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Abstract

Describing turbulent fluid flows remains challenging, despite massive computational
resources being devoted to it. This is because turbulent fluids interact on a vast range of
spatial and temporal scales and the dynamics is sensitive to small disturbances. In par-
ticular, prediction of such systems remains difficult. In many cases, though the models
are imperfect, more faithful predictions can be achieved by combining the models with
observations of the system. This observational knowledge can then be assimilated into
the model to provide better predictive capability, and also to estimate the parameters of
an uncertain model. This study aims to test the capabilities of one such assimilation
scheme, the Ensemble Kalman Filter (EnKF), in aiding the prediction of the complex
behaviour in a thermal rotating annulus.

Four results are presented in this thesis. First, EnKF was applied to the Lorenz
model, where tests were performed with varying ensemble sizes, inflation, and gaps be-
tween data assimilation. This was to understand the limitations of EnKF on a smaller
chaotic system. It was determined that only a small ensemble size of just 7 was required
to accurately predict model behaviour. Tests were also done on EnKF capabilities on
parameter estimation where the system predicted the values of the parameters very ac-
curately.

Second, the experimental results are presented for thermal rotating annulus experi-
ments which were done at a velocity of 1 rad/s, 2.5 rad/s and 3 rad/s. The experiments
showed behaviour that is expected at the various rotation rates. We found that it was dif-
ficult to get accurate results for behaviour at the lower levels of the annulus compared
to data at higher levels. Overall the one size fits all approach to the PIV settings for
analysing images does not seem to work well and future studies will have to fine tune
the setting for more accurate analysis.

Third, a twin experiment where EnKF was performed using the MORALS code
with a high resolution ‘truth’ and low resolution ensemble. Studies were done at 1 rad/s,
2 rad/s, 2.5 rad/s and 3 rad/s. At 1 rad/s, EnKF did a good job of tracking the ‘truth’ at
different settings. Looking at 2 rad/s, in most cases the low resolution ensemble system
struggled to replicate the m=4 wavenumber observed in the ‘truth’ and stayed at m=3
wavenumber. Although decreasing the DA length to every 1 minute gave the best result,
in many cases the system strayed away from the truth. Going further to 2.5 rad/s, the
structures observed at this rotation rate were very volatile with the system finding it hard
to track the truth. This was the case even when the time between DA was decreased or
the ensemble size increased. Lastly at 3 rad/s the low resolution models in the ensemble
always gave the wrong wavenumber and was not able to track the truth. It seems that the
resolution for the ensemble needs to be increased for better simulation at higher rotation
rates.

Finally, the results for using low resolution ensemble MORALS to predict experi-
mental results were presented where tests were done at 1 rad/s and 2.5 rad/s. At 1rad/s
the ensemble can replicate the fluid structures observed in the PIV data with an m=3
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wave but the ensemble was never able to tack the ‘truth’ with the latter travelling around
the annulus faster. At a higher rotation rate of 2.5rad/s the ensemble is never able to
replicate the m=4 wave as observed in the ‘truth’. This is even the case when the θ
resolution is increased to 128 points.

From the results presented in this thesis EnKF can be seen as a reasonable solution
to help predict behaviour in a thermal rotating annulus setting. It does a good job of
giving close results to the truth in most of the twin studies. And although there were
problems when using the experimental results there should be improvement in the results
when better analysis techniques are used to obtain better observations. EnKF overall
has problems at higher rotation rates this problem can also be overcome using different
settings in the ensemble and EnKF.
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Definition of symbols used in Chapter 3

a inner radius of annulus
b outer radius of annulus
d depth of annulus
A advection operator
D diffusion operator
g acceleration due to gravity
i radial grid index
I number of grid points in the radial direction
j azimuthal grid index
J number of grid points in the azimuthal direction
k vertical grid index
K number of grid points in the vertical direction
m time index
r radial coordinate
t time
T temperature
T0 reference temperature
(u, v, w) velocity components (r, θ, z)
z vertical coordinates
α coefficient of expansion
δ finite difference derivative
θ azimuthal coordinate
κ coefficient of thermal diffusion
ν coefficient of kinematic viscosity
Π pressure
∆ρ density perturbation
ρ0 mean density
σ buoyancy
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6.26 Hovmöller plot for level 3 at r=5.25cm for 2.5 rad/s for U velocity . . . 125
6.27 Image of the working fluid at the end of the 3hr run taken at level 4 for

the 2.5 rad/s experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.28 PIV result sequence towards the end of the experiment at level 4 for

2.5 rad/s showing U velocity . . . . . . . . . . . . . . . . . . . . . . . 127
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7.13 Hovmöller plot at 3 rad/s for ensemble members 2,3,4 and 5 showing

the diversity of behaviour observed at this velocity. . . . . . . . . . . . 162
7.14 Standard deviation at 3 rad/s with no data assimilation. . . . . . . . . . 162
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Chapter 1

Introduction

Numerical weather forecasting remains challenging despite the fact that massive com-
putational resources are devoted to it. This is because predicting chaotic behaviour has
always been difficult. In many cases simplified models can be used to understand the
nature of chaotic behaviour, one of the most famous examples being that of Lorenz
(1963), this understanding can then be used to derive more complicated models. Many
fluid flow systems show chaotic behaviour which have some similarities to that seen in
these simplified models.

A key feature of chaotic systems is that they are very sensitive to the initial condi-
tions imposed. Initial conditions in many studies are determined by setting the model
to agree as closely as possible with observations. But there is always uncertainty about
the true initial conditions, as observations are never perfect and contain a range of pos-
sible errors. Sensitivity to initial conditions means that even if these conditions are set
as accurately as possible, the model evolution will eventually diverge from the true be-
haviour. This sensitivity to initial conditions is compounded by the facts that models
don’t incorporate the full complexity of the real life behaviour and that the parameters
used are not entirely accurate. Normally to get more accurate predictions the study has
to either use a more complicated model or make the computational parameters more
accurate, for example by increasing resolution and decreasing the time step. Both situ-
ations result in increased computation time and use of resources. Due to the nonlinear
and chaotic nature of these models, even two very accurate models running with the
same parameters will not necessarily give the same results.

A way to circumvent this problem is to use data assimilation to correct the numerical
models when the models diverge from the ‘truth’. A numerical model can be run as
normal, but at a certain point, defined by the user or suggested by the error in the model,
a reading is taken of the true state of the behaviour, for example using experiments or
observations to collect data. These observed values are used to correct variables in the
model, which then continues to run. The act of combining the model and observational
results to get new initial conditions for the model is called data assimilation. In many of
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the various methods, that will be discussed later, weights are applied to calculate the new
initial conditions. Data assimilation can, at least in principle, overcome the difficulty of
chaotic behaviour provided the observations can be made continually and frequently.

1.1 Aim
This study was originally motivated by the need to predict the behaviour of rotating
plasma in a tokamak in real time with the aid of data assimilation (Wehner et al., 2011).
However, at an early stage it was decided to focus on how DA will be implemented for
such a problem and what will be it’s limitations. This will be done using simpler models
than models currently available for tokamaks. So to obtain this goal many smaller steps
will be taken throughout the study. First, a study is done using the Ensemble Kalman
filter (EnKF) and the Lorenz model to test its predictive power and to understand how
EnKF works. This data assimilation technique will be then applied to the hydrodynamic
problem known as the thermal rotating annulus model (Hide, 2010; Young and Read,
2013). This set will provide a good test be to understand how to apply EnKF to a 3D
system and learn what modifications need to be made to the vanilla EnKF to get more
accurate predictions. Steps can then be taken to apply EnKF to a magnetohydrodynamic
model for a tokamak.

Planetary atmospheres and tokamaks exhibit chaotic flow, and there are numerical
models that describe them, but to achieve any reasonable degree of accuracy these mod-
els require massive computational resources for even a single run. Doing the number of
runs required to test data assimilation thoroughly would simply not be feasible. Several
systems of low order ODEs exhibit chaotic behaviour (e.g. the Lorenz system) and it is
feasible to do extensive data assimilation tests on these systems. But these systems do
not model any physical system with sufficient accuracy to compare experimental data
against them with any confidence.

The advantages of the rotating annulus model are that firstly, it has been extensively
studied experimentally (Vettin, 1857; Fultz et al., 1959; Hide, 1958; Hignett, 1985), so
its behaviour is well known. We can, therefore, have a good idea as to whether our
data assimilation predictions are working well or not. Second, it is amenable to nu-
merical simulation without the need for excessive computational resources. It has been
known for some time (Hignett et al., 1985; Read et al., 1997; Harlander et al., 2011;
Vincze, Borchert, Achatz, von Larcher, Baumann, Hertel, Remmler, Beck, Alexandrov,
Egbers, Froehlich, Heuveline, Hickel and Harlander, 2014) that numerical simulations
of the full three-dimensional annulus problem are in good agreement with data from the
experiment itself. The point about these simulations not requiring an excessive com-
putational load is particularly important. Testing data assimilation techniques requires
a great many computational runs as many aspects can be varied, for example, intervals
between data assimilations, amount of observed data, ensemble size and the magnitude
of any inflation imposed on the system. The third major advantage of the annulus model
is that it exhibits chaotic behaviour, just as many geophysical fluid systems do. Indeed,
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the baroclinic waves that are seen in the annulus experiment have similarities to the
baroclinic waves that dominate mid-latitude weather systems (Hide, 1958; Ravela et al.,
2010; Hide, 2010). A fourth advantage of the annulus model that became apparent in
the course of this study is that by varying the rotation rate of the annulus (this is easy
to do experimentally and numerically) we can vary the behaviour of the working fluid
from mildly chaotic at lower rotation rates to strongly chaotic at higher rotation rates.
This is a very desirable property of a model for data assimilation studies, as it enables us
to see what needs to be done to maintain effective data assimilation as a system becomes
more chaotic.

The numerical code used to simulate a thermal rotating annulus experiment is called
the Meteorological Office/Oxford Rotating Annulus Laboratory Simulation (MORALS)
code, which is a code maintained by the Atmospheric, Oceanic and Planetary Physics
group (AOPP) at the University of Oxford. This code has been used previously to study
rotating annulus behaviour as published by Hignett et al. (1985); Read et al. (1997);
Young and Read (2013).

This code was used in two different ways in the study presented. First, a procedure
known as a twin experiment (Reichle et al., 2002; Burgers et al., 2002) was used in
which a high resolution run is regarded as the truth (quite reasonably given the known
agreement between high resolution runs and the actual experiment) and low resolution
runs are used as the model for data assimilation. The aim is to see whether the low
resolution model can be kept in approximate agreement, as time evolves, with the high
resolution ‘truth’ if DA is regularly used on the low resolution models. Second, actual
experimental data from the AOPP thermal annulus experiment is used as the truth to see
whether the numerical model can give agreement with this truth when data assimilation
is used.

1.2 Data Assimilation
The act of combining the model and observational results to get new conditions for the
model is called data assimilation (DA). Generally used to obtain a better prediction and
reduce the computational cost, data assimilation is also used to tackle other interesting
questions such as parameter estimation/optimisation, looking at how many observations
are needed for accurate prediction and looking at where the best possible place is for
observations. Initially developed for numerical weather prediction, data assimilation
is now used in a wide variety of fields such as oceanography, traffic modelling, crime
modelling, etc (Evensen, 2003).

As time has gone on many different methods of data assimilation have been created.
Modern data assimilation can be divided into mainly three distinct methods. Firstly,
variational methods which minimise a cost function. This is done by taking into ac-
count the size of the observations, the background and, the errors in the background and
observation. This cost function gives the optimal analysis state (Sasaki, 1970; Lorenc
et al., 2000; Rawlins et al., 2007). 3D-Var has been used extensively in many NWP
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problems as it gave the user the ability to do three dimensional data assimilation (Sasaki,
1970; Lorenc et al., 2000; Rawlins et al., 2007). Secondly, ensemble methods that use
an ensemble of forecasts to perform data assimilation. Unlike like variational methods,
the errors in the ensemble system evolve with time and are calculated using the ensem-
ble data during the analysis. The Ensemble Kalman filter (EnKF) is one of the best
examples of ensemble methods (Evensen, 1994; van Leeuwen, 2010; Evensen, 2003).
Finally, there are hybrid methods which, as the name suggests, are a combination of
different methods. These methods are very new and have been developed to try and
keep the advantages of each of the individual methods in mind, while trying to replace
their disadvantages with other techniques (Zhang et al., 2009; Bannister, 2017). The op-
timal method to use in a given situation depends on the model and type of observations
available. The technique used for the studies presented in this thesis is the Ensemble
Kalman Filter (EnKF) method. Chapter (4) describes how the EnKF works and how it
is implemented numerically.

1.3 Rotating Fluids

Rotating fluid behaviour is observed in a wide variety of areas, from the atmosphere
and oceans to centrifuges and tokamaks. The study of rotating fluids is therefore im-
portant when trying to understand these systems. In most cases, to understand the phe-
nomenon a model (experimental or computational) is created which serves as a testbed
for theories and measurement techniques. If an experimental study is not ideal then a
numerical approach can also be considered. Most modern studies use both experimental
and numerical approaches to study behaviour. With advances in computer technology,
numerical studies have become the way to study phenomena such as the circulation of
the atmosphere or the ocean.

The Meteorological Office/Oxford Rotating Annulus Laboratory Simulation code
(MORALS), is a Fortran code maintained at the Atmospheric, Oceanic and Planetary
Physics (AOPP) group at the University of Oxford. It is written in a mixture of Fortran
77 and Fortran 90 and is designed to run on Linux. A general outline of how MORALS
operates is given in chapter (3), which describes the equations and the methods that are
used to solve them. The chapter goes to explain how MORALS creates the stretched
grid used in its model along with how the Arakawa type C grid (Arakawa and Lamb,
1977) is used to store data. It also describes the implementation of the MORALS code in
2D, the mapping of 2D data into 3D and how the code operates in 3D. More information
about the MORALS code can be obtained on the website MORALS (2020).
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1.4 Lorenz Model
The effectiveness of any Data Assimilation (DA) method can only be ascertained when
tested against a model that pushes its limits to give accurate predictions. In many cases,
the Lorenz model has been used to fill this niche as its nonlinear behaviour at particular
parameters provides a robust testbed to look at the different aspects and limitations of a
DA method (Evensen, 1997, 2009; Annan and Hargreaves, 2004).

The Lorenz model (Lorenz, 1963) is a set of three ordinary differential equations
which give a strongly nonlinear system. The model was conceived to describe the flow
in a thermal convection experiment but has since been used in numerous studies related
to nonlinear systems. The system is known for its non-periodic/chaotic behaviour and
unpredictability for certain parameter values.

In the study presented in chapter (5), the Ensemble Kalman Filter (EnKF) is tested
using the Lorenz model. In this chapter, EnKF’s capabilities will be tested using a
variety of ensemble sizes, inflation and time between DA to see how the system can cope
with the changes. It is also tested for parameter estimation to see if EnKF can predict
what were the parameters used to create the ‘truth’. The model has been previously used
to test data assimilation techniques (Miller, 1994; Evensen, 1997). The model has also
been used to conduct parameter estimation studies (Annan and Hargreaves, 2004).

1.5 Experiment
With a lack of computational power in the early days of weather prediction, laboratory
experiments were used to replicate atmospheric conditions and to understand the fun-
damental physics that underlies atmospheric behaviour (Vettin, 1857; Fultz et al., 1959;
Hide, 2010). As modern technology has made computational studies easier and more
accurate, it has also made experiments more accurate, using modern apparatus. As such,
experiments still play a very important role in understanding atmospheric behaviour and
being used as a testbed for computational methods.

To generate real data to be used for DA, experiments were done at AOPP. Previ-
ous studies by Hignett et al. (1985); Read et al. (1997) performed at AOPP utilised an
older experimental apparatus for a rotating thermal annulus, see Hignett et al. (1985) for
more details on this older setup. In the DA study presented by Young and Read (2013)
using this setup, the rotation rate was changed every 20 minutes. These experiments
focused on how the behaviour of the fluid changed with the change in rotation rate (eg.
wavenumber changes when increasing or decreasing rotation rates).

The results for the new experiments are presented in chapter 6 and focused on long
runs at a single rotation rate. These runs were used to test the new apparatus, along
with examining the long term behaviour of the fluid and to see how stable the waves
formed at these rotation rates are. Experiments were done at 1rad/s, 2.5rad/s and 3rad/s.
Particle image velocimetry (PIV) was done on the experiment to obtain data that was
then analysed and plotted.
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The results presented in this chapter will be used as the truth for DA done using
EnKF along with the MORALS code serving as the ensemble model to predict the
results. The results for this study is presented in chapter (8).

1.6 Twin Experiment
The process of DA is not as simple as just coupling real life observation and simulation,
and then using it for prediction. The more complex the model, the more time is needed
to fine tune the DA settings and parameters. In most cases, synthetic data is used for
a twin experiment to evaluate DA settings and their sensitivity to different parameters
(Reichle et al., 2002; Burgers et al., 2002).

Chapter (7) presents the results for a twin experiments which is carried out using
EnKF and the MORALS code. The twin experiment is used to test different scenarios
for EnKF with the aim to find suitable settings for the model and EnKF which can
be applied for observations obtained via experiments to test MORALS’ predictions.
In particular experiments will be carried out at different rotation rates (1 rad/s, 2 rad/s,
2.5 rad/s and 3 rad/s) with different observational settings.

To conduct the twin experiment a high resolution MORALS model is first run to
obtain data that should match closely with what is observed in experiments. This data
will be used to create the ‘truth’ that will be used in DA. An ensemble of low resolution
MORALS models will then be used to test the capabilities of EnKF. This twin experi-
ment allows the testing of EnKF while knowing all the details/settings about the ‘truth’
and the ensembles. The twin experiment also makes it easier to line up observation
points with the ensemble model when it comes to data assimilation. This provides an
opportunity to identify how the parameters of EnKF can best be chosen for the differ-
ent scenarios. This will help provide a baseline for EnKF’s abilities when it comes to
predicting and tracking observations.

1.7 Experiment and DA
After conducting a twin experiment to understand how EnKF method behaves under
different conditions for MROALS, DA is done using the experimental data as the ‘truth’.
The results for this test is presented in chapter (8) with the aim to try and replicate or
better the results obtained by Young and Read (2013).

Using EnKF on real life data provides new challenges for the method as now the
amount and quality of the data used as the observations are subject to how the experi-
ment was conducted and how the data was recorded. The error in the data is associated
with the instruments that were used to conduct the experiments and the method that was
used to process the data to obtain velocity vectors. The amount of data gathered is also
subject to the resolution of the instruments used. The results for the experimental data
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set are discussed in chapter (6), along with how the data was obtained and processed.
In this chapter, the processed results of the experiments were used without any further
changes.

To predict the behaviour seen in the experiments, the Met Office/Oxford Rotating
Annulus Laboratory Simulation (MORALS) code was used which solves the Navier-
Stokes equations for a rotating annulus. This is the same code that was used in the twin
experiment. More details on the working of the code can be found in chapter (3). In
the study presented in this chapter, the experimental data were used as the truth and the
MORALS code was used to create an ensemble of low resolution models which was
used to predict the experimental results with the help of EnKF.
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Chapter 2

The Thermal Rotating Annulus

Rotating fluid behaviour is observed in a wide variety of application, from the atmo-
sphere and ocean circulation to centrifuges and tokamaks. The study of rotating fluids
is therefore important when trying to understand these systems. In many cases a model,
experimental or numerical, is created which serves as a testbed for theories and measure-
ment techniques. If an experimental study is not ideal, then a numerical approach can
be considered. Most modern studies use both experimental and numerical approaches to
study rotating fluid behaviour. With advances in computer technology, numerical stud-
ies have become the usual way to study complex behaviour such as the circulation of the
atmosphere or the ocean. These numerical models can be very complicated, so a simple
experiment, such as the the thermal rotating annulus, can help understand some of the
underlying behaviour of these more complex models.

An introduction to thermal rotating annulus is given in section (2.1), and the dif-
ferent variations of the annulus model that have been used for studies are referenced.
Section (2.2) introduces some of the experiments that have been done using a thermal
rotating annulus. Section (2.3) looks at studies that involved both a numerical code and
laboratory experiments. Finally, section (2.4) describes some of the studies that used
data assimilation on the thermal rotating annulus.

2.1 Introduction
There are a few different variations of the rotating annulus experiment that have been
studied throughout the years. In the first case, a cylinder was filled with a liquid and was
rotated (Taylor, 1921), and obstacles were moved through the fluid and the resulting fluid
flow observed. In another annulus experiment, the gap between two concentric cylinders
was filled with fluid, a configuration now known as Taylor–Couette flow (Taylor, 1923).
In this case, both cylinders can be rotated independently to produce a range of different
behaviours in the fluid flow. In both these cases, the annulus walls can be differentially

8



CHAPTER 2. THE THERMAL ROTATING ANNULUS

Figure 2.1: Study setup. a and b were the radii of the cylinders and D is the height of the
system, Ω1 and Ω2 were the rotation velocities for the cylinders and T1 and T2 were the
temperatures.

heated to add to the complexity of the studies (Vettin, 1857; Chandrasekhar, 1953). The
system can be further complicated by using sloped surfaces or spherical geometry, but
for the study presented here, these were ignored.

For the study presented in this thesis, a thermal rotating annulus was used as shown
in figure (2.1). Here the inner and outer wall rotate at the same angular velocity (Ω)
in the same direction. The outer and inner walls are kept at different temperatures(T1
and T2). In most cases, the inner wall is cooled and the outer wall is heated. This is to
simulate a planetary setting, where the poles are cool and the equator is hot. The two
cylinders have a radius a and b and both have the same height D. Depending on the
rotation rate of the annulus, different behaviour can be observed in the working fluid.

Some common dimensionless parameters used in studying rotation fluids are the
Taylor number, Ta,

Ta =
4Ω2(b− a)

ν2D
, (2.1)

Hide number (thermal Rossby number), H ,

H =
Dgα∆T

Ω2(b− a)2
, (2.2)

the Reynolds number, Re,

Re =
u(b− a)

ν
(2.3)
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Figure 2.2: Schematic regime diagram for a thermal rotation annulus for different rotation
rate (Hide, 2010).

and the Prandtl number, Pr,
Pr =

ν

κ
. (2.4)

Here a and b are the inner and outer radius of the annulus and D is the annulus depth. The
rotation rate of the annulus is given by Ω, ∆T is the temperature difference between the
inner and outer radius of the annulus. g is the acceleration due to gravity, α is the thermal
expansion coefficient, ν is the kinematic viscosity and κ is the thermal diffusivity.

The waves that develop are a manifestation of a barolcinic instability and develop
to transfer heat around the annulus (Read et al., 2015). The baroclinic instabilities that
develop into a wave are often dominated by the dominant wave number and its har-
monics. These waves can be steady, chaotic or quasi-periodic. The state obtained in an
experiment depend on the initial condition. Further, hysteresis is observed in the system
when observing transition between states when slowly changing external parameters
(Hide and Mason, 1975; von Larcher and Egbers, 2005). Vacillation amplitude (AV)
and structural (SV) are observed in experiments. In amplitude vacillation the ampli-
tude of the wave is modulated as it interacts with the background zonal flow. The wave
amplitude grows to a maximum before before decaying and repeating the cycle (see fig-
ure 2.3). Structural vacillation is observed when approaching the irregular flow regime.
Here the structure of the waves tilt in horizontal and radial axis periodically in the wave
peaks and troughs (Weng et al., 1986; Weng and Barcilon, 1987).

All modern studies are a combination of laboratory experiments and numerical sim-
ulations. Experiments are used to test accuracy of numerical models as they have an
infinite resolution. But numerical models are more versatile as their parameters can eas-
ily be changed. A proven numerical model can be used to fill in the gaps for data that
might be hard to collect in experiments. Numerical models can also be used to study
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Figure 2.3: Horizontal flow fields during a typical amplitude vacillation cycle (Read et al.,
2015).

parameters which can be difficult for experiments.

2.2 Experiments

Vettin (1857) is the first known laboratory experiment on general circulation using a
thermal rotating annulus. In this study, ice was used at the centre to create a temperature
gradient and air was used as the working fluid. Using smoke from a cigar, Hadley type
circulation was observed. The modern setup for the thermal rotating annulus can be
credited to Fultz et al. (1959) and Hide (1958). Here instead of air, a fluid such as water
was used and the walls were kept at different temperatures using baths that contained
heated or cooled water. More modern studies such as Hignett (1985) used a water-
glycerol mix and kept the walls at constant temperature using water that was pumped at
their respective temperatures next to their respective walls.

Some of the experiments using a thermal rotating annulus were made to study phe-
nomena such as amplitude and structural vacillation. This is the modulation of the
amplitude and the dominant wavenumber. Pfeffer and Fowlis (1968) was one of the
first to report wave dispersion and structural vacillation showing the presence of m = 4
and m = 5 waves simultaneously as observed in figure 5 and 6 in their paper. Studies
such as Hide and Mason (1975) and Hignett (1985) gave examples of amplitude vacil-
lation. Hignett (1985) reported that amplitude vacillation is observed at m = 2, m = 3
and m = 4 wavenumbers when ∆T & 2K. Früh and Read (1997) discussed how the
interaction between dominant and weaker modes can lead to amplitude and structural
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vacillations. This was confirmed by Harlander et al. (2011).

2.3 Rotating Fluids and numerical studies
With the limitations of experimental measurement, and the increase in computational
power, numerical models were created to simulate and study thermal rotating annulus
behaviour. Hignett et al. (1985) made a comparison between experimental and numer-
ical results and reported good agreement for major features in the horizontal flow field
and temperature, but they did not study rotating rates higher than 2 rad/s. Read et al.
(1997) also compared experimental results with the 3D numerical model, in the context
of an internally heated rotating thermal annulus, the annulus being heated by making
the working fluid electrically conducting and passing a current through it. They suc-
cessfully simulated the structure and behaviour of the regular wave flow seen in their
experiments. As the rotational velocity was increased, the numerical model displayed
structural vacillation, as did the experiments, but these structures broke down more often
into irregular flow than they did in the experiments.

Vincze, Borchert, Achatz, von Larcher, Baumann, Hertel, Remmler, Beck, Alexan-
drov, Egbers, Froehlich, Heuveline, Hickel and Harlander (2014) aimed to create a labo-
ratory experiment which would be a testbed for numerical techniques and models aiming
to investigate geophysical flows. Experiments were done at the fluid dynamics labora-
tory of the Brandenburg Technical University at Cottbus-Senftenberg (BTUCS). The
experiments were done using rotational velocities in the range of Ω = 2.26 rpm up to a
Ω = 20.91 rpm (0.2 - 2.2 rad/s). Measurements were taken for both ”spin-up” and ”spin-
down” sequences in steps of ≈ 1rpm hence giving a total of 17× 2 measurements. The
temperature for all the experiments was kept constant at ∆T = 8± 0.5K. In contrast to
the earlier annulus experiments, the top boundary was open to the atmosphere.

Vincze, Borchert, Achatz, von Larcher, Baumann, Hertel, Remmler, Beck, Alexan-
drov, Egbers, Froehlich, Heuveline, Hickel and Harlander (2014) also studied the system
numerically in a collaboration between Goethe University Frankfurt, University of Hei-
delberg, FU Berlin, TU Dresden and TU Munich called MetStörm. In the collaboration
they used five different numerical models to create “benchmarks” that could be used
as test cases for atmospheric numerical model validations in the future. Each model
computed solutions to the hydrodynamic equations of motion using the Boussinesq ap-
proximation with a stress-free upper boundary, but they differed in their initializing
procedure, grids, time steps, boundary conditions and sub-grid parametrising schemes.
The geometry of the simulated domain was the same as the experimental setup.

Both the experiments and the numerical models found well defined baroclinic waves
with a dominant azimuthal wavenumber m, but time-averaged Fourier spectra showed
the presence of harmonics of the basic wavenumber m. All baroclinic waves observed
were of the steady wave type and no vacillation was observed. In experiments, the har-
monic wave numbers were more visible than in simulations, with m = 4 accompanied
by m = 8 or m = 3 with m = 9. The authors speculated that this mismatch might
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be due to surface effects, such as air currents at the open boundary, not being properly
simulated in numerical models.

Considerable hysteresis was also observed in both experiments and numerics. The
dominant wavenumber found at a particular rotation rate depended on whether that ro-
tation rate was reached by spinning up or spinning down. This behaviour was consistent
with previous experimental studies (Miller and Butler, 1991; Sitte and Egbers, 2000;
von Larcher and Egbers, 2005). By analysing the hysteresis in the numerical models, it
was concluded that different routes of releasing the stored potential energy played a role
in the azimuthal wave number selection. During spin-up, kinetic energy is released due
to baroclinic wave excitation and during spin-down, kinetic energy is released through
the overturning background flow. However, the critical rotation rate at which baroclinic
instability onsets (the first appearance of nonaxisymmetric modes), Ωcrit = 3 rpm, was
unaffected by initial conditions in all experimental studies.

Another important ‘benchmark’ of Vincze, Borchert, Achatz, von Larcher, Bau-
mann, Hertel, Remmler, Beck, Alexandrov, Egbers, Froehlich, Heuveline, Hickel and
Harlander (2014) was the study of the drift rate of the dominant wavenumber around
the annulus. Here Fourier transforms were used to measure azimuthal distance travelled
by one of the structures. No wave dispersion was observed and all Fourier components
propagate with the same drift rate. In the experiments and the numerics, it was ob-
served that the drift rate was a decreasing function of Ω, roughly as expected from Eady
(1949). They found the drift rate did depend on the dominant azimuthal wavenumber,
so that with hysteretic cases where two different wavenumbers can be found at the same
rotation rate, the m = 3 modes drifted faster than the m = 4 modes. Most numerical
models over-predicted the drift rates in the system, which might be due to boundary
layer drag at the sidewalls not being properly represented. However, increasing the grid
resolution did lead to better prediction of the drift rate, showing that the system is de-
pendent on grid resolution, especially to resolve the boundary layers. Comparing the
structures observed, the models could not capture the small-scale variability but pro-
duced the large-scale patterns; thus showing that the coupling of the large and small
scales does not play a critical role in this flow regime. According to Fein (1973), differ-
ent behaviours were observed in experiments with rigid lids and free surface leading to
different drift rates.

2.4 Rotating Fluids and Data Assimilation
As the thermal rotating annulus presents lots of complex behaviour related to plane-
tary settings it has been proposed as a testing ground for data assimilation (DA). And
although DA has been applied to many different areas its use in the area of thermal
rotating annulus has been very limited.

Ravela et al. (2010) aimed to create a realtime observatory which produced evolving
state estimates in realtime which were closer to the laboratory flow than either obser-
vation or numerical models predict separately. For this, the General Circulation Model
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(GCM) was coupled with rotating annulus experiments using a localised version of the
Ensemble Kalman filter (EnKF) (Evensen, 1994) which is related to Local Ensemble
Kalman Filter (LEKF) created by Ott et al. (2004). It was thought that the experiment
would guide the models on what to simulate and in turn the model would provide a
guide on when and where to take measurements. The numerical model could be used
to study parameters that could not be directly measured in the experiments (pressure,
heat transport, etc) helping to predict behaviour in the experiment. This should lead to
a better understanding of topics such as parameter estimation, model error and adaptive
sampling.

The MIT GCM model solves the equations for a Boussinesq fluid in hydrostatic bal-
ance using the finite difference method in cylindrical coordinates (Marshall, Adcroft,
Hill, Perelman and Heisey, 1997; Marshall, Hill, Perelman and Adcroft, 1997). It has
crude parametrisations along with approximate numerical schemes and uncertain initial
and boundary conditions. This leads to large errors between a simulation and the truth,
hence the model needs input (initial conditions, etc) from the observations to make a
better prediction. To test the system, the study used the tracking method as it can be
easily replicated and the experiment repeated. The tracking method enables the nu-
merical model to follow a specific structure in the experiment and reproduce the same
movement and drift rates.

The scheme not only required fewer numerical simulations (smaller ensemble size)
than purely sampling initial conditions would have done. But also prevented ensemble
collapse by maintaining a justifiable uncertainty. Localization (4.7.1 for an explanation)
of the scheme lead to an algorithm which could be parallelised and prevented spurious
long-range correlations. Realtime performance was obtained through parallelisation,
domain reduction, spectral-reduction and compute updates.

Young and Read (2013) used analysis correction method (Lorenc et al., 1991) to link
their experiential data to the MORALS code and used this as a testbed for techniques
not yet in operational use in meteorology. MORALS is a rotating annulus code that
solves the Navier-Stokes equations in the context of a Boussinesq, viscous, incompress-
ible thermally conducting liquid using a finite difference scheme. The laboratory data
used for observation were obtained in a previous study Young et al. (2015) with a flat
bottom annulus where horizontal velocity data were recorded every 5s. The temperature
gradient is kept at ∆T ∼ 4K and spin-up and spin-down experiments were conducted.

Using this setup, irregularly distributed observations were successfully assimilated.
This represents a more realistic situation of how observations are obtained in meteorol-
ogy. In both regular and chaotic flow regimes, all residual errors between the analysis
and observations were better than observational errors that would have resulted from
only using the mean observed velocity. No statistical correlations were observed be-
tween residual errors and the rotation rate. Assimilation across wavenumber transitions
were accurate in the regular flow regime but not as accurate in the chaotic flow regime,
although the errors could be reduced by tuning the assimilation parameter.

At wavenumber m = 2 steady flow (2S), the assimilation converged to the optimum
analysis in 25 sec, comparing well with observations. The assimilation free runs were
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CHAPTER 2. THE THERMAL ROTATING ANNULUS

the most accurate at z = 7 cm height but the residual error increased over time as the
model and observation drift out of phase from each other. At the wave number 3, they
found amplitude vacillation (3AV), and their aim was for the assimilation to track the
vacillation and the wave itself and this was successful.

As the rotation rate is reduced from 0.825 to 0.800 rad/s a transition from 3AV to
2S is observed. Here the assimilation model does well to track the transition change. A
wavenumber m = 3 structural vacillation (3SV) is observed at around Ω = 2.3 rad/s.
Due to the chaotic dynamics, assimilation is more of a challenge. As in the previous
sections the assimilation can track the system well with the residual error remaining
constant. Increasing the number of observed data points does not seem to decrease the
residual error. The free running simulations do show chaotic dynamics, but there is an
increase in residual error due to the simulation drifting out of phase.

To further test the assimilation the 3SV regime was kept but the rotation rate was
abruptly changed from Ω = 2.4 rad/s to Ω = 2.5 rad/s. After the change, there is a burst
of high azimuthal velocity before settling down to the same state as the observations.
The observed flow changes faster than the observation rate, and due to this the quality of
the data that is assimilated is degraded increasing the residual error as well. This error
could be lowered by reducing the time between assimilations.

At an even faster rotation rate of Ω = 3.1 rad/s the assimilation keeps track of the
different behaviour, such as vortex shedding, but the residual error oscillates substan-
tially. This might just be due to observation and simulation drifting apart before being
corrected.

2.5 Summary
This chapter presented an overview of the thermal rotating annulus. Brief descriptions
were presented on experimental studies done with an annulus followed by a section on
numerical studies that have been used to replicate experimental behaviour. Finally, the
last section described two studies that have been done recently applying data assim-
ilation to the thermal rotating annulus. Here both studies are trying to better predict
experimental behaviour by using numerical methods and DA.

In the study presented in this thesis, the aim is to recreate the results from Young
and Read (2013) using an updated experimental rig, MORALS code and EnKF method.
The implementation technique used by Ravela et al. (2010) is a good place to start on
understanding how this can be done.
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Chapter 3

The MORALS code

The Meteorological Office/Oxford Rotating Annulus Laboratory Simulation
(MORALS) code, is a Fortran code maintained at the Atmospheric, Oceanic and Plan-
etary Physics (AOPP) group at the University of Oxford and is used to study a thermal
rotating annulus. The code is written in a mixture of Fortran 77 and Fortran 90 and is
designed to run on the UNIX/Linux operating system. Technical information about the
model can be found on MORALS (2020). This chapter aims to give a brief summary of
the equations and methods used in the code to simulate a rotating thermal annulus.

A general outline of how MORALS operates is given in section (3.1) along with
equations and methods that are used. Section (3.2) details how MORALS creates the
stretched grid used in its model along with how the Arakawa type C grid (Arakawa and
Lamb, 1977) is used to store data. Section (3.3) describes the implementation of the
MORALS code in 2D. Lastly the implementation of the code in 3D is given in section
(3.4).

3.1 General Outline
MORALS integrates the Navier-Stokes equations along with the heat and mass conti-
nuity equations for a Boussinesq, viscous, incompressible, thermally conducting liquid
contained in a rotating annulus using cylindrical polar coordinates. The equations are
solved using a finite difference scheme for the axisymmetric case in 2D and for a full
3D model. Equations (3.2), (3.3) and (3.4) show the 3D version of the main equations
solved in the model, for the 2D version ∂/∂θ = 0. The equations are solved for cylin-
drical coordinates (r, θ, z).

The schematic of the model used for the study is shown in figure (2.1). As this
thesis presents a comparative study between model and experiment, the dimensions of
the numerical model match the dimensions of the experimental setup used at AOPP. In
accordance with the experiment, the inner radius of the cylinders is a = 2.5 cm and the
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outer radius is b = 8.0 cm with the height being D = 14.0 cm. The geometry of the
model is given in equation (3.1). In all the studies the temperature of the system is kept
constant with the inner wall being 18◦ C and the outer wall being 22◦ C. The working
fluid is a 17% by volume mixture of glycerol in water.

From figure (2.1), the coordinates are in the following ranges,

a ≤ r ≤ b,

0 ≤ θ ≤ 2π,

0 ≤ z ≤ D.

(3.1)

A stretched grid is used in the radial (r) and vertical direction (z) to better resolve the
boundaries at the inner and outer wall of the cylinder, and the top and bottom of the
cylinder while the azimuth (θ) is uniformly spaced. An Arakawa-C grid (Arakawa and
Lamb, 1977) being used for the discretized equations. More information about the grid
is given in section (3.2). The three components of velocity (u, v, w) and temperature
(T ) are the main variable that are stored in the system. The four variables and a Poisson
equation are used to solve for the kinetic pressure (Π = p/ρ0) which is a diagnostic.

The equations solved are given on MORALS (2020). The kinematic viscosity ν,
thermal diffusivity κ and the density perturbation ∆ρ are taken as simple functions of
the temperature, with the constants used in their definition given in table 1 of Hignett et
al. (1985). The velocity components (u, v, w) are given by the equations of motion

Du

Dt
=− ∂Π

∂r
+ v

(
2Ω +

v

r

)
+ Ω2r

∆ρ

ρo
+ ∆2(ν, u)

+
1

r

∂(ru)

∂r

∂ν

∂r
+
∂w

∂r

∂ν

∂z
− 2

r2
∂(νυ)

∂θ
+

1

r2
∂(vr)

∂r

∂ν

∂θ
,

Dv

Dt
=− 1

r

∂Π

∂θ
− u

(v
r

+ 2Ω
)

+ ∆2(ν, v)

+
1

r

∂u

∂θ

∂ν

∂r
+

1

r2
∂v

∂θ

∂ν

∂θ
+

1

r

∂w

∂θ

∂ν

∂z
+

2

r2
∂(uν)

∂θ
,

Dw

Dt
=− ∂Π

∂z
− g∆ρ

ρo
+ ∆̃2(ν, w) +

∂u

∂z

∂ν

∂r
+
∂w

∂z

∂ν

∂z
+

1

r

∂v

∂z

∂ν

∂θ
,

(3.2)

where
D

Dt
=

∂

∂t
+ u

∂

∂r
+
v

r

∂

∂θ
+ w

∂

∂z
,

the continuity equation
1

r

∂(ru)

∂r
+

1

r

∂υ

∂θ
+
∂w

∂z
= 0, (3.3)
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and the heat equation

∂T

∂t
+ u

∂T

∂r
+
v

r

∂T

∂θ
+ w

∂T

∂z
= ∆̃2(κ, T ). (3.4)

The diffusion operators in these equations are defined by

∆2(λ,A) =
1

r

∂

∂r

{
λr

∂

∂r

(
A

r

)}
+

1

r2
∂

∂θ

(
λ
∂A

∂θ

)
+

∂

∂z

(
λ
∂A

∂z

)
, (3.5)

and

∆̃2(λ,A) =
1

r2
∂

∂r

{
λr3

∂

∂r

(
A

r

)}
+

1

r2
∂

∂θ

(
λ
∂A

∂θ

)
+

∂

∂z

(
λ
∂A

∂z

)
. (3.6)

with boundary conditions

At R = a :

T = Ta
dΠ

dr
= 0 u = 0 v = 0 w = 0

At R = b

T = Tb
dΠ

dr
= 0 u = 0 v = 0 w = 0

At z = 0, d

dT

dz
= 0

dΠ

dz
= 0 u = 0 v = 0 w = 0

(3.7)

3.2 The Grid

Resolving the boundary layers is always an issue when running simulations. One of the
most common boundary layers observed in atmospheric and oceanographic studies is
the Ekman layer, where there is a balance between frictional forces, Coriolis force and
the pressure gradient. When it comes to a rotating annulus it is easier to resolve the
structure and behaviour of a fluid in the middle of the cylinder than it is at the bound-
aries where an Ekman layer forms (Gill, 1982). Normally increasing the resolution of
the model can help overcome these issues but the higher resolution slows down the in-
tegration of the model, and as mentioned above the higher resolution is not necessary to
resolve behaviour in the middle of the model. A good way to tackle this problem is to
have a stretched grid, where there are more grid points at the boundary than the middle.
This way the Ekman layer can be resolved without the need to having more points in the
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Figure 3.1: 2D Axisymmetric Grid (Farnell and Plumb, 1975)

Figure 3.2: 3D Grid (Farnell and Plumb, 1976)
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middle of the model to slow down the integration.

The stretched grid in MORALS is created using a hyperbolic tangent for both the
radial and vertical direction as shown in equation (3.8). The azimuthal grid in the 3D
model is regularly spread. A hyperbolic tangent stretching is used,

r − 1

2
(b− a) = ξ(x) = r0 tanh(αrx),

z − 1

2
d = η(y) = z0 tanh(αzy),

(3.8)

where a and b are the inner and outer radius of the cylinder and d is the height of the
cylinder. The constants r0, z0, αr and αz are to be calculated. First a regular grid is
defined in x,y coordinates using the equations (3.9) below.

xi = (b− a)

(
2i− I
2I − 4

)
,

yk = d

(
2k −K
2K − 4

)
,

(3.9)

where I and K are the user-defined number of grid points in r and z respectively. The
range in the new coordinates is then fixed, i.e −x1 = xI−1 = 1

2
(b− a) in the radial

direction and −y1 = yK−1 = 1
2
d in the vertical direction. Using equations (3.8) and the

range of the new coordinates to ensure that x1 = a and y1 = 0 gives

b− a
2r0

= tanh
[αr

2
(b− a)

]
,

d

2z0
= tanh

[αz
2
d
]
.

(3.10)

To get a stretched grid the degree of stretching needs to be determined. This is done
using

dξ

dx
=

∆r

∆x
= Gr, (3.11)

dη

dy
=

∆z

∆y
= Gy. (3.12)

To get the values of ∆r and ∆z, first the Ekman number Ek and the Ekman layer
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thickness Ekz are calculated,

Ek =
ν0

Ωd2
,

Ekz =

√
ν0
Ω
,

(3.13)

where the viscosity (ν0) along with the rotation rate (Ω) and the height of the cylinder
(d) is defined by the user. ∆x and ∆y are worked out using the grid increment in the x
and y space respectively

∆r =
(b− a) ∗ Ek 1

3

BI
,

∆x =
b− a
I − 2

,

∆z =
Ekz
BK

,

∆y =
d

K − 2
,

(3.14)

here BI and BK are the boundary layer thickness factors defined as BI = 3.0, BK =
3.0, which were found by numerical experiment by Farnell and Plumb (1976). In using
equations (3.14) we are assuming the sidewalls have a Stewartson layer whose thickness
scales asEk1/3 and the horizontal endwalls have an Ekman layer thickness that scales as
Ek1/2, (James et al., 1981). Given that the stretched gradient is small 0 < Gr,Gz < 1,
the function

ς(γ) = tanh

[
G

γ

1− γ2

]
− γ, (3.15)

is solved using numerical iteration. The first value of γ which gives a positive solution
for the function is termed γ0. Differentiating the equation (3.8), and using equation
(3.10) gives,

Gr =αrr0

[
1−

(
b− a
2r0

)2
]
,

Gz =αzz0

[
1−

(
d

2z0

)2
]
.

(3.16)
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Now αr and αz can be eliminated to give

r0 =
b− a
2γo

,

z0 =
d

2γo
.

(3.17)

So once equation (3.15) is solved r0 can be calculated using (3.17) and then αr using
(3.16). Now the the constants have been calculated, the values for r and z can be worked
out using (3.8). The intermediate points can now also be calculated

x̃i =
1

2
(xi + xi−1) ,

ỹk =
1

2
(yk + yk−1) ,

(3.18)

and then the same procedure is used to find the corresponding values of r and z. The
azimuthal grid is regularly spaced in the 3D model hence only one grid increment is
needed (δθ). To ensure that the grid is periodic the points are arranged such that θJ +
δθ = θ1. Both θJ and θ̃J can be easily calculated giving the distribution of the grid.

Due to the staggered grid a few changes need to be made to the finite difference
scheme. On a regular grid(

∂ψ

∂x

)
x=x̃i

=
ψ(xi)− ψ(xi−1)

∆x
+O

(
∆x2

)
, (3.19)

so that (
∂ψ

∂r

)
r=r̃i

=
ψ(ri)− ψ(ri−1)

∆xξ′ (x̃i)
+O

(
∆x2

)
, (3.20)

with smooth ξ (x̃i) on the staggered grid,

(
∂ψ

∂r

)
r=r̃i

'ψ(ri)− ψ(ri−1)

δri
≡ (δrψ)r=r̃i ,(

∂ψ

∂r

)
r=ri

'ψ(r̃i+1)− ψ(r̃i)

δr̃i+1

≡ (δrψ)r=ri ,(
∂ψ

∂z

)
z=z̃k

'ψ(zk)− ψ(zk−1)

δzk
≡ (δzψ)z=z̃k ,(

∂ψ

∂z

)
z=zk

'ψ(z̃k+1)− ψ(z̃k)

δz̃k+1

≡ (δzψ)z=zk .

(3.21)
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Variable r z θ

u r = ri z = z̃i θ = θ̃i
v r = r̃i z = z̃i θ = θi
w r = r̃i z = zi θ = θ̃i
T r = r̃i z = z̃i θ = θ̃i

Table 3.1: Grid position of stored variables

The second derivative(
∂2ψ

∂r2

)
r=r̃i

' [δr (δrψ)]r=r̃i =
(δrψ)r=ri − (δrψ)r=ri−1

δri
, (3.22)

both accurate to O (∆x2)

An Arakawa-C staggered grid is then created to store the variables at different posi-
tions in the grid. This increases accuracy and reduces the need to do averaging. Table
(3.1) gives a summary of where the variables are stored on r, θ and z coordinates. Fig-
ures (3.1) and (3.2) show a sketch of what the 2D and 3D grids look like along with
where each of the variables are stored.

3.3 The 2D code

To solve the code for a 2D system the equations need to be evaluated for axisymmetric
motion i.e. ∂/∂θ = 0. The equations (3.2) are changed into their finite difference forms
as shown below

δūt =− A1(u)− δrΠ + [2Ωv]∗ +

[
v2

r

]∗
+ D†u, (3.23)

δv̄t =− 1

2
A1(v)− 2Ω

r
(rur) + D†v, (3.24)

δw̄t =− A1(w)− δzΠ + [σ]∗ + D†w, (3.25)

δT̄ t =− A2(T ) + D†T , (3.26)

where the asterisk (∗) in the equations denotes non-standard averaging, see equations
(3.31) and (3.32) below, and the dagger denotes that a DuFort-Frankel scheme is used
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to solve these parts. Looking at the equation in detail, A represents the advection terms

A2(f) =
1

r
δr

[
r̃uf

r
]

+ δz

[
w̃f

z
]
, (3.27)

A1(f) =
1

2

{
A2(f) +

1

r
[(r̃u)δrf ]

r
+ [w̃δzf ]

z
}
, (3.28)

in which the tilde (ã) indicates that the variables may have to be interpolated onto their
respective grid points. This is due to the Arakawa-C grid being used, where the variables
are stored at different point in the grid. The D terms represent diffusion and have the
form:

Du =
1

r2
δr

{
νr3δr

(u
r

)}
+ δz

{
ν
rz
δzu
}

+
1

r
δr (rur) δrν + δrw

zδzν
r,

Dv =
1

r2
δr

{
νrr3δr

(v
r

)}
+ δz {νzδzv} ,

Dw =
1

r2
δr

{
ν
rz
r3δr

(u
r

)}
+ δz {νδzw}+ δzu

rδrν
z + δzw

zδzν,

DT =
1

r
δr {κrδrT}+ δz {κzδzT} ,

(3.29)

here ν (kinematic viscosity) and κ (thermal diffusivity) are functions of temperature

ν =ν0
{

1 + ν1 (T − T0) + ν2
(
T − T 2

0

)}
,

κ =κ0
{

1 + κ1 (T − T0) + κ2
(
T − T 2

0

)}
.

(3.30)

Being functions of temperature these terms are evaluated at r̃i, z̃k and are then interpo-
lated to be used in other equations as needed. The σ in the equation is the buoyancy
term given by

[σ]∗mi,k = −g
[
ρ1
(
T
zm

i,k − T0
)

+ ρ2(T
m
i,k − T0)

(
Tmi,k+1 − T0

)]
. (3.31)

The Coriolis and centrifugal terms

[2Ωv]∗ =
Ω

δ̃ri+1

(
vmi,kδri + vmi+1,kδri+1

)
, (3.32)[

v2

r

]∗
= vmi,kv

m
i+1,k

r̃2i+1 − r̃2i
r̃ir̃i+1δ̃ri+1

. (3.33)

The pressure (Π) is solved for using the Poisson equation by the alternating direction
iteration (ADI) method (Farnell and Plumb, 1975). Here the equation is solved for the
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radial direction (r) before solving for the vertical direction (z), i.e.

(Or +Oz) Π = F. (3.34)

Finally the continuity equation is given as

∆ ≡ 1

r
δr(ru) + δzw = 0. (3.35)

In the first step of integration the pressure field (Π) is calculated using the fields of
other variables (u, v, w, T ) at time m and m − 1 along with the pressure field at times
m − 1 and m − 2. The finite difference scheme is then used to calculate the value of
the variables for the next time step (m + 1) for all the interior points. A subroutine
applies the boundary conditions for all the different fields and the stored fields for the
previous time step (m− 1) are discarded. The fields are smoothed around every 21 time
steps to dampen any instabilities that can arise due to the ‘leap-frog’ time differencing
scheme. The smoothing happens by averaging the fields over adjacent time steps and
then restarting the calculations using these values.

A lot of the parameters can be changed in the 2D parameter file (sm2d). For this
study most of these parameters were kept constant to the default value. This is because
the focus of the study is to test the data assimilation side of the study, so it is assumed
that the values given will give a reasonable results for simulation. The few parameters
that were changed were the number of grid points, rotation rate and the time step length.

3.4 The 3D code

All of the discretization for the code used in the 2D model is carried forward for the
3D code but in addition the variation in the azimuthal direction is factored in. The grids
in the radial and vertical direction are stretched in the 3D model as well to resolve the
boundary layers, with the azimuthal grid now also in use, which is regularly spaced.

The finite-difference version of the equations used in the 3D code are,

δūt =− A1(u)− δrΠ + [2Ωv]∗ +

[
v2

r

]∗
+ D†u, (3.36)

δv̄t =− 1

r
A1(rv)− 1

r̃
δθΠ−

2Ω

r̃
(rur) + D†v, (3.37)

δw̄t =− A1(w)− δzΠ + [σ]∗ + D†w, (3.38)

δT̄ t =− A2(T ) + D†T . (3.39)

The asterisk (∗) in the equations again denotes non-standard averaging and the dagger
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denotes that a DuFort-Frankel scheme is used to solve these parts.

The buoyancy term is unchanged from before, while the Coriolis and centrifugal
terms are modified slightly to include the azimuthal term to give

[σ]∗mi,j,k =− g
[
ρ1
(
T
zm

i,j,k − T0
)

+ ρ2(T
m
i,j,k − T0)

(
Tmi,j,k+1 − T0

)]
, (3.40)

[2Ωv]∗ =
Ω

δ̃ri+1

(
vθi,j,kδri + vθi+1,j,kδri+1

)
, (3.41)[

v2

r

]∗
=
vi,j,kvi+1,j,k + vi,j−1,kvi+1,j−1,k

4δ̃ri+1

(
r̃i+1

r̃i
− r̃i
r̃i+1

)
. (3.42)

The advection terms are given by

A2(f) =
1

r
δr

[
(r̃u) f

r
]

+ δz

[
w̃f

z
]

+
1

r
δθ

[
ṽf

θ
]
, (3.43)

A1(f) =
1

2

{
A2(f) +

1

r
[(r̃u) δrf ]

r
+ [w̃δzf ]

z
+

1

r
[ṽδθf ]

θ
}
. (3.44)

The diffusion terms are

Du =
1

r2
δr

{
νr3δr

(u
r

)}
+ δz

{
ν
rz
δzu
}

+
1

r2
δθ

{
v
rθ

(δθu− vr)
}

(3.45)

+
1

r
δrνδr(ru

r) +
1

r2
δr(rv

θ)δθν
r + δrw

zδzν
r, (3.46)

Dv =
1

r2
δr

{
ν
rθ
r3δr

(v
r

)}
+ δz

{
ν
θz
δzv
}

+
1

r2
δθ{ν(ur + δθv)} (3.47)

+
1

r
δrν

θδθu
r +

1

r2
δθv

θδθν +
1

r
δzν

θδθw
z, (3.48)

Dw =
1

r
δr
{
ν
rz
rδrw

}
+ δz {νδzw}+

1

r2
δθ

{
ν
θz
δθw
}

(3.49)

+ δzu
rδrν

z +
1

r
δzv

θδθν
z + δzw

zδzν, (3.50)

DT =
1

r
δr {κrrδrT}+ δz {κzδzT}+

1

r2
δθ
{
κθδθT

}
. (3.51)

The continuity equation becomes

∆ ≡ 1

r
δr(ru) + δzw +

1

r
δθv = 0. (3.52)

The equations for the kinematic viscosity and thermal diffusivity are the same as for the
2D model given in equation (3.30). The Poisson equation is solved using Fourier trans-
forms in the azimuthal direction. This automatically applies periodicity as the boundary
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condition. The alternating direction iteration (ADI) method is still used to solve for the
pressure in the radial and vertical directions at each of the azimuthal points.

The way the equations are solved for the fields in the 3D model is similar to how
they were solved in the 2D one. The main issue the 3D model has is how to store the
large amount of information that the system produces. Four backup data sets are used to
juggle the data during various parts of the simulations, these are numbered 1, 2, 3 and 5.
The values of the fields are initially stored in dataset 1. Velocity source components are
first calculated from dataset 1 and stored in dataset 3. The guess for the pressure field
is also calculated and stored in dataset 5. Using the velocity source information from
dataset 3 and the pressure field from dataset 5, velocity and temperature are calculated
and stored in dataset 2 along with pressure. The boundary conditions are also applied
and all the data is stored in the same format as they were in dataset 1. The integration is
now complete.

3.5 Running the code
Generally first the 2D model is run using sm2d. This result will be used as a base to
create the ensemble. The 2D model is converted into a 3D model using stp2d3d. During
the conversion perturbation is added with different seeding leading to each ensemble
having unique initial conditions. Finally the 3D model is run using sm3d file. stp2d3d
and sm3d are run sequentially and repeated to create the ensemble. The results created
for each ensemble are stored in specific folders related to their ensemble to avoid data
being overwritten. Data created was stored in ensemble specific folders to make sure
data was not overwritten.

3.6 Summary
In this chapter a general outline was given on how the MORALS code works. In section
(3.1) the main equations solved by the code are shown along with the parameter values
used in the calculation. A general outline of how the code works is also given. Section
(3.2) outlines the creation of the stretched grid along with how the staggered grids are
created for the 2D and 3D model.

Details are given on how the 2D code works in section (3.3), finally section (3.4)
details how the 3D code works works. The finite difference versions of the equations
solved in 2D and 3D code are shown in their respective sections, along with how the
different elements in the equations are solved. More technical information about the
algorithm used in the model can be found in Farnell and Plumb (1975, 1976).
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Chapter 4

Data Assimilation and Ensemble

Kalman Filter

Data assimilation (DA) is a method of combining model data and observations. Initially
developed for numerical weather prediction (Panofsky, 1949; Gilchrist and Cressman,
1954), data assimilation is now used in a wide variety of fields such as oceanography,
traffic modelling, crime modelling, etc (Evensen, 2003). Generally used to obtain a bet-
ter prediction, data assimilation is also used to tackle other interesting questions such
as parameter estimation. Here the DA method is used to predict the values of the pa-
rameters for the model. This technique becomes important when there is uncertainty
with the values of the parameters that should be used. DA can also be used to optimise
observation to look at how many or what type of observations are needed for accurate
prediction and look at best possible places for observations which should lead to better
prediction.

As time has gone on many different approaches for data assimilation have been
created. Modern data assimilation can be divided into three distinct methods: 1. varia-
tional methods, 2. ensemble methods, 3. hybrid methods (Bannister, 2017). The optimal
method to use in a given situation depends on the model and type of observations avail-
able. Houtekamer and Zhang (2016) gives a detailed review of the different variations
of EnKF that are currently in use for NWP. The aim of this chapter is to give a simple
overview which will be helpful for the results presented in this thesis.

This chapter aims to give a brief overview of DA and its current limitations and
methods used to overcome them. Section (4.1) gives a general outline of DA. Section
(4.2) talks about the different flavours of DA currently in use, while section (4.3) looks
at the pros and cons of variational and ensemble data assimilation. In section (4.4) an
introduction to Kalman Filtering (KF), including the Ensemble Kalman Filter (EnKF)
is given. Section (4.5) gives a formulation of EnKF using a Bayesian approach. Section
(4.6) gives a brief description of how EnKF is implemented into the python code which
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was used for the study presented in this thesis. This includes giving examples of 1D
and multidimensional problems. Section (4.7) looks at the limitations of EnKF and
what tuning parameters are currently used to overcome them such as multiplicative and
additive inflation and localisation.

4.1 General outline

Numerical weather prediction (NWP) simulations are initial-value problems where the
determination of the initial condition is very important (Kalnay, 2003). In some cases,
observations can be used to obtain the initial condition but these can be non-uniformly
spread in both space and time. In the case of observations not being available or use-
ful, a best guess can be used to help generate the initial conditions on all grid points.
Using these initial conditions the model can be run and is called the background or fore-
cast. After a certain amount of time this background is compared to the observations or
’truth’. Using these two datasets a few calculations such as variable averages, variance,
covariance, etc are done and new values for the model variables are worked out. This
correction/new initial condition is called the analysis and is used to continue the model
run, hopefully, leading to a more accurate prediction. Figure (4.1) outlines the process
discussed. The cycle of analysis and forecast can be continued at user defined intervals
or through an adaptive setup.

More mathematically, data assimilation can be explained by defining a forecast, xf ,
an observation, yo and a true state for the model and observations, xt, yt. Both the
forecast (xf ) and observations (yo) are a combination of the true state plus some error
in the system as seen in equation (4.1) below,

xf = xt + µ,

yo = yt + ε,
(4.1)

where µ and ε are the error in the model and observations respectively. Now the model
and observations can be combined as seen in equation (4.2) below to obtain an analysis,

xa = xb +W
[
yo −H(xf )

]
, (4.2)

here H is a operator that maps the model to the observation in case they have different
dimensions. W is a weight that is used to help correct the model. Most assimilation
schemes are based on equation (4.2) with the only difference between them being how
they combine the observation and background to produce the weight and the analysis.
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Figure 4.1: General schematic for Data assimilation

4.2 Flavours of Data Assimilation
The story of data assimilation is fairly new with the earliest approaches to data assimi-
lation in numerical weather prediction (NWP) just being hand interpolated observation
on a model grid (Panofsky, 1949; Gilchrist and Cressman, 1954). As this approach was
such a time consuming method it became clear that a more automated method needs to
be developed. Over the years with advances in computational technology new more reli-
able methods have been introduced, with the most successful being variational methods.
With the addition of Ensembles methods and hybrid methods that have been developed
in recent years, it has become important to look at the advantages and disadvantages
of each approach. In the following sections, a summary is given for a few important
methods that have been developed for DA.

4.2.1 Sequential method
One of the earliest methods to be developed for DA were Sequential methods (Bergthórsson
and Döös, 1955; Barnes, 1964; Lorenc et al., 1991). Here the assimilation corrects the
first guess using the observation and an error. The error depends on the first guess and
observation. An important thing to note is that the sample size used for calculating the
correction is not fixed. The method collects the data and evaluates them sequentially
until a convergence (minimising the distance in a given metric) is obtained. As a con-
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vergence can be reached without needing to look at all the data, a conclusion can be
reached much earlier compared to classical estimation thus saving computational time
and leading to faster prediction. But since the statistics calculated will be different de-
pending on how much of the data is used compared to when all of the data is used, the
results concluded are biased and hence can lead to incorrect corrections to the model.

4.2.2 Gradient descent filter

Gradient descent filters use full nonlinear models to look at ‘trajectories’ of the date
which are close to the observations (Stemler and Judd, 2009; Judd et al., 2008). The
method uses something called a cost function, which is a metric that designates a value
associated with an event. In many cases, this is a function to find the difference between
the estimated and true values of an event. The idea is to minimize this cost function
using the steepest descent.

The gradient descent algorithm does not use the exact values of the forecast. The
forecast values are always augmented using weights to add stochasticity to the data.
Hence the final calculated weight will never reach their optimal value in the absolute
sense. However, convergence is possible when looking at the mean, as even though the
weights may change by small amounts, the changes are close to the optimal weight.
But if the variance with which the weights change is large, convergence in mean would
be misleading. This problem may occur if the value of step-size of the gradient is not
chosen properly.

4.2.3 Variational method

Variational data assimilation methods also minimise a cost function. This is done by
taking into account the size of the observations, the background and, the errors in the
background and observation. This cost function gives the optimal analysis state (Sasaki,
1970; Lorenc et al., 2000; Rawlins et al., 2007). Variational methods normally use
linearised observation vector and a linearised version of the forecast model. The back-
ground and observational error covariance matrix are specified.

3D-Var method has been used extensively in many NWP problems as it gave the user
the ability to do three dimensional data assimilation (Sasaki, 1970; Lorenc et al., 2000;
Rawlins et al., 2007). 4D-Var (three space dimensions and time) method was developed
as it allows for asynoptic data to be used for assimilation. In meteorological terms,
this means that apart from the normal surface weather observations the method can also
use supplementary observations such as satellite radiance. 4D-Var is computationally
more expensive than it’s previous iteration 3D-Var, but has proven to be significantly
more accurate. Variational methods have been very popular in NWP with 4D-Var being
used by several weather prediction centres such as ECMWF, Frace, UK, Japan, Canada
(Kalnay et al., 2007).
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4.2.4 Ensemble method
As the name suggests Ensemble methods use an ensemble of forecasts to perform data
assimilation. Unlike like variational methods, the errors in the ensemble system evolve
with time and are calculated using the ensemble data during the analysis. The system
also does not require a linearised version of the forecast model. This means non-linear
systems can be used for data assimilation. In almost all versions of data assimilation
studies, the model used to predict the truth is a high resolution model which is computa-
tionally expensive to solve. With ensemble methods lots of lower resolution models are
used which are computationally less expensive, the idea being that even if these low res-
olution models lead to inaccurate predictions they should have a Gaussian distribution
around the truth, so when averaged they will lead to the correct answer.

The Ensemble Kalman filter (EnKF) is one of the best examples of Ensemble meth-
ods (Evensen, 1994; van Leeuwen, 2010). Since the introduction in 1994, EnKF has
been used in a wide variety of areas (Evensen, 2003). The ensemble size is a major
factor on how effective EnKF can be with large ensemble sizes leading to a better dis-
tribution around the truth and hence a better prediction. But a large ensemble lead to
more computation even with the lower resolution models. To tackle the need for large
ensembles variations of the ensemble methods have been developed, this includes the
deterministic and stochastic ensemble methods along with the Ensembles square root
filter (EnSRF) and the Local Ensemble Transform Filter (LETKF) (Houtekamer and
Zhang, 2016).

4.2.5 Hybrid methods
As the name suggests these are methods which are a combination of different methods.
These methods are very new and have been developed to try and keep the advantages
of each of the methods in mind while trying to replace their disadvantages with other
methods. A good review of all the different developments of hybrid models currently in
use is given in Bannister (2017). An example of hybrid methods are the 4D-Var/EnKF
assimilation schemes (‘EnVar’). Variations of EnVar exists but one of the simplest is a
method which uses Var analysis scheme on an ensemble system as used by Zhang et al.
(2009) using Lorenz (1996) and Bowler et al. (2008) with the the Met Office Global and
Regional Ensemble Prediction System (MOGREPS).

4.3 Variational Vs Ensemble methods
Two of the most important methods currently used are Variational and Ensemble data
assimilation methods. As discussed in section (4.2.3), Variational methods are based
on minimising a cost function. Variational methods have been used in NWP for some
time where 3D-Var became the workhorse (Parrish and Derber, 1992). In recent years
4D-Var taken over the reins with many centres (ECMWF, France, UK, Japan, Canada)
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using it as 4D-Var has proven to be more accurate compared to 3D-Var (Kalnay et al.,
2007).

Ensemble methods are comparatively very new with the Ensemble Kalman filter
(EnKF) being proposed by Evensen (1994). Unlike variational methods, EnKF can
use non-linear models and have an evolving error covariance. Whitaker et al. (2008)
showed that EnKF gives better predictions when compared to 3D Var when using the
same observations. Changes made to the Canadian perturbed EnKF method showed
that it is comparable to 4D-var joint model especially for processes that become non-
linear (Kalnay et al., 2007). 4D-var also requires long assimilation windows to give its
best results when compared to ensemble methods such as EnKF. The disadvantage of
EnKF is the sampling error which is introduced in the background error due to the low
dimensionality of the ensemble but this can be corrected using tuning methods such as
localisation (see section 4.7). Both methods can take asynchronous observational data
(Sakov et al., 2010) and use nonlinear operators.

Number of Observations
Having an optimum number of observations for DA is very important to make accurate
predictions. In many cases however it is difficult to have control on the number of ob-
servations provided, so it becomes very important to study how DA behaves when given
not only suboptimal observations, but also a suboptimal sample of observations. Varia-
tions of EnKF such as the Ensembles square root filter (EnSRF) are very efficient with
a low number of observations and become less efficient at high numbers of observations
(Houtekamer and Zhang, 2016). Local Ensemble Kalman Filter (LEKF) and Local En-
semble Transform Filter (LETKF) methods only assimilate the local points of the grid
this makes them more ideal when it comes to high numbers observations(Houtekamer
and Zhang, 2016). For accurate prediction Var method needs a long assimilation win-
dow (Kalnay et al., 2007) to observe the data. This is disadvantageous in situation where
observations are hard to obtain without being intrusive on the experiment.

Errors
Both 4D-Var and EnKF have different approaches to errors in the model and observa-
tion. In 4D-Var the background error covariance matrix does not evolve with the model
and a weak-constraint is used to account for model errors. As mentioned before 4D-Var
relies on linearised and adjoint versions of numerical model with only the first moment
of the analysis being calculated.

EnKF, on the other hand, calculates its model errors statistics using the ensemble
and does not require a linearised or adjoint versions of the model or the observations.
EnKF is also designed to produce an ensemble of analysis which contains the analysis
error and can be cycled to future analysis time. As the error calculation relies on the
ensemble size, a small ensemble can lead to a sampling error hence the statistics will
be suboptimal. This can be seen as noisy correlation and small variance. Various meth-
ods can be used to overcome these issues such as inflation and localisation which are
discussed in section (4.7).
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Conclusion
Kalnay et al. (2007) has a good discussion of the advantages and disadvantages of each
of the method. But as mentioned in this section EnKF seems to have an advantage
on 4D-Var methods for nonlinear systems. It also has an advantage when the number
of observations are low and has multiple tuning methods that can be used to calculate
accurate errors in the system. When it comes to coding EnKF is much superior, being
the easiest to implement and code. For these reasons the ensemble method and more
specifically EnKF was selected to be used for the study presented in this thesis.

4.4 Kalman Filtering
The Kalman filter (Kalman, 1960; Kalman and Bucy, 1961) has been in use for a long
time for DA in areas of guidance, navigation and control, etc. But implementation for
NWP was very limited due to the size of the models generally used in the applications.
Modifications of the Kalman filter such as the Extended Kalman filter (EKF)(Smith
et al., 1962) and Ensemble Kalman filter (EnKF)(Evensen, 1994) were proposed to help
tackle non-linear problems such as in NWP and oceanography. Since the introduction
of EnKF applied to many different areas of research as reported in Evensen (2003). This
has also lead to modifications to EnKF as well which are used in different situations. As
with other DA methods Kalman filtering compromises of two steps,

1. a forecast step that advances the computational model,

2. an analysis step which combines the forecast, the observations and error statistics
to create the optimal state to reinitialise the model.

The analysis step can be run at user defined or error dependent intervals to obtain optimal
conditions for the forecast. The weights used to correct the forecast are calculated using
the covariance and are usually talked about in terms of the Kalman gain (K). The next
few sections give the brief introduction to three different versions of the Kalman filter
that have been used for a number of years.

4.4.1 The Kalman Filter (KF)
Kalman filter (KF) (Kalman, 1960; Kalman and Bucy, 1961) is a sequential filter method
where a linear model is integrated forward in time along with a linear forward observa-
tion operator. Noise is added to the model data to make them stochastic and to make
up for any assumption in the model. The Kalman filter combines the model predictions
with observations using the Kalman gain. This process is carried out at every step with
the previous estimate and Kalman gain being used as information in the following step.
Hence the Kalman filter needs only the previous and the current estimate to get the new
state instead of the entire history of the model. Due to the linear nature of the model and
observation operator, problems start to occur when studying nonlinear behaviour.
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4.4.2 Extended Kalman Filter (EKF)

To tackle problems with nonlinear behaviour the Extended Kalman filter was created
(Smith et al., 1962). Although the working of EKF is the same as normal KF, EKF can
use nonlinear models by using Taylor expansion to extend the statistical model to the
first order. The truncation of the model to the first order, however, leads to suboptimal
predictions leading to the model covariance being underestimated. This is due to the lin-
earisation not being able to fully model the statistics of the nonlinear behaviour. Higher
order EKF has been presented but does not provide any performance benefits (Einieke,
2012).

4.4.3 Ensemble Kalman Filter (EnKF)

The Ensemble Kalman Filter (EnKF) (Evensen, 1994) can use a fully nonlinear model
making it ideal for studies with NWP. Unlike the normal Kalman Filter where the system
is corrected at every timestep, in EnKF an ensemble of models run for a certain number
of timesteps before the current predictions and observations are used to find the Kalman
gain and obtain new predictions. Hence unlike other data assimilation systems, EnKF
does not need to look at the history of the model to make predictions, giving it a distinct
advantage when it comes to real life problem where observation might be scarce in time
and space.

The system for EnKF can be given as follows

Xf = M(xN), (4.3)
Y = y +R, (4.4)

Here the forecastXf is given by modelM , with variable x and the members of ensemble
N . The observation Y is given by variable y and an error of R. Using the ensemble,
a covariance can be calculated and used as the error in the forecast, P , the ensemble is
treated as random vectors and the covariance is defined as

P =
(Xf

i −X
f
) · (Xf

j −X
f
)T

N − 1
, (4.5)

here X
f

is the ensemble average. The Kalman gain (K) can now be calculated with the
use of the background error covariance matrix (P ) and the observational error (R). This
is given by

K = PHT · (R +HPHT )−1, (4.6)

here H is a observation matrix which maps the model to the observation. Finally using
the Kalman gain the equations for the analysis (Xa) can be solved giving the new initial
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conditions to be used in the model

Xa = Xf +K · (Y −HXf ), (4.7)

Variations of EnKF
There a few different versions of EnKF that have been developed since its inception.
The two main versions are the Stochastic Ensemble Kalman filter and the Determinis-
tic Ensemble Kalman filter. The stochastic method treats the observations as random
variables (Burgers et al., 1998; Houtekamer and Mitchell, 1998), where random noise is
added to create an ensemble of observations. To try and maintain a good spread of the
ensemble random noise is also added to the ensemble analysis.

The deterministic method (Sakov and Oke, 2008; Sakov et al., 2010) was created as
it was realised that the spurious correlation between the background error and observa-
tional error can lead to degeneration of the quality of the analysis. This lead to a creation
of a few flavours of EnKF such as the Ensemble Square Root Filter (EnSRF) and the
Ensemble Transform Kalman filter (ETKF). In these filters the observation is not ran-
domly perturbed as in the stochastic version, a few other changes are made depending
on the method such as a tunable parameter used for the Kalman gain in EnSRF. And a
way to inflate the analysis depending on the covariance values (Sakov et al., 2010). All
versions of EnKF can use tuning methods such as localisation and inflation to overcome
issues relating to ensemble sizes and error, more on this in section (4.7).

4.5 Formulation

This section gives simple examples for the formulation of the Ensemble Kalman fil-
ter. Before going into the formulation some simple statistical terms need to be defined.
These terms will be useful later on for all the examples.

Given a model xwhich is runN number of times to create an ensemble (x1, x2, . . . , xN ),
the average for the ensemble can be defined as,

µ = x =
1

N

N∑
i=1

xi, (4.8)

here µ and x denote the average. Now the standard deviation (σ) can be defined,

σ =

√√√√ 1

N − 1

N∑
i=1

(xi − x)2, (4.9)
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further the variance (σ2) of the system can be defined,

σ2 =
1

N − 1

N∑
i=1

(xi − x)2 , (4.10)

and finally the covariance (Cxy) between two variables x and y can be defined,

Cxy = σ2(x, y) =
1

N − 1

N∑
i=1

(xi − x)(yi − y), (4.11)

Note the N − 1, due to ensemble being treated as random variables.
Looking at probability distribution of the results it is assumed that they are Gaussian

and are given by a Gaussian distribution formula

f(x) =
1

σ
√

2π
exp

[
−1

2

(
x− µ
σ

)2
]
. (4.12)

4.5.1 Simple example

Using the statistics defined in above a simple formulation of data assimilation can be
worked out. The aim of data assimilation is to obtain a good estimate for the true state,
ψt, of the system. Both the model forecast, ψf , and observation, d, can be thought of
as the true state with an error associated with them. Using this train of thought a few
equations can be defined to see how the model and observations are related to the true
state as shown below,

ψf = ψt + pf ,

d = ψt + ε,
(4.13)

where ε is the error in the observation and pf is the error model/forecast. Here an
assumption is made that the error distributions are Gaussian and the observation and
model error are uncorrelated. Using this assumption a few statistics can be defined
about the errors,

pf = 0, ε = 0, εpf = 0,

(pf )2 = Cf
ψψ, (ε)2 = Cεε,

(4.14)

here the overbar (a) denotes averaging over the sample/ensemble and Cf
ψψ, Cεε refer

to error covariance of the ensemble and observations respectively. Two equations can
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now be written for the analysis state, ψa; one where the forecast and observations are
combined using a linear estimator and the second which shows the relation between the
analysis and the true state,

ψa = α1ψ
f + α2d, (4.15)

ψa = ψt + pa, (4.16)

here α1 and α2 denote weights which determine how the model and measurement are
combined. pa denotes the error in the analysis after the combination. Similar to before
it is assumed that the distribution is Gaussian, so the error in the analysis, pa, has similar
characteristics to before,

pa = 0, (pa)2 = Ca
ψψ. (4.17)

To get a complete understanding the values for the weights, α1, α2, need to be worked
out. For this, first the model and observations equations (4.13) are substituted into the
analysis equations (4.15) giving,

ψt + pa = α1(ψ
t + pf ) + α2(ψ

t + ε),

= (α1 + α2)ψ
t + α1p

f + α2ε.
(4.18)

The like terms can be grouped together to give two equations. First giving a relationship
between the weights and the true state and the second giving the weights and the errors
in the system,

ψt = (α1 + α2)ψ
t, (4.19)

pa = α1p
f + α2ε. (4.20)

Looking at the relationship between the true state and the weights in equation (4.19), a
relation between the two weights can be formulated,

α1 + α2 = 1, or α1 = 1− α2, (4.21)

this relation between the two weights is substituted in the analysis equation (4.15) to
give,

ψa = (1− α2)ψ
f + α2d,

= ψf + α2(d− ψf ),
(4.22)
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a relation for the analysis error equation can also be formed using the weights,

pa = pf (1− α2) + α2ε,

= pf + α2(ε− pf ).
(4.23)

Using this analysis error equation the value of α2 can now be formulated by first using
the definition for covariance,

pa = pf + α2(ε− pf ),
(pa)2 = Ca

ψψ = (pf + α2(ε− pf ))2,
= (pf )2 + 2α2pf (ε− pf ) + α2

2(ε
2 − 2εpf + (pf )2),

(4.24)

∴ Ca
ψψ = Cf

ψψ − 2α2C
f
ψψ + α2

2(Cεε − C
f
ψψ), (4.25)

now the equation is differentiated and minimised,

dCa
ψψ

dα2

= −2Cf
ψψ + 2α2(Cεε − Cf

ψψ) = 0, (4.26)

finally the value of α2 can be easily calculated by rearranging the equation giving,

α2 =
Cf
ψψ

Cεε − Cf
ψψ

. (4.27)

Using this result, the analysis equation (4.15) and the error covariance equation (4.25)
can be can be rewritten to give the final equations for DA,

ψa = ψf +
Cf
ψψ

Cεε − Cf
ψψ

(d− ψf ), (4.28)

Ca
ψψ = Cf

ψψ

(
1−

Cf
ψψ

Cεε − Cf
ψψ

)
, (4.29)

here the first equation shows how the model, the observation and the covariance can be
combined to get a new analysis state. The second equation shows how the error in the
system can be tracked by just using the covariance. Note the resemblance to equations
to (4.6) and (4.7).
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4.5.2 Vector example and KF formulation

Using the previous simple example, the formulation can updated for a system with mul-
tiple vectors using a Bayesian approach. Lets assume that the number of measure-
ments/observations (yobs) and the model forecast can be related to the model (ψ) the
same way it was done for the simple example. This relation is given by the equations

ψf = ψ + pf ,

yobs = Hψ + ε,
(4.30)

whereH is a linear map/matrix which maps the model grid points to the observed points.
This matrix is of a size/shape nψ × py, where n and p are the number of observation
vectors (py) and model vectors (nψ). As before the errors in the observation and model
are given by ε and pf respectively.

Given a probability density function for the forecast (f(ψ)), the observation (f(yobs))
and a likelihood function f(yobs|ψ), Bayes’ theorem can be used to find the probability
of ψ given a measurement yobs,

f(ψ|yobs) =
f(ψ)f(yobs|ψ)

f(yobs)
. (4.31)

Here f(ψ) shows our understanding of the distribution of ψ before observing yobs and is
called the prior. f(ψ|yobs) gives the distribution of ψ given the observation of yobs and
is called the posterior. f(yobs|ψ) describes the likelihood of the value of yobs given the
value of ψ and hence is called the likelihood function. Finally f(yobs) is a normalisation
factor and can be evaluated as a post-processing step. This means that equation (4.31)
can be simplified to

f(ψ|yobs) ∝ f(ψ)f(yobs|ψ). (4.32)

Assuming the distribution is Gaussian, the probability distribution functions for the
prior and the likelihood can be defined as

f(ψ) ∝ exp

(
−1

2
(ψ − ψf )(Cf

ψψ)−1(ψ − ψf )
)
, (4.33)

f(yobs|ψ) ∝ exp

(
−1

2
(Hψ − yobs)(Cεε)−1(Hψ − yobs)

)
, (4.34)

where Cf
ψψ and Cεε are the covariance matrix for the forecast and observation, and H is

the matrix that maps the forecast to the observations as described in the previous section.
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These equations can be substituted in the Bayes’ equation to give

f(ψ|yobs) ∝ exp

(
− 1

2
(ψ − ψf )(Cf

ψψ)−1(ψ − ψf )
)

+ exp

(
− 1

2
(ψ − yobs)(Cεε)−1(ψ − yobs)

)
. (4.35)

Before solving the above equation it can first be simplified using the completing-the-
square formula

xTV x− 2dTx = (x− V −1d)TV (x− V −1d)− dTV −1d, (4.36)

the integrand for f(ψ|yobs) can now be reformulated.

I = −1

2

[
(ψ − ψf )(Cf

ψψ)−1(ψ − ψf ) + (ψ − yobs)(Cεε)−1(ψ − yobs)
]
, (4.37)

Using a substitute of

V = C−1ψψ +HTC−1εε H, d = HTC−1εε yobs + C−1ψψψ
f , (4.38)

the integrand can be rewritten as

I = (ψ − V −1d)TV (ψ − V −1d)− dTV −1d+ yTC−1εε yobs + ψfTC−1ψψψ
f . (4.39)

Using this an equation for covariance matrix and the analysis equation can be written as

Ca
ψψ = V −1 = (C−1ψψ +HTC−1εε H)−1,

ψa = ψf − Ca
ψψH

TC−1εε (Hψf − yobs),

and this can be then rewritten for the system which contains both forecast and analysis

(Ca
ψψ)−1 = (Cf

ψψ)−1 +HTC−1εε H, (4.40)

ψa = ψf − Ca
ψψH

TC−1εε (Hψf − yobs). (4.41)

Using the Sherman-Morrison-Woodbury matrix inversion formula

(M + UTNU)−1 = M−1 −M−1UT
(
N−1 + UM−1UT

)−1
UM−1, (4.42)
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the analysis covariance matrix
(
(Ca

ψψ)−1
)

can be reformulated using M = (Cf
ψψ)−1 and

N = C−1εε and U = H giving

Ca
ψψ =

(
(Cf

ψψ)−1 +HTC−1εε H
)−1

, (4.43)

= Cf
ψψ − C

f
ψψH

T (HCf
ψψH

T + Cεε)
−1HCf

ψψ, (4.44)

= Cf
ψψ −KHC

f
ψψ, (4.45)

where the Kalman gain (K) matrix was defined as

K = Cf
ψψH

T (Cεε +HCf
ψψH

T )−1. (4.46)

Now a complete equation for DA can be formulated. First just looking at the covariance
section in equation (4.41), the value of Ca

ψψ from equation (4.45) can be substituted
giving,

Ca
ψψH

TC−1εε = (Cf
ψψ +KHCf

ψψ)HTC−1εε

= (Cf
ψψ + (Cf

ψψH
T (Cεε +HCf

ψψH
T )−1)HCf

ψψ)HTC−1εε

= Cf
ψψH

T (I − (HCf
ψψH

T + Cεε)
−1HCf

ψψH
T )C−1εε ,

= Cf
ψψH

T (Cεε +HCf
ψψH

T )−1,

∴ Ca
ψψH

TC−1εε = K

hence the analysis equation can finally be written in terms of the Kalman gain giving
the usual equation

ψa = ψf −K(Hψf − yobs) (4.47)

where the Kalman gain is calculated as

K = Cf
ψψH

T (Cεε +HCf
ψψH

T )−1. (4.48)

Again note the resemblance to equations to (4.6) and (4.7).

4.6 EnKF analysis scheme

Now that the formulation for EnKF has been described lets look at how it can be imple-
mented practically. The implementation of the EnKF algorithm can be slightly tricky as
the data read into the system to calculate the analysis can become quite large, especially
when multidimensional models are used. So it is key to manipulate the data in such
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a way that when used in a code the RAM usage is kept low. A way to implement the
scheme was given in Evensen (2003). This section looks at how EnKF was implemented
in this study.

Before going through the scheme a few variables need to be defined which will be
used throughout the study

• n - total number of vector points in the model

• N - ensemble size

• p - total number of observed points

At the beginning of the analysis scheme, the forecast X of shape n×N is read into
the system. The observation Y of shape p is read into the system and changed to a shape
of p×N by adding noise. The ensemble is subjected to the observation matrix H which
is of shape p× n. The observation matrix maps the ensemble to create a matrix HX of
shape p×N . The average of both these ensembles are then calculated and stored as X
and HX to be used to calculate statistics. The average in both the matrices are repeated
to create a matrix which correspond to their respective original ensemble, i.e. n×N for
X and p×N for HX . Using this the two variance are calculated

A = X −X,
HA = HX −HX,

(4.49)

here A is the variance in the whole model and HA is the variance in the mapped model.
Now the background error matrix can be calculated

HPHT = (HA ·HA)/(N − 1),

PHT = (A ·HA)/(N − 1),
(4.50)

where HPHT is of shape p× p and is the background error of the observed points and
PHT is of shape n × p and is the error in the whole model. Using the observational
errorR of shape p×p the inner part of the Kalman gain can be calculated and the matrix
can then be inverted

Ka = (HPHT +R)−1, (4.51)

where the shape of the matrix remains the same as before, p× p. Now the full Kalman
gain can be calculated

Kal = PHT ·Ka, (4.52)

where the Kalman gain is of shape n × p. Next the difference between the observation
and ensemble is calculated

dy = Y −HX, (4.53)
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Name Symbol Shape
Observation matrix H p× n

Forecast Xf n×N
Observation Y p×N

Background covariance matrix P n× n
Observational error R p× p

Analysis Xa n×N
Model variance A n×N

Mapped model variance HA p×N
Mapped background error HPHT p× p

Background error PHT n× p
Inner kalman gain Ka p× p

Kalman gain Kal n× p
Observation and model difference dy p×N

Inner analysis dx n×N

Table 4.1: Shape of matrix for variables used during analysis

this difference is multiplied by the Kalman gain to get the weighted correction for the
ensemble

dx = Kal · dy, (4.54)

where the shape of dx is n × N . The analysis can now be finally calculated using the
weight

Xa = X + dx, (4.55)

where Xa is of shape n×N and is the new initial state of the ensemble. This ensemble
can now be used to reinitialise the model. Table (4.1) gives a summary of the shapes of
the different matrices that are used in the analysis step.

4.6.1 Structure of the matrix

The previous section showed how the analysis for EnKF is done and what the shape
of the matrices used for analysis are. In this section examples are given of what the
structure of the matrices look like when these calculations are done. This is impor-
tant as the storing of data in the matrices can be tricky especially when dealing with
multidimensional data.

In many coding languages such as Python, there are built in commands to multiply
2D matrices. Hence for multidimensional data, matrix reduction needs to be used to
create a matrix when can be used for calculations. In the following sections, a simple
examples are given followed by how matrix reduction can be used to create a 2D matrix
for multidimensional data.
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4.6.1.1 Simple example

First lets look at a very simple example where there are n variables, p observed variables
and N ensembles. Given a model X with variables xn a 2D matrix can be created to
store the data for the ensemble,

X = (x1 x2 . . . xn) =


x11 x12 x13 . . . x1N
x21 x22 x23 . . . x2N

...
...

... . . . ...
xn1 xn2 xn3 . . . xnN

 (4.56)

The same can be done for an observation matrix Y with variables variables Yn as seen
below

Yobs = (Y1 Y2 . . . Yp) =


Y11 Y12 Y13 . . . Y1N
Y21 Y22 Y23 . . . Y2N

...
...

... . . . ...
Yp1 Yp2 Yp3 . . . YpN

 (4.57)

The average can now be easily calculated in the matrix form and kept in a 2D matrix
form which will be helpful later on. This can be done using the equation below along
with special commands that might be specific for the coding language being used (eg.
numpy.mean for python),

X =
1

N



N∑
a=1

x1a

N∑
a=1

x2a

...
N∑
a=1

xna


1 =


x1 x1 x1 . . . x1
x2 x2 x2 . . . x2
...

...
... . . . ...

xn xn xn . . . xn

 (4.58)

Using the average matrix the variance can be calculated by simple subtraction

X′ = X−X = (x′1 x
′
2 . . . x

′
n) =


x11 − x1 x12 − x1 . . . x1N − x1
x21 − x2 x22 − x2 . . . x2N − x2

...
... . . . ...

xn1 − xn xi2 − xn . . . xnN − xn

 (4.59)

The covariance can be calculated using dot products and a transpose of the variance
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matrices

P =
1

N − 1
(x− x) · (x− x)T ,

P =
1

N − 1
X′ · (X′),

(4.60)

The creation of the observation matrix H which is a p× n matrix can be done easily

H =


1 0 . . . 0
0 1 . . . 0
...

... . . . ...
0 0 . . . 0

 (4.61)

The observation error matrix R which is a p× n matrix is also created the same way,

R =


r 0 . . . 0
0 r . . . 0
...

... . . . ...
0 0 . . . r

 (4.62)

Remember the observation errors are uncorrelated to error of one variable has to rela-
tionship with another. Using the 2D matrices defined above the rest of the analysis can
be easily calculated as described in the previous section.

4.6.1.2 2D Grid example

Having a multidimensional model can quickly create confusion on how to create the 2D
matrices need for analysis. The multidimensional model has multiple grid points and
variables, and multiple variables could be stored at each grid point. To overcome this
problem a matrix reduction method needs to be used. Lets define i, j to be the positions
on a 2D grid, the number of variables as n and N as the ensemble number. As before,
given a model X with variables xn, the stored matrix data can be a bit hierarchical,

X =


x11 x12 x13 . . . x1j

x21 x22 x23 . . . x2j
...

...
... . . . ...

xi1 xi2 xi3 . . . xij

 =


[x]nN11 [x]nN12 . . . [x]nN1j
[x]nN21 [x]nN22 . . . [x]nN2j

...
... . . . ...

[x]nNi1 [x]nNi2 . . . [x]nNij

 (4.63)
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where

[X]nN11 =


x11 x12 x13 . . . x1N
x21 x22 x23 . . . x2N

...
...

... . . . ...
xn1 xn2 xn3 . . . xnN

 (4.64)

here each position has its own matrix which contains data for each variable for the
ensemble. This multidimensional matrix needs to be reduced to get a 2D matrix.

Lets work with a simple example where there is a 2×2 grid with variables U ,V ,W at
each grid point and ensemble of 3. So the total number of vectors are ntot = n∗i∗j = 12.
For this system the matrix is reduced to a 2D system where each row corresponds to each
of the grid points and each column corresponds to an ensemble. Further, each variable
needs to be stored in the matrix sequentially, with all the values of U being stored first
followed by V and finally W . This ends up giving a 2D matrix that can be used in the
EnKF scheme. First lets look at how the data is stored in the ensemble and the average
matrix which are of shape ntot × N . Notice that all that has been done in essence is a
redefinition of n being ntot,

X =



U1
11 U2

11 U3
11

U1
12 U2

12 U3
12

U1
21 U2

21 U3
21

U1
21 U2

22 U3
22

V 1
11 V 2

11 V 3
11

V 1
12 V 2

12 V 3
12

V 1
21 V 2

21 V 3
21

V 1
22 V 2

22 V 3
22

W 1
11 W 2

11 W 3
11

W 1
12 W 2

12 W 3
12

W 1
21 W 2

21 W 3
21

W 1
22 W 2

22 W 3
22



,X =



U11 U11 U11

U12 U12 U12

U21 U21 U21

U21 U22 U22

V 11 V 11 V 11

V 12 V 12 V 12

V 21 V 21 V 21

V 22 V 22 V 22

W 11 W 11 W 11

W 12 W 12 W 12

W 21 W 21 W 21

W 22 W 22 W 22



(4.65)

Using these the variance and covariance can be easily calculate using a dot product

X′ = X−X

P =
1

N − 1
X′(X′)T
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P =



U1′
11 U2′

11 U3′
11

U1′
12 U2′

12 U3′
12

U1′
21 U2′

21 U3′
21

U1′
21 U2′

22 U3′
22

V 1′
11 V 2′

11 V 3′
11

V 1′
12 V 2′

12 V 3′
12

V 1′
21 V 2′

21 V 3′
21

V 1′
22 V 2′

22 V 3′
22

W 1′
11 W 2′

11 W 3′
11

W 1′
12 W 2′

12 W 3′
12

W 1′
21 W 2′

21 W 3′
21

W 1′
22 W 2′

22 W 3′
22



·

U1′
11 . . . U1′

22 V 1′
11 . . . V 1′

22 . . . W 1′
22

U2′
11 . . . U2′

22 V 2′
11 . . . V 1′

22 . . . W 2′
22

U3′
11 . . . U3′

22 V 3′
11 . . . V 1′

22 . . . W 3′
22



Here each row gives the covariance for a variable at the point with all the other points in
the system. Now H becomes a big matrix

H =



1 0 0 . . .
0 1 0 0 . . .
0 0 1 0 . . .

. . . 0 1 0 . . .
. . . 0 1 0 . . .

. . . . . . . . .
. . . 0 0 0

0 0


Same idea with R

R =



r 0 0 . . .
0 r 0 0 . . .
0 0 r 0 . . .

. . . 0 r 0 . . .
. . . 0 r 0 . . .

. . . . . . . . .
. . . 0 r 0

0 r


The EnKF scheme can now be used to solve for the analysis. This implementation can
be used for all multidimensional models.

48



CHAPTER 4. DATA ASSIMILATION AND ENSEMBLE KALMAN FILTER

(a) PHT matrix (b) Observation error matrix

(c) Kalman gain matrix

Figure 4.2: Test for Kalman Gain

4.6.2 Testing the analysis code

An easy way to make sure that the scheme is working properly when coded would be
to use an ensemble which should result in the Kalman gain having a value of zero and
hence no corrections are done, that means eq (4.7) is just Xa = Xf . For this test an
ensemble of ones is created and when the variance for the ensemble is calculated it is
just a matrix of zeros. It must be taken into account that there is a matrix inversion when
calculating the Kalman gain (eq. 4.6), so not everything can be zero otherwise the code
will crash. To over come this problem the observation error matrix was chosen as a
diagonals of ones.

The calculation using the above mentioned matrices are shown in figure (4.2), where
values for PHT, Ra and Kal matrices can be seen. As can be observed the PHT matrix
is zero and the observation error matrix is a diagonals of one. Finally the calculated
Kalman gain matrix is zero leading to no correction being done showing that the code
works as it is suppose to.

4.7 Limitations of EnKF and Tuning Parameters
As data obtained in many cases from both the models and observations are imperfect,
the data assimilation methods need to be able to adapt to these imperfections. In the
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case of EnKF, it is assumed that all distributions are Gaussian, but this assumption only
holds for an infinite number of ensembles and observations (Evensen, 1994). This not
feasible in real life, hence over the years since its introduction, a few tuning parameters
have been developed for ENKF along with a few variations of the method which can be
used depending on the situation. Some of these limitations of ENKF are described now
along with methods that have been developed to overcome them.

4.7.1 Localisation

The ensemble size has a big impact on the time taken to get a prediction. The bigger
the ensemble the longer it will take to run the model. Hence many studies try and keep
the ensemble size small, for example in atmospheric applications the ensemble size is
around N = 100, while the number of vectors can be around O(108) (Houtekamer and
Zhang, 2016). As the ensembles are used to calculate the background error it is very
important to have a good sample size. When vectors in the system nens << nmodel and
nens << pobs, this is commonly known as the rank problem. Here the under representa-
tion of the model can lead to a spurious correlation in the covariance matrix and hence
inaccurate analysis.

A unique solution to solve this rank problem is to split the data into independent
local problems. This method is called localisation. The idea is that points far away from
an observed grid point do not influence behaviour, hence when finding covariance they
should be ignored (for example in NWP the weather in Australia does not immediately
impact the weather in Europe). The implementation of localisation is considerably ad
hoc and it is largely believed that the bigger the ensemble the less severe the covariance
localisation needs to be (Houtekamer and Mitchell, 1998).

For the localisation correlation function ρ, it has become common to use a fifth
order piecewise rational function given in equation (4.10) in Gaspari and Cohn (1999).
However, some experimentation is necessary to find out an optimal length scale for the
localization function. The correlation function can then be implemented in the Kalman
gain equation (4.6) to give

K = [ρ ◦ (PHT )] · [R + ρ ◦ (HPHT )]−1, (4.66)

here the localisation correlation function ρ is multiplied element-wise (Schur product)
with the covariance matrix. This essentially creates a sparce matrix for the Kalman gain.

4.7.2 Inflation - multiplicative and additive

As mentioned previously, in EnKF it is assumed that the distribution is Gaussian but
this is only true if an infinite number of ensembles are used (N →∞). So when only a
limited number of ensembles are used the spread can become a problem. A well spread
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ensemble is needed to sample enough of the state space to generate an accurate error for
the background. But with small ensembles it is hard to have well spread data. This can
lead to under-correction of the ensemble leading them to converge. This convergence
can lead to the ensemble occupying the same state space and never being able to spread
out and hence not being able to give accurate predictions. There are two main ways
to increase the spread of the ensemble or inflate the ensemble. The first being additive
perturbation/inflation and the second being multiplicative perturbation/inflation.

Additive inflation essentially leads to adding a perturbation to the ensemble after
analysis. Using a simple static background error covariance a simple random field can
be created which can be added on to the model. Houtekamer et al. (1999) used a tunable
parameter (α) when creating the perturbation matrix.

Q = αP f 0 < α < 1, (4.67)
q ∼ n(0, Q), (4.68)

Xf (t+ 1) = M(xa(t)) + q, (4.69)

this method has been competitive with other methods used in EnKF. In the studies pre-
sented in this thesis however just a simple random field was used to create a perturbation
and added to the analysis.

Multiplicative inflation works by increasing the magnitude of the error covariance
matrix. The background error covariance is simply multiplied by the tunable parameter
γ. When no inflation is needed this tunable factor will be equal to 1. But with smaller
ensembles, a bigger value of γ will be needed

P f
inflated = γP f γ ≥ 1 (4.70)

Over inflation can lead to a covariance growth in data sparse areas and to overcome these
issues adaptive inflation algorithms have also been developed as reported by Anderson
(2009).

Other methods include splitting the ensemble into sub ensembles during the analysis
as reported in Houtekamer and Mitchell (1998); Mitchell and Houtekamer (2009). Here
the ensemble is divided in k sub-ensembles of equal size and the Kalman gain from one
sub-ensemble is used for the analysis of another sub ensemble.

X1 = X1 +K2(Y −HX1)

X2 = X2 +K1(Y −HX2)
(4.71)
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4.8 Conclusion
This chapter presented a general overview of data assimilation and the Ensemble Kalman
filter. Different types of data assimilation methods that have been developed over the
years were introduced including the big two currently is use, variational methods and
ensemble methods. The pros and cons of both these methods were presented when it
comes to dealing with observations and error.

A brief introduction to Kalman filtering was given with examples of how EnKF can
be formulated. The implementation of the analysis step of EnKF was shown along with
the shapes of the matrices used. This was followed by examples of what the structures
of these matrices are and how they are used for multidimensional problems. Lastly
some of the limitations of EnKF were discussed along with methods that have been
developed to help. Houtekamer and Zhang (2016) published a recent review about EnKF
in Atmospheric Data Assimilation which provides a lot more details about different
aspects of EnKF.
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Chapter 5

EnKF and the Lorenz Model

5.1 Introduction

The effectiveness of any Data Assimilation (DA) method can only be ascertained when
tested against a model that pushes its limits to give accurate predictions. In many cases,
the Lorenz model has been used to fill this niche as its nonlinear behaviour at particular
parameters provides a robust testbed to look at the different aspects and limitations of
a DA method (Evensen, 1997, 2009; Annan and Hargreaves, 2004). DA can also be
used for parameter estimation where, as the name suggests, the parameters become part
of the variables in the system and DA is used to predict the values of these parameters
(Evensen, 2009). This method is relevant in cases where the parameters for a system are
not accurately known (e.g. in experiments).

In the study presented in this chapter, the Ensemble Kalman Filter (EnKF) is tested
using the Lorenz model. EnKF, as the name suggests, is an ensemble based Kalman filter
DA method which uses a Bayesian approach to obtain an accurate prediction. EnKF
has been used in a wide variety of applications from ocean modelling to atmospheric
circulation studies. Evensen (2003) reports a review of the wide variety of research
done using EnKF.

A sample EnKF code written in MATLAB (see section 5.3.2 for more details) is
used for an initial test and to write a Python version of EnKF to test the Lorenz Model.
The techniques learned in this chapter were used as a basis for how to apply EnKF to
the MORALS code. This code solves the Navier-Stokes equation for a fluid rotating in a
thermal annulus in axisymmetric 2D and full 3D. More information about the MORALS
code is given in chapter (3) with chapter (7) presenting the results of the twin experiment
and chapter (8) presenting the results for EnKF with experimental data.

In this chapter the Lorenz model is presented in section (5.2) followed by the Runge-
Kutta method in section (5.3.1), which was used to solve the Lorenz Model. This is
followed by the MATLAB setup and the python setup in section (5.3.2) and (5.3.3) re-
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spectively. This also outlines how the code works and how it was used. Section (5.3.3)
describes the creation and acquisition of observations for the study. Section (5.3.4)
explains the use of inflation with section (5.3.5) describing the setup for parameter esti-
mation. The results of the study are presented in section (5.4) for MATLAB and section
(5.5) for Python. The Python results are divided into multiple subsections for the dif-
ferent types of testing that was done to ”push” EnKF. This included looking at how the
ensemble size plays a role in prediction in section (5.5.2), followed by how inflation can
change the accuracy of EnKF in section (5.5.3). Changing the time between assimila-
tion is tested in section (5.5.4), and finally results for parameter estimation are presented
in section (5.5.5).

5.2 The Lorenz model

The Lorenz model (Lorenz, 1963) is a set of three ordinary differential equations which
give a strongly nonlinear system. The model was conceived to describe the flow in
a thermal convection experiment but has since been used in numerous studies related
to nonlinear systems. The system is known for its non-periodic/chaotic behaviour and
unpredictability for certain parameter values. The system is described in equation (5.1)
below,

ẋ = σ(y − x),

ẏ = rx− y − xz,
ż = xy − bz,

(5.1)

Here x, y and z are the position variables and ẋ, ẏ and ż are the first derivatives of the
variables with respect to time t. The constants in the equation are given the values of
σ = 10, r = 28 and b = 8/3. These values were used in all the studies presented in
the chapter unless specified otherwise. These values are commonly used to get chaotic
behaviour and have been extensively studied and have served as a test-bed for many data
assimilation techniques from variational methods to ensemble methods (Evensen, 1997;
Miller, 1994). The Lorenz system has two nontrivial fixed points at z = r − 1 = 27,
x = y = ±

√
b(r − 1) = ±

√
72 which are unstable at r = 28, but the system has a

relatively slow growth rate in their neighbourhood. Figure (5.1) shows a typical example
of what the system looks like with these parameter values.

5.3 Method

DA is a complicated undertaking, even when done for a “simple” model such as the
Lorenz model. Hence it is understandable that many pieces are needed to bring the
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(a) Lorenz Model 3D plot.

(b) Lorenz Model plot showing the behaviour of x, y and z variables.

Figure 5.1: A typical Lorenz model trajectory using σ = 10, r = 28 and b = 8/3.
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assimilation to fruition. This section tries to explain a few of the parts that were used
when applying DA on the Lorenz Model.

First, the Runge-Kutta method is described that was used to solve the Lorenz Model.
This is followed by a description of the working of the MATLAB code. This code was
used as a test to understand how EnKF can be implemented in code for different models.
The Python code is then described which was written using the MATLAB code as a
framework. The importance of inflation in EnKF is summarised in section (5.3.4) along
with what values were used in the studies. Finally, a description of parameter estimation
is given along with how it was implemented in the Python code.

5.3.1 Runge-Kutta Methods

To solve the Lorenz model the Runge-Kutta 4th order method was used. Previous studies
used lower order finite difference schemes when solving for the Lorenz model (Evensen,
1997; Miller, 1994). This led to quite a large number of ensembles being needed when
trying to find accurate stable solutions using EnKF. With the use of the more stable RK4
method, this number should be much smaller, thus saving on computational cost and
time, while still leading to a good understanding of how EnKF works under different
conditions.

When solving for a system with equation ẏ = f(t, y) with y(t0) = y0 the 2nd order
Runge-Kutta system is given as

k1 = f(yn, tn)

k2 = f(yn + k1
dt

2
, tn + dt/2)

yn+1 = yn + k2× dt
tn+1 = tn + dt

(5.2)

while the 4th order is given as

k1 = f(yn, tn)

k2 = f(yn + k1× dt

2
, tn + dt/2)

k3 = f(yn + k2× dt

2
, tn + dt/2)

k4 = f(yn + k3× dt, tn + dt/2)

yn+1 = yn +
dt

6
(k1 + (2× k2) + (2× k3) + k4)

tn+1 = tn + dt

(5.3)

As 2nd order method is less accurate then the 4th order method and the later was used
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for all the studies presented in this chapter.

5.3.2 MATLAB setup

Before writing an EnKF code in Python, a better understanding of how the DA method
works was needed. An EnKF code written in MATLAB was obtained from the Nansen
Environmental and Remote Sensing Center (NERSC) website (http://enkf.nersc.no/).
The code was originally written by Geir Evensen and is maintained by Pavel Sakov.
The code follows Sakov et al. (2010) for asynchronous data assimilation and contains
a few test models including the Lorenz model that can be used to better understand the
functioning of EnKF.

For this study, the most important files in the package are the parameter (eg. prm/prm-
L3-m=2.txt) file and the main (main.mat) file. The parameter file can be edited for dif-
ferent settings which tell the package which model to use (Lorenz 65, Lorenz 96, linear
advection model, etc), the ensemble size (m), and the time step (dt), etc. The main file
contains code which connects all the various files in the package. These files contain
instructions such as how to obtain initial conditions, finding the Kalman gain, which
assimilation method to use, how to plot data, etc. These files are called/executed as and
when required by main depending on the settings in the parameter file.

For the Lorenz model, the user has a choice of solving the equations using Runge-
Kutta 2nd order or Runge-Kutta 4th order methods. The user can also choose what type
of DA method to use, such as Ensemble Kalman filter (EnKF), Ensemble Transform
Kalman Filter (ETKF), deterministic EnKF, etc. For the results presented in this chapter,
RK4 and EnKF were used for all studies done using the MATLAB code.

Running of the code
To run the simulation, the main file is executed from the MATLAB command window
using the command [x, x true, E, stats] = fmain(prmfname). This starts the run
using a freshly generated ensemble as specified by the parameter file. Both the truth and
ensemble are solved sequentially using the same time step and solver settings. Initial
conditions for the ensemble and truth are obtained using a MATLAB sample file (.mat
format) provided by the package. This file consists of 10,000 sample positions, with
three rows each row containing values for x, y, and z respectively. Using the shuffle
function in MATLAB, the columns are mixed and the first column is used as the ini-
tial value for the truth/observation and the following columns as initial values for the
ensemble members.

The simulation is then run which sequentially solves for the observation, followed
by the ensemble at each time step. The simulations (truth and ensemble) are run from
initialisation to the assimilation step. Here the ensemble is corrected using EnKF. De-
terministic additive inflation is added to these corrections to obtain the new ensemble
and the simulations are reinitialised. The simulation then continues from this point.
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5.3.3 Python Setup
The Python code does not use the Sakov et al. (2010) method as used in the matlab
version to solve for assimilation. A more stochastic version of EnKF was created here
to be used for this study. This was done to better understand EnKF’s behaviour under
different conditions. The method used is described in chapter (4). When writing an
EnKF code in Python, a lot of the ideas on how to structure the code were taken from
the MATLAB package (section 5.3.2) described in the previous section.

As observational data will already be available when working with MORALS there
is no need to simultaneously simulate observations and models as in the MATLAB
package. This allows testing of EnKF using different time steps when simulating the
ensemble to find how low resolution models can be used to successfully predict the ob-
servation. As in MORALS, where a low resolution model ensemble is used against a
high resolution truth, a similar approach was decided upon when testing EnKF here.

The general structure of the EnKF Python code is divided just like the MATLAB
package into a parameter file, which defines all the different settings for the model/sys-
tem, and the main file, which will link all the different parts of code (solving the Lorenz
model, assimilating data, reading observations, etc) and call them as and when needed.
The information contained in the different sections of the code can be summarised as:

1. Parameters - gives the ensemble number, variable number, observed variable num-
ber, observation error, simulation end time, inflation, time step, steps before as-
similation and file path for observation.

2. Initial condition - can either use the sample file from the MATLAB package
(L3 samples.mat) or create our own using the random function in Python.

3. Model - uses Runge-Kutta 4th order to solve the Lorenz model equations.

4. Data assimilation - carries out the EnKF data assimilation.

5. Plotting - reads and plots the observation data and the ensemble data.

6. Main - Contains commands to call the different parts of the code to carry out the
simulation.

When a study is started, the parameter file is checked by the main file and using the
values present (ensemble number, time step, etc) the simulation is started. All simula-
tions of the ensemble were run with a time step, ∆t = 0.01, and the results were stored
in text files to be used later when plotting data. Most of the studies were done with data
being assimilated at 50 time steps, i.e. at 0.5 time intervals. This value is much larger
than the one used in the MATLAB package.

Observation
As the Python setup does not simulate the observation and model simultaneously like the
MATLAB package, the observational data needs to be created before data assimilation
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can be done. To create observations, simulations were run at a time step, ∆t = 0.001
for 200 seconds using the Runge-Kutta 4th order to solve the Lorenz model. The results
were stored in a text file with each row representing a time step. Each row in the file
stores the time (t) followed by values of x, y and z respectively. This same method was
used for the ensemble as well. During parameter estimation values of σ, r and b are also
stored in the files on the same row following the values of the normal variables.

An observational error of 2.0 was used for all three variables during DA. When
obtaining the observation values for data assimilation, the code checks the first column
in the data file looking for the time that corresponds to the current ensemble simulation
time. This row is then read into the system to be used in the data assimilation. Each
variable in the observation is perturbed using a random number generated using the
observational error, between −2.0 and 2.0 in this case, as stated in the parameter file.
This was the same error that was used in the MATLAB package.

5.3.4 Inflation

Inflation is essentially used for the better spread of the ensemble and to make the sys-
tem more Gaussian. This leads to better sampling of the state space, which leads to a
better covariance matrix, which in turn leads to a better Kalman gain and hence a better
prediction. There are two types of inflation, multiplicative and additive. Chapter (4)
presents more details about the use of inflation in ensemble studies.

As the MATLAB package is based on Sakov et al. (2010), it uses deterministic
method for inflation. Here the covariance is used to determine the inflation for different
variables. For the Python code, both deterministic inflation and stochastic inflation was
coded into the system. For most of the results presented in the chapter deterministic
additive inflation was used on the results before reinitialising the code.

Stochastic inflation was only used during parameter estimation as the covariance
of the parameters are very small and don’t change during the simulation. This narrow
spread of the parameters during the simulation leads to a small covariance, which in
turn leads to a small Kalman gain. The small Kalman gain leads to small deterministic
inflation on the parameters. This, in turn, leads to an even smaller spread and covariance
when the system comes to the next DA. This cycle continues making the Kalman gain
smaller and smaller for the parameters which eventually leads to the system breaking
when numbers come close to zero. Using a Gaussian random perturbation to create the
new ensemble leads to a spread of values for the variables and parameters irrespective
of their covariance/Kalman values. This may not be ideal but leads to a more stable
system in the long run, especially for parameter estimation.

The Random module in Python was used to create the Gaussian perturbations. The
standard deviation of the perturbation can be tuned but that has not been done in this
study to keep the number of variables to a minimum. Hence a standard deviation of ±1
about a mean of 0 was used to create the inflation which is the default setting of the
Python normal distribution function.
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5.3.5 Parameter estimation

Mathematical models are commonly used to model real world problems. However, the
parameters under which these real world problems occur are never accurately known.
In these cases, the DA can be used to estimate the values of these parameters. During
parameter estimation the model parameters are also assumed to be variables and are
observed and estimated by the data assimilation system just like any other variable of
the model would be.

For the study presented in this chapter, the normal variables (x, y, z) of the Lorenz
model were given random initial values just as before. But as the regime in which the
system is run is known, a reasonable guess at what the initial values of the parameters
are can be made. Hence the parameters were given random initial values as shown in
equation (5.4).

σ = 10± 4,

r = 28± 5,

b = 8/3± 0.5.

(5.4)

Using these settings, the experiments done before without parameter estimation can be
repeated with an emphasis on looking at what the system tells us about the parameters.
Annan and Hargreaves (2004) used the same values.

5.4 MATLAB Results

Initial studies using the MATLAB code were preformed using a time step of dt = 0.01
for 10000 steps giving 100 seconds of data. Studies were done for varying ensemble
sizes with DA being applied at every 5 time steps. These were the default settings in the
MATLAB package. As these are just initial tests no multiplicative inflation was used in
the system.

Figure (5.2a) shows the first results using an ensemble of 3. The plot clearly shows
that the ensemble average (blue line) does not correctly predict the observations (red
line), the black dots show where the system observed the truth. The ensemble quickly
starts having problems tracking the observations after the simulation starts. The simula-
tions get stuck around the Lorenz fixed points and takes a lot of time to free themselves
so they can track the observations again. Due to the small ensemble size used in this
study not much of the state space is covered. Hence it is hard for the model to track the
observation for a long period of time, especially when the observation moves from one
fixed point to another.

Increasing the ensemble to 5 does not give much of an improvement when tracking
the observations as seen in figure (5.2b). The ensemble tracks the truth correctly for
slightly longer than before but quickly moves away from it when the truth moves from
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the neighbourhood of one fixed point to that of another.
Increasing the ensemble to 7 does make the system track the observations for a

much longer period as seen in figure (5.3). But the system eventually loses track of the
observations. It is clear from the figure that as the ensemble members oscillate between
the neighbourhoods of the two fixed points, it becomes very hard for EnKF to correct
the ensemble, especially in cases where the observations and some of the ensemble
members are circling the opposite fixed points.

5.5 Python Results

After initial tests in MATLAB to understand how EnKF works and how to code it, a
more stochastic version of EnKF was created in Python. This version was used as a
testbed to learn about its behaviour in certain conditions and to eventually modify the
code so that it can be used with MORALS, which is a 3D model.

In this section, results are presented of tests done on EnKF using the Lorenz model.
The study starts with a focus on understanding how EnKF handles ensemble sizes before
looking at how inflation and data assimilation gaps affect the simulations. The was then
extended into testing if EnKF can be used for parameter estimation. For most of the
results presented in this chapter, the simulations were done with a time step of dt = 0.01
with DA at every 50 time steps, though in section (5.5.4) below the number of timesteps
between DA was varied. In most cases, deterministic inflation was used for additive
inflation apart from section (5.5.5) where Gaussian inflation was used.

5.5.1 Testing DA scheme

To test if the EnKF scheme is working correctly a similar test as done in section (4.6.2)
was conducted. As before the aim is to make the Kalman gain is zero so no correction
is done on the system. But unlike before, the values in the Lorenz model change with
time. Hence to test the system the covariance matrix was manually made zero while the
observation error was kept as an identity matrix during the assimilation step.

The results of the test are plotted in figure (5.4) which shows the twenty seconds
of the study for an ensemble size of three where DA was done every 0.5 seconds. The
red line the is truth and the blue lines are the individual ensemble. As observed, the
ensemble does not converge and each member follows its own path clearly indicating
that no correction is being done to move the ensemble to more closely follow the truth.
The results are the same as if no DA have been done and each ensemble member evolves
independently of the other.
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(a) Ensemble of 3

(b) Ensemble of 5

Figure 5.2: MATLAB simulation using the original code with data assimilation at every 5
time steps and a dt = 0.01. The blue line is the ensemble average and the red line is the
truth. The black dots are the observed truth used in DA
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Figure 5.3: MATLAB simulation with an ensemble of 7 using the original code with data
assimilation at every 5 time steps and a dt = 0.01. The blue line is the ensemble average
and the red line is the truth. The black dots are the observed truth used in DA

Figure 5.4: Testing DA scheme with m=3 and DA every 0.5 seconds. The red line is the
truth and the blue line is the ensembles
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5.5.2 Changing ensemble sizes

In the first set of studies, only the ensemble numbers are changed. Tests are done for an
ensemble number of 3, 5, 7 and 10. It should be expected that as the ensemble size is
increased the accuracy of the ensemble will also increase with the spread sampling. This
is because with larger ensemble sizes more of the state space is being sampled leading
to a more accurate covariance and Kalman gain.

Ensemble of 3
The first study was done using a small ensemble of just 3, with the results plotted in
figure (5.5). Figure (5.5a) shows the ensemble average against the truth. The system can
be seen sporadically tracking the truth. It regularly tracks and then diverges from the
truth. When the truth is steady, going around a single fixed point (e.g. at the t = 50.0
mark), the system comes close to tracking the truth but is never able to. A similar
problem can be observed at the t = 60.0 mark where the ensemble is initially corrected
too close to the fixed point and now cannot correct to the much larger position of the
truth. This is due to the nature of the fixed points in the Lorenz model. Particles are
trapped around the neighbourhood of a fixed point and have to orbit it until they can
now escape to the other point. So here if the difference in predicted position between
and ensemble and truth is large then the system will find it hard to correct the ensemble
as the system is trapped in the neighbourhood. The same behaviour can be observed
when the truth quickly switches between fixed points (e.g. t = 20.0), here the ensemble
is trapped in a fixed point neighbourhood and takes longer time to correct itself.

The individual ensembles are plotted in figure (5.5b) along with the truth. The en-
sembles clearly stick close together and rarely diverge (they are mostly on top of each
other in the plot). Due to the small ensemble, this non-divergence leads to the system
not sampling enough of the state space. This makes it harder to track the observations
especially when the ensembles get locked on one fixed point and cannot follow the truth
to the other fixed point (e.g. t = 20.0). An easy way to solve this problem might be
to inflate the ensemble covariance during the assimilation. Given the chaotic nature of
Lorenz and the large gap between assimilation, there is no guarantee that even after cor-
rections the simulation will continue to track the observations correctly and not diverge.
The only way to solve this problem is probably to sample more of the state space with
more ensembles leading to a better Kalman gain and correction.

Ensemble of 5
The ensemble size for the next study was increased to 5 with the same study being
run again. The results for the simulation are plotted in figure (5.6), with the ensemble
average plotted against the truth in figure (5.6a). The system does a much better job of
tracking the observation compared to the smaller ensemble used before, with the average
diverging less. The system does struggle around the t = 60.0 mark with the ensemble
getting stuck around the fixed point for too long. It seems that the system trying to
correct the ensemble prolongs the problem.
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(a) Plot of the ensemble average against the truth. The red line is the observations and the blue line
is the ensemble average. The black dots are the perturbed observations used for data assimilation.

(b) Plot of the individual ensembles against the truth. The red line is the observations and the blue
lines are the ensemble members, plotted on top of each other.

Figure 5.5: Python simulation with data assimilation at every 50 time steps, a dt = 0.01,
an ensemble of 3 members and no inflation.
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Looking at the ensemble plotted against the truth in figure (5.6b) clearly shows that
this struggle of the system to track the truth can again be due to a lack of spread in the
state space. For the most part, the ensembles stay together and don’t diverge. They also
stick together around the t = 60.0 mark with all the ensembles being close to a fixed
point. It would have been very helpful for EnKF if the ensembles would have diverged,
this would have led to EnKF knowing which ensemble member was more accurate and
correct the other ensembles towards that solution.

Ensemble of 7
The ensemble size is increased further to 7 and the results of the simulation are plotted
in figure (5.7). The plot of ensemble average against the truth in figure (5.7a) shows that
the results look better but it is still not perfect. The model does diverge at a few places
but does correct itself back on track quickly. Early on in the simulation the ensemble
get stuck around a fixed point and takes so long to the correct itself that the truth is back
the on same fixed point neighbourhood as the ensemble.

Looking at the ensembles in figure (5.6b), it can be seen that the ensembles do
cover a wider state space. This is one of the main reasons why the system does better
at tracking the observation. The ensembles are locked together around the same fixed
point early on in the simulation this is the main reason why the system cannot correct
itself to follow the truth. Later on, even when the ensembles diverge from one another
the system quickly corrects the ensemble and bring them back to track the truth.

Ensemble of 10
The ensemble size was again increased to 10 and now the system gives a near perfect
result with the system tracking the observations as observed in figure (5.8). The ensem-
ble average along with the truth is plotted in figure (5.8a) with the ensemble against the
truth being plotted in figure (5.8b). As observed the ensemble does a very good job of
tracking the truth. The ensemble does not get stuck around a fixed point like it has done
in other studies and is also able to switch between the neighbourhood of the two fixed
points quite easily. The ensemble seems to diverge often especially around when the
truth is switching between the two fixed points. But due to the wide sampling of the
state space, it is easier for EnKF to quickly correct the system when it diverges from the
truth.

5.5.2.1 Discussion

It can be seen that increasing the ensemble size can dramatically increase the accuracy of
the model. In general, the transitions between the neighbourhood of the two fixed points
are still very tricky to get right, especially if the observation changes from one fixed
point to another, multiple times quickly. Getting the correct value when around a fixed
point is also important as the ensemble might get trapped around the neighbourhood of
a single fixed point for a long period of time.
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(a) Plot of the ensemble average against the truth. The red line is the observations and the blue line
is the ensemble average. The black dots are the perturbed observations used for data assimilation.

(b) Plot of the individual ensembles against the truth. The red line is the observations and the blue
lines are the ensemble members, plotted on top of each other.

Figure 5.6: Python simulation with data assimilation at every 50 time steps, a dt = 0.01,
an ensemble of 5 members and no inflation.
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(a) Plot of the ensemble average against the truth. The red line is the observations and the blue line
is the ensemble average. The black dots are the perturbed observations used for data assimilation.

(b) Plot of the individual ensembles against the truth. The red line is the observations and the blue
lines are the ensemble members, plotted on top of each other.

Figure 5.7: Python simulation with data assimilation at every 50 time steps, a dt = 0.01,
an ensemble of 7 members and no inflation.
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(a) Plot of the ensemble average against the truth.The red line is the observations and the blue line
is the ensemble average. The black dots are the perturbed observations used for data assimilation.

(b) Plot of the individual ensembles against the truth. The red line is the observations and the blue
lines are the ensemble members, plotted on top of each other.

Figure 5.8: Python simulation with data assimilation at every 50 time steps, a dt = 0.01,
an ensemble of 10 members and no inflation.
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Due to the chaotic nature of the Lorenz system, the ensembles will always diverge
from the observations regardless of the ensemble size. But the likelihood of the average
of the ensemble diverging does depend on the ensemble size with smaller ensembles
having a higher likelihood of diverging compared larger ones. The likelihood of the
system correcting itself after diverging also increases with ensemble size.

When the Python results are compared to the MATLAB results it can be seen that
they show very similar behaviour when increasing the ensemble size. Even with just the
use of Gaussian perturbation, the system does a good job of tracking the observations
even with this larger gap between DA.

5.5.3 Inflation

As seen in the previous experiment, the ensemble size affects the accuracy of EnKF. In
this section, results are presented for the different ensembles sizes used in the previous
section but with multiplicative inflation. As larger ensemble sizes lead to better accu-
racy a smaller inflation should be required for these studies and vice versa for smaller
ensemble studies.

Ensemble of 3
The study starts with an ensemble of 3 being used with an multiplicative inflation of
10%. The results for this are plotted in figure (5.9a), and show a slight improvement
when compared to figure (5.5) where no inflation was done. There is less divergence
between the ensemble and the truth. But problems persist with the system finding it
tricky when the truth regularly moving between the two fixed points later on in the
simulation.

The inflation was increased to 20% with the results plotted in figure (5.9b). The
results are an improvement on the smaller inflation, with the ensemble being able to
track more of the observations. Even when the ensemble diverges due to the inflation
the system can correct itself and get close to the truth. This can be seen at t = 50.0 mark,
where the ensemble successfully switches to the correct fixed point and then tracks the
truth reasonably closely for some time.

The inflation was increased further to 30% and the results plotted in figure (5.9c),
with another improvement being observed to the tracking of the truth. Even when the
ensemble diverges it can correct itself and start tracking the truth. Increasing the in-
flation even further to 40% with the results are plotted in figure (5.9d). Another small
improvement is observed here when it comes to tracking the truth. The results now seem
comparable to using larger ensemble sizes.

The inflation is increased again to 50% with the results plotted in figure (5.10a).
Surprisingly more improvement is observed in tracking the truth. And just like what
was observed at higher ensemble studies before when the system does diverge from the
truth it quickly corrects itself and can track the truth again after a few assimilation steps.

The inflation is increased to 60% with the results plotted in figure (5.10b). The
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results are again very good, with the ensemble almost tracking the truth through the
simulation. The results are comparable to results from an ensemble of 7.

Ensemble of 5
As described previously, with the increase of the ensemble size to 5 a lot of improve-
ments to the tracking were observed. Hence the amount of inflation required to get
accurate tracking of the truth should be less. The study was started with multiplicative
inflation of 10% with the results plotted in figure (5.11a). The results improve upon what
was observed without any inflation, especially around the t = 60 mark, which caused
problems previously. The system follows the truth quite well throughout the simula-
tion with only a few deviations which are quickly corrected during DA. The only major
deviation from the truth is observed around the t = 80 mark with the truth switching
between the neighbourhood of the two fixed points while the ensemble is stuck around
just one fixed point.

The multiplicative inflation was increased to 20% with the results plotted in figure
(5.11b). The results seem on par with the lower inflation, with deviation at the t = 70
mark where the system switches between the neighbourhood of the two fixed points.
Increasing the inflation further to 30%, the results were plotted in figure (5.11c). Im-
provement is observed here with the ensemble tracking the truth nearly perfectly with
little divergence.

Finally, the inflation was increased to 40% with the results plotted in figure (5.11d).
Now the accuracy of the system seems to decrease with more deviation being observed
at various places which seem to take longer for the system to correct. This includes an
areas around t = 30 mark where the ensemble is stuck near a fixed point. This seems to
indicate that there might be a limit to the inflation value that can be used in the system
before the system starts to spread/diverge too much.

Ensemble of 7
Increasing the ensemble size further to 7, the amount of inflation needed to accurately
track the observation should be even lower than before. In the first test, inflation of 5%
was used with the results being plotted in figure (5.12a). With this small inflation, a
small improvement is observed when compared to no inflation as seen in figure (5.7).
The ensemble system tracks the truth well through the simulation with a few places
where it deviates, just as it did in the normal simulation with no inflation.

Increasing the inflation to 10%, the results are plotted in figure (5.12b). The system
is on par with what was observed before, tracking most of the simulation, but it still
deviates at places. The ensemble has issues around the t = 60 mark but quickly cor-
rects itself. This quick correction is observed every time the system deviates from the
observation.

The inflation was increased to 15% with the results plotted in figure (5.12c). The
improvement are again just marginal when compared to the previous results. The system
does well around the t = 60 mark and does not deviate much throughout the run with
any deviations quickly corrected.
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(a) inflation of 50%

(b) inflation of 60%

Figure 5.10: Python simulation with data assimilation at every 50 time steps, a dt = 0.01,
an ensemble of 3 and differing inflation. The red line is the observations and the blue line is
the ensemble average. The black dots are perturbed observations used for data assimilation.
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CHAPTER 5. ENKF AND THE LORENZ MODEL

Increasing the inflation further to 20%, the results were plotted in figure (5.12d). The
simulation here gives similar results to before, with no improvements being observed.
This seems to indicate that inflation is no longer effective at correcting the ensemble. As
before the ensemble tracks the truth well with a few deviations from which the system
corrects quickly.

5.5.3.1 Discussion

Inflation greatly helps in spreading the ensembles around the state space helping to bet-
ter track the observation. Generally the smaller the ensemble the higher the inflation
needed for the system to track the observations accurately. This makes sense as infla-
tion just spreads the ensemble in state space leading to a better chance of covering the
observations even with low ensemble numbers. As bigger ensembles should be well
spread in state space they don’t need large inflation. Even with the correct inflation, the
system might show some places of deviation from the truth due to the chaotic nature of
the Lorenz model. But the real test is how quickly the system can correct itself and get
back to tracking the truth.

The usefulness of inflation can be observed when using small ensembles like an en-
semble of 3. As the inflation in the system is increased, the system becomes better at
tracking the observations. At areas where previously the system provided poor predic-
tion, the tracking of the observation is better. As discussed before, as the size of the
ensemble increases, the size of the state space sampled also increases, hence with an en-
semble of 5 and 7 a smaller inflation of around 30% and 15% respectively does a better
job of tracking the observations. Over inflating the ensembles seems to not lead to any
improvements in the accuracy of the system and in some cases can lead the system to
be more inaccurate as observed at the inflation of 40% with an ensemble of 5. This is
due to the Kalman gain giving higher than needed weights to the ensembles. This leads
to an overcorrection which makes the ensemble members diverge. One way to solve
this problem in a higher dimensional system would be to use localisation to stop false
correlation, which might lead to unnecessary overcorrection of the system.

5.5.4 Changing Assimilation Gap

As a good understanding has been developed on how EnKF copes with ensemble sizes
and inflation, in this section the time between assimilations was changed to see how the
system copes with longer assimilation intervals. When trying to track a chaotic model
such as the Lorenz system, given enough time between assimilations the individual
ensemble members will always diverge. A way to overcome this problem would be
to use a larger ensemble, but this will increase the computational resource required.
Another way to tackle this is to tune the multiplicative inflation. As this is just a simple
factor which is used during DA to increase the covariance and is computationally much
cheaper.
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CHAPTER 5. ENKF AND THE LORENZ MODEL

An ensemble of 7 was used for all the studies presented in this section, as previously
observed produced accurate predictions. It is logical to assume that a higher inflation
will be needed in all cases to get the same accuracy that was observed when DA was
done every 50 time steps.

60 time steps
For the first series of tests, DA is done every 60 time steps. With no multiplicative in-
flation, the results are plotted in figure (5.15a). As expected with a larger gap between
assimilations the system now diverges more then it did previously with a shorter gap
as observed in figure (5.7) and (5.12). For the most part, the ensemble does a good
job of tracking the truth. The only major point during the simulation where the ensem-
ble diverges is early on in the simulation where the ensemble seem to be stuck in the
neighbourhood of the single fixed point, around the t = 10 mark.

In the second test multiplicative inflation 15% was used in the study. Figure (5.15b)
shows the results of the study. As expected, with the inflation the system tracks the
truth more accurately, especially in the first half of the simulation when compared to
the previous study when no multiplicative inflation was used. The system only diverges
towards the end of the study around the t = 80 mark and does not fully recover until
nearly the end of the simulation.

80 time steps
For the second series of tests, DA is done every 80 time steps. Using inflation of 15%, the
results are plotted in figure (5.13a). With the long gap and with multiplicative inflation
the results here seem good when it comes to tracking the truth. But this is a bit deceptive,
with the longer interval between assimilation the system underestimates the truth a lot.
The problem might be due to the longer assimilation interval, as this gives more time
for deviation for the individual ensemble which leads to a lower average. Other points
where the ensemble does diverge it is quickly corrected to come back to the correct path.

Increasing the inflation to 20%, the results are plotted in figure (5.13b). There is no
visible improvement in the tracking of the truth with this higher inflation. The ensemble
average deviates less and tracks the truth far better. The ensemble at t = 50 is in the
same neighbourhood as the truth but due to the characteristics of the fixed point, is
never able to track the truth accurately. The inflation is increased further to 25%, and
the results are plotted in figure (5.14). With this higher inflation, the ensemble does very
well now to accurately track the truth and only deviates a few times. When deviations
do happen the system can quickly correct the ensemble and track the truth again.

100 time steps
For the next set of studies, the interval between DA was increased to 100 time steps, i.e.
1 time unit. With this longer interval between successive DA, larger inflation will be
required to accurately track the truth. As before an ensemble of 7 was used and for the
first test, multiplicative inflation of 20% is applied. The results of this study are plotted
in figure (5.16a) and shows very close results, with the ensemble tracking the truth. One
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CHAPTER 5. ENKF AND THE LORENZ MODEL

(a) inflation of 15%

(b) inflation of 20%

Figure 5.13: Python simulation with data assimilation at every 80 time steps, a dt = 0.01,
an ensemble of 7 and differing inflation. The red line is the observations and the blue line is
the ensemble average. The black dots are perturbed observations used for data assimilation.
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Figure 5.14: Python simulation with an inflation of 25% data assimilation at every 80 time
steps, a dt = 0.01, an ensemble of 7 and differing inflation. The red line is the observations
and the blue line is the ensemble average. The black dots are perturbed observations used
for data assimilation.

thing to observe is that the estimations in many cases are lower than the truth. This is
just due to the divergence of the ensemble system due to the gap.

For the next set of studies, the inflation was increased to 25% and 30% with the re-
sults being plotted in figure (5.16b) and (5.17) respectively. In both cases, no significant
changes are observed when compared to lower inflation of 20%. This seems to indicate
that the long assimilation gap does limit to how accurate the system can be even with
the addition of multiplicative inflation. This is because with the long gap ensembles
will diverge. This will lead to a sampling of bigger state space which should lead to a
better correction by EnKF but with a long gap, there is a high chance of the ensemble
diverging before it can be corrected.

Ensemble of 14
With the large gap between assimilation, one way the system can now track the truth is to
use a larger ensemble size. With this even when the individual ensembles diverge from
the truth on average the results should still be able to track the truth. To test this idea the
ensemble size is increased to 14, figure (5.18a) shows the results when no multiplicative
inflation is used. The results here are on par what is observed with the lower ensemble
of 7 with higher multiplicative inflation. There are places where the system diverges
from the truth but is quickly corrected brought back.

Using inflation of 10%, the results plotted in figure (5.18b). The results are an im-
provement when compared to when no multiplicative inflation was used. There are
fewer deviations from the truth but the values are still underestimated. Two more stud-
ies are done with a multiplicative inflation of 15% and 20% with the results plotted in
figure (5.18c) and (5.18d) respectively. In both cases, only marginal improvements are
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(a) No inflation

(b) inflation of 15%

Figure 5.15: Python simulation with data assimilation at every 60 time steps, a dt = 0.01,
an ensemble of 7 and differing inflation. The red line is the observations and the blue line is
the ensemble average. The black dots are perturbed observations used for data assimilation.
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(a) inflation of 20%

(b) inflation of 25%

Figure 5.16: Python simulation with data assimilation at every 100 time steps, a dt = 0.01,
an ensemble of 7 and differing inflation. The red line is the observations and the blue line is
the ensemble average. The black dots are perturbed observations used for data assimilation.
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Figure 5.17: Python simulation with an inflation of 30%, data assimilation at every 100 time
steps, a dt = 0.01, an ensemble of 7 and differing inflation. The red line is the observations
and the blue line is the ensemble average. The black dots are perturbed observations used
for data assimilation.

observed in the tracking of the truth. The system still deviates from the truth at moments
and the values are still underestimated at places. All this is due to the ensemble diverg-
ing between one data assimilation step and the next. Even tho this larger ensemble of
14 does improve upon the results when only an ensemble of 7 was used, an even larger
ensemble might be needed to get perfect tracking of the truth. This large gap between
assimilation steps just provides too much time for the ensemble to diverge.

5.5.4.1 Discussion

As theorised, with the larger interval between DA the system finds it harder to track the
truth. This is because the ensemble members have a higher probability of diverging.
But in most cases, multiplicative inflation can help with limiting the deviation from the
truth. The longer interval the higher the amount of inflation needed to accurately track
the truth.

With a time interval of 60 time steps, the ensemble of 7 can still track the truth
accurately as this is not much of a difference from the normal system of 50 time steps.
Smaller multiplicative inflation of 15% does a good job giving good results here as seen
in figure (5.15). Increasing the gap to 80 time steps leads to needing a higher inflation
of around 25% to get accurate results, even then the system diverges a few times from
the truth as seen figure (5.13), but is quickly corrected.

Increasing the DA interval further to 100 time steps causes the system to start under-
estimating the values of the ensemble. Even with an inflation of 30% the system does
not fully track the truth as seen in figure (5.16). This seems to indicate that the long
assimilation gap does limit to how accurate the system can be even with the addition of
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CHAPTER 5. ENKF AND THE LORENZ MODEL

multiplicative inflation. This is because with the long gap ensembles will diverge. This
will lead to a sampling of bigger state space which should lead to a better correction by
EnKF but with a long gap, there is a high chance of the ensemble diverging before it can
be corrected.

To overcome this issue the ensemble size was increased to 14. This does give better
results when compared to an ensemble of 7 but the results are still not perfect as observed
in figure (5.18). Even with an inflation of 20%, there was no significant improvement
in the accuracy of the system. An even larger ensemble might be needed to get perfect
tracking of the truth. This large gap between assimilation steps just provides too much
time for the ensemble to diverge.

It is clear that for a system like the Lorenz model there is a range of time intervals
between DA where EnKF does well in tracking the truth. With larger time intervals,
inflation can be used to reduce the deviation of the ensemble from the truth, but this still
does not lead to a perfect result. Given the chaotic nature of the Lorenz model, there
seems to be a limit on the time between DA, after which even increasing the ensemble
number does not lead to perfect results. This was demonstrated with an ensemble of 14
where, even with inflation, the system did not yield perfect results.

5.5.5 Parameter estimation Results

In all previous studies, parameter values of σ = 10, r = 28 and b = 8/3 were used for
both the truth and the ensemble. This gave the system the best chance to track the truth
as both cases used the same parameters. But in the real world case (e.g. in experiments)
there will be an amount of uncertainty about the exact values for the parameters. In this
case, DA can be used to estimate the values of these parameters for the system. This is
called parameter estimation.

In this set of studies, the parameters for the ensemble are now part of the vari-
ables that are predicted by EnKF. At the beginning of the study the ensemble randomly
chooses the value for the parameter in each ensemble member using σ = 10 ± 4.0,
r = 28 ± 5.0 and b = 8/3 ± 0.5. In all studies presented, DA was done every 50 time
steps with Gaussian additive inflation used in all studies as discussed in section (5.3.4).
The parameter values for the truth are kept the same as the original, σ = 10, r = 28 and
b = 8/3. Results are presented for an ensemble size of 7, 10, 15 and 20. Table (5.1)
provides a summary of the results presented in this section.

No Inflation
In the first study using an ensemble 7 and no inflation, a study was done on the system
and the results are plotted in figure (5.19). With the parameters being changed every
DA step the system can remain in the same neighbourhood as the truth, even though the
values of the ensemble average don’t always seem correct. The ensemble collapses to
around zero for the x and y variables at the t = 50 mark. This is due to the combination
of parameters the system has predicted for the system. In the DA steps that follow,
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Figure 5.19: Python simulation with parameter estimation active, an ensemble of 7, data
assimilation at every 50 time steps, a dt = 0.01 and no inflation. The red line is the obser-
vations and the blue line is the ensemble average. The black dots are perturbed observations
used for data assimilation.

the system corrects the ensemble and follows the truth reasonably well until the system
collapses again near the end of the simulation.

The estimation for the different parameters predicted by EnKF is plotted in figure
(5.21). The predictions of the different parameters as the system evolves is plotted in
figure (5.21a). Looking at the σ graph, the values predicted diverges a lot but surpris-
ingly the system favours predicting values larger than the actual values (i.e. over 10),
than predicting small values. The r values also vary quite a lot and the pattern of predic-
tion here is the opposite of what was observed before with a majority of the predicted
values being smaller than the actual values, and only a small set being higher than the
actual values. For b the values predicted seem to be quite close to the actual value used
for the truth.

The rest of the plots in figure (5.21) show a histogram for the parameters. Using this,
a mean and standard deviation for the parameters can be calculated to be compared to
the truth. Figure (5.21b) plots the results for σ. There is a large distribution of predicted
values by EnKF as mentioned in the previous paragraph. The mean predicted by the
system is σ = 13.27 ± 6.856, while the true value used was σT = 10. So the system
overpredicts the actual value of the parameter. The large variation of predicted values
leads to a large standard deviation. With this, the true value does lie within the standard
deviation bars predicted by the ensemble.

Figure (5.21c) shows the histogram for r, here similar distributional behaviour is
observed as with σ. The mean predicted by the system is r = 24.931 ± 2.9, while the
value used for the truth was rT = 28.0. As observed, the distribution of the prediction
is large as reflected by the standard deviation. In this case, the system underpredicts the

85



CHAPTER 5. ENKF AND THE LORENZ MODEL

Figure 5.20: Python simulation with parameter estimation active, an ensemble of 7, data
assimilation at every 50 time steps, a dt = 0.01 and 10% inflation. The red line is the obser-
vations and the blue line is the ensemble average. The black dots are perturbed observation
used for data assimilation.

values of the parameter. The standard deviation means that the true value of r just about
lie within the standard deviation bars of the estimate for r.

Lastly figure (5.21d) shows the histogram for b. The mean predicted by the system
is b = 1.859 ± 1.514, while the true value used was bT = 2.667. As observed here the
estimates are smaller than the true value. The system underpredicts the value for b, but
with the standard deviation, the truth value is within the standard deviation estimates
coming from the predicted values.

10% Inflation
For the next experiment, the ensemble of 7 was kept, but the multiplicative inflation
used during DA was increased to 10%. Figure (5.20) shows the plots for the x,y and
z variables. The results here are an improvement on when no inflation was used. The
system does not collapse to zero as it did previously, but it does deviate from the truth
at times.

The results for the different parameters predicted by EnKF are plotted in figure
(5.23). The predictions for the different parameters as the system evolves is plotted
in figure (5.23a). Looking at the σ graph, the distribution of the values was narrower
than before with the predictions staying close to the truth during the rum. There are
a few places where the value predicted goes to zero, but the system seems to fix the
problem and get back to the correct area of the state space. The r value distribution
also seems narrower than before and closer to the truth. There is a section where the
prediction deviates from the truth significantly but the system does correct the values
and the prediction, and then does stay close to the truth. The b values also seen closer
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to the true value. When comparing the three graphs all the predictions move away from
the truth together around at t = 90 mark. As expected, when this happened the values
for x, y and z also diverge from the truth.

The histogram for σ is plotted in figure (5.23b). With the higher inflation, the spread
of the prediction is smaller than before. The mean predicted by the system is σ =
9.724 ± 3.288, while the true value used was σT = 10. The mean predicted values
of this parameter in the run is much closer than before, with the truth being within the
standard deviation range. Most of the predicted values seem to be lower than the truth
and this fact is also reflected in the mean calculated which is smaller than the truth.

The histogram for r is plotted in figure (5.23c). The mean predicted by the system
is r = 27.442 ± 1.931, while the true value used was rT = 28.0. Here the distribution
is much closer to the truth than observed in the previous study, as reflected by the mean
and standard deviation. It is very impressive to see that the system can predict values
so close to the truth but this might just be the system getting lucky on the run with the
initial conditions which have to lead the system towards the right path.

Finally the histogram for b is plotted in figure (5.23d). The mean predicted by the
system is b = 2.364 ± 1.252, while the true value used was bT = 2.67. The predicted
mean is very close to the true value of the parameter with the standard deviation also
being smaller than before.

It seems that on this run the system was very well when predicting the values of the
parameters with all being very close to the true values. This might be due to the initial
conditions used by the system which lead to the system not deviating too much from the
true values.

20% Inflation
Keeping an ensemble 7 the multiplicative inflation used during DA is increased further
to 20%. Figure (5.22) shows the plots for the x,y and z variables. The results stay close
to the truth but the ensemble still collapses to zero from time to time throughout the
simulation. There are no major deviations from the truth, only the z variable has some
large values at times.

The results for the different parameters predicted by EnKF are plotted in figure
(5.24). The predictions of the different parameters as the system evolves is plotted in
figure (5.24a). While the value from b remains close to the true value, but the value of σ
and r are more chaotic then what was observers before. They both deviate from the truth
with the predicted value of σ being larger then the truth and the prediction of r being
much smaller than the truth. With the larger inflation, the one would expect the system
to be more stable and more accurate. But since the combination of the three variables
gave stable answers is seems like EnKF was never able to get in the right neighbourhood
to get accurate values, especially for σ.

The histogram for σ is plotted in figure (5.24b). The mean predicted by the system
is σ = 17.252 ± 4.702, while the true value used was σT = 10. As described before
the prediction here quite a bit larger than the true value. Even with the large standard
deviation, the system is not close to the truth.
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Figure 5.22: Plot of the ensemble average against the truth. Python simulation with ensem-
ble of m = 7 data assimilation at every 50 time steps, a dt = 0.01 and no inflation. The red
line is the observations and the blue is the ensemble average. The black dots are perturbed
observation take during data assimilation
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The histogram for r is plotted in figure (5.24c). The mean predicted by the system is
r = 25.338± 2.148, while the true values used was rT = 28.0. As observed previously,
a large section of the prediction is lower than the true value. With the smaller standard
deviation, the truth does not lie within the predicted mean value.

The histogram for b is plotted in figure (5.24d). The mean predicted by the system
is b = 1.909 ± 1.442, while the true values used was bT = 2.67. The predicted mean
here again close to the truth but interestingly the standard deviation is larger than the
predicted mean. This large standard deviation might be due to the predictions given by
EnKF when the system deviation from the truth during the 100 seconds and 150 seconds
mark.

Ensemble of 10
The ensemble size of the system was now increased to 10 to see if a larger ensemble
can lead to better results. Figure (5.25) plots she results for the different parameters
predicted by EnKF for this simulation. The predictions of the different parameters as
the system evolves are plotted in figure (5.25a). With the higher ensemble size, the
predictions for r and b are close to actual values used but the system predicts higher
values for σ for much of the run.

The histogram for σ is plotted in figure (5.25b). The mean predicted by the system
is σ = 113.645 ± 2.678, while the true value used was σT = 10. As observed in
the previous plot the higher prediction of σ has to lead to a higher average value. The
standard deviation is smaller than before as most of the ensemble skewed towards the
high values.

The histogram for r is plotted in figure (5.25c). The mean predicted by the system
is r = 27.609 ± 1.434, while the true value used was rT = 28.0. The mean prediction
here is closer than what was predicted before, with a smaller standard deviation. The
histogram shows a double peak with the second peak being closer to the truth.

The histogram for b is plotted in figure (5.25d). The mean predicted by the system
is b = 2.553 ± 0.748, while the true value used was bT = 2.667. The mean prediction
is close to the true value and the standard deviation is smaller than what was observed
with inflation in previous studies. The distribution of the prediction is more like a Gaus-
sian than seen for the other parameters indicating that EnKF has done a good job of
predicting the values around the truth.

Ensemble of 10 with 10% Inflation
The results for the different parameters predicted by EnKF are plotted in figure (5.26).
The predictions of the different parameters as the system evolves are plotted in figure
(5.26a). The predictions here are less chaotic than previously observed when no inflation
was used. Unlike previously observed the predictions for σ, r and b are very close to
the truth throughout the run. The values for σ diverge during the early stages of the
simulation around the t = 20 mark, while the values r and b deviate towards the end
of the run around the t = 90 mark where values for both are under predicted. These
deviations will affect the mean predictions for the parameters.
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The histogram for σ is plotted in figure (5.26b). The mean predicted by the system
is σ = 10.342 ± 1.851, while the true value used was σT = 10. With the inflation,
the mean predicted value is closer to the truth than before and the standard deviation is
lower than before.

The histogram for r is plotted in figure (5.26c). The mean predicted by the system is
r = 26.627± 1.841, while the true value used was rT = 28.0. The mean predicted here
is smaller than what was predicted when no inflation was used. This difference might
be due to the deviation that was observed towards the end of the simulation where the
predicted value of r well below the truth.

The histogram for b is plotted in figure (5.26d). The mean predicted by the system is
b = 2.469 ± 0.992, while the true value used was bT = 2.67. The predicted mean here
is close to the true value but the values is lower then what was predicted before. The
standard deviation observed is also larger than what was observed before. Both of these
are because of the deviation that was observed near the end of the simulation.

Ensemble of 15
In the light of the improvement resulting from increasing the ensemble size to 10, the
ensemble size was now increased to 15, with the results for the different parameters
predicted by EnKF being plotted in figure (5.27). The predictions of the different pa-
rameters as the system evolves are plotted in figure (5.27a). The value of σ oscillates a
lot around the truth throughout the run. The values of r and b fluctuate a lot as during
the simulation but the changes are less extreme than what is observed for σ.

The histogram for σ is plotted in figure (5.27b). The mean predicted by the system is
σ = 9.893± 1.526, while the true value used was σT = 10. The mean here is very close
to the true value and even the standard deviation is smaller then what has be observed
before. As stated previously the prediction of the values of σ fluctuated a lot during the
simulation but it seems on average it leads to an accurate prediction.

The histogram for r is plotted in figure (5.27c). The mean predicted by the system
is r = 27.033± 1.170, while the true value used was rT = 28.0. The mean here is very
close to the true value as well. The standard deviation is also small here, but this might
be due to the fluctuations being small as observed in figure (5.27a).

The histogram for b is plotted in figure (5.27d). The mean predicted by the system is
b = 2.642± 0.604, while the true value used was bT = 2.67. The mean predicted value
is again very close to the true value with a very small standard deviation. This reflects
how the prediction of b does not diverge too far from the true value.

Ensemble of 20
The ensemble number was further increased again to 20 and the results for the differ-
ent parameters predicted by EnKF are plotted in figure (5.28). The predictions of the
different parameters as the system evolves is plotted in figure (5.28a). The predictions
for σ deviate for a while during the simulation, but not to extremely large values as ob-
served in the previous studies. DA does a good job of pulling it back towards the true
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value. The value of r seems to remain quite close to the true value while the value of b
fluctuates very close around the true value as usual.

The histogram for σ is plotted in figure (5.28b). The mean predicted by the system
is σ = 10.582 ± 1.826, while the true value used was σT = 10. As with the previous
increase in ensemble size, the mean prediction stays close to the actual value used in
the observation. The standard deviation remains small as well just as it did with an
ensemble of 15.

The histogram for r is plotted in figure (5.28c). The mean predicted by the system
is r = 27.764± 1.557, while the true value used was rT = 28.0. The mean prediction is
very close to the true value with the standard deviation being small. The histogram for
b is plotted in figure (5.28d). The mean predicted by the system is b = 2.669 ± 0.642,
while the true value used was bT = 2.67. The mean prediction here is nearly the exact
value of the one used to generate the observations.

5.5.5.1 Discussion

Parameter estimation is the study of letting the DA method predict the values of the
parameters in a system along with values of the normal variables. In this set of studies,
the observation parameters used values of σ = 10, r = 28 and b = 8/3 as normal. When
the simulation is initialised, the system randomly chooses the values for the parameters
in each ensemble using σ = 10± 4.0, r = 28± 5.0 and b = 8/3± 0.5, with all studies
being done with a time step of δt = 0.01 and DA being done every 50 time steps. Table
(5.1) provides a summary of the results presented in this section.

The first set of studies was done using an ensemble of 7, to study how EnKF behaves
with and without multiplicative inflation. The first study was done without any inflation,
with the study running for 100 time units. The results predicted for the parameters are
generally very encouraging, even if the true value is not always within the standard
deviation of the ensemble values. Using multiplicative inflation does make the ensemble
more accurate but also lead to larger standard deviation which can lead to more chaotic
results.

For the second set of experiments, the ensemble size was increased to 10. The first
test was done without any inflation to see what the system does with this larger ensemble
size. With the larger ensemble size, the predictions for the parameter are closer than
before, with a smaller standard deviation as well. Applying a 10% inflation does not
lead to a more accurate prediction overall, but this might be due to the more chaotic
nature this run. Increasing the ensemble sizes to 15 and 20 results in more accurate
predictions for the parameters and leads to a lower standard deviation. This is to be
expected, as more of the state space is being sampled by the system. This leads to a
more accurate prediction of error in the system.

It seems that increasing the ensemble sizes lead to a more accurate prediction for the
parameters as expected. This can be clearly observed in figure (5.29) where the errors
decrease with an increase in ensemble size and the predicted value also get closer to the
true value. The addition of multiplicative inflation, however, can lead to higher standard
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Ensemble Inflation σ r b
True – 10.000 28.000 2.667

7 1.00 13.270 ± 6.856 24.931 ± 2.900 1.859 ± 1.514
7 1.10 9.724 ± 3.288 27.422 ± 1.931 2.364 ± 1.252
7 1.20 17.252 ± 4.702 25.338 ± 2.148 1.909 ± 1.442
10 1.00 13.645 ± 2.678 27.609 ± 1.434 2.553 ± 0.748
10 1.10 10.342 ± 1.851 26.627 ± 1.841 2.469 ± 0.992
15 1.00 9.893 ± 1.562 27.033 ± 1.170 2.642 ± 0.604
20 1.00 10.582 ± 1.826 27.764 ± 1.557 2.669 ± 0.642

Table 5.1: A summary of the results obtained during parameter estimation.

deviation but not necessarily a more accurate prediction

5.6 Conclusion
In this chapter, EnKF was applied to the Lorenz model and various experiments were
conducted to learn about the behaviour of EnKF under different conditions. This be-
haviour will inform how EnKF should be applied to the MORALS code, which solves
the Navier-Stokes equation for a fluid rotating in a thermal annulus with a fully 3D
system.

An EnKF code written in MATLAB was used as a basis to write a Python version.
This version was used to test EnKF’s capabilities. In the first set of tests, the ensemble
sizes were changed to see how the accuracy of EnKF changes. It was observed that
increasing the ensemble size can dramatically increase the accuracy of the model. The
Lorenz system has two fixed points, and the system transitions between the neighbour-
hoods of these fixed points, and generally finds it tricky to accurately predict where the
observations would be. This was especially the case when the observations oscillated
between the two fixed point regions. Given time, the ensemble system will always di-
verge, but with larger ensemble sizes the probability of this happening becomes smaller
and the speed at which the system corrects this divergence also increases with larger
ensemble sizes.

In the second set of experiments, multiplicative inflation was used along with differ-
ent ensemble sizes. Overall, inflation helped a lot when it came to better tracking the
observations. Smaller ensembles needed higher inflation and larger ensembles needed
smaller inflation when it came to better tracking the observations. This is because a
larger ensemble samples more of the state space, hence lead to a better covariance and
Kalman gain. However, over inflating the ensembles seems to not lead to any improve-
ments in the accuracy of the system and in some cases can lead the system to be more
inaccurate, as now the Kalman gain gives a higher value leading to an overcorrection
which can make the ensemble members diverge. One way to solve this problem in
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Figure 5.29: Plot of the predicted parameter values without inflation. The red line is the
true value, the blue dots are the predicted average and the lines are the standard deviation.

higher dimensional systems would be to use localisation to stop false correlation be-
tween points which might lead to unnecessary overcorrection of the system. Inflation is
more useful when used for smaller ensemble sizes as the user is saving on the computa-
tional cost of simulating additional ensemble members.

In the third set of experiments, the number of time steps between the DA points was
changed. As theorised, with the larger interval between DA the system finds it harder
to track the truth as the ensemble members have more time to diverge. But in most
cases using multiplicative inflation can help stop the system from diverging from the
truth. Obviously, with the longer interval between DA, the amount of inflation needed
to accurately track the truth is higher than what was needed with the shorter interval.

It is clear that for a system like the Lorenz model there is a range of time intervals
between DA where EnKF does well in tracking the truth. Given the chaotic nature of the
Lorenz model, there also seems to be a limit on the time between DA, after which even
increasing the ensemble number does not lead to perfect results. This was demonstrated
with a time interval of 100 time steps, where even using an ensemble of 14 and inflation
did not yield perfect results.

Finally, a study was done on the capabilities of EnKF on parameter estimation. Here
the parameters of σ, r and b were predicted by EnKF along with the normal variables
x, y and z. Overall EnKF does a great job in getting the predictions close to the actual
values used for the parameters. With an ensemble of 7, inflation is needed to get EnKF
close to the true values, but as the ensemble size is increased, less or even no inflation
is required to get accurate predictions of the parameters. This result is comparable to
previous studies such as Annan and Hargreaves (2004), where a much larger ensemble,
up to 100 members, was used to obtain close predictions.

This chapter shows the capabilities of EnKF under different conditions to accurately
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correct and predicts the behaviour of the Lorenz model. In all different conditions,
EnKF can be tuned to work well. These results will help shape the application of EnKF
to the MORALS code, where EnKF will be applied to a 3D model. The number of
points which can be observed in this system is more than 100,000 and will further push
the capabilities of EnKF.
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Chapter 6

Experimental Results

6.1 Introduction

With a lack of computational power in the early days of weather prediction, laboratory
experiments were used to try to more closely replicate atmospheric conditions and to
understand fundamental physics that underlies atmospheric behaviour (Hide, 2010). As
computational methods became better, experiments also started being used as testbeds to
see how well computational simulations can replicate experimental behaviour. As mod-
ern technology has made computational studies easier and accurate it has also made
experiments more accurate, using modern apparatus and equipment. As such, experi-
ments still play a very important role in understanding atmospheric behaviour and being
used as a testbed for computational methods.

This chapter presents results for experiments performed at the Atmospheric, Oceanic
and Planetary Physics (AOPP) Group at the University of Oxford. Previous studies per-
formed at AOPP utilised an older experimental apparatus for a rotating thermal annulus,
see Hignett (1985) for more details on the setup. In the study performed by Young and
Read (2013) using this setup, the rotation rate of the annulus was changed every 20
minutes. These experiments focused on how the behaviour of the fluid changed with
the rotation rate i.e. how wavenumber changes when increasing or decreasing rotation
rates.

The results presented in this chapter are from experiments which were done using
a newly built experimental apparatus and focused on long runs at a single rotation rate.
These runs were used to test the new apparatus, along with examining the long term
behaviour of the fluid and to see how stable the waves formed at these rotation rates
are. Experiments were performed at 1 rad/s, 2.5 rad/s and 3 rad/s. Particle image ve-
locimetry (PIV) was applied to the experimental data using DynamicStudio to generate
two-dimensional U and V velocity data. The results obtained in this chapter will be
used as observations for data assimilation using the Ensemble Kalman filter and testing
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its capability to track real life observations against an ensemble of low resolution nu-
merical simulations using the MORALS code. The details of the study can be read in
chapter (8).

The experimental setup is described in section (6.2) along with the values of the
different parameters that were used for the experiment. This is followed by an overview
of the PIV setup in section (6.3) which describes how the image was processed to obtain
the U and V velocity. Finally the results of the experiment are presented in section
(6.4) with results for 1 rad/s, 2.5 rad/s and 3 rad/s presented in section (6.4.2), (6.4.3)
and (6.4.4) respectively.

6.2 Experimental Setup
The experimental setup uses a new thermal annulus but is essentially the same as de-
scribed by Hignett (1985) in terms of design, but also contains eight temperature sensors
on each of the inner and outer walls at different levels. The annulus has an inner cylinder
radius, a = 2.5 cm, an outer cylinder radius, b = 8.0 cm and a depth, d = 14.0 cm. In all
our studies the inner cylinder is cooled at Ta = 18.0◦C ± 0.02◦C and the outer cylinder
is kept at a temperature of Tb = 22.0◦C ± 0.02◦C. The temperature of the cylinder
walls is kept constant by pumping a fluid of different temperature to their respective
walls using a pump. The temperature of the liquid is regulated at the pump to obtain
the temperatures specified by the user. The bottom of the annulus is insulating and a
transparent lid can be placed at the top of the annulus to create a rigid top boundary.

The working fluid used in the experiment is a 17% glycerol mix by volume where
glycerol is mixed with de-ionised water. The density of the mix is measured using a
hydrometer to get the correct volume fraction. During the mixing of glycerol and water,
non-buoyant particles are added which reflect light and are used to track the flow of the
fluid. After this mix is poured into the annulus it is left to rest for an hour or so, to let
any air bubbles rise to the top and escape. After this, the top lid is added to the annulus
to create a rigid boundary and experiments can commence.

As mentioned before there are eight temperature sensors on the inner wall and eight
on the outer wall. These are type T thermocouples used in conjunction with a Pico TC08
thermocouple logger to store temperature data. The position for thermocouples on the
outer cylinder were labelled as (from top to bottom): 1, 8, 7, 2, 6, 3, 5, 4; for the inner
cylinder, they are (from top to bottom): 1, 2, 3, 4, 5, 6. On the inner cylinder, sensor
7 is for common constant connection and sensors 8 and 9 are the earth. Data is logged
at every level simultaneously after image capture. This comes to data capture every 6.5
seconds.

The annulus has five 5 mm slits cut at different heights of the cylinder. These slits
go around the outer wall so light can be projected into the annulus. They are present at
12.4, 9.7, 7.0, 4.3 and 1.6 cm from the bottom of the annulus. Simple LED lights are
attached to each of these level (the silver attachments in figure 6.1) that shine through
these glass slits. This light is reflected by the seeding particles and was used to view the
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Figure 6.1: The experimental apparatus. The black shroud is used to block light from
the surrounding for better image capture. The five silver attachment shine light at the five
different levels of the annulus.
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Annulus parameters
Inner cylinder radius a=2.5 cm
Outer cylinder radius b=8.0 cm
Depth of fluid d=14.0 cm
Inner cylinder temperature Ta=18.0◦C
Outer cylinder temperature Tb=22.0◦C

Fluid properties
Working fluid 83% water, 17% glycerol
Density ρ = 1.044g/cm3

Slit position from the bottom of the annulus
Level 1 1.6 cm
Level 2 4.3 cm
Level 3 7.0 cm
Level 4 9.7 cm
Level 5 12.4 cm

Table 6.1: Summary of Annulus and fluid properties used in experiments

behaviour of the fluid at that level. Light is projected through each level sequentially
for 5 seconds starting from the bottom and moving towards the top. There is a 1 second
delay before the next level is illuminated, this is done so there is no overlap of different
levels being illuminated at the same time leading to false data. Once the top level has
been illuminated the cycle starts again from the bottom level. Hence images are obtained
from a level every 30 seconds.

The thermal annulus is attached to a table which rotates with a speed set by the user
using an electric motor. A camera is attached 1 m above the rotating table and rotates
with the table and takes an image which is 1024x768 pixels. A shroud is put on top of
the annulus to block any light from the surroundings. This helps to get a better view of
the light reflected from the seeding particles. In addition, the light of the room was also
turned off to create a darker environment which should lead to better image capture.

The process of illumination and image capture from the camera are both controlled
using a Python script created at AOPP. A series of 10 images were captured starting one
second after light is shone at a particular level. The one second delay was added so that
the camera only starts capturing the images once the level is properly lit. These images
are taken roughly 0.16 seconds from each other. The images obtained using this process
can then be used to calculate variables such as U and V velocities for that level using a
PV software as described later in section (6.3).

During the initial testing, there were a lot of issues with bubbles forming in the
working fluid and getting trapped by the top lid. This obstructed the view of the camera
as shown in figure (6.2), and a clear image of the fluid at any level could not be captured
properly. Owing to the persistence of this issue after multiple experimental attempts it
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Figure 6.2: Bubbles trapped by the top lid blocking the view of the camera when capturing
images for PIV

Figure 6.3: Example of an image used in PIV to create a mask. The inner and outer wall
can be clearly seen and marked in DynamicStudios to create the mask.
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was decided to conduct the experiments without the top lid. This will create different
behaviour at the top of the working fluid as now the boundary is not rigid.

6.3 PIV
To process the image data obtained through the experiments software provided by Dan-
tec Dynamics called DynamicStudio was used. At the beginning of the study, an image
from the experiment was imported where a clear distinction between the inner and outer
wall regions can be observed. For example in figure (6.3), one can see the position of
the middle cylinder and where the outer wall starts, showing the edge of the annulus.
This imported image was used to create a mask for the study. For this, areas of the im-
age were highlighted to show 1) the location of the inner cylinder, 2) the working fluid
region and 3) the location of the outer wall along with the region outside the annulus.
This mask tells the software which parts of the image contain data and which don’t.
This step is very important otherwise the software will look at areas outside the working
fluid and calculate erroneous data. Care also needs to be taken when calculating near
the boundaries near the inner and outer wall.

Using the mask, images from the different heights/levels for a run can now be im-
ported to be processed. Images for each level are organised in individual branches to be
processed separately. When importing the images, the system is told that the pictures
are taken at 6.25Hz (i.e. every 0.16seconds). It is not possible in the software to account
both for the 0.16 seconds between the 10 image set and 30 seconds difference between
every 10 sets of images. Hence the data for first image in the set of 10 will be inaccurate
as the system won’t have accounted for the 30 second gap. Figure (6.4a) shows an ex-
ample of this false data calculated by DynamicStudio. As seen here the vectors do not
have any structure when compared with the correct data shown in figure (6.4b), where
a clear wave is seen travelling around the annulus. When it comes to doing any further
analysis of the PIV data the false calculated data are ignored.

The mask is applied to the images in each level. The image is 1024x768 pixels
and an adaptive PIV option is chosen for the data processing using a grid step size of
12 pixels, with a minimum number of pixels of 24 and a maximum number of 48 for
calculations. This means grid points are created every 12 pixels and the values of U and
V variables were calculated using 24 to 48 pixels adaptively. After processing the data
using adaptive PIV, the mask is applied again to the results to remove any invalid data
points which might have been created near the boundaries.

After processing of the data is done the result for each image is then exported as a
CSV file which can be read into Python to be further analysed and processed. The data
file contains results for the whole image so includes data calculated outside the working
fluid as well. The data points are marked by DynamicStudio to tell the user if they were
calculated in a valid zone or not. A Python script was written to read in the exported
files and sort out valid data which can be further analysed before being plotted. All the
data calculated were in Cartesian coordinates hence the results are converted to Polar
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(a) An example of PIV data for the first image after the 30 second gap showing incorrect data

(b) An example of correct PIV data for images

Figure 6.4: An example of the PIV data as calculated by DynamicStudios
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coordinates. The image taken during the experiments was 1024x768 pixels while the
processed data file contains 83x62 data points.

6.4 Results
This section presents the results for the three long run experiments that were performed
at AOPP for 1 rad/s, 2.5 rad/s and 3 rad/s with images taken at five different levels. These
different depths at which the images were taken will be referred to as level 1, level 2,
level 3, level 4 and level 5 and refer to images taken at 1.6 cm, 4.3 cm, 7.0 cm, 9.7 cm,
12.4 cm respectively from the bottom of the annulus. Table (7.1) has a summary of the
parameters used for the experiment.

Comparative figures are presented at each level to show what is observed in the
experimental image and what is seen in the analysed PIV data. This is done to show
the reader how much qualitative information can be ascertained by looking at the ex-
perimental image compared to applying PIV to it. Using the PIV data, Hovmöller
(space-time) plots are also presented for each level to show how the working fluid drifts
around the annulus. The plots are created from the flow by at the middle of the annu-
lus (r=5.25cm) to ignore the effects of the boundary. This will also show if there are
any structural changes during the experiment or if they are stable. Temperature data is
also presented from eight temperature sensors on the outer wall of the cylinder which
continuously log data around every 6.5 seconds.

Distinct behaviour is observed at each level with more recognisable behaviour being
observed at higher levels. At lower levels, accurate observations are harder to obtain
as the fluid and particles from higher levels obscure the camera. The density of the
particles in the fluid is also very important for generating correct PIV data. With low
rotation rates, the seeding particles can sink to the bottom of the annulus and with high
rotation rates, particles can be pushed towards the walls of the annulus. In all cases, U
velocity is plotted in the figures shown.

6.4.1 Errors and Variations in prediction
Previous study by Young and Read (2013) used a software called DigImage (Dalziel,
1994) to process their experimental data. The software error for the velocities calculated
is given by equation (6.1). This error was derived assuming a uniform distribution of
particles and using the standard deviation.

σ =
b

Nxtobs

√
2

3ns
(6.1)

Here Nx (512) is the pixels in x direction, tobs (1 seconds) is the observation time, ns (5
images) is the number of images used for the calculation and b (8 cm) is the outer radius
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Level 1 rad/s U 1 rad/s V 2.5 rad/s U 2.5 rad/s V 3 rad/s U 3 rad/s V
1 0.0771 0.0256 0.0360 0.0121 0.1543 0.0444
2 0.0292 0.0073 0.0323 0.0126 0.1197 0.0364
3 0.0353 0.0100 0.0165 0.0020 0.0475 0.0130
4 0.0311 0.0064 0.0409 0.0085 0.0409 0.0085
5 0.0259 0.0090 0.0326 0.0087 0.0527 0.0156

Table 6.2: Standard Deviation Error for rotation rates at different levels

of the cylinder. Using this method, the velocity error for results presented in Young and
Read (2013) was calculated to be 0.0057 cm/s.

The software used to calculate velocities for our study is called DynamicStudios.
This software does not function the same way as DigImage but averages over many
pixels to calculate the values for the velocity, so the error equation used for DigImage
does not strictly apply here. But for comparison, using the same equation gives a ve-
locity error of 0.0564 cm/s for DynamicStudios. This error is much higher compared
to DigImage as the observation times are much smaller (0.16 seconds compared to 1
seconds) and only 2 images are used to calculate velocities in the PIV data.

Another study that could be done, is to see how the PIV software performs and
look at its consistency when predicting velocity. A simple standard deviation can be
calculated using the variations in the predicted amplitude of the baroclinic wave in the
system as observed in each valid image. This variation in predicted values shows how
accurately the PIV software is able to track the movement of particles in the images. And
Although amplitude and structural vacillation could cause problems in calculations, this
should not be a problem for steady flow observed at low rotation rate like 1 rad/s.

The results for the standard deviation at different rotation rates and at different levels
are given in table (6.2) with figure (6.5) showing all the errors at the different rotation
rates in one figure. At 1 rad/s and 3 rad/s is can be clearly observed that the deviation in
the system decreases as the observation level increases. While at 2.5 rad/s there seems to
be an increase in deviation at higher levels. It seems that vacillation might have played
a role at this level when it comes to the deviation.

6.4.2 1 rad/s

The first results presented are for a run at 1 rad/s which ran for approximately three
hours. At this low rotation rate, a very stable structure is produced with a dominant
m = 3 wave travelling around the annulus. Due to this stability this rotation rate was
used to benchmark the PIV software. Details of what was observed at each level is given
below.
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Figure 6.5: Standard Deviation Error calculated for each level and rotation rate using the
amplitude of the wave in the middle of the annulus.
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Figure 6.6: Image of the working fluid at the end of the 3hr run taken at level 1 for the
1 rad/s experiment

6.4.2.1 Level 1

Observing at this low level creates a lot of challenges as the fluid and seeding particles
from above levels can obscure what is seen. The image taken at level 1 towards the end
of the 3 hour experiment is presented in figure (6.6). There are particles which can be
seen in the middle of the annulus and can be used to figure out the basic structure of
the flow. No detail in the structure can be seen but a circular structure can be observed
when following the particles. A sense of the movement in the fluid can be detected when
observing sequences of images but it is difficult to pinpoint areas for structures. Hence
PIV is needed to get a sense of the detail in the structure of the fluid.

The structure of the flow calculated out using the PIV software can be seen in figure
(6.7). Here the U velocity of a sequence of 6 images taken at 6 continuous cycles
is plotted. The messy structure observed could be attributed to a few factors such as
interaction with the bottom boundary of the annulus. This might stop the fluid from
forming stable waves near the bottom due to recirculation of the fluid. This recirculation
could be linked to the thermal gradient between the inner and outer wall which causes
the fluid to sink at the inner wall and rise at the outer wall. It could also be the case that
observations from this level are not accurate enough due to the depth and the obstruction
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Figure 6.7: PIV result sequence towards the end of the experiment at level 1 for 1 rad/s
showing U velocity for images taken 30 seconds apart.

from the non-buoyant particles and fluid at higher levels as mentioned before.
The Hovmöller plot for the U velocity at this level is shown in figure (6.8) where

a 1000 second interval of data is plotted. This plot shows how the structures of the
fluid move across θ, as the experiment goes on. Looking at this small section it can be
observed that an m = 3 wave is travelling around the annulus. It also seems that the
wave drifts steadily around the annulus.

6.4.2.2 Level 2

Moving up the annulus to level 2, similar behaviour to level 1 is observed from the
images. An image taken from the end of the experiment is shown in figure (6.9). As
before it is hard to distinguish the structures of the flow, but an idea can be garnered
following a milky trail that is seen in the image. A flow can be observed travelling
around the annulus in a circular pattern similar to level 1 but with one part of the flow
reaching further out than the others. It seems that the depth and density of the particles
might still be an issue when it comes to observing the movement of the fluid.

The plot for the PIV data for the above image plotting the U velocity is shown in
figure (6.10). Moving up in depth seems to have helped in getting better observations
as the structures are less messy than level 1. The structure of the fluid flow here seems
to be a hybrid between the numerous vortices seen in level 1 and a wave like structure
which is normally reported for this rotation rate. These relatively small scale vortices
may not be real fluid flows but artefacts of the difficulty of observing the deeper levels
with PIV. There are still data poor areas between vortices where structures seem to be
missing from the flow and seem to reflect behaviour observed in level 1 observations.
These data poor structures are visible throughout the experiment and move with the drift
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Figure 6.8: Hovmöller plot for level 1 at r=5.25cm for 1 rad/s showing U velocity. The
vertical axis shows azimuthal position in degrees, and the horizontal axis is time.

of fluid. The lack of details there can be due to several reasons, from the depth of the
observation to there not begin enough particles to track or that the particles are moving
too slowly to be tracked, i.e. it takes more than the 10 image sequence for a particle to
move.

The Hovmöller plot for level 2 is plotted in figure (6.11) and shows similar behaviour
to that observed for level 1. There are a lot of bright and dimmer structures travelling
around the annulus. This seems to indicate that not all structures have the same ampli-
tude at all times. This is a good indication for amplitude vacillation as also reported by
Young and Read (2013). There does not seem to be an indication of structural vacilla-
tion i.e. change of radius of the m = 3 structure at this level but this might just be due to
the recorded observation only lasting around 1 second. A longer continuous observation
might help shed more light if this behaviour occurs at this depth.

6.4.2.3 Level 3

Moving higher to level 3 the image captured at the end of the experiment is shown figure
(6.12). A triangular shape in the fluid is clear at this level when following the milky trail
and is a signature of an m = 3 wave. The travelling wave is clear to see when looking
at the image sequences. The milky clump of particles observed in figure (6.12) travels
around with the wave making it easier to follow. This observed level is in the middle of
the annulus in terms of the height, hence observations here are the furthest from the top
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Figure 6.9: Image of the working fluid at the end of the 3hr run taken at level 2 for the
1 rad/s experiment

Figure 6.10: PIV result sequence towards the end of the experiment at level 2 for 1 rad/s
showing U velocity
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Figure 6.11: Hovmöller plot for level 2 at r=5.25cm for 1 rad/s showing the fluid between
1000 and 2000 seconds showing U velocity

and bottom boundary.
PIV data for the U velocity is shown in figure (6.13) and here the m = 3 wave can

be observed. The shape of the wave can be matched to the milky structure in the image
confirming what was discussed previously. The better structure for the wave could be
attributed to its being the furthest away from both the top and bottom boundaries, hence
giving the best conditions for the fluid to develop structures. Some of the data-poor
areas observed in the previous level are not observed here, which seems to indicate that
observation is not impeded much from the fluid above. The travelling wave is clear to
see here, and the small vortices seen at lower levels are absent.

The Hovmöller plot showing the U velocity is shown in figure (6.14). The movement
of the fluid is more clearly visible at this level, which matches what is observed in the
PIV plot. There are still signs of amplitude vacillation as observed previously, with a
mix of brighter and dimmer patches in the rotation.

6.4.2.4 Level 4

Moving to level 4, the image of the experiment is shown in figure (6.15) with the vector
plot in figure (6.16). From the image, the structures of the fluid can be easily distin-
guished. Again the milky trail can be followed to work out that an m = 3 wave has
formed. Following the sequence of the images, it is seen that the m = 3 wave is very
stable and once formed does not break down and just drifts around the annulus. There
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Figure 6.12: Image of the working fluid at the end of the 3hr run taken at level 3 for the
1 rad/s experiment

Figure 6.13: PIV result sequence towards the end of the experiment level 3 for 1 rad/s
showing U velocity
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Figure 6.14: Hovmöller plot for level 3 at r=5.25cm for 1 rad/s showing the fluid between
1000 and 2000 seconds showing U velocity

is a good amount of particles observed in the wave structure that can be easily used to
track the flow. There are also places at the outer wall where there is a distinct lack of
particles. These could have formed as the wave has accumulated the particles as it has
flowed around the annulus.

The PIV data showing U velocity is shown in figure (6.16) and matches the images
and shows an m = 3 wave. At this height, the observations seem very clearly to show
how the m = 3 wave travels around the annulus. The vortices that were present at lower
levels are again absent at this level. Even the recirculation areas at the tips of the wave
seem to be absent.

The Hovmöller plot is shown in figure (6.17), showing the U velocity movement
of the fluid structure around the annulus. Similar behaviour is observed as was seen
before in level 3 but the structures are more clearly seen travelling around the annulus.
The amplitude vacillation is very clearly shown here. The structures are well observed
because there is less obstruction at this height from the fluid above.

6.4.2.5 Level 5

The image at this high level is given in figure (6.18), with the vector plot given in figure
(6.19). Clumps of particles can be easily tracked to see where the m = 3 wave is in
the image. Looking at the image sequence there are areas where particles have become
trapped. One of these areas is at the vortex created at the wave peaks near the inner wall
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Figure 6.15: Image of the working fluid at the end of the 3hr run taken at level 4 for the
1 rad/s experiment

Figure 6.16: PIV result sequence towards the end of the experiment at level 4 for 1 rad/s
showing U velocity
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Figure 6.17: Hovmöller plot for level 4 at r=5.25cm for 1 rad/s showing the fluid between
1000 and 2000 seconds showing U velocity

and another being between wave peak areas on the outer wall of the annulus. As the
wave has accumulated more and more particles over time, these areas of low velocity
have allowed some particles to clump up and get trapped. These clumped particles then
drift around the annulus with the wave.

In the PIV plot in figure (6.19) an m = 3 wave is observed in the vector plot. As
with the previous images the wave is very stable and flows around the annulus without
breaking down. A lack of a rigid boundary layer at the top might have also contributed
to the stability of the waves.

The Hovmöller plot in figure (6.20) shows similar behaviour to level 4. The struc-
tures are very distinct and travel across the annulus as before. There is again evidence
of distinct changes seen in the amplitudes of the structures, amplitude vacillation.

6.4.2.6 Temperature data

Data from the temperature sensors at the outer wall are presented in figure (6.21). A
clear oscillation in temperature can be observed for each sensor. Temperature sensor 4
and 5 are placed towards the bottom of the annulus and show a very different tempera-
ture at the bottom of the graph as seen in the black and blue line. This is probably due
to the recirculation of the fluid. Cold fluid is descending near the inner boundary and
then moves outward near the bottom boundary, so the temperatures there are systemat-
ically lower. At all levels the temperature oscillations are all fairly closely in phase. At
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Figure 6.18: Image of the working fluid at the end of the 3hr run taken at level 5 for the
1 rad/s experiment

Figure 6.19: PIV result sequence towards the end of the experiment at level 5 for 1 rad/s
showing U velocity
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Figure 6.20: Hovmöller plot for level 5 at r=5.25cm for 1 rad/s showing the fluid between
1000 and 2000 seconds showing U velocity

the upper levels they show broadly similar temperatures and rotate at the same rate, but
some of the upper sensors show slightly different temperatures indicating a temperature
stratification of the liquid with depth.

6.4.2.7 Summary for rotation at 1 rad/s

An experiment was performed at 1 rad/s and an m = 3 wave was observed. At lower
levels, the picture was not altogether clear, though the Hovmöller plots were surprisingly
well-structured.. The m = 3 wave can be clearly observed in level 3 onwards, with the
wave being very stable once it formed in the experiment. PIV data analysis was able
to track the main structure of the flow but had issues tracking the localised behaviour.
Hovmöller plots gave clearer results when higher levels were observed and there were
clear signs of amplitude vacillation at all levels. The temperature plots from sensors on
the outer wall show a steady oscillation of waves.

6.4.3 2.5 rad/s

The second experiment was done at a rotation rate of 2.5 rad/s and ran for around two
and a half hours. Apart from the increase in rotation rate no other settings were changed.
This rotation rate was chosen because from simulation studies this rotation regime seems
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Figure 6.21: Temperature at the outer wall at 1 rad/s. The position for thermocouples on
the outer cylinder is (from top to bottom): 1, 8, 7, 2, 6, 3, 5, 4.

to lie between the turbulent flow observed at higher rotation rates seen at 3 rad/s and the
more steady waves seen at lower rotation rates such as 2 rad/s. Hence this regime would
give some unique behaviour which can be analysed creating another test for the PIV
software. Details of what was observed at each level are given below.

6.4.3.1 Level 1 and Level 2

As discussed in the results for 1 rad/s, observation of data from lower levels are not accu-
rate due to interactions with the lower boundary and fluid from higher levels obscuring
image capture. With the increase in rotation rate, these problems persist.

Figures (6.22) and (6.23) show the sequence of PIV data obtained at level 1 and level
2 respectively. Both show a very messy flow, where not much about the structure of the
working fluid can observed. There are a lot of data poor regions.

6.4.3.2 Level 3

Level 3 was the first level at 1 rad/s which showed a coherent structure in the rotating
fluid. The image of the experiment at the end of the study is given in figure (6.24). There
are four clumps of particles in four corners of the flow that travel with the fluid. These
clumps are from the higher level as they seem to block the view of particles that pass
the region.

Following other bright particles around the annulus does not resolve whether there
is a wave at this level. There is a flow of the fluid, but the structure is not as clean
and simple as seen at 1 rad/s. This was expected with the higher rotation rates but it
was hoped that the system would be capable of tracking these waves. The four particle
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Figure 6.22: PIV result sequence towards the end of the experiment at level 1 for 2.5 rad/s
showing U velocity

Figure 6.23: PIV result sequence towards the end of the experiment at level 2 for 1 rad/s
showing U velocity
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Figure 6.24: Image of the working fluid at the end of the 3hr run taken at level 3 for the
2.5 rad/s experiment

clumps do point towards an m = 4 wave but as they are from a higher level they cannot
be used to confirm anything for this level using the image.

The PIV vector plot sequence for U velocity is shown in figure (6.25). The m=4
wave is starting to become clear in the vector plots. The four clumps of particles that
were seen in the experimental image line up with the edges of the rotating wave structure
in the PIV plot. This seems to indicate that the wave at the higher levels is also at the
same place at this time. There are some data poor regions for the wave but structures of
the flow can be deduced.

The Hovmöller plot for the experiment is shown in figure (6.26) and shows a very
clear m = 4 wave structure travelling around the annulus. Even though the plot is noisy
the structures of the flow seems very steady. There are some changes in the amplitude,
but due to the noise, no confirmation can be made about amplitude vacillation, but the
strong amplitude vacillation seen at 1 rad/s seems to be absent.
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Figure 6.25: PIV result sequence towards the end of the experiment at level 3 for 2.5 rad/s
showing U velocity

Figure 6.26: Hovmöller plot for level 3 at r=5.25cm for 2.5 rad/s for U velocity
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Figure 6.27: Image of the working fluid at the end of the 3hr run taken at level 4 for the
2.5 rad/s experiment

6.4.3.3 Level 4

The image taken at level 4 at the end of the experiment is shown in figure (6.27). The
four clumps of particles are still visible and a few bright particles seem to pass over
them indicating that these clumps are from a lower level. This means that the clumps
are between level 3 and level 4. Looking at the sequence of images there is an m = 4
wave travelling around the annulus. It can also be seen that the flow is strong and the
wave touches the inner and outer walls on its way around the annulus. The structures
that are formed drift around the annulus very slowly compared to the structures observed
for 1 rad/s.

The vector plot for the flow showing U velocity is plotted in figure (6.28). Them = 4
wave is very clear now in the vector plot with the wave being observed throughout the
experiment. This results complements what was observed in the experimental images
indicating the PIV analysis is on the correct path.

The strong flows around the inner and outer walls can be observed in the PIV plot as
was discussed with the experimental observations. There are a lot of data poor regions
between the structures on the outer wall. This seems to be working fluid that is stuck
between the main flow structures and hence cannot move by itself and just follows the
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Figure 6.28: PIV result sequence towards the end of the experiment at level 4 for 2.5 rad/s
showing U velocity

drift of the wave structures. The particles in this region might not move much leading
to the data poor results.

The Hovmöller plot for U velocity is shown in figure (6.29) and shows the m = 4
wave travelling around the annulus. As before the plot is noisy and some variations are
being observed in the amplitudes of the waves, but there is no effective way to say if
there is any amplitude vacillation. There a few structures that become weaker towards
the end of the run, the reasons for which are unknown.

6.4.3.4 Level 5

The image taken at level 5 is shown in figure (6.30). The four clumps of particles
observed in other levels are still present here and follow the wave around the annulus.
Anm = 4 wave can be observed travelling around when looking at the image sequences.
The clumps seem to be part of the structure of the wave as it travels around the annulus.

The U velocity vector plot for the experiment is shown in figure (6.31). Here the
plot clearly shows an m = 4 wave travelling around the annulus confirming what was
observed in the images. The structures of the flow are clear and the route the flow takes
from the outer wall to the inner wall around the annulus can be observed. There are
areas of poor observations around the flow which might be due to a lack of particles that
can be tracked. It is interesting to see that the shape of the structure head is stretched.
This seems to be a result of the faster flow pushing a lot of the working fluid towards
the outer wall. Some of the behaviour might also be due to there not being a rigid top
boundary.

The Hovmöller plot for U velocity is shown in figure (6.32). As before the structures
shows an m = 4 wave and matches the structure observed in the vector plot. It is
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Figure 6.29: Hovmöller plot for level 4 at r=5.25cm for 2.5 rad/s for U velocity

interesting to note that at this rotation rate the structure at the highest level is still stable
and not affected by the experiment not having a top lid.

6.4.3.5 Temperature

Data from the temperature sensors at the outer wall are presented in figure (6.33). As
before a clear oscillation in temperature can be observed for each sensor. The data from
the bottom sensors 4 and 5 are much closer to the rest of the sensors than they were
at 1 rad/s. Data from sensor 8 are higher than the rest, this is the second sensor on the
annulus from the top. The reason for this separation is unclear.

Another interesting structure observed in the rotation is a region where oscillation
seems to stop (around 3000 seconds mark). Looking through the image sequence noth-
ing of note is observed so the reason for this in the temperature sensor data is unclear.
Nothing can be observed in the Hovmöller plot either. It could just be a glitch in the
temperature sensor. This behaviour was observed previously when the image capture
system crashed in earlier tests.

6.4.3.6 Summary for rotation at 2.5 rad/s

With the faster rotation rate the wavenumber has increased to anm = 4. But there is also
a lot more complex flows due to the extra energy being pumped into the system. This
extra energy pushes the particles around a lot with clumps of particles being observed
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Figure 6.30: Image of the working fluid at the end of the 3hr run taken at level 5 for the
2.5 rad/s experiment

Figure 6.31: PIV result sequence towards the end of the experiment at level 5 for 2.5 rad/s
showing U velocity
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Figure 6.32: Hovmöller plot for level 5 at r=5.25cm for 2.5 rad/s

Figure 6.33: Temperature at the outer wall at 2.5 rad/s. The position for thermocouples on
the outer cylinder is (from top to bottom): 1, 8, 7, 2, 6, 3, 5, 4.
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for every level. At the lower levels, it is very difficult to observe the flow in the images
but at higher levels, it becomes clear that flow is indeed an m = 4 wave.

The PIV plots confirm a m = 4 wave is going around the annulus. At lower levels,
a lot of messy structures are observed with a lot of areas where there seems to be a lack
of coherent observations. Although better observations are gathered at higher levels,
areas of poor observation never go away. Higher levels clearly show the m = 4 waves
travelling around the annulus. The flow seems to be a bit stretched on the outer wall
which might be due to the faster rotation rate.

Hovmöller plots even for low levels confirm the m = 4 wave. As only the middle
of the annulus is sampled for data points for the plot these plots indicate that there is a
flow of fluid with wave like behaviour in the middle of the annulus. As the observations
are taken at higher levels the wave becomes more and more clear. The temperature plot
also indicates a stable wave travelling around the annulus, although there seems to be a
region where the temperature sensor seems to have not logged data properly the reason
for which is not known.

6.4.4 3 rad/s

The final experiment was done at the rotation rate of 3 rad/s. At this high rotation rate
taking accurate observations is difficult as turbulent structures make it harder to track
movement of the flow. After observing at 2.5 rad/s the number of particles seemed low,
so more seeding particles were added for this higher rotation rate for better tracking.
Some of the clumpings of the particles observed in images are due to this. The higher
rotation rate also pushes the particles towards the inner and outer walls of the annulus
causing additional clumping.

It was believed that the faster rotation rate will cause significant deformity at the
top boundary of the fluid so the lid for the experiment as added back to try and stop
this. Also, data acquisition was started as soon as the annulus was turned on and the
experiment was run for around two and a half hours. Details of what is observed at each
level are given below.

6.4.4.1 Level 1 and Level 2

With the higher rotation rate, it is harder to observe accurate data at the lower levels.
Figure (6.34) and (6.35) show the sequence of PIV data obtained at level 1 and level 2.
There is a lack of structures seen in the sequences of the PIV plots, this is especially true
for level 1. There are glimpses of a wave in the level 2 plots but overall it is still hard
to distinguish structures. This seems to indicate that the software is having a hard time
when it comes to tracking particles for these levels.
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Figure 6.34: PIV result sequence towards the end of the experiment at level 1 for 3 rad/s
for U velocity

Figure 6.35: PIV result sequence towards the end of the experiment at level 2 for 3 rad/s
for U velocity
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Figure 6.36: Image of the working fluid at the end of the 3hr run taken at level 3 for the
3 rad/s experiment

6.4.4.2 Level 3

At level 3 the state of the experiment at the end of the run is shown in figure (6.36). There
is an accumulation of particles at the inner cylinder which has built up over time. The
particles in the middle do show some movement but it is hard to asses if structures or a
wave are travelling around the annulus. Some bright particles still appear and disappear
but overall there is consistency in the bright particles moving around the annulus.

The vector plots for U velocity are shown in figure (6.37). The movement of the
fluid is confirmed by the vector plot with the presence of structures in the flow. This
flow seems to be quite chaotic with vortices and lots of data poor areas causing issues
with observation. At various points, it seems the flow is being pushed towards the inner
and outer walls. It does seem like the clump at the inner wall might be causing issues
when tracking the flow as the PIV plot seems to be showing flows at the inner wall
where they should not be.

The Hovmöller plot for U velocity is shown in figure (6.38). There is a lot of noise
that is observed in the plot making it hard to see clear structures. This corroborates what
was observed in the PIV plots. Vague wave like structures can be seen but it is very hard
to observe them.
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Figure 6.37: PIV result sequence towards the end of the experiment at level 3 for 3 rad/s
showing U velocity

Figure 6.38: Hovmöller plot for level 3 at r=5.25cm for 3 rad/s for U velocity
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Figure 6.39: Image of the working fluid at the end of the 3hr run taken at level 4 for the
3 rad/s experiment

6.4.4.3 Level 4

At level 4 the image of the flow is shown in figure (6.39). The clump of particles at the
inner wall is still present showing the same behaviour as discussed previously. Bright
particles are also observed around the outer wall but they don’t clump up as observed at
the inner wall. Looking at the particles in the middle of the annulus a clear flow can be
observed when looking a images sequences and a wave like structure can be seen going
around.

The vector plot for U velocity is shown in figure (6.40). An m = 4 wave can be
observed and seems stable for the whole of the run. This is a very drastic change from
what was observed at the lower levels where the flow was hard to determine. There still
are data poor areas between the waves as seen in the other runs as well. These areas
might be populated by slow/trapped particles which lie between the arms of the waves.
The particle clump in the middle hasn’t seemed to have had an effect on the PIV analysis
at this level.

The Hovmöller plot for U velocity is shown in figure (6.41) and shows an m = 4
wave which corresponds to what is observed in the vector plots. The structures here are
very coherent from the start, and no breakdown of the structures are observed. It seems
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Figure 6.40: PIV result sequence towards the end of the experiment at level 4 for 3 rad/s
for U velocity

Figure 6.41: Hovmöller plot for level 4 at r=5.25cm for 3 rad/s
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Figure 6.42: Image of the working fluid at the end of the 3hr run taken at level 5 for the
3 rad/s experiment

that the drift rate of the wave changes towards the end of the run. The reason for this is
unclear but might be due to the unstable nature of the working fluid at this rotation rate.

6.4.4.4 Level 5

The image at the end of the experiment for level 5 is shown in figure (6.42). The clump
of particles at the inner wall as observed in other levels is still present here indicating
that this formation is near the top of the annulus. It could be that this is a formation
between the lid and inner wall of the annulus. There are also particles at the outer wall
but these are not as clumped as the one observed at the inner wall. Looking at a sequence
of images a fluid flow can be observed. At various points, the fluid seems to be pulling
particles from the outer wall. This could be due to particles getting dragged back into
the flow when the wave interacts with the outer wall.

The PIV plot of the image is shown in figure (6.43). The wave that has formed
does not seem to be stable at all. A lot of the clear m = 4 wave structure which was
observed in level 4 is lost and no coherent wave travelling around the annulus can be
seen although a few structures seem to indicate that there is a wave. Looking through the
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Figure 6.43: PIV result sequence towards the end of the experiment at level 5 for 3 rad/s
for U velocity

PIV data, the wave seems to fluctuate a lot, sometimes disintegrating and then reforming
as the experiment goes on. It could be that the faster rotation rate along with rigid upper
boundary has played a role in this.

The Hovmöller plot for this case is shown in figure (6.44). Wave structures are
vaguely visible at this level but the plot is very noisy. Unlike the fluid at level 4, there
seems to be some problem with the formation of the wave at the early stages of the
experiment. From here on the waves seem to get more and more compressed and extra
structures start to form destabilising the wave. This corresponds to what is observed in
the PIV plots and seems to be due to the faster rotation rate and the top boundary.

6.4.4.5 Temperature

Data from the temperature sensors at the outer wall are presented in figure (6.45). As
before oscillations can be observed. Sensor 5 and 4 are nicely grouped with the data
from other sensors, this indicates that fluids from different layers are interacting and
mixing well. The amplitude of the oscillation is larger than what is previously observed,
this relates to the faster rotation rate mixing fluid of different temperatures from different
layers. Sensor 8 again seems to be a bigger anomaly than before, the reason for this is
not clear but might have to do with how the fluid is behaving when interacting with the
top boundary.

6.4.4.6 Summary for rotation at 3 rad/s

The high rotation rate caused a lot of problems when trying to gain accurate observa-
tions. At the lower level of the annulus, the flow seems to be stationary or very slow
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Figure 6.44: Hovmöller plot for level 5 at r=5.25cm for 3 rad/s for U velocity

Figure 6.45: Temperature at the outer wall at 3 rad/s. The position for thermocouples on
the outer cylinder is (from top to bottom): 1, 8, 7, 2, 6, 3, 5, 4.
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when it comes to rotating around the annulus. It is only at level 4 where a clear wave is
observed with level 5 also having a lot of problems. It could be that the faster rotation
rate is causing a lot of problems with the formation of the waves. Coupled with this,
the high rotation rate also caused the seeding particles to clump up at the inner wall and
outer wall, and the observations overall were very badly affected.

These observations are corroborated by what is observed in the PIV plots, where a
lot of messy flows are observed at lower levels, with areas showing very strong flows
and other areas being very data poor. The higher levels do show an m = 4 wave, this is
observed at level 4 and then breaking down again at level 5.

Hovmöller plots also show this m = 4 wave being observed at level 4 with level
5 showing more chaotic flow with a vague wave structure. The later might be due to
the fluid interaction with the top boundary at this high rotation rate. The temperature
plots are very good and show a steady oscillation indicating a wave travelling around
the annulus.

6.5 Conclusions
In this chapter results were presented for experiments done at a velocity of 1 rad/s,
2.5 rad/s and 3 rad/s. These experiments aimed to test the new equipment that had been
installed at AOPP and to get data that can be used for DA. Young and Read (2013) had
used an older experiment for DA where the rotation rate of thre annulus changes ev-
ery 20 minutes. But as this is the first time EnKF will be applied to this system it was
decided to do a long run to get stable data at different rotation rates.

Overall the experiments showed behaviour that is expected at the various rotation
rates. It was very difficult to observe the behaviour of the fluid at lower levels con-
sistently. But much clearer behaviour was observed at higher levels. This shows how
the fluid at higher levels can obscure the camera view when it comes to observing deep
inside the apparatus.

The experiment at 1 rad/s showed a steady m = 3 wave that travelled around the
annulus. This could be observed in the images as well as being confirmed by the PIV
data. At lower levels, the behaviour is hard to garner as observed in both the images and
PIV but from level 3 onwards the observations become clearer.

Increasing the rotation rate to 2.5 rad/s also increases the complexity of the behaviour
that is observed. An m = 4 wave is observed around the annulus. Observations at lower
levels are again poor and get better with the height of the observed level. The Hovmöller
plots for this run show the m = 4 wave very clearly. The structures can be followed
throughout the run. There are a few clumps of particles at this rotation rate but they
don’t seem to interfere with the PIV calculation.

The last experiment at 3 rad/s caused a lot of problems for the PIV software to gener-
ate accurate observations. At lower levels, it seems that the fluid was stuck with only the
higher levels showing fluid circulating around the annulus. This was confirmed by the
PIV plot and the Hovmöller plots. An m = 4 wave is observed at higher levels and the
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wave slowing drifts around the annulus. There were also issues with a massive clump
of particles along the inner cylinder. It seems that the high rotation rate was pushing the
particles towards the inner and outer walls of the annulus. At level 5 there also seems to
be issues with the fluid interacting with the top boundary, resulting in a breakdown of
the clear m = 4 wave observed at level 4.

Overall the one size fits all approach to PIV settings in DynamicStudio for analysing
images does not seem to work well. Future work will have to try and fine tune the
settings for observations taken at a different level and different rotation rates. That
being said, the data at level 4 for all experiments seems to be reasonably good and can
be used further in data assimilation against a simulation.
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Chapter 7

EnKF and the Twin Setup using

MORALS

7.1 Introduction

Data assimilation (DA) has become very important in fields such as weather prediction
and oceanography (Evensen, 2003). But the process is not as simple as just coupling
real life observation and simulation, and then using it for prediction. The more complex
the system/model, the more time is needed to fine tune DA settings and parameters. In
most cases, synthetic data are used or a twin experiment is carried out to evaluate DA
settings and their sensitivity to different parameters (Reichle et al., 2002; Burgers et al.,
2002).

This chapter presents the results for Ensemble Kalman Filter (EnKF, chapter 4 for
more details) twin experiments which were carried out using the MORALS code, which
is a rotating annulus code that solves the Navier-Stokes equations in the context of a
Boussinesq, viscous, incompressible thermally conducting liquid (chapter 3 for more
details on MORALS). The twin experiment is carried out to test different scenarios for
EnKF with the aim of finding suitable settings for the model and EnKF, which will
then be applied for observations obtained via experiments to test model prediction. For
the twin experiment studies will be carried out at different rotation rates with different
observational settings (see section 7.6, 7.7, 7.8, 7.9 for results).

A high resolution model is first run to create synthetic data that emulates the exper-
iments. This data will be used to create the ‘truth ’that will be used in the data assimila-
tion. An ensemble of low resolution models will then be used to test the capabilities of
EnKF. This twin experiment gives the opportunity to test EnKF while knowing all the
details/settings about the ‘truth ’and the ensembles. The twin experiment also makes
it easier to line up observation points with the ensemble model when it comes to data

143



CHAPTER 7. ENKF AND THE TWIN SETUP USING MORALS

assimilation. This provides an opportunity to identify how the parameters of EnKF can
best be chosen for the different scenarios. This will help provide a baseline for EnKF’s
abilities when it comes to predicting and tracking observations.

Section (7.2) outlines the setup for the twin experiments. Here different aspects of
the setup are described such as the grid in section (7.2.1), the MORALS code in section
(7.2.2), and the Python EnKF code in section (7.2.3). How DA performs when fewer
observations are included is an important issue, as is the way the observation points are
chosen. The observational settings were therefore varied in DA experiments to test their
effects. These different observational settings used in the twin experiment are described
in section (7.3) and finally the errors and associated perturbations that are used in the
twin experiment are detailed in section (7.5).

The results for the different studies are then presented, first for when no data assimi-
lation was done in section (7.4) for rotation at 1 rad/s, 2 rad/s, 2.5 rad/s and 3 rad/s. This
section shows how the low resolution ensemble behaves when it is set free to follow its
own path. Finally results are presented for data assimilation for different rotation rates at
1 rad/s, 2 rad/s, 2.5 rad/s and 3 rad/s in sections (7.6), (7.7), (7.8) and (7.9) respectively.
Subsections in each of these sections present results for the different observational set-
tings that were used.

7.2 Setup

7.2.1 Grid sizes

Two grids are used for the twin study, the observation/truth grid and the ensemble grid.
The observations/truth are obtained by running a high resolution model and has 96
points in the radial r-direction and the vertical z-direction, so II = 96 and KK = 96.
There are 64 points in the azimuthal θ-direction, so JJ = 2(MJ+1) = 64, where
MJ = 5.

By comparison, the low resolution ensemble model had 24 points in the radial and
vertical direction (II,KK = 24). However, the full 64 points in the azimuthal direction
(JJ = 64) were retained in the low resolution ensemble model. This is to make sure
that there is enough resolution for fluid structures to properly form during the simulation
and that information correctly transfers/travels around the model. When significantly
less than 64 points were used (e.g. 32 or 16), the code still ran, but the number of
azimuthal waves in the annulus changed significantly, and the drift speed of the pattern
became incorrect. This behaviour makes it difficult to get satisfactory results from the
DA. Therefore models with low azimuthal resolution were considered inadequate and a
model with 64 points was used. When studying the system at higher rotation rates (e.g.
at 3 rad/s) the number of points in the azimuthal grid was increased to 128 to make sure
the fluid details were sufficiently resolved. This was done for both the high resolution
truth and the low resolution ensemble. This mean that for the low resolution cases the
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total number of vectors is n = 147456 (24 × 24 × 64 × 4) for each ensemble and
p = 2359296 for the high resolution model.

7.2.2 MORALS Code
The Meteorological Office/Oxford Rotating Annulus Laboratory Simulation (MORALS)
is written in a combination of Fortran 77 and 90 with a shell script being used as a wrap-
per to bring the different parts of the codes together. More details about the MORALS
code are given in chapter (3) and can be found online at MORALS (2020). This section
briefly outlines how MORALS is used for the twin experiment study.

The running of the MORALS code for any resolution can be divided into three
parts: first run the 2D axisymmetric model, next use the axisymmetric model output
to create suitable initial conditions for the 3D model, finally run the 3D model. Each
of these steps come with their respective parameter files, where aspects of the model
behaviour can be changed. The parameter files contain user defined instructions such as
grid resolution (II,KK,MJ), time step size (s), how long the simulation should be run
and at what intervals full field data should be saved. It also contains physical constants
that will be used when solving the Navier-Stokes equations such as the dimensions of
the cylinder (cm), the temperature of the inner and outer cylinder wall (◦C), rotation
rate (rad/s), density, viscosity and thermal diffusivity parameters (table 7.1).

7.2.2.1 Running the simulation

After reading the relevant parameter file the 2D axisymmetric model is simulated. In
the next stage, the 2D data are used to initialise the 3D model. After the creation of
the 3D grid, the 2D data is copied to each θ-point on the 3D grid. A nonaxisymmetric
perturbation can then be added to this data to help baroclinic waves to develop. There
are a few ways of adding perturbations that are available in MORALS, which are all
applied to the temperature field.

For the studies presented here a non-axisymmetric Gaussian perturbation of standard
deviation of 0.1◦C is added to each point in the temperature field. The current CPU time
is used as the seed to generate the Gaussian distribution. After the creation of the 3D
model using the 2D model, the 3D simulation is run to generate results. When DA
is done on the ensemble, the 3D data is read into the system, corrected using the DA
algorithm and then this corrected values are used to continue the simulation.

7.2.2.2 Parameters

As the aim for the twin experiments is to gain suitable setting for EnKF to be used
with experimental data, the parameters for the studies used here are the same as the
experimental equipment. The inner cylinder wall is at 2.5cm from the vertical axis
of rotation, with the outer wall at 8.0cm and a height of 14.0cm. The temperature of
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Annulus parameters
Inner cylinder radius a=2.5cm
Outer cylinder radius b=8.0cm
Depth of fluid d=14.0cm
Inner cylinder temperature Ta=18.0◦C
Outer cylinder temperature Tb=22.0◦C

Fluid properties
Working fluid 83% water, 17% glycerol
Density ρ = 1.044g/cm3

Kinematic viscosity ν = 1.715 × 10−2cm2/s
Thermal diffusivity κ = 1.284 × 10−3cm2/s

Table 7.1: Summary of annulus and fluid properties used in the simulations

the inner wall is 18.0C and the outer wall is 22.0C with the working fluid mixture
begin 17% (by volume) mixture of glycerol and water. Other constants such as density,
viscosity, thermal diffusivity parameters, etc. are not changed either. A summary of the
parameters used in the simulation are shown in table (7.1).

7.2.3 Python code
For data assimilation a code needs to be written which can:

1. edit and run the MORALS Fortran code,

2. read and edit the data created by the MORALS code,

3. organise the multiple files created during the data assimilation run,

4. execute DA on the system.

Python 2.7 was chosen as the language of choice for this task as it has the capabilities
to tackle all the different aspects due to its vast library of modules. Python can then
be further used to analyse and easily plot the results at the end. Since Python is freely
available, the code can be run easily on any machine without any licensing issues. So a
group of Python files are created which deal with the different aspect of the study and
linked together using a ‘main’file.

In the code a Python parameter file is used to define all the criteria that will be used
for the MORALS simulation like the rotation rate, time step, etc. and data assimilation
parameters such as ensemble number, errors, file locations, etc. At the beginning of the
simulation, this parameter file is read and the respective files are edited to make sure
they contain the correct settings. This is followed by the 2D axisymmetric model being
simulated. A loop is used which turns the 2D data into an ensemble of 3D data and runs
the 3D simulations to create the ensemble.
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Before any data assimilation can be done, the grid points between the high resolution
truth and low resolution ensemble need to be correlated. For this, a Python code is used
to first read a binary file for the ensemble (.unx) and obtain the r, z and θ grid positions
in the ensemble. As all ensemble members have the same resolution they also have the
same grid positions and therefore only one binary file needs to be read to get positional
values for all the ensemble.

Using the positional values of r, z and θ in the low resolution ensemble the closest
corresponding positional values in the high resolution truth are obtained. This data is
used to create truncated data files of the observation which will be used at each of the
data assimilation steps. Creating these separate set of data files are necessary as the
original files a very large and reading an ensemble of them into the system every time
DA occurs will slow down the system and depending on how DA is done may even
crash the system by using up all of the RAM.

The DA loop is now started, where the ensemble and observation are read into the
system. The analysis step is then performed and the ensemble files are corrected using
the solution provided by DA. The MORALS script is edited and the 3D simulation is
restarted from this point. This DA loop continues until the end of the study.

7.3 Types of Observation
Deciding how much and which observations to use in the twin setup study was not
straightforward, as a great deal of information is available from the high resolution
model. But as the number of observations obtained in any experiment will not be as
extensive as numerical models, it was decided that this number would be kept low in
the twin setup to aid comparison. This will help recreate the conditions of a real life
problem and test EnKF capabilities. MORALS provides data for U, V and W velocity
along with temperature at each point in the annulus.

It is important to remember that MORALS uses not only a staggered grid but also a
stretched grid in the r and z direction. As how the gird is stretched is dependent on the
number of grid points, this means that the grid points in the high resolution truth don’t
exactly line up with the low resolution ensembles. When choosing observation points,
it seemed simpler to choose the point on the low resolution ensemble, as there are fewer
points to go through, and then try and find the nearest corresponding point on the high
resolution model. As the high resolution model has more points there is a good chance
that a point close to the one chosen on the low resolution ensemble will be found. It was
also decided that there would be no interpolation done on the observational data, as the
error that will be incurred due to this will be a part of the observational error given to
the system. This helps make it a more realistic test for EnKF as well.

When the simulation using the low resolution ensemble was started, the grid points
in the high resolution model were truncated to match the low resolution. The data at
these points are saved in separate data files corresponding to the simulation time. In
the high resolution runs, full-field data were saved every minute, hence a file is created
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for each of these when truncating the data. This was done because reading the high
resolution data file takes a very long time due to its size and the date structure of the file.

When trying to decide the scheme for choosing the observation points two different
ways of proceeding were entertained. Either you pick new random points every time you
have to do data assimilation or you use the same random points at every data assimilation
step. Both of these studies were carried out. When choosing the random points, the last
few points near the boundary were ignored (the first 2 and last 2 points) as the focus is
to get the larger structures created in the annulus correct and not those structures near
the boundary. When the random points have been chosen, they must be ordered so that
they are in ascending order as they are stored on the data file.

7.3.1 Truth

Data for the high resolution observations are truncated into files which correspond to full
field data saved at every 60 seconds. When it comes to DA, the data file corresponding
to the time in the ensemble simulation is just read into the system. Once this data is read
into the system it is simple to use a map that corresponds to the type of observation that
is being used (Mid, Randph, etc.) on the data to get observational data.

7.3.2 Mid

In this setup the nine middle points in each θ-planes are selected as observations for DA,
i.e. points r = 11, 12, 13 for z = 11, 12, 13 in each θ. This is done for each ensemble
member along with their respective points from the truncated high resolution model.
This gives a total of 576 grid points (9 × 64) that are used for DA. With four variables
observed at each point, this gives a vector of p = 2304 components (576 × 4). A few
variations of this method were also tested which will be discussed in their respective
results sections.

In Python, this simply meant taking the ensemble and observation matrix and ex-
tracting the middle three rows in z in ascending order. Then looking at the middle three
r points in ascending order. This is done for all θ. These vectors are used to create
new matrices HX and HY for the ensemble and observation respectively. The main
fragment of code used to extract the data is shown below.

HX = x [ : , : , I I / 2 − 1 : I I / 2 + 2 ,KK/ 2 − 1 :KK/ 2 + 2 , : ]
HY = Y [ : , : , I I / 2 − 1 : I I / 2 + 2 ,KK/ 2 − 1 :KK/ 2 + 2 ]

Here x is the ensemble matrix and Y is the observation matrix. II,KK correspond to
points in r and z respectively.
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7.3.3 randph
The second method of obtaining observations is to use different random points at each
θ every time DA is done. Usually, this was 9 random points in the r − z plane for each
θ, the same number as the previous method, and as before this leads to the same number
of the total observed vector components p = 2304.

In the Python code this is created by using the numpy.random.randint command to
generate random points in the r and z grids. The r and z values are coupled together
and are then sorted in ascending order for z and then r respectively. A check is made if
any positions are repeated and if so they are replaced with new values. A snippet of the
code is shown below.

f o r i i n r a n g e ( J J ) :
. . .
f o r k i n r a n g e ( n
) :
b = l s t [ k ]
Hx [ : , i , k , : ] = x [ : , i , b [ 0 ] , b [ 1 ] , : ]
HY[ : , i , k ]=Y [ : , i , b [ 0 ] , b [ 1 ] ]

Here n is the number of vector components and b is the matrix that stores the positions
of the values being observed in the form b[r, z]. The i is the θ position. So this i loop
goes through all the positions in θ and data is extracted and saved in the Hx and HY
matrices for the ensemble and observations respectively.

7.3.4 randpph
This method is the same as randph but now the random points are created only once at
the start of the first DA and saved to be used when DA is done again. As before the user
can decide how many points are used, but in most cases this number was kept at 576
grid points giving a total of p = 2304 vectors just as before. This was used to see if the
reliability of EnKF results depend on whether observations are taken at the same points
or taken at points which change every time.

In Python, this meant checking if this is the first data assimilation of the study and if
so generating the random points which are going to be observed. As before, the r and z
points are coupled and sorted in ascending order and checked for repetition. These are
then saved in a text file which will be read for the other DA steps. Using these points
observation matricesHX andHY are created and used in DA. If this is not the first data
assimilation then the text file is read to recover the observed points and data is extracted
as before. A bit of the code used for this is shown below.

b=0
f o r i i n r a n g e ( J J ) :
f o r j i n r a n g e ( g ) :
c=a [ b ]
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Hx [ : , i , j , : ] = x [ : , i , i n t ( c [ 0 ] ) , i n t ( c [ 1 ] ) , : ]
HY[ : , i , j ]=Y [ : , i , i n t ( c [ 0 ] ) , i n t ( c [ 1 ] ) ]
b=b+1

Here b is the position in the list that has all the position values. g is the number of
observations in θ and a is the list that holds the position information as c[r, z]. These
are used to extract data from the ensemble and observation and saved in Hx and HY
matrices respectively for data assimilation.

7.3.5 randp

The fourth method used to test DA was to look at random points in the model at every
data assimilation. The difference between this method and randph is that before points
were selected at every θ-position but now the θ value is also chosen randomly. The stan-
dard p = 2304 vectors were once again used. In many instances choosing random points
will lead to an uneven distribution of observed points throughout the model, leading to
data rich and data poor areas. This is a good test to see if even distribution of observation
points is necessary for accurate data assimilation.

In the Python code this means that random points are generated out of all the r, z
and θ grid points. They are then coupled and sorted out in ascending order,and checked
for repetition. A snippet of the code is shown below

f o r k i n r a n g e ( n ) :
b= l s t [ k ]
Hx [ : , k , : ] = x [ : , b [ 2 ] , b [ 0 ] , b [ 1 ] , : ]
HY[ : , k ]=Y [ : , b [ 2 ] , b [ 0 ] , b [ 1 ] ]

Here n is the number of observed points. lst stores all the points in the form lst[θ, r, z].
These points are passed to b one by one in the k loop and using these, data in extracted
from the full ensemble(x) and truth (Y ). This data is stored in the Hx and HY matrices
to be used in the DA.

7.3.6 randpp

This method is the same as Randp but now the random points created at the start of the
first data assimilation are saved and used for every subsequent data assimilation. As
before, in most cases p = 2304 observations are used for data assimilation.

In Python this means that the points are generated during the first data assimilation,
coupled, sorted and checked for repetition. They are then saved in a text file to be used
for the other data assimilation cycles. The code for this is more or less same as before
in Randp.
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7.4 No Assimilation Results
Before any data assimilation was performed, a control study was analysed where the
ensemble low resolution model was run without any data assimilation. This study was
carried out to observe how the low resolution system behaves without any correction and
compare it to the behaviour observed in the high resolution model. It is expected that
the ensembles will not converge, with each ensemble going about their own behaviour.
Ideally the low resolution runs will show similar behaviour as the high resolution obser-
vations in terms of structure and wavenumber. But there will be differences in individual
behaviour for DA to correct. In all cases an ensemble ofN = 10 is run for a 100 minutes
to look at the behaviour of the system.

7.4.1 Results for 1 rad/s
The first simulation was run at 1.0 rad/s with a timestep of dt = 0.01s, with the system
stopping every 300 seconds (5 minutes) to save full field data. The simulation ran for
100 minutes giving 20 data sets for each ensemble member.

The state of the system at the end of the simulation is shown in figure (7.1a). On
the left is the contour plot for the low resolution ensemble average and on the right is
the contour plot for the high resolution run. Both contour plots are for U velocity data
at z = 7.0 cm from the bottom, i.e. the mid height of the annulus and show the state of
the system towards the end of the run. The high resolution run shows a m = 3 structure
and the same can be vaguely observed in the ensemble average.

Figure (7.1b) shows the U velocity at z = 7.0 cm and r = 5.25 cm for all θ. The
thick black line in the figure is the truth, the high resolution run, the thin lines are the
individual ensemble members. The thick blue line is the ensemble average. As all the
ensemble members have unique initial conditions, and as no DA is done, the ensemble
does not converge and each individual ensemble shows unique behaviour. This is why
the ensemble average is small compared to its truth counterpart.

Following the individual ensembles in figure (7.1b), a m = 3 wavenumber can be
observed here in all ensemble members indicating that the low resolution simulation is
able to replicate the high resolution run structurally. A good spread is also observed in
the ensembles throughout θ. This indicates that there is a good distribution of pertur-
bations when converting the 2D model data to 3D. This leads to a good spread of the
ensemble when initialising the system. This wide spread of the ensemble in state space
is key when it comes to an accurate correction during data assimilation.

Figure (7.2) shows the standard deviation calculated for the ensemble. This was
calculated by looking at the four variables at r = 5.25 cm, z = 7.0 cm for θ = 0.
The standard deviation remains well-defined throughout the run and does not vary for
the large part. The temperature has the biggest standard deviation with the V and W
velocities showing the smallest.

The Hovmöller plot for the high resolution simulation is shown in figure (7.3). These
were made from the values of U velocity at z = 7.0 cm and r = 5.25 cm for all θ. An
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(a) The left panel shows a contour plot of the U velocity for the ensemble average at the end of the
run. The right panel shows the same for the high resolution run.

(b) The graph shows the U velocity around the annulus at r = 5.25 cm. The thick black line is the
high resolution observation, the thick blue line is the ensemble average and the thin lines are the
individual ensemble members.

Figure 7.1: Results for 1 rad/s when no data assimilation is done at z = 7.0 cm

152



CHAPTER 7. ENKF AND THE TWIN SETUP USING MORALS

Figure 7.2: Standard deviation at 1 rad/s with no data assimilation.

Figure 7.3: Hovmöller plot for the high resolution truth at 1 rad/s.

153



CHAPTER 7. ENKF AND THE TWIN SETUP USING MORALS

m = 3 wave is clearly seen travelling around the annulus. The drift rate of the wave can
be calculated by measuring the time taken for one of these structures to travel completely
around the annulus. In this case, the position of the wave was checked at a suitable time
towards the beginning of the run and then checked again towards the end. From this
data, the drift rate was calculated. For the high resolution run, this was found to be
around 0.0023945 ± 0.0000001 rad/s. For the low resolution ensemble, the drift rate
was calculated for all 10 members using the same method as above but then the values
were averaged and a standard deviation was calculated. As each ensemble has different
initial conditions slight variation in the structural formation and rotation rate is to be
expected. Using this method a value of 0.0022580 ± 0.0000490 rad/s was calculated.
Table (7.2) shows the values of the individual ensemble members along with those of
the high resolution run.

7.4.2 Results for 2 rad/s
The 2.0 rad/s simulation was also run with a timestep of dt = 0.01 s with the system
stopping every 5 minutes to save full field data and running for a total of a 100 minutes.
Figure (7.4a) shows the contour plots for this run. The higher resolution run clearly
shows the m = 4 wave but the same cannot be said when looking at the contour plot for
the low resolution ensemble average. This is partly due to the ensemble spread around
the annulus as no DA is done, but is partly caused because unlike the 1 rad/s case, two
different azimuthal wavenumbers, m = 3 and m = 4, appear to be stable for the low
resolution model. So the ensemble is a mixture of these two types of solutions as seen
figure (7.6). This multiple equilibrium has been reported by multiple studies such as
Vincze, Borchert, Achatz, von Larcher, Baumann, Hertel, Remmler, Beck, Alexandrov,
Egbers, Froehlich, Heuveline, Hickel and Harlander (2014); Larcher and Egbers (2005).

Looking at the U velocity graph in figure (7.4b) at z = 7.0 cm and r = 5.25 cm
for all θ and tracking an ensemble across the annulus, some m = 4 waves can be
observed. This is an encouraging result and proves that even at this higher rotation rate
the low resolution model can still provide an accurate structure similar to that in the
high resolution run. The thick blue line showing the low resolution ensemble average
is higher than in the equivalent figure for 1 rad/s. This might be due to the initialisation
values not spreading the ensemble members enough when converting the models from
2D to 3D and due to the different wavenumbers are are observed.

The standard deviation of the U,V,W and T variables calculated at r = 5.25 cm,
z = 7.0 cm for θ = 0, and are shown in figure (7.5). The values for the variables are
equivalent to the ones observed in the previous study at 1 rad/s. The temperature again
shows the highest standard deviation with V and W velocity showing the lowest. The
standard deviations of these quantities are generally similar to those in the 1 rad/s case.

The Hovmöller plot for the high resolution simulation is shown in figure (7.7) and
a m = 4 wave is observed at the end of the run. The drift rate for the wave was
calculated to be around 0.0015324±0.0000001. This is slower than the 1 rad/s run. The
low resolution ensemble has an average drift rate of 0.0010230± 0.0001768 rad/s (table
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(a) The left panel shows a contour plot of the U velocity for the ensemble average at the end of the
run. The right panel shows the same for the high resolution run.

(b) The graph shows the U velocity around the annulus at r = 5.25 cm. The thick black line is the
high resolution observation, the thick blue line is the ensemble average and the thin lines are the
individual ensemble members.

Figure 7.4: Results for 2 rad/s when no data assimilation is done at z = 7.0 cm.
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Figure 7.5: Standard deviation at 2 rad/s with no data assimilation.

(7.2)), which is slower than the high resolution run.
Looking at the drift rate of the individual ensemble members in table (7.2) different

variations are present. Ensemble members with m = 4 azimuthal wavenumber have
systematically lower drift rates than those with m = 3. Two examples of this can be
seen in figure (7.6), where ensemble 6 shows an m = 4 wavenumber solution with
drift rate 0.0008945 rad/s and ensemble 8 shows an m = 3 wavenumber solution with
drift rate 0.0011999 rad/s. This is consistent with the high resolution 2 rad/s m = 4
pattern having a lower drift rate than the high resolution m = 3 pattern found at 1 rad/s.
However, there is also a resolution effect, because the m = 4 members of the low
resolution ensemble have a lower drift rate than the high resolution m = 4 run. So not
only is there a decrease in drift rate with higher m, but there is also a decrease in drift
rate as the resolution is lowered.

7.4.3 Results for 2.5 rad/s
The rotation rate was increased further to 2.5 rad/s and the same study as before was
done with a timestep of dt = 0.01 s with the system stopping every 300 seconds (5
minutes) to save full field data and running for 100 minutes. The contour plots for the
system at the end of the run are shown in figure (7.8a). An m = 3 wave is observed in
the high resolution run at this time but earlier in the run the system displayed a m = 4
wave. So the rotating structure in the observation started as a wavenumber m = 4
solution but collapsed later on in the simulation. This might indicate that the m = 3
wave is more stable than a m = 4 wave for this rotation rate at high resolution. The
low resolution ensemble average shows a mixture of m = 3 and m = 4 behaviour.
Individual ensemble members need to be looked at to better ascertain their behaviour.

Figure (7.8b) shows the U velocity at z = 7.0 cm and r = 5.25 cm for all θ. The thick
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(a) An m = 4 wave number present in ensemble member 6

(b) An m = 3 wave number present in ensemble member 8

Figure 7.6: Hovmöller plot at 2 rad/s for ensemble members 6 and 8 showing wavenumber
m = 4 and m = 3 respectively.
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Figure 7.7: Hovmöller plot for the high resolution truth at 2 rad/s.

black line in the figure is the truth, the thin lines are the individual ensemble members
and the thick blue line is the ensemble average. Looking at the truth, the structure of
the U velocity is not as smooth as observed previously at lower rotation rates. Here
a somewhat messy m = 3 wave is observed for the truth towards the end of the run.
The individual ensemble members show a variety of behaviours (see figure (7.9)), with
some ensemble members showing a m = 3 wave, others show m = 4 waves, while
some transition between the two. This variety of wavenumber indicates that at this
rotation rate the system may again take different wavenumbers when running.

The standard deviation of the ensemble is shown in figure (7.10) and even with the
higher rotation rate, the amplitude of the standard deviation is still very similar to that at
lower rotation rates. As before temperature has the highest standard deviation, with the
V and W velocities showing the lowest. There is a rise in the standard deviation for all
the variables just after 3000 seconds. This might be related to the wavenumber of some
of the ensemble members changing from m = 4 to m = 3 wavenumber.

The Hovmöller plot for the high resolution simulation is shown in figure (7.11) and
a m = 3 wave is observed. The drift rate for the wave is 0.0001197 ± 0.0000001 rad/s,
which is the lower than the 1 rad/s and 2 rad/s results. The ensemble average also shows
a very slow drift rate with 0.0004566 ± 0.0002205 rad/s (table 7.2). Again there are
different values for individual ensemble members. This is due not only because of the
different wavenumbers but also to the structural changes that happen mid way into the
run for some of the ensembles. A selection of Hovmöller plots of ensemble members
is shown in figure (7.9). At this rotation velocity, the flow seems to be at a borderline

158



CHAPTER 7. ENKF AND THE TWIN SETUP USING MORALS

(a) The left panel shows a contour plot of the U velocity for the ensemble average at the end of the
run. The right panel shows the same for the high resolution run.

(b) The graph shows the U velocity across the annulus at r = 5.25 cm. The thick black line is the
observation, the thick blue line is the ensemble average and the thin lines are the individual ensemble
members.

Figure 7.8: Results for 2.5 rad/s when no data assimilation is done at z = 7.0 cm.
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(a) Ensemble member 3 showing the wave go-
ing from a m = 3 to m = 4 wave

(b) Ensemble member 6 showing am = 3 wave

(c) Ensemble member 8 showing am = 4 wave

Figure 7.9: Hovmöller plot at 2.5 rad/s for ensemble members 3, 6 and 8 showing the
diversity of behaviour observed at this velocity.

Figure 7.10: Standard deviation at 2.5 rad/s with no data assimilation.
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Figure 7.11: Hovmöller plot for the high resolution truth at 2.5 rad/s.

between two different wavenumber solutions being preferred, and this may contribute
towards the slow drift rate.

7.4.4 Results for 3 rad/s

As seen at 2.5 rad/s, high rotation rate brings more instability into the system. To get
a better understanding of how the ensemble is behaving at this higher rotation rate it is
now stopped every 60 seconds to output full field data. This gives a total of 100 output
files for each ensemble for the 100 minute run. Other settings were also changed to
increase the resolution, such as making the timestep smaller, dt = 0.005, and increasing
the θ-resolution to 128 points for both the hight and low resolution runs. Apart from
these changes, other parameters were kept the same, with the high resolution run still
having r, z = 96 points and the low resolution runs having r, z = 24 points.

The contour plot for the system at the end of the run is shown in figure (7.12a).
As observed the high resolution plot shows a m = 3 wave. This wave is stable and
remains a m = 3 wave throughout the run. Unlike the 2.5 rad/s run, there is no change
of wavenumber in this run. Although there is more unstable behaviour, with more small
scale flow, the dominant m = 3 wavenumber remains throughout the run. Looking at
the low resolution ensemble, the system shows a large variety of behaviour as before,
with both m = 3 and m = 4 wave structures being observed for ensemble members.
The standard deviation for the ensemble is shown in figure (7.14). Although the plot
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1 rad/s 2 rad/s 2.5 rad/s 3 rad/s
Truth 0.0023945 0.0015324 0.0001197 0.0011454

Ensemble 1 0.0022907 0.0011921 0.0006136 0.0008827
Ensemble 2 0.0023375 0.0011921 0.0005035 0.0009688
Ensemble 3 0.0021972 0.0008290 0.0001510 0.0008827
Ensemble 4 0.0021817 0.0008415 0.0000503 0.0009350
Ensemble 5 0.0022362 0.0011921 0.0005035 0.0009817
Ensemble 6 0.0022498 0.0008945 0.0006293 0.0010549
Ensemble 7 0.0022498 0.0008999 0.0006797 0.0009473
Ensemble 8 0.0023375 0.0011999 0.0002014 0.0008612
Ensemble 9 0.0022498 0.0012083 0.0005790 0.0009258
Ensemble 10 0.0022498 0.0007804 0.0006545 0.0009688

Average 0.0022580 0.0010230 0.0004566 0.0009409
STD 0.0000490 0.0001768 0.0002205 0.0000545

Table 7.2: Drift rate in rad/s of the waves at various rotation rates for the high resolution
run (truth) and the low resolution ensemble.

looks chaotic the amplitude of the standard deviations are still the same as before.
The Hovmöller plot for the high resolution simulation is shown in figure (7.15)

which shows am = 3 wave. The drift rate was calculated to be 0.0011454±0.0000001 rad/s.
The low resolution ensemble had an average drift rate of 0.0009409±0000545 rad/s (ta-
ble (7.2)). A few different types of behaviour are observed in the ensemble members,
in two cases the drift rate of the wave completely changed as seen in figure (7.13). For
these ensemble members, the more stable lowermwaves were used to calculate the drift
rate.

7.4.5 Summary

Before any data assimilation was done a benchmark/control study was done where the
ensemble model was run without any data assimilation. Studies were done at 1 rad/s,
2 rad/s, 2.5 rad/s and 3 rad/s. In all cases, an ensemble of N = 10 was run for around a
100 minutes to look at the behaviour of the system. The timestep was kept at dt = 0.01
for the study apart for 3 rad/s where it was decreased to a dt = 0.005. This increase
in resolution and decrease in timestep was done to get a more accurate high resolution
result, for 3 rad/s is a very chaotic flow.

In all the studies there seems to be a good spread of the ensembles at the end of
the run. Interestingly similar standard deviations are produced for the different rotation
rates indicating that changing the rotation rates in the system does not affect the errors
significantly. The high resolution runs show well-resolved structures for the different
simulations which will work well when used for DA. The low resolution ensemble show
a range of behaviour at higher rotation rates with differing drift rates and wavenumbers.
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(a) The left panel shows a contour plot of the U velocity for the ensemble average at the end of the
run at r = 5.25 cm.. The right panel shows the same for the high resolution run.

(b) The graph shows the U velocity across the annulus. The thick black line is the observation, the
thick blue line is the ensemble average and the thin lines are the individual ensemble members.

Figure 7.12: Results for 3 rad/s when no data assimilation is done at z = 7.0 cm.
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(a) Ensemble member 3 showing an m = 4
wave

(b) Ensemble member 4 showing an m = 4
wave

(c) Ensemble member 5 showing an m = 4
wave which collapses towards the end

(d) Ensemble member 6 showing an m = 4
wave

Figure 7.13: Hovmöller plot at 3 rad/s for ensemble members 2,3,4 and 5 showing the
diversity of behaviour observed at this velocity.

Figure 7.14: Standard deviation at 3 rad/s with no data assimilation.
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Figure 7.15: Hovmöller plot for the high resolution truth at 3 rad/s.

7.5 Error

For the optimal correction in EnKF, errors for the ensemble and the ‘truth’ are needed.
The ensemble error is calculated using the covariance matrix but the error for the ‘truth’
is usually provided by the user. In an experiment, this error is estimated by considering
the error in the instruments used to measure the variables (eg. instrument sensitivity in
satellite observations) but in a twin setup experiment, it is not easy to calculate the error
because the observations come from a computer simulation run rather than a physical
experiment.

In our twin experiment, errors are needed for the velocity components, U, V and
W and temperature, T. At the beginning of the study, the error was just taken as the
maximum variation in the value of the variables for rotation at 1 rad/s. This is calculated
as R = 0.15, 0.2, 0.17, 0.35 for U, V, W and T respectively (referred to as minmax), see
table (7.3). These were used just for the initial tests before deciding on a better way to
calculate the error.

A more robust error estimate for the ‘truth ’was found by looking at the standard
deviation for an ensemble of 10 rotating at 1 rad/s when no data assimilation is done
(figure 7.2 in section 7.4.1). Over a 100 minute run, the standard deviation of each
variable was found not to vary much. This was true even when the rotation rates were
increased. This, therefore, gives a simple way of estimating the errors, referred to as
‘pert ’. These ‘pert ’error values were found to be R = 0.08, 0.03, 0.03, 0.2 for U, V, W
and T respectively. A majority of the simulations were done using double these values
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Name U Velocity V Velocity W velocity Temperature
minmax 0.15 0.20 0.17 0.35

pert 0.08 0.03 0.03 0.20
2pert 0.16 0.06 0.06 0.40

Table 7.3: Errors used for the twin experiment

and were referred to as ‘2pert ’in the studies presented here as experimentation showed
that this gave the best results: see below. A summary of the different errors is shown in
table (7.3).

7.6 Results for 1 rad/s
In this section results for the annulus rotating at a velocity of 1 rad/s are presented for
various forms of DA. At this speed, the flow is very stable and its structure is well known
from many computational and experimental studies (Young and Read, 2013; Vincze,
Harlander, von Larcher and Egbers, 2014; Vincze, Borchert, Achatz, von Larcher, Bau-
mann, Hertel, Remmler, Beck, Alexandrov, Egbers, Froehlich, Heuveline, Hickel and
Harlander, 2014). The flow at this rotation rate presents a m = 3 wave structure that
drifts around the annulus. This makes it a good test bed to try out different approaches
in EnKF and see how the data assimilation system adapts to the different scenarios.

7.6.1 Mid Results
To start the study a simple setup was used, with only a small number of grid points at
the middle of the model being observed. As discussed in section (7.3.2), the middle nine
points of θ were observed giving a total of 576 grid points. With 4 variables (U, V, W
velocity and Temperature) for each point, this gives an observation vector with p = 2304
components. This is a very small number compared to the total number of point that are
available in an ensemble 24× 24× 64 = 36864 grid points giving n = 147456 vectors
as there are 4 variables for each point.

7.6.1.1 Initial Tests

To begin the study, DA is applied to a system where all ensemble members are corrected,
as represented by equation (7.1). No multiplicative inflation is used during the DA and
after correcting and no perturbation (additive inflation) is added to the system. The run
continues as normal after DA.

The model is run with a time step of dt = 0.01, assimilating data every 300 sec-
onds (5 minutes). The system was run for 100 minutes which gives 19 times where
EnKF was used. The studies were conducted using an observational error of R =
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0.15, 0.2, 0.17, 0.35 for U, V, W and T respectively, reasons for which were discussed in
section (7.5). An ensemble of 10 runs was used for the study. At each data assimilation,
we use the formula

Xa = Xf +K · (Y −HXf ). (7.1)

Here Xf is the forecast matrix which has the ensemble ready for DA, Y is the observa-
tion matrix, H is the observational matrix which maps the forecast to the observation.
K is the Kalman gain, the weight which is used to correct the ensemble. Xa is the
corrected matrix which contains the corrected ensemble.

The results for the simulation at the end of the run along with the standard deviation
are shown in figure (7.16). A snapshot of the system is shown in figure (7.16a) for z =
7.0 cm. The first contour plot shows the ensemble average before any data assimilation is
done. The second contour plots shows the observed truth that is used as the observation
to correct the ensemble. The third and final contour plot shows the difference between
the ensemble and the observation before data assimilation is done. The first plot shows
the a well-defined rotating m = 3 structure found at 1 rad/s. This is very different from
what was observed previously when no DA was done (figure 7.1a), here DA has pulled
all the ensembles together which results in a very clear average contour plot. Since all
members of the ensemble are behaving similarly and have converged, DA is not able to
correct the solution back towards the truth. This can be clearly seen in the third contour
plot where the difference in U velocity can be clearly observed, if the ensembles are
truth were closer the contours will be more obscure. The ensemble members need to be
spread out more to avoid ensemble collapsing on to an incorrect solution.

This divergence between the ensemble and the truth can be seen in figure (7.16b),
here the graph shows the U velocity of the fluid in the middle of the annulus at z =
7.0 cm and r = 5.25 cm. The thick black line is the observed U velocity and the thick
blue line is the ensemble average. Due to the collapse of the ensemble no thin lines of
the individual ensemble can be observed as was seen before in figure (7.1b) when no
DA was done. The thin blue lines all lie underneath the thick blue line. It is also clear
from this plot that the ensemble members are drifting out of phase with the truth, and
are unable to get back in phase with it.

The standard deviation for the system is shown in figure (7.16c). Here the errors have
quickly collapsed close to zero for all the variables further confirming the convergence
and that there is no spread in the ensemble. This is a big contrast to section (7.4.1) where
no DA was done and each variable displayed its own unique spread throughout the run.

Figure (7.17) shows how the ensemble system evolves as the simulation progresses.
At the beginning of the run, the ensemble does a good job of tracking the observation.
But as the simulation goes along the ensemble starts to lag behind the observation, drift-
ing further and further away. This shows that the drift rate of the ensemble is clearly
slower than the observation. This difference in drift rate is something which was ob-
served before in section (7.4.1) when no assimilation was done. What is also interesting
to note is that after DA the position of the ensemble average does not change. This
indicates that the correction being done by EnKF is suboptimal.
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(a) The figure shows the U velocity contour plots for the ensemble average before DA, the ensemble
average after DA, and the high resolution truth which provides the observed velocity, respectively.

(b) The graph shows the U velocity across the annulus. The thick black line follows the observations,
the thick blue line is the ensemble average and the thin lines are the individual ensemble members
(not observed here due to ensemble collapse).

(c) Standard deviation for data assimilation for when all members for ensemble are corrected for a
rotation of 1 rad/s.

Figure 7.16: Data Assimilation results when all members of the ensemble are corrected for
a rotation of 1 rad/s. No inflation was used in this runs.
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(a) System at 1500 seconds into the run (b) System at 3900 seconds into the run

(c) System at 5700 seconds into the run

Figure 7.17: System drift for 1 rad/s as the run progresses when no inflation is used. In each
figure the top graph is the system before DA and the bottom graph is the system after DA.
The thick black line follows the observations, the thick blue line is the ensemble average
and the thin lines are the individual ensembles. In the later runs the ensemble members
are hidden under the thick blue line as the ensemble spread is so small. As observed, the
ensemble lags behind the observation during DA indicating it has a slower drift rate.
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7.6.1.2 Multiplicative Inflation

To avoid the collapse of the ensemble onto an incorrect solution, a natural approach is
to impose some type of inflation in the DA process. To study the impact of multiplica-
tive inflation on DA the covariance of the ensemble is multiplied by a number/factor to
artificially inflate/spread the error in the ensemble. After the data has been corrected,
an additive inflation using a Gaussian perturbation with a mean of 0.0 and standard de-
viation of 0.01 is also added to the ensemble. Apart from this, the runs had the same
parameters as used in the previous section. More information about multiplicative infla-
tion can be found in section (4.7.2).

Runs were done with multiplicative inflation of 20%, 30% and 40% with figure
(7.18) plotting the results for the contour plots at the end of the runs. In all three cases
the m = 3 structure can be observed for both the ensemble average and the truth. The
inflation has helped to better track the observations when compared to the initial test
done in section (7.6.1.1), where no inflation was applied. The ensemble average stays
much closer to the observation with multiplicative inflation, but as the inflation was
increased, there was no marked progress in the accuracy of tracking the observation.
As observed in the difference contour plot in all three cases, the difference between the
ensemble and the truth seems small, with the ensemble average seeming near identical
in all three cases. When checked, all three cases started with different initial conditions
but it seems that with the use of DA all ensembles ended up in the same state-space
giving the near identical structures.

This homogenising of the ensembles given enough time can also be observed in
figure (7.19). This graph shows how the difference/gap between the ensemble average
and the truth evolves through time. As observed in the figure, after the gap minimises
around the 2000 seconds mark there is a steady increase in the difference as the run
continues. This is because the ensemble is starting to drift away from the truth and
EnKF is not able to correct the ensemble optimally.

7.6.1.3 Additive Inflation

With the results in the previous section indicating that multiplicative inflation cannot
fully solve the problem of tracking the observation, a new approach is needed. In this
section, we present results for additive inflation. In this method, a perturbation is added
to the ensemble after DA, this spreads the ensemble making it less likely that the system
will converge. The spread should lead to better covariance matrix leading to a more
accurate Kalman gain and correction. More information about additive inflation can be
found in section (4.7.2).

As observed in section (7.4) the standard deviation for each variable is different
as each variable has distinct behaviour. This means that the perturbation needs to be
tailored for the variables as well. Hence unlike the previous study where a Gaus-
sian of mean 0.0 and a standard deviation of 0.01 was added to all variables, for this
study the standard deviation calculated in section (7.4.1) was used. This is given as
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(a) Data Assimilation results for 1 rad/s with a 20% multiplicative inflation.

(b) Data Assimilation results for 1 rad/s with a 30% multiplicative inflation.

(c) Data Assimilation results for 1 rad/s with a 40% multiplicative inflation.

Figure 7.18: Data Assimilation results for 1 rad/s with multiplicative inflation. The figure
shows the U velocity contour plots for the ensemble average before DA. The first contour
is the ensemble average before DA, the second is high resolution truth and the last is the
difference between the two.
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Figure 7.19: The difference between the ensemble average and the observations when using
1 rad/s and different multiplicative inflation

0.08, 0.03, 0.03, 0.2, for the variables U, V, W and T respectively, and will be referred
to as ”pert” for the rest of the study. These values are used as the standard deviation
around which a Gaussian of mean zero is created for the variables. These values were
also used as the error in the respective observed variables.

The simulation is run using the same parameters as before (i.e. timestep = 0.01s, en-
semble size=10, etc) and data assimilation is done at every 300 seconds. The results for
the run using pert are shown in figure (7.20a). The results are better than when a Gaus-
sian of 0.01 standard deviation was used in section (7.6.1.1), and similar to the cases
where multiplicative inflation was used on the system in section (7.6.1.2). These results
show how important it is to have the correct perturbations for the different variable. The
U velocity contour plots look similar to the ones observed for multiplicative inflation,
with the pre-DA ensemble seeming to collapse. The difference between the ensemble
and the truth is larger then before, with the ensemble seemingly behind the truth.

The next step for the study is to just double the perturbation i.e. 0.16, 0.06, 0.06,
0.4 (hereafter referred to as ”2pert”). Running this simulation, the ensemble now does
a great job of tracking the observation as seen in figure (7.20b). The proximity of the
ensemble and the truth can be clearly observed when looking at the difference between
the two in the last contour plot. The difference observed here are very small with most
values being close to zero, signifying that the ensemble average is nearly on top of the
truth.

The success of 2pert can be clearly observed in figure (7.21), which shows the dif-
ference between the ensemble average and the truth throughout the run. Here, while
the gap increases in the run where pert was used, the difference for 2pert decreases and
remains close to zero. In both studies the difference are similar around the 2000 seconds
mark but while one increases the other remains stable. This result shows the importance
of having the correct perturbation for inflating individual variables. It is encouraging
to see that EnKF can regularly track the observation at the rotation rate of 1 rad/s. In
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(a) Data Assimilation results for 1 rad/s using additive inflation with perturbation =
0.08, 0.03, 0.03, 0.2 (pert).

(b) Data Assimilation results for 1 rad/s using additive inflation with perturbation =
0.16, 0.06, 0.06, 0.4 (2pert).

Figure 7.20: Data Assimilation results for 1 rad/s with additive inflation. The figure shows
the U velocity contour plots for the ensemble average before DA. The first contour is the
ensemble average before DA, the second is high resolution truth and the last is the difference
between the two.

Figure 7.21: The difference between the ensemble average and the observations when using
1 rad/s and different additive inflation.
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the following sections, EnKF will be pushed further to see how it behaves in different
situations using these perturbation values. In view of this, 2pert will be used for all the
other studies unless specified.

7.6.1.4 The Ensemble Size

Having a suitable ensemble size is very important when using EnKF (section 4.7 for
more details). A small ensemble size leads to under sampling of the state space leading
to suboptimal correction, while a large ensemble size leads to a better sampling of the
state space but needs longer simulation time for the extra ensembles, negating the use-
fulness of using low resolution ensembles. Hence a compromise needs to be made to
get an optimal ensemble size which can be used to get fast and accurate results. In this
section, results are presented for different ensemble sizes using additive inflation of pert
and 2pert.

In the previous sections, an ensemble of 10 was used to study the effectiveness of
EnKF. Through testing, it was concluded that using an additive perturbation of 2pert,
the system does a very good job of keeping the ensemble from drifting away from the
observation. In the results presented in this section, additive perturbations of pert and
2pert are used to show how the different ensemble sizes compare. In all the studies a
time step of dt = 0.01 is used, with a run time of 100 minutes, and DA is done every
5 minutes (300 seconds). Studies were done for an ensemble size of 5, 20 and 30 and
figure (7.22) and (7.23) show the contour plots for these runs.

In the first study, an ensemble of 5 (5-pert) was used with additive inflation of pert
to study EnKF. The snapshot of the system before the last DA is shown in figure (7.22a)
and show distinct structures for the ensemble average indicating that the ensembles have
converged. The difference contour plot shows that the two system are close but the
ensemble is lagging behind the truth. The additive inflation was increased to 2pert (5-
2pert) for the second study with the results plotted in figure (7.22b). Distinct structures
are again observed in the contour plots for the ensemble average showing that the change
in inflation does to diverge the ensembles. The two system appear very close to each
other which is confirmed when looking at the difference plot.

As ensemble of 10 has been already studied in the previous section, the next study
was of a larger ensemble size of 20 to test EnKF. After running the simulation with the
additive inflation pert (20-pert), the state of the system at the last DA is shown in figure
(7.22c). Surprisingly, increasing the ensemble size has not changed the effectiveness
of EnKF significantly and the results seem similar to the results when an ensemble of
5 or 10 was used with an additive inflation of pert. Increasing the additive inflation to
2pert (20-2pert) for the second test has helped the ensemble track the observations as
observed in figure (7.22d). These results are again similar to what was observed with
the smaller ensembles of 10 and 5 with the higher inflation.

For the final study the ensemble size was increased further to 30, and two studies
were again conducted for additive inflation of pert (30-pert) and 2pert (30-2pert). The
results for pert are plotted in figure (7.23a) and the results for 2pert are plotted in fig-
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(a) DA for 1 rad/s with an ensemble of 5 with pert additive inflation.

(b) DA for 1 rad/s with an ensemble of 5 with 2pert additive inflation.

(c) DA for 1 rad/s with an ensemble of 20 with pert additive inflation.

(d) DA for 1 rad/s with an ensemble of 20 with 2pert additive inflation.

Figure 7.22: Data Assimilation results for 1 rad/s with additive inflation and different en-
semble sizes. The figure shows the U velocity contour plots for the ensemble average before
DA. The first contour is the ensemble average before DA, the second is high resolution truth
and the last is the difference between the two.
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(a) DA for 1 rad/s with an ensemble of 30 with pert additive inflation.

(b) DA for 1 rad/s with an ensemble of 30 with 2pert additive inflation.

Figure 7.23: Data Assimilation results for 1 rad/s with additive inflation and different en-
semble sizes. The figure shows the U velocity contour plots for the ensemble average before
DA. The first contour is the ensemble average before DA, the second is high resolution truth
and the last is the difference between the two.

Figure 7.24: The difference between the ensemble average and the observations when using
1 rad/s and different ensemble sizes.
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ure (7.23b). Both sets for results are very familiar when compared to what has been
observed with an ensemble of 5, 10 and 20. The ensemble in the pert studies lag be-
hind the observations and the ensemble track the observations well when the inflation
of 2pert is used.

The effectiveness of using 2pert additive inflation can be observed in figure (7.24),
where the stability of the system using this larger inflation can be clearly observed when
compared to when only pert was used. The gap in 2pert system stays very small while
the difference in the pert system increase as the runs propagates.

Overall increasing the ensemble size did not lead to a significantly better DA so-
lution. Using the additive inflation of pert, the correction was still suboptimal for all
ensemble sizes, with the ensemble average lagging behind the observation. The use of
2pert additive inflation solved this problem and all ensembles were able to track the
observation.

The reason for the increase in ensemble size not leading to a more accurate DA could
be because the results for 1 rad/s are very stable and hence do not have enough variety
in drift rate and wavenumber. So when the ensemble is corrected they all collapse and
settle down on a particular mode, which then becomes difficult to change out of as the
ensemble members all have a similar too-slow phase speed. This problem cannot be
resolved by increasing the ensemble size, but it can be solved only by increasing the
amount of additive inflation.

7.6.1.5 Changing DA times

The time between DA plays an important role on how accurate predictions can be ob-
tained from the imperfect model. Assimilating frequently leads to a better prediction,
but it can be impractical as it increases computational time and sufficient observations
may not be available. Inaccurate predictions are especially true when inflation is not
properly used as seen in the previous section. Leaving too long between DA gives more
time for the ensemble to diverge. This means DA correction might be suboptimal lead-
ing to the ensembles not being on able to accurately predict the truth.

As previous section have presented results for DA every 5 minutes, in this section
results are presented for studies where DA was done at every 1 minute and where DA
was done every 10 minutes. In both studies additive inflation was used to see how the
system behaves and the simulation was run for a total of 100 minutes with an ensemble
of 10.

In the first study, the time taken between DA was reduced from 5 minutes to 1
minute. This means that for a 100 minute run DA was done 99 times. Using an additive
inflation of pert (min1-pert), the results for the run are shown in figure (7.25a). Even
with the shorter interval between DA, the ensemble with this smaller additive inflation
cannot track the observation closely. The difference between the ensemble average and
the truth is still large indicating that shortening the time between DA does not automat-
ically lead to more accuracy.

The additive inflation was increased to 2pert (min1-2pert) for the second test to see
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(a) Plots for 1 rad/s with an ensemble of 10 with DA every 1 minute with pert additive inflation.

(b) Plots for 1 rad/s with an ensemble of 10 with DA every 1 minute with 2pert additive inflation.

(c) Plots for 1 rad/s with an ensemble of 10 with DA every 10 minute with pert additive inflation.

(d) Plots for 1 rad/s with an ensemble of 10 with DA every 10 minute with 2.5pert additive inflation.

Figure 7.25: Results for an ensemble of 10 with DA at various times. The first contour
is the ensemble average before DA, the second is high resolution truth and the last is the
difference between the two.
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Figure 7.26: The difference between the ensemble average and the observations when using
1 rad/s and different DA times.

if the system can make better predictions. The results for the run are plotted in figure
(7.25b), showing that with the higher additive inflation the system does a much better
job of tracking the observations. The ensemble structure is very close to the truth as
seen in the difference contour plot.

For the second set of studies DA was done every 10 minutes, so for a 100 minute
run DA was done only 9 times. As with when DA was done every 1 minute, the first
test uses an additive inflation of pert (min10-pert). The results for the run are shown
in figure (7.25c). With the longer time between DA, the ensemble has a lot of time to
diverge but looking at the contour plot it seems that DA has done a good job of keeping
the ensembles around a similar state space. This behaviour might be unique to the
results at 1 rad/s as the more chaotic flow observed at higher rotation rates should cause
the ensemble to diverge at these long gaps between DA. Overall the ensemble is not able
to track the observation perfectly, falling slightly behind. This is not as bad as what was
observed in figure (7.25a) when DA was done every minute.

For the second test, the additive inflation was increased to 2.5*pert (min10-2.5pert).
The results for the run is shown in figure (7.25d). Even with the higher inflation, the
tracking of the observation is still slightly behind as observed in the U velocity graph. It
seems that given the long gap and the fact that the drift rate of the low resolution system
is less then the high resolution run the system will always fall behind the truth even with
higher inflation.

Figure (7.26) shows how the difference between the ensemble and the truth evolves
in the runs. When DA was done every minute the 2pert study shows larger gap then
pert. Both 1 minute runs seem stable but this again might just be due to the frequency
of DA which is keeping the ensemble around the same state space. Looking the at the
longer 10 minute gap, the difference looks very small indicating that the system remains
very close to the truth. But this might be just coincidence that the ensemble drift rate
and truth line up. A longer run might be needed to confirm this.
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7.6.1.6 Changing the number of observed points

The number of observations used for DA can also have a big impact on the accuracy
of EnKF. The higher the number of observations the better the correction. But a high
number of observations means a bigger covariance matrix that needs to be solved. This
can use up a lot of computer memory and slow the calculations down. A smaller num-
ber of observations reduces the computer load, but then EnKF needs to be tuned using
inflation (multiplicative and additive), etc, to get an accurate prediction.

From the previous studies, it has become apparent that using EnKF at 5 minute in-
tervals with an additive inflation of 2pert can lead to the ensemble system predicting
and tracking the observations quite precisely. Using these settings, a new series of stud-
ies were done where the number of observed points was limited. In previous sections
576 grid points were observed with 4 variables being observed at each point. Limiting
these observed points and variables will push EnKF and see if it will be able to track the
observations with an even lower number of observations.

In the first study, the 9 middle points in the r and z directions for each θ-value are
observed as usual giving 576 grid points but only the U and V variables are used for DA
(P9-UV). This halves the number of components in the observation vector from 2,304
(9*64*4) in a normal study to 1,152 (9*64*2) components. The results at the end of the
run can be viewed in figure (7.27a) which should be compared with the results in figure
(7.20b). Looking the at the plots, the ensemble average is very close to the truth. This is
encouraging as only half the variables are observed and no multiplicative inflation was
applied.

In the next study, the number of observed points was decreased from 9 points in the
middle of the θ-plane to just 3 middle points (P3) for each θ-value, i.e points (ri, zj)
with i = 11, 12, 13 and j = 12. This decreases the number of observed points to
192, giving 768 observations altogether. Figure (7.27b) shows the results for this study.
Even with the reduction in the observed points the system does very well at tracking
the observation. This seems to indicate that observations in the middle of the model are
important when it comes to correcting the model and tracking the observations.

The observations are reduced for the next study with only the U and V velocity
variables used at the 3 radial points (P3-UV) for each θ-value giving only 384 observa-
tions to be used in DA. The results of this run is plotted in figure (7.27c). With fewer
observations the system starts to struggle as seen in the difference contour plot. The
differences is much clearer when compared to the previous two studies. This indicates
that the ensemble is not tracking the truth accurately.

Bringing the observed points down even more to just the middle point (P1) in each
θ-value i.e. the point (ri, zj) with i = 12 and j = 12. This gives only 4 × 64 =
256 observations that are used for DA. The system at the end of the run is shown in
figure (7.28a). Even with only 1 point being observed the system does a better job
when compared to the previous section where 3 points and only U and V velocity were
observed. This seems to indicate that the observation of the different variables leads to
better results.

In the last study the number of observations is cut to 1 point with only U and V
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(a) Data Assimilation results where only the U and V variables in the 9 middle points are observed,
giving 1152 observations in total.

(b) Data Assimilation results where only 3 radial points in the middle of the θ are observed, giving
768 observations in total.

(c) Data Assimilation results where only U and V variables in 3 radial points in the middle of the θ
are observed, giving 384 observations in total.

Figure 7.27: Results for an ensemble of 10 with DA using different number of observed θ.
The first contour is the ensemble average before DA, the second is high resolution truth and
the last is the difference between the two.
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(a) Data Assimilation results where only 1 radial points in the middle of the θ are observed, giving
256 observations in total.

(b) Data Assimilation results where only U and V variables in 1 radial point in the middle of the θ
are observed, giving 128 observations in total.

Figure 7.28: Results for an ensemble of 10 with DA using different number of observed θ.
The first contour is the ensemble average before DA, the second is high resolution truth and
the last is the difference between the two.

Figure 7.29: The difference between the ensemble average and the observations when using
1 rad/s and different observation values.

182



CHAPTER 7. ENKF AND THE TWIN SETUP USING MORALS

velocities (P1-UV) observed for every θ. This gives only 128 observations to be used for
DA. The system at the end of the run is shown in figure (7.28b). With this low number
of observations it is expected that the system will not do a good job of keeping track of
the truth and looking at the difference plot this seems to be the case. The ensemble is
not able to track the truth accurately.

Looking at figure (7.29) and how the gap between the ensemble and the truth evolve,
it’s clear that observing all the variables leads to better tracking. All studies with where
only U and V variables were used lead to an increase in the difference, whereas when
all the variables were observed the difference remained stable. This stability was also
true with lower number observed points.

Overall as the number of observations were reduced, the accuracy of EnKF falls off.
This is simply to do with the system not having enough information to give an accurate
correction to the system. The results for the higher observation numbers, P9-UV and P3,
are still encouraging with the system being close to the truth. With fewer observations, it
becomes clear that observing all the variables is important to give accurate predictions.
A good example of this is seen when only 1 point was observed per θ, when all the
variables were observed a better result was obtained compared to when the 3 points
were observed per θ and only U and V velocities were used. Maybe at this lower end
of observation numbers a more frequent DA would help the system get a more accurate
prediction.

7.6.1.7 Changing the number of observed θ-values

An interesting way of attacking the problem of how much observation is needed for
accurate prediction is to look at how much information around the azimuth of the model
is needed to accurately predict the truth. In the previous studies the number of observed
points and variables were changed, but in all cases points were observed all around the
azimuth. In this section a similar study is done but now the number of observed θ points
around the azimuth is changed. Two approaches are presented, the first where slices of θ
are observed at different points along the model, and second where a continuous section
of the θ is observed. In all studies presented in this section an additive inflation of 2pert
was used.

The first study looked at just the 9 Mid points at θ = 0 (One θ), so this gives only 36
observations (9*4) for DA. This is drastically low compared to any other study presented
here. The results for this run are shown in figure (7.30a) and as expected with this low
number of observations the system does not do well. As observed in the difference
contour plot, the system lags behind the truth.

Continuing to use the 9 Mid points, in the second study, two θ positions (Two θ) are
observed at θ = 0 and θ = 3.14, i.e. the beginning and middle θ in the model giving 72
observations for DA. The results of the run are shown in figure (7.30b). As expected,
the system does better than in the previous case, where only 36 observations were used.
The system is closer to the truth when compared to the previous study but still has some
ways to go.
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(a) Data Assimilation results for 1 rad/s with an ensemble of 10 looking at just θ = 0, so only 36
observations in all.

(b) Data Assimilation results for 1 rad/s with an ensemble of 10 looking at only θ = 0 and θ = 3.14
so 72 observations in all.

(c) Data Assimilation results for 1 rad/s with an ensemble of 10 looking at θ = 0, θ = 1.57, θ = 3.14
and θ = 4.7 so 144 observations in all.

Figure 7.30: Results for an ensemble of 10 with DA using different number of observed θ.
The first contour is the ensemble average before DA, the second is high resolution truth and
the last is the difference between the two.
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Figure 7.31: The difference between the ensemble average and the observations when using
1 rad/s and different θ slices.

The observed number of θ was increased to 4 with θ = 0, θ = 1.57, θ = 3.14 and
θ = 4.7 (Four θ) being observed i.e. every quarter around the model. This increases
the number of points observed to 36 and so 144 observations (36) are to be used for
DA. The results for the run are shown in figure (7.30c). As expected, the system has
improved. With more points being used for observation, the correction from EnKF is
becoming better.

The number of observations used here is equivalent to the P1-UV study where 128
observation was used for DA. The results here are better than what is observed in figure
(7.28b) with the ensemble closer to the truth. This again seems to show how important
it is to observe all the variables. But looking at the how the gap between the ensemble
and the truth evolves in figure (7.31), it is clear that the system is not stable and the
difference actually increases as the run propagates for all cases.

A second approach to testing how the choice of observation points θ can affect EnKF
is to see how well a continuous sector of observations performs. Rather than distributing
the θ points sparsely or regularly, we now use all the θ points that lie in a sector. In the
first test a sector of the first eighth of the model is observed i.e. in 0 ≤ θ ≤ 0.78 radians
(0-8 θ), again using the 9 Mid points at each θ-value, giving 8×9×4 = 288 observations
that are used for DA.

The results for this run are shown in figure (7.32a) and even with the higher number
of observed points, the system gives similar results to when only 4 slices of θ were
observed in the previous study. The ensembles are more spread than before but overall
it seems that EnKF still cannot accurately predict the corrections using only a small part
of the model. Observing other parts of the model should help with better prediction.

In the second test a quarter-sector of the model is observed i.e. 0 ≤ θ ≤ 1.57 radians
(0-16 θ), giving 576 observations for the DA. The results for this run are shown in
figure (7.32b). The system is now doing a good job of tracking the truth. It seems that
the crucial difference between the 45◦ sector and the 90◦ sector is that the 90◦ sector

185



CHAPTER 7. ENKF AND THE TWIN SETUP USING MORALS

(a) Data Assimilation results for 1 rad/s with an ensemble of 10 observing only the first 45◦ sector
of the model, θ = 0 to 0.78 radians, so 288 observations in all.

(b) Data Assimilation results for 1 rad/s with an ensemble of 10 looking at the first quarter-sector of
the model θ = 0 to 1.57 radians, so 576 observations in all.

(c) Data Assimilation results for 1 rad/s with an ensemble of 10 looking at the first half of the model
θ = 0 to 3.14 radians, so 1152 observations in all.

Figure 7.32: Results for an ensemble of 10 with DA using different number of observed θ
sectors. The first contour is the ensemble average before DA, the second is high resolution
truth and the last is the difference between the two.
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Figure 7.33: The difference between the ensemble average and the observations when using
1 rad/s and different θ sections.

captures almost a whole azimuthal wave, whereas the 45◦ sector could not locate the
position of the wave sufficiently accurately.

In the last study, half of the model is observed i.e. θ = 0 to 3.14 radians (0-32 θ),
giving 32 × 9 × 4 = 1152 observations for DA. The results for the run are shown in
figure (7.32b) and as expected after the previous results the system is still doing a good
job of tracking the truth. Increasing the number of observed points has made the system
more accurate as expected. But it is encouraging to see that the system can track the
truth accurately by just observing half the azimuth.

Looking at figure(7.33) it is clear that more observation leads to better prediction.
The ensemble gap to the truth decreases as the the number of observation increases. The
system remains stable for larger number of observations while becoming more unsta-
ble with smaller number of observations. It is interesting to see that using 16 θ gives
reasonable results for the gap but a longer run needs to be done to confirm this stability.

7.6.2 Randph Results
Now that a baseline has been set of how the system behaves with regularly spaced obser-
vations in the middle of the annulus, a bit more experimentation can be done on where
in the θ-plane observations can be taken from. In this section, observation points were
chosen randomly in the r and z directions at each θ-value, each time DA is done. In
all cases, an ensemble of 10 was used along with an additive inflation of 2pert, unless
specified, with the system running for a total of 100 minutes.

To create a baseline similar to Mid, the first test was to look at nine random points
at each θ-value (P9). This gives a total of 2304 (9 × 64 × 4) observations to be used
for DA same as in Mid. In the first test an additive inflation of pert was used to see if
the system behaves differently from before. The results of the run are shown in figure
(7.34a). The results are very similar to what has been observed in previous sections
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(a) Data Assimilation results for 1 rad/s with an ensemble of 10 using 9 random points (Randph) at
each θ-value with an additive inflation of pert.

(b) Data Assimilation results for 1 rad/s with an ensemble of 10 using 9 random points (Randph) at
each θ-value with an additive inflation of 2pert.

(c) Data Assimilation results for 1 rad/s with an ensemble of 10 using 3 random points (Randph) at
each θ-value with an additive inflation of 2pert.

Figure 7.34: Results for an ensemble of 10 with DA using different random points
(Randph). The first contour is the ensemble average before DA, the second is high reso-
lution truth and the last is the difference between the two.
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(a) Data Assimilation results for 1 rad/s with an ensemble of 10 using 5 random points (Randph) at
each θ-value with an additive inflation of 2pert.

(b) Data Assimilation results for 1 rad/s with an ensemble of 10 using 7 random points (Randph) at
each θ-value with an additive inflation of 2pert.

(c) Data Assimilation results for 1 rad/s with an ensemble of 10 using 12 random points (Randph) at
each θ-value with an additive inflation of 2pert.

Figure 7.35: Results for an ensemble of 10 with DA using different random points
(Randph). The first contour is the ensemble average before DA, the second is high reso-
lution truth and the last is the difference between the two.
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Figure 7.36: The difference between the ensemble average and the observations when using
1 rad/s and Randph observation method.

when pert additive inflation was used with the system lagging behind the truth.
The additive inflation was now increased to 2pert (P9-2pert) for the second test, with

the results of the run shown in figure (7.34b). This can be compared with figure (7.20b)
where the observed points are concentrated in the middle of the θ-plane. As expected the
increase in inflation has helped the system track the truth better. It is still slightly behind
but is doing a much better job than the previous study. The spread of the ensemble
is also higher here, helping to get better correction and prediction. It is, however, not
doing quite as well at tracking the truth as the Mid case where the middle 9 points where
observed.

For the second test the number of observed points is lowered to see how the system
copes. Here the number of observed points was reduced to just three in each θ-plane
(P3), randomly chosen, giving 768 observations. The results for the run are shown in
figure (7.34c). The system does very well in tracking the observation even at this low
number of observation points. This shows the strength of random points being chosen
in combination with the inflation being used. But caution needs to be taken as maybe a
repeat experiment might not pick such favourable points.

The number of observed points was increased to five for each θ-value (P5) for the
next test. This gives 1280 observations that can be used for DA. The results for the run
is shown in figure (7.35a). The system again does very well in tracking the observation
but there is no improvement in what was observed with only 3 random points.

The number of observed points is increased further to seven in each θ (P7) location,
giving 1792 observations. The results for the run are shown in figure (7.35b). The
system is tracking the truth but there is no improvement, this might just be due to what
points were randomly chosen to be observed. Points observed near the boundaries might
not be helpful as the lower resolution model will not be able to accurately recreate the
same complex behaviour that is observed is the higher resolution truth.

For the last test the number of observed points is increased to twelve for each θ-value
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(P12), giving 3072 observations. The results for the run are shown in figure (7.35c).
Again there does not seem to be an improvement on the tracking. Again this might be
due to the random points that were chosen not contributing towards an optimal correc-
tion.

Looking at the evolution of the ensemble-truth gap in figure (7.36), the pert system is
unstable and the 2pert systems are more stable as was also observed previously. What is
also interesting to see is that changing the observation size does not seem to have much
affect on the accuracy of the ensemble system. This seems to indicate that in many cases
the random points being chosen don’t help with the correction of the system. Maybe the
region where the points are chosen from needs to be restricted more to get more optimal
corrections. This is very much true in the cases where points from the boundary are
chosen. The low resolution ensemble might not be able to accurately recreate the same
behaviour observed at boundaries in the high resolution truth. Hence EnKF will not be
able to correct the system accurately.

7.6.3 Randpph Results
In this section the observation method is slightly changed, with the same random points
chosen for observation at the first DA being used in all the other DA as well. Again all
simulations are done with an ensemble of 10, an additive inflation of 2pert and run for
100 minutes, unless stated otherwise.

The first test is the baseline test of choosing 9 random points (P9) in each θ-plane
and running the model with pert additive inflation. The results for the run is shown in
figure (7.37a), and the results are as expected, with the ensemble lagging behind the
truth. This lag can be observed looking at the difference between the ensemble average
and the truth. The clear structures indicate a differences in the positions of the structures
in the ensemble average compared to the truth.

The next step is to increase the inflation to 2pert (P9-2pert) for the next run. The
results for the run are shown in figure (7.37b). As expected the results are better, but
not as good as what was observed in Randph. With the bigger ensemble spread with
the inflation the correction is improved, but this has not helped the system track the
observation perfectly. This might be because the points chosen for DA do not lead to
an optimal correction. As these suboptimal points are used for the rest of the run, the
system is never corrected properly, leading it to lag behind the truth as seen in other
studies with suboptimal correction.

For the second test the observed points were reduced to just three points in each θ
(P3), giving 768 observations. The results for the run are shown in figure (7.38a), the
system does surprisingly well in tracking the observation even at this low number of
observed points. The results are better than when nine points were observed with pert
additive inflation. This shows how important it is to get the correct observation points
and additive inflation for DA.

For the next test the observed points were increased to five points in each θ (P5).
The results for the run are shown in figure (7.38b), where the system does better, but the
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(a) Data Assimilation results for 1 rad/s with an ensemble of 10 using 9 initially chosen random
points (Randpph) at each θ-value with an additive inflation of pert.

(b) Data Assimilation results for 1 rad/s with an ensemble of 10 using 9 initially chosen random
points (Randpph) at each θ-value with an additive inflation of 2pert.

Figure 7.37: Results for an ensemble of 10 with DA using different random points
(Randpph) at each θ-value. The first contour is the ensemble average before DA, the second
is high resolution truth and the last is the difference between the two.
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(a) Data Assimilation results for 1 rad/s with an ensemble of 10 using 3 initially chosen random
points (Randpph) at each θ-value with an additive inflation of 2pert.

(b) Data Assimilation results for 1 rad/s with an ensemble of 10 using 5 initially chosen random
points (Randpph) at each θ-value with an additive inflation of 2pert.

(c) Data Assimilation results for 1 rad/s with an ensemble of 10 using 7 initially chosen random
points (Randpph) at each θ-value with an additive inflation of 2pert.

Figure 7.38: Results for an ensemble of 10 with DA using different random points
(Randpph) at each θ-value. The first contour is the ensemble average before DA, the second
is high resolution truth and the last is the difference between the two.
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Figure 7.39: The difference between the ensemble average and the observations when using
1 rad/s and Randpph observation method.

results are not substantially better than when three points were used. The results are on
par with its Randph counterpart with the system getting very close to the truth.

For the next test the observed points were increased further to seven in each θ (P7).
The results for the run are shown in figure (7.38c) the system does very well in tracking
the observation. The results here are better than their Randph counterpart. The increase
in the number of observations means there is a better chance the system will get points
which lead to a more optimal correction, and this seems to have happened here with the
system being closer to the truth.

Finally looking at the difference evolution for the systems in figure (7.39), the insta-
bility of the pert system can be clearly observed in the P9 plot. The studies with 2pert
additive inflation show very similar results to each other and appear stable. A longer run
will show if these systems remain stable or if they start to become more unstable as the
run progresses.

Overall there were no substantial changes as the number of observations was in-
creased. As the observation points chosen for DA are permanent it becomes important
that these lead to optimal correction as there won’t be a chance to change them. The
importance of this is clear in some of the studies such as P7 and P3 which were better
than their Randph counterpart and p9 where it was worse. Again as mentioned in the
Randph more restrictions on where the random points are chosen from could lead to
more optimal corrections.

7.6.4 Randp Results
The random approach to choosing observation points is pushed further and now instead
of a set number of random points being chosen from each θ-value, points can be chosen
from anywhere in the model every time DA is done. This is a good test to see if points
need to be observed regularly around the model as in Randph and Randpph or can be
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observed at random points around the model and still give just as good a result. Again
all simulations are done with an ensemble of 10 and an additive inflation of 2pert and
run for 100 minutes, unless stated otherwise.

For the first test for a baseline, the same number of random points were used as
when 9 points (P9) were observed in each θ-plane; 576 points giving an observation
vector with 2304 components (since U, V, W, and T are observed). For the first run an
additive inflation of pert was used. The results for the run are shown in figure (7.40a).
The results are as expected given the previous results using pert and the system lags
behind the truth.

The number of observed points was reduced for the next test to the equivalent of
just 3 points (P3) being observed in every θ-plane giving 4 × 192 = 768 observations.
Using an additive inflation of 2pert the results for the run is shown in figure (7.40b).
The system does very well at tracking the observation at this low number of observation
points. The results are very similar to previous studies in Randph and Randpph. It might
be that the system in these studies ended up with very similar random points which lead
to favourable corrections.

In the next study the number of observations increased to the equivalent of 5 ob-
servations (P5) per θ giving 320 points or 1280 observations. The results for the run is
shown in figure (7.40c). The system improves upon the P3 results and track the truth
closer then before but it is not significantly better.

For the next study the number of observations increased to the equivalent of 7 ob-
servation (P7) per θ giving 448 random points 1792 observations that are used for DA.
The results for the run is shown in figure (7.41a). The system improves again on the
previous study of P5 and is nearly on top of the truth.

In the last study the number of observations were increased to the equivalent of 12
observation (P12) points per θ giving 768 random points or 3072 observations. The
results for the run are shown in figure (7.41b). The system has done a good job of
tracking the observation but there does not seem to be much improvement from the
previous study of P7. This indicates that once there is a sufficient number of observed
points, adding further points does not help that much.

The difference evolution in figure (7.42) also shows similar behaviour as previously
observed. The P9 run is very unstable as only an additive perturbation of pert was
used. But the other system show signs of the system stabilizing as the run progresses
with smaller gaps as the run progresses. Overall an increase in the number of observed
points leads to better results, unlike in Randph and Randpph where improvements in
tracking the truth slowed down significantly with increasing numbers of observation
points. Using random points around the model for DA provides a better solution than
observing every θ.

The problem with Randpph is that an unfortunate choice of radial point can affect
every assimilation step. With Randp, as random points were chosen throughout the
model, the small number of unhelpful point near the boundaries could be outnumbered
by more helpful points in other parts of the model. And as random points are chosen at
every assimilation step, suboptimal correction at one step can be corrected with better
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(a) Data Assimilation results for 1 rad/s with an ensemble of 10 using the four variables at 576
random points (Randp) with an additive inflation of pert.

(b) Data Assimilation results for 1 rad/s with an ensemble of 10 using the four variables at 192
random points (Randp) with an additive inflation of 2pert.

(c) Data Assimilation results for 1 rad/s with an ensemble of 10 using the four variables at 320
random points (Randp) with an additive inflation of 2pert.

Figure 7.40: Results for an ensemble of 10 with DA using different random points (Randp)
at each θ-value. The first contour is the ensemble average before DA, the second is high
resolution truth and the last is the difference between the two.
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(a) Data Assimilation results for 1 rad/s with an ensemble of 10 using 448 random points with an
additive inflation of 2pert.

(b) Data Assimilation results for 1 rad/s with an ensemble of 10 using 768 random points (Randp)
with an additive inflation of 2pert.

Figure 7.41: Results for an ensemble of 10 with DA using different random points (Randp)
at each θ-value. The first contour is the ensemble average before DA, the second is high
resolution truth and the last is the difference between the two.

Figure 7.42: The difference between the ensemble average and the observations when using
1 rad/s and Randp observation method.
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chosen random observed points and better prediction at the next assimilation step. But
a bit more study on where the best place to observe needs to be done, such as was done
in Mid, to refine the Randp approach.

7.6.5 Randpp Results

In the second approach to using random points in the model for DA, the random points
are chosen at the first DA and are then used throughout the run for DA. This is similar
to what was done in the previous Randpph study.

For the first test as before 576 random points (P9) were chosen in the first DA, and
these points were used throughout the run, giving 2304 observations for DA. Here results
are presented using an additive inflation of 2pert in figure (7.43a). The system tracks
the observations very well and the ensemble seems to be well spread at this last stage in
the run. This is expected as these parameters have given suitable results throughout the
studies presented in this chapter.

A slightly different approach can also be taken here where 576 random points (P9UV)
are observed but only the U and V velocity variables are used for DA giving 1152 obser-
vations. The results for the run are shown in figure (7.43b). The results are very similar
to what was observed when all four variables were used for DA. It is very encouraging
to see that the system can cope with tracking the truth with only half the variables. It
could also be that the point randomly chosen lead to a more accurate corrections.

In the next study the number of observations is cut down to 64 random points
(P1UV) and only U and V velocity are observed giving 128 observations. The results
for the run is shown in figure (7.43c) where the system lags behind the truth. This is
understandable with the low number of observed points but it is encouraging that the
system is not lagging too far behind.

In the next study the number of observations increased to the equivalent of 3 obser-
vation per θ (192 points) using all 4 variables, giving 768 observations (P3). The results
for the run is shown in figure (7.44a). The system understandably does better then where
only 64 points were used but not drastically even with the number of observations in-
creasing significantly.

The number of observations is increased further to the equivalent of 5 observation
per θ (320 points) giving 1280 observations (P5). The results for the run is shown in
figure (7.44b). The system tracks the observation well with the results being on par with
what is observed in Radnp where 320 points were used for DA.

For the last study the number of observations increased to the equivalent of 7 obser-
vation per θ (448 points) giving 1792 observations (P7). The results for the run is shown
in figure (7.44c). The system does well of tracking the truth but no gains are made when
compared to when 320 points were used indicating that the observed points don’t bring
much to tracking the truth.

Looking at the difference evolution in figure (7.45), the systems with low number of
observed points such as where 64 points and U and V velocity (P1UV), and where 192
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(a) Data Assimilation results for 1 rad/s with an ensemble of 10 using 576 initially chosen random
points (Randpp) with an additive inflation of 2pert, giving 2304 observations in all.

(b) Data Assimilation results for 1 rad/s with an ensemble of 10 using 576 initially chosen random
points (Randpp) with an additive inflation of 2pert and only observing U and V velocity.

(c) Data Assimilation results for 1 rad/s with an ensemble of 10 using 64 initially chosen random
points (Randpp) with an additive inflation of 2pert and only observing U and V velocity.

Figure 7.43: Results for an ensemble of 10 with DA using different random points (Randpp)
at each θ-value. The first contour is the ensemble average before DA, the second is high
resolution truth and the last is the difference between the two.
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(a) Data Assimilation results for 1 rad/s with an ensemble of 10 using 192 initially chosen random
points (Randpp) with an additive inflation of 2pert so 768 observations in all.

(b) Data Assimilation results for 1 rad/s with an ensemble of 10 using 320 initially chosen random
points (Randpp) with an additive inflation of 2pert so 1280 observations in all.

(c) Data Assimilation results for 1 rad/s with an ensemble of 10 using 448 initially chosen random
points (Randpp) with an additive inflation of 2pert, so 1792 observations in all.

Figure 7.44: Results for an ensemble of 10 with DA using different random points (Randpp)
at each θ-value. The first contour is the ensemble average before DA, the second is high
resolution truth and the last is the difference between the two.
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Figure 7.45: The difference between the ensemble average and the observations when using
1 rad/s and Randpp observation method.

points (P3), show unstable behaviour. As the number of observed points are increased
the stability of the system increases as also seen in previous sections.

In most cases, the results are comparable to what was observed in the previous sec-
tions, for example, the results in 320 and 448 points were similar to Randp 320 and 448
points. But using 192 points the system did less well in tracking the observation than its
counterpart in Randp. Overall, it seems that the system does well in tracking the truth
for the steady flow of 1 rad/s, provided the larger inflation perturbation 2pert is used and
provided sufficient points are being observed. It is important to note that observations
need to be spread around the model for accurate correction. When choosing random
points can lead to data rich and data poor areas which can lead to suboptimal correc-
tions. There is a significant improvement when all four variables are observed rather
than just U and V.

7.7 Results for 2 rad/s

As the limits of EnKF’s capability has been understood to an extent at 1 rad/s, the ro-
tation rate can now be increased to 2 rad/s to see how EnKF handles a higher rotation
rate. The working fluid structures at this higher rotation rate are more complex with the
wavenumber for the high resolution simulation increasing from a m = 3 to a m = 4 so-
lution, as observed in section (7.4.2). In the low resolution ensemble on the other hand
a selection of m = 4 and m = 3 wavenumber structure are observed in the ensemble.
There is therefore uncertainty at the low resolution model as to which wavenumber is
dominant. This along with the slower drift rate of the low resolution of the ensemble, as
reported in table (7.2), will make it interesting to see how EnKF system copes when the
ensemble is composed of two fundamentally different types of solution.
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7.7.1 Mid results
To start the study a simple Mid setup was used as discussed in section (7.3.2). The
middle nine points of every θ were observed, using all the 4 variables (U, V, W velocity
and Temperature) at each of the 576 points giving a total of 2304 observations being
used for DA.

For the first test the system is run with an additive inflation of pert (P9-pert), with DA
every 5 minutes. The U velocity results for the simulation are shown in figure (7.46a).
The ensemble average is an m = 3 which is different from the m = 4 wavenumber
observed in the truth. This means that the ensemble follow the truth accurately as it
has completely different structure. This difference in wavenumber could be due to DA
destabilising the system making it collapse from an m = 4 to m = 3 wavenumber.

To see if this is a problem of ensemble collapse due to correction, the additive infla-
tion was increased to 2pert (P9-2pert). This will spread the ensemble out more, hope-
fully make the ensemble track the truth more accurately and help maintain the m = 4
wavenumber. The U velocity results for this simulation are shown in figure (7.46b),
and it seems that having the higher additive inflation has solved the problem of the
wavenumber. But it has also led to the problem of the ensemble being more chaotic
as observed in the differing behaviour of the ensemble members. With the slower drift
rate of the low resolution ensemble the system always found it hard to track the truth
accurately.

To take into account the more chaotic nature of the system at higher rotation rate, the
inflation was reduced to pert but the rate of DA was increased to every 1 minute (1min-
pert). The results are shown in figure (7.47a) and it seems that the wavenumber problem
has been solved and the ensemble average is an m = 4 solution. But the combination
of more frequent DA and lower inflation has caused the ensemble spread to be much
smaller. Even though the wavenumber is correct, the ensemble lags behind the truth and
the correction are not able to help the system track the truth.

Using the higher 2pert as observed before leads to a more chaotic results, a way to
overcome this issue might be to increase the gap between DA to 10 minutes (10min-
2pert). This should give time for the ensemble members to get to a more stable state
before DA is done. The results for this study are plotted in figure (7.47b). With the
longer gap between DA, the ensemble members have been given more time to evolve and
have drifted apart. Furthermore, it is interesting that looking at the individual ensemble
members there is some variation in wavenumber with some showing m = 3 (red lines)
and others m = 4 (blue, green lines). This variation in wavenumber might be the reason
for the problems this study has in trying to track the truth.

Keeping with DA at every 5 minutes and additive inflation of 2pert and the ensemble
size is increased to 20 to help stabilise the system (m20-2pert). The results for this study
are plotted in figure (7.48). With the larger ensemble size the system seems more stable
and produces an ensemble average with an m = 4 wavenumber. The variation observed
between ensemble members in the previous study has gone, with all members exhibiting
anm = 4 wavenumber, but this system still lags behind the truth. Maybe an even higher
ensemble size with more frequent DA will lead to a even better results.
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(a) The graph shows the U velocity results with an additve inflation of pert. The thick black line
is the observation, the thick blue line is the ensemble average and the thin lines are the individual
ensemble members.

(b) The graph shows the U velocity results with an additve inflation of 2pert. The thick black line
is the observation, the thick blue line is the ensemble average and the thin lines are the individual
ensemble members.

Figure 7.46: Data Assimilation results at 2 rad/s for an ensemble of 10 looking at nine
points in the middle of each θ (Mid) with different additive inflations.
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(a) The graph shows the U velocity with an additive inflation of pert and with DA every 1 minute.
The thick black line is the observation, the thick blue line is the ensemble average and the thin lines
are the individual ensemble members.

(b) The graph shows the U velocity with an additive inflation of 2pert and with DA every 10 minutes.
The thick black line is the observation, the thick blue line is the ensemble average and the thin lines
are the individual ensemble members.

Figure 7.47: Data Assimilation results for 2 rad/s with an ensemble of 10 looking at nine
points in the middle of each θ (Mid) with different additive inflations and different assimi-
lation rates.
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Figure 7.48: Data Assimilation results at 2 rad/s for an ensemble of 20 looking at U velocity
using the Mid observations. The thick black line is the observation, the thick blue line is the
ensemble average and the thin lines are the individual ensemble members.

Looking at the difference of the system in figure (7.49), all the runs show instability
with large difference observed for all runs. All the runs fluctuate at similar times in-
dicating that all systems seems to have a similar drift rate irrespective of the DA time,
ensemble size or additive inflation. This shows how hard it is for EnKF to change the
behaviour of the ensemble system when is comes to drift rate.

7.7.2 Randph Results
For the next study, 9 random points (randph) at each θ were observed for DA giving
2304 observations. DA was done every 5 minutes and a new set of random 9 points
were used for every DA totalling 576 grid points. Using an additive inflation of 2pert
the results for the simulation are shown in figure (7.50a). The ensemble average is an
m = 3 wave, compared to the m = 4 wave observed in the truth, indicating that DA
is suboptimal with these settings/observed points. A repeat study with better observed
points might help get better tracking. And if a few of the ensemble members showed
an m = 4 wave, a better solution could be obtained. Conducting DA more often i.e.
every minute, might also help solve some of the issues. Difference plot for the studies
presented here are shown in figure (7.51) and discussed in the next section.

7.7.3 Randpph Results
For this study 9 random points (randpph) were observed in each θ giving 2304 observa-
tions for the first DA and these points were subsequently used in every DA. In the first
test an additive inflation of 2pert was used along with DA every 5 minutes. The results
of the simulation are shown in figure (7.50b). Here the system has again collapsed to an
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Figure 7.49: The difference between the ensemble average and the observations when using
2 rad/s and mid observation method.

m = 3 wavenumber. This seems to indicate that the random points chosen for DA were
not optimal.

To see if the tracking can be improved the time between DA was reduced to 1 minute
while using the 2pert additive inflation (randpph-min1). The results for this are shown in
figure (7.50c) and shows the m = 4 wavenumber. Although the wavenumber is correct
the system itself is not yet tracking the truth accurately. There is still a large difference
between the ensemble average and the truth. Maybe a similar test can be done in the
previous studies to test for the correct wave number.

Figure (7.51) shows how unstable the systems are, with all three runs showing large
changes. Even looking at the 1 minute run which showed a m = 4 wavenumber, there
are points where the gaps decreases but this is just followed by a very large change. This
indicates the system is drifting in and out of phase with the truth.

7.7.4 Randp Results

For the first test, 576 random points (randp) are chosen from throughout the model at
every DA giving 2304 observations at each DA. Using an additive inflation of 2pert DA
was done every minute. The results for the run are shown in figure (7.52). The structure
of the system is an m = 4 wave which is encouraging. The ensembles have a good
spread and each member of the ensemble seem to show slightly different behaviour
while maintaining the m = 4 structure. Even with the encouraging results the ensemble
is not able to track the truth accurately, drifting at a different rate then the truth, similar
to what was observed in Ranpph. This is clearly observed in figure (7.52b), where the
drift of the ensemble is slower when compared to the truth. Difference plot for the
studies presented here are shown in figure (7.54) and discussed in the next section.
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(a) Data Assimilation results at 2 rad/s with ensemble of 10 using 9 random points at each of the 64
θ-locations (Randph) with an additive inflation of 2pert, and DA every 5 minutes.

(b) Data Assimilation results at 2 rad/s with ensemble of 10 using 9 initially chosen random points
at each of the 64 θ-locations (Randpph) with an additive inflation of 2pert.

(c) Data Assimilation results at 2 rad/s with ensemble of 10 using 9 initially chosen random points
at each of the 64 θ-locations (Randpph) with an additive inflation of 2pert and DA every 1 minute.

Figure 7.50: Data Assimilation results at 2 rad/s with ensemble of 10 with an additive
inflation of 2pert. The first contour is the ensemble average before DA, the second is high
resolution truth and the last is the difference between the two.
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Figure 7.51: The difference between the ensemble average and the observations when using
2 rad/s and Randph observation method.

7.7.5 Randpp Results
The test is now changed to the first set of random point being used for all DA done
during the run. Using 576 random grid points (randpp) giving 2304 observations with
an additive inflation of 2pert. With DA every 5 minutes the results of the run are shown
in figure (7.53a). The system has collapsed to an m = 3 wave and is not able to track
the truth accurately. After the formation of an m = 3 wave EnKF is no longer able to
correct the system and reform a m = 4 wave. The reason for this failure is probably
a combination of what points were randomly chosen for observation, the time between
DA and the inflation used.

The DA time is now reduced to 1 minutes to see if the problem of the wavenumber
can be fixed (randpp-min1). Using a additive inflation of 2pert the results for the run
are shown in figure (7.53b). Here the problem of the incorrect wavenumber has been
resolved giving a wavenumber m = 4 instead of m = 3. But the system is still not able
to track the truth. The smaller time between DA is leading to the correct wavenumber,
but possibly because a suboptimal set of points was selected for DA at the beginning,
the system has failed to track the truth accurately. This only exacerbates the problem of
the slower drift rate of the ensemble.

It is not a surprise that since no runs were close to the truth, the difference graph
in figure (7.54) also show this result. All the runs are unstable with large changes that
persist as the system propagates. In most cases, the low resolution ensemble system
struggles to replicate this m = 4 wavenumber and stays at an m = 3 wavenumber. It
was possible to induce the ensemble members to lock on to m = 4 by decreasing the
time between successive DA to 1 minute. However, even when m = 4 is achieved, the
system usually lagged behind the truth. Overall DA was not successful as tracking the
truth.

Another problem that plagues the system is the slower drift rate of the low resolution
ensemble. This can be observed in the results of Randpph in figure (7.50b), where the
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(a) The graph shows the U velocity across the annulus with DA every 5 minutes. The thick black line
is the observation, the thick blue line is the ensemble average and the thin lines are the individual
ensemble members.

(b) The graph shows the U velocity through out the run of the simulation. The thick black line is the
observation, the thick blue line is the ensemble average and the thin lines are the individual ensemble
members.

Figure 7.52: Data Assimilation results at 2 rad/s with ensemble of 10 using 576 random
points (Randp) with an additive inflation of 2pert.
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(a) The graph shows the U velocity with 2304 observations used for DA every 5 minutes.

(b) The graph shows the U velocity with 2304 observations used for DA every 1 minutes.

Figure 7.53: Data Assimilation results at 2 rad/s with ensemble of 10 with random points
(Randpp) with an additive inflation of 2pert. The first contour is the ensemble average
before DA, the second is high resolution truth and the last is the difference between the two.

Figure 7.54: The difference between the ensemble average and the observations when using
2 rad/s and Randp observation method.

210



CHAPTER 7. ENKF AND THE TWIN SETUP USING MORALS

system looks like it is accurate towards the end of the run but looking at how the system
behaves throughout the simulation shows how the system lags behind the truth. It might
be interesting to add multiplicative inflation to the study along with the additive inflation
already in use to see if the system can improve the drift rates for the ensemble and help
track the truth. These problems might also be solved by increasing the resolution in the
θ which might lead to better transfer of information around the annulus.

7.8 Results for 2.5 rad/s
The rotation rate was now is increased further to 2.5 rad/s leading to more chaotic struc-
tures. As seen in section (7.4.3) the structures at this rotation rate are unstable and can
collapse from an m = 4 to an m = 3 wavenumber. This volatile situation will prove a
tough test for EnKF. The drift rate of the working fluid structures are also very slow as
seen in section (7.4.3), this will add to challenges faced by EnKF in this section.

7.8.1 Mid results
The results presented here are where the 9 middle points are observed in each θ, for all
4 variables. All studies were done using an additive inflation of 2pert with the system
running for 100 minutes.

With DA done every 5 minutes (P9) the results of the simulation are shown in figure
(7.55). As observed the system is having a lot of trouble tracking the truth. Although
both the ensemble and truth display an m = 3 wave, the ensemble system is unable to
track the truth. The ensemble is quite spread out leading to a smaller ensemble average.
The spread is due to the combination of the unstable nature of the fluid at the higher
rotation rate and the additive perturbation that was used for DA that spread the ensemble
and add noise to the system.

Looking at how the system evolves in figure (7.55b), the drastic difference between
the behaviour of the truth and ensemble can be clearly observed. There are no clear
structures that passes through the point as for both the ensemble and the truth as were
observed at lower rotation rates. The truth has a very unstable structure and eventually
ends up around U = 0m/s towards the second half of its simulation. The ensemble
shows a lot of variation in the individual members but they all also end up around the
U = 0 mark. This seems to indicate that the structures are either stuck or are rotating
very very slowly around the annulus.

For the second study DA is done every minute (P9-min1) and the results for this run
are shown in figure (7.56), and it seems that the ensemble is now able to track the truth
towards the end of the run. Both the truth and ensemble have an m=3 wavenumber,
but looking at figure (7.56b) one can clearly see that the truth and ensemble evolve
very differently. At the beginning of the run both the ensemble and truth show very
similar behaviour, but they both diverge, with the truth displaying positive velocity and
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(a) The first contour is the ensemble average before DA, the second is high resolution truth and the
last is the difference between the two.

(b) The graph shows the U velocity through out the run of the simulation. The thick black line is the
observation, the thick blue line is the ensemble average and the thin lines are the individual ensemble
members.

Figure 7.55: Data Assimilation results for 2.5 rad/s with ensemble of 10 with an additive
inflation of 2pert, with DA using Mid points every 5 minutes.
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(a) The graph shows the U velocity across the annulus with DA every 1 minutes. The thick black line
is the observation, the thick blue line is the ensemble average and the thin lines are the individual
ensemble members.

(b) The graph shows the U velocity through out the run of the simulation. The thick black line is the
observation, the thick blue line is the ensemble average and the thin lines are the individual ensemble
members.

Figure 7.56: Data Assimilation results for 2.5 rad/s with ensemble of 10 with an additive
inflation of 2pert, with DA using Mid points every 1 minutes.
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Figure 7.57: The difference between the ensemble average and the observations when using
2.5 rad/s and mid observation method.

the ensemble displaying negative velocity. Both come back together and the ensemble
does a good job of tracking the truth. But towards the end of the simulation a fluid wave
structure clearly passes the observed point and then is on top of the truth as observed in
figure (7.56a). No fluid structures is observed passing the point for the truth and as this
was the end of the simulation, it is not known that if the ensemble would have continue
to track the truth if the simulation was continued.

Looking at the difference in figure (7.57) the systems where DA was done every
minute is very unstable, while the when DA was done every 5 minutes the system seems
to have stabilized. But this might just be due to the static behaviour observed in the sys-
tem as seen in figure (7.55b). Hence these result might not be an accurate representation
of the behaviour of the system at this rotation rate. More studies need to be done to get
conclusive answers.

7.8.2 Randpph Results

The next few tests were done by looking at how the system behaves when 9 random
points (PPHm-10) are chosen in the r − z plane using all the 64 θ locations resulting in
576 random grid points for the truth. Observing all 4 variables gives 2304 observations
in all. To help the system cope with the unstable nature of the fluid structure at this
rotation rate, the frequency of DA is decreased to 1 minute. Using an additive inflation
of 2pert the results for the system are shown in figure (7.58a). Here the ensemble has
stayed at wavenumber m = 4 and not collapsed to m = 3 unlike the truth which
collapsed to an m = 3 wave. This problem might be due to random points that are
being observed for DA.

To try and fix this issue the ensemble size is increased to 20 (PPHm-20). The results
for this simulation are shown in figure (7.58b), where the system has been able to correct
itself from the m = 4 to an m = 3 wavenumber. The system does lag behind the
truth but nevertheless this improvement is encouraging and maybe using an even higher
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ensemble size can lead to better results. Difference plot for the studies presented here
are shown in figure (7.59c) and discussed in the next section.

7.8.3 Randpp Results

For the last test 576 random points (PPm-10) were chosen throughout the model giving
2304 observations for DA. These observations points were used at every DA for the
study. Using an additive inflation of 2pert DA was done every minute, the results for
the run are shown in figure (7.59). Here the ensemble has got an m = 4 wave while the
truth has an m = 3 wave. Hence the ensemble is not able to track the truth accurately.
The evolution of the ensemble at r = 5.25cm, z = 7.0cm at θ = 0 is shown in figure
(7.59b). As observed towards the end of the simulation the ensemble shows very similar
behaviour as the truth. But as there is a difference in the wavenumber of the ensemble
and the truth, the low resolution ensemble will not be able to track the truth accurately.
Maybe a simulation with larger ensemble size can help solve some of these issues.

Figure (7.59c) shows the difference plot for the studies done using Randph and
Randpp methods. The plots corroborates what is mentioned in those studies with the
system failing to track the system accurately. The runs observed clearly don’t line up
with the truth early one. The low difference observed towards the end of the runs are a
result of the system coincidently having similar values. It seems that the systems end up
at the similar area of the sate space.

7.8.4 Summary

This section presented results for simulations at 2.5 rad/s. The structures observed at
this rotation rate are very volatile with the fluid going from m = 4 to m = 3. Overall
the ensemble found it hard to track the truth. With the 5 minute gap between the ob-
servations the ensemble usually gives an m = 4 wave which is different to what the is
observed in the truth as the end of the run. This makes it hard for EnKF to get an optimal
correction for the system. When the time between DA is decreased to one minute, the
system does give a stable structure of m = 3 wave in most cases, but the systems still
behaves differently to what was observed in the truth in terms of rotation rates, etc.

Increasing the ensemble size from 10 to 20 helps with getting the correct structure
but the ensemble average still has difficulty tracking the truth, lagging behind it. An
even higher ensemble number might help with getting a better tracking. Maybe the
number of θ-points should have been increased from 64 to 128 to account for the faster
rotation rate leading to information travelling faster around the model. Using this both
the higher resolution truth and the low resolution ensemble should be run again to get
more accurate data.

215



CHAPTER 7. ENKF AND THE TWIN SETUP USING MORALS

(a) The graph shows the U velocity for an ensemble of 10 with 2304 observations and with DA every
minute. The thick black line is the observation, the thick blue line is the ensemble average and the
thin lines are the individual ensemble members.

(b) The graph shows the U velocity for an ensemble of 20 with 2304 observations and with DA every
minute. The thick black line is the observation, the thick blue line is the ensemble average and the
thin lines are the individual ensemble members.

Figure 7.58: Data Assimilation results for 2.5 rad/s using 9 initially chosen random points
at each of the 64 θ-locations (Randpph) with an additive inflation of 2pert.
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(a) The first contour is the ensemble average before DA, the second is high resolution truth and the
last is the difference between the two.

(b) The graph shows the U velocity through out the run of the simulation. The thick black line is the
observation, the thick blue line is the ensemble average and the thin lines are the individual ensemble
members.

(c) The difference between the ensemble average and the observations when using 2.5 rad/s and,
Randpph and Randpp observation method.

Figure 7.59: Data Assimilation results for 2.5 rad/s with an ensemble of 10 using 576
initially chosen random points (Randpp) with an additive inflation of 2pert, giving 2304
observations in all.
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7.9 Results for 3 rad/s

For the last set of tests the rotation rate for the system was increased to 3 rad/s. At this
high rotation rate the fluid structures are very chaotic, so the resolution in θ for the high
resolution model was increased to 128 points from 64. As seen in section (7.4.4) when
no assimilation was done the system shows a stable m = 3 wavenumber despite the
small scale chaos. But the lower resolution model showed an m = 4 wavenumber, so it
will be interesting to see whether EnKF can get the correct wavenumber.

7.9.1 Mid results

For the first test the usual 9 middle points (mid) are observed giving 2304 observations.
DA was done every 1 minute and an additive inflation of 2pert was used. The results of
the simulation are shown in figure (7.60a). The ensemble system settles at wavenumber
m = 4 but the truth has am = 3 wavenumber. Even with conducting DA done every one
minute the system cannot track the observation correctly and cannot get to the correct
wavenumber. To get towards the correct answer the ensemble needs more tuning, with
maybe an increase in the ensemble size to give EnKF more data to work with. The only
other viable option is an increase in resolution to better model the behaviour of the fluid
at this high rotation rate. Difference plot for this study is presented in figure (7.61) and
discussed in the next section.

7.9.2 Randpp Results

For this test 576 random grid points (PP-9), giving 2304 observations are used for DA
which was done every 1 minute. Looking at the U velocity contour plots in figure
(7.60b) the ensemble system again goes to a m = 4 wave. This again hampers EnKF
from tracking the observation accurately and leads to suboptimal corrections. For the
second test the number of observed points was increased to 1920 random points (PP-30),
giving 7680 observations in total. This was done to see if the increase in the number
of observations could lead to better prediction. Looking at the U velocity contour plots
in figure (7.60c), even with this higher number of observations the system still goes to
an m = 4 wave and cannot track the truth. These issues might be solved with a bigger
ensemble sizes and higher resolution. As both cases the ensemble ism = 4 wavenumber
while the truth is a m = 3 system this might be a more stable wavenumber for the low
resolution ensemble system.

With all the ensemble runs ending up with a wavenumber of m = 4, it is not surpris-
ing that the difference graph in figure (7.61) shows an unstable system. It is interesting
to note that the mid study has slightly different fluctuating behaviour when compared to
the Randpp results. The mid study shows large negative difference around the 1000 and
5000 second mark while the Randpp studies show a large negative difference around the
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(a) DA using the Mid points, the first contour is the ensemble average before DA, the second is high
resolution truth and the last is the difference between the two.

(b) DA using 576 random points (Randpp), the first contour is the ensemble average before DA, the
second is high resolution truth and the last is the difference between the two.

(c) DA with 7680 random points (Randpp), the first contour is the ensemble average before DA, the
second is high resolution truth and the last is the difference between the two.

Figure 7.60: Data Assimilation results for 3 rad/s with an ensemble of 10 with an additive
inflation of 2pert and DA every minute.
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Figure 7.61: The difference between the ensemble average and the observations when using
3 rad/s and, mid and Randpp observation method.

3000 seconds mark. This seems to indicate that the two studies have different behaviour
during the run.

7.9.3 Summary

The last rotation rate to be looked at was 3 rad/s. Here the number of θ points was
increased to 128 for the high resolution model for better accuracy. But with the low
resolution model still having only 64 points in θ it always gave the wrong wavenumber.
Looking at the standard deviation periodic increases are observed. It seems as the sim-
ulation progress the ensemble spread and converge causing these waves of increase in
the deviation. This behaviour might be just due to how the information is transferred
around the annulus.

Maybe these issues might be solved with bigger ensemble sizes. The last resort
would be to increase the number of θ-points for the low resolution model, to see if the
system can recreate structures resembling the truth more accurately. This increase in
resolution will increase the computational cost, but as the fluid system at this rotation
rate shows a lot of chaotic structures an increase in resolution might be necessary to get
accurate prediction.

7.10 Root mean squared error

A way to look at the effectiveness of the different approaches that have been presented in
the chapter is to look at the root mean squared error (RMSE) for the tests. The difference
plots used in the individual sections can be reused to calculate the RMSE for each run.
Using the difference between the truth and ensemble average throughout the run RMSE
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can be calculated using the equation below.

RMSE =

√√√√ 1

N

N∑
i=1

(Yi −X i)2 (7.2)

Here Y is the truth, X is the ensemble average, i is the DA number and N is the total
number of times DA was done. The results for the RMSE for all the studies presented
in this chapter are shown in figure (7.62) and (7.63).

Figure (7.62) shows the RMSE for all the runs done at 1 rad/s. Being a steady flow,
the RMSE for this rotation rate is low. Figure (7.62a) shows the results of the various
runs using the Mid method, and figure (7.62b) shows the results for the various runs
using the random point selection methods. There is a lot of variation in the error results,
but this seems mostly due to the additive inflation used for the study. In almost all cases
the 2pert additive inflation runs show lower errors when compared to runs done using
pert additive inflation. Using an ensemble of 20 with 2pert gave the lowest error when
compared to all the studies done at various rotation rates and various approaches.

The random point selection results show lower variation as almost all runs were
conducted using 2pert additive inflation. Pert runs (randph-p9-pert, randpph-p9-pert,
randp-p9) show higher errors then their 2pert counterparts, same as observed in the mid
results. In most 2pert cases the errors are quite similar, leading to the belief that no one
random method is better than the other. Looking at the randpp results it seems that the
number of observations is important when it comes to lower errors.

Figure (7.63) shows the RMSE for all the runs done at 2, 2.5 and 3 rad/s. In all cases
the errors in the system are higher then what was observed at 1 rad/s. This seems to be
down to the ensemble failing to accurately simulate the more complex flows at these
higher rotation rates. Looking at the results for 2 rad/s in figure (7.63a) all the mid runs
give a fairly higher error with the mid-min10-2pert giving the lowest error. Looking at
the random methods results, the higher error are mostly due to the system not being able
to replicate the correct wavenumber or not able to track the truth accurately.

These high error continue for results at 2.5 rad/s and 3 rad/s as plotted in figure
(7.63b). As observed in their individual results sections, the ensemble is not able to
replicate the same wavenumber observed in the truth, and when they do, they have trou-
ble tracking the truth accurately. The lowest error observed in this set of runs is for
2.5rad rad/s randpp-min1, where the system did not replicate the correct wavenumber
and the drift of the working fluid seemed to have stalled. These results re-enforce the
idea discussed in the previous sections that more studies need to be done at these higher
rotation rates to find ways to reduce the error in the system and get more accurate results.
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(a) Root mean squared error for mid results.

(b) Root mean squared error for random point selection method results.

Figure 7.62: Root mean squared error for 1 rad/s
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(a) Root mean squared error for 2 rad/s results.

(b) Root mean squared error for 2.5 and 3 rad/s results.

Figure 7.63: Root mean squared error for 2, 2.5 and 3 rad/s

223



CHAPTER 7. ENKF AND THE TWIN SETUP USING MORALS

7.11 Conclusions

This chapter presented the results for Ensemble Kalman Filter twin experiments which
were carried out using the MORALS code, which is a rotating annulus code that solves
the Navier-Stokes equations in the context of a Boussinesq, viscous, incompressible
thermally conducting liquid (see chapter 3 for more details on MORALS). The twin
experiment was carried out to test different scenarios for EnKF with the aim to find
suitable settings for the model and EnKF. These setting will then be applied for Data
assimilation using observations obtained via experiments to test model prediction.

Before any data assimilation was carried out, a benchmark/control study was done,
where using an ensemble of 10, the ensemble model was run without any data assimi-
lation. These runs were done at 1 rad/s, 2 rad/s, 2.5 rad/s and 3 rad/s. In all the studies,
there was a good spread of the ensembles at the end of the run. Interestingly, similar
standard deviations were calculated at the different rotation rates indicating that increas-
ing the rotation rate in the system doesn’t affect the spread of an ensemble. There were
some differences in wavenumber observed in the the ensembles at higher rotation rates
such a 2.5 and 3 rad/s. This indicates that the fluid is unstable and the low resolution
model might have trouble giving consistent results.

At 1 rad/s, a lot of studies were done, with slightly differing settings to find optimal
parameters which can be used for DA, which lead to accurate results. It was concluded
that an ensemble of 10 with DA every 5 minutes and an additive inflation of 2pert gave
accurate results in most cases at this low rotation rate. These settings were carried
forward when looking at studies at 2 rad/s, 2.5 rad/s and 3 rad/s.

At 2 rad/s, the higher rotation led to very complex behaviour with both m = 4
and m = 3 wavenumbers observed in the ensemble. In most cases the low resolution
ensemble system struggled to replicate the m = 4 wavenumber observed in the truth
and stayed at the m = 3 wavenumber. In many cases the system needed to be tuned to
create an m = 4 wavenumber. Although decreasing the DA length to 1 minute gave the
best result, in many cases the system still strayed away from the truth. Overall EnKF
could not track the truth accurately as observed at 1 rad/s.

Going further to 2.5 rad/s, the structures observed at this rotation rate were very
volatile with the system going from a m = 4 to a m = 3 wavenumber. In all cases the
system found it hard to track the truth. This was the case even when the time between
DA was decreased or the ensemble size was increased. Maybe the number of θ points
should have been increased from 64 to 128 to increase the accuracy of the information
travelling around the model at this higher rotation rate.

The last rotation rate to be looked at was 3 rad/s. Here the number of θ points was
increased to 128 for the high resolution model for better accuracy. But the low resolution
ensemble was kept at 64 points in θ. The ensemble always gave the wrong wavenumber
of m = 4 while the truth was a m = 3. Maybe the number of θ-points should have also
been increased for the low resolution ensemble, or the ensemble size increased to try
and get to the correct wavenumber.

Comparing the results obtained in this chapter with Young and Read (2013), where
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experimental data was used, the results look promising. At the low rotation rates EnKF
does a good job of tracking the truth with the correct tuning. This is in line with what
was reported by Young and Read (2013) with analysis correction. More work needs to
be done to confirm that the system can track vacillation. When increasing the rotation
rate similar problems to Young and Read (2013) start to arise as well. Both system start
having problems when tracking the more complex structure with even higher number
of observed points, and shorter DA times. More tuning is needed using EnKF in the
study presented here for the higher rotation rates to get accurate results along with other
changes suggested in this section.
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Chapter 8

EnKF using MORALS and PIV

Observations

8.1 Introduction

Data assimilation (DA) has become very important in fields such as weather prediction
and oceanography (Evensen, 2003). As such, the success of a DA method is based on
if it can successfully predict and track observations that are seen in real life phenom-
ena. In chapter (7), a twin experiment was conducted to understand how the Ensemble
Kalman Filter (EnFK) method behaves under different conditions. This included sce-
narios where the number of observed vectors is changed or the time between DA is
changed. The lessons learned in that chapter were used to setup a study where EnFK
was applied to a set of data gathered from an experiment to try and see if the model can
predict the same results.

Using EnKF on real life data provides new challenges, as now the amount and qual-
ity of the data used as the observation are subject to how the experiment was conducted
and how the data was recorded. The amount of data gathered is subject what instruments
can be used without hampering the behaviour of the fluid. Hence a probe cannot be used
in the middle of the annulus to measure velocity data as it will change the flow of the
fluid. The errors in the experimental data are associated with the instruments that were
used to measure data and methods that were used to process the data to obtain velocity
vectors. As we are dealing with images here to track movement, the sensitivity of the
PIV software and finding the correct parameters to be used are important. The results
of the experimental data set are discussed in chapter (6), along with how the data was
obtained and processed. In this chapter, the processed results of the experiments were
used without any further changes for DA.

To predict the behaviour seen in the experiments the Met Office/Oxford Rotating

226



CHAPTER 8. ENKF USING MORALS AND PIV OBSERVATIONS

Figure 8.1: Typical image captured from the experiment used for Data processing. This
image shows the fluid at level 5. The bright spots are the non-buoyant particles reflecting
light.

Annulus Laboratory Simulation (MORALS) code was used, which solves the Navier-
Stokes equations for a rotating annulus. This is the same code that was used in the twin
experiment. More details on the working of the code can be found in chapter (3). In
the study presented in this chapter, the experimental data were used as the truth and the
MORALS code was used to create an ensemble of low resolution models which was
used to predict the experimental results with the help of EnKF.

The method used for DA with the experimental data and MORALS is described in
section (8.2), this includes what data were used for the studies presented in this chapter
and how EnKF was implemented. The results of the studies done at 1 rad/s are presented
in section (8.3.1), while the results for 2.5 rad/s are presented in section (8.3.2).

8.2 Method

This section explains the different aspects of the study that were combined for DA using
a model and experimental data. In the first section, the experiment is described and the
processing of the data is summarised. This is followed by a section on how the model
works and, in the final section, how the two are combined and DA is done is explained.
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8.2.1 The Experiment

The experiment was done using the thermal annulus which was rotated using a motor.
The temperature of the inner wall was kept at 18.0 ± 0.1C and the outer wall was kept
at 22.0 ± 0.1C. The annulus has five slits at different levels, through which light can
be projected to observe the behaviour of the fluid in the annulus. PIV was done on the
images collected from the different levels and the data saved. For the studies done here,
the working fluid was water with 17% glycerol mixture. A summary of the dimensions
and parameters of the experiment is given in table (7.1), in the previous chapter. Chapter
(6) provides more information about how the PIV was done in section (6.3) and section
(6.2) provides more details on the experimental setup.

A typical image captured by the camera mounted on the rig is shown in figure (8.1).
The resolution on the camera is 720 by 1080 pixels. After the image was processed
a 84 by 63 grid was produced which contained data for the U and V components of
velocity. This drastic reduction was due to the PIV software averaging over several
points to obtain accurate predictions of the U and V velocity components. As observed
in the figure, the camera also captures the area surrounding the annulus. Invalid velocity
results calculated by the PIV software from these areas were present in these results. For
DA the results outside the annulus have to be ignored. Fortunately, this is an easy task
as the PIV software has already marked the data which was present inside the annulus.
After discarding the points outside the annulus this gave 4032 velocity points at each
level that could be used for DA.

As only one level of the experiment was observed at a time, this meant that un-
like in the twin experiment (chapter 7), where the data from the whole model could be
observed and could be used for DA, one level in z can be used for DA using the ex-
perimental data. To use data from other levels interpolation would needed to be done.
Upon looking through the results from the different levels (chapter 6), it was decided
that level 4 gave the most accurate results. Level 4 sits at 9.7 cm from the bottom of
the annulus. This is near the top of the annulus and hence has less fluid blocking the
camera’s view, so this leads to a more accurate picture for the software to calculate the
U and V velocity components. Since the PIV software does not give an error for its
calculations, it was decided that the same error used in the twin experiment should be
used for a start (R=0.08,0.03,0.03,0.2) (section 6.4.1 for more info).

8.2.2 The Model

As mentioned in the introduction, the MORALS code is used to predict the behaviour
observed in the experiments. The MORALS code solves the Navier-Stokes equations
for a rotating annulus in axisymmetric 2D and full 3D. More details on the working of
the code can be found in chapter 3 or on the AOPP website at MORALS (2020).

For the studies presented in this chapter, an ensemble of low resolution models was
run to see if they can replicate and predict the behaviour observed in the experiments.
The resolution of the low resolution model was 24 points in the r and z axis but the
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resolution in the θ axis varied between 64 and 128 points. The model uses a stretched
grid in the r and z axis to account for boundary conditions near the inner and outer wall.
Table (7.1) presents all the dimensions and parameters for the model which are the same
as the experiment.

Due to the stretched grid, the points from the low resolution ensemble do not line up
with the experimental data. In the low resolution model, the closest corresponding point
to level 4 which will be used for DA is at 10.35 cm from the bottom of the annulus. This
is a difference of 0.65 cm from the height of 9.7 cm which is what level 4 corresponds
to in the experimental setup. This also means there will be a difference in the behaviour
observed at level 4 between the low resolution model and the experimental data. No
interpolation was done for either numerical or experimental data when applying DA, the
observational error used for the DA should cover any difference in behaviour between
points.

8.2.3 Data Assimilation

In the study presented here, EnKF was used for DA to bring together data from the ther-
mal rotating annulus experiment and the ensemble of low resolution MORALS models.
As the experimental data already exists, this will just be imported in the system when
needed for DA.

When the DA code is initialised the timestamps of the experimental images are read
into the system. This will be used as a basis to determine the length of the gap between
each DA. As mentioned before each level was observed around every 30 seconds. But
to compare the study with the twin experiment, the gap between each DA was kept at
around 60 seconds. This was done by just looking at the time difference between 20
images. The starting image was given by the user, and this was used as the initial data
for the first DA.

The ensemble is now spun-up for 60 seconds to start the DA. When the simulation
reaches its designated point, the data from the ensemble and the corresponding exper-
imental data is imported into the system. DA is then done and the model is updated
using the corrections. Time is then calculated for the next DA point using the image
time gap. This time is calculated after every DA to see how long the ensemble should
run. The ensemble is then run till the next DA point. After the corrections are calculated
by EnKF additive inflation using a Gaussian of 2pert (R=0.16,0.06,0.06,0.4), as in the
twin experiment, was created for each of the variables and added to the results. This
ensemble is now used to restart the models.

As mentioned before, after the image is processed, the software makes a 84 by 63
grid in which is stored the U and V velocity data. And since not all the points can be
used, as described in section (8.2.1), DA was restricted to 500 random points within the
annulus. The closest corresponding points in the model are calculated and read into the
system to be used for DA. With both U and V velocity components being used for DA,
a total of 1000 vectors are used for each DA.
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8.3 Results

8.3.1 Results at 1 rad/s

The first results presented here are for a rotation rate of 1 rad/s. This lower rotation rate,
as observed in the twin experiments (section 7.6), provides a very stable platform to test
a lot of different parameters for DA. Comparing what is observed in the experimental
results (section 6.4.2) and the twin experiments, the structures in the working fluid are
similar, with both showing anm = 3 wave travelling around the annulus. This similarity
indicates that the structures observed in the twin experiment are realistic and even the
low resolution model gives structurally accurate results. This bodes well when applying
DA to the system, the only worry is that the drift rate of the fluid structures will be
different between the experiment and the model. This means DA may find it challenging
to get the model to track the experiment accurately for long.

Study with 64 θ points
For the first study at 1 rad/s the ensemble had a resolution of 24 points in the radial
and vertical direction (r, z) and 64 points the in θ direction. DA was performed every
minute, with an ensemble of 10 members, and an additive inflation of 2pert, as described
in section (8.2.3). These settings proved to give accurate results in the twin experiments.
As mentioned in the methods section only level 4 is being used for DA where a random
set 500 points are observed with only U and V velocity components being used for DA.

A contour plot of the simulation is shown in figure (8.2). The first plot in the figure
is the ensemble average of the system before DA. The second plot is the observed truth
which is used for DA. The figure shows the state of the system for 3 sequential DA. As
observed the low resolution model shows an m = 3 wave travelling around the annulus,
the same as the truth. Looking at the sequence of images the low resolution ensemble
lags behind the truth.

Figure (8.3) shows a series of U velocity plots before DA is done, with the thick
black line representing the truth and the thick blue line showing the ensemble average.
The thin lines are the individual ensembles. As seen clearly for the plots, the system
is never able to track the truth. The series shows that the wave in the experiment is
travelling at a different rate around the annulus than the low resolution model. Another
noticeable thing is that the ensemble amplitude is larger than what is observed in the
truth. This might be because of the averaging between points that is done during PIV
calculation to obtain the values of U and V. Figure (8.4) shows the standard deviation
for the system. The ensemble standard deviation decreases in spread but holds its values
after a 100 seconds have passed.

Study with 128 θ points
For the second study, the same simulation is done but the θ resolution is now increased
to 128 points. This increase in points should help information to travel more accurately
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(a)

(b)

(c)

Figure 8.2: Contour plots for a system rotating at 1 rad/s for 3 sequential DA. The plots
show the ensemble average before DA and the truth used for DA.
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(a) The graph shows the U velocity, the thick black line is the observation, the thick blue
line is the ensemble average and the thin lines are the individual ensemble members.

(b) The graph shows the U velocity, the thick black line is the observation, the thick blue
line is the ensemble average and the thin lines are the individual ensemble members.

(c) The graph shows the U velocity, the thick black line is the observation, the thick blue
line is the ensemble average and the thin lines are the individual ensemble members.

Figure 8.3: Data Assimilation results for a system at 1 rad/s with ensemble of 10 with an
additive inflation of 2pert where DA is done every 1 minute and 64 θ points are used.
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Figure 8.4: Standard deviation for a system rotating at 1 rad/s with 64 points the in θ direc-
tion.

around the annulus. This should hopefully lead to better structures and better drift rates,
leading to a more accurate prediction by the ensemble.

The contour plot for the system is shown in figure (8.5), where as before the ensem-
ble average before DA is plotted along with the truth. Unlike the 64 θ point study, where
the system was an m = 3 wave throughout the run, now the system starts as an m = 4
wave and collapses to an m = 2 wave. The system then keeps this m = 2 wave for
the rest of the run. The reason for this collapse could be due to the corrections done by
EnKF is making the ensemble collapse. Without DA the system might have settled on a
m = 3 wave just like the truth and how is did when no DA was done in section (7.4.1).
The corrections want to change the system from an m = 4 wave to an m = 3 wave, but
by trying to correct this the system starts to collapse further and forms an m = 2 wave.

The U velocity graph for the system is shown in figure (8.6a). As observed in the
contour plots the system is an m = 2 wave travelling around the annulus. As this never
matches the m = 3 wave from the truth it will never be able to track the truth. As before
the ensemble has a much larger amplitude than the truth and the ensembles have all
converged to an m = 2 wave. The standard deviation of the system is plotted in figure
(8.6b) and doesn’t show much difference compared to what was observed previously
with only 64 points in θ.

Sensitivity test with lower errors
The experimental value of U and V velocity obtained through PIV are lower then the
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(a) State of the system early in the DA showing an m = 4 wave

(b) State of the system showing the collapse of the m = 4 wave

(c) State of the system showing an m = 2 system

Figure 8.5: Contour plots for a system rotating at 1 rad/s with 128 θ points. The plots show
the ensemble average before and after DA followed by the truth used for DA.
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(b) Standard deviation

Figure 8.6: Data Assimilation results for a system at 1 rad/s with ensemble of 10 with an
additive inflation of 2pert where DA is done every 1 minute with 128 θ points.
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ones obtained in the twin experiment due to the accuracy of the equipment and software.
In some cases the PIV calculated values were smaller then the observation error used.
This can lead to very suboptimal corrections as Y −Xf will be very big. To compensate
for this the Kalman gain needs to be modified. To see how the observation error affects
the value of the Kalman gain a simple sensitivity test was carried out where the error
values were reduced.

In the first test, the observation error was reduced to 10% of the value used. Figure
(8.7) shows the results for this test. Here the ensemble is a m = 3 wave accurately
representing the truth structurally but the system has a lot of problems tracking the truth.
The drift rate of the structures are different compared to the truth and the ensemble is
never able to stay in a similar space as the truth for long.

In the second test the observation error was reduced further to just 1% of the original.
Figure (8.8) shows the results for this test. Here the ensemble has collapsed to a m = 2
wave. The behaviour here is similar to what was observed in the previous section where
the resolution was increased (figure 8.5). The system starts with a m = 3 and collapses
to a m = 2 wave and can never recover.

It was thought that reducing the observational error would mean that the ensemble
covariance would play a bigger role in calculating the Kalman gain. But it seems that
reducing the observational error alone does not have a positive effect on the system.
These changes might have to be tested with using different multiplicative and additive
inflation, and ensemble sizes to gain a better understanding of how EnKF behaves. In-
creasing the observational error might be the obvious next step, but as Kalman gain
K = PHT · (R + HPHT )−1, a larger R will lead to a smaller Kalman gain which in
turn will lead to a smaller correction. As the ensemble is far from the truth this small
correction will not lead to more accurate model.

8.3.2 Results at 2.5 rad/s

The rotation rate of the system is now increased to 2.5 rad/s. As observed before in the
twin experiments, this higher rotation rate can lead to unstable waves. Similar unstable
behaviour is observed in the experiments as well, causing a lot of problems for the PIV
software to accurately give values of U and V velocity components. As before, the
simulation is run with an ensemble of 10 and with additive inflation of 2pert.

Study with 64 θ points
The contour plots for this run are shown in figure (8.9) where the ensemble before DA is
plotted along with the truth. The plots clearly show that the ensemble is a m = 3 wave
while the truth is am = 4 wave. The system is not able to replicate the truth structurally,
which may be down to the resolution in θ. This higher rotation rate might need higher
resolution to pass information around the annulus more accurately.

Looking at the series of plots, the truth again seems to travel at a different rate
around the annulus than the ensemble. There is also a lack of intensity in the colours
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(a)

(b)

(c)

Figure 8.7: Contour plots for a system rotating at 1 rad/s for 3 sequential DA with 10%
error. The plots show the ensemble average before DA and the truth used for DA.
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(a)

(b)

(c)

Figure 8.8: Contour plots for a system rotating at 1 rad/s for 3 sequential DA with 1% error.
The plots show the ensemble average before DA and the truth used for DA.
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in the truth contour plots which indicates low values for the U velocity component. It
seems the higher rotation rate causes problems for the PIV software when it comes to
accurately tracking the buoyant particles to calculate the values of U and V velocity.
Obviously different setting in the PIV software need to tested to obtain a better result.
These less accurate values of U and V lead to less accurate corrections by EnKF, which
might also be one of the reasons for the wavenumber not being accurate. This is also
reflected in the structures disappearing and reappearing in the contour plots for the truth.

A plot of U velocity is shown in figure (8.10a), and as observed before, the values
of the truth are much lower when compared to the ensemble. These low values are due
to the PIV software having issues tracking the fluid accurately with the higher rotation
rate. Looking at the graph it is not clear what the wavenumber of the truth is but as
the graph corresponds to the contour plot in figure (8.9c) it should be an m = 4 wave.
The standard deviation for the ensemble is plotted in figure (8.10b). Here the deviation
shows regions where the ensemble spread became very small and places where is spread
out again. These changes are probably due to the changes to the wave structure due to
the higher rotation rates.

Study with 128 θ points
The study at this higher rotation rate was repeated but with an increased θ for 128 points
to help cope with the higher rotation rate. The contour plots for the system are plotted
in figure (8.11), showing the ensemble system before and after DA along with the truth.
Unfortunately, even with the higher resolution in θ, nothing significant has changed in
the ensemble system. It still has an m = 3 wave travelling around the annulus while the
truth shows an m = 4 wave travelling around the annulus. The values of the U velocity
in the truth are again much lower than the ensemble average. The reason for this is the
same as mentioned before.

The U velocity graph is plotted in figure (8.12a) showing the ensemble U velocity
average along with the ensembles and the truth. As seen before, the truth is very small
compared to the ensemble and no clear wavenumber can be observed while the ensemble
showsa m = 3 wave. The standard deviation for the system is given in figure (8.12b).
Here a regular fluctuation is observed for all variables.

8.4 Conclusion
In this chapter, results were presented for DA done using data from PIV observations
from experiments. DA was done for a thermal rotating annulus rotating at 1 rad/s and
2.5 rad/s with 500 random grid points being used to calculate and correct the low reso-
lution ensemble. An ensemble of 10 was used with an additive perturbation of 2pert for
all studies with DA being done every 1 minute. It is clear from the results that EnKF
has failed for various reasons.

At 1 rad/s the ensemble can replicate the fluid structures observed in the PIV data
with an m = 3 wave being observed in both studies. But the ensemble is never able to
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(a)

(b)

(c)

Figure 8.9: Contour plots for a system rotating at 2.5 rad/s. The plots show the ensemble
average before and after DA followed by the truth used for DA. Here 64 θ points were used.
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(b) Standard deviation

Figure 8.10: Data Assimilation results for a system at 2.5 rad/s with ensemble of 10 with
an additive inflation of 2pert where DA is done every 1 minute with 64 θ points.
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(a) State of the system early in the DA showing an m = 4 wave

(b) State of the system showing the collapse of the m = 4 wave

(c) State of the system showing an m = 2 system

Figure 8.11: Contour plots for a system rotating at 1 rad/s with θ = 128. The plots show
the ensemble average before and after DA followed by the truth used for DA.
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(b) Standard deviation

Figure 8.12: Data Assimilation results for a system at 2.5 rad/s with ensemble of 10 with
an additive inflation of 2pert where DA is done every 1 minute with θ = 128.
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track the truth with the latter travelling around the annulus faster. The slow drift velocity
could be due to the low θ resolution of just 64 grid points. The test was repeated but
with an increased θ resolution of 128 points. Here the ensemble starts with an m = 4
wave and then collapses to an m = 2 wave. This collapse of the wavenumber might be
due to the DA corrections. With this difference in wavenumber between the ensemble
and truth, the ensemble was never able to track and predict the truth.

The rotation rate was increased to 2.5 rad/s for the next study. Here the PIV data
shows an m = 4 wave but in the first test with a θ resolution of 64 the ensemble shows
an m = 3 wave. The ensemble is never able to move up to an m = 4 wave. Even when
the θ resolution is increased to 128 points the ensemble average is still a m = 3 wave.
In both cases, the ensemble is not able to track the truth.

One thing to note about the PIV data is that the amplitude of the values of the truth
are smaller than what is observed in the ensembles. This is understandable, as when
PIV is carried out it uses around 12 pixels to calculate the values of U and V velocity
components so some accuracy is lost. This difference is small at 1 rad/s but at 2.5 rad/s
the difference is too big. Looking at the U velocity graphs, the wavenumber of the
truth is indistinguishable and the information can only be ascertained by looking at
the contour plot. This shows the need for the PIV data to be reprocessed with different
parameter settings in the hope of obtaining more accurate results. It is clear that the same
settings cannot be used to calculate values for U and V velocity for different rotation
rates.

When compared to the results presented by Young and Read (2013), a lot of short-
comings can be observed in the study presented here. In all studies the drift rates are
different between the ensemble and the experimental data. In some cases the ensemble
does not even show the same structure as the truth either. Other problems with the study
seem to stem from the error used for the truth. As the PIV software did not provide an
error is was decided to use the same error as used in the twin experiments. This cer-
tainly needs to change and a more accurate error for the PIV data needs to be calculated.
Maybe the PIV calculations can be repeated to obtain a standard deviation of how its
calculated values differ. Interpolation also needs to be done on the truth so that they line
up with the low resolution ensemble.

Another twin experiment also needs to be carried out where only one level is ob-
served. This will be a testing ground to see how EnKF copes with such limited data
from the experimental data set. The parameters that work can then be used for testing
EnKF with the experimental data. By the results seen in this preliminary study, the θ
resolution should be kept at 128 points, especially for the higher rotation rate. This
should help with reproducing a better structure formation and better drift rates for the
ensemble. Another option is to increase the ensemble number to see if this can bring
about the more accurate results. Tuning of the inflation parameters could be done, but
this is more of an art than a science and can take a long time before reasonable results
can be obtained.
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Conclusion

All computer models are imperfect and this problem is exacerbated further when study-
ing complex fluid behaviour. Therefore it is important to reconcile the differences in the
results produced by modelling and observations. Many studies have used data assimila-
tion (DA) to bridge some of the shortcomings of models. DA has been used for variety
of applications such as NWP and oceanography (Evensen, 2003) which have lead to
better prediction.

This thesis presents results for a study where the Ensemble Kalman filter (EnKF)
was used to try and accurately predict behaviour observed in the thermal rotating annu-
lus. This was done using the MORALS numerical code and thermal rotating annulus
experiments. The MORALS code is a Fortran code maintained at the Atmospheric,
Oceanic and Planetary Physics (AOPP) group at the University of Oxford. The code
solves the Navier-Stokes equation for a thermal rotating annulus for a 2D axisymmetric
model and a full 3D model. The experiments that were used as observations were also
done as the AOPP using a thermal rotating annulus.

The aim of the study was to apply the knowledge gathered about EnKF during this
study to tokamak data obtained at the Culham Centre for Fusion Energy (CCFE). Here
EnKF would be used to validate models which predict instabilities in tokamak plasma.
The models would be used for parameter estimation on the data to get an insight on the
parameters of the plasma and later to see if real time predictions can be made of these
instabilities that are observed.

9.1 Summary
The first two results chapter were aimed at gathering the initial understanding of DA and
rotating thermal annulus respectively. Chapter 5 used the Lorenz model as the test bed
to better understand EnKF with chapter 6 presenting the results observed in the thermal
rotating annulus for different rotation rates. The last two results chapters were all about
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applying EnKF the thermal rotating annulus. First in chapter 7 twin experiments was
done where using accurate observations from a high resolution run EnKF was used
along with a low resolution ensemble to try and accurately predict the high resolution
behaviour. Different studies were done here to understand EnKF’s behaviour when used
with a 3D model. In chapter 8 EnKF was applied to experimental data to see if EnKF
help predict real life behaviour with low resolution ensemble.

9.1.1 Testing with Lorenz
Before EnKF can be done using the experimental data a good understanding of the
method’s behaviour and limitation are needed. For this, the Lorenz model (Lorenz,
1963) was used as it has a very complex and chaotic structure at certain parameter
values. A high resolution run was performed and its data stored to create a set of obser-
vations which were used for all the tests in the study.

In the first set of tests, the ensemble sizes were changed to test the predictive power
of EnKF. Increasing the ensemble size dramatically increased the accuracy of the sys-
tem. The ensemble has some issues with giving accurate prediction when the observa-
tion oscillated between the two fixed point regions. With larger ensemble sizes EnKF
does a better job of tracking in these areas and the speed at which the system corrects
when the ensemble divergence also increases with larger ensemble sizes.

In the second set of experiments, multiplicative inflation was used along with differ-
ent ensemble sizes to test EnKF. Inflation leads to better tracking of the observations by
the ensemble. Smaller ensembles needed higher inflation and larger ensembles needed
smaller inflation when it came to better tracking the observations. This is because of a
larger ensemble sample more of the state space, hence lead to a better covariance and
Kalman gain. Inflation is more useful when used for smaller ensemble sizes as the user
is saving on the computational cost of simulating additional ensemble members.

In the third set of experiments, the number of time steps between the DA points was
changed. As theorised, with the larger interval between DA the system finds it harder
to track the truth. This is because the ensemble members have more time to diverge.
But in most cases using multiplicative inflation can help stop the system from diverging
from the truth. With the longer interval between DA, the amount of inflation needed to
accurately track the truth is higher than what was used with the shorter interval.

Finally, a study was done on the capabilities of EnKF for parameter estimation. Here
the parameters of σ, r and b were predicted by EnKF along with the normal variables
x, y and z. Overall EnKF gets the predictions close to the actual values used for the
parameters. With smaller ensemble sizes inflation was needed to increase the accuracy
of the estimated parameters. But as the ensemble size was increased the need for in-
flation to get an accurate estimate decreased. These results are comparable to previous
studies such as Annan and Hargreaves (2004), where a much larger ensemble, up to 100
members, was used to obtain close predictions.

All results obtained here are equivalent to what has previously been observed in
past studies such as Evensen (1997); Miller (1994) for studies on ensemble sizes and
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inflation and Annan and Hargreaves (2004) for study on parameter estimation.

9.1.2 Experimental results
The aim of these experiments were to test the new equipment that had be installed at
AOPP and to get data that can be used for DA. Young and Read (2013) had used an
older experiment for DA where the rotation rate of annulus changes every 20 minutes.
But as this is the first time EnKF will be applied to this system it was decided to do a
long run to get stable data at different rotation rates.

The experiments were done to create observations for EnKF and were done at a
rotation rate of 1 rad/s, 2.5 rad/s and 3 rad/s. Overall the experiments showed behaviour
that is expected at the various rotation rates. It was very difficult to observe the behaviour
of the fluid at lower levels consistently. But much clearer behaviour was observed at
higher levels. This was due to the fluid at higher levels obscuring the camera’s view
when it comes to observing the lower levels.

The experiment at 1rad/s showed a steady m=3 wave that travelled around the annu-
lus. This could be observed in the images as well as being confirmed by the PIV data. At
lower levels, the behaviour is hard to garner as observed in both the images and PIV but
level 3 onwards the observations become clearer. At a rotation rate of 2.5rad/s increases
the observed wavenumber to m=4 around the annulus. Observations at lower levels are
still poor and get better with the height of the observed level. The Hovmöller plots for
this run show the m=4 wave very clearly and the structures can be followed throughout
the run.

The last experiment at 3rad/s caused a lot of problems for the PIV software to gen-
erate accurate observations. At lower levels the fluid showed minimal movement with
only the higher levels showing clear fluid circulating around the annulus. This was con-
firmed by the PIV plot and the Hovmöller plots. A m=4 wave is observed at higher
levels and the wave slowing drifting around the annulus. There were also issues with
clumping of seeding particles along the inner cylinder. It seems that the high rotation
rate was pushing the particles towards the inner and outer wall of the annulus.

Overall the one size fits all approach to PIV settings in DynamicStudio for analysing
images does not seem to work well. Future work will have to try and fine tune settings
when calculating U and V velocity values for observation taken at different levels and
different rotation rates.

9.1.3 Twin Experiment
The next step was to couple EnKF with the MORALS code and conduct a twin experi-
ment to understand the intricacies of DA on a 3D model. Here a high resolution model
was used to create data for observation and then an ensemble of low resolution models
were used to see if they can replicate the results using EnKF. Tests were conducted at a
varying rotation rates of 1 rad/s, 2 rad/s, 2.5 rad/s, 3 rad/s.
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A control study was done where the low resolution ensemble of 10 models was
run without any data assimilation. Studies were done at 1 rad/s, 2 rad/s, 2.5 rad/s and
3 rad/s. In all the studies, there was a good spread of the ensembles at the end of the run.
Interestingly, similar standard deviations are produced for the different rotation rates
indicating that increasing the rotation rate in the system doesn’t affect the spread of an
ensemble.

At 1 rad/s a lot of studies were done with slightly different settings to find optimal
parameters which can be used for DA which lead to accurate results. It was concluded
that an ensemble of 10 with DA every 5 minutes and additive inflation of 2pert gave
accurate results in most cases at this low rotation rate. These settings were carried
forward when looking at studies at 2 rad/s, 2.5 rad/s and 3 rad/s.

At 2 rad/s the higher rotation led to a more complex behaviour with both m = 4
and m = 3 wavenumbers observed. In most cases, the low resolution ensemble system
struggled to replicate this m = 4 wavenumber and stayed at the m = 3 wavenumber. In
many cases, the system needed to be tuned to create a m = 4 wavenumber. Although
decreasing the DA length to 1 minute gave the best results but in many cases, the system
strayed away from the truth.

Going further to 2.5 rad/s, the structures observed at this rotation rate were very
volatile with the fluid going from a m = 4 to a m = 3 wavenumber. In all cases, the
system found it hard to track the truth. This was the case even when the time between
DA was decreased or the ensemble size was increased. Maybe the number of θ points
should have been increased from 64 to 128 to increase the accuracy of the information
travelling around the model at this higher rotation rate.

The last rotation rate to be looked at was 3 rad/s. Here the number of θ points was
increased to 128 for the high resolution model for better accuracy. But with the low
resolution model still having only 64 points in θ, it always gave the wrong wavenumber.
Maybe the number of θ-points should have also been increased for the low resolution
model.

Young and Read (2013); Ravela et al. (2010) are one of the only few studies pub-
lished about DA and thermal rotating annulus experiments. Young and Read (2013)
used analysis correction as a DA method and Ravela et al. (2010) presented a setup to
assimilate data using EnKF and showed it could be used to predict behaviour. The re-
sults presented in this thesis provides a variety of results for EnKF showing situation
where it is able to help accurately predict the results. The results presented in the twin
experiments show a promising start especially for low rotation rate of 1 rad/s. When
increasing the rotation rate problems start to arise, which were also observed by Young
and Read (2013) using analysis corrections. Both system starts having problems when
tracking the more complex structure even when using higher number of observed points
and shorter DA times. More tuning is needed using EnKF in the study presented here
for the higher rotation rates to get accurate results along with other changes suggested
in this section.
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9.1.4 DA using Experimental Observation
Using the understanding gained from the previous experiments DA can finally be ap-
plied using the experimental data as the observations. Due to the quality of data and
other restriction DA was done for system rotating at 1 rad/s and 2.5 rad/s with 500 ran-
dom points from the experiments being used as observations. An ensemble of 10 was
used with an additive perturbation of 2pert for all studies with DA being done every 1
minute.

At 1rad/s the ensemble can replicate the fluid structures observed in the PIV data
with an m=3 being observed. But the ensemble is never able to tack the truth with
the latter travelling around the annulus faster. The slow drift velocity might be due to
the low θ resolution of just 64 points. The test was repeated but with an increased θ
resolution of 128 points. Here the ensemble starts with an m=4 wave and then collapses
to an m=2 wave. This collapse of the wave might be due to the DA corrections. With
this difference in wavenumber between the ensemble and truth, the ensemble will never
be able to track and predict the truth.

The rotation rate was increased to 2.5rad/s for the next study. Here the PIV data
shows an m=4 wave but in the first test with a θ resolution of 64 the ensemble shows an
m=3 wave. The ensemble is never able to move up to an m=4 wave. Even when the θ
resolution is increased to 128 points, the ensemble average is still a m=3 wave. In both
cases, the ensemble is not able to track the truth understandably.

Although no accurate results were achieved, a lot was learned about what kind of
observations are needed to get more accuracy in prediction. Young and Read (2013)
used around 2000 vector points in their studies and this study was only using around
1000 vector points. It is clear in the results presented in this thesis that the PIV data
needs to be reprocessed to obtained more accurate values. In both cases the U and V
velocity values were lower compared to values predicted by the ensemble. For the thesis
results the resolution of the ensemble needs to be increased with at lest the 128 points in
the θ for better resolution of rotation at higher rotation rates. Finally if the experiment
is repeated, only one level should be observed to obtain continuous data and to not miss
any important behaviour that might have been missed when switching between levels.

9.2 Future Work
This thesis has presented a way to use EnKF to predict the behaviour in a thermal ro-
tating annulus. And although a lot of different studies have been presented here, im-
provements can be made to all aspects of the studies leading to a better prediction for
the thermal rotating annulus.

Data Assimilation methods
The version of EnKF used for the studies present here was a very stochastic approach
as aspects such the additive inflation and observation perturbations were random. This
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approach was deliberately chosen for two reasons, first to see how a simple DA method
will behave when used for an increasingly complex system. Second, to see how difficult
it is to implement EnKF for complex 3D system and gain experience in operating it.

As mentioned in the DA chapter there are other versions of EnKF such as Ensemble
Square Root Filter (EnSRF) and Ensemble Transform Kalman Filter (ETKF) which
are more deterministic in their approach. These approaches could help if there is any
spurious correlation in the system. This could lead to a better prediction. The system
can also be updated for asynchronous DA which will be useful for applications in real
life problems such as predicting instabilities in tokamaks.

Experiments
This was the first time this set of equipment was used to conduct long duration exper-
iments for a thermal rotating annulus at different rotation rates at the AOPP. Previous
results (Young and Read, 2013) used an older experiment which was done using older
equipment. As such a lot of improvement can be made on how the data is collected and
analysed.

1. Data at level 4 seems to be the best when it comes to being useful for DA. A
few experiments can be done while only level 4 is observed throughout the run to
have a larger set of data that can be analysed. This could be done especially for
the higher rotation rates to get more of a chance to obtain usable results.

2. Doing analysis using a continuous data set should also lead to better calculation
of U and V velocity, here switching between levels hampered getting continuous
data. This will also lead to a better understanding of the behaviour of the working
fluid, leading to better Hovmöller plots, better calculations of the drift rates and
better understanding of phenomenon such as vacillation.

3. More tuning is needed on DynamicStudio’s PIV software, as it seems like a lot
of data is lost when the images are processed to generate the values of U and V
velocity. The images taken during the experiments was 1024x768 pixels while the
processed data file contains just 83x62 data points. More data points might lead
to clearer plots and more data points that can be used for DA. Maybe some sort of
data interpolation can be used to create data that can be used for DA.

4. Only data from a 1 rad/s level 4 was used to find settings that generate reasonable
results on DynamicStudio. Hence more tuning is also required to get a more
optimal settings for both different levels and different rotation rates. With faster
rotation rates the number of pixels needed to obtain accurate results will increase.
This might decrease the resolution of the image further, leading to less usable
data. One way to overcome this problem might be to increase the frequency of
image acquisition for faster rotation rates. This should help PIV software to track
particles more accurately leading to better prediction.
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5. Another option is to use a different PIV software as DynamicStudio is not gener-
ally used to analyse data from a thermal rotating annulus. This meant that there
was less of an idea on what setting might be optimal in practice to get good results.

6. With better experimental data, DA studies can be repeated to get better results.

Numerical model
A lot of studies were presented in this thesis using the twin experiment and, as reported,
most of the time EnKF did not do a good job of tracking the observations. Hence a lot
of improvements can now be made to see what situations are needed where EnKF can
track the observations.

1. At higher rotation rates the ensemble has a lot of problems with accurately repli-
cating the correct wavenumber and drift rates as observed in the high resolution
model and experiments. Hence the θ resolution needs to be increased from 64 to
128 for a better transfer of information around the rotating annulus. This should
lead to a better rotation of the working fluid in the ensemble.

2. Larger ensemble run needs to be done at higher rotation rates to make up for
the more chaotic structures that are observed. This will be computationally more
expensive but should lead to better results. Using the larger ensemble, studies
done at lower rotation rates, such as looking at where around the annulus are the
best places to observe can be repeated. These will help when creating/designing
real life experiments when using a thermal rotating annulus. The ensemble size
was deliberately kept low for all the studies to look at the extreme conditions
where EnKF could still work.

3. All the studies done here mostly looked at the qualitative side of DA i.e. looking at
how well EnKF did at helping the ensemble track and predict the observation. But
this can be expanded to look at the quantitative side as well. This will mean start
looking at things such as how the covariance changes with time and if there are any
spurious correlation in the system. This will help in determining if localisation is
needed in the system. With localisation, the ensemble size needed for accurate
prediction could be decreased which will save computational costs.

CCFE
The final aim of this project was to apply what was learned about EnKF to helping better
predict better behaviour in a tokamak in collaboration with CCFE. Some preliminary
tests were done at CCFE such as looking at what data can be extracted from tokamaks
and what the look like. A few simple models were also look at to see if they produce
similar results as extracted. But no final decisions were made on the data or the model
and due to the time spent doing steadies on the thermal rotating annulus, it was not
possible to fully apply what was learned from a thermal rotating annulus on a tokamak.
Given how easy it is to apply EnKF to another setting this should not take too much time
to setup knowing what model is being used and what data is being extracted.
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