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Abstract

This thesis explores several methodological aspects of joint modelling of
longitudinal outcomes and recurrent and terminal events, including vari-
able selection, description, prediction, causal inference and model specifi-
cation. The methods we discuss were motivated by the Community Age-
ing Research study (CARE75+) to investigate the relationships between
frailty, falls and mortality. These outcomes have previously been analyzed
with marginal models, but not as joint outcomes.

We propose a variable selection strategy to optimize prediction of joint
models for longitudinal and time-to-event outcomes. This strategy com-
bines penalized likelihood with the LASSO penalty and cross-validation
methods to select the fixed effects that optimize simultaneously the mean-
squared error (MSE) and the Integrated Brier Score (IBS). Our simulation
studies suggest that it is not always possible to optimize simultaneously
MSE and IBS, but there seems to be a region defined by the constraints
close to an optimal solution. In such a case a small compromise between
MSE and IBS is required, depending on which outcome is the priority.

Joint modelling has been an area of active research for description and
prediction, but causal inference has received less attention. Using Direct
Acyclic Graphs, we state our hypotheses about the paths between frailty,
falls and mortality and confounders to formulate joint models adjusting
for confounders. Via simulation studies we assessed the consequences of
model misspecification, finding that even when link of the joint model and
some features of the mean structure are not the correct ones, the fixed
effects can still be correctly estimated.
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t Time as a continuum
tij The j th observation time point specific to subject i
mi(t) True and unobservable longitudinal outcome of subject i at time t
yi(t) Observable measure of the longitudinal outcome of subject i at time t
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wi p-vector of baseline covariates of subject i
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zi(t) q-vector of random effects covariates (possibly time-varying) of subject i
Xi ni × p design matrix of fixed effects covariates
Zi ni × p design matrix of random effects covariates
β p-vector of fixed effects regression coefficients of a linear-mixed model
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Chapter 1

Introduction

In follow-up studies, usually different types of outcomes are collected for each sample
unit, which may include multiple longitudinal repeated measures and the time until
an event of particular interest occurs. The research questions of interest are typically
formulated for separate analyses of the recorded outcomes. Nonetheless, sometimes it
is more appropriate to model them jointly as separate models do not fully account for
the structure in the data and may lead to incorrect conclusions due to biased estimates.
This thesis is about joint modelling of longitudinal and time-to-event data.

The joint modelling methodology was developed to address problems in two differ-
ent areas of statistics. On the one hand, in the area of longitudinal data analysis,
joint models were originally developed to accommodate nonignorable missing data
of a longitudinal response; this is when the probability of missingness is related to the
missing, unobserved values (Sections 2.1.3 and 3.1.4). Disregarding the missing data
from statistical analyses when missingness is nonignorable produces biased estimates.
Jointly modelling the longitudinal response and the missing data process, introducing
shared random effects between the two processes, is a strategy to accommodate the
bias due to nonignorable missing data. On the other hand, in the area of survival anal-
ysis joint models have been studied in the Cox model with endogenous time-varying
covariates. Endogenous covariates are directly measured from the individuals so they
require individuals survival for their existence. When the terminal event is death, for
instance, the observed history of endogenous covariates up to time t implies survival
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up to this time, and the survival function given covariates does not have the usual inter-
pretation. Hence with endogenous time-varying covariates the log-likelihood function
(δi log f(ti;θ) + (1 − δi) logSi(ti;θ)) is not valid (Sections 2.2.1 and 3.1). These
challenges can be overcome by joint modelling the time-to-event outcome and the
time-varying covariate trajectory.

A third situation is that joint modelling longitudinal and time-to-event data allows to
explore the joint distribution of outcomes of different types and, in particular, to un-
derstand their association. For example, Ibrahim et al. (2010) discuss the importance
of jointly modelling quality of life (QOL) and mortality in cancer patients. One might
argue that, for a patient, improvement in QOL is often more important than any mod-
est survival benefit in treatment decisions. Therefore, it is of great interest in cancer
clinical trials to characterize the association between time-to-event and QOL through
joint modelling and to understand the tradeoffs between QOL and survival. A specific
treatment protocol with chemotherapy and radiotherapy may prolong survival or re-
lapse, but the QOL in that prolonged period may be poor, and thus the clinician must
decide whether such a benefit is worth it for the patient.

Different approaches have been proposed for the statistical analysis of joint models
for longitudinal and time-to-event data, which can be grouped in likelihood maximiza-
tion and Bayesian methods. The former can be grouped in Shared Random Effects
Joint Models (SREJM) and Latent Class Joint Models (LCJM). The common features
of these two alternatives are that for each outcome a regression submodel is speci-
fied (a linear mixed model for the longitudinal outcome and a survival analysis for the
time-to-event) and a latent structure characterizes their association. And the difference
between these two joint modelling alternatives is how they define the latent structure
of their association. In a SREJM it is characterized by link functions of the random ef-
fects which are introduced as explanatory variables in the survival analysis submodel.
In the LCJM the population is assumed to be heterogeneous but comprised of subpop-
ulations with different patterns of change for the longitudinal outcome and different
time-to-event risk profiles, so the association between outcomes is characterized by a
third submodel to estimate the likelihood of the subjects for belonging to these sub-
populations. In this thesis we explore with the Shared Random Effects Joint Model
since it is the approach most widely used.
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Figure 1.1: Possible relationship between frailty, falls and mortality, with frailty as
common cause of falls and mortality, and falls as cause of mortality.

The joint modelling framework is not restricted to these specific combinations of out-
comes and can be extended to more than two. In addition to exploring the relationship
between longitudinal and terminal event outcomes, sometimes interest lies in study-
ing their association with a recurrent event process. This three-outcome joint model
is the cornerstone of the methodological aspects of joint modelling addressed in this
thesis which are motivated by the Community Ageing Research (CARE75+) study,
conducted in Northern England since 2015. The outcomes of interests are frailty (lon-
gitudinal outcome), falls (recurrent event) and mortality (terminal event). Figure 1.1 is
an instance of the possible relationships between frailty, falls and mortality.

Frailty is a dynamic process of a reduction in the physical, psychological and social
function associated with aging. It describes how the body gradually loses its built-in
reserves, leaving it vulnerable to dramatic and sudden changes in health triggered by
apparently minor illnesses, such as a chest infection, that otherwise the body could
likely overcome. Frailty is associated with adverse outcomes such as frequent falls,
disability, hospitalization, and mortality (Clegg et al., 2013). The World Health Orga-
nization defines a fall as an event which results in a person coming to rest inadvertently
on the ground, the floor, or other lower level. Fall-related injuries may be fatal or non-
fatal though most are non-fatal. The CARE75+ study is a longitudinal cohort of older
people with frailty for observational research. This study aims to understand why some
people remain fit and resilient in older age while others develop health problems and
frailty and to determine what (treatable) problems have a major impact on the quality
of life in older age.

Frailty as the geriatric syndrome described above, like certain concepts in the social
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and behavioural sciences, are not directly observable and their meaning and universally
accepted definition remain subject of discussions, such as social class, intelligence,
anxiety, depression, extrovert personality, utility, etc. Such concepts are referred to as
latent variables. Latent variables are hypothetical constructs invented by scientists for
the purpose of understanding some research area of interest and for which there are no
operational method for direct measurement (Bollen, 2002; Everett, 2013).

Latent variables are given different names in different disciplines, such as random
effects, common factors and latent classes. They are used to represent phenomena
such as “True” variables measured with error, hypothetical constructs, unobserved het-
erogeneity, missing data, counterfactuals or “potential outcomes” (Rabe-Hesketh &
Skrondal, 2004, Chapter 1).

Although latent variables are not observable, some of their effects on measurable man-

ifest variables are observable, and hence subject to study. By analyzing the observable
effects it is possible to learn about latent variables. The diagram in Figure 1.2, adapted
from Lavrakas (2008), illustrates the process of using empirical evidence to learn about
latent variables. A construct or hypothetical construct has an exclusively epistemolog-
ical status (Rabe-Hesketh & Skrondal, 2004). It is an intellectual device by means of
which one construes events, i.e they are simply concepts. Because hypothetical con-
structs do not correspond to real phenomena, it follows that they cannot be measured
directly even in principle. Instead, the construct is operationally defined in terms of a
number of items or indirect “indicators”. Thus the operational definition is supposed
to bridge theoretical arguments (construct and conceptual definition) and the empirical
evidence by mechanisms of concrete language that allows to gather information about
the construct. Finally, measuring involves both creating a rule (scale) and making
assignments of cases into categories based on this rule.

Possible errors in the described process can be grouped in two types: construct va-

lidity and measurement error. Construct validity is the degree that the operational
definition captures the theoretical concept, and measurement error is any deviation of
the assigned symbol from the “true” value that should be designated to the object. A
measure is said to be valid (to have a strong construct validity) if it measures what it
claims to measure. Two types of error affect measures validity: systematic error (bias)
and random error (variance) (Lavrakas, 2008).
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Figure 1.2: Process for creating a measuring instrument from theoretical arguments to
empirical evidence.

Several measurements have been proposed to detect frailty in the elderly. Faller et al.

(2019) provides a systematic review of the different instruments developed for the
detection of frailty. With the CARE75+ study, researchers collect data to quantify
frailty according to several instruments, for instance the Electronic Frailty Index (eFI)
(Clegg et al., 2016) and the Edmonton Frail Scale (EFS) (Rolfson et al., 2006). In the
joint modelling methods discussed in this thesis we used frailty in the EFS.

Frailty and falls have been subjects of research, and their relationship with mortality
and other risk factors has been analyzed with marginal models as separate outcomes. In
the CARE75+ study, the data to quantify frailty, summarized in the EFS, are collected
intermittently on each participant at set times, hence frailty makes sense only as long
as the participants are alive. In a time-to-event model for mortality, frailty acts as
an endogenous time-varying covariate subject to measurement error. Joint modelling
frailty and mortality accommodates endogenous time-varying covariates in the Cox
model while accounting for the measurement error of frailty and the bias produced by
ignoring the dependence between the two outcomes.

Throughout this thesis we explore and discuss different features of joint models for
longitudinal outcomes and recurrent and terminal events, including variable selection,
model specification, description, prediction and causal inference. The methods dis-
cussed are applied to the CARE75+ data set in different alternatives for joint modelling
frailty, falls and mortality.

We consider that our work makes contributions in two areas: statistical methodology
and applications. Our contributions to the statistical methodology are (1) proposing
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a variable selection strategy for simultaneously optimizing prediction of the two out-
comes in joint modelling of longitudinal and time-to-event data, (2) approaching the
joint modelling framework from the causality perspective using DAGs, and (3) evalu-
ating the consequences of misspecifying the mean and association structures of joint
modelling a longitudinal outcome and recurrent and terminal events. In the applica-
tions context, geriatric frailty, recurrent falls and mortality have been analyzed before
with marginal models, and we investigated their relationships with the joint modelling
methodology.

This thesis has seven chapters. The present Introduction is Chapter 1. Chapter 2 is
background material included for completeness and to establish the notation we use in
the rest of the thesis. It explains the building blocks of joint modelling longitudinal and
time-to-event data: (a) the linear mixed-effects model for the analysis of continuous
longitudinal responses and (b) survival analysis models, emphasizing in the challenges
that conveys data missing not at random and endogenous time-varying covariates that
motivate the need for joint models. Additionally, we briefly describe other statistical
topics relevant to the methods we address in subsequent chapters: prediction, penalized
likelihood methods and causal inference.

Chapter 3 is an introduction to joint modelling, included to provide the methodological
framework of our work of Chapters 4–6. It describes the two main joint models we
explore in this thesis and some aspects of prediction in the context of joint modelling
that we use in Chapter 5.

In Chapter 4, we analyze frailty, falls and mortality in the CARE75+ data set with the
joint modelling methodology aiming to fit a joint model to describe the relationships
among these three outcomes and covariates. The results of our statistical analyses
of the CARE75+ study suggest that frailty is strongly associated with both falls and
mortality. Specifically, the relative risks of falls and mortality are 1.551 and 1.537,
respectively for subjects whose frailty is one unit above the population average, ceteris

paribus. The effect of recurrent falls on mortality was not significant at the 5% level.
It is possible for this relationship to be mediated by other adverse outcomes, like long-
term institutional care, hospital admissions, injuries, fear of subsequent falls, reduced
activities of daily living and lower quality of life (Masud & Morris, 2001), requiring a
longer follow up period than is available in the analyzed data set to observe this effect.
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Figure 1.3: Possible relationship between frailty, falls and mortality, with falls as com-
mon cause of frailty and mortality, and frailty as cause of mortality.

We discuss the analyses and our conclusions in Chapter 4, and fitted an alternative
plausible joint model for frailty, falls and mortality considering falls as a time-varying
covariate for frailty and mortality, as illustrated in Figure 1.3.

The complicated structure of joint modelling conveys challenges for statistical mod-
elling. In particular, variable selection is nontrivial and of paramount interest. In sta-
tistical modelling, variable selection is carried out in different ways depending on the
intended use of the fitted model: description, causal inference or prediction (Shmueli
et al., 2010). In our statistical analyses to fit a joint model that describes the relation-
ships between frailty, falls and mortality in the CARE75+ data set, variable selection
was done by a stepwise procedure, first in the marginal model of each outcome and then
in the joint model. This approach becomes more difficult with correlated covariates, in
addition to the long processing times required to fit a joint model. Variable selection
in joint modelling has been studied before using penalized likelihood methods aiming
to optimize the goodness of fit (He et al., 2015).

We propose a variable selection strategy that aims at optimizing prediction of a joint
model for longitudinal and time-to-event outcomes. Prediction accuracy of this type
of joint model has mainly focused on the time-to-event outcome in terms of the ability
of the model to predict the subjects future event status, and the prospective accuracy
of the longitudinal outcome to discriminate events from non-events using the ROC
methodology (Rizopoulos, 2011; Zheng & Heagerty, 2007), or by computing the Brier
score (BS) for a specific time-point (Król et al., 2017). The focus of our variable
selection strategy is on simultaneous optimization of prediction of both outcomes us-
ing analogous squared-error measures: mean-squared error (MSE) for the longitudinal
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outcome and the Integrated Brier score (IBS) for the time-to-event outcome. By using
the IBS we assess the accuracy of prediction of the time-to-event outcome integrating
the squared-error over a relevant time interval rather than computing its value at a spe-
cific time-point, giving a more complete summary of the accuracy of prediction across
time. This strategy combines penalized likelihood with the LASSO penalty and cross-
validation methods to select the fixed effects that optimize simultaneously the MSE
and the IBS in out-of-sample predictions. Our proposed strategy is discussed in Chap-
ter 5 and applied to the CARE75+ data set for a joint model of frailty and mortality.
Our simulation studies suggest that it is not always possible to optimize simultane-
ously the MSE and IBS, but there is a region defined by the constraints imposed to
the log-likelihood close to an optimal solution. In order to explore these regions more
closely and as a secondary criterion, we assessed the accuracy of variable selection of
our proposed strategy relative to the true model.

Joint modelling of longitudinal and time-to-event data has been an area of active re-
search for description and prediction, but causal inference has received less attention.
In Chapter 6 we revisit the joint models fitted and discussed in Chapter 4 and interpret
them in the light of the causal inference framework (Section 2.5), pointing out their
limitations in this context. By using Directed Acyclic Graphs (DAGs) we switch the
focus from description to causal inference. DAGs allow us to state our hypotheses
about the paths between frailty, falls and mortality and confounders in order to refor-
mulate the two joint models fitted in Chapter 4, but this time adjusting for confounders.
Additionally, since the two alternative joint models represent two plausible underlying
mechanisms of the data, we conducted a simulation study with these joint models to
understand the consequences of model misspecification to help us decide on the best
model for frailty, falls and mortality.

Finally, in Chapter 7 we summarize our conclusions, future work and possible exten-
sions to the work we present in this document.
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Chapter 2

Preliminaries

Joint modelling longitudinal and time-to-event outcomes was motivated by data miss-
ing not at random in longitudinal studies and by the need to accommodate endogenous
time-varying covariates in survival analysis models. In this chapter we describe the
linear-mixed model and survival analysis models since they are the building blocks of
joint models.

An appealing characteristic of joint models is the possibility to predict how individual
response trajectories change over time and to make dynamic predictions of both lon-
gitudinal and time-to-event outcomes as more data are being collected. In this chapter
we introduce prediction with the linear mixed model and survival analysis models,
describing how to assess the accuracy of predictions, with special emphasis on time-
to-event outcomes. This topic is extended to joint models in Chapter 3.

An important part of this chapter is dedicated to introduce other Statistics topics re-
lated to methods and techniques we use in Chapters 4–6, mainly penalized likelihood
methods and causal inference.

2.1 Linear Mixed Models

The generic term correlated data embodies several data structures: multivariate ob-
servations, clustered data, repeated measurements (under different experimental con-
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2.1 Linear Mixed Models

ditions), longitudinal data, and spatially correlated data (Verbeke, 1997). The focus of
this section is on longitudinal data which can be broadly defined as the design where
measurements of the same subject or individual (human beings, animals, laboratory
samples, machines, etc.) are taken repeatedly through time (Rizopoulos, 2012). Lon-
gitudinal data are usually collected on a sample of subjects, with which it is possible to
assess between-subject differences as in a cross-sectional design, but having repeated
measures on the same subjects allows to investigate the within-subject change over
time. The direct assessment of within-subject changes in the response over time can
only be achieved with a longitudinal study design. Hence the primary goal of a lon-
gitudinal study is to characterize the change in response over time and the factors that
influence change (Fitzmaurice et al., 2012).

A distinctive feature of longitudinal data is that they are naturally clustered, where
each cluster is comprised by the repeated measures of the same subjects at different
occasions. From the description above we expect observations in the same cluster
to be positively correlated (Fitzmaurice et al., 2012; Molenberghs & Verbeke, 2000;
Rizopoulos, 2012), a feature that implies that standard statistical methods that assume
independent observations, such as ordinary linear regression, are not appropriate for
the analysis of longitudinal data.

2.1.1 Model specification

The analysis of longitudinal data is based on the idea that each subject has their own
subject-specific mean response profile in time, for which a functional form is assumed.
We illustrate this idea in Figure 2.1a where the dots represent the longitudinal response
data of a fictitious sample of 20 subjects, and the population average profile is repre-
sented by the solid black line. The data corresponding to two subjects (1 and 2) are
the red and blue dots respectively, with overlaid solid lines representing their linear
trend, illustrating the notion of subjects having their own response trajectories. Figure
2.1b contains the partial autocorrelation coefficients for lags h > 0 for each subject,
illustrating the point of longitudinal data being positively correlated.

Longitudinal data can be analyzed with Linear Mixed Models (LMMs), statistical mod-
els for continuous (or quantitative) outcome variables in which the residuals are nor-
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2.1 Linear Mixed Models
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Figure 2.1: (a) Longitudinal data of a fictitious sample of subjects (•) and the pop-
ulation profile (—). The longitudinal data of two subjects is highlighted (–•– –•–)
with their subject-specific longitudinal profile (— —). (b) For each value on the x-
axis (subjects in the sample) the points along the y-axis are the partial autocorrelation
coefficient, cor(yit, yit−h), h > 0, of their longitudinal response.

mally distributed but may not be independent or have no constant variance. This name
is due to the fact that LMMs are expressed as a linear combination of covariates (ob-
served features of the data) and regression coefficients, and may involve a mix of fixed
and random effects. Fixed effects are unknown constant parameters associated with
covariates. Random effects are also associated with covariates, but in contrast to fixed
effects, random effects are unobserved random variables assumed to be normally dis-
tributed (West et al., 2014). The role of the random effects is to model the correlation
due to repeated measures of the outcome variable across time.

To formally introduce the LMM, consider a sample of n subjects. Let yi(t) denote
the value of the outcome variable measured on subject i, i = 1, . . . , n at time t. This
implies that, in principle, the value of yi is potentially known at any time t. However,
in practice longitudinal data are collected at discrete time points, potentially different
for each subject. Let yij = yi(tij) denote the response of subject i = 1, . . . , n at time
tij, j = 1, . . . , ni. In Figure 2.1a, n = 20 and ni = 26 ∀i, and it suggests that the
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2.1 Linear Mixed Models

outcome data of each subject, yij , can be described by a linear function of time,

yij = β̃i0 + β̃i1tij + εij, (2.1)

where the measurement error, εij , represents the deviation of the observed response
of subject i at time tij with respect to the subject-specific mean trajectory at the same
time. Normality of the measurement error is a standard assumption, although some
considerations about its variance are required since it is meant to model the within-
subject variation. The data used to produce the plots of Figure 2.1, for instance, was
simulated with εij

iid∼ N (0, σ2).

The LMMs methodology postulates that the intercept and slope of the individual pro-
files can be expressed in terms of the population mean trajectory and subject-specific
deviations about the population mean. Reformulation of Equation (2.1) assuming a
linear trajectory of the population mean gives a model in terms of fixed and random
effects as described by Equation (2.2),

yij = (β0 + bi0) + (β1 + bi1)tij + εij, (2.2)

where

β̃i0 = β0 + bi0,

β̃i1 = β1 + bi1,

bi = (bi0, bi1)> ∼ N2(0, B),

with B =

[
τ 2

0

τ01 τ 2
1

]
being the covariance matrix of the assumed normal distribution

of bi.

The population mean trajectory is represented by β0 + β1tij , where the intercept β0

and the time slope β1 are the fixed effects of the model. The random effects, bi =

(bi0, bi1)>, are subject-specific deviations with respect to the population intercept and
slope, respectively. The random effects are assumed to follow a bivariate normal dis-
tribution with zero-mean vector and covariance matrix B.

In this model, the fixed effects are directly estimated from the data. In contrast, being
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2.1 Linear Mixed Models

random variables bi0 and bi1 are not estimated directly, but rather the parameters of the
covariance matrix of their joint distribution, τ 2

0 , τ
2
1 , τ01. The complete set of parameters

to estimate in this model are (β0, β1, τ
2
0 , τ

2
1 , τ01, σ

2).

Let yi denote the vector of ni repeated measures for subject i and εi the associated
measurement error vector. The generalization of model (2.2) would include additional
covariates and regression coefficients resulting in the linear mixed model proposed by
Laird & Ware (1982), and is given by Equation (2.3),

yi = Xiβ + Zibi + εi, (2.3)

where

Xi : ni × p design matrix of covariates for the fixed effects,

Zi : ni × q design matrix (possibly same as Xi) associated to the random effects,

β : p-vector of fixed effects regression coefficients,

bi ∼ Nq(0, B),

εi ∼ N (0,Σi),

B : covariance matrix of the joint distribution of the random effects,

Σi : ni × ni covariance matrix of measurement errors.

The p-vector β are the fixed effects of the model, and the subject-specific q-vectors
bi are the random effects. The columns in the design matrix Xi contain a unit vector
for the intercept and possibly time-varying covariates measured at time points tij . The
design matrix Zi is formed by features of the data linking bi with yi, usually some
columns of Xi, and Zi = Xi is possible. The columns of Xi and Zi correspond to
covariates which can be time-varying or fixed baseline. An example of design matrices
Xi and Zi with a random intercept, random time-slope (i.e. q = 2) and additional p−2

fixed effects associated to time-varying covariates, wi1(t), . . . , wip−2(t), measured at
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2.1 Linear Mixed Models

time points tijis the following.

Xi
(ni×p)

=


1 ti1 wi1(ti1) · · · wip−2(ti1)
1 ti2 wi1(ti2) · · · wip−2(ti2
...

...
... . . . ...

1 tini wi1(tini) · · · wip−2(tini)

 , Zi
(ni×2)

=


1 ti1
1 ti2
...

...
1 tini


The fixed effects, β, are interpreted exactly as the coefficients of ordinary linear re-
gression, i.e. βk represent the change in the mean response yi per unit change in
wik, k = 1, . . . , p. Being subject-specific, the random effects are interpreted as the
deviation of between the ith subject and the population mean trend (intercept and
slope).

The random effects vector, bi, is assumed to follow a multivariate normal distribu-
tion with mean zero and covariance matrix B. The measurement error vector of each
subject, εi, is assumed multivariate normal with mean zero and covariance matrix Σi.
Here Σi depends on i only through its dimension ni (i.e. the dimension of Σi is ni×ni,
the number of repeated measures of subject i), but the set of unknown parameters in Σi

will not depend upon i. The random effects are assumed independent of measurement
errors, so cov(bi, ε) = 0, and the measurement error vectors are assumed independent
between subjects, εi ⊥ εi′ , ∀i 6= i′.

The contribution to the marginal likelihood of the ith subject response vector is given
by Equation (2.4).

f(yi) =

∫
Rq
f(yi,bi)dbi =

∫
Rq
f(yi | bi)f(bi)dbi, (2.4)

where
∫
Rq yf(bi)dbi denotes the q-dimentional integral of yf(bi) with respect to each

element in the q-vector bi. A consequence of the normal distribution and indepen-
dence assumptions of the random effects and the measurement error vectors is that,
the n response vectors are conditionally independent and normally distributed given
the random effects. This is, yi|bi ∼ Nni(Xiβ + Zibi,Σi), so the integral in Equation
(2.4) has a closed-form solution leading to an ni-dimensional normal distribution with
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2.1 Linear Mixed Models

mean vector and covariance matrix given by

E(yi) =Xiβ and

var(yi) =Vi = ZiBZ
>
i + Σi.

It is important to distinguish between E(yi) = Xiβ and E(yi|bi) = Xiβ + Zibi.
The marginal expectation E(yi) is the mean value of yi for the subset of the entire
population sharing features Xi. The conditional expectation given the random effects,
E(yi|bi), is the expectation of the subject-specific response yi taking into account the
random effects. A practical implication of making this distinction clear is that subject
specific inferences and predictions of the outcome are possible once bi is predicted.
Neglecting prediction of the random effects (or using the expected value of 0) will pro-
duce exactly the same ŷi(t) for all subjects with the same covariates’ values, Xi.

The parameters to estimate in this general LMM are θ> =
(
β>, vech(B),θΣ

)
, where

vech(B) is the vector formed by stacking the columns of the lower triangular part
of the symmetric matrix B and θΣ is the vector of parameters chosen to model the
covariance matrix Σi which, as stated previously, Σi depends on i only through its
dimension.

Note that the model described by Equation (2.3) is general, especially in the assump-
tions about the measurement errors. Here no independence is assumed, and var(εi) =

Σi allows for the possibility of modelling within-subject dependence of the measure-
ment error when the chosen random effects structure is not sufficient to capture the
correlation in the data. This topic is addressed, for instance, in Fitzmaurice et al.

(2012); Hedeker & Gibbons (2006); Molenberghs & Verbeke (2000); Pinheiro & Bates
(2006) , discussing various correlation structures for modelling within-subject depen-
dence, including serial and spatial correlation structures and their implementation in
R and SAS. For instance, common covariance structures to address serial correlation
are compound symmetry, Toeplitz, autoregressive process of order 1, autoregressive-
moving average of order (1,1), and banded; and exponential and Gaussian, to address
spatial correlation.

A special case of the LMM arises assuming measurement errors with constant vari-
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2.1 Linear Mixed Models

ance, i.e.

Σi = σ2Ini , (2.5)

where Ini is the ni-dimensional identity matrix and σ2 the variance of the measurement
errors. Laird & Ware (1982) named this model the “conditional-independence model”
(CIM), since it implies that the ni responses of subject i are conditionally independent
given the random effects, bi,

f(yi | bi) =

ni∏
i=1

f(yij | bi). (2.6)

In this thesis we work with the CIM and, unless otherwise explicitly stated, this is the
linear mixed model we always refer to. We introduced the general version to make
clear that LMM can be used in modelling both the mean and covariance, pointing out
the corresponding parts of the model.

Sometimes, it is convenient to express the LMM of Equation (2.3) for a single value
of the response vector yi at time t, by a row of matrices Xi and Zi under the premise
that longitudinal data can be potentially measured at any time t. This equivalent repre-
sentation of the LMM is given by Equation (2.7), and will become useful in specifying
the joint modelling framework.

yi(t) = x>i (t)β + z>i (t)bi + εi(t), (2.7)

where yi(t) and εi(t) are the ith subject longitudinal outcome and measurement error at
time t. The vectors xi(t) and zi(t) contain the covariates’ values of fixed and random
effects (β and bi), respectively, measured at time t.

2.1.2 Estimation

Parameter estimation of LMM is carried out under maximum likelihood principles.
Assume the CIM, i.e. Σi = σ2Ini and let θb = vech(B). The parameters to estimate
are θ> =

(
β>,θb, σ

2
)
. Assuming normality of the random effects and measurement

errors and cov(bi, εi) = 0, the n response vectors yi are conditionally independent
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2.1 Linear Mixed Models

given the random effect, so by Equation (2.4) the log-likelihood function of the CIM
is given by Equation (2.8),

`(θ) =
n∑
i=1

log
(
f(yi; θ)

)
= − 1

2

n∑
i=1

(
ni log(2π) + log |Vi|+ (yi −Xiβ)>V −1

i (yi −Xiβ)
)
, (2.8)

where θ> =
(
β>,θb, σ

2
)

denotes the full parameter vector and Vi = ZiBZ
>
i + σ2Ini

is the covariance matrix of the ni-dimensional normal distribution with |Vi| denoting
the determinant of the square matrix Vi.

Estimation of θ is done in an iterative procedure by splitting θ into the parameters of
the fixed effects, β, and the variance parameters, (θb, σ

2).

The score equation for β is

∂`(θ)

∂β>
=

n∑
i=1

X>i V
−1
i (yi −Xiβ) = 0.

If we assume Vi is known, the maximum likelihood estimator of the fixed effects vector
β, obtained by maximizing `(θ), conditional on the parameters in Vi, has a closed form
and corresponds to the generalized least squares estimator,

β̂ =

(
n∑
i=1

X>i V
−1
i Xi

)−1 n∑
i=1

X>i V
−1
i yi, (2.9)

with variance given by

var(β̂) =

(
n∑
i=1

X>i V
−1
i Xi

)−1

. (2.10)

The estimator β̂ of Equation (2.9) is unbiased for any choice of Vi, with the most
efficient estimator of β being the one that uses the true value of Vi (Fitzmaurice et al.,
2012). An estimate of θb and σ2 can be obtained by replacing β̂ in the log-likelihood
of Equation 2.8 and maximizing `(θb, σ2 | β = β̂), where iterative procedures like
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2.1 Linear Mixed Models

Newton–Raphson are commonly used.

Once V̂i is obtained, the the estimated variance of the fixed effects,v̂ar(β̂), can be
obtained by replacing V̂i in Equation (2.10).

The standard asymptotic maximum likelihood theory states that the maximum likeli-
hood estimate of Vi will be asymptotically unbiased. However, in small samples, the
maximum likelihood estimated of Vi will be biased because it does not take into ac-
count the fact that β is estimated from the data as well. This problem is similar in
linear regression, where the variance estimate of the error term, σ̂2, is known to be
biased and the factor n/(n− p) is applied for bias correction, where p is the length of
β.

The theory of restricted maximum likelihood (REML) estimation was developed
(Harville, 1977; Patterson & Thompson, 1971) to address this problem. The main
idea behind REML estimation is to separate the part of the data used in the estimation
of Vi from the part used for the estimation of β, i.e. the REML estimation of Vi elimi-
nates β from the likelihood so that it is defined in terms of Vi. Rather than maximizing
the log-likelihood of Equation (2.8), REML maximizes the modified log-likelihood
function

`REML(θb, σ
2) = `(θb, σ

2 | β = β̂)− 1

2
log

∣∣∣∣∣
n∑
i=1

X>i V
−1
i Xi

∣∣∣∣∣
∝− 1

2
log |Vi| −

1

2

n∑
i=1

(yi −Xiβ̂)>V −1
i (yi −Xiβ̂)

− 1

2
log

∣∣∣∣∣
n∑
i=1

X>i V
−1
i Xi

∣∣∣∣∣, (2.11)

where β̂ are the fixed effects estimates of Equation (2.9). The estimate V̂i obtained by
maximizing `REML(θb, σ

2
) corrects for the fact that β has also been estimated. This

modified likelihood does not have a closed form, so numerical optimization meth-
ods are required. Most commonly used are Expectation-Maximization and Newton–
Raphson algorithms.
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2.1 Linear Mixed Models

Variance estimates of (θb, σ
2) of REML can be obtained from the inverse of the corre-

sponding block of the Fisher information matrix.

Prediction of the random effects is derived by an extension of the Gauss–Markov the-
orem over the random effects (Harville, 1977), which is equivalent to the expectation
of the posterior distribution of the random effects given the observed data, E(bi|yi),
given by (Commenges & Jacqmin-Gadda, 2015; Fitzmaurice et al., 2012; Laird &
Ware, 1982)

E(bi | yi) = E(bi) + cov(bi,yi) (var(yi))
−1 [yi − E(yi)]

= BZ>i V
−1
i (yi −Xiβ), (2.12)

and variance

var(bi) = BZ>i V
−1
i

Vi −Xi

(
n∑
i=1

X>i V
−1
i Xi

)−1

X>i

V −1
i ZiB. (2.13)

The parameters β and Vi are replaced by their estimators in (2.12) to obtain the em-
pirical Bayes estimator, b̂i = BZ>i V̂

−1
i (yi − Xiβ̂), and in (2.13) for a variance esti-

mate.

An appealing characteristic of the mixed model is the possibility to predict how indi-
vidual response trajectories change over time. This is the main reason for its use in the
framework of joint modelling.

2.1.3 Missing data in longitudinal studies

Longitudinal studies are designed to collect data of a sample of subjects repeatedly
over time, usually at prespecified follow up time points. Missing data occurs when the
measurements for some subjects cannot be taken as planned and those measurements
simply does not exist in the data set. Little & Rubin (2019) define missing data as
unobserved values that would be meaningful for analyses if observed, i.e. a missing
value hides a meaningful value.

Missingness can occur according to different patterns:
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1. Attrition or dropout occur when a subject is withdrawn from the study before it
is completed.

2. Late entry is when a subject does not provide some of the initial response mea-
surements but until a later time point and stays until the end end of the study.

3. Intermittent patterns are those in which missing and observed measurements
alternate along the follow up period.

Attrition results in an uninterrupted block of measurements followed by another block
of missing data, similarly in a late entry process with the difference that the observed
measurements follow the missing data block. Because of this feature of measurements
being observed in uninterrupted blocks, attrition and late entry are considered mono-
tone patterns and intermittent are also known as non-monotone.

Missing data impose important challenges for analyses with LMMs. The reduced sam-
ple size due to missigness causes a loss of efficiency of the estimates. Precision is
directly related to the amount of data available, so missing data reduces precision of
the estimates. Additionally, depending on the type of missing data mechanism, it can
induce bias in the estimates.

In LMMs we assume that each subject in the study i = 1, . . . , n is designed to be mea-
sured at occasions j = 1, . . . , ni, so we expect to observe n vectors y>i = (yi1, . . . yini).
Let rij be an indicator variable that distinguishes observed from unobserved measure-
ments. This is

rij = 1(yij) =

{
1 if yij is observed
0 otherwise.

The ni-vector r>i = (rij, . . . , rini) is referred to as the missing data process and it
induces the partition of vector yi into two subvectors: yo

i = {yij : rij = 1} and
ym
i = {yij : rij = 0} of sizes no

i and nm
i , where yo

i and ym
i are the observed and

missing measurements, and ni = no
i +nm

i . When the missing data process is restricted
to dropout, the missing data process is of the form (1, . . . , 1, 0, . . . , 0).

Missing data mechanisms can be thought of as a probability model describing the
relation between the missing data process, ri, and the response data, yi. Let θy and
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θr denote the parameter vectors that characterize the probability distribution of the re-
sponse and the missing data processes, respectively, and θ = (θy,θr). Rubin (1976)
proposed a taxonomy of the missing data mechanisms characterized by the condi-
tional probability of the missing data process given the complete response vector,
yi = (yo

i ,y
m
i ):

f(ri | yo
i ,y

m
i , θr) or f(ri | yi, θr).

This taxonomy considers three types of missing data mechanisms: missing completely

at random (MCAR), missing at random (MAR), and missing not at random (MNAR)
(Rubin, 1976).

Note that ym
i are missing observations, so it should be understood as the longitudinal

outcome measures that would have been obtained had they been observed.

Missing completely at random

The MCAR mechanism postulates that the probability of missing responses is inde-
pendent of both observed and missing values, i.e.

f(ri | yo
i ,y

m
i ;θr) = f(ri;θr). (2.14)

A useful way to think of MCAR is in terms of yo
i and ym

i as being random samples
of the complete data yi, which means that the distribution of yi is the same as the
distribution of yo

i . Hence under MCAR inferences made by analyzing yo
i are valid

provided the statistical procedure used is valid. To illustrate MCAR, suppose a child
in a drug prevention study withdraws because his/her parents move to take a job in
a different city Graham (2012). In this case, the missing data pattern in the child’s
responses depends only on the parents taking a new job, but not on either the observed
nor the potentially observed responses of the child.

Missing at random

MAR assumes that the probability of missingness depends on yo
i , but not on yo

i given
ym
i . The longitudinal data are MAR when ri and ym

i are conditionally independent
given yo

i ,

f(ri | yo
i ,y

m
i ;θr) = f(ri | yo

i ;θr). (2.15)
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MAR arises, for instance, when a study protocol requires participants to be removed
from the study when their response measurement exceeds a fixed medically relevant
threshold. In this case, the missing data pattern is related to yo

i .

In contrast to MCAR, because in MAR the probability ri depends on yo
i , the distri-

bution of yo
i is not the same as the distribution of yi, hence yo

i cannot be considered
a random sample of yi, only the distribution of ym

i |yo
i is the same as the distribution

of ym
i . Valid analyses can be obtained through a likelihood formulation that ignores

the missing value mechanism provided the parameters describing the distribution of yo
i

are independent of the parameters describing the distribution of ym
i (parameter distinc-

ness condition (Molenberghs & Kenward, 2007)). Little & Rubin (2019) named this
situation as ignorability.

A consequence of (2.15) is that the predictive distribution of the missing longitudinal
responses (ym

i ) given the observed data (yo
i ) and the missing data process (ri) depends

only on yo
i as follows

f(ym
i | yo

i , ri;θ) =
f(yo

i ,y
m
i , ri;θ)

f(yo
i , ri;θ)

=
f(ri | yo

i ,y
m
i ;θr)f(yo

i ,y
m
i ;θy)

f(ri | yo
i ;θr)f(yo

i ;θy)

=
f(ri | yo

i ;θr)f(yo
i ,y

m
i ;θy)

f(ri | yo
i ;θr)f(yo

i ;θy)
= f(ym

i | yo
i ;θy),

and ym
i can be validly predicted using only yo

i under a model for the joint distribution
(yo

i ,y
m
i ).

Missing not at random

The MNAR mechanism states that the probability of missing longitudinal measures
depends on both yo

i and ym
i . In particular, the distribution of the missing data pattern,

ri, depends on at least some elements of ym
i , even if conditioning on yo

i . An example
of MNAR occurs in pain studies in which participants may ask for rescue medica-
tion when the intensity of pain they experience exceeds their own tolerance threshold
(Rizopoulos, 2012).

As in MAR, in data sets with MNAR mechanisms yo
i cannot be considered a random

sample from yi. In contrast to MAR, in MNAR the predictive distribution of ym
i |yo

i is
not the same as yi, but rather depends on both yo

i and f(r|yi).
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Missing not at random model families

When longitudinal data are MNAR, we can only obtain valid inferences when analyses
are based on the joint distribution of yi and ri. The proposed models to accommodate
MNAR can be grouped in three main families: selection models, pattern mixture mod-

els and shared-parameter models (Molenberghs & Kenward, 2007). These models are
based on different factorizations of the joint distribution of the measurements and the
missing data process.

1. Selection models (Heckman, 1976) are based on the factorization

f(yo
i ,y

m
i , ri;θ) = f(yo

i ,y
m
i ;θy)f(ri | yo

i ,y
m
i ;θr).

2. Pattern mixture models, proposed by Little (1993), are based on

f(yo
i ,y

m
i , ri;θ) = f(yo

i ,y
m
i | ri;θy)f(ri;θr).

Here the probability of missing values weights the observed data to form a mix-
ture model for each pattern of missing values.

3. The shared-parameter models introduce, bi, a subject-specific latent variable or
random effects, with probability distribution characterized by the parameter vec-
tor θb. Shared-parameter models are based on the factorization

f(yo
i ,y

m
i , ri;θ) =

∫
bi

f(yo
i ,y

m
i | bi;θy)f(ri | bi;θr)f(bi;θb)dbi.

The random effects, bi, are shared between both factors of the joint distribution
are meant to capture the association between yi and ri. They can be thought of
as referring to a latent trait driving both measurement and missing data process
(Molenberghs & Kenward, 2007).

Joint modelling longitudinal and time-to-event data falls in the shared-parameter mod-
els family. The connection between joint modelling and the missing data framework is
explained in Section 3.1.4.
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2.2 Survival Analysis

2.2 Survival Analysis

In the simple case, time-to-event data (or survival analysis) is the study of the time it
takes for a subject (or a group of subjects) to observe a particular event of interest, like
death, first marriage, divorce, credit default, system failure, etc. In these settings, the
main variable of analysis is the time until the event of interest occurs, often referred
to as survival time, time-to-event, failure time or event time. More complex scenarios
include the possibility of different types of events, called competing risks (different
causes of death), the possibility to experience more than one type of event (car insur-
ance claims for different eventualities), or the possibility transient events that can occur
repeatedly to a subject over time (recurrent events). An even more complex setting in-
volves consideration of multiple events that may occur simultaneously, either once or
repeatedly, to individuals over time.

Three basic requirements define time-to-event measurements (Kalbfleisch & Prentice,
2002):

1. An unambiguous origin for the measurement of “time” (should be precisely de-
fined for each subject. All subjects should be as comparable as possible at the
origin.

2. An agreed scale of measurement. Usually this is calendar/clock time, but de-
pending on the context of the data it can be operating time, accumulated load,
etc., which is chosen to provide direct, operational meaning in the problem con-
text. It is always nonnegative.

3. A precise definition of response, or occurrence of the event of interest. It must
be precisely defined: death from a specific cause, time to relapse or death, time
when performance first exceeds a specific threshold.

One of the distinguishing features of time-to-event data is that they are positive real-
valued random variables and often positively skewed. Statistical methods that rely on
normality cannot be applied directly to analyze time-to-event data. In survival analysis,
the phenomenon of unobserved values of the response measurement is called censor-

ing. Censoring is the second and most important characteristic of time-to-event data
and its defining feature is that the time-to-event outcome might not be fully observed
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2.2 Survival Analysis

for all subjects in the sample being analyzed. Ignoring censored data can produce
severely biased estimates, so it requires special treatment, depending on the censoring
mechanism that occurs in the data.

The first step to accommodate censoring is to determine the censoring time for each
subject, Ci, i = 1, . . . , n. If censoring is independent of the event process, then it is
non-informative, otherwise it is informative. When the event time for a subject cannot
be determined during the follow-up period because it has already occurred before such
subject is enrolled, we are in the presence of left censoring. If the event cannot be
determined because either the study ended and the event never occurred or such subject
was lost to follow-up at any time during the study, then we are talking about a right

censored observation. If the event occurs during the follow-up period, but its exact
time cannot be determined and only it is known that the event occurred within a no-zero
length time interval, then the observation is said to be interval censored. It is typically
assumed non-informative and right censoring in survival analysis studies.

Throughout this document we assume non-informative right censoring.

Truncation is one more characteristic of survival analysis data, related to the sampling
mechanism. Truncation is a condition that screens or excludes subjects from the study
population. Left truncation occurs when subjects have been at risk before the beginning
of the study, e.g. a prospective study where subjects are followed from a specific date
until they die of a particular cause. Right truncation occurs when only individuals
who have experienced the event of interest are observable, e.g. a retrospective study
of mortality based on death records. A thorough explanation and consequences of
truncation and censoring can be found, for instance, in Kalbfleisch & Prentice (2002)
and Klein & Moeschberger (2006).

Let T ∗i denote the time elapsed for subject i to experience the event of interest among
a sample of n subjects, and let Ci denote the censoring time for subject i. We define
Ti as the minimum of the true event time, T ∗i , and the censoring time, Ci, so Ti =

min(T ∗i , Ci). Define also the event indicator δi = 1(T ∗i < Ci) that takes the value of
1 if the observed event corresponds to a true event time and 0 otherwise. Thus in a
sample of n individuals the time-to-event outcome is denoted by the pair {Ti, δi}, with
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Ti being the follow-up time for subject i, i = 1, . . . , n, and δi indicating whether the
follow-up is interrupted by the event or by censoring.

There are different ways to characterize the distribution of a continuous time-to-event
random variable, T :

Density f(t) = lim
dt→0

{
1

dt
Pr(t ≤ T < t+ dt)

}
=

d

dt
F (t)

Cumulative distribution function F (t) = Pr(T ≤ t) =

∫ t

0

f(x)dx

Survival function S(t) = Pr(T > t) = 1− F (t)

Hazard rate h(t) = lim
dt→0

{
1

dt
Pr(t ≤ T < t+ dt|T ≥ t)

}
=
f(t)

S(t)

Cumulative hazard H(t) =

∫ t

0

h(x)dx = − logS(t).

The survival function, S(t), is the probability for the event to occur after t. Its name
comes from medical studies where the event of interest is mortality, so T quantifies
the time-to-death and S(t) is the probability of surviving at least to time t. The hazard
function is the instantaneous rate at which the event occurs at t, and the cumulative
hazard is the accumulation of the occurrence rate across time.

Let {ti, δi} = {Ti = ti, δi}, i = 1, . . . , n denote the survival information in a random
sample from a distribution function F , parametrized by θ, with probability density f .
The formulation of the likelihood function by considering that censored subjects were
still alive by ti i.e. δi = 0, and therefore, such subjects contributes with Si(ti;θ) to the
likelihood. Subjects for whom an event is observed at time ti contribute with f(ti;θ),
i.e. δi = 1. Combining this information, we obtain the log-likelihood function:

`(θ) =
n∑
i=1

δi log f(ti;θ) + (1− δi) logSi(ti;θ). (2.16)

This log-likelihood can be expressed in many ways, and it is most commonly expressed
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in terms of the hazard and cumulative hazard functions

`(θ) =
n∑
i=1

δi log h(ti;θ)−Hi(ti;θ). (2.17)

The analysis of survival data can be parametric, semiparametric or non-parametric.
Our focus for this section is the Cox Proportional Hazards model since it is this par-
ticular survival analysis model that we use for joint modelling along with longitudinal
data.

2.2.1 The Cox proportional hazards model

Two hazard rates, h1(t) and h2(t) are proportional if there is a constant ψ > 0 such
that

h2(t) = ψh1(t) ∀t > 0, (2.18)

where ψ is called the hazard ratio. The relationship defined by Equation (2.18) is called
the proportional hazards property (PH).

Cox (1972) proposed a PH model where no assumptions are made about the actual
form of the baseline hazard function h0(t). Let w>i = (wi1, . . . , wip) denote a vector
of time-independent covariates related to subject i. Equation (2.19) defines the Cox
PH model, also known as relative risk or relative hazards model.

hi(t) = h0(t) exp{w>i γ}. (2.19)

where

w>i = (wi1, . . . , wip) is the vector of covariates associated to the hazard of subject i,

γ> = (γ1, . . . , γp) is the vector of regression coefficients,

h0(t) is the baseline hazard function.

The vector w>i γ is called risk score, prognostic index or linear predictor. The baseline
hazard function (or baseline risk), h0(t), corresponds to the hazard of a subject that has
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linear predictor w>i γ = 0.

The interpretation of the regression coefficients, γ, is the magnitude of the effect of
the covariates wi on the hazard. For instance, consider the following setting where wi

and bi0 are covariates, and γ and η their associated regression coefficients. Then

hi(t) = h0(t) exp(w>i γ + ηbi0)

⇐⇒ log

{
hi(t)

h0(t)

}
= w>i γ + ηbi0

⇐⇒ d logψi
dbi0

=
ψ
′
i

ψii
= η

where ψi = hi(t)/h0(t) is the hazard ratio which does not depend on time in PH
models. That is, η represents the change in the relative hazard per unit change in bi0.
Also note that for x, z ∈ R

ψi(bi0 = z + x)

ψi(t | bi0 = z)
=
hi(bi0 = z + x)

hi(t | bi0 = z)
=

exp(w>i γ + η(z + x))

exp(w>i γ + ηz)
= exp(ηx). (2.20)

So, exp(ηx) is the marginal relative hazard of the event between two individuals whose
bi0 value differs by x units.

The estimation of the primary parameters of interest, γ, can be obtained through max-
imization of the partial log-likelihood function (Cox, 1972) given by

`p(γ) =
n∑
i=1

δi

[
w>i γ − log

(∑
tj≥ti

exp{w>i γ}
)]
. (2.21)

The partial likelihood does not depend on the baseline hazard, so it is left unspecified,
which means that there is no need for making any assumptions about the distribution of
the event times. However, it assumes that covariates act multiplicatively on the hazard
rate. The partial log-likelihood Equation (2.21) can be interpreted as a measure of how
well the model can order the patients with respect to their survival time.

The parameter estimates, γ̂, of the Cox PH model are maximum likelihood and are

28



2.2 Survival Analysis

found by solving the score equations of the partial log-likelihood:

∂`p(γ)

∂γk
=

n∑
i=1

δi

{
wik −

∑
tj≥ti wjk exp(w>j γ)∑
tj≥ti exp(w>j γ)

}
= 0.

The estimates γ̂ are consistent and asymptotically normally distributed. Standard er-
rors are estimated using the observed information matrix, I−1(γ̂), where

I(γ̂) = −
n∑
i

∂2`pi(γ)

∂γ>∂γ

∣∣∣∣
γ=γ̂

.

Kalbfleisch & Prentice (2002) and Klein & Moeschberger (2006) give further details
and discussions about the properties of the estimates based on the partial likelihood
function.

In Chapters 5 and 6 we conduct simulation studies with different specifications of joint
models of longitudinal and time-to-event data, which use as building blocks the linear
mixed model and survival analysis models. In Sections 2.2.1 and 2.2.2 we describe
data simulation algorithms for the survival analysis models relevant to our simulation
studies.

Estimation of the Cox PH model is a standard routine in most statistical software.
For instance, the R package survival fits a Cox PH model using the function
coxph().

Survival analysis with random effects (frailty model)

Inference with the Cox proportional hazards model assumes that the observations are
statistically independent, at least conditionally independent given covariates. However,
this assumption may be violated and a possible option to accommodate the dependence
between observations is by introducing a random effect in the survival analysis model,
as in the LMM.

In the survival analysis literature a random effect is referred to as fraily, and survival
analysis models that incorporate frailties are named frailty models. Random effects in
frailty models are usually assumed to have a multiplicative effect in the hazard rate, so
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the subjects with larger random effects have a higher risk of the event, i.e. are more
“frail”. That is why survival analysis models with random effects are called frailty
models. In this thesis we do not use this terminology in order to avoid confusion
with the concept of frailty in the medical and public health context, which refers to a
geriatric syndrome related to the gradual deterioration of the body as people age. The
data we use to illustrate the various statistical methods discussed in this thesis is from a
population study conducted to learn about frailty in the elderly, and frailty is precisely
one of the outcome variables in our analyses.

The idea of random effects models in survival analysis is to consider the variability in
the time-to-event outcome as coming from two separate sources: (1) the simple ran-
domness described by the hazard function, and (2) randomness described by a random
effect, a random variable that is either an individual variable (univariate), or a variable
common to several individuals (multivariate) (Hanagal, 2011; Hougaard, 1995). A ran-
dom effect is included in survival analysis models as a factor that acts miltiplicatively
in the hazard rate and, as in the LMM framework, it accounts for variability in the data
by modelling the correlation between observations (Hanagal, 2011).

The univariate case refers to the traditional individual time-to-event data, the random
effect describes heterogeneity, this is, the influence of unobserved risk factors in a
proportional hazards model (Hanagal, 2011; Hougaard, 1995). Let ui be a random
variable that denotes the random effect for subject i, then the proportional hazards
model described in Equation 2.19 becomes

hi(t) = uih0(t) exp{w>i γ}. (2.22)

In the multivariate case, the random effect, ui, is common to a group of individuals,
for instance twins or members of the same family, modelling the dependence between
individuals of the same group (Hougaard, 1995). For example, in epidemiological
studies failure times may be clustered into groups such as families or geographical
units: some unmeasured characteristics shared by the members of that cluster, such
as genetic information or common environmental exposures could influence time to
the studied event. In a different context, correlated data may come from recurrent
events, i.e., events which occur several times within the same subject during the period
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of observation, so in some sense recurrent events are clustered within subjects. A
random effects survival analysis model accommodates the correlation of events within
clusters by including a random effect such that subjects (or recurrent events) within the
same cluster share the same random effect (Rondeau et al., 2003). For the kth (k =

1, . . . , Ki) individual of the ith group or cluster (i = 1, . . . , n), let T ∗ik denote the event
times, and let Cik be the right-censoring times. The observation Tik = min(T ∗ik, Cik)

and the censoring indicators are δik = 1(T ∗ik < Cik). The hazard function for a frailty
model is

hik(t | ui) = uih0(t) exp{w>ikγ} = uihik(t), (2.23)

where h0(t) is the baseline hazard function, wik the covariate vector of the kth subject
in the ith group with associated vector of regression parameters γ, and ui is the random
effect of the ith group.

In both univariate and multivariate cases, it is assumed that the ui are independent and
identically distributed from a positive-valued distribution with a single variance param-
eter φ. Note that a scale factor common to all subjects in the study population may be
absorbed into the baseline function h0(t), so that frailty distributions are standardized
to E(ui) = 1 (Wienke, 2010). In practice, two commonly assumed distributions of the
random effects are

• ui
iid∼ Gamma(φ−1, φ−1), such that E(ui) = 1 and var(ui) = φ, and

• log(ui)
iid∼ N (m, s2), such that µ = E(ui) = exp(m+ s2/2) and φ = var(ui) =

exp(2m+ s2)(exp(s2 − 1)). See Wienke (2010) for further details.

Assuming a parametric baseline hazard, the parameters to estimate in the univariate
random effects survival analysis model of Equation (2.22) are θ> = h0,γ, φ, where
h0 represent the parameters of the chosen functional form of the baseline hazard, γ
the regression coefficients of the observed covariates, and φ the variance parameter of
the assumed distribution of the random effect. The estimation is done by maximizing
the marginal log-likellihood function (Duchateau & Janssen, 2007). Equation (2.24)
shows the contribution of subject i to the marginal log-likelihood

`i(θ | ui) = log

{∫ ∞
0

n∏
i=1

[uih(ti;θ)]δi uiSi(ti;θ)f(ui)dui

}
, (2.24)

31



2.2 Survival Analysis

where f(ui) is the density of the random effect ui.

The marginal likelihood of Equation 2.24 has a closed form when the random ef-
fects follow a Gamma(φ−1, φ−1) distribution and the baseline hazard is governed by
the Weibull(κ, ρ) distribution. Otherwise iterative optimization routines can be used,
for instance the Expectation-Maximization (EM) algorithm (Dempster et al., 1977).
Duchateau & Janssen (2007) explains how to implement the EM algorithm for survival
analysis models with random effects, and Hanagal (2011) includes the case where the
baseline hazard is unspecified.

Rondeau et al. (2003) proposed a maximum penalized likelihood approach to estimate
random effects models like those described by Equations (2.22) and (2.23) along with
a spline-approximated baseline hazard.

Prediction of the random effects, ûi can be carried out following an empirical Bayes
approach, as the expectation of the posterior conditional distribution of the random
effects given the other parameters estimates (Vaida & Xu, 2000)

Survival analysis models with random effects can be fitted using R for several dis-
tributions of random effects. For instance, (1) the function coxph() function of
the survival package fits a PH model with unspecified baseline hazards; (2) the
parfm() function of the parfm package (Munda et al., 2012) has several options
for specifying a parametric baseline hazard; and (3) the frailtyPenal() function
of the frailtypack (Rondeau et al., 2012) package has also multiple options to
specify the distribution of the baseline hazard.

For further details and more thorough discussion of survival analysis models with ran-
dom effects, refer to (Duchateau & Janssen, 2007; Wienke, 2010).

Data simulation from the proportional hazards model

Data simulation from the proportional hazards model relies on the inverse transform
method.
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According to the proportional hazards model, the survival probabilities are obtained
by

Si(t | wi) = exp{−Hi(t | wi)} = exp{−H0(t)ew
>
i γ},

where Si(t|wi) is the survival probability given the vector of covariates wi, H0(t) =∫ t
0
h0(x)dx the baseline cumulative hazard and h0(t|w) the baseline hazard function.

Let ξi = Si(t|wi) and h0(t) > 0, where ξi ∼ U [0, 1]. The distribution of the random
variable Ti, obtained from

Ti = H−1
0

(
− log (ξi)e

−wiγ
)
, (2.25)

will be determined from the distribution that governs H0(t).

Simulations from a frailty model can be based on

Tik = H−1
0

(
− log (ξik)e

−wikγ

ui

)
, (2.26)

for i = 1, . . . , n and k = 1, . . . , Ki, where ui is a random variable from an appropriate
distribution such that E(ui) = 1 and var(ui) = φ.

The function f.simFrail in Appendix A.1 is a sample R code to simulate data
from a proportional hazards (frailty) model with three covariates, with the following
options:

• A baseline hazard governed by the Weibull(κ, ρ) distribution,
• Either a fixed censoring time or a censoring process from the Weibull(ν, λ) dis-

tribution,
• Either no frailty or two options of frailty:

– ui ∼ LN (µ, φ)

– ui ∼ Gamma(φ−1, φ−1)

The steps involved in the f.simFrail are summarized in Algorithm 2.1.
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Algorithm 2.1 Data simulation of a proportional hazards model with a random effect.

Decide on the sample size (n), the functional form of the baseline hazard (h0(t)), the
distribution of the random effect and the value of the variance parameter (φ), the values
of the regression coefficients (γ), and a simulation scheme for the vector of baseline
covariates (wi). Choose a censoring scheme, Ci, which can be an administrative cen-
soring time fixed for all i.

1: Sample n instances of the random effect distribution, u> = (u1, . . . , un).
For i = 1, . . . , n:

2: Sample ξi ∼ U(0, 1).
3: Derive H0(t) and H−1

0 (t).
4: Simulate the time to event, T ∗ik, as indicated by Equation (2.26) with Ki = 1 ∀i (or
T ∗i if a random effect is not required, as indicated by Equation (2.25)).

5: Set Tik = min(T ∗ik, Ci)) and δik = 1(T ∗ik < Ci).

When the chosen baseline hazard cannot be integrated analytically to obtain H0(t)

or when H−1
0 (t) does not have a closed form, numerical methods can be used. The

Gauss–Kronrod method (Ziegel, 1987) is numerical integration option to obtainH0(t),
and the crude bisection method (Monaco et al., 2018) can be used to get inverse of the
cumulative hazard function by finding the root of Hi(t) + log(ξi).

Algorithm 2.1 can also be used to simulate data from grouped data by noting that n now
represents the number of groups. Thus the simulation will be carried out by repeating
steps (2)–(4) as many times as individuals are required in each group, Ki, taking into
account that subjects in the same group must share the same random effect, ui.

Example As an example consider simulating assuming a baseline hazard from the
Weibull(κ, ρ) distribution, i.e. h0(t) = κρ(ρt)κ−1 where κ > 0, ρ > 0. The base-
line cumulative hazard is H0(t) = (ρt)κ, with inverse H−1

0 (x) = ρ−1x1/κ. Provided
κ, ρ,γ,wi and the distribution of the random effect ui with variance parameter φ, sam-
pling survival times from a proportional hazards model with a baseline hazard gov-
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erned by the Weibull(κ, ρ) distribution would based on the following expression:

Ti =
1

ρ

(
− log(ξi) exp{−w>i γ}

ui

)1/κ

, ξi ∼ U [0, 1].

Time-varying covariates

The PH model described in Equation (2.19) was initially developed assuming constant
covariates, w>i , or least constant along the follow up period, for instance gender, eth-
nicity, age at baseline, etc. In practice, many studies that generate time-to-event data,
record on a regular basis other variables whose value vary in time and it is often of
interest to investigate the relationship between such variables and the time-to-event
outcome. These are time-varying or time-dependent covariates.

The Cox PH model with baseline covariates vector wi and time-varying covariate yi(t)
takes the form described by Equation (2.27)

hi(t) = h0(t) exp{w>i γ + βyi(t)}. (2.27)

where

w>i = (wi1, . . . , wip) is the vector of covariates associated to the hazard of subject i

γ> = (γ1, . . . , γp) is the vector of regression coefficients,

yi(t) : time-varying covariate,

β : regression coefficient associated to yi(t),

hi(t) : baseline hazard function.

It is important to distinguish between two types of time-varying covariates because
they are handled in different ways: endogenous or internal and exogenous or exter-

nal time-varying covariates. Suppose the event of interest is death. An endogenous
covariate, say yi(t), is intrinsic to subject i and can only be measured while the sub-
ject is alive Collett (2015), so observing a value for yi(t) at time t necessarily implies
survival at least at time t. In clinical studies, endogenous covariates can be, for in-
stance, biomarkers (white blood cell count, blood pressure, serum cholesterol level,
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etc.), which are susceptible to be measured only as long subjects are still alive.

On the other hand, exogenous covariates do not necessarily require the subject’s sur-
vival for their existence, they remain measurable and their distributions unchanged
after the occurrence of the event (Commenges & Jacqmin-Gadda, 2015). There are
two types of exogenous covariates. The first type correspond to covariates that change
in such a way that their future values are exactly known, for instance subjects’ age.
The second type correspond to those covariates that are exist completely independent
of the subjects, like environmental factors Collett (2015).

Kalbfleisch & Prentice (2002) formalizes the definition of exogenous time-varying
covariate. An exogenous time-varying covariate is a predictable process, i.e. its value
at any time t is known infinitesimally before t. Let yi(t) denote the value of a time-
varying covariate of subject i at time t, and let Fyi (t) = {yi(s); 0 ≤ s < t} give
the covariate history up to time t. An exogenous covariate is a time-varying variable
satisfying the following condition:

Pr {Ti ∈ [s, s+ ds) | Ti ≥ s,Fyi (s)}︸ ︷︷ ︸
h{s|Fyi (s)}

= Pr {Ti ∈ [s, s+ ds) | Ti ≥ s,Fyi (t)}︸ ︷︷ ︸
h{s|Fy(t)}

,

(2.28)

for all s, t such that 0 < s ≤ t, and ds→ 0.

An equivalent condition is,

Pr {Fyi (t) | Fyi (s), Ti ≥ s} = Pr {Fyi (t) | Fyi (s), Ti = s} , s ≤ t (2.29)

which formalizes the idea that y(t) is associated with h(t), but its future path up to
time t > s is not affected by the event occurring at time s.

Endogenous covariates do not satisfy the exogeneity condition and they are not a pre-
dictable process.

The partial likelihood of the proportional hazards model (Equation (2.21)) requires the
knowledge of the exact values of the covariates at each time of event for all individuals
at risk. The standard proportional hazards model is extended to incorporate exogenous
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time-varying covariates, as shown in Equation (2.27) and parameter estimation is based
on a more general version of the partial log-likelihood function, described in Equation
(2.30).

`p(γ) =
n∑
i=1

δi

[
w>i γ + βyi(ti)− log

( ∑
k∈R(ti)

exp{w>k γ + βyi(ti)}
)]

(2.30)

where R(t) is the risk set defined by the subjects still at risk of the event at time t,
yi(t) is the value of the time-varying covariate of subject i measured at time t and β its
regression coefficient.

Estimation of the extended Cox model based on the partial log-likelihood of Equation
(2.30) requires the imputation of the time-varying covariates at each time of event
for all subjects. It is typlically assumed that time-varying covariates remain constant
between consecutive measurement time points, i.e. imputation is done by carrying the
last value forward. Refer to Lawless (2011) or Collett (2015) for further discussion of
the extended Cox model with time-varying covariates.

Dealing with endogenous covariates requires a special treatment because the log-likelihood
of Equation (2.16) is not valid. As we mentioned, endongenous covariates require sur-
vival of the subject for their existence. Therefore, when the terminal event is death,
the path Fyi (t) carries direct information about the time-to-death, i.e. provided that
yi(t − ds) with ds → 0 exists, the survival function satisfies (Kalbfleisch & Prentice,
2002; Rizopoulos, 2012)

Si(t | Fyi (t)) = Pr(Ti > t | Fyi (t)) = 1. (2.31)

Similarly, subject i dying at time s necessarily implies the nonexistence of yi(t) at
time t > s, which is a violation of the exogeneity condition of Equations (2.28) and
(2.29).

Si(t | Fyi (t)) = lim
ds→0

{
1

ds
Pr(t ≤ T < t+ ds | T ≥ t)

}
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is not directly related to a survival function. This is, the functions

hi(t | Fyi (t)) = exp

{
−
∫ t

0

hi(t | Fyi (t))ds

}
and

fi(t | Fyi (t)) = hi(t | Fyi (t))× Si(t | Fyi (t)),

do not have the usual survival and density function interpretations. Due to these fea-
ture, the log-likelihood (2.16) based on f(·) and S(·) is not meaningful for endogenous
covariates.

Additionally, the “true” covariate m(t) is unobservable and instead a measurement
with error y(t) = m(t)+ε(t) is observed and available (as explained for latent variables
in Section 1), where ε(t) is a random error. This measurement error ε(t) mainly refers
to within subject variation, just as the repeated measures correlation behavior discussed
in Section 2.1.

One possible way to circumvent the challenges that endogenous time-varying covari-
ates bring to analyze time-to-event data is by joint modelling the trajectory of yi(t)
and the hazard rate of the event. Joint modelling longitudinal and time-to-event data
provides a framework suitable for dealing with this challenge. In Section 2.1.3 we
discussed the problem of missing data in longitudinal studies under MNAR mecha-
nism, and pointed out to joint modelling the missing data process and the longitudinal
outcome as a solution for this problem. Interestingly, by joint modelling longitudinal
and time-to-event data is the same solution to both problems arising from MNAR in
longitudinal studies and endogenous time-varying covariates in survival analysis mod-
els.

We introduce the joint modelling framework in Chapter 3.

Data simulation from survival analysis models with endogenous time-varying co-
variates

We discuss data simulation from a survival analysis model with endogenous time-
varying covariates because it is the basis of simulation from a joint model of longitu-
dinal and time-to-event data, discussed in Chapter 3.
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Suppose we are interested in simulating data from the following survival analysis
model

hi (t | Fyi (t)) = h0(t) exp
{
w>γ + βyi(t)

}
. (2.32)

where yi(t) is an endogenous time-varying covariate.

The survival function is given by

Si (t | Fyi (t)) = Pr {Ti > t | Fyi (t)}

= exp

{
−
∫ t

0

hi (s | Fyi (s)) ds

}
= exp

{
− exp{w>i γ}

∫ t

0

h0(s) exp{βyi(s)}ds
}

= exp {−Hi (t | Fyi (t))} , (2.33)

where

Hi (t | Fyi (t)) = exp{w>i γ}
∫ t

0

h0(s) exp{βyi(s)}ds (2.34)

is the cumulative hazard function.

Note that in this case, Hi (t | Fyi (t)) and Si (t | Fyi (t)) depend on the whole trajectory
of the time-varying covariate yi(t) up to time t.

We can use the inverse transform method. Let ξi = Si(t), where ξi ∼ U [0, 1]. From
the relationship between the survival and the cumulative hazard functions, we have
Hi(t) = − logSi(t) ⇐⇒ Hi(t) = − log(ξi). Thus the time to event for subject i can
be simulated from

Ti = H−1
i (− log(ξi) | Fyi (t)) . (2.35)

To simulate data with time-varying covariates we need to treat yi(t) as a function of
time in the data simulation algorithm, taking into account that is a subject-specific
process. One option is to set a general time function with subject-specific parameters,
for instance, yi(t) = bi0 + bi1t, where bi0, bi1 ∈ R. Algorithm 2.2 describes the steps
for simulating data from model (2.2).

Note that because the integrand in Equation (2.34) might involve complicated functions
of time depending on the chosen baseline hazard and time function yi(t) this integral
might not have a closed form and the inverse of the cumulative hazard might not be
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Algorithm 2.2 Data simulation of a proportional hazards model with endogenous time-
varying covariate yi(t).

Decide on the sample size (n), the functional form of the baseline hazard (h0(t)),
the functional form of the time-varying covariate (yi(t)), the values of the regression
coefficients (γ) and β, a simulation scheme for the vector of baseline covariates (wi),
and a censoring scheme, Ci, possibly a fixed administrative censoring Ci = c for all i.
Additionally, decide on the time points (tij, i = 1, . . . , n j = 1, . . . , ni) at which yi(t)
will be simulated.
For i = 1, . . . , n:

1: Sample ξi ∼ U(0, 1).
2: Simulate T ∗i , the time-to-event as in Equation (2.35).
3: Set Ti = min(T ∗i , Ci) and δi = 1(Ti < Ci).
4: Simulate yi(tij) from the chosen function yi(t) at time points tij , such that tij ≤ Ti.

invertible analytically. Thus numerical integration and a numerical inverse for H−1(·)
will be required as indicated in Algorithm 2.1.

Additionally, while choosing the parameters of the baseline hazard h0(t), the time
function of time-varying covariate yi(t) and the value of its regression coefficient β,
it is a good practice to plot the cumulative hazard within the time interval of interest
before simulating the data to make sure the cumulative hazard is invertible in the whole
time interval of interest. Figure 2.2 illustrates a problem that might occur in the data
simulation process. In this example for a unique subject the time varying covariate is
defined as y(t) = β0+β1f(t), where β0 = 2, β1 = 1, and f(t) = t+cos(2t)+sin(t) is a
function of time. The baseline hazard h0 is governed by the Weibull(κ, ρ) distribution.
Notice that the cumulative hazard in the bottom panel has an asymptote at 2.5, so
it is not invertible at the values with a marker (–), which correspond to − log(ξi) >

2.5.

Appendix A.2 contains sample code to simulate data from the model of Equation
(2.32), includes different options for the baseline hazard (Weibull, log-logistic, Gom-
pretz, Makeham and bathtub) and random effects from the Gamma and Log-normal
distributions. The integration of hi(t|Fyi (t)) and inversion of H(t|Fyi (t)) are done
numerically, so the code customized to any baseline hazard. The sample code is pro-
grammed with some time functions to specify the time-varying covariate yi(t).
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In Figure 2.2 y(t) is a time-varying
covariate (top) of a survival analy-
sis model (middle). Being a func-
tion of time, y(t) affects the form
of the hazard function.
The cumulative hazard is non-
decreasing (bottom). However,
with time-depending covariates
H(t) might exhibit an asymptotic
behavior, making this function not
invertible at values greater that the
asymptote.

Figure 2.2: Top: Trajectory
of the time-varying covari-
ate y(t); middle: Proportional
hazards with baseline hazard
h0(t) = κρ(ρt)κ−1 and y(t) as
time-varying covariate; bottom:
Cumulative hazard with - and -
indicating where H(t) should be
inverted to simulate the time-to-
event, T = H−1(− log(ξ)).
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2.2.2 Recurrent events

The survival analysis models we have addressed so far are for situations in which
the event occurs only once. There are other situations where the event of interest is
recurrent thus individuals can experience it multiple times in the follow up period.
These events are know in the literature as recurrent events. A recurrent event is not
to be confused with competing risks. The former refers to sequential occurrences of
events of the same type, while the latter is a situation where mutually exclusive events
of different types are all susceptible to occur, but the occurrence of one precludes the
occurrence of the others. Examples of recurrent events include sequences of tumor
recurrences, infection episodes, recurrent falls, epileptic seizures, bleeding incidents,
etc., and an example of competing risks are cancer and heart disease as possible causes
of death.

Recurrent events models constitute the final building block of the joint models we
explore in this thesis, so we dedicate this section to give an overview of the statistical
analysis of recurrent events. Competing risks are out of the scope of this thesis.

The analysis of recurrent events impose additional challenges compared to single event
situations. First, as in the LMM context for quantitative outcomes, there might be vari-
ation between individuals in their susceptibility to recurrent events, and the recurrence
times within subjects may not be independent. Second, following the occurrence of an
event, e.g. heavy bleed, may imply that subjects are not at risk of a subsequent event
for a short period of time, so it is necessary to keep track of subjects who are at risk all
along the follow up period to properly define the risk set (Collett, 2015).

The standard Cox model was addapted to handle exogenous time-varying covariates,
similar variations of the Cox model based on the counting process formulation (An-
dersen et al., 2012) provide a modelling framework for the analysis of recurrent event
data. Three main models are mentioned in the literature for the analysis of recur-
rent events: The Andersen–Gill (AG) model (Andersen & Gill, 1982), the Prentice–
Williams–Peterson model (Prentice et al., 1981), and the Wei–Lin–Weissfeld model
(Wei et al., 1989). We will describe the AG model since we followed this approach for
the analysis of recurrent falls within the joint modelling framework. For a comparison
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of the three approaches refer to Ozga et al. (2018), and Cook & Lawless (2007) for a
thorough discussion about the analysis of recurrent events.

Consider a sample of n individuals. The recurrent event process for subject i start-
ing at t = 0, is 0 < Ti1 < . . . < TiKi < ∞, where Tik is the time for the kth

event. There is a counting process {N(t), t ≥ 0} associated to the recurrent event
process that represent the cumulative number of events generated by the process, i.e.
Ni(t) =

∑∞
k=1 1(Tik ≤ t) is the number of events occurring over the interval (0, t].

More generally, N(s, t) = N(t) − N(s) represents the number of events occurring
over the interval (s, t]. The “proneness” to new events for an individual is described
by the intensity process, ri(t), defined by

ri(t) = lim
dt→0

{
1

dt
Pr
{
Ni(t+ dt)−Ni(t) ≥ 1 | FNi (t)

}}
, (2.36)

where FNi (t) is the history of the counting process up to time t. The intensity rate,
ri(t), is a nonnegative function and depends only on the past history of Ni, i.e. the
jumping times of Ni(t) up to time t. Since the value of ri(t) determines the immediate
probabilistic future of Ni(t), it is natural to base statistical models on ri(t) by letting it
depend also on covariates, as in the Cox model. The AG model is defined by Equation
(2.37)

ri(t) = ∆i(t)r0(t) exp
{
w>i γ

}
, (2.37)

where

r0(t) = is the baseline intensity function,

w>i = (wi1, . . . , wip) is a p-vector of baseline covariates,

γ> = (γ1, . . . , γp) is a p-vector or regresson coefficients,

∆i(t) : is a left continuous at risk process.

The at risk process, ∆i(t), defined by

∆i(t) =

{
1 if subject i is at risk at time t
0 otherwise

remains at unity unless a subject temporarily ceases to be at risk in some time period,
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or until the follow-up time is censored. A difference between the AG model and the
Cox model is that in the latter only one event could be observed, so that ∆i(t) = 0

after the event has occurred. In the AG setting, events may be recurrent so ∆i(t) is
“reset” every time the event occurs and may take the value of either 0 or 1 whenever
subject i is at risk for another recurrence of the event. In AG model, ∆i(t) could work
as a censoring indicator function.

Let T ∗ik denote the time for the kth recurrent event of subject i, where k = 1, . . . , Ki and
i = 1, . . . , n . Assume a noninformative right censoring process, Ci, so we observe
Tik = min(T ∗ij, Ci) and the indicator δik = 1 if Tik = T ∗ik and 0 otherwise. Let
(tik, δik) = (Tik = tik, δik). The estimation of the model in Equation (2.37) is based
on maximization of the partial likelihood function given by Equation (2.38).

`p(γ) =
n∑
i=1

Ki∑
k=1

δik

[
w>i γ − log

( ∑
l∈R(tik)

exp{w>l γ}
)]
, (2.38)

where the risk set, R(t) := {l : til ≥ t; l = 1, . . . , Ki and i = 1, . . . , n}, is comprised
by all those distinct event times that have not occurred by time t.

The assumption of within subject independent recurrence times can be relaxed and by
adding a subject specific random effect, ui, to accommodate the within subject event
dependence, in a similar fashion as explained in Section 2.2.1. The recurrent event
model with a random effect is described by Equation (2.39)

ri(t | ui) = ui∆i(t)r0(t) exp
{
w>i γ

}
, (2.39)

where ui are independent random variables from a positive-valued distribution charac-
terized by a unique parameter φ such that E(ui) = 1 and var(ui) = φ.

Assuming a parametric baseline intensity, the parameters to estimate of the model in
Equation (2.39) are θ> = (r0,γ, φ), where r0 are the parameters of a chosen functional
form of the baseline intensity, γ are the regression coefficients and φ the variance
parameter of the assumed distribution of the random effects. Estimation is based on
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maximization of the likelihood function given by Equation (2.40).

L(θ) =
n∏
i=1

Ki∏
k=1

∫ ∞
0

[ri(tik | ui)]δik exp

{
−
∫ tik

ti(k−1)

ri(t | ui)dt

}
dui (2.40)

where ri(·|ui) is as defined in Equation (2.39).

Exogenous time-varying covariates, say yi(t), can be incorporated to the recurrent
event models described in Equations (2.37) and (2.39) by adapting their respective
partial log-likelihood and likelihood functions. The log-likelihood function `p(γ) of
Equation (2.38) requires to redefine the risk set, R(t), by taking into account the
times at which yi(t) is measured. The modification of the likelihood function L(θ)

of Equation (2.40) is in the same sense, by specifying appropriate integration limits
taking into account the measurement times of yi(t) between consecutive events, i.e.
t ∈ (Ti(k−1), Tik) and adding up these integrals.

The parameters of this recurrent event model are estimated by maximizing the likeli-
hood function of Equation (2.40). Munda et al. (2012) proposed direct optimization of
the likelihood function by transforming the random effect distribution with the Laplace
transform and specifying a parametric baseline intensity. This is implemented in the
parfm() function of the parfm package in R. Rondeau et al. (2003) maximize the
likelihood by applying the Marquardt algorithm (Marquardt, 1963), which combines
the Newton–Raphson and steepest descent algorithms. This estimation method is im-
plemented in the frailtyPenal() function of the R package frailtypackwith
the option for either parametric Weibull or spline-approximated baseline intensity, fol-
lowing the penalized likelihood approach proposed by Joly et al. (1998). The R func-
tion coxph() function of the survival package can also be used to fit this recurrent
event model for unspecified baseline intensity.

A final remark on recurrent events is that the analysis can be carried out in two timescales:
(1) gaps or waiting times, and (b) calendar or total time scale. Gaps, also known as
inter-event times, are the duration or time interval between two consecutive events, i.e.
Iik = Tik − Tik−1, k = 1, . . . , Ki with t0 = 0. In the gap time representation, the time
at risk for the kth event is the time from the end of the (k − 1)th event to the kth event
with t0 denoting the start of the study. A common assumption is that gaps between
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successive events are independent, i.e. individuals are “renewed” after each event. In
the calendar time representation, the start of the at-risk period is not reset to zero but
to the actual time since entry to the study.

The description of the AG model of Equations (2.37) and (2.39) is the calendar timescale.
They can be expressed in the gap timescale by replacing the calendar times Tik with the
gaps Iik. In the gaps timescale we model the time since the last event. In the calendar
timescale we model the time since origin at which events occur.

Simulation of recurrent events

Consider the situation where individuals are followed for the times of occurrence of
some recurrent event and a total time scale shall be used. We intentionally omit the
subject subindex, i, to simplify the notation, but it must be clear that we refer to a
single event process. We define Tk as the time from starting point 0 to occurrence of
the k-th event. Let N(t) = #{k, Tk ≤ t} denote the counting process representing the
number of events experienced before time t. Assuming that prior events do not affect
the risk for future events, the hazard process of N(t) is given by Equation

r(t)dt = E[N(t+ dt)−N(t) | FN ] (2.41)

with FN being the history up to time t. The cumulative intensity function is defined
by

R(t) =

∫ t

0

r(x)dx.

As recurrent events are naturally ordered, event times Tk can be derived from the inter-
event times, Ik := Tk − Tk−1 with T0 = 0 by Tk =

∑k
j−1 Ij . As the risk for events

depends on total time, the distribution of an inter-event time depends on the time of
the preceeding event unless we deal with the simple situation of constant hazards, i.e.
when Tk ∼ Exp(ρ). Therefore, we consider the conditional distributions of inter-event
times given the time of the immediate preceeding event. Let Ik | Tk−1 denote these
conditional inter-event times. The conditional hazard function, r̃k of Ik | Tk = t can
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be derived for k > 1 by

r̃kds = P (s ≤ Ik ≤ s+ dt | Ik ≥ s, Tk−1 = t)

= P (s ≤ Tk − t ≤ s+ dt | Tk − t ≥ s, Tk−1 = t)

= P (s+ t ≤ Tk ≤ s+ t+ dt | Tk ≥ s+ t, Tk−1 = t)

= E[dN(s+ t) | Tk ≥ s+ t, Tk−1 = t]

= r(s+ t)d(s),

and r̃1 = r(s). This means that the conditional hazard for the kth recurrent event to
occur at time s given that the (k − 1)th event occurred at time t is the same as the
unconditional hazard from the time elapsed between t and s, s > t.

Accordingly we can derive the cumulative hazard of Ik | Tk−1 = t for k > 1 by

R̃k(s | Tk−1 = t) =

∫ s

0

r̃k(x | Tk−1 = t)dx

=

∫ s

0

rk(x+ t)dx

= R(s+ t)−R(t),

and R̃1(s) = R(s). This is, the conditional hazard for the kth recurrent event to occur
at time w given that the (k− 1)th event occurred at time t is the difference between the
unconditional cumulative hazard at t and s+ t.

Note that the conditional hazards r̃k and R̃k do not depend on k. This follows from the
assumption that the risk to experience events is not affected by previous events. Thus,
we can define

R̃t(s) := R̃k(s | Tk−1 = t) = R(s+ t)−R(t). (2.42)

For a specific time to recurrent event model, closed form solutions can be found for R̃,
derived from r.

Simulations of recurrent events data based on this model are based on the conditional
survival distribution S̃(u | Tk−1 = t) = exp{−R̃k(u | Tk−1 = t)}. For k > 1, the
conditional random variable exp{−R̃k(Ik | Tk−1 = t)} ∼ U(0, 1). Therefore

Ik | Tk−1 = t ∼ R̃−1
t (− log(ξ)) ,
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with ξ ∼ U(0, 1). For k = 1, I1 = T1 ∼ R−1 (− log(ξ)). The steps to simulate
recurrent events are in Algorithm (2.3)

Algorithm 2.3 Simulation of recurrent events

1: Specify r(t) as a function of total time.
2: Derive R̃t and R̃−1

t .
3: For k = 1:

(a) sample ξ1 ∼ U [0, 1],
(b) compute tk = R−1 (− log(ξ1))

4: For k = 2, . . . , K:
(a) sample ξk ∼ U [0, 1],
(b) compute tk = tk−1 + R̃−1

tk−1
(− log(ξk))

For the Weibull(κ, ρ) distribution we have the following hazard, cumulative hazards
and the inverse cumulative hazard,

r(t) = κρ(ρt)κ−1

R(t) = (ρt)κ

R̃t(s) = ρκ {(t+ s)κ − tκ}

R̃−1
t (s) =

1

ρ
{s+ (ρt)κ}1/κ − t.

Including baseline covariates and a random effect is straightforward to simulate data
from the AG model of Equations (2.37) and (2.39). For instance, to simulate data with
random effects ui from the model of Equation (2.39), letR0(t) =

∫ t
0
r0(s)ds denote the

baseline cumulative intensity function. Assuming we have derived the (inverse) con-
ditional cumulative baseline hazard of inter-event times R̃0,t(s) and R̃−1

0,t (s), then the
(inverse) conditional cumulative hazard of inter-event times corresponding to Equation
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(2.39) can be derived for any realization (wi, ui) of (w, u):

R̃t(s) = R(s+ t)−R(t)

= {R0(s+ t)−R0(t)}uew>γ

= R̃0,t(s)ue
w>γ

R̃−1
t (s) = R̃−1

0,t

( s

u
e−w

>γ
)

Appendix A.3 contains sample code to simulate a data set with recurrent events and
baseline covariates wit the Andersen–Gill model, with option to use random effects and
several options for the baseline intensity (Weibull, log-logistic, Gompretz, Makeham
and bathtub).

2.3 Prediction

Prediction means literally the stating beforehand of what will happen at some future
(Aitchison & Dunsmore, 1975). In Statistics the concept of prediction is used in a
broader sense. In this section we will explain the different purposes of making pre-
dictions in the context of longitudinal and survival analysis models. Even though an
exhaustive taxonomy of types prediction in Statistics would be interesting it is out of
our scope.

As introduced in Section 2.1, in longitudinal studies, data of the quantitative outcome
yi(t) is collected for a sample of n subjects at discrete time point, tij for j = 1, . . . , ni

and i = 1, . . . , n. Hence, we observe yij . Once a model is fitted to the data, say
{β̂, b̂i}, it can be used to make different types of predictions. In general the form of
predictions will be as shown in Equation (2.43).

ŷi(t) = x>i (t)β̂ + z>i (t)b̂i. (2.43)

The difference in what is meant by prediction will depend on whether the same sam-
ple used to fit the model is scored with the fitted model or a completely new sam-
ple, also the temporal frame, whether we refer to the past or the future relative to the
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last observation time point, tini . Note that predictions based on Equation (2.43) as-
sume that xi(t) and zi(t) can be known at any time t when some of their elements are
time-varying covariates, or otherwise predicted on their own by a separate prediction
process. This is not a problem when all are baseline covariates and time is the only
time-varying element of xi and zi. We identify the following types of prediction in
longitudinal data.

1. Reconstruction of the past subject-specific longitudinal outcome profiles, i.e. for
the continuous time interval 0 ≤ t ≤ tini . We call this In-sample prediction.

2. Based on observations xi(t) and zi(t) of a completely new sample, reconstruct
the past longitudinal outcome profiles, i.e. for 0 ≤ t ≤ tini . We call this Out-of-
sample prediction.

3. Estimate the future values based on past observations, whether In-sample or Out-
of-sample, i.e. for tini < t ≤ t∗ < ∞. We call this forecasting and it has a
similar connotation as in the Time Series context.

With survival analysis data, the outcome is the tuple {ti, δi} for i = 1, . . . , n, this is the
total follow up time and the indicator that tells whether the follow up was interrupted
because the event is observed or censored. A useful way to characterize the outcome
is in terms of the survival probability and predictions can be based on its estimate.
Suppose θ̂ contains all the parameter estimates of the fitted model. Then the estimated
survival probability is

Ŝi(t) = Si(t | wi(t), θ̂), (2.44)

where the specific functional form of (2.44) depends on several features, like the type
of survival analysis model fit, the choices about the baseline hazard, the existence of
time-varying covariates, if a random effect is in the model, if data are clustered, etc.
Just as in the case of longitudinal data, in the presence of time-varying covariates,
predictions based on (2.44) assume that the covariate vectors wi(t) are available for all
subjects at all times t or their predictions otherwise.

The types of predictions with survival analysis models can be classified in a similar
way as in longitudinal data. Let τ denote the end of the study. We can distinguish the
following types of prediction in survival analysis.
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1. In-sample prediction. Estimate the individual survival probability from origin
to the end of the study, i.e. 0 ≤ t ≤ τ for the same sample used to fit the model.

2. Out-of-sample prediction. Provided the wi(t) is available for a completely new
sample different from the one whose data was used to fit the model, estimate the
survival probability for 0 ≤ t ≤ τ .

3. Forecasting Even though we could extend the survival probability estimates for
any time t < ∞, these probabilities are meaningless when we already know
the subjects status at τ . Instead the residual survival probabilities provide
with updated and more information regarding the likelihood of observing the
event in the future. The residual survival probability is defined as the conditional
probability of surviving time s > τ given survival up to τ , this is

πi(s | τ) = Pr(Ti ≥ s | Ti > τ, ·) =
Si(s | ·)
Si(τ | ·)

, (2.45)

where conditioning on covariates and estimates is omitted but assumed. This
topic is addressed again in Section 3.2.2 for joint modelling longitudinal and
time-to-event data. Residual survival probabilities can be estimated In-sample
and Out-of-sample provided covariate data of wi(t) is available for t > τ .

A final comment about predictions with survival analysis models is that there are other
ways to use the fitted model to predict the time-to-event outcome:

• For a given percentile of the probability of survival (p) we can obtain the esti-
mated survival time

T̂i(p) = S−1
i (p | wi(t), θ̂).

Usually, p = 0.5 is a relevant choice giving the estimated median survival time.
• For a given time point, say t∗, it might be of interest to know how well the model

separates events from non-events at different values of Ŝi(t) as threshold. This
dynamic classification ability of survival analysis models can be analyzed by
extending the Receiver Operating Characteristic Curve (ROC) methodology to a
dynamic model (Rizopoulos, 2011).

Predictions of the time-to-event and classification of events is out of the scope of this
thesis, but we refer the reader to (Rizopoulos, 2011) for further details.
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In Section 2.3.1 we address how to assess the accuracy of predictions made with LMM
and survival analysis models taking ŷi(t) and Ŝi(t) as the predicted outcomes. The
reason we include this topic is because in Chapter 5 we use these prediction assessment
methods for assessing the accuracy of predictions made by joint modelling longitudinal
and time-to-event data.

2.3.1 Accuracy of prediction

The distance between the fitted value of the outcome and the actual outcome is central
to quantify overall model performance. Typically the squared distances are used: the
mean squared error, (y − ŷ)2, for continuous outcomes and the Brier score (Brier,
1950), (1(Y = 1)−P̂r(Y = 1))2 (with 1(z) = 1 if z is true and 0 otherwise) for binary
outcomes. These distances between observed and predicted outcomes are related to the
concept of “goodness-of-fit” of the model, with better models having smaller distances
between predicted and observed outcomes. The main difference between goodness-of-
fit and predictive performance of a model is that the former is evaluated in the same
data used to fit the model, while assessment of the latter requires either a new dataset
or cross-validation (Steyerberg et al., 2010).

Accuracy of prediction in linear mixed models

In general, the Mean squared error (MSE) of an estimator θ̂ = f(X) with respect to
an unknown parameter θ is defined by

MSE(θ) = Eθ
(
θ̂ − θ

)2

.

The MSE is a property of an estimator, so it is a function of the data. The MSE can be
written in terms of the bias and variance of the estimator as

MSE(θ) =
(

bias(θ̂)
)2

+ var
(
θ̂
)
.

This decomposition allows to assess how accurate and precise estimators are given
their MSE.
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The prediction MSE is defied in similar terms as the squared difference between data
points yi and their predictions ŷi. In the context of longitudinal data that we have ni
data points for each subject in a sample of size n, we define the prediction MSE as
described by Equation (2.46).

MSE =
1

n

n∑
i=1

1

ni

ni∑
j=1

(yij − ŷij)2

=
1

n

n∑
i=1

MSEi. (2.46)

This is, the MSE with longitudinal data averages across the n subjects of the sample
the prediction MSE of the subject-specific profiles.

Accuracy of prediction in survival analysis models

Several measures have been proposed to evaluate the predictive ability of survival anal-
ysis models, although so far there is no consensus of opinion on which is the most
appropriate one (Choodari-Oskooei et al., 2012a). These measures attempt to assess
different aspects of the predictive ability of survival models and they have been system-
atically studied and compared in order to understand their strengths and shortcomings.
For instance, (Choodari-Oskooei et al., 2012a) and (Choodari-Oskooei et al., 2012b)
classified these measures in three categories: explained variation, explained random-
ness and predictive accuracy. They compared the measures of each category by apply-
ing a set of criteria that a measure of predictive ability should possess in the context
of survival analysis including (1) independence from censoring; (2) monotonicity; (3)
interpretability; (4) robustness against influential observations; (5) ability of the model
to account for the variability/uncertainty of the outcome; and (6) ability of the model
to predict the time-to-event outcome. Rahman et al. (2017) classified the measures
with a different taxonomy: overall performance, discrimination and calibration, and
compared the measures of each group.

The performance of a mathematical model predicting a dichotomous outcome is typi-
cally assessed by quantifying their discrimination and calibration (Pencina & D’Agostino,
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2004; Rahman et al., 2017; Steyerberg et al., 2010). Discrimination quantifies the abil-
ity of the model to correctly classify subjects into one of the two categories (events and
non-events for time-to-event data). A model is said to have perfect discrimination if it
classifies each subject to the group they truly belong to. The area under the receiver
operating characteristic curve (ROC) (Fawcett, 2006) is one of the most popular mea-
sures of discrimination (Pencina & D’Agostino, 2004). In the context of time-to-event
data, some discrimination measures are:

• (Royston & Sauerbrei, 2004), D. This measure computes the log hazard ratio
between two equal sized prognostic groups formed by dichotomizing the prog-
nostic index at its median. It assumes that the prognostic index is normally
distributed.

• Harrell et al. (1996) proposed a rank order statistic for an arbitrary time by com-
paring the prognostic index (linear predictor) and the observed event times of
every uncensored pairs of subjects. It is interpreted as the probability that the
model correctly ranks the estimated risks of a randomly selected pair of subjects
given their observed event times.

• Gönen & Heller (2005) proposed a measure as the reverse of that proposed by
Harrell et al. (1996), i.e. the probability that the observed event times of a ran-
domly chosen pair is correctly ordered given their estimated risks.

Calibration assesses how closely the predicted probabilities agree numerically with
the actual outcomes, 1(Y = 1). Calibration measures include the Brier score (Brier,
1950), the calibration slope (van Houwelingen, 2000). According the the classifica-
tion in Choodari-Oskooei et al. (2012a), the Brier score is a predictive accuracy mea-
sure.

In this thesis, we focus on the Integrated Brier Score (IBS) (Graf et al., 1999). We de-
cided to use the IBS, since it is based on a squared loss function analogous to the MSE
and it provides a summary over a relevant time interval (0, t∗) rather than a specific
time point.
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Brier Score and Integrated Brier Score Brier (1950) proposed a scoring rule for
binary outcomes as the mean squared difference between the actual outcome and its
estimated probability. In the survival analysis context, the Brier score for a particular
subject, i, is defined as the squared differences between the survival status at a given
evaluation time t∗, 1(Ti > t∗), and the estimated probability of survival up to this
time given a set of covariates wi, Ŝi(t∗ | wi), Graf et al. (1999), Steyerberg et al.

(2010), van Houwelingen & Putter (2011). Figures 2.3a and 2.3b show the predicted
survival curves for the subjects of a simulated data set of sample size n = 100, and the
region of interest for the BS for a specific subject of such data. In practice, the BS of
each subject in the analyzed sample would look similar to Figure 2.3b, with the green
line representing the distance between (Ŝi(t

∗
k)) and 1(Ti > t∗k) and BS(t∗) being the

squared of the length of this line. For instance, for the subject represented in Figure
2.3b, BS(1.4) = 0.07.

The Brier score at t∗ in a sample of n subjects is the mean of the BS of all the subjects
in the data set:

BS(t∗) =
1

n

n∑
i=1

BSi =
1

n

n∑
i=1

(
1(Ti > t∗)− Ŝi(t∗ | wi)

)2

. (2.47)

In survival analysis it is more informative to assess the predictive ability of the model
for a relevant time interval (for instance from the beginning to the end of a study, from
diagnosis up to a relevant threshold after treatment) rather than restricting to specific
fixed time points. Graf et al. (1999) introduced an integrated Brier score by extending
the idea of the BS to cover a time interval. The IBS is obtained by integrating the
BS over time for t ∈ [0, t∗]. The IBS for a sample of n subjects is the mean of the
individual IBS and is computed by

IBS(t∗) =
1

n

n∑
i=1

IBSi(t
∗)

=
1

n

n∑
i=1

∫ t∗

0

(
1(Ti > t)− Ŝi(t | wi)

)2

dt. (2.48)

Graf et al. (1999) suggested integrating the BS with respect to some weight function
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(a) Survival curves (Ŝi(t)) for all the sub-
jects of a simulated data set.
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(b) Brier score. — is the survival curve
of an instance of the sample; — is the in-
dicator 1(Ti > t∗k) which takes the value
of 1 as long as subject i is alive and then
drops to 0. Each | represents the difference
between (Ŝi(t

∗
k)) and 1(Ti > t∗k) at time

points t∗k = 0, 0.3, . . . , 2.6, with BS(t∗k)
being the square of this difference.
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(c) Inegrated Bier score. The green shaded
region in is the area where the Integrated
Brier score is computed in the time interval
(0, t∗)

Figure 2.3: (a) Survival curves, (b) Brier Score, and (c) Integrated Brier score.
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W(t). That is

IBS(t∗) =
1

n

n∑
i=1

∫ t∗

0

(
1(Ti > t)− Ŝi(t | wi)

)2

dWt, (2.49)

consideringW(t) = t/t∗ andW(t) = (1 − Ŝ(t))/(1 − Ŝ(t∗)) as two options leading
to

IBS(t∗) =
1

t∗

∫ t∗

0

1

n

n∑
i=1

(
1(Ti > t)− Ŝi(t | wi)

)2

dt and

IBS(t∗) =
1

1− Ŝ(t∗)

∫ t∗

0

1

n

n∑
i=1

(
1(Ti > t)− Ŝi(t | wi)

)2

f(t)dt.

(2.50)

(2.51)

In this thesis we used the IBS of Equation (2.48) because it is more intuitive. The green
region of Figure 2.3c corresponds the area where the IBS is being calculated for the
same subject.

Censoring is usually accommodated for in two steps (Gerds & Schumacher, 2006; Graf
et al., 1999; van Houwelingen & Putter, 2011) :

• Deleting observations whose event status cannot be determined by the time point
of interest, i.e. all observations censored.
• Weighting the observations by the probability of not being censored by the time

point of interest.

Recall that with time-to-event data we observe Ti = min(T ∗i , Ci) and δi = 1(T ∗i ≤ Ci)

for each individual. Suppose it is of interest to compute the BS at time point t∗. For
this fixed time point, t∗, the contributions to the BS of each individual can be split into
three categories:

• Category 1: Ti ≤ t∗ and δi = 1. For these individuals the event occurred by time
t∗, so their event status after t∗ is 1(Ti > t∗) = 0. Individuals in this category

contribute to the Brier score with
{

0− Ŝ(t∗|wi)
}2

.
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• Category 2: Ti > t∗ and (δi = 1 or δi = 0). These are individuals still at risk
of the event at time t∗, i.e. they are event-free and uncensored so their event
status after t∗ is 1(Ti > t∗) = 1, and their contribution to the Brier score is{

1− Ŝ(t∗|wi)
}2

.
• Category 3: Ti ≤ t∗ and δi = 0. These are individuals censored by time t∗ so

their event status after t∗ is unknown and do not contribute to the Brier score.

In order to accommodate censoring, the individual contributions are weighted, with
weights being the probability of not being censored by the last observed time. Denote
by G(t) = Pr(Ti > t) the probability of not being censored by time t. Thus the
contributions to the Brier score of individuals in category 1 get the weight 1

Ĝ(Ti)
, and

those in category 2 1

Ĝ(t∗)
. The estimates Ĝ(t) are the Kaplan–Meier estimates (Kaplan

& Meier, 1958) of the censoring process (that is the KM for {ti, 1− δi}). Therefore,
the Brier score adjusted for censoring is given by,

BSC(t∗) =
1

n

n∑
i=1

{{
0− Ŝ(t∗|wi)

}2 1(Ti ≤ t∗, δi)

Ĝ(Ti)
+

{
1− Ŝ(t∗|wi)

}2 1(Ti > t∗)

Ĝ(t∗)

}

=
1

n

n∑
i=1

{{
1(Ti > t∗)− Ŝ(t∗|wi)

}2 1(Ti ≤ t∗)δi

Ĝ(Ti)
+

{
1(Ti > t∗)− Ŝ(t∗|wi)

}2 1(Ti > t∗)

Ĝ(t∗)

}

=
1

n

n∑
i=1

BSi(t
∗)Wi(t

∗, Ĝ, Ti, δi), (2.52)

where

Wi(t
∗, Ĝ, Ti, δi) =

1(Ti ≤ t∗)δi

Ĝ(Ti)
+
1(Ti > t∗)

Ĝ(t∗)
(2.53)

and
Ĝ(t) =

∏
i:ti≤t

(
1− ci
C(t)

)
,

with ci the number of censored individuals and C(t) the size of the set of subjects at
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risk of censoring at time t.

The IBS can be weighted by Wi(t
∗, Ĝ, Ti, δi) in a similar fashion to adjust for censor-

ing. In this approach, censored observations will contribute their estimated event-free
probabilities to the integrand up to the point t where the censoring occurs

IBSC(t∗) =
1

n

n∑
i=1

∫ t∗

0

(
1(Ti > t)− Ŝi(t | wi)

)2

Wi(t
∗, Ĝ, Ti, δi)dF (t)

=
1

n

n∑
i=1

IBSi(t
∗)Wi(t

∗, Ĝ, Ti, δi). (2.54)

Figure 2.4 shows the IBS diagram of of two subjects from simulated data (left: ob-
served; right: censored). The contribution to the IBS of the subject that observed the
event has weight 1.56, and the censored of 0.
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(a) Observed
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(b) Censored

Figure 2.4: — Integrated Brier score (IBS) diagram of two subjects of a fictitious
sample: (a) subject with observed event time and (b) subject with censored event time.
The contribution to IBS(t∗) of the subject with observed event time has weight 1.56,
and the subject with censored time has weight 0.00.

Appendix A.4 has sample code to compute the BS(t∗) and IBS(t∗) for the Cox model
with baseline covariates and with an endogenous time-varying covariate, for an arbi-
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trary time t∗. It contains also a function to weight individual contributions to accom-
modate censoring.

2.4 Penalized Likelihood Methods

Suppose we observe the data (xi, yi), i = 1, . . . , 5, represented by • in Figure 2.5,
and that y is a noisy version of the true underlying pattern function of x, f(x). This
is,

yi = f(xi) + εi,

where E(εi) = 0 and var(εi) = σ2.

−1.0 −0.5 0.0 0.5 1.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

x

f(x)

f(x) :  True

y :  Observed

f̂(x) = P4(x) :  Fitted

Figure 2.5: By fitting a fourth degree polynomial (—) to the observed data (•) the
predictions equal the observed values at each xi, but can be too far away from the true
underlying pattern (—).

Suppose a fourth degree polynomial,f(xi) = f(xi,β), is fitted to the data, f̂(xi),
to represent the xi, yi relationship and the polynomial coefficients are estimated by
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minimizing the MSE,
1

n

n∑
i=1

(yi − f(xi,β))2.

With only five data points, f̂(xi) fits the data perfectly, as shown by — in Figure 2.5.
The fit is perfect in the sense that the predictions are unbiased since the predictions
equal the observed values at the observation times, but the variance is large. Appar-
ently, f̂ is aiming for the observed data, yi, and not the true underlying pattern, —
f(x). This is known as overfitting and it is said that the model overfits the data. By
introducing a penalty to the objective function (λ > 0),

1

n

n∑
i=1

(yi − f(xi,β))2 + λ
4∑
j=1

β2
j ,

it is possible to obtain a more parsimonious prediction. By penalizing the objective
function we obtain biased predictions, but with smaller error. To see this, consider
the decomposition of the expected prediction error (EPE) of a regression fit f̂(x) at an
input point x = x0:

EPE = E
{[
Y − f̂(x0)

]2
}

= E
{

[Y − f(x0)]2
}︸ ︷︷ ︸

irreductible error (σ2)

+
(
E{f̂(x0)} − f(x0)

)2

︸ ︷︷ ︸
{biasf̂(x0)}2

+E
{[
f̂(x0)− E{f̂(x0)}

]2
}

︸ ︷︷ ︸
var{f̂(x0)}

The first term is the variance of the outcome around its true mean, and cannot be
avoided no matter how well we estimate f(x0), unless σ2 = 0. The bias is the mag-
nitude by which the average of the estimate differs from the true mean. The last term
is the variance of the estimate, i.e. the expected squared deviation of f̂(x0) around its
mean. The mean squared error is defined as the sum of the last two terms:

MSE =
{

bias(f̂)
}2

+ var(f̂).

Typically the more complex we make the model, f̂ , the lower the bias, but the higher
the variance, which might result in large MSE (Seber & Lee, 2012).
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Figure 2.6 shows that as we increase the value of the penalty (left to right and top to
bottom) we get more parsimonious predictions until eventually the prediction is flat. It
looks that from the six chosen values for the penalty, when λ = 0.1 the predictions are
closest to the true underlying pattern.
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Figure 2.6: Fourth degree polynomial fit obtained by penalizing the objective func-
tion for six values of the penalty (from left to right and top to bottom): log10(λ) =
(−3,−2,−1, 0, 1, 2).

Penalization is a method for circumventing problems in the stability of parameter es-
timates that arise when the likelihood is relatively flat, making determination of the
MLE difficult by means of standard or profile approaches. Penalization is also known
as shrinkage, semi-Bayes, or partial-Bayes estimation. It can be viewed as a method
for introducing some tolerable degree of bias in exchange of reduction in the variability
of parameter estimates Cole et al. (2014).
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Maximizing a penalized likelihood reformulates the free optimization setting of maxi-
mum likelihood estimation into a constrained optimization one, where the constraint or
penalty impose boundaries in the parameter space, i.e. it restricts the possible parame-
ters’ values. The immediate consequence of maximizing a penalized likelihood is that
parameter estimates are no longer unbiased due to the constrain imposed to the param-
eter space, but such estimates have smaller standard errors. By imposing a penalty to
the likelihood we aim to obtain estimates with much smaller standard errors in return
of sacrificing a small amount of bias.

2.4.1 Ridge and LASSO penalties

Choosing the form of the penalty or constraint for the objective function has different
effects on the estimates. The most common penalties are L2 and L1-norm, which
impose quadratic and linear constrains respectively. L2-norm is called Ridge and L1-
norm is the Least Absolute Shrinkage and Selection Operator (LASSO).

Figure 2.7 illustrates the effect of imposing Ridge and LASSO in the likelihood max-
imization problem with a sequence of contour plots of the likelihood for (β1, β2) and
the corresponding penalty for different levels of the contour. Notice on the top plots
of Figure 2.7a the arrow indicates the direction in which the estimates are shrinking
corresponding to the tangent of the penalty and the contour at a level of 0.05. As
the level of the contour increases, the radius of the circumference described by the
quadratic penalty gets smaller and consequently the coefficients estimates. The Ridge
penalty shrinks more the coefficients associated to the covariates with larger variances,
but none of them gets as small as zero.

On the other hand, the LASSO penalty in Figure 2.7b shrinks the coefficients in di-
rection to one of the axis. With the LASSO penalty some coefficients will be shrunk
completely to zero and this is why it is a “selection operator”. By imposing the LASSO
penalty to the likelihood function (in the correct amount) it is possible to perform data-
driven variable selection avoiding the problem of overfitting. Figures 2.8a and 2.8b il-
lustrate the whole shrinkage path of Ridge and LASSO respectively. Note that LASSO
aims for a corner solution of the constrained optimization problem while Ridge aims
for an optimal linear combination of predictors or covariates.
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Figure 2.7: (a) L2-norm penalty. The circumference represents the quadratic constraint
to the optimization problem. The point of the circumference tangent to the smallest
level curve represents the bias we sacrifice to reduce variance. (b) L1-norm penalty.
The rhomboid represents linear constraint to the optimization problem. The point of
the edge tangent to the smallest level curve represents the bias we sacrifice to reduce
variance.
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Finally, extending the number of possible predictor to x1, . . . , x8 we have eight co-
efficients to estimate and Figures 2.9a and 2.9b show the shrinking process of the
coefficiens as the value of the penalty gets closer to zero. Note that with the Ridge
penalty all the coefficients shrink to zero but none of them is shrunk completely. On
the other hand, LASSO completely shrinks the coefficients at a different value of the
penalty.
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Figure 2.8: (a) L2-norm penalty; (b) L1-norm penalty. The arrows show path in which
the coefficients are being shrunk, with each arrowhead indicating the point where the
penalty is tangent to the level curve
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Figure 2.9: (a) L2-norm penalty; (b) L1-norm penalty. As the norm decreases, the
coefficients are shrunk towards zero at different rates. For a given value of the norm,
Ridge regression results in a linear combination of all the coefficients, and LASSO in
a subset of non-zero coefficients and another subset of coefficients completely shrunk
to zero.

For a thorough discussion about regularization and shrinkage methods refer to Hastie
et al. (2009).
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2.5 Causal Inference

A randomized trial is a study in which a number of similar people are randomly as-
signed to 2 (or more) groups to test a specific drug, treatment or other intervention.
One group (the experimental group) has the intervention being tested, the other (the
comparison or control group) has an alternative intervention, a dummy intervention
(placebo) or no intervention at all. The groups are followed-up to see how effective
the experimental intervention was. Outcomes are measured at specific times and any
difference in response between the groups is assessed statistically. The contrast of
outcomes among the different treatment groups renders the causal effect of treatment.
Randomized trials are considered the gold standard for investigating the effect of a
treatment (or exposure) on an outcome.

In a properly designed randomized trial, before treatment allocation subjects are ex-
changeable regarding to which treatment level they can be assigned to, i.e. the poten-
tial outcome of the subjects should not differ systematically due to treatment allocation.
This means, for instance, that the outcome of an experiment in which subject 1 is allo-
cated to treatmentA& subject 2 is allocated to treatmentB should be indistinguishable
from the experiment in which subject 1 is allocated to treatment B & subject 2 is al-
located to treatment A. Immediately after subjects are randomly allocated to different
treatment levels, the only difference among subjects must be the treatment group they
are assigned to.

From the description of a randomized trial there are two important points that need
to be emphasized because they render direct comparison between treatment groups
possible, being key to causal effect estimation.

• Subjects being similar means that all their known and observed characteristics
do not interfere with the effect of treatment. The existence of at least one charac-
teristic that could potentially influence the effect of treatment on the outcome is
known as confounding in the causal inference literature. Section 2.5.1 contains
a broader discussion about confounding.

• There might be, unidentified or identified but unmeasured confounders, and that
is why randomized treatment allocation is fundamental in this kind of studies. By
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randomizing treatment allocation any potential link between such unknown/un-
measured confounders and treatment is broken, and the only difference between
the subjects is the treatment level they are assigned to.

These two ideas together imply that in a randomized trial, potential outcomes are inde-
pendent of confounders, which is a probabilistic statement about the relation between
potential outcomes and confounders. The consequence of independence between po-
tential outcomes and confounders is that after treatment has been allocated and subjects
have been followed-up, the outcome differences among the treatment groups must be
due the effect of treatment.

Often the data available for analysis do not come from randomized trials, but from ob-
servational studies, and the possible confounding structures can be complicated. Since
randomization of treatment is not feasible in observational studies, it is rather used the
idea of “controlling” for all possible sources of treatment-outcome confounding to be
able to estimate the effects of treatment. Causal inference is the theoretical framework
that attempts to articulate in mathematical language hypotheses about the confounding
structures, and to state the necessary assumptions in order to control for confounders
and move from conclusions about association to conclusions about causation.

To introduce the ideas in this section, consider the motivating example from Pearl
et al. (2016). Imagine observational data from a study in which measures weekly
hours of exercise and cholesterol level in people of different age. Plotting cholesterol
as a function of hours of exercise we obtain the plot on the left panel of Figure (2.10),
which exhibits a positive trend of cholesterol level with respect to hours of exercise,
i.e. with more exercise the cholesterol level increases. This contradicts our common
belief about the benefits of exercise on our health.
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Figure 2.10: Left: Regression line of cholesterol level as function of hours of exercise;
right: regression line of cholesterol level as function of hours of exercise stratifying by
age group.

However, if now the data are analyzed taking into account the age of the participants in
the study, the right side panel of Figure (2.10) shows that for each age group the rela-
tionship between exercise and cholesterol level is reversed. Which of the two analyses
should we trust?

We have to turn to the story behind the data and try to elucidate the data generating
process. If we know that older people, who are more likely to exercise are also more
likely to have high cholesterol level regardless of exercise, then the different conclu-
sions from the two analysis can be explained: age is a common cause of both exercise
and cholesterol.

The general idea behind causal inference is to try to uncover the mechanism of the
system that generated the observed data and estimate the strength of the causal paths
from an “exposure” or “treatment” variable towards an outcome of interest. Suppose
we observe data for a set of variables Z, an exposure variable X and an outcome Y .
Typically, the joint distribution P (Z,X, Y ) is unknown, and statistical inference aims
to learn some features of P (Z,X, Y ), like E(Y |X, Y ) and var(Y |X, Y ). The focus of
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causal inference is to know the extent in which the joint distribution changes, say, from
P (Z,X, Y ) to P ′(Z,X, Y ) when we intervene on X .

By building a causal model for (Z,X, Y ), we have the possibility of answering ques-
tions like the following:

• Observational. Given that X is observed to a value of x, what is P (Y |X = x)?
• Intervention. What will be the value of Y if X is forced to a value of x,
P (Y | do(X))?
• Counterfactual. What would have been the value of Y had X been set to x′

instead of x?

In order to rigorously address causal inference questions with observational data, the
following elements are required:

1. A working definition of “causation”.
2. A method to formally articulate causal assumptions.
3. A method to link the structure of the causal model to features of the data.
4. A method to draw conclusions on the link between the causal model and the

data.

The next section describes briefly these four requirements in the directed acyclic graphs
(DAG) framework (Pearl, 2000), which is the one we mainly we based our analy-
sis on in order to estimate the causal effect of frailty on mortality in the CARE75+
study.
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2.5.1 Directed Acyclic Graphs

Directed acyclic graphs (DAGs), based in graph theory, provides a useful mathematical
setting to articulate hypothetical causal links among the variables of a dataset. DAGs
aid the formulation of (causal) statistical models by identifying the set of variables we
should adjust for in order to be able give a valid causal interpretation to the estimates
of the model.

A causal graph consists of a set of vertices (or nodes) and a set of edges (or links) that
connect some pairs of vertices. The vertices in these graphs correspond to variables and
the edges denote a certain relationship that holds in pairs of variables, the interpretation
of which varies with the application (Pearl, 2000). Two variables connected by an edge
are called adjacent.

Each edge in a graph can be either directed (marked by a single arrowhead on the
edge), or undirected (no arrowheads). A graph with only directed edges and with no
cycles is a directed acyclic graph.

C X Y

The node that a directed edge starts from is called the ancestor of all the nodes that
come after; all the nodes that the edge goes into are the descendants (in the path C →
X → Y, C and X are the ancestors of Y , and X and Y are the descendants of C). If
two nodes are connected by an edge, we have a parent-child relationship (inC → X, C

is parent of X and X is child of C).

2.5.2 Structural Causal Models (SCM)

A structural causal model is a way of formally setting down the assumptions about
the data generating process; it is a method for describing the relevant features of the
system of interest and how they interact with each other. Specifically, a SCM describes
how the mechanics of the system naturally assigns values to the variables.

In general, a SCM consists of:
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• Two sets of variables: U = {U1, . . . , Um} and V = {V1, . . . , Vp}. U are ex-
ogenous or external to the system, for which it is decided not to explain how
they are caused. U cannot be descendants of any other variables, in particular of
any variable in V ; they have no ancestors and are represented as root nodes in
graphs. V are endogenous and are all variables in the model that are descendants
of at least one exogenous variable.

• A set of functions F = {f1, . . . , fp} that assigns each variable in V a value based
on the values of other variables in the model.

P (u) and F induce a distribution of the observed variables, P (v). Knowing the value
of each Ui, then F determines with perfect certainty the value of every Vi.

Example: The salary, Y , that an employer pays to an individual withX years of school-
ing and Z years in the profession is assigned by the function fY = 2X + 3Z.

U = {X,Z}, V = {Y }, F = {fY }, fY = 2X + 3Z.

X Y Z

Here X and Z are exogenous and Y is endogenous.

Definition 2.5.1 (cause) A variableX is a direct cause of Y if there is an arrow point-
ing from X to Y on their DAG. All variables that appear in the function that assigns
values to Y are causes of Y .

Definition 2.5.2 (graphical definition of causation) If, in a graphical model,G, a vari-
able Y is the child of another variable X , then X is a direct cause of Y . If Y is a
descendant of X , then X is a potential cause of Y .

X −−−−→ Y X −−−−→ Z −−−−→ Y

Basic structures in DAGs

The concept of conditional independence can be expressed visually in a DAG, and
it captures the probabilistic information in a structural model. The following are the
building blocks of DAGs from which the full the structure can be obtained:
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Chain: X −−−−→ C −−−−→ Y

Fork: X ←−−−− C −−−−→ Y

Collider: X −−−−→ C ←−−−− Y

The conditional probabilistic relationships encoded in these building blocks is summa-
rized in 3 basic rules of DAGs.
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Rule 1 (Conditional independence in chains) Two variables, X and Y , are condi-
tionally independent given C, if there is only one unidirectional path between X and
Y and C is any set of variables that intercepts that path.

Suppose three variables (X,C, Y ) are
related to each other according to the
following DAG and structural equa-
tions:

X
0.8−−−−−−→ C

0.8−−−−−−→ Y

Y = 0.8C + εY

C = 0.8X + εC

X ∼ N (0, 1)

εC ∼ N (0, 0.36)

εY ∼ N (0, 0.36)

If we want to estimate the effect of X
on Y , we should not condition on C if
C is in the path from X to Y .

Y = βCC + βXX + ε

Fitting the regression model where
both X and C are predictors of Y will
block the effect X → Y giving the
impression that X and Y are uncorre-
lated.
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Figure 2.11: Simulation of a basic chain structure: (a) Scatter plot of one simulated
data set and correlations; (b) 95% confidence intervals of β̂C and β̂X of the models
Y = βCC + ε and Y = βXX + ε (c) 95% confidence intervals of β̂C and β̂X of the
model Y = βCC + βXX + ε , showing that conditioning on C, we cannot rule out
H0 : βX = 0.

Figure 2.11a shows that cor(X,C) = cor(Y,C) = 0.8 and cor(X, Y ) = 0.64. Figure
2.11c illustrates via 100 simulated datasets the Rule in chains: Y ⊥ X | C.
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Rule 2 (Conditional independence in forks) If a variable C is a common cause of
variables X and Y , and there is only one path between Y and C, then Y and X are
independent conditional on C.

Suppose three variables (X,C, Y ) are
related to each other according to the
following DAG and structural equa-
tions:

X
0.8←−−−−−− C

0.8−−−−−−→ Y

Y = 0.8 C + εY

X = 0.8 C + εX

C ∼ N (0, 1)

εY ∼ N (0, 0.36)

εX ∼ N (0, 0.36)

If we want to estimate the effect of X
on Y , we should not condition on C if
C is in the path from Xto Y .

Y = βCC + βXX + ε

Fitting the regression model where
both X and C are predictors of Y will
block the effect X → Y giving the
impression that X and Y are uncorre-
lated.
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Figure 2.12: Simulation of a basic fork structure: (a) Scatter plot of one simulated
data set and correlations; (b) 95% confidence intervals of β̂C and β̂X of the models
Y = βCC + ε and Y = βXX + ε (c) 95% confidence intervals of β̂C and β̂X of the
model Y = βCC + βXX + ε , showing that conditioning on C, we cannot rule out
H0 : βX = 0.

Figure 2.12a shows that cor(X,C) = cor(Y,C) = 0.8 and cor(X, Y ) = 0.64. Figure
2.12c illustrates via 100 simulated datasets the Rule in forks: Y ⊥ X | C.
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Rule 3 (Conditional dependence in colliders). If C is a common effect of X and Y
and there is only one path among them, then C is a collision node. The causes of C,
X and Y are (unconditionally) independent, but are conditionally dependent given C
and any other descendant of C.

Suppose three variables (X,C, Y ) are
related to each other according to the
following DAG and structural equa-
tions:

X
0.8−−−−−−→ C

0.8←−−−−−− Y

C = 0.8X + 0.8Y + εC

(X, Y ) ∼ N2 (0, I2)

C ∼ N (0, 1)

εY ∼ N (0, 0.36)

εX ∼ N (0, 0.36)

If we want to estimate the effect of X
on Y , we should not condition on C if
C is in the path from Xto Y .

Y = βCC + βXX + ε

Fitting the regression model where
both X and C are predictors of Y will
block the effect X → Y giving the
impression that X and Y are uncorre-
lated.
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Figure 2.13: Simulation of a basic collider structure: (a) Scatter plot of one simulated
data set and correlations; (b) 95% confidence intervals of β̂C and β̂X of the models
Y = βCC + ε and Y = βXX + ε (c) 95% confidence intervals of β̂C and β̂X of
the model Y = βCC + βXX + ε, showing that conditioning on C, then we rule out
H0 : βX = 0, creating a spurious association between X and Y .

Figure 2.13a shows that cor(X,C) = 0.57, cor(Y,C) = 0.58, and cor(X, Y ) =

0.085.

76



2.5 Causal Inference

Rule in colliders: Y 6⊥ X | C.

Notice that even though X and Y are (unconditionally) independent, conditioning on
C produces a spurious association betweenX and Y . This is called collider bias.

Confounder. A variable that apparently changes the relationship between X and
Y because it is related to both X and Y . The presence of confounding implies a
violation to the assumption of independence between potential outcomes and con-
founders.

C X Y

If the relationship between X and Y changes when C causes X and Y , this leads to
an observed XY relationship that may be considered causal if C is not included in the
analysis.

Case 1

Suppose three variables (X,C, Y )

are related to each other according
to the following DAG and structural
equations:

C X Y
−0.8 0.8

C ∼ N (0, 1)

X = − 0.8C + εX

Y = 0.8X + εY

εX ∼ N (0, 0.36)

εY ∼ N (0, 1)

Figure 2.14a shows the correlation be-
tween C, X and Y for a simulated data
set.

If we want to estimate the effect of
X on Y , we must condition on C if
C is a confounder (common cause) of
Xand Y . Ignoring the fact that C is
a confounder can bias the estimates of
the effect of X on Y . Consider the fol-
lowing two regression equations to es-
timate the effect of X on Y .

Unadjusted: Y = βXX + ε

Y = βCC + ε

Adjusted: Y = βXX + βCC + ε

The unadjusted and adjusted estimates
of the effect of X → Y for 100 simu-
lations are shown in Figure 2.14b and
2.14c.

77



2.5 Causal Inference

X

−3
−2
−1

0
1
2
3

−3 −1 1 2 3

−3 −1 0 1 2 3

−0.8

C

−3
−2
−1
0
1
2
3

0.8

−0.64

−3 −1 0 1 2 3
−3
−2
−1
0
1
2
3

Y

(a)

0 20 40 60 80 100

−0.5

0.0

0.5

1.0

Simulation

β

βC
Unadjusted

βX
Unadjusted

(b)

0 20 40 60 80 100

−0.5

0.0

0.5

1.0

Simulation

β

βC

βX

(c)

Figure 2.14: Simulation of a basic confounding structure: (a) Scatter plot of one sim-
ulated data set and correlations; (b) 95% confidence intervals of β̂X and β̂C of the
univariate models Y = βXX + ε and Y = βCC + ε; (c) 95% confidence intervals of
β̂X and β̂C of the model Y = βCC + βXX + ε, showing that conditioning on C we
cannot rule out H0 : βX = 0.
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2.5 Causal Inference

Case 2

Suppose three variables (X,C, Y )

are related to each other according
to the following DAG and structural
equations:

C X Y
−0.8 0.8

−0.8

C ∼ N (0, 1)

X = − 0.8C + εX

Y = 0.8X − 0.8 C + εY

εX ∼ N (0, 0.36)

εY ∼ N (0, 1)

Figure 2.15a shows the correlation be-
tween C, X and Y for a simulated data
set.

If we want to estimate the effect of
X on Y , we must condition on C if
C is a confounder (common cause)
of Xand Y . Ignoring the fact that C
is a confounder can severely bias the
estimates of the effect of X on Y .
Consider the following two regression
equations to estimate the effect of X
on Y .

Unadjusted: Y = βXX + ε

Adjusted: Y = βXX + βCC + ε

The unadjusted and adjusted estimates
of the effect of X → Y for 100 simu-
lations are shown in Figure 2.15b and
2.15c.
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Figure 2.15: Simulation of a basic confounding structure: (a) Scatter plot of one sim-
ulated data set and correlations; (b) 95% confidence intervals of β̂X and β̂C of the
univariate models Y = βXX + ε and Y = βCC + ε, showing that failing to condi-
tion on the common cause C, results in wrong estimates of β̂X ; (c) 95% confidence
intervals of β̂X and β̂C of the model Y = βCC + βXX + ε.
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2.5 Causal Inference

Mediation. Refers to the situation in whichX causesM , which causes Y , also called
a mediating variable. Here the third variable, M , is intermediate in the causal chain
relating X and Y such that X causes M and M causes Y .

Both confounders and mediator account for the relationshipXY . The difference is that
a confounder explains the relation because it is related to both X and Y as a common
cause (X ← C → Y ), rather than as part of a causal mediation process. The mediator
explains the XY relation because it transmits the effect of X on Y .

M

X Y

C

X = Exposure
M = Mediator
C = Counfounder
Y = Outcome

Mediators are also called intervening or intermediate variables to indicate their role
as coming between X and Y . Other names include process variable, because M de-
scribes the process by whichX affects Y ; surrogate or intermediate endpoints, because
they represent proximal measures of a distal outcome.
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2.5 Causal Inference

Suppose three variables (X,M, Y )

are related to each other according
to the following DAG and structural
equations:

X M Y
0.8 −0.8

0.8

X ∼ N (0, 1)

M = 0.8 X + εM

Y = − 0.8 M + 0.8 X + εY

εM ∼ N (0, 0.36)

εY ∼ N (0, 0.13)

Figure 2.16a shows the correlation be-
tween M , X and Y for a simulated
data set.

If we want to estimate the direct ef-
fect of X on Y , we must not con-
dition on M if M is in the path be-
tween Xand Y . Conditioning on M

will block the effect X → Y .
Consider the following regression
equations.

Unadjusted: Y = βXX + ε

Y = βMM + ε

Adjusted: Y = βXX + βMM + ε

The unadjusted and adjusted estimates
of the effect of X → Y and their
95% confidence intervals for 100 sim-
ulations are shown in Figure 2.16b and
2.16c. The consequence of condition-
ing onM is that the estimates of βX are
largely biased (Figure 2.16c). Ignoring
M will produce unbiased estimates of
βX , (Figure 2.16b).
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Figure 2.16: Simulation of a basic mediation structure: (a) Scatter plot of one sim-
ulated data set and correlations; (b) 95% confidence intervals of β̂X and β̂M of the
univariate models Y = βXX + εY and Y = βMM + εY ; (c) 95% confidence intervals
of β̂X and β̂M of the model Y = βMM + βXX + ε, showing that conditioning on a
mediating variable M results in a wrong estimate β̂X .
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2.5 Causal Inference

2.5.3 Rule of product decomposition

For any model whose graph is acyclic, the joint distribution of the variables in the
model is given by the product of the conditional distributions P (child|parents) over
all “families” in the graph. We write this rule as

P (x1, . . . , xn) =
n∏
i=1

P (xi | pa(xi)),

where pa(xi) stands for the parents of Xi.

Figure (2.17) is a DAG showing the relationships between variables Y,C,X1, . . . , X6

and the factorization of their joint distribution according to the conditional indepen-
dencies depicted in the DAG.

X1

X2 X3

C

X4 X5 X6

Y

P (Y,C,X1, . . . , X6)

= P (C)P (X1)P (X2 | C,X1)P (X3 | X1)

P (X4 | X2)P (X5 | X2, X3)P (X6 | X3)

P (Y | X5, X6).

Figure 2.17: X5 andX6 are direct causes of Y , and the rest of the variables of the DAG
are potential causes of Y .

Definition 2.5.3 (d-separation) A path, p, is said to be d-separated (or blocked) by a
set of nodes S, if and only if

1. p contains a chain of nodes (A→ B → C) or a fork (A← B → C), such that
the middle node B ∈ S (i.e. B is conditioned on), or

2. p contains a collider (A → B ← C) such that the collision node B /∈ S, and
such that no descendant of B is in S.

A set S is said to d-separate X from Y if S blocks every path from a node in X to a
node in Y .
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2.5 Causal Inference

2.5.4 Model testing for causal search

If we have a DAG, G, that we believe might have generated a data set D, d-separation
will tell us which variables in G must be independent conditional on which other vari-
ables. We can test for conditional independence from X to Y using data.

1. List all the paths between X and Y in G.

2. Identify the set S with all possible variables that conditioned on make X and Y ,
conditionally independent.

3. Estimate probabilities based on the data, D.

4. Investigate with estimated probabilities if the data supports the hypothesis that
X and Y are independent conditioned on S. Otherwise, reject G as a candidate
causal model for D.

We say that two variables, X and Y are causally related if a change in X has the
potential to change Y . A distinctive aspect of causal analysis is separation of the
exposure, X , from the confounders, Z. All the attention is focused on trying to learn
about X . In the causal model we propose for the XY relationship we want to make
sure to identify all the confounders for the joint distribution P (X, Y ). Even though
the Z variables may have confounders with their relationship with Y , we treat them as
nuisance parameters. The importance of Z limits to being controlled for appropriately
according to their position in the data generating process so that we can learn about the
XY relationship.

2.5.5 The effects of intervention

There is difference between intervening on a variable and conditioning on that vari-
able. When intervening in a variable in a model, the value is fixed; we change the
system, and the values of other variables often change as a result. When conditioning
on a variable, we change nothing; we merely narrow our focus to the subset of cases
in which the variable takes the value we are interested in. What changes, when condi-
tioning on a variable, is our perception of the world, not the world itself (Pearl et al.,
2016).
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2.5 Causal Inference

Z1

Z2 Z3

X

Z4 Z5 Z6

Y

Z1

Z2 = z2 Z3

X

Z4 Z Z6 = z6

Y

Figure 2.18: Left: red arrows in the DAG indicate that we can manipulate Z2 and Z6.
Right: resulting DAG after manipulation, forcing Z2 and Z6 to take the values z2 and
z6, respectively. By doing so, the arrows pointing to Z2 and Z6 are removed.

In an intervention, we force a variable to take a specific value. We denote the interven-
tion on variable X to fix its value at X = x as do(X = x). So P (Y = y|X = x) is the
probability distribution of Y = y among the subset of the population whose X value
is x, while P{Y = y|do(X = x)} is the probability that Y = y when we intervene to
make X = x, i.e. the probability distribution of Y if everyone in the population had
their value X fixed at x.

2.5.6 The adjustment formula

Suppose we want to find out how effective a drug is in the population. We imagine
a hypothetical intervention by which we administer the drug uniformly to the entire
population and compare the recovery rate to what we would obtain under the comple-
mentary intervention, where we prevent everyone from using the drug. Denoting the
first situation with do(X = 1), the second with do(X = 0) and the situation where
a person recovers by Y = 1 we compute the average causal effect or causal effect

difference with

ACE = P{Y = 1|do(X = 1)} − P{Y = 1|do(X = 0)}

IfX and Y take more than one value, then use P{Y = y|do(X = x)} for two arbitrary
values x, y.
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2.5 Causal Inference

Formula for the causal effect in terms of preintervention probabilities (adjustment for-

mula)

P{Y = y|do(X = x)} =
∑
z

P (Y = y|X = x, Z = z)P (Z = z). (2.55)

This formula computes the association between X and Y for each value of Z, then
averages over those values.

To adjust or not to adjust?

What set of variables Z can legitimately be included in the adjustment formula? The
intervention procedure, which led to the adjustment formula, dictates that Z should
coincide with the parents of X , because it is the influence of these parents that we
neutralize when we fix X by external manipulation.

Denoting the parents of X by pa(X) we can therefore write a general adjustment
formula and summarize it in a rule.

Rule 4 (The causal effect rule). Given a graph G in which a set of variables pa(X)

are designated as the parents of X , the causal effect of X is given by

P{Y = y|do(X = x)} =
∑
z

P{Y = y|X = x, pa(X) = z}P{pa(X) = z}.

(2.56)

Multiply and divide by P{X = x| pa(X) = z}

P{Y = y|do(X = x)} =
∑
z

P{Y = y,X = x, pa(X) = z}
P{X = x| pa(X) = z}

,

which displays the role of the parents of X in predicting the results of interventions.
The factor P (X = x | pa(X) = z) is the propensity score (also called balancing
score). Note that

• Preintervention: P (x, y, z) = P (z)P (x|z)P (y|x, z)
• Postintervention: P{y, z|do(x)} = P (z)P (y|x, z).
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Z1 X1

Z2

X2 Y

Z1 X1 = x1

Z2

X2 = x2 Y

Figure 2.19: Left: red arrows in the DAG indicate that we can manipulate X1 and X2.
Right: resulting DAG after manipulation, forcing X1 and X2 to take the values x1 and
x2, respectively. By doing so, the arrows pointing to X2 are removed.

Combining preintervention and postintervention we obtain

P{z, y|do(x)} = P (z)P (y|x, z) = P (z)
P (x, y, z)

P (z)P (x|z)
=
P (x, y, z)

P (x|z)
.

This means that P (x|z) is all we need to know in order to predict the effect of an inter-
vention do(x) from nonexperimental data governed by the distribution P (x, y, z).

Finally, the postintervention distribution can be generalized to multiple interventions.
As an example, consider the DAG of on the left side of Figure 2.19 for the relationships
in V = {Y, Z1, Z2, X1, X2}. Suppose we intervene to fix X1 and X2 to x1 and x2, as
shown on the right side of Figure 2.19. The postintervention distribution of V is given
by

P{z1, z2, y | do(x1, x2)} = P (z1)P (z2|x1, z1)P (y|x1, x2, z2),

which allows us to extend the adjustment formula in Equation (2.55) to multiple inter-
ventions.

P{y | do(x1, x2)} =
∑
z2

∑
z1

P (z1)P (z2|x1, z1)P (y|x1, x2, z2) (2.57)

The expression in Equation (2.57) is in agreement with G-computation formula pro-
posed by Robins (1986), which is a generalization derived from a more complicated
set of assumptions on counterfactuals. This formula dictates an adjustment for Z2 that
might be affected by a previous exposure variable, say X1 (Pearl, 2010).

How do we choose among different competing causal models? The answer to this
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2.5 Causal Inference

question can be given in two steps:

1. The first part is to make a statement about the plausibility of the effect of X on
Y . When we have several competing causal models we should organize them
in a compact representation and see whether they agree or not with a certain
causal query, e.g. there is an effect of X on Y . If they do agree, then we can
make a strong causal statement of the exposure-effect relationship we are trying
to address.

2. Once having made a statement about X having an effect on Y , we are inter-
ested in an estimate of the size of such effect. We can make a subset of the
competing models that agree on such query and compare their performance on
the data. Penny et al. (2004) describe the use of Bayes factor (Kass & Raftery,
1995) for comparing dynamic causal models. Penny (2012) provides some ev-
idence from simulation studies of the performance of AIC, BIC and variational
Free Energy (based on the Kulback-Leibler divergence) for selecting competing
causal models. The estimated magnitude of the effect of X on Y will be given
by the estimate of the selected model.
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Chapter 3

Joint models of longitudinal and
time-to-event data

In follow-up studies usually different types of outcomes are collected for each sample
unit, which may include multiple longitudinal repeated measures and the time until
an event of particular interest occurs. The research questions of interest are typically
formulated for separate analyses of the recorded outcomes, nonetheless sometimes due
to the characteristics of the data generating process of the phenomena under study, joint
modelling of the different outcomes is more convenient. In this thesis the focus is on
joint modelling longitudinal measures of a quantitative outcome, recurrent events and
a terminal event.

In Sections 2.2.1 and 2.1.3 we introduced the challenges in survival analysis mod-
els with time-varying covariates and missing data in longitudinal studies that moti-
vate joint modelling longitudinal and time-to-event data. In Sections 3.1 and 3.1.4
we explaine how by joint modelling the longitudinal and time-to-event outcomes it
is possible to accommodate endogenous time-varying covariates in survival analysis
models and to account for the bias induced by data missing not at random in longitu-
dinal studies. However, there are other situations in which joint outcome modelling is
important.

In some cases the time-to-event outcome does not refer to death, but to an event that
causes a major change in the dynamics of the quantitative outcome and this gives rise
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to research questions and features of the data for which joint modelling is necessary.
For instance:

• Prostate specific antigens (PSA) are used for monitoring patients treated for
prostate cancer. If cancer relapse occurs, the dynamics of PSA changes because
of the set-up of new treatments. In this case the relevant event is relapse.

• CD4 and HIV viral load are used for monitoring HIV patients. These two mark-
ers change dramatically after switching to the AIDS stage or after the initiation
of antiretroviral treatment. In this context, the relevant event is the change of
treatment.

In these two examples, as the event status (relapse or change of treatment) changes the
dynamics of the quantitative response changes as well, causing its distribution after the
event to be different from its distribution before the event. Joint modelling allows to
estimate the quantitative response change over time conditionally on the time of the
event.

Often interest lies in exploring the joint distribution of a longitudinal and time-to-
event outcome to understand how they relate to each other. For instance, Ibrahim et al.

(2010) discuss the importance of joint modelling quality of life (QOL) and mortality in
cancer patients since one might argue that for a patient, improvement in QOL is often
more important than any modest survival benefit in treatment decisions. Therefore, it
is of great interest in cancer clinical trials to characterize the association between time-
to-event and QOL through joint modelling and to understand the tradeoffs between
QOL and survival. A specific treatment protocol with chemotherapy/radiotherapy may
prolong survival or relapse, but the QOL in that prolonged period may be poor, and
thus the clinician must decide whether such a benefit is worth it for the patient.

Several approaches have been proposed for the statistical analysis of joint models for
longitudinal and time-to-event data, which can be grouped in likelihood maximization
and Bayesian methods. Two types of joint models have been proposed based on likeli-
hood maximization: Shared Random Effects Joint Models (SREJM) and Latent Class
Joint Models (LCJM), combine a linear mixed model for the evolution for the longi-
tudinal outcome and a survival model for the time-to-event outcome. The difference
between these two alternative models is the latent structure that defines the association
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3.1 Shared Random Effects Joint Model for Longitudinal and Time-to-Event
Data

between the two outcomes. In a SREJM a function of the random effects is introduced
as an explanatory variable in the survival submodel. In the LCJM the population is
assumed to be heterogeneous but comprised of subpopulations with different patterns
of change for the longitudinal outcome and different risk profiles for the time-to-event
outcome. Commenges & Jacqmin-Gadda (2015). Hickey et al. (2016) and Hickey
et al. (2018) provide recent review for the implementation of joint models for longitu-
dinal and time-to-event outcomes, including the estimation approaches utilized. This
thesis uses the Shared Random Effects Joint Model since it is the approach most widely
used.

3.1 Shared Random Effects Joint Model for Longitudi-
nal and Time-to-Event Data

Let Ti denote the recorded failure time for the ith subject (i = 1, . . . , n), which is
taken to be the minimum of the “true” event time, T ∗i , and the censoring time, Ci, that
is, Ti = min(T ∗i , Ci). Denote the event indicator by δi = 1(T ∗i ≤ Ci), where 1(z)

is the indicator function taking the value of 1 if z is true, and 0 if z is false. Let yi(t)
denote the observed value of the longitudinal outcome for subject i at time t, which
is an error prone version of the true and unobservable mi(t) (See Chapter 1 for the
relationship between hypothetical constructs, measurements and measurement error).
This is,

yi(t) = mi(t) + εi(t),

where εi(t) denotes the measurement error.

In studies with longitudinal data, yi(t) is not measured continuously at every time t,
but only at specific follow-up time points tij, j = 1, . . . , ni, i = 1, . . . , n, which
might be different for each subject. We will denote by yij the value of the j th repeated
measure of the longitudinal outcome for subject i taken at time point tij . Hence the
vector of observed repeated measures of the longitudinal outcome for subject i consists
of yi = {yij; j = 1, . . . , ni}. Figure 3.1 illustrates what these data would look like (•)
for two hypothetical subjects: of the longitudinal outcome and died shortly after the
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Figure 3.1: Illustration of longitudinal and time-to-event data of two fictitious subjects.
Subject 1 (left) has 6 repeated measures of the longitudinal outcome (•) and died at
time t∗; Subject 2 (right) has 10 repeated measures (•) and is alive by the censoring
time C.

sixth measurement at time t∗ (left), and Subject 2 provided 10 repeated measures and
was still alive by the administrative censoring time C.

In the joint modelling framework it is conjectured that the longitudinal process, mi(t)

is directly associated with the hazard rate hi(t) of a terminal event (or time-to-event
outcome). The intuitive idea behind joint models for longitudinal and time-to-event
data is depicted in Figure 3.2 (Rizopoulos, 2012).

The left panel of Figure 3.2 shows the true and unobservable trajectory of the longi-
tudinal outcome mi(t) (- -) and the repeated measures of its noisy version, yij (•),
taken at time-points tij . In the extended Cox model with yi(t) being a time-varying
covariate, estimates of hi(t) (–•–) are based on the crude repeated measurements (yij

under the assumption that yi(t), remains constant between consecutive measurements.
The effect of measurement error on the hazard rate can be seen by comparing the esti-
mates of hi(tij) based on yij against the true unobserved hazard rate (—) on the right
panel. Moreover, when yij is an endogenous time-varying covariate in a survival anal-
ysis model and there is interest in predicting the hazard all along the follow-up period
(0 ≤ t ≤ t∗), it is important to know its value at all times, t, and not only at the data
collection time points, tij . Thus we need to be able to reconstruct the complete longi-
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Figure 3.2: Longitudinal outcome process (- - true & unobserved, • observed and —
estimated) and hazard function (–•– Cox model, - - evaluated at the true parameters
and — estimated with joint model).

tudinal history for each subject,Mi(t). The joint modelling framework postulates the
simultaneous estimation of the parameters of both hazard rate and longitudinal out-
come process. The longitudinal outcome trajectory, Mi(t), is estimated by a linear
mixed model (— left panel) to account for measurement error. By doing so it is pos-
sible to relax the assumption of piecewise constant time-varying covariates and it is
possible to estimate both longitudinal outcome and hazard rate at all t and correct for
the effect of measurement error on the hazard (— in right panel).

In addition to data for the longitudinal and time-to-event outcomes, data about baseline
and possibly time-varying covariates are often collected. Let xi(t) be the p-vector of
baseline covariates (possibly time-varying) of subject i at time t associated to the fixed
effects longitudinal outcome, and zi(t) the covariates associated with a q-vector of
random effects. The same as for yi(t), covariate data are typically known for specific
time-points, tij, j = 1, . . . , ni. We will denote by xij and zij the values of the covariate
vectors at the specific time-point tij . DefineXi as the ni×p fixed effects design matrix
of subject i conformed by stacking the ni vectors x>ij , and similarly the ni × q random
effects design matrix Zi conformed by the ni vectors z>ij . Let wi be a vector of baseline
covariates associated to the time-to-event outcome. For simplicity, in this thesis we
will consider wi to be time-independent, although this is not strictly necessary and wi

may contain exogenous time-varying covariates. The vectors xi(t) and wi might have
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covariates in common.

The joint modelling framework for longitudinal and time-to-event data is based on the
fundamental assumption that the two outcomes are conditionally independent given
the random effects. It requires the specification of a regression submodel for each
outcome, a covariance structure for random effects which are assumed to act in both
submodels, and link functions connecting both submodels. Equations (3.1a)–(3.1b) de-
scribe the standard joint model for a longitudinal and a time-to-event outcome.

yi(t | bi)
(Longitudinal)

= mi(t) + εi(t) = x>i (t)β + z>i (t)bi + εi(t)

hi(t | bi)
(Terminal)

= h0(t) exp
{
w>i γ + [g (bi, t)]

> η
}
.

(3.1a)

(3.1b)

where εi(t)
iid∼ N (0, σ2

ε) for all t and all i is the within-subject measurement error as-
sumed independent and normally distributed with constant variance σ2

ε . The vectors
bi ∼ Nq(0, B) are the subject-specific random effects assumed to follow a multivariate
normal distribution centered at zero with covariance matrix B. We assume that mea-
surement error and random effects are independent, εi(t) ⊥ bi, and that the repeated
measures and the time-to-event outcomes are conditionally independent given the ran-
dom effects, yi ⊥ {Ti, δi} | bi. The baseline hazard, h0(t) is a positive real-valued
function.

Equation 3.1a describes the linear mixed model formulation of the longitudinal out-
come of subject i, where mi(t) = x>i (t)β + z>i (t)bi represents the true value of the
longitudinal outcome at time t. Here, yi(t),mi(t) and εi(t) are scalars, and xi(t) and
zi(t) are column vectors. The vectors x>i (t) and zi(t) have associated regression coef-
ficients β and bi, respectively.

Equation 3.1b describes the regression submodel for the hazard rate of of a time-to-
event outcome, where wi is the vector of baseline covariates for subject i with as-
sociated vector of regression coefficients γ, and h0(t) denoting the baseline hazard
function. The additional term g(bi, t) represents the form of the association between
the two outcomes, where the function g is the link function, possibly vector valued.
Any function of the random effects, bi can be considered and it is chosen depend-
ing on the context and purpose of the study (Commenges & Jacqmin-Gadda, 2015).
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The strength of such association is quantified by the regression coefficient’s vector η.
There are no restrictions for g and in practice the identity function is often considered.
The most important part of the link function are the random effects because of the
conditional independence assumption of joint modelling. In Section 3.1.1 we discuss
common choices for the link function.

3.1.1 Link Function

The link function that connects the marker with the survival outcomes could be in
principle any function of the random effects, bi, and the fixed effects. Some examples
are the following:

• g(bi, t) = bi. The risk of event depends only on the individual random effects.
This is the most common link function.

• g(bi, t) = mi(t) = xi(t)β + zi(t)bi. This function is also a commonly used.
It assumes that the instantaneous risk of event at t depends on the longitudinal
outcome at t free of measurement error.

• g(bi, t)
> =

(
mi(t),

d
dt
mi(t)

)
. It assumes dependence of the terminal event on

the current value and the trend. For example, the risk of prostate cancer relapse
depends on the level of a biomarker and its most recent change.

• g(bi, t) = zi(t)bi. Assumes that the event risk at t is a function of the individual
deviation of the longitudinal outcome at t from the population average.

3.1.2 Baseline Hazard

In the PH Cox model, it is not required to specify the baseline hazard and in prac-
tice it is customary left completely unspecified. In the joint modelling framework,
it is important to estimate the baseline hazard to avoid underestimation of the stan-
dard errors of the parameter estimates (Hsieh et al., 2006; Rizopoulos, 2012). One
option is to assume a baseline hazard governed by a known parametric distribution,
for instance Weibull or Gamma. Another alternative is a flexible or nonparametric
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specification of the baseline hazard, being the most common piece-wise constant and
spline-approximated hazards.

3.1.3 Estimation

The unknown quantities of the joint model formulation that need to be estimated
are

θ =
(
h0(t),β,γ,η, σ2

ε ,vech(B)
)
.

Suppose that data, D = {ti, δi,yi; i = 1, . . . , n}, of both longitudinal and time-to-
event outcomes are collected on subjects i = 1, . . . , n. The estimation of θ is based on
maximum likelihood principles by maximizing the log-likelihood function of the joint
distribution of the longitudinal and the time-to-event outcomes, {yi, ti, δi}:

`(θ|D) =
n∑
i=1

log

(∫
Rq
f(yi | bi)f(ti, δi | bi)f(bi)dbi

)
, where

f(yi | bi) = (2πσ2
ε)
−ni/2 exp

{
− 1

2σ2
ε

‖yi −Xiβ − Zibi‖2

}
,

f(ti, δi | bi) = [hi (ti | Mi(ti))]
δi Si (ti | Mi(ti)) ,

f(bi) = (2π)−q/2|B|−1/2 exp

{
−1

2
‖B−1/2bi‖

2
}
,

(3.2)

(3.2a)

(3.2b)

(3.2c)

with

hi (ti | Mi(ti)) = h0(ti) exp
{
w>i γ +

[
g
(
x>i (ti)β + z>i (ti)bi

)]>
η
}
,

Si (ti | Mi(ti)) =

∫ ti

0

hi (t | Mi(ti)) dt.

Note that in the log-likelihood of Equation (3.2), the hazard rate hi(ti|Mi(ti)) de-
pends on the current value of mi(t) through g(mi(t)). However, the survival function
Si(ti|Mi(ti)) depends on knowing the whole trajectory of the longitudinal outcome
up to time ti, i.e. Mi(ti). This shows the need for recovering the full path of the lon-
gitudinal outcome which is approximated by the linear mixed model (Equation (3.1a))
in the joint modelling framework.
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Several estimation approaches have been proposed. For instance, Wulfsohn & Tsiatis
(1997) used the Expectation-Maximization (EM) algorithm Dempster et al. (1977).
(Rizopoulos, 2012) proposed a hybrid optimization procedure of the log-likelihood
function of Equation (3.2) starting with the EM algorithm (Dempster et al., 1977) for
a fixed number of iterations and switching to a quasi-Newton algorithm until conver-
gence. This procedure is implemented in function jointModel() of the R library
JM. Rondeau et al. (2003, 2007) followed a penalized maximum likelihood approach
using the Marquardt algorithm (Marquardt, 1963) to optimize the likelihood function,
which combines the Newton–Raphson and steepest descent algorithms, and it is imple-
mented in the frailtyPenal() function of the R package frailtypack (Ron-
deau et al., 2012).

Markov chain Monte Carlo methods (Gibbs sampling and Metropolis–Hastings algo-
rithms) have been employed for Bayesian estimation of joint models. See for instance,
Fawcett & Thomas (1996), R. Brown & G. Ibrahim (2003), Ibrahim et al. (2004), Das
et al. (2012) and Rizopoulos (2014).

As discussed in Section 2.2.1 with endongenous covariates the partial likelihood func-
tion of the Cox model is no longer valid and the regression coefficient estimates are
biased. To illustrate this point and the need of joint modelling to obtain unbiased re-
gression coefficient estimates, consider as an example Figure 3.3 produced with 100
simulated data sets from the joint model described by Equations (3.3a)–(3.3b), where
the link is g(bi, t) = mi(t). Appendix B.1 describes the full simulation scheme and
contains plots of other scenarios.

M =


yi(t | bi)
(Longitudinal)

= (β0 + bi0) + (βt + bi1)t+ w>i β︸ ︷︷ ︸
mi(t)

+εi(t)

hi(t | bi)
(Terminal)

= h0(t) exp{w>i γ + ηmi(t)}

(3.3a)

(3.3b)

We estimated η, the regression coefficient of the time-varying covariatemi(t) by fitting
(a) the extended Cox model with only the time-varying covariate, (b) the extended
Cox model adjusting for wi, and (c) the joint model. The boxplots (top left) are the
100 estimates η̂ of all the simulations (univariate Cox model, Cox model adjusting for
wi and joint model) with a horizontal line indicating the true value of the regression
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coefficient η. The vertical lines of the other three plots represent the range of the 95%
confidence intervals of η̂ estimated with the three fitted models. Notice on the boxplots
and the 95% interval plots of the Cox model’s estimates (top right and bottom left) that
the estimates η̂ are biased (true value represented by - -), whether or not we adjust for
wi and their interval estimates have coverage probability of 0. On the other hand, the
estimates η̂ of the fitted joint model are unbiased and their 95% confidence intervals
have coverage probability of 0.97. Confidence intervals are calculated based on the
asymptotic properties of the estimators η̂ ± 1.96 se(η̂).

Cox unadjusted Cox adjusted for w Joint Model

−0.14

−0.12

−0.10

−0.08
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−0.04

−0.02

Point estimate of η in 100 simulations, scenario = 3
η

0 20 40 60 80 100

−0.15

−0.10

−0.05

0.00

Extended Cox: 95% CI of η (unadjusted)

Simulation

η
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Extended Cox: 95% CI of η (adjusted for w)

Simulation

η
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−0.15
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Joint model: 95% CI of η

Simulation

η

Figure 3.3: The boxplot shows the parameter’s estimates of η from 100 simulated
datasets, obtained from fitting the extended Cox model (unadjusted and adjusted for
baseline covariates) and a joint model with - - - drawn at the true value. Notice that
the estimates from the Cox model are biased. The vertical lines on the other three
plots represent the 95% interval estimates of η (| if overlaps with the true value and
| otherwise). In these 100 simulations the interval estimates obtained from the Cox
model are far from the true value of η and none of the confidence intervals covers the
true value, while 97 of the confidence intervals obtained from the joint model overlap
with the true value of η.
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Several extensions have been proposed to the joint model of Equations (3.1a)–(3.1b)
including several families of parameterization of the association between the longitudi-
nal and time-to-event outcomes (for instance lagged and cumulative effects), replacing
the relative hazard model by competing risk or accelerated failure time models, joint
models for multiple time-to-event and longitudinal outcomes. See for instance Hickey
et al. (2018), Hickey et al. (2016) and Rizopoulos (2012), for an overview of these
extensions. Li & Luo (2017) proposed a functional joint model for longitudinal and
time-to-event data to account for functional predictors in both longitudinal and sur-
vival submodels. These topics are out of the scope of this thesis and we mention them
only to provide with a scope of possible extensions of joint modelling longitudinal and
time-to-event data.

3.1.4 Connection with the missing data framework

From the joint modelling perspective the missing data process of longitudinal data
can be interpreted as the occurrence an individual level event that corresponds to an
interruption of the longitudinal outcome process. This is because either further mea-
sures can no longer be collected or their distribution changes after the event has oc-
curred.

For each subject, i (i = 1, . . . , n), let yi denote the corresponding complete data
response vector, as defined in Section 2.1.3. Define yo

i and ym
i as the observed and

missing parts of the longitudinal response vector, respectively, as follows

yo
i =

{
yi(t

o
ij) : toij ≤ Ti, j = 1, . . . , ni

}
and ym

i =
{
yi(t

m
ij) : tmij ≤ Ti, j = 1, . . . , n∗i

}
,

where yo
i contains the longitudinal outcome measures of subject i just before the event

time, and ym
i represents the measurements that would have been collected until the end

of the end of the study, n∗i ≥ ni.

Following the arguments of Section 2.1.3 the distribution of the dropout mechanism
can be expressed as the conditional distribution of the time-to-event Ti given the com-
plete vector of longitudinal responses yi. Due to the conditional independence of
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the longitudinal outcome and the time-to-event given the random effects, the dropout
mechanism distribution is given by Equation (3.4).

f(ti | yo
i ,y

m
i ;θ) =

∫
bi

f(ti,bi | yo
i ,y

m
i ;θ)dbi

=

∫
bi

f(ti | bi,yo
i ,y

m
i ;θ)f(bi | yo

i ,y
m
i ;θ)dbi

=

∫
bi

f(ti | bi;θ)f(bi | yo
i ,y

m
i ;θ)dbi

(3.4)

Notice that the dropout mechanism distribution depends on yo
i through the posterior

distribution of the random effects, f(bi | yo
i ,y

m
i ;θ), which means that joint models

correspond to a MNAR mechanism.

A closer inspection of Equation (3.4) reveals that the key component behind the attri-
tion mechanism in joint models is the random effects, bi,

Longitudinal yi(t | bi) = x>i (t)β + z>i (t)bi︸ ︷︷ ︸
mi(t)

+εi(t)

Terminal hi(t | bi) = h0(t) exp
{
w>i γ + ηLmi(t)

}
.

Under this joint model, the longitudinal outcome and terminal event submodels share
the same random effects, so joint model M belongs to the class of shared-parameter
models. The likelihood to dropout is related to the longitudinal outcome profiles.

A relevant feature of joint models of longitudinal and time-to-event data is the con-
nection of the association parameter, ηL, to the type of missing data mechanism. In
particular, ηL = 0 corresponds to MCAR mechanism because once conditioning on
available covariates, the dropout process does not depend on ym

i or yo
i . Moreover,

when ηL = 0 the parameters of the two submodels are disjoint sets, so the joint distri-
bution of the dropout and longitudinal process can be factorized as

f(ti, δi,yi;θ) = f(ti, δi;θt)f(yi;θy,θb)

= f(ti, δi;θ)

∫
bi

f(yi | bi;θy)f(bi;θb)dbi,

which implies that θt and θy can be estimated by separate models (Rizopoulos, 2012).
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It is important to note that in practice, missingness can also occur because of censoring.
The formulation of the joint model likelihood function is based on the assumption
that the censoring process may depend on the history of the observed longitudinal
outcome and covariates up to time t, but is independent of future measurements of the
longutidinal outcome, i.e. we assumed that censoring is a MAR mechanism.

An additional feature of the shared-parameter models framework is that they can han-
dle also intermittent missingness. Rizopoulos (2012). Thomadakis et al. (2019) ex-
plores in detail the consequences of biased estimates produced by data missing not
at random and its connection with the joint modelling framework, exploring different
submodels for the time-to-dropout. Their suggested parameterization of a joint model
to completely account for the bias of missing data considers adding in the time-to-
dropout submodel the current value of the longitudinal outcome mi(t) as well as the
random effects bi.

3.2 Prediction with joint models of longitudinal and time-
to-event data

By joint modelling longitudinal and time-to-event outcomes it is possible to gain a
better understanding of the dynamics of how the two outcomes interact with each other
since this is explicitly modelled through, η, the coefficient of the link function of the
random effects, g. Moreover, it is possible to obtain subject-specific predictions which
are relevant for instance in medicine. In order to make individualized predictions with
a joint model a prediction of the random effects is required (Rizopoulos, 2012). It is
convenient to distinguish between in-sample and out-of-sample predictions (discussed
in Section 2.3) since for the latter sometimes it might not be available the required data
to predict the random effects.

3.2.1 Prediction of the Random Effects.

Suppose we have already estimated θ̂ = (ĥ0(t), β̂, γ̂, η̂, vech(B̂)). Recall from Sec-
tion 3.1 the assumption of conditional independence between the longitudinal and
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time-to-event outcomes given the random effects, and the assumption of normally dis-
tributed random effects with zero mean and covariance matrix B. Prediction of bi is
done by treating θ̂ as known parameters and using the observed data. We can follow an
empirical Bayes approach to derive estimates of the random effects from the posterior
distribution of bi given the observed data:

f(bi | ti, δi,yi; θ̂) =
f
(
bi, ti, δi,yi; θ̂

)
f
(
ti, δi,yi; θ̂

)
=

1

c
f
(
ti, δi | bi; θ̂

)
f
(
yi | bi; θ̂

)
f(bi), (3.5)

where
c =

∫
R

f
(
ti, δi | bi; θ̂

)
f
(
yi | bi; θ̂

)
f(bi)dbi

is a proportionality constant, and f(ti, δi|bi; θ̂), f(yi|bi; θ̂) and f(bi) are the densities
described in Equation (3.2) with the elements of θ replaced by their corresponding
estimate.

This posterior distribution does not have a closed-form solution. According to Hink-
ley & Cox (1979) it is asymptotically normal centred about the mode as ni → ∞.
Rizopoulos (2011) use Markov chain Monte Carlo methods (MCMC) to approximate
this posterior distribution. The predictions of the random effects can be taken to be the
mean or the mode of the posterior distribution.

b̂i =

∫
R
bif(bi | ti, δi,yi; θ̂)dbi

b̂i = arg max
bi

{
f(bi | ti, δi,yiθ̂)

}
(3.6)

(3.7)

Other numerical integration techniques can be used as an alternative to MCMC, for in-
stance the Gauss quadrature technique, available for instance in the R function integrate()
and cubature::adaptIntegrate.
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3.2.2 In-Sample Predictions (Forecasting) for the Longitudinal Out-
come and the Survival Probabilities.

An appealing characteristic of the joint model is the possibility to predict how individ-
ual response trajectories change over time and to make dynamic predictions of both
longitudinal and time-to-event outcomes as more data is being collected. Figure 3.4
illustrates the idea that fitting a joint model will allow to make subject-specific pre-
dictions beyond tini . We can predict the survival probability for the whole follow-up
period and also the residual survival probability, given survival up to tini . Figures 3.4a–
3.4f illustrate that as more repeated measures are taken (×), its in-sample prediction
and forecast are updated (—), allowing for the prediction of the conditional survival
probability given survival up to the most recent data collection point (—).
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Figure 3.4: (×) are repeated measures of the longitudinal outcome of a fictional sub-
ject, yij at specific time points, ti1, . . . ti6; (—) is the prediction ŷi(t) based on the
available data up to tij,j=1,...,6 and (—) the prediction of the residual survival probabil-
ity π̂i(u|t), u > t ≥ tini given survival up to tij . This illustrates the idea that by joint
modelling both outcomes are dynamically forecasted as data is being collected at time
points tij, j = 1, . . . , ni.

Suppose that we are interested in using θ̂ = (ĥ0(t), β̂, γ̂, η̂, vech(B̂)) to forecast the
longitudinal outcome and the survival probability for subject i who has provided a set
of longitudinal measurements yi = (yi1, . . . , yini) for whom it is known their survival
status up to time τi ≥ tini . The expected value of the longitudinal outcome at time
u > τi for this subject given their observed responses up to time tini is given by

ωi(u | τi) = E
{
yi(u) | T ∗i > τi,yi,D; θ̂

}
, u > τi ≥ tini .

Estimation of ωi(u | τi) can be done by noting that this expectation can be expressed
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as

ω̂i(u | τi) =

∫
R
E
{
yi(u) | T ∗i > τi,yi,bi,D; θ̂

}
f(bi | T ∗i > τi,yi; θ̂)dbi

=

∫
R
E
{
yi(u) | bi,D; θ̂

}
f(bi | T ∗i > τi,yi; θ̂)dbi

=

∫
R

{
x>i (u)β̂ + z>i (u)bi

}
f(bi | T ∗i > τi,yi; θ̂)dbi

= x>i (u)β̂ + z>i (u)

∫
R
bif(bi | ti, δi,yi; θ̂)dbi

= x>i (u)β̂ + z>i (u)b̂i, (3.8)

where b̂i can be predicted as described in section 3.2.1.

According to the natural dependence between the longitudinal and time-to-event out-
comes in joint models, a subject that provides longitudinal measurements up to time
tini , implies survival up to this time point. Therefore, it is more relevant to focus on the
conditional probabilities of surviving time u > τi given survival up to τi ≥ tini:

πi(u | τi) = Pr {T ∗i ≥ u|T ∗i > τi,wi,D;θ,bi} (3.9)

The conditional independence assumption between the two outcomes allows us to ex-
press the residual survival probability in the following way (conditioning on wi is
assumed but omitted from the notation):

Pr {T ∗i ≥ u | T ∗i > τi,yi,D;θ}

=

∫
bi

Pr {T ∗i ≥ u, T ∗i > τi,yi,bi,D;θ}
f(T ∗i > τi,yi;θ)

dbi

=

∫
bi

Pr {T ∗i ≥ u, | T ∗i > τi,yi,bi,D;θ} f(bi | T ∗i > τi,yi;θ)dbi

=

∫
bi

Si {u | Mi(u,bi,θ);θ}
Si {τi | Mi(τi,bi,θ);θ}

f(bi | T ∗i > τi,yi;θ)dbi (3.10)

where S is the survival function and t,Mi(t) is the trajectory of the longitudinal out-
come up to time τi which is approximated by the linear mixed model.

Based on this expectation the estimate of πi(u | t) can be obtained using the empirical
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Bayes estimate for bi is (Rizopoulos, 2011) as follows

π̂i(u|τi) =
Ŝi(u | b̂i; θ̂)

Ŝi(τi | b̂i; θ̂)
+O (1/ni(t)) , (3.11)

where

Ŝi(t | b̂i; θ̂) = Ŝ0(t)exp(w>i γ̂+[g(b̂i,t)]
>η̂) (3.12)

is the estimated survival probability at time t ≥ 0, θ̂ denotes the maximum likelihood
estimates, b̂i the prediction of the random effects for subject i and ni(t) the number of
longitudinal responses for subject i by time t.

This provides a method to obtain point estimates of in-sample predictions. In order
to derive prediction intervals for the longitudinal outcome and the (residual) survival
probabilities we can evaluate Equations (3.8), (3.11) and (3.12) at the MCMC samples
of the random effects, b̂(`)

i , ` = 1, . . . , L,

ω̂
(`)
i (u | τi) = x>i (t)β̂ + z>i (t)b̂

(`)
i

π̂
(`)
i (u|τi) =

Ŝi(u | b̂(`)
i ; θ̂)

Ŝi(τi | b̂(`)
i ; θ̂)

Ŝ
(`)
i (t) = Ŝ0(t)exp(w>i γ̂+[g(b̂i,t)]

>η̂), t ≥ 0,

(3.13)

(3.14)

(3.15)

3.2.3 Out-of-Sample Predictions for the Longitudinal Outcome and
the Survival Probabilities.

Suppose we want to use the joint model estimates, θ̂, to predict both yi(u) and πi(u|t), u >
τi ≥ tni for subjects of a totally new data set, DN. For simplicity, assume all sub-
jects in DN provide the set of covariates required to make predictions with θ̂, i.e.
xi(t), zi(t),wi.

Some subjects in DN might provide no longitudinal outcome measurements at all, oth-
ers might provide only one longitudinal measurement at baseline (yi1 at ti1 = 0) and
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3.2 Prediction with joint models of longitudinal and time-to-event data

the rest provide a series of repeated measurements yi1, . . . , yini at ti1, . . . , tini . In gen-
eral, we can base these predictions on the method summarized by Equations (3.8),
(3.11) and (3.12), which require the prediction of the random effects, b̂i. Nonetheless,
because subjects in the out-of-sample data set might have no longitudinal outcome
measures, the estimation of the random effects requires special attention as this is
based on the posterior density described in Equation (3.5).

Predictions for a new subject with no longitudinal measurements.

In this case it is not possible to evaluate the density of the longitudinal outcome,
f(yi | bi), in the posterior density of equation 3.5. So an individualized prediction
for bi cannot be obtained. In order to predict the random effects we simply plug in
to Equations (3.8) and (3.9) the mean of the random effects, which by assumptions is
zero.

If it is known that such a subject has survived up to time τi > 0, prediction of the
residual survival probability for u > τi might be relevant. Predictions in this case can
be obtained by

ω̂i(u | τi) = x>i (u)β̂

π̂i(u | τi) =
Ŝi(u; θ̂)

Ŝi(τi; θ̂)

Ŝi(t) = Ŝ0(t)exp(w>i γ̂+[g(b̂i,t)]
>η̂), t ≥ 0,

(3.16)

(3.17)

(3.18)

and taking the corresponding (α/2, 1 − α/2) quantiles, where α is the significance
level.
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3.2 Prediction with joint models of longitudinal and time-to-event data

Prediction for a new individual that has one or more longitudinal measurements
available.

If it is the case that the new subject we want to make predictions for has at least one
longitudinal outcome measurement, we can follow the method described by Equations
(3.8), (3.11) and (3.12) to forecast the longitudinal outcome and the (residual) survival
probability, and Equation (3.5) to predict the random effects. The elements of the pos-
terior of the posterior distribution of the random effects are the following, depending
on whether one or more longitudinal outcome measures are available (yi1, . . . , yini)

and the last time such a subject is known to be event-free (τi ≥ tini ≥ 0) and δi = 0,
with φ(·;µ,Σ) being the density of the multivariate normal distribution with mean
vector µ and covariance matrix Σ:

• ni = 1 and τi = 0, i.e. one longitudinal measure at baseline and no further
information beyond this point regarding the event status of this subject.

f(yi1 | bi; θ̂) = φ(yi1; x>i1β̂ + z>i1bi, σ̂
2
ε) Longitudinal (3.19a)

f(τi, δi | bi; θ̂) = hδii (τi)Si(τi) = 1 Terminal (3.19b)

f(bi; θ̂) = φ(bi; 0, B̂) Random Effects (3.19c)

• ni = 1 and τi > 0, i.e. one longitudinal measure at baseline and it is known the
event status of this subject after baseline.

f(yi1 | bi; θ̂) = φ(yi1; x>i1β̂ + z>i1bi, σ̂
2
ε) Longitudinal (3.20a)

f(τi, δi | bi; θ̂) = hδii (τi)Si(τi) Terminal (3.20b)

f(bi; θ̂) = φ(bi; 0, B̂) Random Effects (3.20c)

• ni > 1 and τi ≥ tini , i.e. repeated longitudinal measures are available and it is
known the event status for this subject after the last repeated measure.

f(yi | bi; θ̂) = φ(yi; Xiβ̂ + Zibi, σ̂
2
εIni) Longitudinal (3.21a)

f(τi, δi | bi; θ̂) = hδii (τi; θ̂)Si(τi; θ̂) Terminal (3.21b)

f(bi; θ̂) = φ(bi; 0, B̂) Random Effects (3.21c)
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3.2 Prediction with joint models of longitudinal and time-to-event data

In Chapter 5 we give an example of the mechanism to obtain out-of-sample predictions
in a cross-validation setting for the particular case where the subjects in a “new” data
set have exactly one longitudinal measure at baseline, τi = 0 and the baseline hazard
is modelled parametrically assuming that the time-to-event follows a Weibull(κ, ρ)

distribution.

3.2.4 Accuracy of predictions made with joint models

Information criteria, such as the AIC and BIC are useful to assess the overall pre-
dictive ability of the joint model encompassing both the longitudinal and the time-to-
event outcomes (Rizopoulos, 2012). However, in practice decision making based on
a joint model’s fit could benefit from obtaining predictions for each outcome, and in
such a case it would be of interest to determine how accurately the model predicts
each outcome, as discussed in Section 3 regarding the study of QOL and mortality of
cancer patients in Ibrahim et al. (2010). A specific treatment protocol with chemother-
apy/radiotherapy may extend survival or the time-to-relapse, but when the QOL in that
prolonged is expected to be poor the clinician would be able to asses whether such a
benefit is worth it for the patient. In this sense we consider it is important to assess pre-
diction of joint models by how accurate both longitudinal and time-to-event outcomes
are predicted. In Section 2.3.1 we discussed the use of MSE to assess prediction of the
longitudinal outcome and IBS for the time-to-event.

Rizopoulos (2012) proposed a dynamic approach based on the Receiver Operating
Characteristic Curve (ROC) analysis (Hanley & McNeil, 1982) to assess the ability
of a joint model to classify the subjects based on their event status during a relevant
time period. Commenges et al. (2012) proposed assessing predictions of joint mod-
els with the Expected Prospective-Observed Cross-Entropy (EPOCE) estimator using
prognostic conditional log-likelihood.

Compare predictions of joint models and extended Cox model

In this section we stated the need for joint modelling when the longitudinal outcome
is an internal time-dependent covariate in a Cox model: the regression coefficient es-
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3.2 Prediction with joint models of longitudinal and time-to-event data

timate associated to the time-varying covariate is biased. However, if we set up a
full likelihood for the Cox model (call it marginal Cox model) estimating the baseline
hazard parameters along with the regression coefficients, the fitted values (estimated
survival probabilities) of the marginal Cox model are almost as accurate as those ob-
tained by joint modelling the longitudinal and the time-to-event outcomes. Here we
refer to the in-sample survival probability estimates from baseline (t = 0) to a relevant
time point, say t = ti.

To illustrate this point, consider the following example of simulated data of 500 sub-
jects, simulated from a simple joint model with a random intercept, a random slope
and baseline hazard from the Weibull(κ = 4, ρ = 0.5) distribution:

True :


Longitudinal yi(t | bi0, bi1) = (0.5 + bi0) + (1 + bi1)t︸ ︷︷ ︸

mi(t)

+εi(t)

Terminal hi(t;κ, ρ | bi0, bi1) = h0(t; 4, 0.5) exp {−0.2mi(t)} ,

where (bi0, bi1) ∼ N2(0, B), vech(B) = (2, 0, 0.5), and εi(t) ∼ N (0, 5). The number
of repeated measurements of the longitudinal outcome, ni, ranges from 3 to 25. The
dashed blue lines in the top (right and left) panels of Figure 3.5 show the true longi-
tudinal profiles (assumed unobservable) of two subjects of the simulated data, and the
black dots are the repeated measures, assumed to be measured with error. The mid-
dle (left and right) panels show the hazard rate based on the true longitudinal profiles
(dashed blue line), and the observed repeated measures (black dots). The green line
of the bottom row of Figure 3.5 represents the indicator functions whose value is 1 as
long as the subject is event-free, and zero after the event time.

Fitting the correct joint model to these data we obtain the following estimates, which
are close to the true parameters:

JM :

{
Longitudinal m̂i(t | b̂i0, b̂i1) = (0.59 + b̂i0) + (1 + b̂i1)t+ εi(t)

Terminal hi(t; κ̂
(JM), ρ̂(JM) | b̂i0, b̂i1) = h0(t; 4.15, 0.49) exp {−0.18mi(t)} .

From top to bottom, the solid red lines in Figure 3.5 represent the fitted longitudinal
profiles with the joint model of the two selected subjects, their hazard rate and their
estimated survival probabilities.
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3.2 Prediction with joint models of longitudinal and time-to-event data

By fitting an marginal Cox model, which ignores the the fact that mi(t) is an internal
covariate for the survival analysis model, we get biased estimates, in particular the
regression coefficient of the effect of mi(t)→ hi(t) and κ, the shape parameter of the
baseline hazard:

Marginal Cox :
{

Terminal hi(tij; κ̂
(Cox), ρ̂(Cox)) = h0(tij; 3.74, 0.46) exp {−0.7yi(tij)} .

Full log-likelihood of the marginal Cox model with time-varying covariate y(t) is given
by

`(θ) = log

(
n∏
i=1

ni∏
j=1

[
h0(tij) exp{ηyij + w>i γ}

]δij
exp

{
−
∫ tij

ti(j−1)

h0(s) exp{ηyij + w>i γ}ds

})

=
n∑
i=1

ni∑
j=1

δij
(
log h0(tij) + ηyij + w>i γ

)
−
[
H0(tij)−H0(ti(j−1))

]
exp{ηyij + w>i γ}.

The parameter estimation is done by maximizing this log-likelihood function and this
can be done by any standard optimization routine.

Note that the cumulative hazard for subject i at time t is given by

Hi(t) =
∑
j:tij≤t

∫ tj

ti(j−1)

h0(s) exp{ηyij + w>i γ}ds

=
∑
j:tij≤t

[H0(tij)−H0(tij−1)] exp{ηyij + w>i γ}

= Hi(ti(j−1)) +
[
H0(t)−H0(ti(j−1))

]
exp{ηyij + w>i γ},

with Hi(0) = 0.

Since we estimate as well the parameters of the baseline hazard, we can estimate
Ĥ0(t) at any time t by interpolating Ĥi(t) between the time intervals [ti(j−1), tij), j =

1, . . . , ni, ni+1, with ti0 = 0 and tini+1
= τ , where τ is an arbitrary evaluation time

point, possibly an administrative censoring time. By being able to estimate Ĥi(t) for
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3.2 Prediction with joint models of longitudinal and time-to-event data

all t, the estimated survival probabilities are given by Ŝi(t) = exp{−Ĥi(t)}.

If we compare the IBS computed for the model evaluated at the true parameter values,
the fitted Cox model and the fitted joint model, we can see that their IBS are very close
to each other (multiplied by 100 to facilitate the comparison):

• 100× IBS(True) = 34.68,
• 100× IBS(Cox) = 34.05,
• 100× IBS(JM) = 34.14.

For a closer inspection of the IBS estimates, we analyze the contributions to the IBS
of two subjects of the simulated data. Figure 3.5 shows the data and estimates of two
subjects (left and right), with the longitudinal profiles in the top row, hazard rates in the
middle and survival curves at the bottom. The bottom panel illustrates the contribution
of each individual to the total IBS, calculated as the squared difference between the es-
timated survival probabilities Ŝi(t) (joint model —, Cox model extrapolated between
consecutive time points - -, and survival function evaluated at the true parameters - -),
and the event indicator I(T ∗ > t) (—), integrated over time. Comparing the estimated
survival curves of each fitted model against the survival curve of the model evaluated
at the true parameters, we see that the Cox model underestimates the survival proba-
bilities of both subjects. In terms of prediction error, the joint model does better than
the Cox model for the subject on the left since

10× IBS(JM) = 3.60 < 10× IBS(Cox) = 4.93

(as reference, the error or the model at the true parameters is 10×IBS(True) = 3.43), but
for the subject on the right, the Cox model does better than the joint model since

10× IBS(JM) = 2.12 > 10× IBS(Cox) = 1.65

(10× IBS(True) = 3.73 for model evaluated at the true parameters).

Figure 3.6 summarizes the comparisons of the prediction error between the Cox and
the joint models. Here we computed at a subject level the difference between the IBS
of each fitted model (joint model and Cox model) and the IBS computed with the
true model with red ◦ indicating the subjects for which the joint model has smaller
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Figure 3.5: Longitudinal profiles, hazard and survival curves of two subjects from the
simulated data. Top: true longitudinal profile mi(t) (- -), repeated measures yij (•),
estimated profile with the joint model (—). Middle: hazard function evaluated at the
true parameters - -, hazard estimated with the joint model (—), hazard estimated with
the Cox model (–•–) with interpolation between consecutive time points (- -). Bottom:
Indicator of the event status at time t I(T ∗ > t) (—), survival function evaluated
at the true parameters - -, survival curve estimated with the joint model (—), survival
curve estimated with the Cox model (–•–) with interpolation between consecutive time
points (- -).
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prediction error than the Cox model and black ◦ the other way around (as reference
a 45 degree line is drawn (- -). The table at the bottom of Figure 3.6 is a 2 × 2 table
showing the frequency for each fitted model giving a smaller prediction error than the
true model and the frequency of giving larger prediction error than the true model.
From the plot and table we point out two results:

• The Cox model yields a smaller IBS than the true model in 230 (46%) subjects,
almost as often as the frequency at which the joint model yields a smaller IBS
than the true model which is in 258 (52%) subjects.

• The joint model outperforms the Cox model in terms of prediction error in
270 (54%) subjects, and the Cox outperforms the joint model in 230 (48%) sub-
jects.
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Figure 3.6: The plot shows the difference between the IBS of the true model and each
fitted model (against the joint model on x-axis and against the Cox model on y-axis).
The 45 line - - separates subjects with IBS(Cox) > IBS(JM) (red ◦) from subjects with
IBS(Cox) < IBS(JM) black ◦. The table compares IBS(Cox) and IBS(JM) against IBS(True)

at individual level.

The bottom line is that the fitted values Ŝi(t) produced with the marginal Cox model
are on average almost as good, in terms of IBS, as the fitted values of the joint model.
This suggests that we can still make accurate predictions with the marginal Cox model
if the baseline hazard is also estimated. However, the estimate and interpretation of the
regression coefficient of yij in the Cox mode as the “effect of mi(t) in the hazard of
the event” will be wrong because this estimate is biased.
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3.3 Shared Random Effects Joint Model for Longitudi-
nal, Recurrent and Terminal Events Data

The joint modelling framework is not restricted to longitudinal and terminal event out-
comes, and can be extended to model multiple outcomes simultaneously. For instance,
the repeated measures of a continuous variable, and recurrences of an event both may
be terminated by a major failure event such as death. The dynamics of this situation
can be illustrated by the AIDS study in Abrams et al. (1994), where patients with AIDS
were allocated to two treatment arms and followed-up for a median of 16 months. Dur-
ing the follow-up period, CD4 cell count was repeatedly taken on the patients and they
were also monitored for the development of new or recurrent opportunistic disease,
which means disease progression. The assumed relationship between these variables is
depicted in Figure 3.7. It is conjectured that lower CD4 count is associated with higher
risk of opportunistic disease, which in turn is associated with a higher risk of death, and
lower CD4 count is associated with a higher risk of death from HIV-unrelated causes
(Obel, 2012).

Opportunistic disease

CD4 Death

(Recurrent)

(Longitudinal) (Terminal)

Figure 3.7: Hypothesized relationship between CD4 cell count, recurrences of oppor-
tunistic disease and mortality.

A usual assumption when analyzing data from longitudinal studies is that repeated
measures of the outcome are collected at noninformative observation times, i.e. they
are independent and thus the observation times carry no information about the repeated
measures. This assumption is valid in clinical trials with fixed observation times, or in
observational studies with random observation times. However, if observation times
are somehow associated to the repeated measures, ignoring this feature may produce
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selection bias due to possible dependence of the observation times and the marker. For
example, Liu et al. (2008) study the cost accrual process described by recurrent hos-
pital visits in the presence of potential death. Patients in advanced stages of a disease
might visit the hospital more often, and their health status measured by biomarkers at
each visit is worse. Therefore, abnormal values of the biomarkers are overrepresented
and normal values underrepresented, resulting in a selection bias. By joint modelling
of the cost accrual process (longitudinal outcome), the recurrent visits to the hospital
and death it is possible to address both biases induced on the one hand by the depen-
dence between the recurrent events process and the costs-accumulation process, and
on the other hand the informative censoring. Finally, sometimes interest lies in ex-
ploring the joint distribution of a longitudinal outcome, a recurrent event a terminal
event. To address this kind of problem in the joint modelling framework, we require to
specify a submodel for 1) the longitudinal outcome, 2) the recurrent events and 3) the
terminal-event.

Assume that the evolution in time of a quantity of interest, y, can be represented by a
continuous-time Gaussian stochastic process {y(t), t > 0}. Denote by yij an observa-
tion of this process at time tij for subject i, i = 1, . . . , n, and occasion j, j = 1, . . . , ni.
Assume also a recurrent event process that is thought to be related to the continuous-
time process, and a terminal event presumed to be associated to both the continuous-
time and the recurrent event processes.

Let T ∗ik be the kth recurrent event time for subject i, (k = 1, . . . , Ki), Ci a censoring
time (different from the terminal event), T ∗i the time for the terminal event (for example
the time to death).

Figure 3.8 illustrates how the outcome data would look like in the three outcome joint
modelling setting. This diagram is similar to Figure 3.1, but with recurrent event times
added and shown as RR

k and identified with + on the time axis. Note that the repeated
measures time points need not be the same as the recurrent event times.
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Figure 3.8: Subject 1 (left) has 6 repeated measures of the longitudinal outcome (•),
8 recurrent events at times tR1 , . . . , t

R
8 , and died at time t∗; Subject 2 (right) has 10 re-

peated measures (•), 6 recurrent events at times tR1 , . . . , t
R
6 and is alive by the censoring

time C.

The observed data of the recurrent events corresponds to

Tik = min(T ∗ik, Ci, T
∗
i ),

δRik =1(Tik = T ∗ik),

(3.22a)

(3.22b)

where δRik is a binary indicator of censorship for the recurrent event process. That
is,

δRik =

{
1 if time T ∗ik corresponds to an observed recurrent event,
0 if time T ∗ik corresponds to either censored or terminal event time

The last follow-up time for subject i, Ti, is either a censoring time or a death time,
corresponding to

Ti = min(Ci, T
∗
i ),

δi =1(Ti = T ∗i ),

(3.23a)
(3.23b)

where δi is the binary indicator of censorship for the terminal event process. That
is,

δi =

{
1 if time T ∗i corresponds to death time,
0 if time T ∗i corresponds to censoring time.

117



3.3 Shared Random Effects Joint Model for Longitudinal, Recurrent and
Terminal Events Data

So the data we would observe in a sample of n subjects is

D =
{
Tik, δ

T
ik, Ti, δi, yij, for j = 1, . . . , ni, k = 1, . . . , Ki and i = 1, . . . , n

}
.

Similarly to the specification of a joint model of a longitudinal outcome and a terminal
event, in the case where additionally a recurrent event is jointly modeled we specify
a regression model for each outcome and connect them with functions of the fixed
and random effects. The longitudinal outcome is expressed as a linear mixed model,
and the recurrent events and the terminal event are expressed as proportional hazards
models with a common random effect that acts multiplicatively on the hazard rate, as
discussed in Section 2.2.1. The general specification of a joint model for a longitudi-
nal outcome and recurrent and terminal events with random effects vi = (b0i, ui) is
described by Equations (3.24a)–(3.24c).

The following set of Equations is the general specification of a joint model for longi-
tudinal, recurrent events and a terminal event data with random effects vi = (b0i, ui)



yi(t | bi)
(Longitudinal)

= mi(t) + εi(t) = xi(t)β + zi(t)bi + εi(t)

ri(t | vi)
(Recurrent)

= uir0(t) exp
{
w>RiγR + g(Rec)

(
bi, t

)>
ηR
}

hi(t | vi)
(Terminal)

= uαi h0(t) exp
{
w>T iγT + g(Ter)

(
bi, t

)>
ηT
}
,

(3.24a)

(3.24b)

(3.24c)
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where

yi(t) = the longitudinal outcome with measurement error,

mi(t) = xi(t)β + zi(t)bi is the true and unobserved longitudinal outcome,

ri(t) = hazard function of the recurrent event,

r0(t) = baseline hazard of the recurrent event, a positive real-valued function,

hi(t) = hazard function of the terminal event,

h0(t) = baseline hazard of the terminal event, a positive real-valued function

xi(t) = p-vector of the fixed effects for subject i at time t,

zi(t) = q-vector of the random effects for subject i at time t,

wRi = baseline covariate vector of the recurrent event for subject i,

wT i = baseline covariate vector of the terminal event for subject i,

β = p-vector of fixed effects regression coefficient,

γR = vector of regression coefficients of the recurrent event,

γT = vector of regression coefficients of the terminal event,

bi = q-vector of random effects of the longitudinal outcome for subject i,

ui = random effect shared by the recurrent and terminal events for subject i,

g(Rec) = link function between the longitudinal outcome and recurrent event,

g(Ter) = link function between the longitudinal outcome and terminal event,

ηR = vector of the association coefficients between mi(t) and ri(t),

ηT = vector of the association coefficients between mi(t) and hi(t),

α = association between recurrent and terminal events.

The measurement errors εi(t)
iid∼ N (0, σ2

ε) represent the within-subject variability of
the longitudinal outcome and are assumed independent and normally distributed ran-
dom variables with constant variance σ2

ε . The vectors bi ∼ Nq(0, B) are the subject-
specific random effects assumed to follow a multivariate normal distribution centered
at zero with covariance matrix B.

The random effects shared by the recurrent and terminal event ui
iid∼ Gamma(φ−1, φ−1)

are positive-valued random variables with variance parameter φ that must satisfy E(ui) =
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1 and var(ui) = φ. Common choices for the distribution of ui are Gamma and Log-
normal. This random effect represents cluster-specific heterogeneity, possibly due to
unobserved factors that modify multiplicatively the hazard rate of a group/cluster. It
is presumed to act on both the recurrent events and the terminal event processes, and
the effect is modulated by the parameter α. So when α = 1 the effect of ui is the
same for the recurrent events and for the terminal event. When α > 0, the risk of
recurrence and death are positively associated with a different effect of the frailty on
the two hazards.

By the standard assumption of joint modelling measurement errors and random effects
are independent, εi(t) ⊥ bi, bi ⊥ ui and ui ⊥ εi(t). Hence the three outcomes
are conditionally independent given the random effects. When independence is not
reasonable, then it is necessary to model their covariance structure.

It is also assumed that:

• The recurrent, terminal and censoring processes are continuous.
• In a small interval [t, t+ d] the terminal event occurs first.
• The intensities or hazards of recurrent events and terminal event processes of

patient i do not change after Ci.

Like the bivariate joint model case described in section 3.1 in this three-outcome joint
model the link functions that connect the longitudinal outcome with the terminal event
could be in principle any function of the random effects, bi. The regression coefficients
associated to the link functions, g(Rec) and g(Ter): η,ϕ and α, quantify the strength of
the association between the outcomes.

The purpose of joint modelling include:

• Estimation of the model parameters.

• Hypotheses testing of all regression coefficients. The distinctive features of joint
models relative to the marginal models are the association parameters ηR, ηT
and α.

• Prediction of the three outcomes. The joint model we have described considers
the terminal event as outcome as the end point of a causal path between the
three outcomes, so a natural prediction of interest would be the probability of

120



3.3 Shared Random Effects Joint Model for Longitudinal, Recurrent and
Terminal Events Data

observing the terminal event in the future (t + s), provided the history up the
present, (t), i.e.

Pr {Ti ≤ t+ s | Ti ≥ t,Fi(t)} ,

where Fi(t) denotes the full history up to t of the three outcomes and covari-
ates). However, it might also be of interest to predict simultaneously the three
outcomes.

• Goodness of fit to investigate the joint model that best describes data of the three
outcomes taking into account their associations.

• Causal inference about hypothesized paths among the outcomes and covariates.

The parameters to estimate are

θ =
(
β,γR,γT ,ηR,ηT , α, r0(t), h0(t), σ2

ε , vech(B), φ
)
.

Estimation of θ is based on maximum likelihood principles. The likelihood function
is constructed by assuming conditional independence of the three process given the
random effects vi = (bi, ui). Let |vi| denote the cardinality of the vector of random
effects. The contribution of subject i to the likelihood is given by Equation (3.25).

Li(θ | D) =

∫
|vi|

LyiL
R
i L

T
i f(vi)dvi, where

Lyi = (2πσ2
ε)
−ni/2 exp

{
− 1

2σ2
ε

‖yi −Xiβ − Zibi‖2

}
,

LRi =

Ki∏
k=1

[ri(tik | vi)]δik exp

{
−
∫ tik

ti(k−1)

ri(t | vi)dt

}
,

LTi = [hi (ti | vi)]δi exp

{
−
∫ ti

0

hi (t | vi) dt

}
,

f(vi) = f(bi)f(ui).

(3.25)

(3.25a)

(3.25b)

(3.25c)

(3.25d)

The contribution of the longitudinal outcome has the form of the density of a ni-
dimensional normal distribution with meanmij (the linear predictor of the linear mixed
model) and covariance matrix σ2Ini . The hazard rate of the recurrent and terminal
events, ri(t|·) and hi(t|·) are as defined in Equations (3.24b) and (3.24c) respectively.
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And f(bi) and f(ui) are the densities of the random effects.

Estimation of this three outcome joint model is based on maximizing the likelihood
function of Equation (3.25). Liu et al. (2008) and Liu & Huang (2009) proposed us-
ing the EM algorithm to estimate this joint model, specifying the model with piecewise
constant baseline hazards. Król et al. (2016) followed a penalized maximum likelihood
approach using the Marquardt algorithm (Marquardt, 1963) to optimize the likelihood
(3.25), which combines the Newton–Raphson and steepest descent algorithms. Pe-
nalization of the likelihood is performed to obtain smooth estimates of the baseline
hazards of the recurrent and terminal events which are approximated by M -splines1.
Rondeau et al. (2012) follows the same approach as Król et al. (2016), but with para-
metric Weibull and piecewise constant baseline hazards.

The integrals of the random effects require numerical methods, with the Gauss(–Hermite)
quadrature technique the most commonly used, see for instance, Król et al. (2016),
Commenges & Jacqmin-Gadda (2015), Rizopoulos (2012), Liu et al. (2008), Liu &
Huang (2009), among others.

Software packages developed for the analysis of longitudinal data in the presence of
informative censoring: R packages JM, RJAGS and JSM; Matlab and Fortran; Win-
BUGS and Fortran90. The R function trivPenal of the R package frailtypack and
SAS Proc NLMIXED both have capabilities for joint modelling of longitudinal data
and recurrent events subject to a terminal event.

3.4 Other Approaches for Joint Modelling of Longitu-
dinal and Time-to-Event Data

Other approaches to joint modelling longitudinal and time-to-event data are Latent
Class Joint Models (Commenges & Jacqmin-Gadda, 2015; Proust-Lima & Taylor,
2009) and Bayesian analysis of joint models (Ibrahim et al., 2001, 2004, 2010; Liu
& Li, 2016; Rizopoulos & Ghosh, 2011).

1M -splines can be considered as a normalized version of B-splines with unit integral within bound-
ary knots.
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Alsefri et al. (2020) provides with a recent methodological review on Bayesian joint
models of longitudinal and time-to-event data with focus on type of outcomes, model
assumptions, association structure, estimation algorithm, dynamic prediction and soft-
ware implementation.
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Chapter 4

Joint model for frailty, recurrent falls
and mortality with the CARE75+
data

4.1 Introduction

Frailty is a distinctive health state related to the ageing process that describes how the
body gradually loses its built-in reserves, leaving it vulnerable to dramatic and sudden
changes in health triggered by apparently minor illnesses, such as a chest infection, that
otherwise the body could likely overcome. Frailty is associated with adverse outcomes
such as frequent falls, disability, hospitalization, and mortality (Clegg et al., 2013).
Although the prevention and treatment of frailty is an aspiration of researchers in the
ageing field that remains enigmatic (Nowak & Hubbard, 2009).

We dedicate this chapter to explore via joint modelling the relationship between frailty
and mortality using data from the Community Ageing Research 75+ (CARE 75+)
study, a population study of elderly people conducted in the Yorkshire and Humber
region in England. This relationship has been studied before, but it has not been ana-
lyzed by joint modelling frailty and mortality, and this is the main relationship we are
interested in. An additional element that we incorporate to the analysis is falls as a
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time-to-event recurrent outcome, and we explore how this third element can be mod-
eled to describe the frailty-falls-mortality relationship in the CARE75+ data set. We
explore these relationships with different specifications of joint models, making differ-
ent assumptions about the role of falls and about the functional form in which frailty
and mortality are associated.

This chapter contains four sections. In the first section we succinctly describe the
CARE75+ study and the three outcome variables of our analyses: frailty, falls and
mortality, and the covariates we use to help understand the relationship between the
outcomes. The second section describes how we specified a 3-outcome joint model
for frailty, falls and mortality and the process we followed to select the variables for
our final model. Model diagnostics of the fitted joint model is shown in the third
section. Finally, in the last section of this chapter we give our conclusions of the
fitted model discussing the most relevant aspects, and we propose an alternative joint
model for frailty and mortality with falls being assumed an exogenous time-varying
covariate.

4.2 The CARE75+ study

The CARE 75+ study is a longitudinal cohort of older people with frailty for observa-
tional research. This study aims to understand why some people remain fit and resilient
in older age while others develop health problems and frailty and to determine what
(treatable) problems have a major impact on the quality of life in older age.

To avoid confusion, recall that in Section 2.2.1 we contrasted the use of the concept
of frailty in two different contexts: one in survival analysis models and the other in
medicine and public health. As we just described, in medicine and geriatric studies
frailty refers to a health state of the elderly and, as we explained in Section 2.2.1, in
survival analysis and joint models, frailty stands for the notion of a random effect in
statistics acting multiplicatively in the hazard rate of a time-to-event model. In order
to prevent from mixing the two different uses of this concept, in the remaining part of
this document we restrict frailty to its use in the medical context. In survival analysis
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and joint models we will use instead the concept of random effect, just as is customary
in linear mixed models and ANOVA.

Ageing is associated with functional decline and loss of autonomy, and age is a major
risk factor for a wide spectrum of clinical conditions, including cardiovascular disease,
cognitive impairment, and physical disability. As life expectancy continues to rise,
preserving physical functioning in advanced age has emerged as a major clinical and
public health priority (Sourdet et al., 2012).

In epidemiological and intervention studies of falls it is important to consider carefully
the definition used for falls as this may vary between studies (Masud & Morris, 2001).
The World Health Organization defines a fall as an event which results in a person
coming to rest inadvertently on the ground or floor or other lower level. Fall-related
injuries may be fatal or non-fatal though most are non-fatal1. And the National Institute
for Health and Care Excellence (NICE) defines a fall as an unintentional or unexpected
loss of balance resulting in coming to rest on the floor, the ground, or an object below
knee level2.

Previous research of frailty, falls and their relationship with mortality suggests that
frailty is associated with an increased risk of falls (Ensrud et al., 2007; Samper-Ternent
et al., 2012) a greater risk of fracture, disability, and falls in women aged 55 and older
in 10 countries, with similar patterns across age and geographic region Tom et al.

(2013). The direct association between frailty and falls is also pointed out by Cheng
& Chang (2017) resulting from meta-analysis of 10 studies indicating that compared
to robust older adults, frail older adults are more likely to experience recurrent falls.
Those who fell were more likely to be women, not married, had prior falls, more
functional problems and poorer health (Samper-Ternent et al., 2012). Additionally,
frailty is associated with a higher risk of mortality (Chang & Lin, 2015).

On a different line, Nowak & Hubbard (2009) claim that falling should be recognized
as a macrostate indicator of complex system failure rather than a specific disorder. If
falling in the frail is truly a manifestation of complex system failure then searching
for the cause of the incident is futile since this single cause does not exist. After all,

1World Health Organization: https://www.who.int/news-room/fact-sheets/
detail/falls

2NICE: https://www.nice.org.uk/guidance/qs86
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failure of a complex system is the cumulative effect of multiple faults and it is only
the intricate linking of these detrimental processes that leads to the overt collapse of
the system. Predictors of falls include muscle strength of lower extremities, postural
competence/lateral balance, impaired vision, cognitive impairment and taking more
than four medications or particular groups of drugs.

In the analyses of mortality rates from falls in the elderly (per 100,000 persons) us-
ing data from the national statistics systems of the USA, the Netherlands and Spain
Hartholt et al. (2018, 2019); Padrón-Monedero et al. (2017) determined an increas-
ing trend of mortality from falls in these three countries between the years 2000 and
2016.

Within the CARE75+ study researchers keep track of mortality and several potential
risk factors for mortality and frailty, including gender, height, weight, ethnicity, mar-
ital status, education level, frequency of visits to a general practitioner, smoking and
alcohol consumption habits, history of bone fractures and comorbidities.

The data to quantify frailty (in the Edmonton Frail Scale) for participants of the CARE75+
study are collected intermittently at set times, approximately every six months. Par-
ticipants of the study have not been recruited all at the same time. By the adminis-
trative censoring time for this analysis (31st May 2017), some participants had been
in the study for two months and some for over two years (Figure 4.1 shows the data
collection time points for each participant). At each interview, participants answer a
questionnaire from which the frailty score is computed. They are also asked ”How
many times did you fall in the last 12 months?”. We are interested in analyzing falls as
a recurrent event using the time-to-event methodology for recurrent events described
in Section 2.2.2. However, the data set has no information related to the exact time at
which falls occurred, so we estimated the time-to-fall under the assumption that falls
are equally spaced in the relevant time interval.
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Figure 4.1: The plots show data collection time points of each participant of the
CARE75+ study: (left side) interviewing dates and (right side) days since enrollment.
The connecting lines between consecutive points is the time interval from one inter-
view to the next.

4.2.1 Frailty, falls and mortality

The data set that we analyzed contains the records of 282 participants aged between 76
and 100 years old (mean age is 83). The mean frailty score of this group of people is
3.7 and the mean number of falls within a 6 months period is 1.6 (median is zero). Sev-
enteen out of the 282 participants died before the censoring date (30-June-2017).

Frailty

The data set has the frailty scores measured in multiple scales. We decided to use the
frailty score according to the Edmonton Frail Scale (EFS).

The EFS assesses each participant over nine domains (see Table 4.1): cognition, gen-
eral health status, functional independence, social support, medication usage, nutrition,
mood, continence and functional performance. The frailty score in the EFS ranges
from 0 to 17 and participants are typically classified into five categories: [0-5] Not
frail, [6-7] Vulnerable, [8-9] Mild frailty, [10-11] Moderate frailty, and [12-17] Severe
frailty.

The histograms in Figure 4.2 of the frailty scores of participants in each interview show
that the distribution of frailty does not vary much across time, with median of frailty
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The Edmonton Frail Scale 
 

NAME : _________________________________ 

 

d.o.b. : ____________________          DATE : ________________ 
 
 

Frailty domain Item 0 point 1 point 2 points 

Cognition Please imagine that this pre-drawn 
circle is a clock. I would like you to 
place the numbers in the correct 
positions then place the hands to 
indicate a time of ‘ten after eleven’  

No errors Minor 
spacing 
errors 

Other 
errors 

General health 
status 

In the past year, how many times have 
you been admitted to a hospital? 

0 1–2 ≥2 

 In general, how would you describe 
your health? 

‘Excellent’, 
‘Very good’, 
‘Good’ 

‘Fair’ ‘Poor’ 

Functional 
independence 

With how many of the following 
activities do you require help? (meal 
preparation, shopping, transportation, 
telephone, housekeeping, laundry, 
managing money, taking medications)  

0–1 2–4 5–8 

Social support When you need help, can you count 
on someone who is willing and able to 
meet your needs? 

Always Sometimes Never 

Medication use Do you use five or more different 
prescription medications on a regular 
basis? 

No Yes  

 At times, do you forget to take your 
prescription medications? 

No Yes  

Nutrition Have you recently lost weight such 
that your clothing has become looser? 

No Yes  

Mood Do you often feel sad or depressed? No Yes  

Continence Do you have a problem with losing 
control of urine when you don’t want 
to? 

No Yes  

Functional 
performance 

I would like you to sit in this chair with 
your back and arms resting. Then, 
when I say ‘GO’, please stand up and 
walk at a safe and comfortable pace to 
the mark on the floor (approximately 3 
m away), return to the chair and sit 
down’  

0–10 s 11–20 s One of : 
>20 s , or 
patient 
unwilling ,  
or  
requires 
assistance 

Totals Final score is the sum of column totals    

 

Scoring : 
0 - 5 = Not Frail                                                                        TOTAL                     /17 
6 - 7 = Vulnerable 
8 - 9 = Mild Frailty 
10-11 = Moderate Frailty 
12-17 = Severe Frailty                            Administered by : ______________________________ 
 
 

Table 4.1: Edmonton Frail Scale questionnaire assesses 10 domains including cogni-
tive impairment, balance and mobility.
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score 3 in the four interviews and average frailty between 3.5 and 4.43 (values shown
in histograms). This group of people seems to be at most moderately frail since very
few participants have frailty scores greater than 11.
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Figure 4.2: Histograms of the frailty scores (Edmonton Frailty Scale) of the partici-
pants enrolled in the study at each interview (1st to 4th).

Figure 4.3 (left) suggests that, on average, participants’ frailty scores remain con-
stant across time, but the older the participant at recruitment time, the more frail
(right).
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Figure 4.3: Left: Frailty scores of participants against days since recruitment; Right:
Frailty scores of participants against age. The black superimposed lines (left and right)
are regression lines.

There is an overall slightly increasing time trend of the frailty score. However, many
participants are recruited in the study when they are older than 75, and we observe older
people with higher frailty scores. As we can see in the left plot of Figure 4.3, the frailty
scores at baseline are very different between participants, this suggests that a random
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intercept for the linear mixed submodel might be appropriate. Additionally, since there
is a lot of line crossing during the first 400 days since entering the study, a random
slope of time might also be useful to model the individual time trends. However, a
linear mixed model with a random slope for these data can be hard because of the
relatively small sample size and number of repeated measures per participant: Among
the 282 participants, only 35 have four repeated measures, 154 have three, 39 have two,
and 54 have exactly one.

Falls

As we stated previously, participants of the CARE75+ study are interviewed every 6
months, and in each interview they are asked how many times they fell down in the past
12 months. The periodicity of the interviews is different from the time window of the
occurrence of falls, so analyzing the data as it is would duplicate some falls. Moreover,
there is no information in the data set about the exact time at which falls occurred and
we were interested in analyzing falls as a time-to-event recurrent outcome. In order to
prepare the falls data, we “adjusted” the number of falls reported by each participant
to a 6 months window assuming that falls occurred at regular time intervals within the
12 months, and we set the end points of these time intervals as the time-to-fall. For
instance, if a participant reported 12 falls in the last 12 months, the “adjusted” number
of falls in 6 months is 6, one every month.

The bar plots in Figure 4.4 show that most participants reported zero falls. It is worth
noting in the left plot of Figure 4.5 that some participants have persistently high num-
ber of falls in successive time periods, while others have significant number of falls.
However, most of the participants reported zero falls since entering the study; 14.2%
(40) reported to have fallen at least once, and only 10 participants have fallen a total of
5 times or more. The right plot of Figure 4.5 shows that people with the higher number
of falls are between 80 and 90 years old.
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Figure 4.4: Bar plots for the number of falls reported by participants in each interview
(1st to 4th). The height of each bar represents the number of participants, and the
x-axis shows the number of falls reported.
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Figure 4.5: Left: Each horizontal bar represents the number of falls a participant re-
ported in an interview. Right: Number of falls per participant at the age of enrollment
in the study. The black superimposed line (right) is a regression line.

Mortality

The Kaplan–Meier estimate in Figure 4.6 shows that by the censoring time, mortality
in the CARE75+ data set has been low. The survival probability beyond the admin-
istrative censoring time is 0.918, i.e. a large proportion of observations are censored,
which might be due to the relatively short follow-up time and participants’ age at the
moment they enrolled in the study.

The top left plot in Figure 4.7 suggests that participants of the CARE75+ study who
had died by the evaluation time (31-May-2017) were on average more frail than the
censored participants (hazard ratio: 1.18). The top right plot in Figure 4.7 suggests an
increasing risk of falls with increasing frailty (hazard ratio: 1.24).
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Figure 4.6: Kaplan–Meier estimate of death (—) and 95% confidence band (- -).

As mentioned before, very few participants have more than four falls, most of which
are censored by 31-May-2017. All these participants are represented by the outliers in
the bottom left plot of Figure 4.7. Although the plot might suggest decreasing hazard
of death with increasing number of falls, the hazard ratio is ≈ 1.

4.2.2 Covariates

In addition to data about frailty, falls and mortality, the CARE75+ study records basic
data about the participants, lifestyle habits and health conditions, some of which vary
with time. We used some of these variables as covariates to construct a joint model
for frailty, falls and mortality. Most of these covariates are categorical variables, and
we collapsed the categories of each one of them into two groups. We briefly describe
these covariates and how we created their dichotomous versions, showing the counts
in each category in absolute values and percentages. Table 4.2 contains a summary of
these variables and their associated hazard ratio of mortality.
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Time-fixed

Sex

The data set we analyzed with cut date 31-May-2017 contains data of 282 participants:
43.6% men and 56.8% women. In our analyses, we labeled this variable as sex with
women being the baseline category:

sex =

{
1 Male (123; 43.6%)

0 Female (159; 56.8%).

Ethnicity

People in the study were asked about their ethnic origin according the 14 groups: White
(85.5%), mixed White/Black Caribbean (0.4%), mixed White/Asian (0%), mixed
White/Black African (0%), other mixed (0%), Black African (0%), Asian Indian (1.1%),
Asian Blangladeshi (0.7%), Asian Pakistani (12.1%), other Asian (0%), Black Caribbean
(0.4%), Other Black (0%), Chinese (0%), other (0%). Due to the large proportion of
participant who identified themselves as White, we collapsed the other participants in
a unique group as follows:

ethnicity =

{
1 White (241; 85.5%)

0 Other (41; 14.5%).

The data set is unbalanced with respect to ethnicity, being White most of the partici-
pants. However, the number of deaths are roughly proportionally spread across the two
collapsed ethnicity groups, such that mortality is 0.058 among White and 0.07 among
Other (hazard ratio in Table 4.2 is not significant at the 0.05 significance level). The
imbalance of ethnicity in the data set maybe due to the fact that this is an ongoing
study and it is possible that a considerable fraction of the target population has not
being reached yet. With so few deaths in the data set and ethnicity being largely unbal-
anced, we suspect convergence difficulties in the optimization algorithm while fitting
a joint model for frailty, falls and mortality.

Marital status
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In recent studies, for instance Trevisan et al. (2016) and Trevisan et al. (2020), it
has been suggested that marital status in the elderly can influence the development of
frailty, and that this influence can vary between women and men (single or widowed
men carry a higher risk of developing frailty, whereas widows have a lower odds of
becoming frail than married women). Manzoli et al. (2007) conducted a meta-analysis
to investigate the relationship between marital status and mortality in the elderly, con-
cluding that persons marriage or support from the partner is associated with a reduction
in all-cause mortality risk.

The martial status of participants of the CARE75+ is recorded as Single (never mar-
ried) (2.5%), Married (39.7%), Remarried (3.5%), Separated but still legally married
(0.4%), Divorced (8.2%), Widowed (45.7%). We created the dichotomous variable
marital by collapsing marital status in two groups with the intention of keeping in
the same group those who are likely to have the support of a spouse:

marital =

{
1 Married or Remarried (122; 43.3%)

0 Other (160; 56.7%).

Education

When participants are enrolled in the CARE75+ study they are asked “What was the
highest educational qualification you attained?”. In the UK education sector, there are
several qualification types offered by the UK awarding bodies, which can be a profes-
sional body, school, college or university. Qualifications can be academic, vocational
or skills-related, and are grouped together into different levels. Participants’ informa-
tion regarding qualifications is recorded as: No qualifications (62.4%), GCSE (General
Certificate of Secondary Education) (14.9%), HNC/HND (Higher National Certificate
/ Higher National Diploma) (4.3%), Diploma (7.4%), AS and A level (3.2%), Bache-
lor’s degree (5.3%), Postgraduate (2.5%),

We considered the data about qualifications as synonym of education level and col-
lapsed the categories of this variable into two groups to distinguish those participants
with no qualifications from those with any qualification and identified the latter as a
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4.2 The CARE75+ study

higher education group.

education =



1 if



GCSE
HNC/HND
Diploma
AS and A level
Bachelor’s degree
Postgraduate


(106; 37.6%)

0 No qualifications (176; %62.4).

Lifestyle (alcohol, smoker)

The lifestyle habits recorded in the analyzed data set refer to alcohol consumption and
smoking. Participants are asked if they ever drink alcohol, if they have ever smoked
and if they smoke nowadays. We created the dichotomous analysis variables alcohol
and smoker as follows:

alcohol =

{
1 Participant drinks alcohol (195; 69.1%)

0 Otherwise (87; 30.9%)

smoker =

{
1 Participant is or was a smoker (136; 48.2%)

0 Participant has never been a smoker (146; 51.8%)

Time-varying

Body Mass Index

The Body Mass Index (BMI) is an indicator to screen for weight categories that may
lead to health problems. We computed the BMI with the records of weight and height:

bmi =
Weight (Kg.)

Height2 (Meters)2

Naturally, weight and height change in time, so bmi is a time-varying covariate in our
analyses, even though dramatic changes of BMI in the elderly are unlikely. Figure 4.8
shows that the distribution of BMI is similar across the first three interviews differing
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mainly by sample size (only a small number of participants have had a fourth inter-
view). The mean and median BMI is about 27 (values shown in histograms) in each
interview.
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Figure 4.8: Body mass index by participants in each interview.

Comorbidities

Comorbidity is the presence of an additional conditions co-occurring with a primary
condition, in this case frailty. Behavioral and mental conditions are also considered
comorbidities. Figure 4.9 shows the number of comorbidities participants report in
each interview. The two participants that reported the largest number of comorbidities
in the first interview (13 and 19) died by the censoring date.
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Figure 4.9: Number of comorbidities reported by participants in each interview.

Visits to a general practitioner (GP)

Figure 4.10 shows that most participants have between 1 and 3 visits to a general
practitioner between interviews. Only 5 participants have more than 4 visits and they
reported between 5 and 9 comorbidities.
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Figure 4.10: Frequency of visits to a general practitioner reported by participants in
each interview.

Table 4.2 shows that each category of the binary versions of the time-fixed covariates
has at least three events. Some of these covariates are roughly balanced in terms of
the sample size, but this is not the case for ethnicity and alcohol where the
sample size in the baseline categories is smaller. According to the interval estimates,
the hazard ratio of mortality is different from 1 only for comorbidities, for the
other covariates the interval estimates contain the value of 1.

We conclude this section by pointing out some features of the data set. Our interest is
to fit a joint model for frailty, falls and mortality with the CARE75+ data set. This kind
of model often has much more parameters to estimate than separate marginal models
for each outcome, and optimizing the likelihood, which involves nonlinear functions
of time and possibly several random effects, is more difficult. Hence usually larger
sample sizes are required for joint modelling. In this analysis, the CARE75+ data set
contains records of 282 participants, but only 189 have either three or four repeated
measurements of frailty, which might represent a small sample size to fit a joint model
for a longitudinal response and recurrent and terminal events. Furthermore, the data
set does not contain data about the time-to-fall so we had to impute it based on the
available data about the number of falls in a 12 months window, under the debatable
assumption of falls occurring at regular time intervals.

Mortality is the terminal event. Frailty and recurrent falls are endogenous time-varying
covariates in a model for mortality. The data set contains few deaths (17), and 252 par-
ticipants had either 0 falls (201) or only 1 (51), this might not be sufficiently large
for a joint modelling these relationships. Finally, ethnicity is a variable largely imbal-
anced in the data set. Although in covariates imbalance does not necessarily represent
a problem on its own, in a marginal survival analysis model with the small number
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Covariate Total Censored Death HR LCL UCL
Time-fixed
Sex

Male 123 117 6 1.435 0.531 3.881
Female 159 148 11 − − −

Ethnicity
White 241 227 14 0.870 0.250 3.029
Other 41 38 3 − − −

Marital status
Married/Remarried 160 151 9 1.156 0.446 2.998
Other 122 101 5 − − −

Education
High level 106 101 5 0.663 0.234 1.884
Otherwise 176 164 12 − − −

Drinks alcohol
Yes 195 185 10 0.680 0.258 1.788
No 87 80 7 − − −

Smoker
Smoker 136 128 8 0.895 0.345 2.322
Non-smoker 146 137 9 − − −

Time-varying
BMI 282 265 17 0.949 0.856 1.052
# comorbidities 282 265 17 1.178 1.009 1.375
# visits to a GP 282 265 17 0.930 0.527 1.643

Table 4.2: Counts of participants by covariates and status (censored or death), hazard
ratio (HR) of mortality and 95% confidence interval (LCL, UCL).
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of terminal events it might be more difficult for the likelihood optimization algorithm
to converge in the joint modelling context. The fact that the CARE75+ is an ongoing
population study the imbalance of the variable ethnicity in the data set might be due
to the short follow up period, being a significant fraction of the target population still
missing to be included in the study.

4.3 Joint modelling frailty, recurrent falls and mortal-
ity for the CARE75+ data

Our primary interest is to model the relationship between frailty and mortality with the
CARE75+ data set. Since frailty would be an endogenous time-varying covariate in a
time-to-event model for mortality we would need to jointly model their relationship.
We suspect there are other possible relationships between frailty and falls and between
falls and mortality, so we will explore all these relationships in a joint model.

As an initial step of our analysis, we fitted Cox models for mortality with frailty and
falls as covariates to have an approximate idea of their possible effect on mortality.
The time origin for all our survival and joint modelling analyses is “the moment par-
ticipants enter the study”, so the time scale is “time since recruitment or enrollment”.
Table 4.3 shows the log(hazard ratio) of mortality associated to frailty and falls, and the
corresponding log(hazard ratio) after adding the other covariates of the data set in an
extended Cox model, assuming both are external time-varying covariates as described
in Section 2.2.1. Equations (4.1)–(4.6) describe these models, where γfrail and γfalls

denote the log(hazard ratio) of mortality associated to the raw frailty score in the EFS
scale (yi(t)) and the number of falls (Ni(t)), respectively, at time t. The term “covari-
ates” in these equations refers to the vector of variables containing number of comor-
bidities, number of visits to a GP, BMI, gender, ethnicity, marital status, education level
and alcohol and smoking habits. At the moment we are interested in the hazard ratio
of mortality associated to frailty and falls both unadjusted and confounding-adjusted,
assuming that they are exogenous covariates in a model for mortality.
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PHy hi(t) = h0(t) exp{γfrailyi(t)}
PHy+covs hi(t) = h0(t) exp{γfrailyi(t) + γ>covariates}

PHyN hi(t) = h0(t) exp{γfrailyi(t) + γfallsNi(t)}
PHyN+covs hi(t) = h0(t) exp{γfrailyi(t) + γfallsNi(t) + γ>covariates}

PHN hi(t) = h0(t) exp{γfallsNi(t)}
PHN+covs hi(t) = h0(t) exp{γfallsNi(t) + γ>covariates}

(4.1)

(4.2)
(4.3)

(4.4)
(4.5)

(4.6)

γ̂frail γ̂falls

Model Estimate p-value Estimate p-value

PHy 0.169 0.039 − −
PHy+covs 0.152 0.125 − −
PHyN 0.180 0.034 −0.100 0.644

PHyN+covs 0.170 0.100 −0.136 0.573

PHN − − −0.003 0.985

PHN+covs − − −0.056 0.792

Table 4.3: Hazard ratios of mortality associated to frailty and falls. “−” means that the
model of the row does not have the covariate of the column.

The estimates in Table 4.3 were obtained for an unspecified baseline hazard using the
coxph() function of the survival library in R. The log(hazard ratio) associated
to frailty is 0.169 and significant at the level of 0.05, and its value and significance
remain almost unchanged after adjusting for falls. However, when adding the other
covariates to the model even though the log(hazard ratio) of frailty does not change
much, its effect becomes not significant. The value of the log(hazard ratio) of falls is
far from being significant regardless of whether frailty and other covariates are added
to the model.

Our aim for this chapter is to construct a model that best describes the relationship
between between frailty, falls and mortality in the CARE75+ data set, relaxing the
assumption about frailty and falls being external time-varying covariates in a time-to-
event model for mortality.
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4.3.1 Assumptions and model formulation

This section explains a general formulation of a joint model for three outcomes: lon-
gitudinal, recurrent events and terminal time-to-event and show the results of fitting a
joint model of this type to the CARE75+ data.

Following the general framework of a three-outcome joint model for longitudinal, and
recurrent and terminal events data described in Section 3.3, we specify a joint model for
frailty, falls and mortality for the CARE75+ data set, call it MCARE

3 . The link functions
of Model MCARE

3 are g(Rec)(bi0, t) = g(Ter)(bi0, t) = bi0 and it is described by Equations
(4.7a)–(4.7c) and its corresponding likelihood function has the same general form as
Equation 3.25.

MCARE
3 :


Longitudinal yi(t|bi0) = (β0 + bi0) + x>i (t)β + εi(t) (4.7a)

Recurrent ri(t|vi) = uir0(t) exp{w>i (t)γR + ηRbi0} (4.7b)

Terminal hi(t|vi) = uαi h0(t) exp{w>i (t)γT + ηT bi0} (4.7c)

where,

wi(t) : sex, ethnicity, highest education, marital status, smoker, alcohol,

number of comorbidities, frequency of visits to a GP

x>i (t) : [t,wi(t)
>)]

yi(t) : Frailty score at time t

ri(t) : Hazard rate of recurrent falls at time t

hi(t) : Hazard rate of death at time t

εi(t) : measurement error of frailty score

bi0 : random intercept

ui : random effect common to the two hazards

We assume a random intercept linear mixed model for the longitudinal outcome. We
also assume that the longitudinal outcome is linked to the recurrent events and the
terminal event only through the random intercept, bi0 ∼ N (0, σ2

b ), and the recurrent
events and the terminal event processes are linked through the random effect, ui ∼
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Gamma(φ−1, φ−1), with v>i = (b0i, ui). The baseline hazards of the recurrent and
terminal events are assumed parametric from a Weibull distribution with shape κR and
κT and rate ρR and ρT , respectively.

4.3.2 Marginal models

Joint models are difficult to fit and require much longer computing times than the stan-
dard marginal models of each outcome. A major difficulty we experienced is the lack
of convergence with some settings: the mean structure, the link function, whether or
not a random slope is included, the type of recurrent event submodel, and inclusion of
some covariates. For instance, when a random slope is included in the joint model, the
optimization algorithm of the fitting function does not converge. This makes model
fitting challenging. In particular, the variable selection process of the joint model of
frailty, falls and mortality is a difficult task. In order to alleviate this process we fitted
first marginal models for each outcome: frailty, falls and mortality, described by Equa-
tions (4.8)–(4.10). The differences between the marginal models we used and joint
model MCARE

3 are: (1) all time-varying covariates are assumed exogenous (including
frailty and falls which can be covariates of the other two marginal models) and (2)
the marginal models do not have association parameters (ηR, ηT , α). Note that these
marginal models are not good enough to represent the relationship between frailty, falls
and mortality because they do not take into account the potential correlation among
these three variables. Like model MCARE

3 the marginal models for frailty and falls have
a random effect to account for the repeated measures of the frailty score and recurrent
falls within subjects, but not the marginal model for mortality. So we carried out a
variable selection process in each marginal model and used the chosen covariates as
the initial covariate set to fit the joint model. Finally, we removed from the joint model
all non-significant covariates.

Longitudinal yi(t|bi0) = (β0 + bi0) + x>i (t)β + εi(t)

Recurrent ri(t|uRi) = uRir0(t) exp{w>i (t)γR + γR.frailyi(t)}
Terminal hi(t) = h0(t) exp{w>i (t)γT + γT fallsNi(t) + γT.frailyi(t)}

(4.8)

(4.9)

(4.10)
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where yi(t) is the observed frailty score of subject i at time t, and Ni(t) the number of
falls reported by time t.

To avoid confusion, we refer to each regression subequation (6.1a)–(6.1c) as a sub-
model of joint model MCARE

3 , and to each Equation (4.8)–(4.10) as the marginal
model of frailty, falls and mortality, respectively.

The variable selection mechanism in the marginal models was a combination of step-
wise and backwards elimination process. We started by fitting the saturated model.
Then, among the covariates with non-significant regression coefficient (significance
level 0.05), we removed from the model the one with the largest p-value and re-fitted
the model. During this backward elimination process, when removing a certain covari-
ate affected the significance of the others we kept in the model the one that with the
greater contribution to the log-likelihood function. We stopped when all the covariates
in each marginal model were significant and used these covariates as the starting point
for the variable process in the joint model MCARE

3 . An exception to this last criterion is
ethnicity in the submodel of mortality, where this covariate remained in the model
for convergence of the optimization algorithm. The first three columns of Table 4.4
show the estimates, their standard error and p-values corresponding to the marginal
models containing only the significant covariates.

The parameters of the linear mixed model are estimated by maximizing the restricted
log-likelihood function discussed in Section 2.1.2 and implemented in R in the lme()
function of the nlme package. In this fitted model, the significant covariates are
ethnicity, married, education, alcohol, smoker, # comorbidities

and falls. The time slope estimate, β̂ = 0.223, was significant suggesting an overall
decreasing time trend of frailty of the people in the study, which although consistent
with the intuitive idea of people becoming more frail as getting older, in this particular
group of people the increase of frailty in time seems small (as seen in right side plot of
Figure 4.3). This time effect becomes insignificant when the joint model is fitted, as
discussed in Section 4.3.3. The estimates of the variance of the random intercept and
the variance of the error are σ̂2

b = 4.247 and σ̂2
ε = 1.1052 = 1.221, respectively.

We analyzed falls with the Andersen–Gill (AG) model (see Section 2.2.2) in the total

time scale, assuming a parametric baseline hazard from the Weibull(κR, ρR) distribu-
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Marginal model Joint model (M̂CARE
3 )

Parameter Estimate Std.Err p-value Estimate Std.Err p-value

Fixed effects
Frailty
β̂0 6.229 0.404 < 0.001 6.166 0.343 < 0.001

β̂t 0.223 0.078 0.004 −0.029 0.111 0.793

β̂eth −2.093 0.415 < 0.001 −2.026 0.354 < 0.001

β̂mar −0.814 0.250 0.001 −0.729 0.211 < 0.001

β̂edu −0.816 0.275 0.003 −0.856 0.223 < 0.001

β̂alc −1.094 0.235 0.001 −1.247 0.233 < 0.001

β̂smo −0.610 0.220 0.006 + + +

β̂com 0.222 0.031 < 0.001 0.234 0.031 < 0.001

β̂falls 0.330 0.137 0.016 + + +

Falls
γ̂R.eth 1.429 0.374 < 0.001 0.866 0.367 0.029
γ̂R.frail 0.183 0.036 < 0.001 + + +

Mortality
γ̂T.eth + + + −0.077 0.703 0.912
γ̂T.frail 0.171 0.082 0.036 + + +

Association
η̂R + + + 0.439 0.081 < 0.001
η̂T + + + 0.430 0.206 0.037
α̂ + + + −0.962 0.703 0.171

Variance
component

Frailty
σ̂ε 1.105 − − 2.152 − −
σ̂2
b 4.247 − − 2.577 − −

Falls
φ̂R 1.864 0.379 < 0.001 + + +

Falls–Mortality
φ̂ + + + 1.143 0.849 0.0891

Baseline
hazard

Falls
κ̂R 0.978 0.066 − 1.023 − −
ρ̂R 0.056 0.003 − 0.322 − −

Mortality
κ̂T 0.792 0.078 − 1.040 − −
ρ̂T 0.004 0.000 − 0.170 − −

Table 4.4: Marginal and joint model fit. “−” not directly available from software
output. “+” not a parameter of model on the column. “•” correspond to φ in MCARE

3 .
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tion and a random effect, uRi ∼ Gamma(φ−1
R , φ−1

R ), trying to keep consistency with
the specifications of the joint model MCARE

3 . The parameters of the AG model were es-
timated by maximizing the likelihood function of Equation (2.40) by the Marquardt
algorithm (Marquardt, 1963; Rondeau et al., 2003), which combines the Newton–
Raphson and steepest descent algorithms and implemented in the frailtyPenal()
function of the R library frailtypack, as discussed in Section 2.2.2. The relation-
ship between frailty and falls is estimated by β̂falls = 0.330 in the marginal model of
frailty (see Table 4.4), suggesting a direct association between falls and frailty. This is
consistent with the significant coefficient, γ̂R.frailty, in the marginal model of falls. Note
that ethnicity is a significant covariate in both frailty and falls marginal mod-
els.

In the proportional hazards marginal model of mortality we also assumed a baseline
hazard governed by the Weibull(κT , ρT ) distribution. This marginal model does not in-
clude a random effect1. To fit this model we used also the R function frailtyPenal()
mentioned above, which can also accommodate a random effects if necessary. An al-
ternative R model fitting tool for this specification of the proportional hazards model
is the function parfm() of the library parfm, for which several distributions are
available for parametric estimation of the baseline hazard and accommodates random
effects in for the proportional hazards model. Not surprisingly, the rate parameter of
the baseline hazard, ρ̂T = 0.004, is small. Note that, according to the marginal model
of mortality, falls has no significant relationship with mortality (this covariate is
not in the model of mortality because it was eliminated during the variable selection
process).

As summary, the main conclusions regarding the relationship between frailty, falls and
mortality derived from the marginal models fit are: direct associations between (1)
frailty and falls and (2) frailty and mortality, and (3) no association between falls and
mortality. Ethnicity is strongly associated with frailty and falls, but not with mortality.
Apparently, there is a positive and significant time trend of the average frailty.

1We also ran the model with a random effect, uTi ∼ Gamma(φ−1
T , φ−1

T ). The fixed effects es-
timates were the same, with an estimate of random effect’s parameter φ̂Ti

= 0.001, standard error
ŝe(φ̂Ti) = 0.0001, and p-value = 0.5
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4.3.3 Joint model fit

We started the variable selection process for the joint model for frailty, falls and mor-
tality, MCARE

3 , by including in each submodel the covariates of the marginal models
listed in Table 4.4. Just as we did with the marginal models, we removed sequentially
from the model the non-significant covariates (significance level 0.05) from the joint
model, one at a time. According to the formulation of the joint model MCARE

3 , the
association between frailty and falls is modelled by the random intercept, bi0, and the
strength of this association is quantified by ηR. In the variable selection process of the
joint model, smoker and falls were removed from the linear mixed submodel be-
cause they were not significant (p-value > 0.05), the rest of the covariates remained in
this submodel. In the submodel of falls, ethnicity was still significant so it was re-
tained in the final model. An exception to the exclusion criterion was the ethnicity
in the submodel of mortality, which we kept even though it was not significant for the
joint model to converge as the trivPenal() does not converge when the terminal
event submodel has no covariates in it.

In Section 3.3 we discussed parameter estimation of joint models similar to MCARE
3 .

To estimate the parameters of model MCARE
3 we followed the approach of Król et al.

(2016) and Rondeau et al. (2012) using the Marquardt algorithm to optimize the like-
lihood function of this model, using the Gauss-Hermite technique for the numerical
integration with respect to the random effects and assuming that the baseline haz-
ards of falls and mortality are governed by the Weibull(κ, ρ) distribution. This es-
timation procedure is implemented in the trivPenal() function of the R library
frailtypack, calling other functions programmed in FORTRAN. Recall that in
MCARE

3 there is a shared random effect between falls and mortality, ui with φ being the
parameter of the distribution of ui that determines its variance. We denote by M̂CARE

3

the model that results from the variable selection process in the joint model, i.e. only
the significant covariates are kept in this model. The last three columns of Table 4.4
show the parameter estimates of model M̂CARE

3 , their standard error and p-values.

Note that it is not possible to make a direct comparison of γ̂T.frail and η̂T because they
are related to different variables with different meanings. On the one hand, γ̂R.frail

is related to yi(t), i.e. the observed value of the frailty score at t which is assumed
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to contain measurement error. As discussed in Section 3.1, when measurement error
is ignored and time-varying covariates are endogenous in time-to-event models, the
regression coefficients are biased. On the other hand, η̂T is related to the deviation of
the true and unobserved frailty with respect to the population average.

By joint modelling frailty, falls and mortality we noticed that ethnicity, married,
education, alcohol and number of comorbidities are significant co-
variates of frailty. The values of these estimates along with the intercept do not seem
far off from the estimates of the marginal model estimates. However, the time trend
of the average frailty of the CARE75+ data set, β̂ = −0.029, becomes not significant
in the joint model. We suspect this behaviour is due to the relatively small number
of repeated measures per subject. This is explored further with simulation studies in
Chapter 6.

The variable ethnicity is a significant fixed effect covariate of falls but not of
mortality, which is consistent with the marginal models of these two outcomes.

The estimate of the variance of the random intercept of the submodel of frailty, σ̂2
b =

2.577 is smaller compared to this estimate in the marginal model of frailty.

The estimate of the parameter that accounts for the strength of the association between
falls and mortality, α̂ = −0.962, it is not significant, so we cannot rule out the possibil-
ity of no association between these two outcomes. This is in line with the conclusion
of no association between falls and mortality in the marginal models. Although at first
glance the lack of association between falls an mortality seems counterintuitive, we
must recall the short follow up period (2 years), the few terminal events in the data set
(17 deaths) and the relatively small number of falls per subject (83% of participants
have a total of zero or one fall). Hence getting a correct estimate of the random effect
might be difficult in this data set, for which the mean structure needs to be correctly es-
timated. Additionally, it is possible that the falls reported by the CARE75+ participants
are not severe enough to pose important deterioration in their general health condition
or mobility, and they implement precautionary measures, for instance using an assis-
tive device to prevent further falls or to make them even less severe although more
frequent. The analyzed data set does not contain information regarding the severity of
falls.
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The estimate of the association parameter, (η̂R = 0.439), supports the direct associ-
ation between frailty and falls, suggested by the descriptive analysis of Section 4.2.1
and the marginal models. Recall the interpretation of the coefficients of a proportional
hazards model discussed in Section 2.2.1 and the idea of the random intercept bi0 as
a latent variable that models the correlation of repeated measures of frailty within the
same individual, representing the deviation of an individual’s frailty at baseline with
respect the population average. So exp(η̂R × b̂i0) estimates the relative risk of falls
at time of an individual whose frailty differs by b̂i0 units with respect to the average
frailty.

We derive a similar conclusion about the association parameter η̂T = 0.430, indicating
a higher relative risk of mortality the more frail the individuals are. This agrees with the
analysis of Section 4.2.1 and the marginal model estimate of the association between
frailty and mortality.

The shape parameters estimates of the baseline hazards of both the recurrent and ter-
minal events are close to 1, meaning that they are likely governed by the Exponential
distribution, provided the family we assumed (Weibull) is the correct one. The rate pa-
rameter estimates of both hazards, ρ̂R = 0.322 and ρ̂T = 0.170, are greater compared
to their estimates in the marginal models.

In the next section we verify the assumptions of joint model M̂CARE
3 .

4.4 Model diagnostics

In statistical modelling, the goal of model diagnostics is to verify that assumptions of
the model are reasonable in the fitted model. The standard tools to assess a model’s
assumptions are residual plots. In the standard linear mixed effects model, two types
of residuals are often used: conditional (subject-specific) residuals and marginal (pop-
ulation averaged) residuals (Molenberghs & Verbeke, 2000). The conditional residuals
aim to validate the assumptions of the hierarchical version of the model described in
Equation (2.3), and are defined as

ε̂ci(t) = yi(t)− x>i (t)β̂ − z>i (t)b̂i, (4.11)
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with corresponding standardized version for the conditional independence model (see
Equation (2.5))

ε̂∗ci (t) = yi(t)−
(
x>i (t)β̂ − z>i (t)b̂i

)
/σ̂ε, (4.12)

where β̂ and σ̂ε are the maximum likelihood estimates and b̂i the empirical Bayes
estimates of the random effects. These residuals predict the conditional errors, εi(t),
and can be used for checking the homoscedasticity and normality assumptions.

On the other hand, the marginal residuals focus on the marginal model for the longi-
tudinal outcome implied by the hierarchical representation, i.e. yi = Xiβ + εi, where
εi ∼ N (0, Vi) and Vi = ZiBZ

>
i + σ2

εIni . The marginal residuals are defined as

ε̂mi = yi −Xiβ̂, (4.13)

with corresponding standardized version

ε̂∗mi = V̂
−1/2
i

(
yi −Xiβ̂

)
, (4.14)

where V̂i = ZiB̂Z
>
i + σ̂2

εIni denotes the estimated marginal covariance matrix of yi.
The marginal residuals predict the marginal errors yi −Xiβ = Zibi + εi, and can be
used to investigate misspecification of the mean structureXiβ as well as to validate the
assumptions for the within-subjects covariance structure, Vi. We used the conditional
residuals to check the assumptions of the longitudinal part of the model.

A standard type of residuals for the relative risk submodel of the joint model is the
martingale residuals. These are based on the counting process notation of the time-to-
event data, and in particular on the subject-specific counting process martingale, which
is defined for the ith subject as

emi (ti) = Ni(t)−
∫ t

0

∆i(s)ĥ0(s) exp{wiγ̂ + ηm̂i(s)ds}, (4.15)

whereNi(t) is the counting process denoting the number of events for subject i by time
t, ∆i(t) is the left continuous at risk process with ∆i(t) = 1 if subject i is at risk at time
t and 0 otherwise, m̂i(t) = x>i (t)β̂−z>i (t)b̂i, and ĥ0(t) denotes the estimated baseline
hazard function. The martingale residuals can be viewed as the difference between the
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Figure 4.11: Left: Conditional residuals against fitted values (overlaid red curve is the
loess smoother); right: Q-Q plot of standardized residuals.

observed number of events for the ith subject by time t, and the expected number of
events by the same time based on the fitted model (Barlow & Prentice, 1988; Therneau
et al., 1990).

The top left plot of Figure 4.11 shows that the standardized residuals are roughly evenly
spread about zero along the fitted values of the longitudinal outcome, ŷi(t), with the
loess smoother depicting almost a horizontal line. In general the formation of stripes in
this kind of diagnostics plots occurs when individuals with the same observed values
have very different fitted values. The longitudinal outcome of model MCARE

3 is is the
frailty score measured in the EFS, so the stripes on the plot are due the fact that frailty in
the EFS takes integer values between 0 and 17. The Q-Q plot at the top right of Figure
4.11 shows signs of right skewness because of too many large values of frailty.

Figure 4.12 contains plots of residuals against covariates, showing in all them that
residuals are centered around zero. There seems to be a slight sign of heterogeneity in
the plot of etnicity, which might be due to the two groups being highly unbalanced
(White: 241 vs Other: 41).

Dobson & Henderson (2003) showed that residuals between observed and expected
longitudinal outcome responses after fitting a joint model can be affected by informa-
tive dropout. In order to take into account the effects of informative dropout in the
assessment of model adequacy, they proposed a residual analysis conditioning upon
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dropout time and type (Ti, δ
D
i ). That is, their proposal is based on the conditional

expectation of the residuals given (Ti, δ
D
i ). Our residual analysis of the longitudinal

outcome can be complemented by testing for random dropouts caused by mortality
and analyzing the expected residuals given the time-to-death, following the method
proposed by Dobson & Henderson (2003).

As we saw in the previous section, the available data set for the CARE75+ study sug-
gest that frailty and is associated to several covariates: ethnicity, marital status, ed-
ucation level, drinking alcohol and having more comorbidities. However, due to the
relatively short follow up time, and the relatively low number of terminal events and
falls there might be less information to detect significant associations of mortality and
falls with covariates. The residual analysis of falls and mortality submodels shown in
Figure 4.13 indicate that both falls and mortality are overestimated (estimates are often
greater than observed values). It might also be worth investigating with different spec-
ifications of the joint model for instance, an alternative setting for the baseline hazard
(different distribution of a parametric baseline or a B-splines) or a different distribution
of the random effects ui.

4.5 Conclusion

We used joint modelling to explore the relationship between frailty, falls and mortality
in the CARE75+ study. In fitting model M̂CARE

3 to the data we assumed that these three
outcomes are associated via latent variables that represent unobserved features of the
subjects in the study. The main findings are:

• Several covariates are associated to frailty. Being white, married or remarried,
having higher education and drinking alcohol are associated to lower frailty. In
the opposite direction, the greater the number of comorbidities, the more frail
people are.

• There is a higher risk of falls among white people. The relative risk of falls with
respect to the other ethnicities is exp(1.429) = 4.175.
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Figure 4.12: Conditional residuals against covariates (◦) with overlaid loess smoothers
—.
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• None of the covariates we explored with in the CARE75+ data set is significantly
associated to mortality.

• Frailty is strongly associated with both falls and mortality, an association that is
characterized by a random intercept in the linear mixed submodel of frailty. The
relative risk of falls is exp(0.439) = 1.551 for subjects whose frailty is one unit
above the population average, ceteris paribus, and the relative risk of mortality
is exp(0.430) = 1.537.

• Apparently, falls have no effect on mortality as their association parameter was
not significant at a 0.05 level. Although this result might seem counterintu-
itive, this result might be due to the short follow-up period. As we mentioned
previously, the epidemiology of falls is complex, and when falls are non-fatal
its relationship with death is mediated by its multiple adverse outcomes. Falls
related accidents lead to several adverse outcomes in older people: long-term
institutional care, hospital admissions, injuries, fear of falling after an accidental
fall, reduced activities of daily living and lower quality of life Masud & Morris
(2001). Even though these falls related outcomes increase the risk of death, it
might require a longer follow-up period than is available in the CARE75+ study.

• The model diagnostics indicate some signs of skewness due to many large val-
ues of frailty. Further refinements and considerations might be required since, as
Dobson & Henderson (2003) have shown, residuals of the longitudinal outcome
might be affected when dropout is informative, which we still need to investi-
gate in our analysis. Additionally, in both falls and mortality submodels the fitted
model M̂CARE

3 seems to overestimate the the risk of falls and mortality. Perhaps
this is due to (1) the relatively small sample size for joint modelling of longitudi-
nal data and recurrent and terminal events, (2) the small number terminal events,
and (3) the lack of precise times in which falls occur.

• Regarding this last point we estimated the time-to-falls based on the count data
provided on the data set coming from participants being asked about the num-
ber of times they fell within a 12 months window. The time-to-fall series was
estimated assuming that falls occurred uniformly in the relevant time period.
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Alternative specifications of a joint model for the relationship between frailty, falls and
mortality are possible. Given that falls and mortality are not significantly associated,
it is worth exploring frailty, falls and mortality with a joint model assuming that falls
is an exogenous time-varying covariate for mortality. Additionally, in model MCARE

3

we assumed that frailty and mortality are related through the random intercept (bi0)

representing the deviation of the subject-specific frailty with respect to the population
average at baseline, and with model MCARE

2 we would like to explore with a different
specification of the frailty-mortality relationship by assuming that frailty free of mea-
surement error (mi(t)) is an endogenous time-varying covariate of mortality. Addition-
ally, the relationship frailty-falls can be analyzed by assuming that this relationship can
be expressed as an effect of falls on frailty, this is the number of falls is a time-varying
covariate for in the frailty submodel. This model would have two regression equations
so we denote it by MCARE

2 and it is described by Equations (4.16a)–(4.16b) under the
following assumptions:

• Falls is an exogenous time-varying covariate of mortality.
• The link between frailty and mortality is the current level of frailty free of mea-

surement error, i.e. the linear predictor of frailty in the linear mixed submodel.
• Falls is a time-varying covariate of frailty.
• No random effect in the submodel of mortality, i.e. assume no heterogeneity of

the hazards due to unobserved covariates.
• The baseline hazard of the mortality submodel is approximated with B-splines

instead of assuming a parametric form.

MCARE
2 :


yi(t | bi0) = (β0 + bi0) + x>i (t)β + βfallsNi(t)︸ ︷︷ ︸

mi(t)

+εi(t)

hi(t | bi0) = h0(t) exp{γT.ethethi + γT.fallsNi(t) + ηLmi(t)},

(4.16a)

(4.16b)

Note that in modelMCARE
2 there is no regression submodel for falls, which now is a co-

variate in the mortality submodel (Equation 4.16b). Also, the whole linear predictor of
the frailty submodel, which includes the random intercept, is a time-varying covariate
in the mortality submodel with ηL quantifying the strength of the association between
frailty and mortality. The fitted model is M̂CARE

2 , and its estimates are shown in Table
4.5 alongside with the estimates of M̂CARE

3 .
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M̂CARE
3 M̂CARE

2

Parameter Estimate Std.Err p-value Estimate Std.Err p-value
Fixed effects

Frailty
β̂0 6.166 0.343 < 0.001 6.096 0.328 < 0.001

β̂t −0.029 0.111 0.793 −0.094 0.111 0.396

β̂eth −2.026 0.354 < 0.001 −2.154 0.341 < 0.001

β̂mar −0.729 0.211 < 0.001 −0.823 0.210 < 0.001

β̂edu −0.856 0.223 < 0.001 −0.815 0.223 < 0.001

β̂alc −1.247 0.233 < 0.001 −1.232 0.234 < 0.001

β̂com 0.234 0.031 < 0.001 0.251 0.030 < 0.001

β̂falls + + + 0.329 0.051 < 0.001

Falls
γ̂R.eth 0.866 0.367 0.029 + + +

Mortality
γ̂T.eth −0.077 0.703 0.912 1.566 0.796 0.049
γ̂T.falls + + + −0.259 0.235 0.269

Association
η̂R 0.439 0.081 < 0.001 + + +
η̂T 0.430 0.206 0.037 + + +
α̂ −0.962 0.703 0.171 + + +
η̂L + + + 0.511 0.150 < 0.001

Variance
component

Frailty
σ̂ε 2.152 − − 1.459 − −
σ̂2
b 2.577 − − 2.188 − −
φ̂ 1.143 0.849 0.0891 + + +

Baseline
hazard

Falls
κ̂R 1.023 − − + + +
ρ̂R 0.322 − − + + +

Mortality
κ̂T 1.040 − − + + +
ρ̂T 0.170 − − + + +

Table 4.5: MCARE
3 and MCARE

2 estimates. “−” not directly available from the software
output. “+” not a parameter to be estimated by the model on the column.
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The estimates of M̂CARE
2 and M̂CARE

3 are consistent with each other and, fundamentally,
the conclusion about association between frailty and mortality is the same. However,
in model M̂CARE

2 the association parameter of frailty–mortality relationship, η̂T , repre-
sents the estimate of the effect of frailty on the relative hazard of mortality of subject
i, both at time t.

4.5.1 Discussion

As we saw in this chapter, variable selection in joint models is complicated for several
reasons.

1. In general, fitting a joint model is complicated because the corresponding likeli-
hood is difficult to optimize. Due to the conditional independence assumption of
the outcomes given the random effects, the likelihood function of joint models
contains integrals with respect to the random effects that have to be done nu-
merically, so the processing times required to optimize this function are much
longer compared to the standard marginal models. The processing time increases
quickly with the number of regression equations and the number of random ef-
fects, especially in models like MCARE

3 containing a recurrent event submodel.
Depending on the specification of the baseline hazards, the likelihood might also
contain integrals of non-linear functions of time for which numerical methods
are needed, adding to the complexity of the optimization task, especially if a re-
current event submodel is included in the joint model formulation. The number
of observations is one more element that has a material effect in the processing
time. In our experience, fitting a joint model for for the CARE75+ can take be-
tween 13 minutes to 6 hours, and it is not unusual for the optimization algorithm
to fail to converge. Non-parametric spline-based approximations are commonly
considered for the baseline hazards, with the advantage that no assumptions are
required about their distribution, but it makes the output less straightforward to
interpret and the estimated model less friendly to be used with other data sets.

2. The total number of all possible covariate combinations increases with the num-
ber of submodels and it is not straightforward to understand the effect of having
the same covariates in two or more submodels.
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3. Choosing the link to characterize the association between submodels involves
a large number of options since in principle any function of the random effects
is possible, and it is still unclear if different links affect in different ways the
significance of covariates in a joint model.

In statistical modelling, variable selection is carried out in different ways depending
on the intended use of the fitted model: description, causal inference or prediction

(Shmueli et al., 2010). In this chapter, we explored with joint models the relationship
between frailty, falls and mortality in the CARE75+ data set, for which we specified
and fitted two joint models: M̂CARE

3 and M̂CARE
2 . The covariates in these two models

were selected based on their statistical significance, a strategy that is not in line with
causal inference. For causal inference we would need to state upfront our hypotheses
about the relationships among all the available variables, identifying all possible con-
founders to the frailty-falls-mortality relationship, to finally fit the joint model adjust-
ing for confounding, which implies keeping in each submodel model all confounders
even when their associated regression coefficient were not significant. DAGs have
proven to be a useful tool for stating the hypothesized relationships among all the vari-
ables of a model. Furthermore, it is not evident which model between M̂CARE

2 and
M̂CARE

3 is better to describe the frailty-falls-mortality relationship. So with the help of
DAGs, in Chapter 6 we conduct a simulation study by first specifying two causal mod-
els similar to M̂CARE

2 and M̂CARE
3 , simulating a series of data sets from these models and

finally analyzing each data set with the two models. This allows us the to investigate
the consequences of model misspecification.

On the other hand, models M̂CARE
2 and M̂CARE

3 fitted in this chapter would not be appro-
priate for out-of-sample predictions since the parameters were estimated by optimizing
the likelihood function and that would not necessarily lead to optimized out-of-sample
predictions. In M̂CARE

3 and M̂CARE
2 ethnicity is a covariate in all the submodels,

but in general it might be the case that several covariates appear in more than one sub-
model, and it is not clear if this overfits the model. Additionally, we noticed that some
variables of the CARE75+ data are correlated, as shown in Table 5.1 that contains
the correlations and p-values for the null hypothesis that the correlations are equal to
zero. The highest correlation is between ethnicity and alcohol (0.51), followed by the
correlation between gender and marital status (0.36). Other correlations statistically
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Gender BMI Ethnicity Marital Education Smoke Alcohol

BMI −0.03 (0.63)
Ethnicity −0.10 (0.68) 0.07 (0.22)
Marital 0.36 (0.00) −0.09 (0.14) −0.09 (0.15)
Education 0.06 (0.29) 0.07 (0.23) 0.20 (0.00) 0.01 (0.86)
Smoke 0.10 (0.08) −0.06 (0.29) 0.26 (0.00) 0.04 (0.51) 0.06 (0.33)
Alcohol −0.02 (0.74) 0.10 (0.11) 0.51 (0.00) −0.09 (0.15) 0.18 (0.00) 0.19 (0.00)
Falls −0.01 (0.88) −0.05 (0.39) 0.09 (0.14) 0.06 (0.32) −0.04 (0.51) 0.00 (0.96) −0.06 (0.32)

Table 4.6: Covariates correlation matrix (and p-values associated with the null hypoth-
esis test of zero-correlation.)

different from zero are between ethnicity and education and smoking, and between
alcohol and education and smoking.

In Chapters 5 and 6 we address variable selection in joint modelling when the aim
of the model is prediction and causal inference. In Chapter 5 we propose a strategy
to select variables in a joint model of longitudinal and time-to-event outcomes with
the goal of optimizing prediction of both outcomes. Even in the simplest case, joint
modelling involves estimating a large number of parameters compared to the standard
marginal models, so larger sample sizes are required. We explore the performance of
our strategy in simulation studies of small sample sizes datasets. The simulation model
is similar to model M̂CARE

2 and then we apply it to the CARE75+ data set to optimize
prediction of frailty and mortality as joint model outcomes.

In Chapter 6 we explore with the two different settings of joint models, similar to
M̂CARE

2 and M̂CARE
3 , but with the difference that we pay special attention to the con-

founding structure with the help of DAGs. We simulate a series of data sets from these
two models and analyze each data set with the two models in order to understand the
consequences of model misspecification.

4.5.2 Future work

As mentioned before, further research is needed with respect to model diagnostics. We
can complement the residual analysis of frailty with the method proposed by Dobson
& Henderson (2003). We are assuming proportional hazards in the falls and mortality
submodels, an assumption that we still need to verify.
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We want to plot the fitted model in some way that would be useful for interpretations.
Plotting the average frailty and fitted hazards for some fictional / representative subject
might be helpful.

We would like to conduct some sensitivity analysis to explore with model uncer-
tainty. In particular, if different covariates were in the final model, we are interested
in knowing how much do the fitted curves (frailty profiles and cumulative hazards)
change.
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Chapter 5

Prediction accuracy and variable
selection for joint models of
longitudinal and time-to-event data

5.1 Introduction

The presence of highly correlated covariates affects the test statistics of the parame-
ters’ estimates by inflating the estimated variance (Rawlings et al., 2001; Seber & Lee,
2012), producing less stable results. In Chapter 4 the joint analysis of frailty, recurrent
falls and mortality using the CARE75+ data suggested that mortality is associated with
frailty and correlated covariates. In Table 5.1 we see statistically significant correla-
tions (α < 0.05) between gender and marital status, between ethnicity and education,
smoking and alcohol consumption, and between education and alcohol consumption.
Whether correlation is high enough to give problems with model fitting depends also
on the sample size. The CARE75+ data set has 282 subjects, which is a relatively small
sample size for joint modelling frailty, falls and mortality, and there are only 17 deaths
among them. Our aim for this chapter is to find the joint model for frailty and mortality
that optimizes out-of-sample predictions of both outcomes. For this, we explore with a
combined strategy of penalized likelihood (Section 2.4) and cross-validation to select
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the fixed effects covariates that optimize prediction of a joint model of longitudinal and
time-to-event data.

Gender BMI Ethnicity Marital Education Smoke Alcohol

BMI −0.03 (0.63)

Ethnicity −0.10 (0.68) 0.07 (0.22)

Marital 0.36 (0.00) −0.09 (0.14) −0.09 (0.15)

Education 0.06 (0.29) 0.07 (0.23) 0.20 (0.00) 0.01 (0.86)

Smoke 0.10 (0.08) −0.06 (0.29) 0.26 (0.00) 0.04 (0.51) 0.06 (0.33)

Alcohol −0.02 (0.74) 0.10 (0.11) 0.51 (0.00) −0.09 (0.15) 0.18 (0.00) 0.19 (0.00)

Falls −0.01 (0.88) −0.05 (0.39) 0.09 (0.14) 0.06 (0.32) −0.04 (0.51) 0.00 (0.96) −0.06 (0.32)

Table 5.1: Covariates correlation matrix (and p-values associated with the null hypoth-
esis test of zero-correlation.)

By using penalized likelihood methods, like ridge regression (Hoerl & Kennard, 1970)
and the least absolute shrinkage and selection operator (LASSO) (Tibshirani, 1996),
we can get around the problem caused by highly correlated covariates in regression
analysis, as discussed in Section 2.4.

Variable selection in linear mixed and survival analysis models has been an active re-
search topic. For instance, in the context of mixed effects models Fan & Li (2001) and
Peng & Lu (2012) discussed asymptotic “oracle” properties of the the smoothly clipped
absolute deviation (SCAD) penalty function to select groups of the random effects and
Zou (2006) proposed the adaptive LASSO (ALASSO). In the survival analysis con-
text, Fan & Li (2002) and Zhang & Lu (2007) discussed variable selection of the fixed
effects, and Benner et al. (2010) used high-dimensional data simulations to compare
the oracle properties of various penalties and the predictive performance of the result-
ing model with the integrated Brier score (IBS). On this last point, He et al. (2015)
compared the results of using LASSO, elastic net, SCAD and ALASSO for variable
selection, recommending the use of LASSO and elastic net.

Variable selection for joint models of longitudinal and time-to-event data via penalized
likelihood methods is a topic that has been studied with the aim to maximize good-
ness of fit. Chen & Wang (2017) followed a penalized likelihood approach to select
the fixed and random effects in joint modelling longitudinal and time-to-event out-
comes, by imposing four penalty functions (fixed & random effects of each submodel)
of the adaptive least absolute shrinkage and selection operator (ALASSO) with the
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goal to minimize the Bayesian Information Criterion (BIC). He et al. (2015) imposed
L1-norm penalized likelihood for selecting the random effects that minimized the BIC.
We are interested in optimizing the accuracy of predictions of a joint model, and op-
timizing goodness of fit only provides accuracy within the data used for modelling
(Anderson, 2007; Burnham & Anderson, 2003, 2004). In order to assess the accuracy
of a model in out-of-sample data we require other techniques, such as bootstrap or
cross-validation.

Our interest is to find the subset of covariates that are most relevant for out-of-sample
predictions. We aim for assessing the effect of frailty on mortality and for making
predictions for both frailty and mortality using the CARE75+ data. Since frailty and
mortality are not independent they need to be analyzed as joint outcomes, for which
joint modelling is an appropriate framework. However, there are some features of
the CARE75+ data set that impose challenges for joint modelling and that must be
addressed: (a) the CARE75+ data set is relatively small (n = 282), (b) the number of
deaths is too small, and (c) the data set contains correlated covariates. Therefore, we
need a strategy for variable selection to account for all these issues. We propose using
a penalized likelihood approach and cross-validation to select the set of covariates that
maximize the accuracy of predictions of both outcomes.

Shrinkage methods yield parameter estimates with smaller variance sacrificing a small
amount of bias. Intuitively, the decrease in variance results naturally from restricting
the sampling space of regression coefficients when applying shrinkage methods (Hastie
et al., 2009; Heinze et al., 2018, p.225). Therefore, shrinkage methods are useful
in statistical modelling where the focus is on obtaining accurate predictions, that is
predictions with a small mean-squared error (MSE), and where models are hard to
estimate due to approximate colinearity. Regression coefficients for which selection
is less stable are shrunken more strongly than coefficients for which selection bias is
more stable.

Our proposed strategy has a K-fold cross-validation design. A joint model is “trained”
with each fold, where the objective function is the penalized log-likelihood, impos-
ing separate L1-norm penalties to the fixed-effects regression coefficients of each sub-
model. The estimated parameters are then used to score the K − 1 remaining folds of
data. By imposing L1-norm penalties some of the regression coefficients will shrink to
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zero so this stage of the the strategy will perform variable selection. By scoring each
test set with the trained model, we are exploring the ability of the model to predict
the outcomes in out-of-sample data. In practice, when joint modelling longitudinal
and time-to-event data the focus can be on one outcome: (a) the longitudinal outcome
if there are informative dropouts represented by the survival analysis submodel, and
(b) the time-to-event outcome when the quantitative one is an internal time-varying
covariate of a survival analysis model, or in both if the aim is to explore their joint
distribution. We are interested in exploring the joint distribution of both outcomes.
By being able to get accurate predictions of frailty and mortality for the CARE75+
data it might be possible to adapt the management plans for care homes. The accuracy
of predictions of the longitudinal outcome is assessed by the MSE, and the time-to-
event outcome by the integrated Brier score (IBS). Ideally, we would like to minimize
simultaneously the MSE and the IBS.

We applied this method in simulation experiments and in the CARE75+ data to study
its performance in predicting mortality and frailty. The results of the experiments sug-
gest that it is not always possible to simultaneously optimize the accuracy of predic-
tions of the two outcomes; however it was useful to identify a subset of covariates for
the CARE75+ data where the prediction accuracy of both outcomes are better.

5.2 Methodology

5.2.1 Model specification

As discussed in Section 3.1, the joint modelling of longitudinal and time-to-event out-
comes requires the specification of a regression submodel for each outcome, a covari-
ance structure for random effects which are assumed to act in both submodels, and a
link function to connect both submodels. The joint model we explore in this chapter
considers 1) a random intercept assumed to be normally distributed with mean zero and
variance σ2

b , and 2) that both outcomes are linked by this random intercept. Equations
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(5.1a)–(5.1b) describe the general form of this joint model:

M (S) :

{
Longitudinal yi(t | bi0) = (β0 + bi0) + x>i (t)β + εi(t) (5.1a)

Terminal hi(t | bi0) = h0(t) exp{w>i γ + ηbi0}, (5.1b)

where

w>i = p-vector of time-fixed covariates,

γ> = (γ1, . . . , γp),

x>i (t) = (t,w>i ) is a (p+ 1)-vector,

β> = (βt, β1, . . . , βp).

In the context of the CARE75+ data, the random intercept in M (S) models the corre-
lation of frailty observed at time-points as well as the correlation between frailty and
mortality.

Note that for the moment there are no time-varying covariates in the survival analysis
submodel, and the only time-varying covariantes in the linear mixed submodel is time,
t.

Equation (5.1a) is the linear mixed model formulation of the longitudinal outcome of
subject i, where mi(t) = (β0 + bi0) + x>i (t)β represents the true value of the lon-
gitudinal outcome at time t. Here, yi(t),mi(t) and εi(t) are scalars, and xi(t) is a
(p + 1)-vector of baseline and possibly time-dependent covariates whose values are
recorded at time t. The (p + 1)-vector β denotes the fixed effects regression coeffi-
cients. The random intercept, bi0, represents a shift of the longitudinal outcome profile
of subject i with respect to the population profile, β0 + βtt.

Equation (5.1b) is the regression submodel for the hazard rate of of a time-to-event
outcome, where wi is the p-vector of time-fixed covariates for subject i. The p-vector
γ contains the regression coefficients for these covariates. The link between the longi-
tudinal and the time-to-event outcomes is g(bi0, t) = bi0, and η quantifies the strength
of the association between the two outcomes.

We make the usual assumptions of conditional independence between (1) the lon-
gitudinal and the time-to-event outcomes and (2) frailty measurements at different
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time points of the same person given the random effect. We also assume a normal
distribution for the measurement error and the random intercept, εi(t)

iid∼ N (0, σ2
ε),

bi0 ∼ N (0, σ2
b ), with h0(t) the baseline hazard of the survival analysis submodel.

5.2.2 Variable selection strategy

Our proposed strategy for variable selection combines a penalized likelihood approach
and 5-fold cross-validation. We impose separate L1-norm penalties (Chen et al., 2001;
Tibshirani, 1996) for the fixed-effects coefficients of each submodel to perform vari-
able selection. The penalized log-likelihood for a sample with dataD = {ti, δi,yi; i =

1, . . . , n} is

`λ(θ | D) = `(θ | D) + λL‖β‖1 + λS‖γ‖1, (5.2)

where `(θ | D) is the unpenalized likelihood described by Equation (3.2), ‖β‖r :=

(
∑p

k=1 |βi|r)
1/r is the r-norm of the p-vector β, and λ = (λL, λS) are hyperparame-

ters.

Our proposed strategy is summarized in Algorithm 5.1. The cross-validation procedure
of Algorithm 5.1 starts by splitting the data set (D) at random, with respect to the
subject identifier into K roughly equal size and non-overlapping groups. In a data
set of n subjects each fold should contain the data of approximately n/K different
subjects. For each fold (k = 1, . . . , K) the test set (Dtest

(k) ), is comprised by the data
of subjects in the kth group, and the training set (Dtrain

(k) ) by the data of subjects in
the other K − 1 groups (Step 1). The parameters are estimated with Dtrain

(k) , and the
estimates are used to score Dtest

(k) . Once this procedure is repeated for the K folds,
the data of each subject in D should have been used to estimate the parameters K − 1

times and scored once (Step (b)).

Notice that Step 4 of Algorithm 5.1 assumes there is a unique pair (λL, λS) that opti-
mizes simultaneously the accuracy of predictions of both outcomes, which might not
be the case. The solution might be an overlapping region of the grid of (λL, λS) val-
ues that minimizes the MSE and the grid of (λL, λS) that minimizes the IBS. Even
more, these two (λL, λS) regions might very well have no values in common, in which
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Algorithm 5.1 Variable selection algorithm to maximize the accuracy of predictions.

0: Choose the number of folds K.
1: Split the data, D, into {Dtrain

(k) ,Dtest
(k) }, k = 1, . . . , K.

2: For a grid of values for λL and λS
(a) Estimate the parameters of the joint model:

θ̂(k) = arg max
θ

`λ

(
θ | Dtrain

(k)

)
(b) Evaluate the performance of θ̂(k) on the test set:

(i) For each subject i = 1, . . . , ntest

• Predict the random effects, b̂i0, as described by Equations (3.6).
Here we are assume that each subject has only one longitudinal
outcome measure at baseline, yi1, and that the last time the sub-
ject was known to be alive was also at baseline, i.e. τi = ti1. So
the densities of the posterior (3.5) are as described by Equations
(3.19a)–(3.20c).
• Compute the expected value of the longitudinal outcome ω̂(t |
ti1) as described by Equation (3.8).
• Compute the residual survival probabilities π̂i(u | ti1) for u ∈

(0, t∗), as described by Equation (3.11). Since ti1 = 0 , π̂i(u |
ti1) = Ŝi(u | ti1).

(ii) Compute the MSE as in Equation (2.46) and the IBS as in Equation
(2.54).

3: Compute cross-validated MSE (MSECV) and IBS (IBSCV) by averaging over the
K folds.

4: Desired solution: (λ∗L, λ
∗
S) for which (MSECV) and (IBSCV) are minimal, and

parameter estimates.
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case the solution will be a compromise between the accuracy of prediction of one out-
come.

It is important to emphasize that in order to evaluate our strategy, predictions of the
random effect on the test set are carried out ignoring all subsequent repeated measures
after baseline and assume that the last time these subjects were known to be event-free
was exactly at baseline.

5.3 Simulation studies

5.3.1 Design

We are interested in the results of the variable selection strategy when there are cor-
related variables. In particular, we would like to know it makes any difference if
correlated covariates are in the same submodel when the goal is to optimize predic-
tion.

To test the proposed algorithm we simulated six data sets from the joint model of a
longitudinal and a time-to-event outcomesM (S), with seven fixed effects and time fixed
covariates w> = (w1, . . . , w7), so p = 7. The measurement error of the longitudinal
outcome of model M (S) has constant variance, var(εi(t)) = σ2

ε = 4. The variance
of the random intercept of the linear mixed submodel in Equation (5.1a) is σ2

b = 4.
The baseline hazard of the time-to-event submodel in Equation (5.1b) is governed by
the Weibull(κ, ρ) distribution, so h0(t) = h0(t;κ, ρ) = κρ(ρt)κ−1, where κ = 2 and
ρ = 1.5 are the shape and rate parameters, respectively. For each individual of the
simulated data, we simulated seven covariates: wi1, wi2, wi3, wi4 ∼ Bernoulli(0.5),
and (wi5, wi6, wi7) ∼ N3(0,Σw), where the covariance matrix Σw indicates that w5 is
uncorrelated with w6 and w7, and cor(w6, w7) = 0.95 as follows:

Σw =

1
0 2
0 1.9 2

 .
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Table 6.3 summarizes the values of the parameters and regression coefficients of this
simulation experiment.

Our simulation study has only one simulation for each scenario because the processing
time is too long. Our design is 5-fold cross validation with 64 combinations of the two
penalties, so in each scenario the training-test procedure is repeated 320 times. On
average, with a sample size n = 50 (scenarios 1 and 3) each training-test procedure
takes 26 minutes (5 days and 19 hours to complete the 320 training-test routine). With
the larger sample size n = 250 (scenarios 2, 4, 5 and 6), on average each training-test
procedure takes 2 hours and 6 minutes, so completing the 320 training-test routine in
each scenario takes 28 days and 2 hours. In addition, computing the Hessian at each
estimation step takes as much as the training-test procedure. We parallelized the task
by splitting the work in 8 parts and processing it simultaneously in 8 computers, each
scenario 1 and 3 (n = 50) taking 1.5 days to complete, and scenarios 2, 4, 5 and 6
taking 7 days each one.

All six simulated data sets were generated the joint model M (S) described by Equa-
tions (5.1a)–(5.1b) but, as Table 6.3 points out, they differ in either the sample size or
the non-zero regression coefficients. We considered four sets of non-zero regression
coefficients and labeled these scenarios as M (S)

12 ,M
(S)
34 ,M

(S)
5 and M (S)

6 :

• Simulations 1 and 2 are generated from model M (S) with non-zero fixed effects
regression coefficients (βt, β1, β4, γ1, γ2), and we identify this scenario as M (S)

12 .
The sample size of simulations 1 and 2 are 50 and 250, respectively.

• Simulations 3 and 4 are generated from model M (S) with non-zero fixed ef-
fects regression coefficients (βt, β1, β4, γ1, γ2, γ7) and we identify this scenario
as M (S)

34 . The sample size of simulations 3 and 4 are 50 and 250 respectively.
The difference between M (S)

12 and M (S)
34 is that γ7 in the latter is non-zero, whose

associated covariate, w7, is highly correlated with w6. This is, among the two
highly correlated covariates, w7 has a non-zero regression coefficient only in the
survival analysis submodel.

• Simulation 5 has a sample size of 250, and the set non-zero regression coeffi-
cients in this scenario, labeled as M (S)

5 , is (βt, β1, β4, β7, γ1, γ2). In contrast to
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M (S)
34 , the covariate w7 in M (S)

5 has non-zero regression coefficient only in the
linear-mixed submodel.

• Simulation 6, with sample size 250, has a set of non-zero regression coefficients
(βt, β1, β4, β7, γ1, γ2, γ7) labeled as M (S)

6 . In this scenario, w7 has non-zero re-
gression coefficient in both linear-mixed and survival analysis submodels.

The repeated measures of the longitudinal outcome for each subject, yi(tij), were sim-
ulated every 0.2 time units (so tij = 0, 0.2, . . .) with a maximum of 20 repeated mea-
sures. The censoring time was fixed at 3 to have less than 10% of censored survival
times. And the accuracy of predictions was assessed from u ∈ (0, t∗) with t∗ = 3.
This means that there is no need to adjust the IBS for censoring.

The penalized log-likelihood function for the parameter vector θ given data D cor-
responding to model M (S) is as described by Equation (5.2), with the following fac-
tors:

• f(yi | bi0) = (2πσ2
ε)
−ni/2 exp

{
− 1

2σ2
ε
‖yi − 1ni(β0 + bi0)−Xi(t)β‖2

}
• f(ti, δi | bi0) =

[
ρκ(ρti)

κ−1 exp
{
w>i γ + ηbi0

}]δi e−(ρti)
κ exp{w>i γ+ηbi0}

• f(bi0) = (2πσ2
b )
−1/2 exp

{
− 1

2σ2
b
b2
i0

}
The algorithm was tested for a 5-fold cross-validation design with values of the penal-
ties between 10−4 and 103, in increasing in powers of 10, so log10(λL), log10(λS) =

{3, 2, 1, 0,−1,−2,−3,−4}

5.3.2 Optimization of prediction accuracy

Let θ be the set of parameters of a joint model for longituidnal and time-to-event
data. The optimization of `(θ|D) was done using the Broyden–Fletcher–Goldfarb–
Shanno (BFGS) algorithm, an iterative quasi-Newton method. The BFGS algorithm is
implemented in the general optimization R function optim().

The estimates of the expected value of the longitudinal outcome and the residual sur-
vival probabilities in step 2(b)(i) of Algorithm 5.1 are evaluated at b̂i0, and the integral
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Simulation

Related M
(S)
12 M

(S)
34 M

(S)
5 M

(S)
6

variable 1 2 3 4 5 6

Sample size
n – 50 250 50 250 250 250

Fixed effects
Longitudinal
β0 1 3 3 3 3 3 3
βt time 0.5 0.5 0.5 0.5 0.5 0.5
β1 w1 0.5 0.5 0.5 0.5 0.5 0.5
β2 w2 0 0 0 0 0 0
β3 w3 0 0 0 0 0 0
β4 w4 0.5 0.5 0.5 0.5 0.5 0.5
β5 w5 0 0 0 0 0 0
β6 w6 0 0 0 0 0 0
β7 w7 0 0 0 0 1 1

Terminal
γ1 w1 0.1 0.1 0.1 0.1 0.1 0.1
γ2 w2 0.1 0.1 0.1 0.1 0.1 0.1
γ3 w3 0 0 0 0 0 0
γ4 w4 0 0 0 0 0 0
γ5 w5 0 0 0 0 0 0
γ6 w6 0 0 0 0 0 0
γ7 w7 0 0 0.5 0.5 0 0.5

Association
η bi0 0.5 0.5 0.5 0.5 0.5 0.5

Variance
σ2
ε εi(t) 4 4 4 4 4 4
σ2
b bi0 4 4 4 4 4 4

h0(t;κ, ρ)

κ – 2 2 2 2 2 2
ρ – 1.5 1.5 1.5 1.5 1.5 1.5

Link function
g(bi0) – bi0 bi0 bi0 bi0 bi0 bi0

Table 5.2: Parameter values of the simulation study: variable selection to optimize
prediction.
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to predict the random effect as the mean of the posterior distribution was approxi-
mated with the Gauss–Kronrod method (Ziegel, 1987) implemented in the R function
integrate().

The results of the simulation experiment are summarized in Figure 5.1, containing the
cross-validated MSE and IBS of the six simulated data sets. In the first and third rows
of Figure 5.1 we see that, roughly, the MSE decreases monotonically with increasing
values of the two tuning parameters, λS and λS , this is when the constraint on the
parameter space is less stringent, although the MSE is clearly more sensitive to λL

than to λS . This suggest that the accuracy of prediction of the longitudinal outcome
could be optimized at larger values of the tuning parameters. An exception to this is
simulation 2 (the second plot at the top row), where λS seems to have little effect and
the MSE is minimized as λL → 10. We should recall at this point that simulations
1 and 2 have the same set of non-zero regression coefficients and they differ only in
their sample size. This suggests that with larger samples it might be easier to find the
combination of (λL, λS) at which the MSE is minimized.

The plots corresponding to the IBS in the second and fourth rows of Figure 5.1 also
show clearly the accuracy of predictions of the time-to-event outcome are more sen-
sitive to λS (on the horizontal axis), being λS = 10 the value of this tuning param-
eter where the IBS can be minimized. Only in simulation 1 is the IBS smaller at
λS = 0.

It is worth noting that there are some regions of the plots where the MSE or the IBS
seem to increase suddenly (these regions are identified by the white pixels between
colored regions). This might be something that requires further exploration since the
likelihood function of joint models can be complicated to optimize due to the large
number of parameters to estimate, the integrals of the random effects and the (possi-
bly) non-linear functions of time of the baseline hazards. Our analyses indicate that the
optimization algorithm completely converged for all combinations of the two penal-
ties.

Our goal is to optimize simultaneously the accuracy of predictions of both outcomes.
It is not possible to give a unique point of (λL, λS) where both MSE and IBS are opti-
mized, but there is a region of the grid of the two penalties where this occurs. However,
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Simulation M
(S)
s log10(λ∗L) log10(λ∗S)

1 M
(S)
12 3 2

2 M
(S)
12 1 (2, 3)

3 M
(S)
34 (1, 2, 3) (0, 1)

4 M
(S)
34 (1, 2, 3) 1

5 M
(S)
5 (2, 3) 1

6 M
(S)
6 (2, 3) 1

Table 5.3: Solution of the cross-validation experiment. Values of
(log10(λL), log10(λL)) that minimize simultaneously the MSE and the IBS in
each of the six simulated data sets.

this region is not the same for all simulations. The best (log10(λL), log10(λS)) regions
for each simulation are shown in Table 5.3.

Recall that the models of simulations 4, 5 and 6 the covariate w7 has non-zero re-
gression coefficient in at least one of the submodels, and that w7 and w6 are highly
correlated. It seems to be more complicated to simultaneously optimize the accu-
racy of predictions of the two outcomes in the presence of highly correlated covariates
since the regions of (λL, λS) that minimizes the MSE does not overlap the region
(λL, λS) that minimizes the IBS. This is more evident in simulations 5 and 6, where
the linear mixed submodel has a non-zero regression coefficient for w7. The region
(log10(λ∗L) > 1, log10(λ∗S) = 1) that we identified as the solution for simulations 5

and 6 in Table 5.3 is prioritizing the accuracy of prediction of the longitudinal out-
come since this region compromises a little accuracy of the prediction of the time-to-
event outcome in order to include the region where the MSE is minimal. If on the
other hand we want to prioritize the accuracy of prediction of the time-to-event out-
come, then the solution would be (log10(λ∗L) = 0, log10(λ∗S) > 1) for simulation 5 and
(log10(λ∗L) = 0, log10(λ∗S) = 1) for simulation 6. It might be important to investigate
further this behavior with a larger set of correlated covariates.

In Section 5.4 we apply this strategy to the CARE75+ data set.
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In 5 out of our 6 simulation scenarios, the solution, (λ∗L, λ
∗
S), that optimizes prediction

is not a unique pair, but rather a region comprised by a set of values of these two penal-
ties. As a secondary criterion to help in identifying the optimal pair (λL, λS) for each
simulation, we looked into the fixed effects regression coefficients estimated from op-
timizing `λ(θ | D) for the specific (λ∗L, λ

∗
S) combinations, and compared them against

their corresponding values chosen for the simulation experiment (shown in Table 6.3).
More specifically, we assessed whether the regression coefficients estimates are non-
zero whenever their true value in the simulation experiment are non-zero, and zero
otherwise. We follow this approach as a means to untie the (λ∗L, λ

∗
S) and it is discussed

in Section 5.3.3, i.e. optimizing prediction is the leading criterion, and variable selec-
tion accuracy the secondary one. Note that we could have done it the other way around
by prioritizing variable selection accuracy and rendering prediction optimization as the
secondary criterion.

5.3.3 Variable selection assessment

As mentioned in the Introduction of this chapter, our aim is to find the subset of co-
variates that optimizes predictions of a joint model for longitudinal and time-to-event
outcomes, while getting an interpretable model. In this section we explore the extent
in which our proposed strategy to optimize predictions estimates as non-zeroes the
fixed effects regression coefficients whose values in the simulation design are actually
non-zero, and estimates as zero those coefficients whose value is actually zero.

We refer to the values of the regression coefficients in the simulation design in Table
6.3 as the true values, and their estimates, β̂t, β̂k and γ̂k, k = 1, . . . , 7 as the estimated

values. Additionally, we considered the joint model as a whole, so in this section we
denote by θ the q-vector of regression coefficients of the two submodels.

θ> = (θ1, θ2, . . . , θq) = (βt, β1, . . . , βp, γ1, . . . , γp). (5.3)

In our simulation experiment, q = 2p+ 1 and p = 7.

We assessed the agreement between the true and estimated values by constructing a
binary classifier for the regression coefficients and compare the output of this classifier
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Figure 5.1: Cross-validated MSE (odd rows) and IBS (even rows) of the of the six
simulated data sets plotted against the two penalties: λS on the horizontal axis and λL
on the vertical axis (log10 scale).
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applied to the true and the estimated values of the regression coefficients. This com-
parison is done in a confusion matrix, a 2× 2 table whose entries are the counts of the
four possible combinations of the output of a binary classifier applied to the true and
estimated values as shown on the left side of Table 5.4, where

T0 := # (True = 0 & Estimate = 0)

F0 := # (True = 1 & Estimate = 0)

F1 := # (True = 0 & Estimate = 1)

T1 := # (True = 1 & Estimate = 1)

The diagonal elements of the confusion matrix indicate the agreement between the true
and estimated values, while the off-diagonals the discordance. Typically the four cells
of a confusion matrix are known as True Positive (correct positive prediction), False

Positive (incorrect positive prediction), False Negative (incorrect negative prediction)
and True Negative (correct negative prediction) (Fawcett, 2006) .

There are several metrics that intend to assess the performance of a binary classifier,
the right side of Table 5.4 show the most common. In the context of our simulation
study these metrics must be read as follows:

• Error: The proportion of discordance between true and estimated values among
the total number of estimated coefficients.

• Accuracy: The proportion of agreement between true and estimated values among
the total number of estimated coefficients.

• Sensitivity: The proportion of actual positives that are correctly estimated as
such. It is also known as the True Positive Rate.

• Specificity: The proportion of actual negatives that are correctly estimated as
such. It is also known as the True Negative Rate.

• Precision: The proportion of estimated positives that are actually positive.

• False Positive Rate: The proportion of actual negatives that are incorrectly esti-
mated as positive.
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Estimate
True 0 1 Sum

0 T0 F1 NT
0

1 F0 T1 NT
1

Sum NE
0 NE

1 N

Measure Definition
Error (F0+F1)

/
N

Accuracy (T0+T1)
/
N

Sensitivity (TPR) T1
/
NT

1

Specificity (TNR) T0
/
NT

0

Precision T1
/
NE

1

False Positive Rate 1− Specificity
False Negative Rate 1− Sensitivity

Table 5.4: Confusion matrix and common performance metrics calculated from it.

• False Negative Rate: The proportion of actual positives that are incorrectly esti-
mated as negative.

The range of values the metrics in Table 5.4 is [0, 1]. Error and Accuracy are com-
plements of each other (Error = 1 − Accuracy), and the False Positive (Negative)
Rate is the complement of Specificity (Sensitivity). Accuracy can also be expressed
as a weighted average of Sensitivity and Specificity with weights equal to the sample
prevalence (i.e. Pr(True = 1)) and its complement (Pr(True = 0)),

Accuracy =Prevalence× Sensitivity + (1− Prevalence)× Specificity,

where Prevalence = NT
1 /N .

When one of the dimensions of a confusion matrix represents a hypothesis system (null
and alternative) and the other one the prediction based on some test, the quantities
1 − Sensitivity and 1 − Specificiy are analogous to the Type I and Type II errors,
respectively, in the context hypothesis testing (Zhou et al., 2009).

In order to assess the performance of our variable selection strategy described in Al-
gorithm 5.1 in terms of the agreement between estimates and their true values, we
defined a binary classifier. For each (λL, λS) combination and theK folds of the cross-
validation design (a total of 320 combinations per simulation) we applied the binary
classifier to each fixed effect regression coefficient estimate that result from optimizing
the penalized log-likelihood defined in Equation (5.2) and its true value and produced
a confusion matrix. We assessed the level of agreement between estimates and their
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true values with the metrics described in Table 5.4. We averaged each performance
metric over the K folds, so we analyzed the cross-validated performance metrics. We
repeated this process in each simulated data set.

The binary classifier we used is the indicator function 1 (|x| > 0) that returns 1 if x 6= 0

and 0 otherwise. Let

Tj = 1 (|θj| > 0) and Pj = 1(|θ̂j| > 0)

denote the value of the binary classifier applied to the true value of the regression
coefficient θj and its estimate, θ̂j , respectively. Since some estimates are very small but
not exactly equal to zero, we chose ε = 10−5 as the threshold to consider θ̂j = 0.

Define the True Negatives, False Negatives, False Positives and True Positives as in
Equations (5.4a)–(5.4a).

T0 :=

q∑
j=1

1(Tj = 0 & Pj = 0),

F0 :=

q∑
j=1

1(Tj = 1 & Pj = 0),

F1 :=

q∑
j=1

1(Tj = 0 & Pj = 1),

T1 :=

q∑
j=1

1(Tj = 1 & Pj = 1).

(5.4a)

(5.4b)

(5.4c)

(5.4d)

Since our interest is to explore the extent in which our proposed strategy developed to
optimize predictions estimates as non-zeroes the fixed effects regression coefficients
that are actually non-zeroes in the simulation design, and as zeroes those that are actu-
ally zeroes, we based our analyses of this section primarily on Sensitivity and Speci-
ficity, and on Accuracy because it summarizes these two metrics. Figures 5.2 and 5.3
show the Accuracy, Sensitivity and Specificity of applying the binary classifier to the
six simulations. Appendix B.2 contains plots of the complete set of six metrics for the
binary classifier analyzed in this section and other two classifiers discussed in Section
5.5. These plots show a roughly monotonic behavior of the three metrics with respect
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Prediction Accuracy Variable Selection

Simulation M
(S)
s log10(λ

∗
L) log10(λ

∗
S) log10(λ̃

∗
L) log10(λ̃

∗
S) Acc Sen Spe

1 M
(S)
12 3 2 3 2 0.48 0.28 0.58

2 M
(S)
12 1 (2,3) 1 3 0.57 0.72 0.50

3 M
(S)
34 (1,2,3) (0,1) 3 1 0.55 0.50 0.58

4 M
(S)
34 (1,2,3) 1 3 1 0.64 0.77 0.56

5 M
(S)
5 (2,3) 1 2 1 0.44 0.87 0.13

6 M
(S)
6 (2,3) (1,2,3) 3 3 0.64 0.46 0.80

Table 5.5: Classifier 1. Values of (log10(λL), log10(λL)) that optimize prediction
accuracy, Sensitivity and Specificity in the variable selection process. Acc =
Accuracy,Sen = Sensitivity,Spe = Specificity.

to the two penalties (shown in log10 scale), with bigger changes occurring in λL ≥ 10

and λS ≥ 10, which is the region of more accurate predictions, as discussed in Section
5.3.2. Table 5.5 complements Table 5.3 by including additional columns for Accuracy,
Sensitivity and Specificity corresponding to (λ∗L, λ

∗
S), i.e. the combination of the two

penalties where predictions are closer to being optimal. In all the simulations where
(λ∗L, λ

∗
S) is not a unique combination, we identified as (λ̃∗L, λ̃

∗
S) the combination within

(λ∗L, λ
∗
S) with the highest Accuracy and considered it as the solution.

Finally, in order to obtain a definitive model that optimizes prediction, we looked into
the estimates K folds of the cross validation design at (λ̃∗L, λ̃

∗
S), computed Pj, j =

1, . . . , q and determined that θj should be in the final model if Pj = 1 in at least 50%

of the K folds. Table 5.6 identifies the fixed effects covariates that should be included
in the final joint model in order to optimize prediction of both outcomes and shows the
estimates of all the parameters and regression coefficients of the final model of each of
the six simulations.

In all six simulations, the model that optimizes prediction has relatively low Accuracy,
ranging from 0.44 to 0.57. Simulations 1 and 3, which have the smaller sample sizes,
have lower Sensitivity and higher Specificity. In both simulations 1 and 3, the defini-
tive model that optimizes prediction accuracy should include no fixed effects in the
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Figure 5.2: Classifier 1. Performance metrics of the variable selection process. Top to
bottom: Simulations 1 to 4. Left to right: Accuracy, Sensitivity and Specificity.
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Figure 5.3: Classifier 1. Performance metrics of the variable selection process. Top to
bottom: Simulations 5 and 6. Left to right: Accuracy, Sensitivity and Specificity.
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Simulation

Related M
(S)
12 M

(S)
34 M

(S)
5 M

(S)
6

variable 1 2 3 4 5 6
Sample size

n – 50 250 50 250 250 250
Fixed effects

Longitudinal
β0 1 2.012 3.383 1.936 3.031 3.127 3.601
βt time 0.159 0.582 0.045 0.426 0.589 0.526
β1 w1 − 0.090 − − 0.401 −
β2 w2 − 0.229 − − 0.247 −
β3 w3 − −0.280 − − −0.242 −
β4 w4 − 0.262 − 0.877 0.428 −
β5 w5 − 0.049 − − 0.056 −
β6 w6 − 0.031 − − 0.294 0.048
β7 w7 − −0.093 − − 0.611 0.373

Terminal
γ1 w1 0.463 − −0.218 0.046 0.335 −
γ2 w2 −0.565 0.403 0.177 0.338 0.415 −
γ3 w3 −1.193 − 0.076 0.096 0.021 −
γ4 w4 −0.180 − −0.409 −0.063 0.170 −
γ5 w5 −0.289 − −0.166 0.036 0.004 −
γ6 w6 0.122 − −0.016 −0.263 0.280 −
γ7 w7 −0.145 − 0.353 0.796 −0.310 −

Association
η bi0 0.550 0.555 0.522 0.660 0.560 0.574

Variance
σ2
ε εi(t) 4.439 3.782 3.680 4.312 3.781 3.970
σ2
b bi0 5.656 4.100 2.331 3.099 4.088 4.830

h0(t;κ, ρ)

κ shape 1.076 0.994 0.968 1.029 1.000 0.976
ρ rate 1.876 1.220 1.504 1.223 1.074 1.291

Table 5.6: Final model that optimizes prediction for each simulation. Parameter es-
timates of the joint model that includes only the covariates indicated by our variable
selection strategy in order to optimize prediction. “−” indicates that the covariate it is
not included in the final model.
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submodel of the quantitative outcome submodel, not even time, and all w1, . . . , w7 in
the time-to-event submodel. It is worth noting that even with w6 and w7 being highly
correlated, the definite model for simulation 3 should include both of these covari-
ates.

The final model of some of the simulations with larger sample size (2,4,and 5) have
higher Sensitivity relative to the small sample simulations. The exception is simula-
tion 6, whose simulation model has regression coefficients β7 = 1 and γ7 = 0.5 for the
covariate w7 and this covariate is highly correlated with w6. As in the smaller size sim-
ulation 3, it is interesting that the definite model of the larger size simulations should
include both highly correlated covariates, w6 and w7, in the quantitative outcome sub-
model in order to optimize prediction.

The Sensitivity of the model for simulation 5 is notably high and its Specificity no-
tably low (0.13), which means that very few covariates whose regression coefficient is
actually non-zero and, as shown in Table 5.7, the definitive model should include all
covariates in both submodels. In the simulation model M (S)

5 the regression coefficients
associated to w7 are β7 = 1 and γ7 = 0.5, and cor(w6, w7) = 0.95.

A consistent result across the six simulations is that the definite model that optimizes
prediction would always include the two correlated covariates,w6 andw7 at least in one
of the submodels. This suggests that a submodel with correlated covariates improves
prediction, regardless of whether or not these covariates have an effect on the outcome.
In Section 5.4 we analyze the results of applying our variable selection strategy to the
CARE75+ data.

5.4 Applications to the CARE75+ data

Figure 5.4 shows the cross-validated MSE and IBS that result from applying the Algo-
rithm 5.1 to the CARE75+ data set. Here we can notice that the region of (λL, λS) that
minimizes the MSE does not overlap the region that minimizes the IBS. For this real
data set we are not able to compute the performance metrics of the confusion matrix
as we did for in the simulation experiments because we obviously don’t know the true
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Covariate Estimate SE z-value p-value
Fixed effects

Longitudinal
β0 1 7.268 0.338 21.477 < 0.001
βtime years 0.104 0.112 0.923 0.356
βsex sex −0.160 0.253 −0.630 0.529
βeth ethinicity −2.328 0.380 −6.125 < 0.001
βmar marital −0.907 0.245 −3.707 < 0.001
βedu education −1.173 0.246 −4.765 < 0.001
βsmo smoke −0.175 0.210 −0.834 0.405
βalc alcohol −0.971 0.250 −3.885 < 0.001
βfal falls 0.207 0.038 5.491 < 0.001

Terminal
− − − − − −

Association
η bi0 0.276 0.110 2.513 0.012

Variance
σ2
ε εi(t) 2.243 − − −
σ2
b bi0 2.735 − − −

h0(t;κ, ρ)

κ shape 0.864 − − −
ρ rate 0.006 − − −

Table 5.7: Joint model that optimizes prediction of frailty and mortality in the
CARE75+ data set.

186



5.4 Applications to the CARE75+ data

values of the regression coefficients and parameters of the model. Thus, we need a
compromise between MSE and IBS.

A reasonable solution would be (λ∗L, λ
∗
S) = (0.0001, 1000), resulting in MSE = 6.26

and IBS = 42.15. This solution optimizes MSE and the level of IBS is very close to the
optimal level, so it satisfies our interest of optimizing simultaneously the predictions
for frailty and for mortality. The final model for the CARE75+ data should include
sex, ethnicity, marital, education, smoke, alcohol, fallscount,
and years in the submodel for frailty and no covariates in the submodel for mor-
tality. The parameter estimates of this model are in Table 5.7.

It is important to note in Figure 5.4 the negligible changes in the IBS even on very large
differences in λL and λS . Choodari-Oskooei et al. (2012b) show some evidence that
measures of predictive accuracy, like the Brier score, are generally lower that explained
variation and explained randomness measures, because they capture the uncertainty in
a binary outcome (event and non-events) accounted by a model rather than capturing
the uncertainty about the survival time itself. This behavior is similar in logistic regres-
sion. Additionally, it has been reported, for instance by Benedetti (2010), that the Bier
score becomes inadequate for rare (infrequent) events because it does not correctly
assess the ability of the model to discriminate events from non-events.

In the hypothetical scenario that our priority was to optimize predictions for mortality,
then the solution would be (λ∗L, λ

∗
S) = (100, 10) resulting in MSE = 10.81 and IBS =

41.84.

We would like to display graphically the regression coefficient estimates as function of
the two penalties to see which covariates switch in or out of a submodel (i.e. associated
regression coefficient shrinking towards zero) as the values of the two penalties vary.
The fact that we deal with two penalties makes it difficult to visualize simultaneously
the surface of the 15 regression coefficients estimates. As an example, we include in
Appendix B.2.2 three different graphical representations (surface, heat map and scat-
ter plot) of the regression coefficients behavior with respect to the values of (λL, λS)

for simulation 6, where we observe that most of the coefficients decrease monoton-
ically with respect to both penalties but some of them respond in this way only to
the penalty of the submodel they belong to. This would require further investigation,
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Figure 5.4: Cross-validated MSE and IBS of the of the CARE75+ data set plotted
against the two penalties: λS on the horizontal axis and λL on the vertical axis (log10

scale).

in particular, finding a better tool to assess graphically all the regression coefficients
simultaneously.

5.5 Discussion

Our strategy is useful to select fixed effects covariates for a joint model for longitudinal
and time-to-event data that optimize the accuracy of prediction of both the quantitative
and the time-to-event outcomes. This is done by penalizing the log-likelihood function
with separate penalties for the fixed effects regression coefficients of each submodel
and cross-validation. However, it is not always possible to optimize simultaneously the
two outcomes. The simulation study suggests that with highly correlated covariates,
the region of the hyperpameters (the two penalties) where the MSE is optimal might not
overlap with the region of optimal IBS. In such a case, our strategy allows to choose
among values within a small region of the two penalties that require a compromise
between MSE and IBS depending on which outcome is the priority. According to our
simulation study it is possible to find a solution with very small compromise between
the prediction accuracy of the two outcomes. The fact that highly correlated covariates
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can be in the final model that optimizes prediction raises the question if our strategy
is overfitting. In principle, our strategy should not yield an overfitted model because
this problem is being addressed by regularizing the model via shrinkage methods and
cross-validation. This might require further investigation with more simulations and
larger sample sizes and more correlated covariates.

We assessed the accuracy of prediction with a separate metric for each outcome: MSE
for the longitudinal and IBS for the time-to-event. In the future we would like to
investigate with the possibility of defining an overall measure of prediction accuracy
for the two outcomes of the form ϕ = ϕ(MSE,IBS), and assess if this kind of measures
can be extended to an arbitrary number of outcomes in a joint model.

We assessed the variable selection abilities of our strategy in simulation studies in
terms of Accuracy, Sensitivity and Specificity that result from comparing the regres-
sion coefficient estimates against their true values under a binary classifier. The values
of these metrics are not as high as we have seen in simpler cases of single-outcome
regression models or multivariate models for normally distributed outcomes. Nonethe-
less, this is of secondary interest for our proposed strategy, the principal criterion being
to optimize prediction. We constructed two additional binary classifiers that impose ad-
ditional restrictions to the binary classifier used in our simulation study. Even though
we obtained similar results they seem too ambitious for the joint modelling context and
we would rather explore how they perform in simpler contexts, like single-outcome
models. These two binary classifiers are discussed briefly in the Section 5.5.1.

Our main interest and primary criterion for model selection is optimizing prediction,
and we used as secondary criterion the Accuracy of variable selection relative to the
true model when it was difficult to determine which (λL, λS) combination gave the
best prediction. We should emphasize that this can very well be done the other way
around: by considering variable selection accuracy as the primary criterion and predic-
tion optimization as the secondary one. To illustrate this point, consider simulation 4
in the fourth row of Figure 5.2. Even though we find in (log10(λL), log10(λS)) = (3, 1)

the highest Accuracy for variable selection with highest Specificity, it also has the low-
est Sensitivity. This point minimizes the MSE, but it renders the largest IBS, which
is a different solution to the one found earlier. We get the same solution by Sacrific-
ing a little Accuracy to gain some Sensitivity, where the points log10(λL) = 3 and
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log10(λS) = (−4, 1, 3) become very good candidates. We can confirm at the bottom
left of Figure 5.1 that the point (log10(λ̃∗L), log10(λ̃∗S)) = (3, 1) minimize both MSE
and IBS, resulting in optimal prediction of both outcomes.

Su et al. (2016) proposed a sparse estimation method for Cox models by optimizing
an approximated information criterion. The method approximates the `0-norm with a
continuous function; it mimics the best subset selection using a penalized likelihood
approach yet with no need of a tuning parameter. Han et al. (2020) studied the use
of this selection method in joint models of recurrent and terminal events. We can
explore using this penalty for joint models of longitudinal and recurrent and terminal
events.

5.5.1 Extensions and future work

A very important, but often ignored problem of data-driven variable selection is model
stability, that is the robustness of the selected model to small perturbations of the data
set (Heinze et al., 2018). Bootstrap resampling with replacement or subsampling with-
out replacement are valuable tools to investigate and quantify model stability of se-
lected models. The basic idea is to draw B resamples from the original data set and
to repeat variable selection in each of the resmaples. Important types of quantities that
this approach can provide are:

• bootstrap inclusion frequencies to quantify how likely a covariate is selected,

• sampling distributions of regression coefficients,

• model selection frequencies to quantify how likely a particular set of covariates
is to be in the model.

Classifier 2

In the second classifier, we add the condition to classifier 1 that the estimate, say θ̂j ,
and is its true value, θj , must agree also in their sign, i.e. if both are positive or both
negative. Let

Tj = sign(θj) and Pj = sign(θ̂j),
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where the sign function is defined as

sign(x) :=


0 if x = 0,

−1 if x < 0,

+1 if x > 0.

Here we take ε = 10−5 as threshold to consider θ̂j = 0, so sign(θ̂j) = 0 if |θ̂j| ≤
ε.

With the functions Tj and Pj , we define the True Negatives, False Negatives, False
Positives and True Positives as

T0 :=

q∑
j=1

1(Tj = 0 & Pj = 0),

F0 :=

q∑
j=1

1 ([Tj = +1 & Pj ≤ 0] or [Tj = −1 & Pj ≥ 0]),

F1 :=

q∑
j=1

1 ([Tj = 0 & Pj = +1] or [Tj = 0 & Pj = −1]),

T1 :=

q∑
j=1

1 ([Tj = +1 & Pj = +1] or [Tj = −1 & Pj = −1]).

Just as in the binary classifier defined in Section 5.3.3, T0 denotes the number of
coincidences of true values and estimates being equal to zero. In contrast, here T1
denotes the number of coincidences in the sign (negative or positive) between true
values and estimates. F0 is the count of coefficients whose value is actually non-zero
that are estimated either as zero or as non-zero but with the opposite sign. Finally, F1 is
the count of coefficients whose value is actually zero but estimated as non-zero (either
positive or negative). Table 5.8 shows the results of classifier 2.

Classifier 3

The third classifier is based on the interval estimate of the regression coefficients, call
it θ̂jI = (θ̂jL, θ̂jU) = θ̂j ± αŝe(θ̂j), α ∈ R+. Here we assessed whether or not θj ∈ θ̂jI
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Prediction Accuracy Variable Selection
Simulation M

(S)
s log10(λ

∗
L) log10(λ

∗
S) log10(λL) log10(λS) Acc Sen Spe

1 M
(S)
12 3 2 3 2 0.45 0.20 0.58

2 M
(S)
12 1 (2,3) 1 3 0.55 0.64 0.50

3 M
(S)
34 (1,2,3) (0,1) 3 1 0.49 0.37 0.58

4 M
(S)
34 (1,2,3) 1 3 1 0.64 0.77 0.56

5 M
(S)
5 (2,3) 1 2 1 0.41 0.83 0.13

6 M
(S)
6 (2,3) (1,2,3) 2 3 0.57 0.66 0.50

Table 5.8: Classifier 2. Values of (log10(λL), log10(λL)) that optimize prediction accu-
racy, Sensitivity and Specificity in the variable selection process.

and if both ends of θ̂jI are positive (or negative) and agree with the the sign of its true
value, θj .

We don’t have reliable standard error estimates because some of the variances based
on the Hessian matrix that results from optim() are negative. Here, we used instead
the standard deviation of the K folds of the cross-validation design. This is v̂ar(θ̂) =

K−1
∑K

k=1

(
θ̂k − θ̂

)2

, with ŝe(θ̂) = (v̂ar(θ̂))1/2 Due to the asymptotic normal distri-
bution of Maximum Likelihood Estimates, by choosing α = 3 we would expect the
parameters’ interval estimates to have approximate nominal coverage > 99%.

Define

Tj = sign(θj) and Pj =


0 if 0 ∈ θ̂jI ,
−1 if sign(θ̂jL) = sign(θ̂jU) = −1,

+1 if sign(θ̂jL) = sign(θ̂jU) = +1.

Here T0, F0, F1 and T1 are defined exactly the same way as in classifier 2. Table 5.9
shows the results of classifier 3. In five out of the six scenarios the best combination of
penalties yield Sensitivity > 0.5, and in all six scenarios Specificity ≤ 0.4. However,
we consider that this classifier still needs to be investigated further in simpler models,
for instance the marginal LMM and Cox models, because even when it is too strin-
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gent for an automatic variable selection method it is the classifier that results in larger
Sensitivity.

Prediction Accuracy Variable Selection

Simulation M
(S)
s log10(λ

∗
L) log10(λ

∗
S) log10(λ

∗
L) log10(λ

∗
S) Acc Sen Spe

1 M
(S)
12 3 2 3 2 0.29 0.60 0.14

2 M
(S)
12 1 (2,3) 1 3 0.48 0.88 0.32

3 M
(S)
34 (1,2,3) (0,1) 3 0 0.39 0.36 0.40

4 M
(S)
34 (1,2,3) 1 1 1 0.52 0.84 0.36

5 M
(S)
5 (2,3) 1 3 1 0.41 0.60 0.32

6 M
(S)
6 (2,3) 1 3 1 0.37 0.64 0.24

Table 5.9: Classifier 3. Values of (log10(λL), log10(λL)) that optimize prediction accu-
racy, Sensitivity and Specificity in the variable selection process.
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Chapter 6

Causal inference and joint modelling
specification

6.1 Introduction

In this chapter, we explore the relationship between frailty, falls and mortality with
the CARE75+ data set addressing confounding. We use DAGs to state upfront our
hypotheses about the relationships among all the variables in the CARE75+ data set,
identifying all possible confounders to the frailty-falls-mortality relationship based on
the causal effect rule (Section 2.5.6), and we fit the joint model that corresponds to the
relationships stated on the DAGs.

In Chapter 4 we analyzed the CARE75+ dataset by joint modelling the relationship be-
tween frailty, falls and mortality. We fitted, analyzed and discussed the 3-outcome joint
model, M̂CARE

3 , and explored with an alternative joint model for frailty and mortality,
M̂CARE

2 , assuming falls as exogenous time-varying covariate. The variable selection
process was done in two steps. First, stepwise selection was carried out on separate
submodels for each outcome using a p-value cutoff of 0.05 to form a provisional co-

variate set. The second step consisted of removing from the provisional covariate set
all covariates whose regression coefficient estimate had p-value < 0.05 when attempt-
ing to include them the joint model. The exception to the 0.05 significance criterion are
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the regression coefficient of time in the linear mixed submodel since it is of interest
in its own right to know the time effect on frailty, and ethnicity in the mortality
submodel that was not removed for convergence of the optimization algorithm. Ta-
bles 4.4 and 4.5 show the covariates retained in M̂CARE

3 and M̂CARE
2 and the parameter

estimates.

By fitting M̂CARE
3 we aimed at describing the relationship between frailty, falls and

mortality in the CARE75+ data set by joint modelling these three outcomes of the
participants of the study. We made no attempt to draw any causal conclusions. In this
chapter we revisit model M̂CARE

3 , analyze it in light of the causal inference framework
described in Section 2.5, explain why this model is incorrect for causal inference and
reformulate the joint model in line with the causal inference framework using DAGs
to estimate the effects of frailty and falls on mortality.

A second aim of this chapter is to study the consequences of model misspecification
in joint modelling. In Chapter 4 we fitted model M̂CARE

2 as an alternative formulation
of the frailty-falls-mortality relationship. In Chapter 6 we analyze M̂CARE

2 under the
causal inference framework in parallel to model M̂CARE

3 . We regard model M̂CARE
3 ,

fitted in Chapter 3, as the leading model all along our analyses of this chapter, and
consider the alternative M̂CARE

2 to understand the consequences of model misspecifi-
cation. We complement the analysis by conducting a simulation study in which we
simulate a series of data sets from two joint models similar to M̂CARE

3 and M̂CARE
2 and

analyze each data set with both joint models. Our aim by doing so is to assess the ex-
tent in which the model parameters and regression coefficients are correctly/wrongly
estimated when the data is analyzed with the wrong model.

This chapter has five sections. The first section is this introduction. In the second
section we revisit models M̂CARE

3 and M̂CARE
2 , but this time conducting the variable se-

lection process under the causal inference framework focusing on the effects of frailty
and falls on mortality adjusting for confounding. The third section is a simulation
study to assess the consequences of misspecifying a joint model on the parameters and
regression coefficients estimates. We discuss the main results of the simulation study
in the fourth section. Finally, in the fifth section we outline future work and possible
extensions to causal inference in the context of joint modelling.
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6.2 Joint model for frailty, falls and mortality with the
CARE75+ data (Revisited)

The complexity of joint models conveys challenges to statistical modelling. Some are
pointed out by Hickey et al. (2016, 2018), which can be grouped in methodological,
computational and study design issues. Choosing the link to characterize the associ-
ations between outcomes is nontrivial, as is choosing the type of submodel for each
outcome, the distributional assumptions of the random effects and the form of base-
line hazards. Each of these choices require careful consideration, thus fitting a joint
model can be a difficult task. Additionally, due to the fact that fitting a joint model
implies dealing with multiple regression equations, variable selection becomes more
challenging compared to fitting separate marginal models.

As we pointed out in Section 4.5.1, variable selection in statistical modelling is done
in different ways depending on the intended use of the fitted model. In order to build
a joint model for estimating the effects of frailty and falls on mortality we should first
state our causal assumptions about the relationships between the variables in the data
set, and we do so by using Directed Acyclic Graphs (DAGs) as explained in Section
2.5.1. In the frailty-falls-mortality relationship, mortality is the endpoint and we are
interested in estimating the effects of frailty and falls on mortality, but the possible
relationship between frailty and falls is not clear (frailty → falls, frailty ← falls). We
need to be explicit about how the other variables of the data set relate to frailty, falls
and mortality in order to identify and adjust for all possible confounders of the effects
of frailty and falls on mortality. The importance of correctly adjusting for confounding
is to avoid (1) inducing spurious associations between frailty, falls and mortality, and
(2) blocking the effects of frailty and falls on mortality. These problems are illustrated
with simple examples of the basic structures in DAGs in Section 2.5.2.

The criterion to identify the confounders to adjust for is stated in the causal effect
rule explained in Section 2.5.6. According to the causal effect rule, once a DAG is
proposed we should include in each submodel only the parents of frailty, falls and
mortality respectively, which implies leaving out all variables lying in the paths from
frailty and falls to mortality. In this context, the statistical significance of the regression
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coefficients of confounders becomes irrelevant, and we should not decide whether or
not to keep them in the model based on their p-value. The reason for adjusting for
confounders regardless of their p-value is because due to their relationship with frailty,
falls and mortality, leaving them out the model could affect the main effects of interest:
frailty and falls on mortality.

Equations (6.1a)–(6.1c) describe the model M̂CARE
3 , discussed and fitted in Chapter

4, and the DAG GCARE
3 of Figure 6.1 (left) depicts the relationships among variables

according to M̂CARE
3 . We omit “̂” from the M̂CARE

3 estimates, but it must be clear
that we refer to the fitted model, and for the moment we focus on the mean structure,
ignoring the parameters of the baseline hazards and variance components. Recall that
model M̂CARE

3 was built under the assumption that the relationship between frailty,
falls and mortality is completely characterized by the random effects bi0 and ui: frailty,
falls and mortality are linked by a random intercept (bi0), and additionally, falls and
mortality have a common random effect (ui) acting multiplicatively on the hazards
of falls and mortality (refer to Section 4.2 for a rationale of this joint model specifi-
cation). We refer to GCARE

3 as the DAG implied by M̂CARE
3 . Observed variables are

represented by a solid rectangle and all unobserved by a dashed circle. The arrows
represent our assumptions about the direction of the paths between a pair of variables,
with red arrows emphasizing the paths between frailty, falls and mortality. The let-
ters besides the arrows are the regression coefficients associated to the covariates of
the joint model, emphasizing in blue the association parameters of the joint model.
For instance, ethnicity is a covariate in all three submodels, so eth is the initial
node of three arrows with their corresponding regression coefficient: eth −−−→

γR.eth
r(t),

eth −→
β
m(t) and eth −−−→

γT.eth
h(t).

M̂CARE
3 :


L: yi(t | bi0) = (β0 + bi0) + βtt+ x>i (t)β + εi(t)

R: ri(t | vi) = uir0(t) exp{γR.ethethi + ηRbi0}
T: hi(t | vi) = uαi h0(t) exp{γT.ethethi + ηT bi0},

(6.1a)
(6.1b)
(6.1c)
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M̂CARE
2 :


L: yi(t | bi0) = (β0 + bi0) + x>i (t)β + βfallsNi(t)︸ ︷︷ ︸

mi(t)

+εi(t)

T: hi(t | bi0) = h0(t) exp{γT.ethethi + γT.fallsNi(t) + ηLmi(t)},

(6.2a)

(6.2b)

where

x>i (t) = (ethnicityi, maritali, educationi, alcoholi, comorbiditiesi(t))

β> = (βeth, βmar, βedu, βalc, βcom) .

v>i = (bi0, ui).

In model M̂CARE
3 , the vector xi(t) represents the covariates of subject i whose regres-

sion coefficients, denoted by the vector β, were significant at the level of 0.05 in the
submodel of frailty. ethnicity was significant for frailty and falls, and no covariate
was significant for mortality although we kept ethnicity in the mortality submodel.
Frailty, falls and mortality are linked by the random effects bi0 and ui, and the strength
of these links is quantified by the association parameters ηR, ηT and α.

The problem with M̂CARE
3 as a model for estimating the effects of frailty and falls

on mortality is that most of the covariates can be considered as common causes of
frailty, falls and mortality and only some of them are included in the joint model and,
as we discussed in Section 2.5.2, failing to adjust for confounding and adjusting for
mediating variables might bias the causal effects of interest.

Empirical evidence reported in the literature supports hypotheses about factors like
sex, ethnicity, education level, marital status, obesity, and lifestyle habits being corre-
lated with frailty, the risk of falls and the risk of mortality. To mention some examples,
(Hao et al., 2019) suggest that age, sex, education levels, BMI, marital status and al-
cohol intake are confounders of the relationships frailty-mortality and frailty-hospital
readmission; while estimating the effect of frailty on the risk of falls and hip/nonspine
fractures, Ensrud et al. (2007) adjusted for age, health status, medical conditions, func-
tional status, depressive symptoms and BMI as confounders.

Model M̂CARE
2 , described by Equations (6.2a)–(6.2b) and explained in more detail in

Section 4.5, would have the same limitation as M̂CARE
3 with respect to the estimated
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GCARE
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A Unobserved A0 Observed

sex : Gender
eth : Ethnicity
mar : Married or remarried
edu : Highest education
alc : Drinks alcohol
smo : Smoker

bmi(t) : BMI at t
com(t) : # comorbidities by t

vgp(t) : # visits to a GP by t
N(t) : # falls at t
m(t) : Frailty at t free of

measurement error
y(t) : Frailty score at t with

measurement error
r(t) : Hazard risk of falls
h(t) : Hazard risk of death

ε(t) : Error of frailty score
b0 : Random intercept
u : Random effect shared

by the two hazards

σ2
ε : Variance of ε(t)

σ2
b : Variance of b0
ρ· : Shape of Weibull
κ· : Rate of Weibull

Figure 6.1: DAGs GCARE
3 (left) and GCARE

2 (right) for frailty, recurrent falls and mor-
tality in the CARE75+ data set, corresponding to models M̂CARE

3 and M̂CARE
2 , respec-

tively.
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effects of frailty and falls on mortality since we included the same covariates in the sub-
model of frailty and mortality as those in model M̂CARE

3 . As discussed in Section 4.5,
model M̂CARE

2 differs from model M̂CARE
3 in three main aspects: in model M̂CARE

2 falls
is exogenous time-varying covariate of mortality and of frailty, and the link between
frailty and mortality is the current level of frailty free of measurement error (mi(t)).
The right panel of Figure 6.1 depicts GCARE

2 , the DAG implied by M̂CARE
2 , showing the

relationships among all the variables in the model, in particular the covariates included
in each submodel.

6.2.1 A causal joint model for frailty, falls and mortality for the
CARE75+ data set

In order to construct a model for causal inference we would need to state upfront our
causal assumptions, this is the hypotheses about the relationships among all the vari-
ables, identifying all possible confounders to the frailty-falls-mortality relationship, to
finally fit the joint model adjusting for confounding, i.e. keeping in each submodel
model all confounders even when their associated regression coefficients were not sig-
nificant. We adapted DAGs GCARE

3 and GCARE
2 in order to make them consistent with

our assumptions about confounding of frailty, falls and mortality, taking into account
the empirical evidence in the literature. We named GCARE

3C and GCARE
2C the new DAGs

and their corresponding joint models M̂CARE
3C and M̂CARE

2C respectively, to emphasize
that they are based on our causal assumptions about confounding as follows:

• ethnicity, sex, marital, education, alcohol, smoker, bmi are
common causes of frailty, falls and mortality

• comorbidities is a common cause of frailty and falls, but it acts on mortality
through frailty and falls.

• visits to GP follows from people’s frailty and comorbidities.

Figure 6.2 depicts DAGs GCARE
3C and GCARE

2C and Equations (6.3a)–(6.3c) and (6.4a)–
(6.4b) describe their associated joint model, which we named MCARE

3C and MCARE
2 . We

tried to keep the nodes of the DAGs in Figure 6.2 in the same position as those in Figure
6.1, only the common causes of frailty, falls and mortality are in a slightly different
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position being grouped a the top of the DAG. The DAGs of Figure 6.2 differ from
those in Figure 6.1 only in the arrows pointing from the covariates to m(t), r(t), h(t)

and gpv(t), while the arrows connecting frailty, falls and mortality are kept exactly
the same.

MCARE
3C :


L: yi(t | bi0) = (β0 + bi0) + βtt+ x>i (t)β + εi(t)

R: ri(t | vi) = uir0(t) exp{x>i (t)γR + ηRbi0}
T: hi(t | vi) = uαi h0(t) exp{w>i (t)γT + ηT bi0},

(6.3a)

(6.3b)

(6.3c)

MCARE
2C :


L: yi(t | bi0) = (β0 + bi0) + x>i (t)β + βfallsNi(t)︸ ︷︷ ︸

mi(t)

+εi(t)

T: hi(t | bi0) = h0(t) exp{w>i (t)γT + γT.fallsNi(t) + ηLmi(t)},

(6.4a)

(6.4b)

where

w>i (t) = (ethnicityi, sexi, maritali, educationi, alcoholi,

smokeri, bmii(t))

x>i (t) =
(
w>i (t), comorbiditiesi(t)

)
β> =

(
βeth, βsex, βmar, βedu, βalc, βsmo, βbmi

)
.

γ>R =
(
γR.eth, γR.sex, γR.mar, γR.edu, γR.alc, γR.smo, γR.bmi, γR.com

)
.

γ>T =
(
γT.eth, γT.sex, γT.mar, γT.edu, γT.alc, γT.smo, γT.bmi

)
.

v>i = (bi0, ui).

The vector wi(t) contains the common causes of the three outcomes, and xi(t) the
common causes of frailty and falls, with regression coefficients vectors γT , β and γR
respectively. Note that the vectors wi(t) and xi(t) have variables in common. The links
between the three outcomes are the same as those in models M̂CARE

3 and M̂CARE
2 .

Table 6.1 shows the estimates of the associations between frailty, falls and mortality
of models M̂CARE

3C and M̂CARE
2C . For comparison, we copied on this same table the

estimates of the corresponding associations of models M̂CARE
3 and M̂CARE

2 previously
fitted in Chapter 3. Table 6.2 contains all the parameter estimates of models M̂CARE

3C

and M̂CARE
2C .
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sex : Gender
eth : Ethnicity
mar : Married or remarried
edu : Highest education
alc : Drinks alcohol
smo : Smoker

bmi(t) : BMI at t
com(t) : # comorbidities by t

vgp(t) : # visits to a GP by t
N(t) : # falls at t
m(t) : Frailty at t free of

measurement error
y(t) : Frailty score at t with

measurement error
r(t) : Hazard risk of falls
h(t) : Hazard risk of death

ε(t) : Error of frailty score
b0 : Random intercept
u : Random effect shared

by the two hazards

σ2
ε : Variance of ε(t)

σ2
b : Variance of b0
ρ· : Shape of Weibull
κ· : Rate of Weibull

Figure 6.2: DAGs GCARE
3C (left) and GCARE

2C (right) for frailty, recurrent falls and mor-
tality in the CARE75+ data set, corresponding to models M̂CARE

2C and M̂CARE
2C , respec-

tively.
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Parameter Estimate Std.Err p-value

M̂CARE
3 vs. M̂CARE

3C

η̂T (Frailty→Mortality)

M̂CARE
3 0.430 0.206 0.037

M̂CARE
3C 0.408 0.198 0.040

α̂ (Falls→Mortality)

M̂CARE
3 −0.962 0.703 0.171

M̂CARE
3C −0.817 0.439 0.063

η̂R (Frailty→Falls)

M̂CARE
3 0.439 0.081 < 0.001

M̂CARE
3C 0.452 0.080 < 0.001

M̂CARE
2 vs. M̂CARE

2C

η̂L (Frailty→Mortality)

M̂CARE
2 0.511 0.150 < 0.001

M̂CARE
2C 0.587 0.178 0.001

γ̂T.falls (Falls→Mortality)

M̂CARE
2 −0.259 0.235 0.269

M̂CARE
2C −0.276 0.248 0.267

β̂falls (Falls→Frailty)

M̂CARE
2 0.329 0.051 < 0.001

M̂CARE
2C 0.330 0.051 < 0.001

Table 6.1: Comparison of the estimated effects of frailty and falls on mortality: M̂CARE
3

& M̂CARE
2 against M̂CARE

3C & M̂CARE
2C .
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Table 6.1 shows that with respect to the estimates of model M̂CARE
3 , the estimated ef-

fects of frailty on mortality (η̂T ) and falls on mortality (α̂) in model M̂CARE
3C decreased

in absolute terms, and the effect of frailty on falls (η̂R) is larger. The standard errors of
all three estimates in model M̂CARE

3C are smaller than those estimated in model M̂CARE
3 .

The sign of all three estimates did not change and the p-values of η̂T , α̂ and η̂R changed
as little such that the conclusions of the hypotheses tests remain the same. The smaller
standard error of α̂ in M̂CARE

3C suggests that adjusting for confunding has reduced noise
and has made this estimate more stable, resulting in a smaller p-value (0.063) almost
to the point of becoming significant at a level of 0.05. The interpretation of the associ-
ations between frailty, falls and mortality in the CARE75+ data estimated with model
M̂CARE

3C are:

• Effect of frailty on mortality. The relative risk of death increases exp(0.408) =

1.504 with a unit increase in frailty, ceteris paribus.

• Effect of falls on mortality. Higher risk of falls decreases the risk of death. As
discussed in Chapter 4, this result might be due to relatively short follow-up
period and small number of deaths and falls. Additionally, it is possible that
the falls reported by the CARE75+ participants are not severe enough to pose
important deterioration in their general health condition or mobility, and they
implement precautionary measures, preventing further falls or making them less
severe although more frequent.

• Effect of frailty on falls. The relative risk of falls increases exp(0.452) = 1.571

with a unit increase in frailty, ceteris paribus.

The estimate of the effect of frailty on mortality (η̂L) in model M̂CARE
2C is 15% greater

than its estimate in model M̂CARE
2 , and its standard error greater by 19%. Accord-

ing to DAG GCARE
2 (Figure 6.2) in model M̂CARE

2C , frailty mediates the falls → mor-
tality relationship. The direct effect of falls on the relative hazard of mortality is
exp(γ̂T.falls) = 0.759 and the indirect effect is exp(β̂fallsη̂L) = 1.214 (VanderWeele,
2011) . So the total effect of falls on mortality is 0.921, calculated as the sum of direct
and indirect effects.
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6.2.2 Choosing the mean structure for joint modelling frailty, falls
and mortality

Comparing the two casual models for frailty, falls and mortality that we proposed in
this chapter, we notice that to some extent the qualitative conclusions we can make
from M̂CARE

3C and M̂CARE
2C are similar: direct association between frailty and mortality

and between frailty and falls, and weak to no association between falls and mortality.
The parameter η̂T in model M̂CARE

3C accounts for the effect frailty→mortality and, just
like the effect frailty → falls, although the interpretation of this parameter depends
entirely on the interpretation of the random intercept bi0, as discussed in Chapter 4. In
contrast, in model M̂CARE

2C the parameter that accounts for the frailty→mortality effect
is η̂L and, as shown in DAG GCARE

2 of Figure 6.2, this relationship is characterized by
mi(t), i.e. the true and latent frailty that includes bi0. It is not clear to us which model
to choose between M̂CARE

3C and M̂CARE
2C and it is not straightforward to decide on the best

way to characterize the frailty→ mortality relationship. In Section 6.3 we conduct a
simulation study to explore the consequences of misspecifying the mean structure in
joint modelling longitudinal and time-to-event data.

There is still more to explore about the relationships between these three outcomes, in
particular about the association between frailty and falls. On the one hand, according
to model M̂CARE

3C we cannot rule out the hypothesis of an effect frailty→ falls, although
the interpretation of the parameter that accounts for this relationship, η̂R, depends on
the interpretation of the random intercept bi0, just as the effect frailty → mortality.
On the other hand, in M̂CARE

2C the estimate β̂falls accounts for an effect in the opposite
direction i.e. from falls→ frailty with a straightforward interpretation (every additional
fall contributes to increase frailty as much as β̂falls). In this thesis we did not address
exhaustively this relationship, and it a topic that we regard as future work.
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M̂CARE
3C M̂CARE

2C

Parameter Estimate Std.Err p-value Estimate Std.Err p-value

Fixed effects

Frailty
β̂0 6.571 0.622 < 0.001 6.043 0.598 < 0.001

β̂t −0.032 0.112 0.774 −0.094 0.111 0.396

β̂sex −0.028 0.243 < 0.909 −0.028 0.230 0.905

β̂eth −1.967 0.366 < 0.001 −2.151 0.350 < 0.001

β̂mar −0.849 0.235 < 0.001 −0.825 0.223 < 0.001

β̂edu −0.830 0.237 < 0.001 −0.814 0.224 < 0.001

β̂alc −1.353 0.239 < 0.001 −1.238 0.235 < 0.001

β̂smo −0.010 0.205 0.963 −0.014 0.197 0.944

β̂bmi −0.011 0.019 0.563 0.003 0.018 0.880

β̂com 0.229 0.031 < 0.001 0.250 0.030 < 0.001

β̂falls + + + 0.330 0.051 < 0.001

Falls
γ̂R.sex −0.322 0.279 0.249 + + +

γ̂R.eth 1.028 0.439 0.019 + + +

γ̂R.mar −0.470 0.262 0.073 + + +

γ̂R.edu 0.210 0.257 0.414 + + +

γ̂R.alc −0.512 0.250 0.041 + + +

γ̂R.smo −0.074 0.257 0.766 + + +

γ̂R.bmi −0.002 0.020 0.903 + + +

γ̂R.com −0.064 0.042 0.122 + + +

Mortality
γ̂T.sex −0.327 0.585 0.576 −0.237 0.566 0.675

γ̂T.eth 0.222 0.859 0.796 1.551 0.881 0.078

γ̂T.mar 0.275 0.560 0.623 0.633 0.546 0.246

γ̂T.edu −0.455 0.584 0.436 0.131 0.593 0.825

γ̂T.alc −0.104 0.650 0.874 0.445 0.675 0.509

γ̂T.smo −0.115 0.568 0.840 −0.123 0.550 0.823

γ̂T.bmi −0.036 0.053 0.497 −0.071 0.056 0.204

γ̂T.falls + + + −0.276 0.248 0.267

Table 6.2 continued on next page
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Continuation of Table 6.2

M̂CARE
3C M̂CARE

2C

Parameter Estimate Std.Err p-value Estimate Std.Err p-value

Association

η̂R 0.452 0.080 < 0.001 + + +

η̂T 0.408 0.198 0.040 + + +

α̂ −0.817 0.439 0.063 + + +

η̂L + + + 0.587 0.178 0.001

Variance
component

Frailty
σ̂ε 2.152 − − 1.459 − −
σ̂2
b 2.577 − − 2.188 − −
φ̂ 1.074 0.578 0.032 + + +

Baseline
hazard

Falls
κ̂R 1.030 − − + + +

ρ̂R 0.477 − − + + +

Mortality
κ̂T 1.032 − − + + +

ρ̂T 0.286 − − + + +

Table 6.2: Parameter estimates of models M̂CARE
3C and M̂CARE

2C . “−” not directly avail-
able from the software output. “+” not a parameter to be estimated by the model on
the column.
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6.3 Simulation study

From our analysis of the previous section, based on the CARE75+ data we are not able
to distinguish between models M̂CARE

3C and M̂CARE
2C . Thus we consider important to do

a sensitivity analysis.

In this section we conduct a simulation study with the purpose of exploring how dif-
ferent the conclusions might be when we fit the “wrong” model to the data for two
different joint models of longitudinal, recurrent and terminal events data. Even though
the two models we explore with are structurally different and not comparable in every
single aspect, we are interested in knowing how badly estimated are the fixed effects
parameters when using the “wrong” model and the extent to which conclusions made
from the interpretation of the association parameters are different. We found that most
of the fixed effects regression coefficients are well estimated with confidence intervals
having coverage above 0.90 even when the wrong model is fitted, and that with one of
the two models (M2 explained in next paragraph) the conclusions about the association
parameters is in the right direction, even if it is the “wrong” model for the data.

The two joint models we explore with, M3 and M2, are described by Equations (6.5a)–
(6.5c)) and (6.6a)–(6.6b), with their corresponding DAGsG3 andG2 depicted in Figure
6.3.

M3 :


L: yi(t | bi0) = (β0 + bi0) + βtt+ β4wi4 + β5wi5 + εi(t)

R: ri(t | vi) = uir0(t) exp{γR3wi3 + γR6wi6 + ηRbi0}
T: hi(t | vi) = uαi h0(t) exp{γT1wi1 + γT2wi2 + ηT bi0},

(6.5a)
(6.5b)
(6.5c)

M2 :


L: yi(t | bi0) = (β0 + bi0) + βtt+ β4wi4 + β5wi5︸ ︷︷ ︸

mi(t)

+εi(t)

T: hi(t | bi0) = h0(t) exp{γT1wi1 + γT2wi2 + ηLmi(t) + ηNNi(t)},

(6.6a)

(6.6b)
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where

mi(t) = (β0 + bi0) + βtt+ β4wi4 + β5wi5,

Ni(t) = Counting process with intensity rate ri(t) = r0(t) exp{γR3wi3 + γR6wi6},

εi(t) ∼ N (0, σ2
ε),

bi0 ∼ N (0, σ2
b ),

ui ∼ Gamma(φ−1, φ−1),

r0(t) = κRρR(ρRt)
κR−1,

h0(t) = κTρT (ρT t)
κT−1.

ModelM3 is a three-outcome joint model, where a regression submodel is specified for
each one. In this case, the longitudinal outcome and the recurrent event are considered
to be endogenous time-varying covariates for mortality and assumed to be measured
with error. This model is similar to model M̂CARE

3C in terms of the associations be-
tween the quantitative outcome and the recurrent and terminal events, although they
differ with each other in their confounding structure. For the sake of avoiding sources
of confusion, we decided to keep confounding as simple as possible in the simula-
tion study with no time-varying covariates but time (t) in the linear-mixed submodel
(Equation (6.5a)).

Model M2 is a two-outcome joint model for the longitudinal quantitative outcome and
a terminal event. Its association between the longitudinal outcome and the terminal
event is the same as in M̂CARE

2C it also includes a counting process as an exogenous
time-varying covariate of the terminal event submodel. Confounding in M2 is the
same as in M3 and differs with respect to M̂CARE

2C in the same way M3 differs from
M̂CARE

3C , as described above.
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Figure 6.3: DAGs for simulations. Left: The DAGG3 is the three-outcome joint model
where they are linked through the random effects b0 and u. Right: The DAG G2 is the
two-outcome joint model where the link between the longitudinal outcome and the
terminal event is the current value of the “true” and unobserved m(t).

In both models there are seven time-fixed covariates, w>i = (wi1, · · · , wi7). All seven
covariates are in each submodel, but only two have non-zero coefficient in each sub-
model: (wi1, wi2) of the terminal event, (wi4, wi5) of the longitudinal outcome, and
(wi3, wi6) of the hazard rate of the recurrent event in M3. In the terminology of DAGs,
this means that (wi1, wi2) are parents of the terminal event (hi(t)), (wi3, wi6) are par-
ents of the recurrent event (ri(t)), and (wi4, wi5) are parents of the longitudinal out-
come (mi(t)), as shown in both DAGs of Figure 6.3.
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Model M2 differs from M3 mainly in three aspects. First, in M2 the association be-
tween the quantitative outcome and the terminal event is through the current level of
the latent variable mi(t), i.e. the link function is g(bi, t) = mi(t). Second, the ob-
served cumulative count of recurrent event occurrences, Ni(t), generated by the haz-
ard rate ri(t), is assumed an exogenous time-varying covariate for the terminal event
submodel, so M2 does not have a regression equation for the recurrent event since it is
not an outcome meant to be modelled while M3 models the hazard rate of the recurrent
event, ri(t). And third, in model M2 there no arrows connecting the recurrent event
and the quantitative outcome so they are not associated. In model M2 there are only
two association parameters: ηL the effect of the quantitative outcome on the terminal
event, and ηN the effect of the cumulative count of the recurrent event on the terminal
event. Model M3 has three association parameters: ηR for the association between the
quantitative outcome and the recurrent event, ηT between the quantitative outcome and
the terminal event, and α between the recurrent and terminal events.

The fixed-effects regression coefficients are the vectors (β0, βt,β
>)> = (β0, βt, β1, . . . , β7)

for the linear mixed model, γ>R = (γR1, . . . , γR7) for the recurrent event model, and
γ>T = (γT1, . . . , γT7) for the terminal event model.

6.3.1 Simulation design

We simulated a total of nsim = 150 data sets from each model, M3 and M2, each
with a sample size n = 500 subjects. We denote by Dk = (D

(1)
k , . . . , D

(150)
k ) the

collection of data sets generated from model Mk, k = 3, 2. For each subject in Dk, a
vector of seven covariates (wi, i = 1, . . . , n) was sampled according to the following
scheme: (w1, . . . , w4) are independent Bernoulli(p = 0.5) trials, and (w5, w6, w7) are
uncorrelated instances of the multivariate normal distribution, N3(0,Σ), with Σ =

diag(σ2
5 = 1, σ2

6 = 4, σ2
7 = 4). The n covariate vectors, wi, were sampled once for

each i and kept the same values for all simulations.

The longitudinal outcome, mi(t), is assumed unobservable and instead the error-prone
variable yi(t) = mi(t) + εi(t) is observable, where εi(t) ∼ N (0, σ2

ε = 1.25) is the
measurement error. The variance of the normally distributed and zero-mean random
intercept was set at var(bi0) = σ2

b = 1.25. The random effect linking the two hazard
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rates was chosen to be instances of the random variable ui ∼ Gamma (φ−1, φ−1), with
φ = 0.64. The parameters of the Gamma distribution are shape and rate, such that
E(ui) = shape× rate−1 = 1 and var(ui) = shape× rate−2 = φ.

An administrative censoring time was set to 5.5 (Ci = 5.5 ∀i), and repeated measures
of the longitudinal outcome were generated at regular intervals every 0.2 time units,
starting from t = 0, and with a maximum of 25 repeated measures, so this process
stopped shortly before Ci. We opted for baseline hazards of both the recurrent and
terminal event processes to be from the Weibull(κ, ρ) distribution, where κ is the shape
and ρ is the rate parameters (the reciprocal of the scale). There are several ways to
parametrize the Weibull distribution, and the one we used corresponds to a cumulative
hazard H(t) = (ρt)κ and hazard rate h(t) = κρ(ρt)κ−1.

The association parameters were chosen to be all positive and not too large. All the
values of the parameters for the simulation study are summarized in Table 6.3.

The estimates of M̂CARE
3C and M̂CARE

2C guided our choice of the values of the parameters
in the simulation models M3 and M2. However, we were interested in producing data
sets with more terminal events (less censoring) and more repeated measures of the
longitudinal outcome, so some the parameters are substantially different, like φ =

0.64, α = 2.6 and ρT = 1.5. Consequently, a large proportion of terminal event times
are short and hence not censored by Ci, and both M3 and M2 produced much more
repeated measures of the longitudinal outcome. Recall from Chapter 4 that only 12.4%
of the participants of the CARE75+ study have as many as 4 repeated measures of
frailty, while in the simulations subjects can have up to 25 repeated measures, as shown
in the right plots of Figure 6.5. Compare the left column plots of Figure 6.5 against the
left plot in Figure 4.3 to see how the simulated longitudinal outcome differs from the
frailty data of the CARE75+ data set, and compare the red lines of the right column
plots of Figure 6.5 against Kaplan–Meier curve in Figure 4.6 to see the differences
between simulated terminal event times and mortality.

The mean and median terminal event times for the baseline are E(T ) =
∫∞

0
S0(t)dt ≈

0.67 and T(0.5) = S−1
0 (0.5) = (− log(0.5))1/κT /ρT ≈ 0.46 respectively. The observed

mean and median survival times in the 150 simulated data sets differs between models
M3 and M2, due to the mean structure.
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Related variable M3 M2

Fixed effects
Longitudinal
β0 1 3 3
βt time 0.5 0.5
β4 w4 0.5 0.5
β5 w5 0.5 0.5

Recurrent
γR3 w3 0.1 0.1
γR6 w6 0.1 0.1

Terminal
γT1 w1 0.1 0.1
γT2 w2 0.1 0.1

Association
ηT m(t)← bi0 → h(t) 0.5 –
α r(t)← ui → h(t) 2.6 –
ηR m(t)← bi0 → r(t) 0.2 –
ηL m(t)→ h(t) – 0.2
ηN N(t)→ h(t) – 0.2

Variance comonent
σ2
ε 1.25 1.25
σ2
b 2.25 2.25
φ 0.64 –

Baseline hazard (Weibull)
Recurrent
κR (shape) 2 2
ρR (rate) 0.5 0.5

Terminal
κT (shape) 1 1
ρT (rate) 1.5 1.5

Link function
gR(mi(t)) (Longitudinal-Recurrent) bi0 –
gT (mi(t)) (Longitudinal-Terminal) bi0 mi(t)

Table 6.3: Simulation scheme. Table entries with “–” mean that the parameter on
the row is not (or does not have the same interpretation, as described on the “Related
variable” column) in the model of that column. Only non-zero regression coefficients
are shown in the table, so (β1, β2, β3, β6, β7) = 0, (γR1, γR2, γR4, γR5, γR7) = 0, and
(γT3, . . . , γT7) = 0
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The values of the shape and rate parameters of the Weibull baseline hazards were
chosen to keep both the expected count of the recurrent event and the proportion of
censored observations low in order to ease the computational burden during the esti-
mation process. The expected cumulative number of events by time τi for a subject
with covariate vector wi and possibly random effects vector v>i = (bi0, ui), is given by
(Cook & Lawless, 2007)

E{Ni(τi | wi,vi)} =

∫ τi

0

ri(t | wi,vi)dt =

∫ τi

0

uir0(t) exp{w>i γ + ηbi0}dt.

So, given the values of the Weibull parameters shown in Table 6.3, the expected number
of recurrent events by the censoring time,Ci, for the baseline is E

{
N0

(
Ci|wi = 0,v>i = (1, 0)

)}
=∫ τi

0
r0(t)dt = 7.56. In our simulation study, the number of recurrent events per sub-

ject is generally smaller than this because the recurrent event process is interrupted
either by censoring or the terminal event (terminal event times of two instances of the
simulated data sets are represented by • in the right column plots of Figure 6.5).

Algorithms 6.1 and 6.2 describe the simulation process of models M3 and M2 respec-
tively, which are written assuming a more general linear mixed submodel having a
random intercept and random slope, b>i = (bi0, bi1).

Algorithm 6.1 describes the simulation process from model M3, where the link be-
tween the longitudinal outcome and the other two outcomes is only through the ran-
dom effects, bi. We fixed the n covariate vectors wi (i = 1, . . . , n) along the 150

simulated data sets to restrict the variability in the data to the random variables of
the joint model; however, the wi vectors used to simulate from model M3 are dif-
ferent from those used to simulate from model M2. Finding a closed expression for
Hi(t) and H−1

i (t), T ∗i is straightforward for common distributions of the baseline haz-
ard, e.g. Weibull, Log-logistic, Gompertz and Makeham. However, when the linear
predictor of the time-to-event submodel includes time-varying covariates or when the
baseline hazard function involves complicated functions of time, then numerical meth-
ods are required to compute the integral Hi(t) =

∫ t
0
hi(s)ds and its inverse, H−1

i (t),
as discussed in Section 2.2.1.

Simulation of the inter-event times of the recurrent event process is done sequentially
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6.3 Simulation study

Algorithm 6.1 Simulation from a joint of longitudinal, recurrent and terminal events
outcomes linked with a random intercept (model M3).

Set an administrative censoring time Ci = C ∀i, C ∈ R+.
For i = 1, . . . , n:

1: Sample a baseline covariate vector, wi, according to the length of β,γR,γT .
2: Sample an instance of the random effects, bi ∼ N2(0,Σ) and ui ∼

Gamma (φ−1, φ−1).
3: Simulate the time to the terminal event, Ti:

(i) Sample ξi ∼ U(0, 1)
(ii) T ∗i = H−1

i (− log(ξi) | bi, ui,wi,γT , h0(t))
(iii) Ti = min(Ci, T

∗
i )

(iv) δi = 1(T ∗i < Ci)
4: Simulate the longitudinal outcome for time points tij, j = 1, . . . , ni, where tini <
Ti:

(i) Sample εij ∼ N (0, σ2
ε)

(ii) yij = (β0 + bi0) + (βt + bi1)tij + w>i β + εij .
5: Simulate the time to the kth recurrent event, k = 1, . . .:

Set Ti0 = 0.
For k = 1, . . .

(i) Sample ξik ∼ U(0, 1)
(ii) T ∗ik = Tik−1 + R̃−1

Tik−1
(− log(ξik))

(iii) Tik = min(T ∗ik, Ti)
(iv) δik = 1(T ∗i < Ti)
(v) Continue while Tik ≤ Ti.

(vi) Ni(Tik) =
∑Ki

k=1 1(Tik), where Ki = max{k : Tik ≤ Ti}
Repeat nsim times steps (2)–(5), i.e. fix the n covariate vectors wi (ı = 1, . . . , n) in all
nsim data sets.
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by inverting the conditional cumulative hazard, R̃t(x) = R(x + t) − R(t), as de-
scribed in Algorithm 2.3 in Section 2.2.2, which has a closed form if the baseline
hazard comes from the Weibull distribution (for other common distributions this is
also the case).

Model M2 has both mi(t) (the longitudinal outcome free of measurement error) and
Ni(t) (the cumulative recurrent event counts) as a covariates of the terminal event sub-
model. Since Ni(t) is a step function with jumps at the recurrent event times and Ni(t)

is a factor of the hazard function, hi(t), the latter is piecewise continuous. Figure 6.4
plots the data of an instance of simulated data of one individual, showing the longi-
tudinal outcome and recurrent event process, the hazard rate, cumulative hazard and
survival curves. The top plot depicts the quantitative outcome and the recurrent event
counts, showing that the recurrent event process (Ni(t)) is a step function, making the
hazard (second plot) a piecewise continuous function with jumps at the recurrent event
times. Therefore the cumulative hazard and survival functions are continuous, but not
differentiable at the recurrent event times (third and bottom plots respectively).

Therefore, data simulation from model M2, as described in Algorithm 6.2, is done
by sequentially generating the inter-event times and verifying whether at each time
interval Hi(t | ·) should be inverted. Only in the case where the baseline hazard of the
terminal event is governed by the Exponential(ρ) distribution, it is possible to obtain
a closed expression for the (inverse) cumulative hazard. For other specifications of the
baseline hazard, in order to find the inverse of the (conditional) cumulative hazard of
the terminal and the recurrent event, numerical methods can be used. This becomes
clear if we break down the cumulative hazard as follows:

Hi

(
t | bi0,Mi(t),FNi (t)

)
=

∫ t

0

h0(s) exp
{
w>γ + ηLmi(s) + ηNNi(s)

}
ds

=

∫ t

0

h0(s) exp
{
w>γ + ηL(β0 + w>i β) + ηLbi0 + ηLβts+ ηNNi(s)

}
ds

= exp
{
w>γ + ηL(β0 + w>i β) + ηLbi0

}∫ t

0

h0(s) exp {ηLβts+ ηNNi(s)} ds

= exp
{
w>γ + ηL(β0 + w>i β) + ηLbi0

}∫ t

0

h0(s) exp {ηLβts+ ηNNi(s)} ds

= exp
{
w>γ + ηL(β0 + w>i β) + ηLbi0

} Qi∑
q=1

∫
Ωiq

h0(s) exp {ηLβts+ ηNNi(s)} ds,
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Algorithm 6.2 Joint model simulation for longitudinal and time-to-event outcomes
with a counting process as an external time-varying covariate (model M2).

Set an administrative censoring time Ci = C ∀i, C ∈ R+.
For i = 1, · · · , n:

1: Sample a baseline covariate vector, wi, according to the length of β,γR,γT .
2: Sample an instance of the random effects, bi ∼ N2(0,Σ).
3: Sample ξi ∼ U(0, 1), to be used to simulate the terminal event, T ∗i .
4: Simulate the inter-event times of the recurrent event:

(i) Set T ∗i0 = 0.
(ii) For k = 1, · · ·

(a) Sample ξik ∼ U(0, 1)
(b) kth recurrent event time: T ∗ik = T ∗ik−1 + R̃−1

T ∗k−1
(− log(ξik) | wi,γR)

(c) Counting process: Ni(T
∗
ik) =

∑
k≥1 1(T ∗ik)

(iii) Continue until Lik ≤ − log(ξi) < Uik or T ∗ik ≤ Ci, where
Ci is the censoring time,
Lik = H

(
T ∗ik−1 | Mi

(
T ∗ik−1

)
, Ni(T

∗
ik−1),bi,wi,γT , ηR, ηL

)
and

Uik = H (T ∗ik | Mi (T
∗
ik) , Ni(T

∗
ik),bi,wi,γT , ηR, ηL),

Mi(t) is the trajectory of mi(t) up to time t.
5: If the counting process was stopped by Ci, then the time to the terminal event is

unobserved and thus censored. Otherwise, simulate the time to the terminal event,
which lies within the interval [LiKi , UiKi ], where Ki = max{k : Tik ≤ Ci}:
T ∗i = {t ∈ [Lik, Uik] : H (t | Mi (t) , Ni(t),bi,wi,γT , ηR, ηL) + log(ξi) = 0} ,

6: Create the event indicators for both the recurrent event and terminal event times:
1. Ti = min(T ∗i , Ci)
2. δi = 1(T ∗i ≤ Ci)
3. Tik = min(T ∗ik, Ti, Ci), k = 0, · · · , Ki

4. δik = 1(Tik = T ∗ik, Tik > 0)
7: Simulate the longitudinal outcome for time points tij, j = 1, · · · , ni, where tini ≤
Ti:

1. Sample εij ∼ N (0, σ2
ε)

2. yij = (β0 + bi0) + (βt + bi1)tij + w>i β + εij .
Repeat nsim times steps (2)–(7), i.e. fix the n covariate vectors wi (ı = 1, . . . , n) in all
nsim data sets.
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Figure 6.4: Top: repeated mea-
sures of a quantitative outcome
with error (•), counts of the recur-
rent event (◦—), true and unob-
served quantitative measure with-
out error (- - -), estimate of the
quantitative outcome with joint
modelling (——). Bottom three:
hazard, cumulative hazard and sur-
vival curves with N(t) being a
time-varying covariate of the sur-
vival analysis submodel. the true
& unobserved (- - -), estimates
based on the marginal Cox model
(•—), estimated by joint mod-
elling (——).
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whereMi(t) and FNi (t) are the history of the longitudinal outcome (mi(t)) and the
counting process up to time t, and the sets {Ωiq, q = 1, . . . , Qi} denote the time in-
tervals in which the time-varying covariates of subject i are assumed constant. The
integrals involve the baseline hazard and the factors of the linear predictor that are,
potentially complicated, functions of time. When the hazards are constant, as is the
case of the Exponential distribution, these integrals are simplified.

Appendices A.6 and A.7 give sample R code to simulate data from these two joint
models. The function of Appendix A.7 allows using baseline hazards from the Weibull,
Log-logistic, Gompertz and Makeham distributions and can be easily tailored for other
forms of the hazard function. It can also be adapted with little programming for non-
linear functions of time in the linear mixed model part. The numerical integrals to
compute the (conditional) cumulative baseline hazards use the Gauss–Kronrod method
(Ziegel, 1987) implemented in the integrate() function of R. The inverse of the
(conditional) cumulative hazard function (step 5 of Algorithm 6.2) is obtained by ap-
plying the crude bisection method (Monaco et al., 2018), i.e. by finding the root of
Hi(t|·) + log(ξi), which is implemented in R as the univariate root finder function
uniroot() within a specified interval, say [L,U ]:

T ∗ = {t ∈ [L,U ] : H(t | ·) + log(ξ) = 0} .

6.3.2 Estimation

The parameters of model M3 are

Θ3 = {β0, βt,β
>,γ>R ,γ

>
T , ηT , α, ηR, κR, κT , ρR, ρT , σ

2
ε , σ

2
b , φ}.

In Section 3.3 we discussed parameter estimation of joint models like M3. In this
simulation study we followed the same approach as for fitting model M̂CARE

3 described
in Section 4.3.3.

The parameters of model M2 are

Θ2 = {β0, βt,β
>,γ>R ,γ

>
T , ηL, ηN , κT , ρT , σ

2
ε , σ

2
b}.
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The estimation of Θ2 is done by optimizing the log-likelihood function of Equation
(3.2). Rizopoulos (2012) proposed a hybrid optimization procedure of the log-likelihood
function starting with the EM algorithm or a fixed number of iterations (100) and,
if convergence is not achieved, switching to a quasi-Newton algorithm until conver-
gence. The R package JM (Rizopoulos, 2012) implements this procedure in the func-
tion jointModel(). The design matrices of models likeM2 are time-dependent due
to the inclusion of Ni(t) as a covariate. For joint models with exogenous time-varying
covariates JM will not estimate a parametric baseline, instead it is approximated with
regression splines. This is achieved by expanding log h0(t) into B-spline basis func-
tions for cubic splines:

log h0(t) = k0 +
L∑
l=1

klBl(t, q),

where the vector k> = (k0, · · · , kL) denotes the spline coefficients, q is the degree of
the B-spline basis functions (B), and L = L′ + q − 1, with L′ denoting the number of
internal knots.

6.3.3 Results

Each simulated data set (D
(s)
k , s = 1, . . . , 150) contains data of n = 500 subjects. The

total number of records of each data set is different because the number of repeated
measures and recurrent events per subject is not known a priori, and depends on the
time elapsed before the terminal event, which is also simulated.

Figure 6.6 illustrates what the 150 simulated data sets look like, no modelling at-
tempt is made. On the top row of Figure 6.6, the Kaplan–Meier curves show that the
proportion of censored observations of the samples from model M3 is approximately
20%. Due to the value of the association parameter for the m(t) − h(t) relationship
(ηL = 0.2) in model M2 and the link being the current value of the complete longitu-
dinal outcome (without measurement error), the survival probability of these samples
decreases faster, so the proportion of censored terminal events in model M2 is practi-
cally zero.
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The population survival probabilities were obtained by evaluating the survival function
of each model at the true parameter values, the average covariate values ((w̄1, w̄2) =

(0.5, 0.5)) and the expected value of the random effects (E(ui) = 1 and E(bi0) = 0).
The reason why the Kaplan-Meier curve differs from the population survival probabil-
ities in data D3 (top right of Figure 6.5 and top left of Figure 6.6) is because of the
large value of α in the former and, in the latter, the survival function is evaluated at
E(ui) = 1 and E(bi0) = 0 and does not take into account censoring.

The bottom row of Figure 6.6 shows the sample longitudinal outcome profiles, m(t),
of the data generated from models M3 and M2 of the 150 simulations. Each line
represents the general trajectory of each sample. As expected, the lines of model M3

are very close to the “true” sample profile m(t) = 3 + 0.5t, and the differences are
due to randomness of the measurement error and covariates. The lines of model M2

reflect the mutual dependence of the longitudinal and terminal event outcomes. The
association parameter, ηL = 0.2, means that subjects with larger mi(t) values tend
to have fewer repeated measures because they have a shorter survival times and vice

versa, subjects with small mi(t) values tend to have larger survival times and thus
more repeated measures. That is the reason why we observe positive and negative
slopes in the overall profiles (see left of bottom half of Figure 6.5) In particular, the
strong deviation of the slopes from the true population trend, m(t) = 3 + 0.5t, is what
we lose by neglecting the dependence between the longitudinal outcome and terminal
event. Figure 6.7 depicts the sample profile estimates, m̂(k)(t) = β̂

(k)
0 + β̂

(k)
t t (k =

1, · · · , 150), illustrating how by joint modelling these two outcomes it is possible to
correct for the bias caused by the dependence between the two outcomes.
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Figure 6.5: Top half: Two samples generated from model M3; bottom half: Two sam-
ples generated from model m2. Left plots: Individual profiles of the longitudinal out-
come yij (–•–); population profile (- -), and naively estimated population profile ignor-
ing the time-to-event outcome (—). Right plots: Survival probabilities (—); general
population survival probability (- -); simulated time-to-event, Ti (•), and the Kaplan–
Meier estimate (—).
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Figure 6.7: Left: D3, Right: D2. Joint model estimate of the longitudinal outcome
population profile (——) of each of the 150 samples, and true population profile (- - -).

Figure 6.8 shows a histogram of the average cumulative count of recurrent events oc-
curred by Ci in the 150 data sets. The larger number of recurrent events in the three-
outcome data D3 occurs because of the larger survival times mainly because of the
stronger relationship between the recurrent event process on the terminal event pro-
cess through uαi (α = 2.6), consequently for many subjects of D3 the data generating
process of Ni(t) and yi(t) continued for longer.
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Figure 6.8: Average of the cumulative recurrent events that the n subjects observed by
the censoring time in each data set: n−1

∑n
i=1Ni(Ci). Left: D3; right: D2.

For each D(s)
k , s = 1, . . . , 150 we fit first the “correct” model and then the “wrong”
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one, which results in two sets of parameter estimates per data set: one for the cor-
rect model and one for the wrong one. Even though models M3 and M2 are dif-
ferent, mainly in their association structure, and not comparable with each other in
every single parameter, they do have several common parameters: the fixed effects
(β0, βt,β,γR,γT ), the variance of the measurement error of the longitudinal outcome
(σ2

ε), the variance of the random intercept (σ2
b ), and the Weibull parameters of the base-

line hazard of the terminal event (κT , ρT ). Our interest is to investigate the possible
consequences of misspecifying the association structure in a joint model for longitudi-
nal, recurrent and terminal events data. In particular:

1. if by fitting the wrong model the common parameters can be still correctly esti-
mated as if they were estimated with the correct model, and

2. if the conclusions we would make from interpreting the estimated association pa-
rameters of the wrong model would be different from the conclusions we would
make from fitting the correct model. For instance, we already know that data D2

is simulated with association parameters’ values ηL = 0.2 and ηN = 0.2, and we
want to know if fitting model M3 to data D2 results in η̂T > 0 and α̂ > 0.

D3 (data simulated with model M3)

Table 6.4 show the relative bias (R.Bias) and mean-squared error (MSE) of the esti-
mates and the coverage (C) of their 95% confidence intervals of models M3 and M2

fitted to D3, and Table 6.5 for D2. We can see in both tables that the fixed effects are
correctly estimated even when the wrong model is fitted, especially fixed effects of
the longitudinal and the recurrent event submodels. The interval estimates of the fixed
effects of the terminal event submodel are not as good as in the other two submodels,
especially when model M3 is fitted to data D2.

When modelM2 is fitted to dataD3 (Table 6.4), the fixed effects estimates of the linear
mixed submodel (β0, βt,β) are nearly unbiased, have small MSE and the correspond-
ing 95% interval estimates have large coverage C > 92%. The fixed effects of the ter-
minal event submodel (γT ) seem to be more difficult to estimate, whether with model
M3 or M2. By fitting M2 to data D3, (γ̂T1, γ̂T2) have small MSE (0.014, 0.013), but
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6.3 Simulation study

they are underestimated with relative bias of (−0.58,−0.56) respectively, and interval
estimates with lower coverage compared to the other fixed effects (92.7%, 90.7%).

Model M2 does not include (wi3, wi6), the parents of Ni(t), in the terminal event sub-
model since Ni(t) is a covariate of the terminal event submodel, and by the causal

effect rule in Equation (2.56) (wi3, wi6) ⊥ {tiδi}. It was verified in a separate simula-
tion study that γ̂T3 = γ̂T6 = 0 (not shown in this document).

It is important to note that the fixed effects of the three submodels of M3 are at least
as well estimated by fitting model M2 (the wrong model) as by M3 (the correct model)
to data D3. When estimated with model M3 the coverage of the interval estimates of
β0, β4, β5, γT1 and γT2 is lower than 90.0%, and γT1,γT2 have large relative bias and
MSE due to some large estimates as shown in Figures B.18 and B.21 in Appendix
B.3.1. The reason for this might be that the complexity of model M3 makes the es-
timation process more challenging: (a) the recurrent event process is also modelled;
(b) the recurrent and terminal events submodels have two random effects, and (c) the
parameters of the baseline hazards, which are nonlinear functions of time, are directly
estimated.

The challenging optimization process of the log-likelihood function of M3 is also re-
flected in the poorly estimated association, variance components and Weibull param-
eters, with σ2

b being the only one of these correctly estimated when M3 is the fitted
model (R.Bias = 0.007, MSE = 0.030, C= 94.7%). The variance of the random inter-
cept is correctly estimated with model M3 even when it is the wrong model. The rest
of the association, variance components and Weibull parameters estimates have large
relative bias and MSE, and 95% interval estimates with poor coverage. In particular,
as shown in Table 6.4 and Figure B.18 of Appendix B.3.1, the estimated variance of
the random effect v̂ar(ui) = φ̂ is poorly estimated (R.bias = 5.712, MSE = = 13.640,
C = 32.6%). Barker & Henderson (2005) provide some evidence from simulation
studies of the difficulty to estimate the variance parameter of the random effect in the
Gamma-frailty model. They found φ to be underestimated in small or medium sized
samples (n = 200, 500, 1000). Underestimation of the random effect variance results
in fixed effects being underestimated (Barker & Henderson, 2005; Henderson & Oman,
1999). In our simulation studies, biases of φ̂ and the associations η̂T , α̂ and η̂R are pos-
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6.3 Simulation study

itive. Extending our simulations to larger samples might be necessary to find out if
biases get smaller.

It is worth noting that even when fittingM3 to dataD3 the variance of the measurement
measurement error (σ2

ε) is poorly estimated (R.bias = 4.397,MSE = 104.916,C =

0.8), as shown in Table 6.4 and Figure B.29 of Appendix B.3.2. We noticed that when
fitting M3 some of the estimates are unusually highly correlated correlations higher
than 0.7 (see Figures B.17 and B.28 in Appendices B.3.1 and B.3.2)

• Fit M3 to D3

cor(η̂T , α̂) = 0.92

cor(η̂T , σ̂ε) = 0.98

cor(η̂T , κ̂T ) = 0.98

cor(α̂, σ̂ε) = 0.87

cor(α̂, κ̂T ) = 0.98

cor(σ̂ε, κ̂T ) = 0.87

• Fit M3 to D2

cor(η̂T , σ̂ε) = 0.99

Figures B.17 and B.28 in Appendices B.3.1 and B.3.2 show that regardless of which
data we fit model M3 to, η̂T and σ̂ε are almost perfectly correlated. We have been in
communication with the author of the R package frailtypack, but we do not sus-
pect programming problems. We need to investigate further the reason why these es-
timates are so highly correlated since they affect the association parameters estimates,
which are among the parameters of primary interest.

Although the association parameters (ηT , α, ηR) of model M3 are overestimated the
range of the interval estimates of α and ηR are of the same sign as their true values
across the 150 simulations, C = (100.0%, 99.2% not shown in Table). The practical
implication is that by fitting model M3 we are able to correctly estimate the sign of
the association between ri(t) & hi(t) and mi(t) & ri(t), but their magnitude might be
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6.3 Simulation study

overestimated. We arrive to the same conclusion with respect to the direction of the
association parameters when fitting model M2 to D3.

Table 6.4 and Figure B.21 show that fitting model M3 to data D3 understimates the pa-
rameters of the recurrent event baseline hazard, and overestimates those of the terminal
event. The relative bias and MSE of these estimates is not as large as the other poorly
estimated parameters, but the coverage of the interval estimates is very low, especially
for the Weibull parameters of the terminal event hazard.

D2 (data simulated from model M2)

The simulation experiment carried out on data D2 yields similar results in the sense
that the fixed effects regression coefficients are correctly estimated even with the wrong
model,M3, as shown in Table 6.4. Not surprisingly, when fitting modelM2 (the correct
model) the coverage of the interval estimates are larger compared to those obtained
from fitting M2 to D3, especially (γ̂T1, γ̂T2) which have much smaller relative bias and
MSE. This is also the case when fitting M3 (the wrong model); nonetheless (γ̂R3, γ̂R6)

have larger relative bias compared to fittingM3 toD3. The fact that we observe interval
estimates of model M3 with C < 90% raises the question if n = 500 and nsim = 150

are large enough sample size and simulations for a three-outcome joint model like
M3.

The association parameter of the Ni(t) → hi(t) relationship (ηN) is the parameter of
model M2 most poorly estimated with R.Bias = 0.315, MSE = 0.052 and C = 88.7%.
The rest of the parameters of model M2 are correctly estimated in terms of relative
bias, MSE and coverage.

When model M3 is fitted to these data, the conclusions about the association param-
eters is correct for the association between the longitudinal and the terminal event,
where 100% of the interval estimates will contain only positive values (ηL = 0.2), but
not for the Ni(t)→ hi(t). In such a case, the range of the interval estimate of α of the
same sign as ηN = 0.2 is 54.6%.
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6.4 Discussion and future work

6.4 Discussion and future work

The results of our simulation study suggest that for the two specific models we have
considered the fixed effects are generally correctly estimated, even when a misspecified
model is fitted. There are however limitations about this statement that can be easily
overlooked, for instance by fittingM2 we cannot estimate fixed effects for the recurrent
event since it is not being modelled. Thus it is important to know exactly what features
of the data each joint model is trying to estimate and, in the application context, what
is the research question that we want to answer with the analysis of the data.

The large MSE and low coverage of some of the estimates in our simulation study
might be due to the relatively small number of simulations and sample size given the
complexity of joint modelling. The relatively large number of parameters to be es-
timated in joint models require larger samples than the marginal models for separate
outcomes. Fitting the joint model of longitudinal, recurrent and terminal events (M3) is
particularly complicated due to the inclusion of multiple random effects in both hazard
rate submodels.

When fitting the two-outcome joint model M2, it is possible to estimate the sign of the
association between the longitudinal outcome and the terminal event and between the
recurrent and terminal events. A practical implication of these results is that by fitting
model M2 while analyzing real data we can still learn about the fixed effects and the
associations longitudinal outcome→ terminal event and recurrent→ terminal events
even if it is not the correct model that represents the data. The association parameters of
Model M2 have a straightforward interpretation analogous to the proportional hazards
model, fitting M2 requires accommodating less sources of within-subject variability
represented by the random effects, and addresses in a flexible way the variability from
the baseline hazard of the terminal event. More research would still be needed though
to explore the extent to which this conclusion holds when the recurrent event is an en-
dogenous time-varying covariate of the terminal event submodel and such endogeneity
is ignored.

Additionally, we are interested in knowing if even when the some parameters of model
M3 are wrongly estimated they compensate in such a way that the log-likelihood eval-
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6.5 Future work and extensions

uated at these estimates is close to the log-likelihood evaluated at the true values, if the
estimated survival probabilities of these model differ from the survival probabilities
evaluated at the true parameters (Si(t|Θ̂3) ≈ Si(t|Θ3)), and if the fitted values of the
longitudinal outcome are similar to the true values (yi(t|Θ̂3) ≈ mi(t|Θ3)).

6.5 Future work and extensions

In our simulation studies of this chapter we noticed that some of the parameters of
model M3 are not correctly estimated and some are highly correlated. As we pointed
out, this kind of joint model is challenging to fit and require of long processing times.
We would like to use the parameter estimates Θ̂3 from our simulation study to calculate
ĥi(t), Ŝi(t) or Ĥi(t) and compare against the values of these functions at the true
parameters. What we are looking for is if the wrong estimates of modelM3 compensate
each other giving unbiased estimates of the survival probabilities (or hazards). This
requires predictions of the random effects.

We summarize the topics of future work and possible extensions in the following
points:

• Extend the simulation study to explore with other possible relationships between
frailty, falls and mortality:

– Falls as a common cause of frailty and mortality.
– Falls as a mediator of the frailty→ mortality relationship.

This requires adapting our data simulation algorithm and R programs by (a)
making the recurrent event counts, Ni(t), become part of the linear-mixed sub-
model accommodating the recurrent event times, and (b) making the longitudinal
outcome, mi(t), part of the recurrent event process just as it is for the terminal
event.

• Extend the simulation study to explore with other values of the association pa-
rameters. Will our conclusions change?

• Extend the simulation study to address other confounding structures:
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6.5 Future work and extensions

– Common causes of frailty, falls and mortality,
– Time-varying confounding. This requires deciding on appropriate func-

tions of time to simulate reasonable covariates in line with real data.

• Extend the simulation study to include a random slope. Although this does
not seem necessary for analyzing the CARE75+ data, it seems reasonable in
a broader context. As we mentioned along this thesis, the computer process-
ing time increases dramatically when an additional random effect is added to a
joint model. So exploring joint models with a random intercept and slope can be
challenging, specially for joint models that include a recurrent event submodel
in addition to the longitudinal and terminal event submodels, like M3.

• In this thesis we worked with time-independent regression coefficients and incor-
porated the effect of time via a random slope the simulation studies of Chapter
5. An alternative is to use time-varying regression coefficients.

• We suspect that what makes the likelihood optimization of M3 so challenging
is that it involves integrating out 2 random effects and estimating the Weibull
parameters of two hazard rates, which involve non-linear functions of time. As
part of our possible future simulations we consider increasing the sample size
(n = 500, 1000) to examine whether the biases get smaller and explore with
alternative optimization strategies. Additionally, it would be important to try
with alternatives for joint modelling frailty, falls and mortality. For instance,
van Houwelingen (2014) distinguishes pattern mixture models as an approach
to joint modelling, starting with a marginal model for the time-to-event outcome
{Ti, δi} and adding a model for the longitudinal response conditional on {Ti, δi}
defined in terms of the time before the occurrence of the event. Henderson et al.

(2000) propose a latent variable model where the association between longitu-
dinal and the time-to-event outcomes is described by the cross-correlation of a
latent bivariate Gaussian process.
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Chapter 7

Conclusions

In this final chapter we summarize our main conclusions, indicating future work and
possible extensions. We consider that our work makes contributions in two areas: sta-
tistical methodology and applications. Our contributions to the statistical methodology
are (1) proposing a variable selection strategy for simultaneously optimizing prediction
of the two outcomes in joint modelling of longitudinal and time-to-event data, (2) ap-
proaching the joint modelling framework from the causality perspective using DAGs,
and (3) evaluating the consequences of misspecifying the mean and association struc-
tures of joint modelling a longitudinal outcome and recurrent and terminal events. In
the applications context, geriatric frailty, recurrent falls and mortality have been an-
alyzed before with marginal models, and we investigated their relationships with the
joint modelling methodology.

Throughout Chapters 3–6 we discussed several methodological aspects of jointly mod-
elling longitudinal outcomes and recurrent and terminal events, including variable se-
lection, description, prediction, causal inference and model specification. The methods
we discussed were applied to the CARE75+ data set using joint models for exploring
plausible underlying mechanisms between frailty, falls and mortality. Frailty and falls,
and their relationship with mortality have been analyzed before with marginal models.
However,due to their nature, it is more appropriate to model them jointly as sepa-
rate models do not fully account for their possible dependence. The joint modelling
methodology seems well suited for analyzing the relationship among them.
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In Chapter 4, we fitted a joint model to describe the relationship between frailty, falls
and mortality in the CARE75+ data set (M̂CARE

3 ) under the assumption that their associ-
ation is completely characterized by a set of random effects. The fitted model suggests
that being white, married or remarried, having higher education and drinking alcohol
are associated with lower frailty, and that frailty increases with increasing number of
comorbidities. The risk of falls is higher among white people with a relative risk of
falls with respect to the other ethnicities of exp(1.429) = 4.175. Once we condition
on these covariates of frailty and falls, no covariate is significantly associated with
mortality.

Frailty is strongly associated with both falls and mortality, an association that is charac-
terized by a random intercept in the linear mixed submodel of frailty. The relative risk
of falls is exp(0.439) = 1.551 and the relative risk of mortality exp(0.430) = 1.537 for
subjects whose frailty is one unit above the population average, ceteris paribus.

The analyzed data set shows no signs of an association between falls and mortality
after conditioning on covariates, since the corresponding parameter is not significant
at the 5% level. It is worth considering at this point the complex epidemiology of falls,
and that the falls→mortality relationship can be mediated by its multiple adverse out-
comes, in particular hospitalization (Masud & Morris, 2001). Even though we consider
an association between falls and mortality plausible, a longer follow-up period might
be needed than is available in the CARE75+ study to observe this association.

The model diagnostics indicate some signs of skewness due to many large values of
frailty. Further refinements and considerations might be required since in both falls and
mortality submodels the fitted model M̂CARE

3 seems to overestimate the risk of falls and
mortality. Perhaps this is due to (1) the relatively small sample size for a joint model of
longitudinal data and recurrent and terminal events, (2) the small number of terminal
events, and (3) the lack of precise times at which falls occur.

The existing diagnostic tools to check the fit of joint models are lacking. A sensitivity
analysis to explore with model uncertainty might allow for a closer inspection of the
model fit and investigate new options.

We fitted an alternative joint model for frailty, falls and mortality (M̂CARE
2 ). In this al-

ternative model we considered falls as exogenous time-varying covariate of both frailty
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and mortality, and specified a different link of the frailty→ mortality relationship, in
this case through the current frailty value free of measurement error (mi(t)), i.e. frailty
being an endogenous time-varying covariate of mortality. In qualitative terms, our con-
clusions about the association between frailty, falls and mortality with this alternative
model are the same as those derived from model M̂CARE

3 .

In statistical modelling, variable selection is carried out in different ways depending
on the intended use of the fitted model: description, causal inference or prediction

(Shmueli et al., 2010). The variable selection process to fit the joint models of Chapter
4 was carried out by a stepwise procedure which tries to optimize goodness of fit to the
data (i.e. description), first in the marginal model of each outcome and then in the joint
model. This approach becomes more difficult with correlated covariates, in addition to
the long processing times required to fit a joint model. Moreover, we were interested
in a joint model with a set of covariates that optimizes prediction of longitudinal and
a time-to-event outcomes. By being able to get accurate predictions of frailty and
mortality for the CARE75+ data it might be possible to adapt the management plans
of care homes.

In Chapter 5 we proposed a variable selection strategy that aimed at optimizing pre-
diction of a joint model for longitudinal and time-to-event outcomes. Our strategy
consisted of penalizing the log-likelihood function with separate penalties for the fixed
effects regression coefficients of each submodel and using a K-fold cross-validation
design to estimate the parameters and score out-of-sample data to assess prediction
by the mean-squared error (MSE) and the Integrated Brier score (IBS). We conducted
simulation studies under different covariate scenarios. The results suggested that with
highly correlated covariates, the region of the hyperpameters (the two penalties) of op-
timal MSE might not overlap with the region of optimal IBS. In such a case, our strat-
egy chooses among values within a small region defined by two penalties that require a
compromise between MSE and IBS depending on which outcome is the priority.

As a secondary criterion of performance, we assessed our variable selection strategy in
the simulation studies by comparing the regression coefficient estimates against their
true values under a binary classifier (zero and non-zero) in terms of accuracy, sensitiv-
ity and specificity. The values of these metrics are not as high as we have seen in the
standard marginal regression models for normally distributed outcomes. Nonetheless,
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this is of secondary interest for our proposed strategy, the principal criterion being to
optimize prediction.

We constructed two additional binary classifiers that impose other restrictions to the
binary classifier used in our simulation study. Even though we obtained similar results
they seem too ambitious for the joint modelling context and we would rather explore
how they perform in simpler contexts, like the marginal model of each outcome. These
two binary classifiers are discussed briefly in the Section 5.5.1 and are considered for
future work.

The goal of the two joint models fitted in Chapter 4 was to find a plausible model de-
scribing the relationship of frailty, falls and mortality and covariates in the CARE75+
data set. These models have limitations for causal inference because they do not explic-
itly take confounding into account. In Chapter 6, we used DAGs to state upfront our
hypotheses about the relationships among all the variables in the CARE75+ data set,
identifying all possible confounders to the frailty-falls-mortality relationship, and we
fitted the joint model corresponding to the relationships stated on the DAGs: M̂CARE

3C

and M̂CARE
2C .

According to model M̂CARE
3C , the relative risk of death increases by a factor of exp(0.408) =

1.504 and relative risk of falls increases exp(0.452) = 1.571 with a unit increase in
frailty, ceteris paribus. The association between the risk of falls and the risk of mor-
tality was not significant at the 5% level.

The results of model M̂CARE
2C suggest a direct effect of frailty on the relative risk of

mortality by a factor exp(0.587) = 1.8, from falls to frailty of 0.330, and a total effect
of falls on mortality of 0.921.

There is still more to explore about the relationships between frailty, falls and mortality,
in particular about the association between frailty and falls. On the one hand, according
to model M̂CARE

3C we cannot rule out the hypothesis of an effect frailty→ falls, although
the interpretation of the parameter that accounts for this relationship, η̂R, depends on
the interpretation of the random intercept bi0, just as the effect frailty → mortality.
On the other hand, in M̂CARE

2C the estimate β̂falls accounts for an effect in the opposite
direction i.e. from falls→ frailty with a straightforward interpretation (every additional
fall contributes to increase frailty as much as β̂falls). It would be important to continue
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exploring this relationship in order to determine the direction of the corresponding
effect.

In Chapter 6 we conducted a simulation study to explore the consequences of model
misspecification in joint modelling. More specifically our interest was to assess the
extent in which the model parameters and regression coefficients are correctly/wrongly
estimated when the data is analyzed with the wrong model. We simulated a series of
datasets from two different joint models, M3 and M2 and analyze each data set with
the two models.

The results of our simulation study suggest that for the two specific models we have
considered the fixed effects are generally correctly estimated, even when a misspecified
model is fitted. There are however limitations about this statement that can be easily
overlooked, for instance by fittingM2 we cannot estimate fixed effects for the recurrent
event since it is not being modelled. Thus it is important to know exactly what features
of the data each joint model is trying to estimate and, in the application context, what
is the research question that we want to answer with the analysis of the data.

When fittingM2, it is possible to estimate the sign of the association between the longi-
tudinal outcome and the terminal event and between the recurrent and terminal events.
A practical implication of these results is that by fitting model M2 while analyzing real
data we can still learn about the fixed effects and the associations longitudinal outcome
→ terminal event and recurrent → terminal events even if it is not the correct model
that represents the data. The association parameters of Model M2 have a straightfor-
ward interpretation analogous to the proportional hazards model. Fitting M2 requires
accommodating less sources of within-subject variability represented by the random
effects, and addresses in a flexible way the variability from the baseline hazard of the
terminal event.

More research would still be needed though to explore the extent to which the con-
clusion for model M2 holds when the recurrent event is an endogenous time-varying
covariate of the terminal event submodel and such endogeneity is ignored.

When fitting model M3, estimates of the variance of the measurement error were poor
(largely biased and inaccurate) and some parameter estimates were highly correlated
regardless of which data (generated with M3 or M2) the model was fitted to. We would
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like to use the parameter estimates from model M3 to calculate ĥi(t), Ŝi(t) or Ĥi(t)

and compare against the values of these functions at the true parameters. What we are
looking is if the fit of model M3 compensates for some biased parameter estimates by
adjusting others, giving unbiased estimates of the survival probabilities (or hazards).
This requires prediction of the random effects. This is part of our future work.

Due to the complex nature of frailty and falls, there might be several plausible underly-
ing mechanisms for their relationship with mortality. It would be important to extend
our simulation studies to investigate other modelling strategies, considering alternative
association and confounding structures, as pointed out in Section 6.5.

Joint modelling longitudinal and time-to-event outcome has been an area of active
research in latest years and, although all of the examples used in this document are
from the medical context, its applications are not restricted to this area. Fitting a joint
model is complex and computationally challenging hence the processing times are
much longer than those for the marginal models. It might be important to explore
with alternatives parameter estimation, even with methods that give an approximate
solution. An option worth exploring is the possibility to use the ideas of variational

Bayes approximations, see for example Ormerod & Wand (2010), or message passing,
Wand (2017). The general idea is to approximate the posterior distribution of the
parameters given the observed data, f(θ|D) by another density, q(θ) that minimizes
the Kullback-Leibler divergence.
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R code
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A.1 Simulation of survival analysis data (includes frailty)

A.1 Simulation of survival analysis data (includes frailty)

Sample code to simulate data from Proportional Hazards models. Corresponds to Al-
gorithm 2.1 and includes models of Sections 2.2.1, 2.2.1.

##===============================================================

## Last update: 31/Dec/2017

## Version 1.0

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

## R code Simulate data from a frailty model with 3

## time-fixed covariates and Weibull baseline hazard.

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

## Chapter: Preliminaries

## For first year 201617

## (c) Jacob Cancino-Romero (JHD,LB,SB) 2017

##===============================================================

#================================================================

## Simulate Frailty PH survival data ˜ Weibull and 3 covariates.

## k = 1,..., K_{i} (here K_{i} = K)

## i = 1,..., n

##

## The model from which the data is simulated from:

##

## h_ik(t) = h_{0}(t)* u_{i} *exp(x_{ik}ˆ{T}*beta),

##

## h_{0}(t) ˜ Weibull(shape=k, rate=r): k*r*(r*t)ˆ(k-1)

##

## u_{i}:

## ˜ LN(meanlog = 0, sdlog=sqrt(theta))

## ˜ gamma(shape=1/theta, scale=theta)

##

## Gamma distribution: dgamma(shape=a, scale=s):

## f(x)= 1/(sˆa Gamma(a)) xˆ(a-1) eˆ-(x/s)

## E(X) = a*s = 1/theta * theta = 1

## V(X) = a*sˆ2 = 1/theta * thetaˆ2 = theta

## ..............................................................

## The general inverse transfor method for the model with frailty:

##
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A.1 Simulation of survival analysis data (includes frailty)

## T_{ik} = - 1/u_{i} * log(z) * exp(-x_{ik}ˆ{T}*beta)

##

#================================================================

#================================================================

f.simFrail <- function(

n=nn, K=nK, k=kap, r=rho, P1=p1, P2=p2, m=mu3, s=sig3, seed=1234,

b=betas, fix.cens=TRUE, ct=CENST, kc=k.cens, rc=r.cens,

frailty, frailty.par=fpar){

#˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

writeLines(’\nUsing Version 1.0 of function f.simFrail’)

writeLines(’Last update: 31/Dec/2017’)

#˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

## Acummulate according to G

set.seed(seed)

g <- 1

dt <- survt <- delta <- matrix(rep(NA, n*K), ncol=K)

Xl <- vector("list", K)

X <- NULL

#˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

## Fralties

f.frailty <- function(frailty, n, p){

fnofrailty <- function(n,p){rep(as.numeric(1), n)}

flognormal <- function(n,p){ rlnorm(n, meanlog = 0, sdlog = sqrt(p)) }

fgamma <- function(n,p){ rgamma(n, shape = 1/p, scale = p) }

#......................................................................

flist <- list("none"=fnofrailty, "lognormal"=flognormal, "gamma"=fgamma)

d <- match(frailty, names(flist))

return(flist[[d]](n = n, p = p))

}

u <- f.frailty(frailty=frailty, n=n, p=frailty.par)

#˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

## Censoring time & Survival times from Weibull(kappa,rho)

if(fix.cens){

cat("\nFixed censoring time =",ct)

} else {

cat("\nCensoring process follows a Weibull distribution with parameters\n")

cat("shape =", kc, "rate =", rc)

}

while(g <= K){

#........................................................
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A.1 Simulation of survival analysis data (includes frailty)

## Produce the covariance matrix, X

x1 <- (rbinom(n,1,P1))

x2 <- (rbinom(n,1,P2))

x3 <- round(rnorm(n, mean=m, sd=s),1)

Xg <- cbind(x1,x2,x3)

#........................................................

v <- runif(n, 0,1) ## Censoring time

z <- runif(n, 0,1) ## Survival time

censt <- ifelse(fix.cens,

ct,

1/rc*(-log(v))ˆ(1/kc) )

survt[, g] <- 1/(r*u)*( -log(z)*1/exp(Xg %*% b) )ˆ(1/k)

dt[, g] <- pmin(survt[, g], censt)

delta[, g] <- 1*(survt[, g] <= censt)

colnames(Xg) <- paste0(colnames(Xg),"_",g)

X <- cbind(X, Xg)

#........................................................

g <- g+1

#........................................................

}

survt <- data.frame(survt)

dt <- data.frame(dt)

delta <- data.frame(delta)

X <- data.frame(X)

if(K==1){

names(survt) <- "survt"; names(dt) <- "dt"; names(delta)<-"delta"

names(X) <- paste0("x", 1:3)

} else {

names(survt) <- paste0("survt", 1:K)

names(dt) <- paste0("dt", 1:K)

names(delta) <- paste0("delta", 1:K)

}

#˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

## Survival outcome is min(survt, censt)

simSurv <- data.frame(cbind(

id = seq(1:n), survt, dt, delta, X ) )

}

#================================================================

# nn <- 100 ## number of clusters

# nK <- 2 ## number of repetitions for each i

243



A.1 Simulation of survival analysis data (includes frailty)

# kap <- 2 ## hazard ˜ Weibull(shape=kap, rate=rho)

# rho <- 0.5 ## hazard ˜ Weibull(shape=kap, rate=rho)

# p1 <- 0.5 ## X1 ˜ Binomial(n, p1)

# p2 <- 0.5 ## X2 ˜ Binomial(n, p2)

# mu3 <- 0 ## X3 ˜ N(mean=mu3, sd=sig3)

# sig3 <- 4 ## X3 ˜ N(mean=mu3, sd=sig3)

# betas <- c(0.5, 0.5, 0.5) ## Regression coefficients.

# CENST <- 5 ## Fixed censoring time for all id

# k.cens <- 1 ## shape of the censoring process if "fix.cens" = FALSE

# r.cens <- 0.1 ## rate of censoring process if "fix.cens" = FALSE

# frailty <- "gamma" ## "lognormal" or "gamma"

# fpar <- 0.1 ## Parameter of the frailty distribution.

d <- f.simFrail(

n=nn, K=nK, k=kap, r=rho, P1=p1, P2=p2, m=mu3, s=sig3, seed=1234,

b=betas, fix.cens=TRUE, ct=CENST, kc=k.cens, rc=r.cens,

frailty = "none", frailty.par=fpar)

names(d)

par(mfrow=c(1,nK), las=1)

for (g in 1:nK){ hist(d[, 1+g], main=bquote(.(names(d)[1+g])), xlab="time") }
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A.2 Simulation of Cox model data with endogenous time-varying covariate and
parametric baseline hazard

A.2 Simulation of Cox model data with endogenous time-
varying covariate and parametric baseline hazard

Sample code to simulate data from Proportional Hazards models. Corresponds to Al-
gorithm 2.2 for the Cox model with endongenous time-varying covariate of Section
2.2.1.

##===============================================================

## Last update: 23/Aug/2019

## Version 1.0

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

## R code to simulate recurrent event times from the

## Andersen-Gill model (includes random effect)

##

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

## Chapter: 2

## For third year 201819

## (c) Jacob Cancino-Romero (JHD,LB,SB) 2019

##===============================================================

##===============================================================

## Contents

## --------

## Function to simulate recurrent event times from the AG model

##

##===============================================================

##===============================================================

Version <- 2.0

Last_update <- format(Sys.Date(), "%d %B %Y")

# Last_update <- "7/September/2019"

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

library(MASS) ## mvrnorm(n, mu, Sigma)

library(survival)

if(!require(actuar)) install.packages("actuar") ## Shut down in office

if(!require(flexsurv)) install.packages("flexsurv") ## Shut down in office

if(!require(VGAM)) install.packages("VGAM") ## Shut down in office
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A.2 Simulation of Cox model data with endogenous time-varying covariate and
parametric baseline hazard

library(actuar) ## log-logistic ## Shut down in office

library(flexsurv) ## gompertz ## Shut down in office

library(VGAM) ## makeham ## Shut down in office

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

## Time functions

ft <- function(x, fnt, p){

# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

fn.names <- c("linear", "banana", "cos-sin", "logistic", "normal")

# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

f1 <- function(x,p){

p[1] + p[2]*x }

f2 <- function(x,p){

p[1] + p[2]*x + p[3]*xˆ3 + p[4]*exp(p[5]*xˆ2) }

f3 <- function(x,p){

p[1] + p[2]*x + p[3]*sin(p[4]*x) + p[5]*cos(p[6]*x) +

p[7]*(x+p[8])ˆ2 + p[9]*exp(p[10]*x)} ##

f4 <- function(x,p){

p[2] / (1 + exp(-p[3]*(x-p[1])))}

f5 <- function(x, p){

p[1]*x + p[2]*dnorm(x, mean=p[3], sd=p[4])}

# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

flist <- list("linear"=f1, "banana"=f2, "cos-sin"=f3, "logistic"=f4,

"normal"=f5)

d <- match(fnt, fn.names)

return(flist[[d]](x=x,p=p))

}

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

## Baseline hazard

h0 <- function(x, sdist, g){

## Simulate survival times.

## Baseline hazard. Using pweibull()/deweibull() might cause

## computational difficulties as time gets larger (0/0 = NaN)

# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

d.names <- c("weibull", "log-logistic", "gompertz", "makeham", "bathtub")

# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

h1 <- function(x,g){ g[1]*g[2]*(g[2]*x)ˆ(g[1]-1) }

h2 <- function(x,g){ g[1]*g[2]*(g[2]*x)ˆ(g[1]-1) / (1+g[2]*x)ˆg[1]}

h3 <- function(x,g){ g[1]*exp(g[2]*x) }

h4 <- function(x,g){ g[1] + g[2]*exp(-g[3]*x)}
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h5 <- function(x,g){ g[1]*x + g[2]/(1 + g[3]*x) }

# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

hlist <- list(h1, h2, h3, h4, h5)

names(hlist) <- d.names

distrib <- match(sdist, d.names)

return(hlist[[distrib]](x=x,g=g))

}

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

## Subject specific hazard rate

hx <- function(x, fnt, p, betas, b, w, etaL, gammas, etaR=0, N=0,

sdist, g, v){

# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

## h(t) = h_{0}(t) * exp{ v + eta*m(t) + etaR*N + wˆ{T}gammas }

## v = log(frailty), where frailty is an instance of the

## gamma or log-normal distribution.

# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

gammas <- as.vector(gammas)

w <- as.vector(w)

exp(etaL*mx(x, fnt=fnt, p=p, w=w, betas=betas, b=b) +

v + as.numeric(crossprod(gammas,w))) *
h0(x, sdist=sdist, g=g)

}

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

## Random sample from the frailties distribution.

f.frailty <- function(n, fpar, fdist){

# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

frailty.dist <- c("gamma", "log-normal")

# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

f1 <- function(n,fpar){rgamma(n, shape=1/fpar, scale=fpar)}

f2 <- function(n,fpar){rlnorm(n, meanlog=0, sdlog=sqrt(fpar))}

# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

flist <- list("gamma"=f1, "log-normal"=f2)

d <- match(fdist, frailty.dist)

return(flist[[d]](n=n,fpar=fpar))

}

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

## Cumulative hazard. Notice different vectorization method via sapply():

cumhaz <- function(

x, fnt, p, betas, b, w, etaL, gammas, etaR=0, N=0, sdist, g, v, LOWER){
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sapply(x, function(x)

integrate(hx, lower=LOWER, upper=x,

fnt=fnt, p=p, betas=betas, b=b, w=w, etaL=etaL, etaR=etaR,

gammas=gammas, N=N, sdist=sdist, g=g, v=v)$value)

}

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

## Conditional cumulative hazard with frailty

cHaz <- function(x, t, fnt, p, betas, b, w, etaL, gammas, etaR=0, N=0,

sdist, g, v, LOWER){

cumhaz(x=x+t, fnt, p, betas, b, w, etaL, gammas, etaR=0, N=0,

sdist, g, v, LOWER) -

cumhaz(x=t, fnt, p, betas, b, w, etaL, gammas, etaR=0, N=0,

sdist, g, v, LOWER)

}

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

## Inverse of the cumulative hazard

icumhaz <- function(u, fnt, p, betas, b, w, etaL, gammas, etaR=0, N=0,

sdist, g, v, LOWER, FROM=0, TO, shift, tolexp=0.5){

## u stands for S(t). Make sure 0<=u<= 1

phi <- (-log(u))

h <- function(x){

cumhaz(x, fnt=fnt, p=p, betas=betas, b=b, w=w, etaL=etaL, gammas=gammas,

etaR=etaR, N=N, sdist=sdist, g=g, v=v, LOWER=LOWER) + shift - phi

} ## Must subtract phi, not u!

x <- uniroot(h, interval=c(FROM, TO), tol=.Machine$double.epsˆtolexp)$root

return(x)

}

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

## Inverse of the conditional cumulative hazard with frailty

icHaz <- function(u, t, fnt, p, betas, b, w, etaL, gammas, etaR=0, N=0,

sdist, g, v, LOWER, FROM=0, TO, tolexp=0.5){

## u stands for S(t). Make sure 0<=u<= 1

phi <- (-log(u))

h <- function(x){

cHaz(x, t=t, fnt=fnt, p=p, betas=betas, b=b, w=w, etaL=etaL, gammas=gammas,

etaR=etaR, N=N, sdist=sdist, g=g, v=v, LOWER=LOWER)-phi

} ## Must subtract phi, not u!

x <- uniroot(h, interval=c(FROM, TO), tol=.Machine$double.epsˆtolexp)$root
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return(x)

}

#----------------------------------------------------------------

f.simAG <- function(seed, n, nsim,

p1=0.5, p2=0.5, p3=0.5, p4=0.5, S_567.rand = FALSE,

mu_567 = c(0,0,0),

S_567 = diag(c(1,1,1)),

nRecEv = 20, ## How many recurrent events per subject?

ran.censt = FALSE,

censt = 1, ## censoring time

sdist = "weibull", ## "weibull","log-logistic","gamma","gompertz","makeham"

g = c(4, 1.5), ## c(shape, rate)

gammas = rep(-0.1, 7),

frailty = FALSE,

fpar = 0.4ˆ2 , ## Accounts for the variance of the frailty.

fdist = "log-normal", ## Distribution of frailty

tolexp = 0.5,

savefile = FALSE,

outdir = getwd(),

outfile = "simAG.txt"

){

cat(’====================================================================\n’)

cat(’Function simAG(), version’, Version, ’\n’)

cat(’Last update:’, Last_update,’\n’)

cat(’file name: f.simAGmodel.R \n’)

cat(’For tests and details check file f.simAGmodel(develop).R\n’)

# Create empty datasets to acummulate the data of a number of simulations

simRec <- NULL

# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

set.seed(seed) ## sample(1:100, 1)

# Generate covariates once and keep the values fixed for all simulations

x1 <- (rbinom(n,1,p1)) # binary. Alternative, LaplacesDemon::rbern

x2 <- (rbinom(n,1,p2)) # binary

x3 <- (rbinom(n,1,p3)) # binary

x4 <- (rbinom(n,1,p4)) # binary

X1 <- mvrnorm(n, mu=mu_567, Sigma=S_567) # continuous, potentially correlated

mvrnorm(n, mu=mu_567, Sigma=S_567)

colnames(X1) <- c("x5","x6","x7")

X <- cbind(x1,x2,x3,x4,X1)
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ID <- seq(1,n)

temp <- data.frame(id=ID, X)

cat(’------------------------------------------------------------------\n’)

# Three levels of "for" loops: s=simulations, ID=individuals, k=recurrent events.

# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

for (s in 1:nsim){ ## s<-1

set.seed(seed) ## sample(1:100, 1)

dRec <- NULL

cat(’sim =’, s, ’out of’, nsim, ’--> ’)

# ...........................................................

## Define censoring and random effects

## Censoring

if (ran.censt){

censi <- runif(n, min=0, max=censt) } else { censi <- rep(censt, n)

}

# Random effects

if (frailty){

z <- f.frailty(n=n, fpar=fpar, fdist=fdist)

}

# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

for (i in seq_along(ID)){ ## i<-1

## Recurrent event process

R <- NULL

CONTINUE <- TRUE

k <- 1

K <- 0 ## Control the maximum number of rec. events.

N <- c(0) ## Counting process starts at 0

deltaR <- c(0) ## Event process starts at 0

gap <- gap.c <- c(0) ## time-gaps vector: inter-arrival times

L <- c(0) ## L=Lower end of interval

U <- vector(mode=’numeric’, length(0)) ## U=Upper end of interval

r_stop <- vector(mode=’numeric’, length(0))

u <- vector(mode=’numeric’, length(0)) ## runif(1)

while(CONTINUE){

u[k] <- runif(1)

gap[k] <- icHaz(u=u[k], sdist=sdist, g=g, w=X[i,], gammas=gammas,

z=z[i], t=L[k], FROM=0, TO=1e3)

# gap[k] <- icHazWeib(u=u, k=g[1], r=g[2], w=X[i,], gammas=gammas, t=L[k],

# FROM=0, TO=1e3)

U[k] <- L[k] + gap[k]
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r_stop[k] <- min(U[k], censi[i])

deltaR[k] <- 1*( N[k] > 0 )

censored <- ( U[k] > censi[i] )

gap.c[k] <- ifelse( !censored, gap[k], r_stop[k]-U[k-1])

#.......................................................

## Collect the data here!

R <- rbind(R, cbind(

sim=s, seed=seed, id=ID[i], u=u[k], frailty=z[i], deltaR=deltaR[k], N=N[k],

censt=censi[i], gap=gap[k], gap.c=gap.c[k], r.time=L[k], L=L[k],

U=U[k], r_start=L[k], r_stop=r_stop[k]

) )

#........................................................

## Update values. If CONTINUE = FALSE, these will be reset.

N <- c(N, N[k]+1)

L <- c(L, U[k])

k <- length(N)

K <- K <- K+1

CONTINUE <- (K <= nRecEv) && (!censored)

} ##----------while

## Merge with covariates and acumulate records of all id of simulation s

dRec <- rbind(dRec, data.frame(R))

} ##-----------id

dRec <- merge(x=dRec, y=temp, by=’id’)

simRec <- rbind(simRec, dRec)

seed <- seed + 1

cat(’Finished\n’)

} ##--------------sim

cat(’Preparing’, length(outfile), ’files.\n’)

simRec <- cbind(subset(simRec, select=sim), subset(simRec, select=-sim))

simList <- list(simRec=simRec)

if(savefile){

setwd(outdir)

for (f in seq(simList)){ ##f<-1

write.table(simList[[f]], outfile[f], row.names=FALSE, col.names=TRUE, sep=’\t’)

}

cat(’--------------------------------------------------------------------\n’)

cat(’Output files:’, paste0(outfile, collapse=", "), ’\n’)

cat(’Location:’, outdir, ’\n’)

cat(’====================================================================\n’)

}

return(simList) }
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A.3 Simulation of recurrent events with the Andersen–
Gill model

Sample code to simulate a data set with recurrent events and covariates from the
Andersen–Gill model of Section 2.2.2. Uses Algorithm 2.3 to simulate the recurrent
events.

##===============================================================

## Last update: 23/Aug/2019

## Version 1.0

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

## R code to simulate recurrent event times from the

## Andersen-Gill model (includes random effect)

##

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

## Chapter: 2

## For third year 201819

## (c) Jacob Cancino-Romero (JHD,LB,SB) 2019

##===============================================================

##===============================================================

## Contents

## --------

## Function to simulate recurrent event times from the AG model

##

##===============================================================

##===============================================================

Version <- 2.0

Last_update <- format(Sys.Date(), "%d %B %Y")

# Last_update <- "7/September/2019"

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

library(MASS) ## mvrnorm(n, mu, Sigma)

library(survival)

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

## Baseline hazard. Note exp(etaT*x), so can include time-varying covs:

h0 <- function(x, sdist, g){
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# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

d.names <- c("weibull", "log-logistic", "gompertz", "makeham", "bathtub")

# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

h1 <- function(x,g){ g[1]*g[2]*(g[2]*x)ˆ(g[1]-1) }

h2 <- function(x,g){ g[1]*g[2]*(g[2]*x)ˆ(g[1]-1) / (1+g[2]*x)ˆg[1]}

h3 <- function(x,g){ g[1]*exp(g[2]*x) }

h4 <- function(x,g){ g[1] + g[2]*exp(-g[3]*x)}

h5 <- function(x,g){ g[1]*x + g[2]/(1 + g[3]*x) }

# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

hlist <- list(h1, h2, h3, h4, h5)

names(hlist) <- d.names

distrib <- match(sdist, d.names)

return(hlist[[distrib]](x=x,g=g))

}

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

## Baseline cumulative baseline hazard: H_{0}(t) = -log(S_{0}(t))

H0 <- function(x, g, sdist){

sapply(x, function(x)

integrate(h0, lower=0, upper=x,

sdist=sdist, g=g)$value)

}

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

## Random sample from the frailties distribution.

f.frailty <- function(n, fpar, fdist){

# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

frailty.dist <- c("gamma", "log-normal")

# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

f1 <- function(n,fpar){rgamma(n, shape=1/fpar, scale=fpar)}

f2 <- function(n,fpar){rlnorm(n, meanlog=0, sdlog=sqrt(fpar))}

# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

flist <- list("gamma"=f1, "log-normal"=f2)

d <- match(fdist, frailty.dist)

return(flist[[d]](n=n,fpar=fpar))

}

v.frailty <- Vectorize(f.frailty) ## Vectorized version

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

## Cumulative hazard with frailty

cumhaz <- function(x, w, gammas, sdist, g=g, z){
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## z is an instance of the frailty distribution.

sapply(x, function(x)

H0(x, sdist=sdist, g=g)*exp(as.numeric(crossprod(w,gammas)) + log(z)))

}

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

## Conditional cumulative hazard with frailty

cHaz <- function(x, t, w, gammas, sdist, g=g, z){

cumhaz(x=x+t, w, gammas, sdist, g=g, z=z) -

cumhaz(x=t, w, gammas, sdist, g=g, z=z)

}

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

## Inverse of the cumulative hazard

icumhaz <- function(u, sdist, g, w, gammas, z, FROM=0, TO, tolexp=0.5){

## u stands for S(t). Make sure 0<=u<= 1

phi <- (-log(u))

h <- function(x){

cumhaz(x, sdist=sdist, g=g, w=w, gammas=gammas, z=z)-phi

} ## Must subtract phi, not u!

x <- uniroot(h, interval=c(FROM, TO), tol=.Machine$double.epsˆtolexp)$root

return(x)

}

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

## Inverse of the conditional cumulative hazard with frailty

icHaz <- function(u, t, sdist, g, w, gammas, z, FROM=0, TO, tolexp=0.5){

## u stands for S(t). Make sure 0<=u<= 1

phi <- (-log(u))

h <- function(x){

cHaz(x, sdist=sdist, g=g, w=w, gammas=gammas, z=z, t=t)-phi

} ## Must subtract phi, not u!

x <- uniroot(h, interval=c(FROM, TO), tol=.Machine$double.epsˆtolexp)$root

return(x)

}

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

## Weibull cumulative hazard

Haz_Weib <- function(x, k, r, w, gammas, z){

lp <- as.numeric(crossprod(w,gammas))+log(z)

Haz <- (r*x)ˆk * exp(lp)
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return(Haz)

}

## Weibull inverse of the conditional cumulative hazard

icHaz_Weib <- function(u, t, k, r, w, gammas, z){

phi <- -log(u)

lp <- as.numeric(crossprod(w,gammas))+log(z)

gap <- 1/r * ( phi*exp(-lp) + (r*t)ˆk )ˆ(1/k) - t

return(gap)

}

##===============================================================

## Simulator

# Version <- 2.0

# Last_update <- format(Sys.Date(), "%d %B %Y")

#

# seed=0; n=5; nsim=2; p1=0.5; p2=0.5; p3=0.5; p4=0.5; S_567.rand = FALSE;

# mu_567 = c(0,0,0)

# S_567 = diag(c(1,1,1))

#

# nRecEv = 20 ## How many recurrent events per subject?

# ran.censt = FALSE

# censt = 1 ## censoring time

# sdist = "weibull" ## "weibull","log-logistic","gamma","gompertz","makeham"

# g = c(4, 1.5) ## c(shape, rate)

# gammas = rep(0, 7)

# frailty = TRUE

# fpar = 0.4ˆ2 ## Accounts for the variance of the frailty.

# fdist = "log-normal" ## Distribution of frailty

# tolexp = 0.5

# savefile = FALSE

# outdir = getwd()

# outfile = "simAG.txt"

#----------------------------------------------------------------

f.simAG <- function(first.event.in.row.1 = FALSE,

seed, n, nsim,

p1=0.5, p2=0.5, p3=0.5, p4=0.5, S_567.rand = FALSE,

mu_567 = c(0,0,0),

S_567 = diag(c(1,1,1)),

nRecEv = 20, ## How many recurrent events per subject?

ran.censt = FALSE,

censt = 1, ## censoring time

sdist = "weibull", ## "weibull","log-logistic","gamma","gompertz","makeham"
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g = c(4, 1.5), ## c(shape, rate)

gammas = rep(-0.1, 7),

frailty = FALSE,

fpar = 0.4ˆ2 , ## Accounts for the variance of the frailty.

fdist = "log-normal", ## Distribution of frailty

tolexp = 0.5,

savefile = FALSE,

outdir = getwd(),

outfile = "simAG.txt"

){

cat(’====================================================================\n’)

cat(’Function simAG(), version’, Version, ’\n’)

cat(’Last update:’, Last_update,’\n’)

cat(’file name: f.simAGmodel.R \n’)

cat(’For tests and details check file f.simAGmodel(develop).R\n’)

# Create empty datasets to acummulate the data of a number of simulations

simRec <- NULL

# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

set.seed(seed) ## sample(1:100, 1)

# Generate covariates once and keep the values fixed for all simulations

x1 <- (rbinom(n,1,p1)) # binary. Alternative, LaplacesDemon::rbern

x2 <- (rbinom(n,1,p2)) # binary

x3 <- (rbinom(n,1,p3)) # binary

x4 <- (rbinom(n,1,p4)) # binary

X1 <- mvrnorm(n, mu=mu_567, Sigma=S_567) # continuous, potentially correlated

mvrnorm(n, mu=mu_567, Sigma=S_567)

colnames(X1) <- c("x5","x6","x7")

X <- cbind(x1,x2,x3,x4,X1)

ID <- seq(1,n)

temp <- data.frame(id=ID, X)

cat(’------------------------------------------------------------------\n’)

# Three levels of "for" loops: s=simulations, ID=individuals, k=recurrent events.

# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

for (s in 1:nsim){ ## s<-1

set.seed(seed) ## sample(1:100, 1)

dRec <- NULL

cat(’sim =’, s, ’out of’, nsim, ’--> ’)

# ...........................................................

## Define censoring and random effects
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## Censoring

if (ran.censt){

censi <- runif(n, min=0, max=censt) } else { censi <- rep(censt, n)

}

# Random effects

z <- 1 + double(n)

if (frailty){

z <- f.frailty(n=n, fpar=fpar, fdist=fdist)

}

# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

for (i in seq_along(ID)){ ## i<-1

#˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

## Recurrent event process

R <- NULL

CONTINUE <- TRUE

k <- 1

K <- 0 ## Control the maximum number of rec. events.

N <- c(0) ## Counting process starts at 0

deltaR <- c(0) ## Event process starts at 0

gap <- gap.c <- c(0) ## time gaps with closed form of Weibull conditional H(t)

gap_Weib <- gap_Weib.c <- c(0)## time-gaps (inter-arrival times) with root finder

L <- c(0) ## L=Lower end of interval

U <- vector(mode=’numeric’, length(0)) ## U=Upper end of interval

r_stop <- vector(mode=’numeric’, length(0))

u <- vector(mode=’numeric’, length(0)) ## runif(1)

phi <- vector(mode=’numeric’, length(0)) ## runif(1)

while(CONTINUE){

u[k] <- runif(1)

phi[k] <- -log(u[k]);

gap[k] <- icHaz(u=u[k], sdist=sdist, g=g, w=X[i,], gammas=gammas,

z=z[i], t=L[k], FROM=0, TO=1e3)

gap_Weib[k] <- icHaz_Weib(u=u[k], t=L[k], k=g[1], r=g[2], w=X[i,],

gammas=gammas, z=z[i])

U[k] <- L[k] + gap[k]

r_stop[k] <- min(U[k], censi[i])

#........................................................

#’ If the recurrent event process starts with the 1st event in

#’ the 1st row (deltaR=1) then tha last one will be censored.

#’ In such a case "first.event.in.row.1 = TRUE".

#’ This simulator was origininally written considering
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#’ "first.event.in.row.1 = FALSE". This is, the 1st

#’ event is recorded "after" it had occurred, so in the time interval

#’ [0,t1), deltaR_1 = 0, and in [t1,t2) delta_R_2 = 1, unless

#’ tj > censt, in which case deltaR_j = 0.

#’ Also N below should be replaced

if (first.event.in.row.1){

deltaR[k] <- 1*( r_stop[k] < censi[i] )

N[k] <- ifelse(deltaR[k] == 1, N[k]+1, N[k])

} else {

deltaR[k] <- 1*( N[k] > 0 )

# deltaR[k] <- 1*( r_start[k] < censi[i] )

}

#........................................................

censored <- ( U[k] > censi[i] )

gap.c[k] <- ifelse( !censored, gap[k], r_stop[k]-L[k])

gap_Weib.c[k] <- ifelse( !censored, gap_Weib[k], r_stop[k]-L[k])

#........................................................

## Collect the data here!

R <- rbind(R, cbind(

sim=s, seed=seed, id=ID[i], u=u[k], phi=phi[k], frailty=z[i],

deltaR=deltaR[k], N=N[k], censt=censi[i], gap=gap[k], gap.c=gap.c[k],

gap_Weib=gap_Weib[k], gap_Weib.c=gap_Weib.c[k],

r.time=L[k], L=L[k], U=U[k], r_start=L[k], r_stop=r_stop[k]

) )

#........................................................

## Update values. If CONTINUE = FALSE, these will be reset.

if (first.event.in.row.1){

N <- c(N, N[k])

} else {

N <- c(N, N[k]+1) ## <------- Replace for N <- c(N, N[k])

}

L <- c(L, U[k])

k <- length(N)

K <- K <- K+1

## Stop the data generating process if K has reached the RecEv limit

## or if the last recurrent event occurred after the censoring time.

## Note that K started at 0 and is updated after the kth iteration,

## so (K <= nRecEv) means we will generate K complete event times.

CONTINUE <- (K <= nRecEv) & (!censored)

} ##----------while

#˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
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## Merge with covariates and acumulate records of all id of simulation s

dRec <- rbind(dRec, data.frame(R))

i<-i+1

} ##-----------id

dRec <- merge(x=dRec, y=temp, by=’id’)

simRec <- rbind(simRec, dRec)

seed <- seed + 1

cat(’Finished\n’)

} ##--------------sim

cat(’Preparing’, length(outfile), ’files.\n’)

simRec <- cbind(subset(simRec, select=sim), subset(simRec, select=-sim))

simList <- list(simRec=simRec)

if(savefile){

setwd(outdir)

for (f in seq(simList)){ ##f<-1

write.table(simList[[f]], outfile[f], row.names=FALSE, col.names=TRUE, sep=’\t’)

}

cat(’--------------------------------------------------------------------\n’)

cat(’Output files:’, paste0(outfile, collapse=", "), ’\n’)

cat(’Location:’, outdir, ’\n’)

cat(’====================================================================\n’)

}

return(simList)

}

##===============================================================
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A.4 Brier Score and Integrated Brier Score

Sample code to compute the Brier Score and Integrated Brier Score explained in Sec-
tion 2.3.1

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

#’ Last update: 9/July/2020

#’ Version 1.0

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

#’ Brier Score and Integrated Brier Score

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

#’ Chapter: 2

#’ For second year 201718

#’ (c) Jacob Cancino-Romero (JHD,LB,SB) 2020

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

#’ Contents

#’ ˜˜˜˜˜˜˜˜

#’

#’ BS, IBS and W(t) function for weighting the contribuitons when data

#’ are censored.

#’ The file explain with a series of functions how to compute the BS & IBS

#’ for the Cox model

#’

#’ (a) only baseline covariates

#’ (b) with an endogenous time-varying covariate

#’

#’ It has a weight function to accommodate censoring.

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

Version <- 2.0

Last_update <- format(Sys.Date(), "%d %B %Y")

# Last_update <- "7/September/2019"

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

library(MASS) ## mvrnorm(n, mu, Sigma)

library(survival)

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

# IBS (Cox model) -----------------------------------------------
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dT <- 1.5

p <- c(4,1)

w <- c(1,1,1,1)

g <- c(-0.5, -0.5, -0.5, -0.5)

A <- 0

B <- 3

#’ Baseline survival function

S0 <- function(x,p){exp(-(p[2]*x)ˆp[1])}

curve(S0(x,p), A,B)

#’ Survival function

S <- function(x,p,w,g){

lp <- as.numeric(crossprod(w,g))

S <- S0(x,p)ˆexp(lp)

return(S)

}

curve(S(x,p,w,g), A,B, col=4, lwd=2, add=T)

#’ 1(T > x) function

f1 <- function(x,dT){

f <- function(x){ifelse((dT > x), 1, 0)}

sapply(x,f)

}

f1(seq(0,10), 5)

#’ Function to plot f1()

plot.f1 <- function(x,dT,from,to){

xseq <- seq(from=from, to=to, len=11)

steps <- stepfun(xseq, c(1, f1(x=xseq,dT)))

plot(steps, vertical=TRUE, pch=NA, lty=2, col=8, col.hor=NA, add=T)

plot(steps, pch=NA, col=3, lwd=2, vertical=FALSE, add=T)

}

plot.f1(x,dT,A,B)

#’ Integral

int <- function(dT, p,w,g, A,B){
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fl <- function(x,dT, p,w,g){(f1(x,dT)-S(x,p,w,g))}

up <- integrate(fl, lower=A, upper=dT, dT,p,w,g)$value

lo <- integrate(S, lower=dT, upper=B, p,w,g)$value

int <- up + lo

return(list(upper=up, lower=lo, integral=int))

}

int(dT=1,p,w,g,A,B)

integrate(S, lower=A, upper=B, p,w,g)

#’ Brier score (BS)

bscore <- function(x, dT, p,w,g, A,B){

bscore <-

(f1(x,dT)==1) * (f1(x,dT) - S(x,p,w,g))ˆ2 +

(f1(x,dT)==0) * (S(x,p,w,g) - f1(x,dT))ˆ2

return(bscore)

}

x <- 1

bscore(x,dT,p,w,g,A,B)

(f1(x,dT) - S(x,p,w,g))ˆ2

#’ Integrated Brier score (IBS)

ibs <- function(dT, p,w,g, A,B){

ibs <- integrate(bscore, A,B, dT,p,w,g)$value

return(ibs)

}

xseq <- seq(A,B,len=1e4)

rbind(ibs(dT, p,w,g, A,B),

sum(bscore(xseq,dT,p,w,g,A,B)*diff(xseq)[1]))

ibs(dT,p,w,g,A=1,B=2)

ibs(dT=1, p,w,g, A,B)

int(dT=1, p,w,g, A,B)

S2 <- function(x,p,w,g){S(x,p,w,g)ˆ2}

ibs(dT=0,p,w,g,A,B)

ibs(dT=B,p,w,g,A,B=B)

integrate(S2, lower=A, upper=B, p,w,g)

# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

# IBS (Cox with time-varying covariate m(t) ---------------------
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b <- c(1,0.5,3)

eta <- 1

#’ Time-varying covariate

mt <- function(x,b){

mt <- b[1] + b[2]*x + cos(b[3]*x)

return(mt)

}

curve(mt(x,b), A,B)

#’ Baseline hazard

h0 <- function(x,p){p[1]*p[2]*(p[2]*x)ˆ(p[1]-1)}

curve(h0(x,p), A,B*2)

#’ Hazard rate

ht <- function(x,p,w,g,b,eta){

lp <- as.numeric(crossprod(w,g)) + eta*mt(x,b)

ht <- h0(x,p)*exp(lp)

}

curve(ht(x,p,w,g,b,eta), col=2, lwd=2, add=T)

#’ Cumulative hazard

Ht <- function(x,p,w,g,b,eta,from=0){

Ht <- function(x){

integrate(ht, lower=from, upper=x, p,w,g,b,eta)$value

}

sapply(x,Ht)

}

curve(Ht(x,p,w,g,b,eta), col=2, lwd=2)

St <- function(x,p,w,g,b,eta,from=0){

exp(-Ht(x,p,w,g,b,eta))

}

curve(St(x,p,w,g,b,eta), col=2, lwd=2, A,B)

curve(St(x,p,w,g,b,eta=0), col=2, lwd=2, A,B)

curve(S(x,p,w,g), col=3, lwd=2, add=T)
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int_mt <- function(dT, p,w,g,b,eta, A,B){

fl <- function(x,dT, p,w,g,b,eta){

(f1(x,dT)-St(x,p,w,g,b,eta))

}

up <- integrate(fl, lower=A, upper=dT, dT,p,w,g,b,eta)$value

lo <- integrate(St, lower=dT, upper=B, p,w,g,b,eta)$value

int <- up + lo

return(list(upper=up, lower=lo, integral=int))

}

int_mt(dT=1,p,w,g,b,eta,A,B)

int_mt(dT=0,p,w,g,b,eta,A,B)

integrate(St, lower=A, upper=B, p,w,g,b,eta)

#’ Brier score (BS)

bs_mt <- function(x, dT, p,w,g,b,eta, A,B){

bscore <-

(f1(x,dT)==1) * (f1(x,dT) - St(x,p,w,g,b,eta))ˆ2 +

(f1(x,dT)==0) * (St(x,p,w,g,b,eta) - f1(x,dT))ˆ2

return(bscore)

}

#’ Check for a single x-value

x <- 1

bs_mt(x,dT,p,w,g,b,eta,A,B)

(f1(x,dT) - St(x,p,w,g,b,eta))ˆ2

#’ Integrated Brier score (IBS)

ibs_mt <- function(dT, p,w,g,b,eta, A,B){

ibs_mt <- integrate(bs_mt, A,B, dT,p,w,g,b,eta)$value

return(ibs_mt)

}

ibs_mt(dT, p,w,g,b,eta, A,B)

ibs_mt(dT, p,w,g,b,eta=0, A,B)

ibs(dT, p,w,g, A,B)

xseq <- seq(A,B,len=1e4)

rbind(ibs_mt(dT, p,w,g,b,eta, A,B),

sum(bs_mt(xseq,dT,p,w,g,b,eta,A,B)*diff(xseq)[1]))

# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
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# Censoring weights ---------------------------------------------

n <- 1e4

l <- 4

W <- matrix(rnorm(l*n), ncol=l); colnames(W) <- paste0("w", 1:l)

g <- rep(0,l)

u <- runif(n)

survt <- 1/p[2] * (-log(u)*exp(-as.numeric(crossprod(t(W),g))))ˆ(1/p[1])

hist(survt, prob=T)

curve(dweibull(x,shape=p[1], scale=1/p[2]),col=4, lwd=2, add=T)

set.seed(2)

n <- 1e3

W <- matrix(rnorm(l*n), ncol=l); colnames(W) <- paste0("w", 1:l)

g <- rep(0.5,l)

u <- runif(n)

survt <- 1/p[2] * (-log(u)*exp(-as.numeric(crossprod(t(W),g))))ˆ(1/p[1])

hist(survt, prob=T)

curve(dweibull(x,shape=p[1], scale=1/p[2]),col=4, lwd=2, add=T)

censt <- runif(n,A,B)

dT <- ifelse(survt <= censt, survt, censt)

hist(dT, prob=T)

curve(dweibull(x,shape=p[1], scale=1/p[2]),col=4, lwd=2, add=T)

wi <- split(W, row(W))

wi[[1]]

delta <- as.numeric(dT == survt)

sum(delta)

library(survival)

kmd <- survfit(Surv(dT,delta)˜1, conf.type="none")

kmc <- survfit(Surv(dT,1-delta)˜1, data=d, conf.type="none")

par(mfrow=c(1,2))

plot(kmd, ylab="Surival probability", xlab="time-to-event", mark.time=TRUE)

plot(kmc, ylab="Censoring probability", xlab="time-to-censor", mark.time=TRUE)

par(mfrow=c(1,1))

str(kmc)

kmddata <- data.frame(time=kmd$time, surv=kmd$surv, n.risk=kmd$n.risk,

n.event=kmd$n.event, n.censor=kmd$n.censor)

kmcdata <- data.frame(time=kmc$time, surv=kmc$surv, n.risk=kmc$n.risk,
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n.censor=kmc$n.event, n.event=kmc$n.censor)

head(kmddata,10)

head(kmcdata,10)

tail(kmcdata,10)

plot(kmc)

with(kmcdata, lines(time,surv, col=2))

KMcens <- kmcdata

#’ G(t) function: is the Kapla-Meier of the censoring process.

#’ Is the probability of being censored at time t, for

#’ t = t.star and t=dT

f.Gt <- function(x,KMcens){

D <- KMcens

f <- function(x){

w_time <- max(which(D[,’time’] <= x)) ## max(i) s.t. dT[i] <= x

Gt <- D[w_time,’surv’]

return(Gt)

}

sapply(x,f)

}

GT <- f.Gt(dT, KMcens)

sum(is.na(GT))

sum(GT==0)

Gt <- f.Gt(B, KMcens)

sum(is.na(Gt))

sum(Gt==0)

tail(KMcens)

cbind(head(GT[order(dT)]), tail(GT[order(dT)]))

#’ If at least one entry of GT or Gt is 0, the weight will be NaN.

#’ This occurs in GT when the largest dT is a censored, and

#’ in Gt when x >= max(dT) and max(dT) is censored.

#’ The Weight function will take care of it as long as this zero

#’ is replaced by any number. I replaced it with 1.

t.star <- min(max(dT), 0.75*(B-A)); t.star
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GT <- f.Gt(dT, KMcens)

sum(is.na(GT))

sum(GT==0)

Gt <- f.Gt(t.star, KMcens); Gt

sum(is.na(Gt))

sum(Gt==0)

dT[which(GT==0)]

dT[which(Gt==0)]

f.Gt(dT[which(Gt==0)], KMcens)

#’ Weight function: W(t.star, G, dT, delta)

f.Wt <- function(KMcens, t.star, dT, delta){

G.T <- f.Gt(x=dT,KMcens)

G.t <- f.Gt(x=t.star, KMcens)

#................................................................

#’ If larges event time is censored its G.T and G.t is zero. Make

#’ it take the value of 1. It will not be added because delta will

#’ take care of its weight

#................................................................

G.T <- ifelse(G.T == 0, 1, G.T)

G.t <- ifelse(G.t == 0, 1, G.t)

Wt <- 1*(dT <= t.star)*delta/G.T + 1*(dT > t.star)/G.t

return(list(GT=G.T, Gt=G.t, Wt=Wt))

}

Wt <- f.Wt(KMcens,t.star,dT,delta)

sum(Wt$Wt)

#’ Weighted IBS

IBSi <- sapply(1:n, function(i) ibs(dT=dT[i], p, w=wi[[i]], g, A,B) )

IBSi

IBSi.W <- IBSi * Wt$Wt

sum(IBSi.W)

mat <- cbind(IBSi, Wt=Wt$Wt, IBSi.W)

rbind(head(mat), tail(mat))

IBS <- crossprod(IBSi, Wt$Wt)/n; IBS

rbind(IBS, mean(IBSi.W))
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as.matrix(c(IBS=mean(IBSi), W.IBS=IBS))

# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

# Censoring weights ---------------------------------------------

#’ If the Cox model has time-varying covariates, compute the IBS with

#’ the ibs_mt() function.

#’ The weight function will be exactly the same f.Gt() with the

#’ corresponding K-M data for the censoring process.

#’

#’ For joint models, the ibs_mt() function needs small changes to add

#’ the linear mixed model to the mt() function. Do this by creating

#’ a lists of the relevant parts of the lmm:

#’ yi, Xi, Zi, bi and epsi. Each element of the lists corresponds to

#’ one subject.
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A.5 Simulation from a 2 Outcome Joint Model

Sample code to simulate data from model M (S) of Section 5.2.1.

File: C:\...\00-Myphd\MyRfuns\f.simJoint2.R

#----------------------------------------------------------------

# 2. Simulate data 2-outcome joint model data |

#---------------------------------------------|

#

# "simJoint2" function to simulate data.

library(MASS) # Use for multivariate normal: mvrnorm(n, mu=c(0,0), Sigma=S)

library(mvtnorm) # Use for multivariate normal: rmvnorm(n,mean=c(0,0), sigma=S)

library(plyr) # Use to transofm data set with function "ddply"

source("f.CovMatSim.R")

# beta has one more entry than gamma because of beta8*l.time

simJoint2 = function(

seed=0, nsamp=400, nsim=1, t0=0, dt=0.2, repmax=20,

p1=0.5, p2=0.5, p3=0.5, p4=0.5, mu5=0 ,mu67=c(0,0), S67.rand=TRUE, S67,

gamma=c(0.1, 0.1, 0, 0,0,0,0),

beta= c(0, 0.5, 0.5, 0,0,0,0,0), beta0=3,

kappa=1, rho=1.5, eta=0.5, censt=5.5,

var.eps=4, var.b=4

){

set.seed(seed)

# Create empty datasets to acummulate the data of a number of simulations

simLong <- simSurv <- NULL

# Produce a covariance matrix with high correlations for covariates

if(S67.rand){

S <- pdRmt(vars=c(2,2), min.rho=0.9, mseed=sample(1:1e2, 1))$S; S # covariance matrix

} else {S <- S67}

# Time-fixed covariates. Produce the values once and keep them constant

# for all simulations

x1 <- (rbinom(nsamp,1,p1)) # binary. Alternative, LaplacesDemon::rbern
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x2 <- (rbinom(nsamp,1,p2)) # binary

x3 <- (rbinom(nsamp,1,p3)) # binary

x4 <- (rbinom(nsamp,1,p4)) # binary

x5 <- rnorm(nsamp, mean=mu5, sd=1) # continuous

X1 <- rmvnorm(nsamp,mean=mu67, sigma=S) # continuous and highly correlated

colnames(X1) <- c("x6","x7")

iind <- seq(1, nsamp)

# Two levels of "for" loops: s=simulations and iind=individuals

for(s in 1:nsim){

set.seed(seed+s)

b <- rnorm(nsamp, mean=0, sd=sqrt(var.b)) # Random intercept

u <- runif(nsamp, 0,1) # Use to simulate the survival times

temp <- data.frame(sim = s,

id = iind,

cbind(x1,x2,x3,x4,x5,X1),

b,

u,

censt)

beta <- as.vector(beta)

gamma <- as.vector(gamma)

# Simulate survival times from Weibull(kappa,rho)

W <- as.matrix(temp[,c(3:9)])

temp$survt <- 1/rho*( -log(u)*1/exp(W %*% gamma + eta*b) )ˆ(1/kappa)

# Survival outcome is min(survt, censt)

temp <- transform(temp,

delta = 1*(survt <= censt), ## If also recurrent events, ’deltaD’

t = pmin(survt, censt) ## ’time’ is a better name

)

# Repeated measures & terminal event

jind <- with(temp, pmin(repmax-1, floor((t - t0) / dt)))

# Expand the data frame repeating each id as many times as "jind" says

datlong <- temp[rep(row.names(temp), times=jind+1),]
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A.5 Simulation from a 2 Outcome Joint Model

datlong = ddply(datlong, "id", here(transform),

obstime = seq(1,length(id)),

l.time = dt * (seq(1,length(id))-1),

epsilon = rnorm(length(id), mean=0, sd=sqrt(var.eps)))

# Time-varying covariates

# datlong = ddply(datlong, "id", here(transform),

# x8 = 0.5 * l.time + rnorm(length(id), 0, 1),

# x9 = 0.5 * l.timeˆ2 + rnorm(length(id), 0, 1))

# Compute the longitudinal outcome

X <- as.matrix(datlong[,c(colnames(W),"l.time")])

datlong$y <- with(datlong, (beta0+b) + X %*% beta + epsilon)

# Acummulate the repeated measures and the survival times

simLong <- rbind(simLong,datlong)

simSurv <- rbind(simSurv,temp)

} # End of "for s" loop

write.table(simLong, "simLong.txt", row.names=F, col.names=T, sep="\t")

write.table(simSurv, "simSurv.txt", row.names=F, col.names=T, sep="\t")

returnlist = list(simLong=simLong, simSurv=simSurv)

}

#----------------------END OF FUNCTION simJoint2()---------------------------|
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A.6 Simulation from a 3 Outcome Joint Model

Sample code to simulate data from model M3 of Section 6.3. Corresponds to Algo-
rithm 6.1.

##===============================================================

## Last update: 30/Sep/2019

## Version 4.1

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

## R code to simulate from a 3 outcome joint model with

## baseline covariates and link function = random effects:

##

## - Longitudinal outcome

## - Recurrent events: user defined distribution

## - Terminal Event

##

## The recurrent events are generated according to the

## Andersen-Gill model with inter-event from any distribution

## provided we specify H(t).

##

## The file "f.simAGmodel_td(develop).R" is a general formulation

## to simulate recurrent events times with an endogenous time-varying

## covariate and link = current value.

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

## Chapter: 2 and 5

## For third year 201819

## (c) Jacob Cancino-Romero (JHD,LB,SB) 2019

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

## Contents

## ˜˜˜˜˜˜˜˜

##

## 0) Visualize Weibull density and hazard rate for different scale and rate

## 1) See how the survival outcome will look like

## 2) "simJoint" is the function to simulate the data

## 3) Visualize simulation and check

##

## See also the sweave file:

##

## 04_-_Joint_modeling(Sim-Estim).RNW
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A.6 Simulation from a 3 Outcome Joint Model

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

## Baseline cumulative baseline hazard no time-varying covariates:

## H_{0}(t) = -log(S_{0}(t))

## See f.simAGmodel.R for more baseline hazard options.

H0 <- function(x, g, rdist){ ## rdist: distribution of baseline hazard

# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

dist.names <- c("weibull", "log-logistic")

# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

f1 <- function(x,g){

-pweibull(x, shape=g[1], scale=1/g[2], lower=FALSE, log=TRUE)}

f2 <- function(x,g){ log( 1 + (g[2]*x)ˆg[1] ) }

# f3 <- function(x,g){ ## "gamma" is not proportional hazads

# -pgamma(q=x, shape=g[1], rate=g[2],lower.tail=FALSE, log.p=TRUE)}

# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

flist <- list("weibull" = f1, "log-logistic" = f2)

d <- match(rdist, dist.names)

return(flist[[d]](x=x,g=g))

}

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

## Random sample from the frailties distribution.

f.frailty <- function(n, fpar, fdist){

# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

frailty.dist <- c("gamma", "log-normal")

# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

f1 <- function(n,fpar){rgamma(n, shape=1/fpar, scale=fpar)}

f2 <- function(n,fpar){rlnorm(n, meanlog=0, sdlog=fpar)}

# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

flist <- list("gamma"=f1, "log-normal"=f2)

d <- match(fdist, frailty.dist)

return(flist[[d]](n=n,fpar=fpar))

}

v.frailty <- Vectorize(f.frailty) ## Vectorized version

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

## Cumulative hazard with frailty

cumhaz <- function(x, w, gammas, b, eta, rdist, g, z){

## z is an instance of the frailty distribution.

sapply(x, function(x)
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H0(x, rdist=rdist, g=g) * exp(

as.numeric(crossprod(w,gammas)) + as.numeric(crossprod(b,eta)) +

log(z)))

}

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

## Conditional cumulative hazard with frailty

cHaz <- function(x, t, w, gammas, b, eta, rdist, g=g, z){

cumhaz(x=x+t, w, gammas, b=b, eta=eta, rdist, g=g, z=z) -

cumhaz(x=t, w, gammas, b=b, eta=eta, rdist, g=g, z=z)

}

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

## Inverse of the cumulative hazard

icumhaz <- function(u, rdist, g, w, gammas, b, eta, z, FROM=0, TO, tolexp=0.5){

## u stands for S(t). Make sure 0<=u<= 1

phi <- (-log(u))

h <- function(x){

cumhaz(x, rdist=rdist, g=g, w=w, gammas=gammas, b=b, eta=eta, z=z)-phi

} ## Must subtract phi, not u!

x <- uniroot(h, interval=c(FROM, TO), tol=.Machine$double.epsˆtolexp)$root

return(x)

}

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

## Inverse of the conditional cumulative hazard with frailty

icHaz <- function(u, t, rdist, g, w, gammas, b, eta, z, FROM=0, TO, tolexp=0.5){

## u stands for S(t). Make sure 0<=u<= 1

phi <- (-log(u))

h <- function(x){

cHaz(x, rdist=rdist, g=g, w=w, gammas=gammas, b=b, eta=eta, z=z, t=t)-phi

} ## Must subtract phi, not u!

x <- uniroot(h, interval=c(FROM, TO), tol=.Machine$double.epsˆtolexp)$root

return(x)

}

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

## Weibull cumulative hazard

Haz_Weib <- function(x, g, w, gammas, b, eta, z){

k <- g[1]

r <- g[2]
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lp <- as.numeric(crossprod(w,gammas)) + log(z) +

as.numeric(crossprod(b,eta))

Haz <- (r*x)ˆk * exp(lp)

return(Haz)

}

## Weibull inverse of the conditional cumulative hazard

icHaz_Weib <- function(u, t, g, w, gammas, b, eta, z){

k <- g[1]

r <- g[2]

phi <- -log(u)

lp <- as.numeric(crossprod(w,gammas)) + log(z) +

as.numeric(crossprod(b,eta))

gap <- 1/r * ( phi*exp(-lp) + (r*t)ˆk )ˆ(1/k) - t

return(gap)

}

##===============================================================

library(MASS) ## mvrnorm(n, mu, Sigma)

library(survival)

##===============================================================

## Recurrent events generator with Weibull hazards.

f.simRec_Weibull <- function(rdist, g, w, gammas, b, eta, z, dT_cT, nRecEv,

FROM=0, TO=1e3, tolexp=0.5){

#................................................................

## g : parameters (a vector) of the baseline hazard

## w : covariates’ vector

## gammas : regresson coefficients of w

## b : random effects (b0,b1). In this case b1 not multplied by time.

## eta : regression coefficients of b

## z : an instance of the frailty distribution

## dT_ct : the terminal event or censoring time. Indicates the moment to stop.

## nRecEv : maximum number of recurrent events

#................................................................

## Recurrent event process

R <- NULL

CONTINUE <- TRUE

k <- 1

K <- 0 ## Control the maximum number of rec. events.
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N <- c(0) ## Counting process starts at 0

deltaR <- c(0) ## Event process starts at 0

gap <- gap.c <- c(0) ## time-gaps vector: inter-arrival times

gap_num <- gap_num.c <- c(0) ## time-gaps vector: inter-arrival times

L <- c(0) ## L=Lower end of interval

U <- vector(mode=’numeric’, length(0)) ## U=Upper end of interval

r_stop <- vector(mode=’numeric’, length(0))

u <- vector(mode=’numeric’, length(0)) ## runif(1)

phi <- vector(mode=’numeric’, length(0)) ## -log(u)

error_RecEv <- FALSE

ERROR <- "error_RecEv"

while(CONTINUE){

u[k] <- runif(1)

phi[k] <- -log(u[k])

gap[k] <- icHaz_Weib(

u=u[k], t=L[k], g=g, w=w, gammas=gammas, b=b, eta=eta, z=z)

error_RecEv <- any(tryCatch( ## This is for the numeric inverse

{gap_num[k] <- icHaz(u=u[k], t=L[k], rdist=rdist, g=g, w=w,

gammas=gammas, b=b, eta=eta, z=z, FROM=FROM, TO=TO)

}, error=function(e){ERROR}) == ERROR )

if(error_RecEv){ ## Increase the resolution of the root finder.

tolexp.new <- 2*tolexp.new

cat(’\nError generating the’, k, ’recurrent event\n’)

cat(’Increasing resolution of root finder to’, .Machine$double.epsˆ(tolexp.new),’\n’)

gap[k] <- icHaz_Weib(u=u[k], t=L[k], rdist=rdist, g=g, w=w,

gammas=gammas, b=b, eta=eta, z=z)

error_RecEv <- any(tryCatch(

{gap_num[k] <- icHaz(u=u[k], t=L[k], rdist=rdist, g=g, w=w, gammas=gammas,

b=b, eta=eta, z=z, FROM=FROM, TO=TO,tolexp=tolexp.new)

}, error=function(e){ERROR}) == ERROR )

} else {

U[k] <- L[k] + gap[k]

r_stop[k] <- min(U[k], dT_cT)

deltaR[k] <- 1*( N[k] > 0 )

censored <- ( U[k] > dT_cT )

gap.c[k] <- ifelse( !censored, gap[k], r_stop[k]-L[k])

#................................................................

## Collect the data here!

R <- rbind(R, cbind(

u=u[k], phi=phi[k], frailty=z, deltaR=deltaR[k], N=N[k],
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dT=dT_cT, gap=gap[k], gap_num=gap_num[k], gap.c=gap.c[k],

r.time=L[k], L=L[k], U=U[k], r_start=L[k], r_stop=r_stop[k]

) )

#................................................................

## Update values. If CONTINUE = FALSE, these will be reset.

N <- c(N, N[k]+1)

L <- c(L, U[k])

k <- length(N)

K <- K <- K+1

CONTINUE <- (K <= nRecEv) && (!censored)

}

} ##----------while

return(R)

}

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

## Recurrent events generator (alternative distributions)

f.simRec <- function(rdist="weibull", g, w, gammas, b, eta, z, dT_cT, nRecEv,

FROM=0, TO=1e3, tolexp=0.5){

#................................................................

## rdist : distribution of the baseline hazard

## g : parameters (a vector) of the baseline hazard

## w : covariates’ vector

## gammas : regresson coefficients of w

## b : random effects (b0,b1). In this case b1 not multplied by time.

## eta : regression coefficients of b

## z : an instance of the frailty distribution

## dT_ct : the terminal event or censoring time. Indicates the moment to stop.

## nRecEv : maximum number of recurrent events

## FROM : left end of the follow-up time (usually 0)

## TO : right end of the follow-up time (choose a large value)

#................................................................

## Recurrent event process

tolexp.new <- tolexp

R <- NULL

CONTINUE <- TRUE

k <- 1

K <- 0 ## Control the maximum number of rec. events.

N <- c(0) ## Counting process starts at 0

deltaR <- c(0) ## Event process starts at 0
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gap <- gap.c <- c(0) ## time-gaps vector: inter-arrival times

L <- c(0) ## L=Lower end of interval

U <- vector(mode=’numeric’, length(0)) ## U=Upper end of interval

r_stop <- vector(mode=’numeric’, length(0))

u <- vector(mode=’numeric’, length(0)) ## runif(1)

phi <- vector(mode=’numeric’, length(0)) ## -log(u)

error_RecEv <- FALSE

ERROR <- "error_RecEv"

while(CONTINUE){

u[k] <- runif(1)

phi[k] <- -log(u[k])

error_RecEv <- any(tryCatch(

{

gap[k] <- icHaz(

u=u[k], rdist=rdist, g=g, w=w, gammas=gammas,

b=b, eta=eta, z=z, t=L[k], FROM=FROM, TO=TO)

}, error=function(e){ERROR}) == ERROR )

if(error_RecEv){ ## Increase the resolution of the root finder.

tolexp.new <- 2*tolexp.new

cat(’\nError generating the’, k, ’recurrent event\n’)

cat(’Increasing resolution of root finder to’, .Machine$double.epsˆ(tolexp.new),’\n’)

error_RecEv <- any(tryCatch(

{

gap[k] <- icHaz(u=u[k], rdist=rdist, g=g, w=w, gammas=gammas,

b=b, eta=eta, z=z, t=L[k], FROM=FROM, TO=TO,

tolexp=tolexp.new)

}, error=function(e){ERROR}) == ERROR )

} else {

U[k] <- L[k] + gap[k]

r_stop[k] <- min(U[k], dT_cT)

deltaR[k] <- 1*( N[k] > 0 )

censored <- ( U[k] > dT_cT )

gap.c[k] <- ifelse( !censored, gap[k], r_stop[k]-L[k])

#................................................................

## Collect the data here!

R <- rbind(R, cbind(

u=u[k], phi=phi[k], frailty=z, deltaR=deltaR[k], N=N[k],

dT=dT_cT, gap=gap[k], gap.c=gap.c[k], r.time=L[k], L=L[k],

U=U[k], r_start=L[k], r_stop=r_stop[k]

) )

#................................................................
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## Update values. If CONTINUE = FALSE, these will be reset.

N <- c(N, N[k]+1)

L <- c(L, U[k])

k <- length(N)

K <- K <- K+1

CONTINUE <- (K <= nRecEv) && (!censored)

}

} ##----------while

return(R)

}

# mmm <- f.simRec(

# rdist="weibull", g=c(1,1.5), w=c(0.5,2), gammas=rep(0.2,2),

# b=rnorm(2), eta=rep(0.5,2), z=10,

# dT_cT=50000, nRecEv=1e4, FROM=0, TO=1e3)

#----------------------------------------------------------------

# 2. Simulate data 3-outcome joint model data |

#---------------------------------------------|

#

# "simJoint3" function to simulate data.

Version <- 4.1

Last_update <- format(Sys.Date(), "%d %B %Y")

# Last_update <- "7/September/2019"

library(MASS) ## Sample from multivariate normal mvrnorm(mu,Sigma)

library(plyr) ## ddply()

simJoint3_Weibull <- function(

seed=20170920, n=500, nsim=2, t0=0, dt=0.2, repmax=20, reventsmax=6,

p1=0.5, p2=0.5, p3=0.5, p4=0.5, S_567.rand = FALSE,

mu_567 = c(0,0,0),

S_567 = diag(c(1,1,1)),

beta0 = 3,

betaT = 0.5,

beta = c(0.5, rep(0,6)),

gammaR = c(0, 0.5, rep(0,5)), ## c(0.5, rep(0,6))

gammaT = c(0, 0, 0.1, rep(0,4)), ## c(0, 0.5, rep(0,5))

rand.slope = FALSE,

var.eps = 1.25,

var.b0 = 1.5ˆ2,

var.b1 = 0.8ˆ2,
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cov.b = -0.5,

var.v = 0.8ˆ2,

fdist = "gamma", ## or "log-normal"

etaR = c(0.2, 0.2),

etaT = c(0.5, 0.5),

alpha = 2.6,

censt = 5.5,

shapeT = 1, ## shape parameter of h_{0}(t) of Terminal

rateT = 1.5, ## rate parameter of h_{0}(t) of Terminal

rdist = "weibull", ## "log-logistic" distribution of the baseline hazard

shapeR = 1, ## shape parameter of r_{0}(t) of Recurrent

rateR = 2, ## rate parameter of r_{0}(t) of Recurrent

savefile = TRUE,

outfiles = c("simLong.txt", "simRec.txt", "simSurv.txt"),

outdir = "/apps/amsta/mmjcr/JM3_td"

)

{

# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

cat(’Function simJoint3_Weibull(), version’, Version, ’\n’)

cat(’Last update:’, Last_update,’\n’)

# Create empty datasets to acummulate the data of a number of simulations

simLong <- NULL; simSurv <- NULL; simRec <- NULL

# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

ID <- seq(1,n)

# Generate covariates once and keep the values fixed for all simulations

x1 <- (rbinom(n,1,p1)) # binary. Alternative, LaplacesDemon::rbern

x2 <- (rbinom(n,1,p2)) # binary

x3 <- (rbinom(n,1,p3)) # binary

x4 <- (rbinom(n,1,p4)) # binary

X1 <- mvrnorm(n, mu=mu_567, Sigma=S_567) # continuous, potentially correlated

colnames(X1) <- c("x5","x6","x7")

X <- cbind(x1,x2,x3,x4,X1)

Xi <- split(X, ID)

for (i in seq_along(Xi)){names(Xi[[i]]) <- colnames(X)}

## Covariance matrix of random effects. Depends on distribution of frailties.

f.Sr <- function(fdist){

fdist_list <- list("log-normal", "gamma")

Sr_list <- list(
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"log-normal" = matrix(c(var.b0, cov.b, 0, cov.b, var.b1, 0, 0, 0, var.v),

byrow=TRUE, ncol=3),

"gamma" = matrix(c(var.b0, cov.b, cov.b, var.b1), byrow=TRUE, ncol=2)

)

d <- match(fdist, fdist_list)

return(Sr_list[[d]])

}

Sr <- f.Sr(fdist=fdist)

# Three levels of "for" loops: s=simulations, ID=individuals, k=recurrent events.

# ---------------------------------------------------------------

cat(’------------------------------------------------------------------\n’)

for(s in 1:nsim){ ## s<-1

cat(’sim =’, s, ’out of’, nsim, ’--> ’)

# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

if(fdist=="log-normal"){ ## The alternative is Gamma

randef <- mvrnorm(n, mu = c(0,0,0), Sigma = Sr)

} else {

randef <- cbind(mvrnorm(n, mu = c(0,0), Sigma = Sr),

log(rgamma(n, shape = 1/var.v, scale = var.v)))

}

b <- randef[, c(1,2)]

v <- randef[,3]

u1 <- runif(n) # To generate the survival times

censi <- unlist(split(rep(censt,n), f=ID))

colnames(b) <- c("b0", "b1")

if (rand.slope){b[,2] <- b[,2]} else {b[,2] <- 0}

bi <- split(b, ID)

for (i in seq_along(bi)){names(bi[[i]]) <- colnames(b)}

temp <- data.frame(sim = s,

id = ID,

X,

b0 = b[,1],

b1 = b[,2],

v = v,

u1 = u1,

censt = censi)
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# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

# Terminal event times

survt <- 1/rateT * (

-log(u1) * exp(- alpha*v - X %*% gammaT - b %*% etaT)

)ˆ(1/shapeT)

dT = pmin(survt, censi)

event = 1 * (survt <= censi)

temp <- transform(temp,

survt = survt,

event = event,

deltaD = NA, ## its value will come later

dT = dT

)

# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

# Repeated measures & terminal event

jind <- with(temp, pmin(repmax-1, floor((dT - t0) / dt)))

# Expand the data frame repeating each id as many times as "jind" says

datlong <- temp[rep(row.names(temp), times=jind+1),]

datlong = ddply(datlong, "id", here(transform),

obstime = seq(1,length(id)),

l.time = dt * (seq(1,length(id))-1),

epsilon = rnorm(length(id),mean=0,sd=sqrt(var.eps)))

# Compute the longitudinal outcome

datlong$y <- unlist(lapply(seq(n), function(i) ## i<-2

with(subset(datlong, id==i),

(beta0+b0) + (betaT+b1)*l.time + as.numeric(X[i,]%*%beta) + epsilon)))

# Make deltaD = 1 only at the times when events occur.

# The ave() function is a shortcut for sapply(split(d,f,FUN)) or

# unlist(by(data,INDICES,FUN))

datlong$deltaD <- with(datlong,

ave(x=event, id,

FUN=function(x) c(rep(0,length(x)-1), x[1]) ) )

# Acummulate the repeated measures

simLong <- rbind(simLong,datlong)
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# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

## Recurrent events

## Create datrec to acummulate the recurrent events of all subjects.

datrec <- NULL

for(i in seq_along(ID)){ ## i<-2

R <- f.simRec_Weibull(rdist=rdist, g=c(shapeR,rateR), w=Xi[[i]], gammas=gammaR,

b=bi[[i]], eta=etaR, z=exp(v[i]), dT_cT=dT[i],

nRecEv=reventsmax)

R <- data.frame(

cbind(sim=s, seed=seed, id=ID[i], censt=censi[i],

survt=survt[i], event=event[i], deltaD=NA,

R,

matrix(rep(Xi[[i]], times=nrow(R)), byrow=T, nrow=nrow(R)),

matrix(rep(bi[[i]], times=nrow(R)), byrow=T, nrow=nrow(R))))

names(R) <- c(names(R[1:(ncol(R)-length(Xi[[i]])-length(bi[[i]]))]),

names(Xi[[i]]), names(bi[[i]]))

# Accumulate for all subjects, i = 1,...,n

datrec <- rbind(datrec,R)

} ## end of for(i) loop

# Make deltaD = 1 only at the times when events occur.

datrec$deltaD <- unlist(

with(datrec, by(data=event, INDICES=id, FUN=function(x)

c(rep(0,length(x)-1), x[1]))))

# Acummulate the recurrent events of all simulations

simRec <- rbind(simRec,datrec)

# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

## Survival analysis in counting process format. This is needed to fit the

## extended Cox model with y(t) and N(t) as time-varying covariates.

cat(’Expand simSurv for y(t) & N(t) --> ’)

lvars <- c(’l.time’,’y’,’epsilon’)

rvars <- c(’r.time’,’deltaR’,’N’)

yi <- lapply(split(datlong, f=datlong$id), function(d) d[,lvars])

Ni <- lapply(split(datrec, f=datrec$id), function(d) d[,rvars])
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ID <- 1:n

surv <- NULL

LONG <- NULL

REC <- data.frame(r.time=0, deltaR=0, N=0)

nn <- 1 ## Start counter for the number of rows in dataset

for (i in seq_along(ID)){ ## i<-213 i<-53

## Subset files by id and keep only relevant variables

l <- subset(datlong, id==ID[i], select=lvars)

r <- subset(datrec, id==ID[i], select=rvars)

v <- subset(temp, id==ID[i])

## Times of all time-varying variables

tl <- subset(l, select = l.time)

tr <- subset(r, select = r.time)

td <- subset(v, select = dT)

time <- sort(unique(unlist(c(tl, tr, td))))

## Start and stop times

K <- length(time)

L <- time[-K]

U <- time[-1]

## Initialize recurrent events part at t=0. Not necessary for longitudinal.

for (j in 1:(K-1)){ ## j<-1

I <- cbind(t_start=L[j], t_stop=U[j])

long <- subset(l, l.time >= L[j] & l.time < U[j])

rec <- subset(r, r.time >= L[j] & r.time < U[j])

if (nrow(long)==0){ long <- LONG[nn-1, ] } ##

if (nrow(rec)==0) {

rec <- REC[nn, ]

rec$deltaR <- 0 }

LONG <- rbind(LONG, long) ## LONG and REC are auxiliary sets

REC <- rbind(REC, rec) ## LONG and REC are auxiliary sets

surv <- rbind(surv, cbind(v, I, long, rec) )

nn <- nn + 1

# surv[,-which(names(surv) %in% fcovs)]; j <- j+1

}

}

surv <- data.frame(surv)

surv$deltaD <- with(surv,

ave(event, id,

FUN=function(x) c(rep(0, length(x)-1), x[1]) ) )
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simSurv <- rbind(simSurv,surv)

cat(’Finished\n’)

} # End of "for s" loop

# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

cat(’Preparing’, length(outfiles), ’files.\n’)

simList <- list(simLong=simLong, simRec=simRec, simSurv=simSurv)

if(savefile){

setwd(outdir)

for (f in seq(simList)){ ##f<-1

write.table(simList[[f]], outfiles[f], row.names=FALSE, col.names=TRUE, sep=’\t’)

}

cat(’====================================================================\n’)

cat(’Output files:’, paste0(outfiles, collapse=", "), ’\n’)

cat(’Location:’, outdir, ’\n’)

}

return(simList)

}

#----------------------END OF FUNCTION simJoint3_Weibull()-------
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A.7 Simulation from a joint model of longitudinal and
time to event data with a counting process as time-
varying covariate

Sample code to simulate data from model M2 of Section 6.3. Corresponds to Algo-
rithm 6.2.

##===============================================================

# Last_update <- "08 September 2019"

Last_update <- format(Sys.Date(), "%d %B %Y")

Version <- 4.1

##-----------------------------------------------------------

## R code for simulating a joint model of longitudinal and

## time-to-event outcomes with an exogenous time-varying

## covariate (a counting process),

## This version, incontrast to v3, stops the recurrent event

## process at min(censoring time, time-to-event, tT).

##-----------------------------------------------------------

## Chapter: Causal Infernce with Joint Models

## For third year 201819

## (c) Jacob Cancino-Romero (JHD,LB,SB) 2019

##===============================================================

#================================================================

# CONTENTS

# ----------

#

# 1) Simulate data from a joint model for longitudinal and time-to-event

# outcomes with Weibull baseline and time-varying covariates.

# The model is:

#

# y(t) = (beta_{0} + b_{i0}) + xˆ{T}beta + beta_{t}*time + epsilon(t)

# = m(t) + epsilon(t)

# h(t) = h_{0}(t)*exp(wˆ{T}*gamma + eta_{Y}*m(t) + eta_{R}*N(t))

#

# where N(t) is a Poisson(lam) counting process.

#

#================================================================
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library(MASS) ## mvrnorm(n, mu, Sigma)

library(survival) ##

library(plyr) ## ddply()

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

## Time functions

ft <- function(x, fnt, p){

# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

fn.names <- c("linear", "banana", "cos-sin", "logistic", "normal")

# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

f1 <- function(x,p){

p[1] + p[2]*x }

f2 <- function(x,p){

p[1] + p[2]*x + p[3]*xˆ3 + p[4]*exp(p[5]*xˆ2) }

f3 <- function(x,p){

p[1] + p[2]*x + p[3]*sin(p[4]*x) + p[5]*cos(p[6]*x) +

p[7]*(x+p[8])ˆ2 + p[9]*exp(p[10]*x)} ##

f4 <- function(x,p){

p[2] / (1 + exp(-p[3]*(x-p[1])))}

f5 <- function(x, p){

p[1]*x + p[2]*dnorm(x, mean=p[3], sd=p[4])}

# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

flist <- list("linear"=f1, "banana"=f2, "cos-sin"=f3, "logistic"=f4,

"normal"=f5)

d <- match(fnt, fn.names)

return(flist[[d]](x=x,p=p))

}

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

mx <- function(x, fnt, p, betas, b, w){

# ...............................................................

## x is time

## betas are the betas (fixed effects regression coefficients)

## m(t) = (beta1+b1) + (beta2+b2)f(t) + (beta3+b3)w1 +...+ (betak+bk)w_{k-2}

## = Xbeta + Zb

## X[i,] = c(1, f(t), w)

## Z[i,] = c(1, f(t))

# ...............................................................

p <- as.vector(p) ## parameters that determine f(t)

betas <- as.vector(betas) ## fixed effects covariates
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b <- as.vector(b) ## random effects

# ...............................................................

fx <- ft(x, fnt=fnt, p=p)

# ...............................................................

W <- matrix(rep(w, length(fx)), byrow=T, ncol=length(w))

X <- as.matrix(cbind(1, fx, W))

Z <- cbind(1, fx)

mt <- as.numeric(crossprod(t(X),betas)) + as.numeric(crossprod(t(Z),b))

return(mt)

}

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

## Functions to simulate time to event

## Baseline hazard.

h0 <- function(x, sdist, g){

## Simulate survival times.

## Baseline hazard. Using pweibull()/deweibull() might cause

## computational difficulties as time gets larger (0/0 = NaN)

# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

d.names <- c("weibull", "log-logistic", "gompertz", "makeham", "bathtub")

# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

h1 <- function(x,g){ g[1]*g[2]*(g[2]*x)ˆ(g[1]-1) }

h2 <- function(x,g){ g[1]*g[2]*(g[2]*x)ˆ(g[1]-1) / (1+g[2]*x)ˆg[1]}

h3 <- function(x,g){ g[1]*exp(g[2]*x) }

h4 <- function(x,g){ g[1] + g[2]*exp(-g[3]*x)}

h5 <- function(x,g){ g[1]*x + g[2]/(1 + g[3]*x) }

# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

hlist <- list(h1, h2, h3, h4, h5)

names(hlist) <- d.names

distrib <- match(sdist, d.names)

return(hlist[[distrib]](x=x,g=g))

}

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

## Subject specific hazard rate

hx <- function(x, fnt, p, betas, b, w, etaL, etaR, gammas, N,

sdist, g, v){

# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

## h(t) = h_{0}(t) * exp{etaL*m(t) + etaR*N(t) + v + wˆ{T}gammas}

## v = log(frailty), where frailty is an instance of the

## gamma or log-normal distribution.

# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
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gammas <- as.vector(gammas)

w <- as.vector(w)

exp(etaL*mx(x, fnt=fnt, p=p, w=w, betas=betas, b=b) +

etaR*N + v + as.numeric(crossprod(gammas,w))) *
h0(x, sdist=sdist, g=g)

}

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

## Cumulative hazard. Notice different vectorization method via sapply():

cumhaz <- function(

x, fnt=fnt, p, betas, b, w, etaL, etaR, gammas, N, sdist, g, v, LOWER){

sapply(x, function(x)

integrate(hx, lower=LOWER, upper=x,

fnt=fnt, p=p, betas=betas, b=b, w=w, etaL=etaL, etaR=etaR,

gammas=gammas, N=N, sdist=sdist, g=g, v=v)$value)

}

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

## Inverse cumhaz (!!Not fully vectorized!!):

## Here u cannot be a vector. Use sapply in if u is a vector.

icumhaz <- function(

u, fnt, p, betas, b, w, etaL, etaR, gammas, N, sdist, g, v, LOWER,

FROM=0, TO, shift, tolexp=0.5){ ## u stands for S(t). Make sure 0<=u<= 1

phi <- (-log(u))

h <- function(x){

cumhaz(x, LOWER=FROM, fnt=fnt, p=p, betas=betas, b=b, w=w, etaL=etaL,

etaR=etaR, gammas=gammas, N=N, sdist=sdist, g=g, v=v) + shift - phi

} ## Must subtract phi, not u!

x <- uniroot(h, interval=c(FROM, TO), tol=.Machine$double.epsˆtolexp)$root

return(x)

}

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

## Recurrent events require the conditional cumulative hazard

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

## Subject specific hazard rate (recurrent events)

rx <- function(x, w, gammas, sdist, g, v){

# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

## r(t) = r_{0}(t) * exp{wˆ{T}gammas}

## v = log(frailty), where frailty is an instance of the

## gamma or log-normal distribution.
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# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

gammas <- as.vector(gammas)

w <- as.vector(w)

exp(as.numeric(crossprod(gammas,w)) + v) * h0(x, sdist=sdist, g=g)

}

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

## Cumulative hazard with frailty (recurrent events)

Rx <- function(x, w, gammas, sdist, g, v, LOWER){

## v = log(frailty), where frailty is an instance of the

## gamma or log-normal distribution.

sapply(x, function(x)

integrate(rx, lower=LOWER, upper=x,

w=w, gammas=gammas, sdist=sdist, g=g, v=v)$value)

}

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

## Conditional cumulative hazard with frailty (recurrent event)

condRx <- function(x, t, w, gammas, sdist, g, v, LOWER){

Rx(x=x+t, w=w, gammas=gammas, sdist=sdist, g=g, v=v, LOWER=LOWER) -

Rx(x=t, w=w, gammas=gammas, sdist=sdist, g=g, v=v, LOWER=LOWER)

}

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

## Inverse of the conditional cumulative hazard with frailty (recurrent event)

icondRx <- function(u, t, w, gammas, sdist, g, v, LOWER, TO, tolexp=0.5){

## u stands for S(t). Make sure 0<=u<= 1

phi <- (-log(u))

h <- function(x){

condRx(x, t=t, sdist=sdist, g=g, w=w, gammas=gammas, v=v, LOWER=LOWER)-phi

} ## Must subtract phi, not u!

x <- uniroot(h, interval=c(LOWER, TO), tol=.Machine$double.epsˆtolexp)$root

return(x)

}

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

## Random sample from the frailties distribution.

f.frailty <- function(n, fpar, fdist){

# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

frailty.dist <- c("gamma", "log-normal")

# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

f1 <- function(n,fpar){rgamma(n, shape=1/fpar, scale=fpar)}

f2 <- function(n,fpar){rlnorm(n, meanlog=0, sdlog=fpar)}

# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
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flist <- list("gamma"=f1, "log-normal"=f2)

d <- match(fdist, frailty.dist)

return(flist[[d]](n=n,fpar=fpar))

}

v.frailty <- Vectorize(f.frailty) ## Vectorized version

#================================================================

library(MASS) # Use for multivariate normal: mvrnorm(n, mu=c(0,0), Sigma=S)

library(mvtnorm) # Use for multivariate normal: rmvnorm(n,mean=c(0,0), sigma=S)

library(plyr) # Use to transofm data set with function "ddply"

## Note: This model is sensitive to the values of etaL and etaR

## When one of etaL or etaR < -0.02

f.simJM3_tdW_b0b1 <- function(

savefiles = TRUE,

outdir = actout_dir,

outfiles = c("simLong.txt", "simRec.txt", "simSurv.txt"),

seed = 0, nsamp = 10, nsim = 3, dt = 0.5, repmax = 10,

p1=0.5, p2=0.5, p3=0.5, p4=0.5,

t0 = 0,

tT = 20,

mu_567 = rep(0,3),

S_567 = matrix(c(1, 0, 0, 0, 4, 0.4, 0, 0.4, 4), ncol=3),

rand.slope = TRUE, ## No need to modify Sb if rand.slope=FALSE

var.eps = 4,

var.b0 = 2,

var.b1 = 2,

cov.b = 0,

fnt = "cos-sin",

p = c(0, 1, 1, 2 ,1, 1, rep(0,4)),

sdist = "weibull",

g = c(1, 1.5), ## c(shape=kappa,rate=rho) of h_{0}(t) of Terminal

beta0 = 3,

beta.time = 0.5, ## time

beta.fixed = c(0, 0, 0, 0.5 ,0.5, 0, 0), ## x4, x5

gammaT = c(0.1, 0.1, 0, 0, 0, 0, 0), ## x1, x2

gammaR = c(0, 0, 0.1, 0 ,0, 0.1, 0), ## x3, x6 for recurrent events

etaL = -0.02,#-0.1, ## Y: Longitudinal outcome in the survival submodel

etaR = -0.02,#-0.1, ## R: Recurrent events in the survival submodel

rdist = "weibull", ## Recurrent events: Baseline hazard

rateR = 3, ## rate parameter of r_{0}(t) of Recurrent
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shapeR = 1, ## shape parameter of r_{0}(t) of Recurrent

rand.censt = FALSE,

censt = 5,

frailty = FALSE, ## if TRUE, sometimes survival times = NaNs

fdist = "log-normal",

fpar = 0.4ˆ2, ## Needs to be chosen carefully.

tol_exp = 0.5 ## Tolerance of unit root finder .Machine$double.epsˆtolexp

){

cat(’====================================================================\n’)

cat(’Function f.simJM3_tdW_b0b1(), version’, Version, ’\n’)

cat(’Last update:’, Last_update,’\n’)

cat(’Check also f.simJoint3.td.dist(plots)_v3 for details and plots.\n’)

cat(’--------------------------------------------------------------------\n’)

Sys.sleep(1)

set.seed(seed) ## sample(1:100, 1)

# Empty datasets to acummulate nsim simulations

simLong <- simSurv <- simRec <- check_ctrl_all <- NULL

ns <- nsim

n <- nsamp

ID <- seq(1, n)

betas <- as.vector(c(beta0, beta.time, beta.fixed))

gammaT <- as.vector(gammaT)

gammaR <- as.vector(gammaR)

Sb <- matrix(c(var.b0, cov.b, cov.b, var.b1), ncol=2)

# Time-fixed covariates. Produce the values once and keep them constant

# for all simulations

x1 <- (rbinom(n,1,p1)) # binary

x2 <- (rbinom(n,1,p2)) # binary

x3 <- (rbinom(n,1,p3)) # binary

x4 <- (rbinom(n,1,p4)) # binary

X1 <- mvrnorm(n, mu_567, S_567) # continuous -> see correlations

colnames(X1) <- c("x5", "x6", "x7")

X <- cbind(x1,x2,x3,x4, X1)

Xi <- split(X, ID)

for (i in seq_along(Xi)){names(Xi[[i]]) <- colnames(X)}
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# Two levels of "for" loops: s=simulations and i=individuals

#----------------------------------------------------------------

for(s in 1:ns){ ## s<-34; s<-1

set.seed(seed+s)

## Random effects: b and v=log(frailty)

if (rand.slope) {

b <- mvrnorm(n, c(0,0), Sb) ## Random intercepts and slopes

} else {

b <- cbind(rnorm(n, 0, sd = sqrt(Sb[1,1])), 0)

}

colnames(b) <- c("b0", "b1")

bi <- split(b, ID)

for (i in seq_along(bi)){names(bi[[i]]) <- colnames(b)}

if (frailty){ ## Note: v = log(frailty), frailty ˜ gamma(1/fpar, fpar)

v <- log(f.frailty(n=n, fdist=fdist, fpar=fpar))

} else {

v <- rep(0,n)

}

vi <- split(v, ID)

## Censoring

if(rand.censt){

ci <- split(runif(n, min=0, max=censt), ID)

} else {

ci <- split(censt+double(n), ID)

}

temp <- data.frame(sim = s,

id = ID,

X,

b,

log_frailty = v,

censt = unlist(ci))

## Linear predictor of the model used to simulate recurrent events.

psi <- as.numeric(exp(X %*% gammaR))

#----------------------------------------------------------------

## Simulate survival times from Weibull(sh=kap, r=rho)
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## Baseline functions. Do not use pweibull()/deweibull() since it causes

## computational difficulties as time gets larger (0/0 = NaN)

##...............................................................

u <- runif(n) ## Recall U = S(t), where U ˜ Unif[0,1]

phi <- -log(u)

sim_dT <- all_dT <- NULL

#................................................................

for (i in seq_along(ID)){ ## i<-44 ## i<-1

## Initialize objects

censt <- ci[[i]]

CONTINUE <- TRUE

compute_T <- FALSE

censored_T <- FALSE # Terminal event is censored

censored_R <- FALSE ## Last recurrent event is censored

censored_F <- FALSE ## The time limit tT has been reached

censored_any <- FALSE

R <- NULL ## data frame to acumulate the data

K <- HtL <- 0

StU <- 1

L <- N <- Ck <- DK <- c(0) ## L=Lower end of interval

U <- vector(mode=’numeric’, length(0)) ## U=Upper end of interval

#................................................................

while(CONTINUE){ ## Mind k and K: K={0,1,...} is the count of events up to t

k <- length(N)

## Check. Suppose rate = r*exp(xˆ{T}beta)

## U ˜ Uniform(0,1) <=> -log(U)/rate = X ˜ Exp(rate)

## X ˜ Exp(rate) <=> exp(-rate*X) = U ˜ Uniform(0,1)

# gap1 <- rexp(1, rate=lam*psi[i]) ## Sample a new time gap each iteration.

new_u <- runif(1)

gap <- icondRx(u=new_u, t=L[k], w=Xi[[i]],

gammas=gammaR, sdist=rdist, g=c(shapeR,rateR),

v=vi[[i]], LOWER=0, TO=1e3, tolexp=tol_exp)

U[k] <- L[k]+gap

## Ht is H(t_[k]) - H(t_{k-1})

Ht <- cumhaz(x=U[k], LOWER=L[k], N=N[k], b=bi[[i]], w=Xi[[i]], v=vi[[i]],

fnt=fnt, p=p, betas=betas, etaL=etaL, etaR=etaR,

gammas=gammaT, sdist=sdist, g=g)

HtU <- HtL + Ht; HtU

StL <- exp(-HtU); StL ## St is S(t_{k}) - S(t_{k-1})
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compute_T <- (phi[i] >= HtL & -log(u[i]) < HtU); compute_T

censored_R <- (L[k] <= censt & censt <= U[k]) ## censt in [L[k],U[k]]

censored_F <- (U[k] >= tT) ## Last T_{k} >= censt

censored_any <- any(censored_F, censored_R, censored_F); censored_any

if(censored_R){ ## compute H(t) at t=censt

Hcenst <- HtL + cumhaz(

x=censt, LOWER=L[k], N=N[k], b=bi[[i]], w=Xi[[i]], v=vi[[i]],

fnt=fnt, p=p, betas=betas, etaL=etaL, etaR=etaR,

gammas=gammaT, sdist=sdist, g=g)

}

## In this version, the recurrent events generating process stops if:

## a) phi[[i]] lies in the interval (HtL, HtU), so survt is computed, or

## b) U[k] >= censt, or

## c) U[k] has reached the time limit.

if(compute_T){

#................................................................

survt <- icumhaz(u=u[i], FROM=L[k], TO=U[k], N=N[k], shift=HtL,

b=bi[[i]], w=Xi[[i]], v=vi[[i]],

fnt=fnt, p=p, betas=betas, etaL=etaL, etaR=etaR,

gammas=gammaT, sdist=sdist, g=g, tolexp=tol_exp)

## Sometimes dT==0 exactly. This happens when u[i] is small, e.g.

## u[i]=3.2e-05 when s=24, nsamp=500, i=475, so St==1.

## If dT==0 decrease the rolerance of the root finder from

## .Machine$double.epsˆ0.5 to .Machine$double.epsˆ1.

if(survt == 0){

cat(’Reduced root finder tolerance to’, .Machine$double.epsˆ(2*tol_exp), ’--->’,’survt =’, survt,’\n’)

cat(’sim =’, s, "id =", i, ’\n’)

survt <- icumhaz(u=u[i], FROM=L[k], TO=U[k], N=N[k], shift=HtL,

b=bi[[i]], w=Xi[[i]], v=vi[[i]],

fnt=fnt, p=p, betas=betas, etaL=etaL, etaR=etaR,

gammas=gammaT, sdist=sdist, g=g, tolexp=2*tol_exp)

Htstar <- HtL + cumhaz(

x=survt, LOWER=L[k], N=N[k], b=bi[[i]], w=Xi[[i]], v=vi[[i]],

fnt=fnt, p=p, betas=betas, etaL=etaL, etaR=etaR,

gammas=gammaT, sdist=sdist, g=g)

}

# cat("Problem point 1, survt =", survt, "\n")

censored_T <- (survt >= censt) ## ; censored_T Remove to avoid problems
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dT <- min(survt, censt)

#................................................................

} else {

survt <- NA ## icumhaz(p=StU-1e+10); survt

censored_T <- censored_T ## Necessary to calculate deltaD below

dT <- survt

}

CONTINUE <- (!compute_T & !censored_any); CONTINUE

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

## Break the while loop if at least one process is censored

## or the time limit has been reached.

if(censored_any){

survt <- censt

dT <- survt

}

##˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

## Terminal and recurrent events indicators:

## - deltaD = 1 if dT < censt & death in Ht interval

## - deltaR = 1 at every time dN(t) > 0

# writeLines("Problem point 2")

deltaD <- 1*(!censored_any & compute_T)

deltaR <- 1*(K>0 & !censored_any)

r_stop <- min(U[k], censt, survt, na.rm=TRUE)

# writeLines("Beyond problem point 2")

## Collect the data HERE!.

R <- rbind(R, cbind(

sim=s, id=ID[i], gap=gap, r.time=L[k], N=N[k], deltaR=deltaR,

L=L[k], U=U[k], r_start=L[k], r_stop,

phi=phi[[i]], St=u[i], HtL=HtL, HtU=HtU, StU=StU, StL=StL,

survt=survt, dT=dT, deltaD=deltaD, event=deltaD,

t(Xi[[i]]), t(bi[[i]]), log_frailty=v[i]))

#................................................................

## Update values. If CONTINUE = FALSE, these will be reset.

N <- c(N, K+1)

K <- K+1

L <- c(L,U[k]) ## Next iteration L (start) takes current value of U (stop)
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U <- c(U,0) ## Add an element to vector U, which will be replaced by L+gap

HtL <- HtU

StU <- StL

round(R,3)

} ## end of while ...............................................

## Repeat "dT" in all rows for each subject and make the "event" column

## keep constant the terminal event status (1 or 0) in all rows.

## "deltaD" = "event" only in the last row.

R[, ’dT’] <- dT

R[, ’event’] <- R[nrow(R), ’deltaD’]

all_dT <- rbind(all_dT, R)

# print(round(all_dT, 2))

# i<-i+1

} ## end of for individuals’ loop and continue with s loop ......

#----------------------------------------------------------------

## "sim_dT" removes all rows where recurrent events occurred after censt.

sim_survt <- all_dT[!is.na(all_dT[, ’survt’]) , c(’id’,’survt’)]

sim_dT <- all_dT[all_dT[, ’r_start’] <= all_dT[, ’dT’],

c(’id’,’r.time’,’deltaR’,’N’,’dT’,’deltaD’,’event’,’phi’,’St’)]

sim_dT <- merge(x=sim_dT, y=sim_survt, by=’id’)

## Keep only the last record

last_sim_dT <- sim_dT[!duplicated(sim_dT[,’id’], fromLast=TRUE), ]

## "all_dT" keeps all recurrent events records up to the observed terminal event.

all_dT <- data.frame(all_dT)

sim_dT <- data.frame(sim_dT)

round(all_dT, 4)

dT_check <- all(!is.na(sim_dT))

cat(’sim =’, s, ’survival times simulation is complete?’, dT_check,’\n’)

#################################################################

## Check if Ht and St are consistent with formulas.

## I could not vectorize cumhaz() on LOWER. I think it is because

## of how I defined the function mx(). So I use lapply twice.

R <- all_dT

idR <- R[,’id’]

Ri <- split(R, idR)

Nti <- lapply(1:n, function(x) Ri[[x]][,’N’])

tLi <- lapply(1:n, function(x) Ri[[x]][,’r_start’])

tUi <- lapply(1:n, function(x) Ri[[x]][,’r_stop’])
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Li <- lapply(1:n, function(x) Ri[[x]][,’L’])

Ui <- lapply(1:n, function(x) Ri[[x]][,’U’])

Ht <- unlist(lapply(1:n, function(i) ## i<-1

cumsum(unlist(lapply(seq_along(Ui[[i]]), function(j)

cumhaz(x=Ui[[i]][j], LOWER=Li[[i]][j], N=Nti[[i]][j],

b=bi[[i]], w=Xi[[i]], v=vi[[i]], fnt=fnt, p=p, betas=betas,

etaL=etaL, etaR=etaR, gammas=gammaT, sdist=sdist, g=g) ) ) ) ) )

Ht_check <- all(abs(Ht - R$HtU) <= 1e-10) ## cbind(Ht, R$HtU)

St <- exp(-Ht); St

St_check <- all(abs(R[,’StL’]-St) <= 1e-15); cbind(R[,’StL’], St)

cat(’sim =’, s, ’Checked Ht and St?’, Ht_check, St_check,’\n’)

#################################################################

## Merge temp dataset with last_sim_dT

temp <- merge(temp, last_sim_dT)

#----------------------------------------------------------------

# Repeated measures & terminal event

jind <- with(temp, pmin(repmax-1, floor((dT - t0) / dt)))

temp$ni <- sapply(jind, function(d) d + 1)

# Expand the data frame repeating each id as many times as "jind" says

datlong <- temp[rep(row.names(temp), times=jind+1),]

datlong <- ddply(datlong, "id", here(transform),

obstime = seq(1,length(id)),

l.time = dt * (seq(1,length(id))-1),

epsilon = rnorm(length(id), mean=0, sd=sqrt(var.eps)))

names(datlong)

#----------------------------------------------------------------

## Simulate the longitudinal outcome

ti <- with(datlong, split(l.time, f=id))

datlong$mi <- unlist(lapply(1:n, function(i) ## i<-1

mx(x=ti[[i]], fnt=fnt, p=p, betas=betas, b=bi[[i]], w=Xi[[i]]) ) )

datlong$y <- with(datlong, mi + epsilon)

cat(’sim =’, s, ’Adding terminal and recurrent event times to simLong.\n’)

## Modify datlong to include the number of recurrent events

## between repeated measures times, and to have the event

## indicator at the last period
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## Time-to-event

datlong$l_start <- datlong$l.time

splitID <- split(datlong[c(’l_start’,’dT’)], datlong$id)

datlong$l_stop <- unlist(lapply(

splitID, function(d) c(d$l_start[-1], d$dT[1]) ) )

datlong$deltaD <- with(datlong, ave(event, id, FUN=function(x)

c(rep(0, length(x)-1), x[1]) ) )

## Recurrent events (Only those that occured before censoring)

splitN <- split(sim_dT[c(’r.time’, ’N’, ’deltaR’)], sim_dT$id)

Nac <- unlist(lapply(splitN, function(d) cumsum(d$deltaR)))

all(sim_dT$N == Nac)

splitL <- split(datlong[c(’l_start’,’l_stop’)], datlong$id)

## Complete datlong by including the recurrent and terminal events.

datlong$r.time <- datlong$Nt <- datlong$dN <- NA

for (i in 1:n){ # i<-28

RTIME <- NT <- NULL

tr <- splitN[[i]] ## start times of recurrent events

mr <- nrow(tr) ## number of recurrent event times

tl <- splitL[[i]] ## time intervals of longitudinal outcome

ml <- nrow(tl) ## number of longitudinal outcome times

for (k in 1:ml){ # k<-5

whichN <- which(tl$l_start[k] <= tr$r.time & tr$r.time < tl$l_stop[k])

whichd <- which(tl$l_start[k] <= tr$r.time & tr$r.time < tl$l_stop[k] &

tr$r.time > 0)

dN <- length(whichd)

if(length(whichN) > 1){ ## If more than 2 events, record the latest

whichN <- max(whichN)

}

rtime <- tr$r.time[whichN]

nt <- tr$N[whichN]

if(length(rtime) == 0){ ## means no Rec.event occurs after l.time

rtime <- RTIME[k-1]

nt <- NT[k-1]

}

RTIME <- c(RTIME, rtime)

NT <- c(NT, nt)

## dN has to be 0 if r.time = 0

dN <- dN * (rtime > 0)

## Fill the column one time interval & one subject at a time.
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datlong$r.time[datlong$id == ID[i] & datlong$l_start == tl$l_start[k]] <-

rtime

datlong$Nt[datlong$id == ID[i] & datlong$l_start == tl$l_start[k]] <-

nt

datlong$dN[datlong$id == ID[i] & datlong$l_start == tl$l_start[k]] <-

dN

# cat("i =", i, "k =", k, "\n")

}

}

## deltaR = 1 if at least 1 recurrent event occured between 2 repeated measures.

datlong$deltaR <- 1*(datlong$r.time > 0 &

datlong$r.time >= datlong$l_start &

datlong$r.time < datlong$l_stop)

cat(’sim =’, s, ’Creating survival analysis dataset counting process format.\n’)

#----------------------------------------------------------------

## Create survival analysis data in counting process format where

## recurrent events and repeated measures are time-varying covariates.

## Select the time-dependent variables and covariates required.

ID ## Was defined at the begining

fcovs <- c(’sim’, ’id’, paste0(’x’, seq(1,7)), ’b0’, ’b1’, ’log_frailty’)

lvars <- c(’l.time’, ’obstime’, ’y’, ’epsilon’)

rvars <- c(’r.time’,’deltaR’,’N’,’dT’,’survt’,’deltaD’,’event’,’phi’,’St’)

covs_data <- subset(temp, select=fcovs)

sim_dT <- data.frame(sim_dT)

surv <- LONG <- REC <- NULL

nn <- 1 ## Start counter for the number of rows in dataset

for (i in seq_along(ID)){ ## i<-213 i<-53

## Subset files by id and keep only relevant variables

l <- subset(datlong, id==ID[i], select=lvars)

r <- subset(sim_dT, id==ID[i], select=rvars)

v <- subset(covs_data, id==ID[i], select=fcovs)

## Times of all time-varying variables

tl <- subset(l, select = l.time)

tr <- subset(r, select = r.time)

td <- subset(r, select = dT)

time <- sort(unique(unlist(c(tl, tr, td))))

## Start and stop times

K <- length(time)

L <- time[-K]
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U <- time[-1]

for (j in 1:(K-1)){ ## j<-1

I <- cbind(t_start=L[j], t_stop=U[j])

long <- subset(l, l.time >= L[j] & l.time < U[j])

rec <- subset(r, r.time >= L[j] & r.time < U[j])

if (nrow(long)==0){ long <- LONG[nn-1, ]} ##

if (nrow(rec)==0){

rec <- REC[nn-1, ]

rec$deltaR <- 0 }

LONG <- rbind(LONG, long) ## LONG and REC are auxiliary sets

REC <- rbind(REC, rec) ## LONG and REC are auxiliary sets

surv <- rbind(surv, cbind(v, I, long, rec) )

nn <- nn + 1

# surv[,-which(names(surv) %in% fcovs)]; j <- j+1

}

}

surv <- data.frame(surv)

surv$deltaD <- with(surv,

ave(event, id,

FUN=function(x) c(rep(0, length(x)-1), x[1]) ) )

#----------------------------------------------------------------

## Acummulate: repeated measures, recurrent events and survival analysis files

simRec <- rbind(simRec, all_dT)

simSurv <- rbind(simSurv, surv)

simLong <- rbind(simLong, datlong)

data_check <- all(!is.na(sim_dT))

cat(’sim =’, s, ’data integration is complete?’, data_check,’\n’)

# setwd(outdir)

# tables <- list(simLong, simRec, simSurv)

# # files <- c(’simLong.txt’, ’simRec.txt’, ’simSurv.txt’)

# files <- LRS_outfiles

# for(z in seq_along(tables)){

# write.table(tables[[z]], files[z], row.names=F, col.names=T, sep=’\t’)

# }

# cat(’Backup (do not open yet):’,paste0(files,collapse=", "),’in:\n’,outdir,’\n’)

cat(’====================================================================\n’)

} ## End of "for s" loop

#----------------------------------------------------------------

tables <- list(simLong=simLong, simRec=simRec, simSurv=simSurv)

if(savefiles){

setwd(outdir)
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files <- outfiles

for(z in seq_along(tables)){

write.table(tables[[z]], files[z], row.names=F, col.names=T, sep=’\t’)

}

cat(’Output files:’,paste0(files,collapse=", "),’\n’)

cat(’Folder:’, outdir, ’\n’)

}

return(tables)

}

#˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜END OF FUNCTION f.simJM3_tdW_b0b1˜˜˜˜˜˜˜˜˜
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B.1 Compare extended Cox model and joint modelling

Simulation scheme to illustrate that estimates of the Cox model with endongenous
time-varying covariates are biased. The plot of Section 3.1 corresponds to simulation
scheme sim = 3.

 (Longitudinal) yi(t|bi) =

mi(t)︷ ︸︸ ︷
(β0 + bi0) + (βt + bi1)f(t) + w>i β+εi(t)

(Terminal) hi(t|bi) = h0(t) exp{w>i γ + ηmi(t)}
f(t) = a function of time

sim = 1 sim = 2 sim = 3 sim = 4 sim = 5 sim = 6

f(t) x+ cos(0.5x) + sin(0.5x) x
η −0.1 −0.2 −0.1 −0.2 0.1 0.2

h0(t) ∼ Weibull(κ = 4, ρ = 0.2)

βt = 0.1

β0 = 0.5

β> = (0.1, 0.2,−0.2, 0.3,−0.3)

γ> = (0.1, 0.1, 0.1, 0.1, 0.1)

n = 500

Ci = 8 ∀i

var(bi) =

[
3
0 1

]
var(εi) = 10
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Figure B.1: Compare parameter estimates, η̂ for simulated data under different scenar-
ios for the function of time in the longitudinal outcome and strength of the effect of the
longitudinal outcome on the time-to-event outcome.
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Figure B.2: Simulation 1, M (S)
12 . Performance metrics of the variable selection process.

Top to bottom: Classifiers 1 to 4; left to right: Accuracy, Sensitivity and Specificity.

308



B.2 Simulation results of Chapter 4

B.2.1 Performance metrics based on confusion matrix
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Figure B.3: Simulation 2, M (S)
12 . Performance metrics of the variable selection process.

Top to bottom: Classifiers 1 to 4; left to right: Accuracy, Sensitivity and Specificity.
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B.2 Simulation results of Chapter 4
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Figure B.4: Simulation 3, M (S)
34 . Performance metrics of the variable selection process.

Top to bottom: Classifiers 1 to 4; left to right: Accuracy, Sensitivity and Specificity.
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B.2 Simulation results of Chapter 4
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Figure B.5: Simulation 4, M (S)
34 . Performance metrics of the variable selection process.

Top to bottom: Classifiers 1 to 4; left to right: Accuracy, Sensitivity and Specificity.
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B.2 Simulation results of Chapter 4
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Figure B.6: Simulation 5, M (S)
5 . Performance metrics of the variable selection process.

Top to bottom: Classifiers 1 to 4; left to right: Accuracy, Sensitivity and Specificity.
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B.2 Simulation results of Chapter 4
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Figure B.7: Simulation 6, M (S)
6 . Performance metrics of the variable selection process.

Top to bottom: Classifiers 1 to 4; left to right: Accuracy, Sensitivity and Specificity.
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B.2.2 Regression coefficients of Simulation 6
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Figure B.8: Regression coefficients of the linear mixed submodel for each combination
log10 λL, log10 λS ∈ {4, 3, 2, 1, 0, 1, 2, 3}.
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Figure B.9: Regression coefficients of the linear mixed submodel for each combination
log10 λL, log10 λS ∈ {4, 3, 2, 1, 0, 1, 2, 3}.
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Figure B.10: Regression coefficients of the linear mixed submodel of the K
times the model was tested for each penalty combination, log10 λL, log10 λS ∈
{4, 3, 2, 1, 0, 1, 2, 3}.
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Figure B.11: Regression coefficients of the linear mixed submodel of the K
times the model was tested for each penalty combination, log10 λL, log10 λS ∈
{4, 3, 2, 1, 0, 1, 2, 3}.
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Figure B.12: Regression coefficients of the time-to-event submodel for each combina-
tion log10 λL, log10 λS ∈ {4, 3, 2, 1, 0, 1, 2, 3}.
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Figure B.13: Regression coefficients of the time-to-event submodel for each combina-
tion log10 λL, log10 λS ∈ {4, 3, 2, 1, 0, 1, 2, 3}.
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Figure B.14: Regression coefficients of the time-to-event submodel of the K
times the model was tested for each penalty combination, log10 λL, log10 λS ∈
{4, 3, 2, 1, 0, 1, 2, 3}.
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Figure B.15: Regression coefficients of the time-to-event submodel of the K
times the model was tested for each penalty combination, log10 λL, log10 λS ∈
{4, 3, 2, 1, 0, 1, 2, 3}.
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B.3 Simulation results of Chapter 5

B.3.1 Analysis data simulated from model M3
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M2 fitted to D3

Compare M3 and M2 fitted to D3
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Figure B.18: Model 95% interval estimates of model M3 fitted to data D3. Dashed horizontal lines
at the true parameter value. Vertical lines represent 95% interval estimates (gray if the range contains
the true parameter, colored otherwise).
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Figure B.21: Model M2 point and 95% interval estimates for M3. Dashed horizontal
lines are drawn at the true parameter value. Vertical lines represent 95% interval esti-
mates (gray if the range contains the true parameter, colored otherwise). A title in red
means that the association parameter in model M2 measures something different than
in model M3, and the number in CP refers to the relative frequency in the whole range
of the interval lies agrees with the sign of the true value of the association parameter.
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Figure B.22: Fixed effects regression coefficients of data produced with model M3.
Compare model fit M3 and M2 on M3.
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Figure B.23: Association parameters of data produced with model M3. Compare
model fit M3 and M2 on D3.
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Figure B.26: Model M2 point and 95% interval estimates for D2. Dashed horizon-
tal lines are drawn at the true parameter value. Vertical lines represent 95% interval
estimates (gray if the range contains the true parameter, colored otherwise).
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Figure B.29: Model M3 point and 95% interval estimates for D2. Dashed horizontal lines are drawn
at the true parameter value. Vertical lines represent 95% interval estimates (gray if the range contains
the true parameter, colored otherwise).
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Figure B.30: Fixed effects regression coefficients of data produced with model M2.
Compare model fit M3 and M2 on D2.

338



B.3 Simulation results of Chapter 5

0 50 100 150

0.1

0.2

0.3

0.4

ηL (D2)

Simulation

E
st

im
at

e

M3CP = 100

M2CP = 96.67

Std.Err_is_NA

True = 0.2

0 50 100 150

−0.5

0.0

0.5

1.0

ηN (D2)

Simulation

E
st

im
at

e

M3CP = 54.36

M2CP = 88.67

Std.Err_is_NA

True = 0.2

Figure B.31: Association parameters of data produced with model M2. Compare
model fit M3 and M2 on D2.
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