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Summary

In this thesis we study the propagation of scalar and gravitational waves on

compact body spacetimes. In particular, we consider spacetimes that model

neutron stars, black holes, and other speculative exotic compact objects such

as black holes with near horizon modifications. We focus on the behaviour of

time-independent perturbations, and the scattering of plane waves.

First, we consider scattering by a generic compact body. We recap the

scattering theory for scalar and gravitational waves, using a metric perturbation

formalism for the latter. We derive the scattering and absorption cross sections

using the partial-wave approach, and discuss some approximations. The theory

of this chapter is applied to specific examples in the remainder of the thesis.

The next chapter is an investigation of scalar plane wave scattering by a

constant density star. We compute the scattering cross section numerically, and

discuss a semiclassical, high-frequency analysis, as well as a geometric optics

approach. The semiclassical results are compared to the numerics, and used to

gain some physical insight into the scattering cross section interference pattern.

We then generalise to stellar models with a polytropic equation of state,

and gravitational plane wave scattering. This entails solving the metric per-

turbation problem for the interior of a star, which we accomplish numerically.

We also consider the near field scattering profile for a scalar wave, and the cor-

respondence to ray scattering and the formation of a downstream cusp caustic.

The following chapter concerns the scalar wave absorption spectrum of ex-

otic compact objects, modelled as black holes with a partially reflective surface

just above the event horizon. We discuss the systems natural modes of vi-

bration, and derive low and high-frequency approximations for the absorption
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spectra.

Finally, we apply complex angular momentum (CAM) techniques to the

perturbed constant density stellar model. We compute Regge poles (CAM

resonance modes) by numerically solving a four-term recurrence relation. The

utility of the CAM method is demonstrated by reproducing the scattering cross

sections calculated earlier using partial waves.
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Chapter 1

Introduction

In September 2019, a catalogue of gravitational wave detections was published

by the LIGO and Virgo collaborations [1]. Ten of the signals are consistent

with the gravitational radiation resulting from a black hole binary merger, as

predicted by Einstein’s theory of general relativity (GR). Another observation,

GW170817, is thought to have originated in the merger of two neutron stars [2].

This event was also observed across the electromagnetic spectrum [3]. These

developments constitute the inception of gravitational-wave astronomy, and

multi-messenger astronomy.

Gravitational waves (GWs) are ripples in space-time that are passing through

us all the time, travelling at the speed of light c ≈ 3 × 108 m/s. They are so

minuscule that (thankfully) we do not experience any day-to day consequences.

For example, the strain amplitude of GW170817 when it reached the Earth was

of the order of h ∼ 10−22, meaning the laser interferometers of LIGO detected

a change in distance four orders of magnitude smaller than the diameter of an

atom.

Einstein predicted GWs as a consequence of his general theory of relativity

over a century ago in 1916 [4]. Another prediction of GR that has captured the

imagination of many scientists and science-fiction fans is black holes. These

are bounded space-time regions that nothing can escape from, not even light,

due to their extreme gravitational attraction. The boundary of such a region

is known as the event horizon.
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A mathematical description of a spherically symmetric, static black hole

was discovered by Schwarzschild in 1916 [5]. Other black hole solutions to

Einstein’s equations were found later that endowed the hole with charge (the

Reissner-Nordström solution [6, 7]), or angular momentum (the Kerr black hole

[8]), or both (the Kerr-Newman black hole [9]).

Black holes may arise in nature as the end states of collapsing stars. In

1939, Oppenheimer and Snyder described such a process using Einstein’s field

equations [10]. As a star collapses, the light it emits is increasingly red-shifted,

and can escape over a narrower range of angles, due to the increasing curvature

at the collapsing surface. To a distant observer the star’s surface would become

dimmer and never quite seem to reach the horizon. In addition, because of the

red shift, the surface will appear to cool down. For this reason, the end-states

were referred to as frozen stars.

Supermassive black holes are thought to reside in the centres of almost

all galaxies, including our own [11]. Recently, the shadow of a supermassive

dark body at the centre of the galaxy M87 has been observed by the Event

Horizon Telescope using very-long-baseline-interferometry (VLBI) [12]. The

observations are consistent with the object being a Kerr black hole with the

mass of 6.5 billion suns.

The other well-motivated astrophysical body with a compactness compa-

rable to a black hole is the neutron star. To get a feeling of the extreme

gravitational curvature induced by a neutron star, consider that the escape

velocity at their surface is roughly half the speed of light. Like black holes,

they are a possible end point of stellar collapse.

Stellar collapse occurs when a star has exhausted all of its nuclear fuel and

no longer generates sufficient pressure to balance the gravitational attraction

holding it together [13]. As the star contracts, the core becomes more dense,

compacting the atoms so closely together that the Pauli exclusion principle

gives rise to an electron degeneracy pressure great enough to balance the grav-

itational force. At this stage there are two possible outcomes: (1) the core

remains in equilibrium as the outer layers of the star are lost into the cos-

mos via the stellar wind, leaving behind a white dwarf, this happens if the
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CHAPTER 1. INTRODUCTION

initial star has a mass less than roughly 10 solar masses; (2) the degenerate

core grows above the Chandrasekhar mass limit [14], MC ≈ 1.4 solar masses

[13], and undergoes a further collapse. In the latter case, it becomes ener-

getically favourable for protons and electrons to combine and form neutrons

and neutrinos. The core collapse may then be halted by neutron degeneracy

pressure. Part of the immense gravitational energy released during the core

collapse causes the outer layers to be blown off into space in a supernova ex-

plosion [13], leaving behind the newly-born neutron star. Depending on the

initial star’s properties, even the neutron degeneracy pressure of the core may

be unable to halt collapse, resulting in a black hole [15].

There is still much to be learnt about neutron stars and black holes, in-

cluding the details of their formation as stellar remnants briefly summarised

above (see e.g. reference [13] for more details). Neutron stars are natural

laboratories for understanding the nature of matter at the highest imaginable

densities, and the equation of state for neutron star matter is a fertile research

area [13]. Black holes in GR possess un-physical curvature singularities, where

it is assumed classical physics breaks down and a theory successfully combining

quantum mechanics and GR is needed. They are therefore a natural testing

ground for postulated theories of quantum gravity.

One theory of quantum gravity, string theory, has provided motivation for

black hole models with a partially reflecting surface just outside the horizon

[16–18]. Another possibility is that black holes are not (all) the canonical Kerr

black holes of GR, but some other object that mimics their behaviour such as

boson stars composed of dark matter [19]. Together, these compact bodies are

sometimes called exotic compact objects [20].

In this thesis, we consider the interaction of fundamental fields with neu-

tron stars, black holes, and exotic compact objects. We use the framework of

perturbation theory, whereby any back reaction of the fields on the metric is

considered negligible. In particular, we focus on scattering and absorption of

a massless scalar field, and of GWs. Scalar waves serve as a useful proxy for

more well motivated yet technically challenging fields (e.g. electromagnetic and

GW). They capture the key features of scattering studies, and are a natural
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1.1. SCATTERING

place to begin a systematic study [21].

1.1 Scattering

One of the earliest studies of scattering by black holes using perturbation tech-

niques was by Vishveshwara, who simulated GWs scattering from a Schwarzschild

black hole [22]. He considered an initial disturbance composed of a Guassian

wavepacket and computed the subsequent outgoing radiation. The result was

that the scattered GW contained characteristic frequencies of the black hole

that were excited by the initial pulse (see figure 1.1). Such characteristic os-

cillations and their frequencies are referred to as quasinormal modes (QNMs)

and quasinormal frequencies (QNFs) respectively [23].

QNM ringing is independent of the type of initial perturbation, it could be

caused by an infalling particle, or a newly formed black hole ‘ringing down’.

The QNFs are determined entirely by the black hole’s two parameters mass

M and angular momentum J . By measuring at least two modes it is possible

to infer M and J , and characterise the black hole. This program of study is

termed black-hole spectroscopy [24]. Analysing the GW data from the binary

black hole merger event GW150914, Isi et al have recently proposed that the

ringdown part of the signal is well described by a superposition of two QNMs

[25]. In chapter 5 we will discuss an exotic compact object that can ‘mimic’

part of the ringdown of a black hole [26, 27].

Stellar matter oscillation modes have a long history, and are well modelled

using Newtonian gravity [28]. However, for neutron stars relativistic effects

should not be ignored [29, 30]. In the relativistic model, stellar modes lose

energy in the form of GWs, and thus decay over time. All the types of mode

familiar from Newtonian treatments have corresponding quasinormal modes in

the relativistic picture [31].

The study of QNMs in GR is a key part of understanding wave propagation

on curved spacetimes, and thus understanding the physics of compact objects.

The review by Kokkotas and Schmidt [32] provides a thorough discussion on

QNMs of black holes and neutron stars.
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Figure 1.1: The response of a Schwarzschild black hole of mass M to an axial
gravitational wave Gaussian pulse. The initial pulse has unit amplitude, is
centred at the radial (tortoise) coordinate r∗ ≈ 30M (see equation (2.7)), and
has the form exp[−(r∗ − 30M)/(18M)]. The plot shows the time evolution of
the axial gravitational wave angular mode Φ(r∗, t) with l = 2, for an observer
at r∗ ≈ 80M . We use geometric units setting G = c = 1.

In this thesis, we are also focused on understanding the theory of wave prop-

agation on curved spacetimes. In doing so we concentrate on time-independent

perturbations. In particular we are interested in plane wave scattering and

absorption. This is a typical thought experiment in many areas of theoret-

ical physics. From quantum mechanics, to surface water waves, to classical

electromagnetism and the theory of the rainbow, time-independent scattering

theory is ubiquitous. As a consequence, the theory developed in one area can

often be translated to another. This ubiquity will be a continuing thread of

this thesis. In chapter 3 we will make us of semiclassical scattering techniques

from quantum mechanics [33] to understand plane wave scattering by a neutron

star, and draw an analogy with the atmospheric rainbow. Later, we will turn

to the complex angular momentum picture of scattering, initially developed to

understand propagation of radio waves around the Earth [34].

The scattering and absorption of plane waves by black holes has received

considerable attention over the years. Much of this work is presented in a

monograph by Futterman, Handler and Matzner [21], drawing on earlier studies
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Black hole Polytropic star
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Figure 1.2: The scattering cross sections for a plane gravitational-wave with
circular frequency ω incident on compact bodies with mass M , where Mω = 4.
The black solid line is for a Schwarzschild black hole, and the blue dashed line
is for a polytropic star with a tenuity R/M = 6 comparable to a neutron star,
where R is the star’s radius. Calculations are done using the Mathematica

programming package [66].

[35–45]. More recent work includes [46–61]. Scattering by neutron stars and

exotic compact bodies has received comparatively less attention in the time-

independent context. This is the main focus of this thesis, much of which

appears in references [62–65].

The scattering cross sections of compact bodies can exhibit significant struc-

ture. For example, the cross section for a massless plane wave scattering from

a black hole may display a characteristic maximum in the backwards direction,

known as a glory [37]. At lower angles regular oscillations are seen, with an

angular width controlled by the ratio of the incident waves wavelength and the

black hole’s radius. This can be understood in a high frequency approximation

as components of the wave (which may be modelled as a congruence of rays)

‘orbiting’ about the black hole, and interfering in the far field.

In chapters 3 and 4 we will see that the cross section of a massless wave

scattered by a neutron star should display an interference pattern known as
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CHAPTER 1. INTRODUCTION

rainbow scattering (see figure 1.2 for a preview). Similar effects have been

observed in nuclear scattering [67]. In chapter 5 we will discuss the absorption

properties of modified black holes, and see that they display characteristic

absorption lines similar to those seen in atomic spectroscopy. The absorption

lines are found at the quasinormal frequencies of the body. These phenomena

are all ‘fingerprints’ of compact objects, that in principle could inform us of

their properties and shed light on gravitational and nuclear physics.

Following the footsteps of time independent scattering theory in other phys-

ical regimes (see e.g. [68]), we study a type of ‘resonance’ conceptually different

to QNMs. These are modes with real frequency and complex angular momen-

tum (CAM). They are referred to as Regge-poles, after Tulio Regge who applied

CAM to the Schrödinger wave equation [69] familiar from quantum mechanics.

Andersson and Thylwe have shown that the Regge poles of a Schwarzschild

black hole can be interpreted as ‘surface waves’ [46, 47], that propagate close

to the unstable photon orbit at r = 3M [70]. Décanini et al. have cemented

the surface wave interpretation and provided a link between the dual concepts

of Schwarzschild Regge poles and QNMs [71]. We will discuss CAM Regge pole

modes in more detail in chapter 6, and apply the theory to a simple neutron

star model.

In principle, scattering scenarios can distinguish between different types of

compact bodies, in both transient and effectively time independent processes.

Transient or direct scattering modelled with a time dependent framework is

certainly the more promising (and proven) in terms of learning new physics

[1, 24, 25, 72], and it is unlikely that long lasting scattering giving rise to

diffraction phenomena (figure 1.2) could be observed any time soon. However,

the time-independent picture should still be studied for the following reasons:

(1) In order to gain a complete understanding of wave propagation on curved

spacetime. For example the complex angular momentum picture has allowed

a deeper comprehension of the resonant behaviour of black holes.

(2) It is of fundamental interest to consider. Since scattering theory is so

ubiquitous, ideas developed in this context could well find employment in other

areas of physics [73, 74].
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1.2. THESIS OUTLINE

(3) Future GW detectors [75] will be able to detect long lasting practically

monochromatic GW sources (i.e. compact object binaries during their inspiral

[76]) for periods of up to a month, opening up the possibility of detecting GW

diffraction phenomena [77].

Einstein thought there was ‘no hope’ of observing the gravitational lensing

of light [78], and yet now it is a ‘booming part of astrophysics’ [79]. Powerful

telescopes have enabled people to determine the chemical constituents of dis-

tant exoplanets by observing absorption lines [80], a fundamentally wave-like

phenomena. If the past is anything to go by, gravitational scattering of waves

by compact bodies could yet prove to be relevant to GW astronomy, and our

knowledge of fundamental physics.

1.2 Thesis outline

In chapter 2 we present the theory of scalar and gravitational perturbations

on a general spherically symmetric spacetime (with a Schwarzschild exterior

region). We will then discuss plane wave scattering of these perturbations,

much of which is presented in the monograph ‘Scattering from black holes ’

by Futterman, Handler, and Matzner [21] (hereafter referred to as FHM). In

doing so we recall how to overcome the difficulties associated with defining a

plane wave on a background with a long range effective potential, the issue of

convergence of the partial wave sum defining the scattering amplitude, and a

gauge invariant definition of gravitational wave energy [81–83]. In an extension

of FHM, we discuss how to deal with all compact bodies (limited to the non-

rotating case). This is a fairly modest generalistation, since the exterior vacuum

region of all spherically symmetric spacetimes is described by the Schwarzschild

metric, a result known as Birkhoff’s theorem [84, 85]. Therefore all the results

relevant to setting up the scattering problem in the far field carry over from

the black hole case. To analyse GW scattering, we use the metric perturbation

formalism initiated by Regge and Wheeler [69], and presented in a modern

form by Martel and Poisson [86, 87] (a selection of key works in the intervening

period include [82, 83, 88–90]).
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The theory reviewed in chapter 2 is applied to the case of scalar waves

scattered by a constant density compact body with radius R and mass M in

chapter 3. We investigate tenuities R/M that model a neutron star (R/M ≈ 6)

and tenuities R/M < 3 corresponding to ultra compact objects (UCOs) [20]

endowed with an unstable closed light ring in their exterior. A semiclassical

analysis is used in the high frequency limit, following methods developed by

Ford and Wheeler for studying quantum scattering in the classical limit [33]

(hence ‘semiclassical’, even though our work considers purely classical fields

to begin with). This provides a link between the scattering of rays and high

frequency waves and enables physical interpretation.

In chapter 4 we consider GWs scattering from a star with a polytropic

equation of state. The stellar background is constructed by numerically solving

the Tolman-Oppenheimer-Volkof equations [10, 91]. To study the perturbations

of the interior we build on the formalism of Allen et al. [92] and Kojima [93].

For earlier works on stellar perturbations see [29, 30, 94–102]. We apply a

numerical method to determine the scattering cross sections, and compare with

our results from chapter 3 and black hole scattering (e.g. [35]). We discuss the

astrophysical implications of chapters 3 and 4 in the concluding remarks.

Chapter 5 is an investigation of the absorption properties of hyopthetical ex-

otic compact objects. We present a simple parametrised model for such objects

that include near-horizon modifications to black holes. A low frequency limit

for the absorption cross section, σabs, is derived by generalising the method

of Unruh [103]. We then make numerical calculations of σabs at moderate

frequencies. It is shown that σabs exhibits strong spectral lines at the char-

acteristic frequencies of the ECO, and that the lines are well approximated

by a Breit-Wigner formula [104]. In addition we consider a modified Nariai

spacetime model that shares the qualitative features of the ECO. The wave

equation on this ‘Nariai-ECO’ spacetime can be solved exactly [105] and thus

allows analytic approximations describing the spectral lines.

The application of CAM theory to perturbations of the compact bodies in-

troduced in chapter 3 is considered in chapter 6. We investigate the scalar field

Regge-pole spectrum of two models with R/M = 6 and R/M = 2.26. Using a
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1.2. THESIS OUTLINE

combination of numerical methods, a WKB approximation, and by appealing

to analogous scattering scenarios in e.g. [68], we provide some interpretation of

the Regge-pole spectra. To finish the chapter we demonstrate the utility of the

CAM method by reproducing scattering cross sections calculated previously in

chapter 3.

10



Chapter 2

Scattering by compact objects

Time-independent scattering of waves by a black hole has been the subject of

numerous studies. In the 1960s Hildreth [106] and Matzner [39] both consid-

ered the scattering of scalar waves by a Schwarzschild black hole, concentrating

on the low frequency limit s-wave (l = 0). Mashhoon considered electromag-

netic waves scattering from black holes, noting that for spinning black holes an

initially unpolarized plane wave would be expected to polarize when scattered

[42]. Significant progress was made by Sanchez [37] who performed the numer-

ical computations necessary to obtain scattering cross sections for a range of

energies.

The monograph ‘Scattering from black holes ’ by Futterman Handler and

Matzner (FHM), first published in 1988, gives a unified treatment of massless

fields with spin s ∈ {0, 1/2, 1, 2} [21]. FHM treat the fields as perturbations of

the Kerr metric and make use of the Newman-Penrose formalism [107]. More

recent black hole scattering studies include: an extension to massive fermionic

fields by Dolan et al. [108]; highly accurate calcuations on rotating black hole

backgrounds, overcoming numerical difficulties associated with high frequency

incident waves [48, 50, 55, 109]; and the application of complex angular mo-

mentum methods [46, 57, 58].

Whilst most scattering studies focus on black holes, there has been some

investigation of scattering by other compact bodies such as neutron stars [98],

and many studies of pulsating stars and the resulting gravitational wave emis-

11
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sion using perturbative techniques [29, 92, 97, 98, 110].

In this chapter we outline scattering theory for scalar and gravitational

plane waves on general spherically symmetric backgrounds. We concentrate

on the asymptotics that define the scattering problem, and defer detailed dis-

cussion of model dependent boundary conditions and interior perturbations to

later chapters. The exterior vacuum for all spherically symmetric gravitating

bodies is described by the Schwarzschild solution [111], and hence much of the

work on the scattering asymptotics that has been done for black holes is ap-

plicable here also. However, for GWs we have developed the scattering theory

in terms of metric perturbations, as opposed to Riemann tensor perturbations

which has been the formalism of choice for previous studies (e.g. references [21,

50]).

Later the formalism presented here will be used to consider scattering by

compact bodies including models of neutron stars (chapters 3 and 4), absorp-

tion by Schwarschild black holes with near horizon modifications (chapter 5),

and the complex angular momentum approach to relativistic scattering (chap-

ter 6).

2.1 Spherically symmetric spacetime metric

A static spherically-symmetric spacetime in Schwarzschild coordinates {t, r, θ, φ},
is described by the line element

ds2 = gµνdx
µdxν = gabdx

adxb + r2ΩABdx
AdxB. (2.1)

Lower case Latin indices run over {t, r}, upper case Latin indices run over

{θ, φ}, and Greek indices run over all coordinates. We have

gabdx
adxb = −A(r) dt2 +B−1(r) dr2, ΩABdx

AdxB = dθ2 +sin2 θ dφ2. (2.2)

Latin indices are lowered with gab and ΩAB, and raised with the corresponding

inverse metrics. Greek indices are lowered and raised with gµν and its inverse

gµν .

12



CHAPTER 2. SCATTERING BY COMPACT OBJECTS

This space-time is an example of a “warped product” of two pseudo-Riemannian

manifolds [112]: the radial-temporal planeM2 with metric gab, spanned by the

coordinates xa; and the two-sphere S2 with metric ΩAB, spanned by the co-

ordinates xA. In this language, the 4D spherically symmetric space-time is

described by M4 = M2 × wS2, with metric gµν . The radial-temporal plane

is known as the “base space” of M4, and the surfaces of spherical symmetry

are the “fibres”. Each fibre is a direct product of a point p ∈ M2 and S2.

The “warping function” in this case is w = r2, so named because it warps the

product metric gµν on each fibre p× S2.

2.2 Scalar field perturbations

A scalar field Φ, on a background gµν , is governed by the Klein-Gordon equation

2Φ ≡ 1√
−g

∂µ
(√
−ggµν∂νΦ

)
= −µ2Φ, (2.3)

where g is the metric determinant, µ is the rest mass of the scalar field, and 2

is the Laplace-Beltrami operator. The general solution to equation (2.3) for a

spherically symmetric background can be found using a separation of variables,

Φ =

∫ ∞
−∞

e−iωt
∞∑
l=0

m=l∑
m=−l

ulmω(r)

r
Ylm(θ, φ) dω, (2.4)

where Ylm are the spherical harmonics (appendix A). The radial functions

ulmω(r) are solutions of the wave equation

√
AB

d

dr

[√
AB

dul
dr

]
+
(
ω2 − V eff

l (r)
)
ul = 0, (2.5)

where we have dropped the subscripts (m,ω) for clarity and V eff
l is an effective

potential

V eff
l (r) = A

(
l(l + 1)

r2
+
B

2r

(
A′

A
+
B′

B

))
. (2.6)

13
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The wave equation is simplified by introducing a ‘tortoise’ coordinate, r∗, de-

fined by
dr

dr∗
=
√
AB, (2.7)

so that
d2ul
dr2
∗

+
(
ω2 − V eff

l (r)
)
ul = 0. (2.8)

By Birkhoff’s theorem, for the exterior (r > R) of all spherically symmetric

solutions to Einstein’s field equations (EFE) we have that

A(r) = B(r) = 1− 2M

r
. (2.9)

Then, V eff
l (r) → 0 as r → ∞. The general solution has asymptotic behaviour

in the far field

ul(r) ∼ C+
l e

iωr∗ + C−l e
−iωr∗ , (2.10)

where C−l and C+
l are the ingoing and outgoing coefficients of the mode.

2.2.1 Comparison to Coulomb scattering

In this section we outline some similarities between the quantum mechanics

treatment of Rutherford scattering and the gravitational scattering of scalar

waves. Rutherford scattering is the elastic scattering of charged particles due to

the Coulomb (electrostatic) force. It is also referred to as Coulomb scattering.

Let us define the function ūl ≡ (AB)1/4ul, where ul obeys equation (2.5).

Then ūl satisfies

d2ūl
dr2

+

[
ω2 +

4ω2M

r
− l(l + 1)

r2
− U(r)

]
ūl = 0. (2.11)

where

U(r) ≡ −12ω2M2

r2
+H(R− r)Vint(r) +O(r−3). (2.12)

Here we have used the Heaviside step-function H(·), and defined a ‘short-range’

interior potential Vint(r) which is only effective for r < R (the form of Vint does

not matter for our purposes). The long range nature of the gravitational field

14



CHAPTER 2. SCATTERING BY COMPACT OBJECTS

is manifest in the 1/r attractive coupling between the ‘energy density’ 4ω2 and

the body’s mass M . Equation (2.11) facilitates a comparison to Coulombic

scattering of two nuclei with atomic numbers Z1 and Z2. The Sommerfeld

parameter η is defined by

η ≡ αZ1Z2

ν/c
, (2.13)

where α is the fine structure constant and ν is the speed of the incident nu-

cleus (in the target nucleus rest frame). Equation (1.1) of reference [113] for

modified Coulomb scattering is equivalent to equation (2.11) if we replace the

Sommerfeld parameter according to

η → −2Mω. (2.14)

Thus the exact solution for ūl is directly comparable to modified Coulomb

scattering with the modifying short range potential U(r) of equation (2.12).

Matzner went a step further with his comparison of scalar wave scattering

by a Schwarzschild black hole to Coulombic scattering [39]. His argument

extends to general spherically symmetric solutions with a finite interior region,

and we paraphrase it here. We expect |ūl| to be negligible for r < r0 where the

turning point r0 ∼
√
l(l + 1)/ω when l is large. That is to say, for a given ω,

if l is large enough then we can consider solutions of the ‘comparison Coulomb

problem’
d2ū

dr2
+

[
ω2 +

4ω2M

r
− l(l + 1)

r2

]
ū = 0 (2.15)

to be good approximations to the true solution (see section C of Matzner [39]).

This is also referred to as ‘Newtonian scattering’ [48]. In essence, partial waves

with large l incident from the far field will not penetrate the region where the

short range potential U(r) becomes significant.

2.2.2 Boundary conditions

The boundary conditions imposed on the scalar field depend on the compact

body being considered. In the case of a Scharzschild black hole, the physically

motivated boundary condition is that the mode must be purely ingoing at the
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2.2. SCALAR FIELD PERTURBATIONS

event horizon. This boundary condition is part of the reason that ‘mathemat-

ical’ black holes are surprisingly simple models. The modes that satisfy this

causal condition are known as IN modes, and satisfy

uin
l (r) ∼

e−iωr∗ , r∗ → −∞

A+
l e

iωr∗ + A−l e
−iωr∗ , r∗ →∞

. (2.16)

Another set of solutions are the OUT modes, corresponding to purely outgo-

ing radiation at the horizon. These are the time-reversal of IN modes, which

for real frequencies and in Schwarzschild coordinates corresponds to complex

conjugation. Another set of two solutions are the UP and DOWN modes. The

UP mode satisfies

uup
l (r) ∼

B+
l e

iωr∗ +B−l e
−iωr∗ , r∗ → −∞

eiωr∗ , r∗ →∞
, (2.17)

where B+
l and B−l are constants. The DOWN mode is the time reversal of

the UP mode.

Rescaling the IN and OUT modes gives standard one dimensional scattering

solutions, corresponding to an initial unit amplitude wave travelling to the left

(towards the black hole) and right (towards infinity) respectively. Transmission

and reflection coefficients, Tin/up and Rin/up, are encapsulated in the S-matrix

[90],

S ≡

(
Tin Rup

Rin Tup

)
=


1

A−l

B−l
B+
l

A+
l

A−l

1

B+
l

 . (2.18)

By considering Wronskian relations between the black hole IN and UP

modes one may derive the following relations between the mode coefficients:

A−l = B+
l , (2.19a)

A+
l = −B̄−l , (2.19b)
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where an overbar denotes complex conjugation. The fact that the Wronskian

of the IN and UP modes with their respective complex conjugate solutions is

constant yields the conservation laws (assuming ω and l are real)

|A−l |
2 − |A+

l |
2 = 1, (2.20a)

|B+
l |

2 − |B−l |
2 = 1. (2.20b)

It can also be instructive to consider objects with ingoing and outgoing ra-

diation at the surface (corresponding to a linear combination of UP/DOWN or

IN/OUT modes in the exterior). This encompasses a variety of stellar models,

as well as more speculative objects such as black holes with near horizon mod-

ifications motivated by quantum gravity [16, 17], gravastars [114], and boson

stars [115] (note that we are referring to non-rotating models, with an exterior

that is described by the Schwarzschild solution. There is no generalisation of

Birkhoff’s theorem to a rotating vacuum solution). Rather than considering

each object separately, a simple first step is to impose a generic boundary con-

dition near the surface, r = R (r∗ = R∗). This condition is parametrised by a

‘reflectivity’ coefficient Kl ∈ C,

ul(r) ∼

e−iωr∗ +
(
Kle−2iωR∗

)
eiωr∗ , r∗ → R+

∗

C+
l e

iωr∗ + C−l e
−iωr∗ , r∗ →∞

. (2.21)

The Wronskian of this solution with its complex conjugate is constant which

yields

|C−l |
2 − |C+

l |
2 = 1− |Kl|2. (2.22)

This model allows us to capture generic features of such models, whilst

not being concerned with the details of the interior. A black hole model with

physical boundary conditions (equation (2.16)) is recovered by setting Kl = 0

and R = 2M (R∗ = −∞).

If we wish to probe the interior of the object we must solve the wave equation

in this region, subject to suitable boundary conditions. A simple example is a

polytropic fluid sphere. In this case, the method of Frobenius may be used to
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find two independent solutions to equation (2.5) near r = 0. These are

u1
l (r) ∼ rl+1, u2

l (r) ∼ r−l. (2.23)

When l > 0 we select the regular solution u1
l . Numerically integrating this

solution out to r > R, with suitable care taken at the surface r = R, transmutes

the regularity boundary condition into a specific choice of Kl.
A similar generic boundary condition can be applied to other perturbations

on spherically symmetric spacetimes. For example, gravitational perturbation

modes for a gravastar were studied by Pani et al. [116]. Inside the gravastar,

they found an analytic solution for the odd parity sector, and matched to

the corresponding exterior functions using junction conditions. They showed

that the mode structure was completely different to that of a black hole. To

conclude, the specific boundary conditions formally encode vital information

about the object, but the formalism and methods for the exterior do not need

to be adapted for every case. This is the power of Birkhoff’s theorem. We

shall explore some specific objects in later chapters and discuss the physical

interpretations.

2.2.3 Probability current

From the Klein Gordon equation (equation (2.3)), it follows that

Φ∗2Φ− Φ2Φ∗ = 0, (2.24)

for real frequencies ω. Rearranging this using definition 2.3 yields the conser-

vation law

Jµ;µ = 0, (2.25)

Jµ =
1

2i
(Φ∗∂µΦ− Φ∂µΦ∗) , (2.26)

where we have defined the four vector Jµ which may be interpreted as the

conserved four-current of the scalar field. The number density of the field is

given by the time component J t, and current densities by J i where i runs over
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spatial indices.

2.2.4 Scalar plane waves

A massless scalar plane wave of frequency ω, propagating in the n̂ direction,

with unit amplitude, can be decomposed into spherical harmonics

Φplane(n̂, t) = eiω(n̂·r−t) = 4π
∞∑
l=0

l∑
m=−l

iljl(ωr)Ylm(θ, φ)Ȳlm(n̂)e−iωt, (2.27)

where jl is the spherical Bessel function [117]. The spherical harmonics can be

expressed in terms of associated Legendre polynomials Pm
l [117],

Ylm(θ, φ) = clmP
m
l (cos θ)eimφ, (2.28)

clm ≡ (−1)m
(

2l + 1

4π

(l −m)!

(l +m)!

)1/2

, (2.29)

where

Pm
l (cos θ) = (−1)m(1− cos2 θ)m/2

dm

d(cos θ)m
[Pl(cos θ)] . (2.30)

Along the z axis, θ = 0, and by equation (2.30), Pm
l (cos 0) = δm0. Thus

Φplane(ẑ, t) = eiω(z−t) =
∞∑
l=0

iljl(ωr)(2l + 1)Pl(cos θ)e−iωt. (2.31)

There is a subtlety to defining plane waves (and thus a scattering problem) on

curved space. Namely, the plane wave (equation (2.31)) cannot be asymptot-

ically matched to a solution on Schwarzschild (equation (2.10)). A practical

solution is to make the replacement r → r∗ in equation (2.31), and instead

define a ‘distorted’ plane wave:

Φdist(ẑ, t) =
∞∑
l=0

iljl(ωr∗)(2l + 1)Pl(cos θ)e−iωt, (2.32)
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which does satisfy the Klein-Gordon equation in the far field. This can be seen

by considering the asymptotic form of the spherical Bessel functions [117],

jl(ωr∗) ∼
1

ωr∗
sin

(
ωr∗ −

lπ

2

)
, ωr∗ →∞, (2.33)

which implies

Φdist(ẑ, t) ∼
π

2iω

∞∑
l=0

l∑
m=−l

1

r

(
eiωr∗ + (−1)l+1e−iωr∗

)
Ylm(θ, φ)Ȳlm(ẑ)e−iωt,

(2.34)

as r∗ →∞.

The prescription of replacing the radial coordinate with a tortoise coordi-

nate is standard for defining distorted plane waves on black hole spacetimes

[21]. In vacuum

r∗ = r + 2M log
( r

2M
− 1
)
. (2.35)

The presence of a logarithmic term that ‘distorts’ a plane wave is also standard

in quantum mechanical scattering by a Coulomb potential [118]. In fact, it

is necessary for scattering governed by a Schrödinger-type equation with any

potential that decays as 1/r as r → ∞. Potentials that satisfy this, such as

the gravitational and Coulomb potentials are referred to as ‘long-ranged’.

2.2.5 Scattering cross section

We wish to analyse the component of the field corresponding to the purely

outgoing scattered radiation in the far field (r∗ →∞),

Φscat ∼
f̂(θ)

r
eiω(r∗−t), (2.36)

which (by symmetry) has no φ dependence. Here, f̂(θ) is the scattering ampli-

tude.

The number density of the scalar field is given by the time component of

the conserved current, J t, (as seen by a stationary observer). The scattering
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cross section is the intensity of the scalar flux scattered to infinity per unit solid

angle, and is defined as
dσ

dΩ
= lim

r→∞

[
r2J

t
scat

J tdist

]
. (2.37)

By equation (2.26), the cross section is

dσ

dΩ
= |f̂(θ)|2. (2.38)

Matching the plane wave and scattered radiation to a general solution in the

far field, equation (2.10), yields an expression for the scattering amplitude in

terms of the mode coefficients C−l and C+
l ,

f̂(θ) =
1

2iω

∞∑
l=0

(2l + 1)
(
e2iδl − 1

)
Pl(cos θ), (2.39)

where the phase shifts δl are defined by

e2iδl = Sl = (−1)l+1C
+
l

C−l
. (2.40)

Equation (2.40) also defines the scattering matrix-element Sl.

Approximations

Phase shifts for scattering by a Coulomb potential are known in analytic form

[118]. Making the appropriate changes for the comparison Newtonian/Coulomb

problem of section 2.2.1, one then obtains the Newtonian scattering amplitude

[21, 48]

f̂N(θ) = M
Γ(1− 2iωM)

Γ(1 + 2iωM)

(
sin

θ

2

)−2+4iωM

, (2.41)

and phase shifts

e2iδNl =
Γ(l + 1− 2iωM)

Γ(l + 1 + 2iωM)
. (2.42)
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The Newtonian scattering cross section is [21, 48]

dσ

dΩN
=

M2

sin4(θ/2)
. (2.43)

This can be compared with the geodesic weak field scattering cross section

found using the Einstein deflection angle [21]

dσ

dΩEin
=

M2

(θ/2)4
. (2.44)

For a discussion of geodesic scattering see section 3.2. Other approximations

based on semiclassical methods will be discussed in chapter 3.

2.2.6 Absorption cross section

The number of particles absorbed by a symmetric body per unit time is given

by
dN

dt
= −

∫
S

√
−gJrdS, (2.45)

where S is a sphere of radius r enclosing the body. By the conservation law

equation (2.25) the flux through a closed sphere at the objects radius is equal

to the flux through a closed sphere at any radius. In the far field Jr = Jr and

by equation (2.26) we have

dN

dt
=

∫
S

1

2i
(Φ∗∂rΦ− Φ∂rΦ

∗) r2dΩ. (2.46)

The current density of the initial plane wave in the z direction is simply

|Jz| = ω. (2.47)

The absorption cross section is the ratio of total ingoing flux through the

body/shell divided by the flux of the initial wave,

σabs ≡
1

ω

dN

dt
. (2.48)
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Using the far field solutions (equation (2.10)), which are normalised by match-

ing the ingoing radiation to the plane wave (equation (2.32)), and substituting

into equation (2.46), it can be shown that

σabs =
π

ω2

∞∑
l=0

(2l + 1)Γlω, (2.49)

where Γlw is the lth partial waves transmission factor

Γlw ≡ 1−
∣∣∣∣C+

l

C−l

∣∣∣∣2 . (2.50)

2.2.7 Schwarzschild black hole

Here we present some scalar plane-wave scattering and absorption cross sec-

tions for a Schwarzschild black hole, as an example of applying the theory

presented above. These are calculated by first numerically solving the wave

equation (equation (2.8)) subject to the black hole boundary conditions (equa-

tion (2.16)). This determines the mode coefficients A±l . Then we use equa-

tions (2.49) and (2.50) to find the absorption cross section and equations (2.39)

and (2.40) for the scattering cross section. For more details on the method see

chapter 3.

These results are shown elsewhere in the literature (e.g. [21, 36, 41, 119,

120]), and agreement with previous studies serves as a useful check on our code

which we apply to novel scenarios in later chapters.

Figure 2.1 shows the absorption cross section for a non-rotating black hole

of mass M as a function of frequency, reproducing the result found by Sanchez

[36]. At low frequencies the absorption cross section is entirely due to the

l = 0 wave, and is equal to 4π(2M)2 (see reference [103] and section 5.4 for

more details). As Mω increases, σabs increases up to and oscillates about the

classical value predicted by a geometric ray analysis, σabs = 27πM2. The

size of the oscillations scales as (
√

2Mω)−1 and their period is approximately

∆(Mω) ≈ 0.19 [36]. Each maximum arises from a peak in the transmission

amplitude (equation (2.50)) for a given l mode.
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Figure 2.1: Absorption cross section for a massless scalar on a Schwarzschild
black hole with mass M . The dashed line is at σabs = 27πM2.

50 100 150

0.1

1

10

100

1000

104

105

(a)

50 100 150

0.1

1

10

100

1000

104

105

(b)

Figure 2.2: Scattering cross sections for a massless scalar plane wave with
angular frequency ω incident on a Schwarzschild black hole of mass M . Two
examples are shown with (a) Mω = 1 and (b) Mω = 2.
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In 2011, Décanini, Esposito-Farèse and Folacci [121] showed that the high

frequency oscillations in σabs are remarkably well described by one additional

term, and extra terms can be added for increased accuracy. These contributions

are derived using complex angular momentum techniques (see chapter 6), and

correspond to decaying surface waves localised near the photon sphere at r =

3M .

In figure 2.2 we show a reproduction of scattering cross sections for a scalar

plane wave impinging on a Schwarzschild black hole with (a) Mω = 1 and

(b) Mω = 2. They exhibit a divergence in the forward direction predicted by

the ‘comparison Newtonian’ formula, equation (2.43). There is constructive

interference in the backwards direction, θ = π, known as a glory. In addition,

there is significant structure at intermediate observation angles. This can be

understood by considering the initial wave as a congruence of rays. These rays

may orbit the black hole and multiple rays scattered by the same net angle give

rise to this interference pattern. This is discussed in more detail in section 3.4.2

and, for example, reference [21].
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2.3 Gravitational perturbations

Gravitational perturbations are conceptually different to scalar, electromag-

netic, and other test fields. Instead of considering an additional field on a

given spacetime gµν , the metric itself is perturbed. That is,

gµν = g0
µν + hµν , (2.51)

where g0
µν is a known solution to EFE, and hµν is considered small (g0

µν = O(1),

and hµν = O(ε)).

An effective approach to the Schwarzschild perturbation problem is to sub-

stitute equation (2.51) into EFE, neglect any second order terms in hµν (lin-

earise), then solve for hµν by decomposing it into tensor harmonics and using a

separation of variables. Because the spacetime is static and spherically symmet-

ric, the time and angular dependence separate out. The tensor harmonics used

are characterised by angular quantum numbers l and m, as well as their par-

ity p = ±1. Regge and Wheeler examined perturbations of the Schwarzschild

spacetime in this manner, motivated by the question of stability [122].

After such a decomposition, the perturbed EFEs will give ten equations for

each {l,m, ω, p} mode. After some algebraic manipulation, these ten equations

can be reduced to a second order radial equations for a ‘master function’. This

reduction was first achieved for the odd parity sector by Regge and Wheeler

[122], and for the even parity sector by Zerilli [88]. The resulting radial equa-

tions are named after the authors. We will give some more details on a similar,

modern decomposition introduced by Martel and Poisson [87] in section 2.3.2.

As far as we know, the metric perturbation procedure sketched above has

not been successfully applied to the Kerr spacetime. On a rotating black hole

there is no longer full spherical symmetry, only axial symmetry, and so it is

not possible to separate the solutions into spherical harmonics. At best, the

problem should reduce to coupled differential equations in a radial and angular

coordinate.

In a seminal work, Teukolsky developed a powerful approach to perturba-
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tions on Kerr using the Newman-Penrose (NP) formulation of general rela-

tivity [89, 123]. The NP-formalism is a special type of tetrad calculus [107].

The tetrad is a basis of four null vectors defined at each point in spacetime

{l,n,m, m̄}, and quantities of interest are projected onto them. For example,

the quantities that completely describe non-trivial gravitational perturbations

are the Weyl scalar components

Φ0 ≡ Cαβγδl
αmβlγmδ, Φ4 ≡ Cαβγδn

αm̄βnγm̄δ, (2.52)

where Cαβγδ is the Weyl tensor.

Teukolsky derived decoupled equations for the perturbations of Φ0 and Φ4

on any Type-D background (such as Kerr), and then showed that a separation

of variables could be achieved on Kerr for Φ0 and ρ−4Φ4, where ρ = ρ(r, θ) is

a spin coefficient [123]. In fact, Teukolsky derived a radial and angular equa-

tion for a perturbation of any spin s ∈ {0, 1/2, 1, 2}. Early scattering studies

on Kerr and Schwarzschild make use of these powerful Teukolsky equations,

for example to derive the scattering amplitude of a perturbative gravitational

plane wave on Kerr [43]. The result in reference [43] can be applied to a gravita-

tional plane wave on any spherically symmetric spacetime, since by Birkhoff’s

theorem the exterior must be Schwarzschild, which is a special case of Kerr.

However, we have instead employed Martel and Poisson’s metric formalism to

examine the GW scattering problem, complementing the original works which

are summarised in the monograph by Futterman Handler and Matzner [21].

Another reason for choosing a metric perturbation formalism is that it is

well developed for stellar models [29, 92, 93, 97, 98, 124]. For a non-vacuum

spherically symmetric spacetime, the problem can be reduced to a single second

order radial equation for the odd parity sector, and a fourth-order system for

the even parity sector [92, 97]. The reason for the added complexity is the

presence of matter fields which can couple to the even parity gravitational

perturbations. We will further discuss perturbations for the interior of a star

in chapter 4.
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2.3.1 Choice of gauge and gauge invariance

The Principle of General Covariance, that guided the development of general

relativity, consists of two requirements. For a physical equation to hold in a

gravitational field, it must a) also hold in the absence of gravitation and b)

satisfy general covariance, i.e. preserve its form under a coordinate transfor-

mation xµ → x′µ. For more details and discussion see for example chapter 4 of

Weinberg’s textbook [125]. Consider a small coordinate transformation of the

form

xµ → x′µ = xµ + ξµ, (2.53)

where ξµ and its derivatives are at the same order as hµν . Under this transfor-

mation, the metric of equation (2.51) transforms as

gµν → g′µν = g0
µν + h′µν +O(ε2), (2.54)

where

h′µν = hµν − Lξg(0)
µν = hµν − 2ξ(ν;µ), (2.55)

and Lξ is the Lie derivative with respect to the vector field ξµ. If hµν is a valid

solution of the linearised EFEs on the background g0
µν , then so is h′µν . The

general covariance of Einstein’s full equations leads to the gauge invariance of

the linear perturbation equations.

This gauge freedom can be helpful, often simplifying the field equations.

It must also be kept in mind that any physical quantities that could be mea-

sured experimentally must be gauge invariant. Sir Arthur Eddington used a

coordinate invariant approach to show that certain types of gravitational wave

solutions, which could travel at an arbitrary velocity, had no objective existence

[126]. He concluded that these waves were ‘merely sinuosities in the coordinate

system’.

Let

T
a1a2...aj

b1b2...bk
= T

(0)a1a2...aj
b1b2...bk

+ δT
a1a2...aj

b1b2...bk
(2.56)

be a general rank (j, k) tensor on a perturbed background (equation (2.51)),

where δT
a1a2...aj

b1b2...bk
is first order in hµν . Under a gauge transformation (equa-
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tion (2.53)), T
a1a2...aj

b1b2...bk
transforms according to

T
a1a2...aj

b1b2...bk
→ T̃

a1a2...aj
b1b2...bk

= T
a1a2...aj

b1b2...bk
− LξT

(0)a1a2...aj
b1b2...bk

.

(2.57)

This implies that any tensor which is zero on the background,

T
(0)a1a2...aj

b1b2...bk
= 0, (2.58)

is gauge invariant on the perturbed spacetime. This includes the Ricci tensor

Rµν on perturbed vacuum spacetimes, and the Weyl scalars of maximal spin

weight (see equation (2.52)) on perturbed Kerr-Newman spacetimes. sor

Although measurable quantities must be gauge invariant, perturbation cal-

culations are usually carried out in a particular gauge. For example: the Regge-

Wheeler gauge makes the decomposition of the perturbation equations on a

spherically symmetric spacetime particularly simple [29, 88, 92, 122]; Martel

and Poisson show that outgoing GWs can be expressed most elegantly in a

‘radiation gauge’; and the asymptotic plane wave solution (section 2.3.5) is ex-

pressed in a transverse-traceless gauge. The transverse traceless part of a plane

GW is the only part that carries energy, and is a physically intuitive gauge to

work in. Sometimes, a problem may require working in several gauges, and

transforming between them can be technically challenging. This difficulty can

be curtailed by using gauge invariant quantities as much as possible. Martel

and Poisson’s master functions are gauge invariant, which is another reason for

choosing to use their formalism in section 2.3.2.

2.3.2 Schwarzschild metric perturbations

Building on previous works, Martel and Poisson have developed a gauge-invariant

metric perturbation formalism for the Schwarzschild background [87]. They de-

velop a covariant approach to the metric decomposition on the sub-manifolds

M2 and S2 (see section 2.1). On the radial-temporal planeM2 they introduce

ra ≡
∂r

∂xa
, (2.59)
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and the antisymmetric Levi-Civita tensor εab (The Levi-Civita volume form on

M2 is ε ≡ εabdx
adxb ≡

√
|g|dt ∧ dr). On the two sphere they define scalar,

vector and tensor spherical harmonics. Like the Regge-Wheeler harmonics,

these are classified by angular mode numbers {l,m} and parity p = ±1. Axial

(odd-parity) harmonics are labelled p = −1 and polar (even-parity) harmonics

p = 1. Under an inversion of the spatial coordinates (the parity transformation)

axial and polar spherical harmonics are multiplied by a factor of (−1)l+1 and

(−1)l respectively. In Newtonian theory and seismology axial perturbations

are also known as toroidal, and polar ones as spheroidal. This terminology

originates in the type of fluid pulsations that the perturbation generates [32].

Under rotations on the two sphere metric perturbation components trans-

form as three scalars, h00, h01 and h11; two vectors, h0A and h1A; and a tensor,

hAB. Each component is decomposed into the appropriate spherical harmonics.

The scalar spherical harmonics, Y lm, have even parity (p = 1). Vector and ten-

sor spherical harmonics are denoted by X lmp
A and X lmp

AB respectively. For their

definitions and properties see appendix A. The decomposition of the metric

perturbation begins by splitting the perturbation into the two parity sectors

hµν = h+
µν + h−µν . (2.60)

We will use the superscript ± to denote the parity p = ±1. Following [87], the

even parity sector is decomposed as

h+
ab =

∑
l,m

hlmab Y
lm, (2.61a)

h+
aB =

∑
l,m

jlma X lm+
B , (2.61b)

h+
AB = r2

∑
l,m

(
K lmΩABY

lm +GlmX lm+
AB

)
, (2.61c)
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and the odd parity components are

h−ab = 0, (2.62a)

h−aB =
∑
l,m

hlma X
lm−
B , (2.62b)

h−AB =
∑
l,m

hlm2 X lm−
AB , (2.62c)

where hlmab , jlma , hlma , Glm, K lm, and hlm2 are functions of x0 and x1. We will

refer to these decomposition coefficients as MP (Martel-Poisson) functions. We

use the shorthand
∑

l,m ≡
∑∞

l=2

∑l
m=−l. The lower multipoles l = 0, 1, which

are not radiative in character, are discussed in [87]. These introduce a shift in

the Schwarzschild mass parameter M →M + δM , a slow rotation to the black

hole, and a pure gauge term that can be removed. For our purposes they are

essentially set to zero.

It is helpful to write some tensor components explicitly in terms of scalar

spherical harmonics in Schwarzschild coordinates. In the following s and c are

shorthand for sin θ and cos θ respectively. The haB components are

haθ =
∑
l,m

[
jlma ∂θ −

1

s
hlma ∂φ

]
Y lm, (2.63a)

haφ =
∑
l,m

[
jlma ∂φ + shlma ∂θ

]
Y lm. (2.63b)

The angular (hAB) components are

hθθ =
∑
l,m

[
r2K lm +

1

2
r2GlmD2 −

1

2s
hlm2 D1

]
Y lm, (2.64a)

hφφ =
∑
l,m

[
r2s2K lm − 1

2
r2s2GlmD2 +

1

2
shlm2 D1

]
Y lm, (2.64b)

hθφ =
∑
l,m

[
1

2
r2GlmD1 +

1

2
shlm2 D2

]
Y lm, (2.64c)
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where we make use of the differential operators

D1 ≡ 2
[
∂θ −

c

s

]
∂φ, (2.65a)

D2 ≡ ∂2
θ −

c

s
∂θ −

1

s2
∂2
φ, (2.65b)

introduced in [127]. To isolate the MP-functions we use combinations and

derivatives of the various tensor components. For the even parity sector

∑
l,m

l(l + 1)jlma Y lm = −
(

1

s2
∂φhaφ +

1

s
∂θshaθ

)
, (2.66a)∑

l,m

2r2K lmY lm = hθθ + s−2hφφ, (2.66b)

∑
l,m

1

2
r2Glm(l − 1)l(l + 1)(l + 2)Y lm = s−3D1[shθφ] +

1

2
s−2D2[s2hθθ − hφφ].

(2.66c)

For the odd parity sector

∑
l,m

l(l + 1)hlma Y
lm =

1

s
(∂φhaθ − ∂θhaφ) , (2.67a)

∑
l,m

1

2
hlm2 (l − 1)l(l + 1)(l + 2)Y lm = s−2D2[shθφ]− 1

2
s−3D1[s2hθθ − hφφ].

(2.67b)

Equations (2.61a), (2.66) and (2.67) will come in handy later when we

calculate the MP-functions that asymptotically match to a plane wave solution

(section 2.3.5).

The MP gauge-invariant master function for the even parity sector is known

as the Zerilli-Moncrief function [88, 128] ,

Φ+
lm ≡

2r

l(l + 1)

[
K̃ lm +

2

Λ

(
rarbh̃lmab − rra∇aK̃

lm
)]

, (2.68)
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where

K̃ lm ≡ K lm +
1

2
l(l + 1)Glm − 2

r
raεlma , (2.69)

εlma ≡ jlma −
1

2
r2∇aG

lm, (2.70)

h̃lmab ≡ hlmab −∇aε
lm
b −∇bε

lm
a , (2.71)

and

Λ ≡ (l − 1)(l + 2) +
6M

r
. (2.72)

The odd-parity master function is the Cunningham-Price-Moncrief function

[95],

Φ−lm ≡
2r

(l − 1)(l + 2)
εab
(
∂ah

lm
b −

2

r
rah

lm
b

)
, (2.73)

recalling that εab is the antisymmetric Levi-Civita tensor.

As a consequence of the perturbated EFEs, it can be shown that the master

functions Φ±lm obey a wave equation. A derivation (with source terms) is in

[129]. We work in frequency space with the Fourier modes Φ̃±lm(r, ω) defined by

Φ±lm(r, t) =
1

2π

∫ ∞
−∞

dω Φ̃±lm(r, ω)e−iωt. (2.74)

Assuming there is no perturbing stress-energy source terms, the master func-

tions obey the second order ODEs

d2Φ̃±lm
dr2
∗

+
(
ω2 − V ±l (r)

)
Φ̃±lm = 0. (2.75)

Here V −l (r) is the Regge-Wheeler potential,

V −l (r) ≡ A

(
l(l + 1)

r2
− 6M

r3

)
, (2.76)

and V +
l (r) the Zerilli potential

V +
l (r) ≡ A

Λ2

[
µ2

(
µ+ 2

r2
+

6M

r3

)
+

36M2

r4

(
µ+

2M

r

)]
, (2.77)
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with µ ≡ (l− 1)(l+ 2). Once the master functions have been found by solving

equation (2.75), the metric perturbation can be reconstructed from them and

their derivatives (see appendix A of [86] for a reconstruction in Regge-Wheeler

gauge). The radiative parts of the metric perturbation in spherical coordinates

scale as

hrad
ab ∼ r−1, hrad

aB ∼ r0, hrad
AB ∼ r1. (2.78)

Reconstructing the metric in the far field (r → ∞) is particularly simple in a

specific radiation gauge in which tahab = 0 = tahaB, where ta is the timelike

Killing vector [87]. In this gauge, hrad
ab = 0 = hrad

aB in the far field, and

hrad
AB = r

∑
p=±1

∞∑
l≥2

m=l∑
m=−l

Φp
lm(r =∞, t)X lmp

AB (θ, φ). (2.79)

For the case of a black hole, to evaluate the perturbation at the horizon Martel

and Poisson similarly impose the condition tahab = 0 = tahaB at r = 2M . They

find that

hrad,EH
AB = 2M

∑
p=±1

∞∑
l≥2

m=l∑
m=−l

p · Φp
lm(r = 2M, t)X lmp

AB (θ, φ). (2.80)

2.3.3 Boundary conditions

The boundary conditions for GWs on a black hole background are specified in

analogy with the scalar case (section 2.2.2). The IN modes are purely ingoing

at the horizon,

Φ̃in
lmp(r, ω) ∼

e−iωr∗ , r∗ → −∞

A+
lpe

iωr∗ + A−lpe
−iωr∗ , r∗ →∞

, (2.81)

and UP modes have the asymptotic behaviour

Φ̃up
lmp(r, ω) ∼

B+
lpe

iωr∗ +B−lpe
−iωr∗ , r∗ → −∞

eiωr∗ , r∗ →∞
. (2.82)
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If we wish to consider a general object with radius R (r∗ = R∗), a generic

boundary condition can be imposed at or just outside the surface (analogous

to equation (2.21) for the scalar field),

Φ̃in
lmp(r, ω) ∼

e−iωr∗ +
(
Klpe−2iωR∗

)
eiωr∗ , r∗ → R+

∗

C+
lpe

iωr∗ + C−lpe
−iωr∗ , r∗ →∞

. (2.83)

Black hole scattering boundary conditions (equation (2.81)) are recovered by

setting Klp = 0 and R = 2M (R∗ = −∞). In our notation the various co-

efficients for s = 2 perturbations (A±lp...) are distinguished from the s = 0

coefficients (A±l ...) by the extra dependence on parity p. The various relations

between coefficients for the scalar case, equations (2.19), (2.20) and (2.22), also

apply for GWs.

For a compact body, equation (2.83) may be derived from a junction condi-

tion joining a perturbed interior solution, gµν , to the perturbed Schwarzschild

exterior. We will return to this in chapter 4.

2.3.4 Gravitational wave energy

Defining the stress-energy of a GW with respect to a background spacetime

g0
µν necessitates going beyond linear perturbation theory. The stress-energy is

second order in hµν , and in order to define it in a gauge invariant way it must

be averaged over multiple wavelengths. This averaging is denoted by angular

brackets 〈· · ·〉, and the stress-energy for a GW is [83]

TBH
µν =

1

32π

〈
hρτ ;µhρτ ;ν

〉
. (2.84)

The superscript BH refers to Brill and Hartle, who devised a space-time aver-

aging process when considering gravitational geons [81]. The term Brill-Hartle

averaging was coined by Isaacson [82, 83], who developed a rigorous approach

to defining the stress energy of a GW, building on earlier works [81, 130]. An

important underlying assumption in the derivation is that the GW wavelength

is much smaller than the radius of curvature of the background space-time.
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Since we are interested in the stress energy of a GW in the far field of an

asymptotically flat space-time, this assumption is perfectly valid.

The energy flux in the radial direction is given by T rt [131]. As r →∞,

TBH
rt ∼

1

r4

1

32π

〈
∂rh

AB∂thAB
〉
, (2.85)

where hAB is given by equation (2.79).

2.3.5 Plane gravitational waves

We consider a circularly-polarized gravitational plane wave of angular frequency

ω, travelling up the z axis, and expressed in a spherical coordinate system in

tranverse traceless gauge. On flat space this is

hµν = Re {Hei(2φ−χ)


0 0 0 0

• s2 rsc irs2

• • r2c2 ir2sc

• • • −r2s2

}, (2.86)

where H is the amplitude of the wave, χ ≡ ω(t− z), and s and c are shorthand

for sin θ and cos θ, respectively. This wave is left circularly polarised (positive

helicity) for ω > 0 and right circularly polarised (negative helicity) for ω < 0.

The terms denoted by • may be inferred from the property hµν = hνµ.

The plane wave in equation (2.86) is not a valid solution on the Schwarzschild

background, even in the far-field region, due to the long-range 1/r nature of

the field. Following convention (see [21]) we replace it with a distorted plane

wave by making the substitution r → r∗ in the exponent of equation (2.86)

(i.e. z → z∗ = r∗ cos θ). From this metric perturbation, we may compute the

master variables Φplane
lmp , as outlined in section 2.3.2. We must first take some

preliminary steps to do this.

In section 2.2.4 we showed that the function eiωz can be expressed as a sum

over Legendre polynomials. Using recurrence relations for associated Legendre
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polynomials [117], it can be shown that

eiωz∗ =
1

(ωr∗s)q

∞∑
l=q

(2l + 1)il+qjl(ωr∗)P
q
l (c), (2.87)

where q is a positive integer. Making use of equation (2.87) with q = 2, and

using further recursion relations we find the following useful ways to expand

eiωz∗ ,

eiωz∗ =
1

(ωr∗s)2

∞∑
l=2

(2l + 1)(i)l+2jl(ωr∗)P
2
l (c), (2.88a)

=
1

(ωr∗s)2c

∞∑
l=2

(2l + 1)(i)l+2ζl(ωr∗)P
2
l (c), (2.88b)

=
1

(ωr∗sc)2

∞∑
l=2

(2l + 1)(i)l+2ηl(ωr∗)P
2
l (c), (2.88c)

where

ζl(ωr∗) ≡
2jl(ωr∗)

ωr∗
− j′l(ωr∗), (2.89)

ηl(ωr∗) ≡
(
l(l + 1) + 6

(ωr∗)2
− 1

)
jl(ωr∗)−

6j′l(ωr∗)

ωr∗
. (2.90)

Equations (2.88) allow us to expand the plane wave metric perturbation com-

ponents purely in terms of spherical harmonics,

ei(2φ−χ)s2 =
1

(ωr∗)2

∞∑
l=2

(2l + 1)(i)l+2

cl2
jl(ωr∗)Y

2
l (θ, φ)e−iωt, (2.91)

ei(2φ−χ)s2c =
1

(ωr∗)2

∞∑
l=2

(2l + 1)(i)l+3

cl2
ζl(ωr∗)Y

2
l (θ, φ)e−iωt, (2.92)

ei(2φ−χ)s2c2 =
1

(ωr∗)2

∞∑
l=2

(2l + 1)(i)l

cl2
ηl(ωr∗)Y

2
l (θ, φ)e−iωt, (2.93)

where cl2 is given by equation (2.29). From equations (2.91) to (2.93), the

orthogonality of spherical harmonics equation (A.2), and the property Yl,−m =
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(−1)mȲlm, the following integrals can be deduced:

I lm1 ≡
∫
s2Re{ei(2φ−χ)}Ȳlm dΩ =

(2l + 1)il+2jl
2cl2(ωr∗)2

[
e−iωtδ2

m + (−1)leiωtδ−2
m

]
,

(2.94)

I lm2 ≡
∫
cs2Re{ei(2φ−χ)}Ȳlm dΩ =

(2l + 1)il+3ζl
2cl2(ωr∗)2

[
e−iωtδ2

m + (−1)l+1eiωtδ−2
m

]
,

(2.95)

I lm3 ≡
∫
c2s2Re{ei(2φ−χ)}Ȳlm dΩ =

(2l + 1)ilηl
2cl2(ωr∗)2

[
e−iωtδ2

m + (−1)leiωtδ−2
m

]
,

(2.96)

I lm4 ≡
∫
s2Re{iei(2φ−χ)}Ȳlm dΩ =

(2l + 1)il+3jl
2cl2(ωr∗)2

[
e−iωtδ2

m + (−1)l+1eiωtδ−2
m

]
,

(2.97)

I lm5 ≡
∫
cs2Re{iei(2φ−χ)}Ȳlm dΩ =

(2l + 1)ilζl
2cl2(ωr∗)2

[
e−iωtδ2

m + (−1)leiωtδ−2
m

]
,

(2.98)

I lm6 ≡
∫
c2s2Re{iei(2φ−χ)}Ȳlm dΩ =

(2l + 1)il+1ηl
2cl2(ωr∗)2

[
e−iωtδ2

m + (−1)l+1eiωtδ−2
m

]
.

(2.99)

Note that I l(−m) = Ī lm.

Beginning with hlmrr , and making use of equation (2.94), it can be seen that

hlmrr =

∫
hrrȲlm dΩ = HI lm1 . (2.100)

Clearly, hlmtt = 0 = hlmtr ∀ l,m. Note that hl,±2
rr ∼ r−3 as r → ∞, using the

asymptotic property of the spherical Bessel function, equation (2.33). The Weyl

tensor components obtained from this part thus scale as r−5 in the far field,

and are non-radiative. This is consistent with equation (2.79) which implies

hrad
rr = 0.

Following the procedure outlined in section 2.3.2, the other MP-functions
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for a plane wave are found to be

jlmt = 0, (2.101)

hlmt = 0, (2.102)

jlmr =
Hr

l(l + 1)

[
ωr∗I

lm
5 + 3I lm1

]
, (2.103)

hlmr = − Hr

l(l + 1)

[
ωr∗I

lm
1

]
, (2.104)

and

K lm = −1

2
HI lm1 , (2.105)

Glm = − H

l(l − 1)(l + 1)(l + 2)

[
(ωr∗)

2
(
I lm1 + I lm3

)
− 8ωr∗I

lm
5 − 12I lm1

]
,

(2.106)

hlm2 = − Hr2

l(l − 1)(l + 1)(l + 2)

[
(ωr∗)

2I lm5 − 8ωr∗I
lm
1 − 2

]
. (2.107)

With the MP-functions in hand, we can find the gauge invariant master func-

tions for the distorted plane wave (equation (2.86)) using equations (2.68)

and (2.73). We are interested in their asymptotic form in the far field, where

we will subtract them from a total solution to give the scattered component.

Checking with Mathematica we find that the master functions can be expanded

in the far field as

Φplane
l2,−1(r, t) =

2πHcl2
ω

(
(−1)l+1e−iωr∗ + eiωr∗

)
e−iωt +O

(
r−1
)
, (2.108)

Φplane
l2,+1(r, t) = −2πiHcl2

ω

(
(−1)l+1e−iωr∗ + eiωr∗

)
e−iωt +O

(
r−1
)
.(2.109)

It follows from the reality condition on hµν that Φl,−m,p = Φ̄lmp. Only the

m = ±2 and l ≥ 2 modes are needed; all other modes (l < 2 or m 6= ±2) are

zero for the plane wave.
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2.3.6 Scattering cross section

The energy flux per unit solid angle of a GW in the far field is [86],〈
dE

dt dΩ

〉
= −

〈
lim
r→∞

r2ATrt

〉
(2.110)

= − 1

r2

1

32π

〈
lim
r→∞

∂rh
AB∂thAB

〉
, (2.111)

= − 1

32π

〈∑
p,l,m

∂rΦ
p
lm(r, t)XAB

lmp(θ, φ)
∑
p′,l′,m′

∂tΦ
p′

l′m′(r, t)X
lmp
AB (θ, φ)

〉
,

(2.112)

where the second line follows from equation (2.85) and the final line from

equation (2.79) (A is given in equation (2.9) for the Schwarzschild exterior).

We want the energy associated with the scattered part of the metric per-

turbation, which is found by matching to the total metric perturbation and the

plane wave via

hscat
AB = htotal

AB − h
plane
AB . (2.113)

The total perturbation is found by solving for the master functions with relevant

boundary conditions, and the plane wave is discussed in section 2.3.5. The

subtraction on the right hand side of equation (2.113) seems simple enough,

but it only makes sense if htotal
AB and hplane

AB are calculated in the same gauge. This

is where the power of Martel and Poisson’s approach helps us, as it allowed us to

express both terms in a ‘radiation gauge’, which we have asymptotic expansions

for in the far field. This gives us the gauge invariant master functions for the

scattered radiation via

Φscat
lmp = Φtotal

lmp − Φplane
lmp . (2.114)

Insisting that the scattered part is all outgoing in the far field,

Φ̃scat
lmp(r, ω) ∼ αlmp(ω)eiωr∗ , (2.115)
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and that the plane wave has circular frequency ω0, we obtain

αlm−(ω) = βl−(ω) [δm2δ(ω0 − ω)− δm,−2δ(ω0 + ω)] , (2.116a)

αlm+(ω) = −iβl+(ω) [δm2δ(ω0 − ω) + δm,−2δ(ω0 + ω)] , (2.116b)

where

βlp(ω) ≡ (2π)2Hcl2
ω

(
e2iδpl (ω) − 1

)
, (2.117)

the phase shifts δpl (ω) are defined by 1

e2iδpl (ω) ≡ Slp(ω) ≡ (−1)l+1
C+
lp(ω)

C−lp(ω)
. (2.118)

The boundary conditions and radial equations that fully define the phase shifts

are such that

Slp(−ω) = S̄lp(ω). (2.119)

Equations (2.74) and (2.115) to (2.117) determine Φscat
lmp(r, t), which we then

substitute directly into equation (2.112) to obtain

〈
dE

dt dΩ

〉
=

1

32π
2ω2

0

∣∣∣∣∣
∣∣∣∣∣
∞∑
l=2

iβl−X
l2−
AB + βl+X

l2+
AB

∣∣∣∣∣
∣∣∣∣∣
2

, (2.120)

where ||VAB||2 ≡ VABV̄
AB. The right hand side of equation (2.120) has been

simplified by space-time averaging over time (or radial distance), so that any

oscillating terms average to zero.

At this stage it is convenient to translate from the tensor harmonics, XAB
lmp,

to spin-weighted spherical harmonics, −sYlm, using equations (A.9) and (A.10).

1The symbol delta is used both for the Dirac delta function in e.g. equation (2.116) and
to denote phase shifts. The intended use should be clear from the context. If a δ appears in
an exponential it denotes a phase shift.
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Then

〈
dE

dt dΩ

〉
=

ω2
0

32π


∣∣∣∣∣
∞∑
l=2

√
(l − 1)l(l + 1)(l + 2) (βl+ − βl−) 2Yl2

∣∣∣∣∣
2

+

∣∣∣∣∣
∞∑
l=2

√
(l − 1)l(l + 1)(l + 2) (βl+ + βl−) −2Yl2

∣∣∣∣∣
2

.
(2.121)

The flux of the incident plane wave is

dE

dt dA

∣∣∣∣
plane

=
H2ω2

0

16π
. (2.122)

The differential scattering cross section is defined as the energy per unit time

scattered into solid angle dΩ, divided by the flux of the incident wave,

dσ

dΩ
≡ dE

dt dΩ
÷ dE

dt dA

∣∣∣∣
plane

. (2.123)

The differential scattering cross section for gravitational plane wave can be

expressed as
dσ

dΩ
= |f2(θ)|2 + |g2(θ)|2, (2.124)

where

f2(θ) ≡ π

iω0

∑
l,p

−2Yl2(0) −2Yl2(θ)
[
e2iδpl − 1

]
, (2.125)

g2(θ) ≡ π

iω0

∑
l,p

p(−1)l −2Yl2(0) −2Yl2(π − θ)
[
e2iδpl − 1

]
. (2.126)

Note that there is no φ dependence, which is a consequence of the symmetry

of the scattering set up.

For an interpretation of the two amplitudes, note that the perturbation for
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the scattered waves can be expressed as

hscat
AB =

1

2
Re
{
Hreiω(t−r∗)+2iφ (f2(θ)mAmB + g2(θ)m̄Am̄B)

}
, (2.127)

where mA = 2−1/2(1, i sin θ) is a tetrad basis on the sphere. By considering

rotations of the tetrad, it can be deduced that the f2 term has positive helicity

and the g2 term has negative helicity for ω > 0. Since the original plane

wave had positive helicity (for ω > 0), f2 may be called a helicity conserving

amplitude, and g2 helicity reversing [50].

In general, the helicity reversing amplitude is non-zero if a number of partial

l-waves satisfy δ+
l 6= δ−l . This is the case for Schwarzschild scattering where

phase shifts of opposite parity are related by

e2iδ+l =
(l − 1)l(l + 1)(l + 2)− 12iωM

(l − 1)l(l + 1)(l + 2) + 12iωM
e2iδ−l . (2.128)

Since e2iδ+l ∼ e2iδ−l +O(l−4) as l→∞, large l modes will have a negligible con-

tribution to g2, and equation (2.126) could be expected to converge reasonably

well.

Equation (2.128) was derived by Chandrasekhar [90]. It follows from the

‘Chandrasekhar transformation’ relating solutions of the Regge-Wheeler equa-

tion to solutions of the Zerilli equation (i.e. solutions of equation (2.75) with

p = −1 and p = +1 respectively). Later it was realised that the Chandrasekhar

transformation is an example of the more general Darboux transformation [132]

[133].

Equations (2.125) and (2.126) were derived in [21] using the Newman-

Penrose tetrad formalism throughout (also see references [41, 43]). The phase

shifts were calculated by solving the radial Teukolsky equation [89], which re-

duces to the Bardeen-Press equation for a non rotating black hole [134]. Here

we have mostly used the formalism of Martel and Poisson, providing a com-

plementary derivation which may be interesting to current practitioners. We

translate to spin-weighted harmonics and the tetrad formalism only at the fi-

nal steps, which allows the GW energy flux (equation (2.121)), and hence the
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scattering cross section (equation (2.124)), to be seperated into a sum of two

components. Our phase shifts are found by solving the Regge-Wheeler and

Zerilli equations (equation (2.75)). It can be shown that these equations are

related to the Bardeen-Press equation by another generalised Darboux tranfor-

mation [133, 135], which means our phase shifts are the same as those in e.g.

reference [21] (provided we impose the same boundary conditions appropriate

for a black hole scattering problem).

2.3.7 Absorption cross section

Here we derive the absorption cross section formula for a gravitational plane

wave incident on a spherically symmetric compact body using the formalism

of [87].

By conservation of energy, the net flow of energy of the GW across the

body’s surface is equal to the net flow of energy of the GW across any surface

containing the body. For simplicity, let us consider a spherical surface with

radius tending to infinity.

Integrating equation (2.112) over a sphere (multiplied by −1 since the sur-

face should be oriented inwards), and making use of the properties of the MP

spherical harmonics (see appendix A), we obtain〈
dE

dt

〉
=
∑
l,m,p

〈
dE

dt

〉
lmp

, (2.129)

〈
dE

dt

〉
lmp

≡ 1

32π

1

2
(l − 1)l(l + 1)(l + 2)〈∂rΦlmp∂tΦ̄lmp〉. (2.130)

The total solution behaves in the far field as

Φtotal
lmp ∼ dlmp

(
C−lpe

−iωr∗ + C+
lpe

iωr∗
)
e−iωt, (2.131)

where dlmp is determined by matching the ingoing component to the plane wave

(section 2.3.5). Next, substituting equation (2.131) into equation (2.130) yields
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(for l ≥ 2)

〈
dE

dt

〉
lmp

=


H2

64
(2l + 1)

1−

∣∣∣∣∣C+
lp

C−lp

∣∣∣∣∣
2
 , m = ±2

0, m 6= ±2

. (2.132)

The absorption cross section is defined as

σabs ≡
〈
dE

dt

〉
÷ dE

dt dA

∣∣∣∣
plane

. (2.133)

It follows from equations (2.122), (2.129) and (2.132) that

σabs =
π

2ω2
0

∑
l,p

(2l + 1)Γlpω (2.134)

=
2π2

ω2
0

∑
l,p

|−2Yl2(0)|2 Γlpω, (2.135)

where

Γlpω = 1−

∣∣∣∣∣C+
lp

C−lp

∣∣∣∣∣
2

. (2.136)

In the black hole case equation (2.134) is in agreement with the literature [21,

50].

2.4 Conclusions

In this chapter we have discussed scalar and gravitational perturbations on

spherically symmetric background spacetimes.

Beginning with the scalar field, we have developed the scattering theory

following FHM [21]. This includes the difficulty associated with defining a

plane wave that arises due to the long range of the gravitational field. It

was resolved by instead using a distorted plane wave analogous to Coulombic

scattering studies.
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Gravitational waves introduce additional technical difficulties associated

with helicity and gauge invariance. Using the powerful perturbation formalism

presented by Martel and Poisson [87] (which built on the work of others, see

[136–139]), we have developed the scattering theory for compact bodies with

a Schwarzschild vacuum exterior. We have derived the main quantities of in-

terest, the scattering and absorption cross sections, and obtained agreement

with previous work that used the Newman-Penrose tetrad formalism [21]. Our

approach is in some ways less powerful, since it is limited to non-rotating space-

times. However, an advantage is that it is reasonably simple to combine with

perturbation formalisms already developed for non-vacuum spherically sym-

metric spacetimes, such as the interior of a star [29, 92, 98, 140]. It may also

be a suitable starting point for an extension to scattering on slowly rotating,

non-vacuum spacetimes [140].

The long range nature of the effective potential results in divergent partial

wave sums that define the scattering amplitudes (equations (2.39) and (2.125)).

This may be overcome by utilising the series reduction method of Yennie et al.

[141], which was adapted for fundamental fields scattering from black holes by

Dolan [50], and is immediately applicable to other compact objects. We will

discuss this in more detail in chapters 3 and 4. In chapter 6 we discuss how

complex angular momentum techniques can be used to sidestep this divergence

issue in some situations.

With the theory presented in this chapter, we our now in a position to

consider specific scattering models which will be the subject of chapters 3 to 5.

In chapter 6 we discuss the complex angular momentum approach to scattering,

and compare it with the partial wave methods discussed here.
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Chapter 3

Rainbow scattering of scalar

waves by a compact body

The atmospheric rainbow is a familiar yet fascinating everyday phenomena,

due to the internal-reflection and refraction of light by water droplets. It has

occupied the minds of many physicists, from René Descartes in the 17th cen-

tury to present day practitioners [68, 142]. Descartes’ considered parallel rays

incident on a spherical water droplet. Using Snell’s law, he concluded that rays

undergoing one internal reflection were scattered by an angle Θ in the range

−180◦ ≤ Θ . −138◦ (an attractive scattering has a negative deflection angle

by convention). Scattered rays are highly concentrated near the ‘rainbow ray’

at angle Θr = −138◦, and this is the heuristic explanation for the brightness of

the rainbow. The rainbow ray is an envelope of the ray system, i.e., a caustic.

The word caustic originates from the Greek verb kaiein - to burn.

This geometric optics model also accounts for the chromatic separation of

the bow; different wavelengths of light are refracted different amounts when

passing in and out of the water droplet, and so have slightly different values

of Θr. According to geometric optics, the differential scattering cross section

is divergent near an extrema of the deflection function, such as the rainbow

angle. This infinity is ‘softened’ by taking into account diffraction of light.

When conditions are favourable, it is sometimes possible to see a secondary

rainbow, in which the colours are arranged in reverse order compared to the
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primary bow. This secondary bow is due to light rays that undergo two internal

reflections. In theory, a tertiary bow also exists, but in practice it cannot be

seen because it is so faint and it is washed out by glare from the Sun.

Another feature of rainbow scattering is supernumerary arcs, which required

an explanation invoking the wave nature of light. Two rays of different impact

parameter may be deflected by the same angle. In 1804 Young reasoned that,

depending on the optical path difference between them, the two rays will inter-

fere destructively or constructively. The optical path difference, and thus the

interference, depends on the angle of observation. On the illuminated side of

the rainbow angle, this interference effect leads to supernumerary peaks and

troughs. For more on the mathematics of rainbows and the history, see the

review by Adam [142] or Chapter 3 of the monograph by Nussenzveig [68].

Nuclear scattering experiments [67, 143] have shown a phenomena analo-

gous to the atmospheric rainbow. An alpha particle incident on a light nuclei

has a maximum possible deflection angle. Again, this leads to a singularity in

the deflection function. In the quantum mechanics wave picture this singularity

transmutes into a maximum in the differential scattering cross section. This

has been observed in numerous experiments [67, 143]. Of course, a bow is not

actually formed here, as there is only one scatterer, rather than a cloud of them.

However, since the underlying mathematics is essentially the same, it is apt to

refer to this as nuclear rainbow scattering. In their work on semi-classical scat-

tering, Ford and Wheeler define any extrema of a classical deflection function

as a ‘rainbow angle’, and scattering in the neighbourhood of a rainbow angle

as ‘rainbow scattering’ [33].

This chapter outlines yet another regime where rainbow scattering can,

at least in principle, occur. We find that a massless scalar wave incident on

a compact object such as a neutron star will exhibit a rainbow interference

pattern. A scalar field corresponds to a particle with zero spin, such as the

Higgs boson or hypothetical cold dark matter candidates [144]. Higher spin

fields, such as GWs or the electromagnetic field, may propagate in a similar

fashion to the scalar wave. Since the massless scalar is the simplest field to

investigate from a technical point of view, we choose to begin our scattering
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study with it.

Ray scattering is treated in section 3.2, and a semiclassical analysis is given

in section 3.4 following reference [33]. A numerical method for the partial wave

approach (outlined in chapter 2) is given in section 3.5. As with the atmo-

spheric rainbow, using a range of complementary mathematical approaches to

the problem is key to a full understanding. In chapter 4, we extend our analysis

to gravitational waves and a variety of compact body models. We show that

rainbow scattering is a generic feature of massless waves scattered by the grav-

itational field of horizon-less compact bodies. Part of this work is presented in

references [62] and [64], and was done in collaboration with S.R. Dolan. All

data and figures appearing in this chapter are the result of the authors own

work.

3.1 Perfect fluid stars

Let uµ be the four velocity of a fluid moving thorough spacetime. If each

infinitesimal element of fluid has mass-energy density ρ, and isotropic pressure

p in its rest frame, then it is called a perfect fluid. No heat conduction or

viscosity is present in a perfect fluid (for more details see references [70, 131]).

The stress-energy tensor of a perfect fluid is

Tµν = (ρ+ p)uµuν + pgµν . (3.1)

We are considering a model where the fluid is static (ui = 0), and since uµu
µ =

−1, we have ut = (−gtt)−1/2. The next step is to solve Einstein’s field equations

(EFE)

Gµν = 8πTµν , (3.2)

where Gµν is the Einstein tensor (see e.g. [70])

Gµν = Rµν −
1

2
Rgµν . (3.3)
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It is convenient to define a function m(r) in terms of the metric function B

(see equation (2.2)) via

B(r) = 1− 2m(r)

r
. (3.4)

The (t, t) component of the EFE gives

1

A

dA

dr
= − 2

ρ+ p

dp

dr
, (3.5)

and the (r, r) component gives

dm

dr
= 4πr2ρ. (3.6)

From the conservation of energy-momentum, T µν;ν = 0, one can derive the

Tolman-Oppenheimer-Volkov (TOV) equation of hydrostatic equilibrium for

the interior of the star,

dp

dr
= −(ρ+ p)(m+ 4πr3p)

r(r − 2m)
. (3.7)

For details see e.g. Chapter 10 of Schutz [131]. The system of equations (3.6)

and (3.7) can be solved once an equation of state, p(ρ), has been specified. The

speed of sound inside a fluid is

c2
s = c2∂p

∂ρ
, (3.8)

where the derivative is taken at constant entropy S. A perfect fluid is adiabatic,

i.e. the entropy of a fluid element remains constant, uµS,µ = 0. This does not

imply that S has the same values at all points. However, for the situations

we wish to consider later (e.g. a typical cold white dwarf or neutron star),

the temperature is effectively zero. Thus kT � EF where k is Boltzmann’s

constant and EF is the Fermi energy. This means the system has only one state

available to it (the ground state), and hence the entropy is zero everywhere

within the model star. The constant entropy assumption allows us to use an

equation of state of the form p(ρ). For more details on this argument see
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e.g. Chapter 5 of [145] and Chapter 4 of [131].

3.1.1 Schwarzschild’s interior solution

One of the earliest solutions to Einsteins equations was Schwarzschild’s interior

solution for an incompressible fluid [146]. It describes a spherically symmetric,

perfect fluid ball of uniform density, and radius R. This serves as a simple,

instructive model for a star. A constant density star of radius R and mass

M = m(R) has pressure,

p(r) = ρ

√
3− 8πR2ρ−

√
3− 8πr2ρ√

3− 8πr2ρ− 3
√

3− 8πR2ρ
, (3.9)

and density

ρ =
3M

4πR3
. (3.10)

With the density and pressure in hand, the metric functions are found using

equations (3.4) to (3.6),

A(r) =


1

4R3

(√
R3 − 2Mr2 − 3R

√
R− 2M

)2
, r ≤ R

1− 2M

r
, r > R

, (3.11)

and

B(r) =


1− 2Mr2

R3
, r ≤ R

1− 2M

r
, r > R

. (3.12)

The metric function A(r) and its first derivative are both continuous across

r = R, but the second derivative is discontinuous. The metric function B(r)

is continuous and its first derivative is discontinuous across r = R. We shall

see later that this has important implications for solving the field equations for

perturbations at the stellar surface. The discontinuity in B′ and A′′ at r = R

can be traced back to the fact that ρ(R) 6= 0 (see equations (3.4) to (3.7)).
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Schwarzschild showed that [146], in order for the pressure to be finite at the

origin, a constant density star must satisfy the bound

R/M > 9/4. (3.13)

Buchdahl showed that this bound also applies to any perfect fluid sphere with

a barotropic equation of state and a monotonically decreasing density ρ(r)

[111]. Known as ”Buchdahl’s bound”, equation (3.13) was strengthened to

R/M > 8/3 by imposing the dominant energy condition [147]. This was further

improved by also demanding a sublimnal speed of sound, which resulted in a

numerically calculated constraint R/M & 2.74997 [148]. Compact bodies can

be characterised by their ‘tenuity’ α, or inverse compactness,

α ≡ R/M. (3.14)

Some typical and instructive tenuities are summarised in table 3.1 using ge-

ometric units. For a Schwarzschild black hole, one can use the gravitational

(event horizon) radius, Rs to obtain a ‘tenuity’ to compare with stellar ob-

jects, Rs/M = 2. The Buchdahl bound implies that there is not a sequence

of equilibrium solutions with α tending towards the black hole tenuity. How-

ever, in the case of anisotropic stars [149], α can become arbitrarily close to

2. Yagi and Yunes have considered a sequence of such anistropic stars in the

context of I-Love-Q relations which relate the bodies moment of inertia, tidal

deformability, and quadrupole moment [150]. The I-Love-Q relations are exact

for black holes, and approximate for compact stars. It may be interesting to

consider this sequence in other contexts such as scattering, but here we focus

only on isotropic models. The progenitor neutron stars from the binary merger

detected by the LIGO collaboration [2, 151] have tenuities that fall in the range

4.4 . α . 7.7 with 90% credibility (assuming that the equation of state must

support stars with mass greater than 1.97M� as required by electromagnetic

observations [152]).
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Earth Sun

typical

white

dwarf

massive

white dwarf

(Sirius B)

neutron

star

Buchdahl’s

bound

R/M 1.4× 109 4.7× 105 9.4× 103 1.4× 103 ≈ 6 > 9/4

Table 3.1: Typical tenuities R/M for astrophysical objects, and Buchdahl’s
bound for a perfect fluid sphere [111].

3.2 Geodesics

Geodesics are the paths taken by particles under the influence of no forces

except gravity (which isn’t regarded as a force in general relativity). The

geodesic equation can be derived using the principle of least action. A typical

choice of the action Ŝ is the space-time interval between two events

Ŝ =

∫ √
−gµν

dxµ

dσ

dxν

dσ
dσ, (3.15)

where σ is an affine parameter. One could also choose the action

Ŝ ′ =

∫
L dσ, (3.16)

with the Lagrangian

L =
1

2
gµν

dxµ

dσ

dxν

dσ
. (3.17)

Varying the action of equation (3.16) with respect to the world line xµ, yields

the Euler-Lagrange equations

∂L
∂xµ
− d

dσ

∂L
∂ẋµ

= 0, (3.18)

where a dot denotes differentiation with respect to σ. For the Lagrangian of

equation (3.17) the Euler-Lagrange equations give the geodesic equation

d2xµ

dσ2
+ Γµαβ

dxα

dσ

dxβ

dσ
= 0, (3.19)
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where Γµαβ is the Christoffel symbol

Γµαβ ≡
1

2
gµν (gνα,β + gνβ,α − gαβ,ν) . (3.20)

If the metric is independent of a coordinate xµ then so is L. Thus by equa-

tion (3.18)
∂L
∂ẋµ

= constant. (3.21)

For the spherically symmetric metric expressed in Schwarzschild coordi-

nates (equation (2.2)) there are two constants of motion that follow from this

reasoning

Ê ≡ Aṫ, L̂ ≡ r2φ̇. (3.22)

A projectile incident from infinity with velocity v has impact parameter b re-

lated to the constants of motion via

b =
L̂

vÊ
. (3.23)

We are interested in null geodesics, and the null condition L = 0 implies

ṙ2 = BA−1
(
Ê2 − Vgeo(r)

)
, Vgeo(r) ≡ AL̂2/r2. (3.24)

A re-parametrisation defined by dλ/dσ =
√
B/2A gives

1

2

(
dr

dλ

)2

+ Vgeo(r) = Ê2, (3.25)

which can be recognised as the equation for a classical unit mass particle with

energy Ê2 in a one dimensional potential Vgeo(r). It is natural to think of Vgeo

as an effective potential for the radial geodesic motion. From figure 3.1, it can

be seen that Vgeo(r) has no stationary points for R > rc = 3M ; one stationary

point for R = rc; and two for R < rc. When there are two stationary points,

the outer (r = rc) corresponds to an unstable circular null orbit (or rather,

a family of circular orbits known as a ‘photon sphere’). The inner stationary
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Figure 3.1: Null geodesic effective potential Vgeo/L̂
2 = A(r)/r2, for a black

hole and for constant density stars of radius R = 2.26M , 3M , 4M , 6M and
8M .

point corresponds to a stable circular null orbit. The circular null orbits may

alse be referred to as ‘light rings’. When there is one stationary point, it is an

inflection, and corresponds to the unstable light ring at r = rc.

One immediate result from equation (3.24) for an object of radius R is the

null grazing-ray impact parameter (v = c = 1),

bgr =
R√

1− 2M/R
, (3.26)

defined by the requirement that ṙ = 0 at r = R. Another is the critical impact

parameter for objects that posses a light ring,

bc =
√

27M, (3.27)

defined by the requirement that ṙ = 0 at r = rc.

A null ray incident from infinity will be deflected by an angle

Θgeo ≡ π −∆φ, (3.28)
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where ∆φ is the change in φ along the geodesic

∆φ = 2

∫ ∞
r0

L̂

r2

√
Ê2 − Vgeo(r)

√
A

B
dr, (3.29)

and r0 is the (outer) turning point that satisfies Vgeo(r0) = Ê2. It can be

seen that the deflection function is a function of only one constant, the impact

parameter b,

Θgeo(b) = π − 2b

∫ ∞
r0

1

r2
√

1− Ab2/r2

√
A

B
dr. (3.30)

With the deflection function it is possible to calculate the classical scattering

cross section (for a corpuscular theory of massless particles),

dσ

dΩ

∣∣∣∣
cl

=
∑
i

bi

sin θ
∣∣∣dΘgeo

db

∣∣∣ , (3.31)

where the sum over i takes into account rays with different impact parameter

scattered by the same net deflection angle. Here we distinguish between the

angle of observation θ ∈ [0, π] and the angle of deflection Θ, related by

θ = |Θ| mod π. (3.32)

Many features of wave scattering can be understood with reference to the

geodesic deflection function and classical cross section. We show the deflec-

tion function for a variety of stars and a Schwarzschild black hole of the same

mass in figure 3.2. The integral on the right hand side of equation (3.30) is

evaluated numerically. A ray with impact parameter b = 0 is not deflected,

and as b → ∞, Θgeo(b) → 0. Like the potential, the deflection functions can

be classified according to the stars radius R/rc.

If R > rc, then at some finite value br, the deflection function has a global

minimum Θr, and we could expect to find rainbow scattering. The wave-optics

argument of Young applied to the scattering of light rays by water droplets
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Figure 3.2: The geodesic deflection functions for a constant density star with
a range of tenuities R/M , as well as a Schwarzschild black hole. The vertical
line corresponds to the critical impact parameter bc (see equation (3.27)).

translates to the scattering of a massless field (such as the electromagnetic field)

plane wave by a compact body in general relativity. In this scenario, rays with

impact parameter either side of br may be deflected to the same angle Θ > Θr.

The path difference of the two rays varies with Θ and should give rise to

supernumerary peaks and troughs. The classical cross section (equation (3.31))

diverges at the rainbow angle, which softens into the primary bow for wave

scattering.

We find the rainbow impact parameter br numerically, and for the models

we consider it satisfies br ≈ bgr, where bgr is the grazing impact parameter of

equation (3.26). Thus, for deflection functions with only one minimum (R > rc)

we can loosely associate the branches either side of the minimum to rays that

pass through the body (b < bgr) and rays that pass through the exterior only

(b > bgr).

If R ≤ rc, then there is a divergence in the deflection function at the critical

impact parameter bc of equation (3.27). The same divergence is also present

in the deflection function for a Schwarzschild black hole. In both cases, it

arises due to the presence of the unstable null orbit. An incoming ray with

critical impact parameter asymptotes to the unstable circular orbit, and in
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principle can be deflected by an arbitrarily large angle. Interference between

rays deflected by θ, θ + 2π, ...θ + 2πk, where k is an integer, gives rise to the

‘orbiting’ phenomena seen in black hole wave scattering studies [21, 37, 45].

A further category is bodies with R . 3.5M (which may or may not satisfy

R ≤ rc = 3M). The deflection function for these cases passes through −π
(see figure 3.2). The value R ≈ 3.5M is found by calculating the deflection

functions for each model (parametrised by R/M) and searching for the root of

Θr(R/M) = −π. The solution for our model is R/M = 3.554 to three decimal

places. According to ray theory, there is a divergence in the differential scat-

tering cross section (equation (3.31)) whenever the deflection function passes

through a multiple of π. Let the impact parameter bπ correspond to the ring

of rays that completely back scatter so that Θgeo(bπ) = −π. Heuristically, if

we consider a wave as a congruence of rays, then rays with b = bπ will focus

onto the point on the celestial sphere corresponding to the centre of the incom-

ing wave, and constructively interfere. This constructive interference is called a

backwards glory. Sanchez discovered the backwards glory was a feature of black

hole scattering in the 70s [37]. More recently, Crispino et al. proposed that

one could infer a black hole’s charge from the backscattered electromagnetic

radiation in a plane wave scattering scenario [53].

Like the rainbow, the word glory has its origin in an atmospheric phenom-

ena, which may be seen from above the clouds when the sun is directly behind

the observer. The sunlight is backscattered by the water droplets in the cloud,

and the observer will see a shadow of themselves surrounded by a bright halo

of light. We will present numerical evidence for glory scattering by compact

bodies in section 3.6.

Figure 3.3 shows a congruence of rays with varying impact parameter, im-

pinging from the left hand side onto a star of tenuity (a) α = 6 and (b) α = 8.

As the tenuity is increased, the rainbow impact parameter increases, and the

rainbow angle decreases. We can see that the rainbow ray has a distance of

closest approach that is just inside the star’s surface. At this point it is worth

mentioning that we assume no interaction between the massless particle and

the compact body, other than that conveyed by the gravitational field of the
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(a) (b)

Figure 3.3: A congruence of geodesics incident on a constant density star with
radius (a) R = 6M and (b) R = 8M . In dashed red is the rainbow ray, which
forms a caustic downstream where it is the envelope of the outgoing rays.

body. This is not justified if one wants to consider light scattering off any visi-

ble astrophysical object. It is however a useful approximation for gravitational

wave scattering, or other weakly interacting, light matter fields such as the

neutrino. Another more speculative scenario this could provide a toy model

for is scattering by dark objects, such as dark matter boson stars.

3.3 Geometric optics

Why should we believe that geodesic motion sheds any light on the question of

scalar field scattering? One argument has its origins in the study of light prop-

agation. For high-frequency electromagnetic waves one can use the geometric

optics approximation (see chapter 3 of reference [153]). In geometric optics the

energy of a wave is transported along straight lines corresponding to light rays

(for a homogeneous medium). The main quantities of interest are thus the rays

themselves, and the concentration of them which will determine the amplitude

of the wave at a given point. Light rays may be bent by inhomogeneous media

with varying refractive index. “High-frequency” waves is short hand for the as-

sumption that the wavelength is small in comparison to other relevant length

scales, and the inverse frequency is small in comparison to relevant time scales.

Geometric optics is the usual approach used when considering light prop-

agation on curved space-time [70, 154] as well as for flat space. This approx-
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imation approach can also be applied to other perturbative fields on curved

backgrounds such as the scalar and gravitational fields [155]. In all cases, the

energy of the wave is transported along massless geodesics. The radiation in-

tensity varies according to the change in cross-sectional area of an infinitesimal

area element on the wave-front. We will summarise the important elements

of the method for the scalar field following Dolan [155]. The geometric optics

ansatz for the scalar field Φ is

Φ = A exp(iωΨ), (3.33)

where A is the amplitude, Ψ is the phase, and ω is related to the frequency but

we may regard it as an order counting parameter. Substituting equation (3.33)

into equation (2.3) yields

(−ω2kµkµA+ iω(2kµ∇µA+∇µk
µA) +O(ω0) = 0, (3.34)

where kµ ≡ ∇µΨ is the gradient of the phase. Solving equation (3.34) order

by order in ω, the leading order term tells us that kµ is a null vector field

(kµkµ = 0). The null condition, and the fact that kµ is a gradient implies

that it satisfies the geodesic equation, kν∇νkµ = 0. The integral curves of

kµ are spacetime paths xµ(σ) that satisfy dxµ

dσ
= kµ, and they are geodesics

which lie in a hypersurface of constant phase (Ψ(x) = constant). At order ω,

equation (3.34) yields a transport equation

kµ∇µA = −1

2
ϑA (3.35)

where ϑ ≡ ∇µk
µ is the expansion scalar. Equation (3.35) ensures the conser-

vation of flux ∇µ(A2kµ) = 0.

Here we have shown that a congruence of geodesics can at least give a

qualitative picture of high frequency scalar wave scattering. One can trace a

constant phase wave front, and the concentration of rays at a point indicates

the waves amplitude. A more detailed picture is given by Dolan [155].

Perhaps the key feature of our scattering scenario is caustic points (e.g.
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the cusp in figure 3.3). The leading order geometric optics approach suffers

from divergences at such caustics, and we have not pursued this analysis any

further partly for this reason. Instead, to gain quantitative information about

the wave propagation using geodesics, we have found it fruitful to use a high

frequency approximation applied to the individual radial scalar modes, inspired

by semiclassical scattering studies [33, 156].

3.4 Semiclassical scattering

In this section we show how Ford and Wheeler’s semiclassical scattering analy-

sis [33], which provides a link between quantum and classical atomic scattering,

can be adapted to translate between the scalar plane wave scattering model

of chapter 2 and the geodesic congruence model in section 3.2. Note that

Nussenzweig uses an analogous ‘semiclassical’ approach to understand classi-

cal scattering of high frequency electromagnetic waves [68], in terms of rays.

In addition, Handler and Matzner adapted Ford and Wheeler’s methods to

scattering of GWs by Kerr black holes [38].

This approximation method is distinct from the geometric optics approach

of e.g. [155], in that it is applied at the level of the radial scalar equation

equation (2.8), which resembles the time independent Schrödinger equation

~2

2m

d2ψ

dr2
+ [E − V (r)]ψ = 0, (3.36)

where E is the energy of a particle with mass m subject to a radial potential

V (r). Ford and Wheeler solve equation (3.36) using a Wentzel–Kramers–Brillouin

(WKB) approximation. The particles de Broglie reduced wavelength is

λ̄ ≡ ~√
2m(E − V )

. (3.37)

For the WKB solution to be valid, we must have λ̄ short in comparison to

characteristic length scales for significant variation of the potential. Provided

the potential is well behaved this will be the case in the semiclassical limit
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~ → 0, except near classical turning points where E − V = 0. By comparing

equation (2.8) with equation (3.36), we see that the corresponding condition

for a WKB analysis to be valid for a scalar radial mode we must have

1√
ω2 − V eff

l

� 1

V eff
l

dV eff
l

dr
. (3.38)

For high frequencies, this condition will be satisfied except at ‘classical turning

points’ rtp which are solutions of ω2 = V eff
l (rtp). For the compact bodies

with R > 3M , we have only one turning point r0. In this case a standard

‘patching’ procedure can be applied to match the WKB solutions either side

of it, obtaining a global approximation (a.k.a. WKB connection formulae,

see chapter 10 of reference [157]). Then, applying the regularity boundary

condition at the origin, yields the WKB phase shift [157],

δwkb
L =

L

2
π − ωr∗0 +

∫ ∞
r∗0

{√
ω2 − V wkb

L (r)− ω
}
dr∗, (3.39)

where

V wkb
L (r) ≡ A

(
L2

r2
+
B

2r

(
A′

A
+
B′

B

))
, (3.40)

and we define L ≡ l+ 1/2 and r∗0 = r∗(r = r0). Here we have used the ‘Langer

substitution’ l(l + 1) → (l + 1/2)2 to obtain increased accuracy [158]. The

substitution results in V eff
l → V wkb

L . Note that,

2
d

dL

[
δwkb
L

]
= π − 2

∫ ∞
r0

L

r2
√
ω2 − V wkb

L

√
A

B
dr, (3.41)

which is the same form as equation (3.30) for the geodesic deflection function

Θgeo(b). This suggests a correspondence between the wave and ray picture,

whereby partial waves and geodesics are associated via the mapping

L

ω
↔ b, (3.42)
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and one can define a WKB deflection function

Θwkb ≡ 2
d

dL

[
δwkb
L

]
. (3.43)

Under the mapping of equation (3.42), V wkb
L ↔ Vgeo + O(ω−2), and we may

expect Θwkb ≈ Θgeo in the high frequency regime.

3.4.1 Semiclassical scattering cross section

A further assumption of the semiclassical approach is to use large-l asymptotics

for the Legendre polynomials,

Pl(cos θ) ≈


(

1

2
Lπ sin θ

)−1/2

sin (Lθ + π/4) , L sin θ & 1

(cos θ)L−1/2J0(Lθ), L sin θ . 1

, (3.44)

where Jn is a Bessel function of the first kind [117]. Note that the scalar

scattering amplitude of equation (2.39) can be decomposed into a sum of two

amplitudes, the first of which we call f̂0(θ) which satisfies [159]

f̂0(θ) ≡
∞∑
l=0

(2l + 1)Pl(cos θ) = 2δ(cos θ − 1). (3.45)

Using the WKB phase shifts in equation (3.39), equations (3.44) and (3.45),

and provided we are not at the poles, the scattering amplitude summation in

equation (2.39) can be written as

f̂sc(θ) = − 1

2ω

∞∑
l=0

(
2L

π sin θ

)1/2 (
eiΦ+ − eiΦ−

)
, (3.46)

where

Φ±(L) ≡ 2δwkb
L ±

(
Lθ +

π

4

)
. (3.47)

63



3.4. SEMICLASSICAL SCATTERING

Following Mott and Massey [118], a series of the form

∞∑
L=0

X(L)eiΦ(L), (3.48)

may be well approximated if there is a unique value L0 such that Φ′(L0) = 0,

where ′ ≡ d/dL for this section. In this case, the dominant contribution to the

sum comes from L values near L0, and

∞∑
L=0

X(L)eiΦ(L) ≈ X(L0)eiΦ(L0)

∫ ∞
−∞

ei(L−L0)2Φ′′(L0)/2 dL (3.49)

≈ X(L0)eiΦ(L0)

(
2π

iΦ′′(L0)

)1/2

, (3.50)

where the second line is the stationary phase approximation. The requirement

Φ′±(L0) = 0 is equivalent to

Θwkb(L0)± θ = 0. (3.51)

In other words, the scattering cross section at a given angle θ has its main

contribution from partial waves with L ≈ L0, which have WKB deflection

angles Θwkb ≈ ±θ. By convention an attractive deflection corresponds to

Θ < 0, and a repulsive deflection corresponds to Θ > 0. Assuming that each

partial wave has a unique WKB deflection, then the semiclassical scattering

amplitude is

f̂sc(θ) = − 1

2ω

(
2L0

iΘ′0 sin θ

)1/2 (
±e±iΦ±

)
, Θ′0 ≡

dΘwkb

dL

∣∣∣∣
L=L0

, (3.52)

where the choice of sign is dictated by the condition Φ′±(L0) = 0. The differ-

ential scattering cross section is then

dσsc

dΩ
=
∣∣∣f̂sc(θ)

∣∣∣2 =
L0

ω2

1

sin θ |Θ′0|
↔ b0

sin θ
∣∣dΘ
db

∣∣
b=b0

. (3.53)
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We see that in this special case (when the scattering angle is not too near π

or 0, and when there is only one point of stationary phase), the semiclassical

and classical cross sections (equation (3.31)) are identical under the mapping

of equation (3.42). This provides further justification for associating partial

waves with rays in this way.

3.4.2 Interference effects

From figure 3.2, we can see that for θ < |Θr| there will be two points of

stationary phase for scattering by a star, and the deflection function may pass

through −π. Whilst the semiclassical analysis becomes more complicated in

these cases, it also reveals the rich interference structure of the scattering cross

section. We discuss three phenomena - rainbows, glories and oscillating - that

can be seen in the scattering pattern. These are defined in full generality in

works by Ford and Wheeler [33], Mott and Massey [118], and Berry and Mount

[156], from which we draw heavily in this section.

Let a point of stationary phase correspond to impact parameter bi, angular

momentum Li, phase shift δi, deflection function Θi with derivative Θ′i, and

φi± ≡ φ±(Li). Suppose for the case discussed above (θ < |Θr|), that the

two points of stationary phase are well separated, |L1 − L2| � 1, then each

contribution can simply be summed to find the scattering amplitude. The cross

section is the sum of the two classical contributions (see equation (3.53)) and

an interference term:

dσ

dΩ
≈ 1

4ω2 sin θ

(
2∑
j=1

Lj
|Θ′j|

+ 2 cos
(
φ1

+ − φ2
+

)(L1L2

Θ′1Θ′2

)1/2
)

↔ dσ

dΩ

∣∣∣∣
cl

+
√
σcl

1 σ
cl
2 cos [2 (δ1 − δ2) + (b1 − b2)ωθ] . (3.54)

where σcl
i is the classical contribution to the scattering cross section from each

ray bi, i.e. dσ
dΩ

∣∣
cl

= σcl
1 + σcl

2 . Note how the frequency of the wave sets the

angular width of the oscillating interference term, since in the high frequency

limit δi � biω.
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Recall that for R > rc, there is a global minimum i.e. a rainbow angle Θr.

For scattering near Θr, the parts of the wave that contribute significantly will

overlap and we cannot use equation (3.54). Reference [33] details how to derive

an approximation that applies near stationary points of Θwkb, known as Airy’s

formula
dσ

dΩ
≈ 2πbr
ωq2/3 sin θ

Ai2
[
(θ −Θr)q

−1/3
]
, q ≡ Θ′′r

2ω2
. (3.55)

The Airy function is characterised by an oscillating behaviour for large neg-

ative argument, and an exponential fall of for large positive argument. This

behaviour predicts supernumerary peaks and troughs below the rainbow angle,

and a fall off into the shadow zone Θ > Θr. It is interesting that ∆θ = q1/3 =

[Θ′′r/(2ω
2)]1/3 defines the separation of the supernumerary peaks, and how close

the primary peak θp is to the rainbow angle,

θp ≈ Θr − 1.01879∆θ → Θr as ω →∞. (3.56)

It also predicts an intensity at the peak of

dσ

dΩ

∣∣∣∣
p

≈ 0.286928
2πbr

ωq2/3 sin θp
(3.57)

which will diverge in the high-frequency limit. These conclusions are analo-

gous to Airy’s original analysis of light scattered by water droplets, where he

predicted the (finite) amplitude of the primary atmospheric rainbow, the possi-

bility of supernumerary arcs, and a faster than exponential fall-off of intensity

into the classical shadow zone.

If R . 3.5M , the deflection function passes through −π (figure 3.2). Scat-

tering near −π is referred to as glory scattering (see section 3.2 and [36, 38]. For

a Schwarzschild black hole, we see in figure 3.2 that their is a unique glory im-

pact parameter bg which corresponds to a ray being completely back-scattered.

In this case, a semiclassical formula for scattering near the glory angle can be

calculated by approximating the form of the deflection function near bg and

using the approximation for Legendre polynomials valid near the poles (see

equation (3.44)) [33, 38, 51]. For θ ≈ π, the scattering amplitude is found to
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be

fBH(θ) ≈ bg

(
2πω

∣∣∣∣ dbdΘ

∣∣∣∣)1/2

exp [i (2δg − πωbg)] J0(bgω sin θ). (3.58)

Semiclassical formulae for glory scattering cross sections of massless plane waves

on curved spacetimes were also found using a path integration method by

Matzner and co-workers [40]. They found a formula for all spins

dσ

dΩBH
≈ 2πωb2

g

∣∣∣∣ dbdΘ

∣∣∣∣ J2
2s(bgω sin θ), θ ≈ π. (3.59)

In contrast to the black hole, the deflection function for a very compact

body has two branches that pass through −π. In effect then we have two

glories, with associated impact parameters bg1 and bg2. Assuming the ray with

impact parameter bg2 > bg1 does not penetrate the interior spacetime of the

star, then bg2 = bg, and the ‘outer glory’ effect will be similar to the black hole

glory. Since the two contributions are well separated (|bg1−bg2| � 1/ω) a valid

approximation in this scenario is to simply sum the two glory amplitudes,

dσ

dΩCO
≈

2∑
n=1

[
2πωb2

gn

∣∣∣∣ dbdΘ

∣∣∣∣
bgn

J2
0 (bgnω sin θ)

]

+ 2 cos [2i(δg1 + δg2)− iπω(bg1 + bg2)]
2∏

n=1

2πωbgn

∣∣∣∣ dbdΘ

∣∣∣∣
bgn

J0(bgnω sin θ),

(3.60)

when θ ≈ π.

If R ≤ 3M , the deflection function has a singularity at bc =
√

27M . The

radial effective potential will have three classical turning points for R < 3M ,

and the WKB analysis becomes significantly more involved. Ford and Wheeler

concluded that “there is no semiclassical approximation to the orbiting effect

of simplicity or generality comparable to the analysis for rainbow scattering and

glory scattering” [33]. However, recently, Folacci and Ould El Hadj have derived

a high-frequency analytical approximation for glory scattering by black holes,
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(a) (b)

Figure 3.4: Considering a plane wave as a congruence of geodesics, we can
gain a simple picture of the interference phenomena present in the full partial
wave numerical analysis. Heuristically, different parts of the wave front scatter
to the same angle causing an interference effect such as: (a) rainbow scattering
- shown here for a compact body with R/M = 5; or (b) a backwards glory -
shown here for a compact body with R/M = 3.5. Two rays with a deflection
−π± δθ, circumventing the body in opposite directions will be deflected to the
same observation angle.

based on complex angular momentum techniques [57, 58]. We will postpone

further discussion of complex angular momentum until chapter 6.

3.4.3 Geodesic phase shifts

With the correspondence between high frequency wave scattering and geodesics

established, it is possible to define ‘geodesic phase shifts’ δgeo
l in a natural way

(see equation (3.43)),

δgeo
l =

1

2
ω

∫ b

0

Θgeo(b′)db′ + χ0, (3.61)

where χ0 is an integration constant which can be fixed by matching to the

numerical partial-wave results in the weak-field regime (b � M) if necessary.

We compute Θgeo(b) numerically on a grid 0 ≤ b ≤ bmax, then interpolate and

integrate to obtain δgeo
l .

On a Schwarzschild black hole, the deflection function is known in terms of

elliptic integrals. For b � 1 it is possible to obtain a series expansion (as in
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e.g. [160]),

−Θgeo(b) =
4M

b
+

15πM2

4b2
+

128M3

3b3
+

3465πM4

64b4
+

3584M5

5b5
+O(b−6). (3.62)

Integrating equation (3.62) gives a series for geodesic phase shifts on Schwarzschild,

δgeo
l = Mω

(
−2 ln

(
b

M

)
+

15πM

8b
+

32M2

3b2
+

1155πM3

128b3
+

448M4

5b4
+O(b−5)

)
+χ1,

(3.63)

where we have introduced the constant of integration χ1.

We expect the geodesic phase shifts to be independent of the nature of the

spherically symmetric body (only depending on M) in the limit b→∞. Rays

with large impact parameter (b > bg where bg is the ‘grazing ray’) will not ‘feel’

the spacetime region inside the classical turning point i.e. the geodesic does

not penetrate the interior region of the body rtp < R. For very large b (l) it

is convenient to use equation (3.63), with χ1 chosen so as to match onto the

phase shift calculated with equation (3.61) at some large cut-off bmax. This

may be especially useful for high frequencies, where many phase shifts must be

evaluated to calculate the scattering cross section. In practice we find it is not

numerically difficult to simply use equation (3.61) to obtain our geodesic phase

shifts, and we may compare with equation (3.63) in order to be confident of

our results.

Substituting the geodesic phase shifts into equation (2.39), we obtain scat-

tering cross sections, complete with interference phenomena, without solving

the wave equation. Cross sections obtained in this way are labelled ‘geodesic’.

They are a useful check on the numerical method outlined in section 3.5, and

assist with interpretation of the results.
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3.5 Numerical method for the partial wave ap-

proach

To solve equation (2.8), we begin by finding the regular Frobenius series solution

at the origin

ul(r) ≈ rl+1

N∑
n=0

anr
n. (3.64)

This gives initial conditions for ul(r) and u′l(r) at r = ε where ε is small. Next

we use the NDSolve function in Mathematica to numerically integrate between

r = ε and r = rmax. In the far field we construct the generalised series solutions

ul(r)
+ ≈ eiωr∗

N ′∑
n=0

b+
n r
−n, ul(r)

− ≈ e−iωr∗
N ′∑
n=0

b−n r
−n. (3.65)

Inverting the equations(
u+
l (rmax) u−l (rmax)

u+
l
′
(rmax) u−l

′
(rmax)

)(
A+
l

A−l

)
=

(
ul(rmax)

u′l(rmax)

)
, (3.66)

gives the mode coefficients A±l and the phase shifts δl = ln[A+
l /A

−
l ]/(2i) (see

equation (2.40)). Typical values we use for the internal parameters are ε =

10−3, N = N ′ = 20 and rmax = 100M . In order to check validity we repeat

some phase shift calculations for different choices of the internal parameters.

3.5.1 Series convergence

It is known that for Coulomb-like scattering, the scattering amplitude partial

wave series are divergent in the ordinary sense [161]. However, they are con-

vergent in the Abel sense, which enables them to be correctly calculated after

some manipulation for all angles except the forward direction [113]. The scat-

tering of the radial scalar modes by a spherically symmetric compact body is

‘Coulomb-like’ as we have discussed in section 2.2.1. An early technique for

dealing with divergent partial wave series introduced by Yennie et al [141] was
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adapted for scattering by black holes by Dolan [50, 120], and the technique

applies equally well here.

First, define the ‘nth-reduced series’ f̂ (n)(θ) via

f̂(θ) = (1− cos θ)−nf̂ (n)(θ), n ∈ N, (3.67)

where

f̂ (n)(θ) =
∞∑
l=0

(2l + 1)c
(n)
l Pl(cos θ). (3.68)

and c
(0)
l = Sl − 1. From the recurrence properties of Legendre polynomails

[117], it can be shown that the series coefficients c
(n)
l satisfy the recurrence

relation

(2l + 1)c
(n+1)
l = (2l + 1)c

(n)
l − (l + 1)c

(n)
l+1 − lc

(n)
l−1. (3.69)

We find that the n = 2 reduced series is sufficiently convergent for numerical

evaluation.

3.6 Results

3.6.1 Scattering coefficients

In figure 3.5 we plot the real part of the scattering coefficients, Sl ≡ exp[2iδl], for

a constant density star of tenuity R/M = 6 and for Mω = 8. For comparison

we also show the black hole scattering coefficients, SBH
l , and the weak field

approximation SW
l given by equation (3.63). Note that for b ' bg, the black

hole and stellar phase shifts appear to approach the same value. In addition the

weak field Schwarzschild approximation appears to be fairly good for b ' bg

(where we have chosen the constant χ1 so that the phase shifts at l = 100

match).

Figure 3.6 shows the numerical partial-wave phase shifts and the numerical

geodesic phase shifts for the same model (equation (3.61)). We expect these

to agree at high frequencies, and note that even for the fairly modest value of

Mω = 8 we have reasonably good agreement. This gives us confidence in the
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Figure 3.5: Comparison of scattering coefficients for a black hole (BH), com-
pact object consisting of a constant density star (CO), and the weak field
approximation (equation (3.63)). Shown for Mω = 8.
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Figure 3.6: Comparison of scattering coefficients for a constant density star cal-
culated exactly (partial wave) and using geodesic phase shifts (equation (3.61)).
Shown for Mω = 8.
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preliminary numerical results, and indicates that in the high-frequency regime

the semiclassical model is a decent approximation.

3.6.2 Scattering cross sections

Rainbow scattering

In this section we discuss scattering by objects with tenuities similar to a neu-

tron star, 4 . R/M . 8. In figure 3.7 we display typical scattering cross

sections for a scalar wave of frequency Mω = 8 incident on a constant density

star of tenuity R/M = 8 and R/M = 6. The ‘partial wave’ cross sections are

calculated by solving the wave equation, the ‘geodesic’ cross sections utilise the

geodesic phase shifts of section 3.4.3. In all cases, these two methods show a

good agreement. Vertical lines indicate the classical rainbow angle, and we see

the primary bow below this as expected from the semiclassical Airy analysis

(equation (3.55)). At smaller angles, there are supernumerary bows. Beyond

the rainbow angle the partial wave and geodesic cross sections fall off into the

classical shadow zone. The rainbow pattern is superposed on a forward diver-

gence expected for Coulombic/Rutherford type scattering equation (2.43).

As the frequency increases, the angular width of the supernumerary oscilla-

tions decreases, which can be seen in figure 3.8. In addition the primary peak

moves closer to Θr and the fall off into the shadow zone becomes steeper. This

behaviour is seen even more clearly in figure 3.9 which shows approximate scat-

tering cross sections calculated with the Airy formula (equation (3.55)) which

is valid near the rainbow angle. When Mω . 1, the rainbow pattern is not

evident (an example is shown later in figure 4.3). In this case, the incident

wave has a wavelength too large to probe the structure of the central scatterer.

Figure 3.7 also shows the contributions to the classical cross section (dashed

blue) from each branch of the deflection function either side of the rainbow

angle. Both branches diverge at Θr , and the outer branch also diverges in

the forward direction (since dΘ/db → 0 as b → ∞). Heuristically we can

understand the rainbow interference pattern as the superposition of these two

branches - the amplitude of the supernumerary oscillations about the forward
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(a) Rainbow scattering for Mω = 8 and R/M = 8
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(b) Rainbow scattering for Mω = 8 and R/M = 6

Figure 3.7: Rainbow scattering for compact bodies of tenuity R/M = 8 and
R/M = 6, for monochromatic scalar waves of angular frequency ω = 8M−1.
The solid lines show the partial-wave cross section calculated from wave-
equation phase shifts (black) and geodesic phase shifts (red). The dashed line
(blue) shows the classical cross section, equation (3.31), calculated from the
geodesic deflection function Θgeo(b) of figure 3.2. For comparison, the dotted
line (green) shows the Rutherford cross section, ∼ sin−4(θ/2). A vertical line
indicates the geodesic rainbow angle at (a) Θr = 39.1◦ and (b) Θr = 59.6◦.
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Figure 3.8: Rainbow scattering for a scalar plane wave incident on a compact
body with tenuity R/M = 6, shown for Mω = 8 (black solid), Mω = 7 (red
dot-dashed), and Mω = 6 (blue dashed). A vertical line is at the rainbow angle
Θr = 59.6◦.
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Figure 3.9: The Airy approximation, equation (3.55), for rainbow scattering
with Mω = 10, 50 and 100 and R/M = 6.
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Figure 3.10: Rainbow scattering for a scalar plane wave of angular frequency
ω = 8M−1 incident on a constant density star with tenuity R/M = 6 (black,
solid). The Airy approximation, equation (3.55), for θ ≈ Θr = 59.6◦ is shown
in dotted blue. The semiclassical interference approximation, equation (3.54) ,
is shown in dot-dashed red.

Rutherford divergence are determined by the inner regular branch.

The semiclassical formula for the interference of the two branches, equa-

tion (3.54), explains the supernumeraries qualitatively well. An example is

shown in figure 3.10. The approximate interference pattern is however shifted

relative to the exact results. Near the rainbow angle the Airy formula, equa-

tion (3.55), should be used. This captures the primary peak and the fall off

of the cross section for θ > Θr (see figure 3.10). Both semiclassical formulae

appear to be reasonable approximations in their respective regimes of validity,

but are not quantitatively accurate.

The rainbow scattering pattern is a robust feature that can be clearly seen

in the cross sections for objects with tenuity on the order of a neutron star,

however it is sensitive to the tenuity as can be seen in figure 3.11 where we

display the partial wave cross sections for R/M ∈ {6, 7, 8}. The rainbow angle

and thus the interference pattern is shifted to larger angles the more compact

the body. For a tenuity of R/M = 3.5, the rainbow angle is Θr ≈ −189.5◦.
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Figure 3.11: Rainbow scattering for a scalar plane wave of angular frequency
ω = 8M−1 incident on compact bodies with tenuity R/M = 6 (black solid),
R/M = 7 (red dot-dashed), and R/M = 8 (blue dashed). Corresponding
vertical lines are shown at the geodesic rainbow angles Θr = 39.1◦, 47.2◦, and
59.6◦ for tenuity R/M = 8, 7 and 6 respectively.

Thus, for tenuities R/M . 3.5, the rainbow pattern will ‘fold’ into itself leading

to a complicated structure in the cross section.

Wide angle rainbows and glories

In addition, for R/M . 3.5 we see the backwards glory phenomenon. Some

typical examples are shown in figure 3.12. For R/M = 4 (figure 3.12a) the two

phenomena can be clearly distinguished. For R/M = 3.5 (figure 3.12b) the

rainbow angle Θr ≈ 189.5◦, and the two effects are superposed on one another.

Here, the peak of the oscillations with smaller angular width at −180◦ is the

glory, and the maximum of the oscillations with a larger angular width at

approximately −180◦ is the primary rainbow peak. For this special case we

can think of the constructive backscattering as a ‘rainbow enhanced glory’.

If Θr < −π, it makes sense to talk about a superposition of two backward

glories from both branches of the deflection function (in a sense the rainbow

enhanced glory is just a special case of this ‘double glory’ effect as we transition
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(a) Rainbow and glory scattering for Mω = 8 and R/M = 4
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(b) Enhanced rainbow and glory scattering for Mω = 8 and R/M =
3.5

Figure 3.12: Scattering cross sections for compact bodies with R/M = 4 and
R/M = 3.5, and an incident wave of angular frequency ω = 8M−1. We show
the partial-wave cross section calculated from wave-equation phase shifts (black
solid) and geodesic phase shifts (red dot dashed). Also shown is the classical
cross section (blue dashed, equation (3.31)) and the Rutherford cross section
(green dotted, equation (2.43)). A vertical line indicates the geodesic rainbow
angle for figure (a) Θr = 129.0◦.
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Figure 3.13: Large angle scattering for a scalar plane wave of angular frequency
ω = 8M−1 incident on a compact body with R/M = 3.5. The numerical partial
wave result (black) is compared to the semiclassical glory approximation (blue
dashed, equation (3.60)), valid for θ ≈ 180◦. Also, for comparison we plot the
cross section for a Schwarzschild black hole of mass M (red dot dashed).

from no glories to two). The semiclassical approximation for the double glory is

shown in figure 3.13, it captures the angular width very well, and the amplitude

reasonably well.

Ultra compact objects and orbiting

Note that UCOs do not display rainbow scattering in the sense of Ford and

Wheeler’s definition, since the deflection function does not possess a minimum,

but rather a divergence. We find that Θr → −∞ as R/M → 3+. Thus, instead

of rainbow scattering, we would expect to see spiral scattering a.k.a. orbiting.

We should not adhere too rigorously to the classical (geodesic) argument

for classifying objects that display orbiting as those with a divergence in the

cross section (i.e. UCOs). As we have seen, we may have the classical minimum

deflection Θr < −180◦ for R/M > 3, so that a particle could undergo at least

one full orbit of the scattering body. In addition, in the language of quantum

mechanics, a partial wave incident on a compact object with R ' 3M may

79



3.7. CONCLUSIONS

10-2

10-1

100

101

102

103

104

0° 20° 40° 60° 80° 100° 120° 140° 160° 180°

R/M = 2.26

Mω = 8
M

-2
 d
σ/

dΩ

θ

Partial-wave
Rutherford
Black hole

Figure 3.14: Scattering cross section for a scalar plane wave of angular fre-
quency ω = 8M−1 incident on a ultracompact object with R/M = 2.26 (black).
For comparison we plot the cross section for a Schwarzschild black hole of mass
M (red dashed).

tunnel through the effective potential and partly scatter by angles Θ < Θr.

Consequently orbiting oscillations do not suddenly appear in the cross sec-

tion when R/M < 3. Instead they become more prominent, and can be seen

at smaller angles, as R/M decreases through the UCO limit (see figure 3.12).

Orbiting oscillations are in some sense the ‘supernumeraries’ of the glory peak.

In figure 3.14 we display the cross section for a star with tenuity R/M =

2.26, close to the Buchdahl limit R/M = 2.25. Glories, orbiting and the

rainbow effect are all present, giving rise to a very complex interference pat-

tern. The enhanced backward glory can be seen in comparison to a glory for a

Schwarzschild black hole of the same mass (red dashed line). The orbiting and

‘folded rainbow’ oscillations are all but impossible to distinguish separately.

3.7 Conclusions

In this chapter we have considered the scattering of a scalar plane wave with

angular frequency ω by a constant density star with mass M and radius R.
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The process is encapsulated by the dimensionless parameters Mω and R/M .

At moderate frequencies Mω ≈ 8, and for tenuities in the realm of a neu-

tron star, we have found that a rainbow interference pattern appears in the

scattering cross section. It is superposed on a forward divergence that is due

to the long range nature of the gravitational field and considering a plane wave

of infinite extent. The position of the primary rainbow arc, θp, depends on the

tenuity and Mω. We find that θp increases as R/M decreases. The supernu-

merary rainbow arcs are similarly shifted to larger angles the more compact the

body. Beyond the primary rainbow peak, in the classical shadow zone, the cross

section falls off to negligible values. As Mω increases θp → Θr, and the angular

width of the supernumerary oscillations decreases (figures 3.8 and 3.10).

Since we have neglected non-gravitational interactions of the field with the

body, we would not expect a similar interference effect for light scattering off a

neutron star. However, if the central body was a boson star composed of weakly

interacting matter, an EM wave should be scattered in a comparable fashion.

We do expect the rainbow effect to be inherited by other weakly-interacting

fields, such as neutrinos, and we shall see this is the case for GWs in chapter 4.

Recently, Alexandre and Clough have modelled plane wave scattering of

neutrinos by a black hole [162]. They found that the downstream flavour

oscillation probability displayed a nontrivial interference pattern, which could

potentially result in unexpected neutrino detection patterns if source, black

hole, and detector were suitably aligned. The consequences of replacing the

black hole with a compact body have yet to be considered, yet given our results

we might expect it to be similarly nontrivial and long range.

The cross sections are qualitatively similar to experiments of heavy ion

scattering [67]. It is intriguing to note that rainbow scattering could in princi-

ple provide information on neutron star physics via the mass-radius diagram,

just as nuclear rainbow scattering has informed models of nuclear potentials

[143]. In chapter 4 we will consider a more general scattering scenario, and we

postpone further discussion of astrophysical implications until then.

For sufficiently compact bodies, R/M / 3.5, the rainbow angle may exceed

180◦. In this case the rainbow interference pattern begins to fold in on itself,
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and the scattering cross section is non negligible at all observation angles. A

new interference effect arises - the backwards glory. Tenuities in this regime are

beyond reasonable estimates for a neutron star (4.4 . α . 7.7 [2, 151]), but

do find motivation in exotic matter configurations such as boson stars [163].

For ultra compact bodies, R/M < 3, the backwards glory is particularly

prominent, in fact it can be thought of as a “double glory” with reference to the

semiclassical arguments of [33]. We have found that the intensity of a UCO

glory is roughly an order of magnitude greater than a Schwarzschild black

hole glory. The scattering cross sections of compact bodies with R/M ≈ 6,

UCOs, and black holes are qualitatively very different. Time domain studies

have indicated that it may be difficult to distinguish black holes from UCOs

(e.g. [26, 27, 164]. It is interesting to note that time-independent scattering

does clearly distinguish the two objects. It is reasonable to expect that these

compact objects would leave a characteristic ‘fingerprint’ on a long-lasting,

high-frequency incident beam of radiation.

We have also applied a semiclassical analysis to understand scattering at

high frequencies, and link the wave picture to massless geodesics. Our results

indicate that this is a reasonable approximation even at moderately high fre-

quencies Mω ≈ 8. Heuristically, we can consider a plane wave as a congruence

of geodesics, some of which pass through the body, and some pass through the

exterior (Schwarzschild) spacetime. These two branches interfere, and we have

used different approximation methods to examine this interference in different

regimes: near a rainbow angle; near a glory; and angular regions far away from

rainbows or the poles.
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Chapter 4

Scattering of gravitational plane

waves by a compact body

The first indirect evidence for gravitational waves came from observations of the

Hulse-Taylor binary pulsar PSR 1913+16 [165, 166]. The binary is composed

of two neutron stars. One - the pulsar - is spinning and emitting a beam of

radiation that is directed at the Earth every 0.05903 seconds with a regularity

rivalling atomic clocks [167]. The orbit of the pulsar can be inferred from

detection of the Doppler shifted pulses. Four years after the detection of PSR

1913+16, Taylor and colleagues showed that the binary is in-spiralling at a rate

consistent with the emission of energy in the form of gravitational waves, as

predicted by Einstein’s theory of general relativity [166].

GWs are now routinely detected by the laser interferometers of the LIGO

and VIRGO collaborations [1, 168], and more detectors are in development [75,

169]. These observations offer a complementary view of astrophysical phenom-

ena, in part because GWs are weakly scattered by interstellar dust and matter

between source and detector, in contrast to light. Nonetheless, GWs are sub-

ject to the gravitational influence of matter/energy sources by the equivalence

principle. A sufficiently strongly curved region of spacetime, such as that of a

black hole or neutron star could thus significantly scatter a GW. Scattering of

GWs by a BH has been well studied (see e.g. [21, 50, 90]), and here we focus on

time-independent scattering of GWs by a simple model of a neutron star with
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a polytropic equation of state. This builds on the preceding chapter where we

considered a scalar plane wave scattered by a constant density fluid sphere.

We find that scattering of GWs by a neutron star is sensitive to the equation

of state (EoS). In principle then, observations of GW scattering cross sections

could shed light on the nature of nuclear matter at extreme densities. However,

the practicality of such observations is at present dubious.

Whilst the astrophysical significance of secondary scattering is certainly

overshadowed by the direct detections of GWs, we take the view that it is

still worth considering these scenarios for the following reasons: (1) it is of

fundamental theoretical interest to understand wave propagation on curved

spacetimes; (2) it may be that physical motivation will be found in the future

in more sophisticated models as detector capabilities improve, or in analogue

systems (for example black-hole analogue spacetimes [73, 103]).

The scattering picture is parametrised by the field spin s, the dimensionless

tenuity Rc2/(GM), the index n of the polytropic equation of state, and the

coupling Mω. At low frequencies Mω � 1, we expect the scattering cross

section for massless plane waves incident on a compact body to be independent

of the nature of said body. A plane wave with large wavelength (low frequency)

will not be able to resolve the details of the central scatter, being sensitive only

to the overall mass. In this limit, the scattering cross sections for a star may

be compared to those for a Schwarzschild black hole, namely [44, 49, 170, 171],

lim
Mω→0

(
M−2 dσ

dΩ

)
=


cos4s(θ/2)

sin4(θ/2)
, s = 0,

1

2
and 1

cos8(θ/2) + sin8(θ/2)

sin4(θ/2)
, s = 2

. (4.1)

The first case is the result for scalar (spin 0), spinor (spin 1/2) and electro-

magnetic (spin 1) waves. The second case is the result for a gravitational wave

(spin 2), where there is an extra ‘anomalous’ term associated with the rever-

sal of the helicity of the incident wave (the low frequency limit of gs2 from

equation (2.126), see e.g. [49] for a derivation).

We begin this chapter by constructing the background spacetime of a poly-
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tropic star in section 4.1. We then discuss the interior perturbation problem in

section 4.2 (the exterior problem is summarised in section 2.3). Scattering cross

sections calculated numerically are shown in section 4.5 as well as near field

scalar scattering profiles. In chapter 3 we found that a rainbow interference

pattern is expected for moderate to high frequencies of a scalar plane wave

incident on a constant density body. Here, we find that this feature is also

present for GW scattering by polytropic stars at moderate to high frequencies.

Differences between the scalar and GW scenarios are discussed in sections 4.5

and 4.6, in particular those associated with the additional features introduced

for GWs: helicity reversal and fluid perturbation-GW coupling. This work

was carried out in collaboration with S.R. Dolan, and part of it is available in

reference [64]. All data and figures appearing in this chapter are the result of

the authors own work.

4.1 Polytropic equation of state

In section 3.1 we introduced perfect fluids and in section 3.1.1 the Schwarzschild

interior solution for an incompressible star. Demanding a constant density

allows the Tolman-Oppenheimer-Volkoff equation (3.7) to be solved exactly. A

neutron star has nearly uniform density within the core, so this model was a

reasonable if simple first approximation for our purposes. However, the model

has a potentially serious drawback in that the speed of sound inside a constant

density star is infinite.

In this chapter we relax the assumption of uniform density and consider

two additional stellar models. These are known as polytropic stars - perfect

fluid solutions to Einstein’s equations with a polytropic equation of state

p(ρ) = κρ1+1/n, (4.2)

where n is the polytropic index and κ is a constant. Part of the reason for

introducing these models in this chapter is that gravitational waves couple to

fluid pulsations, unlike the scalar wave, and hence it seemed prudent to use
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a model with density perturbations that travel at subluminal speed. We will

see later that the fluid coupling appears to have a negligible effect for plane-

wave time-independent scattering and hence we have also shown results for the

constant density star. A constant density star is a special case of a polytrope,

with n = 0, which can be seen by inverting equation (4.2).

Polytropic equations of state were some of the first to be used to model

neutron stars and white dwarfs [10, 14, 91] . A neutron star (white dwarf)

will cool to zero temperature, and the pressure that keeps it from gravitational

collapse is then purely neutron (electron) degeneracy pressure. In this limit-

ing case of zero temperature, Fermi-Dirac statistics for an ideal gas leads to

an equation of state of the form of equation (4.2) [145]. For non-relativistic

fermions where the rest mass dominates the mass-energy, n = 3/2. For the

ultra-relativistic case, n = 3. Using Newtonian gravity, Chandrasekhar mod-

elled a white dwarf as a polytrope that interpolates between the two polytropic

indices with the ultra-relativistic case corresponding to the core. He obtained

the maximum mass that such a star could reach before it must succumb to

gravitational collapse, the well known Chandrasekhar limit [14] MC. Using

more realistic models gives MC ≈ 1.4M� [145]. The equilibrium of the star in

this model is determined by balancing the Newtonian gravitational attraction

and the repulsion due to pressure.

− r2dp

dr
= Gm(r)ρ(r). (4.3)

Neutron stars were first predicted by Baade and Zwicky in 1934 [172], who

also postulated that they were the remnants of supernovae. The immense

gravitational packing energy of the dense neutron star could explain the energy

released in a supernova. In this case, it was more important to use general

relativity when considering the star’s equilibrium.

Tolman found a class of spherically symmetric solutions to Einstein’s equa-

tions that were relevant to neutron star studies. In an accompanying paper,

Oppenheimer and Volkoff modelled neutron stars as a cold Fermi gas obeying

the laws of general relativity. In doing so they found an upper mass limit for

86



CHAPTER 4. SCATTERING OF GRAVITATIONAL PLANE WAVES BY
A COMPACT BODY

n=0 n=0.5 n=1

0 2 4 6 8 10 12 14
0

2

4

6

8

r [km]

ρ
[1
0
1
7
k
g
/
m
3
]

Figure 4.1: Radial density profiles for three spherically symmetric stars with
tenuity R/M = 6 and polytropic index n ∈ {0, 0.5, 1}.

neutron stars (analogous to Chandrasekhar’s limit for a white dwarf) of 0.7M�.

This is known as the Tolman-Oppenheimer-Volkoff limit MTOV. The original

estimate is not accurate because it does not take into account the strong nu-

clear force. This provides an additional repulsive force acting against collapse.

A recent estimate of the upper limit for non-rotating neutron stars is given by

Rezzola et al as 2.01 ≤MTOV/M� . 2.16 [173].

The equation of state for a neutron star is a large area of research, partly

because the densities in these objects cannot be reproduced in the laboratory

[174]. For the equation of state we consider two simple polytropic models

with n ∈ {0, 0.5, 1} (equation (4.2)). In practice we fix κ and the central

density so that the radius and mass of the resulting solution is consistent with

observations. We find that the central density for these models is also of the

correct order of magnitude predicted by more sophisticated models [174]. In

figures 4.1 and 4.2 we show the radial density and mass profiles for our set of

models with tenuity R/M = 6. It should be fairly simple to adapt the following

methods of this chapter to consider more state of the art equations of state.
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Figure 4.2: “Mass inside radius r” profiles for three spherically symmetric stars
with tenuity R/M = 6 and polytropic index n ∈ {0, 0.5, 1}.

4.1.1 Numerical method

For the polytropes with n 6= 1, it is necessary to solve the TOV equations

(equations (3.6) and (3.7)) numerically. Here we outline the method for doing

so, following Ipser and Price [97].

The TOV equations are subject to the boundary conditions m(0) = 0 and

p(0) = p0 where p0 is the central pressure. The integration is terminated

at some r = rmax where p(rmax) is sufficiently small. At rmax we match the

numerical solution onto an ‘atmosphere’ following [97]. That is, we expand the
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dependent variables, ρ, p and m in powers of (R− r). Near the surface

ρ(r) ∼ (R− r)n
J∑
j=0

ρj(R− r)j, (4.4a)

p(r) ∼ (R− r)n+1

J∑
j=0

pj(R− r)j, (4.4b)

m(r) ∼M + (R− r)n+1

J∑
j=0

mj(R− r)j, (4.4c)

and we take J = 5. We estimate R and M by considering the Taylor series

for p(R) and m(R) = M about rmax and using the numerical solutions. The

equation of state and definition of m (equation (3.4)) give mj and pj in terms

of ρj. Substituting the expansions (equation (4.4)) into the TOV equations

(equations (3.6) and (3.7)) and solving for each power of (R−r), determines ρj.

This process is important for solving the radial part of the linearised Einstein

equations near the surface. A root finding algorithm (e.g. the inbuilt FindRoot

function of Mathematica) enables us to select a central pressure p0 that results

in a model with the desired tenuity. Using equation (3.8) we can confirm that

the speed of sound cs < c for n 6= 0.

4.2 Perturbations of the stellar interior

Given a stellar model, such as a polytrope, that solves Einstein’s field equations,

the next step is to perturb the EFEs in exactly the same way as was done for

the Schwarzschild exterior [122]. The first variation of Einstein’s equations is

δGµν = 8πδTµν , (4.5)

where δTµν is the (linearised) perturbation of the stress energy tensor. An

additional complexity now is that we are no longer in vacuum (δTµν 6= 0). In

addition, the variation of the fluid equations of motion (the conservation of
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stress energy) is

δ
(
T µν;µ

)
= 0. (4.6)

For a spherically symmetric spacetime, equation (4.5) can be decomposed using

spherical harmonics as outlined in chapter 2, section 2.3 for the Schwarzschild

exterior solution. This was first done by Thorne and Campalatarro [29] using

the same gauge and decomposition as Regge and Wheeler (so that for the

exterior of the star they have the same formalism) [122]. In Schwarzschild

coordinates {t, r, θ, φ}, and Regge-Wheeler gauge, the metric perturbations of

each parity are decomposed as follows (see [93]),

h+
µν =

∑
l,m



AH lm
0 H lm

1 0 0

H lm
1 BH lm

2 0 0

0 0 r2K lm 0

0 0 0 r2 sin2 θ K lm


Y lm(θ, φ), (4.7)

and

h−µν =
∑
l,m



0 0 −(hlm0 / sin θ)∂φ (sin θ hlm0 )∂θ

0 0 −(hlm1 / sin θ)∂φ (sin θ hlm1 )∂θ

• • 0 0

• • 0 0


Y lm(θ, φ), (4.8)

where H lm
0 , H lm

1 , H lm
2 , K lm, hlm0 and hlm1 are functions of r and t. In the liter-

ature these ‘Regge-Wheeler’ functions are often assumed to have a harmonic

time dependence, writing for example X(r, t) = X(r)e−iωt. We will mostly be

working the frequency domain and X will denote X(r) unless stated otherwise

when we refer to Regge-Wheeler functions.

Different choices of gauge, types of tensor spherical harmonics, and choice

of decomposition functions lead to different formulations of the equations. Nu-

merous works have been done over the years with different but sometimes

closely related approaches (see [175] for a review).
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We choose to follow the approach of Allen et al for the even parity sector

[92], and (e.g.) Kojima [93] for the odd parity sector. Kojima uses the standard

Regge-Wheeler gauge and decomposition. Allen et al. also use Regge-Wheeler

gauge and a closely related decomposition. The important metric functions are

{F̃lm, S̃lm, Q̃lm} which are related to the Regge-Wheeler functions via

Q̃lm =

√
AB

r
hlm1 , (4.9a)

F̃lm = rK lm, (4.9b)

S̃lm =
A

r
(K lm −H lm

0 ). (4.9c)

We also utilise results for the even parity sector from references [97, 124].

4.2.1 Odd parity

In the odd parity sector, the equations for the metric perturbations decouple

from the fluid perturbation equations. This means odd parity gravitational

waves do not couple to oscillations of the fluid, only to the space time curvature

generated by the stress energy of the background fluid configuration. This

simplifies the scattering picture enormously. In fact, early studies did not

focus on the odd parity sector precisely because of the lack of coupling to fluid

oscillations [29]. These investigations were concerned with initial perturbations

of the fluid and their damping due to emission of gravitational radiation. It

was only when Chandrasekhar and Ferrari looked at the problem in terms of an

initial gravitational wave scattering off a star, that this sector was investigated

in depth [100].

Working in Regge-Wheeler gauge and in frequency space, the odd parity

system of equations reduces to the problem of solving a single second order

radial equation for the spacetime variable Q̃lm(r, ω) (see for example [93])

d2Q̃lm

dr2
∗

+
(
ω2 − Vl(r)

)
Q̃lm = 0, (4.10)
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where

Vl(r) ≡ A(r)

[
l(l + 1)

r2
− 6m(r)

r
− 4π(p(r)− ρ(r))

]
. (4.11)

In vacuum, Vl(r) reduces to V −l (equation (2.76)), and thus Q̃lm satisfies

the Regge-Wheeler equation. In the exterior Q̃lm is simply related to Φ̃−lm (see

equations (2.73) and (2.74)) by,

Φ̃−lm(r, ω) =
2

iω
Q̃lm. (4.12)

4.2.2 Even parity

In contrast to the odd parity sector, the even-parity metric perturbations do

couple to the fluid perturbations. Allen et al. looked at gravitational waves

from perturbed stars in the even-parity sector [92], working in the time domain.

They note that the problem can be reduced to two second order radial wave

equations for spacetime variables Slm(r, t) and Flm(r, t) (as was noted before

by Ipser and Price using a different decomposition [97]). A constraint equation

relates the fluid perturbations to Slm(r, t) and Flm(r, t) and their derivatives.

Here, we make use of the two coupled equations derived by Allen et al., working

in Fourier space with S̃lm(r, ω) and F̃lm(r, ω). The relevant equations are

d2S̃

dr2
∗

+

[
ω2 +

A

r3

(
4πr3 (ρ+ 3p) + 2m− l(l + 1)r

)]
S̃

= −4A2

r5

[
(m+ 4πpr3)

2

(r–2m)
+ 4πρr3 − 3m

]
F̃ , (4.13)

and

d2F̃

dr2
∗
−
(

1− 1

c2
s

)√
A

B

1

r2

(
m+ 4πpr3

) dF̃
dr∗

+

[
ω2

c2
s

+
A

r3

(
4πr3

(
3ρ+

p

c2
s

)
–m

(
1− 3

c2
s

)
− l(l + 1)r

)]
F̃

=

(
1− 1

c2
s

)
r

√
B

A

dS̃

dr∗
+

[
2B +

(
1− 1

c2
s

)
l(l + 1)

2
− 8π(p+ ρ)r2

]
S̃, (4.14)
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where we have dropped mode labels lm for clarity. In vacuum, the even-parity

master function Φ̃+
lm (see equations (2.68) and (2.74)) is related to S̃lm and F̃lm

by

Φ̃+
lm(r, ω) =

2

l(l + 1)

[
F̃lm +

2

Λ

(
2AF̃lm − rA∂rF̃lm + r2S̃lm

)]
. (4.15)

Since cs → 0 as r → R−, it is necessary to use an alternative to equa-

tion (4.14) to solve for F̃ and S̃ near the surface. Following [92], we keep only

the terms that go like c−2
s to obtain

√
A

B

1

r2

(
m+ 4πpr3

) dF̃
dr∗

+

[
ω2 +

A

r3

(
4πpr3–3m

)]
F̃ = −r

√
B

A

dS̃

dr∗
+
l(l + 1)

2
S̃.

(4.16)

4.2.3 Perturbation junction conditions at the stellar sur-

face

The stellar surface separating the interior and exterior regions of spacetime

defines a timelike hyper-surface Σ. There may be discontinuities in the stress

energy tensor here, notably for constant density stars or any star with non-zero

density at the surface. Thus, carrying solutions to the linearised Einstein field

equations over this hypersurface must be done with some care. The prescrip-

tion for doing so is to insist that the intrinsic and extrinsic curvature of Σ

must approach the same value when approached from inside the star as when

approached from outside the star (i.e. the first and second fundamental forms

should be continuous) [176].

Price and Thorne give the junction conditions for the even parity Regge-

Wheeler variables H0 and K [29, 122] at the stellar surface for a general spher-

ically symmetric solution in appendix B of [30]. The junction conditions for

H0 and K and their first derivatives, together with equation (4.9), imply the

following conditions for F̃ and S̃,

[F̃ ]+− = 0, [S̃]+− = 0, [∂rS̃]+− = 0, (4.17)
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where [z(r)]+− denotes limε→0[z(R + ε) − z(R − ε)]. From equations (3.6) and

(5.3) in reference [97], it can be deduced that

[∂rF̃ ]+− = − ρ

2ω2r2(p+ ρ)

[
r
(
l(l + 1)− 2ω2r2A−1

)
S̃lm + r2l(l + 1)∂rS̃lm

+
((
l(l + 1)− ω2r2A−1

)
∂rA− 2ω2r2

)
F̃lm + 2ω2r2∂rF̃lm

]∣∣∣∣∣
r=R−

if ρ(R) 6= 0,

(4.18)

and

[∂rF̃ ]+− = 0 if ρ(R) = 0. (4.19)

The odd parity metric perturbation variable and its first derivative are contin-

uous at the stellar surface for all the models we consider [93]

[Q̃lm]+− = 0, [∂rQ̃lm]+− = 0. (4.20)

4.2.4 Perturbation boundary conditions for the stellar

interior

All spacetime variables should be regular at the origin. Only one of the two

independent solutions to equation (4.10) satisfies this with

Q̃lm ∼ rl+1. (4.21)

There are two independent solutions to the even parity system, equations (4.13)

and (4.14), that satisfy regularity at the origin,

{S̃1
lm, F̃

1
lm} ∼ {rl+1, a1r

l+3},

{S̃2
lm, F̃

2
lm} ∼ {rl+3, a2r

l+1} as r → 0, (4.22)

where a1 and a2 are constants determined by the stellar model. The solution

must be a linear sum

YC = α1Y
(1) + α2Y

(2), (4.23)
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where

Y = [S̃lm, ∂rS̃lm, F̃lm, ∂rF̃lm]t, (4.24)

and Y(i) refer to the two independent solutions of equation (4.22).

A second boundary condition for the even parity sector is to require that the

Lagrangian variation in pressure at the surface of the star vanishes. Following

[97] (see equation (5.2)), this yields the following constraint

lim
r→R−

{
1

4r3ω2A

[(
l(l + 1)

(
A′r − 2Bω2r2

)
− 2ω2A′r3

A

)
S̃lm

+
(
l(l + 1)A′r2 − 4ω2r3

)
∂rS̃lm

+
(
A′
(
l(l + 1)A′ − 4ω2r

)
− ω2 (A′)2 r2

A

− 4Bω4r2 − 4A(B − 1)ω2
)
F̃lm

]}
= 0. (4.25)

4.3 Numerical method

All numerical integrations are performed with the NDSolve utility in Mathematica

[66]. We also use Mathematica to find Frobenius series solutions to differential

equations.

Odd parity

For the odd parity sector we make use of the regular Frobenius series solution

about the origin

Q̃lm = rl+1

k∑
j=0

q2jr
2j, (4.26)

where qn are determined by inserting equation (4.26) into equation (4.10), and

also expanding the effective potential given by equation (4.11) about r = 0.

Using equation (4.26) for initial conditions at r = ε for some small ε, we

then integrate equation (4.10) out to r = R. With the junction conditions of

equation (4.20), we carry the solution over to the exterior spacetime. Then, we

may find the Cunningham-Price-Moncrief function Φ̃−lm using equation (4.12).
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Next, we integrate equation (2.75) from r = R to the far field, r = rmax.

Even parity

The ODE system for F̃lm and S̃lm can be expressed in matrix form

Y′ =
1

z
M ·Y, (4.27)

where Y is defined in equation (4.24), z = |r− r0|, ′ denotes d/dz, and M is a

4 × 4 matrix. The system has a regular singularity at r = 0, and at r = R if

the speed of sound is zero at the surface. Thus, for r0 ∈ {0, R}, we can write

M =
∞∑
n=0

znMn, (4.28)

where Mj are constant matrices found by expanding equation (4.13) and equa-

tion (4.14) or equation (4.16) about r0. In order to make progress we make the

ansatz

Y = zσ
∞∑
j=0

znYj. (4.29)

Substituting equations (4.28) and (4.29) into equation (4.27), and equating

coefficients of zσ gives

(M0 − σI) ·Y0 = 0, (4.30)

[(σ + k) I−M0] ·Yk =
k∑
j=1

Mj ·Yk−j. (4.31)

Equations (4.30) and (4.31) can be solved to find four independent series solu-

tions near the origin (r0 = 0). Two of these are regular, {Y(1),Y(2)}, satisfying

equation (4.22) with eigenvalues σ = l + 1. We numerically integrate the two

solutions from r = ε to r = R− ε.
Similarly, near the surface (r0 = R), we use Equations (4.30) and (4.31) to
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find four independent series solutions for r . R. The solution valid here is thus

YS =
6∑
i=3

αiY
(i). (4.32)

Now, at some r . R, we demand that YS matches the solution valid at the

origin (see equation (4.23)),

YS = YC. (4.33)

Equation (4.33) along with the boundary condition equation (4.25), yields five

equations for the six unknowns αi. We are free to set one of them equal to

say 1, as this will just scale the overall solution. Now, with YS determined,

we carry the solution over the surface of the star using the relevant junction

conditions of section 4.2.3. The Zerilli-Moncrief function and its derivative is

found outside the star using equations (2.75) and (4.15). We then numerically

integrate Φ̃+
lm out to r = rmax.

In the above description, we typically use ε = 10−6R, rmax = 100R and we

expand series solutions to k = 15.

4.3.1 Phase shifts

In the far field, generalised series solutions for the Zerilli-Moncrief and Cunningham-

Price-Moncrief master functions, Φ̃lmp, are given by

Φ̃out
lmp(r) ≈ eiωr∗

N∑
n=0

cnlpr
−n, Φ̃in

lmp(r) ≈ e−iωr∗
N∑
n=0

dnlpr
−n. (4.34)

The coefficients (dnlp, cnlp) are found by substituting equation (4.34) into equa-

tion (2.75) and solving order by order in 1/r. Inverting the equations(
Φ̃out
lmp(rmax) Φ̃in

lmp(rmax)

∂rΦ̃
out
lmp(rmax) ∂rΦ̃

in
lmp(rmax)

)(
C+
lp

C−lp

)
=

(
Φ̃lmp(rmax)

∂rΦ̃lmp(rmax)

)
, (4.35)

gives the mode coefficients C±lp and the phase shifts δpl = log[C+
lp/C

−
lp ]/(2i) (see

equation (2.118)). In equation (4.35), Φ̃lmp(rmax) and Φ̃′lmp(rmax) have been
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determined numerically as described above. Typical values for the internal

parameters are N = 20 and rmax = 100M . To check validity some phase shift

calculations are repeated for different choices of the internal parameters.

4.4 Gravitational wave scattering amplitudes

and cross section

With the phase shifts in hand (section 4.3.1), we seek to compute the helicity

conserving and reversing scattering amplitudes (f2(θ) and g2(θ) respectively)

using the partial wave summations given by

f2(θ) ≡ π

iω

∑
l,p

−2Yl2(0) −2Yl2(θ)
[
e2iδpl − 1

]
, (4.36)

g2(θ) ≡ π

iω

∑
l,p

p(−1)l −2Yl2(0) −2Yl2(π − θ)
[
e2iδpl − 1

]
. (4.37)

Recall that the scattering cross section is the sum of the absolute values of the

two amplitudes squared

dσ

dΩ
= |f2(θ)|2 + |g2(θ)|2. (4.38)

For a derivation of equations (4.36) to (4.38) see chapter 2.

As with the scalar scattering amplitude, the partial wave sum f2(θ) di-

verges. A generalisation of the approach used for scalar wave scattering is

given by Dolan [50] for scattering of on-axis plane GWs by Kerr black holes.

The technique described in section 5.3 of [50] readily applies to scattering by

spherically symmetric compact bodies. For a series reduction method that

applies to off-axis scattering see [177].

In contrast, we find that the helicity-reversing scattering amplitude g2(θ)

converges. This is because the phase shifts become independent of parity in

the high-l limit. Then, for a given l, the contributions to g2(θ) from each parity

mode cancel out. This tells us that the helicity reversing scattering will be due

to the lowest-l modes. Indeed in the low frequency limit, only the l = 2 partial
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Figure 4.3: Scattering cross sections for massless plane waves of frequency
ω = 0.1M−1 incident on a polytrope (PT) of tenuity R/M = 6 and polytropic
index n = 1. For comparison we also plot the low frequency limiting cross
sections for massless plane waves scattered by a Schwarzschild black hole of
the same mass. Figure reproduced from [64].

wave appears to contribute to the scattering cross section.

4.5 Results

4.5.1 Scattering cross sections

Analytic approximations for scattering by a black hole in the low frequency

limit (Mω � 1) are given in equation (4.1). These are compared with numer-

ical results for scattering by a compact polytropic star obtained from equa-

tions (4.36) to (4.38). Scattering cross sections for a polytrope with tenuity

R/M = 6, index n = 1, and Mω = 0.1 are shown in figure 4.3. The low-

frequency BH approximations and numerical polytrope cross sections are very

similar. We expect the polytrope cross sections to further approach the low fre-

quency black hole approximations as Mω → 0. At the beginning of the chapter

we posited that large wavelength scattering was independent of the nature of

the central body, and the result here is consistent with such a picture.
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Figure 4.4: Scattering cross sections for a GW of frequency ω = 1M−1 incident
on a polytrope (PT) of tenuity R/M = 6 and polytopic index n = 1. For
comparison we also plot the cross section for a GW scattered by a Schwarzschild
black hole of the same mass. Figure reproduced from [64].

The scattering cross section becomes sensitive to the central body when the

wave is able to probe the internal structure. This corresponds to wavelengths

λ/(2M) . 1, i.e. moderate to large frequencies, Mω & 1. In figure 4.4, the

GW cross sections for Mω = 1 are shown for a compact body with R/M = 6

and a black hole (both found numerically), and they are markedly different for

θ & 20◦.

In figure 4.5 we display the GW and scalar scattering cross sections for a

polytropic star with index n = 1 and tenuity R/M = 6. At low frequencies

the helicity reversing component, |g2(θ)|2, of the cross section is significant at

large observation angles (see figure 4.5a). As Mω increases, |g2(θ)|2 becomes

less significant, and at Mω = 4 it is negligible at all angles. Once Mω & 2, the

GW and scalar cross sections become hard to visually distinguish (except at the

largest angles where the cross section is small). In addition, in this frequency

regime a rainbow scattering pattern can be seen as in figures 4.5c and 4.5d.

This is the same qualitative cross section structure that we saw for the scalar

field on a constant density star (n = 0) in chapter 3. To briefly re-iterate

the main features: (1) There is a primary peak below the geodesic rainbow
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R/M
n

0 0.5 1

5 81.1◦ 92.1◦ 115◦

6 59.6◦ 66.6◦ 79.7◦

7 47.3◦ 52.4◦ 61.5◦

Table 4.1: The geodesic rainbow angles, θr, for polytropic fluid stars with
tenuity R/M and polytropic index n.

angle θp . θr, that approaches the geodesic value as Mω → ∞; (2) at higher

frequencies one can distinguish supernumerary troughs and peaks at smaller

angles θ < θp, and the width of these oscillations decreases as Mω increases;

(3) the cross section falls of into the shadow region θ > θp; (4) the rainbow

pattern described in points (1)-(3) is superposed on a Rutherford like forward

divergence. For a more detailed discussion of points (1)-(4) and semiclassical

approximations see chapter 3.

The rainbow scattering feature is sensitive to the stellar structure, in this

case parametrised by n and R/M . In figure 4.6 we compare dσ/dΩ for three

models with R/M = 6, Mω = 4 and n = 0, 0.5, 1. As n increases, the rainbow

angle increases (see table 4.1), and the interference pattern shifts to larger

angles accordingly. This can be understood in terms of the density profiles (see

figure 4.1). For larger n, the object is more centrally dense, the star is ‘less

stiff’, and it has a slower internal speed of sound. As a consequence, incident

rays have a greater maximum-deflection angle.

4.5.2 Near field scattering profile

For a more complete picture of the scattering process we have also looked at

scattering of null rays (see chapter 3, section 3.2) and the near field profile of

the scalar field for the three polytropic models n = 0, 0.5, 1.

Figure 4.7 shows null geodesics impinging on the three stellar models. For

the constant density case (figure 4.7a), a cusp caustic forms near the surface

of the body. For higher polytropic indices the cusp caustic is formed deeper

inside the body (see figures 4.7b and 4.7c). The cusp caustic envelope defines
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Figure 4.5: Scattering cross sections for a polytropic star with R/M = 6,
polytropic index n = 1 and coupling Mω = 0.1 (a), Mω = 1(b), Mω = 2 (c)
and Mω = 4 (d). The helicity preserving (reversing) part of the GW cross
section is shown in dashed blue (dot-dashed red), and the cross section for a
scalar wave is shown in dotted green. The rainbow angle, θbow ≈ 79.7◦, is shown
as a solid vertical line for the two higher frequency cases. Figure reproduced
from [64].
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Figure 4.6: Gravitational wave scattering cross sections for polytropes with
index n = 1 (black solid), n = 0.5 (blue dashed), and n = 0 (red dashed).
Vertical lines indicate the rainbow angles θr ≈ 59.6◦ (n = 0), θr ≈ 66.6◦

(n = 0.5), and θr ≈ 79.7◦ (n = 1). Figure reproduced from [64].

a rainbow wedge with rainbow angle θr that can be looked up in table 4.1.

In figure 4.8 we show the scalar field solution corresponding to a scattered

plane wave near and inside the central body. We find that for moderate fre-

quencies, Mω = 1, the amplitude of the wave can be increased by a factor of

approximately 4 near the formation of the cusp caustic (see figure 4.7c). For

higher frequencies the maximum amplification factor increases, and can reach

approximately 20 for Mω = 8 as shown in figure 4.8b. In addition, for Mω = 8

it is possible to visually identify constructive interference at a scattering angle

of θ ≈ 79.7◦, corresponding to the primary rainbow peak.

4.6 Conclusions

In this chapter we have generalised the work of chapter 3 to consider scattering

of gravitational (s = 2) as well as scalar (s = 0) monochromatic plane waves

by a central compact body, modelled as a spherically symmetric polytrope

with index n. We have computed scattering cross sections, dσ/dΩ, numerically

(figures 4.3, 4.5 and 4.6), and examined the scalar scattering profile near the
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n = 0

(a)

n = 0.5

(b)

n = 1

(c)

Figure 4.7: A congruence of geodesics incident on a compact star with tenuity
R/M = 6 and polytropic index n = 0 (a), n = 0.5 (b), and n = 1 (c). Figure
reproduced from [64].

(a) (b)

Figure 4.8: A unit amplitude scalar plane wave scattering off a compact body
(black outline) with tenuity R/M = 6 and polytropic index n = 1. The incident
wave has coupling Mω = 1 (a) and Mω = 8 (b). Figure reproduced from [64].
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central body (figure 4.8).

At low frequencies Mω � 1, we find that dσ/dΩ is essentially only sensitive

to the central body’s mass, and is well described by the limiting cross section

of a Schwarzschild black hole as Mω → 0, equation (4.1). The incident wave

does not probe the details of the scattering body structure since the wavelength

λ � Rg = 2M . In this regime, the helicity-reversing amplitude, |g2|2 has a

significant contribution to dσ/dΩ at angles θ & 90◦ (see figure 4.3).

As the frequency increases, the contribution from the helicity-reversing am-

plitude decreases. We find that g2 is essentially negligible for Mω & 1. This

implies that the odd and even parity phase shifts are approximately equal for

the l modes that contribute significantly to dσ/dΩ (leading to cancellations in

equation (4.37)). Since the even parity modes couple to the fluid perturbations

but the odd parity modes do not, this suggests GW-fluid perturbation coupling

is inconsequential for time-independent scattering. Fluid modes might however

be key to understanding time-dependent scattering [92], or absorption where

one considers energy loss through heat (see discussion in chapter 5).

In chapter 3 we found that a rainbow interference pattern was extant in

the scattering cross section for the case s = 0, n = 0, and Mω ≈ 8. Here we

have shown that this feature is also present for s ∈ {0, 2}, n ∈ {0, 0.5, 1}, and

Mω & 4, indicating its robustness (figures 4.5 and 4.6).

In addition, we have seen that the position of the primary rainbow peak,

θp, is sensitive to the equation of state, parametrised by n and R/M . For

larger n (and/or smaller R/M), θp and the supernumerary peaks and troughs

are shifted to larger scattering angles (an example is shown in figure 4.6). It

would be interesting in future work to consider the inverse problem. That

is to say, can the equation of state for a neutron star be constrained by the

scattering cross section? This is of course more difficult, there is already the

degeneracy of the rainbow peak’s dependence on both R/M and n even when

only considering polytropic equations of state.

We now turn to the question of the astrophysical relevance of gravitational

wave scattering by a compact body. A neutron star has a typical mass M ≈
1.5M� [174], and a gravitational radius of rg = 2GM/c2 ≈ 2.2 km. The highest
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frequency GW sources known are millisecond pulsars with ω ∼ 103 Hz [76].

The fastest-spinning pulsar yet detected is PSR J1748-2446ad, with a circular

frequency of 716 Hz. PSR J1748-2446ad will emit gravitational waves [178, 179]

with ω = 9 × 103 Hz provided it is not axisymmetric about its rotation axis.

In general then, any essentially time-independent scattering of gravitational

waves by a neutron star that could reasonably be expected to occur will satisfy

Mω . 1.5M� × 103 Hz × G/c3 ∼ 10−2. In this regime, the low frequency

approximation (equation (4.1)) is valid, the scattering is essentially insensitive

to the bodies structure, and rainbow scattering does not occur.

A larger less compact body such as a white dwarf with tenuity R/M ∼ 1400

may satisfy the requirements for rainbow scattering (e.g. the Wolf-Rayet star

R136a1 of mass M ≈ 315M�). However, the interference pattern would be at

very small angles and difficult to resolve. Recently it has been shown that scalar

waves incident on a black hole with surrounding matter may display rainbow

scattering [56], and given the results of this chapter it seems very likely we could

expect similar behaviour for GWs. GWs incident on intermediate-mass black

holes (102–105M�) or supermassive black holes (M & 105M�) with surrounding

matter could naturally satisfy the condition Mω & 1.

Entertaining the possibility of astrophysical scenarios where (quasi-)time

independent scattering of GWs by a compact body does produce a cross sec-

tion with a rainbow interference pattern, let us consider the issue of detection.

Suppose we aimed to sample the primary rainbow peak and subsequent trough

of the interference pattern. Firstly, the GW source, scattering body, and detec-

tor would need to be aligned in such a way that the detector lay at an angle of

observation θobs ≈ θp. Secondly, since θobs would be fixed, observations would

need to be made over a range of frequencies ∆ω instead of a range of angles.

Varying ω shifts the diffraction pattern according (roughly) to the semiclas-

sical Airy formula, equation (3.55). To sample the first peak and trough of

the rainbow we would require ∆ω/ω ∼ 2q/(θr − θobs), where q ≡ Θ′′r/(2ω
2).

A compact binary inspiral could provide a GW source which sweeps out the

required frequency range.

Whilst the astrophysical relevance is rather speculative, it is worth reiterat-
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ing that the results here contribute to a broader, theoretical understanding of

wave propagation on compact body space-times. GWs on curved-spacetimes

can in some cases have analogies in shallow water wave propagation. Berry has

considered tsunamis scattered by submerged islands, and found the formation

of a cusp caustic can occur [180, 181]. This corresponds to the amplification

of the tsunami downstream with possibly dire outcomes. Analogously, we have

found the formation of a cusp caustic when considering geodesics on a com-

pact body spacetime (figure 4.7), and a corresponding amplification of scalar

waves incident on a compact body (figure 4.8). Whether there are any physical

consequences of the energy focusing in this context is an open question.
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Chapter 5

Extreme compact objects:

trapped modes and absorption

spectra

The detections of gravitational waves by LIGO and Virgo are compelling evi-

dence for the existence of black holes (BH). Numerous detected signals are fully

consistent with general relativistic models of two BHs spiralling together and

coalescing into a single BH [1]. Other signals are consistent with the merger

of two neutron stars (NS) resulting in a BH [2, 168]. More recently there may

also be detections originating in NS + BH → BH mergers [182].

The possibility remains however, that the detected signals may not have

originated in the mergers of canonical Kerr black holes of the classical theory

of general relativity [20, 183]. They could instead have been generated by

alternative Exotic/Extreme Compact Objects (ECOs), that can mimick the

signal of BH mergers.

ECO proposals include gravastars [116], and BH near horizon modifications

motivated by quantum gravity [16, 17]. The horizon may be replaced by a

quantum phase transition that arises on the Planck scale. The surface of these

objects may be partially reflective, giving rise to an effective cavity between

the peak of the external angular momentum barrier (defined by the light ring)

and the surface. ECOs may be categorised by their compactness [20]: if they
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are compact enough to possess a light ring they are known as UltraCompact

Objects (UCOs); if they possess a photon sphere and, in addition, a spectrum

of modes trapped within the cavity that could provide a clean signal they are

known as Clean Photon sphere Objects (ClePhOs). Many ECOs can be ruled

out already on theoretical grounds due to the presence of instabilities [183].

The inspiral, merger, and early ringdown stage of a GW signal is currently

unable to distinguish between an ECO and BH model [20]. This is predicted

to change with the advent of space-based GW detectors and more precise mea-

surements (see e.g. [184]). It is possible to distinguish binary NS mergers by

the observation of electromagnetic radiation that follows the gravitational wave

[2].

The late-ringdown phase of a merger-endstate ECO displays clear features

that differentiate them from BHs. This phase is possible to model using pertur-

bation theory, allowing some physical insight. There has been interest in study-

ing gravitational-wave data from LIGO to search for smoking-gun evidence of

ECOs: echoes of the initial ringdown signal corresponding to successive reflec-

tions of radiation within the cavity [16, 18, 20, 164, 185, 186]. There has been

a claim to have found these echoes already, but it seems inconclusive at present

[18, 187, 188]. The consensus is that future, more precise measurements will

be required to distinguish ECOs from BHs.

Certain requirements must be met by an ECO for there to be echoes [16].

Barceló and colleagues have proposed compact dark objects without a horizon

motivated by a semiclassical model of collapse [17]. These are termed dark

stars or quasi black holes and satisfy the requirements for echoes.

Another example of an ECO was proposed by Saravani et al. [189], in

which spacetime ends at a microscopic distance from black hole event horizons.

Abedi and colleagues proposed that the stretched horizon of these ‘empty black

holes’ partly absorbs perturbations with frequency greater than the Hawking

temperature, ω � TH , and reflects perturbations with ω . TH [18].

In collaboration with C.F.B. Macedo, S.R. Dolan, and L.C.B. Crispino,

we have investigated the the absorption cross sections of generic, spherically

symmetric ECOs. Part of this material is also presented in reference [63]. All
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of the data and figures shown here have been generated by the author.

The ECO is characterised by the position of its surface, R = 2M + δR,

and the level of reflectivity/dissipation there. For a UCO δR/M ≤ 1, and

for a ClePhO δR/M . 0.038 [190]. The ClePhO bound for δR is obtained

by demanding that more than 95% of the energy of massless waves initially

localised near the photon sphere will have dispersed before a massless particle

has the time to make the round-trip from the photon sphere to the the objects

surface and back again.

In this chapter we redefine the tortoise coordinate (equation (2.7)) so that

the light ring lies at x = 0,

x(r) ≡ r + 2M log
( r

2M
− 1
)
− (3− 2 log 2)M. (5.1)

The width of the effective cavity is thus |x(R)|. For a ClePhO, |x(R)| & 7.50M .

In this chapter we will calculate ECO transmission factors and absorption cross

sections numerically. We will also calculate the trapped mode frequencies. We

find that the absorption cross section displays distinctive peaks a.k.a. spectral

lines, corresponding to excitation of trapped modes.

In addition, we use a comparison radial equation with a Pöschl-Teller po-

tential that arises naturally for a perturbed Nariai spacetime [191]. This allows

an analytic derivation of trapped mode frequencies and of the form of the ab-

sorption cross section close to the spectral lines. In this model we show that

the spacing of the spectral lines is controlled by the width of the effective

cavity |x(R)|, and the width of the spectral lines is determined by the reflectiv-

ity/dissipation properties of the ECO as well as |x(R)|. By comparing to our

numerical results for the Schwarzschild-ECO model, we find that the spectral

line properties are similarly determined by the ECO parameters.

5.1 The ECO model

The exterior of the spherically symmetric ECO is the Schwarzschild geometry,

which we discussed in detail in chapter 2. We will draw a veil over the model
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dependent interior, and instead consider a generic boundary condition at the

surface (see chapter 2 section 2.2.2 for more details).

We consider a scalar field perturbation on the ECO background, and a class

of ECOs parametrised by a boundary condition for the field at their surface,

usl (r) =

e−iωx +Kl(ω)e−2iωx0e+iωx, x→ x0

C−l e
−iωx + C+

l e
+iωx, x→∞

, (5.2)

where x0 = x(R), and ul(r) is a radial mode of angular frequency ω.

The boundary condition is parametrised by the (possibly) frequency depen-

dent ‘reflectivity’ Kl(ω) [192]. As a starting point we will consider some simple

cases where Kl(ω) = K is a constant and independent of ω and l (hence we

will drop the subscript). For example we could consider Dirichlet (K = −1),

Neumann (K = 1), and BH type (K = 0) boundary conditions. To capture

the effects of partial absorption, which may be induced by a coupling to the

ECO or some dissipation mechanism in the interior, we also consider |K| < 1.

Recently it was pointed out that K may in general be complex, and the phase

introduces non-trivial effects in the late-ringdown signal of a perturbed ECO

such as polarization mixing [164]. For the scalar case we need not worry about

polarization mixing, but this should be kept in mind for possible future studies

into absorption of GWs and other fields by black holes.

5.2 Absorption cross section

Recall that the absorption cross section is

σabs(ω) =
π

ω2

∑
l

(2l + 1)Γωl, (5.3)

where the transmission factors Γωl are defined by the mode coefficients C±l of

equation (5.2),

Γωl ≡ 1−
∣∣∣∣C+

l

C−l

∣∣∣∣2 =
1− |Ke−2iωx0|2∣∣C−l ∣∣2 . (5.4)
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We now seek to write Γωl in terms of the IN and UP modes introduced in

chapter 2. Recall that the BH mode coefficients are related by equation (2.19),

which we will make use of in the following analysis.

By considering Wronskian relations between the ECO perturbation, usl , and

the black hole IN and UP perturbation modes we arrive at

C−l ≈ B+
l −B

−
l K̃, (5.5a)

A+
s ≈

1

A−l

(
A+
l C
−
l + K̃

)
, (5.5b)

where K̃ ≡ Ke−2iωx0 . The relations of equation (5.5) are approximate, they

are valid in the limit δR/(2M) → 0, and depend critically on the choice of

δR and the formulation of the conditions in equation (5.2) (in particular the

choice of an overall phase multiplication at the surface). We now assume that

equations (5.5) hold exactly.

The transmission factor diverges where C−l = 0, or equivalently where the

condition
B+
l

B−l
= Ke−2iωx0 , (5.6)

is met. Equation (5.6) defines a spectrum of quasinormal modes (QNMs) with

complex quasinormal frequencies (QNFs) ωln (see section 1.1 for a discussion

of QNMs). At this stage one may already expect there to be trapped modes in

the spectrum, caught between the light ring and the partially reflective surface.

Later we will show this is the case, and there exist ωln with small imaginary

part.

The transmission factor is usually evaluated at real values of ω, and when

this is near a trapped-mode frequency (i.e. ω ≈ ωln), it can be shown to be of

Breit-Wigner form. We have

C−l ≈ (ω − ωln)
∂C−l
∂ω

∣∣
ω=ωln

, for ω ≈ ωln, (5.7)
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and thus by equation (5.4)

Γωl ≈
∑
n

Aln
(ω − Reωln)2 + (Imωln)2 , (5.8)

where we allow for a sum over possible nearby modes with amplitudes

Aln = (1− |K|2)

∣∣∣∣∂C−l∂ω

∣∣∣∣−2

. (5.9)

5.3 The Pöschl-Teller potential or Nariai space-

time comparison problem

As in previous chapters, to obtain the mode solutions on compact body space-

timnes we must resort to numerical or approximate techniques. There are

exact analytic solutions to the exterior Regge-Wheeler equation, which are

special cases of the confluent Heun function [193]. However, these are not yet

sufficiently well understood to obtain for example, the scattering coefficients

C±l without ultimately resorting to numerical integration.

Another option is to consider ‘comparison potentials’ that give exactly solv-

able differential equations. This can open up the possibility to capture the

essential physical features of the system and allow a clearer interpretation. It

is a widely used method across physics. For example, Woods-Saxon effective

nuclear potentials are frequently used as approximations in atomic scattering

studies (e.g. [67, 194]).

Here, we follow previous studies of scalar fields on Schwarzschild spacetime

(see [105] and references therein) and consider the Pöschl-Teller potential

V PT
l ≡ γ2V0

cosh2 (γ(x− x1))
. (5.10)

A closest match to the Schwarzschild exterior potential is found with the choice

of constants V0 = l(l + 1), x1 = 0, γ = 1/
√

27M (see figure 5.1). The Pöschl-

Teller decays exponentially as x → ∞ and is symmetric about the origin, in
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Figure 5.1: The effective radial potential for scalar perturbations on compact
body backgrounds. The Schwarzschild (black, solid) and Pöschl-Teller (red,
dashed) potentials are plotted as a function of the tortoise coordinate x defined
in equation (5.1). The surface radii of compact body categories are depicted
with shaded regions.

contrast to the Schwarzschild potential. Both potentials have a single peak,

and thus similar classical turning point structure. In this way, scattering and

absorption of radial modes may be expected to be qualitatively the same.

As has been noted, the Pöschl-Teller potential actually arises naturally when

considering a scalar perturbation of a known solution to Einstein’s equations

[105]. This solution is the Nariai spacetime [191]. It is the cartesian product

of 2-dimensional de Sitter spacetime and the 2-sphere (dS2 × S2).

The line element describing the region of the Nariai spacetime we wish to

consider for our model is is given by

dŝ2 = −F (z)dt2 +
1

F (z)
dz2 + dΩ2 (5.11)

where

F (z) = 1− z2, (5.12)
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and z ∈ (−1, 1) (see e.g. section III of reference [105] for details). The Klein

Gordon equation for a scalar field ΦN with conformal coupling ξ, on this Nariai

background can be solved by decomposing as

ΦN =

∫ ∞
−∞

e−iω̂t
∞∑
l=0

m=l∑
m=−l

ûlω̂(r)

r
Ylm(θ, φ) dω̂. (5.13)

The radial equation is[
d2

dx̂2
+ ω̂2 − L2 + 4ξ − 1/4

cosh2 x̂

]
ûlω̂ = 0, (5.14)

where L ≡ l + 1/2 and x̂ = tanh−1 z ∈ (−∞,∞). To obtain the Pöschl-Teller

potential which has a closest match to the Schwarzschild case we identify

ω̂ ↔
√

27Mω, x̂↔ x√
27M

. (5.15)

In analogy with the ECO model, we impose boundary conditions as

ûl(x̂) =

e−iω̂x̂ +Ke−2iω̂x̂0e+iω̂x̂, x̂→ x̂0

Ĉ−l e
−iω̂x̂ + Ĉ+

l e
+iω̂x̂, x̂→∞

, (5.16)

where x̂0 is the radial coordinate of the ‘Nariai-ECO’ surface. In analogy with

the Schwarzschild in and up modes (see equations (2.16) and (2.17)) standard

solutions ûinl and ûupl may be defined with the following asymptotic behaviour

ûin
l (x̂) ∼

e−iω̂x̂, x̂→ −∞

Â+
l e

iω̂x̂ + Â−l e
−iω̂x̂ x̂→∞

, (5.17)

and

ûup
l (x̂) ∼

B̂+
l e

iω̂x̂ + B̂−l e
−iω̂x̂, x̂→ −∞

eiω̂x̂, x̂→∞
, (5.18)
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In fact, û
in/up
l are known in closed form [105], and are particularly simple when

ξ = 1/8 1 (the conformal coupling factor for three dimensions),

ûin
l = Γ[1− iω̂]P iω̂

iL−1/2(−z), (5.19)

ûup
l = Γ[1− iω̂]P iω̂

iL−1/2(z). (5.20)

Using series expansions for the Legendre functions about z = 1, the coeffi-

cients are found to be [105]

B̂+
l =

Γ(−iω̂)Γ(1− iω̂)

Γ(1
2

+ iL− iω̂)Γ(1
2
− iL− iω̂)

, (5.21a)

B̂−l =
Γ(iω̂)Γ(1− iω̂)

Γ(1
2

+ iL)Γ(1
2
− iL)

, (5.21b)

where Γ(·) is the Gamma function. The Nariai potential is symmetric under

the transformation x↔ −x, which implies that Â±l = B̂∓l .

5.3.1 Quasinormal mode spectrum

The Pöschl-Teller / Nariai compact body model has a spectrum of modes de-

fined by (in analogy with equation (5.6))

B̂+
l

B̂−l
=

Γ(−iω̂)

Γ(+iω̂)
·

Γ(1
2

+ iL)Γ(1
2
− iL)

Γ(1
2

+ iL− iω̂)Γ(1
2
− iL− iω̂)

= K̃. (5.22)

When ω̂ � L (i.e. the mode is trapped deep within the cavity), equa-

tion (5.22) can be solved for ω̂ln approximately,

ω̂ln ≈
π(n+ 1/2)

|x̂0|
+ i

log |K|
2|x̂0|

. (5.23)

The spectrum in this regime, ω̂ � L, thus has an approximately uniform

spacing of ∆ω = π/|x̂0| and a constant imaginary part.

1Note that the closest match to the Schwarzschild effective potential is achieved by choos-
ing ξ = 0. However, our aim is to gain a qualitative understanding of a comparison problem
that is possible to solve analytically in a simple closed form, so we may as well choose ξ = 1/8.
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5.3.2 Breit-Wigner amplitude

We now derive an approximation for the Breit-Wigner amplitude appearing in

the transmission factor formula valid for circular frequencies close to a QNF

(see equations (5.8) and (5.9) with C−l → Ĉ−l , ω → ω̂).

First, considering Wronskians of the independent mode solutions yields

Ĉ−l ≈ B̂+
l − B̂

−
l K̃. (5.24)

Differentiating equation (5.24) we find

∂Ĉ−l
∂ω̂

∣∣∣∣
ω̂=ω̂ln

≈ B̂+
l

(
2ix̂0 −

∂

∂ω̂

[
log

(
B̂−l
B̂+
l

)]) ∣∣∣∣∣
ω̂=ω̂ln

. (5.25)

For ω̂ � L, the first term of equation (5.25) dominates, so that the Breit-

Wigner amplitude for the Nariai-ECO model is

Âln ≈
(1− |K|2)

4x̂2
0

· 1

|B̂+
l |2

. (5.26)

Using the reflection identity, Γ(z)Γ(1−z) = π csc(πz) , and the identity Γ(z)∗ =

Γ(z∗) [117], we can express |B̂+
l |2 for ω̂ real as

|B̂+
l |

2 =
cosh [π (L− ω̂)] cosh [π (L+ ω̂)]

sinh2 (πω̂)
. (5.27)

Assuming Re ω̂ln � Im ω̂ln, substituting equation (5.27) into equation (5.26)

gives

Âln ≈
(1− |K|2)

4x̂2
0

· sinh2 (πω̂)

cosh [π (L− ω̂)] cosh [π (L+ ω̂)]
. (5.28)

Equation (5.28) tells us that spectral lines for L � ω̂ will be exponentially

suppressed. They should become significant for L ∼ ω̂.
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5.4 Long wavelength approximation

Unruh derived an approximation for the absorption of scalar and spinor parti-

cles by a black hole in the limit where the particles wavelength is much larger

than the Schwarzschild radius [103] (Mω � 1) . For the massless scalar case

it is given by

σBH ≈ 16πM2. (5.29)

Following the method of [103] we will now derive a long wavelength limit for

scalar particle absorption by an ECO with boundary conditions given by equa-

tion (5.2).

Neglecting the ω2 terms in equation (2.5), and defining z ≡ r/M−1, one can

rewrite the equation for the radial mode in the exterior (see also equation (2.9))

as [
(1− z2)

d

dz2
− 2z

d

dz
+ l(l + 1)

]
2

z + 1
ul = 0. (5.30)

The general solution to equation (5.30) is

ul =
z + 1

2
(CIPl(z) + CIIQl(z)), (5.31)

where Pl(z) and Ql(z) are the Legendre functions of the first and second kind

respectively [117], and CI and CII are constants determined by the boundary

conditions.

5.4.1 Near surface region

Near the surface (z = 1 + ε, where ε� 1) we use the asymptotic forms

Pl(z) ∼ 1 +O(z − 1), (5.32)

Ql(z) ∼ − log(z − 1)

2l!
+ al +O(z − 1), (5.33)

where

al =
1

l!

(
1

2
log 2− γ − Γ′(l + 1)

Γ(l + 1)

)
. (5.34)
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Therefore, as z → 1+,

ul ∼ (CI + CII(− log(z − 1)/2l! + al)) . (5.35a)

∂ul
∂z

∣∣∣∣
r=R

∼ − CII
2(l!)

(z − 1)−1. (5.35b)

Expanding the boundary conditions, equation (5.2), in ω yields

ul ∼ (1 +K) +O(ω), (5.36a)

∂ul
∂z

∣∣∣∣
r=R

∼ −
(

1 +
2

l!(z − 1)

)
iMω(1−K) +O(ω2). (5.36b)

Applying the conditions of equation (5.36) to the approximate general solution

equation (5.35) gives

CI ∼ (1 +K), (5.37a)

CII ∼ 4iMω(l!)(1−K), (5.37b)

to lowest order in ω (assuming K 6= ±1). Defining DII = CII/(4iMω(l!)) note

that
1

2
(CID

∗
II + C∗IDII) = 1− |K|2. (5.38)

5.4.2 Far field region

In the far field, the Legendre polynomial solutions have the approximate forms

[117]

Pl(z) ∼ (2l)!

2l(l!)2
zl, (5.39)

Ql(z) ∼ 2ll!

(2l + 1)!
z−l−1, (5.40)

and so

ul ≈ CI
(2l)!

2l+1(l!)2

( r
M

)l+1

+ CII
2l−1l!

(2l + 1)!

( r
M

)−l
. (5.41)
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It is convenient to also use a comparison equation obtained by neglecting terms

of O(2M/r) in equation (2.8),[
r2
∗
d2

dr2
∗
ψ + ω2r2

∗ − l(l + 1)

]
ul ≈ 0. (5.42)

A set of solutions to equation (5.42) are the spherical Hankel functions, h
(1)
l (ωr∗)

and h
(2)
l (ωr∗) [117], with far field behaviour

h
(1)
l (ωr∗) ∼ (i)−l−1 e

iωr∗

ωr∗
, (5.43)

h
(2)
l (ωr∗) ∼ (i)l+1 e

−iωr∗

ωr∗
. (5.44)

In order to match with the boundary conditions in the far field (equation (5.2)),

the solution we seek is

ul ≈ ωr∗

[
C−l (−i)l+1h

(2)
l (ωr∗) + C+

l i
l+1h

(1)
l (ωr∗)

]
. (5.45)

The spherical Hankel functions are related to the spherical Bessel functions of

the first and second kind, jl(x) and nl(x), via [117]

h
(1)
l = jl + inl, h

(2)
l = jl − inl, (5.46)

with asymptotic expansions

jl(x) ∼ 2ll!

(2l + 1)!
xl +O(xl+2), as x→ 0, (5.47)

nl(x) ∼ −(2l)!

2ll!
x−l−1 +O(x−l+1), as x→ 0. (5.48)

Taking the limit ω → 0 for some finite r∗, the RHS of equation (5.45) is

ψ ∼
[

2ll!

(2l + 1)!
ωl+1

(
C−l (−i)l+1 + C+

l i
l+1
)
rl+1

− i(2l)!

2ll!
ω−l

(
C−l (−i)l+1 −+C+

l i
l+1
)
r−l
]
. (5.49)
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Comparing equations (5.41) and (5.49), we see that

CI ≈
22l+1(l!)3

(2l)!(2l + 1)!
(Mω)l+1[C−l (−i)l+1 + C+

l i
l+1], (5.50)

CII ≈ −i
(2l)!(2l + 1)!

22l−1(l!)2
(Mω)−l[C−l (−i)l+1 − C+

l i
l+1]. (5.51)

Provided K 6= 1, by equations (5.37b) and (5.51) we have

C+
l ≈ (−1)l+1C−l +O

(
ω2(l+1)

)
, (5.52)

and therefore

CI ≈
22l+2(l!)3

(2l)!(2l + 1)!
(Mω)l+1C−l (−i)l+1. (5.53)

By equations (5.37a) and (5.53)

1

|C−l |
≈ 22l+2(l!)3

(2l)!(2l + 1)!
(Mω)l+1 · 1

|1 +K|
. (5.54)

5.4.3 Absorption cross section in the long wavelength

limit

Substituting equation (5.54) into the absorption cross section summation, equa-

tion (5.3), we see that only the s-wave contributes (l = 0) when ω → 0. Then,

we arrive at the Mω � 1 approximation for the absorption cross section of our

model object,

σabs ≈
1−K
1 +K

· 16πM2. (5.55)

Reassuringly, when K = 0, this reduces to the black hole approximation, equa-

tion (5.29). It also holds as K → +1, as the absorption cross section should

be zero when the object is completely reflective (K = 1). This result does not

hold as K → −1 (see equation (5.37)).
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5.5 Numerical method

In order to calculate the absorption cross section, equation (5.3), and mode

spectra, we used numerical techniques.

We begin by solving the exterior radial equation (see equation (2.8)) ini-

tialised at R = 2M + δR with the corresponding boundary condition of equa-

tion (5.2). This is done numerically using the NDSolve function in Mathematica,

and we terminate the integration at some r = rmax. As in section 3.5, we match

the numerical solution to the generalised series solutions (see equation (3.65))

in the far field, to obtain C±l .

For the quasinormal mode spectra, we again use direct integration. First,

we integrate the solution satisfying the boundary condition at the surface R =

2M + δR out to some intermediate r1 > R. Next, we integrate the solution

satisfying the outgoing boundary condition (i.e. C−l = 0) from r = rmax to r1,

initialised with the appropriate generalised series solution. If the Wronskian

of the two numerical solutions is zero, then they are linearly dependent. Zeros

of the Wronskian correspond to quasinormal mode frequencies. A quasinormal

mode solution can be constructed by normalising one of the numerical solutions

so they match at r1. We use the FindRoot algorithm in Mathematica to search

for quasinormal mode frequencies. This appears to be stable for frequencies

with small imaginary part, i.e. the trapped modes we are interested in.

Typically we use the condition r = rmax = 100(l + 1)/ω to ensure accuracy

of the series solutions in the far field. We check the stability of the results by

varying r1 and rmax.

5.6 Results

At low frequencies we have found the numerical results to approach the ex-

pected limit obtained analytically (see equation (5.55)). At high frequencies

we find that σabs oscillates about the value

σabs ≈
(
1− |K|2

)
· 27πM2, (5.56)

123



5.6. RESULTS

0.0 0.2 0.4 0.6 0.8 1.0 1.2

1

10

100

1000

Figure 5.2: Absorption cross section for an ECO with δR = 10−6M andK = 0.9
(red, solid) or K = 0.99 (blue, dashed). Also shown for comparison is the
absorption cross section for a Schwarzschild BH.

which reduces to the black hole geometric optics limit, σBH → 27πM2, when

K = 0. At intermediate frequencies, there is noteworthy structure in σabs.

In figure 5.2 we display the absorption cross section for two ECOs with

K = 0.9 and K = 0.99. Both have δR = 10−6M . There are clear spectral lines

to be seen in the cross sections, and they are found at frequencies corresponding

to the real part of quasinormal mode frequencies of the respective model (see

table 5.1).

Not all modes correspond to a peak, as can be seen in figure 5.3. Some may

be ‘washed out’ by other dominant spectral lines. For example, in figure 5.3,

the l = 0 fundamental (n = 0) trapped mode produces a peak in the absorp-

tion cross section that obscures possible contributions from other fundamental

modes with l > 0.

As anticipated by the Nariai / Pösch-Teller comparison model, the real part

of the QNFs are relatively insensitive to K. See for example table 5.1 where

we tabulate the QNFs for R = 10−6 and K ∈ {0.5, 0.9, 0.99}. The spectral line
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l n K Re [Mωln] - Im [Mωln]

0 1 0.50 0.053321 0.012164

1 0.90 0.053535 0.0023733

1 0.99 0.053579 0.00077809

2 0.50 0.15252 0.021562

2 0.90 0.15427 0.012389

2 0.99 0.15455 0.010888

3 0.50 0.25353 0.046067

3 0.90 0.25605 0.036247

3 0.99 0.25646 0.034653

1 1 0.50 0.062490 0.013634

1 0.90 0.062445 0.0020724

1 0.99 0.062444 0.00019810

2 0.50 0.18063 0.012444

2 0.90 0.18059 0.0020209

2 0.99 0.18060 0.00032924

3 0.50 0.28322 0.014442

3 0.90 0.28405 0.0055299

3 0.99 0.28419 0.0040702

4 0.50 0.37652 0.032500

4 0.90 0.37890 0.023474

4 0.99 0.37928 0.022004

Table 5.1: The lowest quasinormal frequencies ωln for the scalar field. The
radius of the compact bodies is R = 2M + δR and δR = 10−6M .
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Figure 5.3: Absorption cross section for an ECO with δR = 10−6M and K =
0.9. Vertical lines mark the real part of quasinormal mode frequencies, Reωln,
for l ∈ {0, 1, 2, 3}. Spectral lines in the cross section correspond to Reωln, and
their width is controlled by Imωln (see text for more details).

positions are thus relatively insensitive to K.

The position of the peaks is sensitive to δR/M , as anticipated by the com-

parison model result, equation (5.23). In figures 5.4 and 5.5 we compare the

absorption cross sections for varying values of δR/M ∈ {10−4, 10−6, 10−20},
keeping K = 0.9 fixed. The lines become more closely spaced as δR/M de-

creases.

The angular width of the peaks are set by the imaginary part of the cor-

responding QNF. As can be seen from the Breit-Wigner formula, when |ω −
Reωln| = |Imωln|, the approximate transmission factor is half its maximum

value. The imaginary part of the QNFs, and thus the width of the spectral

lines depends on K. The smaller |K|, the smaller |Imωln|. Essentially, the more

reflective the ECO, the longer lived the trapped modes, as may have been ex-

pected. Consequently, the more reflective the ECO, the sharper the spectral

lines. This can be seen in figure 5.2. In addition, the width is set by δR/M , as

predicted by equation (5.23). As can be seen in figures 5.4 and 5.5, the smaller

δR/M , the sharper the lines.
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Figure 5.4: Absorption cross section for an ECO withK = 0.9 and δR = 10−6M
(red, solid) or δR = 10−4M (blue, dashed).
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Figure 5.5: Absorption cross section for an ECO withK = 0.9 and δR = 10−6M
(red, solid) or δR = 10−20M (blue, dashed).
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Figure 5.6: Transmission factors, Γl(ω), for an ECO with K = 0.9 and δR =
10−6M . The dashed horizontal line is at Γl(ω) = 1−K2.

The amplitude of a spectral line peak is set by the transmission factors.

In figure 5.6 we plot the transmission factors, Γωl for K = 0.9, δR = 10−6M ,

and 0 ≤ l ≤ 3. For a given multipole, Γωl exhibits evenly spaced peaks of

Breit-Wigner form. The peaks have approximately the same width, and their

amplitude increases exponentially with ω until ω & (l + 1/2)/(
√

27M). At

higher frequencies, the peaks become wider and less prominent, and the trans-

mission factors oscillate about the value 1−K2. The same qualitative behaviour

is seen for the transmission factors for the Pöschl-Teller potential model (see

section 5.3). The transmission factor peaks are shifted due to the different

effective potentials in each model, as can be seen in figure 5.7.

In general, we find that one transmission factor dominates at a spectral line

frequency, corresponding to the angular mode number of the corresponding

QNM. The visible spectral lines occur at peaks of the transmission factors

when ω ∼ (l+1/2)/(
√

27M), in other words, when the energy ω2 is near to the

height of the potential barrier, V0 = (l + 1/2)2/(27M2). This can be seen in

figure 5.8, where we use the Breit-Wigner approximation, equation (5.9), close

to the first few spectral lines of a model with K = 0.9 and δR = 10−6M .

As can be seen in figure 5.2, the spectral lines with the greatest amplitude

are seen at lower frequencies Mω . 0.1 (due to the factor of ω−2 in equa-
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Figure 5.7: Transmission factor, Γl=4(ω), for an ECO with K = 0.9 and δR =
10−6M (black). We also show the transmission factor for the Pöschl-Teller
comparison potential (dashed red).

tion (5.3)). In this regime, absorption can exceed the high (and low) frequency

limit by more than two orders of magnitude. We note that for objects with

small dissipation, 1 > |K| & 0.9, absorption at the lowest frequency spectral

lines may drastically exceed that of a black hole. In these cases, the incoming

wave has excited one of the lowest energy trapped modes.

The transmission factors appear to possess an approximate shift symmetry

under l → l + 1 and ω → ω + 1/(
√

27M), as seen in figure 5.6 and predicted

by equations (5.23) and (5.28). Thus the dominant peak amplitude for a given

Γl(ω), that gives rise to a spectral line at ω ≈ (l+ 1/2)/(
√

27M), is insensitive

to l. By equation (5.3), we can expect the amplitude of of the spectral lines to

therefore scale as ω−1 at high frequencies.

Trapped modes may loosely be defined as those with MωI . 10−2 [32].

As shown in figure 5.9, they satisfy MωR . (l + 1/2)/
√

27, i.e. they have an

effective ‘energy’ ω2
R less than the height of the potential barrier at the light

ring (see figure 5.1).
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Figure 5.8: Absorption cross section for an ECO with K = 0.9 and δR =
10−6M (black, solid) and the Breit-Wigner approximation (equation (5.9)) for
frequencies near spectral lines / quasinormal mode frequencies (red, dashed).
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Figure 5.9: Quasinormal frequencies for an ECO with K = 0.9 and δR =
10−6M . It is easy to distinguish ‘trapped’ modes by eye as those with |MωI| .
10−2 [32]. Trapped modes satisfy MωR . (l + 1/2)/

√
27, shown as dotted

vertical lines.
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5.7 Conclusions

In this chapter we have shown that a quite generic class of compact objects

with partially reflective surfaces and a photon sphere exhibit an absorption

cross section with spectral lines.

The frequencies the lines are found at correspond to quasinormal mode

solutions that are ‘trapped’ between the photon sphere and the surface. Phys-

ically, we imagine an incident wave of the right frequency exciting a trapped

mode, which undergoes successive reflections at the light ring and partial ab-

sorption/reflection at the surface. Our study is in the frequency domain, so it

makes little sense to speak of a dynamic physical process like this, but we can

expect the absorption of long lived, monochromatic waves to display similar

properties.

Studies of ECO scattering in the time domain have shown that characteristic

GW “echoes” associated with the multiple reflections in the cavity are expected

to radiate to the far field [18, 26, 27, 164, 185, 186, 192]. Each echo is dominated

by frequencies close to black hole QNM frequencies. The presence of echoes

in principle distinguishes the object from a black hole, and the wave form

properties can be used to infer δR/M and K. The results presented here

(section 5.6) suggest a complementary method to diagnose ECO properties.

The spectral lines angular-frequency width is approximately− logK/(2|x0|).
They have a spacing of roughly π/|x0|, predicted by a comparison model (equa-

tion (5.23)). Individual lines are resolvable if the spacing is greater than the

(angular-frequency) width. Thus, the more reflective objects have sharper, bet-

ter resolved lines compared to more dissipative ECOs, i.e., those with smaller

values of |K|. This can be seen in figure 5.2. Also, ECOs with a larger cavity

(δR/M small, |x0| large) will have sharper and more closely spaced spectral

lines, as shown in figure 5.5.

Our model considers a massless scalar field, but we would expect similar

absorption spectra for other fields incident on a spherically symmetric ECO

with the partially reflective boundary conditions, since the radial equations are

similar. There would be some differences, for example radiative electromagnetic
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and gravitational perturbations (spin s = 1 and s = 2 respectively) do not have

multi-pole components with l < s.

If we consider an ECO of mass ME the strongest spectral lines are at lower

frequencies MEω . 1 which corresponds to ω . 2.0× 105(M�/ME) Hz. For an

ECO with mass comparable to a stellar black hole ME = 10M�, considering

the electromagnetic spectrum, the strongest spectral lines would be expected

for very low frequency radio waves. For the CMB, 10M�ω ∼ 107 in geometric

units and we would expect any absorption lines to be highly suppressed due to

the 1/ω fall-off.

A more promising possibility is an essentially monochromatic GW signal

generated by a massive binary, which may lie in the region 10−4 Hz . ω .

10−1 Hz. An ECO of mass 106 . ME/M� . 109 could in principle display

strong spectral lines if illuminated by such a source. There is one such candidate

at the centre of our galaxy, the supermassive compact object Sagittarius A*

(generally believed to harbour a central black hole), with mass M ≈ 4×106M�

[195].

Even if the parameters in a given scenario are favourable for strong spectral

lines, the next question is how would one detect them? Speculatively, one could

imagine a binary GW source, with a SMBH candidate fortuitously placed be-

tween it and a detector. As the binary swept out a range of frequencies, it may

coincide with a trapped mode of the intermediate object, and a conspicuous

dip in the detected amplitude might be expected. In this way, the possibility

for BH alternatives could be tested using GW spectral lines. In addition, the

cavity size and dissipative properties could in principle be inferred from the

angular spacing, sharpness, and strength of the absorption lines.

The results displayed here may have some bearing on scattering by neutron

stars. In previous chapters we described how GWs couple to fluid oscillations.

Our toy models neglected the possibility of energy loss through friction, which

could effectively absorb energy from an incident wave. At the right frequency, a

GW may excite a fluid mode of a neutron star, which would then decay through

heat loss. It seems possible that similar spectral lines may be expected in the

absorption cross section for a neutron star.
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In addition to absorption lines, we might also expect an ECO to display

emission lines. The transmission factors are a key ingredient in the calculation

of Hawking emission for black holes, in fact the number of particles emitted by

a Schwarzschild black hole per unit time per unit frequency can be written in

terms of the absorption cross section [121, 196]:

d2N

dtdω
=

1

2π

∞∑
l=0

(2l + 1)Γωl
e2πω/κ − 1

=
ω2

2π2
· σBH

e2πω/κ − 1
, (5.57)

where κ = 1/(4M) is the surface gravity. With the above considerations in

mind, one may naively expect that ECOs could generate emission spectra with

notable deviations from the perfect black body spectrum predicted for black

holes [196]. Also, models of rotating ECOs have unstable trapped modes,

i.e., modes that grow exponentially over time [164, 192]. These arise due to

superradiance which causes an ergoregion instability. An impinging wave could

excite an unstable mode of a rotating ECO, leading to stimulated emission lines.
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Chapter 6

Regge poles of compact bodies

and their application to

scattering theory

Chandrasekhar showed that black hole perturbation theory could be formulated

in terms of a scattering problem [90]. This picture places the scattering matrix

S(l, ω) (see equation (2.18)) in a lead role for many calculations one may wish to

do. Physically relevant questions rely on the information contained in S(l, ω),

such as what outgoing gravitational radiation would be detected by an observer

far away from a black hole perturbed by some source matter/energy.

Thorne and collaborators first formulated the theory of relativistic stellar

perturbations in analogy with the Newtonian approach [29, 30]. The main new

relativistic ingredient was that the fluid oscillation modes were damped by a

coupling to gravitational waves, which radiated away energy to infinity. In

this picture, the initial disturbance is envisaged as a perturbation of the stellar

matter.

In a complementary approach, Chandrasekhar and Ferrari presented the

oscillations of a star’s spacetime as a scattering problem [98–100]. They ma-

nipulated the linearised Einstein equations so that the hydrodynamical and

space-time perturbation equations decoupled. With the decoupling, one could

solve for the space-time perturbations (GWs) without any reference to the mat-

135



ter perturbations 1. This, in essence, is why one may view the non-radial os-

cillations of a star purely in terms of scattering by gravitational waves (in the

same way as black hole perturbations).

The natural modes of oscillation for a non-rotating compact object are

well understood in terms of resonant modes with complex frequencies - a.k.a.

quasinormal modes (QNM). A thorough review is given by Kokkotas and Schutz

[32]. Recall that these correspond to poles, ωn, of S(l, ω) which is analytically

extended to the complex ω-plane for a given integer value of angular momentum

l. We have noted the role of trapped resonant modes for exotic compact objects

in the previous chapter, and there is a substantial literature on QNMs for many

compact objects within general relativity and alternative theories of gravity (see

for example [22, 29, 31, 98, 192, 197, 198], and for a more complete reference

set see [32]).

A dual-picture is provided by analytically extending S(l, ω) (and the mode

solutions) into the complex l-plane for a given ω ∈ R. It is convention to instead

refer to the complex λ-plane where λ ≡ l + 1/2. This is the complex angular

momentum (CAM) picture. It may be that certain complex λn exist such that

the corresponding mode satisfies an outgoing radiation boundary condition in

the far field, and a suitable boundary condition at the objects surface (just as

QNMs do [32]). These special values λn are called Regge poles, and the modes

are another type of resonance sometimes called “Regge modes” [199].

It appears the first application of CAM in relativity was by Chandrasekhar

and Ferrari who used it to model the growth of the energy flux inside and out-

side a star [101]. Later, Andersson and Thylwe presented a CAM formulation

of scalar wave scattering by a Schwarzschild black hole [46]. They suggested

that Regge pole modes could be associated with surface waves; scalar field

disturbances propagating close to the photonsphere at r = 3M .

The surface wave interpretation was extended by Décanini, Folacci, and

Jensen [71]. They showed how the Regge pole trajectories - the path of λn(ω)

in the complex plane - could be used to ‘semiclassically’ construct the QNM

1However, as shown in chapter 4, one of the space-time variables may in some sense play
the role of a fluid perturbation.
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spectrum of a Schwarzschild black hole (formally valid when |λ| → ∞ but

suprisingly accurace at small values of λ). This allowed them to associate res-

onant frequencies with constructive interference of surface waves. In reference

[71], the authors posit that the CAM approach could be usefully extended to

perturbations of Kerr black holes and neutron stars. We have taken up the

latter suggestion here and in reference [65].

More recent work on CAM in black hole physics includes; a WKB calcu-

lation of Regge poles and the interpretation that this allows by Décanini et

al [200, 201]; efficient and elegant calculations of the high-energy absorption

cross section for a Schwarzschild black hole [202]; a description of GWs from

a perturbed black hole which complements the usual QNM picture by Folacci

and Ould El Hadj [199]; and a CAM description of plane wave scattering of

bosonic fields by the same authors [57, 58]. The last of these studies estab-

lished a procedure for rewriting a partial-wave scattering cross section sum (see

equation (2.39)) as a background integral and a sum over Regge-poles. Folacci

and Ould El Hadj found a particularly surprising result: that the scattering

cross section of a plane wave incident on a black hole is well described by Regge

pole contributions alone, and the background integral was negligible except in

the forward direction. This contrasts with the majority of scattering CAM

calculations in other areas of physics, where the background integral is often

significant in multiple scattering regions [68].

CAM is not unique to scattering theory in GR. The origins of CAM theory

date back to Watson’s study of propagation of radio waves around the Earth

[34]. In particular, he wished to understand the penetration of waves from

a transmitter to a receiver in the geometrical shadow region. As we have

seen in chapter 3, the partial wave sum may suffer from slow convergence,

especially at high frequencies. In some cases, CAM methods can be used to

avoid this problem. The main motivations for using CAM include the type

of numerical advantage described above [57, 58], the possibility of obtaining

closed-form approximations for quantities of interest [200–202], and the physical

understanding this can allow [46, 71].

Recently, in collaboration with M. Ould El Hadj and S.R. Dolan, we have
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begun to generalise black hole CAM theory to other compact objects. In partic-

ular, we focus on neutron star models as well as more speculative ultra compact

objects. This is the subject of this chapter. Part of the material (and some

additional material) is also presented in reference [65]. All of the data and

figures in this chapter have been generated by the author.

We begin by discussing an accurate method of calculating scalar, electro-

magnetic, and axial GW Regge pole positions for a general spherically symmet-

ric background in section 6.2. In section 6.2.4 we derive a WKB approximation

for a class of scalar and axial-GW Regge poles on a background consisting of

a massive body with R/M > 3. Section 6.3 outlines the similarities between

our model and scattering by an isotropic sphere in flat space. In section 6.4

we present the Regge pole spectra for a scalar field on a constant density star

with R/M = 6, and R/M = 2.26. We apply the CAM approach to scalar

plane-wave scattering by the aforementioned models in section 6.5, and discuss

our results in section 6.6.

6.1 Regge poles and quasinormal modes

We have discussed how Regge poles and their residues are useful concepts in

perturbation theory, both for performing tricky calculations and for aiding

with physical interpretation. In addition, the dual concepts of quasinormal

frequencies and excitation factors are well understood and powerful tools [32].

The duality means that many of the methods used for determining QNMs can

be adapted for finding Regge pole modes.

A well known and stable technique for determining gravitational QNM solu-

tions for a Kerr black hole was introduced by Leaver [197]. In turn, Leaver was

inspired by the method for determining electronic spectra of the hydrogen ion

used by Jaffé [203]. Leaver’s method was based on an analytic representation

of a QNM solution, which for a Schwarzschild black hole is given by the series

Φp
lm =

( r

2M
− 1
)−i(2Mω) ( r

2M

)2i(2Mω)

eiω(r−2M)

∞∑
n=0

an

(
1− 2M

r

)n
, (6.1)
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where p is the parity of the mode (see section 2.3.2), and an are constants

that depend on ω, l and p. By construction, the series solution above satisfies

the boundary conditions that define a QNM or Regge pole (radiate inwards at

the horizon, and outwards at spatial infinity). The complex frequencies, ωln

(l ∈ N), for which the series defined by equation (6.1) converges, are the QNM

frequencies. Analogously, for a fixed ω ∈ R, the complex angular momentum

values λn(ω) for which the series of equation (6.1) converges are the Regge

poles.

Substituting equation (6.1) into equation (2.75) yields a three-term recur-

rence relation for the coefficients an. Exploiting the link between three term

recurrence formula and continued fractions allowed Leaver to then accurately

calculate the quasinormal frequencies and modes for a Kerr black hole [197].

For the case of Reissner-Nordström (charged) black holes, Leaver found

that generalising his method resulted in a four-term recurrence relation [204].

He showed that this can be solved by casting it as an infinite banded matrix

equation and numerically searching for roots of the determinant (a.k.a. the Hill

determinant method, which Majumdar and Panchapakesan had applied to the

Schwarzschild black hole [205]). In addition, Leaver reduced the recurrence-

relation to three terms, equivalent to a Gaussian elimination step applied to

the matrix equation, and thus could also apply the continued fraction method

[204].

Leins et al. generalised Leaver’s method to consider polar (even parity)

gravitational QNMs on a spherically symmetric stellar background [206]. They

solve the interior problem numerically (see chapter 4, section 4.2), and extend

the mode solution to some finite distance from the surface of the star, r = b >

R. The next step is to construct a series solution, similar to equation (6.1),

which automatically satisfies the numerically determined boundary condition

at r = b and the outgoing condition in the far field. This yields a four-term

recurrence relation. Benhar et al. have calculated axial (odd parity) QNMs

for various neutron star models [207], using a modification of the Leins et al.

method [206].

By Birkhoff’s theorem, the vacuum exterior is described by the Schwarzschild
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metric, and so the Leins et al. method is applicable to any spherically symmet-

ric body of finite radius (including black holes, stars, ECOs etc.). The exact

details of the central body are efficiently encoded in the boundary conditions

at r = b.

A significant advantage of Leaver’s approach is that it avoids the numerical

difficulties encountered if one tries to find QNMs by numerically solving the

radial differential equation. It can be seen that for QNM frequencies that

decay with time, the outgoing component of a general mode solution that

behaves as exp[iωr∗] will diverge as r∗ → ∞ as Im [ω] < 0. By contrast,

the ingoing component of the mode will grow exponentially small in the far

field. Enforcing the outgoing boundary condition is therefore a difficult task to

implement numerically, as a small error in the far field could easily introduce a

large error at intermediate distances. Of course, this is not an issue for Regge

poles as Im [ω] = 0. However, avoiding numerical integration of complex mode

solutions to the far field is still a desirable advantage of the series solutions

methods over direct integration.

In section 6.2.1, we further generalise the methods described in references

[197, 206, 207] to scalar and electromagnetic perturbations on the spacetime

of a compact body. We derive a four term recurrence relation and show how

to solve it in section 6.2.2 using an adaptation of the Hill-determinant method

[204, 205]. In section 6.2.3 we discuss the direct integration method and in

section 6.2.4 we derive a WKB approximation for a subset of the Regge poles

expected for a compact body with R > 3M . Exact (numerical) results for the

scalar Regge-pole resonances on the spacetime of a constant density star are

displayed in section 6.4.

6.2 Methods

6.2.1 The series solution and recurrence relation

For a spherically symmetric spacetime, the radial wave equation for scalar

(s = 0), electromagnetic (s = 1), and axial gravitational (s = 2) perturbations,
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ψls(r), can be presented in a unified way [183], namely[
d2

dr2
∗

+ ω2 − V eff
ls (r)

]
ψls(r) = 0, (6.2)

with the effective potential

V eff
ls (r) = A

[
l(l + 1)

r2
+

(1− s2)

2r

(
A′

A
+
B′

B

)
+ 8π (p− ρ) δs2

]
, (6.3)

where A(r), B(r) are the metric functions in equation (2.2). Recall that p =

p(r) is the pressure inside the star and ρ = ρ(r) is the density (section 3.1).

Following [206] we express a scalar solution outside the star as a series

expansion about some intermediate regular point, r = b > R:

ψls(r) = eiωr∗v(r), v(r) ≡
∞∑
n=0

any
n, (6.4)

where y = 1 − b/r. This satisfies the outgoing boundary condition in the far

field (equation (2.21) for r∗ →∞ with A−l = 0), and an as yet to be determined

model-dependent boundary condition at y = 0.

Substituting equation (6.4) into equation (6.2) for r > R, we find

fv′′ + (2iω + f ′)v′ −
(
l(l + 1)

r2
+
(
1− s2

) f ′
r

)
v = 0, (6.5)

where ′ ≡ d/dr. Now, substituting the series expansion for v into equation (6.5),
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we obtain

2

(
1− 2M

b

)
a2 +

(
6M

b
+ 2ibω − 2

)
a1 −

((
1− s2

) 2M

b
+ l(l + 1)

)
a0

+
∞∑
n=1

[(
1− 2M

b

)
(n+ 1)(n+ 2)an+2

+

((
6M

b
− 2

)
(n+ 1) + 2ibω

)
(n+ 1)an+1

+

(
−
(
1− s2

) 2M

b
− l(l + 1) + n(n+ 1)

(
1− 6M

b

))
an

+
2M

b

(
n2 +

(
1− s2

)
− 1
)
an−1

]
yn = 0. (6.6)

Solving equation (6.6) term by term yields a recurrence relation

αnan+1 + βnan + γnan−1 + δnan−2 = 0, n ≥ 2, (6.7)

and a starting equation

α1a2 + β1a1 + γ1a0 = 0, (6.8)

where

αn =

(
1− 2M

b

)
n(n+ 1), (6.9a)

βn =

((
6M

b
− 2

)
n+ 2ibω

)
n, (6.9b)

γn =

(
−
(
1− s2

) 2M

b
− l(l + 1) + (n− 1)n

(
1− 6M

b

))
, (6.9c)

δn =
2M

b

(
(n− 1)2 +

(
1− s2

)
− 1
)
, n ≥ 2, (6.9d)
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and

α1 = 2

(
1− 2M

b

)
, (6.10a)

β1 =

(
6M

b
+ 2ibω − 2

)
, (6.10b)

γ1 =

((
1− s2

) 2M

b
+ l(l + 1)

)
. (6.10c)

Continuity of the mode function and its first derivative at r = b (y = 0)

implies

a0 = e−iωr∗ψls
∣∣
r=b
, (6.11a)

a1 = e−iωr∗
(
dψls
dr
− iω

f
ψl,s

) ∣∣∣∣
r=b

. (6.11b)

The right-hand-side of equations (6.11) is found by numerically solving the

wave equation (6.2) subject to the boundary conditions of the particular model

under consideration at some r < b (chapter 2, sections 2.2.2 and 2.3.3), up to

r = b. Given a0 and a1, we recover a2 from the starting equation (6.8). All

other coefficients an follow from equation (6.7).
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6.2.2 Hill-determinant method

The four term recurrence relation, equation (6.7), is a (infinite) system of linear

equations. It can be recast in the following matrix form



β0 α0 · · ·
γ1 β1 α1 · · ·
δ2 γ2 β2 α2 · · ·
· δ3 γ3 β3 α3 · · ·
· · · · · · · · ·
· · · δn−1 γn−1 βn−1 αn−1 · ·
· · · δn γn βn αn ·
· · · · · · ·





a0

a1

a2

·
·
an−2

an−1

an

an+1

·



= 0, (6.12)

where we have introduced

α0 ≡ −1, β0 ≡ a1/a0, (6.13)

defined in terms of the numerically determined, model dependent a0,1 (see

equation (6.11)). The requirement that equation (6.12) has non-trivial solutions

is equivalent to demanding that the determinant is zero,

D =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β0 α0 · · ·
γ1 β1 α1 · · ·
δ2 γ2 β2 α2 · · ·
· δ3 γ3 β3 α3 · · ·
· · · · · · · · ·
· · · δn−1 γn−1 βn−1 αn−1 · ·
· · · δn γn βn αn ·
· · · · · · ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0. (6.14)
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The information regarding the interior of the star is contained in α0 and β0

which are determined by equations (6.11) and (6.13). Let Dn be the deter-

minant of the n × n sub matrix of that in equation (6.14) (with diagonal

{β1, β2, ....βn}). Generalising the approach of [205], the determinants can be

efficiently calculated using a recurrence relation

Dn = βnDn−1 − αn−1γnDn−2 + αn−1αn−2δnDn−3, n ≥ 3, (6.15)

with initial conditions

D0 = β0 (6.16a)

D1 = β1β0 − γ1α0 (6.16b)

D2 = β2 (β1β0 − γ1α0)− α1 (γ2β0 − δ2α0) . (6.16c)

The determinants Dn ∼ (n2)!, so it is convenient to instead work with Pn

defined via

Dn =
(
n2
)
!Pn. (6.17)

They satisfy

Pn =
βn
n2
Pn−1 −

αn−1

(n− 1)2

γn
n2
Pn−2 +

αn−1

(n− 1)2

αn−2

(n− 2)2

δn
n2
Pn−3, n ≥ 3, (6.18)

with initial conditions following from equations (6.16) and (6.17).

From the recursion relation and initial conditions, it can be seen that Pn

is a complex polynomial of order (n − 1) in λ2 = (l + 1/2)2 (fixing ω ∈ R).

Thus we expect there to be 2(n − 1) complex roots λj of Pn (assuming they

are all simple zeros). In addition, if λj is a zero then so is −λj. Since the

sequence Pn is infinite, this suggests (but does not prove) that there could be

an infinite number of Regge-poles λj for a spherically symmetric spacetime.

Our numerical results in section 6.4 support this conjecture for the models

considered.

To summarise, the numerical method for finding Regge-poles (or QNFs),

is to fix all physical parameters except l (or ω) which we allow to be complex
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valued. We then proceed to numerically search for roots of Pn(l, ω) given by

equation (6.18), for some large value of n (typically n = 10000).

For each l (ω) we numerically integrate the radial mode solution satisfying

regularity at the origin out to r = b (y = 0), which determines α0 and β0. In

turn this allows us to efficiently calculate Pn(l, ω). A root-finding algorithm

is then employed to search for roots of Pn(l, ω) in the complex l (ω) plane.

We use the Newton-Raphson algorithm and check our results by also using

the FindRoot function in Mathematica [66]. We typically choose b = R and

confirm our results by repeating the algorithm with another value of b > R.

A sophisticated numerical method for finding Regge poles (zeroes of Pn(l, ω))

has been developed by M. Ould El Hadj, based upon Cauchy’s residue theo-

rem [208]. His method allows a systematic scanning of the complex plane to

check for poles, and was the primary technique used for the first exploration

of bosonic field Regge poles on a stellar background [65]. The root finding

procedure outlined here was used as a secondary method, and agrees with the

scanning method by fifteen decimal places for the poles listed in [65]. The

power of the scanning method is that it can rule out the presence of poles in

a region of the complex plane that may be missed by a standard root finding

algorithm.

6.2.3 Direct integration

An alternative ‘brute force’ approach to the continued fraction / Hill determi-

nant method is ‘direct integration’. This was employed in early studies of black

hole QNMs. Here it is useful as a verification, since it is more computationally

time-consuming than the previously described approach.

First, we integrate the solution satisfying regularity at the origin, ψls(r),

from r = ε to r = r1 > ε, initialising with the regular Frobenius series. Next,

we integrate the solution satisfying the outgoing boundary condition

ψout
ls (r) ∼ A+

l e
iωr∗ , as r∗ →∞, (6.19)

(i.e. A− = 0) inwards from r = rinf to r1, initialised with the appropriate
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generalised series solution.

Then we calculate the Wronskian of the two solutions at r1,

W
[
ψls, ψ

out
ls

]
r=r1

=

[
ψls

∂ψout
ls

∂r
− ψout

ls

∂ψls
∂r

]
r=r1

. (6.20)

If the Wronskian is zero, then the solutions are linearly dependent. Normalising

one of the solutions so they match at r1, we have thus constructed a QNM or

Regge-pole mode. Implementing a root finding algorithm for the Wronskian,

we check that they agree with the roots of Pn as n→∞.

6.2.4 WKB approximation

A WKB expansion for the Regge-poles of massless fields on a Schwarzschild

black hole background was found by Décanini and Folacci [200]. In addition,

Dolan and Ottewill [209] used another high-frequency expansion method to find

approximate Regge poles. The two methods are in agreement up to O(ω−2).

To zeroth order in 1/ω both groups obtain

λBH
n = 3

√
3Mω + i

(
n− 1

2

)
, n = 1, 2, 3... (6.21)

where we follow the convention of enumerating the poles used in [200].

Zhang, Wu and Leung have applied a WKB analysis to determine approxi-

mate axial ω-modes for various compact stars [210], building on Berry’s analysis

of semiclassically weak reflections above potential barriers [211]. Here we adapt

the method of Zhang et al. to obtain approximations for Regge-poles of mass-

less waves on a stellar background. The results are valid in the high frequency

limit, ωR∗ →∞, where

R∗ ≡
∫ R

0

dr
1√

A(r)B(r)
(6.22)

is the tortoise coordinate at the stellar surface.

In practice, we must also have ωR∗ � |l| which physically corresponds
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to wave modes with sufficient energy to penetrate deep into the interior of

the body. For this reason they are labelled ‘broad-resonances’ (B-R). When

ωR∗ � |l|, following [210], the WKB approximation for the solution satisfying

equation (6.19) is

ψout
ls (r) =

eiω(r∗−R∗) +Re−iω(r∗−R∗) 1/ω ≤ r∗ . R∗,

(1 +R) eiω(r∗−R∗) R∗ ≤ r∗ <∞.
(6.23)

In equation (6.23) we have introduced a reflection coefficient R. One can

think of these types of solutions as waves that are weakly reflected by the

discontinuity in the effective potential at the surface, shown schematically in

figure 6.1. It is a standard calculation in quantum mechanics to show that to

leading order in ω−1,

R =
1

4ω2
∆V = ± 1

4ω2

3M(R− 2M)

R4
, (6.24)

where ∆V is the discontinuity in the effective potential at the surface of the

star, and the choice of sign is (+) for the scalar case or (−) for the axial

GW case. In the more general case where n is the smallest integer such that

dV n/dxn is discontinuous at the surface, the reflection coefficient can be calcu-

lated following the methods of Berry [211], which would allow a generalisation

to the polytropic stellar models discussed in chapter 4.

Now, we construct an approximate solution valid deep inside the star. First,

note that the metric functions (equations (3.11) and (3.12)) can be expanded

in r as

A(r) = A0

[
1 +O

(
Mr2

R3

)]
, (6.25)

B(r) = 1 +O

(
Mr2

R3

)
, (6.26)

where A0 is a constant. Secondly, we use an approximate solution for the tor-
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Figure 6.1: Effective radial potential for scalar perturbations (s=0) and ax-
ial GWs (s=2) on the background spacetime of a constant density star with
R/M = 6. Also shown is a schematic of weak reflection within the star caused
by the discontinuity at the surface.

toise coordinate near the origin (see equation (2.7)), which yields the equation

r =
√
A0 r∗

[
1 +O

(
Mr2

∗
R3

)]
. (6.27)

Next, we consider the radial equation (equation (6.2)) in the high-frequency

limit and with ` � 1, such that all but the angular momentum terms in the

effective potential may be dropped (see equation (6.3)). Substituting for r∗ us-

ing equation (6.27) and neglecting the quadratic corrections gives a comparison

equation [
d2

dr2
∗

+ ω2 − `(`+ 1)

r2
∗

]
ψ`s = 0. (6.28)

We take the regular solution to equation (6.28), i.e.

ψls = ωr∗jλ−1/2(ωr∗), 0 ≤ r∗ ≤ R∗. (6.29)

Now, using the high-frequency approximation for the spherical Bessel function
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[117] in equation (6.29) gives

ψls ≈ sin

[
(λ− 1/2)π

2
− ωr∗

]
, 0 ≤ r∗ ≤ R∗, (6.30)

for ω →∞.

Using the Wronskian condition (6.20) with the approximate solutions of

equations (6.23) and (6.30) yields

eiπ(λ−1/2)−2iωR∗ = −R. (6.31)

Solving equation (6.31) for λ we obtain the approximate B-R Regge-pole posi-

tions (recall that + and − is for the scalar and axial GW cases respectively)

λB-R
n ≈ 2ωR∗

π
−
(

2n± 1

2

)
+

2i

π
log

[
2R2ω√

3M(R− 2M)

]
, (6.32)

where n ∈ N.

From equation (6.32) we deduce that these types of pole are approximately

evenly spaced with |∆λn| ≈ 2. The imaginary part, ImλB-R
n , is approximately

independent of n, and grows logarithmically with frequency ω. In addition, the

B-R axial-GW poles lie roughly in-between the corresponding scalar poles.

We consider only the right-half complex λ-plane, i.e., Reλ > 0. This places

an upper bound on the number of poles in this family

NB-R ≤
⌊
ωR∗
π
∓ 1

4

⌋
, (6.33)

where b·c denotes the floor function.

6.3 Scattering by an isotropic sphere

In this section we outline an analogy between our model and the scattering of

scalar/electromagnetic waves by an isotropic sphere in flat spacetime.

If we consider an inhomogeneous, isotropic media with a radially dependent
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s=0 (scalar)
s=2 (axial)

R*/M0

r*/M

V
M
2

Figure 6.2: Effective radial potential for scalar perturbations (s=0) and ax-
ial GWs (s=2) on the background spacetime of a constant density star with
R/M = 2.26.

refractive index N(r), the radial dependence of a monochromatic electromag-

netic wave (or scalar wave) is determined by the equation

d2Fl
dr2

+

(
ω2N(r)2 − l(l + 1)

r2

)
Fl = 0. (6.34)

In equation (6.34) Fl(r) is the radial function for a mode with angular momen-

tum l and time dependence e−iωt (see chapter 5 of [68] for more details). If we

substitute

N(r) = (1− Ṽ (r)/ω2), (6.35)

Ṽ (r) = U(r)− 4ω2M

r
, (6.36)

where U(r) is given by equation (2.12), we recover equation (2.11) - the radial

equation for a scalar field on a spherically symmetric spacetime.

Our model can then be compared with scattering by a transparent sphere

on flat space with a refractive index given by equations (6.35) and (6.36). This

imaginary sphere must have infinite radius, and has a jump discontinuity at

r = R. In the far field, N(r)→ 1 as r →∞.
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The discontinuity at r = R is shared by the model of a homogeneous sphere

with finite radius considered by Nussenzweig (N(r) = N0 for r ≤ R, N(r) = 1

for r > R) [68]. Scattering of electromagnetic plane waves by a homogeneous

sphere is known as Mie scattering [212].

Looking at it from the other angle, the effective potential for a homogenous

sphere (figure 9.1 of [68]) has the same classical turning point structure as the

scalar potential for a star with R/M = 6 (figure 6.1). More similar is the

scalar/axial potential for a body with R/M < 3 (figure 6.2), which may have

a deep cavity region inside the light ring (discussed more in chapter 5).

Two distinct analogies are being made here, first, an analogy between the

discontinuity at the star’s surface and the surface of a transparent sphere.

Secondly, an analogy between the trapped region inside a sufficiently compact

star’s light ring, and the trapped region inside a transparent sphere. Neither

analogy is perfect, yet they are useful in interpreting the results of section 6.4.

6.4 Results: Regge-pole spectra

Using the Hill determinant method described in section 6.2.2, we have calcu-

lated the Regge pole spectra for scalar field perturbations on the spacetime of

a constant density star (see chapter 3). Recall that the model is parametrised

by the dimensionless parameters Mω and R/M . A neutron star has a tenuity

R/M ≈ 6, and objects with R/M < 3 are classified as ultracompact as they

possess a unstable photon orbit at r = 3M .

In section 6.4.1 we consider the spectra for compact bodies with R/M = 6.

In section 6.4.2 we look at a particular UCO model with R/M = 2.26, just

above the Buchdahl limit R/M = 9/4 (see section 3.1.1). The axial GW

QNMs of this model have been considered before (see e.g. [100]).

We find that the Regge-pole spectra are qualitatively similar to the spec-

tra of electromagnetic waves scattered by transparent spheres with constant

refractive index N0 (see figures 7.6 and 9.2 of [68]). This result is not entirely

surprising, since some analogies can be drawn between the transparent sphere

model and ours (see section 6.3).
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Figure 6.3: The scalar field Regge-pole spectrum for a constant density star
with tenuity R/M = 6 and Mω = 2. The spectrum is composed of two
branches, the broad-resonance (red circles) and surface-waves (blue squares).
Also shown for comparison are scalar Regge-poles for a Schwarzschild black
hole with Mω = 2 (black diamonds).

The problem of scattering by homogeneous spheres in flat space is exactly

solvable and one can obtain the scattering matrix elements in closed form.

Nussenzweig has studied these cases in detail, and we borrow the terminology

from his monograph [68].

6.4.1 Compact bodies

For a simple stellar model with a tenuity comparable to a neutron star, we find

that the Regge pole spectra has two distinct branches (see figures 6.3 and 6.4).

The first branch is roughly parallel to the real λ-axis. It corresponds to

the WKB solutions derived in section 6.2.4 (see figure 6.5). Since these modes

are associated with the WKB approximate solutions that penetrate deep into

the interior region of the star, which feel almost the entire spacetime (in the

radial dimension), we call them broad-resonances. Further justification for

this label is provided by comparison to the Regge-pole spectra for scattering of
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Figure 6.4: The scalar field Regge-pole spectrum for a constant density star
with tenuity R/M = 6 and Mω = 8. The spectrum is composed of two
branches, the broad-resonance (red circles) and surface-waves (blue squares).
Also shown for comparison are scalar Regge-poles for a Schwarzschild black
hole with Mω = 8 (black diamonds).

electromagnetic waves by hard and transparent spheres [68]. They are displayed

as red circles in figures 6.3 and 6.4 and we label them λB-R
n . The number of

poles in this numerically determined branch matches the WKB prediction of

equation (6.33) for all the examples we have checked.

A second branch, inclined with respect to the real λ-axis, is clearly distin-

guished and displayed as blue squares in figures 6.3 and 6.4. This branch is

somewhat reminiscent of the Regge-pole spectra for Schwarzschild black holes

[47, 71]. It is perhaps more similar to the surface-wave poles found in scat-

tering by a hard sphere, which we show for comparison in figure 6.5 (see also

[68]). There appears to be an infinite number of surface-wave poles, extending

to complex infinity. What we call the first surface-wave pole has the smallest

imaginary part and lies near the right end of the broad-resonance branch.

For high frequencies, we find numerical evidence that the first surface-wave
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Figure 6.5: The scalar field Regge-pole spectrum for a constant density star
with tenuity R/M = 6 and Mω = 8. The spectrum is composed of two
branches, the broad-resonance (red circles) and surface-waves (blue squares).
The two branches meet at Reλ = λr = brω where br = 6.99895M is the
impact parameter for a maximally deflected null geodesic. Also shown are the
WKB approximations for the broad-resonance branch (green triangles), and
hard sphere flat space Regge-poles (purple inverted triangles).

Regge pole has

Re λS-W
1 = λr ≡ brω, (6.37)

where br is the impact parameter for a maximally deflected geodesic ray (i.e. a

rainbow ray). An estimate for br can be given analytically by the grazing ray

impact parameter, bgr =
√
R3/(R− 2M) (see equation (3.26)). This suggests

that these resonances are associated with the surface of the star (in contrast

to the BH case where the Regge poles surface waves are associated with the

photon sphere at r = 3M).

The angle of the surface wave branch in the complex plane is found to be

θ̂ ≈ 0.37π for Mω = 2 and θ̂ ≈ 0.35π for Mω = 8. This is close to the value

for the surface-wave Regge pole branch present in scattering by a hard sphere,
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Figure 6.6: The scalar field Regge-pole spectrum for a constant density star
with tenuity R/M = 2.26 and Mω = 2. The spectrum is composed of three
branches, the broad-resonance (red circles), surface-waves (blue squares), and
narrow-resonances (brown triangles). Also shown for comparison are scalar
Regge-poles for a Schwarzschild black hole with Mω = 2 (black diamonds).

θ̂ = π/3 [68].

The data for the Regge-poles displayed here is available in section 6.8.

Further examples and data can also be found in [65].

6.4.2 Ultra compact objects

A very compact star, with R/M < 3, possesses three branches of Regge poles.

The two branches that were extant already for R/M > 3, broad-resonances

and surface-waves, and a third branch which emerges from the point where the

first two meet (see figure 6.6).

Again borrowing the terminology from [68], we call the poles in the third

branch ‘narrow-resonances’. They lie near the real axis and are associated with

modes trapped inside the photonsphere of a UCO. The least damped narrow-

resonance lies near the first surface wave pole of a Schwarzschild black hole.

In figure 6.6 we plot the spectra for R/M = 2.26 and Mω = 2. There
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are four narrow resonances shown as brown triangles. The number of narrow-

resonance poles increases as the star’s tenuity approaches the Buchdahl limit

R/M → 9/4. In addition, the number of narrow-resonances increases as Mω

increases [65].

Note that for R/M = 6, the surface-wave branch satisfies ReλS-W
n > ReλBH

n .

In other words the branch is to the right of the black hole Regge poles. For

R/M = 2.26, ReλS-W
n < ReλBH

n . The stellar surface-wave branch crosses the

black hole branch when R/M ≈ 3.

The data for the Regge poles displayed here is available in section 6.8.

Further examples and data can also be found in [65].

6.5 Complex angular momentum in scattering

theory

Here we will recall the method of Folacci and Ould El Hadj who successfully

applied complex angular momentum to the problem of scattering by black holes

[57]. The majority of their method is immediately applicable to scattering by

any spherically symmetric body with a Schwarzschild exterior. However, the

properties of the scattering matrix element Sl depend on the type of body

considered, so care must be taken when applying the approach outlined in

reference [57] to our model. For this reason, we reproduce their argument here

and highlight any differences.

The first step is to rewrite the scattering amplitude, equation (2.39), as a

complex contour integral. This is accomplished with the use of Cauchy’s residue

theorem which states: Given a simply connected region D of the complex λ-

plane, enclosed by the curve C, let G(λ) be holomorphic on D except at a finite

list of points λn. Then,∮
C

G(λ) dλ = 2πi
∑
n

Res [G(λ), λn] , (6.38)

where the contour is integrated over in an anticlockwise direction. Each residue
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can be calculated by applying the theorem,

Res [G(λ), λn] =
1

2πi

∮
γ

G(λ) dλ, (6.39)

where γ is a closed contour enclosing just one λn. Standard techniques exist

for performing these contour integrals [213].

If a complex function F (λ) is analytic inside the contour C (shown in fig-

ure 6.7) then by Cauchy’s theorem, it can be shown that

∞∑
l=0

(−1)lF (l + 1/2) =
i

2

∫
C

F (λ)

cos(πλ)
dλ. (6.40)

Equation (6.40) is known as the Sommerfeld-Watson transformation [34]. The

contour C is explicitly

C = lim
ε→0+

{
]∞+ iε, iε] ∪ [iε,−iε] ∪ [−iε,∞− iε[

}
, (6.41)

and it encircles the positive real axis of the λ-plane in an anticlockwise direction.

A key advantage of CAM is the freedom to deform the contour C. The

deformation can be judiciously chosen to “concentrate the contributions to

the integral into the neighbourhood of a small number of points in the com-

plex λ-plane” [68]. These are known as critical points, the main types being

Regge-poles and saddle points. Nussenzweig’s monograph “Diffraction Effects

in Semiclassical Scattering” contains a trove of results obtained when applying

CAM to scattering by a homogeneous sphere.

Noting that the Legendre polynomials satisfy Pl(cos θ) = (−1)lPl(− cos θ),

and applying the Sommerfeld-Watson transformation to the partial wave sum,

equation (2.39), results in

f(θ) =
1

2ω

∫
C

λ
[
Sλ−1/2(ω)− 1

]
Pλ−1/2(− cos θ)

cos(πλ)
dλ, (6.42)

where λ ≡ l+ 1/2. Poles of the integrand in equation (6.42) are located where

l ∈ N (which is how the transformation works) and also away from the real λ
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Re(λ)

Im(λ)
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1/2 3/2 5/2 7/2

Figure 6.7: The Sommerfeld-Watson transformation converts a sum over poles
located at λ = l + 1/2 where l ∈ N, to a contour integral C in the complex λ
plane.

axis at the poles of Sλ−1/2(ω), i.e., the Regge poles λn(ω).

The analytic extension of the Legendre polynomials is the Legendre func-

tion of the first kind, denoted by Pλ−1/2(z). It may be defined in terms of a

hypergeometric function [117]

Pλ−1/2(− cos θ) = F (1/2− λ, 1/2 + λ; 1, (1 + cos θ)/2). (6.43)

We also analytically extend the mode solutions ψls(r) to complex angular

momentum values. We define ψλ−1/2,s(r) as the solution to equation (6.2) with

l→ λ− 1/2 where λ ∈ C, subject to the boundary condition

φω,λ−1/2(r) ∼ rλ+1/2 as r → 0. (6.44)

The modes have the usual asymptotic behaviour as r → ∞, which defines

the analytic extensions of the coefficients A±l (A±λ−1/2), and Sl, denoted by

Sλ−1/2(ω) ≡ eiπ(λ+1/2)
A+
λ−1/2(ω)

A−λ−1/2(ω)
. (6.45)

For black hole scattering, it can be shown that the S matrix satisfies a
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symmetry property [46]

eiπλSBH
−λ−1/2(ω) = e−iπλSBH

λ−1/2(ω). (6.46)

For our model and analytic extension (equations (6.44) and (6.45)), this sym-

metry is not satisfied (since the boundary conditions depend on λ, unlike the

black hole boundary conditions).

At this point it is helpful to note the asymptotic properties of the quantities

in the integrand on the right-hand-side of equation (6.42). For Re{λ} > 0, we

have:

Pλ−1/2(− cos θ) ∼ 1

(−2πλ sin θ)1/2

(
ei(λθ−π/4) + e−i(λθ−π/4)

)
, as |λ sin θ| → ∞.

(6.47)

Equation (6.47) may be derived from equation (8.10.7) in reference [117] and

Stirling’s approximation for the Gamma function

Γ(z) =

√
2π

z

(z
e

)z [
1 +O

(
1

z

)]
. (6.48)

In addition,

|Sλ−1/2(ω)| ∼ eiπ(λ+1/2), as |λ| → ∞. (6.49)

The next step is to apply Cauchy’s residue theorem to the right-hand-side

of equation (6.42), which allows us to ‘deform’ the contour C. This is shown

schematically in figure 6.8. The contours Γ±,∞ are arcs joining the imaginary

axis to Γ±. When the arc radii is allowed to tend to infinity, C = Γ+ ∪ Γ−.

Thus,

f(θ) =
1

2ω

∫
Γ+

λ
[
Sλ−1/2(ω)− 1

]
Pλ−1/2(− cos θ)

cos(πλ)
dλ (6.50)

+
1

2ω

∫
Γ−

λ
[
Sλ−1/2(ω)− 1

]
Pλ−1/2(− cos θ)

cos(πλ)
dλ. (6.51)
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Re(λ)

Im(λ)
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• • •
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Figure 6.8: The contour integral of figure 6.7, C = Γ+ ∪ Γ−, and its deforma-
tion. We also show a collection of Regge poles λn(ω), whoes exact distribution
depends on the compact body model and scalar mode angular frequency ω.
For ω > 0, Regge poles are located in the first quadrant only.
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First we consider the integral along Γ+. By Cauchy’s residue theorem∫
Γ+

λ

cos(πλ)

[
Sλ−1/2(ω)− 1

]
Pλ−1/2(− cos θ) dλ

= −
∫ i∞

0

λ

cos(πλ)

[
Sλ−1/2 − 1

]
Pλ−1/2(− cos θ) dλ

− 2iπ
∞∑
n=1

λn(ω)rn(ω)

cos (πλn(ω))
Pλn−1/2(− cos θ). (6.52)

The integral over Γ+,∞ may be neglected for θ 6= 0, π, since

λ ·
(

λ

cos(πλ)

[
Sλ−1/2(ω)− 1

]
Pλ−1/2(− cos θ)

)
→ 0

as |λ sin θ| → ∞, Imλ > 0. (6.53)

which follows from equations (6.47) and (6.49). The second term on the right-

hand-side of equation (6.52) is a sum over poles λn(ω) of Sλ−1/2(ω) with residues

rn(ω) ≡
∮
Sλ−1/2(ω) dλ, (6.54)

where the integral is done over a small closed contour around λn. The poles of

Sλ−1/2(ω) are of first order and thus the residue can be calculated using

rn(ω) = lim
λ→λn

[
(λ− λn)Sλ−1/2(ω)

]
(6.55)

= eiπ(λn(ω)+1/2)

[
A+
λ−1/2(ω)

d
dλ
A−λ−1/2(ω)

]
λ=λn(ω)

. (6.56)

Next we consider the contour Γ− which is closed by Γ−,∞ ∪ ] − i∞, 0]

(see figure 6.8). The integrand of equation (6.42) diverges exponentially as

|λ sin θ| → ∞ for Imλ < 0, so we must take a little more care here. First the
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integral is split into two parts∫
Γ−

λ

cos(πλ)

[
Sλ−1/2(ω)− 1

]
Pλ−1/2(− cos θ) dλ

=

∫
Γ−

λ

cos(πλ)
Sλ−1/2(ω)Pλ−1/2(− cos θ) dλ

−
∫

Γ−

λ

cos(πλ)
Pλ−1/2(− cos θ) dλ. (6.57)

The integrand of the second term is analytic in the fourth quadrant (excluding

the real axis) and vanishes faster than 1/λ as λ → ∞ for Imλ < 0 (see

equation (6.47)). Hence by Cauchy’s integral theorem,

∫
Γ−

λ

cos(πλ)
Pλ−1/2(− cos θ) dλ =

∫ 0

−i∞

λ

cos(πλ)
Pλ−1/2(− cos θ) dλ. (6.58)

The first term on the right-hand-side of equation (6.57) is the origin of the

aforementioned divergence, which is dealt with by utilising the identity [117]

Pλ−1/2(− cos θ) = e−iπ(λ−1/2)Pλ−1/2(cos θ) − 2 cos(πλ)

π
Qλ−1/2(cos θ + i0),

(6.59)

where Qλ−1/2(·) is the Legendre function of the second kind. We obtain

∫
Γ−

λ

cos(πλ)
Sλ−1/2(ω)Pλ−1/2(− cos θ) dλ

=

∫
Γ−

λe−iπ(λ−1/2)

cos(πλ)
Sλ−1/2(ω)Pλ−1/2(cos θ) dλ

− 2

π

∫
Γ−

Sλ−1/2(ω)Qλ−1/2(cos θ + i0) dλ. (6.60)

Since there are no poles along the real axis for the second term on the right

hand side, we can take the limit ε→ 0 and express it as an integral along the

real λ axis. It can be shown that Sλ−1/2(ω) is in fact analytic in the fourth

quadrant (there are no poles there), a proof can be found in the appendix of

163



6.5. COMPLEX ANGULAR MOMENTUM IN SCATTERING THEORY

reference [65]. In addition the integrand of the first term in equation (6.60)

tends to zero faster than 1/λ as |λ sin θ| → ∞ for Imλ < 0. Applying Cauchy’s

integral theorem again, we arrive at∫
Γ−

λ

cos(πλ)
Sλ−1/2(ω)Pλ−1/2(− cos θ) dλ

= −
∫ 0

−i∞

λe−iπ(λ−1/2)

cos(πλ)
Sλ−1/2(ω)Pλ−1/2(cos θ) dλ

− 2

π

∫ ∞
0

Sλ−1/2(ω)Qλ−1/2(cos θ + i0) dλ. (6.61)

Now, we collect terms from equations (6.52), (6.58) and (6.61) to obtain

f(θ) = fRP(θ) +
1

2ω

[
2

π

∫ ∞
0

Sλ−1/2(ω)Qλ−1/2(cos θ + i0) dλ

−
∫ i∞

0

λ

cos(πλ)

[
Sλ−1/2 − 1

]
Pλ−1/2(− cos θ) dλ

−
∫ 0

−i∞

λe−iπ(λ−1/2)

cos(πλ)
Sλ−1/2(ω)Pλ−1/2(cos θ) dλ

+

∫ 0

−i∞

λ

cos(πλ)
Pλ−1/2(− cos θ) dλ

]
, (6.62)

where

fRP(θ) ≡ −iπ
ω

∞∑
n=1

λn(ω)rn(ω)

cos (πλn(ω))
Pλn−1/2(− cos θ) (6.63)

is the contribution from the Regge poles. By a change of variable λ′ = −λ, and

using the relation Pλ−1/2(z) = P−λ−1/2(z) [117], we can rewrite the last term of

equation (6.62) as∫ 0

−i∞

λ

cos(πλ)
Pλ−1/2(− cos θ) dλ = −

∫ i∞

0

λ′

cos(πλ′)
Pλ′−1/2(− cos θ) dλ′.

(6.64)

Making the same change of variable for the fourth term of equation (6.62) and
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simplifying we obtain

f(θ) = fRP(θ) + fB(θ), (6.65)

where

fB(θ) ≡ fB,Re(θ) + fB,Im(θ) (6.66)

is a background integral contribution composed of an integral along the real

λ−axis

fB,Re(θ) ≡ 1

πω

∫ ∞
0

Sλ−1/2(ω)Qλ−1/2(cos θ + i0) dλ, (6.67)

and an integral along the imaginary λ−axis

fB,Im(θ) ≡ 1

2ω

∫ 0

i∞

λ

cos(πλ)
[Sλ−1/2(ω)Pλ−1/2(− cos θ)

− S−λ−1/2(ω)eiπ(λ+1/2)Pλ−1/2(cos θ)] dλ. (6.68)

Equations (6.65) and (6.66) with equations (6.63) and (6.66) to (6.68)

present an exact representation of the scalar field scattering amplitude equiv-

alent to the partial wave expansion (equation (2.39)).

6.5.1 Numerical method

To calculate the Regge-pole scattering amplitude, equation (6.63), we need to

first locate the Regge-poles and then calculate their residues. The first task

is accomplished using the methods described in section 6.2. The residues are

then calculated from equation (6.56), where the mode coefficients A±λ−1/2(ω)

are found using numerical integration (see section 3.5 for details).

The imaginary background integral fB,Im(θ) defined in equation (6.68) is

found to be convergent. The scattering-matrix elements (Sλ−1/2(ω), S−λ−1/2(ω))

are calculated on a grid λk = (k/100)i, k = 1, 2, ...kmax using the method

detailed in section 3.5. We then interpolate the integrand over the interval

λ ∈ [0, (kmax/100)i] using Mathematica’s in-built Interpolate function (a

polynomial interpolation of order 4). The NIntegrate function is then used to
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calculate fB,Im(θ). We take kmax sufficiently large so that the relative error is

approximately 10−8.

The real background integral fB,Re(θ) defined in equation (6.67) suffers from

a lack of convergence analogous to the partial wave sum, equation (2.39), and

with the same root cause (the long range nature of the gravitational field which

means Sl 9 1 as l → ∞). To overcome this we use the method detailed in

the appendix of reference [57]. We can then numerically integrate fB,Re(θ) on

a grid λk = (k/100) and again take kmax sufficiently large so that the relative

error is approximately 10−8.

6.6 Results: Scattering cross sections

Using the CAM techniques of reference [57], adapted for scalar field scattering

by a stellar model (section 6.5) we have calculated the scattering cross sections

for a plane wave with Mω = 2 incident on a constant density star. Here we

compare exact partial wave results (see chapter 3) with approximate cross sec-

tions, obtained by considering the Regge-pole contribution to the cross section

alone (neglecting the background integrals),

dσ

dΩRP
≡ |fRP(θ)|2. (6.69)

To calculate fRP(θ) in practice we must truncate the summation (equation (6.63))

at some finite n = N , that is

fRP(θ) ≈ −iπ
ω

N∑
n=1

λn(ω)rn(ω)

cos (πλn(ω))
Pλn−1/2(− cos θ). (6.70)

We display the results obtained this way in figure 6.9 for a model with tenuity

R/M = 6 and figure 6.12 for R/M = 2.26. Exact partial wave results are

plotted in black, and the RP approximations in dashed blue.

For R/M = 6 we also compare the exact cross sections with those obtained
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by including the background integral and a large number of Regge-poles,

dσ

dΩCAM
= |fRP(θ) + fB(θ)|2, (6.71)

where fB(θ) is obtained from equation (6.68). Results calculated using equa-

tion (6.71) are shown in dashed green.

In figure 6.10 we display relative differences between a partial wave scatter-

ing cross section dσ/dΩPW (section 2.2.5) and various Regge-pole approxima-

tions given by equations (6.69) and (6.70),

∆

[
dσ

dΩ

]
=

∣∣∣∣∣∣∣
dσ

dΩPW
− dσ

dΩRP

dσ

dΩPW

∣∣∣∣∣∣∣ . (6.72)

In figure 6.10f we show the relative difference between the exact (partial wave)

cross section and the full CAM cross section of equation (6.71).

6.6.1 Compact bodies

In figures 6.9b and 6.10b we see that a Regge-pole approximation for the neu-

tron star model R/M = 6 captures the shadow zone behaviour reasonably well

when all the broad resonances and a couple of surface-waves are included in

equation (6.69). Recall from chapter 3 that the shadow zone is θ > θr where

θr ≈ 59.6◦ is the rainbow angle (or maximum geodesic deflection angle).

More Regge-poles are needed (n ≥ 10) to also capture the rainbow max-

imum at θp ≈ 40◦ for Mω = 2 (see figures 6.9c, 6.9d, 6.10c and 6.10d). To

accurately reproduce the cross section at progressively smaller angles requires

yet more Regge-poles, as can be seen in figures 6.9e and 6.10e.

Each branch of Regge-poles makes a significant contribution to the scatter-

ing cross section, as shown in figure 6.11. The amplitude of both branches has

a phase difference, and the summation yields the rainbow interference pattern

expected from the partial wave calculations. Since the rainbow pattern is due

to interference of rays passing through the exterior and interior regions of the
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Partial wave Regge-pole sum (n=2)

50 100 150

0.001

0.100

10

1000

●● ■■

0 10 20 30
0

10

20

30

(a)

Partial wave Regge-pole sum (n=7)

50 100 150

0.001

0.100

10

1000

●●●●● ■
■

0 10 20 30
0

10

20

30

(b)

Partial wave Regge-pole sum (n=10)

50 100 150

0.001

0.100

10

1000

●●●●● ■
■■
■■

0 10 20 30
0

10

20

30

(c)

Partial wave Regge-pole sum (n=15)
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Partial wave Regge-pole sum (n=23)
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Figure 6.9: The scalar field scattering cross section for a constant density star
with R/M = 6 and Mω = 2. Partial wave (exact) calculations are shown in
black, Regge-pole approximations in dashed blue, and Regge-pole with back-
ground integral approximations in dashed green. The approximations are made
by summing over the Regge-poles shown in the inset graph.
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Relative error of Regge-pole sum (n=10)
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Relative error of Regge-pole sum (n=15)
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Relative error of Regge-pole sum (n=23)
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Relative error of Regge-pole sum (n=23) + background integral
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Figure 6.10: The relative difference between scattering cross sections calculated
from a Regge-pole sum and from a partial wave sum (equation (6.72)). The
scattering cross sections are computed for a constant density star with R/M =
6 and Mω = 2. Note that in figure 6.10f we include the background integral
contribution.
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central body (as discussed in chapter 3) it is not surprising that both branches

are needed to reproduce the rainbow peaks and troughs.

The essentially negligible scattering cross section in the backwards direc-

tion displays a glory maximum (which smoothly becomes more prominent as

R/M → 3 from above, see chapter 3). To reproduce this feature accurately

using the CAM calculation we find that the background integral must be in-

cluded, as shown in figures 6.9f and 6.10f. It is also clear from figures 6.10e

and 6.10f that including the background integral in the CAM calculation im-

proves the accuracy considerably over a large range of angles. This should be

expected since the partial wave and full CAM expressions for the scattering

amplitude are equivalent.

At higher circular frequencies, there are more broad-resonances to take into

account (see section 6.4.1). We find that more Regge-poles are needed to

accurately capture the cross sections as Mω increases (see [65]).

6.6.2 Ultra compact objects

In chapter 3 we discussed scattering by UCOs. The cross sections display a

complicated interference pattern. This was understood semiclassically as the

result of large angle rainbow oscillations, glories, and orbiting all combining.

Here we reconstruct the scattering cross sections using CAM techniques,

and find that the Regge pole summations are sufficient to obtain a good ap-

proximation. In other words, the background integrals are negligible.

For the parameters considered here (Mω = 2, R/M = 2.26) we find that

only a handful of Regge-poles are needed to obtain a reasonable approxima-

tion for the exact cross section at large observation angles θ & 140◦ (see fig-

ure 6.12b). As shown in figure 6.12a, summing over the single Regge-pole with

the largest residue is insufficient at all θ. Much improved approximations are

obtained by summing over 9 poles for the region θ & 140◦ (figure 6.12c) , 14

poles for θ & 70◦ (figure 6.12d), and progressively more poles for agreement at

smaller angles (figures 6.12e and 6.12f).

All three Regge-pole branches make a significant contribution to the scat-

tering cross section, as shown in figure 6.13. The difference in phase between
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broad-resonances (n=5) surface-waves (n=18)

Exact Regge-pole sum (n=23)
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Figure 6.11: The scalar field scattering cross section for a constant density star
with R/M = 6 and Mω = 2. The partial wave (exact) calculation is shown in
black (solid). The Regge-pole contributions from the broad-resonance branch
is shown in red (lower solid line), and the surface-wave branch in blue (dashed).
The total Regge pole contribution is shown in dashed green and overlays the
partial wave (exact) result.

all three yields the interference pattern expected from the partial wave calcu-

lations. We find that more Regge-poles are needed to accurately capture the

cross sections as Mω increases (see [65] for further examples).

6.7 Conclusions

In this chapter we have determined the spectrum of scalar field Regge-poles

on the background spacetime of a constant density star, in the right-half CAM

plane. Our method is applicable to general spherically symmetric spacetimes

and could easily be applied to more sophisticated stellar models, or exotic com-

pact objects (chapters 4 and 5). We have applied CAM theory to derive an

exact formula for calculating scattering amplitudes as a sum over residues and

a background integral, equations (6.63) and (6.65) to (6.68). We have then

applied the CAM equations to compute scattering cross sections and demon-
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Partial wave Regge-pole sum (n=14)
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Partial wave Regge-pole sum (n=19)

50 100 150

0.1

1

10

100

1000

104

● ● ● ● ●■
■■
■■
■■
■■■

▲▲▲▲
0 5 10 15
0

10

20

30

(e)

Partial wave Regge-pole sum (n=34)

50 100 150

0.1

1

10

100

1000

104

● ● ● ● ●■
■■
■■
■■
■■■
■■■
■■■
■■■
■■■
■■■

▲▲▲▲
0 5 10 15
0

10

20

30

(f)

Figure 6.12: The scalar field scattering cross section for a constant density
star with R/M = 2.26 and Mω = 2. The partial wave (exact) calculation
is shown in black and the Regge-pole approximations in dashed blue. The
approximations are made by summing over the Regge-poles shown in the inset
graph.
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broad-resonances (n=5) narrow-resonances (n=4)

surface-waves (n=20) Exact

Regge-pole sum (n=29)
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Figure 6.13: The scalar field scattering cross section for a constant density
star with R/M = 2.26 and Mω = 2. The partial wave (exact) calculation is
shown in black (solid). The Regge-pole contributions from the broad-resonance
branch is shown in red (solid), the surface-wave branch in blue (dashed), and
the narrow-resonance branch in brown (short dashes). The result of combining
all 29 Regge-poles is shown in dashed green and is visually indistinguishable
from the partial wave result.

strated their equivalence to the partial wave results described in chapter 3.

We have found that the Regge-pole spectra for relativistic, spherically sym-

metric stellar bodies without a light ring is composed of two branches. The

poles in the branch parallel to the real λ-axis we have termed ‘broad-resonances’.

The poles in the branch inclined to the real λ-axis we have labelled ‘surface-

waves’. Some justification for these labels is provided by considering modes

with angular momentum l = Reλn− 1/2, and appealing to semiclassical (high

frequency) arguments. In essence, modes with l = ReλB-R
n −1/2 will penetrate

into the interior of the star since the angular momentum barrier is sufficiently

small. On the other hand, modes with l = ReλS-W
n − 1/2 in some sense only

feel the exterior spacetime and the surface of the star, and exponentially decay

in the interior.

173



6.7. CONCLUSIONS

We have used a WKB method at zeroth order to derive approximations

for the broad resonances. In this picture, the modes undergo a weak internal

reflection due to the discontinuity at the surface of the body. The imaginary

part of theλB-R
n is dependent on the magnitude of the discontinuity at the

surface, via equations (6.24) and (6.32) (see also figure 6.5).

For UCOs, the Regge-pole spectrum posses an additional third branch of

poles, which we have called ‘narrow-resonances’ (see figure 6.6). The poles in

this branch are associated with the effective cavity between the objects light

ring at r = 3M > R, and the angular momentum barrier.

We have borrowed the terminology for the three Regge-pole branches used

by Nussenzweig when examining Mie scattering [68], since they are qualitatively

similar (see in particular figures 9.1 and 9.2 in [68] and compare with figure 6.6).

As mentioned, the scenarios are not completely analogous and exploring the

physical interpretation of the branches we see in the detail that Nussenzweig

has for Mie scattering would be an interesting and challenging task beyond the

scope of this thesis.

Further worthwhile study would be to consider stellar models with multi-

ple discontinuities in the interior, motivated for example by the possibility of

matter phase transitions in neutron stars. As we have seen, the surface discon-

tinuity in our simple constant density model is particularly important for the

broad-resonances. If there are multiple discontinuities, could there be further

Regge-pole branches?

We are confident for the model considered here that there are no additional

branches to be found in the right-half CAM plane for two reasons: (1) neither

the root finding algorithm (section 6.2.2) or the rigorous scanning technique of

Ould El Hadj [208] has found any additional poles when searching the regions of

the complex λ-planes shown in figures 6.3, 6.4 and 6.6 (as well as the examples

considered in [65]); (2) the scattering cross sections calculated using CAM and

partial-wave methods are in agreement to a high numerical precision, which

would not be the case if we had missed poles in the regions mentioned.

There are further, probably infinite poles in the surface wave branches, but

these have a negligible effect on the scattering amplitude except at small angles.
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There could in principle also be other branches with large imaginary parts and

a negligible contribution to the scattering amplitude sum at intermediate and

large angles but this seems unlikely. Finally, there most likely are Regge-poles

in the left-half CAM plane, as there are in Mie scattering [68]. However, it is

not clear what a suitable analytic extension of the mode solutions to this region

is at this point. If we simply take the extension defined by equation (6.44), then

the modes are divergent at the origin, as is the integrand for CAM scattering

(equation (6.42)) as |λ| → ∞, Re λ < 0. This is an avenue for further work,

and the results in reference [68] are a good starting point.

We have found that the scattering cross sections for intermediate frequencies

can be reconstructed to a good precision using the CAM formulae, except at

small angles. The error at small angles is mitigated by including more surface

wave poles in the summation. At intermediate and large angles we find a

typical relative error of 10−2, which seems to originate from neglecting the CAM

background integral. When the background integral is included the relative

error is reduced to approximately 10−4. The CAM machinery allows one to

sidestep the issue of the partial-wave sum divergence previously dealt with using

other methods, provided we can live with a relative error of O(10−2). This has

been noted previously in black hole scattering, where only a few surface-wave

poles are needed to capture the glory and orbiting scattering features [57, 58].

The situation is not quite as elegant for the UCO, since one must also take into

account a few surface-wave poles as well as the broad and narrow-resonance

poles (which increase in number as ω increases), to accurately reproduce the

scattering cross section. In reference [65] the above conclusions are also shown

to hold at higher frequencies (Mω = 8).

Again we can look to Mie scattering for inspiration here, where the ‘De-

bye expansion’ is used to eliminate broad and narrow-resonances, leaving only

surface-wave type Regge poles (see chapter 9 of [68]). The Debye expansion is

based on a series of terms corresponding to interactions of the incident wave

with the surface of a transparent sphere. We have made some attempts at de-

veloping an analogous approach here for a UCO, based on multiple interactions

of the incident wave with the photonsphere, but have not yet been successful
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in eliminating the two resonance branches.

Finally we have some speculative comments on the duality of QNMs and

Regge poles. Chandrasekhar and Ferrari established a link between the trapped

modes of highly compact stars (UCOs) and Regge poles with small imaginary

part [101]. These Regge poles are the ‘narrow resonances’ which we defined in

analogy to scattering by a penetrable sphere in flat space. A natural question

to ask is if there is a correspondence between the other branches of compact

body Regge poles and QNMs.

Décanini et al. suggested extending their BH CAM analysis to attempt to

interpret neutron star QNMs in terms of surface waves [71]. To do so requires

calculating the Regge trajectories, the paths in the complex plane λn(ω), ω ∈ R.

Then, a resonance wave frequency, ωR
n , is found from the Bohr-Sommerfeld type

quantisation condition [71],

Re [λn(ωR
n )] = l + 1/2, l = 0, 1, 2... . (6.73)

We have seen that the surface wave poles satisfy Re [λS-W
n (ω)] > bgrω for

R/M > 3, where bgr is the grazing ray impact parameter (equation (3.26)).

Conversely, the broad resonances satisfy Re [λB-R
n (ω)] < bgrω, when R/M > 3.

Thus, for a fixed l = l0 we expect there to be resonant frequencies ωR
n <

(l0 + 1/2)/bgr associated with surface waves, and possibly infinite resonant fre-

quencies ωR
n > (l0 + 1/2)/bgr associated with broad resonances. Neutron star

models do possess two families of QNM: a possibly infinite number of ‘curva-

ture’ modes [32], and ‘interface’ modes that may be associated with scattering

from the surface of the star [31]. The interface mode frequencies are smaller

than the curvature mode frequencies (see table 1 of [32]). The above consid-

erations suggest that interface modes may be mapped to surface-wave poles,

and curvature modes to broad-resonances. In addition, the WKB approxima-

tion for broad-resonance Regge poles (section 6.2.4) was adapted from a WKB

approach for calculating curvature modes [210]. Unfortunately our code has

not proved effective at finding QNMs for typical neutron star models as the

imaginary parts are typically large which leads to issues integrating in the ra-
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dial coordinate, and so we did not investigate this conjecture further. A more

rigorous analysis would be required, and desirable, in order to make a stronger

statement about the duality of the two types of resonances in compact bodies.
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6.8 Regge-pole data

This section is a collection of the data for the Regge-poles and residues for the

models R/M = 6 and R/M = 2.26 with Mω = 2 (see figures 6.3 and 6.6). The

branches are enumerated according to their distance from the central meeting

point (or the surface wave pole with smallest imaginary part). We also present

the Regge-poles calculated for the model with R/M = 6 and Mω = 8 (see

figure 6.5, and compare the broad-resonances with the WKB formula equa-

tion (6.32). Additional data is available in reference [65].

n Re [λB-R
n ] Im [λB-R

n ] Re [rn] Im [rn]

1 0.2078589134 2.4037800766 −0.3370928275 0.0178689221

2 2.2964852806 2.5283639620 −0.5392335131 0.1371085210

3 4.5211409166 2.6547369409 −0.6554092430 0.7551927951

4 6.9319724168 2.7898397477 0.7989174999 1.8572064324

5 9.6462574558 2.9496668407 3.8951271197 −3.1005199646

Table 6.1: Broad-resonance Regge-poles for the scalar field on a constant

density star with tenuity R/M = 6 and Mω = 2.
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n Re [λS-W
n ] Im [λS-W

n ] Re [rn] Im [rn]

1 13.1571093946 3.1398993509 −12.6188769249 16.0454013304

2 14.4018590904 5.6796001923 59.2266606246 −1.7645406713

3 15.4068773177 7.8223842727 0.2497010582 −106.9838324506

4 16.2933616739 9.7684400587 −147.5386666385 −58.5466764134

5 17.1064353123 11.5852956411 −173.5321734084 120.3763991769

6 17.8675222892 13.3069545636 −32.9374442103 260.4645165757

7 18.5887517106 14.9539722163 177.4464337465 256.4120113608

8 19.2778339843 16.5401100924 340.7781262220 111.7817160542

9 19.9400783025 18.0752025718 388.7283274597 −105.8318358645

10 20.5793565360 19.5666051331 311.3002484882 −317.3799437985

11 21.1986155252 21.0200083237 138.7692682565 −463.4956358904

12 21.8001725668 22.4399315757 −81.1362367687 −514.4481984758

13 22.3858972216 23.8300404914 −300.6553913856 −467.3209734194

14 22.9573291568 25.1933600359 −481.9254532659 −337.9556327652

15 23.5157578586 26.5324230261 −600.7579509812 −152.2906841565

16 24.0622784956 27.8493766536 −646.4266240602 60.7449356351

17 24.5978322543 29.1460608177 −619.0594873833 273.9661921610

18 25.1232362064 30.4240669563 −515.4533056983 464.9975273190

Table 6.2: Surface-wave Regge-poles for the scalar field on a constant density
star with tenuity R/M = 6 and Mω = 2.
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6.8. REGGE-POLE DATA

n Re [λB-R
n ] Im [λB-R

n ] Re [rn] Im [rn]

1 7.7744358222 1.3005536691 −35.7463341910 −250.6002985536

2 6.3113515934 1.4403982073 47.7322249759 −79.5871577920

3 4.7073116035 1.5900515870 −1.8682316228 −26.7463468623

4 2.9969483227 1.7447759245 −4.9504425616 4.0217462522

5 1.1593932814 1.9098312255 0.1614852296 −1.1022694572

Table 6.3: Broad-resonance Regge-poles for the scalar field on a constant
density star with tenuity R/M = 2.26 and Mω = 2.

n Re [λN-R
n ] Im [λN-R

n ] Re [rn] Im [rn]

1 8.5894199914 1.0905489773 64.6600077923 −128.9301781778

2 9.3098023984 0.5269574852 8.5944268604 −3.6045413616

3 10.0361165037 0.1470067641 0.2922616960 −0.4437231374

4 10.7376054334 0.0064453196 −0.0120914120 −0.0051766969

Table 6.4: Narrow-resonance Regge-poles for the scalar field on a constant
density star with tenuity R/M = 2.26 and Mω = 2.
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n Re [λS-W
n ] Im [λS-W

n ] Re [rn] Im [rn]

1 8.0459507022 2.7245439973 −271.8785639876 1,986.8888816303

2 8.0397260117 4.3209876235 2,740.8680505202 −2,720.8784508344

3 8.1639973017 5.7873603892 −4,499.1573311463 −2,411.1830724905

4 8.3575244116 7.1505459327 −3,228.4644583934 4,755.2132870540

5 8.5891987792 8.4327157375 3,392.7683019384 4,966.3076366999

6 8.8424494859 9.6505870601 6,071.4981847061 −203.7224808534

7 9.1079786337 10.8165095354 3,754.8802792320 −4,716.0150474080

8 9.3803278734 11.9396661348 −507.9042965372 −5,907.3571898263

9 9.6561714911 13.0269944632 −4,002.1429048699 −4,207.4142749963

10 9.9334232769 14.0838330257 −5,560.5391639462 −1,143.6052432905

11 10.2107462371 15.1143652731 −5,211.6462129467 1,901.0637414990

12 10.4872715943 16.1219257755 −3,552.1322460630 4,097.5775939170

13 10.7624314992 17.1092140606 −1,292.6758713317 5,145.0150143937

14 11.0358560825 18.0784464066 974.4804548913 5,102.1626654288

15 11.3073082461 19.0314654435 2,853.1489645165 4,216.8623929167

16 11.5766413096 19.9698206237 4,137.3505301899 2,799.9288657569

17 11.8437708984 20.8948282476 4,770.8022981190 1,147.8447808934

18 12.1086559290 21.8076169071 4,798.9874915568 −496.2429529148

19 12.3712855380 22.7091623667 4,326.5363049518 −1,955.9453623296

20 12.6316699697 23.6003146788 3,484.3438866993 −3,120.0076365849

21 12.8898341500 24.4818195111 2,406.6892190141 −3,933.0876096891

22 13.1458131085 25.3543351047 1,216.8626298970 −4,383.6853278949

23 13.3996486925 26.2184458928 19.3155158013 −4,491.9790567175

24 13.6513871939 27.0746735407 −1,103.5584115855 −4,298.9855577101

25 13.9010776287 27.9234859714 −2,091.5786650460 −3,857.6282913209

26 14.1487704866 28.7653048034 −2,905.0702250641 −3,225.8134545644

27 14.3945168243 29.6005115276 −3,522.1578611199 −2,461.3586322300

28 14.6383676087 30.4294526693 −3,935.6537077959 −1,618.5037957670

Table 6.5: Surface-wave Regge-poles for the scalar field on a constant density
star with tenuity R/M = 2.26 and Mω = 2.
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6.8. REGGE-POLE DATA

n Re [λB-R
n ] Im [λB-R

n ] Re [λS-W
n ] Im [λS-W

n ]

1 51.1054839401 4.9555954956 56.0094517298 5.7103849263

2 47.2802395843 4.6390754587 58.4465611630 9.1879311322

3 43.8923611192 4.4412977769 60.2037373119 12.1496453608

4 40.7673310730 4.2972583371 61.6770018779 14.8472806975

5 37.8252489752 4.1831707542 62.9862584761 17.3716467021

6 35.0213121669 4.0878840062 64.1860520487 19.7691078243

7 32.3273058738 4.0053096711 65.3064012656 22.0674267572

8 29.7240684052 3.9317952283 66.3658104958 24.2849146553

9 27.1978640192 3.8649888236 67.3765869199 26.4344719730

10 24.7384418829 3.8032927307 68.3473770943 28.5256357023

11 22.3379093557 3.7455747198 69.2845137176 30.5657207317

12 19.9900365371 3.6910043249 70.1927893294 32.5605031223

13 17.6898056541 3.6389545781 71.0759285831 34.5146524402

Table 6.6: The first 13 broad-resonance and surface-wave Regge-poles for the
scalar field on a constant density star with tenuity R/M = 6 and Mω = 8.
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n Re [λB-R
n ] Im [λB-R

n ] Re [λWKB
n ] Im [λWKB

n ] Error

1 51.1054839401 4.9555954956 40.6615642399 3.2554534592 0.2061

2 47.2802395843 4.6390754587 38.6615642399 3.2554534592 0.1837

3 43.8923611192 4.4412977769 36.6615642399 3.2554534592 0.1661

4 40.7673310730 4.2972583371 34.6615642399 3.2554534592 0.1511

5 37.8252489752 4.1831707542 32.6615642399 3.2554534592 0.1379

6 35.0213121669 4.0878840062 30.6615642399 3.2554534592 0.1259

7 32.3273058738 4.0053096711 28.6615642399 3.2554534592 0.1149

8 29.7240684052 3.9317952283 26.6615642399 3.2554534592 0.1046

9 27.1978640192 3.8649888236 24.6615642399 3.2554534592 0.0950

10 24.7384418829 3.8032927307 22.6615642399 3.2554534592 0.0858

11 22.3379093557 3.7455747198 20.6615642399 3.2554534592 0.0771

12 19.9900365371 3.6910043249 18.6615642399 3.2554534592 0.0688

13 17.6898056541 3.6389545781 16.6615642399 3.2554534592 0.0608

14 15.4331073361 3.5889402680 14.6615642399 3.2554534592 0.0530

15 13.2165290777 3.5405776368 12.6615642399 3.2554534592 0.0456

16 11.0372037871 3.4935572012 10.6615642399 3.2554534592 0.0384

17 8.8926987676 3.4476249031 8.6615642399 3.2554534592 0.0315

18 6.7809326677 3.4025687107 6.6615642399 3.2554534592 0.0250

19 4.7001122482 3.3582088820 4.6615642399 3.2554534592 0.0190

20 2.6486834884 3.3143907476 2.6615642399 3.2554534592 0.0142

21 0.6252932655 3.2709792602 0.6615642399 3.2554534592 0.0118

Table 6.7: Broad-resonance Regge-poles for the scalar field on a constant
density star with tenuity R/M = 6 and Mω = 8. A comparison of numerical
results λB-R

n and WKB approximations λWKB
n (see equation (6.32)).
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Chapter 7

Summary

In this thesis we have examined and developed the scattering theory for bosonic

field plane waves incident on relativistic compact objects. Complementing ear-

lier work on scattering from black holes [21], we have used metric perturbation

formalisms [87, 92, 93] to study gravitational waves scattering from spherically

symmetric matter configurations such as neutron stars. The definition and

derivation of scattering and absorption cross sections for scalar and gravita-

tional waves is presented in chapter 2. A natural extension of this work would

be to consider scattering on rotating non-vacuum spacetimes, for example ro-

tating stars. Kojima has derived equations for perturbations of slowly rotating

relativistic stars which provides a solid starting point [93].

In chapter 3 we focused on scalar plane wave scattering from a compact

star modelled as a fluid sphere of constant density. Using both semiclassical

and numerical partial wave approaches we computed scattering cross sections.

We found evidence for a rainbow interference pattern when a scalar wave of

sufficiently high frequency was incident on a neutron star. In addition glory

and spiral scattering were seen for scattering by ultra compact objects.

In chapter 4 we extended our work to consider both gravitational waves

and different stellar models. The rainbow interference pattern was shown to be

sensitive to the stellar model equation of state and the star’s compactness. In

practice, gravitational waves of known astrophysical sources are of too large a

wavelength (or equivalently too low frequency) to probe the details of a neutron
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star’s curvature, and give rise to this rainbow interference pattern. However,

there is the possibility that rainbow scattering could occur due to scattering

by other compact matter configurations, such as black holes with surrounding

matter, as shown by Leite et al [56]. Also, in related work Alexandre and

Clough showed that a non-trivial interference pattern for the oscillation prob-

abilities of neutrino flavours would be expected when a black hole was situated

between a neutrino source and detector [162].

Interesting avenues for future work that builds on chapters 2 to 4 includes:

extending the work in reference [56] to consider gravitational waves, using the

formalism we have developed in chapters 2 and 4; generalising to scattering

on rotating (non-vacuum) spacetimes; and considering interference patterns

for the oscillation probabilities of neutrinos downstream from a compact body,

and comparing the findings with those in reference [162].

The absorption of plane waves by exotic compact objects (ECOs) was in-

vestigated in chapter 5. A heuristic model was used for the ECO whereby a

partially reflective boundary condition was imposed at a small distance above

the Schwarzschild radius (where the event horizon would be if the body was

a black hole). Clear spectral lines were found in numerically calculated ab-

sorption cross sections for scalar waves. These lines were interpreted as en-

hanced absorption due to the excitation of Breit-Wigner type resonances. The

resonances were shown to be modes trapped between the body’s surface and

light ring. Natural extensions of this work would be to consider electromag-

netic, neutrino, and gravitational wave perturbations. In particular, astrophys-

ical gravitational waves incident on super massive black hole candidates which

(speculatively) could be ECOs, could give rise to particularly strong absorption

lines. It would be interesting to investigate the astrophysical implications of

this, if any, in light of upcoming space based gravitational wave detectors [75].

Another option is to consider absorption of plane waves by neutron star models

which include a mechanism for dissipation of energy, such as energy loss due

to gravitational waves coupling to fluid modes which will then be damped by

frictional forces.

In chapter 6 the complex angular momentum (CAM) picture of pertur-
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bations on a spherically symmetric compact body space-time was presented.

CAM resonant modes known as “Regge modes” were identified for the scalar

wave on a constant density star. The theory can easily be applied to other

models if desired (such as those in chapter 4, section 4.1, and reference [65]).

We showed that at least two families of Regge modes exist for our model, and

a third family exists if the star is sufficiently compact to possess a light ring.

The families could loosely be interpreted as surface waves (associated with the

surface of the star or the light ring if extant), broad resonances that penetrate

inside the star, and narrow resonances trapped inside the light ring.

A better understanding of the CAM resonances and their association with

quasinormal modes (with complex frequency and real angular momentum) is

needed. A good starting point is to follow the work on CAM theory for black

hole perturbations undertaken by Décanini, Folacci and Jensen [71], as well

as Andersson and Thylwe [46]. In addition the monograph by Nussenzweig

provides a thorough analysis of Regge modes for hard and penetrable spheres

in flat space using semiclassical techniques [68].

In chapter 6, we made use of the Regge modes and their residues to cal-

culate scattering cross sections and compare with the results from the partial

wave method shown in chapter 3. CAM theory has also been applied to time

dependent scattering from black holes by Folacci and Ould El Hadj, who accu-

rately modelled the characteristic ringdown of a perturbed black hole [199]. It

would be interesting to generalise their method to other compact objects.

Finally, it would be instructive to consider the ECO model from chapter 5

in the CAM picture. Décanini et al. have derived an elegant high energy

approximation for absorption by black holes using the CAM paradigm [202].

It would be worthwhile to extend their work to further investigate absorption

by ECOs, as this could help elucidate the nature of the various Regge modes,

their relationship to quasinormal modes, and the physical mechanism behind

the spectral lines.
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Appendix A

Spherical harmonics

Here we collect the definitions and some properties of the usual spherical har-

monics Y lm(θ, φ) as well as the vector and tensor spherical harmonics intro-

duced by Martel and Poisson [87].

The spherical harmonics Y lm(θ, φ) are the eigenfunctions of the differential

equation [117]

1

sin θ

∂

∂θ

[
sin θ

∂Y lm

∂θ

]
+

1

sin θ

∂2Y lm

∂2φ
= −l(l + 1)Y lm. (A.1)

The spherical harmonics are orthogonal on the unit sphere∫
ȲlmY

l′m′ dΩ = δl,l′δm,m′ , (A.2)

where and over-bar denotes complex conjugation.

The even and odd parity vector spherical harmonics of Martel and Poisson

[87] are defined by

X lm+
A ≡ DAY

lm (A.3)

and

X lm−
A ≡ −ε B

A DBY
lm (A.4)

respectively, where εAB is the Levi-Civita tensor on the unit two-sphere. Here

DA is the covariant differential operator associated with the metric on a two-
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sphere ΩAB, and the upper case Latin subscript runs over (any choice of) two

angular coordinates. With the usual choice (θ, φ) the operators are simply

Dθ = sin θ ∂
∂θ

and Dφ = ∂
∂φ

.

These vector harmonics satisfy∫
X̄A
lmpX

l′m′p′

A dΩ = l(l + 1)δll′δmm′δpp′ . (A.5)

Martel and Poisson have also defined tensor spherical harmonics [87]. The

even parity tensor spherical harmonics are split into a trace-free part

X lm+
AB ≡

[
DADB +

1

2
l(l + 1)ΩAB

]
Y lm, (A.6)

and a trace piece ΩABY
lm. The odd parity tensor harmonics are

X lm−
AB ≡ −

1

2

[
ε C
A DB + ε C

B DA

]
DCY

lm, (A.7)

which are also trace free on the sphere, ΩABX lm−
AB = 0. They satisfy∫

X̄AB
lmpX

l′m′p′

AB dΩ =
1

2
l(l − 1)(l + 1)(l + 2)δll′δmm′δpp′ . (A.8)

They are related to spin-weighted spherical harmonics [214] by

X lm−
AB =

i

2

√
(l − 1)l(l + 1)(l + 2)

(
2Y

lmm̄Am̄B − −2Y
lmmAmB

)
, (A.9)

X lm+
AB =

1

2

√
(l − 1)l(l + 1)(l + 2)

(
2Y

lmm̄Am̄B + −2Y
lmmAmB

)
, (A.10)

where mA = 2−1/2(1, i sin θ). Note X
l(−m)p
AB = (−1)mX̄ lmp

AB .
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