
Forecasting Complex Systems

Using Stochastic Models for Low

Dimensional Approximations

Paul Smith

The University of Leeds

School of Mathematics

Submitted in accordance with the requirements for the degree of

Doctor of Philosophy

August 2020

mailto:mmpw@leeds.ac.uk
http://maths.leeds.ac.uk
http://www.leeds.ac.uk


Intellectual Property Statement

The candidate confirms that the work submitted is his own and that

appropriate credit has been given where reference has been made to

the work of others.

This copy has been supplied on the understanding that it is copyright

material and that no quotation from the thesis may be published

without proper acknowledgement



To Mum and Dad, for all your support.



Acknowledgements

I would like to thank my supervisors, Jochen Voss and Elena Issoglio,

who have supported me throughout my PhD. You have been selfless

with your time and knowledge, and have made my research an enjoyable

experience. I could not have asked for better people to help me through

my time at Leeds. Thank you. I would also like to thank Tiziano De

Angelis for the many enjoyable conversations we have had, and for

being gracious in defeat on the squash court.

The friends I have met in Leeds have made my time here very special.

You allowed me to switch off from work, explore the countryside, and

enjoy your company. Thank you for this.

Finally, I would like to give a special thanks to Eva, for your infectious

smile, outlook on life, and for putting up with me over these last few

months.



Abstract

Computer simulators are often used to model complex systems, which

by their very nature are in general expensive to run and hard to con-

dition. Statistical methods can be used to simplify and help analyse

these simulator outputs, with the aim of increasing understanding of

the underlying complex system and producing simplified forecasts of

this system. This work investigates some statistical methods that can

be used, and applies these methods to some output from the HadCM3

climate simulator.

In Part I of this thesis, the statistical framework is introduced, and

can be split broadly into the areas of dimension reduction, stochastic

modelling, and forecasting. Within the dimension reduction section,

the fastICA independent component analysis method is examined with

some definciencies highlighted. A novel independent component anal-

ysis method is introduced, called clusterICA, which uses clustering in

the projective space and Householder reflections to obtain independent

directions.

Modelling of the components found using dimension reduction is then

examined. This includes using a block-average Ornstein-Uhlenbeck

process, where the pointwise Ornstein-Uhlenbeck process is integrated

over disjoint time intervals. As the first step of modelling involves re-

moving seasonality, a novel spline function is introduced that can be

used to ensure seasonal means between pointwise and block-average

Ornstein-Uhlenbeck processes remain equal. Forecasts using the dis-

tributional properties of the block-average Ornstein-Uhlenbeck are also

examined.

In Part II of this thesis, methods introduced in Part I are applied

to output obtained from the HadCM3 climate simulator. Two dif-

ferent forecasting methods are used to obtain forecasts of the sets of



low dimensional components, and these forecasts are used to recon-

struct the full high dimensional simulator output. These forecasted

reconstructions are compared to the reconstructions using the true low

dimensional components, and the full HadCM3 simulator output.
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Introduction

This thesis describes the makings of an approach to simplify simulators of high

dimensional, complex systems, by the use of statistical methods. A complex system

is a system that contains many interacting variables, with these interactions having

the ability to alter the state of the system in a highly sensitive, potentially chaotic

way. Examples of complex systems include the Earth’s climate, urban transport

networks, and the brain. Complex systems can be approximated by the use of

simulators, where a mathematical or physical model is used to attempt to mimic

the behaviour of the associated system.

Throughout this thesis, we use the example of a climate simulator that aims

to approximate some aspects of the Earth’s climate, for example the temperature

or atmospheric pressure. These simulators obtain some output through the use of

a combination of physical laws, heuristics rules and expert judgements, alongside

actual measurements (for example, historic CO2 levels extracted from ice-cores).

There is a huge amount of uncertainty in these kind of large-scale simulators, from

the spatial and temporal uncertainty in the input measurements, the uncertainty

in the expert judgements, and the uncertainty in the interactions of the equations

within the model, to give just a few. Here, the difficulties with dealing with

output from these high dimensional simulators are discussed, with the overarching

aim being to find methods that allow for simple forecasts of the simulator to be

calculated.

The climate simulator examined in the latter part of this thesis is the HadCM3

climate simulator. These simulators are continually being improved, although a

by-product of this improvement is often an increase in the model complexity with

the addition of more interacting systems, or an increase in resolution with smaller
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grid cells and more atmospheric stratification. This can result in climate simulators

diving further into the “black box” territory and therefore becoming increasingly

difficult to interpret whilst at the same time taking longer to perform simulator

runs.

In this thesis, the use of statistical methods to enable the simplification of sim-

ulator runs are explored, with the aim of increasing understandability, allowing for

more flexible simulator runs, and for simple simulator forecasting. The statistical

methods used here can be split into three supplementary themes: dimensional re-

duction, stochastic modelling, and forecasting. The techniques introduced in this

thesis within each of these themes build on methods established in the previous

theme. That is, the dimension reduction techniques can be used to obtain some low

dimensional output from some high dimensional simulator run, which can then be

approximated using the stochastic modelling techniques. Then, forecasting tech-

niques can be applied using these stochastic models to obtain forecasts for the

low dimensional output. In all of these areas, this thesis examines interpretable

methods that can be performed on high dimensional simulator outputs, both from

classical statistics and more novel ideas.

In Part I of this thesis, we introduce the three main themes that are used

to enable simulator output simplification and forecasting. In addition to this,

we critique some established statistical methods and examine their weaknesses,

leading to the foundations of some novel methods that attempt to counteract

these weaknesses. The underlying behaviour of the climate simulator output used

in Part II is kept in mind throughout Part I, most notably that the output is

not given pointwise but as averages over disjoint time periods. This leads to the

proposal of stochastic processes and associated forecasts that take this behaviour

into account.

In Part I, Chapter 1, we examine methods, collectively called dimension reduc-

tion techniques, that reduce the complexity of some high dimensional simulator

output. This is broadly split into the methods of principal component analysis

and independent component analysis. Within the independent component analysis

discussion, we consider the popular fastICA method and find it to be deficient in

certain areas. This leads to the idea of a novel method called clusterICA, with the

2
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aim of removing some of the weaknesses found in fastICA. In Chapter 2 we in-

troduce stochastic processes that can be applied to the outputs obtained from the

dimension reduction techniques, using the idea that some of the information lost

by applying the methods from Chapter 1 can be replaced with stochasticity. Here

we introduce block-average Ornstein-Uhlenbeck processes which merge classical

techniques with more novel ones that explicitly use the averaging behaviour of the

climate simulator outputs seen in Part II. In Chapter 3 we obtain forecasts that

can be applied to the outputs from the dimension reduction methods, using the

models introduced in Chapter 2, including the block-average Ornstein-Uhlenbeck

process.

Part II applies the framework introduced in Part I to two climate simulator

runs, obtained from the HadCM3 simulator, with different outputs. This allows

comparisons both within each simulator run – judging how the different statistical

models compare to one-anther – and across the simulator runs. In Chapter 4 the

HadCM3 simulator output consists of the mean sea-level air pressure over (a dis-

cretised form of) the Earth’s surface. In Chapter 5 the HadCM3 simulator output

consists of the mean sea-level air pressure with the addition of two-dimensional

(horizontal) wind velocity.

The main finding of this thesis is that a subset of the methods considered result

in forecasts that closely mirror the “true” observations. In these successful cases,

a large proportion of the forecasting accuracy comes from some very simple, easily

applicable techniques.

All the code used throughout this thesis has been written in R, with the most

important functions available from https://github.com/pws3141/thesisCode.
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Chapter 1

Dimension Reduction

1.1 Introduction to Dimension Reduction

The first chapter of this thesis introduces methods to reduce the dimensionality of

a simulator output or a data set. Here a simulator is short for a computer simulator

that attempts to use mathematical modelling to approximate some behaviour or

event. These simulators are often used for forecasting, for example a weather

simulator could be used to obtain a prediction for the temperature in Leeds next

week. This section is motivated by an initial question that arises from a large

simulator output: what parts of this output are “important”, and what can be

ignored with relatively little loss? This question can be reversed to ask, where is

computational time being used wisely in the model, and where is it being wasted?

These are the two questions that we attempt to be answered in this chapter, using

some classical dimension reduction methods.

The simulator can be represented by the (deterministic) function,

f : M→ Rp, (1.1)

where M is the model input parameter space, and for any m ∈ M, the simulator

gives a vector output in Rp. In general it is assumed that the deterministic sim-

ulator has been run n ∈ N times, either independently or as a causal time-series

7



1. DIMENSION REDUCTION

such that the input of the tth run, mt ∈ M, is a function of the previous inputs

mt−1,mt−2, . . . ∈ M and of the previous outputs f(mt−1), f(mt−2), . . . ∈ Rp. This

set of simulator outputs, each in Rp, can either be represented by a matrix in Rn×p,

where each row of the matrix corresponds to f(m) for some m ∈M, or as a set of

vectors {x1, x2, . . . , xn} where each xi = f(mi) for some mi ∈M, i = 1, . . . , n.

The overall plan for the thesis is to obtain forecasts of the simulator by mod-

elling some low dimensional approximation by some stochastic process. That is,

the information omitted in the low dimensional approximation is replaced by some

“noise” term. A more detailed version of the plan is given in Panel 1.1.

Panel 1.1: Thesis plan: overview of the mathematical concept

1. Simulator gives deterministic output xi = f(xi−1, ti) for i = 1, 2, . . . , n.
Here, xi is in a high dimensional space Rp, and f is from (1.1) with a
constrained input mt = (xi−1, ti) for simplicity.

2. Some transformation is initially applied to give a suitable output xi
that the following steps can be applied to. These transformations are
discussed in detail in the relevant sections.

3. A dimension reduction method is applied to split the simulator output
into the form

xi = yi + zi,

where yi ∈ V ⊆ Rp, and zi ∈ V ⊥, with V ⊥ the orthogonal complement
of V . Here zi is the discarded information from the high dimensional
simulator output, and thus is chosen to be “un-interesting” in some way,
for example such that

∑
i z
>
i zi is small;

4. With zi discarded, set ỹi = PV f(yi−1, t), where PV f : Rp × [0,∞) → V
is the orthogonal projection of f onto V .

5. Approximate the deterministic function PV f by some g : V ×[0,∞)→ V
and some noise to obtain an approximation to ỹi, given by the stochastic
evolution equation

ŷi = g(ŷi−1, ti) + εi,

where εi is some noise.

6. Use ŷi in replacement of xi to obtain approximations of the simulator

8



1.1 Introduction to Dimension Reduction

output. Continuous-time stochastic evolution is also considered in detail
in Section 2.3.

Suppose the simulator output is given by the set of vectors X := {x1, x2, . . . , xn}
with each xi ∈ Rp, i = 1, . . . , n, with span(X) = r, r ≤ p. The dimension reduction

methods described in this chapter attempt to find projections of the data that

explain some “important” behaviour of the simulator. That is, the dimension

reduction methods decompose a set of data X = {x1, . . . , xn} into some basis of

the span of X, {w1, w2, . . . , wr}, with wi ∈ Rp. This basis is ordered such that

the projections yi = (〈x1, wi〉, 〈x2, wi〉, . . . , 〈xn, wi〉) ∈ Rn, i = 1, . . . , r, are of

decreasing “interest”. Here, 〈·, ·〉 is the standard Euclidean inner product such

that 〈a, b〉 = a>b for a, b ∈ Rp, and the use of the word projection is a slight abuse

of terminology, used to describe the scalar projection of a simulator output onto

some vector with unit norm. It is remarked here that not all r basis vectors are

kept in practice. In fact, often only a small subset of the basis vectors that describe

the most “interesting” l < r projections, y1, . . . , yl, are used.

In general, throughout this chapter the simulator outputs are arranged row-

by-row in the matrix X = (x1 x2 · · · xn)> ∈ Rn×p, and projections of the set of

simulator outputs are given by y = Xw, for w ∈ Rp.

The two dimension reduction methods discussed in this chapter are principal

component analysis and independent component analysis. There are three major

differences between these techniques, which are,

(i) whether whitening of the simulator output is required. This is a linear trans-

formation that transforms a matrix X ∈ Rn×p into a matrix Y = XA such

that the sample covariance matrix Y >Y/(n− 1) is the identity matrix. The

whitening transform is unique only up to orthogonal transformations, and

therefore there are infinitely many possible whitening transformations A. It

is remarked here for future reference that the matrix A is not orthogonal;

(ii) the contrast function used to assess whether a projection is “interesting”.

A contrast function has the property that maximising this function over the

directions w ∈ Rp gives projections y = Xw that are deemed to be of interest;

(iii) whether approximations to the contrast function are required in practice to

obtain the directions.

9



1. DIMENSION REDUCTION

Näıvely, the entirety of the space Rp needs to be examined to find the direc-

tions wi ∈ Rp, i = 1, . . . , r, that maximise the contrast function whilst satisfying

any other criteria. An exhaustive search of Rp is clearly extremely computational

expensive for p large, and thus it is first noted here that the search space to obtain

the directions w1, . . . , wr can be immediately reduced in size to just the associated

projective space, which is defined below. The intuitive idea on why projective

spaces (rather than Euclidean spaces) are used is that when picking vectors for

dimension reduction, only the direction of the vector is interesting, and antipodal

directions give the same results (in terms of the respective contrast functions dis-

cussed in this chapter). The contrast functions discussed in this chapter are based

on the densities of the projected data onto some direction, and are invariant to

reflection of the densities. The reduced search space is formalised mathematically

in the definition of real projective space.

Definition 1.1.1 (Projective space). The projective space on Rp, denoted by

Rp−1P, is the set of all equivalence classes [u] ∈ Rp−1P, where for all u,w ∈

Rp \ {0}, u and w are equivalent if there exists some λ ∈ R such that u = λw.

That is, the equivalence class is given by [u] = {w : λw = u for some λ ∈ R\{0}}.

Throughout this chapter there is a slight abuse of notation, due to writing

u ∈ Rp−1P to denote the vector u ∈ Rp that belongs in the equivalence class

[u] ∈ Rp−1P, such that u>u = 1 (i.e. u lies on the (p − 1)-dimensional sphere

Sp−1).

This chapter is split into two main parts. In Section 1.2, principal compo-

nent analysis is introduced by describing the underlying mathematical theory in

Section 1.2.1, with the method used in practice to obtain the principal directions

given in Section 1.2.2. For principal component analysis, the method can be ap-

plied directly using standard computational techniques, and therefore principal

component analysis can be implemented in a standard way on a set of simulator

outputs. In Section 1.2.3 we give a brief discussion on how the theory and compu-

tation behind principal component analysis is affected by the size of the data it is

being applied to. Section 1.3 introduces independent component analysis, with the

mathematical theory described in Section 1.3.1. Section 1.3.2 we consider the how

10



1.1 Introduction to Dimension Reduction

the size of the data affects the theory and computation behind independent com-

ponent analysis (in the same way as Section 1.2.3). Following this and in reference

to Item (iii) above, we introduce some competing methods to obtain approximate

independent component directions in Section 1.4. One method that we discuss at

length in Section 1.4.1 is fastICA, which is a popular algorithm but with some

important deficiencies. We discuss how problems arise within the fastICA method

and how they are intrinsically connected to the approximations that form the ba-

sis of the computational efficiency of fastICA. This examination of the fastICA

contrast function is new work and forms part of a paper that has been published

in the Journal of Multivariate Analysis Smith et al. (2020). To overcome some

of the drawbacks encountered in fastICA, in Section 1.4.2 we introduce a novel

independent component analysis method, called clusterICA. This method uses a

clustering method applied in a novel way in the projective space. In Section 1.4.3

we compare clusterICA to some established algorithms – including fastICA – on

test data.

Remark 1.1: Notation

Some notation is given here to avoid ambiguity going forward. We will clearly

state when any notation differs from that described below.

1. Random variables are given by upper-case sans-serif typeface. For ex-

ample, X ∈ Rm would be a random vector of size m, with components

Xi, i = 1, . . . ,m;

2. Lower case letters are realisation from some random variable, that is,

x ∈ Rm is an observation from some random variable, say X ∈ Rm;

3. Matrices are given by upper-case standard LATEX typeface, i.e. computer

modern Roman, such that an n×m matrix is written X ∈ Rn×m.

Suppose that data from a simulator is given by the set of vectors {x1, . . . , xn},

with each xi ∈ Rp. In this case, the matrix representation of this set can be

11



1. DIMENSION REDUCTION

split into three scenarios with associated notations. These are,

1. X = (x1 x2 · · ·xn)> ∈ Rn×p is the matrix representation of the raw simu-

lator output, given row-wise. In this representation, X̃ is used to denote

the centred-column version of X. That is,

X̃ =
(
(x1 − x̄) (x2 − x̄) · · · (xn − x̄)

)> ∈ Rn×p,

with x̄ = (1/n)
∑n

i=1 xi.

2. Y = X̃A ∈ Rn×r, r = rank(X̃) ≤ min{n − 1, p}, is a whitened form of

X, such that the covariance of Y is the identity matrix Ir ∈ Rr×r, where

A ∈ Rp×r is a whitening matrix. This is discussed in Section 1.3.1.

3. Z = Y Q = X̃AQ ∈ Rn×r describes some orthogonal transformation

of the whitened matrix Y , with Q ∈ Rr×r an orthogonal matrix (i.e.

Q>Q = QQ> = Ir).

1.2 Principal Component Analysis

The first dimension reduction method considered is known as principal component

analysis (often referred to as ‘PCA’) and was originally described by Pearson

(1901) with a practical description given later by Hotelling (1933). This section

starts with a brief introduction to principal component analysis and the main

theoretical points highlighted. Then, we describe the method of applying principal

component analysis in practice. All proofs here are omitted, and further reading

can be found in many undergraduate multivariate statistical textbooks, including

Jackson (2005); Manly (1994); Mardia et al. (1979).

12



1.2 Principal Component Analysis

1.2.1 Introduction to principal component analysis

As explained above, principal component analysis obtains an orthonormal basis

{w1, . . . , wr} of the space spanned by the simulator outputs {x1, . . . , xn}. In this

section we give a motivation for, and describe mathematically, the metric used for

choosing this basis.

To obtain each basis vector sequentially, the variance of the associated pro-

jection of the simulator output is maximised with the constraint that the basis

vectors must be orthonormal. One motivation for maximising the variance of the

projection is that the associated basis vector here “separates” the data in some

maximal way. First, define the (sample) variance of the projection of some simu-

lator output by the mapping V : Rp−1P→ [0,∞) from the basis vector w ∈ Rp−1P

by,

V (w : {x1, . . . , xn}) := Var{〈x1, w〉, . . . , 〈xn, w〉}. (1.2)

This will be shortened to V (w) if the choice of the dependent simulator output is

obvious.

We first give a motivating example for using principal component analysis.

Suppose each xi ∈ Rp is a vector of exam scores obtained by student i, i = 1, . . . , n.

Then finding a projection of the set of student scores, 〈x1, w〉, . . . , 〈xn, w〉, where

w ∈ Rp−1P is chosen such that V (w) is maximum, gives a way to rank the students

by separating them maximally using a linear combination of their exam scores

(Mardia et al., 1979). A motivation to using principal component analysis on

climate simulators with the aim of reducing their complexity is that many of the

input parameters m ∈ M may be very closely correlated. Thus the input space

of the mapping f : M → Rp could be reduced by taking a set of l < p linear

combination of these correlated parameters and a new mapping found f̃ : M̃→ Rp,

with |M̃| < |M|, where very little “important” information (with respect to the

second moment) has been lost in the new simulator compared to the original.

Panel 1.2 describes the theoretical procedure used in principal component anal-

ysis to obtain the orthogonal basis {w1, w2, . . . , wr}, r = rank(X̃), from simulator

output {x1, x2, . . . , xn}.

13



1. DIMENSION REDUCTION

Panel 1.2: Principal component analysis procedure

The principal component analysis procedure for obtaining the orthonormal
basis from simulator output {x1, . . . , xn}, is as follows. Each vector wi ∈
Rp−1P, i = 1, . . . , r = rank(X̃) that forms the basis is defined in the following
way, using the mapping V given in (1.2).

First, w1 ∈ Rp satisfies,

w1 = argmax
w∈Rp−1P

V (w).

Then, for each j = 2, 3, . . . , r the basis vectors are found sequentially,
satisfying,

wj = argmax
w∈Rp−1P

w⊥{w1,...,wj−1}

V (w).

1.2.2 Principal component analysis method

In this section we give a practical computational method for applying principal

component analysis to a simulator output. Note that unlike independent com-

ponent analysis introduced later in Section 1.3, only one method is given here

as this is computationally simple and gives the (approximate) orthonormal basis

{w1, . . . , wr} that we described above in Panel 1.2.

It can be shown that the orthogonal basis found in Panel 1.2 corresponds

to the eigenvectors of the sample covariance matrix CX ∈ Rp×p of the matrix

X = (x1 · · · xn)> ∈ Rn×p. The sample covariance matrix CX is given by

CX =
1

n− 1
X̃>X̃, (1.3)

where X̃ is the centred-column version of X (following the notational convention

given in Remark 1.1). The eigenvalue γj of CX gives the variance of the corre-

sponding eigenvector wj. That is, γj = V (wj), and these are ordered such that

γi ≥ γj for all i > j, and for all j = r + 1, . . . , n, γj = 0. The sum of the r

eigenvalues is equal to the total variance of the simulator output and therefore it

14



1.2 Principal Component Analysis

is often remarked that “principal component j explains γj/
∑r

i=1 γi of the variation

in the data”.

The dimension of the simulator, p, can be large and in this case calculating

the covariance matrix CX directly is computationally expensive. Therefore, in

practice, singular value decomposition of X̃ is used for finding the eigenvalues and

eigenvectors of CX , without calculating CX explicitly. We now describe how the

eigenvectors and eigenvalues of CX can be found directly, by applying singular

value decomposition to X̃.

In the real matrix setting, singular value decomposition decomposes a matrix

M ∈ Ra×b into the form UΛV >, where U ∈ Ra×r, Λ ∈ Rr×r and V ∈ Rb×r with

r ≤ min{a, b} the rank of M . Here, U and V have orthogonal columns, and Λ

is a diagonal matrix. Assume that the decomposition is such that the diagonal

elements of Λ are ordered λ1 ≥ λ2 ≥ · · ·λr.
Consider the centred simulator output matrix X̃ ∈ Rn×p with r = rank(X̃) ≤

min{n − 1, p}, and let X̃ = UΛV > be a singular value decomposition with U ∈
Rn×r, Λ ∈ Rr×r and V ∈ Rp×r. Now, the covariance matrix can be written,

CX =
1

n− 1
(UΛV >)>(UΛV >) = V

( 1

n− 1
Λ2
)
V >,

as U>U = In and where Λ2 = diag(λ2
i ). Thus, CX can be written in eigen-

decomposition form with the eigenvectors given by the columns of V and the

associated eigenvalues λ2
i /(n − 1). Using this knowledge, principal component

analysis can be applied in practice to some data as described in Panel 1.3.

Panel 1.3: Principal component analysis computational method

Suppose the simulator output is given by the matrixX = (x1 · · · xn)> ∈ Rn×p.
Let X̃ be the matrix X with centred columns. Then, the principal components
are found in the following way:

1. Perform singular value decomposition on X̃ to obtain matrices Λ =
diag(λi) ∈ Rr×r and V = (v1 · · · vr) ∈ Rp×r;

2. Set wi = vi, mi = X̃wi, and γi = λ2
i /(n− 1), i = 1, . . . , r;

15



1. DIMENSION REDUCTION

Then, wi corresponds to the ith principal direction with associated principal
component given by mi. The variance of the ith principal component is given
by γi = V (wi : {x1, . . . , xn}).

Note that in practice, often many of the γi with i = l+ 1, . . . , r for some l < r,

found in Panel 1.3 are relatively small, as the associated principal components

account for very little variation of the original data. In this case, often only l of

the principal components are kept, where the number l can be chosen such that

projections onto the set of principal directions, {w1, . . . , wl}, account for some high

percentage of the total variance of the simulator output {x1, . . . , xn}. That is, l is

chosen such that ∑l
i=1 γi∑r
i=1 γi

∈ [1− ε, 1],

for some ε << 1.

To end this section, some terminology is given. The term loading is often used

to refer to the eigenvectors scaled by the square root of their respective eigenvalue.

That is, the ith loading is given by the vector
√
γi ·wi ∈ Rp. We note here that there

is often some confusion about this term, possibly1 stemming from R documentation

– for example in ‘princomp’ (R Core Team, 2019) – that describes the ‘loadings’

as being the eigenvectors without scaling. In general, the eigenvectors given by the

columns of V are known as principal directions (or axes), with the data projected

onto them known as the principal components.

1.2.3 Principal component analysis scenarios: simulator

and output size

In this section we present a short discussion on how principal component analysis

is affected by the size of the simulator output, both in terms of the dimension of

the simulator and how many iterations of the simulator are available. Note that

in this thesis, only “case 1” is used in practice (see Figure 1.1).

Figure 1.1 gives a overview of the four scenarios that can be encountered,

and how this affects principal component analysis. These four scenarios will be

discussed in greater detail now.

1at least, personally
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1.2 Principal Component Analysis

n <∞, p <∞ n <∞, p =∞

n =∞, p <∞ n =∞, p =∞

Case 1: “Standard” PCA
X = (x1, . . . , xn)> ∈ Rn×p

Aim: eigenvalues and eigenvectors of

CX = 1
n−1X

TX

Case 3: Functional PCA
x = (x1, . . . , xn), xi ∈ L2([0, T ])

Aim: eigenvalues and eigenfunctions of

Cx(s, t) = 1
n−1

∑n
i=1

(
xi(s)− x̄(s)

)(
xi(t)− x̄(t)

)

Case 2: “Standard” PCA (with perfect data)
The distribution of random
vector X ∈ Rp is known.

Aim: eigenvalues and eigen-

vectors of covariance, KXX

Case 4: Functional PCA (with perfect data)
We know distribution of ran-

dom function
(
X(t), t ∈ [0, T ]

)
.

Aim: eigenvalues and eigenfunctions of

CX(s, t) = E
((

X(s) − µ(s)
)(
X(t) − µ(t)

))

Figure 1.1: Four principal component analysis ‘cases’

1.2.3.1 Case 1: n <∞, p <∞

This is the case of the output of all simulators in practice, as data must be saved

discretely. However, in the case where the dimension of the simulator, p, is much

larger than the number of iterations, n, available, it could be beneficial to anal-

yse the output using functional principal component analysis, as is discussed in

Section 1.2.3.3.

When the data consists of n sets of p variables, x1, x2, . . . , xn ∈ Rp, with

X = (x1, x2, . . . , xn)> ∈ Rn×p, then the theory of principal component analysis is

as given in Section 1.2.1 and Section 1.2.2 above.

1.2.3.2 Case 2: n =∞, p <∞

This case is equivalent to knowing the distribution of the random variable X ∈
Rp exactly. Then also the covariance KXX is known (as opposed to the sample

covariance CX) and thus the corresponding eigenvalues and eigenvectors can be

17



1. DIMENSION REDUCTION

found by eigen-decomposition, KXX = V DV T . This gives the principal components

exactly (by the columns of V ), and the respective variance accounted for by each

principal direction by the diagonal elements of D.

1.2.3.3 Case 3: n <∞, p =∞

This case is referred to as functional principal component analysis in the literature,

see for example Hall & Hosseini-Nasab (2006). In scenarios where the dimension

of the simulator is much larger than the number of iterations (i.e p >> n), then

functional principal component analysis could be used to analyse the data, treat-

ing each simulator output Rp-vector as some set of observations from a random

function. Random functions are introduced in Chapter 2 in terms of stochastic

differential equations, and are used to model the principal components obtained

from simulation data.

Let (R,B(R)) be a measurable space and (Ω,F,P) a probability space. Assume

that we have obtained n independent realisations from an R-valued stochastic

process (X(t))t∈[0,T ], with EX(t) = µ(t) <∞ for t ∈ [0, T ]. Explicitly, we have

x(t) =
(
x1(t), x2(t), . . . , xn(t)

)
(1.4)

=
(
x(t, ω1), x(t, ω2), . . . , x(t, ωn)

)
for t ∈ [0, T ] and ωi ∈ Ω, i = 1, 2, . . . , n.

In this scenario the covariance function CX(s, t) = E
(
X(s)−µ(s)

)(
X(t)−µ(t)

)
needs to be approximated, as does the corresponding covariance operator

(CXf)(t) :=

∫
T

CX(s, t)f(s) ds for f ∈ L2([0, T ]).

Note that X(t) can be written in terms of the eigenvalues and eigenfunctions of

the covariance operator using the Karhunen-Loève expansion, which gives

X(t, ω) = µ(t) +
∞∑
j=1

v
1/2
j φj(t) ξj(ω). (1.5)
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1.2 Principal Component Analysis

Here, ξj(ω) = v
−1/2
j 〈X(t, ω) − µ(t), φj(t)〉L2([0,T ]) and {vj, φj} are the eigenvalues

and eigenfunctions of the covariance operator, ordered such that v1 ≥ v2 ≥ . . . ≥ 0

(Lord et al., 2014). The eigenfunctions satisfy 〈φj,Cφk〉 = δ{j=k} vk, and thus the

covariance function can be written,

CX(s, t) =
∞∑
j=1

vjφj(s)φj(t).

The use of functional principal component analysis is motivated by (1.5), as

here some approximation to X can be found by truncating the number of eigen-

functions used, such that a new random function is obtained via

Xl(t, ω) = µ(t) +
l∑

j=1

v
1/2
j φj(t) ξj(ω).

which has associated covariance function

C(X,l)(s, t) =
l∑

j=1

vjφj(s)φj(t).

As the vj, j = 1, 2, . . . are in descending order, we can choose the value of l

such that the truncated version of X retains the vast majority of the variance that

is present in the full process. See Lord et al. (2014) for the proof that C(X,l)(s, t)→

CX(s, t) and E
(
X(t)− XJ(t)

)
→ 0 uniformly for s, t ∈ [0, T ].

For the sample x, as in (1.4), the approximation to CX(s, t) can be found in

the standard empirical way, which gives

Cx(s, t) =
1

n− 1

n∑
i=1

(
xi(s)− x̄(s)

)(
xi(t)− x̄(t)

)
,
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1. DIMENSION REDUCTION

where x̄ = 1/n
∑n

i=1 xi. As before, this may be written

Cx(s, t) =
∞∑
j=1

v̂jφ̂j(s)φ̂j(t)

=
n−1∑
j=1

v̂jφ̂j(s)φ̂j(t). (1.6)

Here, {v̂j, φ̂j} are the eigenvalues and eigenfunctions of the operator Cx, ordered

such that v̂1 ≥ v̂2 ≥ . . ., where Cx is given by

(Cxf)(t) =

∫ T

0

Cx(s, t)f(s) ds for f ∈ L2([0, T ]).

The second equality (1.6) holds as Cx maps onto the space spanned by the n

functions (xi − x), i = 1, 2, . . . , n, of which n − 1 are independent. Therefore

v̂n = v̂n+1 = . . . = 0.

Applying functional principal component analysis to the n observed func-

tions gives n − 1 loadings
(
φ̂1(t), φ̂2(t), . . . , φ̂n−1(t)

)
, each of which accounts for(∑n−1

j=1 v̂j
)−1 · v̂k, k = 1, 2, . . . , n− 1 of the total variation in the original data.

1.2.3.4 Case 4: n =∞, p =∞

In this case the full expansion of the stochastic process (X(t))t∈[0,T ] in terms of the

eigenvalues and eigenfunctions of the covariance operator as in (1.5) is known, so

X(t, ω) = µ(t) +
∞∑
j=1

v
1/2
j φj(t) ξj(ω),

and thus the exact principal components are available.

This case could be applicable to simulator output data which is high dimen-

sional with many iterations Here, the limit p, n → ∞ with n/p → λ ∈ (0,∞)

could be considered. This is similar to the situation in Hall & Hosseini-Nasab

(2006).
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1.3 Independent Component Analysis

1.3 Independent Component Analysis

This section introduces independent component analysis (also referred to as ‘ICA’),

a well-established and popular dimension reduction technique that builds on the

principal component analysis method introduced in Section 1.2. The main moti-

vation behind independent component analysis differs from principal component

analysis in one important aspect. The use of independent component analysis sup-

poses that the simulator output is some mixture of independent processes, and we

want to obtain the basis that “de-mixes” the observations into the original inde-

pendent processes. For example, the simulator output f(m) for some m ∈M that

attempts to model some climate or weather behaviour could be taken to be some

mixture of more fundamental Earth system processes, and independent compo-

nent analysis is used to discover these processes. The first mention of independent

component analysis came from within signal processing research – as signals are

an obvious candidate for the above framework, for example, microphones pick-

ing up different speech signals – and was originally called INCA, for independent

component analysis (Jutten & Herault, 1991).

Further motivation for using independent component analysis is given in Rich-

man (1986), where the aim is to obtain some interpretable low dimensional set of

data from some climate simulator output. In this case, although principal compo-

nent analysis is advantageous when pure data reduction is sought or for extracting

some components with maximum variance, the lack of interpretability of these com-

ponents and the mixing of different physical phenomena into single components

are negative side-effects. Richman (1986) showed by way of climate simulator

examples where rotation of the principal components resulted in increased inter-

pretability of the resulting components. It turns out that independent component

analysis is exactly a rotation of the components found by principal component

analysis.

As with principal component analysis, we give a short theoretical introduction

here, with the reader referred to Comon (1994) for a more detailed mathemati-

cal introduction and Hyvärinen (1999); Hyvärinen et al. (2004); Stone (2004) for a

comprehensive overview of the principles underlying independent component anal-

ysis and its applications in a wide variety of practical examples. For examples of
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1. DIMENSION REDUCTION

independent component analysis applied to climate systems see Aires et al. (2000);

Ilin et al. (2006); Lotsch et al. (2003)

This section is arranged as follows. In Section 1.3.1 we introduce the method by

the use of mutual information as a contrast function. In Section 1.3.2 we consider

how the size of the simulator affects the theory and computation behind indepen-

dent component analysis (which mirrors Section 1.2.3 in the principal component

analysis case). The main contribution of this chapter comes from Section 1.4,

where we describe independent component analysis methods that use approxima-

tions to a contrast function related to mutual information. Initial we introduce a

popular independent component analysis method known as fastICA, and discuss

some of its drawbacks (Section 1.4.1). Then in Section 1.4.2 we describe a novel

method called clusterICA, that uses clustering on the projective space to help

find independent components. Finally, in Section 1.4.3 the methods introduced

in Section 1.4 are compared to one-another and to other established independent

component analysis methods on a set of test data.

1.3.1 Introduction to independent component analysis

In this section, we introduce the use of mutual information as a contrast function

and the motivation for the choice of the basis {w1, . . . , wr}. Then, we describe

transformations of the simulator output that simplify the mutual information and

thus allow it to be (approximately) computed by using approximations to entropy.

It is shown here how independent component analysis builds on principal compo-

nent analysis through the use of the whitening transform. The basis {w1, . . . , wr}
is chosen to ensure linear independence of the associated projections, which dif-

fers to the aim of uncorrelated projections used in principal component analysis,

such that in this case the basis vectors are not required to be orthogonal. See

Remark 1.2 for a recap on the differences between independent, uncorrelated and

orthogonal vectors.

Remark 1.2: Independent or uncorrelated

The definition of linearly independent and uncorrelated vectors are often con-
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1.3 Independent Component Analysis

fused with one-another (and with that for orthogonal), and so they are repeated

here for clarity. See Rodgers et al. (1984) for more information.

Suppose x ∈ Rp is an observation from the random vector X, and y ∈ Rp

is an observation from the random vector Y. Then,

1. Linearly independent: x and y are linearly independent if and only if

ax− y 6= 0 for all a ∈ R;

2. Orthogonal: x and y are orthogonal if and only if x>y = 0;

3. Uncorrelated: x and y are uncorrelated if and only if (x− x̄1)>(y− ȳ1) =

0, where x̄ (respectively, ȳ) is the arithmetic mean of x (y), and every

element of the vector 1 ∈ Rp is 1.

Note that all uncorrelated and orthogonal vectors are linearly independent,

but the converse is not true. See Rodgers et al. (1984, Figure 1.) for a simple

example showing the relationships between the three definitions.

As before, let the simulator output be given by {x1, . . . , xn}. Then, the basic

assumption underpinning independent component analysis is that each xi is a

linear combination of some unknown sources s1, . . . , sn ∈ Rp that are statistically

independent. That is, with xi = (xi1, . . . , xip), si = (si1, . . . , sip), we assume

xij =

p∑
k=1

sikbkj,

for i = 1, . . . , n, and j = 1, . . . , p, where B = (bij) ∈ Rp×p is known as the mixing

matrix. Here, it is assumed that the number of sources is equal to the dimension of

the simulator output, such that B = (b1 b2 · · · bp) ∈ Rp×p and S = (s1 s2 · · · sn)> ∈
Rn×p. Then, xi =

∑p
k=1 sikbk and X = SB>. For the more general case where

S ∈ Rn×N , N 6= p, see Comon (1994); Ilin et al. (2006). In the climate case, the

vectors si ∈ Rp can be thought of as some set of fundamental climate system states

varying in time, with the elements of the vectors being statistically independent
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from one-another.

With this set-up, the motivation behind independent component analysis is to

be able to obtain some estimate of the matrix S from the mixed observations X.

That is, independent component analysis attempts to find the de-mixing matrix

W such that XW = S. Here it is remarked that by extracting statistically inde-

pendent components, independent component analysis makes use of higher-order

statistics compared to principal component analysis, which only uses second-order

statistics for obtaining components (Aires et al., 2000). From this motivation, we

introduce a contrast function that results in the statistically independent sources

being found in theory, which is achieved by finding a de-mixing matrix W . In

Section 1.3.1.1 we discuss the theory underpinning the contrast function of in-

dependent component analysis in terms of random variables, and then in terms

of realisations from these random variables (for example, output from a climate

simulator) in Section 1.3.1.2.

1.3.1.1 Contrast function in terms of random variables

Following Comon (1994), let X ∈ Rp be a random variable with probability density

function h : Rp → [0,∞). Then, X has mutually independent components if and

only if the probability density function can be written as h(x) =
∏p

i=1 hi(xi), for

any x = (x1, . . . , xp) ∈ Rp, where hi : R→ [0,∞), i = 1, . . . , p, are the probability

density functions of each element of X. This motivates using Kullback–Leibler

divergence (Kullback & Leibler, 1951), and more specifically, the mutual informa-

tion, to measure the “distance” between h(x) and
∏p

i=1 hi(xi). Mutual information

is zero if and only if the components of X are statistically independent and positive

otherwise, and is given by

D
[
h,

p∏
i=1

hi

]
=

∫
Rp
h(x) log

(
h(x)∏p
i=1 hi(x)

)
dx.

Square brackets are used here to indicate that D is a functional, taking the func-

tions h and
∏p

i=1 hi, as its arguments.
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1.3 Independent Component Analysis

The next step involves writing D
[
h,
∏p

i=1 hi
]

in terms of a different functional

and the covariance matrix of X. Then, we will explain how to simplify the mutual

information in terms of this new functional by transforming the random variable

X.

First, we define the differential entropy of X as,

H[h] := −
∫
Rp
h(x) log h(x) dx, (1.7)

whenever this integral exists (Cover & Thomas, 2012). This is referred to as

‘entropy’ going forward, even though it is well known that differential entropy is not

the limit of the discrete random variable version of entropy (known as Shannon’s

entropy). In the special case of a Gaussian random variable with covariance matrix

Σ ∈ Rp×p the entropy can be calculated explicitly and it takes the value η(Σ) given

by

η(Σ) :=
1

2

(
p+ p log(2π) + log(det Σ)

)
. (1.8)

It is known that this is an upper bound for entropy, namely the entropy of any

random variable with first two moments finite and (invertible) covariance matrix K

will belong to the interval (−∞, η(K)]. In the one-dimensional case for a Gaussian

random variable with variance σ2, (1.8) becomes

η(σ2) =
1

2

(
1 + log(2πσ2)

)
. (1.9)

The negentropy J is defined as

J [h] := η(Σ)−H[h], (1.10)

where η(Σ) is given by (1.8). Therefore, J [h] ∈ [0,∞), and negentropy is zero

when the distribution with density h is Gaussian, and strictly greater than zero

otherwise.

The Kullback-Leibler divergence can be written is terms of the negentropy and
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the covariance matrix of X, given by KXX, as

D
[
h,

p∏
i=1

hi

]
= J [h]−

p∑
i=1

J [hi] +
1

2
log

∏p
i=1(KXX)ii
detKXX

. (1.11)

It is shown in Comon (1994), that the last term of (1.11) is zero for a standardised

random variable where the covariance matrix is the diagonal matrix Ip. That is,

for the standardised version of X, given by Y with probability density function g,

(1.11) becomes,

D
[
g,

p∏
i=1

gi

]
= J [g]−

p∑
i=1

J [gi]. (1.12)

Now, let some orthogonal transformation of the standardised random variable Y be

given by Z and have probability density function f . Then, the equality J [g] = J [f ]

is satisfied (Comon, 1994), such that we have D
[
f,
∏p

i=1 fi
]

= D
[
g,
∏p

i=1 fi
]
.

Therefore, for a standardised random variable in Rp, minimising the Kullback-

Leibler divergence (1.12) over the set of orthogonal transformations is equivalent

to maximising
∑p

i=1 J [fi].

This motivates both the use of standardising the data and of negentropy as

a contrast function to use in independent component analysis, which is now pre-

sented in terms of realisations from a random variable in Section 1.3.1.2.

1.3.1.2 Contrast function in terms of realisations from random vari-

ables

Let X = (x1 x2 · · ·xn)> ∈ Rn×p be a set of n observations from the random variable

X ∈ Rp. Then, the standardisation procedure is known as whitening and is a form

of principal component analysis described in Section 1.2. Let CX be the sample

covariance matrix of X̃, such that

CX =
1

n− 1
X̃>X̃,

where X̃ is X with centred columns with rank r ≤ min{n− 1, p}, as described in

Section 1.2.2. Then, the singular value decomposition of X̃ is denoted UΛV > where
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U ∈ Rn×r, V ∈ Rp×r are column-orthogonal, and Λ ∈ Rr×r is diagonal with ele-

ments λi, i = 1, . . . , p. Following notational convention as described in Remark 1.1,

set Y = X̃A ∈ Rn×r with A =
√
n− 1V Λ−1, where Λ−1 = diag(1/λi) ∈ Rr×r.

Then, the sample covariance matrix of Y is

CY =
1

n− 1
A>X̃>X̃A

=
1

n− 1
(
√
n− 1V Λ−1)>V ΛV >(

√
n− 1V Λ−1)

= Ir

and Y is known as a whitened version of X. Here, V is exactly the set of principal

directions obtained by principal component analysis, and thus whitening can be

considered as just projecting the data onto the principal directions, each scaled by
√
n− 1/λi = 1/

√
γi, where γi gives the variance of the ith principal component.

Now, in terms of random variables, the aim of maximising
∑p

i=1 J [fi] as dis-

cussed in Section 1.3.1.1 becomes: find the orthogonal matrix Q ∈ Rr×r such that

the transformation Z = Y Q ∈ Rn×r of the whitened data Y maximises

r∑
i=1

Ĵ(zi).

Here, Z = (z1 z2 · · · zr) is such that zi is the ith column of Z, and Ĵ is some

approximation to the one-dimensional negentropy J [fi] =
∫
R fi(x) log fi(x) dx.

Once the orthogonal matrix Q ∈ Rr×r has been determined, then the de-mixing

matrix W such that XW = S, as discussed at the beginning of this section, is

given by,

W =
√
n− 1V Λ−1Q.

Note that W is not an orthogonal matrix in general, as the whitening matrix

A =
√
n− 1V Λ−1 is not orthogonal. In practice, often we determine the orthogo-

nal matrix Q = (q1 q2 · · · qp) column-wise, where initially, q1 ∈ Rr−1P is found such

that Ĵ(z1) is maximised. Then for each subsequent iteration j = 2, 3, . . . , p, the

vector qj ∈ Rr−1P is found that maximises Ĵ(zj) with the constraint q>j qi = 0 for
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1. DIMENSION REDUCTION

i = 1, . . . , j − 1. The independent component analysis method for data X ∈ Rn×p

is summarised in Panel 1.4.

Panel 1.4: Independent component analysis computational method

Suppose the simulator output is given by the matrix X = (x1 · · · xn)> ∈
Rn×p. Let X̃ be the matrix X with centred columns. Then, the independent
components are found in the following way:

1. Perform singular value decomposition on X̃ to obtain matrices Λ =
diag(λi) ∈ Rr×r and V = (v1 · · · vr) ∈ Rp×r, where r = rank(X̃). Note
that this is the same step as in principal component analysis as described
in Panel 1.3;

2. Set A =
√
n− 1V Λ−1 and perform whitening on X to give a whitened

matrix Y = X̃A ∈ Rn×r;

3. Find the orthogonal matrix Q ∈ Rr×r such that the orthogonal trans-
form of Y , given by Z = Y Q ∈ Rn×r maximises

∑r
i=1 Ĵ(zi), where zi,

i = 1, . . . r, are the columns of Z and Ĵ is some approximation to (one-
dimensional) negentropy (1.10). The matrix Q = (q1 q2 · · · qr) is often
found column-wise in the following way:

(a) Find q1 ∈ Rr−1P that satisfies

q1 = argmax
q∈Rr−1P

Ĵ(Y q);

(b) For j = 2, . . . , r, find qj ∈ Rr−1P that satisfies

qj = argmax
q∈Rr−1P

q⊥{q1,...,qj−1}

Ĵ(Y q);

4. Set W = AQ =
√
n− 1V Λ−1Q ∈ Rp×r.

Then, the columns of W form a basis, {w1, w2, . . . , wr}, such that wi, i =
1, . . . , r, is the ith independent direction.
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1.3 Independent Component Analysis

One method for finding an approximation of entropy and negentropy of a one-

dimensional random variable, called M -spacing (neg)entropy, is discussed below

in Section 1.3.1.3.

Similar to principal component analysis, when performing sequential indepen-

dent component analysis in practice often only l < r vectors from the basis

{w1, . . . , wr} are found. When following the sequential method such that the

orthogonal matrix Q ∈ Rr×r is found column-wise, the first basis vector w1 de-

scribes the direction onto which the projection of Y is most non-Gaussian (i.e.

obtains maximum negentropy), with subsequent basis vectors giving projections

with decreasing negentropy. Often, finding the columns of Q is computationally

intensive and therefore l is chosen to be small so only the few most “interesting”

projections of Y are found.

Remark 1.3: Choosing l in independent component analysis methods

We make a short remark here to help address the confusion that can arise

around selecting the value of l and of r in independent component analysis.

Note that in the above description of independent component analysis, only

l is chosen by the user to give independent component directions {w1, . . . , wl},

and the value of r is given by the rank of the centred matrix X̃. This is

because, in theory, the whitening step (i.e. the principal component analysis

step) should only be used for transforming X to have covariance matrix equal

the identity matrix. Ideally, it should not be used for dimension reduction prior

to finding the orthogonal matrix Q. When the whitening matrix also reduces

the dimension of the data below the rank of X̃, i.e. Y = X̃A ∈ Rn×r̃ in Step 2.

of Panel 1.4 with r̃ < r, then this is equivalent to choosing the first r̃ principal

component directions, which inherently favour Gaussian projections. This goes

against the motivation of independent component analysis, which aims for non-

Gaussian projections. However, in practice often one must choose an r̃ < r,

as optimising negentropy over the projective space Rr−1P is a computationally
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1. DIMENSION REDUCTION

intensive task, which is made simpler by restricting the space of directions

to Rr̃−1P. In addition, a choice of r̃ < r in the whitening step reduces the

likelihood of numerical issues that can occur in Step 3. (Panel 1.4).

In some computational implementations of independent component anal-

ysis methods, the choice of l is confused with that of the number r. For

example, in ‘fastICA’ (Marchini et al., 2013), the user specifies l, but this

number is also chosen as the number of principal component directions used

in Step 2. (Panel 1.4). Whilst often a choice of r̃ < r is required to be made,

defaulting this choice to r̃ = l will in general result in a suboptimal outcome.

For the ‘fastICA’ function, the matrix found in Step 2. is Y ∈ Rn×l, and

then the orthogonal matrix Q ∈ Rl×l is found is found in Step 3. such that

Z = Y Q ∈ Rn×l maximises
∑l

i=1 Ĵ(zi). The use of only l principal compo-

nent directions in the whitening step fundamentally changes the basis vectors

{w1, . . . , wl} obtained.

1.3.1.3 Entropy approximation: M-spacing

In this section we describe an approximation of (one-dimensional) differential en-

tropy and negentropy, denoted by Ĵ in Section 1.3.1 above, using the M -spacing

method. If the random variable X ∈ R has probability density function f and

variance σ2 ∈ (0,∞), the differential entropy H[f ] as defined in (1.7) can take any

value on the interval (−∞, η(σ)], where η(σ) = 1
2

(
1 + log(2πσ2)

)
is the entropy of

a one-dimensional Gaussian random variable with variance σ2, (give in (1.9)). As

the definition of entropy involves the integral of a density, efficient estimation of

entropy from data is not trivial. For a survey of different methods to estimate en-

tropy from data, see Beirlant et al. (1997). Here, we only consider the M -spacing

estimator, originally given in Vasicek (1976).

From Beirlant et al. (1997), the entropy approximation is based on sample

spacings. Suppose d1, d2, . . . , dn ∈ R is a sample of one-dimensional points from a

distribution with density f , and d(1), d(2), . . . , d(n) is the ordering such that d(1) ≤
d(2) ≤ · · · ≤ d(n). Define the M -spacing difference to be ∆Mdi = d(i+M) − d(i) for
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1.3 Independent Component Analysis

M ∈ {3, . . . , n−1} and i ∈ {1, 2, . . . , n−M}. Then the M -spacing approximation

for entropy H[f ] for a sample d = (d1, d2, . . . , dn) is denoted by HM,n(d) and is

given by

HM,n(d) =
1

n

n−M∑
i=1

log
( n
M

∆Mdi

)
− ψ(M) + log(M), (1.13)

where ψ(x) = − d
dx

Γ(x) is the Digamma function. This is a realisation of the

general M -spacing formula given in Hall (1984). Algorithm 1.1 gives the pseudo-

code for calculating M -spacing entropy in practice.

Algorithm 1.1: M -spacing entropy

1 input : data vector , d ; M−spac ing parameter , M

2 output : entropy approximation , h

3 begin

4 d = (d1, d2, . . . , dn)> ∈ Rn

5 % f i r s t need to order d by a permutation such tha t d(1) ≤ d(2) ≤ · · · ≤ d(n)

6 dπ ← (d(1), d(2), . . . , d(n) ) ,

7 % ca l c u l a t e M−spac ing d i f f e r e n c e o f d

8 for i in 1 : (n−M)

9 ∆di ← d(M+i) − d(i)

10 end for

11 % ca l c u l a t e M−spac ing entropy o f d

12 h← (1/n) ∗
∑n−M
j=1 (log(n ∗∆dj/M))− digamma(M) + log(M)

13 return h

14 end

It is worth noting that the M -spacing approximation of differential entropy

does not require a density estimation step. Also, in general the objective function

is not very smooth, although increasing spacing size M does result in a smoother

function. A method to attempt to overcome the non-smoothness (and the resulting

local extrema, which can cause numerical optimisation issues) is given in Learned-

Miller & Fisher III (2003) and involves replicating the data with some added

Gaussian noise. The M -spacing method also requires sorting of the data, which

has computational cost of O(n log n).
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Derivative of M-spacing entropy approximation. Let y1, y2, . . . , yn ∈ Rp

such that Y = (y1, y2, . . . , yn)> ∈ Rn×p is a whitened data matrix. Finding a

(one-dimensional) projection of the data in independent component analysis is

equivalent to finding z = Y q for some direction q ∈ Rr−1P. Given any q, entropy

can be calculated for this projection using the M -spacing algorithm described

above, HM,n(Y q) = HM,n(z). As the aim of independent component analysis here

is to obtain a projection z = Y q that maximises negentropy over all q ∈ Rp−1P,

in practice the M -spacing approximation to entropy can be minimised using some

optimisation procedure. That is, we need to find the optimal direction q∗ that

minimises entropy, q∗ = argminqHM,n(Y q) for some fixed M > 2.

It is well known that minimisation is significantly more efficient if the derivative

of the function to be optimised is known, and therefore we give the derivation of

M -spacing here. Furthermore, the derivative for a special case of the direction

q = Rṽ ∈ Rr−1P is given, where R ∈ Rr×r is some symmetric orthogonal matrix

and ṽ = (0, . . . , 0, v)> ∈ Rr−1P with v ∈ Rk−1P for some k < r. This special case

is required for the clusterICA method introduced in Section 1.4.2, and is used to

ensure that the independent component analysis loadings found sequentially (as

in Step 3. of Panel 1.4) are orthogonal. This is described in more detail later.

Lemma 1.3.1. (i) Let Y = (y1, y2, . . . , yn)> ∈ Rn×r and q ∈ Rr−1P. Let

{π(1), π(2), . . . , π(n)} be a permutation of {1, 2, . . . , n} such that (Y q)π(1) ≤

(Y q)π(2) ≤ · · · ≤ (Y q)π(n). Then, with HM,n as in (1.13),

∂

∂qj
HM,n(Y q) =

1

n

n−M∑
i=1

Yπ(i+M),j − Yπ(i),j

(Y q)π(i+M) − (Y q)π(i)

,

where Yi,j ∈ R is the (i, j)th element of the matrix Y . 1

(ii) In the special case where q = Rṽ, with R = (rij) ∈ Rr×r a given symmetric

1The π notation for the order permutation is introduced here to emphasise that the ordering
is of the values (Y q)π(i), and this ordering is constant throughout the lemma. That is, whereas

Y(i)j would be the ith smallest value from the jth column of Y , we have Yπ(i),j , which is the row

number of the jth column that corresponds to the ith smallest value of the vector Y q.
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1.3 Independent Component Analysis

orthogonal matrix and ṽ = (0, 0, . . . , 0, v)> ∈ Rr with v ∈ Rk, k < r, then

∇vHM,n(Y Rṽ) = ∇qHM,n(Y q)|q=Rṽ
dRṽ

dv
,

and,

dRṽ

dv
=

d

dv
R


0
...

0

v

 =


r1,r−k r1,r−k+1 · · · r1,r

r2,r−k r2,r−k+1 · · · r2,r

...
...

. . .
...

rr,r−k rr,r−k+1 · · · rr,r

 .

Proof. Part (i). We have (Y q)π(i) =
∑r

l=1 Yπ(i),lql, and therefore ∂
∂qj

(Y q)π(i) =

Yπ(i),j for j = 1, 2, . . . , p. Now,

∂

∂qj
HM,n(Y q) =

1

n

n−M∑
i=1

1
n
M

(
(Y q)π(i+M) − (Y q)π(i)

) · n
M

(
Yπ(i+M),j − Yπ(i),j

)
=

1

n

n−M∑
i=1

Yπ(i+M),j − Yπ(i),j

(Y q)π(i+M) − (Y q)π(i)

,

as required.

Part (ii). This can be easily calculated using the chain-rule and part (i).

1.3.1.4 Invariance to scaling of the independent component analysis

method

The result obtained from independent component analysis is independent to affine

transformations of the data relating to each dimension. That is, for simulator

outputX ∈ Rn×p and any diagonal matrixD ∈ Rp×p, then independent component

analysis applied to X is equivalent to that applied to XD. To prove this, recall

that independent component analysis consists of two main steps. The first is

whitening, where a matrix A ∈ Rp×r is found such that Y = XA satisfies Y >Y/(n−
1) = Ir. The second step of independent component analysis is in finding an

orthogonal matrix Q ∈ Rr×r such that Z = XAQ maximises the contrast function.
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Therefore, it is sufficient to show that whitening of X is equal, up to an orthogonal

transformation, to whitening of XD. This is shown in Lemma 1.3.3. Note that

invariance to scaling does not transfer to principal component analysis where pre-

processing in this manner affects the result and is used often by, for example,

scaling the data such that the columns of XD have unit variance.

Lemma 1.3.2. Let X ∈ Rn×p, A ∈ Rp×q and XA, such that rank(X) = rank(XA).

Then, there exists a matrix B ∈ Rq×p such that

XAB = X.

Proof. As r := rank(X) = rank(XA), the column-space, colsp(XA) = colsp(X).

Let W ∈ Rn×r be a matrix such that the columns form a basis of colsp(X).

Then, there exists some matrices P ∈ Rr×p, Q ∈ Rr×q such that X = WP and

XA = WQ.

Now, rank(WQ) = r = rank(W ) and W has full column-rank (as the columns

form a basis). Therefore, Q has full row-rank (linearly independent rows) and

therefore there exists a Moore–Penrose inverse which can be written as Q+ =

Q>(QQ>)−1, and satisfies QQ+ = Ir.

From this,

XAQ+P = WQQ+P = WP = X,

and setting B = Q+P concludes the proof.1

Lemma 1.3.3. Let X ∈ Rn×p with rank(X) = r and, for i ∈ {1, 2} let Ai ∈ Rp×r

such that Yi := XAi satisfies Y >i Yi/(n− 1) = Ir. Then there exists an orthogonal

matrix Q ∈ Rr×r such that Y1 = Y2Q.

Proof. Using Lemma 1.3.2 as rank(X) = r, set B ∈ Rr×p such that Y2B =

XA2B = X. Let Q = BA1. Then Y1 = XA1 = XA2BA1 = Y2Q as required.

1Thanks goes to stackexchange user ‘user1551’ for help with this proof: https://math.

stackexchange.com/questions/3711293.
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1.3 Independent Component Analysis

Furthermore,

Q>Q = A>1 B
>BA1

= A>1 B
>Y

>
2 Y2

n− 1
BA1

= A>1
X>X

n− 1
A1

=
Y >1 Y1

n− 1

= Ir,

and thus Q is orthogonal.

1.3.2 Independent component analysis scenarios: simula-

tor and output size

This section discusses the same four cases introduced in Section 1.2.3, but now

in terms of independent component analysis. Figure 1.2 gives an overview of the

four cases that can be encountered within the independent component analysis

framework.

1.3.2.1 Case 1: n <∞, p <∞

As discussed in Section 1.2.3 with regards to principal component analysis, this is

the case of the output of all simulators in practice.

When the data consists of n sets of p variables, x1, x2, . . . , xn ∈ Rp, with

X = (x1, x2, . . . , xn)> ∈ Rn×p, then the theory of independent component analysis

is as given in Section 1.3.1.2 above.

1.3.2.2 Case 2: n =∞, p <∞

In this case the distribution of X ∈ Rp is known. Therefore the true distribution of

the standardised random variable Y is known, and thus so is the density of Yq for
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n <∞, p <∞ n <∞, p =∞

n =∞, p <∞ n =∞, p =∞

Case 1: “Standard” ICA
X = (x1, . . . , xn)> ∈ Rn×p, whitened to

Y = (y1, . . . , yn)> ∈ Rn×r

Aim: q ∈ Rr−1P such that the (esti-

mated) density of Y q maximises negentropy.

Case 3: “Functional ICA”
x = (x1, . . . , xn), xi ∈ L2([0, T ]),

Aim: standardise x to
y = (y1, . . . , yn), yi ∈ L2([0, T ]),

and find a function q : [0, T ] → R such

that the (estimated) density of
∫
yiq dt,

i = 1, . . . , n maximises negentropy

Case 2: “Standard” ICA (with perfect data)
The distribution of random
vector X ∈ Rp is known.

Standardise to get random vector Y ∈ Rp.
Aim: q ∈ Rp−1P such that the (true,

known) density of Y q maximises negentropy.

Case 4: “Functional ICA” (with perfect data)
The distribution of the random
function (X(t))t∈[0,T ] is known.
Standardised to, (Y(t))t∈[0,T ].

Aim: Find a function q : [0, T ] → R
such that the distribution of∫
Yq dt maximises negentropy

Figure 1.2: Four ICA Cases
,

q ∈ Rp−1P. However, in general the negentropy will still need to be approximated,

for instance using M -spacing as described in Section 1.3.1.3.

1.3.2.3 Case 3: n <∞, p =∞

Let (X(t))t∈[0,T ] be an R-valued stochastic process, with EX(t) = µ(t) < ∞ for

t ∈ [0, T ], and suppose that we have n independent realisations of this random

function. That is,

x(t) =
(
x1(t), x2(t), . . . , xn(t)

)
for t ∈ [0, T ].

In the context of functional independent component analysis, we required w ∈
L2([0, T ]) such that

∫ T
0
w(t)2 dt = 1 (notated w ∈ R∞P) minimises the mutual
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information of the density estimated from the points

(∫ T

0

x1(t)w(t) dt,

∫ T

0

x2(t)w(t) dt, . . . ,

∫ T

0

xn(t)w(t) dt
)
. (1.14)

One question that arises immediately is whether it is possible to whiten the

data x, as this is the motivation for using negentropy as the contrast function as

discussed in Section 1.3.1.1. First, consider the standard empirical approximation

to Cx(s, t) for the sample x, given by

Cx(s, t) =
1

n

n∑
i=1

(
xi(s)− x(s)

)(
xi(t)− x(t)

)
,

where x̄ = 1/n
∑n

i=1 xi.

Now, for some w ∈ R∞P, the covariance function of xi(t)w(t), i = 1, . . . , n

becomes

Cw
x (s, t) =

1

n− 1

n∑
i=1

(
xi(s)w(s)− x(s)w(s)

)(
xi(t)w(t)− x(t)w(t)

)
=

1

n− 1
w(s)w(t)

n∑
i=1

(
xi(s)− x(s)

)(
xi(t)− x(t)

)
.

For the whitening process when p <∞ the aim is for the covariance matrix of

the whitened data to be the identity matrix, and thus the variance of the projected

whitened data for any projection q ∈ Rr−1P, r ≤ min{n − 1, p}, is one. Näıvely

expanding this to the p = ∞ case, the aim would be for the covariance function

of the transformed data y to be equal to Cy(s, t) = δ{s=t}. However in this case,

(
Cyf

)
(t) =

∫ T

0

δ{s=t}f(s) ds = f(t),

and thus Cy is not trace class (as
∑∞

i=1 vi =
∑∞

i=1 1 = ∞) and so is not a valid

covariance operator.

One (computationally expensive) option that avoids the need for whitening is
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to scale the projected data (1.14) for every projection w ∈ R∞P such that it has

unit variance. Therefore, the negentropy calculated for each projection will be

comparable. In this case, the steps for functional independent component analysis

will be:

1. Choose w ∈ S∞;

2. Project data to R, x(w) =
(∫ T

0
x1(t)w(t) dt,

∫ T
0
x2(t)w(t) dt, . . . ,

∫ T
0
xn(t)w(t) dt

)
;

3. Standardise the data y(w) such that σ̂
(w)
y := 1

n−1
(y(w))>y(w) = 1;

4. Estimate the negentropy of the standardised data;

5. Repeat Steps 1. - 4. to obtain the w ∈ R∞P that maximises negentropy.

1.3.2.4 Case 4: n =∞, p =∞

In this case the random function X(t), t ∈ [0, T ], is known exactly and thus so is

X(t)w(t) for w ∈ R∞P. However, in general the negentropy of each projection will

need to be approximated and maximised over all w ∈ S∞. On top of this, the issue

of whitening the random function X(t), t ∈ [0, T ] still needs to be considered.

The limit of the size of some data, n, p → ∞ is covered in Diaconis & Freed-

man (1984), where it is shown that in many cases virtually all one-dimensional

projections of high-dimensional data are Gaussian. The case where p = ∞ and

n → ∞ is covered in von Weizsäcker (1997). These results are motivation for us-

ing independent component analysis in the high dimensional setting, as projections

that result in non-Gaussian distributions are scarce and thus can be considered

“interesting”.
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1.4 Methods For Independent Component Analysis

1.4 Methods For Independent Component Anal-

ysis

1.4.1 fastICA

This section has formed part of the paper titled ‘On the Estimation of Entropy in

the FastICA Algorithm’, written by the author, Elena Issoglio and Jochen Voss,

and published in the Journal of Multivariate Analysis (Smith et al., 2020). In this

section we introduce the fastICA method and establish some notational consis-

tency. We then examine the approximations used to obtain the contrast function,

and give a new understanding of some of the theoretical issues in the method.

A widely used method to perform independent component analysis in higher

dimensions is fastICA (Hyvärinen & Oja, 2000). This method has found applica-

tions in areas as wide ranging as facial recognition (Draper et al., 2003), epileptic

seizure detection (Yang et al., 2015) and fault detection in wind turbines (Farhat

et al., 2017). Recent works on extensions of the algorithm can be seen in Miettinen

et al. (2014), Ghaffarian & Ghaffarian (2014) and He et al. (2017). The fastICA

method uses a series of substitutions and approximations of the projected density

and its entropy. It then applies an iterative scheme for optimising the resulting

contrast function (which is an approximation to negentropy). Because of its pop-

ularity in many areas, analysis and evaluation of the strengths and weaknesses of

the fastICA algorithm is crucially important. In particular, we need to understand

both how well the contrast function estimates entropy and the performance of the

optimisation procedure.

The main strength of the fastICA method is its speed, which is considerably

higher than many other methods. Furthermore, if the data is a mixture of a small

number of underlying factors, fastICA is often able to correctly identify these

factors. However, fastICA also has some drawbacks, which have been pointed out

in the literature. Learned-Miller & Fisher III (2003) use test problems from Bach &

Jordan (2002) with performance measured by the Amari error (Amari et al., 1996)

to compare fastICA to other independent component analysis methods. They

find that these perform better than fastICA on many examples. Focussing on a
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different aspect, Wei (2014) investigates issues with the convergence of the iterative

scheme employed by fastICA to optimise the contrast function. In Wei (2017)

it is shown that the two most common fastICA contrast functions fail to de-

mix certain bimodal distributions with Gaussian mixtures, although some other

contrast function choices (related to classical kurtosis estimation) may give reliable

results within the fastICA framework.

In this section we identify and discuss a more fundamental problem with fas-

tICA. We demonstrate that the approximations used in fastICA can lead to a

contrast function where the optimal points no longer correspond to directions of

low entropy.

1.4.1.1 The fastICA algorithm.

The exposition starts by describing the fastICA method from Hyvärinen & Oja

(2000). The aim of this method is to efficiently find a projection of given (whitened)

data which minimises entropy. The theory behind this method was originally

introduced in Hyvärinen (1998), although here we adjust the notation to match

the rest of this section. We will mention explicitly where our notation differs from

Hyvärinen (1998) and Hyvärinen & Oja (2000). We will write ‘fastICA’ when we

are discussing the theoretical method, and ‘fastICA’ when we are discussing the

R implementation from the fastICA CRAN package (Marchini et al., 2013).

As the definition of entropy (given in Section 1.3.1) involves the integral of the

density, the estimation of entropy or negentropy from data is not trivial. The M -

spacing technique described in Section 1.3.1.3 is a good, albeit slow, approximation.

The fastICA method provides a more efficient way to estimate negentropy J [f ]

(given in (1.10)) by using a series of approximations and substitutions both for f

and for J [·] to obtain a surrogate for negentropy J [f ] which is then subsequently

maximised. The reason behind these substitutions is to reduce computational cost,

but the drawback is that the resulting approximation may be very different from

the true contrast function.

The fastICA method to obtain the first loading from data X ∈ Rn×p follows

the steps given below.
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(i) Whiten the data to obtain Y ∈ Rn×r with r = rank(X̃), where X̃ is column-

wise centred version of X (see Remark 1.1), such that CY = Ir (Hyvärinen

& Oja, 2000, Section 5.2);

(ii) Iteratively find the optimal direction q∗, given by

q∗ = argmax
q∈Rr−1P

Ĵ∗(Y q), (1.15)

where Ĵ∗ is an approximation to negentropy, given in (1.22) below.

If more than one loading is required, then Step (ii) is repeated for each subsequent

new direction, with the added constraint that q must be orthogonal to the previ-

ously found directions. This can be implemented within the fastICA framework

using Gram-Schmidt orthogonalisation (Hyvärinen & Oja, 2000, Section 6.2). This

is known as the deflation fastICA method. There is also a parallel fastICA method

that finds all loadings concurrently, although we do not consider this here.

In the literature regarding fastICA it is often the convergence of the iterative

method to solve (1.15) that is examined. It can be shown, for example in Wei

(2014), that in certain situations this iterative step fails to find a good approxi-

mation for q∗. In contrast, here we consider the mathematical substitutions and

approximations used in the derivation of Ĵ∗(Y q).

Assumption 1.4.1 given below introduces the technical assumptions given in

Hyvärinen (1998, Sections 4 and 6). The notation used in this section has been

slightly adjusted from Hyvärinen (1998) to aid understanding.

Assumption 1.4.1. Let Gi, i = 1, 2, . . . , I be functions that do not grow faster

than quadratically. Let ϕ(·) denote the density of a standard Gaussian random

variable and assume that there are αi, βi, γi, δi, i = 1, 2, . . . , I, such that the func-

tions

Ki(x) :=
Gi(x) + αix

2 + βix+ γi
δi

, (1.16)
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satisfy

∫
R
Ki(x)Kj(x)ϕ(x) dx = 1{i=j}; and, (1.17a)∫

R
Ki(x)xkϕ(x) dx = 0, for k = 0, 1, 2, (1.17b)

for i, j = 1, 2, . . . , I, where 1{i=j} = 1 if i = j and zero otherwise.

The functions Gi are given as Ḡi in Hyvärinen (1998) and as Gi in Hyvärinen

& Oja (2000). The functions Ki are described in Hyvärinen (1998, Section 6) and

are called Gi there.

The fastICA algorithm only implements the case I = 1. In this case, the

function G1 can be chosen nearly arbitrarily so long as it does not grow faster than

quadratically: It is easy to show that for every G which is not exactly equal to a

second order polynomial, a function K1 can be found that satisfies the conditions

given in (1.17) by choosing suitable α1, β1, γ1 and δ1. For general I ∈ N, specific

Gi, i = 1, 2, . . . , I must be chosen for the conditions (1.17) to hold. With I = 2, the

functions G1(x) = x3 and G2(x) = x4 are proposed in the literature (Hyvärinen,

1998, Section 7) and seem to be useful in practice, even though these functions

violate the growth condition from Assumption 1.4.1. We have not found any

examples of specific functions Gi that satisfy (1.17) for I > 2 in the fastICA

literature.

Let q ∈ Rr−1P and z = (z1, z2, . . . , zn) = Y q ∈ Rn be the data projected

onto q. Since the data has been whitened, z has sample mean 0 and sample

variance 1. Further, let f : R → R be the unknown density of the population-

level-whitened and projected data. Then f satisfies
∫
f(x) dx = 1,

∫
x f(x) dx = 0

and
∫
x2 f(x) dx = 1. We need to estimate the negentropy J [f ] using the data

z1, . . . , zn. Define

ci := EfKi(Z) =

∫
f(x)Ki(x) dx, (1.18)

where Z is a random variable with density f , for all i ∈ {1, . . . I}. For I = 1,

setting K(x) := K1(x), G(x) := G1(x) and c := c1, the derivation of the contrast

function used in the fastICA method then consists of the steps given in Panel 1.5

below.
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Panel 1.5: FastICA steps

1. Replace f by a density f0 given by

f0(x) = A exp
(
κx+ ζx2 + aK(x)

)
, (1.19)

for all x ∈ R. The constants A, κ, ζ and a are chosen to minimise
negentropy (maximise entropy) under the constraints

∫
f0(x)K(x) dx =

c. In Proposition 1.4.3 we will show that J [f0] ≤ J [f ].

2. Approximate f0 by f̂0 defined as

f̂0(x) = ϕ(x)
(
1 + cK(x)

)
(1.20)

for all x ∈ R. In Theorem 1.4.7 we will show J [f̂0] ≈ J [f0].

3. Approximate J [f̂0] by second order Taylor expansion,

Ĵ [f̂0] =
1

C

(
EfG(Z)− EϕG(N)

)2
, (1.21)

where Z is a random variable with density f , N ∼ N(0, 1), and C some
constant. Note that, maybe surprisingly, Z has density f , not f0. In
Lemma 1.4.8 and Remark 1.7 we will show that Ĵ [f̂0] ≈ J [f̂0].

4. Use Monte-Carlo approximation for the expectations in (1.21), i.e. use

Ĵ∗(z) =
( 1

n

n∑
j=1

G(zj)−
1

L

L∑
j=1

G(nj)
)2

, (1.22)

where n1, . . . , nL are samples from a standard Gaussian and L is large.
Here Ĵ∗(z) ≈ CĴ [f̂0].

The steps in this chain of approximations are illustrated in Figure 1.3. The re-

striction to I = 1 here removes a summation from Step 1. and Step 2., therefore

simplifying Step 3. and the associated estimations in Step 4. Theoretically these

steps can be completed for arbitrary I ∈ N, although in this case a closed-form
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f J [f ]

≥

f0 J [f0]

≈≈

f̂0 J [f̂0]

≈

Ĵ [f̂0] = 1
C

(
EfG(Z)− EϕG(N)

)2

≈

1
C
Ĵ∗(y), where Ĵ∗(z) =

(
1
n

∑n
j=1 G(zj)− 1

L

∑L
j=1G(nj)

)2

Figure 1.3: Approximations used in fastICA: The fastICA contrast function Ĵ∗(y)
is used in place of negentropy J [f ]. Note that the first step involves an inequality
rather than an approximation.

version equivalent to Step 3. is much more complicated.

Before these approximations are investigated more formally in the next section,

this section is concluded with a few simple observations: The approximation to the

negentropy used in fastICA dramatically decreases the computational time needed

to find independent components. Unlike the M -spacing estimator introduced in

Section 1.3.1.3, the approximation Ĵ∗(Y q) = Ĵ∗(Xw) is a simple Monte-Carlo

estimator and does not require sorting of the data. The algorithm to solve (1.15)

also benefits from the fact that an approximate derivative of q 7→ Ĵ∗(Y q) can be

derived analytically.

In Step 1. of the procedure, we do not obtain a proper approximation, but

have an inequality instead: f is replaced with a density f0 such that J [f0] ≤
J [f ]. As a result, the q which maximises J [f0] can be very different from the one

which maximises J [f ]. In contrast, Steps 2. and 3. are proper approximations

and convergence of f̂0 to f0 for Step 2. and of Ĵ [f̂0] to J [f0] for Step 3. in the

limit ‖c‖ → 0, where c = (c1, . . . , cI) is proved in Theorem 1.4.7 and Lemma 1.4.8,

Remark 1.7 respectively. Step 4. is a simple Monte-Carlo approximation exhibiting

well-understood behaviour. From the above discussion, it seems sensible to surmise

that the loss of accuracy in fastICA is due to the surrogate used in Step 1. in
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Panel 1.5.

We conclude this section with a few simple observations: Using (1.17), (1.16)

and the fact that Z and N are standardized we find

ci = EfKi(Z)

= EfKi(Z)− EϕKi(N)

= Ef

(
Gi(Z) + αiZ

2 + βiZ + γi
δi

)
− Eϕ

(
Gi(N) + αiN

2 + βiN + γi
δi

)
=

EfGi(Z) + αi1 + βi0 + γi
δi

− EϕGi(N) + αi1 + βi0 + γi
δi

=
EfGi(Z)− EϕGi(N)

δi
.

Thus, the fastICA objective function (ignoring the final Monte Carlo approxima-

tion) satisfies Ĵ [f̂0] ∝ c2 for the case I = 1, considered above, and Ĵ [f̂0] ∝
∑I

i=1 c
2
i

in the general case. Thus, fastICA can only see the data through the ci. If the

data are approximately Gaussian, we have EfGi(Z) ≈ EϕGi(N) and ci ≈ 0 for all i

and thus Ĵ [f̂0] ≈ 0, but the opposite implication does not hold. This is in contrast

to the true negentropy, which satisfies J [f ] = 0 if and only if f is Gaussian.

A first consequence of this argument is that projections where the true distri-

bution is Gaussian will look ‘uninteresting’ to fastICA: for these directions, q, the

objective function Ĵ∗(Y q) will be small and the search for the maximum in (1.15)

will be driven away from these directions. This is particularly relevant since for

high dimensional data, where the search volume is vast, projections along most di-

rections are close to Gaussian (Diaconis & Freedman, 1984; von Weizsäcker, 1997),

so fastICA will be able to exclude much of the search volume. Conversely, if Ĵ [f̂0]

and thus ‖c‖ is large, the projected density f is not Gaussian and by maximising

(an approximation to) Ĵ [f̂0], the fastICA method will find directions which are ‘in-

teresting’. But the above discussion also shows that optima can be missed when

Ĵ [f̂0] is small, but the projected density f is still far from Gaussian. This is the

case we are concerned with in this section and thus we assume ‖c‖ ≈ 0 when we

consider the fastICA approximations in detail in the next section.
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1.4.1.2 Approximations used in the fastICA method

In this section, we investigate the validity of the approximation given in Sec-

tion 1.4.1.1. We consider Step 1. from Panel 1.5 in Proposition 1.4.3, Step 2.

in Theorem 1.4.7, and Step 3. in Proposition 1.4.9. Throughout this section, we

consider arbitrary I ∈ N for completeness. This section is all novel work which

increases understanding of the behaviour of the fastICA contrast function.

We first introduce some assumptions, in addition to Assumption 1.4.1, that are

required for the mathematics in this section to hold.

Assumption 1.4.2. There exists ε > 0 such that for all h ∈ RI with h>h < ε, we

have

h>K(x) ≥ −1

2
(1.23)

for all x ∈ R, where K(x) =
(
K1(x), K2(x), . . . , KI(x)

)
. In addition, there exists

a function M : R→ R such that

I∑
i=1

I∑
j=1

I∑
k=1

|Ki(x)Kj(x)Kk(x)| ≤M(x) for all x ∈ R, and (1.24a)∫
R
ϕ(x)M(x) dx =: M̃ <∞. (1.24b)

Note that under the condition that each Gi does not grow faster than quadrat-

ically (given in Assumption 1.4.1), we can always find some positive constants Bi,

i = 1, 2, . . . , I such that

|Ki(x)| ≤ Bi(1 + x2), (1.25)

for all x ∈ R. Note also that for I = 1 the condition given by (1.23) that there

exists an ε > 0 such that for all h ∈ [0, ε), we have hK(x) ≥ −1/2 is satisfied

as follows. Let α, β, γ, δ be parameters for which (1.17) holds. Then, (1.17) holds

also for α, β, γ,−δ. Moreover, since G does not grow faster than quadratically,

αx2 is the dominant term in K(x) as x → ±∞. Therefore, to ensure that (1.23)

holds it is enough to choose δ or −δ such that the sign is the same as that of α.
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Step 1. (Panel 1.5) We start our discussion by considering Step 1. of the

approximations. We prove that the distribution which maximises entropy for given

values of c1, . . . , cI is of the form (1.19) (where the last term is replaced by a sum,

for arbitrary I ∈ N) and thus that we indeed have J [f0] ≤ J [f ].

Proposition 1.4.3. Let f be the true density of the whitened data projected

in some direction (thus with zero mean and unit variance). Recall ci is defined

by (1.18). The density f0 that maximises entropy in the set

{
g : R→ R ; g is a density function, and

∫
R
g(x)Ki(x) dx = ci, i = 1, 2, . . . , I

}
,

is given by,

f0(x) = A exp

(
κx+ ζx2 +

I∑
i=1

aiKi(x)

)
, (1.26)

for some constants κ, ζ, A and ai, i = 1, 2, . . . , I that depend on ci, i = 1, 2, . . . , I.

It follows from this that J [f0] ≤ J [f ].

Proof. We use the method of Lagrange multipliers in the calculus of variations

(see, for example, Evans, 1998) to find a necessary condition for the density that

maximises entropy given the constraints on mean and variance, and in (1.18). See

Remark 1.4 for a short introduction to Lagrange multipliers.

Remark 1.4: Lagrange multipliers

The method of Lagrange multipliers is a common method used in optimisation

to obtain saddle points of a function given some constraints. Intuitively, the

method uses the fact that the gradient at level curves (which can be thought of

as the contour lines) is perpendicular to the curve, and that at the maximum

of the function given some constraint, the gradient of the constraint function

is in the same direction as that of the level curve. That is, with f : R2 → R

some function that maps from the two dimensional space, and the aim to find
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the optimum of f given some constraint g(x, y) = c where c ∈ R. At this

optimum, ∇f(x∗, y∗)− λ∇g(x∗, y∗) = 0, for some λ ∈ R.

Let F [·] : C2 → R be a functional of the function g : R → R, with g ∈ C2,

where C2 is the set of all twice continuously differentiable functions. Then, the

functional derivative δF/δg : R→ R is explicitly defined by

∫
R

δF

δg
(x)φ(x) dx :=

d

dε
F [g + εφ]

∣∣∣
ε=0

= lim
ε↓0

(F [g + εφ]− F [g]

ε

)
, (1.27)

for any function φ ∈ C2. The right-hand side of (1.27) is known as the Gâteaux

differential dF (g;φ) (Berger, 1977). Define the inner product of two functions by

〈g, h〉 :=
∫
R g(x)h(x) dx, with norm ‖g‖L2 := 〈g, g〉 1

2 =
(∫

R g(x)2 dx
) 1

2 . Now, the

following system of equations needs to be solved:

U [g](x) := δ
δg
H[g] + λ1

δ
δg
V [g] + λ2

δ
δg
P [g] + λ3

δ
δg
Q[g] +

∑I
i=1 νi

δ
δg
Ri[g] = 0;

V [g] = 0;

P [g] = 0;

Q[g] = 0;

Ri[g] = 0,

where λ1, λ2, λ3, νi, i = 1, . . . , I are some real numbers, H[g] is entropy as given

in (1.7), and

V [g] := Var[g]− 1 =

∫
R
g(x)x2 dx−

(∫
R
g(x)x dx

)2

− 1;

P [g] :=

∫
R
g(x) dx− 1;

Q[g] :=

∫
R
g(x)x dx;

Ri[g] :=

∫
R
g(x)Ki(x) dx− ci.
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Using (1.7) and (1.27) the term with H gives,

〈δH
δg
, φ〉 = − d

dε

∫ (
g(x) + εφ(x)

)
log
(
g(x) + εφ(x)

)
dx
∣∣∣
ε=0

= −
∫ (

g(x)
φ(x)

g(x) + εφ(x)
+ φ(x) log

(
g(x) + εφ(x)

)
+ εφ(x)

φ(x)

g(x) + εφ(x)

)
dx
∣∣∣
ε=0

= −
∫ (

1 + log g(x)
)
φ(x) dx

= 〈−1− log g(x), φ〉.

Now, looking at V [g] and using the constraint Q[g] = 0, the inner product,

〈δV
δg
, φ〉 =

d

dε

(∫ (
g(x) + εφ(x)

)
x2 dx−

(∫ (
g(x) + εφ(x)

)
x dx

)2

− 1

)∣∣∣∣
ε=0

=

∫
φ(x)x2 dx− 2

(∫
φ(x)x dx ·

∫
g(x)x dx

)
= 〈x2, φ〉 − 2〈x, φ〉 ·Q[g]

= 〈x2, φ〉.

Let L[·] : C2 → R be of the form L[g] =
∫
g(x)l(x) dx − k for some function

l : R→ R, and some constant k ∈ R. Then it is easy to check that 〈δL
δg
, φ〉 = 〈l, φ〉

and therefore
δP

δg
= 1,

δQ

δg
= x and

δRi

δg
= Ki.

Putting this into the equation for U [g] gives

U [g](x) = −1− log g(x) + λ1 + λ2x
2 + λ3x+

I∑
i=1

νiKi(x).

Setting U [g] = 0 and solving for g gives, g(x) = f0(x) = exp[λ1− 1 +λ2x
2 +λ3x+∑I

i=1 νiKi(x)] which is (1.26) with A = exp(λ1 − 1), κ = λ3, ζ = λ2 and ai = νi,

i = 1, . . . , I. Note that the constants A, κ, ζ, and ai depend on ci indirectly
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through the constraints on the Ki expressed as Ri[g] = 0.

Remark 1.5: Supremum of |J [f ]− J [f0]|

It is possible to specify a density f such that in some limit, H[f ]→∞ whilst

H[f0] remains bounded, and thus
∣∣J [f ] − J [f0]

∣∣ → ∞, with f0 the density

given in (1.19). That is, in Step 1. of the fastICA method given in Panel 1.5,

the difference between the true negentropy and the surrogate negentropy can

be arbitrarily large. For example, set the density f to be a mixture of two

independent uniform densities, i.e.

f(x) =
1

2

(
g(x; −1− ε,−1) + g(x; 1, 1 + ε)

)
where ε ∈ R and g(· ; a, b) is the density function of a uniform distribution in

the interval [a, b]. Then the expectation and variance is given by

EfZ = 0; Varf Z = 1 + ε+
ε2

3
.

As the support of g(· ; −1 − ε,−1) is disjoint from that of g(· ; 1, 1 + ε), the

entropy is,

H[f ] =
1

2

(
H[g(· ; −1− ε,−1)] +H[g(· ; 1, 1 + ε)]

)
− log(2).

Then, H[f ]→ −∞ as ε→ 0, since f tends to a pair of Dirac deltas. Also,

EfKi(Z) =: ci →
1

2

(
Ki(−1) +Ki(1)

)
, (1.28)
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as ε→ 0. With f0 as in (1.19), then

ci =

∫
Ki(x)f0(x) dx, (1.29)

and,

H[f0] =

∫
f0(x) log(A) dx+

∫
f0(x)

(
ηx+ κx2 +

I∑
i=1

aiKi(x)
)

dx

= log(A) + ηEf0X + κEf0X
2 +

I∑
i=1

aiEf0Ki(X)

= log(A) + κ+
I∑
i=1

aici.

Therefore, for H[f0] to be unbounded below as ε → 0 it would be required

for either κ → −∞, ai → −∞ or A → 0, as ci is bounded by (1.28) and

Assumption 1.4.2. However, this can not occur whilst f0 satisfies (1.29).

Step 2. (Panel 1.5) We now switch our attention to Step 2. of the approxima-

tions. As discussed in Section 1.4.1, we consider the case where c → 0. The first

step of our analysis is to identify the behaviour of the constants in the definition of

f0 as c→ 0. We then prove a few auxiliary results before concluding our discussion

of Step 2. in Theorem 1.4.7.

Proposition 1.4.4. Suppose Assumption 1.4.1 is satisfied, and let A, κ, ζ, a1, . . . , aI

be defined as in Proposition 1.4.3, as functions of c. Then

A− 1√
2π

= O(‖c‖2)

κ = O(‖c‖2)

ζ +
1

2
= O(‖c‖2)

ai − ci = O(‖c‖2), i = 1, 2, . . . , I,

51



1. DIMENSION REDUCTION

as ‖c‖ → 0.

Remark 1.6: Implicit function theorem

The proof of Proposition 1.4.4 uses the implicit function theorem, which allows

solutions of a system of non-linear equations to be found. Under some condi-

tions, it allows a system of non-linear equations (represented by some function

F : Rn+k → Rk) to be reduced to a system of linear equations, in some local

area around a point (which is in the function’s co-domain). That is, under

some conditions omitted here, if F (x1, y1) = 0, then for every x ∈ Rn “close

to” x1 ∈ Rn there exists a y ∈ Rk “close to” y1 ∈ Rk, such that F (x, y) = 0,

and y = g(x) for some g : Rn → Rk. The function g is continuous and the

derivative may be found by differentiating F (x, g(x)) = 0. From this deriva-

tive and by using Taylor series, an approximation for g(x) around the point a

can be found. This forms the basis of the proof of Proposition 1.4.4.

Proof. Define x = (c1, . . . , cI)
> ∈ RI and y = (A, κ, ζ, a1, . . . , aI)

> ∈ RI+3. Fur-

thermore, let F : RI × RI+3 → RI+3 be given by

F (x, y) =



∫
f0(x) dx− 1∫
f0(x)x dx∫

f0(x)x2 dx− 1∫
f0(x)K1(x) dx− c1

...∫
f0(x)KI(x) dx− cI


,

where f0 is given in (1.26) and Ki in (1.16). Then, for x1 = (0, . . . , 0)> and

y1 = ( 1√
2π
, 0,−1

2
, 0, . . . , 0)>, F (x1, y1) = 0.

Assuming F is twice differentiable, we use the Implicit Function Theorem (see,

for example, de Oliveira, 2014) around (x1, y1). First, we need to show DyF (x1, y1)
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is invertible. We have

DyF (x1, y1) =

M 0

0 −II

 , with, M =


√

2 0 1

0 1 0

1 0 4

 .

Therefore, DyF (x1, y1) is non-singular, and so the Implicit Function Theorem

holds. There exist some open set U ⊂ RI and a unique continuously differen-

tiable function g : U → RI+3 such that g(x1) = y1 and F
(
x, g(x)

)
= 0 for all

x ∈ U. Then,

Dg(x) = −DyF
(
x, g(x)

)−1
DxF

(
x, g(x)

)
. (1.30)

As g is continuous in the set U, there exists some ε > 0, such that for all c ∈ U

with ‖c‖ < ε, g(x1 + c) = y1 + d for some d ∈ RI+3. Using Taylor series we can

expand g around x1 = 0 ∈ RI to obtain g(x1 + c) = g(x1) + Dg(x1) c + O(‖c‖2),

and

Dg(x1) =
d+ O(‖c‖2)

c
.

Putting this together with (1.30) at x = x1 and rearranging gives,

d = −DyF (x1, y1)−1DxF (x1, y1) c+ O(‖c‖2).

Now, since

DxF (x1, y1) =


0 · · · 0

0 · · · 0

0 · · · 0

II

 ∈ R(I+3)×I ,
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one easily obtains that,

d =


0 · · · 0

0 · · · 0

0 · · · 0

II

 c+ O(‖c‖2),

and so,

y1 + d =



1√
2π

0

−1
2

c1

...

cI


+ O(‖c‖2), as c→ 0.

This completes the proof.

We now define the following functions y(·) and r(·) for future use. Let y : R→ R
be given by

y(x) := κx+ (ζ +
1

2
)x2 +

I∑
i=1

aiKi(x), (1.31)

and r : R→ R given by

r(x) := ex − 1− x. (1.32)

Using these definitions, we can write f0, given in Proposition 1.4.3, as

f0(x) = ϕ(x) ·
√

2πAey(x). (1.33)

The following lemmas are two technical results needed in the proof of Theo-

rem 1.4.7.

Lemma 1.4.5. Let g : R→ R and l : R→ R be any functions and h : R→ R+ be
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convex with h(0) = 0. Then,

sup
x∈R

∣∣l(x)h(εg(x))
∣∣ ≤ ε sup

x∈R

∣∣l(x)h(g(x))
∣∣

for all ε ∈ [0, 1].

Proof. As h is convex, for all λ ∈ [0, 1] and for all x, y ∈ R, then h
(
λx+(1−λ)y

)
≤

λh(x) + (1 − λ)h(y). Let ε ∈ [0, 1]. Substituting λ = ε, x = g(x) and y = 0,

h
(
ε g(x)

)
≤ ε h

(
g(x)

)
for all g(x) ∈ R, as h(0) = 0. Noticing that h maps to the

positive real line concludes the proof.

Lemma 1.4.6. Let r : R→ R+ be given as in (1.32). Then,

r(ε y) ≤ ε2r(y), for all y ≥ 0, and for all ε ∈ [0, 1]. (1.34)

Moreover, for any function l : R→ R, we have

sup
x∈R

∣∣∣l(x)r
(
ε(1 + x2)

)∣∣∣ ≤ ε2 sup
x∈R

∣∣∣l(x)r(1 + x2)
∣∣∣.

Proof. We will use the Taylor expansion of the exponential around 0 for both the

left-hand and right-hand side of (1.34). The left-hand side gives,

r(ε y) = exp(ε y)− 1− ε y

=
∞∑
n=0

εn

n!
yn − 1− ε y, absolutely convergent for all εy ∈ R

= ε2
( ∞∑
n=2

εn−2

n!
yn
)
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and the right-hand side of (1.34) gives,

ε2 r(y) = ε2
( ∞∑
n=0

1

n!
yn − 1− y

)
= ε2

( ∞∑
n=2

1

n!
yn
)
.

Putting these two results together,

r(ε y)− ε2 r(y) = ε2
( ∞∑
n=2

1

n!
yn(εn−2 − 1)

)
≤ 0,

as εn − 1 ≤ 0 for all ε ∈ [0, 1] and n ∈ N+. This proves (1.34).

Let l : R→ R be some function. Then, as r maps to the positive real line and

using (1.34) with y = 1 + x2, we have

|l(x)r
(
ε(1 + x2)

)
| ≤ ε2|l(x)r(1 + x2)|,

for all x ∈ R. Taking the supremum over the real line we conclude.

We now consider the error term between the density f0 that maximises entropy,

and its estimate f̂0.

Theorem 1.4.7. Suppose we have functions Ki, i = 1, 2, . . . , I that satisfy As-

sumptions 1.4.1 and 1.4.2. Let f0 be given as in Proposition 1.4.3, and f̂0 be given

by

f̂0(x) = ϕ(x)
(

1 +
I∑
i=1

ciKi(x)
)
.

Then,

sup
x∈R

∣∣eδx2(
f0(x)− f̂0(x)

)∣∣ = O(‖c‖2) as c→ 0,

for all δ < 1/2.

Proof. Let ϕ(x) = (2π)1/2e−x
2/2 be the density of a standard Gaussian random
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variable and let the function g : R→ R be defined by

g(x) :=
f0(x)− f̂0(x)

ϕ(x)
.

Then, with y : R→ R as defined in (1.31) and using (1.33), we get,

g(x) =
√

2πA exp
(
y(x)

)
−
(
1 +

I∑
i=1

ciKi(x)
)

=
√

2πA
(

exp
(
y(x)

)
− 1− y(x)

)
+
√

2πA
(
1 + y(x)

)
− (1 +

I∑
i=1

ciKi(x))

+
√

2πA
( I∑
i=1

ciKi(x)−
I∑
i=1

ciKi(x)
)
.

Rearranging this using the function r : R → R given in (1.32) and by expanding

y(x) gives,

g(x) =
√

2πA · r
(
y(x)

)
+
√

2πA ·
(
κx+

(
ζ +

1

2

)
x2
)

+
(√

2πA− 1
) I∑
i=1

ciKi(x) +
√

2πA
I∑
i=1

(ai − ci)Ki(x) + (
√

2πA− 1).

Note that the absolute value of g(x) can be bounded by the following terms,

|g(x)| ≤
√

2πA |r
(
y(x)

)
|+
√

2πA |κx|+
√

2πA |ζ +
1

2
|x2

+
√

2πA
∣∣ I∑
i=1

(ai − ci)Ki(x)
∣∣+ |
√

2πA− 1|
∣∣ I∑
i=1

ciKi(x)
∣∣+ |
√

2πA− 1|.
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We have,

|f0(x)− f̂0(x)| = |ϕ(x) · g(x)|

= ϕ(x)
∣∣∣√2πAr

(
y(x)

)
+
√

2πA
(
κx+

(
ζ +

1

2

)
x2
)

+ (
√

2πA− 1)
I∑
i=1

ciKi(x)

+
√

2πA
I∑
i=1

(ai − ci)Ki(x) + (
√

2πA− 1)
∣∣∣.

Multiplying both sides by eδx
2

and setting δ̃ = 1
2
−δ so that eδx

2
ϕ(x) = (2π)−1/2e−δ̃x

2
,

gives

∣∣eδx2(
f0(x)− f̂0(x)

)∣∣
= (2π)−1/2e−δ̃x

2
∣∣∣√2πAr

(
y(x)

)
+
√

2πA
(
κx+

(
ζ +

1

2

)
x2
)

+(
√

2πA− 1)
I∑
i=1

ciKi(x) +
√

2πA
I∑
i=1

(ai − ci)Ki(x)

+ (
√

2πA− 1)
∣∣∣

≤ T1(x) + T2(x) +
1√
2π
· T3(x) + T4(x) +

1√
2π
· T5(x), (1.35)
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where,

T1(x) :=
∣∣Ae−δ̃x2

r
(
y(x)

)∣∣;
T2(x) :=

∣∣Ae−δ̃x2(
κx+ (ζ +

1

2
)x2
)∣∣;

T3(x) :=
∣∣(√2πA− 1)e−δ̃x

2
I∑
i=1

ciKi(x)
∣∣;

T4(x) :=
∣∣Ae−δ̃x2

I∑
i=1

(ai − ci)Ki(x)
∣∣;

T5(x) := |e−δ̃x2

(
√

2πA− 1)|.

If we show that ‖Ti‖∞ is at least of order ‖c‖2 as c → 0 for i = 1, . . . , 5, then

we can conclude the proof by taking the supremum of (1.35) over x ∈ R, which

gives,

sup
x∈R

∣∣eδx2

(f0(x)− f̂0(x))
∣∣ = O(‖c‖2),

as c→ 0. This is how the proof proceeds, by showing that the norm of each term

is at least of order ‖c‖2.

Term T1. First, note that

∣∣e−δ̃x2

r(y(x))
∣∣ ≤ max

σ∈{−1,1}

∣∣e−δ̃x2

r(σ · |y(x)|)
∣∣, for all x ∈ R,

and thus,

sup
x∈R
|T1(x)| ≤ A · sup

x∈R
σ∈{−1,1}

|e−δ̃x2

r(σ · |y(x)|)|. (1.36)

Next we choose γ such that,

m1 := sup
x∈R

σ∈{−1,1}

∣∣e−δ̃x2

r
(
σ · γ(1 + x2)

)∣∣ <∞. (1.37)
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This is always possible for some γ ∈ (−δ̃, δ̃), as r(0) = 0, and since e−δ̃x
2
r
(
±γ(1 +

x2)
)

is continuous and r
(
±γ(1 + x2)

)
grows no faster that eγx

2
as x → ±∞, it is

beaten by e−δ̃x
2

in the tails.

For y(x) as given in (1.31) and using (1.25) we can find an upper bound by

|y(x)| ≤ |κ| ·
(1 + x2

2

)
+ |ζ +

1

2
| · (1 + x2) +

I∑
i=1

|ai|Bi(1 + x2)

= γ(1 + x2) · 1

γ

(1

2
|κ|+ |ζ +

1

2
|+

I∑
i=1

|ai|Bi

)
= γ(1 + x2) · ε1, (1.38)

where γ is such that (1.37) holds, and ε1 := 1/γ ·
(
|κ|/2 + |ζ + 1/2|+

∑I
i=1|ai|Bi

)
.

As c→ 0 we have by Proposition 1.4.4, κ→ 0, ζ → −1/2 and ai → ci. Therefore,

we can choose c small enough (and depending on γ) such that ε1 ∈ [0, 1]. Now,

from (1.36), (1.38), the fact that r is convex with a minimum at zero, and by

Lemma 1.4.6, we get

sup
x∈R

∣∣T1(x)
∣∣ ≤ A sup

x∈R
σ∈{−1,1}

∣∣e−δ̃x2

r
(
σγ(1 + x2)ε1

)∣∣
≤ ε2

1A sup
x∈R

σ∈{−1,1}

∣∣e−δ̃x2

r
(
σγ(1 + x2)

)∣∣
= ε2

1Am1.

By Proposition 1.4.4, we have A→ 1/
√

2π as c→ 0 and,

ε1 =
1

γ

(1

2
|κ|+ |ζ +

1

2
|+

I∑
i=1

|ai|Bi

)
= O(‖c‖), as c→ 0,

and therefore ε2
1 = O(‖c‖2) as c→ 0, and ‖T1‖∞ = O(‖c‖2) as c→ 0.

Term T2. We proceed similarly as for T1, and look for some ε2 ∈ [0, 1] such
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that |κx+ (ζ + 1
2
)x2| ≤ ε2(1 + x2). Then, we have

∣∣κx+ (ζ +
1

2
)x2
∣∣ ≤ |κ|(1 + x2

2
) + |ζ +

1

2
|(1 + x2)

=
(1

2
|κ|+ |ζ +

1

2
|
)

(1 + x2).

Setting ε2 := (1
2
|κ| + |ζ + 1

2
|), by Proposition 1.4.4, ε2 = O(‖c‖2) as c → 0, and

thus we can choose c sufficiently small such that ε2 ≤ 1. Let,

m2 := sup
x∈R

∣∣e−δ̃x2

(1 + x2)
∣∣ <∞,

where m2 < ∞ since e−δ̃x
2
(1 + x2) is continuous and tends to zero in the tails.

From this, for ε2 ∈ [0, 1] as above, we can apply Lemma 1.4.5 and get

sup
x∈R

∣∣e−δ̃x2

(κx+ (ζ +
1

2
)x2)

∣∣ ≤ A sup
x∈R

∣∣eδ̃x2

ε2(1 + x2)
∣∣

≤ ε2 sup
x∈R

∣∣e−δ̃x2

(1 + x2)
∣∣ = ε2m2.

Then,

sup
x∈R

∣∣T2(x)
∣∣ = A sup

x∈R

∣∣eδ̃x2

(κx+ (ζ +
1

2
)x2)

∣∣ ≤ Aε2m2.

Therefore, we have ‖T2‖∞ = O(‖c‖2), as c→ 0.

Term T3. As with the T2 term, we want an ε3 ∈ [0, 1] such that |
∑I

i=1 ciKi(x)| ≤

ε3(1 + x2), so that we can apply Lemma 1.4.5 to show

sup
x∈R

∣∣e−δ̃x2
I∑
i=1

ciKi(x)
∣∣ ≤ ε3 sup

x∈R

∣∣e−δ̃x2

(1 + x2)
∣∣ <∞.
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First, note that by (1.25),

∣∣ I∑
i=1

ciKi(x)
∣∣ ≤ ∣∣ I∑

i=1

ciBi(1 + x2)
∣∣,

=
∣∣ I∑
i=1

ciBi

∣∣ · (1 + x2),

and thus we set ε3 :=
∣∣∑I

i=1 ciBi

∣∣. Clearly, ε3 = O(‖c‖) as c → 0. Now, with c

sufficiently small such that ε3 ∈ [0, 1], we have by Lemma 1.4.5,

sup
x∈R

∣∣e−δ̃x2
I∑
i=1

ciKi(x)
∣∣ ≤ sup

x∈R

∣∣e−δ̃x2(| I∑
i=1

ciBi|
)
(1 + x2)

∣∣
≤ |

I∑
i=1

ciBi| · sup
x∈R

∣∣e−δ̃x2

(1 + x2)
∣∣

≤ ε3m2.

Therefore,

sup
x∈R

∣∣T3(x)
∣∣ ≤ |√2πA− 1|ε3m2

Thus, ‖T3‖∞ = O(‖c‖3), as c → 0, since |
√

2πA − 1| = O(‖c‖2) and ε3 = O(‖c‖)

as c→ 0.

Term T4. Similar to the T2 and T3 terms, we want an ε4 ∈ [0, 1] such that∑I
i=1(ai − ci)Ki(x) ≤ ε4(1 + x2). Note that

∣∣ I∑
i=1

(ai − ci)Ki(x)
∣∣ ≤ ∣∣ I∑

i=1

(ai − ci)Bi

∣∣ · (1 + x2),

by (1.25) and thus we set ε4 := |
∑I

i=1(ai − ci)Bi|, and by Proposition 1.4.4,

ε4 = O(‖c‖2) as c → 0. Choose c small enough such that ε4 ∈ [0, 1]. Then,
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by Lemma 1.4.5,

sup
x∈R
|T4(x)| ≤ A sup

x∈R

∣∣e−δ̃x2
I∑
i=1

(ai − ci)Bi(1 + x2)
∣∣

= ε4Am2,

and since ε4 = O(‖c‖2) as c→ 0, we have ‖T4‖∞ = O(‖c‖2), as c→ 0.

Term T5. Here we can use the inequality eδ̃x
2 ≤ 1 for all x ∈ R and from

Proposition 1.4.4 we have

T5(x) ≤ |
√

2πA− 1| = O(‖c‖2), as c→ 0.

This completes the proof.

We have therefore shown that for sufficiently small c, the approximation f̂0 for

the density that maximises entropy given the constraints in (1.18) is ‘close to’ f0.

We have also shown that the speed of convergence is of order ‖c‖2.

Step 3. (Panel 1.5) We now turn our attention to Step 3. of the approximations,

where we find approximations for the entropy and negentropy of f̂0. For these

proofs we require that f̂0(x) ≥ 0 for all x ∈ R, and therefore f̂0 is a density.

Lemma 1.4.8 (Approximation of Entropy). Suppose Assumptions 1.4.1 and 1.4.2

hold, and let f̂0 be given as in Theorem 1.4.7. Suppose also that f̂0(x) ≥ 0 for all

x ∈ R. Then the entropy of f̂0 satisfies

H[f̂0] = Ĥ[f̂0] +R(f̂0),

where,

Ĥ[f̂0] := η(1)− 1

2
‖c‖2, (1.39)
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with η(·) given in (1.8), c = (c1, c2, . . . , cI)
>, with the ci defined in Proposition 1.4.3

and the remainder term bounded by

|R(f̂0)| ≤ C M̃ · ‖c‖3,

for some constant C ∈ R\{−∞,∞}, and M̃ given in Assumption 1.4.2.

Proof. Set K(x) = (K1(x), K2(x), . . . , KI(x))>, for x ∈ R. Now, with f̂0 as in

Theorem 1.4.7, expanding H[f̂0] gives,

H[f̂0] = −
∫
f̂0(x) log f̂0(x) dx

= −
∫
ϕ(x)

(
1 + c>K(x)

)(
logϕ(x) + log

(
1 + c>K(x)

))
= −

∫
ϕ(x) logϕ(x) dx−

∫
ϕ(x)c>K(x) logϕ(x) dx

−
∫
ϕ(x)

(
1 + c>K(x)

)
log
(
1 + c>K(x)

)
dx

= η(1)−
∫
ϕ(x)c>K(x)

(
−1

2
log(2π)− 1

2
x2
)

dx

−
∫
ϕ(x)

(
1 + c>K(x)

)
log
(
1 + c>K(x)

)
dx

= η(1)− 0−
∫
ϕ(x)

(
1 + c>K(x)

)
log
(
1 + c>K(x)

)
dx,

using the constraints given in (1.17). To obtain the approximation Ĥ[f̂0] and

remainder R(f̂0) terms, we consider the expansion of
(
1+c>K(x)

)
log
(
1+c>K(x)

)
around c = 0 using the Taylor series. Let q(y) = y log(y), y ∈ R. Then,

q′(y) = log(y) + 1; q′′(y) =
1

y
; and q′′′(y) = − 1

y2
.

and thus using Taylor series around y0 gives q(y0 +h) = h+ 1
2
h2 +R1(y0, h), where
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R1(y0, h) is the remainder term given by

R1(y0, h) =

∫ y0+h

y0

(y0 + h− τ)2

2

(−1

τ 2

)
dτ

= −h3

∫ 1

0

(1− t)2

2(1 + th)2
dt

with the change of variables τ = (y0 + th).

Now let us pick y0 = 1 and h = c>K(x) and denote by R2(x) the corresponding

remainder R2(x) = R1(1, c>K(x)). Then,

H[f̂0] = η(1)−
∫
ϕ(x)

(
c>K(x) +

1

2

(
c>K(x)

)2
+R2(x)

)
dx, (1.40)

where the remainder term R2(x) is given explicitly by

R2(x) = −
(
c>K(x)

)3
∫ 1

0

(1− t)2

2
(
1 + tc>K(x)

)2 dt.

Now using (1.17) and setting

R(f̂0) := −
∫
R
ϕ(x)R2(x) dx (1.41)

we get from (1.40),

H[f̂0] = η(1) + 0− 1

2

I∑
i=1

c2
i +R(f̂0)

= Ĥ[f̂0] +R(f̂0),

as needed to be shown. It remains to prove the bound for R(f̂0).

From Assumption 1.4.2 there exists some ε > 0 such that c>K(x) ≥ −1/2,

K(x) = (K1(x), K2(x), . . . , KI(x))>, for all c with c>c ≤ ε for all x ∈ R, and
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therefore,

|R2(x)| =
∣∣∣(c>K(x)

)3
∫ 1

0

(t− 1)2

2 · (1 + tc>K(x))2
dt
∣∣∣

≤
∣∣(c>K(x)

)∣∣3 · ∣∣∣∫ 1

0

(t− 1)2

2 · (1− t/2)2
dt
∣∣∣

= C ·
∣∣(c>K(x)

)∣∣3,
where C ∈ R, as the integral is of a continuous function over a compact set.

Now, there exists some δ > 0 such that for all c>c ≤ δ, ci ≤ ‖c‖ for i =

1, 2, . . . , I. Then, with c>c ≤ min(ε, δ), the absolute value of R2(x) can be bounded

above by

|R2(x)| ≤ C
I∑

i,j,k=1

∣∣Ki(x)Kj(x)Kk(x)
∣∣ · ‖c‖3

≤ C ·M(x) · ‖c‖3

having used (1.24a) from Assumption 1.4.2. Putting this all together we obtain

the bound for R(f̂0),

∣∣R(f̂0)
∣∣ ≤ ∫

R
ϕ(x)|R2(x)| dx ≤ CM̃‖c‖3,

where M̃ is given in (1.24b), as required.
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Remark 1.7: Approximation of negentropy

Note that the density f̂0 has unit variance. Indeed, by (1.17),

∫
f̂0(x)x2 dx =

∫
ϕ(x)

(
1 +

I∑
i=1

ciKi(x)
)

dx

=

∫
ϕ(x)x2 dx+

I∑
i=1

ci

∫
ϕ(x)Ki(x)x2 dx = 1.

Therefore, the negentropy equivalent of the entropy approximation given in

Lemma 1.4.8 is J [f̂0] = Ĵ [f̂0] +R(f̂0) with R(f̂0) given as in (1.41) and

Ĵ [f̂0] =
1

2
‖c‖2 =

1

2

I∑
i=1

c2
i .

Proposition 1.4.9. With the same assumptions as in Lemma 1.4.8. Set I = 1.

Then,

Ĵ [f̂0] ∝
(
EfG(Z)− EϕG(N)

)2
,

where Z is a random variable with density f and N ∼ N(0, 1).

Proof. By the constraints that need to be satisfied by K (given in Assump-

tion 1.4.2), we have
∫
ϕ(x)K(x)xk dx = 0 for k = 0, 1, 2. Substituting the form

of K(x) as in (1.16) into (1.17) and solving these three equations gives an explicit

expression for α, β, γ in terms of G,

α =
1

2

(∫
ϕ(x)G(x) dx−

∫
ϕ(x)G(x)x2 dx

)
;

β = −
∫
ϕ(x)G(x)x dx; (1.42)

γ =
1

2

(∫
ϕ(x)G(x)x2 dx− 3

∫
ϕ(x)G(x) dx

)
.
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Recall that c = EK(Z) =
1

δ

(
EG(Z) + αEZ2 + βEZ + γ

)
. Now using (1.42) and the

fact that EZ = 0 and EZ2 = 1 (since Z has density f), we get c =
1

δ

(
EG(Z) −

EG(N)
)
. From the entropy approximation (1.39) and as the density f0 has unit

variance, we have Ĵ [f̂0] =
1

2
c2. Therefore,

Ĵ [f̂0] =

(
EG(Z)− EG(N)

)2

2 δ2
.

This completes the proof, with C = 2 δ2 in Step 3. of Panel 1.5. The value of δ

can be found by solving the additional constraint
∫
ϕ(x)K(x)2 dx = 1.

This concludes our discussion of the approximations used in fastICA. We have

shown that under certain conditions, the approximations given in Steps 2., 3. and 4.

(Panel 1.5) are “close” to the true values. In the next section we give an example

where these approximations are indeed close to one-another, but the surrogate

density of the projections, f0 from Step 1., is not close to the true density f .

1.4.1.3 Toy example: fastICA failing to find the optimum projection

We now highlight the approximation steps as explained in Panel 1.5 on a toy

example. In this section we use example data as illustrated in Figure 1.4, which

was intentionally created in a very simplistic manner to further emphasise the ease

at which false optima are found using the contrast function Ĵ∗(y). The data was

obtained by pre-selecting vertical columns where no data points are allowed. An

iterative scheme was then employed, as explained in Panel 1.6.
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Figure 1.4: Scatter plot of original data with densities of the projected data in the
direction obtained by M -spacing independent component analysis (solid line) and
fastICA (dotted line). Kernel density estimation was used to obtain the marginal
densities shown.

Panel 1.6: Toy example procedure

1. Sample n points from a standard two-dimensional Gaussian distribution;

2. Remove all points that lie in the pre-specified columns;

3. Whiten the remaining ñ points;

4. Sample n− ñ points from a standard two-dimensional Gaussian distri-
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bution.
Repeat 2. - 4. until we have a sample of size n with no points lying in

the pre-specified columns. No optimisation was done to the distribution of
these points to attempt to force the fastICA contrast function to have a false
optimum.

Referring back to Section 1.3.1.3, we use the M -spacing entropy approximation

here to obtain a contrast function that can by compared to the fastICA contrast

function (1.22). Following Learned-Miller & Fisher III (2003), we chose M =
√
n,

where n ∈ N is the number of observations. This was chosen so that the condition

M/n → 0 as n → ∞ is satisfied (Beirlant et al., 1997; Vasicek, 1976). This

approximation to entropy is a direct approximation to H[f ], and therefore does

not involve an equivalent Step 1. (Panel 1.5) where f is substituted by a new

density f0.

Using the M -spacing method to find the first independent component, we want

to obtain the direction q∗ := argminq∈Rr−1PHM,n(Y q). In this example, numerical

optimisation is used to obtain q∗ and the associated projection Y q∗. The contrast

function to compare against the fastICA contrast function (1.22) is given by the

M -spacing negentropy approximation, JM,n(z) = η(1) − HM,n(z) for directions

q ∈ Rr−1P. Note that q∗ = argmaxq∈Rr−1P JM,n(Y q).

To illustrate the kind of problems which can occur during the approximation

from f to f̂0 and from J [f ] to Ĵ∗(y), we construct an example where the density f

in the direction of maximum negentropy is significantly different to f̂0 in the same

direction. This results in fastICA selecting a sub-optimal projection, as shown

below. Here we just consider the case I = 1 in Assumption 1.4.1, with one G = G1

and thus one K = K1. Moreover, in fastICA there is a choice of two functions to

use, G(x) := (1/α) log cosh(αx), α ∈ [1, 2], and G(x) := − exp(−x2/2).

We have considered these two functions with varying alpha, as well as the

fourth moment contrast function given in Miettinen et al. (2015) and which we

briefly discuss in Remark 1.8 below. In the example here all choices give very

similar results and thus we only show the fastICA contrast function resulting from

G(x) = (1/α) log cosh(αx), with α = 1, and the fourth moment contrast function,

for simplicity.
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Remark 1.8: Fourth moment contrast function in fastICA

The contrast function used in Miettinen et al. (2015) is |Ef (q>Y)4 − 3| where

Y ∈ Rr is some (standardised) random variable, q ∈ Rr−1P and q>Y ∼ f . For

a given (whitened) set of observations Y = (y1, . . . , yn)> ∈ Rn×r the empirical

approximation for the expectation is used, such that the approximate contrast

function is
∣∣ 1
n

∑n
i=1(q>yi)

4 − 3
∣∣.

Relating this back to Panel 1.5, the fourth moment contrast function used

in Step 3. is Ĵfourth[f ] = |EfZ4 − 3|, where here a specific function G has been

chosen to obtain this form. For Step 4. the approximate contrast function is

Ĵ∗fourth(z) = | 1
n

∑n
i=1 z

4
i − 3|.

Figure 1.4 shows the distribution of one realisation obtained when we apply

the procedure given in Panel 1.6. The projection of the data onto the solid line

corresponds to the projection that maximises approximate negentropy found using

the M -spacing method as described in Section 1.3.1.3. The dotted line gives

the direction found when applying fastICA to the points. The two densities

shown in Figure 1.4 are the sample densities of the projected data Y q onto the

directions given by the solid and dotted arrows (which are approximations of the

true densities f), corresponding to maximum M -spacing negentropy JM,n(Y q) and

maximum fastICA contrast function Ĵ∗(Y q) respectively.

Figure 1.5 shows again the same sample densities as given in Figure 1.4, with

the addition of the densities f0 as described in Step 1. (Panel 1.5) onto the two

directions found by maximising M -spacing negentropy and by fastICA. This high-

lights the large amount of information lost at Step 1. of the fastICA procedure,

with f in the direction of maximum M -spacing negentropy showing clear peaks

and troughs, whilst f0 in the same direction is very similar to a standard Gaussian

density, and does not correspond to the behaviour of the data in any meaningful

way. Note here that the density f̂0 has not been shown. This is due to f0 and f̂0

being very close to each other, and thus is omitted here for reasons of plot clarity.

With the data distributed as in Figure 1.4, the negentropy over projections in
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Figure 1.5: Plots showing the density f of the projected data (solid line), and the
surrogate density f0 used in the fastICA method (dotted line), for two different
projections of the data. Sub-figure 1.5a corresponds to the direction of highest
entropy, found using M -spacing, and Sub-figure 1.5b corresponds to the direction
found by fastICA. These two directions are shown by the solid line and dotted line
respectively in Figure 1.4.

the directions wϑ = (sin(ϑ), cos(ϑ)), with ϑ ∈ [0, π), found by the M -spacing ap-

proximation and used in the fastICA method is shown in Figure 1.6. The contrast

function obtained by approximating J [f0] directly is also included as the dashed

line, and the contrast function Ĵ∗(y) given by the dotted line. The three contrast

functions have been placed below one-another in the order of approximations given

in Figure 1.3 and so the y-axis is independent for each. The equivalent approx-

imate fourth moment contrast function as in Miettinen et al. (2015) is shown in

Figure 1.7 (dotted line), given below the M -spacing approximation which is the

same function as in Figure 1.6. The search is only performed on the half unit circle,

as projections in directions w1 = (sin(ϑ), cos(ϑ)) and w2 = (sin(ϑ+π), cos(ϑ+π))

for any ϑ ∈ [0, π) have a reflected density with the same entropy. It is clear from

Figure 1.6 that the fastICA result Ĵ∗ is poor, with the fastICA contrast function

missing the peak of negentropy that appears when using M -spacing. The contrast

function used in the fastICA method clearly differentiates between the direction

of the maximum and other directions, and thus in this example it is both confident
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and wrong (since there is a clear and unique peak). This is also true of the direct

approximation to J [f0], showing that issues occur at the first step of approxima-

tions, when J [f0] is used instead of J [f ]. This is further highlighted by the same

issue occurring when the fourth moment contrast function is used (as shown in

Figure 1.7), where the same incorrect direction is (confidently) found.

θ  (projection angle)

no
n−

G
au

ss
ia

ni
ty

0 1 4 π 1 2 π 3 4 π π

J [f ]

J [f0]

Ĵ∗(y)

Figure 1.6: Objective functions of M -spacing (solid line), J [f0] (dashed line) and
fastICA method (dotted line) for projections of the data given in Figure 1.4 in
the directions ϑ ∈ [0, π). These correspond to J [f ], J [f0] and Ĵ∗(y) in Figure 1.3.
The vertical lines give the directions which maximise the contrast functions for
M -spacing (solid line) and fastICA (dotted line).

As is shown in Theorem 1.4.7, for sufficiently small c, the approximation for

the density f̂0 (given in (1.20)) is “close to” f0 (given in (1.19)), and the speed of

convergence is of order ‖c‖2 for c → 0. Therefore, it is our belief (backed up by

computational experiments) that the majority of the loss of accuracy occurs in the

approximation step where the surrogate f0 is used instead of f , rather than in the

later estimation steps for J [f̂0] and Ĵ∗(y). This can be seen by comparing numer-

ically the contrast functions J [f ], J [f0] and Ĵ∗(y) (shown in Figure 1.6), and by
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Ĵ∗fourth(y)

Figure 1.7: Objective functions of M -spacing (solid line), and the fastICA fourth
moment method described in Remark 1.8 (dotted line) for projections of the data
given in Figure 1.4 in the directions ϑ ∈ [0, π). The vertical lines give the directions
which maximise the contrast functions for M -spacing (solid line) and fastICA

(dotted line). This figure is comparable to Figure 1.7 and is presented here to
strengthen the argument regarding the step in Panel 1.5 where the main errors
are introduced in the fastICA method. Clearly, using the fourth moment contrast
function still results in the incorrect direction being chosen.

comparing the densities f , f0 and f̂0. Here, J [f0] and Ĵ∗(y) give similar directions

for the maximum, and these differ significantly from the location of the maximum

of J [f ]. This is a fundamental theoretical problem with the fastICA method, and

is not a result of computational or implementation issues with fastICA. In par-

ticular, the fact that the dotted vertical line in Figure 1.6 is at the maximum of

Ĵ∗(y) indicates that the effect is not a convergence problem in the fastICA im-

plementation. Finally, comparing Ĵ∗(z) in Figure 1.6 with Ĵ∗fourth(z) in Figure 1.7

highlights that the issue is more fundamental than the choice of the function G in

Step 3. of Panel 1.5, as both of these approximate contrast function give similar,

wrong results.
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1.4.1.4 Concluding remarks on fastICA.

In this section we have given an example where the fastICA method misses struc-

ture in the data that is obvious to the naked eye. Since this example is very simple,

the fastICA result is concerning, and this concern is magnified when working in

high dimensions as visual inspection is no longer easy. There is clearly some issue

with the contrast function (surrogate negentropy) used in fastICA. Indeed, this

surrogate has the property of being an approximation of a lower bound for negen-

tropy, and this does not necessarily capture the actual behaviour of negentropy

over varying projections, since we want to maximise negentropy. To strengthen

the claim that accuracy is lost when substituting the density with the surrogate,

we have shown convergence results for all the approximation steps used in the

method.

To conclude this section, we ask the following questions which could make for

interesting future work: Is there a way, a priori, to know whether fastICA will

work? This is especially pertinent when fastICA is used with high dimensional

data. The trade-off in accuracy for the fastICA method comes at the point where

the density f is substituted with f0. Therefore one could also ask: Are there other

methods similar to that of fastICA but that use a different surrogate density which

more closely reflects the true projection density?

If these two options are not possible, then potentially a completely different

method for “fast” independent component analysis is needed, one that either gives

a “good” approximation for all distributions, or where it is known when it breaks

down. An initial step in this direction is introduced in the Section 1.4.2. In this

next section we propose a new independent component analysis method, known

as clusterICA, that uses the M -spacing approximation for entropy (introduced

above), combined with a clustering procedure.

1.4.2 ClusterICA

In this section we introduce a novel algorithm for implementing independent com-

ponent analysis, that uses entropy as the function to optimise in a way that allows
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the user to sensibly balance the trade-off between computational cost and accu-

racy. For each independent component, this algorithm — called ‘clusterICA’ —

uses random directions on the projective space to initiate, then clusters a subset

of these before performing optimisation on a single projection from each of these

clusters. The clustering step allows only materially different directions to be ex-

amined, thus decreasing computational time and the likelihood of getting stuck

in a local minima of the entropy function. The projection associated with the

best direction, calculated using M -spacing approximation of differential entropy,

is then output as the independent component. Additional components are found

in the same way, with rotations of the search-space used to ensure orthogonality

of the matrix Q ∈ Rr×r, which transforms the whitened matrix Y ∈ Rn×r. As

discussed in Section 1.3.1, the unmixing matrix W ∈ Rp×r, which transforms the

original matrix X ∈ Rn×p, (given in Step 4. of Panel 1.4) is not required to be

orthogonal.

This section is structured as follows. Initially we introduce the clusterICA

algorithm and detail the mathematical tools used in the algorithm. This is split

into two main parts, arranged such that the more novel work is described first.

In particular, we describe clustering in projective spaces (which here is the set of

points on the r-dimensional half-sphere) after introducing a specific distance metric

on the space; then, we give a description of the rotation of the points using the

Householder reflection method to ensure orthogonality of the matrix Q ∈ Rr×r, and

to allow a smaller search space for optimisation. After the constituent parts have

been introduced, we give the full clusterICA algorithm. All relevant associated

pseudo-code is included throughout this section, and we conclude with a tip on

how to merge the fastICA method (described in Section 1.4.1) with the clusterICA

method, arguing that this obtains advantages from both. After we introduce the

method, an example is given to highlight where clustering prior to optimisation

increases the computational speed of clusterICA.

In Section 1.4.3, clusterICA is included in an example comparing it to es-

tablished methods on various two-dimensional samples, similar to those used in

Learned-Miller & Fisher III (2003), using a standard comparison metric intro-

duced in Amari et al. (1996) that highlights differences in the unmixing matrices.
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The methods are also compared based on minimising the “true” entropy of the

projections.

1.4.2.1 The clusterICA method.

Here we introduce the clusterICA method, which is a novel independent component

analysis method that utilises clustering in projective spaces. The main idea behind

this method is to cluster together different (initial random) directions in order to

reduce the number of optimisations and, at the same time, ensure that enough

directions have been investigated. Before we examine the details of the method,

the main steps are listed in Panel 1.7. As discussed in Section 1.3.1.2, the first

step of any independent component analysis method is to whiten the original data.

Assuming the data is whitened, the following Steps 1. – 5. given in Panel 1.7 are

performed to find a single independent component direction, and then repeated to

obtain the desired number of orthogonal directions.

Panel 1.7: ClusterICA: condensed overview

1. Choose N (initial random) directions;

2. Select Ñ < N best directions;

3. Separate the best Ñ directions into K � Ñ clusters;

4. Optimise the best direction of each cluster (K optimisations in total);

5. Choose the best optimised direction.

When implementing the steps above, several issues require mathematical clar-

ification. Two important questions which have not yet been addressed in this

chapter will be expanded on below. A delicate question relates to how clustering

is actually implemented. The idea is to cluster together similar directions, so the

answer will in turn depend on what is meant by ‘similar directions’. To define this

concept the problem is set in a projective space and a suitable metric on this space

is introduced. A second issue is hidden in the definition of independent component

directions, in particular in the fact that each direction that the whitened data is
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projected onto must be orthogonal, so when repeating the procedure to find the

next direction orthogonality with all previous loadings must be ensured. This

is achieved via Householder transformations, which are explained in full below.

The full algorithm for clusterICA will be given after the above points have been

addressed.

1.4.2.2 Clustering

We commence the mathematical description of clusterICA by explaining in detail

the main novelty of this algorithm, which is projective clustering. First the pro-

cess of clustering in Euclidean spaces is described. In this section the notation

d(u, v), u, v ∈ Rr is used to mean the standard Euclidean metric. The method

and the pseudo-code can then be applied to the projective space setting by simply

changing the Euclidean metric with a suitable metric d. Setting the problem in

projective spaces is the tool that allows similar directions to be identified, or in

other words that allows directions which are materially different to be differenti-

ated, thus allowing effective clustering of directions.

Clustering in Euclidean spaces has been done in the literature, see for example

Mardia et al. (1979). A specific method in the Euclidean setting, called k-means

clustering (Lloyd, 1982) is now reviewed. The k-means clustering method splits

data into K clusters in the following way. The data is first initialised into K

clusters, the centroid of each of these clusters is found and then each point is

assigned to the respective cluster depending on which centroid is closest. Once

the new clusters have been assigned, the new centroid is calculated in each cluster

and the process of assigning points to clusters is repeated with the new centroids.

In Algorithm 1.2, k-means clustering pseudo-code is given, where the number of

points is given as Ñ to be consistent with Panel 1.7. Note that in the Euclidean

case finding the centroid reduces to calculating the mean of the elements in the

cluster, which involves summing vectors in the Euclidean space. This however

is more complicated in projective spaces, as we will see later, because ‘summing

directions’ in projective spaces is not a well-defined action.

Algorithm 1.2: k-means.

1 input : data u1, u2, . . . , uÑ ,
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2 i n i t i a l c l u s t e r i n g c(0) = (c
(0)
1 , c

(0)
2 , . . . , c

(0)

Ñ
)

3 number o f c l u s t e r s K

4 output : vector , l ength Ñ

5 begin

6 for t in 1, 2, 3, . . .

7 % compute c en t ro i d s : f o r i = 1, . . . ,K , l e t

8 m
(t)
i ← sample mean o f {uj |c

(t−1)
j = i}

9 % ass i gn po in t s to new c l u s t e r s : f o r j = 1, . . . , Ñ , l e t

10 c
(t)
j ← argmin

i=1,...,K
d(uj ,m

(t)
i )

11 i f c(t) = c(t−1) , s top

12 end for

13 return c(t) = (c
(t)
1 , c

(t)
2 , . . . , c

(t)

Ñ
)

14 end

We initialise the k-means method using the k-means++ method, introduced by

Arthur & Vassilvitskii (2007). This gives K initial clusters for data u1, u2, . . . , uÑ ∈
Rr, K � Ñ , in the following way. In the first step, a point ui, i ∈ {1, 2, . . . , Ñ}
is chosen as a cluster centroid at random. The next step involves picking an-

other cluster centroid us at random with probabilities proportional to the distance

d(uj, ui) for all j = 1, 2, . . . , Ñ . For each subsequent step, a centroid is chosen

from the set of remaining points, with probability of picking each point propor-

tional to the minimum distance from all centroids currently chosen. This step is

repeated until K centroids (and thus K clusters) have been picked. The output of

the algorithm is a set of integers c = (c1, c2, . . . , cÑ), with ci ∈ {1, 2, . . . , K} being

the cluster that the point ui belongs to. We give pseudo-code for k-means++ in

Algorithm 1.3.

Algorithm 1.3: k-means++.

1 input : data , u1, u2, . . . , uÑ ;

2 number o f c l u s t e r s , K

3 output : vector , l ength Ñ

4 begin

5 sample s uni formly from 1, 2, . . . , Ñ

6 m1 ← us

7 for i = 2, . . . ,K

8 % compute minimum di s tance from s e l e c t e d cen t ro i d s :

9 for j = 1, . . . , Ñ ; dj ← min
k=1,...,i−1

d(uj ,mk)

10 sample s from 1, . . . , Ñ with p r o b a b i l i t y p r op o r t i o n a l to d1, d2, . . . , dÑ
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11 mi ← us

12 end for

13 % ass i gn po in t s to c l u s t e r s :

14 for i = 1, . . . , Ñ ; ci ← argmin
j=1,...,K

d(ui, mj)

15 return c(0) = (c
(0)
1 , c

(0)
2 , . . . , c

(0)

Ñ
)

16 end

Finally, note that the k-means clustering method can also be performed without

a priori specifying the number of clusters K, but instead using hierarchical divisive

clustering. This method is here called divisive k-means. In this method, k-means

clustering is run on a loop, splitting a specified cluster into two using the k-

means method with K = 2 (and k-means++ initialisation) until some tolerance

is reached. The tolerance is given as a relative change in total root mean-squared

error (RMSE) between successive loops. After loop t − 1, the divisive k-means

method will have found t clusters, and then the root mean-squared error is given

by,

RMSE(U, c) =

(
1

t

t∑
i=1

d(ui, ū
(ci))2

)1/2

,

where ū(ci) is the mean of all points uk belonging to cluster ci. At each step the

cluster chosen to be split into two is that which has the largest within-cluster root

mean-squared error. The procedure stops if the difference in root mean-squared

error between successive steps is smaller than a specified value. The pseudo-

code for divisive k-means is given in Algorithm 1.4. This is the method used in

clusterICA, but set in projective spaces which is now introduced.

Algorithm 1.4: Divisive k-means.

1 required : k−means++, Algorithm 1.3 ;

2 k−means , Algorithm 1.2

3 input : data , u1, u2, . . . , uÑ ;

4 to l e rance , t o l

5 output : vector , l ength Ñ

6 begin

7 % ca l c u l a t e cen t ro id o f a l l po in t s and the a s soc i a t ed sum−of−squares

8 m← sample mean o f {u1, . . . , uÑ}

9 T ← t o t a l RMSE between a l l ui and u

10 t
(0)
1 ← T % within−c l u s t e r RMSE for current c l u s t e r i n g c
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11 t(0) ← T % t o t a l RMSE for current c l u s t e r i n g c

12 %%

13 % i n i t i a l i s e loop

14 %%

15 % a l l po in t s cu r r en t l y in a s i n g l e c l u s t e r

16 c← (1, . . . , 1) ∈ RÑ

17 for i = 1, 2, 3, . . .

18 % s e l e c t c l u s t e r number with the l a r g e s t within−c l u s t e r RMSE

19 σ ← argmin
j=1,...,i

t
(i−1)
j

20 % s e l e c t the po in t s t ha t be long to c l u s t e r σ

21 v ← {uj : cj = σ}

22 % apply k−means ( with k−means++ i n i t i a l i s a t i o n to v

23 c(0) ← k−means++: data , v ;

24 number o f c l u s t e r s K = 2

25 c(v) ← k−means : data , v ;

26 number o f c l u s t e r s K = 2 ;

27 i n i t i a l c l u s t e r i n g , c(0)

28

29 % update c l u s t e r i n g

30 % take in to account new c l u s t e r i n g s o f po in t s v = {uj : cj = σ}

31 c ← merge : {c : cj 6= σ} with c(v)

32

33 % re c a l c u l a t e RMSE:

34 % within−c l u s t e r RMSE: mj i s the cen t ro id o f c l u s t e r j

35 for j = 1, . . . , i+ 1 ; t
(i)
j ← RMSE({ui|ci = j},mj)

36 % t o t a l RMSE

37 t(i) =
∑i+1
j=1 t

(i)
j

38

39 % ca l c u l a t e r e l a t i v e change to t o t a l RMSE

40 % used to determine whether another s p l i t i s computa t iona l l y worthwhi le

41 ∆← (t(i) − t(i−1)) / T

42 i f ∆ < t o l : break

43 end i f

44 return c

45 end

Given a set of directions (i.e. elements in the projective space), the aim is to

apply divisive k-means to cluster this set into ‘similar’ directions. As has been

shown above in Algorithms 1.2, 1.3 and 1.4, this requires a metric d(u, v) defined

for any two points on the projective space, u, v,∈ Rr−1P. Moreover the algorithms
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require the computation of the centroid of a subset of directions (i.e. the mean in

the Euclidean case). Both issues will be investigated below.

First a metric on the projective space needs to be defined, which should rep-

resent the ‘distance’ between the two directions identified by u and v. For any

u, v ∈ Rr−1P the metric dp : Rr−1P× Rr−1P→ R is defined by,

dp(u, v) :=
√

1− (u>v)2. (1.43)

It can be shown that dp is indeed a metric on Rr−1P. The choice of this metric is

informally motivated by the reasoning given in Remark 1.9.

Remark 1.9: Motivation of choice of projective metric

For given directions u, v ∈ Rr−1P, let ϑ ∈ [0, π] be the smallest angle between

them. If ϑ ≤ π/2 then ϑ can be used to describe the ‘distance’ between two

equivalence classes u, v ∈ Rr−1P. However if the vectors are (nearly) opposite

of each other (i.e. ϑ ≈ π) then ϑ is not suitable to measure the distance between

directions, because we required the distance between opposite directions to be

zero. A good measure instead is |sinϑ| which is zero at 0, π and 2π and can

be defined for all ϑ ∈ [0, 2π]. Recall now that u>u = v>v = 1, and thus by the

Euclidean dot product formula, u>v = cosϑ·‖u‖·‖v‖ = cosϑ, (as ‖u‖ = ‖v‖ =

1 since these vectors lie on Sr−1). Therefore |sinϑ| =
√

1− (u>v)2 ∈ [0, 1],

which is the distance between u and v given by (1.43).

Secondly we examine the issue of calculating the centroid of a set of directions.

In Euclidean spaces, the standard formula to find the centroid of a set of points

u1, u2, . . . , uÑ ∈ Rr is given by the mean ū = (1/Ñ)
∑Ñ

i=1 ui. Clearly this formula

cannot be used in projective spaces because directions cannot be “summed” to-

gether. Instead, it is easy to check that the mean ū is the point where a specific
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function f attains its minimum, with f defined by

f(v) :=
Ñ∑
i=1

|ui − v|2.

The important feature of this characterisation of the mean is that f can be defined

also for v ∈ Rr−1P simply by replacing the Euclidean metric |·| with the metric

dp given by (1.43). This is done in Lemma 1.4.10 below, where in addition the

minimum of f is calculated. The lemma motivates the definition of the centroid

of a set of directions in projective spaces, given in Definition 1.4.11 below.

Lemma 1.4.10. Let u1, u2, · · · , uÑ ∈ Rr−1P. Let the function f : Rr−1P → R be

defined by

f(v) =
Ñ∑
i=1

dp(ui, v)2, (1.44)

where dp(u, v) is the distance metric given in (1.43). Set U = (u1, u2, · · · , uÑ)> ∈

RÑ×r. Then

w := argmax
‖v‖=1

{v>U>Uv}.

is a minimum of f .

Proof. The function f can be written,

f(w) =
Ñ∑
i=1

(
1− (u>i v)2

)
= Ñ −

Ñ∑
i=1

v>ui u
>
i v,

for all v ∈ Rr−1P. Now, note that

Ñ∑
i=1

ui u
>
i =



∑
i ui1ui1

∑
i ui1ui2 · · ·

∑
i ui1uiÑ∑

i ui2ui1
∑

i ui2ui2 · · ·
∑

i ui2uiÑ
...

...
...∑

i uiÑui1
∑

i uiÑui2 · · ·
∑

i uiÑuiÑ

 = UTU.
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Therefore,

f(v) = Ñ − v>U>Uv

≥ Ñ − w>U>Uw = f(w),

since w>U>Uw ≥ v>U>Uv for any v ∈ Rr−1P (with ‖v‖ = 1) by definition of z,

as required.

From Lemma 1.4.10 and noting that the vector w that minimises the function

f as in (1.44) is the Fréchet mean, Definition 1.4.11 follows.

Definition 1.4.11. The centroid of a set of directions u1, u2, . . . , uÑ ∈ Rp−1P is

denoted by ū, or mean(u1, u2, . . . , uÑ), and is given by

ū = argmax
‖w‖=1

{v>U>Uv},

where U = (u1, u2, · · · , uÑ)>.

Notice that the mean ū in projective spaces is effectively given by the eigenvec-

tor associated with the largest eigenvalue of the matrix U>U . This can be found

as the first singular vector of U using singular value decomposition. From this,

the function f as in (1.44) with argument ū can be written as,

f(ū) =
Ñ∑
i=1

dp(ui, ū)2

=
Ñ∑
i=1

(1− (u>i ū)2)

= Ñ − ū>U>Uū

= Ñ − λmax,

as ū>ū = 1, where λmax is the largest eigenvalue of U>U . This is the sum of the

distance between all points and the centroid.

84



1.4 Methods For Independent Component Analysis

1.4.2.3 Using rotations to ensure orthogonality of subsequent loadings

Here, it is explained how we ensure orthonormality of the directions in which the

whitened data is projected. A method is introduced that is in general more compu-

tationally stable than the popular Gram-Schmidt process and allows sequentially

smaller search spaces to be employed in the optimisation stage, hence reducing

computational time.

Suppose l independent components from data X ∈ Rn×p are desired, and

Y ∈ Rn×r is the whitened version of X, r = rank(X̃) (following notation as in

Remark 1.1). Since finding the loadings in clusterICA is a sequential procedure

(as described in Step 3. of Panel 1.4), we assume here that k − 1 previous direc-

tions q1, q2, . . . , qk−1 ∈ Rr−1P have been found, which are orthonormal and such

that the loadings Y qi, i = 1, . . . , k − 1 (sequentially) minimise entropy. In partic-

ular the directions qj, j = 1, . . . , k− 1, are such that the data projected onto each

qj minimises entropy in the space Vj = {q ∈ Rp−1P | q⊥qi, i = 1, 2, . . . , j − 1}.

Aim: To find the kth direction, qk ∈ Rr−1P (associated with the kth indepen-

dent component Y qk).

Requirement: To explore the subspace of directions in Rr−1P orthonormal

to all previous k − 1 directions, q1, . . . , qk−1.

Main idea of this section: Use rotation matrices to ease the search of the

subspace of directions in Rr−1P orthonormal to all previous directions. Firstly,

the idea and method to help obtain the direction qk is presented, and then the

inductive method to obtain the specific rotation matrix is described.

Set R(0) = Ir ∈ Rr×r, and assume that the rotation matrices R(j), j =

1, 2, . . . , k − 1, are available. Here, each matrix R(j) rotates the space such that

R(j)qi = e
(r)
i , for j = 1, 2, . . . , k − 1, and i = 1, 2, . . . , j, where e

(r)
i ∈ Rr is the r

dimensional vector with a 1 in the ith element and zeros elsewhere. These rotations

R(j) are effectively aligning the axis so that the first j dimensions of the space are

the directions associated with the first j independent component loadings. The

aim here is to find the kth optimal direction qk ∈ Rp−1P and the kth rotation matrix

R(k).
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After the rotation R(k−1) is performed, ensuring that qk is orthogonal to all

previous directions is equivalent to asking that qk is of the form qk = R(k−1)ṽ, with

ṽ = (0, 0, . . . , 0, v), where the first k − 1 components of ṽ are zero and v ∈ Rr−kP.

That is, with m := r − k + 1, we explore the space {0} × · · · × {0} × Rm−1P

(where the first k − 1 dimensions only include the zero element). The direction

vm ∈ Rm−1P is found, such that the projection of the data Y onto R(k−1)ṽm,

ṽm = (0, · · · , 0, vm)> ∈ Rr−1P, minimises entropy. Therefore, at each step the

dimension of the search space is effectively reduced by one.

In Panel 1.8 below we describe how the rotation matrix is updated to obtain

R(k).

Panel 1.8: Independent component rotation matrix

Suppose that we have found the optimal direction qk = R(k−1)ṽm and that the
previous rotation matrix R(k−1) is available. In this panel we describe how
the kth rotation matrix is calculated, which has the property R(k)qj = e

(r)
j ,

j = 1, 2, . . . , k. It turns out that the matrix R(k) is an update of the previous
rotation matrix R(k−1), more precisely

R(k) = R(k−1)

(
Ik−1 0

0 P

)
.

Here, P ∈ Rm×m is known as the Householder matrix (Householder, 1958)

and it is defined as P = Im − 2v v> where v = u
(u>u)

and u = vm − e(m)
1 . The

Householder matrix P as defined above reflects the vector vm onto e
(m)
1 , i.e.

through the hyperplane that bisects vm and e
(m)
1 and goes through the origin.

That is, Pvm = e
(m)
1 (using the fact that v>mvm = 1) and as P is symmetric

(which is clear from the definition), Pe
(m)
1 = vm. By Lemma 1.4.12 (given

below), R(k)qj = e
(r)
j for all j < k, and also R(k)qk = e

(r)
k , as required. Pseudo-

code for calculating the rotation matrix R(k) is given in Algorithm 1.5.

The procedure explained in Panel 1.8 is performed for k = 1, 2, . . . , l. Once

l steps have been completed the result is an orthogonal matrix R(l) ∈ Rr×r, of

which the first l columns are kept to give the set {q1, q2, . . . , ql}, where each qi ∈
Rr−1P is the ith column of R(l). The l independent components are then found by
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projecting the whitened data onto each direction q1, . . . , ql. The l directions are

given column-wise in the (column orthonormal) matrix Q = (q1 q2 · · · ql) ∈ Rr×l,

and the independent component directions are given by the columns of AQ ∈ Rp×l,

where A ∈ Rp×r is the whitening matrix as introduced in Step 2. (Panel 1.4) and

discuss in Section 1.3.1.2.

Algorithm 1.5: Householder transformation.

1 input : v ec to r vm ∈ Rr−kP ;

2 r o t a t i o n matrix R(k−1) = (r
(k−1)
1 r

(k−1)
2 · · · r(k−1)

p ) ∈ Rr×r

3 output : matrix R(k) ∈ Rr×r

4 begin

5 % ca l c u l a t e Householder matrix P ∈ Rm×m , wi th m = r − k + 1

6 u← vm − 1m , where 1m = (1, 0, . . . , 0) ∈ Rm

7 v ← u / (u>u)

8 P ← Im − 2v v> ∈ Rm×m

9 % ca l c u l a t e new ro t a t i on matrix R(k)

10 % matrix ’P ’ on ly ac t s on l a s t m columns o f R(k−1)

11 R̃←
(
r
(k−1)
k r

(k−1)
k+1 · · · r(k−1)

r

)
∈ Rr×r

12 R← R̃ P

13 R(k) ←
(
r
(k−1)
1 r

(k−1)
2 · · · r(k−1)

k−1 R
)
∈ Rr×r

14 return R(k)

15 end

Lemma 1.4.12. With R(k) ∈ Rr×r and vectors qi ∈ Rr−1P, i = 1, 2, . . . , k as

defined above,

R(k)qj = e
(r)
j ,

for j ∈ {1, 2, . . . , k}.

87



1. DIMENSION REDUCTION

Proof. Suppose j ∈ {1, . . . , k − 1}. Here,

R(k)qj = R(k−1)

Ik−1 0

0 P

 qj

=

Ik−1 0

0 P

R(k−1)qj, as both matrices are symmetric

=

Ik−1 0

0 P

 e
(r)
j , by the assumption on R(j), j ∈ {1, . . . , k − 1}

= e
(p)
j .

Now, for j = k, it is required to show R(k)qk = e
(r)
k . Here, with ṽk =

(0, . . . , 0, vk)
>,

R(k)qk = R(k−1)

Ik−1 0

0 P

 qk

=

Ik−1 0

0 P

R(k−1)qk, as both matrices are symmetric

=

Ik−1 0

0 P

 ṽm, as R(k−1) is orthogonal

= e
(r)
k , as Pvm = e

(m)
1 .

Thus R(k)qj = e
(r)
j for all j ∈ {1, 2, . . . , k} as required.

1.4.2.4 ClusterICA: The full algorithm

We now describe the full clusterICA algorithm, with details regarding clustering in

projective spaces, entropy estimation and ensuring orthogonality of the directions

q1, . . . , ql. The aim is to perform independent component analysis on the (un-

whitened) data X ∈ Rn×p, such that l independent components are found.
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The data X must first be whitened to give matrix Y ∈ Rn×r, where r =

rank(X̃) ≤ min{n− 1, p}, with X̃ the column-centred version of X. Note that in

practice, the value of r can be specified by the user, although the discussion in

Remark 1.3 is pertinent here as if r is significantly smaller than rank(X̃), a lot of

potentially interesting information (in the non-Gaussian sense) may be lost.

The clusterICA algorithm to obtain the kth independent component loading

follows the same 5 steps indicated in Panel 1.7, which are repeated in Panel 1.9

with extra details. For the steps below, suppose that the first k − 1 directions

{q1, q2, . . . , qk−1} and rotation matrix R(k−1) are known. The pseudo-code is given

in Algorithm 1.6.
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Panel 1.9: ClusterICA: detailed overview

1. Initialise N random vectors on Rr−kP, prepend them with k − 1 zeros
and pre-multiply with the rotation matrix R(k−1) to give N random
directions in Rr−1P.

2. Project data Y onto the Rr−1P random directions and calculate entropy
using M -spacing (Algorithm 1.1). Sort these directions in increasing
order of entropy of the projected data onto these directions and keep
the Ñ best directions, i.e. the Ñ directions where the projected data
have the lowest entropy.

3. Using the divisive clustering function (Algorithm 1.4), put the Ñ best
directions into K clusters, where K � Ñ .

4. Do K optimisations of the directions, one for each cluster, initialising
with the best directions (in terms of lowest entropy) in each cluster.
The optimisation is done in the Rr−kP space, with the directions then
prepended by zeros and pre-multiplied by R(k−1) such that they belong
to Rr−1P before calculating the M -spacing entropy value.

5. Keep the best direction post-optimisation, denoted by qk = R(k−1)ṽk for
step k, where ṽk is the optimal Rr−kP vector prepended by zeros. Cal-
culate also the rotation matrix R(k) using Householder transformations
(described in Panel 1.8 and Algorithm 1.5) to ensure orthogonality for
the next loading.

Algorithm 1.6: clusterICA

1 required : M−spac ing entropy , Algorithm 1.1 ;

2 D i v i s i v e k−means , Algorithm 1.4 ;

3 Householder t rans format ion , Algorithm 1.5

4 input : data matrix X ∈ Rn×p ;

5 number o f components , l

6 ( Optional ) s i z e o f whitened matrix , r

7 output : whitened matrix , Y ;

8 whitened d i r e c t i o n s Q ;

9 independent component d i r e c t i o n s , AQ ;

10 independent components , Z = XAQ = Y Q ;

11 begin

12 % whiten matrix X : r = rank(X̃) , un l e s s s p e c i f i e d
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13 % must have the number o f components l ≤ r

14 A← whitening matrix : X ∈ Rn×p

15 Y ← X̃A

16 % i n i t i a l i s e r o t a t i on matrix

17 R(0) ← Ir

18 for k in 1 : l

19 % se t the s i z e o f the search space

20 m← r − k + 1

21 %

22 %% Step 1 : random d i r e c t i o n s

23 %

24 V ← (v1, v2, . . . , vN )> ∈ RN×m ,

25 with each vj ∈ Rm−1P uni formly d i s t r i b u t e d over Rm−1P

26 s e t ṽj ← (0, 0, . . . , 0, vj) ∈ Rr

27 s e t qj ← R(k−1) · ṽj
28 %

29 %% Step 2 : c a l c u l a t e M−spac ing o f random d i r e c t i o n s

30 %

31 s e t ej ← M−spac ing entropy ; d = Y qj ,

32 M =
√
n

33 % put d i r e c t i o n s in to inc rea s ing order with r e spec t to entropy

34 order the rows o f V such that e(1) ≤ e(2) ≤ · · · ≤ e(N)

35 i . e . i n c r e a s i n g order o f M−spac ing entropy

36 % keep the b e s t Ñ d i r e c t i o n s

37 U ← (v(1), v(2), . . . , v(Ñ)) , which are a s s o c i a t e d with e(j) , g iven by

38 e(j) ← M−spac ing entropy : d = Y R(k−1)ṽ(j) ,

39 M =
√
n

40 %

41 %% Step 3 : c l u s t e r i n g o f the b e s t Ñ d i r e c t i o n s

42 %

43 % sor t U i n to K c l u s t e r s us ing d i v i s i v e k−means ;

44 c ← d i v i s i v e k−means : data , v(1), . . . , v(Ñ) ,

45 to l e rance , t o l

46 % g i v e s K c l u s t e r s , cj ∈ {1, . . . ,K} , j ∈ {1, . . . , Ñ}

47 U = (U1, U2, . . . , UK) where Ui = {v(j) : cj = i}

48 % thus , Ui ∩ Uj = ∅ and |Ui| = Ñi , wi th
∑
i Ñi = Ñ

49 %

50 %% Step 4 : op t imi sa t i on wi th in each c l u s t e r

51 %

52 % opt imise the d i r e c t i on tha t minimises entropy wi th in each c l u s t e r ,

53 % to ob ta in K d i r e c t i on s ,
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54 for i in 1 : K

55 % f ind b e s t d i r e c t i on wi th in c l u s t e r Ui

56 j ← argmin
i=1,...,K

e
(u)
i , with ũi := (0, . . . , 0, ui)

> ∈ Rr−1P and ,

57 v(i) ← argminv∈Ui
e(v) , where ṽ = (0, . . . , 0, v)> ∈ Rr−1P , and

58 e(v) ← M−spac ing entropy : z = Y R(k−1)ṽ

59 M =
√
n

60 % opt imise with i n i t i a l va lue g iven by b e s t d i r e c t i on wi th in c l u s t e r Ui

61 ui ← opt im i sa t i on over v ∈ Rm−1P , with ṽ = (0, . . . , 0, v)> ∈ Rr−1P :

62 i n i t i a l va lue v(i)

63 minimise M−spac ing entropy : z = Y R(k−1)ṽ ,

64 M =
√
n

65 end for

66 % s e l e c t b e s t d i r e c t i on post−op t imi sa t i on

67 j ← argmin
i=1,...,K

e
(u)
i , with ũi := (0, . . . , 0, ui)

> ∈ Rr−1P and ,

68 e
(u)
i ← M−spac ing entropy : z = Y R(k−1)ui ,

69 M =
√
n

70 ûk ← uj

71 q̂k ← R(k−1)ũk = R(k−1) · (0, . . . , 0, ûk)>

72 %

73 %% Step 5 : r o t a t i on matrix us ing Householder trans format ion

74 %

75 % update d i r e c t i on matrix by c a l c u l a t i n g Householder matrix

76 R(k) ← Householder r o t a t i o n ; vr = ûk ,

77 R(k−1) = R(k−1)

78 end for

79 Q← {(R(l))ij , i = 1, 2, . . . , p, j = 1, 2, . . . , l}

80 Z ← Y ·Q

81 return Y ; Q ; AQ ; Z

82 end

1.4.2.5 ClusterICA with fastICA initialisations

As discussed briefly in Section 1.3.2, in large dimensions it can be shown that in

the vast majority of cases, projections of data onto random directions are approx-

imately Gaussian distributed (Diaconis & Freedman, 1984; von Weizsäcker, 1997).

This result implies that as the rank r = rank(X̃) of the data increases (and thus

so does the size of the whitened matrix Y ∈ Rn×r), the efficiency of the cluster-

ICA initialisation method – where random directions are chosen to obtain a set of
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“good” starting projections – is reduced.

With fastICA (Hyvärinen & Oja, 2000) – as described in Section 1.4.1 – the

contrast function that is optimised is an approximation to negentropy of a den-

sity that maximises Gaussianity given some constraints, described in Panel 1.5.

This approach can result in the contrast function indicating that projections are

much more Gaussian that they actually are, as was shown by way of example

in Section 1.4.1.3. However, for higher dimensional data where the majority of

projections are indeed close-to Gaussian, the fastICA objective function might be

smooth and flat, with spikes in the (sparse) directions where projections of the

data are not Gaussian. See the short discussion at the end of Section 1.4.1.1 on

how the fastICA contrast function could display this behaviour.

Following this, in higher dimensions clusterICA can be set to include the direc-

tion that optimises the fastICA contrast function alongside the random directions

in the initialisation step. That is, to find the kth direction onto which to project

the whitened matrix Y , also include in the initialisation set of random directions

(described in Step 1., Panel 1.9), the vector vm ∈ Rm−1P, m = r − k + 1, that

maximises the function Ĵ [f̂0] (seen in Step 3, Panel 1.5). In the specific case of

clusterICA, the vector vm maximises,

(
EG(Y>R(k−1)ṽm)− EG(N)

)2
, (1.45)

where G(x) = log
(
cosh(x)

)
, R(k−1) ∈ Rr×r is the rotation matrix as described in

Panel 1.8, and ṽm = (0, . . . , 0, vm)> ∈ Rr−1P, Y ∈ Rr is a random vector of which

the whitened matrix Y ∈ Rn×r is n realisations, and N ∼ N(0, 1). In clusterICA,

the expectations in (1.45) are approximated by the arithmetic mean.

1.4.2.6 Clustering example

One main advantage of the clusterICA method is the clustering of the directions.

In this section a toy example is presented that demonstrates a case where clus-

tering is useful. Here, ‘useful’ means that fewer directions need to be optimised

post-clustering compared to pre-clustering to end up in the global minima of (M -

spacing) entropy.
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The plot of the toy example is shown in Figure 1.8. This is formed from a two

dimensional projection of three independent sources. Figure 1.8 also contains the

sample densities of two projections of the data – one at a global optimum of entropy

and one at a local optimum. The plot of the (M -spacing) entropy of projections in

directions from 0 to π is given in Figure 1.9. As we can see, the global optimum is

a narrow well around ϑ = 0, and when optimising from random starting directions

many of these will find the two other local optima. In this example we show that

by clustering the random directions, the number of directions needed to obtain the

global optimum reduces.

Figure 1.8: Distribution of a two dimensional projection of three independent
sources. The approximate densities are estimated from the one dimensional pro-
jection onto the lines, and relate to a local and global minimum (at approximately
θ = 0.3π and θ = 0 respectively) of the entropy plot in Figure 1.9.

On Rr−1P with p = r = 2 here, we initialise N = 20 random directions

(following Step 1., Panel 1.9), and the Ñ = 10 directions that result in the lowest

M -spacing entropy are chosen (Step 2.). These are shown as the vertical lines

in Figure 1.9. These directions are sorted into K = 3 clusters using k-means

clustering (Step 3.), and the best direction from each cluster is shown by the
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Figure 1.9: Entropy of projections of the data shown in Figure 1.8 over ten di-
rections from 0 to π. Here, the three vertical lines with the ‘•’ symbol above
represent the best three random directions. The three lines with the ‘◦’ symbol
above represent the best random direction from each of the K = 3 clusters. The
line with both the ‘•’ and ‘◦’ symbol above is a best direction overall and the best
direction of one of the clusters.

symbol ‘◦’ directly above the vertical line in Figure 1.9. The best three directions

(irrespective of clustering) are shown by the ‘•’ symbol. The line with both the ‘◦’
and ‘•’ symbol above is the best direction overall and thus also the best direction

from one of the clusters. From Figure 1.9 it is clear that optimising the best three

directions (‘•’) using standard gradient descent optimisation methods all result in

finding a local optimum that is not the global optimum. However, after clustering

and optimising the best direction that belongs to each cluster (‘◦’), we find the

global optimum for one of the optimised directions. The estimated density of the

global minimum is shown by the dotted lines in Figure 1.8, with the local minimum

found by näıvely optimising the best three directions shown by the dashed lines.

Thus it is clear that, in this example, clustering before optimisation results in

obtaining the true minimum with fewer directions optimised. Here, the direction

which results in the global minimum after optimisation is the fifth best (pre-

optimisation) direction overall. Therefore by clustering, the number of directions

that need to be optimised to obtain the global minimum reduces from five to three.
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1.4.3 Comparing independent component analysis meth-

ods

In this section we compare differing independent component analysis methods

to one-another. The methods include fastICA (described in Section 1.4.1), clus-

terICA (introduced above in Section 1.4.2), and two other established methods;

Infomax ICA (Bell & Sejnowski, 1995) and Jade ICA (Cardoso & Souloumiac,

1993). The ‘R’ code used to implement the respective independent component

analysis methods are given by Marchini et al. (2013) for fastICA, and Nathaniel

(2018) for Infomax and Jade ICA. The implementation of clusterICA in ‘R’ is the

work of the author.

In this example we use two dimensional samples similar to those used in Bach

& Jordan (2002). Here the samples are from 18 distributions, whose densities are

shown in Figure 1.10, and given by f1(·), f2(·), . . . , f18(·).
Here we sample n two-dimensional points, with each dimension sampled inde-

pendently from fj(·), where j ∈ {1, . . . , 18} to give a matrix S ∈ Rn×2. For each

sample a random rotation matrix is created by sampling θ ∼ U[0, 2π], and setting

R ∈ R2×2 to

R =

(
cos θ − sin θ
sin θ cos θ

)
.

The data is then transformed from S to X, where X = S R> ∈ Rn×p has rank

r = 2. The various independent component analysis methods are applied to the

data X and the resulting unmixing matrices W , such that XW is an estimate of

S, are compared to the original rotation matrix R using Amari error introduced

in Bach & Jordan (2002). The Amari error for two matrices A, B ∈ Rd×d, is given

by

dA(A,B) =
1

2d

(
d∑
i=1

(∑d
j=1|cij|

maxj|cij|
− 1

)
+

d∑
j=1

(∑d
i=1|cij|

maxi|cij|
− 1

))
, (1.46)

where cij = (AB−1)ij. The Amari error dA(A,B) ∈ [0, 1] and equals zero when

A = B. When A and B are rotation matrices, then the Amari error is also equal

to zero when the rotations have a difference of π/2.
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1.4 Methods For Independent Component Analysis

In this example, we sample a “training” set of n = 1000 points from each of the

18 two-dimensional distributions, each of which is rotated by a random rotation

matrix. This process is repeated independently 5000 times. Therefore, there are

5000 mixed matrices for each of the 18 distributions to which we can apply the

independent component analysis methods to. The Amari error is calculated for

each of the independent component analysis methods on each sample, where A

in (1.46) is the unmixing matrix found by the respective independent component

analysis method, and B is the original rotation matrix. Therefore for each of the

two-dimensional distributions, 5000 Amari errors are obtained, and the mean of

these errors is calculated. The M -spacing entropy (see Section 1.3.1.3) calculated

from the projection of each sample of size n = 1000 in the directions given by the

independent component analysis methods is also calculated, with M =
√

1000.

In this case, clusterICA is expected to perform well (that is, obtain a lower M -

spacing entropy approximation) as the contrast function used in this method is

based directly on the M -spacing entropy approximation.

The M -spacing entropy approximation tends to the true value of the differential

entropy as the size of the samples increases, and therefore for a large enough sample

size the M -spacing approximation should be close to true entropy. Therefore,

5000 independent “test” sets each of size n = 10000 are also considered for each

two-dimensional distribution. These sets are projected in the directions found by

the independent component analysis methods performed on the smaller original

training sets, and M -spacing entropy is calculated for these projections of the test

set, with M =
√

10000. These M -spacing values are theoretically close to the true

value of differential entropy and thus can be used to help judge how successful the

independent component analysis methods have been at finding the direction of the

data that minimises differential entropy (i.e. maximises non-Gaussianity).

The mean of the Amari errors of each independent component analysis method

for each distribution (1) - (18) is given in Table 1.11. Here, we see that clusterICA

performs well against the established methods, and beats these methods when

unmixing 6 of the 18 distributions. It can be seen that fastICA performs very

poorly here, as is expected from the discussion in Section 1.4.1.

Table 1.12 gives the means for each two-dimensional distribution of the M -

spacing entropy approximation of the 5000 training sets, projected in the directions
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1. DIMENSION REDUCTION

found by each independent component analysis method. These same directions are

used to project the larger test data sets and we calculate the M -spacing entropy

of these projections. The means of these are shown in Table 1.13. As expected,

Table 1.12 shows clusterICA outperforming all other methods. Table 1.13 shows

clusterICA outperforming other methods for 9 of the 18 distributions, with Info-

max performing best for 6 and Jade ICA the remaining 3.

These results suggests that clusterICA does indeed do well at finding directions

that “minimise entropy” when the data is projected onto them, and that cluster-

ICA is a valid independent component analysis method in practice. However, it is

also significantly slower. Whilst the fastICA, Jade ICA and Infomax have a similar

computing time in this example, clusterICA is more than 60 times slower, taking

minutes rather than seconds to run. Also, as discussed in Section 1.4.2.5, cluster-

ICA becomes much less efficient as the dimensions increase. This is a candidate

for further research, for instance merging clusterICA with Jade ICA initialisations,

or using the projective clustering part of clusterICA to improve Jade ICA.

98



1.4 Methods For Independent Component Analysis

−2 −1 0 1 2

0.
0

0.
2

0.
4

PDF of distr (1)

−2 −1 0 1 2

0.
0

0.
4

0.
8

PDF of distr (2)

−2 −1 0 1 2

0.
0

0.
2

0.
4

PDF of distr (3)

−2 −1 0 1 2

0.
0

0.
2

0.
4

PDF of distr (4)

−2 −1 0 1 2

0.
0

0.
4

0.
8

PDF of distr (5)

−2 −1 0 1 2

0.
0

0.
4

0.
8

PDF of distr (6)

−2 −1 0 1 2

0.
0

0.
6

1.
2

PDF of distr (7)

−2 −1 0 1 2

0.
0

0.
3

0.
6

PDF of distr (8)

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

PDF of distr (9)

−2 −1 0 1 2

0.
0

1.
0

2.
0

PDF of distr (10)

−2 −1 0 1 2

0.
0

0.
4

PDF of distr (11)

−2 −1 0 1 2

0.
0

0.
3

0.
6

PDF of distr (12)

−2 −1 0 1 2

0.
0

0.
4

0.
8

PDF of distr (13)

−2 −1 0 1 2

0.
0

0.
4

0.
8

PDF of distr (14)

−2 −1 0 1 2

0.
0

0.
4

0.
8

PDF of distr (15)

−2 −1 0 1 2

0.
0

0.
4

0.
8

PDF of distr (16)

−2 −1 0 1 2

0.
0

0.
4

0.
8

PDF of distr (17)

−2 −1 0 1 2

0.
0

0.
4

0.
8

PDF of distr (18)

Figure 1.10: Densities of the 18 distributions used in Bach & Jordan (2002), created
using the ‘ica’ package (Nathaniel, 2018)
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Distribution fastICA Imax JadeICA clusterICA
1 25.2725 14.5259 15.3130 15.7769
2 24.9559 13.4863 14.6431 14.7753
3 23.5455 12.6209 12.4017 13.0182
4 25.0867 14.0513 15.0320 17.5280
5 25.8960 13.4429 13.7905 12.2654
6 23.2423 12.3258 12.8929 12.4370
7 22.8274 11.0457 11.0007 11.5811
8 24.5662 13.7188 13.8858 17.4829
9 26.7776 16.0531 16.1626 28.0554
10 49.9740 45.7964 14.1616 12.3483
11 25.4151 14.3189 14.1775 14.8379
12 26.9233 17.4029 16.8607 18.3334
13 24.8045 13.8418 12.8619 12.3718
14 30.1633 22.0310 13.7546 13.4634
15 25.1011 14.3988 13.8151 17.1314
16 25.9454 14.3873 12.6026 12.3471
17 43.6762 43.6602 21.6598 14.9587
18 25.1120 14.6767 14.0712 16.3141

Figure 1.11: Table showing mean of the Amari Errors related to each distribution
(1) - (18) for 5000 samples of 1000 points for each independent component anal-
ysis method. Lower errors are better, with the best mean for each distribution
highlighted in bold. Here, the Amari error means have been multiplied by 100.
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Distribution fastICA Imax JadeICA clusterICA
1 1.0550 1.0531 1.0537 1.0501
2 1.2031 1.2023 1.2030 1.1990
3 1.1993 1.1984 1.1981 1.1959
4 1.2245 1.2241 1.2243 1.2202
5 0.9359 0.9227 0.9252 0.9092
6 1.0289 1.0274 1.0293 1.0239
7 0.7916 0.7908 0.7904 0.7874
8 1.2802 1.2804 1.2805 1.2766
9 1.2967 1.2969 1.2972 1.2914
10 0.9628 0.9480 0.7967 0.7823
11 1.2428 1.2425 1.2424 1.2384
12 1.2805 1.2802 1.2804 1.2754
13 1.1849 1.1783 1.1745 1.1692
14 1.2701 1.2666 1.2547 1.2508
15 1.2832 1.2832 1.2831 1.2796
16 1.2014 1.1959 1.1911 1.1872
17 1.2912 1.2918 1.2769 1.2656
18 1.2722 1.2720 1.2719 1.2681

Figure 1.12: Table showing mean of the m-spacing entropy of 5000 training data
sets of size 1000 each, projected in the directions found by the respective inde-
pendent component analysis method, for distribution (1) - (18). Lower entropy is
better, with the best entropy mean for each distribution highlighted in bold.
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Distribution fastICA Imax JadeICA clusterICA
1 1.1335 1.1311 1.1318 1.1315
2 1.2747 1.2733 1.2742 1.2737
3 1.2286 1.2264 1.2258 1.2255
4 1.2966 1.2956 1.2959 1.2963
5 0.9831 0.9672 0.9705 0.9519
6 1.0943 1.0926 1.0944 1.0922
7 0.8295 0.8287 0.8283 0.8286
8 1.3374 1.3371 1.3372 1.3379
9 1.3539 1.3536 1.3537 1.3545
10 1.0079 0.9898 0.8328 0.8219
11 1.3004 1.2996 1.2995 1.2994
12 1.3384 1.3376 1.3377 1.3377
13 1.2274 1.2199 1.2158 1.2129
14 1.3194 1.3151 1.3026 1.3017
15 1.3354 1.3349 1.3348 1.3356
16 1.2485 1.2421 1.2370 1.2357
17 1.3465 1.3460 1.3288 1.3204
18 1.3261 1.3252 1.3251 1.3256

Figure 1.13: Table showing mean of the m-spacing entropy of 5000 test data sets
of size 10000, projected in the directions found by each independent component
analysis method on the original training data set of size 1000, for distribution (1)
- (18). Lower entropy is better, with the best entropy mean for each distribution
highlighted in bold.
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Chapter 2

Modelling Using Stochastic

Processes

In the previous chapter, we discussed various methods to reduce the dimension of

a simulator output to a set of principal or independent components. The overall

aim here is to forecast some aspects of the original simulator using these lower

dimensional components. This leads appropriately to the requirement to model

these components in some way. The aim of this chapter is to introduce stochas-

tic processes that can be used as models for these components. This procedure

explicitly assumes that the information lost in the dimension reduction stage can

be replaced by some “randomness”, as was discussed in Panel 1.1. Here, the type

of “randomness” present, and the type of stochastic processes, is constrained to

allow for these processes to be applied to the components obtained in Part II of

this thesis.

First, some preliminary theory must be introduced.

2.1 Preliminaries

The naming of this chapter as ‘stochastic process models’ refers to models describ-

ing some process over time that includes random elements. To obtain a definition
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2. MODELLING USING STOCHASTIC PROCESSES

of a stochastic process, we first give some probability and measure theory and

introduce our notation.

Following notation as in Øksendal (2013), let (Ω,F,P) be a probability space

for some set Ω, F a σ-algebra on Ω and P a probability measure. The definitions

of σ-algebra and probability measures are given below.

Definition 2.1.1 (σ-algebra). The σ-algebra F on Ω is a family of subsets of Ω

such that:

i. ∅ ∈ F;

ii. If F ∈ F, then the complement, Ω\F ∈ F;

iii. If F1, F2, . . . ∈ F, then
⋃∞
i=1 Fi ∈ F.

Definition 2.1.2 (Probability measure). A probability measure associated with

the set Ω and σ-algebra F is a function P : F → [0, 1] such that:

i. P(∅) = 0 and P(Ω) = 1;

ii. For F1, F2, . . . ∈ F such that Fi ∩ Fj = ∅, i 6= j,

P
( ∞⋃
i=1

Fi

)
=
∞∑
i=1

P(Fi).

Definition 2.1.3 (Random variable in Rp). Let X be an F-measurable function

X : Ω→ Rp, where F-measurable means that for all open sets U ∈ Rn, X−1(U) :=

{ω ∈ Ω; X(ω) ∈ U} ∈ F. Then, X is a random variable in Rp on the probability

space (Ω,F,P) with distribution µX(B) = P(X−1(B)).

Definition 2.1.4 (Stochastic process). A stochastic process is a family of random

variables (as given in Definition 2.1.3) defined on the probability space (Ω,F,P),

and is given by (Xt)t∈T , where T is the ordered parameter space and for each t ∈ T ,
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ω → Xt(ω) is a random variable. The function t → Xt(ω) for some fixed ω ∈ Ω,

will be referred to interchangeably as the trajectory or path of Xt.

In this chapter, upper-case letters in sans serif typeface are used to notate

random variables and stochastic processes, following on from the notation used

in Chapter 1 and discussed in Panel 1.1. The only departure from this is the

“white-noise” process introduced in Section 2.2, which is notated (εt)t∈Z by con-

vention. Observations from a stochastic process will be given by lower-case letters

in computer modern typeface.

This chapter is arranged into two major parts. The first part is given in Sec-

tion 2.2 and refers to classical time series models, which are defined to be causal

stochastic models in discrete time such that T in Definition 2.1.4 is the set of inte-

gers Z. Therefore, the process is a (countable) family (Xt)t∈T = {. . . ,X1,X2,X3, . . .}.
Causal means that the value at time t of a time series can only depend on obser-

vations or functions up to time t, and no future information is used.

Section 2.3 discusses processes obtained from stochastic differential equations

defined on continuous time such that T in Definition 2.1.4 is the positive real line

[0,∞), and the output is given by (Xt)t≥0. Clearly in practice the observed pro-

cess must be a sample from the continuous output and thus a countable family

{xt1 , xt2 , xt3 , . . .} for some t1 < t2 < t3 < . . .. This section includes a novel stochas-

tic process defined by the integral of a stochastic differential equation over disjoint

time intervals, called block-average and described in Section 2.3.2.1. An associ-

ated parameter fitting procedure for this process is described in Section 2.3.3.3.

We also discuss a novel spline function that can be used to ensure that season-

ality in pointwise stochastic differential equations is mirrored in the respective

block-average process (Section 2.3.4).

In this chapter we only consider univariate processes, such that (Xt)t∈T only

take values in R. Here, the processes only depend on their own previous trajectory

and some stochastic “noise” to determine the future state, and there is no depen-

dency on other explanatory variables or processes. This choice of only considering

univariate processes was done for three main reasons, one of them being the in-

evitable time-constraint whilst doing post-graduate research. The second reason

was due to the original motivation of this thesis, where simpler models are desired
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to help with interpretability, computational intensiveness and forecasting of some

high dimensional climate simulator. Purely focussing on univariate processes re-

duces the possibility of an increasing creep of “black box” modelling, which is to be

avoided for tractability where possible. The third reason was related to the dimen-

sion reduction techniques discussed in Chapter 1. With independent component

analysis, introduced in Section 1.3, the independent components are theoretically

estimating some independent source signals and indeed are linearly independent by

design. For multivariate theory for time series models see Priestley (1981, Volume

II) and for related stochastic differential equation theory see Øksendal (2013) and

Kessler et al. (2012).

2.2 Time Series Models

In this section we discuss some classes of discrete causal processes in time that con-

tain a random element. Although no novel work is introduced in this section, the

mathematics discussed here gives a good background knowledge to “classical” time

series, and these processes will be used for the initial modelling of the components

obtained by the dimension reduction techniques in Chapter 1, on simulator output

given in Part II of this thesis. This will allow comparisons between the classical

models given in this section and the more advanced models given in Section 2.3.

For notation throughout, the upper-case Xt describes an individual random

variable from a process whose distribution is given by the tth step of a time series

model. An observation or realisation of a time series model at step t is denoted

by a lower-case xt.

The first properties to examine in, and remove from, a process are trend and

seasonal effects. Using the same loose definition as in Chatfield (2016), a trend

is given to be some long-term change in the underlying mean level, where neither

“long-term” nor “mean level” is well defined. The simplest way to represent a

trend in the local mean level is by the deterministic linear equation µ(t) = α+βt,

where µ(t) is the local level and β is the trend term. The seasonal effects are cyclic

variation arising in the data with some periodicity, such that µ(t) = µ(t + k · N)

for some N > 0, and for all k ∈ Z. Often, seasonal effects are described as having
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an annual period (that is, the N above is one year) with cyclic effects having any

other period, but here no differentiation is made between them.

The seasonal effect is an important effect to remove from a climate simulator

if month-to-month variability due to the Earth’s orbital eccentricity and obliquity

(axial tilt) want to be accounted for. An example of a mean function that displays

some seasonal behaviour is given in Figure 2.1. In this case the solid black line

gives the mean function of, say, some climate simulator output run over a number

of years, displaying strong seasonality. This seasonality needs to be removed to

obtain a mean function given by the dashed line, before time series modelling using

the methods discussed in this section can commence.
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Figure 2.1: Example of removing seasonality from a time series from some climate
simulator output that has yearly repeating behaviour. The solid black line gives
some mean function of the simulator output over the year, which exhibits some
strong seasonal affect. This function is required to be removed from the output
to give a constant mean function given by the dashed line, before modelling the
output using time series models.

The arrangement of this section corresponds to stationary and non-stationary

time series models, and thus we introduce this concept here. Suppose the process

(Xt)t∈Z is from a time series model. Then, (Xt)t∈Z is a (second-order) stationary

time series process if the first moment is finite and does not depend on time, and

the second moment is finite and only depends on the lag between the two variables.

That is,

EXt = µ(t) =: µ for all t ∈ Z

Cov(Xt,Xt+k) = E(Xt − µ)(Xt+k − µ) =: γ(k), (2.1)

for any t, t+k ∈ Z. Here, µ = µ(t), t ∈ Z, is constant throughout time, so that any
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trend and seasonality as discussed above has been removed. The autocovariance

function γ : Z → R as in (2.1) is often standardised to give the autocorrelation

function ρ : Z→ [−1, 1],

ρ(k) =
γ(k)

γ(0)
=
γ(k)

σ2
,

where σ2 = VarXt for all k ∈ Z.

The autocovariance function (autocorrelation function) is a function of the

autocovariance (autocorrelation) against the lags k, and is a useful analysis tool

for time series models. These two functions are now considered for a specific

time series process, which is introduced in Definition 2.2.2. First, the white noise

process must be defined.

Definition 2.2.1 (White noise process). The process (εt)t∈Z, with each εt ∈ R, is

known as the white-noise process in R exactly when the mean and autocovariance

are given by

E εt = 0; and,

γ(k) = E εtεt+k = σ2
ε1k=0,

for all t ∈ Z, k ∈ Z and for some σ2
ε ∈ (0,∞). That is, (εt)t∈Z is a sequence of

uncorrelated zero-mean random variables, each with variance σ2
ε .

Definition 2.2.2 (General linear process (Box & Jenkins, 1976)). Let (εt)t∈Z be

a white noise process, and B the backwards shift operator such that BdXt = Xt−d

for some process (Xt)t∈Z. Then, (Xt)t∈Z is a general linear process exactly when

Xt := (1 +
∞∑
j=1

ζjB
j)εt

= ζ(B)εt, , (2.2)

with ζ(B) = (1 +
∑∞

j=1 ζjB
j).
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A general linear process (Xt)t∈Z is stationary if ζ(x) = (1+
∑∞

j=1 ζjx
j) <∞ for

|x| ≤ 1. The autocovariance function for a stationary general linear process can

be found by substituting Xt as in (2.2) into the autocovariance definition (2.1) to

give, with ζ0 = 1,

γ(k) = EXtXt+k

= E
( ∞∑
i=0

∞∑
j=0

ζiζjεt−iεt+k−j

)
= σ2

ε

∞∑
j=0

ζjζj+k,

where the last equality is due to the covariance of the white noise process, Eεtεt+k =

σ2
ε1k=0. With k = 0 we obtain the variance σ2

X = γ(0) = σ2
ε

∑∞
j=0 ζ

2
j .

For a set of observations {x1, x2, . . . , xn} with x̄ := 1
n

∑n
t=1 xt = 0, the sample

autocovariance for lag k is given by,

c(k) =
1

n

n−k∑
t=1

xtxt+k, (2.3)

and the sample autocorrelation at lag k is

r(k) =
c(k)

c(0)
. (2.4)

The plot of the function r(k) against the lag k is known as the correlogram. If

the sample autocorrelation function is calculated using observations from a non-

stationary process, then the decay will be very slow as a function of the lag.

In this section a function known as the partial autocorrelation is used in addition

to the autocorrelation to help understand the behaviour of a stationary process or

a set of observations. A definition is not given here but instead the readers are

referred to Box & Jenkins (1976, Section 3.2.5 and 3.3.2) for the specific partial

autocorrelation functions for the time series models that are discussed in this

section.
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Remark 2.10: Spectral density function

An equivalent function to the autocovariance function is the spectral density

function, also known as the power spectrum. This is the Fourier transform

of the autocovariance function, and describes the distribution of the variance

of a process over its frequency. In general, analysis using the autocovariance

or autocorrelation function is known as time domain analysis, whereas using

the spectral density it is known as frequency domain or spectral analysis. See,

e.g. Jenkins & Watts (1968, Chapter 6) for a detailed description of spectral

analysis on a time series.

Another important concept related to time series models is invertibility. First

note that the general linear process can be expressed as an infinite sum of all past

values of Xj, j ≤ t, i.e.

π(B)Xt = εt, (2.5)

where π(B) := 1−
∑∞

j=1 πjB
j is the generating function of the weights πj. Then,

from Box & Jenkins (1976), π(B) = φ−1(B) and the process is invertible if

π(x) = 1 −
∑∞

j=1 πjx
j converges for all |x| ≤ 1. That is, the weights must satisfy∑∞

j=1|πj| <∞.

This section is arranged as follows. In Section 2.2.1 we introduce some com-

mon stationary time series models; the autoregressive, moving average, and mixed

autoregressive-moving average processes. In Section 2.2.2 we introduce the in-

tegrated autoregressive-moving average process which describes a non-stationary

time series model.

2.2.1 Time series models for stationary processes

In this section we assume that the process (Xt)t∈Z = {. . . ,X1,X2,X3, . . .} is in

stationarity, with mean µ := EXt = 0 (assumed without loss of generality) and

autocovariance function γ(k) for all k ∈ Z.

110



2.2 Time Series Models

In Section 2.2.1.1 we introduce the autoregressive process (notated AR(p) with

p parameters) and the moving average process (notated MA(q) with q parameters)

is introduced in Section 2.2.1.2. In Section 2.2.1.3 we introduce a mixture of the

two, known as autoregressive-moving average processes and notated ARMA(p, q).

2.2.1.1 Autoregressive process

Let (Xt)t∈Z be a process of the form,

Xt = ϕ1Xt−1 + ϕ2Xt−2 + · · ·+ ϕpXt−p + εt, (2.6)

where εi ∼ N(0, σ2
ε) independent for all i ∈ Z. Then, (Xt)t∈Z is an autoregressive

process of order p, notated AR(p). Using the backwards shift operator, (2.6)

becomes ϕ(B)Xt = εt, where ϕ(B) = 1 − ϕ1B − . . . − ϕpB
p is a polynomial of

order p. From this it can be seen that (2.6) can be rewritten as a general linear

process by Xt = ϕ−1(B)εt, which is in the form of (2.2) with ζ(B) = ϕ−1(B). That

is, an AR(p) process can be rewritten as an infinite sum of weighted independent

Gaussians (i.e. a moving average process with infinite parameters, which we discuss

in the next section). As discussed in Section 2.2, the process (Xt)t∈Z is stationary

if ζ(x) converges for all |x| ≤ 1. This is equivalent to the requirement that the

roots of ϕ(x) = 0 must satisfy |x| > 1, i.e. lie outside the unit circle.

The autocorrelation function for an autoregressive process does not have a cut-

off point for which it is zero after, but instead decays in an exponential manner.

On the other hand the partial autocorrelation function of an AR(p) process is zero

for all lags greater than p.

Suppose that the observations {x1, x2, . . . , xn} are known to be from an AR(p)

process with p to be determined. It is clear that the value of p can not be estimated

by only looking at the sample autocorrelation function, due to the exponential de-

cay. However, the sample partial autocorrelation function can be used to estimate

the value of p by examining the lag for which the function is near zero afterwards.

This is shown by way of an example below, and is discussed in more detail in

Section 3.1.1.
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2. MODELLING USING STOCHASTIC PROCESSES

Example 2.2.3 (Autoregressive process, order 1). In this example (Xt)t∈Z is an

AR(1) process which has the form,

Xt = ϕXt−1 + εt,

with ϕ = 0.7 and εj ∼ N(0, σ2
ε) for j ∈ Z, σ2

ε = 0.4. A realisation {x1, x2, . . . , x250}

of the process (Xt)t∈Z is shown in Figure 2.2.

Using this realisation, the sample autocorrelation function is calculated and

given in Figure 2.3, and shows an exponential decay with no clear cut off. However,

the sample partial autocorrelation function shown in Figure 2.4 is close to zero for

all lags greater than one. As discussed above, this is the expected behaviour of an

AR(1) process.
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Figure 2.2: Time series of a realisation {x1, x2, . . . , x250} of an autoregressive pro-
cess of order 1, (Xt)t∈Z of the form Xt = ϕXt−1+εt, with ϕ = 0.7 and εj ∼ N(0, 0.4).

2.2.1.2 Moving average process

Let (Xt)t∈Z be a general linear model with a finite number of non-zero parameters,

Xt = εt + ϑ1εt−1 + · · ·+ ϑqεt−q, (2.7)
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Figure 2.3: Sample autocorrelation function of a realisation {x1, x2, . . . , x250} of
an autoregressive process of order 1, (Xt)t∈Z, of the form Xt = ϕXt−1 + εt, with
ϕ = 0.7 and εj ∼ N(0, 0.4). Note that here there is no clear cut off point K for
which r(k) ≈ 0 for all k ≥ K.
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Figure 2.4: Sample partial autocorrelation function of a realisation
{x1, x2, . . . , x250} of an autoregressive process of order 1, (Xt)t∈Z, of the form
Xt = ϕXt−1 + εt, with ϕ = 0.7 and εj ∼ N(0, 0.4). Note that for all lags greater
than 1 the partial autocorrelations are all close to zero (apart from at lag 16, which
lies just outside the 95% confidence interval), as expected for an AR(1) process.

where εi ∼ N(0, σ2
ε) independent for all i ∈ Z. Then, (Xt)t∈Z is a moving average

process of order q, denoted MA(q). The form given in (2.7) can be rewritten in

terms of the backwards shift operator, Xt = ϑ(B)εt, where ϑ(B) = 1 + ϑ1B +

. . .+ ϑqB
q is a polynomial of order q. This process is stationary for all parameter

values, and is invertible if (2.7) can be written in the form π(B)Xt = εt (as in

(2.5)) with π(x) < ∞ for all |x| ≤ 1. The invertibility condition is equivalent to
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2. MODELLING USING STOCHASTIC PROCESSES

the roots of ϑ(x) = 0 satisfying |x| > 0, i.e. the roots lie outside the unit circle.

If an MA(q) process is invertible, then it can be written as an infinite sum of the

past values of the process (that is, in the form of an AR(∞) process).

Many authors use a different form for autoregressive processes such that the

signs on the right-hand side of (2.7) are negative, for instance in Box & Jenkins

(1976). Although this makes no difference to the theory, in practise one needs

to be wary as to which form is being used, as there is no standard used across

computer software and functions.

The autocorrelation function of a moving average process of order q is (see, e.g.

Chatfield, 2000),

ρ(k) =


1, for k = 0∑q−k

i=0 ϑiϑi+k∑q
i=0 ϑ

2
i
, for k = 1, 2, . . . , q

0, for k > q,

(2.8)

where ϑ0 = 1. From this it is clear that for a realisation of an MA(q) process,

{x1, x2, . . . , xn}, the sample autocorrelation should be close to zero for all lags

greater than q. The sample partial autocorrelation will not exhibit a clear cut-off,

but should tail off to zero (Box & Jenkins, 1976, Section 6.2). This insight is used

for model identification and forecasting in Section 3.1.1.

Example 2.2.4 (Moving average process, order 1). In this example (Xt)t∈Z is an

MA(1) process which has the form,

Xt = εt + ϑεt−1,

with ϑ = 0.8 and εj ∼ N(0, σ2
ε) for j ∈ Z, σ2

ε = 0.4. A realisation of the process is

given by {x1, x2, . . . , x250} and is shown in Figure 2.5.

Using this realisation, the sample autocorrelation function is calculated and

given in Figure 2.6, and shows a very quick delay. After lag 1, the autocorrelation

is close to zero, which we expect from the theory for a moving average process of

order 1. From (2.8) the true lag 1 autocorrelation of the moving average process
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is ρ(1) = (1 × 0.8)/(12 + 0.82) ≈ 0.4878, which is comparable to the lag 1 sample

autocorrelation from this realisation of r(1) = 0.4786. The sample partial autocor-

relation shown in Figure 2.7 does not show a cut-off after a certain lag, but instead

tails off in an alternating positive-negative manner.
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Figure 2.5: Time series of a realisation {x1, x2, . . . , x250} of a moving average
process of order 1, (Xt)t∈Z, of the form Xt = εt + ϑεt−1 with ϑ = 0.8 and εj ∼
N(0, 0.4).
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Figure 2.6: Sample autocorrelation function of a realisation {x1, x2, . . . , x250} of an
autoregressive process of order 1, (Xt)t∈Z, of the form Xt = εt +ϑεt−1 with ϑ = 0.8
and εj ∼ N(0, 0.4). Note that here there is a clear cut off after lag 1, and all other
sample autocorrelations are close to zero.
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Figure 2.7: Sample partial autocorrelation function of a realisation
{x1, x2, . . . , x250} of an autoregressive process of order 1, (Xt)t∈Z, of the form
Xt = εt + ϑεt−1 with ϑ = 0.8 and εj ∼ N(0, 0.4). This function exhibits alter-
nating positive-negative decay with no clear cut-off.

2.2.1.3 Autoregressive-moving average process

Here we introduce the autoregressive-moving average process, which is a mixture

of the autoregressive and moving average processes that have been discussed in

the sections above. The general form of an ARMA(p, q) process, (Xt)t∈Z, is given

by

Xt = ϕ1Xt−1 + . . .+ ϕpXt−p + εt + ϑ1εt−1 + . . . ϑqεt−q,

where εi ∼ N(0, σ2
ε) independent for all t ∈ T . This can be written using the

backwards shift operator as

ϕ(B)Xt = ϑ(B)εt, (2.9)

where ϕ and ϑ are polynomial operators of degree p and q respectively. As with

the stationary autoregressive process, the autoregressive-moving average process

is stationary if the roots of ϕ(x) = 0 lie outside the unit circle. The invert-

ibility condition is the same as that of the moving average process, in that the

autoregressive-moving average process is invertible if the roots of ϑ(x) = 0 lie

outside the unit circle.

A stationary and invertible ARMA(p, q) process can be written as an infinite
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order autoregressive process

π(B)Xt = εt

with π(B) = ϑ−1(B)ϕ(B), and as an infinite order moving average process,

Xt = ζ(B)εt

with ζ(B) = ϕ−1(B)ϑ(B).

As the autoregressive-moving average process exhibits autoregressive behaviour,

the autocorrelation function should have no clear cut-off, but instead tail off to zero

relatively quickly. Conversely, as the process includes moving average behaviour,

the partial autocorrelation function should also have no clear cut-off point. For an

ARMA(p, q) process, the autocorrelation function is a mixture of exponentials and

damped sine waves after the q − p lag, and the partial autocorrelation function is

dominated by a mixture of exponentials and damped sine waves after the p− q lag

(Box & Jenkins, 1976, Section 6.2.1).

An initial assumption for the principal and independent components found in

Part II on the various simulator outputs (using the theory introduced in Chapter 1)

is that these are realisations from ARMA(p, q) processes. After removing the trend

and seasonality from each realisation and checking stationarity, the values of p and

q are estimated alongside the associated parameter values. This is explained in

detail in Section 3.1.1. A method to model non-stationary realisations and to

help modify a non-stationary realisation into a stationary one is given below in

Section 2.2.2.1.

Example 2.2.5 (Autoregressive-moving average process, order (1, 1)). In this ex-

ample (Xt)t∈Z is a process which has the form,

Xt = ϕXt−1 + εt + ϑεt−1,

with ϕ = 0.7, ϑ = 0.8 and εj ∼ N(0, σ2
ε) for j ∈ Z, σ2

ε = 0.4. A realisation

{x1, x2, . . . , x250} of the process is shown in Figure 2.8.
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Using this realisation, the sample autocorrelation function is calculated and

given in Figure 2.9, and shows a (relatively fast) delay with no clear cut off. This

suggests that the process has some autoregressive behaviour. The sample partial

autocorrelation function calculated using the realisation and shown in Figure 2.10

also displays no clear cut off. This suggests that the observations are from an

ARMA(p, q) process, where p and q need to be determined. However, determining

the autoregressive and moving average orders is non-trivial, as it is a difficult

skill for most to tell when the autocorrelation and partial autocorrelation functions

become dominated by a mixture of exponentials and sine waves. This difficulty

is highlighted in Example 3.1.1 in Section 3.1.1. For an ARMA(1, 1) process,

the autocorrelation function should decay exponentially from the first lag, and the

partial autocorrelation function should be dominated by exponential decay from the

first lag.

This example is presented here to give an indication of the difficulty in using

the autocorrelation and partial autocorrelation functions to identify the structure

of a process. This example is referred back to in Chapter 3 to show how model

criterion could be used to help identify the correct model.
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Figure 2.8: Time series of a realisation {x1, x2, . . . , x250} of an autoregressive-
moving average process of order (1, 1), (Xt)t∈Z, of the form Xt = ϕXt−1 + εt+ϑεt−1

with ϕ = 0.7, ϑ = 0.8 and εj ∼ N(0, 0.4).
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Figure 2.9: Sample autocorrelation function of a realisation {x1, x2, . . . , x250} of
an autoregressive-moving average process of order (1, 1), (Xt)t∈Z, of the form Xt =
ϕXt−1 + εt + ϑεt−1 with ϕ = 0.7, ϑ = 0.8 and εj ∼ N(0, 0.4). Note that here there
is no clear cut-off point, suggesting that autoregressive behaviour is present in the
observations.
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Figure 2.10: Sample partial autocorrelation function of a realisation
{x1, x2, . . . , x250} of an autoregressive-moving average process of order (1, 1),
(Xt)t∈Z, of the form Xt = ϕXt−1 + εt + ϑεt−1 with ϕ = 0.7, ϑ = 0.8 and
εj ∼ N(0, 0.4). Note that here there is no clear cut-off point, suggesting that
moving average behaviour is present in the observations.

2.2.2 Time series models for non-stationary processes

Suppose that the process (Yt)t∈Z is not stationary, such that the autocovariance

(and autocorrelation) depends not just on the lag, but also on the time. The
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motivation behind the model introduced in this section is that, in some cases,

applying differencing to (Yt)t∈Z can result in a stationary process. In this case, to

obtain a stationary process consider Yt − Yt−1 = (1−B)Yt, or more generally the

dth difference (1 − B)dYt. The model considered here is known as the integrated

autoregressive-moving average process, and is equivalent to the autoregressive-

moving average process discussed in Section 2.2.1 after taking d differences of the

process.

2.2.2.1 Integrated autoregressive-moving average process

In this section we introduce a process with the same form as the autoregressive-

moving average process discussed in Section 2.2.1, but which is not stationary

due to the roots of the polynomial operators. That is, an ARIMA(p, d, q) process

(Yt)t∈Z has the form

%(B)Yt = ϑ(B)εt,

where %(x) = 0 has d roots that lie on the unit circle. Alternatively the form of

(Yt)t∈Z can be given as

ϕ(B)(1−B)dYt = ϑ(B)εt, (2.10)

where for stationarity ϕ(x) = 0 has roots outside the unit circle, and for invertibil-

ity ϑ(x) = 0 has roots outside the unit circle. Then, (Xt)t∈Z, with Xt = (1−B)dYt,

is a stationary, invertible ARMA(p, q) process of the form ϕ(B)Xt = ϑ(B)εt.

Example 2.2.6 (Integrated autoregressive-moving average process, order (1, 1, 1)).

In this example (Yt)t∈Z is an integrated autoregressive-moving average process

which has the form,

(1−B)Yt = ϕ(1−B)Yt−1 + εt + ϑεt−1,

with ϕ = 0.7, ϑ = 0.8 and εj ∼ N(0, σ2
ε) for j ∈ Z, σ2

ε = 0.4. The first difference

Xt = (1 − B)Yt is an ARMA(1, 1) process. A realisation {y1, y2, . . . , y250} of the
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process is shown in Figure 2.11.

Using this realisation, the sample autocorrelation function is calculated and

given in Figure 2.12, and shows a very slow delay. This suggests that the process is

not stationary, and therefore differences should be taken. When first differences are

taken the realisation {x1, x2, . . . , x250} of the process (Xt)t∈T is obtained, which is

the realisation we discussed in Example 2.2.5 and is shown in Figure 2.8. Looking

at the sample autocorrelation of the differenced process in Figure 2.9 the decay is

quite fast, which suggests that the differenced process is stationary.
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Figure 2.11: Time series of a realisation {y1, y2, . . . , y250} of an integrated
autoregressive-moving average process of order (1, 1, 1), (Yt)t∈Z, of the form
(1−B)Yt = ϕ(1−B)Yt−1 + εt + ϑεt−1 with ϕ = 0.7, ϑ = 0.8 and εj ∼ N(0, 0.4).

Now that some discrete causal classical time series models have been intro-

duced, more novel work is given in Section 2.3 below. This includes stochastic

processes defined on continuous time and stochastic processes integrated over a

set of time intervals.

2.3 Ornstein-Uhlenbeck Processes

We now consider stochastic differential equations, which have solutions that are

a case of continuous time stochastic processes. We give a short introduction to
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Figure 2.12: Sample autocorrelation function of a realisation {y1, y2, . . . , y250} of an
autoregressive process of order 1, (Yt)t∈Z, of the form (1−B)Yt = ϕ(1−B)Yt−1 +
εt + ϑεt−1 with ϕ = 0.7, ϑ = 0.8 and εj ∼ N(0, 0.4). Here there is very slow
decay of autocorrelation as a function of the lag, which suggests that the process
is not stationary. Taking first differences gives the process shown in Figure 2.8
with sample autocorrelation function and sample partial autocorrelation function
shown in Figure 2.9 and Figure 2.10 respectively.

stochastic differential equations in Section 2.3.1. We then define the Ornstein-

Uhlenbeck process in Section 2.3.2, and by averaging over some disjoint time in-

tervals, we obtain the block-average Ornstein-Uhlenbeck process as introduced in

Section 2.3.2.1.

Once these stochastic differential equations have been described, we introduce

some parameter estimation methods. These are split into parameter estimations

methods for pointwise stochastic differential equations (Section 2.3.3.1), and for

block-average stochastic differential equations (Section 2.3.3.3).

2.3.1 Introduction to stochastic differential equations

A brief introduction to stochastic differential equations is now given. For a more

comprehensive overview, the reader is referred to Da Prato & Zabczyk (2014);

Iacus (2009); Lindsey (2004); Øksendal (2013). The most common example of a

stochastic process in continuous time is Brownian motion. Let x ∈ Rn and,

p(t, x, y) =
1

(2πt)n/2
exp
(
−|x− y|

2t

)
,
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for y ∈ Rn and t > 0. Then there exists a probability space (Ω,F,Px) and a

stochastic process (Bt)t≥0 on Ω such that, for all F1, . . . , Fk ∈ F,

Px(Bt1 ∈ F1,Bt2 ∈ F2, . . . ,Btk ∈ Fk)

=

∫
F1×F2×···×Fk

p(t1, x, x1) p(t2 − t1, x1, x2) . . . p(tk − tk−1, xk−1, xk) dx1 dx2 . . . dxk.

Here, (Bt)t≥0 is known as Brownian motion, and satisfies the following conditions,

1. B0 = 0 almost surely;

2. Increments: Let 0 ≤ s1 < t1 ≤ s2 < t2 ≤ . . . ≤ sk < tk such that [sj, tj],

j = 1, 2, . . . , k are non-overlapping intervals. Then,

(a) Independent increments: {(Btj − Bsj); j = 1, 2, . . . , k} are independent

random variables;

(b) Stationary increments: Let t0 ∈ [0,∞) and 0 ≤ s < t < ∞. Then the

distribution of the random variable
(
Bt0+t−Bt0+s

)
is independent of t0;

(c) Mean and variance: For 0 ≤ s < t <∞, E
(
Bt − Bs

)
= 0 and Var

(
Bt −

Bs
)
<∞.

3. Continuous path: the path t→ Bt is continuous almost surely.

Let the stochastic differential equation take the form

dXt = b(t,Xt) dt+ a(t,Xt) dBt (2.11)

which has the solution Xt = X0+
∫ t

0
b(s,Xs) ds+

∫ t
0
a(s,Xs) dBs, where

∫ t
0
a(s,Xs) dBs

is a stochastic integral. A strong solution is a solution Xt that is adapted to the

filtration and constructed from a version of Brownian motion Bt that is given in

advance (Øksendal, 2013, Section 5.3).

The transition density of a stochastic process is given by the function p : [0,∞)×
[0,∞)× R2 → [0,∞) where,

p(s, t, x, y) = 〈density of Xt at y, given Xs = x〉.
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If the equality p(s, t, x, y) = p(0, t− s, x, y) holds for all s, t ∈ R+, t ≥ s, then the

stochastic process is time-homogeneous and for simplicity the notation p(∆t, x, y),

where ∆t = t − s, is used for the transition density. In the case of Brownian

motion described above, the transition density p(∆t, x, y) is given by the density

of a Gaussian with variance ∆t, such that non-overlapping increments are inde-

pendently Gaussian distributed, (Bt − Bs) ∼ N(0, t− s), for s < t.

We now focus our attention on a specific stochastic differential equation known

as the Ornstein-Uhlenbeck process. This process and the variations described in

Section 2.3.2 are used to model the components obtained by dimension reduction

on the HadCM3 simulator outputs given in Part II.

2.3.2 Introduction to the Ornstein-Uhlenbeck process

The main stochastic process we consider in this section is the Ornstein-Uhlenbeck

process (Uhlenbeck & Ornstein, 1930). Here, the process XOU
t : t→ R is given by

the stochastic differential equation,

dXOU
t = −γXOU

t dt+ σ dBt, (2.12)

where γ ∈ R, σ ∈ R+, and Bt : t→ R is Brownian motion.

The Ornstein-Uhlenbeck process is a random process with γ known as the drift

parameter and σ2 the diffusion parameter, and has solution (Karatzsas & Shreve,

1988),

XOU
t = XOU

0 e−γt + σ

∫ t

0

e−γ(t−s) dBs, t ∈ [0,∞),

where XOU
0 is the initial random variable of the process. If E

(
(XOU

0 )2
)
< ∞ then

from Karatzsas & Shreve (1988) the mean, variance and covariance functions are
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given by

µ(t) := EXOU
t = EXOU

0 e−γt; (2.13a)

V (t) := Var(XOU
t ) =

σ2

2γ
+
(

VarXOU
0 − σ2

2γ

)
e−2γt; (2.13b)

ρ(s, t) := Cov(XOU
s ,XOU

t ) =
(

VarXOU
0 +

σ2

2γ
(e2γ{t∧s} − 1)

)
e−γ(t+s). (2.13c)

The stationary distribution of an Ornstein-Uhlenbeck process is N
(
0, σ

2

2γ

)
. If

XOU
0 = x almost surely, then the transition density p(t, x, ·) is from the Gaus-

sian distribution N
(
xe−γt, σ

2

2γ
(1− e−2γt)

)
.

2.3.2.1 The block-average Ornstein-Uhlenbeck process

In our application in Part II, data will be reported as monthly averages of a

stochastic process. In order to get a model for this situation, we consider the

behaviour of averages of an Ornstein-Uhlenbeck process within certain disjoint

time intervals. In this case, the integral of the Ornstein-Uhlenbeck process can

be used to model the observations. The output of the HadCM3 simulator in

Part II is given as monthly means of some variable over (a discretised version

of) the Earth’s surface, and therefore this is the motivation for considering the

behaviour of these integrals. It is worth nothing here that the behaviour of some

similar Ornstein-Uhlenbeck integral-type processes have been previously described

in Lindsey (2004); Taylor et al. (1994), although the author was not aware of these

references until after the work on this section had been completed, and indeed

these references have very difference aims and focuses then those obtained using

the motivation here.

Consider the integral of an Ornstein-Uhlenbeck process within some partition,

where XOU ∈ L2([0, T ],R) is the (random) Ornstein-Uhlenbeck process, and 0 =

t1 < t2 < t3 < · · · < tn = T is the time partition. That is, for each i ∈ {2, 3, . . . , n},
the quantity of interest is,

XbaOU
[ti−1,ti)

:=
1

ti − ti−1

∫ ti

ti−1

XOU
t dt =

1

ti − ti−1

〈1[ti−1,ti),X
OU〉. (2.14)
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We now investigate the distribution of the random variables XbaOU
[ti−1,ti)

, i =

2, 3, . . . , n. First note that the standard Ornstein-Uhlenbeck process is a Gaussian

process and therefore for any set of time-points τ1, τ2, . . . , τK ∈ [0, T ] the random

vector (XOU
τ1
,XOU

τ2
, . . . ,XOU

τK
)> has a Gaussian distribution with some mean m and

covariance matrix Σ. Here we give the definition of a Gaussian measure on the

Hilbert space, and then we use a lemma from Rajput & Cambanis (1972) to show

that the law of XOU ∈ L2([0, T ],R) is Gaussian. This result, alongside (2.15) given

below, is used to give the distribution of the block-average Ornstein-Uhlenbeck

process.

Definition 2.3.1 (Gaussian Measure on the Hilbert Space (Da Prato & Zabczyk,

2014)). A probability measure µ on (H,B(H)) is called Gaussian if for any h ∈ H,

there exists an m ∈ R, q ≥ 0 such that

µ
{
x ∈ H : 〈h, x〉 ∈ A

}
= N(m, q)(A),

for any A ∈ B(R), where N(a, b)(C) is the integral of the density function over C

of a Normal distribution with mean a and variance b.

Let (L2([0, T ]),B(L2([0, T ],R)),Pr) be a probability space and let X ∈ L2([0, T ],R)

be a random process. Then, the law of X is Gaussian if

Pr
(
X−1(B)

)
= µ(B),

for any B ∈ B(L2([0, T ],R)), where µ is a Gaussian measure as defined in Defini-

tion 2.3.1. In this case, for any function f ∈ L2([0, T ],R),

〈X, f〉 ∼ N(mf , qf ) (2.15)

for some mf ∈ R and qf ≥ 0.

Lemma 2.3.2. Let XOU
t : [0, T ] → R be an Ornstein-Uhlenbeck process as in

(2.12). Then the law of the random process XOU ∈ L2([0, T ],R) is Gaussian.
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Proof. See Rajput & Cambanis (1972) for proof.

Now, writing the block-average Ornstein-Uhlenbeck process as an inner prod-

uct, as in the second equality of (2.14), and using Lemma 2.3.2, from (2.15) the

expectation and covariance of the block-average process is given by

E
(
〈XOU,1[a,b]〉

)
= E

(∫ b

a

XOU
t dt

)
= 0; (2.16)

Cov
(
〈XOU, f〉, 〈XOU, g〉

)
= 〈f,Cg〉, (2.17)

for any a, b ∈ [0, T ] and f, g ∈ L2([0, T ],R). Here, the covariance operator is given

by (
Cg
)
(s) =

∫ T

0

c(s, t)g(t) dt,

for any g ∈ L2([0, T ],R). For a stationary Ornstein-Uhlenbeck process (i.e. XOU

as in (2.12) with XOU
0 ∼ N(0, σ

2

2γ
)), the covariance function c : [0, T ]× [0, T ]→ R is

c(s, t) =
σ2

2γ
e−γ|t−s|,

for any s, t ∈ [0, T ].

Consider (2.15), Lemma 2.3.2 and the expectation and covariance of an block-

average Ornstein-Uhlenbeck process as in (2.16) and (2.17) respectively. Then, the

vector (XbaOU
[t1,t2),X

baOU
[t2,t3), . . . ,X

baOU
[tn−1,tn)) ∈ Rn−1, with each XbaOU

[ti−1,ti)
given as in (2.14),

is a realisation from N(0,Σ), where Σ = (σij)i,j=1,2,...,n−1, and

σij = 〈1[ti−1,ti),C1[tj−1,tj)〉 =

∫ ti

ti−1

∫ tj

tj−1

σ2

2γ
e−γ|t−s| dt ds.
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Note that, for a, b, c, d ∈ R with a < b ≤ c < d,

〈1[a,b),C1[c,d)〉 =

∫ b

a

∫ d

c

σ2

2γ
e−γ|t−s| dt ds

=

∫ b

a

∫ d

c

σ2

2γ
e−γ(t−s) dt ds, as a < b ≤ c < d

=
σ2

2γ

∫ b

a

eγs ds

∫ d

c

e−γt dt

= − σ2

2γ3

(
e−γd − e−γc

)(
eγb − eγa

)
.

Only considering the interval [a, b) for some a, b ∈ R gives,

〈1[a,b),C1[a,b)〉 =
σ2

2γ

(∫ b

a

∫ s

a

e−γ(s−t) dt ds+

∫ b

a

∫ b

s

e−γ(t−s) dt ds
)

=
σ2

2γ

(∫ b

a

1− e−γ(s−a) ds−
∫ b

a

e−γ(b−s) − 1 ds
)

=
σ2

2γ

(
b+

1

γ
e−γ(b−a) − a− 1

γ
−
(1

γ
− b− 1

γ
e−γ(b−a) + a

))
=
σ2

γ3

(
e−γ(b−a) + γ(b− a)− 1

)
.

For the case of equal length time intervals being used such that the time-steps

are given by tj = j∆t for all j ∈ Z+ and ∆t > 0, the elements of the covariance

matrix becomes,

σij =


σ2

2γ3
e−γ|j−i|∆t

(
e−γ∆t + eγ∆t − 2

)
if j 6= i;

σ2

γ3

(
e−γ∆t + γ∆t− 1

)
if j = i.

Therefore the covariance matrix of the process (XbaOU
[(j−1)∆t, j∆t))j∈Z is a symmetric
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Toeplitz matix of the form Σ = (σij)i,j with σij = c a|j−i| + b1i=j, for

c =
σ2

2γ3

(
e−γ∆t + eγ∆t − 2

)
; (2.18a)

a = e−γ∆t; (2.18b)

b =
σ2

2γ3

(
e−γ∆t − eγ∆t + 2γ∆t

)
. (2.18c)

Now that we have introduced the main stochastic differential equation used

in this thesis alongside its block-averaged form, our focus moves on to estimation

of the Ornstein-Uhlenbeck parameters given some realisations. These realisations

can either be from the pointwise Ornstein-Uhlenbeck process, or integrated over

some time intervals as discussed above.

2.3.3 Parameter fitting procedures

Here we consider estimating the drift and diffusion terms using some realisations

from a stochastic differential equation of the form given in (2.11). This section

predominantly considers the Ornstein-Uhlenbeck process and its block-averaged

form as described in Section 2.3.2, although first a more general case is examined.

This section is split into two main parts, mirroring the split between pointwise

Ornstein-Uhlenbeck processes discribed in Section 2.3.2 and the block-averaged

form in Section 2.3.2.1. In Section 2.3.3.1, we introduce parameter estimation

methods for pointwise realisations from a stochastic differential equation. This is

split into three main methods; the “partitioning” method, maximum likelihood

estimation, and method of moments. These methods will be compared here on

toy examples, before being selectively applied to the simulator outputs in Part II.

Although the assumptions on the realisations in this section are not satisfied by

the HadCM3 simulator outputs in Part II (as these realisations are averages),

parameter fitting of pointwise processes are considered here for completeness. In

Section 2.3.3.3 we introduce novel parameter estimation using maximum likelihood

for realisations from a block-average Ornstein-Uhlenbeck process as described in

Section 2.3.2.1. The simulator outputs given in Part II are indeed some time-
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averaged data and therefore the methods given in Section 2.3.3.3 can be applied

in Part II.

First we give a brief remark on the difference and interdependence between

model structure and parameter estimation.

Remark 2.11: Model structure and parameter estimation

Before looking into the parameter estimation methods, it is worth making a

short remark on the difference between the structure and the parameter estima-

tion of a stochastic differential equation. In this section parametric stochastic

differential equations are considered, and therefore prior to any estimation it

is required to specify the structure of the process. For example, the Ornstein-

Uhlenbeck process given in (2.12) is a specific choice of a stochastic differential

equation which exhibits specific behaviours. A modeller is required to choose

the model before any parameter estimation can be carried out, and this choice

should be justifiable.

On top of this, it is important to distinguish the type of observations that

one has and the way they are modelled. For the simulated climate data that is

discussed in Part II, the observations are monthly means. This is an important

consideration to take into account, as it is the difference between observing a

XOU
ti

, where ti is the beginning of the month (say), and observing the monthly

mean XbaOU
[ti−1,ti)

as in (2.14). The two processes give observations {XOU
t1
,XOU

t2
, . . .}

and {XbaOU
[t1,t2),X

baOU
[t2,t3), . . .}, with different distributions to optimise to obtain the

parameter estimations. An example of misspecifying the model in this way is

given at the end of this chapter in Example 2.3.10.

2.3.3.1 Parameter estimation: pointwise observations

In this section we consider estimation methods for when pointwise observations of

a stochastic process are available, such that the observation at time t is exactly
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2.3 Ornstein-Uhlenbeck Processes

the current state of the process.

In general, there are two different limits in which estimated parameters can

approach the true values. Given some set of realisations {xt1 , xt2 , . . . , xtn}, with

ti − ti−1 = ∆t, i = 2, . . . , n, and tn = T , the first considers the case ∆t → 0

for some fixed T , whilst the second considers n → ∞ for some fixed ∆t (i.e.

T →∞). If we assume the principal and independent components obtained from

the simulator climate data in Part II are sparse observations from a stochastic

differential equation, then the focus here is on the estimation methods that are

consistent in the limit of n → ∞ with ∆t constant. However, both scenarios will

be discussed for completeness.

This section is arranged as follows. We initially consider a simple method,

here called the partitioning method, that finds piecewise constant approximations

for the drift and diffusion terms in (2.11). This method is most effective when it

is known that the true drift and diffusion terms are both functions of the form

f(x) =
∑P

i=1 fi1x∈λi , and Λ = {λ1, λ2, . . . , λP} is a known partitioning of the

state space of the process. The partitioning method can then be used to find

approximations of the numbers fi, i = 1, 2, . . . , P .

Next, we discuss estimation methods to determine the parameters of an Ornstein-

Uhlenbeck process XOU
t given in (2.12). In this case the drift and diffusion terms,

γ and σ2, are unknown parameter values to be determined.

Lastly, we simulate a test set of realisations of Ornstein-Uhlenbeck stochastic

differential equations with varying γ and σ2 values, and the Ornstein-Uhlenbeck

parameter estimation methods are compared to each-other by considering the ap-

proximations γ̂ and σ̂2.

Partitioning method

One of the simplest method for approximating the functions b and a in (2.11) is

by partitioning the state space and modelling b and a as piecewise functions that

are constant within each partition. These approximations are found by simple

arithmetic formula that describe the behaviour of neighbouring observations.

Suppose the observations {x0, x∆t, x2∆t, . . . , xn∆t} are a realisation of the pro-

cess (Xt)t≥0 with image X. Let Λ = {λ1, λ2, . . . , λP} be a partition of X such that
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⋃P
j=1 λj = X and λj ∩ λk = ∅ for all j, k ∈ {1, 2, . . . , P} with j 6= k, ensuring that

there is at least one observation within each partition.

To calculate the approximate drift and diffusion terms, we consider each parti-

tion λj, j ∈ {1, 2, . . . , P}, separately and examine the ∆t-time behaviour of obser-

vations belonging to λj at time k∆t for k ∈ {0, 1, . . . , n− 1}. The approximation

to the drift function b is given by b̂(x) =
∑P

j=1 1{x∈λj}b̂j, where

b̂j =

∑n−1
i=0 1{xi∆t∈λj}(x(i+1)∆t − xi∆t)

∆t
∑n−1

i=0 1{xi∆t∈λj}
. (2.19)

The approximation to the diffusion function a is the quadratic variation approxi-

mation of the observations and is given by â(x) =
∑P

j=1 1{x∈λj}âj, where

â2
j =

∑n−1
i=0 1{xi∆t∈λj}(x(i+1)∆t − xi∆t)2

∆t
∑n−1

i=0 1{xi∆t∈λj}
.

This method clearly suffers from the ‘curse of dimensionality’, as for even quite

low dimensions it becomes impossible to partition the space such that there are

enough observations in each partition to estimate b̂ and â to a good degree of

accuracy. However, it is possible to apply the method and examine its accuracy

easily for lower dimensional examples. This is done below. First, we introduce the

Euler-Maruyama method in Remark 2.12, which is used throughout this thesis to

approximate trajectories of stochastic differential equations.

Remark 2.12: Euler-Maruyama method

The Euler-Maruyama method is one of the simplest and most common meth-

ods used to obtain a time discrete approximation of a stochastic differential

equation. Suppose the stochastic differential equation has the form given in

(2.11), i.e.

dXt = b(t,Xt) dt+ a(t,Xt) dBt,

with the initial value X0 = Xt1 .
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Let t1 < t2 < · · · < tn = T be some discretisation of the time inter-

val [t1, T ]. Then, the Euler-Maruyama approximation is a continuous time

stochastic process (Yt)t∈[t1,T ] which satisfies the iterative scheme,

Yti+1
= Yti + b

(
ti,Yti

)
(ti+1 − ti) + a

(
ti,Yti

)
(Bti+1

−Bti),

for i = 0, 1, . . . , n− 1 with Y0 = Xt1 (Kloeden & Platen, 2013).

This method is used throughout this section in examples where stochastic

differential equations are approximated.

Example 2.3.3 (Partitioning method in 2-dimensions). In this example the par-

titioning method is applied to a two dimensional trajectory to estimate the drift

term of a stochastic process. Let Xt be a stochastic process given by the differential

equation,

dXt =
(
R− ϕ′(

√
X>t Xt)

)
Xt dt+ σ dBt (2.20)

where,

R =

cos(ϑ) − sin(ϑ)

sin(ϑ) cos(ϑ)

 ; ϕ(x) = x+
1

γx

for some ϑ ∈ [0, π), γ ∈ R and σ2 ∈ (0,∞).

An approximate trajectory at times 0 = t1 < t2 < · · · < tn = T , with ti− ti−1 =

∆t, i ∈ {2, . . . , n}, is obtained using Euler-Maruyama approximation. That is, the

stochastic differential equation given by (Xt)t∈[0,T ] is approximated by the iterative

scheme given by

Yti+1
= Yti +

(
R− ϕ′(

√
Yt
>
Yti)

)
Yti∆t+ σ · (Bti+1

− Bti), (2.21)

for i = 1, . . . , n− 1 and for some initial Yt1.

Figure 2.13 gives an approximate trajectory of the stochastic differential equa-
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tion (2.20) using the Euler-Maruyama approximation (2.21), with ϑ = π
2
, γ = 3

and σ2 = 1. The space is partitioned into 16 equal sized squares and the drift

function
(
R − ϕ′(

√
X>t Xt)

)
Xt is approximated using (2.19). The estimated size

and direction of the drift b̂j at each partition j ∈ {1, 2, . . . , 16} are shown by the

black arrows in Figure 2.13, with the true drift values at the centre of each parti-

tion given by the grey arrows. In general these approximations are relatively good,

although this accuracy depends strongly on the amount of data available in each

partition. This is clearly an issue for higher dimensional stochastic processes.

Figure 2.13: Figure showing approximate stochastic differential equation given by
the Euler-Maruyama approximation (2.21) with ϑ = π/2, γ = 3 and σ2 = 1. The

drift function
(
R−ϕ′(

√
X>t Xt)

)
Xt is approximated using the partitioning method

by partitioning the space into 16 and calculating b̂ as in (2.19). The grey arrows
show the true drift at that point, and the black show the estimated b̂j for each
partition j = 1, . . . , 16.

134



2.3 Ornstein-Uhlenbeck Processes

Assessing the quality of the partitioning method approximation. To

judge the quality of the partitioning method as described above, consider trajec-

tories of stochastic processes with piecewise constant drift and diffusion. That is,

consider the process (Xt)t≥0 given by the stochastic differential equation,

dXt = b(Xt) dt+ a(Xt) dBt

with b(x) =
∑P

i=1 bi1x∈λi and a(x) =
∑P

i=1 ai1x∈λi , and obtain estimates b̂j, âj, of

bj and aj respectively, j ∈ {1, 2, . . . , P}. Here Λ = {λ1, λ2, . . . , λP} is a (known)

partition of the image of Xt, X, such that
⋃P
i=1 λi = X and λi∩λj = ∅ for all i 6= j.

Two examples are given below, both of which highlight issues with using this

method. Example 2.3.4 underscores an issue when trajectories do not properly

span the state space, resulting in poor approximations in these partitions. This

error is magnified when the state space is high dimensional (where ‘high’ in this

case can mean anything as low as three dimensions). Example 2.3.5 emphasises

a deficiency of the partitioning method when the time step of the observations is

too large.

Example 2.3.4 (Exploring the state space). In this example the state space is

partitioned into six by

Λ = {λ1, λ2, . . . , λ6} = {(−∞,−8), [−8,−4), [−4, 0), [0, 4), [4, 8), [8,∞)},

with b = (b1, . . . , b6) = (1, 0.4,−0.5, 0,−0.3,−1) the drift coefficients on this par-

tition. The diffusion function is piecewise constant with only one jump at x = 0

and takes the values a2 = (a2
1, . . . , a

2
6) = (4, 4, 4, 2, 2, 2) in the partition Λ.

The following procedure is repeated 100 times:

1. Euler-Maruyama approximation is used to simulate a realisation of the pro-

cess described above, from time t1 = 0 to tn = 100 with ∆t = tj − tj−1 =

10× 10−4, j = 2, 3, . . . , n. This gives the observations {x0, x∆t, . . . , xn∆t}.
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2. The approximations for bj and a2
j , j ∈ {1, 2, . . . , 6} are obtained from this

realisation using the partitioning method.

In Figure 2.14 we show ten of the 100 sample trajectories of the process, along

with the partition Λ = {λ1, . . . , λ6} (where the boundaries are given by the dotted

lines), and the true drift and diffusion values in each partition.

The means and standard deviations of the approximations for bj and a2
j , j ∈

{1, 2, . . . , 6} for all iterations are shown in Table 2.15. Here it can be clearly seen

how the accuracy of the drift approximations decrease in the partitions where the

trajectory spend less time, for example (−∞,−8).

λ6 = [8,∞);

λ5 = [4, 8);

λ4 = [0, 4);

λ3 = [−4, 0);

λ2 = [−8, 4);

λ1 = (−∞,−8);

b6 = −1

b5 = −0.3

b4 = 0

b3 = −0.5

b2 = 0.4

b1 = 1

a2
2 = 2

a2
1 = 4

Figure 2.14: A selection of the 100 trajectories of a stochastic process with piece-
wise constant drift and diffusion functions that take values bj and aj on the par-
tition λj, j ∈ {1, 2, . . . , 6}.

Example 2.3.5 (Varying ∆t). A known weakness of the partitioning method is

in the approximation of the diffusion coefficient when the time steps between ob-

servations are “large”. In this case, the drift term becomes dominant and the
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Partition bj b̄j sd
(
b̄j
)

a2
j ā2

j sd
(
ā2
j

)
(−∞,−8) 1.0 2.5992 6.4744 4 4.0573 0.3418
[−8,−4) 0.4 0.4809 0.5937 4 4.0063 0.0557
[−4, 0) -0.5 -0.4364 0.5346 4 3.9960 0.0493
[0, 4) 0.0 -0.0894 0.3757 2 1.9981 0.0208
[4, 8) -0.3 -0.6159 0.9880 2 2.0079 0.0399
[8,∞) -1.0 -3.5948 8.1162 2 2.0346 0.2535

Figure 2.15: Table showing the true values bj, a
2
j and the mean of the approxima-

tions obtained using the partitioning method – along with the standard deviation
from the 100 trajectories – that the drift and diffusion functions respectively take
on the partition λj, j ∈ {1, 2, . . . , 6}.

approximation of quadratic variation that is used to obtain the diffusion term de-

teriorates.

In this example the state space is partitioned

Λ = {λ1, λ2, λ3, λ4} = {(−∞,−4), [−4, 0), [0, 4), [4,∞)},

with drift coefficients b = (b1, . . . , b4) = (1, 0.5,−0.5,−1) and diffusion coefficients

a2 = (a2
1, . . . , a

2
4) = (4, 4, 2, 2).

Here, the following procedure is repeated 100 times:

1. Euler-Maruyama approximation is used to simulate a trajectory of the process

described above, from time t1 = 0 to tn = 100 with ∆t = tj−tj−1 = 10×10−4,

j = 2, 3, . . . , n. This gives the observations {x0, x∆t, . . . , xn∆t}.

2. The dense realisations are thinned such that five trajectories of varying spar-

sity are obtained, with time steps, ∆t1 = 0.1, ∆t2 = 0.6, ∆t3 = 1.1,

∆t4 = 1.6, ∆t5 = 2.1.

3. The sparse realisations with time steps ∆t1, ∆t2,∆t3 and ∆t4 are truncated

such that they all have the same length as the observations with time step
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∆t5. Thus, the realisations are

{x0, x∆ti , x2∆ti , . . . , xñ∆ti}, i ∈ {1, 2, . . . , 5}

where ñ = n·(∆t/∆t5), and it is assumed that n·(∆t/∆t5) ∈ N for simplicity.

4. The partitioning method is applied to each of these five “observed” trajectories

independently to give drift and diffusion approximations b̂ij and â2
ij, j =

1, . . . , 4 respectively, for each trajectory with time step ∆ti, i = 1, . . . , 5.

Figures 2.16 and 2.17 give box plots showing the quality of the drift and diffusion

estimates for each thinned observation. The lower and upper hinges of the box plots

correspond to the 25th and 75th percentiles of the data, and the whiskers show 1.5

times the interquartile range.

For the thinned observation with time step ∆ti the associated box plot in Fig-

ure 2.16 shows |b̂ij − bj| for j = 1, . . . , 4 and for each of the 100 iterations, giving

400 data points. The larger number of outliers when the time step is ∆t1 = 0.1

compared to the larger time steps is most likely due to the time spanned by this

trajectory is shorter than the others, and thus for some realisations the state space

is not explored as thoroughly.

For each ∆ti, i = 1, . . . , 5, Figure 2.17 shows the box plots for |â2
ij − a2

j |,

j = 1, . . . , 4 over all iterations. It is clear from these figures that the size of ∆t is

a significant factor in the accuracy of the diffusion approximation when using the

partitioning method.

The principal and independent components obtained on the simulator output

in Part II, using the methods discussed in Chapter 1, are one dimensional time

series and thus theoretically the partitioning method will work for modelling these

components. However, the lack of a priori knowledge of any partition of the state

space, and the lack of justification for piecewise drift and diffusion means that in

138



2.3 Ornstein-Uhlenbeck Processes

-1.5

-1.0

-0.5

0.0

0.5

0.1 0.6 1.1 1.6 2.1

∆ti

|b̂
ij
−
b j
|

Figure 2.16: Box plot showing the difference in the drift approximations b̂ij and
the true values bj, j = 1, . . . , 4, for each ∆ti value, i = 1, . . . , 5. That is, for each

∆ti, the box plot displays |b̂ij−bj| for j = 1, . . . , 4 for all 100 iterations. The lower
and upper hinges of the boxes correspond to the 25th and 75th percentiles of the
data, and the whiskers show 1.5 times the interquartile range.

-1

0

1

0.1 0.6 1.1 1.6 2.1

∆ti

|â
2 ij
−
a

2 j
|

Figure 2.17: Box plot showing the difference in the diffusion approximations â2
ij

and the true values a2
j , j = 1, . . . , 4, for each ∆ti value, i = 1, . . . , 5. That is, for

each ∆ti, the box plot displays |â2
ij−a2

j | for j = 1, . . . , 4 for all 100 iterations. The
lower and upper hinges of the boxes correspond to the 25th and 75th percentiles of
the data, and the whiskers show 1.5 times the interquartile range.

reality the partitioning method is not suitable for use in Part II. This leads to a

different stochastic differential equation form and parameter estimation method,
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2. MODELLING USING STOCHASTIC PROCESSES

known as maximum likelihood estimation.

Maximum Likelihood Estimator

In this section we introduce a potentially more useful method for parameter esti-

mation of stochastic differential equations, which will be applied to the simulator

outputs in Part II. First we give a brief theoretical introduction behind maximum

likelihood estimation on stochastic differential equations. Then, we discuss vari-

ous methods for utilising maximum likelihood estimation in practice. This includes

methods that are consistent in both the ∆t→ 0 case, and the T →∞ case.

Consider for the moment a more general stochastic differential equation. Let

{Ω,F,P} be a probability space with filtration {Ft, t ≥ 0} and (Bt)t≥0 the standard

Brownian process on Ω. Define the process (Xt)t≥0 on Ω by,

dXt = b(ϑ,Xt) dt+ a(Xt) dBt, (2.22)

with X0 F0-measurable and parameter of interest ϑ ∈ Θ ⊂ R. The functions

b : R2 → R and a : R→ R+ are known and satisfy the following conditions for any

ϑ ∈ Θ (see Kutoyants, 2013),

1. The function b(ϑ, ·) is locally bounded, the function a(·)2 is continuous and

positive and for some A > 0 the condition,

x b(ϑ, x) + a(x)2 ≤ A(1 + x2),

holds.

2. The functions satisfy,

V (ϑ, x) =

∫ x

0

exp
(
−2

∫ y

0

b(ϑ, v)

a(v)2
dv
)

dy → ±∞, as x→ ±∞; and,

G(ϑ) =

∫ ∞
−∞

a(y)2 exp
(

2

∫ y

0

b(ϑ, v)

a(v)2
dv
)

dy <∞. (2.23)

Suppose also that the true value of the parameter is given by ϑ0.
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2.3 Ornstein-Uhlenbeck Processes

Here two methods to obtain a maximum likelihood estimator are introduced.

Maximum likelihood estimators are such that the approximations of the true pa-

rameter ϑ0 are chosen such that the probability of the observed data occurring

maximises a likelihood function. Let {xt1 , xt2 , . . . , xtn} be some set of observa-

tions, and ∆t = ti − ti−1 for i = 2, 3, . . . , n. The first method introduced is

consistent in the limit n → ∞ with tn constant and ∆t → 0 whilst the second

method assumes ∆t constant and tn → ∞ as n → ∞. First the theory behind

both methods is introduced, and then the methods are applied on sample data.

The motivation behind the first maximum likelihood method is given by the

behaviour of the full continuous path (Xt)t∈[0,T ]. It is shown in Durrett (2018,

Section 6) that (Xt)t∈[0,T ], as given in (2.22) with functions b(·, ·) and a(·) satisfying

the conditions above has the invariant distribution with density function,

f(x; ϑ) =
1

G(ϑ) a(x)2
exp
(

2

∫ x

0

b(ϑ, v)

a(v)2
dv
)
,

for x ∈ R, where G is given in (2.23).

In the infinite dimensional space the Lebesgue measure does not exist. The

likelihood function can instead be given by the Radon-Nikodyn derivative,

L(ϑ;XT ) :=
dPT

dPT0
(XT ) = exp

(∫ T

0

b(ϑ,Xt)

a(Xt)2
dXt −

1

2

∫ T

0

b(ϑ,Xt)
2

a(Xt)2
dt
)
,

where PT and PT0 are the probability measures induced in (C[0, T ],B[0, T ]) by XT =

(Xt)t∈[0,T ] and by BT = (Bt)t∈[0,T ] respectively. As the measure PT is absolutely

continuous with respect to the Wiener measure P0 the likelihood function exists

Lipster & Shiryaev (1977). The log-likelihood is given by

l(ϑ;XT ) = log
(
L(ϑ,XT )

)
=

∫ T

0

b(ϑ,Xt)

a(Xt)2
dXt −

1

2

∫ T

0

b(ϑ,Xt)
2

a(Xt)2
dt. (2.24)

Then, the maximum likelihood estimator is given by ϑ̂TML exactly when

ϑ̂TML := argmax
ϑ∈Θ

L(ϑ; XT ).
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Note that as log(·) : (0,∞)→ R is a monotonically increasing function, then also

ϑ̂TML = maxϑ∈Θ l(ϑ; XT ).

In practice only a set of n observations from the full trajectory will be known,

and thus only an approximation, ϑ̂T,nML, can be found for ϑ̂TML. The first maximum

likelihood method uses the theory detailed above to obtain ϑ̂T,nML, assuming that

the integrals in (2.24) can be approximated from the observations. Thus, for

this estimator to be accurate, dense observations from the process (Xt)t∈[0,T ] are

required for integral approximation.

For the second maximum likelihood method we assume instead that we have

sparse observations from the process and therefore the integral approximation

technique is not justifiable. In this case, for times 0 = t1 < t2 < . . . < tn = T , the

sparse path, Xt1 , Xt2 , . . . , Xtn is a Markov chain with likelihood function given by,

Ln(ϑ : XT,n) := Ln(ϑ : Xt1 , Xt2 , . . . , Xtn) =
n∏
i=2

p(∆ti,Xti−1
, Xti),

where ∆ti = ti − ti−1 and p : [0,∞) × R2 → R+ is the transition density of the

time-homogeneous process. The log-likelihood is given by

ln(ϑ; XT,n) =
n∑
i=2

log
(
p(∆ti,Xti−1

, Xti)
)
, (2.25)

and the maximum likelihood estimator is given by ϑ̂T,nsML and satisfies, ϑ̂T,nsML =

maxϑ∈Θ ln(ϑ; XT,n). Here, the notation ‘sML’ is used for this ‘sparse maximum

likelihood’ method.

Billingsley (1961) shows that the maximum likelihood estimator for a general

Markov chain exists with probability going to one, and converges in probability to

the true value ϑ0 as the length of the chain increases to infinity. In Dacunha-

Castelle & Florens-Zmirou (1986) convergence in probability of the maximum

likelihood estimator ϑ̂T,nsML is considered for ∆t constant and n → ∞. It is also

shown that consistent estimators of ϑ are obtained for ∆t = ∆tn → 0 as n→∞,

with n∆tn → ∞. In this latter case, asymptotic efficiency with speed
√
n∆tn is

obtained if n∆tn = O(1).
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2.3 Ornstein-Uhlenbeck Processes

Dense maximum likelihood estimation. First, a method given in Bishwal

(2007, Section 7) is introduced, which approximates the integrals in (2.24) to obtain

an estimator ϑ̂T,nML, consistent in the ∆t → 0 sense. Here, approximations of the

Itô and Stratonovich integral are given and used to approximate the log-likelihood

function to find the corresponding parameters estimates. First, we reduce the size

of the class of drift functions in (2.22) such that they are constrained to be of the

form,

b(ϑ,Xt) = ϑ b̃(Xt)

for some square integrable function b̃ : R → R, where ϑ is the parameter value of

interest.

Suppose that dense observations of the process (Xt)t≥0 as in (2.22) are given

over the time interval [0, T ], denoted xT,n = {xt1 , xt2 , . . . , xtn}, with 0 = t1 <

t2 < · · · < tn = T . Let XT := (Xt)t∈[0,T ], f : R+ × R→ R be square integrable and∫
f(t,Xt)◦ dXt be the Stratonovich integral (Stratonovich, 1966). The Stratonovich

integral is related to the Itô integral by

∫ T

0

f(t,Xt) ◦ dXt =

∫ T

0

f(t,Xt) dXt +
1

2

∫ T

0

∂

∂x
f(t,Xt) dt a.s.,

and so the maximum likelihood estimator (2.24) can be rewritten,

ϑ̂TML = argmax
ϑ∈Θ

l(ϑ : XT )

=

∫ T
0
b̃(Xt) dXt∫ T

0
b̃2(Xt) dt

=

∫ T
0
b̃(Xt) ◦ dXt − 1

2

∫ T
0

d
dx
b̃(Xt) dt∫ T

0
b̃2(Xt) dt

a.s.. (2.26)

Then, from Bishwal (2007), lim∆t→0 Sn =
∫ T

0
f(t,Xt) ◦ dXt, where,

Sn :=
1

2

n∑
i=2

(
f(ti−1, xti−1

) + f(ti, xti)
)(
xti − xti−1

)
,
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and this Stratonovich integral approximation Sn is substituted into (2.26) to give

the approximation

ϑ̂T,nML =
1
2

∑n
i=2

(
b̃(xti−1

) + b̃(xti)
)
(xti − xti−1

)− 1
2

∑n
i=1

d
dx
b̃(xtt−1)(ti − ti−1)∑n

i=1 b̃
2(xti−1

)(ti − ti−1)
.

(2.27)

Now, consider an Ornstein-Uhlenbeck process as introduced in Section 2.3.2.

Suppose that the drift parameter σ2 is known, and maximum likelihood estimation

is used to obtain an estimate of the diffusion parameter γ. With the notation

above, the Ornstein-Uhlenbeck process as in (2.12) has drift function b̃(x) = −x
and drift parameter ϑ = γ. For the specific case of the diffusion being σ2 = 1, the

log-likelihood (2.24) becomes

l(γ : XT ) = −
∫ T

0

γXt dXt −
1

2

∫ T

0

(γXt)
2 dt.

The maximum likelihood estimator (2.26) is then

γ̂TML = −
∫ T

0
Xt dXt∫ T

0
X2
T dt

= −
∫ T

0
Xt ◦ dXt + 1

2
(T − 0)∫ T

0
X2
T dt

,

with the approximation using dense observations, xT,n = {xt1 , . . . , xtn}, given by

γ̂T,nML = −
1
2

∑n
i=2

(
xti−1

+ xti
)
(xti − xti−1

) + 1
2
T∑n

i=2 x
2
ti−1

(ti − ti−1)
.

Sparse maximum likelihood estimation. In this section the log-likelihood

(2.25) and associated maximum likelihood estimator for sparse observations from

an Ornstein-Uhlenbeck process are examined. Here, we desire estimates for both

the unknown parameters γ and σ2 of the Ornstein-Uhlenbeck process (2.12).

Let xT,n = {xt1 , xt2 , . . . , xtn} be a set of observations from the Ornstein-Uhlenbeck

process (2.12), with tn = T and ti − ti−1 = ∆t for i = 2, . . . , n. Assuming that

Xt1 = xt1 ∈ R almost surely, then from Section 2.3.2, for any ∆t > 0 and y ∈ R
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2.3 Ornstein-Uhlenbeck Processes

the transition density of an Ornstein-Uhlenbeck process is,

p(∆t, xt1 , y) =

√
γ

πσ2(1− e−2γ∆t)
exp
(
− γ

σ2
· (y − xt1e−γ∆t)2

1− e−2γ∆t

)
.

Therefore, discrete observations from an Ornstein-Uhlenbeck process form a

Markov chain with log-likelihood in the form of (2.25) given by,

ln(γ, σ2 : xT,n) = =
n

2

(
log γ − log(πσ2(1− e−2γ∆t)

)
− γ

σ2(1− e−2γ∆t)

n∑
i=1

(xti − xti−1
e−γ∆t)2. (2.28)

Differentiating (2.28) with respect to γ and σ2 gives,

∂

∂γ
ln(γ, σ2 : xT,n)

=
n

2

(1

γ
− 2∆te−2γ∆t

1− e−2γ∆t

)
− 1

σ2(1− e−2γ∆t)

((1− (1− 2γ∆t)e−2γ∆t
)∑n

i=2(xti − xti−1
e−γ∆t)2

1− e−2γ∆t

− 2γ∆te−2γ∆t

n∑
i=2

xti−1
(xti − xti−1

e−γ∆t)
)

;

∂

∂σ2
ln(γ, σ2 : xT,n) =

−n
2σ2

+
γ

(σ2)2(1− e−2γ∆t)

n∑
i=2

(xti − xti−1
e−γ∆t)2.

The sparse maximum likelihood estimators γ̂sML and σ̂2
sML therefore satisfy

∂

∂γ
ln(γ̂sML, σ̂

2
sML : xT,n) = 0; and

∂

∂σ2
ln(γ̂sML, σ̂

2
sML : xT,n) = 0.

When ∂
∂σ2 ln(γ, σ2 : xT,n) = 0, σ2 can be written as a function of γ in the following

way,

σ2(γ) =
2γ

n(1− e−2γ∆t)

n∑
i=2

(xti − xti−1
e−γ∆t)2. (2.29)
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Therefore, the maximum likelihood estimators can be written γ̂sML and σ̂2
sML =

σ2(γ̂sML). This dependency simplifies any optimisation required to obtain the

estimators.

Example 2.3.6 (Maximum likelihood estimation: Ornstein-Uhlenbeck process).

In this example, the following process is repeated 100 times.

1. Euler-Maruyama approximation is used to simulate a trajectory of an Ornstein-

Uhlenbeck process with γ = 1 and σ2 = 100, from time t1 = 0 to tn = 100

with ∆t = 10× 10−4;

2. The Ornstein-Uhlenbeck trajectory is thinned such that the new time step is

∆tsparse = 0.1;

3. Estimated parameter values γ̂sML and σ̂2
sML are found by maximising the log-

likelihood as in (2.28).

For iterations i = 1, 2, . . . , 100 we obtain parameter estimations γ̂sML, i, which

have mean γ̄sML := (1/100)
∑100

i=1 γ̂sML, i = 1.0012 and have standard deviation

sd({γ̂sML, 1, . . . , γ̂sML, 100}) = 0.1548. For σ2 the procedure above results in estimates

σ̂2
sML, i, i = 1, . . . , 100, with mean σ̄2

sML := (1/100)
∑100

i=1 σ̂
2
sML, i = 99.9382 and

standard deviation sd({σ̂2
sML, 1, . . . , σ̂

2
sML, 100}) = 4.7781.

The grey path in Figure 2.18 shows an Ornstein-Uhlenbeck trajectory found

in Step 1.. The black line gives the sparse “observation” {xt1 , xt2 , . . . , xtn} with

∆tsparse = tj−tj−1 = 0.1 for all j ∈ {2, 3, . . . , n}. For this specific sparse trajectory,

maximising the log-likelihood (2.28) gives maximum likelihood estimates γ̂sML =

0.8617 and σ̂2
sML = 103.1348.

Example 2.3.7 (Unstability of the sparse maximum likelihood method). For

some realisations of Ornstein-Uhlenbeck processes with certain γ and σ2 values, the

sparse maximum likelihood method (where (2.28) is maximised) becomes unstable.
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Figure 2.18: Here, an Ornstein-Uhlenbeck trajectory found using Euler-Maruyama
approximation with ∆t = 10 × 10−4 (grey path) is thinned such that the “ob-
served” trajectory has time steps ∆tsparse = 0.1 (black line) By maximising the
log-likelihood (2.28) using the sparse observations, the maximum likelihood pa-
rameter estimates are γ̂sML = 0.8617 and σ̂2

sML = 103.1348.

This behaviour is especially prevalent when the time step of the sparse realisation

is “large”. This is explained most clearly by examining the log-likelihood plot along

the line (γ, σ2(γ)), where σ2(·) is given in (2.29).

Here, the true parameter values are γ = 5, σ2 = 10 and Euler-Maruyama

approximation is used to simulate an Ornstein-Uhlenbeck process from time t1 = 0

to tn = n∆t = 1000. Then, the chain is thinned such that the observations are

given by {x0, x1, . . . , x1000}, i.e. ∆tsparse = 1.

For this set of sparse observations, the estimated parameter values found using

sparse maximum likelihood are γ̂sML = 3.7798 and σ̂2
sML = σ2(γ̂sML) = 7.8191. Fig-

ure 2.19 shows the log-likelihood along the line (γ, σ2(γ)) for γ from 1 to 20 (solid

black line), which is nearly flat for γ values from around 3 to 20. The vertical dotted

grey line gives the maximum likelihood estimator γ̂sML, and the horizontal dotted

grey line shows the maximum log-likelihood value, ln(γ̂sML, σ
2(γ̂sML)) = −1436.99.
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From this it is clear that any small permutation in this line could easily result in

a very different (γ, σ2(γ) combination being chosen as the “optimal”. These small

permutations could be due to many factors, such as numerical issues, or certain

outliers in the trajectory.
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Figure 2.19: Log-likelihood (solid black line) for a sparse realisation from an
Ornstein-Uhlenbeck process with parameters γ = 5, σ2 = 10 and time steps
∆tsparse = 1. The log-likelihood function is calculated along the line (γ, σ2(γ)) for
γ from 1 to 20, and σ2(·) given in (2.29). The maximum value of the log-likelihood
is found at γ̂sML = 3.7798 (vertical dotted grey line) and σ2(γ̂sML) = 7.8191. Here,
ln(γ̂sML, σ

2(γ̂sML)) = −1436.99 (horizontal dotted grey line).

Method of Moments Estimator

We now introduce another parameter estimation method for obtaining drift and

diffusion estimates of an Ornstein-Uhlenbeck process. The motivation behind this

parameter estimation method is as follows. Suppose monthly observations of an

output from an Earth system simulation are available, which is believed to be a

realisation of a sparse Ornstein-Uhlenbeck process (2.12). The sample variance

and lag-1 correlation (i.e. the correlation between successive months) is known or

has been calculated from the trajectory. Using only this information, is it possible

to estimate the parameters γ and σ2?
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Recall from Section 2.3.2 that for an Ornstein-Uhlenbeck process, dXOU
t =

−γXOU
t dt+σ dBt, with XOU

0 ∼ N(0, σ
2

2γ
), (Xt)t≥0 is a stationary zero-mean Gaussian

process with covariance function,

ρ(s, t) = ρ(t− s) =
σ2

2γ
e−γ|t−s|. (2.30)

From this, the true variance and lag-1 correlation of an Ornstein-Uhlenbeck process

is V := Var(XOU
t ) = ρ(0) = σ2

2γ
and r(1) = ρ(1)

Var(XOU
t )

= e−γ. If we know value of V

and r(1), then by rearranging the variance and lag-1 correlation we obtain,

γ = − log r(1); σ2 = −2V log r(1). (2.31)

If the sample variance and lag-1 correlation have been calculated from an observed

trajectory, then by replacing the true variance and lag-1 correlation in (2.31), the

method of moments estimates γ̂MM and σ̂2
MM for γ and σ2 can be found.

Method of moments parameter estimation is only valid when the lag-1 sample

correlation is positive, which is an obvious condition that can be seen by examining

(2.31). As γ increases, the respective Ornstein-Uhlenbeck process begins to more

resemble white-noise (which has zero correlation), and therefore the likelihood of a

negative lag-1 sample correlation increases. This limitation restricts when method

of moments estimation can be applied to a realisation in practise.

Example 2.3.8 (Method of moments estimation). In this example, method of

moments estimation is applied to both the dense and the sparse trajectories shown

in Figure 2.18 (from Example 2.3.6).

That is, the dense trajectory is from a stationary Ornstein-Uhlenbeck process

with γ = 1 and σ2 = 100, approximated by Euler-Maruyama method with time steps

∆t = 10 × 10−4. The sparse trajectory is found by taking every 100 observations

of the dense chain, such that the sparse time step is ∆tsparse = 0.1.

From the discussion in Section 2.3.2, the two trajectories theoretically have

variance V = 100/2 and lag-1 correlation r(1) = e−1 ≈ 0.368. Using the dense
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trajectory, the sample variance and correlation are calculated as V̂ = 60.1213

and r̂(1) = 0.4060 respectively. Putting these sample moments into (2.31) gives

Ornstein-Uhlenbeck parameter estimates γ̂MM = 0.9015 and σ̂2
MM = 108.3935.

The sparse trajectory with ∆tsparse = 0.1 gives sample variance and correla-

tion V̂sparse = 60.9216 and r̂sparse(1) = 0.4017 respectively. This gives estimated

parameters γ̂sMM = 0.9120 and σ̂2
sMM = 111.1197.

2.3.3.2 Comparing parameter estimation methods for pointwise obser-

vations

In this section we compare the sparse maximum likelihood and method of moments

parameter estimation methods described in Section 2.3.3 to each other. These

methods are applied to a set of Ornstein-Uhlenbeck processes, simulated using the

Euler-Maruyama approximation in the following way.

1. Simulate dense trajectories of the Ornstein-Uhlenbeck process (2.12) using

the Euler-Maruyama approximation as introduced in Remark 2.12;

2. Thin the simulated trajectories by only taking every N � 1 points, giving

sparse trajectories similar to that used to motivate the sparse maximum

likelihood estimation method.

Each dense Ornstein-Uhlenbeck realisation simulated in Step 1. above gives

observations {x0, x∆t, x2∆t, . . . , xn∆t}, with x0 a realisation from a N(0, σ
2

2γ
) distri-

bution and ∆t� 1. Then, removing all but every N point (assuming N is a factor

of n) as in Step 2. above gives the sparse trajectory {x0, xN∆t, x2N∆t, . . . , xn∆t}.
Using the sparse observations found in Step 2., the drift and diffusion estimates

obtained by maximising the sparse log-likelihood (2.28) are compared to those

obtained by method of moments from (2.31).

To compare the parameter estimation methods, M ∈ Z trajectories are simu-

lated for various drift and diffusion combinations (γ, σ2). For every combination

of (γ, σ2), the approximations {(γ̂i, σ̂2
i ) : i = 1, 2, . . . ,M} are found for both max-

imum likelihood estimation and method of moments, and the sample mean and

standard deviation of these sets of parameter estimates are calculated.
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The estimations from the sparse maximum likelihood which maximises the log-

likelihood (2.28) are notated by the subscript ‘sML’ and method of moments by

‘MM’. To ensure that a method of moments estimator can be obtained sample

trajectories that have a negative lag-1 sample correlation are omitted. Because

of this, the number of valid method of moments estimators is less than the total

number of trajectories simulated.

Sparse Ornstein-Uhlenbeck process: comparing maximum likelihood

and method of moments

In this section, we simulate Ornstein-Uhlenbeck trajectories with varying drift and

diffusion values, and the associated parameter estimates γ̂ and σ̂2 are compared

for each estimation method as explained in the section above.

In this case, the values for the drift are given by γ ∈ {0.5, 1, 1.5, 2, 2.5, 3}
and those for the diffusion term are σ2 ∈ {50, 100, 150, 200, 250, 300}. For ev-

ery drift and diffusion combination (of which there are 36), we simulate M =

100 realisations of a dense Ornstein-Uhlenbeck trajectory on R using the Euler-

Maruyama method as introduced in Remark 2.12, from time t1 = 0 to tn = 100

and with time steps ∆t = 10 × 10−4. These trajectories are then thinned by

only selecting every N = 100 time points to create sparse trajectories with time

steps ∆tsparse = 0.1. The two parameter estimation methods – sparse maxi-

mum likelihood and method of moments – are then applied to the observations

{x0, x∆tsparse , x2∆tsparse , . . . , x1000∆tsparse}.
Table 2.20 shows the mean and standard deviation of the two parameter fit-

ting procedures for each value of γ ∈ {0.5, 1, 1.5, . . . , 3}. For every value of γ,

100 trajectories are simulated for each value of σ2 ∈ {50, 100, 150, . . . , 300}, and

#{50, 100, . . . , 300} = 6, giving 600 trajectories to obtain parameter estimates

from. Thus, for each γ value, γ̄sML and γ̄MM are the means of γ̂sML, 1, . . . , γ̂sML, 600

and γ̂MM, 1, . . . , γ̂MM, 600 respectively.

Table 2.21 shows the equivalent means and standard deviations for each value

of σ2 ∈ {50, 100, . . . , 300}. For every value of σ2, 100 trajectories are simulated

for each value of γ ∈ {0.5, 1, 1.5, . . . , 3}, and #{0.5, 1, . . . , 3} = 6, giving 600
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trajectories to obtain parameter estimates from. Thus, for each σ2 value, σ̄2
sML and

σ̄2
MM are the means of σ̂2

sML, 1, . . . , σ̂
2
sML, 600 and σ̂2

MM, 1, . . . , σ̂
2
MM, 600 respectively.

Figure 2.22 shows a selection of maximum likelihood estimators γ̂sML for γ ∈
{0.5, 1, 1.5, . . . , 3}. The step function (black line) gives the true value of γ as a

function of realisation number, given on the x-axis. The grey circles (•) shows the

γ̂sML estimates when the Ornstein-Uhlenbeck process has true diffusion parameter

σ2 = 50. The black triangles (4) give the γ̂sML estimates when the true diffusion

parameter is σ2 = 300.

Figure 2.23 shows a selection of maximum likelihood estimators σ̂2
sML for σ2 ∈

{50, 100, . . . , 300}. The step function (black line) gives the true value of σ2 as a

function of realisation number, given on the x-axis. The grey circles (•) shows

the σ̂2
sML estimates when the Ornstein-Uhlenbeck process has true drift parameter

γ = 0.5. The black triangles (4) give the σ̂2
sML estimates when the true drift

parameter is γ = 3.

Figures 2.24 and 2.25 show the equivalent method of moments estimators in

the same way as Figures 2.22 and 2.23 respectively.

Studying Figure 2.24 and Figure 2.25 it is clear that method of moments pro-

duces some very spurious results with a large variance in the estimations. One

reason for this is due to the fact that this method only works for trajectories with

positive lag-1 sample correlations, and therefore favours correlation estimates that

are skewed upwards. For example, suppose that two trajectories both have a true

lag-1 correlation of 0.1, but have lag-1 sample correlations of −0.1 and 0.3. Then,

the method of moments estimator will only be able to be applied to the realisation

with positive lag-1 sample correlation. Repeating this process with multiple tra-

jectories, it is clear that the method “favours” trajectories where the lag-1 sample

correlation is larger than the true lag-1 correlation.
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γ 0.50 1.00 1.50 2.00 2.50 3.00
γ̄sML 0.5173 1.0266 1.5396 2.0266 2.5387 3.0157

sd({γ̂sML, 1, . . . , γ̂sML, 600}) 0.0116 0.0247 0.0340 0.0526 0.0641 0.0810
γ̄MM 0.5499 1.0833 1.6505 2.2427 2.7050 3.0442

sd({γ̂MM, 1, . . . , γ̂MM, 600}) 0.0164 0.0601 0.1824 0.5329 0.8168 0.9020

Figure 2.20: Table showing mean and standard deviation for the maximum like-
lihood and method of moments parameter estimators for γ ∈ {0.5, 1, 1.5, . . . , 3}.
For each value of γ, 100 approximate Ornstein-Uhlenbeck trajectories are sim-
ulated using Euler-Maruyama approximation for each σ2 value, where σ2 ∈
{50, 100, 150, . . . , 300}. These 600 trajectories are then thinned to create sparse
observations to perform the parameter estimation on.

σ2 50 100 150 200 250 300
σ̄2

sML 50.18 99.89 149.96 200.03 250.31 301.23
sd({σ̂2

sML, 1, . . . , σ̂
2
sML, 600}) 2.54 4.86 7.59 10.21 12.27 14.90

σ̄2
MM 52.43 105.58 158.36 209.49 261.38 318.02

sd({σ̂2
MM, 1, . . . , σ̂

2
MM, 600}) 12.76 27.57 36.09 51.73 71.37 84.20

Figure 2.21: Table showing mean and standard deviation for the maxi-
mum likelihood and method of moments parameter estimators for σ2 ∈
{50, 100, 150, . . . , 300}. For each value of σ2, 100 approximate Ornstein-Uhlenbeck
trajectories are simulated using Euler-Maruyama approximation for each γ value,
where γ ∈ {0.5, 1, 1.5, . . . , 3}. These 600 trajectories are then thinned to create
sparse observations to perform the parameter estimation on.

2.3.3.3 Parameter estimation: block-average Ornstein-Uhlenbeck ob-

servations

In this section we detail a novel method to obtain drift and diffusion parameter

estimates of an Ornstein-Uhlenbeck process (2.12) given observations that are av-

eraged over some time periods. That is, instead of observing pointwise realisations

of an Ornstein-Uhlenbeck process – as was the case in the sections above – we

observe realisations of the block-average process given by (2.14). In the case of the

HadCM3 climate simulator in Part II, we obtain outputs that are monthly means.

Let {xbaOU
[t1,t2), x

baOU
[t2,t3), . . . , x

baOU
[tn−1,tn)} be a realisation from a block-average Ornstein-

Uhlenbeck process as in (2.14), with drift and diffusion parameters γ and σ2 re-

spectively. As shown in Section 2.3.2.1, this vector has a density function from a
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1

2

3

4
γ

Figure 2.22: Ornstein-Uhlenbeck parameter estimation for γ̂sML for γ ∈
{0.5, 1, 1.5, . . . , 3}. Grey circles (•) are γ̂sML estimates when σ2 = 50 and black
triangles (4) are γ̂sML estimates for σ2 = 300. The x-axis gives the realisation
number, and the step function gives the true γ value for each realisation. For
each combination of (γ, σ2), 100 Ornstein-Uhlenbeck trajectories are simulated
from time 0 to 10 with ∆t = 10 × 10−4, and then thinned such that the sparse
trajectories have ∆tsparse = 10× 10−2.

100

200

300

σ2

Figure 2.23: Ornstein-Uhlenbeck parameter estimation for σ̂2
sML for σ2 ∈

{50, 100, 150, . . . , 300}. Grey circles (•) are σ̂2
sML estimates when γ = 0.5 and

black triangles (4) are σ̂2
sML estimates for γ = 3. The x-axis gives the realisation

number, and the step function gives the true γ value for each realisation. For
each combination of (γ, σ2), 100 Ornstein-Uhlenbeck trajectories are simulated
from time 0 to 10 with ∆t = 10 × 10−4, and then thinned such that the sparse
trajectories have ∆tsparse = 10× 10−2.

zero mean Gaussian distribution. The aim now is to find estimates for γ and σ2

of the original Ornstein-Uhlenbeck process. This is done by maximum likelihood

estimation, described below.
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Figure 2.24: Ornstein-Uhlenbeck parameter estimation for γ̂MM for γ ∈
{0.5, 1, 1.5, . . . , 3}. Grey circles (•) are γ̂MM estimates when σ2 = 50 and black
triangles (4) are γ̂MM estimates for σ2 = 300. The x-axis gives the realisation
number, and the step function gives the true γ value for each realisation. For
each combination of (γ, σ2), 100 Ornstein-Uhlenbeck trajectories are simulated
from time 0 to 10 with ∆t = 10 × 10−4, and then thinned such that the sparse
trajectories have ∆tsparse = 10× 10−2.
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Figure 2.25: Ornstein-Uhlenbeck parameter estimation for σ̂2
MM for σ2 ∈

{1, 21, 41, 61, 81, 101}. Grey circles (•) are σ̂2
MM estimates when γ = 0.5 and black

triangles (4) are σ̂2
MM estimates for γ = 3. The x-axis gives the realisation number,

and the step function gives the true γ value for each realisation. For each com-
bination of (γ, σ2), 100 Ornstein-Uhlenbeck trajectories are simulated from time
0 to 10 with ∆t = 10 × 10−4, and then thinned such that the sparse trajectories
have ∆tsparse = 10× 10−2.

Maximum likelihood estimator

Here we suppose that the Ornstein-Uhlenbeck process is integrated over equal-

sized time intervals, such that ti − ti−1 = ∆t for i = 2, . . . , n. Let the elements of

the vector xbaOU = (xbaOU
[0,∆t), x

baOU
[∆t, 2∆t), . . . , x

baOU
[(n−1)∆t, n∆t)) ∈ Rn be realisations from

the block-average Ornstein-Uhlenbeck process as given in (2.14). As discussed

in Section 2.3.2.1, xbaOU is therefore a realisation from a multivariate Gaussian
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distribution with mean zero and covariance matrix Σγ,σ2 = (σij) ∈ Rn×n, where

σij = ca|j−i| + b1i=j with c, a and b given in (2.18). Here the covariance matrix

is notated with γ and σ2 in the subscript to make explicit the dependence on the

Ornstein-Uhlenbeck parameter values.

From above and Section 2.3.2.1, the vector form of a block-average Ornstein-

Uhlenbeck process, XbaOU = (XbaOU
[0,∆t),X

baOU
[∆t, 2∆t), . . . ,X

baOU
[(n−1)∆t, n∆t)) has a distribution

with density,

p(x; Σγ,σ2) = (2π)−n/2 |Σγ,σ2|−1/2 exp(−1

2
x>Σ−1

γ,σ2x),

for all x ∈ Rn, and therefore the log-likelihood function is given by,

l(Σγ,σ2 : XbaOU) = −n
2

log(2π)− 1

2
log|Σγ,σ2| − 1

2
(XbaOU)>Σ−1

γ,σ2 X
baOU. (2.32)

The aim is now to maximise (2.32) over all covariance matrices Σγ,σ2 , which

depend on γ and σ2. For the log-likelihood function to be optimised directly over

all γ and σ2 values, we require the inverse of the covariance matrix. Although in

general this is computationally intensive for large n, by exploiting the structure

of the covariance matrix (which is a symmetric Toeplitz matrix), the inverse can

be found using Trench’s Algorithm in order n2 time (Trench, 1964). See Golub

& Van Loan (2012) for a description of the algorithm, and McLeod et al. (2007)

for an R implementation. However, Trench’s Algorithm is not useful for obtaining

the determinant of the covariance matrix (as required in (2.32)) and therefore in

general Cholesky decomposition has to be used instead.

For the observation xbaOU, the maximum likelihood estimates γ̂baML and σ̂2
baML

satisfy, (
γ̂baML

σ̂2
baML

)
= argmax

(γ,σ2)∈R×(0,∞)

l(Σγ,σ2 : x̄), (2.33)

where l : Rn×n → R is given by (2.32) and Σγ,σ2 has elements σij = c a|j−i| + b1i=j

with c, a and b given in (2.18). Here, the subscript ‘baML’ is used to show that the

log-likelihood being maximised is that given by (2.32), and related to block-average

Ornstein-Uhlenbeck maximum likelihood estimation.
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Remark 2.13: Using maximum likelihood estimation with one obser-

vation

As described above, the maximum likelihood estimation method only uses

one observation from a multivariate Gaussian distribution N(0,Σγ,σ2), which

initially seems unsuitable for the parameter estimation task. To encourage

the reader that this method has potential, consider the case of n indepen-

dent (centred) observations x1, x2, . . . , xn from a univariate normal distribu-

tion with variance σ2. Here, the maximum likelihood estimator for σ2 is

σ̂2
ML = (1/n)

∑n
i=1 x

2
i . Now, suppose instead these n observations are a single

observation x = (x1, . . . , xn) ∈ Rn from a multivariate normal with covari-

ance matrix given by σ2In, where In ∈ Rn is the identity matrix. Here, the

multivariate Normal density becomes,

p(x;σ2In) = (2π)−n/2(σ2)−n/2 exp
(
−1

2

n∑
i=1

x2
i

σ2

)
=

n∏
i=1

1√
2πσ2

exp
(
− x2

i

2σ2

)
.

Therefore the likelihood of a single realisation in Rn assumed from a multivari-

ate Gaussian with a diagonal covariance matrix is equivalent to the likelihood

obtained with n realisations from a univariate Gaussian.

Example 2.3.9 (Maximum likelihood estimation: block-average Ornstein-Uhlen-

beck process). This example is directly comparable to Example 2.3.6 as the point-

wise Ornstein-Uhlenbeck trajectories that are used to perform maximum likelihood

estimation are the same.

In this example, the following process is repeated 100 times. Note that Steps 1.

and 2. can be replaced with simulating values directly from a multivariate Gaussian

as discussed in Section 2.3.2. Here the average over an Ornstein-Uhlenbeck process
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is used to simulate how in practice a block-average Ornstein-Uhlenbeck trajectory

may arise. For example, a simulator may be designed to average over some time

intervals whilst it is being run to save on computational memory.

1. Euler-Maruyama approximation is used to simulate a trajectory of an Ornstein-

Uhlenbeck process with γ = 1 and σ2 = 100, from time t0 = 0 to tn = 100

with ∆t = 10× 10−4;

2. The average of the observations in each time interval Ti = [i − 1, i), i =

1, 2, . . . , 100 is calculated to give an approximate block-average Ornstein-

Uhlenbeck process, x̄[0,1), x̄[1,2), . . . , x̄[99,100);

3. Estimated parameter values γ̂baML and σ̂2
baML are found by maximising the

log-likelihood as in (2.33).

Over the i = 1, 2, . . . , 100 iterations, parameter estimations γ̂baML, i are ob-

tained, and the mean is given by γ̄ := (1/100)
∑100

i=1 γ̂baML, i = 1.0015, with standard

deviation sd({γ̂baML, 1, . . . , γ̂baML, 100}) = 0.2271. For σ2 the estimates σ̂2
baML, i are

obtained with mean given by σ̄2 := (1/100)
∑100

i=1 σ̂
2
baML, i = 99.9489 and standard

deviation sd({σ̂2
baML, 1, . . . , σ̂

2
baML, 100}) = 20.1745.

The grey path in Figure 2.26 gives one Ornstein-Uhlenbeck realisation used in

the example. This is the same trajectory as shown in Figure 2.18 and as discussed

in Example 2.3.8. The grey vertical lines show the partitioning of time into the

intervals Ti = [i − 1, i), i = 1, 2, . . . , 100. The value of the block-average process

x̄[i−1,i) in interval Ti is given by the black horizontal lines. For this realisation, the

maximum likelihood method as given in (2.33) gives estimated Ornstein-Uhlenbeck

parameter values γ̂baML = 0.9133 and σ̂2
baML = 112.4258.
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Figure 2.26: Here, an Ornstein-Uhlenbeck trajectory (grey path) is split and aver-
aged over the intervals Ti = [i− 1, i), i = 1, 2, . . . , 100 (grey vertical lines), to give
an approximate block-average Ornstein-Uhlenbeck process (black horizontal lines).
Using the block-average Ornstein-Uhlenbeck maximum likelihood method as given
in (2.33), this realisation gives estimates γ̂baML = 0.9133 and σ̂2

baML = 112.4258.

2.3.4 Ornstein-Uhlenbeck process with seasonal effects

In this section we introduce block-average Ornstein-Uhlenbeck processes that ex-

hibit some seasonal behaviour, alongside some mean functions that can be used to

help approximately simulate the underlying (pointwise) Ornstein-Uhlenbeck pro-

cesses. This is motivated by the general behaviour of climate systems where a

sensible a priori assumption of the output of a simulation would include some

month-by-month variability that repeats with a yearly cycle.

This section is structured as follows. In Section 2.3.4.1 we first introduce

the motivation behind this section, and discuss the structure of a seasonal block-

average Ornstein-Uhlenbeck process. Then, in Section 2.3.4.2 we introduce two

different mean functions that can be used to give pointwise Ornstein-Uhlenbeck

processes with the same seasonal means as some block-average Ornstein-Uhlenbeck

process. The second seasonal mean function introduced in Section 2.3.4.2 use a

novel spline approach, where the function is constrained by the average behaviour

within each disjoint time interval.
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2.3.4.1 Introduction to seasonal effects

The motivation to estimate and remove seasonality is highlighted in Panel 2.10.

Briefly, we observe some block-average Ornstein-Uhlenbeck process that exhibits

seasonality. From this, we want to estimate the seasonality, and produce dense real-

isations from some pointwise Ornstein-Uhlenbeck processes that have the same sea-

sonal expectations as the block-average Ornstein-Uhlenbeck process. In Part II of

this thesis, the “observed” time series that are modelled as block-average Ornstein-

Uhlenbeck processes with some seasonality are the principal and independent com-

ponents obtained by dimension reduction as described in Chapter 1.

Panel 2.10: Motivation for considering seasonal effects

We want to be able to estimate the drift and diffusion parameters of an
underlying Ornstein-Uhlenbeck process, given observations from some block-
average Ornstein-Uhlenbeck process shifted with some seasonal means. That
is, we obtain γ̂baML and σ̂2

baML in the following way:

1. Observe some seasonal block-average Ornstein-Uhlenbeck process;

2. Estimate the seasonal means and remove them from the observations,
to obtain an approximate realisation from a standard block-average
Ornstein-Uhlenbeck process as in (2.14). This is described in more detail
in Remark 2.15;

3. Estimate the underlying Ornstein-Uhlenbeck process drift and diffusion
parameters, γ and σ2, using the maximum likelihood estimator (2.33);

Now, using the estimated drift and diffusion parameters, a realisation from
a pointwise Ornstein-Uhlenbeck process can be simulation such that the mean
of the realisation during each season is equivalent to the estimated seasonal
means of the original (seasonal) block-average Ornstein-Uhlenbeck realisation
observed in Step 1.. That is,

(i) Simulate a pointwise Ornstein-Uhlenbeck process as in (2.12) with pa-
rameter values γ̂baML and σ̂2

baML;

(ii) Add some spline function to the simulated Ornstein-Uhlenbeck process
such that the expected value of the process in each season is equal to
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the seasonal means estimated from the original block-average Ornstein-
Uhlenbeck process observations.

These new pointwise realisations can be used for forecasting and analysing
the original observations.

Step 2. can be achieved simply by finding the arithmetic mean for each season

and subtracting it from the associated points, and we described Step 3. in Sec-

tion 2.3.3.3. Therefore, we can obtain the parameter estimates γ̂baML and σ̂2
baML.

Now, Step (i) can be done using Euler-Maruyama approximation as discussed in

Remark 2.12. Therefore, in this section we focus on the novel Step (ii) of Panel 2.10.

Here we define some mean function m(t) using the estimated seasonal means

from a block-average Ornstein-Uhlenbeck realisation. First, we give some condi-

tions that this function is required to satisfy. Let the process (Yt)t≥0 be given by,

Yt = XOU
t +m(t), (2.34)

where XOU
t is the Ornstein-Uhlenbeck process given by (2.12). Differentiating this

we obtain the stochastic differential equation,

dYt = dXOU
t +

d

dt
m(t) dt

= −γ
(
Yt −m(t)

)
dt+ σ dBt +

d

dt
m(t) dt

= −γ
(
Yt −m(t)− 1

γ

d

dt
m(t)

)
dt+ σ dBt. (2.35)

One comment on the form of this stochastic differential equation is given below in

Remark 2.14.

Remark 2.14: Derivative of mean function

Notice that the stochastic process given by dYt in (2.35) includes the derivative

of the function m(t). Intuitively, this derivative prevents the mean of the

process lagging behind the expected mean given bym(t). For example, suppose

the mean function is linear such that m(t) = a t + b for some a, b ∈ R, and
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compare the two stochastic processes,

dY
(1)
t = −γ

(
Yt − at− b

)
dt+ σ dBt (2.36)

dY
(2)
t = −γ

(
Yt − at− b−

a

γ

)
dt+ σ dBt. (2.37)

One realisation of these two processes is given in Figure 2.27, highlighting Y
(1)
t

lagging behind the true mean function. That is, EY
(1)
t < a t+ b for all t > 0.

0 2 4 6 8 10 0 2 4 6 8 10
t t

dY
(1)
t

dY
(2)
t

Figure 2.27: An example of a realisation from two stochastic processes, Y
(1)
t and

Y
(2)
t as in (2.36) and (2.37) respectively, showing how the derivative of the mean

function is required in the differential equation to prevent the stochastic process
from lagging behind the true mean.

If the mean function m(t) : [0,∞) → R is some differentiable function that

satisfies Lipschitz continuity, then the process Yt as in (2.34) is a strong solution

of dYt given in (2.35). Integrating Yt over some time interval [ti−1, ti) gives the
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process (Y[ti−1,ti))i∈Z, defined by,

Y[ti−1,ti) :=
1

ti − ti−1

∫ ti

ti−1

Yt dt

=
1

ti − ti−1

∫ ti

ti−1

XOU
t +m(t) dt

=
1

ti − ti−1

(
〈1[ti−1,ti),X

OU〉+

∫ ti

ti−1

m(t) dt
)

= XbaOU
[ti−1,ti)

+ µi, (2.38)

where µi := 1/(ti − ti−1) ·
∫ ti
ti−1

m(t) dt. Removing the seasonal means µi from the

process (Y[ti−1,ti))i∈Z gives a zero mean block-average Ornstein-Uhlenbeck process.

The seasonal notation used throughout this section is now introduced. Let

(Yt)t≥0 be a process that exhibits seasonality, such that some aspect of the be-

haviour of the process repeats after TN ∈ R+ time. The “yearly” interval [0, TN)

is subdivided into seasons, [T0, T1), [T1, T2), . . . , [TN−1, TN), where 0 = T0 < T1 <

· · · < TN . Throughout this section, the expectation of the process over each sea-

son is the same for every year. That is, for every season seperated in time by

TN , the expectation of the process averaged over this season is equal, such that if

µi := E{Yt : t ∈ [Ti−1, Ti)}, then also µi = E{Yt : t ∈ [kTN + Ti−1, kTN + Ti)}, for

all i ∈ {1, 2, . . . , N} and k ∈ N. Throughout the rest of this section, we assume

that we know the mean values µ1, . . . , µN exactly. In Remark 2.15 we explain how

estimates of the seasonal means (as in Step 2. of Panel 2.10) can be obtained from

a seasonal block-average Ornstein-Uhlenbeck realisation.

In the case of the HadCM3 climate simulator examined in Part II, it is shown

that the seasonal behaviour has a yearly interval [0, TN), subdivided into twelve

months, such that N = 12.

Remark 2.15: Estimating the seasonal mean

In general the exact seasonal means (given by µi in (2.38)) will not be known,

and will instead have to be calculated from some realisation of the process

(Y[ti−1,ti))i∈Z given in (2.38) (as we discussed in Step 2. of Panel 2.10). Here
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we show how this mean approximation is found and removed from the orig-

inal seasonal block-average Ornstein-Uhlenbeck realisation given in Step 1.

(Panel 2.10). Let {yt1 , yt2 , . . . , ytn}, 0 = t1 < t2 < · · · < tn = T , be some ob-

servation of the process (Yt)t≥0 given in (2.34) with mean function m(t). Let

0 = T0 < T1 < T2 < . . . < TN ≤ T be the seasons of the process such that it has

the same expectation over the interval [Ti−1, Ti) as over [kTN +Ti−1, kTN +Ti),

for any k ∈ Z. Estimates of the mean values µi for each season i = 1, 2, . . . , N ,

using the observations {yt1 , yt2 , . . . ytn}, are given by the arithmetic means

µ̂i =
1

ni

n∑
j=1

ytj1tj∈
⋃bT/TN c
k=0 [Ti−1+kTN ,Ti+kTN )

,

where ni := #{j : tj ∈
⋃bT/TN c
k=0 [Ti−1 + k TN , Ti + k TN)}. For this estimation

to be valid we require at least one observation in each season. An example

of observations being put into bins to calculate the sample means is given in

Figure 2.28.

2.3.4.2 Seasonal mean functions

This section proceeds as follows. First, we introduce a simple piecewise constant

mean function. This is not used in the rest of this thesis, but is included here as

a simple example to help the reader understand the process. Then, we describe a

mean function that is Lipschitz and which takes the form of quadratic splines over

the time intervals.

Piecewise constant mean

In this section we suppose the process (YP
t )t≥0 satisfies

YP
t = XOU

t +mP(t), (2.39)
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[0, T1) [T1, T2) [T2, T1) · · · [TN−1, TN)

yt1 yt2 yt3

yt34 yt35 yt36

· · ·

ytn−4 ytn−3 ytn−2

yt4 yt5 yt6 yt7

yt37 yt38 yt39 yt40

· · ·

ytn−1 ytn

yt8

yt41

· · ·

· · ·

· · ·

· · ·

yt31 yt32 yt33

yt64 yt65 yt66

· · ·

µ̂1 µ̂2 µ̂3
· · · µ̂N

Figure 2.28: An example showing binning of observations yt1 , yt2 , . . . , ytn into bins
associated with the intervals [0, T1), [T1, T2), . . . , [TN−1, TN), with TN ≤ T .

where

mP(t) =
N∑
n=1

µn1{t∈
⋃
k∈Z [Tj−1+k TN , Tj+k TN )},

with µj ∈ R, j = 1, . . . , N .

In this case, a realisation of the process (Yt)t∈R as in (2.39) can be obtained by

simulating an Ornstein-Uhlenbeck process XOU
t and adding the associated seasonal

mean value µi whilst the process is in the respective seaon, i = 1, . . . , N . Here the

process will exhibit discontinuous jumps at each seasonal time-boundary.

This issue is the motivation for the mean function given below, where Lips-

chitz continuous splines are used for the m(t) function in place of the piecewise

continuous construction used here.

Mean function using quadratic splines

Following from the section above, here we consider modelling the mean function

m(t) using a specific form of periodic quadratic splines. As discussed in 2.3.4, let

the mean value of the stochastic process (Yt)t≥0 over the interval [Ti−1, Ti), where
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0 = T0 < T1 < · · · < TN , be given by

µi := E
{
Yt : t ∈ [Ti−1, Ti)

}
. (2.40)

For the quadratic spline case, the process (Yt)t≥0 has the form Yt = XOU
t +m(t),

with XOU
t an Ornstein-Uhlenbeck process as in (2.12), and m(t) some recurrent

mean function given by

m(t) =
N∑
i=1

(
ait

2 + bit+ ci
)
1{t∈

⋃
k∈Z [Ti−1+k TN , Ti+k TN )}, (2.41)

with ai, bi, ci ∈ R, i = 1, 2, . . . , N chosen such that the following conditions are

satisfied:

1. Expectation condition: For i = 1, 2, . . . , N ,

1

Ti − Ti−1

∫ Ti

Ti−1

(ait
2 + bit+ ci) dt = µi, (2.42)

with µi given in (2.40). Note that this expectation condition is different to the

classical spline condition that requires the function to go through a specific

point. This condition allows the spline to be calculated using information

from a block-average process when pointwise values are not available.

2. Equal at boundaries with recurrent boundary condition:{
ai T

2
i + bi Ti + ci = ai+1 T

2
i + bi+1 Ti + ci+1, for i ∈ {1, . . . , N − 1};

ai T
2
i + bi Ti + ci = a1 T

2
i + b1 Ti + c1, for i = N.

3. Derivative equal at boundaries with recurrent boundary condition:{
d
dt

(
ai t

2 + bi t+ ci
)
|t=Ti = d

dt

(
ai+1 t

2 + bi+1 t+ ci+1

)
|t=Ti , for i ∈ {1, . . . , N − 1};

d
dt

(
ai t

2 + bi t+ ci
)
|t=Ti = d

dt

(
a1 t

2 + b1 t+ c1

)
|t=Ti , for i = N.

Calculating the derivative gives, for i ∈ {1, 2, . . . , N − 1}, the condition
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2.3 Ornstein-Uhlenbeck Processes

2ai Ti + bi = 2ai+1 Ti + bi+1 and at the boundary, 2aN TN + bN = 2a1 TN + b1.

Using these three conditions the values ai, bi, ci, i = 1, 2, . . . , N , can be calcu-

lated by a solving a linear system of equations. First, we note that the expectation

condition given in (2.42) can be written,

1

Ti − Ti−1

(1

3
ai(T

3
i − T 3

i−1) +
1

2
bi(T

2
i − T 2

i−1) + ci(Ti − Ti−1)
)

= µi,

for i = 1, . . . , 12. From this, the linear system of equations Ax = b can be solved

for

x = (a1, b1, c1, a2, b2, c2, . . . , aN , bN , cN)> ∈ R3N ,

with A ∈ R3N×3N and b ∈ R3N given by,

A =



A
(1)
1 −A(2)

1 0 0 · · · 0 0

0 A
(1)
2 −A(2)

2 0 · · · 0 0

...
...

. . . . . .
...

...

0 0 0 · · · A
(1)
N−1 −A

(2)
N−1

−A(2)
0 0 0 · · · 0 A

(1)
N


,

where

A
(1)
i =

 T 2
i Ti 1

2Ti 1 0
T 3
i −T 3

i−1

3(Ti−Ti−1)

T 2
i −T 2

i−1

2(Ti−Ti−1)
1

 ; and A
(2)
i =

T 2
i Ti 1

2Ti 1 0
0 0 0

 .

An illustration of periodic quadratic splines satisfying the above conditions is

given in Figure 2.29 for time from 0 to 2, split into the two intervals [0, 1) and

[1, 2) (i.e. T0 = 0, T1 = 1, T2 = 2).
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a1t
2 + b1t+ c1

a2t
2 + b2t+ c2

µ1

µ2

t = 0 t = 1 t = 2

Figure 2.29: An example of quadratic splines for t ∈ [0, 2] with the space parti-
tioned into the intervals {[0, 1), [1, 2)}. Here ai, bi, ci, i = 1, 2, is chosen such that
the expectation and boundary conditions are satisfied.

2.3.5 Misspecified models and removing seasonal effects

This section considers Ornstein-Uhlenbeck processes with some seasonality, where

it is assumed that only one observation per ‘season’ is available. Here it is shown by

way of an example why it is important to specify the model that the observations

are from correctly, and remove the seasonal mean in a sensible way. Compare the

following mean removal and parameter estimation methods.

Take each season observation as being an observation of the block-average

Ornstein-Uhlenbeck process (2.38) for that season. That is, the observations

{ybaOU
[0,1) , y

baOU
[1,2) , . . . , y

baOU
[n−1,n)} are from a block-average Ornstein-Uhlenbeck process

with some seasonal behaviour, with the seasons given by T0 = 0, T1 = 1, T2 =

2, . . . , T12 = 12. For simplicity, assume that the number of observations is divisi-

ble by 12 (i.e. n/12 ∈ Z), so that there are an equal number of observations for

each season.

The sample mean for the ith season is calculated by

µ̂i =
1

ñ

ñ−1∑
j=0

ybaOU
[i+12j−1,i+12j),

for i = 1, . . . , 12, where ñ = n/12.

Three different methods are now applied to the observations. In the first two

methods the observations are misspecified such that they are assumed to be from

a piecewise Ornstein-Uhlenbeck process taken at the midpoint of each season.
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2.3 Ornstein-Uhlenbeck Processes

Case 1: In the first case, the midpoint of the quadratic splines calculated us-

ing the sample means µ̂j, j = 1, . . . , 12, for each season is subtracted from the

observations, to give adjusted observations

x
(1)
ti = ybaOU

[i−1,i) −m(ti),

i = 1, . . . , n, where m(t) is as (2.41) and ti = (2i − 1)/2 = i − 1/2. Note that in

this case, the adjusted observations will not have mean zero in each season, as in

general the value of m(t) at a season midpoint is not the same as the respective

sample mean µ̂j (this is shown in Example 2.3.10 below). Therefore in this first

case the observations are misspecified in two different ways.

Case 2: In the second case, the sample means are removed from the seasonal

observations directly, giving adjusted observations,

x
(2)
ti = ybaOU

[i−1,i) − µ̂i,

for i = 1, . . . , n. Here, the seasonal means of the adjusted observations will be

zero, although the observations are still misspecified as being from a pointwise

Ornstein-Uhlenbeck process. The differences between x
(1)
ti and x

(2)
ti are illustrated

in Figure 2.30, which is part of Example 2.3.10 below.

In both Case 1. and 2., we apply sparse maximum likelihood estimation to

the adjusted observations {x(k)
t1 , x

(k)
t2 , . . . , x

(k)
tn }, k = 1, 2, by maximising the log-

likelihood (2.28).

Case 3: In the third case the observations are correctly identified as from a

block-average Ornstein-Uhlenbeck process, and the sample means for each season

are removed. This gives adjusted observations,

xbaOU
[i−1,i) = ybaOU

[i−1,i) − µ̂i,

with i = 1, . . . , n, and where seasonal means for the realisation are now zero. We

then calculate the parameter estimates using maximum likelihood estimation for
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block-average Ornstein-Uhlenbeck processes as in (2.33).

Example 2.3.10 (Wrongly specified “shifted” block-average Ornstein-Uhlenbeck

process). In this example the following process is repeated over 100 iterations.

1. A set of observations {xbaOU
[0,1) , x

baOU
[1,2) , . . . , x

baOU
[119,120)} from a block-average Ornstein-

Uhlenbeck process with parameter values γ = 1, σ2 = 100, is simulated by

a multivariate Gaussian with mean zero and covariance Σγ,σ2 = (σij)i,j with

σ2
ij = ca|j−i|+b1i=j as in (2.18). Note that this replaces the first two steps that

were previously used in Example 2.3.9 to simulate a block-average Ornstein-

Uhlenbeck process.

2. Seasonal behaviour is added to these observations by

ybaOU
[i−1+12k,i+12k) = xbaOU

[i−1+12k,i+12k) + µi,

for each i ∈ {1, . . . , 12} and k ∈ {0, . . . , ñ}, with ñ = 10. One realisation

{ybaOU
[0,1) , . . . , y

baOU
[119,120)} is shown in Figure 2.31.

3. Estimated seasonal means are calculated by

µ̂i =
1

10

10∑
k=1

ybaOU
[i−1+12k,i+12k),

for i = 1, . . . , 12, and the associated quadractic spline m(t) is calculated

following the procedure in Section 2.3.4.2. Figure 2.30 shows the quadratic

spline function m(t) for t ∈ [0, 12] (black line), and the values at the seasonal

midpoints {m(ti) : i = 1, . . . , 12} (black points) calculated using one set of

seasonal means µ̂1, . . . , µ̂12 (shown by the horizontal lines).

4. Obtain “pointwise” Ornstein-Uhlenbeck observations for Case 1. and Case
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2., x
(1)
ti = ybaOU

[i−1,i) −m(ti);

x
(2)
ti = ybaOU

[i−1,i) − µ̂k(i),

ti = i− 1/2, for i ∈ {1, . . . , 120}, and with

k(j) =

 j mod(12) for j = 1, 2, . . . , 11;

12 for j = 12.

5. Obtain block-average Ornstein-Uhlenbeck observations ybaOU
[i−1,i) − µ̂k(i), for i ∈

{1, . . . , 120}.

6. Apply sparse maximum likelihood estimation as in (2.28) on the “pointwise”

observations {x(1)
t1 , . . . x

(1)
t120
} and {x(2)

t1 , . . . x
(2)
t120
} for Case 1. and Case 2 re-

spectively. For Case 3. apply block-average maximum likelihood estimation

as in (2.32) on the observations {ybaOU
[0,1) − µ̂1, . . . , y

baOU
[119,120) − µ̂12}. These

each give drift and diffusion parameter estimates γ̂ and σ̂2 for the original

Ornstein-Uhlenbeck process.

Following this procedure, means and standard deviations for the parameter

estimates found for each case over 100 iterations are given in Table 2.32. Recall

that the true Ornstein-Uhlenbeck drift and diffusion here is γ = 1 and σ2 = 100.

From these results it is clear that misspecifying the observations as from a point-

wise Ornstein-Uhlenbeck process results in inaccurate maximum likelihood esti-

mates for γ and σ2, whereas if the observations are (correctly) identified as from

a block-average Ornstein-Uhlenbeck process then the associated maximum likeli-

hood approach works relatively well in this case. Note that the sparse maximum

likelihood method applied to the observations with either the seasonal mean, or

the spline at the season midpoint gives very similar results. This suggests that, in

this case, the error introduced from model misspecification was significantly larger

than that introduced by removing the incorrect mean value.
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-5

0

5

0 1 2 3 4 5 6 7 8 9 10 11 12
t

Figure 2.30: Quadratic spline (black line) calculated using the sample means in
each time interval (black horizontal lines). The value of the quadratic splines at
each season midpoint is shown by the black circles, with the grey vertical lines
giving the boundary between seasons, T0 = 0, T1 = 1, . . . , T12 = 12. The gaps
between the horizontal lines and the black circles highlight the differences between
the seasonal (sample) means and the midpoints of the quadratic splines.

In this chapter we introduced stochastic processes which we will use to model

the principal and independent components obtained from some HadCM3 simu-

lations in Part II. After the use of some stochastic process has been justified to

model these principal or independent components, the next step involves obtain-

ing forecasts of the components using these models. We now discuss forecasting

techniques in Chapter 3.
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Figure 2.31: One realisation of the seasonal block-average Ornstein-Uhlenbeck
process (solid black horizontal lines) with the seasons bounded by the grey vertical
lines. That is, the horizontal lines show {y[0,1), y[1,2), . . . , y[n−1,n)}, with n = 120,
and seasonal behaviour that is split into twelve seasons with boundaries Tj = j,
j = 0, 1, . . . , 12.

Observations γ̄ sd
(
γ̄
)

σ̄2 sd(σ̄2)

Case 1: {x(1)
t1 , . . . , x

(1)
t120
} 0.633 0.128 45.879 6.980

Case 2: {x(2)
t1 , . . . , x

(2)
t120
} 0.625 0.128 45.099 7.049

Case 3: {x[0,1), . . . , x[119,120)} 1.027 0.210 103.588 19.774

Figure 2.32: Table showing maximum likelihood parameter estimation mean and
standard deviation over 100 iterations for the three cases. The true parameter
values here are γ = 1 and σ2 = 100. For Case 1. and Case 2., sparse maximum
likelihood estimations as in (2.25) were applied to observations {x(1)

t1 , . . . x
(1)
t120
} and

{x(2)
t1 , . . . x

(2)
t120
} respectively, for each iteration. For Case 3., observations {ybaOU

[0,1) −
µ̂1, . . . , y

baOU
[119,120) − µ̂12} were used, and the block-average Ornstein-Uhlenbeck log-

likelihood (2.32) was maximised for each iteration.
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Chapter 3

Forecasting

In Chapter 1, we introduced techniques to reduce the size of a large simulator

output or data-set, to some set of one-dimensional time series. In Chapter 2 we

introduced theory on modelling one-dimensional time series, either using classical

techniques such as ARMA models or by assuming that the time series belonged

to some class of stochastic differential equations. This chapter on forecasting is

motivated by the following scenario that is the main thread that runs through this

thesis and arises from the preceding two chapters.

Suppose we have an output from some large simulator and have applied the

theory as discussed in Chapter 1 to reduce this output to a set of low dimensional

projections. We have then modelled these projections using the stochastic process

theory from Chapter 2, assuming random noise replaces the information lost from

the projection into a smaller subspace. Now, we require forecasts of the low

dimensional projections using these models, and then use these forecasts

to reconstruct some future behaviour of the high dimensional simulator output.

In this chapter we focus on the step that is in bold in the above motivation.

That is, the aim is to forecast the value Xn+h, where h is known as the forecast

horizon, using the observations x(n) = {xj : j ∈ Z, j ≤ n}. Here, Xn+h is an

unknown random variable and x(n) is a set of known values. Following Chatfield

(2000), the point forecast of Xn+h is notated x̂n(h). Using this notation gives both

the time up to which observations are avaliable by the subscript n, as well as the

time of the forecast by n+ h, in a non-ambiguous way.
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This chapter is arranged as follows. In Section 3.1 we introduce some no-

tation and discuss model specification and diagnostic techniques, including the

Box-Jenkins method. In Section 3.2 we describe point forecast theory for ARMA

processes (introduced in Section 2.2.1.3), and for Ornstein-Uhlenbeck processes

(from Section 2.3.2). In Section 3.3, we define forecast intervals and interval es-

timation methods are introduced for both ARIMA and Ornstein-Uhlenbeck pro-

cesses, as well as more general interval estimation methods based on simulation.

In Section 3.2.2.1 we introduce novel one-step-ahead forecast theory using the

distributional properties of the block-average Ornstein-Uhlenbeck process, with

the associated forecast intervals given in Section 3.3. Lastly, In Section 3.4 we

give some examples of the various estimated point and interval forecasts available,

applied to ARMA and Ornstein-Uhlenbeck processes.

3.1 Model Suitability

The first remark made in this section is to distinguish between forecasting models

and methods. As discussed in Chatfield (2000), a forecasting model is some math-

ematical construct that is (subjectively) chosen to represent the “true” behaviour

of the time series being forecast. On the other hand, a forecasting method re-

moves the requirement of mirroring a “true” model, and instead is just some rule

or formula that is used to compute a forecast. Therefore, a forecasting method

does not attempt to explicitly represent some underlying reality. In this chapter

we will focus on using forecasting models and tie these models into the time series

and stochastic process theory discussed in Chapter 2.

Mainly for simplicity, here we only consider univariate forecasting models,

where the forecast of a time series in R is found only using present and past

observations from that individual time series. This compares to the multivariate

case, where there can be more than one time series, or explanatory variable, used

to forecast a given variable. As well as simplicity, another reason for choosing

only univariate forecasting models is so that we do not stray too far into an area

that motivated the original dimension reduction of the high-dimensional simula-

tor. This area includes; increased opportunity for mathematical errors and model
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misspecification, high parameter uncertainty, and hard-to-determine model condi-

tioning. For an introduction to multivariate time series and forecasting models,

see Chatfield (2000) and Priestley (1981, Volume 2).

In the univariate case a function f is required that depends on the time se-

ries model M and the present and past observation x(n), such that the forecast

is given by x̂n(h) = f(x(n);M) and satisfies some optimality criteria. One com-

mon approach is to choose the forecasts to minimise mean square error, given by

E
(
Xn+h−x̂n(h)

)2
which is minimised when x̂n(h) = E(Xn+h|x(n)) (Priestley, 1981).

This choice of forecast is by no means unique, and in fact relates to the assumption

of a quadratic loss function. A loss function is a function that gives some value

to an event, representing the “cost” of the event occuring, with a smaller value

representing a better outcome. A quadratic loss function uses a quadractic curve

to penalise events further away from the optimal event proportionally more than

those close to the optimal. In some scenarios this may not be a sensible choice,

and a non-symmetric or 0 − 1 loss function may be preferable. For example, in

a medical setting it is often better for a patient to have a false positive diagnosis

than a false negative, suggesting that the loss function should be larger for false

negatives than false positives.

An obvious area that needs to be addressed before finding forecasts is whether

the chosen model M is the correct one to describe a set of observations x =

{x0, x1, . . . , xn}. One way to inform this decision is by using model criterion,

such as adjusted-R2 and Akaike Information Criterion (Akaike, 1969). The Akaike

Information Criterion is given by,

AIC = −2 log
(

max
(
L(· ;x0, . . . , xn,M)

))
+ 2p

where L(· ;x0, . . . , xn,M) is the likelihood of the observations given the model,

and p is the number of independent model parameters. Models that result in a

low Akaike Information Criterion are generally considered to be better. Often,

the term −2 logL(· ;x0, . . . , xn,M) is approximated by n log(s/n), where s is the

residual sum-of-squares. The Akaike Information Criterion bias-corrected version

177



3. FORECASTING

is frequently used, given by

AICc = AIC +
2(p+ 1)(p+ 2)

(n− p− 2)
,

which penalises complex models describing short time series.

3.1.1 Choosing ARIMA model structure: the Box-Jenkins

method

This section describes the Box-Jenkins method, which is an iterative procedure to

obtain a suitable model M ∈ M to explain some set of observations, where M is

the ARIMA class of models. It is discussed in detail in Box et al. (2015, Part II.).

The basic iterative approach can be described in three steps:

Panel 3.11: Box-Jenkins procedure

1. Identification: using the time series observations and prior knowledge of
time series models, determine a model that might explain the behaviour
of the observations. That is, identify a model M ∈M;

2. Estimation: using the time series observations and the selected model
class, estimate the model parameters. That is, use parameter approxi-
mation techniques to obtain a model M̂ .

3. Diagnostic checking: check for model inadequacies by comparing the
fitted model to the true model. That is, check whether the approximate
model M̂ describes the data sufficiently well.

Here, the data is assumed to belong to the class of ARIMA models, as described

in Section 2.2.2.1. Then, the identification step simplifies to first differencing the

time series to obtain stationarity (and thus an ARMA process), and then obtaining

estimations for the number of autoregressive and moving average parameters, p

and q respectively. That is, we suppose initially that the time series observations

{y1, y2, . . . , yn} can be modelled as being from the ARIMA(p, d, q) process (Yt)t∈Z,

given by ϕ(B)(1 − B)dYt = ϑ(B)εt (as in (2.10)), where ϕ and ϑ are polynomial
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operators of degree p and q respectively, and B the backwards shift operator such

that BdYt = Yt−d.

The process (Xt)t∈Z given by Xt = (1 − B)dYt is then an ARMA(p, q) pro-

cess, which is used to model the differenced observations xi = (1 − B)d yi+d,

i = 1, 2, . . . , n − d. Once the value of d has been estimated to give the obser-

vations {x1, x2, . . . , xn}, the degrees of the operators ϕ(B) and ϑ(B) can be found.

We now describe how the differencing and operator degrees can be estimated by

examining the sample autocorrelation function and sample partial autocorrelation

function.

To obtain the order of differencing, we examine the sample autocorrelation

function. If this function does not die out quickly this suggests that the process

might not be in stationarity. This was shown in Example 2.2.6. From Box et al.

(2015), in general it is expected that the order of differencing, d, is low, normally

0, 1, or 2. Box et al. (2015) suggests only looking at around the first 20 autocor-

relations of the observations and of the differenced observations of order 1 and 2,

if required.

Once the observations have been differenced such that stationarity is obtained,

the values of the autoregressive and moving average degrees are estimated. Note

that for an autoregressive process with degree p, the sample autocorrelation func-

tion should decrease in some exponential (and potentially sinuous) manner with

respect to the lag, and the sample partial autocorrelation function should be zero

for all lags that are (p+1) and above. For a moving average process with degree q,

the sample autocorrelation function should be zero for for all lags that are (q+ 1)

and above. As discussed in Section 2.2.1.3, if the sample autocorrelation function

appears to be decaying by a mixture of exponentials and damped sine waves only

after a number of lags, this suggests that both p and q are greater than zero and

the (differenced) observations {x1, x2, . . . , xn} belong to an ARMA process. In this

case the sample autocorrelation function is expected to behave like one calculated

from a pure autoregressive process after lag q − p.
We remark here that this model identification step is non-trivial, and interpret-

ing sample autocorrelation and partial autocorrelation functions is in general hard

to do. This is highlighted in Example 3.1.1 below. One method that is sometimes

used to avoid this step – and indeed to avoid one’s subjective judgement being
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challenged – is to consider a range of models and choose the one that minimises

some model criterion, for instance adjusted-R2 or Akaike Information Criterion as

described in Section 3.1.

Once the order (p, d, q) of the ARIMA model has been chosen, the estimation

step involves finding estimates for the ϕi, i = 1, 2, . . . , p and ϑj, j = 1, 2, . . . , q,

which is often achieved using maximum likelihood estimation. For details of this

step, see Box et al. (2015, Section 7) and Brockwell et al. (1991, Section 8).

In the diagnostic checking step, it is required to determine both whether the

order (p, d, q) (i.e. the model M) and parameter estimates (i.e. M̂) seem sensible,

and if not, in what way they might be incorrect. This can be done by, for example,

overfitting the observations by choosing a more complicated model and seeing if

this gives better results (Box et al., 2015, Section 8.1.2). Also, one can look at the

residuals of the data to check whether these satisfy the properties of white noise,

or apply common residual tests such as Shapiro-Wilk (Shapiro & Wilk, 1965),

Ljung-Box (Ljung & Box, 1978) or Breusch–Godfrey (Godfrey, 1978).

Example 3.1.1 (Box-Jenkins method on Example 2.2.6). In this example the Box-

Jenkins method is applied to the process (Yt)t∈T , which is an integrated autoregressive-

moving average process of the form,

(1−B)Yt = ϕ(1−B)Yt−1 + εt + ϑεt−1,

with ϕ = 0.7, ϑ = 0.8 and εj ∼ N(0, σ2
ε) for j ∈ T , σ2

ε = 0.4, and B the back-

wards shift operator. This is the same process as we considered in Example 2.2.6,

and the first difference, Xt = (1 − B)Yt, is the ARMA(1, 1) process considered in

Example 2.2.5.

Here, we focus on the identification and diagnostic checking steps in Panel 3.11.

This example will proceed as follows:

1. Estimate the order of differencing, d, using the sample autocorrelation func-

tion;
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2. Estimate the autoregressive order, p, and the moving average order, q, using

the sample autocorrelation and sample partial autocorrelation functions;

3. Estimate the parameter values ϕ1, . . . , ϕp and ϑ1, . . . , ϑq;

4. Use the Akaike information criterion, introduced in Section 3.1, and tests

for Gaussianity of the residuals for the diagnostic checking step to determine

whether the chosen model is a suitable fit for the data.

These steps are repeated until the Akaike information criterion indicates that the

chosen model and estimated model parameters are sensible in relation to the data.

As the Akaike information criterion gives a sense of the trade-off between model

complexity and goodness of fit, a “sensible” value is very much a reasoned choice

that is needed to be made by the modeller.

This example is presented here to highlight some issues that can occur when

applying the Box-Jenkins method to data, and how uncertainty over the “correct”

way to proceed can arise.

Suppose we have the realisation {y1, y2, . . . , y250} of the process (Yt)t∈T (which

is the same realisation as seen in Example 2.2.6). The aim here – assuming these

observations are from an ARIMA(p, d, q) process – is to use these observations to

estimate p, d and q. Using the autocorrelation and partial autocorrelation functions

to estimate the order of an ARIMA process was briefly discussed in Section 2.2.

Following the Box-Jenkins procedure (Panel 3.11), the order of differencing is es-

timated first.

The realisation of the ARIMA(1, 1, 1) process, {y1, y2, . . . , y250}, was shown in

Figure 2.11 and the associated sample autocorrelation function in Figure 2.12.

The sample autocorrelation function exhibits a very slow decay, indicating – as

discussed in Section 2.2 – that the process is not stationary. Taking the first dif-

ference gives observations {x1, x2, . . . , x250}, where xt = (1−B)yt, t = 1, . . . , 250,
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shown in Figure 2.8 (Example 2.2.5). The sample autocorrelation function for the

differenced observations was given in Figure 2.9 (reproduced here in Figure 3.1a)

and exhibits fast decay. This speed of decay suggests that the order of differencing

is d = 1 and the process of which {x1, . . . , x250} is a realisation is stationary. With

this information, it is now assumed that the observations {x1, . . . , x250} are from

an ARMA(p, q) process, where p and q are to be determined.

Recall from Section 2.2.1.3, the autocorrelation function is a mixture of expo-

nentials and damped sine waves after the (q − p)th lag, and the partial autocorre-

lation function is dominated by a mixture of exponentials and damped sine waves

after the (p− q)th lag.

Using this information, consider the sample autocorrelation and partial auto-

correlation functions as shown in Figure 2.9 and Figure 2.10 respectively. They

are reproduced here in Figure 3.1 up to lag 10 for convenience. In this case, to

anyone bar an expert in this field, it is often challenging to determine when the

sample autocorrelation function (Figure 3.1a), becomes a mixture of exponentials

and damped sine waves, and when the sample partial autocorrelation function (Fig-

ure 3.1b), becomes dominated by a mixture of exponentials and damped sine waves.

It can quite convincingly be argued that both the sample autocorrelation (barring

lag 1) and partial autocorrelation functions are wholly dominated by exponentials

and damped sine waves. That is, q − p = 0 (as ρ(0) = 1 by definition, so that the

exponential and damped sine wave mixture starts at lag 1) and p− q = 0.

However, here suppose the observations xt, t = 1, . . . , 250, are initially (mis)-

specified as being from an ARMA(2, 2) process, so that q − p = p − q = 0. Here

the value of p = q = 2 is chosen to illustrate one way the observations could

be specified as to an incorrect underlying process. Using these observations the
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Figure 3.1: Reproduction of the sample autocorrelation and partial autocorrelation
functions from Example 2.2.5, Figure 2.9 and Figure 2.10 respectively.

following parameter estimates are found,

ϕ̂1 = −0.1869; ϕ̂2 = 0.5250; ϑ̂1 = 1.7513; ϑ̂2 = 0.8063.

The Akaike information criterion for this process order and parameter value esti-

mates is AIC = −111.5432, with the bias-corrected version AICc = −111.3799.

The steps are now repeated to check whether the initial model and parameter

estimates are a good fit in relation to the data. Looking back at the sample au-

tocorrelation and partial autocorrelation functions in Figure 3.1 (originally from

Example 2.2.5) and referring to Table 6.1 in Box & Jenkins (1976), notice that

the behaviour of the two functions follows that of a ARIMA(1, d, 1) process. That

is, the sample autocorrelation function decays exponentially from the first lag, and

the sample partial autocorrelation function is dominated by exponential decay from

the first lag.

Using this information, suppose the (differenced) observations xt, t = 1, . . . , 250
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are assumed to be from an ARMA(1, 1) process. Then, the following parameter

estimates are found,

ϕ̂ = 0.6761; ϑ̂ = 0.8036.

Recall that the true values are ϕ = 0.7 and ϑ = 0.8. From this choice of model and

estimated model parameters, the Akaike information criterion is AIC = −107.7376

and bias-corrected version, AICc = −107.6404.

From the Akaike information criterion alone, it appears that choice of the

ARIMA(2, 1, 2) process gives an estimated model that fits the data better than the

choice of ARIMA(1, 1, 1), which is the true model. However, it is always pru-

dent to look at the residuals as part of the diagnostic checking step. Applying

the Shapiro-Wilk test for normality (Shapiro & Wilk, 1965) to the residuals from

the ARIMA(2, 1, 2) and ARIMA(1, 1, 1) models gives p-values of 0.0569 and 0.165

respectively. With the “standard” significance level of 0.05, the Shapiro-Wilk test

suggest that both of these models have residuals that are Gaussian distributed. Note

that in this case one cannot compare the two p-values obtained to one-another, as

under the null hypothesis the distribution of the p-value is uniform and thus a p-

value of 0.165 is not “stronger proof” of residual Gaussianity than one of 0.0569.

However, Royston (1995) suggests that the default significance level for a Shapiro-

Wilk test should be set at a p-value of 0.1, in which case the tests on the two

models suggest that the choice of ARIMA(1, 1, 1) is preferable. Looking at the

Q–Q plot of the residuals, given in Figure 3.2, the residuals from the choice of

ARIMA(1, 1, 1) model (Figure 3.2b) seem to be a slightly better fit than those from

the ARIMA(2, 1, 2) models (Figure 3.2a). This, along with the result from the

Shapiro-Wilk test, indicates that the observations can be modelled as a realisation

from an ARIMA(1, 1, 1) process. A different conclusion would be reached if only

the Akaike information criterion results were used.

As explained at the beginning of this example, we applied the Box-Jenkins
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(a) Q-Q plot of the residuals, as-
suming the observations are from an
ARIMA(2, 1, 2) process and estimating
the parameter values.
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ARIMA(1, 1, 1) process and estimating
the parameter values.

Figure 3.2: Q-Q plots of the residuals when assuming the observations come from
either a ARIMA(2, 1, 2) process or a ARIMA(1, 1, 1) process and estimation the
associated parameter values.

method for a realisation from a simple ARIMA(1, 1, 1), demonstrating the am-

biguity and somewhat arbitrary decisions that the lay-person can often face. In

this example, different choices for model diagnostic checks and different choices

within these checks can result in different models being selected.

The model is now assumed to have been chosen, and thus the following sections

consider forecasts based on the chosen model.

3.2 Calculating Point Forecasts

This section deals with calculating (approximate) point forecasts using a set of

observations, assuming these observations can be modelled according to some un-

derlying stochastic process.
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Following the structure of Chapter 2, this section is split into point forecasts

relating to the time series ARMA processes in Section 3.2.1, and the Ornstein-

Uhlenbeck process (both pointwise and block-average) in Section 3.2.2.

3.2.1 Forecasting ARMA processes

Here we use an ARMA process (introduced in Section 2.2.1.3) to obtain some

forecasts. Recall that a stationary ARMA(p, q) process is given by Xt = ϕ1Xt−1 +

. . .+ϕpXt−p+εt+ϑ1εt−1 +. . . ϑqεt−q, where ϕ1, . . . , ϕp and ϑ1, . . . , ϑq are the model

parameters, and εj ∼ N(0, σ2
ε) independent for some σ2

ε ∈ (0,∞). With B the

backwards shift operator such thatBjXt = Xt−j for j = 1, 2, . . ., the ARMA process

can be expressed as ϕ(B)Xt = ϑ(B)εt, where ϕ(B) and ϑ(B) are polynomial

operators in B of degrees p and q respectively.

As described in Section 2.2.1.3, the process (Xt)t∈Z can be rewritten as an

MA(∞) process, as Xt = ζ(B)εt =
∑∞

t=0 ζtεt, with ζ(B) = ϕ−1(B)ϑ(B). In this

form, from Box et al. (2015), the forecast with horizon h that minimises mean

square error is given by

x̂n(h) =
∞∑
j=h

ζjεn+h−j. (3.1)

The forecast written in this way cannot be used in practice as it requires the

parameters ζj, j = h, h + 1, . . . and the countably large number of observations

x(n) to be known exactly so that the innovations εn, εn−1, εn−2, . . . can be obtained.

We now explore an alternative way of finding the point forecast x̂n(t), which

also benefits from a simple approximation method. For general ARMA processes

the point forecasts x̂n(h) can be found recursively for horizons h = 1, 2, 3, . . .

directly from the model equation. This is achieved by replacing all future values

of the white noise term εt, t > n by its expectation, which here is equal to zero,

and substituting all future (unknown) values of Xt, t > n, by the expectation

E(Xt|x(n)). For example, an ARMA(1, 1) process is described by the equation

Xt = εt + ϕXt−1 + ϑεt−1, and therefore the recursive approach to finding the

minimum mean squared error forecast using the observations {. . . , x1 . . . , xn−1, xn}
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is given by,

x̂n(h) =

{
ϕxn + ϑεn, h = 1;

ϕx̂n(h− 1), h ≥ 2.
(3.2)

This forecast still requires knowledge of the parameters ϕ and ϑ, as well as the

innovation εn, and thus assumes full knowledge of the model M . In practice,

only estimates of the ARMA process parameter values are available, say M̂ , with

estimated parameters ϕ̂ and ϑ̂. Using the model M̂ also gives estimated innovation

ε̂n, and therefore (3.2) becomes,

x̂n(h) =

{
ϕ̂xn + ϑ̂ε̂n, h = 1;

ϕ̂x̂n(h− 1), h ≥ 2.
(3.3)

3.2.2 Forecasting Ornstein-Uhlenbeck processes

In this section, we consider Ornstein-Uhlenbeck processes (XOU
t )t∈Z with the form

(2.12), as discussed in Section 2.3.2. We know (from (2.13)) the distribution of the

process explicitly. Given observations x(n) = {xt1 , xt2 , . . . , xtn} from a stationary

Ornstein-Uhlenbeck process and using the knowledge of the distribution, the point

forecast x̂n(h) is given by,

x̂n(h) = E(XOU
n+h|x(n)) = xne

−γh. (3.4)

As with the ARMA process above, in practice the point forecast for an Ornstein-

Uhlenbeck process uses the estimated parameter values, so that (3.4) becomes

x̂n(h) = xne
−γ̂h, (3.5)

where γ̂ is an estimate for the drift parameter γ. Note that the parameter σ2 (and

the estimate σ̂2) is not required for the point forecast of an Ornstein-Uhlenbeck

process, although it will be required later to obtain forecast intervals in Section 3.3.
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3.2.2.1 Forecasting block-average Ornstein-Uhlenbeck processes

Here we find point forecasts for the block-average Ornstein-Uhlenbeck process in-

troduced in Section 2.3.2.1. First, recall that the block-average Ornstein-Uhlenbeck

process has a multivariate Gaussian distribution, and therefore forecasts can be

found by considering the conditional distribution. We first consider the conditional

distribution of a general multivariate Gaussian, before looking at the specific block-

average Ornstein-Uhlenbeck case.

Let X ∈ Rn be a multivariate Gaussian random variable with some mean vector

µ and covariance matrix Σ, X ∼ N(µ,Σ), partitioned such that X = (X
(j)
1 ,X

(j)
2 )>

with X
(j)
1 ∈ Rj and X

(j)
2 ∈ Rn−j, for some j < n. Partition the mean vector and

covariance matrix in the same way, such that µ = (µ
(j)
1 , µ

(j)
2 )> with µ

(j)
1 ∈ Rj,

µ
(j)
2 ∈ Rn−j, and (

Σ
(j)
11 Σ

(j)
12

Σ
(j)
21 Σ

(j)
22

)
,

where Σ
(j)
11 ∈ Rj×j, Σ

(j)
12 ∈ Rj×n−j, Σ

(j)
21 ∈ Rn−j×j, and Σ

(j)
22 ∈ Rn−j×n−j. Then, it is

a well known result (Eaton, 1983, Prop. 3.13) that the conditional distribution of

X2|X1 = x1 is also a multivariate Gaussian, with mean vector

µ2 + Σ
(j)
21 (Σ

(j)
11 )−1(x1 − µ1), (3.6)

and covariance matrix

Σ
(j)
22 − Σ

(j)
21 (Σ

(j)
11 )−1Σ

(j)
12 . (3.7)

We now consider the conditional distribution of a block-average Ornstein-

Uhlenbeck process. For finding the one-step-ahead point forecast at time n of

the block-average Ornstein-Uhlenbeck process,
(
XbaOU

[ti−1,ti)

)
i∈Z (described in Sec-

tion 2.3.2.1), the conditional distribution of the (n + 1)-vector, split at j = n

is required.

The vector
(
XbaOU

[0,∆t),X
baOU
[∆t,2∆t), . . . ,X

baOU
[n∆t,(n+1)∆t)

)
∈ R(n+1), has a N(0,Σ) distri-

bution, with Σ ∈ R(n+1)×(n+1) the Toeplitz matrix given in (2.18). Given the first

n realisations from a block-average Ornstein-Uhlenbeck process and using (3.6),
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the one-step-ahead point forecast x̂n(1) is given by,

x̂n(1) = E
(
XbaOU

[n∆t,(n+1)∆t) |xbaOU
[(n−1)∆t,n∆t), . . . , x

baOU
[0,∆t)

)
= 0 + Σ

(n)
21 (Σ

(n)
11 )−1x

(n)
1 , (3.8)

where

x
(n)
1 = (xbaOU

[0,∆t), x
baOU
[∆t,2∆t), . . . , x

baOU
[(n−1)∆t,n∆t)) ∈ Rk, (3.9a)

Σ
(n)
11 =


σ11 σ12 · · · σ1n

σ21 σ22 · · · σ2n
...

...
. . .

...
σn1 σn2 · · · σnn

 , and; (3.9b)

Σ
(n)
21 = (σ(n+1) 1 σ(n+1) 2 · · · σ(n+1)n), (3.9c)

with σij = c a|j−i| + b1i=j as in (2.18).

3.3 Interval Forecasts

In general, a point forecast is not as useful as it might first appear. Crucial

questions that are required for a decision to be made using point forecasts are

missing, for example; (1) What does x̂n(h) = y mean? (2) Is the process more

likely to be less than or greater than y at time n + h? (3) How does one compare

two models that give different point forecasts, say x̂
(1)
n (h) = y(1) and x̂

(2)
n (h) = y(2)?

These questions all require interval forecasts for answers. In our scenario, where the

forecasts are to be used to help reconstruct a high dimensional climate simulator

output, interval forecasts are required to give some probability to the reconstructed

scenarios, and to be able to compare differing models and forecasts.

This section describes some mathematical theory and common issues when

calculating out-of-sample forecast intervals. That is, prescribing some probability

for the interval that Xn+h could belong to, given observations x(n). Here, Xn+h is a

random variable conditional on x(n), and the (deterministic) point forecast is given

by x̂n(h) = E
(
Xn+h|x(n)

)
(described in Section 3.1). Following Chatfield (2000)

189



3. FORECASTING

these intervals are called prediction intervals to separate them from the theory of

confidence intervals which give an interval for estimates of some fixed parameter

values.

The conditional forecast error of a forecast with horizon h given observations

x(n) is a random variable given by

en(h) = Xn+h − x̂n(h).

Here, by convention, the upper-case sans-serif typeface is not used for the condi-

tional forecast error random variable. The within-sample forecast errors are the

residuals found from the fitted model, xt − x̂t−1(1) for t = 2, 3, . . . , n.

To obtain a 100(1 − α)% prediction interval for Xn+h, in this section it is as-

sumed that the interval is symmetric about the point forecast x̂n(h), the prediction

mean square error is unbiased and that forecast errors are normally distributed.

In this case, the 100(1− α)% prediction interval is,

x̂n(h)± zα/2
√

Var en(h), (3.10)

where zγ is the value for which the standard Gaussian cumulative density function

equals 1−γ. Although this looks like a standard confidence interval, the motivation

– to help predict the behaviour of a random variable, Xn+h – differs from the classic

confidence interval motivation, which is used to obtain a random interval to help

determine some fixed parameter value. This difference in motivation merits the

different use of language.

For ARMA processes, the uncertainty of the forecast error, given by Var en(h)

in (3.10), can be simplified to the prediction mean square error, E en(h)2, in the

following way. As the ARMA point forecast x̂n(h) is unbiased (and thus E en(h) =

0), the prediction mean square error becomes equal to the forecast error variance,

E en(h)2 = Var en(h).

Recall from Section 2.2.1.3 that an ARMA process expressed in MA(∞) form

is xt = ζ(B)εt =
∑∞

j=0 ζjεt−j, where ζ(B) = ϕ−1(B)ϑ(B), with ϕ and ϑ the

autoregressive and moving-average polynomial operators respectively. Using (3.1)
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the forecast error at horizon time h is en(h) = εn+h +
∑h−1

j=1 φjεn+h−j. From this,

the variance term in the prediction interval (3.10) becomes

Var en(h) = E en(h) = (1 + φ2
1 + · · ·+ φ2

h−1)σ2
ε , (3.11)

as εj ∼ N(0, σ2
ε) are independent for all j ∈ Z. In practice the parameter values

are replaced by their estimates φ̂1, . . . , φ̂h−1 to obtain the forecast error variance.

Now, consider the Ornstein-Uhlenbeck process, with point forecast given by

(3.4). The prediction interval here uses both the drift and diffusion parameters

of the process, and the explicit distribution derived as a result of (2.13) given in

Section 2.3.2. From this, the 100(1 − α)% prediction interval (3.10) at horizon h

becomes,

xn(h)e−γh ± zα/2

√
σ2

2γ
(1− e−2γt), (3.12)

where zγ is the value for which the standard Gaussian cumulative density function

equals 1− γ.

In the case of the block-average Ornstein-Uhlenbeck process, the one-step-

ahead point forecast is given by (3.8). For the prediction interval, recall that

for a multivariate Gaussian random variable X ∼ N(µ,Σ), the covariance of the

condition distribution of X2|X1 = x1 for some partition of X is given by (3.7). Now,

given a realisation of the first n values from a block-average Ornstein-Uhlenbeck

process, the variance of XbaOU
[n∆t,(n+1)∆t) |xbaOU

[(n−1)∆t,n∆t), . . . , x
baOU
[0,∆t) is given by

σ(n+1) (n+1) − Σ
(n)
21 (Σ

(n)
11 )−1Σ

(n)
12 ,

with σij, i, j = 1, 2, . . ., given in (2.18), Σ
(n)
11 ∈ Rn×n as in (3.9b), Σ

(n)
21 ∈ R1×n as

in (3.9c), and

Σ
(n)
12 = (σ1 (n+1), σ2 (n+1), . . . , σn (n+1))

> ∈ Rn.

Therefore, the 100(1 − α)% one-step-ahead prediction interval for the block-

average Ornstein-Uhlenbeck process is given by

x̂n(1)± zα/2
√
σ(n+1) (n+1) − Σ

(n)
21 (Σ

(n)
11 )−1Σ

(n)
12 , (3.13)
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with x̂n(1) as in (3.8) and zγ the value for which the standard Gaussian cumulative

density function equals 1 − γ. Note that to obtain the point forecast x̂n(1) and

prediction interval in practice, the values of σij, i, j = 1, 2, . . . , n+ 1 are estimated

using parameter estimations γ̂baML and σ̂2
baML obtained from the n realisations

xbaOU
[0,∆t), . . . , x

baOU
[(n−1)∆t,n∆t).

3.3.1 Simulating prediction intervals

Approximate prediction intervals for a probabilistic model may be found using

a simulation approach which involves using the (assumed “true”) model and the

(estimated) parameter values to simulate many time series trajectories. Using this

set of trajectories, a 100(1−α)% prediction interval at time n+h can be estimated

by calculating the range of values that encompass 100(1 − α)% of the simulated

trajectories. As ARIMA processes and stochastic differential equations such as

Ornstein-Uhlenbeck processes are probabilistic time series models, this method

can be used on both.

Another simulation approach is called resampling and differs to the approach

above by sampling from the empirical distribution of the past observed residuals

as opposed to sampling using the distribution of the innovations assuming that

a specific model is true (which, in our case, would be Gaussian). This empirical

distribution can then be used to simulate time series trajectories and calculate pre-

diction intervals in the same manner as above. One type of resampling technique

is called bootstrapping. In this approach the simulated innovations are taken from

the residuals with replacement. The general theory of bootstrapping relies on the

observations that are used to sample from being independent, which is most often

not the case within a time series environment (unless the time series observations

are from a white noise process). However, time series bootstrapping relies on the

residuals – as opposed to the observations – being independent, and thus can be

used here. When the underlying model is wrongly specified then the residuals may

not be independent and resampling approaches, which are highly dependent on

model choice, will result in poor prediction intervals.
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3.3.2 Comments on prediction intervals

In general, the prediction interval given by (3.10) is too narrow compared to the

“true” range of future observations, so that more than 100α% of future observa-

tions lie outside a 100(1− α)% prediction interval. Two major reasons for this is

that (3.10) assumes that, (i) the model chosen is the “true” model, and (ii) the

model parameters are known exactly. For example in the case of ARMA processes,

in practice, the parameter estimators φ̂i, i = 1, 2, . . . , h − 1, are substituted di-

rectly into (3.10). For sufficiently long observed trajectories and low chosen model

complexity, the added uncertainty from using estimated parameter values is nor-

mally small compared to uncertainty from other sources. Therefore, it is common

practice to input the estimated parameters directly into (3.10).

The wrong model being identified from the observations can also be the cause

of prediction intervals that underestimate the range of future values. One common

example of a wrongly identified model is by overfitting the data with the assump-

tion that better within-sample fit means better out-of-sample forecasts. This error

can be avoided to a certain extent by using diagnostic checks on fitted models,

for example the adjusted-R2 and Akaike Information Criterion as discussed in

Section 3.1. On the other hand, the correct model could be identified from the ob-

servations, but any prediction interval depends on the assumption that the future

is similar to the past. If this is not the case and the model changes at some point

then any prediction interval calculated using the original model will not be very

useful.

As commented in Chatfield (2000), a way to mitigate against prediction inter-

vals that are too narrow for useful interpretation is to decrease the percentage of

future observations that one expects to belong to a prediction interval. That is,

reducing a 95% prediction interval to 80% or 90% instead, so selecting an α = 0.2

or α = 0.1 respectively in (3.10).

3.4 Forecasting Examples

In this section, realisations from ARMA and Ornstein-Uhlenbeck processes are

used to obtain point forecasts and prediction intervals. The process realisations
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are split into training and test sets, and the point forecasts and prediction intervals

found using the training sets are compared to the “true” behaviour of the test sets.

Section 3.4.1 considers realisations from an ARMA process, and Section 3.4.2

considers the Ornstein-Uhlenbeck process. In both sections, prediction intervals

found using the distribution of the respective process, and by using simulated

realisations are considered. In addition, Section 3.4.1 contains an example of

using bootstrapping for calculating the prediction intervals. We remark here that

all point forecasts appear to reach stationarity very quickly (within the time-frame

of interest), such that after a relatively small time horizon the point forecast is

close to zero and the prediction intervals are stable.

3.4.1 ARMA(1, 1) process

For this section a ARMA(1, 1) process, given by Xt = ϕXt−1 + εt + ϑεt−1 with

ϕ = 0.5, ϑ = 0.8 and εj ∼ N(0, σ2
ε = 0.5), is simulated from t = 0 to t = 1000

giving observations {x0, x1, . . . , x1000}. The realised trajectory is then split into a

training set from t = 0 to t = 750, xtraining = {x0, . . . , x750} and a test set from

t = 751 to t = 1000, xtest = {x751, . . . , x1000}.
From the training set, we obtain parameter approximations, ϕ̂ = 0.5004 and

ϑ̂ = 0.8068, and innovation variance estimate σ̂2
ε = 0.4711.

Example 3.4.1 (Prediction intervals from the true distribution of the process).

Here the known distribution of an ARMA(1, 1) process is used, alongside the train-

ing set, to obtain a prediction interval given by (3.10). The training set is used to

obtain approximate parameter values for the ARMA process, which we then input

into the known distributional form. This example is split into three steps. The first

step is to calculate the point forecasts x̂n(h) for horizons h = 1, 2, . . . , H. Then,

the parameters for the equivalent MA(∞) process need to be found. The third

step involves plugging the MA(∞) parameter values into (3.11) and calculating the

prediction interval (3.10).
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Note that in this case the estimated parameter values and innovation variance

are input directly into (3.10) ignoring any uncertainty at this stage. That is, (3.10)

and (3.11) become

x̂n(h)± zα/2
√
V̂e(h), (3.14)

with V̂e(h) = (1 + φ̂2
1 + · · ·+ φ̂2

h−1)σ̂2
ε .

For step one, the point forecast x̂n(h) at horizon h that minimises mean square

error is found in a recursive manner by (3.3). This gives xn(h) for h = 1, 2, . . . , H

where H = 250 mirrors the length of the test set.

Now, parameter estimates for the equivalent MA(∞) process are calculated.

Using ϕ̂ and ϑ̂, the MA(∞) form (truncated to order H − 1) can be found, giving

estimates {φ̂j, j = 1, 2, . . . , H − 1}.

Using the point forecasts {x̂n(h) : h = 1, 2, . . . , H} and estimated MA(∞) pa-

rameter values, we find approximations to the mean square error given by {V̂e(h) : h =

1, 2, . . . , H} and thus the approximate prediction interval is given by (3.14).

Figure 3.3 shows the ARMA(1, 1) realisation {x0, x1, . . . , x1000} for time t =

700 to t = 800, split into the training set xtraining (solid black line) and the test set

xtest (dotted black line). The thick grey line gives the point forecasts {x̂n(h) : h =

1, 2, . . . , 50} and the dashed lines show the upper and lower values of the 95%

prediction interval calculated using (3.14).

For this realisation, 3.6% of the test values are outside the 95% prediction in-

terval, which is less than one would expect from the remarks made in Section 3.3.2.

However, it must be noted that this is a contrived example where we have identified

the “true” model exactly. Although the use of parameter estimates has not been

reflected in the prediction interval, as the estimates have been made from a long

time series (n = 750) with a simple model structure (number of parameters, p = 2)

the added uncertainty should be small.

Example 3.4.2 (Prediction intervals from simulated realisations). This is an ex-
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Figure 3.3: This figures shows a realisation of an ARMA(1, 1) process, split into
a training set (solid black line) and test set (dotted black line), with the train-
ing set used to estimate the model parameters. The estimated parameters have
been used to produce a set of point forecasts by (3.3) and to obtain the equivalent
MA(∞) process form that allows 95% model prediction intervals to be estimated
by (3.14). The thick grey line gives the point forecasts {x̂n(h) : h = 1, 2, . . . , 50}
and the dashed lines show the upper and lower values of a 95% prediction inter-
val. Note that for this ARMA(1, 1) realisation, 3.6% of the test set observations
{x751, . . . , x1000} lie outside of the 95% prediction interval.

ample to highlight the simulation method discussed in Section 3.3.1. Here we use

the estimated ARMA(1, 1) parameter values ϕ̂ and ϑ̂, and the estimated innova-

tion variance σ̂2
ε to simulate N = 100 trajectories from an ARMA(1, 1) process,

all starting from the last observation of the training set, x750. Each simulated

trajectory has length H = 250 to mirror the length of the test set. This set of

simulated trajectories is used to obtain a point forecast and a prediction interval

in the following way.

For the point forecast at horizon h, the mean at time h of all the 100 simulated

trajectories is taken. Repeating this for all horizons h = 1, 2, . . . , H gives the set

of point forecasts {x̂n(h) : h = 1, 2, . . . , H}. Here it is remarked that the same
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3.4 Forecasting Examples

notation for the point forecasts is used in Example 3.4.1 even though it is defined

differently. This is to highlight that both the point forecasts in this and the previous

example are an attempt to answer the same fundamental forecasting question.

To find the simulated 100(1 − α)% prediction interval at horizon h, the α/2

and 1− α/2 quantiles of the simulated trajectories at time h are found, such that

the most extreme (α/2)% lower and upper values at the time h are discarded and

the range of the remaining simulated values is taken as the prediction interval at

that time.

Figure 3.4 shows the last 50 observations from the training set, {x700, . . . , x750}

as the solid black line, and the first 50 observations from the test set, {x751, . . . , x800}

by the dotted black line. The point forecasts calculated as the mean of the simulated

values are shown by the thick grey line, with the prediction intervals calculated from

the α/2, 1− α/2 quantiles of the simulated trajectories given by the dashed lines.

In this case 6.4% of the test set observations xtest were outside of the simulated

95% prediction interval.

Example 3.4.3 (Prediction intervals from bootstrapping the residuals). This ex-

ample uses the residuals found when assuming the training set realisation xtraining

is a realisation of an ARMA(1, 1) process with the estimated parameter values

ϕ̂ = 0.5004 and ϑ̂ = 0.8068.

The residuals are used in the following way to simulate potential future trajecto-

ries of the process. At each time step t the “innovation” used, et, is chosen at ran-

dom from the fitted values of the training set, {ε̂0, . . . , ε̂750}, sampled with replace-

ment, to give an approximate realisation from the residuals’ empirical distribution.

This sampled innovation replaces the true innovation in the standard ARMA(1, 1)

method to give the value of the trajectory at time t as xt = ϕxt−1 + êt + ϑêt−1.

Note that this explicitly removes the assumption that the innovations are Gaussian,

although in this example one would hope that this is the case.
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Figure 3.4: This figure shows a realisation of an ARMA(1, 1) process, split into a
training set (solid black line) and test set (dotted black line), with the training set
used to estimate the model parameters. With these estimates, 100 ARMA(1, 1)
trajectories were simulated and this set of simulations was used to give point
forecasts and prediction intervals. The thick grey line gives the point forecasts
{x̂n(h) : h = 1, 2, . . . , 50} and the dashed lines show the upper and lower values of
a 95% simulated prediction interval. Note that for this ARMA(1, 1) realisation,
6.4% of the test set observations {x751, . . . , x1000} lie outside of the 95% simulated
prediction interval.

Here, N = 100 simulations from t = 751 to t = 1000, starting at the last obser-

vation from the training set x750, are simulated by the bootstrapping method, and

the simulated prediction intervals and point forecasts for horizons h = 1, 2, . . . H,

with H = 250 are calculated in the same way as in Example 3.4.2.

Figure 3.5 shows the observed ARMA(1, 1) trajectory {x0, x1, . . . , x1000} from

t = 700 to t = 800, split into the observations from the training set xtraining (solid

black line) and the test set xtest (dotted black line). As before, the grey solid line

shows the bootstrapping point forecasts, and the dashed black lines give the 95%

bootstrapped prediction intervals. For this ARMA realisation and bootstrapping

simulation approach, 6.8% of the values of the test set xtest lie outside of the 95%
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prediction interval.
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Figure 3.5: This figure shows a realisation of an ARMA(1, 1) process, split into a
training set (solid black line) and test set (dotted black line), with the training set
used to estimate the residuals. These residuals were sampled with replacement to
produce N = 100 simulations following the ARMA(1, 1) form with the new “in-
novations”, which were then used to give point forecasts and prediction intervals.
The thick grey line gives the point forecasts {x̂n(h) : h = 1, 2, . . . , 50} and the
dashed lines show the upper and lower values of a 95% simulated prediction inter-
val. Note that for this ARMA(1, 1) realisation, 6.8% of the test set observations
{x751, . . . , x1000} lie outside of the 95% bootstrap prediction interval.

From these examples we can see that using different forecasting approaches

gives slightly different results, although the underlying behaviour of the point

forecasts and prediction intervals are similar between the three examples. That is,

the forecasts reach stationarity quickly such that the point forecasts are close to

zero and the prediction intervals are relatively constant. The forecasts obtained

using simulated realisations (Example 3.4.2) tend to the forecasts obtained using

the distribution properties of the ARMA process (Example 3.4.1) as the number

of realisations used increases. The bootstrapping forecasts (Example 3.4.3) have

different asymptotic behaviour, as here the residuals from the training sample are

used to obtain new simulations.
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3.4.2 Ornstein-Uhlenbeck process

In this section, a realisation of an Ornstein-Uhlenbeck process of the form,

dXOU
t = −γXOU

t dt+ σ dBt,

with γ = 1 and σ2 = 100, is simulated from time t = 0 to t = 1000 using Euler-

Maruyama approximation. The time step used in the approximation is ∆tEM =

10 × 10−4, and then the trajectory is thinned to give an “observed” realisation,

{x0, x∆t, x2∆t, . . . , xn∆t}, with ∆t = 10× 10−3 and n∆t = 1000.

As before, these observations are split into a training set, denoted xtraining =

{x0, x∆t, . . . , xnt∆t}, and a test set, xtest = {x(nt+1)∆t, x(nt+2)∆t, . . . , xn∆t}, where

nt∆t = 750. Using the training set and maximising the log-likelihood as given in

(2.28) (Section 2.3.3.1) gives parameter estimates γ̂ = 1.0286 and σ̂2 = 101.1043.

Example 3.4.4 (Prediction intervals from the true distribution of the process).

In this example the prediction intervals are calculated from (3.12) using the dis-

tributional knowledge of an Ornstein-Uhlenbeck process as given in Section 2.3.2,

with parameter estimates found using maximum likelihood estimation. Here, the

parameter estimates found using maximum likelihood estimation, γ̂ = 1.0286 and

σ̂2 = 101.1043, are used to give the point forecasts and prediction intervals. That

is, (3.12) becomes

xn(h)e−γ̂h ± zα/2

√
σ̂2

2γ̂
(1− e−2γ̂h).

where xn(h) = xnt∆t e
−γ̂h. The point forecasts and prediction intervals are calcu-

lated for horizons h = 1, 2, . . . , H where H = 250 to mirror the length of the test

set.

Figure 3.6 shows a section of the realisation {x0, x∆t, . . . , xn∆t} of an Ornstein-

Uhlenbeck process from time t = 700 to t = 800 with parameters γ = 1 and

σ2 = 100, split into a training set (solid black line) and a test set (dotted black line).

The solid grey line shows the point forecasts using the distributional properties given
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in (2.13), and the 95% prediction interval is given by the dashed black lines. In this

case, 5.3% of the realisations from the test set xtest are outside the 95% prediction

interval.
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Figure 3.6: This figure shows a section of the realisation {x0, x∆t, . . . , xn∆t} of an
Ornstein-Uhlenbeck process with parameters γ = 1 and σ2 = 100, split into a
training set (solid black line) and a test set (dotted black line). The solid grey
line is the point forecasts using the distributional properties given in (2.13) and
the 95% prediction interval is given by the dashed black lines. In this case, 5.3%
of the realisations from the test set xtest are outside the 95% prediction interval.

Example 3.4.5 (Prediction intervals from simulated realisations). In this exam-

ple, simulated prediction intervals and point forecasts are obtained from N = 100

realisations of an Ornstein-Uhlenbeck process with parameters given by those found

by maximum likelihood estimation on xtraining, i.e. γ̂ = 1.0286 and σ̂2 = 101.1043,

and initial value given by the last value of the training set, xnt∆t.

The prediction intervals and point forecasts are calculated in the same way as

in Example 3.4.2. From the N simulated trajectories, the point forecast at horizon

h is given by the mean of the trajectories at time h, and the 100(1−α)% prediction
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interval at horizon h is given by the α/2 and 1− α/2 quantiles of the trajectories

at time h.

Figure 3.7 shows a section of the realisation {x0, x∆t, . . . , xn∆t} of an Ornstein-

Uhlenbeck process from time t = 700 to t = 800 with parameters γ = 1 and

σ2 = 100, split into a training set (solid black line) and a test set (dotted black

line). The solid grey line shows the simulated point forecasts, and the simulated

95% prediction interval is given by the dashed black lines. In this case, 7.1% of

the realisations from the test set xtest are outside the 95% prediction interval.
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Figure 3.7: This figure shows a section of the realisation {x0, x∆t, . . . , xn∆t} of an
Ornstein-Uhlenbeck process with parameters γ = 1 and σ2 = 100, split into a
training set (solid black line) and a test set (dotted black line). The solid grey line
is the simulated point forecast, and the simulated 95% prediction interval is given
by the dashed black lines. In this case, 7.1% of the realisations from the test set
xtest are outside the 95% prediction interval.

As with the forecasts for ARMA processes found in Section 3.4.1, here the

two Ornstein-Uhlenbeck examples give forecasts with similar behaviour, such that

they both reach stationarity quickly relative to the time-scale of interest. The

simulated forecasts found in Example 3.4.5 will tend asymptotically towards the
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distributional forecasts shown in Example 3.4.4 as the number of simulations used

increase.

In this section, different ways of producing point forecasts and prediction in-

tervals have been examined, predominately to apply to observations from ARIMA

and Ornstein-Uhlenbeck processes. The methods discussed here go some way to

help with the aim stated at the beginning of this section, that is, to use ARIMA

and Ornstein-Uhlenbeck processes to forecast the low dimensional projections of

high dimensional simulator output.

This concludes Part I of the thesis, which has covered theory that can now be

applied to the complex systems in Part II. To recap, the theory introduced so far

has included:

1. Projecting some simulator output onto a set of basis vectors to reduce the

dimension of the data;

2. Modelling these new dimensions (independently) as one-dimensional stochas-

tic processes, assuming that the information lost in the projection step can

be replaced with Gaussian noise;

3. Using these stochastic processes to (independently) forecast the projections.

In Part II of this thesis, the forecasts are used to reconstruct the simulator

output (by “inverse” principal and independent component analysis, described in

Chapter 4). Both the individual component forecasts, as well as the full recon-

structions, can be compared to the “true” component and full simulator output

values, by splitting the output into training and test sets. This analysis gives a

sense of a goodness of fit, and allows comparisons of the forecasts from principal

components to those from independent components.
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Introduction to Part II

The thesis so far has focussed on mathematical techniques: dimension reduction,

(Chapter 1), stochastic modelling (Chapter 2), and Forecasting (Chapter 3). The

overall aim of this project is to use dimension reduction methods in partnership

with stochastic process and forecasting theory to model a high-dimensional simu-

lation as a lower-dimensional simulation with some noise, and to use this model

for forecasting. Part II of the thesis is a natural conclusion of the previous three

chapters, where we now consider an output from a “real-life” simulator that is

used to help inform actual policy decisions.

Chapter 4 and Chapter 5 focus on applying the techniques introduced in Chap-

ters 1, 2 and 3 to some simulation output from the Hadley Centre Coupled Model

(HadCM3), which is a specific general circulation model (GCM). GCMs are a type

of climate simulator that describe the evolution of Earth systems using numeri-

cal schemes to approximate a system of partial differential equations such as the

Navier-Stokes equations on a rotating sphere. A diagram explaining the stages

of both of these chapters is presented in Figure 3.8. Briefly, reconstructions of

the full simulator output using a set of forecasted principal or independent com-

ponents are compared to the true simulator output. The number of components

used in the forecasted reconstructions can be increased to reduce some error. The

number of principal components needed to reduce the reconstruction error below

some threshold can be compared to the number of independent components re-

quired, or the number of components can be fixed, and the principal component

reconstruction error compared to the independent component error. We can also

compare the difference in the reconstructions using the true principal or indepen-

dent components, and the reconstructions using one-step-ahead forecasts for the
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respective components. Therefore, in this chapter the ability to forecast using

principal components is compared directly to that using independent components,

as well as the suitability of the models used to forecasts the components.

Obtain simulator output;

Step 1:

Apply a dimension reduction
method, as introduced in Chap-

ter 1, to obtain a set of components;

Requirement for princi-
pal component analysis:

scale the data;

Step 2:

Model the components using stochas-
tic models introduced in Chapter 2;

Step 3:

Use methods intoduced in Chap-
ter 3 to forecast the components;

Step 4:

Use forecasts from the first l compo-
nent(s) to reconstruct the full sim-
ulator output, and compare to the
true output at the forecast horizon;

Future work: Increase
the number of compo-
nents used, l ← l + 1;

Step 5:

Compare reconstructions using fore-
casts from principal components to

those from independent components.

Figure 3.8: Diagram showing stages invoked in Part II

In Chapter 4, we analyse the HadCM3 simulator when the output is of the

mean sea-level air pressure over the Earth’s surface. This chapter also contains a
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brief introduction to the HadCM3 simulator and a discussion on preprocessing the

simulator output before applying principal component analysis. In Chapter 5, we

analyse the HadCM3 simulator mean sea-level air pressure with two-dimensional

horizontal wind speed output.
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Chapter 4

Dimension Reduction,

Forecasting and Reconstruction:

Mean Sea-Level Air Pressure

Climate Simulation Output

As discussed in the introduction above, here the HadCM3 simulator output is

given by the mean sea-level air pressure. This chapter is structured as follows.

We introduce the HadCM3 simulator in Section 4.1, with a brief history and some

additional reading for the interested party. In Section 4.2 we describe some prepro-

cessing of the simulator output that is required for principal component analysis

(as introduced in Section 1.2) to be applied in Section 4.2.2. We apply indepen-

dent component analysis (from Section 1.3) to the output in Section 4.3. Then,

in Section 4.4 we apply the stochastic theory (introduced in Chapter 2) to the

principal components and independent components such that we can model these

as stochastic processes and obtain estimated parameters values. In Section 4.5 we

use these stochastic process models to obtain point and interval forecasts (intro-

duced in Chapter 3). Finally, in Section 4.6, we obtain reconstructions of the full

simulator output, and analyse the quality of the forecasts. Note that the future
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work highlighted in Step 4. in Figure 3.8 is not considered in this section, due to

time constraints.

Remark 4.16: Terminology – model or simulator

Throughout this section, following Rougier et al. (2013) the term “simulator”

to describe the computer code that produces some output is preferred to the

term “model”. This prevents the over-use of the term “model”, which is ex-

tremely easy in this setting. Also, this allows the terminology “model” to

refer to the broader class of “statistical model”, which includes the simulator

outputs and the judgements about how these observations are related to the

Earth system.

4.1 Introduction to the HadCM3 Climate Simu-

lator

In this section we describe a specific climate simulator that is used throughout

Part II, known as the HadCM3 simulator. This general circulation model simu-

lates both the Earth’s atmosphere and its oceans using two separate simulations

that interact in some way. A climate simulator is described as coupled if the

simulations for the atmosphere and for the ocean interact, which is done predomi-

nantly via the sea surface temperature and sea ice extents. The HadCM3 climate

simulator as described in Gordon et al. (2000) is a coupled simulator, and was

the first coupled simulator that did not require artificial adjustments – known

as flux adjustments – to prevent unrealistic outputs. Prior to HadCM3, coupled

models had to be prevented from experiencing significant climatic drift by flux

adjustments. See Barthelet et al. (1998) for an example of when not applying flux

adjustments in a coupled simulator (which was different to HadCM3) resulted in

unrealistic drift. The atmospheric model component of HadCM3 is based on the

United Kingdom Meteorological Office’s (UKMO) unified forecast/ climate model

examined in Cullen (1993) (also see Connolley & Cattle, 1994), and is calculated
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4.1 Introduction to the HadCM3 Climate Simulator

on a 2.5◦ × 3.75◦ grid with nineteen vertical levels (Pope et al., 2000). The ocean

model component of HadCM3 is based on the model described in Cox (1984), and

is calculated on a 1.25◦ × 1.25◦ latitude-longitude grid with twenty vertical levels.

The sea-ice model is the same as that found in HadCM2, described in Cattle &

Crossley (1995), and uses the same grid size and number of vertical levels as the

atmospheric component. The simulator is run on a time step of 30 minutes for

the atmosphere model and one hour for the ocean model, with the atmosphere

and ocean components coupled once a day. The HadCM3 simulator was a major

simulator used in the Independent Panel on Climate Change (IPCC) Third and

Fourth Assessments (Pachauri & Reisinger, 2008; Watson et al., 2001). An exam-

ple of output from the HadCM3 simulator is given in Figure 4.1. In this figure, the

structure of the HadCM3 output is shown by a snapshot of the mean sea-level air

pressure on a 2.5◦ × 3.75◦ grid, and thus at sea-level (ignoring the other vertical

layers of the simulator output) the Earth is modelled on 96 longitudinal and 73

latitudinal cells.
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Figure 4.1: An example of a typical simulator output, with an output of mean
sea-level air pressure. The simulator gives an output of values on a discretised
representation of the Earth’s surface, using a grid of 96 longitudinal cells and 73
latitudinal cells.

In this chapter, the output from the HadCM3 simulator is mean sea-level air
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pressure, and is given on a 96×73 grid that is used to represent the Earth’s surface.

Therefore, each time-step of the simulator can be given by the mapping

f1 : M→ R96×73, (4.1)

for the mean sea-level air pressure output. Here, 96×73 = 7008 and each dimension

of the mapping f1(m), m ∈ M, represents the value of the simulator output on

one grid cell. Although this mapping is represented in Figure 4.1 by equal sized

grid cells, this is actually a miss-characterisation of the output, as these grid cells

are on the surface of a sphere and therefore have differing area dependent on their

position. We discuss this in detail in Section 4.2.1. Throughout this chapter, the

simulator output that we analyse consists of n = 6000 time-steps, and can be

represented as a matrix X ∈ R6000×7008 such that the ith row of X is given by the

mapping xi = f(mi) for some input mi ∈M, i = 1, . . . , 6000.

4.2 Applying Principal Component Analysis to

the Mean Sea-Level Air Pressure HadCM3

Simulator Output

In this section, principal component analysis as introduced in Section 1.2 is ap-

plied to output from the HadCM3 simulator. One important aspect to take into

consideration for principal component analysis is the area of the grid cell, as this

affects the variance of each output dimension which in turn affects the principal

component basis found. Although the grid cells in Figure 4.1 appear to be of equal

size, this is purely an artefact of the map projection used. As a general remark, it

is worth noting that a sphere’s surface cannot be represented on a plane without

distortion (Gauss & Pesic, 2005), which in the case here involves distorting the

area represented by equal grid sizes of Figure 4.1. As principal component analysis

finds directions that maximise variance of the projections, scaling the simulator

output by the grid cell size is equivalent to scaling the variance of each column of

the simulator output X.
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4.2 PCA on HadCM3 Mean Sea-Level Air Pressure Output

Using information given regarding the area of each cell, we can adjust the

HadCM3 simulator output by scaling each element of the mapping f1(m), as in

(4.1), by the area of the associated cell. That is, each element of the HadCM3

simulator output can be adjusted by a second function g : R × S2 → R, in the

following way. Assume that the sphere is divided into plat and plon latitudinal and

longitudinal cells respectively, such that the cells have midpoints at the latitudes

ϕi, i = 1, . . . , plat, and at the longitudes ϑj, j = 1, . . . , plon. For the simulator

output x ∈ R at the grid cell with centre s ∈ S2, the mapping that scales the

output by the (square of the) respective grid cell area, g, is given by

g(x, s) = x

plat∑
i=1

plon∑
j=1

√
cij 1s∈χij . (4.2)

Here, χij ∈ S2 refers to the grid cell with centre at latitude ϕi and longitude

ϑj, and with area given by cij. That is, the cell χij is bounded by [ϕi,S, ϕi,N ] =

[ϕi−ϕcell/2, ϕi+ϕcell/2] in the latitude, and [ϑj,W , ϑj,E] = [ϑj−ϑcell/2, ϑj +ϑcell/2]

in the longitude, where ϕcell, and ϑcell are the latitudinal and longitudinal span of

the cell. Note that the values cij, i = 1, . . . , plat, j = 1, . . . , plon, of the area of each

cell needs to be calculated.

The method of finding the area cij in (4.2) that corresponds to each cell χij,

i = 1, . . . , plat, j = 1, . . . , plon, for the output given by the HadCM3 simulator is

now discussed in Section 4.2.1.

4.2.1 Calculating the area of the grid cells

In this section we discuss the partition of the Earth that is used by the HadCM3

simulator. As described in Section 4.1, the atmospheric component of the simulator

is run on a 2.5◦ × 3.75◦ grid, and the oceanic component is run on a 1.25◦ × 1.25◦

grid. The mean sea-level air pressure output used in this chapter is on a 2.5◦×3.75◦

grid. In this description, the non-Euclidean geometry of the simulator is not

explicit, and the constant angles that determine the grid cell borders hide the fact

that these cells lying on the surface of a sphere have differing areas.
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yx
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r
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c
(ϕcell,ϑcell,r)
ϕ,ϑ

Figure 4.2: Surface area of a (spherical rectangular) segment of a sphere of radius
r in relation to the latitude and longitude of the cell boundary. Here, ϕ and ϑ
give the centre of the cell, and ϕcell := ϕN − ϕS, ϑcell := ϑE − ϑW . Note that here
the angles ϕS and ϕN are taken from the x − y plane, instead of the convention
of taking these angles from the z-axis. This is for comparability to the way that
latitude is calculated (and shown in Figure 4.1), with latitude 0 at the equator
and π/2 (−π/2) at the north (south) pole.

From Figure 4.2, each cell is defined by the radius from the origin, r, as well as

the latitude and longitude that make up the border of the cell. These are given by

ϕS and ϕN for the southern and northern latitudes that define the top and bottom

of the cell, and ϑE and ϑW for the eastern and western longitudes that define the

right and left cell boundary. Note that the angles ϕS and ϕN are defined from the

x − y plane as opposed to being defined from the z-axis (as is convention in the

spherical coordinate system), to match the convention of latitude being 0 at the

equator and π/2 (respectively, −π/2) at the north (south) pole.

The area of the cell is given by c
(ϕcell,ϑcell,r)
ϕ,ϑ , with the subscript giving the position

of the cell centre and superscript giving the latitude and longitude span of the cell,

and the radius of the ball whose surface the cell lies on.

Suppose now that the latitudinal and longitudinal span of the cell is constant,

given by ϕcell and ϑcell, and the radius r is fixed, and define the grid cells by their

centre point, with latitude ϕi, i = 1, . . . , plat and longitude ϑj, j = 1, . . . , plon. We

will calculate explicitly the area given by c
(ϕcell,ϑcell,r)
ϕ,ϑ , and thus find the area of the
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4.2 PCA on HadCM3 Mean Sea-Level Air Pressure Output

grid cells used in the HadCM3 output.

First note that the Cartesian coordinates (x, y, z) can be written in terms of

(ϕ, ϑ) in the spherical coordinate system – with ϕ the angle from the x− y plane

and ϑ the angle from the x-axis – by,
x = r cosϕ cosϑ;

y = r cosϕ sinϑ;

z = r sinϕ.

Then, the parametric representation ρ : Θ × Θ → R3 of the Cartesian space in

terms of ϕ and ϑ is given by,

ρ(ϕ, ϑ) =

r cosϕ cosϑ
r cosϕ sinϑ
r sinϕ

 .

Now the integral over the surface given in cell C with centre at latitude ϕ

and longitude ϑ, latitudinal span given by ϕcell and longitudinal span ϑcell, can be

written in this new coordinate system by,

∫
C

dS =

∫ ϕ+ϕcell/2

ϕ−ϕcell/2

∫ ϑ+ϑcell/2

ϑ−ϑcell/2

∥∥∥∂ρ(ϕ′, ϑ′)

∂ϕ
× ∂ρ(ϕ′, ϑ′)

∂ϑ

∥∥∥ dϑ′ dϕ′.

Here,

∥∥∥∂ρ(ϕ, ϑ)

∂ϕ
× ∂ρ(ϕ, ϑ)

∂ϑ

∥∥∥ = (r4 cos4 ϕ cos2 ϑ+ r4 cos4 ϕ sin2 ϑ+ r4 sin2 ϕ cos2 ϕ)1/2

= r2 |cosϕ|

= r2 cosϕ, for ϕ ∈
[
−π

2
,
π

2

]
.

Therefore, we have∫
C

dS = r2 · ϑcell ·
(

sin
(
ϕ+

ϕcell

2

)
− sin

(
ϕ− ϕcell

2

))
.
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For fixed r, ϑcell and ϕcell, this integral only depends on the latitudinal position

of the cell, ϕ and is independent of the longitudinal position, ϑ. In this case,

c
(ϕcell,ϑcell,r)
ϕ,ϑ can be written as a mapping c : (−π/2, π/2)→ [0, 4πr2], with

c(ϕ) = r2ϑcell

(
sin
(
ϕ+

ϕcell

2

)
− sin

(
ϕ− ϕcell

2

))
. (4.3)

Using this, for each cell of the HadCM3 output, a weight can be associated to

the output based on the latitude of the cell’s centre. For the HadCM3 output in

this chapter, the value of cij in (4.2) is given by cij = ci = c(ϕk(i)), with c(·) as in

(4.3),

ϕm = −π/2 + (2s− 1)ϕcell/4,

m = 1, . . . , plat, and k : {1, . . . , p} → {1, . . . , plat} the function that gives the lat-

itude subscript associated with the ith element of x. Note that the cell centres

for m = 1 and m = plat are at ϕ1 = −π/2 + ϕcell/4 and ϕplat
= −π/2 + (2plat −

1)ϕcell/4 = π/2− ϕcell/4, and define a cell with latitudinal span ϕcell/2. However,

for m = 2, . . . , plat − 1 the cells have latitudinal span ϕcell. This is a particularity

of the HadCM3 simulator output, and is discussed in Remark 4.17.

Now we have described the specific mapping g : R × S2 → R as in (4.3) for

each element of the HadCM3 simulator output x = f1(m) ∈ Rp. The output given

as the Rp vector can also be scaled by the matrix G = diag(
√
ci) ∈ Rp×p, to give

scaled output x(g) = Gx ∈ Rp.

Remark 4.17: Area of the southern-most and northern-most cells in

the HadCM3 simulator output

The output of the HadCM3 simulator treats the northern-most and southern-

most cells differently to all the others. In this remark, only the northern cells

are considered, as the southern cells can be treated in a similar manner. That

is, suppose the cell of interest have centre at latitude ϕplat
and longitude ϑj for

some j = 1, 2, . . . , plon.

In the HadCM3 simulator the latitude span for these cells is half that of
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4.2 PCA on HadCM3 Mean Sea-Level Air Pressure Output

all the other grid cells, such that the latitude-longitude span is [0.5ϕcell, ϑcell],

where ϕcell (respectively, ϑcell) is the latitude (longitude) span of the general

HadCM3 cell output. These cells are (spherical) triangular in shape, as the

longitudinal borders ϑj−ϑcell/2 and ϑj +ϑcell/2 converge to a point at latitude

π/2 = ϕplat
+ ϑcell/4. Note the divisor of 4 instead of 2 for the latitude, as

discussed above.

4.2.2 Applying principal component analysis to the weighted

simulator output

In this section we apply principal component analysis to the mean sea-level air

pressure output from the HadCM3 simulator, represented by the mapping given

by f1 in (4.1), and shown at a single time-step in Figure 4.1. Let the output be

given by the matrix X ∈ Rn×p, with n = 6000 and p = 7008. Then, the first step

involves scaling the columns of the matrix X with regards to the area of the cell

that each element of the matrix is associated with, such that we have X(g) = XG

with G = diag(
√
ci) as described in Section 4.2.1.

Recall that for some standard output {x1, . . . , xn}, the principal directions

{w1, . . . , wl} are found such they form the orthonormal basis that maximises V (wi :

{x1, . . . , xn}) for each wi sequentially, where V is given in (1.2) and repeated here,

V (w : {x1, . . . , xn}) := Var{〈x1, w〉, . . . , 〈xn, w〉}.

In the case of the HadCM3 output, as indicated by the dotted arrows at Step 1.

in Figure 3.8, the vectors need to be weighted by the matrix G as described in

Section 4.2.1. Therefore the principal components are selected to be the basis

vectors that maximise,

V (w : {x(g)
1 , . . . , x(g)

n }) = Var{〈x(g)
1 , w〉, . . . , 〈x(g)

n , w〉}

= Var{〈Gx1, w〉, . . . , 〈Gxn, w〉}.

In this case, the matrix X in the principal component analysis method (Panel 1.3)
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is replaced with X(g) = XG ∈ Rn×p, which is then column-centred to give X̃(g).

Then, the single value decomposition in Step 1. of Panel 1.3 is performed on X̃(g).

That is, finding the eigenvectors and eigenvalues of the covariance matrix

CX =
1

n− 1
(X̃(g))>X̃(g),

is done in practice by decomposing the matrix X̃(g) into X̃(g) = UΛV > and taking

the columns of V ∈ Rp×r to be the principal directions, with Λ = diag(λi) ∈ Rr×r

(ordered such that λ1 ≥ · · · ≥ λr) and the associated variances given by γi =

λ2
i /(n− 1). Here, the rank of the X̃(g) is given by r = min{n− 1, p} = 5999.

Performing principal component analysis on the output, weighted by cell area,

gives principal directions as the columns of V ∈ Rp×r. Following the notation as

set out in Panel 1.2, the principal directions are notated wi := vi ∈ Rp, i = 1, . . . , r,

where vi is the ith column of V . The principal components are given by the columns

of the matrix M = (m1 m2 · · · mr) = X̃(g)V , with the ith principal component,

mi ∈ Rn, having variance γi = λ2
i /(n− 1).

The first six principal directions w1, . . . , w6 are shown in Figure 4.3, with the

elements of each principal direction plotted on the associated grid cell. The first

principal direction contains some behaviour that could be related to atmospheric

circulation resulting from the Hadley Cell, or the El Niño-Southern Oscillation.

Hadley Cell circulation is the movement of air upwards at the equator and then

towards the poles, sinking at a latitude of about ±30◦. The El Niño-Southern

Oscillation is the name given to the irregularly periodical variation in winds and

sea surface temperatures over the tropical eastern Pacific ocean. The El Niño is

related to Walker circulation, which is caused by the pressure gradient resulting

from a high pressure system over the eastern Pacific ocean, and low pressure system

over Indonesia. It also increases the size of the Western Hemisphere Warm Pool,

a warm sea region that straddles North and South America, and is present in the

first principal direction in Figure 4.3.

Projecting the weighted and column-centred simulator output X̃(g) along the

principal directions w1, w2, . . . ∈ R7008 gives the principal components, m1,m2, . . . ∈
R6000. The first six principal components, corresponding to the data projected
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along the directions given in Figure 4.3, are shown in Figure 4.4. Throughout this

chapter the principal components are assumed to be – and displayed as – causal

time-series, for t = 0, 1, . . . , n − 1, where n = 6000. It is clear that the principal

components exhibit strong seasonal behaviour with a periodicity of twelve, similar

to the example in Figure 2.1, as discussed in Section 2.2 and in Section 2.3.4. The

seasonal behaviour can also be seen by examining the correlogram for each princi-

pal component. This is done in Section 4.4.2, with the seasonal behaviour removed

before modelling the modified principal components as causal processes using time

series models and stochastic differential equations as introduced in Chapter 2.

The plot of the percentage of the variance that is accounted for by the first

twenty principal components, given by 100 · γi/
∑r

j=1 γj, i = 1, . . . , 20, where

r = 5999 is the rank of X̃(g), is shown in Figure 4.5. The six principal components,

as shown in Figure 4.4, obtained by projecting X̃(g) along the principal directions

shown in Figure 4.3 account for 71.94% of the total variance, and the first twenty

principal components account for 86.84% of the total variance. These two results

are shown by the grey horizontal lines in Figure 4.5.

4.3 Applying Independent Component Analysis

to the Mean Sea-Level Air Pressure HadCM3

Simulator Output

In this section, we apply independent component analysis (as introduced in Sec-

tion 1.3) to the mean sea-level air pressure output obtained from the HadCM3

simulator. By Lemma 1.3.3, independent component analysis performed on the

matrix X ∈ Rn×p is invariant to any scaling of the columns of X. That is, inde-

pendent component analysis theoretically gives the same results for X as it does

for XD for any D = diag(di) ∈ Rp×p, and therefore, unlike principal component

analysis, pre-processing the output by the area of the grid cells is not required.

As in Section 4.2.2, here we consider the mean sea-level air pressure output

from the HadCM3 simulator, with each time-step represented by the mapping f1

as in (4.1). Here, we use the fastICA independent component analysis method (as
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(a) First principal direction, w1 ∈ R7008. (b) Second principal direction, w2 ∈ R7008.

(c) Third principal direction, w3 ∈ R7008. (d) Fourth principal direction, w4 ∈ R7008.

(e) Fifth principal direction, w5 ∈ R7008. (f) Sixth principal direction, w6 ∈ R7008.

Figure 4.3: First six principal directions found by performing principal component
analysis on mean sea-level air pressure output (scaled according to grid cell area)
from the HadCM3 simulator. That is, the plots show w1, . . . , w6 ∈ R7008, mapped
onto the corresponding grid cells.
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(a) First principal component, m1, for
time steps t = 0, 1, . . . , 119.
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(b) Second principal component, m2, for
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(c) Third principal component, m3, for
time steps t = 0, 1, . . . , 119.
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(d) Fourth principal component, m4, for
time steps t = 0, 1, . . . , 119.
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(e) Fifth principal component, m5, for
time steps t = 0, 1, . . . , 119.
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(f) Sixth principal component, m6, for
time steps t = 0, 1, . . . , 119.

Figure 4.4: First six principal components for time steps t = 0, 1, . . . , 119. That
is, the first 120 elements of each vector m1, . . . ,m6 ∈ R6000 are shown. The vec-
tors m1, . . . ,m6 are found by projecting the scaled (and column-centred) mean
sea-level HadCM3 simulator output, X̃(g), along the first six principal directions,
w1, . . . , w6 ∈ R7008, as shown in Figure 4.3.
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Figure 4.5: Bar chart showing the proportion of total variance accounted for by
each principal component found by applying principal component analysis on mean
sea-level air pressure output from the HadCM3 simulator. That is, each bar shows
the value 100 · γi/

∑r
j=1 γj, i = 1, . . . , 20, with r = 5999 the rank of X̃(g). The

cumulative sum of these proportions is shown by the black points and line, such
that each point shows the value 100 ·

∑i
k=1 γk/

∑r
j=1 γj for i = 1, . . . , 20. The grey

horizontal lines show the cumulative proportion of total variance accounted for by
the first six, and the first twenty principal components. These account for 71.94%
and 86.84% of the total variance respectively.

discussed in Section 1.4.1). The choice of this method is due to the dimension

of the simulator being “large”, and follows on from the argument given in Sec-

tion 1.4.2.5. That is, the fastICA method is efficient when the vast majority of

projections of the data are very close to Gaussian, with few sparse non-Gaussian

directions. To reduce computational time and the likelihood of numerical errors,

the whitening step of fastICA is applied using PCA-whitening with r̃ = 167 prin-

cipal components, (that is, r = 167 in Step 2. of Panel 1.4). This reduction of the

dimension of the whitened matrix is commented on in Remark 1.3. The choice of

r̃ = 167 principal components is used as these account for more than 99% of the

total variance in the model.

Figure 4.6 shows the first six independent directions, w1, . . . , w6 ∈ Rp, where

each wi, i = 1, . . . , r̃, is the ith column of the matrix W = AQ ∈ Rp×r̃, with

A ∈ Rp×r̃ the whitening matrix, Q ∈ Rr̃×r̃ the orthogonal direction matrix as
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described in Panel 1.4, and p = 7008. It is interesting to note the prevalence of

the Weddell Sea area (east of the Antarctic peninsula) in many of the independent

directions. For example, this area is extremely prominent in the second, third and

fifth independent directions.

The first six independent components are shown in Figure 4.7. The independent

components are given by the columns of Z ∈ Rn×r̃, r̃ = 167 and n = 6000, where

Z = X̃W and W = AQ ∈ Rp×r̃ is the matrix with independent directions as the

columns (as described above and shown in Figure 4.6). The respective M -spacing

entropy estimation – as introduced in Section 1.3.1.3 – has been calculated for the

first 6 independent components in Figure 4.7 and displayed in the corresponding

captions, with M = b
√

6000c.

Now that principal and independent components have been obtained for the

mean sea-level air pressure HadCM3 simulator output, the next step is to find

parameter estimates assuming that these components are realisations from some

suitable stochastic processes. This is discussed in Section 4.4.

4.4 Modelling Principal and Independent Com-

ponents by Stochastic Processes

In this section, we model the components obtained by principal component anal-

ysis and independent component analysis applied to output from the HadCM3

simulator, using techniques introduced in Chapter 2. This is shown as Step 2. in

Figure 3.8.

This section is arranged as follows. In Section 4.4.1 we introduce the procedure

used later in this section, and some notation. In Section 4.4.2 we consider the prin-

cipal components obtained from the mean sea-level air pressure HadCM3 simulator

output. In Section 4.4.3 we consider the independent components obtained from

applying fastICA to the mean sea-level air pressure HadCM3 simulator output.
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(a) First independent direction, w1 ∈
R7008. The M -spacing entropy of the
HadCM3 mean sea-level air pressure pro-
jection onto this direction is 1.115.

(b) Second independent direction, w2 ∈
R7008. The M -spacing entropy of the
HadCM3 mean sea-level air pressure pro-
jection onto this direction is 1.127.

(c) Third independent direction, w3 ∈
R7008. The M -spacing entropy of the
HadCM3 mean sea-level air pressure pro-
jection onto this direction is 1.146.

(d) Fourth independent direction, w4 ∈
R7008. The M -spacing entropy of the
HadCM3 mean sea-level air pressure pro-
jection onto this direction is 1.164.

(e) Fifth independent direction, w5 ∈
R7008. The M -spacing entropy of the
HadCM3 mean sea-level air pressure pro-
jection onto this direction is 1.173

(f) Sixth independent direction, w6 ∈
R7008. The M -spacing entropy of the
HadCM3 mean sea-level air pressure pro-
jection onto this direction is 1.181

Figure 4.6: First six independent directions found by performing the fastICA
method on mean sea-level air pressure output from the HadCM3 simulator. That
is, the plots show w1, . . . , w6 ∈ R7008. The M -spacing entropy associated with
each independent direction is calculated as in Section 1.3.1.3, with M = b

√
nc =

b
√

6000c.
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(a) First independent component, s1,
shown for time steps t = 0, 1, . . . , 119.
The M -spacing entropy of this indepen-
dent component is 1.115.
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(b) Second independent component, s2,
shown for time steps t = 0, 1, . . . , 119.
The M -spacing entropy of this indepen-
dent component is 1.127.
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(c) Third independent component, s3,
shown for time steps t = 0, 1, . . . , 119.
The M -spacing entropy of this indepen-
dent component is 1.146.
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(d) Fourth independent component, s4,
shown for time steps t = 0, 1, . . . , 119.
The M -spacing entropy of this indepen-
dent component is 1.164.
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(e) Fifth independent component, s5,
shown for time steps t = 0, 1, . . . , 119.
The M -spacing entropy of this indepen-
dent component is 1.173.
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(f) Sixth independent component, s6,
shown for time steps t = 0, 1, . . . , 119.
The M -spacing entropy of this indepen-
dent component is 1.181.

Figure 4.7: First six independent components, s1, . . . , s6 ∈ R6000, found by project-
ing the (column-centred) mean sea-level air pressure HadCM3 simulator output,
X̃, along the first six independent directions, w1, . . . , w6 ∈ R7008, as shown in Fig-
ure 4.6. Here, the independent components are shown as a time-series for times
t = 0, . . . , 119. The M -spacing entropy is calculated for each independent compo-
nent as in Section 1.3.1.3, with M = b

√
nc = b

√
6000c.
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4.4.1 Introduction to modelling the principal and indepen-

dent components

Each principal and independent component considered throughout this chapter

belongs to Rn, with n = 6000, and each is modelled as a causal stochastic process

with time steps t = 0,∆t, 2∆t, . . . , (n − 1)∆t with ∆t = 1 constant. Here, the

information lost from only considering a low dimensional set of components – as

opposed to the basis – is represented by way of stochasticity. This stochastic

approximation of the components is used to obtain a stochastic evolution equation

of the deterministic function PV f as described in Step 5. of Panel 1.1.

In the later forecasting stage, Section 4.5, the aim is to produce one-step-ahead

forecasts of a selection of principal and independent components, and compare the

one-step-ahead reconstructions from these forecasts to the “true” result obtained

from the simulator output. To allow comparisons to the “truth”, the simulator is

split into “training” and “test” sets, such that the forecasts using the training set

can be compared to the output in the test set.

Suppose a realisation from a one-dimensional causal process is given in vector

form by x = (x0, x1, . . . , xn−1) ∈ Rn for some n ∈ N. Define the training sample

of size j < n to be x(j) := (x0, x1, . . . , xj−1) ∈ Rj. The training set is given to

be the set of all training samples for j = ñ, ñ + 1, . . . , n − 1, notated Xtraining =

{x(ñ), x(ñ+1), . . . , x(n−1)}, for some ñ < n. The test sample of the realisation is

given by the remaining elements that are not included in the smallest training

sample of the training set, i.e. (xñ, xñ+1, . . . , xn) ∈ Rn−ñ.

In this chapter – in an attempt to reduce computational time used – we only

implement principal component analysis and independent component analysis on

the full set of simulator outputs from time t = 0 to (n− 1)∆t. Then, the resulting

principal and independent components are each split into training samples of size

j = ñ, ñ + 1, . . . , (n − 1), for some ñ < n, with these training samples used to

obtain suitable models for the components. The estimated models are checked

using the respective test sample.

In Sections 4.4.2 and 4.4.3 below, we apply the following procedure. We as-

sume that the time series of interest is given by x = (x0, x1, . . . , xn−1) ∈ Rn,
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and that it can be modelled by a stochastic process with some known paramet-

ric form and unknown “true” parameter ϑ0. Then, with training set Xtraining =

{x(ñ), x(ñ+1), . . . , x(n−1)}, the procedure applied in this section is given by the fol-

lowing steps, for j = ñ, ñ+ 1, . . . , n− 1:

1. Obtain the training sample x(j) = (x0, x1, . . . , xj−1) ∈ Rj from the training

set Xtraining;

2. Use parameter fitting techniques as discussed in Chapter 2 to obtain an

estimate of ϑ0 using x(j), giving estimated parameter value ϑ̂(j);

3. Compare the expected behaviour of the stochastic process with parame-

ter ϑ̂(j) to the “true” behaviour of the test sample from time j onwards

(xj, xj+1, . . . , xn−1).

From this, parameter estimates of the stochastic process are found for each training

sample from the training set Xtraining, and this can be used in the one-step-ahead

forecasting stage in Section 4.5. At each subsequent step, the new estimated

parameter value found from the progressively larger training sample are used to

give the one-step-ahead forecast.

In Sections 4.4.2 and 4.4.3 below, three different parametric families are con-

sidered as models for the training sample realisations x(j), j = ñ, ñ+ 1, . . . , n− 1,

and are given by; the ARIMA process (introduced in Section 2.2.2.1), Ornstein-

Uhlenbeck process (Section 2.3.2) and the block-average Ornstein-Uhlenbeck pro-

cess (Section 2.3.2.1). If x(j) is assumed to belong to the ARIMA family, then the

Box-Jenkins method is used to determine the initial differencing, the order of the

autoregressive operator, and the order of moving-average operator, as described

in Section 3.1.1. When x(j) is assumed to be an Ornstein-Uhlenbeck process, the

parameter values γ and σ2 as in (2.12) are estimated either by maximising the

sparse log-likelihood (2.28) that arises from the sum of the transition densities of

a Markov chain as in (2.25), or by using the method of moments where the pa-

rameter estimates are given by (2.31). For the block-average Ornstein-Uhlenbeck

family, the γ and σ2 parameter values are estimated from x(j) by maximising the

log-likelihood from a multivariate Gaussian distribution as given in (2.32).
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Note that it is known that the simulator output in this chapter is a collection

of monthly means, and therefore the first two choices for the parametric family of

the time series given by the principal and independent components (with seasonal

effects removed, if required) are misspecifications. That is, the estimated ARIMA

and Ornstein-Uhlenbeck processes are modelled on the assumption of pointwise

observations, which is not the case here. An example of this type of misspecification

has been shown in Example 2.3.10.

Before applying the techniques described in Chapter 2, any trend and seasonal

effects must be removed from the data. The HadCM3 simulator output is monthly,

such that the time-steps of the observations are constant and equal to ∆t = 1.

With this knowledge (and by looking at the correlogram of the components, which

are shown below), the seasonal effects can be removed by subtracting the associated

monthly mean from each observation, as discussed in Section 2.3.4. With the

means of each month given by µj, j = 1, . . . , 12, then the observation at time

t ∈ N is assumed to be some random departure away from the mean value µk(t),

where k : Z→ {1, 2, . . . , 12} is the mapping such that

k(t) =

{
tmod(12) if tmod(12) ∈ {1, . . . , 11},
12 if tmod(12) = 0.

(4.4)

4.4.2 Modelling the principal components

By examining the principal components given in Figure 4.4, it is clear that some

of the principal components exhibit strong seasonal behaviour. This can also be

seen by considering the correlogram, which is a plot of the sample autocorrelation

(2.4) against the lag. Figure 4.8 gives the correlogram for the first six principal

components, showing that seasonality is present in all these principal components

and is especially strong in the first four. Due to this, the seasonal mean is removed

from all the principal components before modelling. Figure 4.9 shows the first three

principal components on the left (taken from Figure 4.4), with the grey line giving

the quadratic spline function using the monthly sample means, as discussed in

Section 2.3.4.2. On the right of Figure 4.9 are the first three principal components

with the monthly means removed, giving a process with no seasonality. Here,
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the principal components are notated m1,m2, . . ., and the principal components

with monthly means removed – called seasonally adjusted principal components

throughout this chapter – are notated m̃1, m̃2, . . ..

In this section we find parameter estimates for the stochastic models using

the training sets from the first l = 6 seasonally adjusted principal components

m̃1, . . . , m̃6, where m̃i = (m̃i 0, m̃i 1, . . . , m̃i n−1) ∈ Rn, i = 1, . . . , 6, and n = 6000

the number of time steps. The training set for the seasonally adjusted principal

component m̃i is given by {m̃(4000)
i , m̃

(4001)
i , . . . , m̃

(5999)
i }, with each training sample

given in vector form by m̃
(j)
i = (m̃i 0, m̃i 1, . . . , m̃i (j−1)) ∈ Rj, j = 4000, . . . , 5999.

We now model the seasonally adjusted principal components as realisations

from ARIMA processes, (pointwise) Ornstein-Uhlenbeck processes and block-average

Ornstein-Uhlenbeck processes in Sections 4.4.2.1, 4.4.2.2 and 4.4.2.3 respectively.

4.4.2.1 Modelling the principal components as observations from an

ARIMA processes

In the first instance, we assume the seasonally adjusted principal components

are realisations from ARIMA processes (introduced in Section 2.2.2.1) with the

estimated model structure chosen using the Box-Jenkins method (as described in

Section 3.1.1). That is, each seasonally adjusted principal component is assumed

to be a realisation from an (independent) ARIMA(p, d, q) process, and the Box-

Jenkins method is used to find estimates for the values of p, d and q. This gives the

estimated order of differencing, d̂, estimated order of the autoregressive operator,

ϕ(B), and the estimated order of the moving-average operator ϑ(B). Following

this, estimates for the parameters of ϕ(B), ϕ1, . . . , ϕp and for the parameters of

ϑ(B), ϑ1, . . . , ϑq, are found.

This procedure will be applied to the first six seasonally adjusted principal com-

ponents, and split into two parts. For simplicity, the order of the ARIMA process

is found for each seasonally adjusted principal component using the full compo-

nent. Then, the parameter estimates are found for every training sample of the

associated seasonally adjusted principal component. That is, for each seasonally

adjusted principal component, m̃i, i = 1, . . . , 6. We proceed as follows:
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(a) Autocorrelation function (correlo-
gram) for the first principal component,
m1, for lags k = 0, 1, . . . , 60.
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(b) Autocorrelation function (correlo-
gram) for the second principal component,
m2, for lags k = 0, 1, . . . , 60.
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(c) Autocorrelation function (correlogram)
for the third principal component, m3, for
lags k = 0, 1, . . . , 60.
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(d) Autocorrelation function (correlo-
gram) for the fourth principal component,
m4, for lags k = 0, 1, . . . , 60.
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(e) Autocorrelation function (correlogram)
for the fifth principal component, m5, for
lags k = 0, 1, . . . , 60.
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(f) Autocorrelation function (correlogram)
for the sixth principal component, m6, for
lags k = 0, 1, . . . , 60.

Figure 4.8: Autocorrelation functions (correlogram) for the first six principal com-
ponent, m1, . . . ,m6, obtained from the mean sea-level air pressure HadCM3 out-
put, for lags k = 0, 1, . . . , 60.
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(a) First 120 points of the first principal
component, m1 ∈ R6000, with the grey line
giving the associated quadratic spline cal-
culated from the monthly means.
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(b) First 120 points of the first principal
component with monthly means removed,
notated m̃1 ∈ R6000.
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(c) First 120 points of the second princi-
pal component, m2 ∈ R6000, with the grey
line giving the associated quadratic spline
calculated from the monthly means.
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(d) First 120 points of the second principal
component with monthly means removed,
notated m̃2 ∈ R6000.
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(e) First 120 points of the third principal
component, m3 ∈ R6000, with the grey line
giving the associated quadratic spline cal-
culated from the monthly means.
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(f) First 120 points of the third principal
component with monthly means removed,
notated m̃3 ∈ R6000.

Figure 4.9: First six principal components, m1, . . . ,m6 ∈ R6000, found by project-
ing the weighted (and column-centred) mean sea-level HadCM3 simulator output,
X̃(g), along the first six principal directions, w1, . . . , w6 ∈ R7008, as shown in Fig-
ure 4.3. Here, only the time steps t = 0, . . . , 119 of the principal components are
shown (out of a total of n = 6000 time steps).
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1. We estimate the orders of the ARIMA(p, d, q) process, p̂i, d̂i, and q̂i, by

applying the Box-Jenkins method to the whole seasonally adjusted principal

component m̃i;

2. Using each of the training samples m̃
(j)
i = (m̃i 0, m̃i 1, . . . , m̃i (j−1)) ∈ Rj,

j = 4000, 4001, . . . , 5999, we take the d̂i-differences, and then we obtain the

respective parameter estimates ϕ
(j)
1 , . . . , ϕ

(j)
p̂i

and ϑ
(j)
1 , . . . , ϑ

(j)
q̂i

.

This allows one-step-ahead forecasting to be applied in the later forecasting section

(Section 4.5) to obtain point forecasts and prediction intervals to compare against

the test samples m̃i 4000, m̃i 4001, . . . , m̃i 6000, i = 1, . . . , 6. Below, detailed steps

of the Box-Jenkins method are shown for the first seasonally adjusted principal

component, mirroring the steps used in Example 3.1.1. We also briefly discuss

modelling the remaining 5 seasonally adjusted principal components.

Box-Jenkins method on the first seasonally adjusted principal compo-

nent. Here, the sample autocorrelation and partial autocorrelation functions of

the seasonally adjusted principal component, m̃1, are used to estimate the orders

of the ARIMA process, p, d and q. Figure 4.10 shows the sample autocorrelation

and partial autocorrelation functions for m̃1, up to lag 20. From the rapid decay

of the sample autocorrelation function we estimate that the chain is already in

stationarity, such that d = 0. That is, we assume that the seasonally adjusted

principal component m̃1 is a realisation from an ARMA(p, q) process. As only

the autocorrelation at zero lag is significantly away from zero, the sensible pro-

cess to choose to model the first seasonally adjusted principal component is the

white noise process (as given in Definition 2.2.1). The realisation m̃1 is assumed

to be from the process (Xt)t∈Z with Xt = εt and εt ∼ N(0, σ2
ε), where only the

value σ2
ε is needed to be estimated. The autocorrelation of the white-noise pro-

cess satisfies γ(k) = σ2
ε1k=0, and thus the estimate of the variance can be given

by the zero lag sample autocovariance σ̂2
ε = c(0) (with the function c given in

(2.3)). It must be remarked here that it is known that this is a misspecification of

the HadCM3 simulator output due to assuming pointwise observations instead of

monthly averages.
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Very similar sample autocorrelation and partial autocorrelation results are

found for all the first six seasonally adjusted principal components. Therefore,

estimates for the variance of the white-noise process are found for the training

sets {m̃(ñ)
i , m̃

(ñ+1)
i , . . . , m̃

(n−1)
i }, i = 1, . . . , 6 and with ñ = 4000. For each season-

ally adjusted principal component and training sample m
(j)
i , an estimate σ̂2

ε,i(j)

is obtained corresponding to the zero lag sample autocovariance of m
(j)
i . Fig-

ure 4.11 shows the estimates of the standard deviation obtained from training

samples m̃
(4000)
i , m̃

(4001)
i , . . . , m̃

(5999)
i of the first four seasonally adjusted principal

components, given by σε,i(4000), σε,i(4001), . . . , σε,i(5999), i = 1, 2, 3, 4, and shown

by the solid, dotted, dot-dashed and dashed lines respectively.
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(a) Sample autocorrelation function (correlogram) for the first seasonally adjusted prin-
cipal component, m̃1.
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(b) Sample partial autocorrelation function for the first seasonally adjusted principal
component, m̃1.

Figure 4.10: Sample autocorrelation (correlogram) and partial autocorrelation
functions for the first seasonally adjusted principal component, m̃1.
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Figure 4.11: Estimation of the standard deviation of the white-noise process, σ̂ε,i(j)
for seasonally adjusted principal components i = 1, 2, 3, 4 and for training sam-
ples m̃

(j)
i of size j = 4000, 4001, . . . , 5999. The standard deviation estimations

using training samples from the first, second, third and fourth seasonally adjusted
principal components are given by the solid, dotted, dot-dashed and dotted lines
respectively.

4.4.2.2 Modelling the principal components as sparse observations from

an Ornstein-Uhlenbeck processes

In this section, we assume that the seasonally adjusted principal components,

m̃1, . . . , m̃6, are realisations from some independent Ornstein-Uhlenbeck processes.

Here, we obtain estimates for the Ornstein-Uhlenbeck drift and diffusion param-

eters, γ and σ2 respectively, by two different methods, both of which have been

discussed in Section 2.3.3.1. First, we use the sparse maximum likelihood esti-

mation method, where estimates are found to maximise the log-likelihood (2.28).

Then, we examine the method of moments, where the sample lag-1 correlation and

variance are used in (2.31) to obtain parameter estimations.

Using sparse maximum likelihood estimation

Here we consider the maximum likelihood technique for sparse observations. That

is, we assume that each principal component is some Markov chain with respect to

time, and thus the log-likelihood function becomes the sum of transition densities
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of adjacent time steps, as in (2.25).

For each seasonally adjusted principal component, maximum likelihood esti-

mates are obtained from the training samples of size ñ, ñ + 1, . . . , n − 1 and are

given by γ̂sML, i(j) and σ̂2
sML, i(j), i = 1, . . . , l and j = ñ, . . . , n− 1, ñ = 4000. The

maximum likelihood estimates γ̂sML, 1(j) and σ̂sML, 1(j) for the first seasonally ad-

justed principal component are shown in Figure 4.12, found using the training set

{m̃(4000)
1 , m̃

(4001)
1 , . . . , m̃

(5999)
1 }, where m̃

(j)
1 = (m̃11, m̃12, . . . , m̃1j). It is clear from

Figure 4.12 that the sparse maximum likelihood estimation technique is producing

some spurious results, jumping between different combinations of
(
γ̂sML, σ(γ̂sML)

)
with the addition of a singular observation to the training sample. This suggests

that the log-likelihood may have multiple peaks, or several plateaus where the

log-likelihood has near zero gradient. Indeed, Figure 4.13, which gives the log-

likelihood for
(
γ, σ2(γ)

)
, with γ = 1, 2, . . . , 1000 and σ2(·) as in (2.29), shows such

a plateau. This is similar to the log-likelihood plot in Example 2.3.7, and shows

the instability of the sparse maximum likelihood method when the observational

time steps are too large. Because of this instability, the sparse maximum likeli-

hood estimation technique is disregarded here, and not considered in the rest of

this chapter.

Using method of moments parameter estimation

We now consider the method of moments parameter estimation – as introduced

in Section 2.3.3.1 – where for an Ornstein-Uhlenbeck realisation, the sample lag-1

correlation and variance is found and used in (2.31) to obtain estimates for the

drift and diffusion.

Recall that this method is only valid for realisations that have positive sample

lag-1 correlation. Figure 4.14 shows the sample lag-1 correlation for the training

samples of the first six seasonally adjusted principal components. For each season-

ally adjusted principal component m̃i, i = 1, . . . , 6, the sample lag-1 correlation is

calculated for every training sample m̃
(j)
i , j = 4000, . . . , 5999. From this, it is clear

that only the fourth seasonally adjusted principal component has positive lag-1

sample correlation for all training samples, shown by the solid thick line in Fig-

ure 4.14. For this seasonally adjusted principal component, Ornstein-Uhlenbeck
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(a) Sparse maximum likelihood estimator
γ̂sML, 1(j).
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Figure 4.12: Sparse maximum likelihood estimators γ̂sML, 1(j) and σ̂sML, 1(j) for
the first seasonally adjusted principal component, for training samples of size j =
4000, 4001, . . . , 5999. That is, each estimator pair (γ̂sML, 1(j), σ̂sML, 1(j)) is found

using the corresponding training sample m̃
(j)
1 = (m̃11, m̃12, . . . , m̃1j). It is clear

from this figure that the sparse maximum likelihood estimator technique is sub-
optimal for modelling the principal components arising from the HadCM3 mean
sea-level air pressure output.

parameter estimates can be found using the method of moments for all training

samples. The thick dotted, dot-dashed and dashed lines show the sample lag-1

correlations corresponding to training samples of the second, third and sixth sea-

sonally adjusted principal components respectively. The sample lag-1 correlations

obtained from the training samples from these three seasonally adjusted principal

components have varying signs, and therefore for some of these training samples,

the method of moments can be used to obtain Ornstein-Uhlenbeck parameter esti-

mates. For the first and fifth seasonally adjusted principal components, all training

samples have negative sample lag-1 correlation – as shown by the thin solid and

dashed-long dashed lines respectively in Figure 4.14 – and therefore method of

moments cannot be used here. The grey lines in Figure 4.14 give the 95% confi-

dence interval for the sample lag-1 correlation of white-noise realisations. As all

the training samples here have sample lag-1 correlation within this interval, train-

ing samples for which the sample lag-1 correlation is negative could be modelled

as realisations from a white-noise instead of an Ornstein-Uhlenbeck process. We

discuss this in more detail in Section 4.4.2.1.
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Figure 4.13: Log-likelihood (2.28) for varying
(
γ, σ2(γ)

)
combinations, for the first

seasonally adjusted principal component, m̃1. As can be seen, the gradient of the
log-likelihood for this set of observations is near zero for all γ values greater than
around 5. This is similar behaviour to that seen in Example 2.3.7.
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Figure 4.14: Sample lag-1 correlations for training samples m̃
(4000)
i , . . . , m̃5999

i , i =
1, . . . , 6. The thick dotted, dot-dashed, solid and dashed line gives the sample lag-
1 correlation corresponding to training samples of the second, third, fourth and
sixth seasonally adjusted principal components respectively, for which for some
training samples these are positive. The sample lag-1 correlations for the training
samples of the first and fifth seasonally adjusted principal components are given
by the thin solid and long dashed-dashed lines respectively, and are negative for
all training samples. Recall that the method of moments Ornstein-Uhlenbeck
parameter estimation can only be applied to training samples with positive sample
lag-1 correlation. The grey lines give an approximate 95% confidence interval for
the sample lag-1 correlation of a white noise realisation.
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From the analysis of the sample lag-1 correlation, shown for the first six sea-

sonally adjusted principal components in Figure 4.14, the method of moments can

be applied to some of the training samples from the second, third, fourth and sixth

seasonally adjusted principal components. For seasonally adjusted principal com-

ponents m̃i, i = 2, 3, 4, 6, and training samples m̃
(j)
i , j = 4000, . . . , 5999 such that

the sample lag-1 correlation of m̃
(j)
i is positive, the method of moments is used

to obtain Ornstein-Uhlenbeck parameter estimates γ̂MM, i(j) and σ̂2
MM, i(j). Fig-

ure 4.15a gives the drift estimates γ̂MM, i(j) using training samples of the second,

third, fourth and sixth seasonally adjusted principal components by the dotted,

dot-dashed, solid and dashed lines respectively. Figure 4.15b gives the correspond-

ing square-root of the diffusion estimate, σ̂MM, i(j). The gaps in some of the lines in

Figure 4.15 are at training samples of size j for which the sample lag-1 correlation

is non-positive and thus the drift and diffusion estimates can not be found at these

points using method of moments.

4.4.2.3 Modelling the principal components as block-average Ornstein-

Uhlenbeck processes

In this section we model the observations from each seasonally adjusted principal

component as realisations from some block-average Ornstein-Uhlenbeck processes,

with parameter estimates found using the associated maximum likelihood estima-

tor (introduced in Section 2.3.3.3).

In this case each principal component (with seasonally effects still present) can

be modelled as a realisation from some stochastic process (Y[ti−1,ti))i∈Z given by

Y[ti−1,ti) = XbaOU
[ti−1,ti)

+ µk(ti), (4.5)

where XbaOU
[ti−1,ti)

is the block-average Ornstein-Uhlenbeck process as described in

Section 2.3.2.1, µj ∈ R, j = 1, . . . , 12, are some seasonal means, and k(·) is

the seasonal index mapping given in (4.4). In other words, we assume that the

principal components are realisations from some (piecewise) seasonal Ornstein-

Uhlenbeck process that has been averaged over each season to give (4.5). That is,

the process Yt = XOU
t +m(t) is averaged over each season, where here m(t) is some
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(a) Ornstein-Uhlenbeck parameter estimates γ̂MM, i(j) for i = 2, 3, 4, 6 and j ∈
{4000, 4001, . . . , 5999} for which the training sample m̃

(j)
i has positive sample lag-1 cor-
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(b) Ornstein-Uhlenbeck parameter estimates σ̂MM, i(j) for i = 2, 3, 4, 6 and j ∈
{4000, 4001, . . . , 5999} for which the training sample m̃

(j)
i has positive sample lag-1 cor-

relation.

Figure 4.15: Ornstein-Uhlenbeck parameter estimates γ̂MM, i(j) and σ̂MM, i(j) for

i = 2, 3, 4, 6 and j ∈ {4000, 4001, . . . , 5999} for which the training sample m̃
(j)
i

has positive sample lag-1 correlation. The dotted, dot-dashed, solid and dashed
line gives the Ornstein-Uhlenbeck parameter estimates corresponding to training
samples of the second, third, fourth and sixth seasonally adjusted principal com-
ponents respectively.

seasonal mean function with monthly mean values µ1, . . . , µ12. We assume that

the mean function is a quadratic spline function as described in Section 2.3.4.2

and shown in Figure 4.9 for the first three principal components.

As before, the seasonally adjusted principal components are given by the set

{m̃1, m̃2, . . . , m̃l} for some l ≤ r, where r ∈ N is the rank of X̃(g). Here, as in the
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previous sections we choose l = 6.

As in the sparse Ornstein-Uhlenbeck case (given in Section 4.4.2.2), the pa-

rameter estimates are found for the training samples of each seasonally adjusted

principal component. That is, for each seasonally adjusted principal component,

m̃i, the estimates γ̂sML, i(j) and σ̂2
sML, i(j) are obtained from the associated training

sample m̃
(j)
i = (m̃i 0, m̃i 1, . . . , m̃i (j−1)), i = 1, . . . , 6, with j = 4000, 4001, . . . , 5999.

The parameter estimates γ̂baML, i(j) and σ̂baML, i(j) for seasonally adjusted princi-

pal components i = 1, 2, 3 and training sample size j = 4000, 4001, . . . , 5999 are

shown in Figure 4.16 by the black lines, with the thick grey lines giving the 50

step moving average. The gap in the parameter estimation for the second season-

ally adjusted principal component is where the maximum likelihood optimisation

failed to converge for a subset of the training samples. In this case, the parameter

estimates for the largest training sample before this point is used instead.

4.4.3 Modelling the independent components

This section mirrors the layout of Section 4.4.2. First, we check for (and remove)

seasonality of the independent components. Then, we assume that the season-

ally adjusted independent components are realisations from a selection of stochas-

tic processes and implement parameter estimation techniques on the associated

training samples. As in Section 4.4.2, here we consider the ARIMA, Ornstein-

Uhlenbeck, and block-average Ornstein-Uhlenbeck processes.

Figure 4.17 shows the correlograms (calculated from (2.4)) for the first six

independent components. From this, as with the principal components discussed

in Sections 4.4.2, we judge that seasonality is present and thus this needs to be

removed before the modelling stage. As before, this is achieved by calculating and

removing the seasonal means discussed in Section 4.2.

Figure 4.18 shows the first three independent components (plotted as a time-

series) in the left-hand column, with the periodic quadratic spline calculated as in

Section 2.3.4.2 using the seasonal means given by the grey line. The right-hand

columns show the first three seasonally adjusted independent components. In this

section, we apply stochastic modelling to these seasonally adjusted independent

components. We note here that the seasonal effects are smaller for the independent
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(f) Parameter estimates σ̂baML, 3(j) us-
ing training samples of size j =
4000, 4001, . . . , 5999.

Figure 4.16: Parameter estimates γ̂baML, i(j) and σ̂baML, i(j) using block-average
Ornstein-Uhlenbeck maximum likelihood estimation for the first three season-
ally adjusted principal components, for increasing training sample size j =
4000, 4001, . . . , 5999. That is, each estimator pair

(
γ̂baML, i(j), σ̂baML, i(j)

)
is found

using training sample m̃
(j)
i = (m̃i1, m̃i2, . . . , m̃ij), i = 1, 2, 3. The grey line shows

the 50 step moving average.
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(a) Autocorrelation function (correlo-
gram) for the first independent compo-
nent, s1, for lags k = 0, 1, . . . , 60.

-0.5

0.0

0.5

1.0

0 10 20 30 40 50 60

lag, k

A
C

F
,
r(
k
)

(b) Autocorrelation function (correlo-
gram) for the second independent compo-
nent, s2, for lags k = 0, 1, . . . , 60.
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(c) Autocorrelation function (correlogram)
for the third independent component, s3,
for lags k = 0, 1, . . . , 60.
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(d) Autocorrelation function (correlo-
gram) for the fourth independent compo-
nent, s4, for lags k = 0, 1, . . . , 60.
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(e) Autocorrelation function (correlogram)
for the fifth independent component, s5,
for lags k = 0, 1, . . . , 60.
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(f) Autocorrelation function (correlogram)
for the sixth independent component, s6,
for lags k = 0, 1, . . . , 60.

Figure 4.17: Autocorrelation functions (correlogram) for the first six independent
component, s1, . . . , s6, for lags k = 0, 1, . . . , 60.

244



4.4 Introduction

components than they were for the principal components. As principal component

analysis aims to find projections of the data with large variances, this method often

results in the first few components capturing some simple seasonal behaviour, and

these will inherently have a large variance and thus a pronounced seasonality.

For example, if we applied principal component analysis to some data from a

simulator that gave an output of hourly temperatures, then we would expect the

first principal component to capture the temperature variation arising from day

and night. It is hoped that applying independent component analysis to some

climate simulator results in components that explain some fundamental physical

phenomena (Richman, 1986), and therefore it is probable that the components

will exhibit seasonality. However, the seasonality present will be less pronounced

than in the principal components as a large variance in the components is not the

focus.

4.4.3.1 Modelling the independent components as observations from

ARIMA processes

The seasonally adjusted independent components are assumed to be from some

ARIMA process, and the model structure is found using the Box-Jenkins method.

Here we follow the procedure as described in Section 4.4.2.1, with season-

ally adjusted independent components replacing the seasonally adjusted princi-

pal components. That is, the Box-Jenkins method is applied to the first six

seasonally adjusted independent components, s̃1, . . . , s̃6 ∈ Rp, p = 7008, to ob-

tain the estimates p̂i, d̂i and q̂i, i = 1, . . . , 6. Then, the training samples s̃
(j)
i =

(s̃i 0, s̃i 1, . . . , s̃i (j−1)) ∈ Rj, j = 4000, 4001, . . . , 5999, are used to find the parameter

estimates ϕ̂i, 1(j), . . . , ϕ̂i, p(j) and ϑ̂i, 1(j), . . . , ϑ̂i, q(j).

Here, detailed steps of the Box-Jenkins method are shown for the fifth season-

ally adjusted independent component, mirroring the steps used in Example 3.1.1.

We choose the fifth seasonally adjusted independent component as for the other

five seasonally adjusted independent components, the sample autocorrelation and

partial autocorrelation imply that these can only be modelled using white-noise

processes (in the same was as the seasonally adjusted principal components were

modelled). The estimated standard deviations for the training samples of the first,
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(b) First seasonally adjusted independent
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(d) Second seasonally adjusted indepen-
dent component, s̃2 for times t =
0, 1, . . . , 119.
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(e) Third independent component, s3 for
times t = 0, 1, . . . , 119.
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(f) Third seasonally adjusted independent
component, s̃3 for times t = 0, 1, . . . , 119.

Figure 4.18: The left-hand column gives the first three independent components,
s1, s2, s3 for times t = 0, 1, . . . , 119, by the black lines, found by projecting the
(column-centred) mean sea-level air pressure HadCM3 simulator output, X̃, along
the first three independent directions, w1, w2, w3 ∈ R7008, as shown in Figure 4.6.
The grey lines give the quadratic spline calculated using the associated seasonal
means. The right-hand column gives the first three seasonally adjusted indepen-
dent components, s̃1, s̃2, s̃3 for times t = 0, 1, . . . , 119.
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Figure 4.19: Estimates of the standard deviations of the white-noise process, σ̂ε,i(j)
for seasonally adjusted independent components i = 1, 2, 3, 4, 6 and for training
samples s̃

(j)
i of size j = 4000, 4001, . . . , 5999. The standard deviation estimates

using training samples from the first, second, third, fourth and sixth seasonally
adjusted independent components are given by the solid, dashed, dotted, dot-
dashed and long-dashed lines, respectively.

second, third, fourth and sixth seasonally adjusted independent components, are

shown in Figure 4.19 by the solid, dashed, dotted, dot-dashed and long-dashed

lines respectively.

Box-Jenkins method on the fifth seasonally adjusted independent com-

ponent. Following the Box-Jenkins method, first we find an estimate for the

order of difference d, followed by estimates for the autoregressive order, p, and the

moving average order q.

As the autocorrelation function (shown in Figure 4.20a) has a quick decay, it

is assumed that the fifth seasonally adjusted independent component is already in

stationarity such that d̂1 = 0. Now, we judge that the autocorrelation function

decays exponentially from the first lag, and the partial autocorrelation function is

dominated by exponential decay from the first lag. From this and the discussion

in Section 3.1.1, we obtain the estimates of the order of the autoregressive and

moving-average parts of the process as p̂1 = 1 and q̂1 = 1 respectively. That is,
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the realisation is assumed to be from an ARMA(1, 1) process (Xt)t∈Z, given by

Xt = ϕ1Xt−1 + εt + ϑ1εt−1,

where εi ∼ N(0, σ2
ε) independent for all t ∈ Z.

Now, we obtain estimates for the parameters ϕ1 and ϑ1, and for the variance of

the white-noise term εt for each sample from the training set {s̃(4000)
5 , s̃

(4001)
5 , . . . , s̃

(5999)
5 }.

This gives the autoregressive parameter estimates ϕ̂5, 1(4000), . . . , ϕ̂5, 1(5999), moving-

average estimates ϑ̂5, 1(4000), . . . , ϑ̂5, 1(5999), and the estimates of the variance of

the white-noise σ2
ε, 5(4000), . . . , σ2

ε, 5(5999). These are shown in Figure 4.21. From

studying these estimates it appears that the model might change after around time

t = 5500, as the parameter estimates change quite rapidly after this point. This

has not been examined here, but should be kept in mind for future research.

4.4.3.2 Modelling the independent components as sparse observations

from Ornstein-Uhlenbeck processes

In this section we model the independent components – obtained by applying

fastICA to the mean sea-level air pressure output from the HadCM3 simulator –

as realisations from Ornstein-Uhlenbeck processes (after the seasonality has been

removed). Note that in Section 4.4.2.2 it was determined that the sparse maximum

likelihood method (which maximises the Markov chain log-likelihood (2.28)) is not

suitable for estimating Ornstein-Uhlenbeck parameters here, and therefore in this

section only the method of moments is considered.

First, the sample lag-1 correlation is calculated for the training sets of the

first six seasonally adjusted independent components, {s̃(4000)
i , s̃

(4001)
i , . . . , s̃

(5999)
i },

i = 1, . . . , 6. These are shown in Figure 4.22. The thick solid, dashed, dotted

and dot-dashed lines correspond to the sample lag-1 correlations for training sam-

ples of the first, third, fifth and sixth seasonally adjusted independent components

respectively. These four seasonally adjusted independent components have pos-

itive sample lag-1 correlation for all training samples, and therefore the method

of moments can be applied here. The thin solid and long dashed-dashed lines

correspond to the sample lag-1 correlations for training samples of the second
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(a) Sample autocorrelation function (correlogram) up to lag 20 for the fifth seasonally
adjusted independent component, s̃5.
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(b) Sample partial autocorrelation function up to lag 20 for the fifth seasonally adjusted
independent component, s̃5.

Figure 4.20: Sample autocorrelation and partial autocorrelation functions up to
lag 20 for the fifth seasonally adjusted independent component, s̃5.

and fourth seasonally adjusted independent components respectively. The second

seasonally adjusted independent component has no training samples which have

positive sample lag-1 correlation, and the fourth seasonally adjusted independent

component has only a subset of the training set which has positive sample lag-1

correlations.

For training samples of the first, third, fourth, fifth and sixth seasonally ad-

justed independent components with positive sample lag-1 correlation, the pa-

rameter estimates obtained using method of moments are given by γ̂MM, i(j) and

σ̂MM, i(j), i = 1, 3, 4, 5, 6, j = 4000, . . . , 5999, and are shown in Figure 4.23 by the

solid, dashed, long dashed-dashed, dotted and dot-dashed lines respectively. These
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(a) Parameter estimate ϕ̂5(4000), . . . , ϕ̂5(5999) using the training set obtained from the
fifth seasonally adjusted independent component, s̃5.
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(b) Parameter estimate ϑ̂5(4000), . . . , ϑ̂5(5999) using the training set obtained from the
fifth seasonally adjusted independent component, s̃5.
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(c) Innovation variance estimate σ̂2
ε,5(4000), . . . , σ̂2

ε,5(5999) using the training set obtained
from the fifth seasonally adjusted independent component, s̃5.

Figure 4.21: Parameter estimates assuming that the fifth seasonally adjusted in-
dependent component, s̃5 can be modelled by an ARMA(1, 1) process. Here, the

parameter estimates are found using the training samples s̃
(4000)
5 , . . . , s̃

(5999)
t .
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Figure 4.22: Sample lag-1 correlations for training samples of the first six season-
ally adjusted independent components, s̃

(4000)
i , . . . , s̃5999

i , i = 1, . . . , 6. The thick
solid, dashed, dotted and dot-dashed lines correspond to the sample lag-1 corre-
lation for training samples of the first, third, fifth and sixth seasonally adjusted
independent components respectively. These four seasonally adjusted independent
components have positive sample lag-1 correlation for all training samples. The
thin solid and long dashed-dashed lines correspond to the sample lag-1 correlation
for training samples of the second and fourth seasonally adjusted independent
components respectively. The second seasonally adjusted independent component
has no training samples with positive sample lag-1 correlation, and the fourth sea-
sonally adjusted independent component has positive sample lag-1 correlation for
only a subset of the training set.

parameter estimates all have asymptotic behaviour. This suggests that there are

no sudden changes in the behaviour of these seasonally adjusted independent com-

ponents that results in more than one stochastic process being required to model

it satisfactorily.

4.4.3.3 Modelling the independent components as observations from

block-average Ornstein-Uhlenbeck processes

In this section we assume the seasonally adjusted independent components are

realisations from some block-average Ornstein-Uhlenbeck processes, and use max-

imum likelihood estimation to find the drift and diffusion estimates.

Following the procedure used in Section 4.4.2.3, for each seasonally adjusted
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(a) Estimates of γ̂MM, i(j) for seasonally adjusted independent components i = 1, 3, 4, 5, 6
and training samples of size j = 4000, . . . , 5999.
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(b) Estimates of σ̂MM, i(j) for seasonally adjusted independent components i = 1, 3, 4, 5, 6
and training samples of size j = 4000, . . . , 5999.

Figure 4.23: Ornstein-Uhlenbeck parameter estimates for the first, third, fourth,
fifth and sixth seasonally adjusted independent components, using the method of
moments on the training samples s̃

(j)
i , i = 1, 3, 4, 5, 6, j = 4000, . . . , 5999. The

estimates are only shown for the training sample of size j ∈ {4000, . . . , 5999} such

that the sample lag-1 correlation of s̃
(j)
i is positive. This is true for all training

samples of the first, third, fifth and sixth seasonally adjusted independent compo-
nent, where the parameter estimates are given by the thick solid, dashed, dotted
and dot-dashed lines respectively. The fourth seasonally adjusted independent
component has some training samples with a positive sample lag-1 correlation,
with associated parameter estimates given by the thin long dashed-dashed lines.

independent component, s̃i, i = 1, . . . , 6, maximum likelihood estimation is per-

formed for each training sample s̃
(j)
i = (s̃i 0, s̃i 1, . . . , s̃i (j−1)), j = 4000, . . . , 5999,

to obtain block-average Ornstein-Uhlenbeck parameter estimates γ̂baML, i(j) and
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σ̂baML, i(j). The parameter estimates obtained in this way for the first three sea-

sonally adjusted independent component are shown in Figure 4.24. In this case

the estimates found using the training samples of the first and third seasonally

adjusted independent components seem to not behave in an asymptotic manner,

and there are quite sudden changes in the estimates, suggesting that either the

Ornstein-Uhlenbeck process is not satisfactory for modelling these seasonally ad-

justed independent components, or that multiple models are required here. As

with the ARMA estimates in Section 4.4.3.1, this requires further research which

is not performed here.

4.5 Forecasting Principal and Independent Com-

ponents

Now, we use the stochastic models described in Section 4.4 to forecast the principal

and independent components, with forecasting theory as introduced in Chapter 3.

In Section 4.5.1 we introduce the forecasting approaches used, and one method

to assess the forecasting quality. Mirroring the previous sections, the remain-

der of this section is split into two main subsections, relating to forecasts of the

principal components and forecasts of the independent components obtained from

applying principal component analysis and independent component analysis to the

mean sea-level air pressure HadCM3 simulator output. In Section 4.5.2 we dis-

cuss forecasts for the principal components, and the forecasts for the independent

components in Section 4.5.3.

4.5.1 Introduction to component forecasting

Let x = (x0, x1, . . . , xn−1) ∈ Rn, assumed to be some realisation from a stochastic

process, and {x(ñ), x(ñ+1), . . . , x(n−1)} the training set, where each training sample

is given by x(j) = (x0, . . . , xj−1) ∈ Rj, j = ñ, . . . , n − 1, and ñ < n. Recall

from Chapter 3 that x̂t(h) refers to a point forecast of the process at time t + h,

using information x0, . . . , xt such that the forecast horizon is h. In this section we

want to obtain one-step-ahead forecasts for the components, such that we use the
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(b) Parameter estimates σ̂baML, 1(j) us-
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(c) Parameter estimates γ̂baML, 2(j) us-
ing training samples of size j =
4000, 4001, . . . , 5999.
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(d) Parameter estimates σ̂baML, 2(j) us-
ing training samples of size j =
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(e) Parameter estimates γ̂baML, 3(j) us-
ing training samples of size j =
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(f) Parameter estimates σ̂baML, 3(j) us-
ing training samples of size j =
4000, 4001, . . . , 5999.

Figure 4.24: Parameter estimates γ̂baML, i(j) and σ̂baML, i(j) using block-average
Ornstein-Uhlenbeck maximum likelihood estimation for the first three season-
ally adjusted independent components, for increasing training sample size j =
4000, 4001, . . . , 5999. That is, each estimator pair

(
γ̂baML, i(j), σ̂baML, i(j)

)
is found

using training sample s̃
(j)
i = (s̃i1, s̃i2, . . . , s̃ij), i = 1, 2, 3.
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information from the training sample x(t) = (x0, . . . , xt−1) to predict the value of

the component at time t, for all times t = ñ, ñ + 1, . . . , n− 1. Therefore we need

to calculate the point forecasts x̂ñ−1(1), x̂ñ(1), . . . , x̂n−2(1).

Within both Section 4.5.2 and 4.5.3, two forecasting approaches are used.

The first forecasting approach that we consider is motivated by the fact that the

Ornstein-Uhlenbeck method of moments parameter estimation is only valid when

the sample lag-1 correlation is positive. When the sample lag-1 correlation is posi-

tive, then the respective forecast can be obtained by considering the distribution of

the Ornstein-Uhlenbeck with drift and diffusion estimates, as described in Chap-

ter 3. However, when the sample lag-1 correlation is non-positive, the drift and

diffusion parameters can not be estimated using method of moments. In this case

(subject to the sample lag-1 correlation being within some confidence interval) we

can model the observations as being a realisation from a white-noise process. We

refer to this method as the mixed forecasting method, and it is described in detail

in Panel 4.12
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Panel 4.12: Mixed forecasting approach

Let x = (x0, x1, . . . , xn−1) ∈ Rn be some observation (with no seasonality)
with the associated training set {x(ñ), x(ñ+1), . . . , x(n−1)}, where each training
sample is given by x(j) = (x0, . . . , xj−1) ∈ Rj, j = ñ, . . . , n − 1. Here we
describe the mixed forecasting method for obtaining one-step-ahead point
forecasts x̂t−1(1), t = ñ, ñ+ 1, . . . , n− 1, and prediction intervals.

For t = ñ, . . . , n− 1, we apply the following procedure:

1. Obtain the training sample x(t) = (x0, . . . , xt−1) ∈ Rt;

2. Calculate the sample lag-1 correlation of x(t), given by r(1 : x(t));

3. If r(1 : x̃(t)) is positive, then the Ornstein-Uhlenbeck parameter esti-
mates γ̂MM, i(j) and σ̂MM, i(j) are obtained via method of moments. Us-
ing these parameter estimates, we calculate the one-step-ahead point
forecast xt−1(1) as in (3.5) and prediction interval as in (3.12).

4. If r(1 : m̃
(t)
i ) is non-positive, then use the white-noise standard deviation

estimate σε, i(j) to obtain the one-step-ahead point forecast xt−1(1) = 0
and prediction interval as in (3.10);

The second forecasting approach is called the block-average Ornstein-Uhlenbeck

forecasting approach and assumes that every training sample of the observation x =

(x0, x1, . . . , xn−1) can be modelled as a realisation from a block-average Ornstein-

Uhlenbeck process. In this case, for each training sample x(j), we calculate the

associated parameter estimates γ̂baML(j) and σ̂2
baML(j). Using these we obtain the

point forecast x̂j−1(1) as given by (3.8) and the prediction interval using (3.13).

To help assess the validity of the forecasts, we calculate the rolling average of

the root mean-squared error between the (one-step-ahead) point forecasts and the

true values of the observation. That is, for observation x = (x0, x1, . . . , xn−1) with

training set {x(ñ), x(ñ+1), . . . , x(n−1)}, the rolling average of the root mean-squared

error is given by √√√√ 1

j − ñ− 1

j∑
k=ñ

(
xk − x̂k−1(1)

)2
, (4.6)

for j = ñ, ñ+ 1, . . . , n− 1.
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4.5.2 Forecasting principal components

Here, we obtain forecasts for the principal components relating to the mean sea-

level air pressure HadCM3 simulator output, as described in Section 4.2.2. As

discussed above, this section is split into forecasts found using the mixed forecast-

ing approach (in Section 4.5.2.1), and using the block-average Ornstein-Uhlenbeck

forecasting approach (in Section 4.5.2.2).

4.5.2.1 Mixed forecasting approach

We showed in Figure 4.15 that, of the first six seasonally adjusted principal com-

ponents, only a subset of the training sets of the second, third, fourth and sixth

components have positive sample lag-1 correlation. Only the training samples that

have positive sample lag-1 correlation can be used to obtain Ornstein-Uhlenbeck

drift and diffusion parameter estimates using method of moments. On the other

hand, when we calculated the sample autocorrelation and partial autocorrela-

tion of the first six seasonally adjusted principal components (in Section 4.4.2.1),

we judged that these could all be modelled by white-noise processes. Amalga-

mating these two processes and parameter estimates, here we apply the mixed

forecasting method as described in Panel 4.12 on the seasonally adjusted princi-

pal components m̃1, . . . , m̃6. Each training set comprises of the training samples

m̃
(4000)
i , m̃

(4001)
i , . . . , m̃

(5999)
i , i = 1, 2, . . . , 6. After we have calculated the point fore-

casts and prediction intervals for the seasonally adjusted principal components, we

can add back the seasonal means to obtain forecasts for the principal components.

Figure 4.25 shows the point forecasts and prediction intervals for the first three

principal components using the mixed forecasting approach for training samples

of size 4000, . . . , 4120. In this case, for the first principal component, 1.5% of

the test sample, m1, 4000, m1, 4001, . . . , m1, 5999, lie outside of the approximate 95%

prediction intervals. For the second and third principal components, the respec-

tive proportions are 5.9% and 3.7%. Here we note that 1.5% seems like a low

proportion to be outside the 95% prediction interval. This is much lower than

all the toy examples given in Section 3.4. Also, the 95% prediction interval is

an approximation using the approximate parameter values, and therefore by the

comments made in Section 3.3.2 we would expect it to be narrower than a “true”

257



4. HADCM3: MEAN SEA-LEVEL AIR PRESSURE OUTPUT

95% prediction interval, such that more than 5% of future observations lie outside

of the interval. We discuss this more in the conclusion of this chapter.

We now assess the validity of the predictions using the rolling average of the

root mean-squared error as in (4.6). The solid, dashed and dotted lines in Fig-

ure 4.26 show the rolling averages of the root mean-squared error for principal

components one, two and three respectively. In this case the point forecast of the

first principal component gives the lowest root mean-squared rolling average. The

most likely cause of this is due to strong seasonality in this principal component

with low (relative) stochasticity. Therefore, the seasonal means account for a high

proportion of the forecasting accuracy. The variability accounted for by the sea-

sonality of the second and third principal components is less than the first (which

can be seen visually by the plot of the first three seasonally adjusted principal

components in Figure 4.9), which might be one cause for the larger rolling average

of the root mean-squared error.

4.5.2.2 Block-average Ornstein-Uhlenbeck forecasting approach

In this case, we assume that the training samples of the first six seasonally adjusted

principal components, m̃
(j)
i , i = 1, . . . , 6, j = 4000, . . . , 5999, are realisations from

independent block-average Ornstein-Uhlenbeck processes. Then, the drift and

diffusion parameter estimates for each training sample are given by γ̂baML, i(j) and

σ̂2
baML, i(j), and were calculated in Section 4.4.2.3. With these parameter estimates,

we obtain the one-step-ahead point forecasts for the seasonally adjusted principal

components using (3.8) and the prediction interval using (3.13).

In this case, the point forecasts and prediction intervals obtained are very

similar to those obtained via the mixed forecasting approach (Section 4.5.2.1).

Therefore, the following figures have been moved to Appendix A.1:

• The point forecasts and prediction intervals for the first three principal com-

ponents, for training samples of size j = 4000, . . . , 4120, shown in Figure A.1;

• The rolling average of the root mean-squared error as in (4.6), shown in

Figure A.2.
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(a) First principal component for t = 3960, . . . , 4120 (grey solid line). The one-step-
ahead point forecast is given by the solid black line, with the 95% prediction interval
given by the shaded grey area.
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(b) Second principal component for t = 3960, . . . , 4120 (grey solid line). The one-step-
ahead point forecast is given by the solid black line, with the 95% prediction interval
given by the shaded grey area.
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(c) Third principal component for t = 3960, . . . , 4120 (grey solid line). The one-step-
ahead point forecast is given by the solid black line, with the 95% prediction interval
given by the shaded grey area.

Figure 4.25: First three principal components for t = 3960, . . . , 4120 (grey solid
line). The one-step-ahead point forecast found using the mixed forecasting method
is given by the solid black line, with the 95% prediction interval given by the shaded
grey area.
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Figure 4.26: Rolling average of the root mean-squared error between the true
principal components and the respective point forecasts, found using the mixed
forecasting approach. The rolling average of the root mean-squared error between
the first, second and third principal component and the respective one-step-ahead
forecasts is given by the solid, dashed and dotted line respectively.

In this case, 1.5% of the realisation m1 4001, . . . ,m1 6000 lie outside the (approx-

imate) 95% prediction interval. Similarly, for the second principal component, we

have 5.6%, and for the third principal component we have 3.8%.

From considering the root mean-squared error, here we can surmise that the

point forecasts obtained from the block-average forecasting approach are close to

those obtained from the mixed forecasting approach. It is also clear that the pre-

diction intervals using the different forecasting approaches were very similar to

one-another, as the proportion of the test samples that lay outside of the 95% pre-

diction intervals were comparable. This implies that misspecifying block-average

realisations as pointwise realisations (as in the mixed forecasting approach), did

not make a big difference to the resulting forecasts. This is in contrast to the

toy example (Example 2.3.10), where misspecifying the realisations made a real

difference to the result.
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4.5.3 Forecasting independent components

Similarly to Section 4.5.2, here we find one-step-ahead forecasts for the first six

independent components – obtained by applying the fastICA method to the mean

sea-level air pressure HadCM3 simulator output – using the stochastic models and

parameter estimates determined in Section 4.4.3.

The independent components are given by si, i = 1, . . . , 6, with the seasonally

adjusted independent components given by s̃i. For each seasonally adjusted inde-

pendent component, the associated training set is {s̃(4000)
i , s̃

(4001)
i , . . . , s̃

(5999)
i }, with

the training samples given by s̃
(j)
i = (s̃i 0, s̃i 1, . . . , s̃i (j−1)) ∈ Rj, j = 4000, . . . , 5999.

We use the notation ˆ̃si t−1(1) to give the one-step-ahead forecast of the ith season-

ally adjusted independent component at time t− 1. By adding the seasonal mean

to these forecasts we obtain ŝi t−1(1), the associated one-step-ahead forecast for

the ith independent component at time t− 1.

Below, we find the one-step-ahead forecasts for the independent components

using the mixed forecasting approach as described in Panel 4.12, and the equivalent

forecasts using the block-average Ornstein-Uhlenbeck forecasting approach.

4.5.3.1 Mixed forecasting approach

In this section, we apply the mixed forecasting approach (given in Panel 4.12)

to the first six seasonally adjusted independent components. We have found (in

Section 4.4.3.2) that only the second and fourth seasonally adjusted independent

components have training samples with non-positive sample lag-1 correlation, and

both of these correlations lie within the 95% confidence interval for white-noise

sample correlation. This, along with examination of the sample autocorrelation

and partial autocorrelation functions (which we did in Section 4.4.3.1), is used as

justification for choosing white-noise for the training samples with non-positive

sample lag-1 correlation.

In Figure 4.27 we show the one-step-ahead point forecasts for the independent

components using the (seasonally adjusted) training sets s̃
(j)
i , for i = 1, 2, 3 and

j = 4000, . . . , 4119 by the black line, with the shading giving a 95% prediction

interval. The grey lines give the true independent components, shown as a time

series for times t = 3960, . . . , 4120. In this case, 6.6% of the test sample for
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the first independent component, s1 4000, s1 4001, . . . , s1 5999, lies outside of the 95%

prediction interval. For the second and third independent component test sets,

this proportion is 0.5% and 1.1% respectively. The values for the second and

third independent components here are quite low, suggesting that the prediction

intervals are too large, possible due to model misspecification.

Now we further assess the quality of the forecasts by looking at the rolling

averages of the root mean-squared errors given by (4.6). Figure 4.26 gives the

rolling average of the root mean-squared errors between independent component

one, two and three, and the associated point forecasts, by the solid, dashed and

dotted lines respectively. The increasing nature of the rolling average root mean-

squared error for the second and third independent component forecasts after

around j = 5000 implies that potentially these independent components need to be

modelled by different stochastic processes (or with different parameter estimates)

after these points.

4.5.3.2 Block-average Ornstein-Uhlenbeck forecasting approach

Here we obtain forecasts for the independent components using the block-average

Ornstein-Uhlenbeck forecasting approach, and the block-average Ornstein-Uhlenbeck

drift and diffusion parameter estimates that were found (in Section 4.4.3.3) for the

training samples s̃
(j)
i , i = 1, . . . , 6, j = 4000, . . . , 5999.

In this case, the point forecasts and prediction intervals obtained are very

similar to those obtained via the mixed forecasting approach (Section 4.5.3.1),

and therefore the following figures have been placed in Appendix A.1:

• The point forecasts and prediction intervals for the first three independent

components at times t = 4000, 4001, . . . , 4119, shown in Figure A.3;

• The rolling average of the root mean-squared error, shown in Figure A.4.

In this case, 6.6% of the test sample of the first independent component,

s1 4000, s1 4001, . . . , s1 5999, is outside of the 95% prediction interval. For the test

samples of the second and third independent components, 0.5% and 1.1% of the

values lie outside of the respective 95% prediction interval. Note that these are
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(a) First independent component for t = 3960, . . . , 4120 (grey solid line). The one-step-
ahead point forecasts found using the mixed forecasting approach are given by the solid
black line, with the 95% prediction interval given by the shaded grey area.
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(b) Second independent component for t = 3960, . . . , 4120 (grey solid line). The one-
step-ahead point forecasts found using the mixed forecasting approach are given by the
solid black line, with the 95% prediction interval given by the shaded grey area.
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(c) Third independent component for t = 3960, . . . , 4120 (grey solid line). The one-step-
ahead point forecasts found using the mixed forecasting approach are given by the solid
black line, with the 95% prediction interval given by the shaded grey area.

Figure 4.27: First three independent components for t = 3960, . . . , 4120 (grey
solid line). The one-step-ahead point forecasts found using the mixed forecasting
approach are given by the solid black line, with the 95% prediction intervals shown
by the shaded grey area.
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Figure 4.28: Rolling average of the root mean-squared error between the true in-
dependent components and the respective point forecasts, found using the mixed
forecasting approach. The solid line corresponds to the first independent compo-
nent, the dashed line to the second, and the dotted line to the third.

the exact same proportions as were found with the prediction intervals found using

the mixed forecasting approach.

We conclude here that the forecasts of the independent components obtained

using the block-average forecasting approach are very similar to those obtained

using the pointwise mixed forecasting approach. That is, the misspecification of

the independent components as pointwise realisations (as opposed to averaged re-

alisations) does not make a substantial difference to the forecasts obtained. Recall

that this was also the case in the principal component forecasts (seen in Sec-

tion 4.5.2), such that both the mixed forecasting approach and the block-average

Ornstein-Uhlenbeck forecasting approach gave very similar results.
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4.6 Reconstruction of the Climate Simulator Out-

put

In this section, we compare the full mean sea-level air pressure output of the

HadCM3 climate simulator to the reconstruction found using l = 6 principal or

independent components, and to the reconstruction found using the one-step-ahead

point forecasts for the l = 6 principal and independent components.

In Section 4.6.1 we introduce the methods used to find the reconstructions,

a way to analyse the quality of the reconstructions, and some terminology used

throughout this section. After this introduction, the remainder of the section

is split into analysing the reconstructions found using the principal components

(Section 4.6.2), and analysing the reconstructions found using the independent

components (Section 4.6.3).

4.6.1 Introduction to reconstructing the climate simulator

output

Reconstructions from the principal or independent components (and the asso-

ciated one-step-ahead forecasts) are obtained using inverse principal component

analysis or inverse independent component analysis. These are described below in

Panel 4.13 and Panel 4.14 respectively.

The comparisons in this section are done both by considering root mean-

squared errors and by visual inspection of the reconstructions. One initial comment

on the use of root mean-squared error to compare reconstructions found via inverse

principal component analysis to those found using inverse independent component

analysis is made below in Remark 4.18. For the visual comparisons the following

plots are given at times t = 4000 and t = 5000:

1. The HadCM3 simulation mean sea-level air pressure output;

2. Reconstructions using l = 6 components;

3. Reconstructions using one-step-ahead point forecasts for the l = 6 compo-

nents.
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Panel 4.13: “Inverse” principal component analysis

For principal component analysis, reconstructions of the full simulator output
are found by doing “inverse” principal component analysis in the following
way. As in Section 4.2, let the true simulator output be given by X ∈ Rn×p,
and the scaled output by X(g) = XG with G ∈ Rp×p the diagonal matrix with
elements corresponding to the respective grid cell area. Then letting X̃(g) be
the column-centred version of X(g), the singular value decomposition of X̃(g)

is given by X̃(g) = UΛV >. Here, the columns of V are the principal directions
and the principal components are given by the columns of M = X̃(g)V .
Let M (l) ∈ Rn×l be the matrix with columns the first l principal components,
and let V (l) ∈ Rp×l be the matrix of the first l columns of V . Then, inverse
principal component analysis using l components proceeds as follows.

1. Set ˆ̃Z(l,G) = M (l)(V (l))>;

2. Add the column means of the original matrix X to ˆ̃Z(l,G) to give matrix
Ẑ(l,G);

3. Set G−1 the diagonal matrix with diagonal elements 1/
√
ci, where ci is

the grid cell area for the cells i = 1, . . . , p. We rescale Ẑ(l,G) by the
inverse of the cell grid size to obtain an approximation to the original
simulator output X, given by Z(l) = Ẑ(l,G)G−1.

We also plot the differences at times t = 4000 and t = 5000 between:

(i) The true simulator output and the reconstruction using l = 6 components;

(ii) The true simulator output and the reconstruction using one-step-ahead point

forecasts for the l = 6 components;

(iii) The reconstruction using l = 6 components and the reconstruction using

one-step-ahead point forecasts for the l = 6 components.

Recall that the HadCM3 simulator output here runs for times t = 0, 1, . . . , 5999,

and we obtained forecasts for the principal and independent components in Sec-

tion 4.5 for times t = 4000, 4001, . . . , 5999. Therefore, the choice of t = 4000 and
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Panel 4.14: “Inverse” independent component analysis

For independent component analysis, reconstructions of the full simulator
output are found by doing “inverse” independent component analysis in the
following way. As in Section 4.3 and following the notation introduced in
Remark 1.1, let the true simulator output be given by X ∈ Rn×p, and the
column-centred version by X̃ ∈ Rn×p. Now, performing independent compo-
nent analysis on X̃ using the method described in Panel 1.4 (Section 1.3.1.2),
the independent components are given by the columns of the matrix S ∈ Rn×r,
where S = X̃AQ, A ∈ Rp×r is the whitening matrix such that the sample co-
variance of Y = X̃A is equal to identity, and Q ∈ Rr×r is an orthogonal
matrix.
Assume the first l independent components have been kept and are given by
columns of S(l) ∈ Rn×l. Let Q(l) ∈ Rr×l be the first l columns of the Q matrix.
Then, inverse independent component analysis using these components is as
follows.

1. Set B = (X̃AQ)+X̃, where ‘+’ indicates the Moore–Penrose inverse.
Then, from Lemma 1.3.2, X̃AQB = X̃.

2. Set B(l) ∈ Rl×p to be the first l rows of B, and set ˆ̃Z(l) = S(l)B(l);

3. Add the column means of the original matrix X to ˆ̃Z(l) to give matrix
Ẑ(l), which is an approximation to the original simulator output X.

t = 5000 for visual comparison in this section is such that we get a start and mid-

point reconstruction using the component forecasts. Figure 4.29 shows the true

mean sea-level air pressure HadCM3 simulator output for these two time points.

The root mean-squared error between the reconstructed simulator output using

l principal components, given by Z(l) as in Panel 4.13, and the true output is,

e(t : l) :=
(1

p

p∑
i=1

(z
(l)
ti − xti)2

)1/2

, (4.7)

where here Z(l) =
(
z

(l)
0 · · · z

(l)
n−1

)> ∈ Rn×p and X = (x0 · · · xn−1)> ∈ Rn×p are

such that zij (respectively, xij) is the (i + 1)th row, jth column element of Z(l)
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Remark 4.18: The use of root mean-squared error for comparison

Here it is remarked that principal component analysis – due to the maximal
variance of the projections – obtains components that minimise root mean-
squared error. Therefore, when comparing inverse principal component anal-
ysis using l principal components to inverse independent component analysis
using l independent components, the root mean-squared error of the former
will theoretically always be lower than the latter.
Due to this, here we give more weight to the comparison of the root mean-
squared errors between the reconstructions using the true components and the
reconstructions using the forecasted components. That is, we want to compare
how well the reconstructions found using the forecasted components mirror
those found using the true components, instead of how well the reconstructions
found using the forecasted components mirror the true HadCM3 simulator
output.

(a) Time, t = 4000. (b) Time, t = 5000.

Figure 4.29: Mean sea-level air pressure HadCM3 simulator output at times t =
4000, 5000.

(respectively, X).

We now define the root mean-squared errors between the reconstructed climate

simulator output using l principal or independent components, and the one-step-

ahead forecasts for the l components.

First, define M̂
(l)
ñ ∈ Rn×l to be the matrix with columns given by the true

principal components up to element ñ, followed by the one-step-ahead principal

component forecast up to element n. That is, the ith column of M̂
(l)
ñ is given by
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the n-vector

(
mi 0,mi 1, . . . ,mi (ñ−1), m̂i,ñ−1(1), m̂i,ñ(1), . . . , m̂i,n−2(1)

)
. (4.8)

Here, m̂i,j−1(1) = E
(
Mi j|mi j−1, . . . ,mi 0

)
, is some one-step-ahead forecast found

using the training set m
(j)
i = (mi 0, . . . ,mi (j−1)), where it is assumed that the

principal component mi is a realisation from some stochastic process (Mi t)t∈Z. In

this section n = 6000, ñ = 4000 and the columns of M̂
(l)
ñ are known as the one-

step-ahead forecasted principal components. This is a slight abuse of terminology,

as actually only the latter elements mi 4000, . . . , mi 5999 have been replaced with the

one-step-ahead forecasts m̂i 3999(1), . . . , m̂i 5998(1).

Similarly, define Ŝ
(l)
ñ ∈ Rn×l to be the matrix with columns given by the true

independent components up to element ñ, followed by the one-step-ahead inde-

pendent component forecast up to element n, such that the ith column of Ŝ
(l)
ñ is

given by the n-vector

(
si 0, si 1, . . . , si (ñ−1), ŝi,ñ−1(1), ŝi,ñ(1), . . . , ŝi,n−2(1)

)
. (4.9)

As before, the columns of Ŝ
(l)
ñ are known as the one-step-ahead forecasted indepen-

dent components.

Substituting M (l) for M̂
(l)
ñ in the inverse principal component analysis method

(Panel 4.13) gives the one-step-ahead forecasted principal component reconstruc-

tion matrix Ẑ
(l)
ñ , whilst substituting S(l) for Ŝ

(l)
ñ in the inverse independent compo-

nent analysis method (Panel 4.14) gives the equivalent one-step-ahead forecasted

independent component reconstruction matrix.

Now, the root mean-squared error between the true HadCM3 simulator output

and the reconstructed output using one-step-ahead forecasts of the l components

is given by

ê(t : l, X) :=
(1

p

p∑
i=1

(ẑ
(l)
ti − xti)2

)1/2

, (4.10)

for t = ñ, ñ+ 1, . . . , n. For t = 0, . . . , ñ− 1 this is equal to the root mean-squared

error between the true output and the l components reconstruction, e(t : l) in (4.7).
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The root mean-squared error between the reconstructed simulator output using

l components, Z(l) = (z
(l)
1 · · · z

(l)
n )> ∈ Rn×p, and the reconstructed output using

one-step-ahead forecasts for the l components, Ẑ
(l)
ñ =

(
ẑ

(l)
1 · · · ẑ

(l)
n

)> ∈ Rn×p, is

given by

ê(t : l, Z) :=
(1

p

p∑
i=1

(ẑ
(l)
ti − z

(l)
ti )2

)1/2

, (4.11)

for t = ñ, ñ+ 1, . . . , n. For t = 1, . . . , ñ−1, this is equal to zero, as the reconstruc-

tion Z
(l)
ñ is obtained using components given by (4.8) and (4.9), where the first ñ

elements are equal to the true components.

The rolling average of each root mean-squared error is also considered, where

the average value of the reconstruction root mean-squared error of all previous

reconstructions from t = 4000 onwards is taken. That is, the rolling averages of

(4.7), (4.11) and (4.10) are

1

j − 3999

j∑
t=4000

e(t : l);
1

j − 3999

j∑
t=4000

ê(t : l, Z);
1

j − 3999

j∑
t=4000

ê(t : l, X),

(4.12)

for j = 4000, . . . , 5999.

The rest of this section is split into two parts, with reconstruction of the mean

sea-level air pressure output via inverse principal component analysis discussed in

Section 4.6.2, and via inverse independent component analysis in Section 4.6.3. A

short comment is made below in Remark 4.19 that explains the terminology in use

in this section.

Remark 4.19: Terminology

Throughout this section, the following terminology is used for simplicity:

1. Principal component reconstructions refers to reconstructions obtained

via inverse principal component analysis using a set of the first l principal

components. Throughout this section we use l = 6 principal components

in the reconstructions;
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2. One-step-ahead forecasted principal components refers to the columns of

M̂
(l)
ñ as given in (4.8). Throughout this section we set l = 6 and ñ = 4000;

3. Forecasted principal component reconstructions refers to reconstructions

obtained via inverse principal component analysis using one-step-ahead

point forecasts in lieu of the true principal components. That is, the

matrix M̂
(l)
ñ is used instead of M (l) in the inverse principal component

analysis method (described in Panel 4.13) with l = 6 and ñ = 4000;

4. Independent component reconstructions refers to reconstructions obtained

via inverse independent component analysis using a set of the first l inde-

pendent components. Throughout this section we use l = 6 independent

components in the reconstructions;

5. One-step-ahead forecasted independent components refers to the columns

of Ŝ
(l)
ñ as given in (4.9). Throughout this section we set l = 6 and

ñ = 4000;

6. Forecasted independent component reconstructions refers to reconstruc-

tions obtained via inverse independent component analysis using one-

step-ahead point forecasts in lieu of the true independent components.

That is, the matrix Ŝ
(l)
ñ is used instead of S(l) in the inverse independent

component analysis method (described in Panel 4.14) with l = 6 and

ñ = 4000.

4.6.2 Reconstruction using principal components

In this section we find forecasted principal component reconstructions, and we

compare these to the true HadCM3 simulator output, and to the principal com-

ponent reconstructions.

In Section 4.6.2.1 we introduce principal component reconstructions and com-
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pare these to the true HadCM3 simulator output. In the remainder of this section

we consider reconstructions calculated using two versions of the forecasted princi-

pal component matrix M̂
(l)
ñ . In Section 4.6.2.2, we consider forecasts for the prin-

cipal components obtained via the mixed forecasting approach. In Section 4.6.2.3,

we consider forecasts obtained using the block-average Ornstein-Uhlenbeck fore-

casting approach. We remark that by the analysis performed in Section 4.6.2,

where both forecasting approaches led to very similar point forecasts and predic-

tion intervals, we expect the two reconstructions to be very similar to each other.

4.6.2.1 Principal component reconstructions

Before we consider the forecasted principal components reconstructions we intro-

duce the principal component reconstructions calculated using l = 6 principal

components. These principal component reconstructions are shown visually at

time steps t = 4000 and t = 5000 in Figure 4.30. The difference between the

HadCM3 simulator output and the principal component reconstructions at these

times steps is shown in Figure 4.31. This plot follows from Item (i) discussed in

the introduction above (Section 4.6.1). We note that the colour scheme used in

both these figures mask that the underlying values and ranges are different, which

are shown in the associated plot legends.

We also show the difference between the HadCM3 simulator output and the

principal component reconstruction for times t = 4000, 4001, . . . , 5999 by way of

root mean-squared error in Figure 4.32. The grey circles give the root mean-

squared error (as given in (4.7)), and the black line gives the rolling average of the

root mean-squared error (as given in (4.12)). Here the y-axis shows the average

root mean-squared difference per grid cell in Pascals. The approximate atmo-

spheric pressure at sea-level is known as the standard atmosphere (atm), with 1

atm being equal to 101, 325 Pa, and thus a difference of 250 Pa represents an error

of less than 0.25%.

4.6.2.2 Reconstruction errors using the mixed forecasting approach

In this section, we analyse forecasted principal component reconstructions when

the mixed forecasting approach is used to obtain one-step-ahead forecasts for the
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(a) Time, t = 4000 (b) Time, t = 5000

Figure 4.30: Principal component reconstructions with l = 6 principal components
at times t = 4000, 5000.

(a) Time, t = 4000 (b) Time, t = 5000

Figure 4.31: Difference between the true mean sea-level air pressure HadCM3
simulator output and the principal component reconstructions with l = 6 principal
components at times t = 4000, 5000.
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Figure 4.32: Root mean-squared error per grid cell between the true simulator
output and the principal component reconstructions with l = 6 principal compo-
nents, for times t = 4000, . . . , 5999. The grey circles give the specific (per cell)
root mean-squared errors (4.7), with the black line giving the running average of
root mean-squared error over time (4.12).
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principal components (as seen in Section 4.5.2). The forecasted principal compo-

nent reconstructions at times t = 4000 and t = 5000 are shown in Figure 4.33.

Figure 4.34 shows the difference between the true HadCM3 mean sea-level air

pressure output and the forecasted principal component reconstructions at times

t = 4000 and t = 5000. Figure 4.35 shows the difference between the principal

component reconstruction, and the forecasted principal component reconstruction

using the mixed forecasting approach. These two figures show the differences as

discussed in Items (ii) and (iii) in the introduction above (Section 4.6.1). As before,

these plots of the differences have a much smaller range than the plots showing

the forecasted principal component reconstructions, and are centred around zero.

(a) Time, t = 4000. (b) Time, t = 5000.

Figure 4.33: Forecasted principal component reconstructions with l = 6 principal
components using the mixed forecasting approach, at times t = 4000, 5000.

(a) Time, t = 4000. (b) Time, t = 5000.

Figure 4.34: Difference between the true mean sea-level air pressure HadCM3
simulator output and the forecasted principal component reconstruction with
l = 6 principal components using the mixed forecasting approach, at times
t = 4000, 5000.
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(a) Time, t = 4000. (b) Time, t = 5000.

Figure 4.35: Difference between the principal component reconstructions of the
mean sea-level air pressure with l = 6 principal components, and the forecasted
principal component reconstructions using the mixed forecasting approach, at
times t = 4000, 5000.

We assess the quality of these reconstructions using root mean-squared error.

The grey circles in Figure 4.36a and Figure 4.36b show the root mean-squared

errors between the forecasted principal component reconstructions (found using

the mixed forecasting approach) and: (i) the true HadCM3 simulator output (as

in (4.10)), and; (ii) the principal component reconstructions (as in (4.11)), respec-

tively. The black line shows the associated rolling average as in (4.12).

Recall that Figure 4.32 (Section 4.6.2) gives the root mean-squared errors for

the differences between the HadCM3 simulator output and the principal compo-

nent reconstructions (using the actual principal components). Comparing this to

Figure 4.36a, we see that the root mean-squared errors when using the forecasted

principal component reconstructions are larger than the errors when using the

principal component reconstructions. This is expected, as here we are replacing

the true principal components in the inverse principal component analysis step

with the one-step-ahead point forecasts using the mixed forecasting approach.

4.6.2.3 Reconstruction errors using the block-average Ornstein-Uhlenbeck

forecasting approach

In this section, we analyse the forecasted principal component reconstructions

when the block-average Ornstein-Uhlenbeck forecasting approach is used to obtain

one-step-ahead forecasts for the first l = 6 principal components. These principal
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(a) Root mean-squared error per grid cell between the true HadCM3 simulator output
and the forecasted principal component reconstructions with l = 6 principal components
using the mixed forecasting approach.
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(b) Root mean-squared error per grid cell between the principal component reconstruc-
tions using l = 6 principal components, and the forecasted principal component recon-
structions using the mixed forecasting approach.

Figure 4.36: The grey circles give the root mean-squared error per grid cell (cal-
culated using (4.10) and (4.11)) comparing the forecasted principal component
reconstructions with l = 6 principal components using the mixed forecasting ap-
proach, to both: (i) the true HadCM3 simulator mean sea-level air pressure output
(Figure 4.36a), and; (ii) the principal component reconstructions using the actual
l = 6 principal components (Figure 4.36b). The black line gives the rolling average
over time, as in (4.12).

component forecasts were given in Section 4.5.2.2. The block-average forecasting

approach here produces very similar reconstructions to those found when the mixed

forecasting approach was used, and therefore all figures for this section are included

in Appendix A.2. The relevant figures here are:

• The forecasted principal component reconstructions at times t = 4000 and

t = 5000, shown in Figure A.5;

• The difference between the HadCM3 simulator output and the forecasted
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principal component reconstructions, at times t = 4000 and t = 5000, shown

in Figure A.6;

• The difference between the principal component reconstructions using l = 6

principal components, and the forecasted principal component reconstruc-

tions at times t = 4000 and t = 5000, shown in Figure A.7;

• The root mean-squared errors between the forecasted principal component

reconstructions and; (i) the HadCM3 simulator output, shown in Figure A.8a;

and (ii) the principal component reconstruction with l = 6 principal compo-

nents, shown in Figure A.8b.

To conclude the principal component forecasted reconstruction section, we com-

ment that the reconstructions using the mixed forecasting approach and those

using the block-average forecasting approach appear similar. This was expected

as the principal component forecasts found in Section 4.5.2 were very similar to

one-another. It is also worth remarking that the root mean squared errors between

the forecasted principal component reconstructions and the true HadCM3 output

are larger than those between the true principal component reconstructions and

the true HadCM3 output. We would expect this as information is being lost when

the true components are replaced by their forecasts. We have included the plots of

the differences between the various reconstructions at times t = 4000 and t = 5000

so that it is possible for an expert to examine whether there are some systematic

errors occurring in the reconstructions.
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4.6.3 Reconstruction using independent components

In this section we find forecasted independent component reconstructions, and we

compare these to the true HadCM3 simulator output, and to the independent

component reconstructions. This section has the same layout as the previous

section (Section 4.6.2), and all the plots produced in this section can be compared

to the respective plots shown in that section.

In Section 4.6.3.1 we introduce independent component reconstructions and

compare these to the true HadCM3 simulator output. Then, in the remainder of

this section we consider forecasted independent component reconstructions calcu-

lated using two versions of the forecasted independent component matrix Ŝ
(l)
ñ (with

columns defined by (4.9)). In Section 4.6.3.2 we consider forecasts obtained using

the mixed forecasting approach, and in Section 4.6.3.3 we consider forecasts ob-

tained using the block-average Ornstein-Uhlenbeck forecasting approach. As with

the forecasted principal component reconstructions, here we expect both versions

of the forecasted independent component reconstructions to be very similar, as the

point forecasts and prediction intervals for the independent components were seen

to be very alike (in Section 4.5.3).

4.6.3.1 Independent component reconstructions

We first consider the independent component reconstructions, found using l = 6

independent components. The independent component reconstructions at times

t = 4000 and t = 5000 are shown in Figure 4.37. The difference between the

HadCM3 simulator output and the independent component reconstructions at

these times is shown in Figure 4.38.

The quality is assessed by considering the root mean-squared errors between

the independent component reconstructions and the true HadCM3 simulator out-

put for times t = 4000, 4001, . . . , 5999. These are shown by the grey circles in

Figure 4.39 with the black line giving the associated rolling average.

As expected (and commented on in Remark 4.18), the root mean-squared errors

from the principal component reconstructions (shown in Figure 4.32) are smaller

than those found using the independent component reconstructions. However,

recalling that the average air pressure at sea-level is approximately 101, 325 Pa,
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(a) Time, t = 4000. (b) Time, t = 5000.

Figure 4.37: Reconstructions of the mean sea-level air pressure HadCM3 simula-
tor output via inverse independent component analysis with l = 6 independent
components at times t = 4000, 5000.

(a) Time, t = 4000. (b) Time, t = 5000.

Figure 4.38: Difference between the true mean sea-level difference HadCM3 simula-
tor output and the independent component reconstructions with l = 6 independent
components at times t = 4000, 5000.

the root mean-squared errors from the independent component reconstructions

are still relatively small. The main interest in the rest of this section is on the

differences between the forecasted independent component reconstructions and the

independent component reconstructions.

4.6.3.2 Reconstruction errors using the mixed forecasting approach

In this section we consider forecasted independent component reconstructions

when the mixed forecasting approach is used to obtain one-step-ahead forecasts for

the first l = 6 independent components (as seen in Section 4.5.3.1). The forecasted

independent component reconstructions using this approach at times t = 4000 and

t = 5000 are shown in Figure 4.40.
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Figure 4.39: The grey circles give the root mean-squared error per grid cell between
the true HadCM3 simulator output and the independent component reconstruc-
tions with l = 6 independent components (calculated using (4.7)). The black line
gives the rolling average (4.12).

The differences between the forecasted independent component reconstruction

and: (i) the true mean sea-level air pressure HadCM3 simulator output, and; (ii)

the independent component reconstruction (using l = 6 independent components),

are shown in Figure 4.41 and Figure 4.42 respectively.

One initial remark that we make here is that the differences between the fore-

casted independent component reconstructions and the independent component

reconstructions (shown in Figure 4.42) seem to be lower than the equivalent prin-

cipal component differences (shown in Figure 4.35, Section 4.6.2.2). This sug-

gests that the white-noise, Ornstein-Uhlenbeck models could be a better fit for

the seasonally adjusted independent components than for the seasonally adjusted

principal components.

(a) Time, t = 5000. (b) Time, t = 5000.

Figure 4.40: Forecasted independent component reconstructions using the mixed
forecasting approach for the first l = 6 independent components, at times t =
4000, 5000.
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(a) Time, t = 4000. (b) Time, t = 5000.

Figure 4.41: Difference between the true mean sea-level air pressure HadCM3
simulator output and the forecasted independent component reconstructed using
the mixed forecasting approach, at times t = 4000, 5000.

(a) Time, t = 4000. (b) Time, t = 5000.

Figure 4.42: Difference between the independent component reconstructions, and
the forecasted independent component reconstructions using the mixed forecasting
approach, at times t = 4000, 5000.

As before, we assess the quality of the forecasted independent component re-

constructions by considering the root mean-squared errors. The grey circles in Fig-

ures 4.43a and 4.43b are the root mean-squared errors between the forecasted in-

dependent component reconstructions using the mixed forecasting approach, and:

(i) the true mean sea-level air pressure HadCM3 output, and; (ii) the independent

component reconstruction, respectively. The black lines give the respective root

mean-squared error rolling average as in (4.12).

In this case, the root mean-squared errors between the forecasted indepen-

dent component reconstructions and the independent component reconstructions

(shown in Figure 4.43b) are lower than the equivalent forecasted principal com-

ponent reconstruction root mean-squared errors (shown in Figure 4.36b). This
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strengthens the initial judgement – originally made when examining Figure 4.42 –

that the mixed forecasting model is a better fit for the seasonally adjusted inde-

pendent components than the seasonally adjusted principal components. We will

comment on this better fit in more detail in the conclusion, Section 4.7.
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(a) Root mean-squared error per grid cell between the forecasted independent component
reconstructions using the mixed forecasting approach, and the true HadCM3 simulator
output.
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(b) Root mean-squared errors per grid cell between the forecasted independent compo-
nent reconstructions using the mixed forecasting approach, and the independent com-
ponent reconstructions (using l = 6 independent components).

Figure 4.43: The grey circles give the root mean-squared errors per grid cell be-
tween the forecasted independent component reconstructions using the mixed fore-
casting approach, and: (i) the true HadCM3 simulator output (Figure 4.43a); (ii)
the independent components reconstructions with l = 6 independent components
(Figure 4.43b). The black lines give the rolling average of the root mean-squared
errors over time.
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4.6.3.3 Reconstruction errors using the block-average Ornstein-Uhlenbeck

forecasting approach

In this section we analyse the forecasted independent component reconstructions

when the block-average Ornstein-Uhlenbeck forecasting approach is used to obtain

one-step-ahead forecasts for the first l = 6 independent components. These inde-

pendent component forecasts were introduced in Section 4.5.3.2. The reconstruc-

tions found in this section are similar to those found when the mixed forecasting

approach was used (discussed in Section 4.6.3.2), and therefore all figures here

have been placed in Appendix A.2. The relevant figures here are:

• The forecasted independent component reconstructions at times t = 4000

and t = 5000, shown in Figure A.9;

• The differences between the HadCM3 simulator output and the forecasted

independent component reconstructions at times t = 4000 and t = 5000,

shown in Figure A.10;

• The difference between the independent component reconstructions using l =

6 independent components, and the forecasted independent component re-

constructions independent component analysis using the block-average Ornstein-

Uhlenbeck forecasting approach at times t = 4000 and t = 5000, shown in

Figure A.11.

• The root mean-squared errors between the forecasted independent compo-

nent reconstructions using the block-average Ornstein-Uhlenbeck forecasting

approach for l = 6 independent components and; (i) the true mean sea-level

air pressure HadCM3 output, shown in Figure A.12a; (ii) the independent

component reconstructions with l = 6 independent components, shown in

Figure A.12b.

As with the forecasted independent component reconstruction when the mixed

forecasting approach was used (Section 4.6.3.2), the difference between the fore-

casted independent component reconstructions using the block-average Ornstein-

Uhlenbeck forecasting approach and the (true) independent component reconstruc-

tions is smaller than the equivalent principal component reconstructions difference
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(shown in Figure A.7). A similarity with the principal component reconstructions

here is that the choice of using the block-average Ornstein-Uhlenbeck forecasting

approach or the mixed forecasting approach seems to make little overall difference

to the forecasted independent component reconstructions.

To conclude this section we note that the root mean-squared errors found us-

ing the block-average Ornstein-Uhlenbeck forecasting approach are comparable

to the errors found using the mixed forecasting approach. Therefore, similarly

to the forecasted principal component reconstructions, it appears that here, mis-

specifying the independent components as piecewise observations and using the

mixed forecasting method does not seem to be any worse than correctly specify-

ing them as block-average observations and modelling them as realisations from

block-average Ornstein-Uhlenbeck processes. It is also worth noting that the root

mean-squared errors of the difference between the forecasted independent compo-

nent reconstructions and the true HadCM3 output are on average the same as

those between the true independent component reconstructions and the HadCM3

output. This implies that using the forecasted independent components instead of

the true components does not affect the total reconstruction error.

4.7 Concluding remarks

We now highlight some of the main conclusions arising from the analysis in this

chapter. First, we will discuss the stochastic modelling of the components (as seen

in Section 4.4), followed by the component forecasts (as in Section 4.5), and finally

the forecasted reconstructions (as in Section 4.6).

One key point that was made evident during the stochastic modelling was that

the first six principal and six independent components contained strong seasonal-

ity, which was clearly seen from the autocorrelation functions (given in Figures 4.8

and 4.17 respectively). This was expected for the principal components, as it is

well known that principal component analysis often results in components that

emphasize seasonality (as seasonal behaviour is often the cause of large variation

in data). For the independent components, this is less expected. However, as
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discussed in this chapter (and in Chapter 1), one motivation for using indepen-

dent component analysis within a climate setting is to try to obtain fundamental

Earth system processes. These fundamental processes are likely to contain some

seasonality.

A second point that we make here in relation to the stochastic modelling part

of this chapter, is that both of the pointwise Ornstein-Uhlenbeck parameter es-

timation methods were deficient in some way. The sparse maximum likelihood

estimation method resulted in some spurious solutions, and thus this method was

only applied to the principal components (seen in Figure 4.12). On the other

hand, the requirement of the method of moments on having a positive lag-1 sam-

ple correlation meant that for many of the training samples of the principal and

independent components, it was impossible to obtain the drift and diffusion esti-

mates (as seen in Figure 4.15 and Figure 4.23 for the principal and independent

components, respectively).

We saw in the forecasting section (Section 4.5) that for both the principal

and independent component forecasts, the use of the mixed forecasting approach

or the block-average Ornstein-Uhlenbeck forecasting approach gave very similar

results. This was shown visually, and by the proportion of the test samples that

lay outside of the 95% prediction intervals. As the mixed forecasting approach

misspecified the components as pointwise realisations (as opposed to averaged over

the seasons), we would have expected, a priori, that the block-average Ornstein-

Uhlenbeck forecasting approach would give better quality forecasts (as this was

shown in Example 2.3.10). This however, was not the case, and further analysis

on these forecasts is needed here to find a reason for this.

For some of the components, the prediction intervals (found using both fore-

casting approaches) were much wider than expected, such that only a very low

proportion of the test samples were outside of these intervals. This was the case

for the first principal component, and for the second and third independent com-

ponent. This suggest that either the model chosen for these components was

incorrect, or that the parameter estimation methods converged to a local maxi-

mum and not a global one. However, the latter reason seems to be less likely than

the former, as the behaviour of the prediction intervals was consistent across the

two forecasting methods (which used different underlying models, and different
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parameter estimation methods). We therefore judge that the models used here

for these components are suboptimal, and further work is required to find more

suitable models.

The main conclusion arising from the reconstruction section (Section 4.6) is

that the stochastic models and associated forecasts used here seem to be more

appropriate when applied to the independent components than to the principal

components. This can be seen by comparing the reconstructions found using the

one-step-ahead point forecasts to those found using the test samples. That is,

in general the difference between the forecasted independent component recon-

structions and the independent component reconstruction (measured using root

mean-squared error) seems to be smaller than the equivalent difference between

the forecasted principal component reconstructions and the principal component

reconstructions. This can be seen for the mixed forecasting method by compar-

ing Figure 4.36b to Figure 4.43b, and for the block-average Ornstein-Uhlenbeck

forecasting method by comparing Figure A.8b to Figure A.12b. This is slightly sur-

prising, as these independent components are chosen for their non-Gaussianity, and

therefore modelling them using processes with Gaussian transition densities seems

counter-intuitive. One explanation for this could be that the non-Gaussianity is

present within the seasonal effects of the independent components, such that the

seasonally adjusted independent components can be successfully modelled using

Gaussian processes. This would be something to consider in any future work.

It can also be seen that the difference between the HadCM3 simulator out-

put and the independent component reconstructions are larger than between the

HadCM3 simulator output and the principal component reconstructions. This is

what we would in general expect, as by the maximal variance property of princi-

pal components we theoretically obtain reconstructions that minimise root mean-

squared error (as discussed in Remark 4.18).

However, for the independent components, the root mean-squared errors be-

tween the HadCM3 simulator output and the forecasted independent component

reconstructions are very similar to the errors between the HadCM3 simulator out-

put and the independent component reconstructions. That is, here the overall

error from using the forecasts for the independent components in place of the true

components is small. This can be seen by comparing Figure 4.39 to Figure 4.43a
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(using the mixed forecasting approach) or to Figure A.12a (using the block-average

Ornstein-Uhlenbeck forecasting approach). For the principal components, there is

a marked difference between using the forecasted components and using the true

components, when comparing the reconstructions to the true HadCM3 simulator

output. This can be seen by comparing Figure 4.32 to Figure 4.36a (using the

mixed forecasting approach) or Figure A.8a (using the block-average Ornstein-

Uhlenbeck forecasting approach). We therefore suggest that the reconstructions

found using independent components can be replaced by the forecasts with little

overall loss of error.
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Chapter 5

Dimension Reduction,

Forecasting and Reconstruction:

Mean Sea-Level Pressure With

Two-Dimensional Wind Climate

Simulation Output

This chapter follows the same structure as Chapter 4. However, here we perform

analysis on a HadCM3 simulator run with output representing the mean sea-level

air pressure with horizontal (two dimensional) wind velocity over a discretised

version of the Earth’s surface. The mean sea-level air pressure output is given on

a 96×73 grid (as in Chapter 4), and the wind velocity output is given on a 96×72

grid. Then (similarly to the mapping given by (4.1) in Chapter 4) the simulator

for which the output here is obtained from can be represented by the mapping

f2 : M→ R(96×73)+2×(96×72). (5.1)
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Here, (96 × 73) + 2 × (96 × 72) = 20832, and each dimension in this mapping

f2(m), m ∈ M, represents the value of one of the output parameters on one grid

cell. The size of the grid cell is dependent on whether the output is mean sea-level

air pressure or wind velocity, and we discussed how the area of the corresponding

cell can be found in Section 4.2.1. In this chapter the HadCM3 simulator output

is represented by the matrix X ∈ Rn×p, where p = 20832 and n = 2400.

5.1 Applying Principal Component Analysis to

the Mean Sea-Level Air Pressure with Wind

Velocity HadCM3 Simulator Output

In this section, principal component analysis (given in Section 1.2) is applied to

output from the HadCM3 simulator as represented by the mapping f2 in (5.1). As

seen previously, we need to account for the size of the grid cells that represent the

Earth’s surface.

Let the output here be given by the matrix X ∈ Rn×p, with n = 2400 and

p = (96 × 73) + 2 × (96 × 72) = 20832, such that the ith row of X is given by

f2(mi) for some mi ∈ M, i = 1, 2, . . . , 2400. We scale the columns of the matrix

X to give scaled matrix X(g) = XG, where G = diag(
√
ci) ∈ Rp×p and each ci,

i = 1, . . . , p gives the area of each grid cell (as introduced in Section 4.2.1.

Now, we perform principal component analysis on the scaled matrix by centring

the columns of X(g) and applying singular value decomposition (as described in

Panel 1.3). With X̃(g) the column-centred version of X(g), we obtain singular

value decomposition X̃(g) = UΛV >, with Λ = diag(λi) ∈ Rr×r, V ∈ Rp×r where

r = min{n− 1, p} = 2399 is the rank of X̃(g).

Following the notational convention throughout this thesis, the principal direc-

tions are given by wi := vi, i = 1, 2, . . . , r, where vi ∈ Rp is the ith column of the

matrix V ∈ Rp×r. The principal components are given by the projection of the

data along the respective principal directions, M = (m1m2 . . .mr) = X̃(g)V , with

the ith principal component, mi ∈ Rn, having variance γi = λ2
i /(n− 1).
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5.2 Applying Independent Component Analysis to the Mean
Sea-Level Air Pressure with Wind Velocity HadCM3 Simulator

Output

The first six principal directions w1, . . . , w6 ∈ Rp, p = 20832, are shown in

Figure 5.1. In this case, the mean sea-level air pressure part of each principal com-

ponent is represented by the blue-red gradient (exactly as before in Chapter 4).

The arrows represent the two-dimensional wind velocity part of each principal

component, with each arrow giving the direction and a representation of the mag-

nitude of the velocity at the base of the arrow. The magnitude of the wind is

represented by the arrow changing colour from grey to black, changing length and

changing thickness, according to the plot in Figure 5.2.

We calculate the principal components m1, . . . ,mr ∈ Rn by projecting the

scaled and centred matrix X̃(g) along the principal directions w1, . . . , wr. Through-

out this chapter we model the principal components as causal time-series over the

times t = 0, 1, . . . , n− 1, and the elements of each principal component are given

by mi 0, mi 1, . . . ,mi 2399, i = 1, . . . , r, where r = 2399 is the rank of the X̃(g). The

first six principal components are shown in Figure 5.3 for times t = 0, 1, . . . , 239.

The percentage of the total variance that is accounted for by each of the first

twenty principal components is given by 100 · γi/
∑r

j=1 γj, i = 1, . . . , 20, r = 2399,

and is shown by the bar chart in Figure 5.4. The black line gives the cumulative

sum of the variance, 100 ·
∑i

k=1 γk/
∑r

j=1 γi, k = 1, . . . , 20. The first six principal

components account for 73.50% of the total variance of the data, and the first

twenty principal components account for 87.98% of the total variance.

5.2 Applying Independent Component Analysis

to the Mean Sea-Level Air Pressure with

Wind Velocity HadCM3 Simulator Output

In this section, we apply independent component analysis (introduced in Sec-

tion 1.3) to the mean sea-level air pressure with wind velocity output obtained

from the HadCM3 simulator. As discussed in the previous chapter, we can apply

independent component analysis without the need to scale the output with respect

to the grid cell area. We perform independent component analysis using the fas-

tICA method (in the same way as in Section 4.3) on the matrix X ∈ Rn×p. In this
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(a) First principal direction, w1 ∈ Rp. (b) Second principal direction, w2 ∈ Rp.

(c) Third principal direction, w3 ∈ Rp. (d) Fourth principal direction, w4 ∈ Rp.

(e) Fifth principal direction, w5 ∈ Rp. (f) Sixth principal direction, w6 ∈ Rp.

Figure 5.1: First six principal directions found by performing principal component
analysis on the mean sea-level air pressure with wind velocity output (scaled ac-
cording to grid cell area) from the HadCM3 simulator. That is, the plots show
w1, . . . , w6 ∈ Rp, p = 20832, mapped onto the corresponding grid cells. Here,
the mean sea-level air pressure output is given by the red-blue gradient, with the
arrows representing the wind velocity, following the behaviour as in Figure 5.2.
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5.2 ICA on HadCM3 Mean Sea-Level Air Pressure with Wind
Velocity Output

Min length

Max length

25%th Percentile 75%th Percentile

Length of Arrow

Colour fade Increased thickness

Figure 5.2: Function to determine length, thickness and colour of arrows in Fig-
ure 5.1.

case, we apply the PCA-whitening step using r̃ = 148 principal components (such

that r = 148 in Step 2. of Panel 1.4) These 148 principal components account for

more than 99% of the variance of the total output.

Each independent direction, wi, i = 1, . . . , r̃, with r̃ = 148 as discussed above,

is the ith column of the matrix W = AQ ∈ Rp×r̃, with A ∈ Rp×r the whitening

matrix, and Q ∈ Rr̃×r̃ the orthogonal direction matrix as described in Panel 1.4.

The first six independent directions, w1, . . . , w6 ∈ Rp, p = 20832, are shown in

Figure 5.5.

The independent components are given by the columns of Z ∈ Rn×r̃, n = 2400,

where Z = X̃W and W = AQ ∈ Rp×r̃ is the matrix with independent directions

as the columns. The first six independent components are shown in Figure 5.6, for

time steps t = 0, . . . , 119. The M -spacing entropy approximations (described in

Section 1.3.1.3) for the independent components here are given in the respective

captions in Figure 5.6, with M = b
√

2400c.
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(a) First principal component for time
steps t = 0, 1, . . . , 119.

-1000

-500

0

500

1000

0 24 48 72 96 120
t

(b) Second principal component for time
steps t = 0, 1, . . . , 119.
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(c) Third principal component for time
steps t = 0, 1, . . . , 119.
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(d) Fourth principal component for time
steps t = 0, 1, . . . , 119.
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(e) Fifth principal component for time
steps t = 0, 1, . . . , 119.
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(f) Sixth principal component for time
steps t = 0, 1, . . . , 119.

Figure 5.3: First six principal components for time steps t = 0, 1, . . . , 119, such
that the first 120 elements of each vector m1, . . . ,m6 ∈ R2400 is shown. The vectors
m1, . . . ,m6 are found by projecting the weighted (and column-centred) mean sea-
level air pressure with wind velocity HadCM3 simulator output, X̃(g) ∈ R2400×20832,
along the first six principal directions, w1, . . . , w6 ∈ R20832 (shown in Figure 5.1).
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5.3 Modelling Principal and Independent Components by Stochastic
Processes

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Principal Component

P
ro

p
or

ti
on

of
to

ta
l

va
ri

an
ce

Figure 5.4: Bar chart showing the proportion of total variance accounted for by
each principal component, found by applying principal component analysis on the
mean sea-level air pressure with wind velocity HadCM3 simulator output. Each
bar shows the value 100 · γi/

∑r
j=1 γj, i = 1, . . . , 20. The cumulative sum of these

proportions is shown by the black points and line, such that each point gives the
value 100 ·

∑i
k=1 γk/

∑r
j=1 γj for i = 1, . . . , 20. The grey horizontal lines show the

cumulative proportion of total variance accounted for by the first six, and the first
twenty principal components. These account for 73.50% and 87.98% of the total
variance respectively.

5.3 Modelling Principal and Independent Com-

ponents by Stochastic Processes

In this section, we model the components obtained by principal component analy-

sis and independent component analysis applied to the mean sea-level air pressure

with wind velocity output from the HadCM3 simulator, using techniques intro-

duced in Chapter 2. This is shown as Step 2. in Figure 3.8. This section mirrors

Section 4.4.

Each principal and independent component considered throughout this chapter

belong to Rn with n = 2400, and each is modelled as an causal stochastic process

with time steps t = 0, 1, 2, . . . , (n− 1) such that ∆t = 1 constant.

As in the previous chapter, here we split the components into a “training”
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(a) First independent direction, w1 ∈
R20832.

(b) Second independent direction, w2 ∈
R20832.

(c) Third independent direction, w3 ∈
R20832.

(d) Fourth independent direction, w4 ∈
R20832.

(e) Fifth independent direction, w5 ∈
R20832.

(f) Sixth independent direction, w6 ∈
R20832.

Figure 5.5: First six independent directions, w1, . . . , w6 ∈ R20832, from the
HadCM3 simulator with mean sea-level air pressure with wind velocity output,
mapped onto the corresponding grid cells. Here, the mean sea-level air pressure
output is given by the red-blue gradient, with the arrows representing the wind
velocity, following the behaviour as in Figure 5.2.
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(a) First independent component, s1 ∈
R20832, for time steps t = 0, 1, . . . , 119.
The M -spacing entropy of this indepen-
dent component is 1.043.
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(b) Second independent component, s2 ∈
R20832, for time steps t = 0, 1, . . . , 119.
The M -spacing entropy of this indepen-
dent component is 1.046.
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(c) Third independent component, s3 ∈
R20832, for time steps t = 0, 1, . . . , 119.
The M -spacing entropy of this indepen-
dent component is 1.106.
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(d) Fourth independent component, s4 ∈
R20832, for time steps t = 0, 1, . . . , 119.
The M -spacing entropy of this indepen-
dent component is 1.107.
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(e) Fifth independent component, s5 ∈
R20832, for time steps t = 0, 1, . . . , 119.
The M -spacing entropy of this indepen-
dent component is 1.132.
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(f) Sixth independent component, s6 ∈
R20832, for time steps t = 0, 1, . . . , 119.
The M -spacing entropy of this indepen-
dent component is 1.156.

Figure 5.6: First six independent components, s1, . . . , s6 ∈ R20832, found by pro-
jecting the (column-centred) mean sea-level air pressure and two-dimensional wind
HadCM3 simulator output, X̃ ∈ R2400×20832, along the first six independent di-
rections, w1, . . . , w6 ∈ R20832, as shown in Figure 5.5. Here, the independent
components are shown as a time-series for times t = 0, . . . , 119. The M -spacing
entropy is calculated for each independent component as in Section 1.3.1.3, with
M = b

√
nc = b

√
2400c.
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set and “test” sample. With x = (x0, x1, . . . , xn−1) some observation, then the

training set is given by {x(ñ), x(ñ+1), . . . , x(n−1)} with each element the training

sample x(j) = (x0, . . . , xj−1) ∈ Rj, j = ñ, . . . , n − 1. The test sample here is

(xñ, xñ+1, . . . , xn) ∈ Rn−ñ. In this chapter we have n = 2400 and set ñ = 1600.

We consider the principal components obtained from the mean sea-level air

pressure with wind velocity HadCM3 simulator output in Section 5.3.1, and the

respective independent components in Section 5.3.2, after removing any seasonality

from the components. As in the previous chapter, the stochastic processes used to

model the seasonally adjusted principal and independent components considered

here are the ARIMA, Ornstein-Uhlenbeck and block-average Ornstein-Uhlenbeck

processes.

5.3.1 Modelling the principal components

First, we examine the correlograms for the principal components to determine

whether seasonality (in the form of (4.4)) needs to be removed. The correlograms

for the first six principal components, m1, . . . ,m6, are shown in Figure 5.7, which

shows that seasonality is present. Removing this seasonality gives the set of sea-

sonally adjusted principal components, m̃i ∈ Rn, i = 1, . . . , 6. Figure 5.8 shows

the first three principal components on the left-hand side (black line) and the as-

sociated periodic quadratic mean function (grey line). The right-hand side shows

the respective seasonally adjusted principal components.

In this section we find parameter estimates for the stochastic models using

the training sets from the first l = 6 seasonally adjusted principal components,

m̃1, . . . , m̃6, where m̃i = (m̃i 0, m̃i 1, . . . , m̃i n−1) ∈ Rn, i = 1, . . . , 6 and n = 2400.

The training set for the seasonally adjusted principal component m̃i is given by

{m̃(1600)
i , m̃

(1601)
i , . . . , m̃

(2399)
i }, with each training sample given in vector form by

m̃
(j)
i = (m̃i 0, m̃i 1, . . . , m̃i j−1) ∈ Rj.

We now model the seasonally adjusted principal components as realisations

from ARIMA processes, (pointwise) Ornstein-Uhlenbeck processes and block-average

Ornstein-Uhlenbeck processes in Sections 5.3.1.1, 5.3.1.2 and 5.3.1.3 respectively.
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(a) Autocorrelation function (correlo-
gram) for the first principal component,
m1, for lags k = 0, 1, . . . , 60.
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(b) Autocorrelation function (correlo-
gram) for the second principal component,
m2, for lags k = 0, 1, . . . , 60.
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(c) Autocorrelation function (correlogram)
for the third principal component, m3, for
lags k = 0, 1, . . . , 60.
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(d) Autocorrelation function (correlo-
gram) for the fourth principal component,
m4, for lags k = 0, 1, . . . , 60.
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(e) Autocorrelation function (correlogram)
for the fifth principal component, m5, for
lags k = 0, 1, . . . , 60.
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(f) Autocorrelation function (correlogram)
for the sixth principal component, m6, for
lags k = 0, 1, . . . , 60.

Figure 5.7: Autocorrelation functions (correlogram) for the first six principal com-
ponent, m1, . . . ,m6, obtained from the HadCM3 simulator, mean sea-level pressure
with wind velocity output, for lags k = 0, 1, . . . , 60.
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(a) First 120 points of the first principal
component, m1 ∈ R2400, with the grey line
giving the associated quadratic spline cal-
culated from the monthly means.
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(b) First 120 points of the first season-
ally adjusted principal component, m̃1 ∈
R2400.
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(c) First 120 points of the second princi-
pal component, m2 ∈ R2400, with the grey
line giving the associated quadratic spline
calculated from the monthly means.
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(d) First 120 points of the second season-
ally adjusted principal component, m̃2 ∈
R2400.
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(e) First 120 points of the third principal
component, m3 ∈ R2400, with the grey line
giving the associated quadratic spline cal-
culated from the monthly means.
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(f) First 120 points of the third season-
ally adjusted principal component, m̃3 ∈
R2400.

Figure 5.8: First six principal components, m1, . . . ,m6 ∈ R6000, found by pro-
jecting the weighted (and column-centred) HadCM3 simulator mean sea-level air
pressure with wind velocity output, X̃(g) ∈ R2400×20832, along the first six principal
directions, w1, . . . , w6 ∈ R20832 (shown in Figure 5.1).
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5.3 Modelling Principal and Independent Components

5.3.1.1 Modelling the principal components as observations from an

ARIMA processes

Here we assume the seasonally adjusted principal components are realisations from

ARIMA processes. The Box-Jenkins method is used to estimate the model struc-

ture, and then parameter estimates are obtained (following the same procedure as

in Section 4.4.2.1).

We apply this procedure to the first six seasonally adjusted principal com-

ponents. For each seasonally adjusted principal component m̃i, i = 1, . . . , 6, we

estimate the model structure p̂i, d̂i and q̂i. Then we use the associated training

samples m̃
(j)
i = (m̃i 0, m̃i 1, . . . , m̃i (j−1)) ∈ Rj, to obtain the parameter estimates

ϕ̂i, 1(j), . . . , ϕ̂i, pi(j) and ϑ̂i, 1(j), . . . , ϑ̂i, qi(j), j = 1600, 1601, . . . , 2399. We describe

the Box-Jenkins method for the first seasonally adjusted principal component in

detail below. We then briefly discuss the remaining 5 seasonally adjusted principal

components.

Box-Jenkins method on the first seasonally adjusted principal compo-

nent. Here we estimate the model structure p1, d1 and q1 using the sample

autocorrelation and partial autocorrelation functions of the seasonally adjusted

principal component, m̃1. The sample autocorrelation and partial autocorrelation

functions for m̃1, up to lag 20, are shown in Figure 5.9

The sample autocorrelation and partial autocorrelation functions in Figure 5.9

indicate that the first seasonally adjusted principal component can be modelled as

a realisation from a white-noise process. That is, we assume that m̃1 is a realisation

from the process (Xt)t∈Z with Xt = εt and εt ∼ N(0, σ2
ε, 1), where only the value

σ2
ε, 1 is needed to be estimated. The estimate of the variance can be given by the

zero lag sample autocovariance σ̂2
ε, 1 = c(0).

Very similar sample autocorrelation and partial autocorrelation results are

found for the remaining five seasonally adjusted principal components, and there-

fore we judge that they are all realisations from white-noise processes. Esti-

mates for the variance of the white-noise process are found using the training

sets {m̃(ñ)
i , m̃

(ñ+1)
i , . . . , m̃

(n−1)
i }, i = 1, . . . , 6 and with ñ = 1600, n = 2400, giving

σ̂2
ε,i(j), j = 1600, . . . , 2399. The estimates for the standard deviation obtained
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(a) Sample autocorrelation function (correlogram) for the first seasonally adjusted prin-
cipal component, m̃1
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(b) Sample partial autocorrelation function for the first seasonally adjusted principal
component, m̃1

Figure 5.9: Sample autocorrelation (correlogram) and partial autocorrelation func-
tions for the first seasonally adjusted principal component, m̃1, obtained from the
HadCM3 simulator mean sea-level air pressure with wind velocity output.

using training sets of the first four seasonally adjusted principal components are

shown in Figure 5.10 by solid, dotted, dot-dashed and dashed lines respectively.

5.3.1.2 Modelling the principal components as sparse observations from

Ornstein-Uhlenbeck processes

In this section we assume that the seasonally adjusted principal components are re-

alisations from some Ornstein-Uhlenbeck processes, and the method of moments is

used to obtained drift and diffusion parameter estimates for the training samples.
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Figure 5.10: Estimation of the standard deviation of the white-noise process, σ̂ε,i(j)
for seasonally adjusted principal components i = 1, 2, 3, 4, and for training sam-
ples m̃

(j)
i of size j = 1600, 1601, . . . , 2399. The standard deviation estimations

using training samples from the first, second, third and fourth seasonally adjusted
principal component are given by the solid, dotted, dot-dashed and dashed lines
respectively.

Here we obtain parameter estimates for the training sets from the first six sea-

sonally adjusted principal components, {m̃(1600)
i , m̃

(1601)
i , . . . , m̃

(2399)
i }, i = 1, . . . , 6,

giving γ̂sML, i(j) and σ̂2
sML, i(j), j = 1600, . . . , 2399.

Using method of moments parameter estimation

The method of moments parameter estimation (as introduced in Section 2.3.3.1)

is used here.

First, we check which training samples have positive sample lag-1 correlation,

as this is required to be able to apply method of moments. The sample lag-

1 correlation of the training samples m̃
(1600)
i , m̃

(1601)
i , . . . , m̃

(2399)
i , i = 1, . . . , 6, is

shown in Figure 5.11.

From this it is clear that for every seasonally adjusted principal component,

there is at least one training sample that results in a negative sample lag-1 cor-

relation. Thus, the method of moments can not be applied to the full training

set of any of the seasonally adjusted principal components. The second, fourth,

fifth and sixth seasonally adjusted principal components all have training samples
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for which the sample lag-1 correlation is positive (which are shown by the thick

dotted, dot-dashed, solid and long-dashed lines in Figure 5.11, respectively). All

of the training samples from the first and third seasonally adjusted principal com-

ponents have negative sample lag-1 correlation, and these are shown in Figure 5.11

by the thin solid and long dashed-dashed lines respectively. We note that all train-

ing samples have sample lag-1 correlations that lie within the approximate 95%

confidence interval for sample lag-1 correlation of white noise, given by the grey

lines.
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(1

)

Figure 5.11: Sample lag-1 correlations for training samples of the first six sea-
sonally adjusted principal component, m̃

(1600)
i , . . . , m̃2399

i , i = 1, . . . , 6. The thick
dotted, dot-dashed, solid and long-dashed lines correspond to the sample lag-1
correlation for training samples of the second, fourth, fifth and sixth seasonally ad-
justed principal components respectively. These four seasonally adjusted principal
components have, for some training samples, a positive sample lag-1 correlation.
The thin solid and long dashed-dashed lines correspond to the sample lag-1 cor-
relations for training samples of the first and third seasonally adjusted principal
components, which are all negative. The grey solid lines give the approximate 95%
interval for sample lag-1 correlation of white noise.

Now, we apply method of moments on the training samples of the second,

fourth, fifth and sixth seasonally adjusted principal components which have pos-

itive sample lag-1 correlation. From this, we obtain parameter estimates for the

drift and diffusion terms, γ̂MM, i(j), and σ̂2
MM, i(j), for all i ∈ {2, 4, 5, 6} and

j ∈ {1600, 1601, . . . , 2399} where the training sample m̃
(j)
i has positive sample

lag-1 correlation. These estimates are shown in Figure 5.12, with the dotted, dot-

dashed, solid and long-dashed lines corresponding to the sample lag-1 correlations
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of the second, fourth, fifth and sixth seasonally adjusted principal components, re-

spectively. The gaps in the plots correspond to training samples with non-positive

sample lag-1 correlation.
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(a) Estimates γ̂MM, i(j) for seasonally adjusted principal components i = 2, 4, 5, 6 and

training samples of size j ∈ {1600, . . . , 2399}, where m̃
(j)
i has a positive sample lag-1

correlation, given by the dotted, dot-dashed, solid and long-dashed lines respectively.
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(b) Estimates σ̂MM, i(j) for seasonally adjusted principal components i = 2, 4, 5, 6 and

training samples of size j ∈ {1600, . . . , 2399}, where m̃
(j)
i has a positive sample lag-1

correlation, given by the dotted, dot-dashed, solid and long-dashed lines respectively.

Figure 5.12: Ornstein-Uhlenbeck parameter estimates for the second, fourth fifth
and sixth seasonally adjusted principal components, using the method of moments
on the training samples m̃

(j)
i , i = 2, 4, 5, 6, j ∈ {1600, . . . , 2399} which have positive

sample lag-1 correlation. Here, estimates using the second, fourth fifth and sixth
seasonally adjusted principal component are given by the dotted, dot-dashed, solid
and long-dashed lines respectively

305



5. HADCM3: MEAN SEA-LEVEL AIR PRESSURE WITH WIND
OUTPUT

5.3.1.3 Modelling the principal components as observations from block-

average Ornstein-Uhlenbeck processes

In this section we assume that the seasonally adjusted principal components, ob-

tained from the mean sea-level air pressure with wind velocity HadCM3 simulator

output, are realisations from some some block-average Ornstein-Uhlenbeck pro-

cesses (similar to Section 4.4.2.3 for the mean sea-level air pressure output).

We find parameter estimates for the training samples of the first 6 seasonally

adjusted principal component using the block-average Ornstein-Uhlenbeck maxi-

mum likelihood estimator (introduced in Section 2.3.3.3).

For each seasonally adjusted principal component, we obtain estimates γ̂sML, i(j)

and σ̂2
sML, i(j) by applying the maximum likelihood method on the training sample

m̃
(j)
i = (m̃i 1, m̃i 2, . . . , m̃i j), i = 1, . . . , 6, with j = 1600, 1601, . . . , 2399. The pa-

rameter estimates γ̂baML, i(j) and σ̂baML, i(j) for training samples of the first three

seasonally adjusted principal components are shown in Figure 5.13. The some-

what disjointed nature of these estimates is due to optimisation issues, as here the

inverse of large matrices need to be found and optimised over to maximise the

log-likelihood (given in (2.32)). Due to the non-convergence of the optimisation

here, modelling of the seasonally adjusted principal components by block-average

Ornstein-Uhlenbeck processes is not used in the forecasting stage later in this

chapter.

5.3.2 Modelling the independent components

This section mirrors the layout of Section 5.3.1 above. Before modelling the in-

dependent components (that were obtained in Section 5.2), we check for season-

ality, and remove this if present. Then, we assume that the training samples of

the seasonally adjusted independent components are realisations from ARIMA,

Ornstein-Uhlenbeck, and block-average Ornstein-Uhlenbeck processes.

Figure 5.14 shows the correlograms for the first six independent components.

As with the principal components in the section above, here seasonality is present

and therefore we remove it by calculating the seasonal means.
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(a) Maximum likelihood estimator
γ̂baML, 1(j) found using the training sam-
ples of size j = 1600, . . . , 2399 of the first
seasonally adjusted principal component.
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(b) Maximum likelihood estimator
σ̂baML, 1(j) found using the training sam-
ples of size j = 1600, . . . , 2399 of the first
seasonally adjusted principal component.
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(c) Maximum likelihood estimator
γ̂baML, 2(j) found using the training
samples of size j = 1600, . . . , 2399 of
the second seasonally adjusted principal
component.
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(d) Maximum likelihood estimator
σ̂baML, 2(j) found using the training
samples of size j = 1600, . . . , 2399 of
the second seasonally adjusted principal
component.
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(e) Maximum likelihood estimator
γ̂baML, 3(j) found using the training sam-
ples of size j = 1600, . . . , 2399 of the third
seasonally adjusted principal component.
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(f) Maximum likelihood estimator
σ̂baML, 3(j) found using the training sam-
ples of size j = 1600, . . . , 2399 of the third
seasonally adjusted principal component.

Figure 5.13: Maximum likelihood estimators γ̂baML, i(j) and σ̂baML, i(j) found using
training samples of size j = 1600, . . . , 2399 of the first three seasonally adjusted
principal components.
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(a) Autocorrelation function (correlo-
gram) for the first independent compo-
nent, s1, for lags k = 0, 1, . . . , 60.
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(b) Autocorrelation function (correlo-
gram) for the second independent compo-
nent, s2, for lags k = 0, 1, . . . , 60.
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(c) Autocorrelation function (correlogram)
for the third independent component, s3,
for lags k = 0, 1, . . . , 60.
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(d) Autocorrelation function (correlo-
gram) for the fourth independent compo-
nent, s4, for lags k = 0, 1, . . . , 60.
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(e) Autocorrelation function (correlogram)
for the fifth independent component, s5,
for lags k = 0, 1, . . . , 60.
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(f) Autocorrelation function (correlogram)
for the sixth independent component, s6,
for lags k = 0, 1, . . . , 60.

Figure 5.14: Autocorrelation functions (correlogram) for the first six independent
component, s1, . . . , s6, obtained by applying fastICA to the mean sea-level air
pressure with wind velocity HadCM3 simulator output, for lags k = 0, 1, . . . , 60.
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On the left-hand of Figure 5.15 we show the first three independent components

(black line), with the periodic quadratic spline (calculated as in Section 2.3.4.2)

given by the grey line. The right-hand column shows the first three seasonally

adjusted independent components. From this figure, we can see that both the

seasonality and stochasticity of the independent components are much smaller

than in the principal components (shown in Figure 5.8). We have previously

commented on this behaviour in Section 4.4.3, for the principal and independent

components found on the mean sea-level air pressure HadCM3 simulator output.

5.3.2.1 Modelling the independent components as observations from

ARIMA processes

Here we assume that the seasonally adjusted independent components are real-

isations from ARIMA processes. As before, the model structure is found using

the Box-Jenkins method and then estimates for the parameters ϕ1, . . . , ϕp and

ϑ1, . . . , ϑq are calculated.

We do not give detailed steps of the Box-Jenkins method here, as for all

of the first six seasonally adjusted independent components, the sample auto-

correlation and partial autocorrelation plots suggest that the white-noise pro-

cess can be used to model these seasonally adjusted independent components.

Then, the white-noise variance is estimated for the training sets of the six sea-

sonally adjusted independent components, {s̃(1600)
i , . . . , s̃

(2399)
i }, such that we ob-

tain, σ2
ε, i(1600), σ2

ε, i(1601), . . . , σ2
ε, i(2399), i = 1, . . . , 6. The estimated standard

deviations for the training sets of the first four seasonally adjusted independent

components are shown in Figure 5.16.

5.3.2.2 Modelling the independent components as sparse observations

from Ornstein-Uhlenbeck processes

In this section we model the seasonally adjusted independent components (ob-

tained by applying fastICA on the mean sea-level air pressure with wind velocity

HadCM3 simulator output) as realisations from Ornstein-Uhlenbeck processes. As
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(a) First independent component, s1, for
times t = 0, 1, . . . , 119. The grey line gives
the associated quadratic spline.
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(b) First seasonally adjusted independent
component, s̃1, for times t = 0, 1, . . . , 119.
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(c) Second independent component, s2, for
times t = 0, 1, . . . , 119. The grey line gives
the associated quadratic spline.
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(d) Second seasonally adjusted indepen-
dent component, s̃2, for times t =
0, 1, . . . , 119.
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(e) Third independent component, s3, for
times t = 0, 1, . . . , 119. The grey line gives
the associated quadratic spline.

-3

0

3

0 24 48 72 96 120
t

(f) Third seasonally adjusted independent
component, s̃3, for times t = 0, 1, . . . , 119.

Figure 5.15: The left-hand column gives the first three independent components,
s1, s2, s3 for times t = 0, . . . , 119, found by projecting the (column-centred) mean
sea-level air pressure with wind velocity HadCM3 simulator output, X̃, along
the first three independent directions (shown in Figure 5.5), by the black lines.
The grey lines give the quadratic mean function. The right-hand column gives
the first three seasonally adjusted independent components, s̃1, s̃2, s̃3 for times
t = 0, . . . , 119.
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Figure 5.16: Estimation of the standard deviation of the white-noise process,
σ̂ε,i(j), for training samples of the first four seasonally adjusted independent com-

ponents, s̃
(j)
i , i = 1, . . . , 4, j = 1600, . . . , 2399. The estimates using training

samples from the first, second, third and fourth seasonally adjusted independent
components are given by the solid, dashed, dotted and dot-dashed lines respec-
tively.

in previous sections, here we only use the method of moments to obtain estimates

of the drift and diffusion parameters γ and σ2.

As before, we calculate the sample lag-1 correlations for the training sets

{s̃(4000)
i , s̃

(4001)
i , . . . , s̃

(5999)
i }, i = 1, . . . , 6, as we require positive sample lag-1 corre-

lation to apply the method of moments. The sample lag-1 correlations for these

training sets are shown in Figure 5.17. The thick solid and dashed lines corre-

spond to the sample lag-1 correlation for training samples of the first, and fifth

seasonally adjusted independent components respectively. These two seasonally

adjusted independent components have positive sample lag-1 correlation for some

training samples. The thin dotted, dot-dashed, long-dashed and solid lines cor-

respond to the sample lag-1 correlation for training samples of the second, third,

fourth and sixth seasonally adjusted independent components respectively. None

of the training samples from these four seasonally adjusted independent compo-

nents have positive sample lag-1 correlation. The grey solid lines in Figure 5.17

give the approximate 95% interval for sample lag-1 correlation of white noise. Note

that some of the training samples for the fourth and sixth seasonally adjusted in-
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dependent components have sample lag-1 correlations that are outside of this 95%

confidence interval. For the fourth seasonally adjusted independent components,

the number of training samples where this happens is small, and for the sixth sea-

sonally adjusted independent components, the sample lag-1 correlation is always

very close to the lower boundary of the prediction interval for white-noise sample

correlation.
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0.05

1600 1800 2000 2200 2400
Training sample size, j

r j
(1

)

Figure 5.17: Sample lag-1 correlations for training samples of the first six seasonally
adjusted independent components, s̃

(4000)
i , . . . , s̃

(5999)
i , i = 1, . . . , 6. The thick solid

and dashed lines correspond to the sample lag-1 correlations for training samples of
the first, and fifth seasonally adjusted independent components respectively. The
thin dotted, dot-dashed, long-dashed and solid lines correspond to the sample lag-
1 correlations for training samples of the second, third, fourth and sixth seasonally
adjusted independent components. The grey solid lines give the approximate 95%
interval for sample lag-1 correlation of white noise.

For training samples of the first and fifth seasonally adjusted independent com-

ponents that have positive sample lag-1 correlation, we obtain the parameter esti-

mates γ̂MM, i(j) and σ̂MM, i(j), i = 1, 5, for j ∈ {1600, . . . , 2399}. These are shown

in Figure 5.18 by the solid and dashed lines respectively. The gaps in the lines

correspond to training samples that have a non-positive sample lag-1 correlation.
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(a) Estimates γ̂MM, i(j) for seasonally adjusted independent components i = 1, 5 and
training samples of size j = 1600, . . . , 2399.
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(b) Estimates σ̂MM, i(j) for seasonally adjusted independent components i = 1, 5 and
training samples of size j = 1600, . . . , 2399.

Figure 5.18: Ornstein-Uhlenbeck parameter estimates for the first and fifth sea-
sonally adjusted independent components, given by the solid and dashed lines
respectively, using the method of moments on the training samples s̃

(j)
i , i = 1, 5,

j = 1600, . . . , 2399. The estimates are only shown for the training samples of size
j ∈ {1600, . . . , 2399} which have positive sample lag-1 correlation.

5.3.2.3 Modelling the independent components as observations from

block-average Ornstein-Uhlenbeck processes

In this section we assume the seasonally adjusted independent component are

realisations from block-average Ornstein-Uhlenbeck processes, and use maximum

likelihood to find estimates for the drift and diffusion parameters.

Here, for each seasonally adjusted independent component, s̃i, i = 1, . . . , 6 we

apply the maximum likelihood estimation method to the training samples given
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by s̃
(j)
i = (s̃i 0, s̃i 1, . . . , s̃i (j−1)), for j = 1600, . . . , 2399. This give the estimates

γ̂baML, i(j) and σ̂2
baML, i(j), i = 1, . . . , 6, j = 1600, . . . , 2399. The parameter es-

timates obtained in this way for the first three seasonally adjusted independent

component are shown in Figure 5.19. The parameter estimates obtained using

the training samples of the first seasonally adjusted independent component seem

to behave in a discontinuous manner, with a large step-change of the estimates

at approximately j = 1750. These estimates then appear to tend back to their

original values in an asymptotic manner. This could indicate that two separate

stochastic processes are required to model this seasonally adjusted independent

component properly, although we have not investigated this further due to time

constraints. Note also the gap in the parameter estimates for some of the training

samples of the second seasonally adjusted independent component, resulting from

optimisation issues. In this case, the parameter estimates found using the largest

training sample prior to this gap are used in the forecasting stage later in this

chapter.

5.4 Forecasting Principal and Independent Com-

ponents

Now, we use the stochastic models (described in Section 5.3) to forecast the prin-

cipal and independent components, using the forecasting theory introduced in

Chapter 3.

This section follows the same principals as discussed in Section 4.5, such

that we want to obtain one-step-ahead forecasts for the components. That is,

with x = (x0, x1, . . . , xn−1) ∈ Rn some realisation from a stochastic process,

and the training set {x(ñ), x(ñ+1), . . . , x(n−1)}, we calculate the point forecasts

x̂ñ−1(1), x̂ñ(1), . . . , x̂n−2(1) and associated prediction interval.

In Section 5.4.1, we find one-step-ahead forecasts for the first six principal

components, and in Section 5.4.2 we find one-step-ahead forecasts for the first six

independent components. Each of these sections are subdivided into subsections
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(a) Parameter estimates γ̂baML, 1(j) us-
ing training samples of size j =
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(b) Parameter estimates σ̂baML, 1(j) us-
ing training samples of size j =
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(c) Parameter estimates γ̂baML, 2(j) us-
ing training samples of size j =
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(d) Parameter estimates σ̂baML, 2(j) us-
ing training samples of size j =
1600, 1601, . . . , 2399.
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(e) Parameter estimates γ̂baML, 3(j) us-
ing training samples of size j =
1600, 1601, . . . , 2399.
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(f) Parameter estimates σ̂baML, 3(j) us-
ing training samples of size j =
1600, 1601, . . . , 2399.

Figure 5.19: Parameter estimates γ̂baML, i(j) and σ̂baML, i(j), i = 1, 2, 3, found on
training samples of the first three seasonally adjusted independent components, of
size j = 1600, 1601, . . . , 2399.
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corresponding to the mixed forecasting approach, and the block-average Ornstein-

Uhlenbeck forecasting approach (both discussed earlier in Section 4.5.1).

5.4.1 Forecasting principal components

In this section we obtain forecasts for the principal components relating to the

mean sea-level air pressure with wind velocity HadCM3 simulator output (de-

scribed in Section 5.1). In Section 5.4.1.1, forecasts are found using the mixed fore-

casting approach (as described in Panel 4.12). Due to the block-average Ornstein-

Uhlenbeck parameter estimation issue (seen in Section 5.3.1.3), we do not consider

the block-average Ornstein-Uhlenbeck forecasting approach here.

5.4.1.1 Mixed forecasting approach

We have shown (in Section 5.3.1.2) that for the second, fourth, fifth and sixth sea-

sonally adjusted principal components, some of the training samples have positive

sample lag-1 correlation. In these cases, method of moments can be used to obtain

estimates of the Ornstein-Uhlenbeck process drift and diffusion parameters. For

all other training samples, the (non-positive) sample lag-1 correlations were shown

to be within the approximate 95% confidence interval for sample lag-1 correlation

of a realisation from a white-noise processes. Therefore, we judge that the mixed

forecasting approach is a suitable method to obtain point forecasts and prediction

intervals of the principal components.

We show the point forecasts (black line) and prediction intervals (grey shading)

for the first three principal components in Figure 5.20. The grey line shows the

true values of the principal components. Using the mixed forecasting approach,

1.6% of the test sample of the first principal component lies outside the 95%

prediction interval. The proportion seems quite low, suggesting that the prediction

interval is too wide, potentially due to model misspecification. For the test samples

of the second and third principal components, the proportion is 6.5% and 6.2%

respectively.

As seen previously, we assess the validity of the forecasts using root mean-

squared error (as introduced in Section 4.5.1). The solid, dashed and dotted lines
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(a) First principal component for t = 1560, . . . , 1720 (grey solid line). The one-step-
ahead point forecast for is given by the solid black line, with the 95% prediction interval
given by the shaded grey area.
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(b) Second principal component for t = 1560, . . . , 1720 (grey solid line). The one-step-
ahead point forecast for is given by the solid black line, with the 95% prediction interval
given by the shaded grey area.
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(c) Third principal component for t = 1560, . . . , 1720 (grey solid line). The one-step-
ahead point forecast for is given by the solid black line, with the 95% prediction interval
given by the shaded grey area.

Figure 5.20: First, second and third principal components plotted as a time series
for time t = 1560, . . . , 1720 (grey solid line). The one-step-ahead point forecast
found using the mixed forecasting method is given by the solid black line, with the
95% prediction interval given by the shaded grey area.
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in Figure 5.21 show the rolling averages of the root mean-squared error between

the point forecasts for the first, second and third principal component, and the

actual principal components, respectively.
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Figure 5.21: Rolling average of the root mean-squared error between the true
principal components and the respective point forecasts, found using the mixed
forecasting approach. The rolling average of the root mean-squared error between
the first, second and third principal component and the associated one-step-ahead
forecasts is given by the solid, dashed and dotted line respectively.

5.4.2 Forecasting independent components

Similarly to Section 5.4.1, here one-step-ahead forecasts are found for the first six

independent components obtained by applying the fastICA method to the mean

sea-level air pressure with wind velocity HadCM3 simulator output. Here we

obtain forecasts using both the mixed forecasting approach, and the block-average

Ornstein-Uhlenbeck forecasting approach (as discussed in Section 4.5.1).

5.4.2.1 Mixed forecasting approach

From Section 5.3.2.2 it was shown that for a subset of the training sets from

the first and fifth seasonally adjusted independent components, the method of

moments parameter estimation could be used to obtain estimates assuming an
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underlying Ornstein-Uhlenbeck process. All other training samples from the first

six seasonally adjusted independent component have non-positive sample lag-1

correlation. A subset of these (from the fourth and sixth seasonally adjusted inde-

pendent components) are below the lower bound of the 95% confidence interval for

sample lag-1 correlation of white-noise realisations (seen in Figure 5.17). However,

only a very small number of training samples from the fourth seasonally adjusted

independent component have sample lag-1 correlations that are below this bound,

and the training samples from the sixth seasonally adjusted independent compo-

nent all have sample lag-1 correlations that are very close to this lower bound.

Due to this, we judge that the mixed forecasting approach can be used here.

In Figure 5.22 we show the first three independent components obtained by

applying fastICA to the mean sea-level air pressure with wind velocity HadCM3

simulation output by the grey line. The black lines give the one-step-ahead forecast

and the grey shading the approximate 95% prediction interval, using the mixed

forecasting approach. Here, 12.0% of the test set for the first independent com-

ponent, s1 1600, s1 1601, . . . , s1 2399, lie outside of the associated approximate 95%

prediction interval. The proportion of the test sets of the second and third prin-

cipal components that lie outside of the approximate 95% prediction interval is

2.1% and 1.1% respectively.

We now consider the root mean-squared error of these forecasts. In Figure 5.23

we show the rolling average of the root mean-squared error between the point

forecast found using mixed forecasting approach for the first three independent

components, and the true independent components. Examining Figure 5.23, and

recalling that 12% of the test set of the first independent component lies outside

of the approximate 95% prediction interval, suggests that this independent com-

ponent is not modelled very well. The rolling root mean-squared error for the

first independent component is consistently above that for the second and third

independent component.

5.4.2.2 Block-average Ornstein-Uhlenbeck forecasting approach

Here we obtain forecasts for the independent components using the block-average

Ornstein-Uhlenbeck forecasting approach, with the block-average Ornstein-Uhlenbeck
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(a) First independent component for t = 1560, . . . , 1720 (grey solid line). The one-step-
ahead point forecast for is given by the solid black line, with the 95% prediction interval
given by the shaded grey area.
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(b) Second independent component for t = 1560, . . . , 1720 (grey solid line). The one-
step-ahead point forecast for is given by the solid black line, with the 95% prediction
interval given by the shaded grey area.
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(c) Third independent component for t = 1560, . . . , 1720 (grey solid line). The one-step-
ahead point forecast for is given by the solid black line, with the 95% prediction interval
given by the shaded grey area.

Figure 5.22: First, second and third independent components plotted as a time
series for time t = 1560, . . . , 1720 (grey solid line). The black line gives the one-
step-ahead point forecast, and the grey shading gives the 95% prediction interval,
when the mixed forecasting approach is used.

320



5.4 Forecasting Principal and Independent Components

1

2

3

1600 1800 2000 2200 2400
Training sample size, j

R
M

S
E

Figure 5.23: Rolling average of the root mean-squared error between the true
independent components and the respective point forecasts using the mixed fore-
casting approach. The rolling average of the root mean-squared errors between the
first, second and third independent component and the associated one-step ahead
forecasts are given by the solid, dashed and dotted lines respectively.

parameter estimates found in Section 5.3.1.3. The point forecasts and prediction

intervals here are all very similar to those seen when the mixed forecasting approach

was used (Section 5.4.2.1), and therefore have been placed in Appendix B.1. These

figures are:

• The point forecasts and 95% prediction intervals for the first three indepen-

dent components, shown in Figure B.1;

• The rolling average of the root mean-squared error between the point fore-

casts for the first three independent components, and the true independent

components, shown in Figure B.2;

Using the block-average Ornstein-Uhlenbeck forecasting approach, 12.0% of the

test set for the first independent component, s1 1600, s1 1601, . . . , s1 2399, lie outside

of the associated approximate 95% prediction interval. The proportion of the test

sets of the second and third principal components that lie outside of the approx-

imate 95% prediction interval is 2.1% and 1.1% respectively. For the first three

independent components, the same proportion of the test samples are outside of
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the respective 95% prediction intervals here as they were for the prediction interval

found using the mixed forecasting approach (Section 5.4.2.1). This suggests that

these prediction intervals are extremely similar to one-another.

The similarity of the root mean-squared errors here to those found using the

mixed forecasting approach implies that the point forecasts of the two forecasts

methods are very similar, and that the misspecification of the model in the mixed

forecasting approach does not greatly affect the outcome. This was also the case for

the mean sea-level air pressure HadCM3 simulator output examined in Chapter 4.

In this section we have calculated point forecasts and prediction intervals for

the independent components, using both the mixed forecasting approach and the

block-average forecasting approach. We have found that both these forecasting

approaches give extremely similar point forecasts and prediction intervals. This

is shown by the comparability of the root mean-squared errors between the true

components and the point forecasts, and by the equal proportion of test samples

that lie outside the prediction intervals.

5.5 Reconstruction of the Climate Simulator Out-

put

We now compare the full mean sea-level air pressure with wind velocity HadCM3

simulator output to the principal and independent component reconstructions,

and to the forecasted principal and independent component reconstructions. The

reconstructions are obtained using inverse principal component analysis (intro-

duced in Panel 4.13) and inverse independent component analysis (introduce in

Panel 4.14).

In Section 5.5.1 we give an introduction to these reconstructions. Then, we

analyse the forecasted principal component reconstructions in Section 5.5.2, and

the forecasted independent component reconstructions in Section 5.5.3.
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5.5.1 Introduction to reconstructing the climate simulator

output

Throughout this section, we use visual comparisons of the reconstructions at times

t = 1600 and t = 2000. Recall that the forecasts for the components (found in

Section 5.4 above) are found for times t = 1600, 1601, . . . , 2399, such that here we

look at reconstructions are the beginning and at the midpoint of the forecasts.

The mean sea-level air pressure and wind velocity HadCM3 simulator output

at times t = 1600 and t = 2000 is shown in Figure 5.24. As before (and throughout

this section) the arrows represent the wind velocity and have the properties given

in Figure 5.2.

(a) Time, t = 1600. (b) Time, t = 2000.

Figure 5.24: Mean sea-level air pressure and wind velocity HadCM3 simulator
output at times t = 1600 and t = 2000.

We assess the validity of the forecasts by calculating the root mean-squared

errors for the reconstructions. These errors are calculated for the mean sea-level

air pressure and for the wind velocity separately in the following way.

First, recall that the HadCM3 simulator output here is given by the matrix

X ∈ R2400×((73×96)+2(72×96)), such that the first 73× 96 = 7008 columns of X relate

to the mean sea-level air pressure output, and the last 2·(72×96) = 13824 columns

of X relate to the wind velocity output. Therefore the mean sea-level air pressure

output can be given by the matrix Xmslp ∈ R2400×7008, and the wind velocity output

by Xwind ∈ R2400×13824, such that the full output satisfies X = (Xmslp Xwind).

This notation is mirrored with the principal and independent component re-

constructions, given by the matrix Z(l) ∈ Rn×p with n = 2400 and p = (73× 96) +
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2 × (72 × 96) = 20832. That is, we split Z(l) into the mean sea-level air pressure

component, Z
(l)
mslp ∈ R2400×7008, by taking the first 7008 column of Z(l), and the

wind velocity component Z
(l)
wind ∈ R2400×13824, by taking the last 13824 columns of

Z(l).

In this case, the root mean-squared error between the mean sea-level air pres-

sure part of the principal or independent component reconstructions (using l com-

ponents), given by Z
(l)
mslp, and the true mean sea-level air pressure output is,

emslp(t : l) :=
( 1

73× 96

73×96∑
i=1

(z
(l)
ti − xti)2

)1/2

=
( 1

7008

7008∑
i=1

(z
(l)
ti − xti)2

)1/2

. (5.2)

Similarly, the equivalent root mean-squared error for the wind velocity principal

or independent component reconstruction is,

ewind(t : l) :=
( 1

2× (72× 96)

(73×96)+2(72×96)∑
i=(73×96)+1

(z
(l)
ti − xti)2

)1/2

=
( 1

13824

20832∑
i=7009

(z
(l)
ti − xti)2

)1/2

, (5.3)

where as before, Z(l) =
(
z

(l)
0 · · · z

(l)
n−1

)> ∈ Rn×p and X = (x0 · · · xn−1)> ∈ Rn×p

are such that zij (respectively, xij) is the (i+ 1)th row, jth column element of Z(l)

(respectively, X).

Let M̂
(l)
ñ ∈ R2400×l be the matrix with the first l principal components as

columns, but with the test samples of the principal components, given by the

elements mi ñ, mi ñ+1, . . . , mi n−1, are replaced by some one-step-ahead forecasts

m̂i ñ−1(1), . . . , m̂i n−2(1). This is the same definition as (4.8) (Section 4.6.1). Sim-

ilarly, Ŝ
(l)
ñ ∈ R2400×l has columns given by the first l independent components,

where the test samples of the independent components are replaced by the one-

step-ahead point forecasts (as introduced in (4.9)). Throughout this section we

have n = 2400 and we set ñ = 1600 and l = 6.
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Forecasted principal or independent component reconstructions are given by

the matrix Ẑ
(l)
ñ . As seen above, this can be split into the mean sea-level air

pressure part and the wind velocity part to give Ẑ
(l)
ñ,mslp ∈ R2400×7008 and Ẑ

(l)
ñ,wind ∈

R2400×13824 respectively, such that Ẑ
(l)
ñ = (Ẑ

(l)
ñ,mslp Ẑ

(l)
ñ,wind).

In this case, the root mean-squared errors between the forecasted principal or

independent component reconstructions, and the true HadCM3 output, is given

by

êmslp(t : l, X) :=
( 1

7008

7008∑
i=1

(ẑ
(l)
ti − xti)2

)1/2

, (5.4)

and,

êwind(t : l, X) :=
( 1

13824

20832∑
i=7009

(ẑ
(l)
ti − xti)2

)1/2

, (5.5)

for the mean sea-level air pressure, and the wind velocity, respectively, with Ẑ
(l)
ñ =(

ẑ
(l)
0 · · · ẑ

(l)
n−1

)> ∈ Rn×p.

Similarly, the root mean-squared errors between the forecasted principal or in-

dependent component reconstructions and the principal or independent component

reconstructions is given by

êmslp(t : l, Z) :=
( 1

7008

7008∑
i=1

(ẑ
(l)
ti − z

(l)
ti )2

)1/2

, (5.6)

using the mean sea-level air pressure part, and,

êwind(t : l, Z) :=
( 1

13824

20832∑
i=7009

(ẑ
(l)
ti − z

(l)
ti )2

)1/2

, (5.7)

for the wind velocity part.

The rolling average of the root mean-squared errors is considered. For the root

mean-squared errors between the principal or independent component reconstruc-

tions and the true HadCM3 output ((5.2) and (5.3)), this is given by

1

j − 1599

j∑
t=1600

emslp(t : l); and;
1

j − 1599

j∑
t=1600

ewind(t : l); (5.8)
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for j = 1600, . . . , 2399. The rolling averages are similarly defined for the root

mean-squared errors (5.6), (5.7), (5.4), and (5.5).

5.5.2 Reconstruction using principal components

In this section we find forecasted principal component reconstructions, and we

compare these to the true HadCM3 simulator output, and to the principal com-

ponent reconstructions with l = 6 principal components.

We first introduce the principal component reconstructions in Section 5.5.2.1,

and compare these to the true HadCM3 simulator output. In Section 5.5.2.2 we

consider forecasted principal component reconstructions using the mixed forecast-

ing approach to obtain the matrix M̂
(l)
ñ . Recall that the block-average Ornstein-

Uhlenbeck forecasting approach did not give adequate results in Section 5.3.1.3

and is therefore not considered here.

5.5.2.1 Principal component reconstructions

Here we give principal component reconstructions for l = 6 principal components,

and compare them to the HadCM3 simulator output. We show the principal

component reconstructions for times t = 1600 and t = 2000 in Figure 5.25. The

differences between the HadCM3 simulator output (given in Figure 5.24) and the

principal component reconstructions at these times are shown in Figure 5.26.

(a) Time, t = 1600. (b) Time, t = 2000.

Figure 5.25: Principal component reconstructions using l = 6 principal com-
ponents of the mean sea-level air pressure with wind velocity output, at times
t = 1600 and t = 2000.
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(a) Time, t = 1600. (b) Time, t = 2000.

Figure 5.26: Difference between the HadCM3 mean sea-level air pressure with wind
velocity HadCM3 simulated output, and the principal component reconstructions
using l = 6 principal components, at times t = 1600 and t = 2000.

We calculate the root mean-squared errors for the differences between the

HadCM3 simulator output and the principal component reconstructions at times

t = 1600, 1601, . . . , 2399, as shown by the grey circles in Figure 5.27. The black

lines show the associated rolling average (as given by (5.8)). As we discussed in

the introduction above (Section 5.5.1), the root mean-squared error calculations

are split between the mean sea-level air pressure output and the wind velocity out-

put. The range of the mean sea-level air pressure values in the HadCM3 simulator

output is 95600 Pa to 104800 Pa and the standard deviation is 1261. This com-

pares to the range of the wind velocity which is −14.8 to 19.7 ms−1 with standard

deviation 3.3.

5.5.2.2 Reconstruction errors using the mixed forecasting approach

In this section we analyse the forecasted principal component reconstructions when

the mixed forecasting approach is used for l = 6 principal components (as shown

in Section 5.4.1.1). Figure 5.28 shows the forecasted principal component recon-

structions at times t = 1600 and t = 2000.

The differences between the true HadCM3 simulator output and the forecasted

principal component reconstructions using the mixed forecasting approach at times

t = 1600 and t = 2000 is shown in Figure 5.29. Figure 5.30 gives the differences

between the principal component reconstructions and the forecasted principal com-

ponent reconstructions at the same time points.
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(a) Root mean-squared error per grid cell
for the mean sea-level air pressure outputs
(calculated using (5.2)).
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(5.3)).

Figure 5.27: The grey circles give the root mean-squared error per grid cell between
the true HadCM3 simulator output and the principal component reconstructions
with l = 6 principal components. The black lines give the rolling average of the
root mean-squared errors.

(a) Time, t = 1600. (b) Time, t = 2000.

Figure 5.28: Forecasted principal component reconstruction of the mean sea-level
air pressure with wind velocity HadCM3 simulator output using the mixed fore-
casting approach, at times t = 1600 and t = 2000.

Now we use root mean-squared errors to assess the validity of the forecasted

principal component reconstructions. As described in this section’s introduction

(Section 5.5.1), the reconstructions are split into the mean sea-level air pressure

part, and the wind velocity part. For both of these parts, we calculate the root

mean-squared errors between the forecasted principal component reconstructions

and: (i) the true HadCM3 simulator output (calculated using (5.4) and (5.5)), and;

(ii) the principal component reconstructions (calculated using (5.6) and (5.7)).

These are shown by the grey circles in Figure 5.31 and Figure 5.32 respectively.
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(a) Time, t = 1600. (b) Time, t = 2000.

Figure 5.29: Difference between the true HadCM3 simulator output, and the fore-
casted principal component reconstructions using the mixed forecasting approach,
at times t = 1600, 2000.

(a) Time, t = 1600. (b) Time, t = 2000.

Figure 5.30: Difference between the principal component reconstructions (using l =
6 principal components) and the forecasted principal component reconstructions
using the mixed forecasting approach, at times t = 1600, 2000.

The black lines give the associated rolling averages.

In this section we have analysed reconstructions of the HadCM3 simulator

output using forecasted principal components found using the mixed forecasting

approach. We have shown that the root mean-squared errors of the difference

between the forecasted principal component reconstructions and the true HadCM3

simulator are slightly larger than those of the difference between the true principal

component reconstructions and the HadCM3 simulator. We have also looked at

the differences between the forecasted principal component reconstructions, the

principal component reconstructions, and the HadCM3 simulator output at times

t = 1600 and t = 2000. These are included to allow an expert to judge whether

there are any systematic errors occurring in the reconstructions.
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(a) Root mean-squared error per grid cell
of the mean sea-level output as in (5.4).
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(b) Root mean-squared error per grid cell
of the wind outputs as in (5.5).

Figure 5.31: The grey circles give the root mean-squared errors per grid cell be-
tween the forecasted principal component reconstructions, found using the mixed
forecasting approach, and the true HadCM3 simulator output. This is split into
the root mean-squared error of the mean sea-level air pressure values given by
(5.4), and the root mean-squared error of the wind values given by (5.5). The
running average of root mean-squared error over time (5.8) is given by the black
line.
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(a) Root mean-squared error per grid cell
of the mean sea-level output as in (5.6).
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(b) Root mean-squared error per grid cell
of the wind outputs as in (5.7).

Figure 5.32: The grey circles give the root mean-squared errors per grid cell be-
tween the forecasted principal component reconstructions, found using the mixed
forecasting approach, and the principal component reconstructions, using l = 6
principal components. This is split into the root mean-squared error of the mean
sea-level air pressure values given by (5.6), and the root mean-squared error of the
wind values given by (5.7). The running average of root mean-squared error over
time (5.8) is given by the black line.
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5.5.3 Reconstruction using independent components

In this section we find forecasted independent component reconstructions, and we

compare these to the true HadCM3 simulator output, and to the independent

component reconstructions.

In Section 5.5.3.1 we introduce the independent component reconstructions and

compare these to the HadCM3 simulator output. Then, we consider forecasted in-

dependent component reconstructions using the mixed forecasting approach in

Section 5.5.3.2, and using the block-average Ornstein-Uhlenbeck forecasting ap-

proach in Section 5.5.3.3. This section has a similar layout as Section 5.5.2 (with

the inclusion of the block-average Ornstein-Uhlenbeck forecasting approach), and

all the plots produced here can be compared to the respective plots shown earlier.

5.5.3.1 Independent component reconstructions

The independent component reconstructions at times t = 1600 and t = 2000 are

given in Figure 5.33. The differences between the HadCM3 simulator output and

the independent component reconstructions at times t = 1600 and t = 2000, are

shown in Figure 5.34.

(a) Time, t = 1600. (b) Time, t = 2000.

Figure 5.33: Mean sea-level air pressure with wind velocity HadCM3 simulator
independent component reconstructions (with l = 6 independent components), at
times t = 1600 and t = 2000.

We now consider the root mean-squared errors between the true HadCM3 sim-

ulator output and the independent component reconstructions. The grey circles

in Figure 5.35 give the root mean-squared errors for the independent component

reconstructions, split into the mean sea-level air pressure component, and wind

331



5. HADCM3: MEAN SEA-LEVEL AIR PRESSURE WITH WIND
OUTPUT

(a) Time, t = 1600. (b) Time, t = 2000.

Figure 5.34: Difference between the true mean sea-level difference pressure with
wind velocity HadCM3 simulator output and the independent component recon-
structions using l = 6 independent components at times t = 1600 and t = 2000.

velocity component (calculated using (5.2) and (5.3), respectively). The black

lines show the rolling average of the root mean-squared error. As expected (see

Remark 4.18), the root mean-squared errors are larger here than for the principal

component reconstructions (shown in Figure 5.27).

200

400

600

800

1600 1800 2000 2200 2400
t

R
M

S
E

(a) Root mean-squared error per grid cell
of the mean sea-level output as in (5.2).
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(b) Root mean-squared error per grid cell
of the wind outputs as in (5.3).

Figure 5.35: Root mean-squared error per grid cell between the true HadCM3
simulator output and the independent component reconstructions, using l = 6
independent components, split into the mean sea-level air pressure output and the
wind velocity output. The running average of root mean-squared error over time
(calculated using (5.8)) is given by the black line.
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5.5.3.2 Reconstruction errors using the mixed forecasting approach

In this section we analyse the forecasted independent component reconstructions

when the mixed forecasting approach is used to obtain one-step-ahead forecasts for

the first l = 6 independent components (as seen in Section 5.4.2.1). The forecasted

independent component reconstructions using the mixed forecasting approach are

shown in Figure 5.36 for times t = 1600 and t = 2000.

The difference between the true mean sea-level air pressure with wind veloc-

ity HadCM3 simulator output and the forecasted independent component recon-

structions using the mixed forecasting approach is shown for times t = 1600 and

t = 2000 in Figure 5.37. The difference between the independent component

reconstructions using l = 6 independent components, and the forecasted indepen-

dent component reconstructions using the mixed forecasting approach is shown for

times t = 1600 and t = 2000 in Figure 5.38.

(a) Time, t = 1600. (b) Time, t = 2000.

Figure 5.36: Forecasted independent component reconstructions of the mean sea-
level air pressure with wind velocity using the mixed forecasting approach, at times
t = 1600, 2000.

We now consider the root mean-squared errors for the reconstructions, split

into the mean sea-level air pressure component and the wind velocity component.

The grey circles in Figure 5.39 and Figure 5.40 give the root mean-squared error

between the forecasted independent component reconstructions using the mixed

forecasting approach, and: (i) the true HadCM3 simulator output, and; (ii) the

independent component reconstructions using l = 6 independent components, re-

spectively. The black lines give the rolling average of the root mean-squared errors.
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(a) Time, t = 1600. (b) Time, t = 2000.

Figure 5.37: Difference between the true mean sea-level air pressure with wind
velocity HadCM3 simulator output and the forecasted independent component
reconstructions using the mixed forecasting approach, at times t = 1600, 2000.

(a) Time, t = 1600. (b) Time, t = 2000.

Figure 5.38: Difference between the independent component reconstruction (with
l = 6 independent components) of the mean sea-level air pressure with wind ve-
locity HadCM3 simulator output, and the forecasted independent component re-
constructions using the mixed forecasting approach, at times t = 1600, 2000.

One comment to make here is that the rolling average of the root mean-squared

error between the true HadCM3 simulator output and the forecasted independent

component reconstructions is very similar to the rolling average of the root mean-

squared error between the true HadCM3 output and the independent component

reconstructions (shown in Figure 5.35). For the equivalent principal component

reconstructions, there was a clear difference in quality between the reconstructions

found using the forecasts and using the true principal components (which can be

seen by comparing Figure 5.31 and Figure 5.27).
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(a) Root mean-squared error per grid cell
of the mean sea-level pressure.
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Figure 5.39: The grey circles give the root mean-squared error per grid cell be-
tween the true HadCM3 simulator output and the forecasted independent compo-
nent reconstructions using the mixed forecasting approach. The black lines give
the associated rolling average of the root mean-squared errors. The root mean-
squared errors are split into those from the mean sea-level air pressure component
(calculated using (5.4)), and from the wind velocity component (calculated using
(5.5)).
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Figure 5.40: The grey circles give the root mean-squared error per grid cell between
the independent component reconstructions and the forecasted independent com-
ponent reconstructions using the mixed forecasting approach. The black lines give
the associated rolling average of the root mean-squared errors. The root mean-
squared errors are split into those from the mean sea-level air pressure component
(calculated using (5.6)), and from the wind velocity component (calculated using
(5.7)).
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5.5.3.3 Reconstruction errors using the block-average Ornstein-Uhlenbeck

forecasting approach

In this section we consider the forecasted independent component reconstructions

when the block-average Ornstein-Uhlenbeck forecasting approach is used to obtain

one-step-ahead forecasts for the first l = 6 independent components. We described

these independent component forecasts in Section 5.4.2.2. Here the reconstructions

are very similar to those seen in Section 5.5.3.2 and therefore the figures have been

placed in Appendix B.2. These figures include:

• The forecasted independent component reconstructions using the block-average

Ornstein-Uhlenbeck forecasting approach, at times t = 1600 and t = 2000,

shown in Figure B.3;

• The difference between the true HadCM3 simulator output and the fore-

casted independent component reconstructions at times t = 1600 and t =

2000, shown in Figure B.4;

• The difference between the independent component reconstructions (using

l = 6 independent components), and the forecasted independent component

reconstructions, at times t = 1600 and t = 2000, shown in Figure B.5;

• The root mean-squared errors between the forecasted independent compo-

nent reconstructions using the block-average Ornstein-Uhlenbeck forecasting

approach, and: (i) the true HadCM3 simulator output, shown in Figure B.6,

and; (ii) the independent component reconstructions using l = 6 indepen-

dent components, shown in Figure B.7.

There is very little difference between the root mean-squared errors found using

the mixed forecasting approach (seen in Figures 5.39 and 5.40), and found using

the block-average Ornstein-Uhlenbeck forecasting approach. This suggests that

the two forecasting approaches give very similar reconstructions, and the pointwise

misspecification of the mixed forecasting approach does not significantly affect the

resulting forecasts.

In this section we considered reconstructions of the HadCM3 simulator out-

put using forecasted independent components found with the mixed forecasting
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approach and the block-average forecasting approach. As was expected from the

similarities seen in the component point forecasts and prediction intervals (Sec-

tion 5.4.2), both of the forecasting approaches gave similar reconstructions with

similar root mean-squared errors (when compared to the true HadCM3 simulator

output). We also note that the forecasted independent component reconstruc-

tions have a similar root mean squared error to the true independent component

reconstructions, when these are compared to the true HadCM3 simulator out-

put. This behaviour is the same as that found for the independent component

reconstructions (Section 4.6.3) and suggests that there is very little increase in the

total reconstruction error when the true independent components are replaced by

forecasted components.

5.6 Concluding remarks

We conclude this chapter with some remarks on the applications of the techniques

introduced in Part I on the mean sea-level air pressure with wind velocity HadCM3

simulator output. These remarks are split into those relating to the stochastic mod-

elling of the components (as seen in Section 5.3), those relating to the component

forecasts (as in Section 5.4), and relating to the forecasted reconstructions (as in

Section 5.5). We will also comment on similarities and differences between the

results seen in this chapter to those seen in Chapter 4.

As with the principal and independent components seen in Chapter 4, those

found in this chapter also contained strong seasonality. This was shown for the

principal and independent components in the plots of the autocorrelation func-

tions, Figure 5.7 and Figure 5.14, respectively. The seasonality of the principal

components here is much stronger than that of the independent components, which

was also the case in Chapter 4 (and that we discussed in Section 4.7).

In this chapter we did not model the components using the sparse maximum

likelihood approach as this method was shown to be deficient in the previous

chapter (Section 4.4.2.2). When we applied the method of moments to the training

samples of the components, we encountered the same issue with regards to non-

positive sample lag-1 correlations as in the previous chapter. This is a fundamental
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issue with the method of moments, and resulted in us being unable to obtain drift

and diffusion estimates for many of the training samples.

Modelling the principal components as realisations from block-average Ornstein-

Uhlenbeck processes resulted in some non-convergence of the maximum likelihood

method (as seen in Figure 5.13). This was due to numerical errors when inverting

the covariance matrix. As discussed when the block-average Ornstein-Uhlenbeck

maximum likelihood estimation method was introduced (in Section 2.3.3.3), we

use the Cholesky decomposition to obtain the inverse and determinant of the co-

variance matrix, as Trench’s algorithm cannot obtain the latter. Replacing this

with a more efficient algorithm should help avoid numerical issues here, and this

is considered as useful future research. We note that this issue did not arise to the

same extent when looking at the principal and independent components obtained

from the mean sea-level air pressure HadCM3 output in Chapter 4.

In the forecasting section (Section 5.4), we used the mixed forecasting approach

to obtain forecasts for the principal components, and both the mixed forecasting

and the block-average Ornstein-Uhlenbeck forecasting approaches to obtain fore-

casts for the independent components. The block-average Ornstein-Uhlenbeck

forecasting approach was not used on the principal components due to the issues

with the maximum likelihood estimation discussed above. The two approaches

used for forecasting the independent components gave very similar point forecasts

and prediction intervals (as can be seen by comparing Figures 5.22 to B.1). This

was also seen for the independent components in Chapter 4. As we discussed there,

future research is required here to determine the reason why the misspecification

in the mixed forecasting approach did not greatly affect the forecasts.

Also, similar to the prediction intervals seen in Chapter 4, some of the inter-

vals found here were much wider than expected. Most notably, the prediction

intervals for the first principal component (Section 5.4.1), and for the second and

third independent components (Section 5.4.2). The prediction intervals for the

first independent component (found using both the mixed and the block-average

Ornstein-Uhlenbeck forecasting approaches) appears to be too narrow, as 12% of

the test sample lay outside of these approximate 95% prediction intervals. As

we discussed in the previous chapter, this suggests that the models we used on
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these components were sub-optimal, and we recommend some further analysis on

different models that can be applied here.

In the reconstruction section (Section 5.5), we saw that the root mean-squared

errors for the principal component reconstructions compared to the true HadCM3

simulator output (seen in Figure 5.27) were in general smaller than for the in-

dependent component reconstructions (Figure 5.35). This is expected due to the

properties of principal component analysis (discussed in Remark 4.18), and was

also seen in Chapter 4.

Another similarity with the analysis in Chapter 4, is that the rolling average

of the root mean-squared errors between the forecasted independent component

reconstructions (using both forecasting approaches) and the HadCM3 simulator

output are very similar to the rolling average of the errors between the independent

component reconstructions and the HadCM3 simulator output. This can be seen

be comparing Figures 5.39 (using the mixed forecasting approach) or B.6 (using the

block-average Ornstein-Uhlenbeck forecasting approach) to Figure 5.35. This im-

plies that the forecasts can successfully replace the independent components with

very little additional error being introduced. This is not the case for the principal

component forecasts, where the forecasted principal component reconstructions

introduce additional error above the principal component reconstruction, which

can be seen by comparing Figure 5.29 (where the mixed forecasting approach is

used) to Figure 5.27.
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Concluding Remarks

In this thesis we have attempted to find an approach to simplify the high-dimensional

HadCM3 simulator output. Initial steps involved using dimension reduction tech-

niques to obtain a basis vector of the span of the simulator output. Then, taking

a selection of these basis vectors and the associated projections, we have modelled

these projections using various stochastic models, assuming the information lost

by only choosing a subset of the basis vectors can be replaced by some random-

ness. Using forecasts based on these stochastic models, one-step-ahead forecasts

can then be found for the projections obtained in the dimension reduction step.

In Part II of this thesis, the theory discussed in Part I was applied to some

data obtained from the HadCM3 climate simulator. Comparisons were made on

the reconstructed simulator output using the various forecasts obtained from the

stochastic process assumptions. In addition to this, some issues regarding ap-

plying the theoretical methods discussed in Part I came to light, most notably

with respect to the sparse maximum likelihood, and the block-average Ornstein-

Uhlenbeck maximum likelihood parameter estimation methods.

In these last pages, an attempt is made to tie together some of the loose strings

from the previous chapters, and to give some ideas for further research stemming

from this thesis. First, some comments are made on the successes and failures

present in this document.

With regards to forecasting the reconstructions of the HadCM3 simulator out-

put in Part II, using the one-step-ahead forecasts for the principal and independent

components and the respective inverse methods gave reconstructions that were, in

general, quite similar to the true output. We also found that when the independent

components were replaced with their forecasts, the resulting reconstructions had
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similar errors when compared to the true HadCM3 simulator output. This suggests

that these forecasts can replace the true components with minimal addition error

introduced to the reconstructions. For both the principal and independent com-

ponents, the misspecification of these components by pointwise stochastic models

did not show up in the end result, and indeed the two forecasting methods ex-

amined produced extremely similar reconstructions. One hypothesis made here is

that the stochasticity of the components has a much smaller effect on the resulting

reconstruction forecasts than the deterministic seasonal effects do. Investigating

the impacts of the seasonal effects and the stochastic effects on the reconstructions

separately is grounds for further research here.

In Part I of this thesis, the clusterICA method introduced some interesting

novel techniques for obtaining independent components. Most notably, the ap-

proach of clustering the initial directions in projective spaces could be a useful

technique for improving established independent component analysis methods.

This novel clustering of the search space could be added to some of these es-

tablished methods to produce an independent component analysis method that

results in a superior algorithm, as discussed below. However, in the algorithm’s

current form there are many scenarios where established independent component

analysis methods are both quicker and result in better independent components

(in terms of having a lower M -spacing entropy).

The introduction of block-average Ornstein-Uhlenbeck processes in this thesis

was novel in the context of simulators that give some averaged output. The use

of these processes (and the periodic mean functions) have many applications in

modelling climate data, alongside the associated maximum likelihood parameter

estimation method and the forecasting theory. However, the convergence of this

maximum likelihood parameter estimation method needs further work. This was

seen when we modelled the principal components obtained from the mean sea-

level pressure with wind velocity HadCM3 simulator output, where some spurious

estimates were found. One issue here could be due to the fact that the optimisation

is performed over the full covariance matrix (as in (2.18)), which can be extremely

large. The symmetric Toeplitz form of this matrix could be examined to find more

efficient methods for finding its determinant, which is currently the most intensive

part of the optimisation stage.
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Further Research

Examining the component forecasts obtained in Part II in detail would be, I be-

lieve, fruitful further research. The hypothesis here – that the seasonal structure

in the components dominant the stochastic part when considering the errors in

the reconstructions – could be closely examined. It is also interesting that in

general, the stochastic processes were better at modelling the independent com-

ponents than they were the principal components (with regards to the forecasted

reconstructions), as the latter should theoretically be better suited to the Gaus-

sian models used in this thesis. Further work could be done on considering the

seasonality of the independent components as a source for the non-Gaussianity of

these components. This leads to the question: once seasonality is removed from

the independent components, are the remaining residuals suitable to be modelled

by Gaussian stochastic processes? If so, is this some more general behaviour of

independent components or is it only applicable to our specific examples?

As noted above, one major part of any further research could be to improve the

clusterICA method such that it consistently beats other established independent

component analysis methods. The obvious way forward for this research would be

to merge the clustering step in an established method. For example, with random

directions in the initialisation, and then after clustering these random directions,

optimisation using the established methods could be performed on this set of

(hopefully diverse) directions. Looking at it from the other direction, another

way to improve the clusterICA algorithm could be to find initial directions using

the various contrast functions found in the established methods, alongside a set

of random directions. Then, these directions could be put into clusters before

optimising. This was briefly discussed with respect to fastICA in Section 1.4.2.5.

Finally, another avenue for further research is in the block-average Ornstein-

Uhlenbeck maximum likelihood estimation. It is noted in this thesis that Trench’s

Algorithm (Trench, 1964) is efficient for obtaining the inverse of the associated

covariance matrix. However, the determinant can not be obtained in this way,

and we have not been able to find similar methods to do so. This lack of an effi-

cient method for finding the determinant slows the optimisation step considerably

and potentially results in the numerical issues that were seen in Section 5.3.1.3.
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Research into whether it is possible to exploit the symmetrical Toeplitz structure

of the covariance matrix associated with the block-average Ornstein-Uhlenbeck

process would be extremely useful here.
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Appendix A

Figures from Chapter 4

This appendix includes additional figures from Chapter 4 that are omitted from

the main body of the thesis to aid readability and conciseness. They are included

here for completeness.

A.1 Forecasting

In this section we show the additional figures that are referenced in Section 4.5.

These figures all relate to the block-average Ornstein-Uhlenbeck forecasting ap-

proach, and are excluded from the main body of the thesis due to them being very

similar to equivalent figures obtained when the mixed forecasting approach was

used.

In this section, the block-average Ornstein-Uhlenbeck forecasts for the first

three principal components are shown in Figure A.1. Here, the point forecasts are

given by the black line, with the grey shading giving the approximate 95% predic-

tion intervals. In Figure A.2 we show the rolling average of the root mean-squared

errors between the true principal components and the one-step-ahead point fore-

casts obtained using the block-average Ornstein-Uhlenbeck forecasting approach.

In Figure A.3 and Figure A.4 we show the block-average Ornstein-Uhlenbeck

forecasts for the first three independent components, and the rolling average root
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mean-squared error between the true independent components and these point

forecasts, respectively.
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(a) First principal component for t = 3960, . . . , 4120 (grey solid line). The one-step-
ahead point forecast found is given by the black line, with the 95% prediction interval
given by the shaded grey area.
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(b) Second principal component for t = 3960, . . . , 4120 (grey solid line). The one-step-
ahead point forecast is given by the black line, with the 95% prediction interval given
by the shaded grey area.
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(c) Third principal component for t = 3960, . . . , 4120 (grey solid line). The one-step-
ahead point forecast is given by the black line, with the 95% prediction interval given
by the shaded grey area.

Figure A.1: First three principal components for time-steps t = 3960, . . . , 4120
(grey solid line). The one-step-ahead point forecasts found using the block-average
Ornstein-Uhlenbeck forecasting approach are given by the black lines, with the
approximate 95% prediction intervals given by the shaded grey areas.
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Figure A.2: Rolling average of the root mean-squared error between the true
principal components and the respective point forecasts, found using the block-
average Ornstein-Uhlenbeck forecasting approach. The rolling averages of the root
mean-squared error between the first, second and third principal components, and
the associated one-step ahead forecasts are given by the solid, dashed and dotted
lines respectively.

350



A.1 Forecasting

-4

-2

0

2

3960 4000 4040 4080 4120
t

(a) First independent component for t = 3960, . . . , 4120 (grey solid line). The one-
step-ahead point forecast found using the block-average Ornstein-Uhlenbeck forecasting
approach is given by the solid black line, with the 95% prediction interval given by the
shaded grey area.
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(b) Second independent component for t = 3960, . . . , 4120 (grey solid line). The one-
step-ahead point forecast found using the block-average Ornstein-Uhlenbeck forecasting
approach is given by the solid black line, with the 95% prediction interval given by the
shaded grey area.
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(c) Third independent component for t = 3960, . . . , 4120 (grey solid line). The one-
step-ahead point forecast found using the block-average Ornstein-Uhlenbeck forecasting
approach is given by the solid black line, with the 95% prediction interval given by the
shaded grey area.

Figure A.3: First three independent components for time-steps t = 3960, . . . , 4120
(grey solid line). The one-step-ahead point forecast found using the block-average
Ornstein-Uhlenbeck forecasting approach is given by the solid black line, with the
approximate 95% prediction interval given by the shaded grey area.
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Figure A.4: Rolling average of the root mean-squared error between the true
independent components and the respective point forecasts, found using the block-
average Ornstein-Uhlenbeck forecasting approach. The rolling averages of the root
mean-squared error related to the first, second and third independent components
are given by the solid, dashed and dotted lines respectively.

352



A.2 Reconstructing

A.2 Reconstructing

In this section we include figures that are omitted from Section 4.6. These figures

are all related to the reconstructions obtained using the block-average Ornstein-

Uhlenbeck forecast approach, and are very similar to the equivalent figures ob-

tained using the mixed forecasting approach (and which are included in the main

body of the thesis).

In Figure A.5 we show the forecasted principal component reconstruction of

the mean sea-level pressure HadCM3 simulator output when the block-average

Ornstein-Uhlenbeck forecasting approach was used. Figure A.6 shows the differ-

ence between the HadCM3 simulator output and these forecasted reconstructions,

and Figure A.7 shows the difference between the principal component reconstruc-

tions and the forecasted principal component reconstructions. In Figure A.8a and

Figure A.8b we show the root mean-squared error between the forecasted principal

component reconstructions and: (i) the HadCM3 simulator output, and; (ii) the

principal component reconstructions, respectively.

The equivalent reconstruction plots when the block-average Ornstein-Uhlenbeck

forecasting approach was used to obtain forecasted independent component recon-

structions are shown in Figure A.9, A.10 and A.11. The root mean-squared errors

are shown in Figure A.12.

(a) Time, t = 4000. (b) Time, t = 5000.

Figure A.5: Forecasted principal component reconstruction of the mean sea-
level air pressure HadCM3 simulator output using the block-average Ornstein-
Uhlenbeck forecasting approach with l = 6 principal components, at times t = 4000
and t = 5000.
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(a) Time, t = 4000. (b) Time, t = 5000.

Figure A.6: Differences between the true HadCM3 simulator output, and the
forecasted principal component reconstructions using block-average Ornstein-
Uhlenbeck forecasting approach with l = 6 principal components, at times t = 4000
and t = 5000.

(a) Time, t = 4000. (b) Time, t = 5000.

Figure A.7: Differences between the principal component reconstructions with l =
6 principal components, and the forecasted principal component reconstructions
using the block-average Ornstein-Uhlenbeck forecasting approach, at times t =
4000 and t = 5000.
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(a) Root mean-squared error per grid cell between the actual HadCM3 simulator output
and forecasted principal component reconstructions.
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(b) Root mean-squared error per grid cell between the principal component reconstruc-
tions and the forecasted principal component reconstructions.

Figure A.8: The grey circles give the root mean-squared error per grid cell (calcu-
lated using (4.10) and (4.11)) between forecasted principal component reconstruc-
tions using the block-average Ornstein-Uhlenbeck forecasting approach for l = 6
principal components, and (i) the actual mean sea-level air pressure HadCM3
simulator output (Figure A.8a), and; (ii) the principal component reconstructions
using l = 6 principal components (Figure A.8b). The black lines give the running
average of the root mean-squared errors over time.

355



A. FIGURES FROM CHAPTER 4

(a) Time, t = 4000. (b) Time, t = 5000.

Figure A.9: Forecasted independent component reconstructions of the mean sea-
level air pressure HadCM3 simulator output using the block-average Ornstein-
Uhlenbeck forecasting approach with l = 6 independent components, at times
t = 4000 and t = 5000.

(a) Time, t = 4000. (b) Time, t = 5000.

Figure A.10: Difference between the true mean sea-level air pressure HadCM3 sim-
ulator output and the forecasted independent component reconstructions using the
block-average Ornstein-Uhlenbeck forecasting approach, at times t = 4000, 5000.

(a) Time, t = 4000. (b) Time, t = 4000.

Figure A.11: Difference between the independent component reconstructions of the
mean sea-level air pressure (with l = 6 independent components), and the fore-
casted independent component reconstructions using the block-average Ornstein-
Uhlenbeck forecasting approach, at times t = 4000, 5000.
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(a) Root mean-squared errors per grid cell between the forecasted independent compo-
nent reconstructions using the block-average Ornstein-Uhlenbeck forecasting approach,
and the true HadCM3 simulator output.
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(b) Root mean-squared errors per grid cell between the forecasted independent compo-
nent reconstructions using the block-average Ornstein-Uhlenbeck forecasting approach,
and the (true) independent component reconstructions with l = 6 independent compo-
nents.

Figure A.12: The grey circles give the root mean-squared errors per grid cell
between the forecasted independent component reconstructions found using the
block-average Ornstein-Uhlenbeck forecasting approach (with l = 6 independent
components), and: (i) the true HadCM3 simulator output (Figure A.12a); (ii)
the independent component reconstructions using l = 6 independent components
(Figure A.12b). The black lines give the rolling average of root mean-squared
errors over time.
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Figures from Chapter 5

This appendix includes additional figures from Chapter 5 that are omitted from

the main body of the thesis to aid readability and conciseness. They are included

here for completeness.

B.1 Forecasting

In this section we show the additional figures that are referenced in Section 5.4.

These figures all relate to the block-average Ornstein-Uhlenbeck forecasting ap-

proach, and are excluded from the main body of the thesis due to them being very

similar to equivalent figures obtained when the mixed forecasting approach was

used.

FIgure B.1 shows the block-average Ornstein-Uhlenbeck forecasts for the first

three independent components. The point forecasts are given by the black line,

with the grey shaded area giving the approximate 95% prediction intervals. The

rolling average of the root mean-squared errors between these point forecasts and

the true independent components are shown in Figure B.2.
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(a) First independent component for t = 1560, . . . , 1720 (grey solid line). The one-step-
ahead point forecast for is given by the solid black line, with the 95% prediction interval
given by the shaded grey area.
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(b) Second independent component for t = 1560, . . . , 1720 (grey solid line). The one-
step-ahead point forecast for is given by the solid black line, with the 95% prediction
interval given by the shaded grey area.
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(c) Third independent component for t = 1560, . . . , 1720 (grey solid line). The one-step-
ahead point forecast for is given by the solid black line, with the 95% prediction interval
given by the shaded grey area.

Figure B.1: First, second and third independent components plotted as a time
series for time t = 1560, . . . , 1720 (grey solid line). The one-step-ahead point fore-
cast (black line) is found using the block-average Ornstein-Uhlenbeck forecasting
approach, with shaded grey area showing the 95% prediction interval.
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Figure B.2: Rolling average of the root mean-squared error between the true in-
dependent components and the respective point forecasts using the block-average
Ornstein-Uhlenbeck forecasting approach The rolling average of the root mean-
squared errors between the first, second and third independent component and
the associated one-step ahead forecasts are given by the solid, dashed and dotted
lines respectively.
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B.2 Reconstructing

In this section we include figures that are omitted from Section 5.5. These figures

are all related to the reconstructions obtained using the block-average Ornstein-

Uhlenbeck forecast approach, and are very similar to the equivalent figures ob-

tained using the mixed forecasting approach (and which are included in the main

body of the thesis).

In Figure B.3 we show the forecasted independent component reconstruction of

the mean sea-level pressure with wind HadCM3 simulator output when the block-

average Ornstein-Uhlenbeck forecasting approach was used. Figure B.4 shows the

difference between the HadCM3 simulator output and these forecasted reconstruc-

tions, and Figure B.5 shows the difference between the independent component

reconstructions and the forecasted independent component reconstructions. In

Figure B.6 and Figure B.7 we show the root mean-squared error between the fore-

casted independent component reconstructions and: (i) the HadCM3 simulator

output, and; (ii) the independent component reconstructions, respectively.

(a) Time, t = 1600. (b) Time, t = 2000.

Figure B.3: Forecasted independent component reconstructions using the block-
average Ornstein-Uhlenbeck forecasting approach, at times t = 1600, 2000.
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(a) Time, t = 1600. (b) Time, t = 2000.

Figure B.4: Difference between the true mean sea-level air pressure with wind
velocity HadCM3 simulator output and the forecasted independent component
reconstructions using the block-average Ornstein-Uhlenbeck forecasting approach,
at times t = 1600, 2000.

(a) Time, t = 1600. (b) Time, t = 2000.

Figure B.5: Difference between the independent component reconstruction of the
mean sea-level air pressure with wind velocity, and the forecasted independent
component reconstructions using the block-average Ornstein-Uhlenbeck forecast-
ing approach, at times t = 1600, 2000.
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(a) Root mean-squared error per grid cell
of the mean sea-level pressure.
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(b) Root mean-squared error per grid cell
of the wind.

Figure B.6: The grey circles give the root mean-squared error per grid cell between
the true HadCM3 simulator output and the forecasted independent component re-
constructions using the block-average Ornstein-Uhlenbeck forecasting approach.
The black lines give the associated rolling average of the root mean-squared er-
rors. The root mean-squared errors are split into those from the mean sea-level
air pressure component (calculated using (5.4)), and from the wind velocity com-
ponent (calculated using (5.5)).
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(a) Root mean-squared error per grid cell
of the mean sea-level pressure.
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(b) Root mean-squared error per grid cell
of the wind.

Figure B.7: The grey circles give the root mean-squared error per grid cell be-
tween the independent component reconstructions (using l = 6 independent com-
ponents), and the forecasted independent component reconstructions using the
block-average Ornstein-Uhlenbeck forecasting approach. The black lines give the
associated rolling average of the root mean-squared errors. The root mean-squared
errors are split into those from the mean sea-level air pressure component (calcu-
lated using (5.6)), and from the wind velocity component (calculated using (5.7)).
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