks
LSTM 50.67 51.13 51.13 50.87 51.03 51.13

GCN 52.27 52.51 52.55 52.32 52.43 52.78

LSTM+GCN 53.89 53.51 53.13 53.67 53.51 54.32

Multi-graph GCN 54.21 54.02 54.18 54.73 54.43 54.89

The results in Table 5.5 showed that the multiple GCN has no significant
improvement compared to the general LSTM+GCN model. It is observed
that the accuracy of using multi-graphs GCN model is about 3.7% higher
than the LSTM model and the result on other sectors is also about 3.5%
higher than the LSTM model. The results indicated the effectiveness
of the way in combining graphs with the neural network method for
predicting stock performance. However, since the graph was critical to
the GCN based model, the performance could be improved more by
generating a more suitable stock graph. Neither the sector-based graph
nor the DTW graph was the optimal selection for the stock prediction
problem as tested in Section 5.2. The results from using sector-based
graphs were not decent compared to those demonstrated by correlation
graphs. It is indicated that the information provided by the sector-based
graphs is limited. Therefore, the model learning highly depends on
the correlation graphs which causes prediction results similar to the
LSTM+GCN model.

5.5 Transformer with Graphs Results and Evaluation

In this part, we test the transformer model and transformer with a graph
mask model on six different datasets compared to our benchmark, LSTM
and GCN. According to section 4.2.2, the mask must be binary, hence, we
utilized correlation graphs as it produces a better result in Section 5.2.

57

5 Experiment and Evaluation

Table 5.6: Experiment results of on stock price movement with trans-
former compared with benchmark

Accuracy(%)

Model/Sample HC IN CC TC FS 487 stocks

LSTM 50.67 51.13 51.13 50.87 51.03 51.13

GCN 52.27 52.51 52.55 52.32 52.43 52.78

LSTM+GCN 53.89 53.51 53.13 53.67 53.31 54.32

Transformer 53.07 53.23 53.73 53.95 53.32 54.47

Transformer+mask 55.68 55.93 55.85 55.17 55.97 56.77

In general, the accuracy of predicting stock performance shown in
Table 5.6 is not high enough for the relatively weak characteristics of the
stock market. From the results, it is observed that the pure transformer
model is 3% higher than the LSTM model, and 1% higher than the pure
GCN model.

In the term of the discussion for implementation, we expect that the
transformer model would outperform the LSTM+GCN model. However,
the prediction accuracy is quite close to the LSTM+GCN model, which is
not consistent with our expectation. This may be the complicated market
that results in the distraction in the attention mechanism.

The result of the transformer model using a binary stock graph as a
mask is about 5.6% higher than the LSTM, and about 2% higher than
the LSTM+GCN model. The transformer with masks did exceed the
general transformer model by utilizing the financial service datasets. The
improvement is not significant but still relative good in general when
using masks.

In term of predictability, it is difficult to determine in some sectors
are more predictable than others. One observation is that the results on
larger datasets are better than the small dataset.The sample size we used
for experiment is relatively small compared to the total number of stocks
in the market, we can expect a model accuracy better for larger datasets.

Overall, a relatively good prediction was produced by the transformer
on the stock data. The result reveals that stock graphs can effectively
improve the accuracy and the transformer is a better algorithm for the
stock prediction problem.

58

5.6 Summary

5.6 Summary

In total, the model utilizing graphs outperforms the model, not including
stock graphs. It reveals that the stock graphs can effectively enhance
prediction accuracy. We found that larger datasets are more predictable
than small sets. The graph-based on correlation coefficient is the best
choice among the three types of graph. The result of using a transformer
with a mask is about 2% higher than the multi-graph convolutional neural
network and 5% higher than the LSTM model. Overall, the transformer
with graph mask has the best performance on all the datasets.

59

6 Conclusion

6.1 Summary

In our research, we focus on the improvement of the stock price prediction
by using interactive information between different stocks. We use graphs
structure to represents such relation. Besides, we attempt to apply the
transformer model for learning the stock relation automatically. We
propose a joint GCN model to process multiple graphs to deal with the
structured graph data. In our experiments, the results from transformer
and multi-graph GCN model are similar to the single graph GCN model.
Since the transformer performs similar to the GCN model without using
graphs as prior knowledge, we expected the result would be better
by providing the model with stock graphs. Hence, we propose the
transformer model with graph masks. The outcome of transformer
with masks outperforms other models we build in our research. In the
experiment, we investigate how various type of graphs influence the
prediction result. We find that the graphs from correlation coefficients
are better than other constructed graphs.

6.2 Advantages and Limitation

The advantages of our work are that we found the pre-processing pos-
sessed a considerable impact on the result. We defined a function for
calculating the return price in the methodology section and the result
indicates that the return price effectively enhances the loss compared to
the min-max normalized price.

From the experimental results, both the multiple graphs GCN and the
transformer with the mask model outperformed the LSTM model and
the extreme case (assuming all the stock prices increase). It is proved that
the transformer is effective in solving stock forecasting problems and the
combination with a single graph produced a better result compared to
the GCN model.

60

6.2 Advantages and Limitation

Our experiment proved that the graphs are effective for stocks predic-
tion problem. In the experiment, we compare the effect of various graphs
and found that correlation graphs have a better effect compared to the
other two graphs.

There are also some limitations in our work. We list them as the
following:

• Due to the complexity of the stock market, the accuracy of pre-
dicting the direction of stock prices is generally poor. Besides, the
New York Stock Exchange contains different datasets. This may
influence the final accuracy. An additional complicating factor is
that recent stock performance can be completely different from the
former exemplified ones. Our experiment focuses on the datasets
from 2013 to 2018 and the market is relatively stable. The model
may not have a good prediction, when unexpected shock happens
in the world.

• The GCN network is strongly dependent on the graphs. The meth-
ods we used to create stock graphs can not provide the GCN with
sufficient information. The GCN needs a suitable graph to produce
a better result. In the experiment section, we test the GCN model
with four different graphs. The results show that the unweighted
partially connected graph is the best choice. However, compared to
the transformer model, the performance of GCN is highly depend-
ent on the information of graphs . Thus, finding a suitable method
for generating stock graphs promises to improve GCN results.

• Although the transformer works relatively well on the stock data-
sets, the pure transformer model performs similarly to the LSTM+GCN
model. The improvement with masks is not very large. The time
complexity of GCN is O(k · n · d2) and the time complexity of
transformer is O(n2 · d), where k is the kernel size, n is the input
length and d is the dimension of input elements. When n < d,
self-attention is faster than the convolution network. However, in
our research, the size of stock feature is less than the number of
stock, i.e n > d. If we consider the time cost, the transformer is not
the optimal choice.

• Although the result of transformer with masks outperformed the
presented methods, the mask only allows binary graph. According
to our displayed graph construction methods, the model cannot

61

6 Conclusion

process the DTW-based graphs. As a result, the type of input
graphs are limited, and we cannot comprehensively analyse the
model

6.3 Future Work

• The experiments indicated that the graph neural network is ef-
fective in the stock prediction problem. The graphs constructed
by correlation and DTW methods are based on the stocks’ past
performance. Therefore, the information provided by the graphs
still focuses on the prices. Moreover, the graph neural network
relies on the information provided by the graphs. Hence, for future
research, the graph construction method can focus on other inform-
ation such as shareholding and news rather than price. For the
multiple graphs GCN, we provided the graph not comprehensive
enough. Future research could concentrate on more different graph
construction approaches, and feed more graphs into the model may
help enhance accuracy.

• For future experiment, the stock features can be extended. The
current investigation only includes historical price and trading
volume information. As mentioned in the introduction, behavior
finance proposed that the stock movement is influenced by public
mood. Thus, the input feature could include information from
news and social media.

• We used the undirect graphs indicating that if there exists an edge
between two nodes, these two stock has the same impact on each
other. Nevertheless, in reality, the impact on stocks is different. One
stock can affect the other more but not be affected by the other
one. Therefore, for future investigation, we can design the graph
construction method to generate indirect graphs to represent the
unequal relation between stocks.

• Our transformer uses only one graph as a mask, hence, there is
only one graph included in the model. It is worth trying to feed
more graphs to the transformer model.

In conclusion, future works can concentrate on feature preprocessing
and graphs parts. The feature can be extended to cover more useful

62

6.3 Future Work

information. It means to prolong the field of the information covered
by the feature, instead of incrementing the length of historical features.
Furthermore, based on the results indicating the effective improvement of
the result by the graphs, it is essential to design new graph construction
methods and combine graphs and neural networks.

63

Bibliography

[1] E. F. Fama, “Random walks in stock market prices,” Financial analysts
journal, vol. 51, no. 1, pp. 75–80, 1995.

[2] ——, “The behavior of stock-market prices,” The journal of Business,
vol. 38, no. 1, pp. 34–105, 1965.

[3] ——, “Efficient capital markets: A review of theory and empirical
work,” The journal of Finance, vol. 25, no. 2, pp. 383–417, 1970.

[4] B. G. Malkiel, “The efficient market hypothesis and its critics,”
Journal of economic perspectives, vol. 17, no. 1, pp. 59–82, 2003.

[5] F. Black, “Noise,” The journal of finance, vol. 41, no. 3, pp. 528–543,
1986.

[6] H. White, “Economic prediction using neural networks: The case of
ibm daily stock returns,” in ICNN, vol. 2, 1988, pp. 451–458.

[7] R. Lawrence, “Using neural networks to forecast stock market prices,”
University of Manitoba, vol. 333, pp. 2006–2013, 1997.

[8] K.-j. Kim, “Financial time series forecasting using support vector
machines,” Neurocomputing, vol. 55, no. 1-2, pp. 307–319, 2003.

[9] J. Bollen, H. Mao, and X. Zeng, “Twitter mood predicts the stock
market,” Journal of computational science, vol. 2, no. 1, pp. 1–8, 2011.

[10] J. Liu, H. Lin, X. Liu, B. Xu, Y. Ren, Y. Diao, and L. Yang,
“Transformer-based capsule network for stock movement predic-
tion,” in Proceedings of the First Workshop on Financial Technology and
Natural Language Processing, 2019, pp. 66–73.

[11] A. Mittal and A. Goel, “Stock prediction using twit-
ter sentiment analysis,” Standford University, CS229
(2011 http://cs229. stanford. edu/proj2011/GoelMittal-
StockMarketPredictionUsingTwitterSentimentAnalysis. pdf), vol. 15,
2012.

64

Bibliography

[12] X. Ding, Y. Zhang, T. Liu, and J. Duan, “Deep learning for event-
driven stock prediction,” in Twenty-fourth international joint conference
on artificial intelligence, 2015.

[13] L.-C. Cheng, Y.-H. Huang, and M.-E. Wu, “Applied attention-based
lstm neural networks in stock prediction,” in 2018 IEEE International
Conference on Big Data (Big Data). IEEE, 2018, pp. 4716–4718.

[14] A. M. Rather, A. Agarwal, and V. Sastry, “Recurrent neural network
and a hybrid model for prediction of stock returns,” Expert Systems
with Applications, vol. 42, no. 6, pp. 3234–3241, 2015.

[15] S. Selvin, R. Vinayakumar, E. Gopalakrishnan, V. K. Menon, and
K. Soman, “Stock price prediction using lstm, rnn and cnn-sliding
window model,” in 2017 international conference on advances in com-
puting, communications and informatics (icacci). IEEE, 2017, pp. 1643–
1647.

[16] Z. C. Lipton, J. Berkowitz, and C. Elkan, “A critical review of
recurrent neural networks for sequence learning,” arXiv preprint
arXiv:1506.00019, 2015.

[17] H. Fu-Yuan, “Forecasting stock price using a genetic fuzzy neural
network,” in 2008 International Conference on Computer Science and
Information Technology. IEEE, 2008, pp. 549–552.

[18] Q. Ye, L. Wei et al., “The prediction of stock price based on improved
wavelet neural network,” Open Journal of Applied Sciences, vol. 5,
no. 04, p. 115, 2015.

[19] Y. Chen, Z. Wei, and X. Huang, “Incorporating corporation rela-
tionship via graph convolutional neural networks for stock price
prediction,” in Proceedings of the 27th ACM International Conference on
Information and Knowledge Management, 2018, pp. 1655–1658.

[20] C. Carvalho, N. Klagge, and E. Moench, “The persistent effects of
a false news shock,” Journal of Empirical Finance, vol. 18, no. 4, pp.
597–615, 2011.

[21] D. M. Cutler, J. M. Poterba, and L. H. Summers, “What moves stock
prices?” National Bureau of Economic Research, Tech. Rep., 1988.

65

Bibliography

[22] A. Joulin, A. Lefevre, D. Grunberg, and J.-P. Bouchaud, “Stock
price jumps: news and volume play a minor role,” arXiv preprint
arXiv:0803.1769, 2008.

[23] J. Y. Campbell, S. J. Grossman, and J. Wang, “Trading volume and
serial correlation in stock returns,” The Quarterly Journal of Economics,
vol. 108, no. 4, pp. 905–939, 1993.

[24] K. T. Chi, J. Liu, and F. C. Lau, “A network perspective of the stock
market,” Journal of Empirical Finance, vol. 17, no. 4, pp. 659–667, 2010.

[25] C. K. Tse, J. Liu, F. C. M. Lau, and K. He, “Observing stock market
fluctuation in networks of stocks,” in Complex Sciences, J. Zhou, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 2099–2108.

[26] D. J. Berndt and J. Clifford, “Using dynamic time warping to find
patterns in time series.” in KDD workshop, vol. 10, no. 16. Seattle,
WA, 1994, pp. 359–370.

[27] M. MÃŒller, Information Retrieval for Music and Motion.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, ch.
Dynamic Time Warping, pp. 69–84. [Online]. Available: https:
//doi.org/10.1007/978-3-540-74048-3_4

[28] M. E. Newman, “Analysis of weighted networks,” Physical review E,
vol. 70, no. 5, p. 056131, 2004.

[29] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Mon-
fardini, “The graph neural network model,” IEEE Transactions on
Neural Networks, vol. 20, no. 1, pp. 61–80, 2008.

[30] W. L. Hamilton, R. Ying, and J. Leskovec, “Representation
learning on graphs: Methods and applications,” arXiv preprint
arXiv:1709.05584, 2017.

[31] S. Ryu, J. Lim, S. H. Hong, and W. Y. Kim, “Deeply learn-
ing molecular structure-property relationships using attention-
and gate-augmented graph convolutional network,” arXiv preprint
arXiv:1805.10988, 2018.

[32] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

66

https://doi.org/10.1007/978-3-540-74048-3_4
https://doi.org/10.1007/978-3-540-74048-3_4

Bibliography

[33] J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and
M. Sun, “Graph neural networks: A review of methods and applica-
tions,” arXiv preprint arXiv:1812.08434, 2018.

[34] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.

[35] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in
Advances in neural information processing systems, 2017, pp. 5998–6008.

[36] K. Chen, Y. Zhou, and F. Dai, “A lstm-based method for stock
returns prediction: A case study of china stock market,” in 2015
IEEE international conference on big data (big data). IEEE, 2015, pp.
2823–2824.

[37] A. E. Chambers and S. H. Penman, “Timeliness of reporting and
the stock price reaction to earnings announcements,” Journal of
accounting research, pp. 21–47, 1984.

[38] K. Baba, R. Shibata, and M. Sibuya, “Partial correlation and condi-
tional correlation as measures of conditional independence,” Aus-
tralian & New Zealand Journal of Statistics, vol. 46, no. 4, pp. 657–664,
2004.

[39] D.-M. Song, M. Tumminello, W.-X. Zhou, and R. N. Mantegna,
“Evolution of worldwide stock markets, correlation structure, and
correlation-based graphs,” Physical Review E, vol. 84, no. 2, p. 026108,
2011.

[40] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[41] W. W. Zachary, “An information flow model for conflict and fission
in small groups,” Journal of anthropological research, vol. 33, no. 4, pp.
452–473, 1977.

[42] A. Zeyer, P. Bahar, K. Irie, R. Schlüter, and H. Ney, “A comparison of
transformer and lstm encoder decoder models for asr,” in 2019 IEEE
Automatic Speech Recognition and Understanding Workshop (ASRU).
IEEE, 2019, pp. 8–15.

67

Bibliography

[43] E. Voita, D. Talbot, F. Moiseev, R. Sennrich, and I. Titov, “Analyzing
multi-head self-attention: Specialized heads do the heavy lifting, the
rest can be pruned,” arXiv preprint arXiv:1905.09418, 2019.

[44] R. Child, S. Gray, A. Radford, and I. Sutskever, “Generating long
sequences with sparse transformers,” arXiv preprint arXiv:1904.10509,
2019.

[45] D. B. West et al., Introduction to graph theory. Prentice hall Upper
Saddle River, NJ, 1996, vol. 2.

68

69

Bibliography

Appendix

70

Bibliography

Fi
gu

re
.1

:H
is

to
gr

am
of

ac
cu

ra
cy

of
di

ff
er

en
t

m
od

el
s

on
di

ff
er

en
t

da
ta

se
ts

71

	Introduction
	Background
	Research Objective
	Contributions
	Problem Analysis
	Report Structure

	Literature Review
	Introduction to the stock market
	Graph Construction
	Sector graph
	Correlation graph
	Dynamic time warping

	Graph Neural Network
	General graph neural network
	Graph convolutional neural network

	Transformer

	Research Data and Methodology
	Datasets
	Feature Selection
	Single Stock Prediction
	Multiple Stock Prediction

	Stock Graph Construction
	Sector graph
	Correlation graph
	DTW graph

	Model for Benchmark
	GCN Prediction with Graph Only
	GCN Prediction with Graphs and Features
	LSTM + GCN
	Transformer + GCN
	Sample results

	Implementation
	GCN with multiple graphs
	Transformer for stock prediction
	Transformer + LSTM
	Transformer with graph masks

	Experiment and Evaluation
	Preparation for Experiment
	Results of Using Various Graphs
	Parameter Setting
	Multi-graph GCN Results and Evaluation
	Transformer with Graphs Results and Evaluation
	Summary

	Conclusion
	Summary
	Advantages and Limitation
	Future Work

	Bibliography

