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Abstract 
 
The most advanced stage of diabetic retinopathy, proliferative diabetic 

retinopathy, is characterised by retinal neovascularization due to wide spread 

retinal ischemia. While laser photocoagulation has remained the gold standard 

treatment for decades, anti-vascular endothelial growth factor agents are now 

increasingly used to treat proliferative diabetic retinopathy. Although evidence 

supports the use of anti-vascular endothelial growth factor agents, there are 

several limitations to this treatment that suggest alternative therapies should be 

explored. 

 

Poorly controlled complement activation is now associated with many 

pathologies, and recent evidence implicates complement dysregulation in the 

pathogenesis of several neovascular ocular diseases, including diabetic 

retinopathy. Although evidence that complement activation may contribute to 

vascular pathology is promising, crosstalk between the complement system and 

neovascularisation remains largely unclear. Taking a step back to understand 

the role of complement components in diabetic retinopathy would not only 

provide a more in-depth knowledge of the cellular and molecular mechanisms 

involved in disease pathogenesis, but it could also highlight novel therapeutic 

targets for DR and other vasoproliferative diseases in the eye.    

 
Therefore, the objectives of the studies presented in this thesis were to test to 

test the hypothesis that complement has a novel function in angiogenesis which 

is separate from its characterised role as an immune surveillance system within 

the ocular environment. This work is specifically focused on exploring the role of 

the central component of the alternative complement pathway, complement 

factor B in regulating retinal angiogenesis.  

 

Initially, CFB expression was characterised using rodent models and human 

patient samples. In the retina of STZ-induced diabetic mice there was no 

difference in CFB expression between buffer-injected controls and STZ-induced 

diabetic mice. Similarly, characterisation of systemic CFB levels in human 
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patient serum samples revealed no differences between control and diabetic 

patients at different stages of retinopathy. However, analysis of ocular CFB 

levels in human aqueous samples, revealed a higher expression in diabetic 

patients with retinopathy compared to diabetic patients without. The well-

established mouse model of oxygen induced retinopathy was carried out to 

study CFB expression in pathologic vessel formation. RT-qPCR analysis 

demonstrated that CFB was significantly upregulated in mice retina subject to 

oxygen-induced retinopathy.  

 

To establish the impact of CFB on retinal vascular cell function and 

angiogenesis, in vitro and ex vivo angiogenesis assays were carried out. 

Results demonstrate that CFB was able to promote human retinal endothelial 

cell viability, proliferation, tube formation, Transwell migration, and aortic ring 

sprouting, thus indicating a pro-angiogenic role of CFB.  

 

Finally, to elucidate the mechanism through which CFB exerts its pro-

angiogenic function the relationship between CFB and the VEGF signalling 

system was investigated using in vitro cultures of human retinal endothelial 

cells. Observations from these preliminary mechanistic studies revealed that 

CFB mediates VEGF gene expression, and VEGFR2 gene and protein 

expression. And that the pro-angiogenic function of CFB is upstream of, and 

acts through the VEGF signalling pathway. 

  
Several reports have implicated complement and complement related proteins 

in the development of DR. However, few studies have investigated the more 

precise role played by CFB and the mechanism(s) by which complement 

mediates its tissue damaging effects. Collectively, results from this study clearly 

indicate a pro-angiogenic role of CFB in DR associated neovascularisation.  
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1. Introduction 
 

Diabetes mellitus (DM) is a metabolic disease that has seen a dramatic 

increase over the past century, and with approximately 350 million people 

affected worldwide it is now considered to be a global epidemic1,2: by 2035 this 

number is projected to increase to 600 million3. It can be defined as “a state in 

which homeostasis of carbohydrate and lipid metabolism is improperly 

regulated by insulin”4 and when sustained for a prolonged period this 

homeostatic imbalance ultimately leads to chronic hyperglycaemia5. 

Exacerbated by risk factors including genetics, hypertension and diet, chronic 

hyperglycaemia then acts through several downstream metabolic pathways to 

initiate vascular dysfunction6. 

Vascular complications arising from diabetes the major causes of morbidity and 

mortality seen in diabetic patients7,8, and they can be broadly categorised into 

macro- or microvascular diseases. Diabetes associated dysfunction affecting 

large arteries supplying the heart, the brain and lower extremities are major 

causes of myocardial infarction, stroke and lower limb amputation9. On the 

other hand, microvascular abnormalities can affect the retina (retinopathy), 

kidneys (nephropathy) and peripheral nerves (neuropathy)9,10.  

Of the three major manifestations of microvascular diseases, diabetic 

retinopathy (DR) is the most common, with an overall prevalence of over 40% in 

diabetic patients11. It is a major cause of visual impairment and blindness in 

working age adults worldwide, representing a substantial burden to patients, 

their families, health-care systems, and national economies2.  
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1.1  Our Vascular System 
 

Blood vessels line the entire circulatory system and play a central role in 

mediating physiology and pathogenesis. The vascular network is an elaborate 

transport system to supply oxygen and essential nutrients to tissues, and to 

facilitate the removal of metabolic waste products12. This process begins at the 

heart that pumps blood into hierarchical, organised vascular branches that span 

across multiple orders of magnitude (µM to cm)13,14. The macrovasculature 

(including the arterial, venous, and lymphatic systems) regulates bulk oxygen 

delivery to accommodate systemic metabolic demands15,16. On the other hand, 

the microvasculature network (including capillaries, pre-capillary arterioles, 

post-capillary venules and collecting venules) regulates local perfusion and 

conducts blood-tissue exchange of macromolecules15,17(please refer to Figure 
1). 

 

1.2 Anatomy of Blood Vessels 
 

Studies of vessel architecture have reported similarities in the basic wall 

structure of most blood vessels18,19. The innermost luminal wall, also known as 

the tunica intima, is comprised of a single layer of endothelial cells (EC)s, that 

align themselves in parallel to the blood flow. This layer, also known as the 

endothelium, is highly metabolically active and critically regulates vessel 

homeostasis by governing the expression of a multitude of signalling molecules 

that regulate vessel permeability, vascular tone, extramural cell growth and 

migration, inflammatory responses and haemostatic function18,20,21. Endothelial 

phenotypes vary between species, organs, vascular bed, and spatial and 

temporal distribution17. ECs demonstrate remarkable heterogeneity in cell 

morphology, function, gene expression, and antigen composition to serve 

specialised functions based on the physiological needs in the local 

microenvironment22,23. For example, the ECs found in the retinal 

microcirculation are non-fenestrated and tightly associated to form the blood-
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retinal barrier that restricts paracellular and transcellular movement of solutes to 

maintain retinal homeostasis and proper retinal function. On the contrary, the 

glomerular endothelium is highly fenestrated to regulate high flux filtration of 

fluid and small solutes15,24. The endothelial layer is the only common cellular 

component of capillaries, the simplest vascular structures with the smallest 

diameter25.  Ensheathing the endothelium is the tunica media layer which 

contains mural cells (smooth muscle cells, pericytes, and fibroblasts) sharing a 

common basement membrane with the ECs26,27. In the macrovascular 

circulation layers of vascular smooth muscle cells (vSMC)s wrap around 

macrovascular ECs to provide mechanical support and to regulate vascular 

tone and blood flow28. Instead of vSMCs, a discontinuous coat of pericytes 

(PC)s surround the microvascular ECs29. The PC:EC ratios, ranging from 1:1 

and 1:10, differs across different tissue beds, often found to be enriched at the 

EC-EC junctions and branch points. Just like ECs, the perivascular cells also 

feature distinct morphology, protein expression profile and functional plasticity30. 

For instance, mesangial cells are specialised renal pericytes that participate in 

ultrafiltration at the glomerulus, whereas hepatic stellate cells are specialised 

hepatic pericytes with additional fat-storing capacities31. 

 

Lastly, large calibre arteries and veins are wrapped in an additional layer known 

as the outer tunica adventitia which contains a collagen-rich ECM and 

interacting cell types including quiescent fibroblasts, nerve cells, resident 

macrophages, T-lymphocytes, B-lymphocytes, mast cells, and dendritic 

cells31,32. Besides providing mechanical support to the blood vessel, it serves as 

a biological compartment facilitating the retrieval, integration, storage and 

release of key regulators that are critical for blood vessel activation and 

homeostasis33. Moreover, recent studies also suggested that this outermost 

layer of the blood vessel also functions as a niche for resident vascular 

progenitor cells32. 
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Figure 1: Schematic representation of the basic structure of blood vessels. Blood vessels 

are organised as capillaries, arterioles and venioles, or arteries and veins. Capillaries are the 

most abundant blood vessels in our body. They consist of ECs surrounded by pericytes 

embedded within the EC basement membrane. Arterioles and venules SMCs that are able to 

contract and regulate blood flow. Besides the endothelium and mural cell layers, arteries and 

veins contain an additional layer of connective tissue with a mixture of different cell types. 

(Adapted from Nature: Scientific Reports, volume 8, pages 1-13 (11th July 2018)34 
https://creativecommons.org/licenses/by/4.0/)  
 

1.3  Blood Vessel Formation 
 

Blood vessel formation is a highly complex and tightly regulated process that 

results in the establishment of a vasculature that supports vital systems of the 

body. The cardiovascular system is the first organ system to form during 

embryonic development35 however at the earliest stage of vertebrate 

embryogenesis the embryos develop in the absence of a functional vascular 
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network with nutrients and waste products being exchanged by passive 

diffusion36. From the third week of gestation a functional vascular network 

begins to form to ensure an adequate supply of oxygen, nutrients and growth 

factors, and enable efficient removal of waste products from growing embryos37. 

During this time de novo blood vessel formation occurs through the 

differentiation of mesenchymal cells into ECs in a process termed 

vasculogenesis38 (please refer to Figure 2 for a schematic representation of 

vasculogenesis). Mesodermal progenitor cells in the mesodermal compartment 

of the developing embryo give rise to groups of homogenous cells termed 

hemangioblasts or blood islands. During proliferation and differentiation, cells in 

the centre of these blood islands give rise to hemopoietic stem cells (HSCs) and 

cells on the periphery give rise to endothelial progenitor cells (EPCs)39. As 

blood islands merge, the HSCs develop into blood cells and the EPCs form a 

primitive vascular plexus of small capillaries. Once a primitive vascular network 

is formed it then expands by angiogenesis and subsequently matures into a 

system of stable vessels40. 

 

 
 
Figure 2: Schematic representation of Vasculogenesis. Vasculogenesis is the de novo 

formation of the first capillaries. Aggregations of cells called blood islands form in the embryonic 

yolk sac. They contain a homogenous collection of cells called hemangioblasts that develop into 

hemopoietic stem cells (HSCs) and endothelial progenitor cells (EPCs). Blood islands merge: 

HSCs develop into blood cells and EPCs develop into a primitive capillary plexus. 
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1.4 Angiogenesis 
 

Angiogenesis is the growth of blood vessels from the existing vasculature. It 

occurs throughout life in both health and disease. Mature vessels are 

quiescent in nature and only transit into an activated state during specific 

growth periods, or in response to tissue injury28. Once a primitive vascular 

network is formed via vasculogenesis, it progressively expands and remodels 

via angiogenesis giving rise to a mature, highly organised system of stable 

blood vessels. This process can be split into two distinct processes; sprouting 

and non-sprouting (intussusceptive) angiogenesis (please refer to Figure 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3: Schematic representation of angiogenesis and stabilisation. A, Sprouting 

angiogenesis. ECs sprout from the parent vessel by proliferation and migration, extending into 
the surrounding matrix. ECs proliferate to elongate the sprout and eventually fuse with others to 

form a closed loop, allowing for the initiation of blood flow. B, Intussusceptive angiogenesis. 

New blood vessels are created by splitting of an existing blood vessel. ECs on opposite sides of 
a capillary protrude into the lumen until they form contacts. These contacts form an EC bilayer 

which is then reorganised so that it becomes perforated at the centre. After angiogenesis 

stabilisation occurs whereby pericytes a are recruited to stabilise the neo-vessel so that it 
becomes fully functional. 
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1.4.1 . Intussusceptive Angiogenesis 
	

A variant of angiogenesis is intussusceptive angiogenesis whereby vessels are 

divided into two via the formation of intraluminal pillars and splitting of the 

lumen41. Briefly, ECs situated on opposite sides of a capillary protrude into the 

lumen until they form contacts, also known as intraluminal pillars. These 

contacts, strengthened by the formation of inter-endothelial junctions, form an 

EC bilayer which is then reorganised in such a way that it becomes perforated 

at the centre. Finally, ECs retract and the newly formed pillar is invaded by 

fibroblasts and pericytes which lay down collagen fibrils, causing the pillar to 

increase in size. Unlike sprouting angiogenesis EC proliferation is not a critical 

part of this process41; initially it only requires reorganisation of existing ECs. As 

a result, intussusception is a fast and efficient process. Since intussusception is 

a reorganisation of existing cells it allows for a large increase in the number of 

capillaries without the need for a corresponding increase in the number of ECs. 

This is especially important in the developing embryo as there are not enough 

resources to create a rich microvasculature with new cells each time a vessel 

develops. In addition to forming new capillary structures, intussusceptive growth 

plays a major role in branching geometry and vascular pruning of larger 

vessels42,43. The first in vivo documentation of intussusceptive microvascular 

growth was demonstrated by video microscopy in a chick chorioallantoic 

membrane. Since then this process has been detected in other organs, tissue 

repair processes and also in tumour angiogenesis. 
 

1.4.2 .  Sprouting Angiogenesis 
 

The term angiogenesis was first coined by John Hunter in 1787 44,45. It is 

commonly used to describe the process of vascular growth, but in the strictest 

sense it refers to the growth of new blood vessels from pre-existing 

vasculature46. It results in new vessels composed of ECs that branch out from a 

parent vessel by proliferation and migration, extending into the surrounding 

matrix39. In response to stimulatory signals, ECs become activated and vascular 
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permeability increases which allows for the invasion of plasma proteins that lay 

down an ECM framework. Matrix metaloproteinases (MMPs) are also induced 

to degrade the basement membrane by proteolytic degradation allowing 

pericytes to liberate themselves from the vessel wall47. Once the path has been 

cleared, proliferating ECs migrate onto this provisional ECM and form an 

endothelial sprout48. To build a perfused tube a single EC (tip cell) leads the 

sprout, whilst subsidiary ECs (stalk cells) proliferate to elongate the sprout and 

establish a lumen49. To allow for the initiation of blood flow, tip cells at the 

leading edge of endothelial sprouts fuse with one another forming a closed 

loop50. Finally, for a blood vessel to become fully functional it is stabilised by 

pericytes, which in the final stages of angiogenesis are recruited to the neo-

vessel, laying down a basement membrane and thus reinforcing vascular 

structure51 (please refer to Figure 4 for a schematic representation of sprouting 

angiogenesis). 

 
 
 

 

 

 

 

 

 

 

 

 
Figure 4: Schematic representation of sprouting angiogenesis. Sprouting angiogensis 

begins with 1 ED activation upon exposure to an angiogenic stimulus, 2 EC sprouting initiation 

mediated by basement membrane degradation and ECM remodelling, followed by 3 EC 
proliferation and directed migration leading to vascular outgrowth and stlk extension. The 

nascent vessel undergoes 4 lumen formation and anastomosis before finally undergoing 5 
maturation and stabilisation by mural cells. (Adapted from Journal of Cellular and Molecular 

Medicine, volume 18, pages 1491-1508 (2nd September 2014)52 

https://creativecommons.org/licenses/by/4.0/) 
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1.4.3 Regulating Angiogenesis 
 

To put simply, vascular development can be broken down into the following 

processes; formation, stabilisation, branching, remodelling and maturation. In 

order to develop without a glitch these processes are tightly regulated by a fine 

balance of molecular mechanisms, and perturbation of this balance can lead to 

excessive or insufficient angiogenesis. Abnormal blood vessel growth, whether 

it be too much or too little is now recognised as a common denominator 

underlying many disease states53. The importance of angiogenesis in health 

and disease has prompted extensive investigations to identify the multitude of 

molecular regulators that are fundamentally important in this process (please 

refer to Table 1 for examples of key regulators and inhibitors of angiogenesis). 

With rapid advancements in the cellular and molecular biology of angiogenesis, 

many of these angiogenic agents are now rigorously examined for their 

biological activities, clinical efficacies and safety to translation into therapeutic 

benefits54.  

 
Table 1: A table outlining the of the Key Regulators of Angiogenesis (Adapted from 
Postgraduate Medical Journal, volume 81, pages 236-242 (5th April 2005)45)  
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1.4.4 Vascular Endothelial Growth Factor 
 

The VEGF family of growth factors is the most well-recognised family of pro-

angiogenic regulators for their pivotal role in endothelial functions. In mammals, 

the family consists of five members; VEGF-A – VEGF-D and placental growth 

factor (PlGF). VEGF-A, the prototypical ligand, was originally discovered as 

vascular permeability factor (VPF) in the late 1980’s55 and in 1989 is was 

characterised and sequenced by different groups of investigators as an 

endothelial growth factor and renamed as VEGF56. In humans VEGF-A is 

encoded by a single gene with eight exons and seven introns, which can be 

alternatively spliced into as least nine major variants including VEGF121, 

VEGF145,VEGF148, VEGF162, VEGF165, VEGF183, VEGF189, and 

VEGF20657.These variants differ in their bioavailability and interaction with VEGF 

receptors. leading to distinct effects in angiogenesis58,59.VEGF165 is regarded as 

the most predominant and biologically potent isoform of VEGF in promoting 

angiogenesis and EC permeability60,61.   

 

VEGF family members transduce their signal intercellularly by binding to 

membrane-bound tyrosine kinase receptors, VEGF receptor (VEGFR-) 1 to 3. 

VEGFR-1 and VEGFR-2 are mainly expressed on ECs, although other cell 

types can also express these receptors62. The biological activities of VEGF-A 

are controlled mainly by the receptor VEGFR-263 .The binding of VEGF to 

VEGFR-2 induces downstream receptor dimerization and auto-phosphorylation 

of specific tyrosine residues within the dimeric complex64,65. Subsequently, 

activation of specific intracellular signalling transducers eventually up-regulate 

target genes that facilitate EC proliferation, migration, adhesion, lumenisation, 

and survival64,66.  
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1.5 The Retina 

1.5.1 Basic Anatomy 
 

The retina is an extension of the forebrain. It is consisted of a dense layer of 

specialised cell bodies separated by layers of neurites (please refer to Figure 5 

for a schematic representation of the retinal structure).  

 

 
Figure 5: Schematic representation outlining the cellular circuitry of the retina and the retinal 

blood vessels. Light detected by the retina is absorbed by photoreceptors, converted to 
electrical signals, and transmitted through the retinal layers via an intricate network of neuronal 

cells, made up largely of bipolar and ganglion cells. The signals converge at the optic disc and 

are conveyed to the brain for further processing by the optic nerve. Retinal blood vessels line 

the inner surface of the retina. Three capillary plexuses are embedded among retinal neurons: 

the superficial layer lies within the nerve fibre layer (NFL) with branches extending into the 

ganglion cell layer (GCL), while the intermediate and deep capillary plexuses align along each 

sides of the inner nuclear layer (INL). (Adapted from Progress in Retinal and Eye Research, 

volume 5, pages 1-40 (23 June 2015)67 and Frontiers in Physiology, volume 9, pages 1-14 (13 
July 2018)68 https://creativecommons.org/licenses/by/4.0/). 
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It functions to absorb photons of light entering the eye through the cornea and 

iris, translating these into biochemical and electrical signals which ultimately 

trigger nerve impulses that are sent to various visual centres of the brain 

through the fibres of the optic nerve.  The vitreous side of the retina is referred 

to as the ‘inner’ layer, while the side of the retina closer to the sclera is referred 

as the ‘outer layer.  

 

The macula, defined by the area that contains the yellow pigment xanthophyll69, 

is a small but important area in the centre of the retina. The fovea, found at the 

centre of the macula, is a highly specialised region responsible for visual 

acuity69. It contains the highest density of cone receptors (reaching more than 

200,000 mm2)70 and its most obvious feature is a small depression known as 

the foveal pit, in which the inner retinal layers are displaced to allow direct 

illumination of the photoreceptors. The fovea is also comprised of an area 

lacking a vascular supply, this region is called the foveal avascular zone 

(FAZ)71. Since incoming light has to pass through the entire retina before it 

reaches the photoreceptors cellular elements can cause retinal light scattering, 

which consequently reduces visual sensitivity and acuity, and decreases the 

quality and brightness of the visual image72. The unique characteristics of the 

fovea help reduce the transparency of the retina which improves visual acuity 

by minimising retinal light scattering72,73. 

 

Retinal cells can be grouped into three general types; photoreceptor cells, 

neural cells, and glial cells. Moving from the outer to inner retina, the two 

specialised photoreceptor cells (rods and cones) lie outermost in the retina 

forming the outer nuclear layer (ONL). They are composed of a membranous 

disk containing a photoreceptive pigment which absorbs photons from incoming 

light leading to electrical polarisation, which initiates a sensory cascade that 

stimulates the succeeding neurons of the retina, allowing a neural signal to be 

fed to the brain via the optic nerve in a process known as visual photo-

transduction74.  
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Neural cells of the retina include bipolar, ganglion, horizontal and amacrine 

cells. Bipolar cells form synoptic contacts with the photoreceptors75. They are 

arranged between photoreceptor cells and ganglion cells in the inner nuclear 

layer (INL), receiving their information from photoreceptors and relaying this 

information  to the ganglion cell layer (GCL) for further processing75. Horizontal 

and amacrine cells are found in the outer and inner retina respectively, and they 

help modulate signals along this ‘vertical’ pathway (from photoreceptor to 

bipolar cells)76. The final output neurons of the retina are ganglion cells in the 

GCL, where all visual information converges. They transmit information through 

the optic nerve into the brain’s visual centre for vision perception.  

 

The three main types of glial cells in the mammalian retina are Müller cells, 

astrocytes, and resident microglia77. They provide structural support and help 

maintain retinal homeostasis by providing metabolic support to retinal neurons 

through releasing neurotrophic factors and phagocytosing neuronal debris78. 

The principal glial cells, Müller cells, are homogenously distributed throughout 

the retina; they have their cell bodies within the INL and span across the entire 

thickness of the retina. They support neuroretinal architecture  and provide 

nourishment to all the constituent cells79. Muller cells also help redistribute 

metabolic waste of the photoreceptor activity77. Astrocytes, named after their 

stellate morphology are located almost exclusively in the innermost GCL80. The 

presence and distribution of retinal astrocytes is correlated with the presence 

and distribution of retinal blood vessels81: vascularised areas of the retina 

contain high numbers of astrocytes whereas avascular regions contain no 

astrocytes77. As the main producers of vascular endothelial growth factor 

(VEGF) during normal and pathological vascularisation82, they are strongly 

implicated in the proper development and functioning of the retinal 

vasculature83. As with Muller cells, astrocytes mediate the survival of retinal 

cells through the release neurotrophic factors. They also provide anti-oxidative 

support, aid in the formation and removal of synapses and are involved in the 

maintenance of the blood retinal barrier (BRB)84. However, in the presence of 

pathogenic stimuli, astrocytes up-regulate their expression of various genes 
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encoding cytokines, chemokines and elements of the complement cascade, 

thereby compromising the integrity of the BRB85.When activated, astrocytes are 

also able to cause activation of the third class of glial cells, the microglia86. 

Microglia represent the tissue macrophage population of the central nervous 

system (CNS)67. They are the only haematopoietic cells within the CNS. During 

development these cells enter from the bloodstream, develop from myeloid 

progenitors and differentiate into microglia87. As a result, they maintain 

numerous cellular antigens present in macrophages and monocytes87,88.  In the 

healthy retina, microglia are described as ‘resting’ or ‘ramified’. They have 

extensively branched processes and act as surveillant cells that continuously 

monitor the surrounding tissue. When the retina becomes diseased or damaged 

microglial cells become activated and their morphology is significantly different 

to those found in healthy tissue. Activated microglia have enlarged cell bodies, 

shortened processes, and increased expression of myeloid markers87. 

Microglial are the resident inflammatory cells in the retina. On activation they 

respond by secreting cytokines, growth factors and neurotrophic factors89. They 

can be stimulated into a macrophagic function and engage in phagocytosis of 

degenerating retinal neurons. In addition, they can also express molecules that 

are associated with an ability to stimulate T cells with antigen presentation87,90. 

 

1.5.2 Retinal Vascularisation 
 

The adult retina is a highly metabolic tissue with the highest oxygen 

consumption per unit weight of any human tissue91. To meet these high 

metabolic demands without obstructing light transmission, the retinal circulation 

is highly specialised92. It originates from two sources, the retinal and choroidal 

vessels, both of which arise from the ophthalmic artery93. The choroidal 

vasculature, between the RPE and sclera, supplies oxygen and nutrients to the 

RPE and the photoreceptors. The inner retinal cells however, receive nutrients 

and oxygen from the central retinal artery (CRA) which receives 20-30% of the 

ocular blood flow. The CRA  enters the eye at the optic nerve head94 where it 

branches into two major trunks, the superior and inferior arteries. These then 
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divide further to form the nasal and temporal branches that supply the four 

quadrants of the retina. As the large arteries extend within the retina toward the 

periphery they continue to bifurcate, forming arteries with progressively smaller 

diameters that provide a blood supply to the inner retinal layers. These smaller 

arterioles give rise to two types of capillary systems: horizontal branches that 

supply the GCL and deep branches that enter the INL. Venous outflow from the 

retina begins with drainage from the capillary network by venules and veins, 

which run from the peripheral retina towards the optic nerve head. They 

coalesce into the central retinal vein, and exit the eye parallel and counter-

current to the central retinal artery with the optic nerve95. 

 

1.5.3 Immune Privilege 
 
The human body is protected from the invasion and damage of pathogens by a 

highly evolved and complex immune response. However, these destructive 

responses not only target invading pathogens but also attack host tissues, 

which impose devastating consequences. To maintain optical stability, the 

retina is protected by a sophisticated system that allows it to have immune 

privilege meaning the body’s normal inflammatory immune response is limited. 

This system is made up of physical barriers, an inhibitory microenvironment 

composed of cell-bound and soluble factors, and tolerance-promoting antigen-

presenting cells (APCs)96.  

 

Firstly, the retina is protected by two barriers that help to maintain a highly 

regulated chemical environment. The outer blood-retina barrier (oBRB) is 

achieved by the RPE cell layer and acts as a filter to regulate the movement of 

solutes and nutrients from the choroid to the sub-retinal space97,98. The inner 

blood-retina barrier (iBRB) comprises the retinal vasculature and is formed by 

the endothelial cells (ECs) that line the lumen of retinal blood vessels99. Both 

the oBRB and iBRB owe their functionality to the tight junctions that are located 

on the basolateral side between RPE cells and ECs, respectively100. Tight 

junctions are transmembrane and cytosolic proteins that create a highly 
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selective barrier, allowing exchange of respiratory gases, amino acids, salts and 

sugars, but preventing circulating cells, macromolecules and pathogens from 

permeating the retinal parenchyma101. In a process known as immunological 

ignorance, the BRB segregates retinal antigens within the intraocular 

compartment thereby avoiding T cell activation and creating a functional 

absence of interactions between the immune system and retinal antigens102. 

Secondly, the retina lacks a lymphatic system, so endogenous insults are 

unlikely to be detected by circulating or choroidal/extraocular immune 

cells101,103. Finally, the retina possesses an immune regulatory system that is 

carried out by cells in the local microenvironment. These cells can inhibit the 

activity of myeloid cells by binding to their ligands via the expression of various 

cell-bound membrane receptors. In this manner activated cells that might 

otherwise attack and destroy retinal tissue are neutralised, and the retina is 

spared injury. In addition, retinal cells also possess mechanisms to induce the 

death of infiltrating immune cells104,105. Soluble factors secreted into the retina is 

another immunosuppressive mechanism that inhibits the activity of immune-

competent cells. Transforming growth factor -β (TGF-β) for example, is a potent 

suppressor of the activation of T cells, natural killer cells and macrophages106. 

Other factors include calcitonin gene-related peptide (CGRP) and α-

melanocyte-stimulating hormone (α-MSH), which act on activated macrophages 

and prevent them from secreting pro-inflammatory cytokines106.  

 

1.6 Diabetic Retinopathy 
 

Broadly speaking, diabetes mellitus (DM) is a class of metabolic diseases 

characterised by chronic hyperglycaemia107. Epidemiologically, DM exists as a 

major public health problem that has reached an epidemic globally108,109. It has 

been projected that the number of patients with DM is estimated to increase 

from 382 million in 2013 to 592 million by 2035110. In addition to the alarming 

magnitude of DM, around 50% of patients with diabetes are undiagnosed 111 

and these patients are likely to have a faster degree of progression because of 

the delay in diagnosis and treatment111.  
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DM has a poignant role in the development of diabetic microvascular 

complications including diabetic nephropathy, neuropathy and retinopathy112. 

DR, the most common microvascular complication of DM, is a major cause of 

vision loss in working-age population worldwide. The overall prevalence of DR 

in adults with DM is greater than 40%, with approximately 7% developing 

advanced stage, vision threatening proliferative diabetic retinopathy (PDR)113. 

The prevalence of DR increases with prolonged duration of diabetes114 and with 

recent improvements in reducing diabetes-related macrovascular mortality more 

patients live long enough to develop DR115: over 50% of patients who have had 

DM for over 25 years will develop DR116. As the global prevalence of DM 

continues to increase, the number of DR patients is expected to increase from 

37.3 million in 2010 to 56.3 million by 2030117, bringing with it substantial 

economic loss to patients, families, health-care systems and national 

economies.  

 

1.6.1 The Development and Progression of Diabetic 
Retinopathy 

 
DR is a progressive disease of the retina characterised by a complex 

pathogenesis involving multiple cell types, molecules, and growth factors118. 

The defining features of DR include thickening of the basement membrane 

shared between ECs and pericytes, pericyte loss, EC hyperpermeability, 

microaneurysm and local tissue ischemia which triggers abnormal vessel 

formation in the eye ultimately leading to visual impairment and blindness. The 

development of DR is slow and can be categorised into stages: retinal damage 

without any visible microvascular abnormalities; non-proliferative retinal 

microvascular changes referred to as non-proliferative diabetic retinopathy 

(NPDR); advanced proliferative DR (PDR) (please refer to Figure 6 and Figure 
7). 
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1.6.2 Retinal Damage Without Visible Abnormalities 
 
Traditionally DR has been viewed as a microcirculatory disease of the retina, 

however more recently it is now considered to be a more complex complication 

of diabetes in which neurodegeneration plays a role118. Neuroretinal damage 

leads to diminished retinal functions such as the loss of chromatic discrimination 

and contrast sensitivity, delayed dark adaptation, and abnormal visual 

fields119,120. Rather than an early event of DR progression neurodegeneration 

was believed to be a late manifestation, however these alterations have been 

observed to occur in patients without or with only minimal DR, i.e. early in 

disease progression before vascular pathology is detected in ophthalmic 

examination121-124. As a result it is now believed to predate and also participate 

in the development of microcirculatory  abnormalities that occur in DR125.  

 

The two hallmark features of retinal neurodegeneration are neural apoptosis 

and glial activation126. Neural apoptosis is first detected in retinal ganglion cells 

(RGCs) located in the inner retina, and consequently their loss results in a 

reduction in thickness of the GCL127. Neural apoptosis is accompanied by glial 

cell dysfunction, referred to as glial activation or reactive gliosis. Glial activation 

is the general response to injury and inflammatory stimuli in glial cells, and 

causes neuronal damage via early phagocytosis of normal neurons, production 

of neurotoxins and induction of apoptotic changes128. No consensus has been 

reached as to which of these elements (apoptosis or glial activation) is the first 

to occur. Nevertheless, these two mechanisms are critical in maintaining 

neuronal integrity which is essential for maintaining the normal functioning of 

the retina129.  

 

1.6.3 Non-Proliferative Diabetic Retinopathy 
 
The earliest vascular change observed in the retina is capillary degeneration, 

which is characterised by BM thickening, endothelial injury leading to disruption 

of tight junctions, and pericyte loss. Pericytes are specialised peri-vascular 
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support cells that exist in close proximity to ECs, at an almost 1:1 ratio in the 

retina130. They elongate and wrap around the endothelium, sharing a basement 

membrane131. Pericytes fulfil important functions including, regulation of 

vascular diameter and capillary blood flow, vessel stabilisation and maintenance 

of the BRB132. In addition, pericytes release TGF-β which acts on neighbouring 

ECs, inhibiting their proliferation and maintaining them in a quiescent state133. 

Pericytes are therefore essential components of the microvessel and are crucial 

for normal EC function, vessel stability and blood flow regulation134.The death of 

vascular retinal pericytes in DR results in the formation of ‘ghost capillaries’. 

Without the protection of pericytes, ECs become activated and proliferative 

leading to the development of microaneurysm and vessel dilation. They 

eventually rupture to form haemorrhages deep within the retina. Because of 

their dot-like appearance, they are sometimes referred to as “dot-and-blot” 

haemorrhages. Microaneurysms and dot intraretinal haemorrhages are the first 

clinically detectable abnormalities seen in DR135. Loss of pericytes also affects 

the integrity of the BRB, allowing the passage of intravascular fluid containing 

proteins, lipids, and inflammatory mediators into the interstitial space. This fluid 

leaves behind yellow deposits composed of extracellular lipid by-products that 

are referred to as hard exudates. Diabetic macular oedema (DME) is another 

consequence of these abnormalities and is caused by the leakage of plasma 

from the small blood vessels into the macula. During NPDR the retinal 

endothelium also becomes activated, inducing the release of pro-inflammatory 

cytokines leading to early and persistent inflammatory condition in the retinal 

microenvironment. This promotes leukocyte activation, leukocyte adhesion to 

the vascular endothelium136 and further BRB breakdown, contributing to the 

obstruction of retinal capillaries137. The microvascular BM is a thin sheet of ECM 

with an intricate architecture that serves as part of the barrier to control vascular 

permeability. It provides a mechanical framework on which cells reside, a 

substrate for adhesion and inter-cellular communication, and a selective barrier 

to filtration138. In DR, the BM becomes thickened because of increased 

synthesis and reduced degradation of its components (type IV collagen, laminin, 

fibronectin, heparan sulphate proteoglycans)137. These structural and 
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compositional alterations to the BM impaired oxygen and nutrient delivery to 

pericytes contributing to pericyte dropout139.   

 

As the severity of NPDR progresses, gradual non-perfusion of the retinal 

vascular bed increases, which ultimately results in regions of retinal ischemia. 

As demonstrated by fundoscopic examination, eyes with severe NPDR show 

‘cotton wool’ spots, indicating a large area of retinal ischaemia or infarction136. 

Intraretinal microvascular abnormalities (IRMA) are also observed in severe 

NPDR, which are characterised by dilate vessels that are tortuous and irregular 

in calibre136.  

 

1.6.4 Proliferative Diabetic Retinopathy 
 
The most advanced stage of DR, PDR, is characterised by aberrant 

angiogenesis. In the eye, highly vascular structures and completely avascular 

structures lie in close proximity to each other140 (a feature most obviously 

depicted in the fovea), therefore tight regulation of vascular growth and 

quiescence is crucial to the maintenance of healthy retinal tissue and visual 

acuity140,141. Vascular growth occurs mainly during embryonic development and 

is almost non-existent in the adult eye140, therefore the formation of new blood 

vessels in the retina represents cases where this delicate balance has been 

disturbed142. The main pathogenetic factor involved in PDR is chronic hypoxia, 

which is a potent inducer of tissue angiogenesis. The hypoxic environment 

results in an over-expression of growth factors, cytokines, chemokines and 

adhesion molecules, which together constitute a complex inflammatory 

response that results in aberrant, pathological angiogenesis (please refer to 

section 1.4.2. for a more detailed description of the angiogenic process). 

Pathological retinal angiogenesis generates chaotically orientated and 

physiologically deficient vessels that are fragile and leaky, and are unable to 

perfuse the ischemic tissue, which further exaggerates the ischemic burden of 

the affected retina leading to vicious cycle of tissue hypoxia and 

neovascularization. Furthermore, these new vessels are prone to bleeding and 
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tend to grow into the vitreous body. With age the vitreous begins to shrink, 

pulling on these fragile vessels and causing them to tear, which ultimately 

results in vitreous haemorrhage. Sometimes, these new vessels may become 

enveloped by a thick and dense fibrovascular tissue causing tractional retinal 

detachment. In the advanced stage of DR retinal detachment and vitreous 

haemorrhage represent the major causes of visual impairment and sudden 

vision loss. 

 

 

 
 

Figure 6: Retinal vasculature in normal and diabetic eyes. In normal, healthy eyes pericytes 

are present around blood vessels helping to maintain ECs in their quiescent state, and tight 

junctions maintain the integrity of the BRB. The balance of pro- and ant-angiogenic cues 
remains in equilibrium. Under diabetic conditions retinal blood vessels can be characterised by 

significant pericyte drop out, compromised BRB because of impaired tight junctions, immune 

cell infiltration and extravasation of red blood cells. The angiogenic equilibrium is tipped in 

favour of neovascular formation producing neo-vessels that are fragile and ‘leaky’ (Adapted 

from Eye, volume 32, pages 483-486 (March 2018)132. 
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Figure 7: Clinical signs of DR in a fundoscopic examination. A, Mild NPDR; 
microaneurysms form in the blood vessels bursting to form haemorrhages. B, Moderate NPDR; 

changes become more severe with the addition of cotton wool spot formation. C, PDR; 

neovascularisation forms at the optic disc and hard exudates begin to form. D, Diabetic macular 

oedema; vascular leakage occurs, lipid contents accumulate in the macula and hard exudates 

form. (Adapted from Nature Reviews Disease Primers, Volume 2, Pages 1-16 (17 March 

2016)136 ) 

 

1.7 Prevention of Diabetic Retinopathy 
 
There are a numerous risk factors associated with DR and of these reported 

risk factors the duration of diabetes, hyperglycaemia and hypertension are 

considered the most important for DR progression143. For patients diagnosed 

with diabetes, effective management of these modifiable risk factors is an 

important method to prevent the progression of DR144. 

 

 

1.7.1 Prevention by Glycaemic Control 
 
Hyperglycaemia is one of the risk factors for DR. Results from two large scale 

clinical trials, The Diabetes Control and Complications Trial (DCCT) for type 1 

diabetes145, and The United Kingdom Prospective Diabetes Trial (UKPDS) for 
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type 2 diabetes146, indicate that intensive glycemic control is successful at 

delaying initiation and progression of DR. Over a 7-year period the DCCT 

investigated intensive glycaemic control vs. conventional treatment with diet 

control, in two type 1 diabetic patient cohorts. The primary intervention cohort 

recruited patients with no existing DR, whereas the secondary intervention 

cohort recruited patients with pre-existing mild DR. The DCCT reported that 

intensive therapy to maintain HbA1c at 7% (the HbA1c levels are approximately 

9% in patients with type 1 diabetes) reduced the onset of new DR by 76% in 

comparison to patients who underwent conventional treatment. Moreover, the 

progression of existing DR in the secondary intervention cohort, was reduced by 

50%, highlighting the importance of achieving glycaemic control early, 

preferably before the onset of DR. In the UKPDS study glycaemic control was 

investigated in patients with type 2 diabetes. Over a 12-year period the 

glycaemic control group (HbA1c 7%) demonstrated a 21% reduction in the risk 

for DR in comparison to the conventional treatment group (HbA1c 7.9%). The 

importance of glycaemic management as early as possible during diabetes has 

been further emphasised by results of the Epidemiology of Diabetes 

Intervention and Complications (EDIC) study. This observational follow-up of 

the DCCT cohort of patients was observed that the group undergoing glycaemic 

control continued to exhibit a significantly lower incidence of further progression 

of their DR severity stage in comparison to the group undergoing conventional 

treatment147. These robust clinical results indicate the long-term impact of 

intensive glycaemic control, highlighting the importance of glycaemia 

management as early as possible during diabetes.  

  

1.7.2 Prevention by Blood Pressure Control 
 
Blood pressure is another risk factor that can be monitored to help prevent and 

manage DR. In addition to reducing shear damage to blood vessels resulting 

from hypertension, blood pressure control can reduce damage to ECs, blood 

vessels and surrounding tissues by preventing hypoperfusion148. As with 

glycaemic control, the clinical evidence for the beneficial effect of controlling 
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blood pressure on DR development and progression is convincing. In the 

UKPDS trail on type 2 diabetic patients, a tight blood pressure control group 

were administered either beta blockers or angiotensin-converting enzyme 

(ACE) to maintain blood pressure at a level <150/85 mm Hg, whereas the blood 

pressure of a less tight control group was maintained at a level <180/105 mm 

Hg. Following the 7-year study, the tight control group showed a 34% reduction 

in the risk of DR progression, a 47% reduction in vision loss, and a 35% 

reduction in the need for laser treatment146. However, unlike glycaemic control, 

the benefits of blood pressure regulation are lost without ongoing and long-term 

control.  

 

1.8 Management of Proliferative Diabetic Retinopathy 
 
Interventions using intraocular anti-VEGF agents, panretinal laser 

photocoagulation (PRP), and vitrectomy can help reduce vision loss resulting 

from PDR. 

1.8.1 Laser Photocoagulation 
 
Since two landmark trials in the 1980s, The Diabetic Retinopathy Study (DRS) 

and The Early Treatment Diabetic Retinopathy Study (ETDRS), laser therapy 

has been the gold standard treatment for PDR and DME. The DRS 

demonstrated a reduced risk of severe vision loss in patients with severe NPDR 

or PDR, from 33% to 13.9% at 5 years following PRP149. Similarly, the EDTRS 

demonstrated a 24% to 12% reduction in the risk of vision loss in patients with 

clinically significant DME150.  

 

The primary goal of laser therapy is to preserve patients’ useful vision and 

prevent blindness; reversal of vision loss is uncommon. Treatment by laser for 

PDR by PRP involves applying many evenly spaced laser spots (typically 1200 

to 1600, approximately 500 µM in size) to the peripheral retina, focally 

destroying out photoreceptors and RPE. The cells absorb the light and the 
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resultant heat causes destruction of the outer retina. Treatment for DME differs 

in that a gentle laser applied to the macula is used to target leaking 

microaneurysms directly. Although the mechanism of action is not fully 

understood, one hypothesis is that PRP alleviates hypoxia by improving oxygen 

supply to areas of the inner retina that had become oxygen-deprived151. This 

occurs because not only are the choriocapillaris physically closer to the inner 

retina allowing for diffusion of oxygen from the choroid, but also because the 

highly metabolically active rods and cones are no longer present to absorb 

oxygen from the choriocapillaris in the area of the burns. As a result, the 

improved retinal oxygenation reduces neovascularisation and oedema 

formation by reducing the production of hypoxia driven VEGF.  

 

However, despite widespread use, laser photocoagulation is associated with 

significant risk due to its destructive nature. Laser photocoagulation burns and 

destroys part of the retina which can result in visual symptoms related to the 

loss of function of the ‘burned’ part of the retina151. This can include loss of 

central vision, reduced night vision, decreased ability to focus and induction of a 

blind spot. In addition, a proportion of patients continue to develop active 

neovascularisation and vision loss 152,153. 

 

1.8.2 Management: Vitrectomy 
 
In 1970 the first successful vitrectomy was performed on a diabetic eye with 

persistent vitreous haemorrhage. Traditionally, non-clearing vitreous 

haemorrhage was the main indication for vitrectomy in the diabetic eye. 

However, advances in surgical techniques and surgical instruments mean that 

vitrectomy is now also used for the management of retinal detachments and 

fibrovascular proliferation.  With the vitreous body removed there is better 

access to the retina allowing for a variety of repairs, including the removal of 

scar tissue to release tractional forces that pull on the retina, removal of 

opacities such as non-clearing vitreous haemorrhage, laser repair of retinal 

detachments and to remove the scaffolding into which the neovascularisation 
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may grow. Since anti-VEGF therapies have become more efficient, safer and 

more accessible, proliferative neovascularisation and DME are treated less 

frequently with vitrectomy. Visual outcomes following vitrectomy are better in 

comparison to the natural course of disease progression, and if initial treatment 

is successful then long-term stability following surgery is good. However 

preventative measures such as improved control of glucose levels and timely 

application of laser treatment are more efficacious than vitrectomy154.  

 

1.8.3 Anti VEGF-Agents 
 
The VEGF-VEGFR system is one of the most predominant pathways involved 

in the later stages (DME and PDR) of DR progression. Therefore, most 

antiangiogenic agents used in clinics for the treatment of DME and PDR with 

evidence of clinical efficacy currently act by inhibiting VEGF. Unlike laser PRP, 

anti-VEGF agents have been shown to improve visual acuity and even ocular 

tissue structure in some cases155. Currently there are three commonly used 

agents for the treatment of DME and as an adjunct therapy for PDR, which all 

work by the inhibiting VEGF. 

 

Bevacizumab (Avastin®) is a full-length humanised antibody targeting all 

isoforms of VEGF-A. It was initially approved by Food and Drug Administration 

(FDA) for treatment of metastatic colorectal cancers in February 2004156 and it 

has since been approved for the treatment of other solid tumours (non-epithelial 

lung, breast, ovarian and renal cancers) and glioblastomas157. It is not approved 

for any ocular indication however ophthalmologists quickly determined that 

bevacizumab was also efficacious for the treatment for the diseases with ocular 

neovascularisation and started to use it ‘off label’ 158. Ranibizumab is the first 

approved anti-VEGF agent for ocular diseases and itis a recombinant antibody 

fragment (Fab) of the humanised anti-VEGF antibody bevacizumab that binds 

all isoforms of VEGF-A. After multiple trials, ranibizumab was approved by the 

FDA in 2017 for all stages of diabetic retinopathy. Finally, aflibercept is a 

recombinant fusion protein that has been constructed by fusing specific 
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domains from human VEGF-R1 and VEGF-R2 with the Fab fragment of human 

IgG1. It binds VEGF-A, VEGFB and PIGF to prevent their activation of VEGF-R, 

and it has been shown to bind VEGF with greater affinity than other anti-VEGF 

agents. 

 

Despite its clear efficacy, a substantial number of patients are intrinsically 

refractory to anti-VEGF treatment or may develop resistance over time. It is not 

surprising since many angiogenic factors jointly contribute to new blood vessel 

formation28. Indeed, VEGF inhibition in the eye was reported to cause 

compensatory activation of alternative angiogenic pathways, such as 

Hepatocyte Growth Factor (HGF)159 and  erythropoietin160. Furthermore, 

considering the important neuroprotective effect of VEGF161 and its role in 

physiological neovascularization162, long term treatment with  VEGF blockades 

may result in local and systemic side effects163-165.   

 

1.9 The Complement System 
 

1.9.1 Complement Activation 
 

The mammalian immune system is a complex choreography of biochemical 

processes that detect and eliminate pathogens that can cause harm to the host; 

no small task given the impressive number of pathogens and host processes 

that are able to cause diseases. One of the most important defence 

mechanisms of the human body is the complement system. Despite being 

discovered in the late 1880s, the complement system evolved over 700 million 

years ago166 and is an integral part of the innate immune system that acts as a 

first-line defence to protect the host from invading pathogens and abnormal self-

derived components. It is comprised of an army of over 30 different proteins that 

are mainly synthesised by the liver and circulate in the blood as inactive 

precursors167. The identification of a pathogenic surface initiates a proteolytic 

cascade that leads to three main effector mechanisms: (i) the generation of 
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potent pro-inflammatory mediators (anaphylatoxins), (ii) opsonisation (‘coating’) 

of the pathogenic surface by complement opsonins (e.g. C3b), and (iii) targeted 

lysis of the pathogenic surface through the assembly of membrane-penetrating 

pores known as the membrane attack complex (MAC)168.  

 

In the early stages, the complement cascade can be driven by three distinct 

pathways (classical, CP; alternative, AP; and lectin, LP). Each pathway of 

complement activation employs different recognition molecules and initiating 

serine proteases, however the three pathways all converge at the level of C3 to 

generate the same set of effector molecules169 (please refer Figure 8 to for a 

schematic representation of complement activation). These reactions are known 

as the ‘early’ events of complement activation, and consist of triggered-enzyme 

cascades in which inactive complement proteins are cleaved to yield two 

fragments, the larger of which is an active serine protease. The active serine 

protease is retained at the pathogen surface which ensures the next 

complement protein in the pathway is also cleaved and activated at the 

pathogen surface. The small peptide fragment (known as an anaphylatoxin) on 

the other hand, is released from the site of the reaction to act as a potent 

inflammatory mediator, targeting a broad spectrum of immune and non-immune 

cells170. Mechanisms such as this one, where the activation of a small number 

of complement proteins at the start of the pathway is hugely amplified by each 

successive step, results in a cascade that rapidly generates a large complement 

response. 
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Figure 8: Schematic representation of the three pathways of complement activation. 
Activation of C3, the central component of complement, may take place via three pathways: (1) 

classical, (2) lectin or (3) alternative pathway. The three pathways of complement activation. 

The CP is initiated by IgM or IgG antibody clusters that are associated with a bound antigen. 

The CP begins with a large protein complex, C1, which is comprised of three subunits; C1q, C1r 

and C1s. When the globular heads of the C1q subunit bind to two or more antibodies, C1r is 

enzymatically activated, which in turn cleaves and activates C1s. Activated C1s potentiates the 

action of the next protein in the cascade, C4, cleaving it into C4a and C4b. This cleavage 
exposes a thioester bond, allowing for the covalent deposition of C4b on surfaces in the 

immediate vicinity of the activation sites. Complement protein C2 can then complex with surface 

bound C4b, which allows for cleavage by C1s to generate C2a and the CP C3 convertase 

C4b2b. This convertase can bind and cleave C3 to initiate amplification by forming C3b, which 

complexes back with C4b2b to form the classical pathway C5 convertase C4b2b3b. The C5 

convertase initiates the formation of C5b and the later steps of complement activation. The LP 

is functionally similar to the CCP but is initiated by mannose-binding lectin (MBL). MBL acts as a 
pattern recognition molecule that predominantly recognises carbohydrate patterns. MBL is 

found in a complex with MBL-associated proteases (MASPs); MASP-1, MASP-2 and MASP-3. 

Binding of MBL to its surface target leads to the activation of Masp-2 which cleaves both C4 and 
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C2, generating the same C3 convertase as in the classical pathway. The AP is activated when a 

small fraction of circulating C3 molecules are hydrolysed to form the initial AP C3 convertase, 

C3(H2O)Bb, in the presence of Factors B and D, leading to additional C3 cleavage and eventual 

formation of the AP C3 convertase (C3bBb) and AP C5 convertase (C3bBbC3b). All three 
pathways culminate in the formation of the convertases, which in turn generate the major 

effectors of the complement system: anaphylatoxins (C4a/C3a/C5a), the membrane attack 

complex (MAC), and opsonins (e.g., C3b). Anaphylatoxins are potent proinflammatory 

molecules derived from the cleavage of C4, C3, and C5. The MAC is a terminal assembly of 

complement components C5b through C9, which can directly lyse targeted surfaces. C3b 

induces phagocytosis of opsonized targets and also serves to amplify complement activation 

through the AP. (Adapted from Cell Research, volume 20, pages 34-50, (15th December 

2009)168). 

 

The CP begins with a large protein complex, C1, which is comprised of three 

subunits; C1q, C1r and C1s. Initiation of the classical pathway occurs when 

C1q, binds to the Fc region of complement-fixing antibodies attached to 

pathogenic surfaces, activating C1r and C1s. Subsequently, activated C1s 

cleaves C4 and C2 into larger (C4b, C2a) and smaller (C4a, C2b) fragments. 

The larger fragments associate on pathogenic surfaces to form the complex 

C4bC2a, which gains the ability to cleave C3 and is termed the C3 

convertase171. Generation of the C3 convertase cleaves C3 into the 

anaphylatoxin C3a and the opsonin C3b, the point at which all complement 

activation cascades converge. The LP is functionally similar to the CP but is 

initiated by the serum protein mannose-binding lectin (MBL). MBL acts as a 

pattern recognition molecule that binds to carbohydrate structures on the 

surfaces of  bacteria or viruses172. MBL is found in a complex with MBL-

associated proteases (MASPs)-1, -2, and -3 which are functionally and 

structurally similar to C1s and C1r173. Binding of MBL to its target leads to the 

activation of the associated MASP-2, cleavage of C2 and C4, and ultimately 

generation of the same C3 convertase as in the classical pathway168. The AP is 

mechanistically distinct from the CP and LP; activation of the AP occurs in an 

antibody-independent manner171. It is initiated by the low-level, spontaneous 

hydrolysis of C3 to form C3(H2O) in a process known as ‘tick-over’174. CFB 

binds to C3(H20) and this complex is cleaved by the complement factor D 
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(CFD), generating Ba and Bb fragments. The Bb fragment remains associated 

with the complex, forming the initial AP C3(H20)Bb-convertase, which can 

cleave additional C3 molecules to generate C3b. Once produced by these 

means C3b initiates a positive feedback loop, associating with CFB and 

generating more C3-convertase (please refer to Figure 9 for a schematic 

representation of the AP of complement activation).   

 

 
 
Figure 9: Schematic representation of the alternative pathway of complement activation. 
It is initiated by the low-level, spontaneous hydrolysis of C3 to form C3(H2O) C3(H20) binds to 

CFB, and this complex is cleaved by CFD, generating Ba and Bb. The Bb fragment remains 

associated with the complex, forming the initial AP C3(H20)Bb-convertase, which can cleave 

additional C3 molecules to generate C3b. Once produced by these means C3b initiates a 
positive feedback loop, associating with CFB and generating more C3-convertase. C3b 

complexes with the C3-convertase to form the AP c5 convertase (C3bBbc3b).  
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1.9.2 Effectors of the Complement System 
 

Primarily, as an important branch of first-line defence, complement protects the 

host from invading pathogens and abnormal self-derived components. This can 

be achieved through three main mechanisms: (i) direct target lysis after 

incorporation of the MAC into the cell membrane of the invading pathogen, (ii) 

alerting and attracting immune cells through by the generation of potent 

proinflammatory anaphylatoxins, and (iii) opsonisation by complement activation 

products and engagement of complement receptors on phagocytic cells, such 

as macrophages and neutrophils. The MAC with its lytic pore is probably the 

best recognised of these effectors174. MAC assembly begins with cleavage of 

C5 into C5a and C5b by a C5 convertase: this cleavage is the final step in the 

‘early stage’ of complement activation, and the first step in the terminal 

pathway175. C5b cleavage exposes a binding site for C6, and the subsequent 

C5bC6 binds reversibly to the targeted surfaces and sequentially recruits C7, 

creating C5b-7. C5b7 is integrated into the phospholipid membrane bilayer on 

the target pathogen. This induces the membrane insertion of C8α and C8β, 

forming unstable pores. Finally, C9 binds to C8α and initiates polymerization of 

multiple C9 molecules to form stable inserted pores of approximately 10nm in 

diameter168. Formation of the fully formed MAC pore leads to targeted lysis of 

the surface upon which it has assembled176.  

 

Since certain pathogens have evolved mechanisms that enable them to evade 

the destructive potential of MAC, it is crucial for complement to engage and 

recruit other components of the immune system through the generation of 

potent pro-inflammatory anaphylatoxins (C3a, C4a and C5a). They are 

constantly released during activation and amplification triggering pro-

inflammatory signalling177. Their functions include many hallmark 

proinflammatory activities, such as increases in vascular permeability, smooth 

muscle contraction, leukocyte recruitment, as well as promoting the production 

and release of other inflammatory mediators (e.g. histamine).  
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The third and final major effector arm of activated complement lies in the ability 

of phagocytic cells to recognize, ingest, and eliminate cells coated with 

opsonins (C3b and C4b). Opsonins are the smaller cleavage fragments 

produced by complement activation that remain deposited on the target surface. 

They act as molecular beacons, interacting with receptors on macrophages, 

monocytes and neutrophils to enable phagocytosis of the target cell178. 

 

1.9.3 Regulation of the Complement System 
 

Primarily, as an important branch of first-line defence, complement protects the 

host from invading pathogens and abnormal self-derived components. Despite 

this, activated complement can be a double-edged sword that not only helps 

defend the host against pathogens, but also has the potential to inflict damage 

to self-tissues. To protect from the destructive effects of complement-mediated 

damage the host is endowed with rigorous complement regulatory proteins 

(CRegs) that allow for tight regulation of complement activation. In fact, 

because of its potent pro-inflammatory and destructive capabilities, nearly half 

of the complement proteins serve in regulation179. (Please refer to Table 2 for a 

list of the key membrane bound and soluble CRegs) 

 
Table 2: A table outlining the key membrane bound and soluble complement regulatory 
proteins. 

Membrane Bound 
Regulator Function 

Decay Accelerating Factor (DAF, 
CD55) 

CD55 inhibits the assembly of new C3 
convertases and shorten the half-life of 
preformed convertases, therefore limiting their 
ability to participate in further complement 
activation.  

Membrane Cofactor Protein 
(MCP, CD46) 

CD46 acts as a co-factor for the proteolytic 
activity of CFI, helping with non-specific C4b 
degradation 

Complement Receptor 1 (CR1, 
CD35) 

CR1 acts as a co-factor for the proteolytic 
activity of CFI. This helps with non-specific C3b 
and C4b degradation180. CRI also has decay-
accelerating activity to prevent classical, lectin, 
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and alternative pathway C3 convertase 
formation.  

Membrane Inhibitor of Reactive 
Lysis (MIRL, CD59) 

CD59 inhibits the assembly lytic MAC by 
preventing insertion of the final component C9 
into lipid bilayer of the target membrane 181 
Soluble Bound 

C1 Inhibitor (C1INH) C1INH regulates activation of the classical 
pathway by binding and inactivating C1r and 
C1s, leading to dissociation of the C1 
complex167 

C4 binding Protein (C4BP) C4BP acts as a cofactor for the proteolytic 
activity of CFI, to help prevent non-specific C4b 
degradation. also has decay-accelerating 
activity to prevent classical and lectin pathway 
C3 convertase formation and leads to the 
catabolism of C4b to its degradation products. 

Complement factor H (CFH) Factor H achieves host-specific protection by 
binding polyanions, such as sialic acid and 
heparin, which make up an essential component 
of eukaryotic, but not prokaryotic, cell surfaces. 
The functional consequence of this mechanism 
is that Factor H is preferentially targeted to host 
surfaces. Here it acts as a cofactor for the 
proteolytic activity of CFI and in addition, exerts 
decay-accelerating activities to prevent 
alternative pathway C3 convertase formation. 

Complement Factor I (CFI) CFI cleaves the opsonins, C3b and C4b, into 
inactive fragments180. 

 

 

1.9.4 Complement and Retinal Diseases 
 

Traditionally, complement has been primarily viewed as a first line of defence 

against microbial intruders, quickly tagging and eliminating them and buying the 

adaptive immune response time to pick up momentum. There is now a well-

established picture of how complement acts as an immune surveillance system 

to discriminate among healthy host tissue, cellular debris, apoptotic cells and 

foreign intruders. Underlying the proper functioning of the complement system 

is a finely balanced, intricate network of effectors, receptors and regulators, and 

any trigger that tips this delicate balance between complement activation and 
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regulation can induce self-attack177. There is now a new perception of 

complement that reaches far beyond the elimination of pathogens182. Numerous 

studies have elaborated on the pathogenic role of complement during immune, 

inflammatory, neurodegenerative, ischemic and age-related diseases183, and it 

is now widely accepted that the presence and activation of complement plays a 

crucial role in the pathogenesis of a large number of diseases, inclusive of 

retinal diseases such as age-related macular degeneration (AMD) and DR184. 

The subsequent chapters of this review will be focused of the AP in retinal 

diseases, and more specifically the role of Complement Factor B.  

 

1.9.4.1  Complement and Age-Related Macular Degeneration 
 

Age-related macular degeneration (AMD) is the progressive degeneration of the 

macula (central part of the retina). It accounts for 8.7% of blindness worldwide 

and is the leading cause of irreversible vision loss in the aging population in the 

Western world185. With an increasing aging population worldwide its prevalence 

its only expected to rise: an estimated 288 million people will be affected by 

AMD by 2040185. Despite not being the focus of this study, it is worth to briefly 

visit the role of complement in AMD: AMD and DR both share the same 

characteristic feature in that they are both driven by inflammation and aberrant 

angiogenesis and therefore complement involvement in AMD may have cross-

over with, and provide insights into the DR pathogenesis. The early stage of 

AMD is characterised by the formation of extracellular deposits, known as 

drusen, between the RPE and underlying Bruch’s membrane. Late AMD is 

broadly classified into two advanced clinical forms, a ‘dry’ form with geographic 

atrophy (GA) characterised by loss of RPE and outer retinal cells, or a ‘wet’ 

form, otherwise known as neovascular AMD (nAMD), characterised by 

abnormal choroidal neovascularisation (CNV) that extends into the retina 

generating immature blood vessels that leak and haemorrhage.  

 

There have been considerable advances in the unravelling of the biological 

bases of AMD, from which have emerged several lines of evidence implicating 
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activation of the complement cascade, especially the AP, in AMD pathogenesis. 

Firstly, the major stressors for AMD development, such as aging, smoking, and 

oxidative stress, have been linked to overactivation of the complement 

system186. As mentioned above, drusen are the first signs of early AMD. The 

observation that drusen contains proteins of the complement system was first 

made by two independent groups in France and the Netherlands, and then later 

confirmed by the Hageman group in the U.S. who conducted extensive 

immunohistochemical studies187-189. These findings on the molecular 

composition of drusen implicate local activation of the alternative pathway. In 

addition, increased levels of various complement components, including C3a, 

C3b and CFB, have been detected in the plasma from AMD patients190-193.  

 

Secondly, genetic studies have revealed highly significant statistical 

associations between AMD and genetic variants that affect different aspects of 

the AP. These variations in genes encoding complement proteins suggest that 

certain individuals may be genetically predisposed to AMD because of local or 

systemic aberration of the AP. In 2005, several studies were simultaneously 

published identifying and confirming variation in the complement factor H (CFH 

gene)194-197. These genetic studies were then extended by the observation that 

polymorphisms in other complement genes, notably those coding for CFB are 

also associated with AMD198-200.  

 

Lastly, a strong argument in support of the involvement of the AP in AMD 

comes from in vitro and in vivo experimental data. In a study aimed at 

elucidating how complement is regulated in the retina, one group reported that 

CFH, a negative regulator of the AP, is constitutively expressed by RPE cells 

and that RPE cells are a significant local source of CFH, which is negatively 

regulated by inflammation201. To further investigate the retinal complement 

regulatory system, they followed on from this by investigating the production 

and regulation of the central AP activator, CFB. Similarly, they found that CFB is 

also produced locally in the retina by RPE cells, however unlike CFH, CFB is 

positively regulated by inflammation202. These results suggest that under 
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inflammatory conditions, like those that manifest in both AMD and DR, the local 

production of CFB by RPE cells is increased, resulting in elevated levels of CFB 

within the retina. The exact biological consequence of elevated CFB is yet to be 

elucidated, however this data implies a link between the pro-inflammatory 

pathologies seen in both AMD and DR, and increased CFB levels.  

 

Another approach used to study the role of complement in retinal health is to 

evaluate and compare the retinal phenotype of mice carrying mutations or 

deletions of specific complement genes. In one study, the authors characterised 

the retinas of mice carrying null mutations in the genes of three central 

components of the AP, Cfb-/-, Cfh-/-, and Cfd-/-203. In addition, they also 

examined the phenotype of the Cfb-/-/Cfh-/- double knockout mouse retina. The 

retinae were examined at 12 months to identify signs of retinal abnormalities. 

They reported that in the first year of life there were no gross anatomical 

differences in retinal morphology between the genotypes with regard to retinal 

thickness and number of photoreceptors. Retinal vessel morphology and 

density was also examined by immunostaining retinal flatmounts. Across all 

genotypes, the retinal vascular plexus was morphologically comparable to that 

of wildtype mice including no withering vessels or other vascular abnormalities. 

This suggests that under physiological conditions the retina is stable and 

healthy in the absence of a functional alternative pathway203. However, this 

study was carried out in the absence of a pathological challenge or 

environmental stressor, and therefore provides limited insight into how 

complement contributes to vascular pathology under disease conditions. There 

are several studies however, that have utilised the mouse model of laser-

induced choroidal neovascularisation (CNV) to mimic vascular pathology seen 

in AMD and explore the role of complement in choroidal angiogenesis. 

Choroidal neovascularisation (CNV) is the hallmark of neovascular AMD 

(nAMD) and one of the ways to induce CNV in mice is to rupture the Bruch’s 

membrane with laser photocoagulation. One group who utilised siRNA directed 

against CFB in C57BL/6 mice, demonstrated a significant reduction in CNV 

compared to their wild-type controls204. However, this data using siRNA must be 
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interpreted with caution because it has been reported that that siRNA can 

supress angiogenesis and CNV independent of the target gene205. Other 

studies have used a combination of CNV and complete gene knock-out of CFB 

in mice to determine which complement pathway is essential for CNV 

development. They reported that following laser photocoagulation, CFB -/- mice 

developed smaller CNV lesions and as a result better-preserved retinal 

function206,207. 

 

1.9.4.2  Complement and Diabetic Retinopathy 
 

DR has a complex pathophysiology characterised by progressive degeneration 

of the retinal vasculature136. Disease pathology begins with the loss of 

pericytes,  hypertrophy of the basement membrane, inflammation, and 

BRB136,208,209. This is followed by loss of capillaries that become acellular and 

nonperfused along with both vascular and neural cell apoptosis209. The 

destruction of retinal vessels leads to ischemia followed by expression of 

angiogenic growth factors culminating in proliferative neovascularisation and 

eventually vision loss210,211. Being an immune-privileged organ the retina has its 

own unique immune regulatory mechanisms and immune defence mechanisms, 

which when alerted by any kind of noxious signal, starts a cascade of 

inflammatory events as an adaptive response to restore the homeostatic 

balance212-214. These mechanisms not only reduce the risk of infection, but also 

prevent inappropriate immune responses, consequently reducing the risk of 

inflammation-mediated retinal damage214. Low-level activation of the innate 

immune mechanisms, specifically the complement system, is required for the 

homeostatic tissue husbandry necessary for long-term maintenance of the 

functional and structural integrity of the adult retina215. However, this protective 

mechanism can have a detrimental impact if the insults persist for a sustained 

period of time, leading to irreversible functional loss212.  

 

In comparison to AMD, genetic evidence for the involvement of complement in 

DR is minimal, however the role of genetic factors in the development of DR 
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was explored in a 2013 study. This group investigated a possible association of 

CFH and CFB complement genes in type 2 diabetic patients. By generating tag-

single nucleotide polymorphisms (tSNPs) in CFH and CFB, they compared the 

allelic and genotypic frequencies of a CFH variant and four CFB variants, in 

type 2 diabetic patients with and without retinopathy. They observed a 

significant decrease in the frequencies of the A allele and the AA genotype for 

the CFH variant (rs800292) in patients with DR compared to diabetic controls. 

On the other hand, the study revealed a significant increase in the frequencies 

of the A allele and AA genotype for one of the CFB variants (rs1049709) in 

patients with DR compared to diabetic controls. The results from this study 

suggest that the mutation in CFH, a regulator of the AP, provides protection 

against DR whereas a mutation in CFB, an activator of the AP, increases the 

risk of developing DR216. Although these findings further strengthen the concept 

that the complement system, particularly the AP, is associated with the 

pathogenesis of DR, this study does not explore the biological function of the 

mutations and consequently the pathogenic significance of the CFH and CFB 

polymorphisms remains unclear. The variant in CFB represents a synonymous 

substitution whereby one base is substituted for another in the exon of the 

gene. With the mutation situated in the exon of the gene the coded amino acid 

will not be affected, so the increased risk of developing DR with the CFB 

mutation is likely to be because the mutation cause changes in CFB gene 

transcription or changes in tissue specificity of CFB gene expression. However, 

determining the biological roles of these polymorphisms in DR would require 

further investigation. 

 

Over the past decade, a body of clinical evidence has emerged that supports a 

link between the AP and the pathogenesis of DR. Firstly, increased 

glycosylation that occurs in DM has been implicated in the inactivation of 

important complement regulatory proteins, such as CD59, which normally serve 

to prevent self-cells from being targeted by MAC217. Evidence comes from the 

observation that membrane bound inhibitors of complement, CD55 and CD59, 

expression is significantly depressed or impaired due in part to non-enzymatic 
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glycation218,219. Several proteomic studies have been carried out to analyse the 

protein profiles of human vitreous samples from patients with DR. In these 

studies, vitreous fluid obtained from diabetic patients undergoing vitreoretinal 

surgery was analysed for protein composition. Results reported that 

complement factors C3, CFI, CFB, C4, C4b, C2 CFD and CFH were detected in 

the vitreous of patients with PDR89,220-226. However, there are two confounding 

factors that mean data reported in these studies should be interpreted with 

caution. Firstly, vitreous haemorrhage, which often occurs in patients with PDR, 

can produce a large influx of serum proteins227. Secondly, the disruption of the 

blood-retina barrier that occurs in DR also produces an increase in proteins in 

the vitreous body227. Both these factors may preclude the usefulness of the 

vitreous fluid when studying intraocular production of a particular protein, since 

elevated intravitreal levels of a particular protein does not necessarily indicate 

an increase in intraocular production, and might simply reflect a non-specific 

increase in protein levels due diffusion. Immunohistochemistry methods have 

also reported that activation of the AP system is involved in the pathogenesis of 

DR. In one study, using a panel of antibodies directed against candidate 

markers of complement activation, investigators examined the presence of 

activated complement in donor eyes affected by DR found extensive staining for 

the terminal complex MAC228. In the same study, no positive staining was found 

for C1, C4 or MBL which suggests that the classical and lectin pathways did not 

participate in complement activation, and the AP of activation seems most 

likely228. Although findings in this study implicating the AP in DR bare some 

relevance, it is worth to note a couple of limitations associated with this study. 

Firstly, only the posterior poles of diabetic eyes were available for study 

because in most cases the retinas were detached, and as a result complement 

activation could only be examined in the choriocapillaries not in the retinal 

vasculature. Secondly, extensive complement deposition was observed in some 

diabetic patients without severe retinopathy228.   

 

Another argument for the involvement of the AP in DR, in particular CFB, comes 

from in vivo experimental data. However, results are somewhat conflicting to 
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studies in AMD. The mouse model of oxygen-induced retinopathy (OIR) is used 

to mimic vascular pathology seen in DR, however unlike the mouse model of 

CNV for AMD, it seems fewer studies have been carried out using OIR to study 

complement in retinal angiogenesis. The OIR model is a well-defined model 

associated with late-stage destructive neovascularisation and inflammation. The 

first phase of OIR involves exposure of mouse pups to hyperoxia, resulting in 

inhibition of normal retinal vessel growth and dropout of pre-existing 

vasculature, leaving a centrally avascular retina229. The second stage of OIR is 

initiated when mouse pups are placed back into a normal oxygen environment. 

The initial loss of retinal vasculature, coupled with the increasing metabolic 

demands of the developing retina, leads to local hypoxia and the up-regulation 

of angiogenic growth factors. As a consequence, there is an overcompensating 

vasoproliferative response with the formation of disorganized and leaky 

neovascular tufts230. In 2014 one group who used this model to investigate how 

the AP regulates pathological angiogenesis in the retina reported a link between 

CFB and retinal vascular pathology following OIR. In order to characterise the 

role of the AP in pathological retinal neovascularisation the authors induced OIR 

in CFB deficient mice. They found that OIR treatment in CFB -/- mice resulted in 

a significant increase in neovascularisation compared with control mice. Since 

VEGF plays a pivotal role in driving neovessel formation in the OIR model, in 

seeking to explain the enhanced neovessel formation in CFB-/- mice, the 

authors first compared VEGF expression between control and CFB-/- retina 

subjected to OIR. Interestingly the expression levels of VEGF and its type II 

receptor, VEGFR2, were not affected in the retina of CFB-/- mice subjected to 

OIR.  Another explanation for the increased neovascularisation seen in CFB-/- 

mice could be enhanced neovessel proliferation. Although the VEGF data 

suggested no change in growth stimulation it is not a direct reflection of 

proliferation, so to directly determine this the authors quantitated the amount of 

EC proliferation by intraperitoneal injection of EdU (a thymidine analogue that 

intercalates into the DNA of proliferating cells). Consistent with the observation 

of unchanged VEGF expression, the rate of neovessel proliferation remained 

unchanged in CFB -/- mice following OIR compared to their control 
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counterparts. In addition, an increase in CFB gene expression following OIR 

treatment in the retina of wildtype mice and co-localisation of CFB with neo-

vessels was reported231; both these observations implicate  CFB in driving 

vascular pathology. This led to the idea that the increase in neovascularisation 

in CFB-/- mice was not a result of higher levels of VEGF or neovessel 

proliferation, but rather because of a decrease in the removal of neovessels 

over time. The authors later showed a significant reduction in apoptotic cells in 

retinal neovessels of OIR treated CFB -/- mice which suggests that CFB may 

have a protective role in the development of neovascularisation and exerts its 

function through mediating cell apoptosis.   

 

1.10  Summary 
 

DR is a major microvascular complication of DM. It can be broadly classified 

into two stages: NPDR and PDR. Vascular changes in NPDR include vascular 

basement membrane thickening, the loss of pericytes and the formation of 

microaneurysms. These progressive functional and structural alterations of 

retinal vasculature result in capillary degeneration and retinal ischemia, which 

subsequently trigger an adverse compensatory neovascularisation response: 

the hallmark of PDR. These newly formed blood vessels are fragile and more 

liable to bleed. Total or partial vision loss can occur when abnormal blood 

vessels breach the inner limiting membrane of the retina and grow into the 

vitreous causing vitreous haemorrhage, retinal detachment and eventually 

vision loss232. For many decades, laser photocoagulation has been the gold 

standard treatment for PDR and although effective at preserving central visual 

acuity, patients often suffer the loss of peripheral vision233 234,235. Recent 

advances in elucidating the molecular mechanisms of angiogenesis have led to 

the development of potentially disease-modifying treatments for PDR236. 

Pharmacological agents that inhibit VEGF, a key causative factor associated 

with PDR pathologies, are now increasingly used as adjuvant treatment to laser 

photocoagulation. Despite being highly effective at inhibiting neovascularization 

and preventing further vision loss, anti-VEGF treatment is not able to relieve 
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ischemic stress caused by vascular degeneration, and so neovascularization is 

likely to reoccur once the treatment is stopped. Consequently, long-term 

repetitive treatment is necessary, and not only does this place a significant 

burden upon healthcare systems, chronic VEGF suppression also raises 

concerns regarding potential adverse effects due to the loss of its important 

neuro- trophic and protective role237,238. Furthermore, around 50% of patients 

are not responsive to ant-VEGF treatment or develop resistance over time, 

which is not surprising as angiogenesis is regulated by multiple angiogenic 

pathways28. Targeting VEGF may also lead to compensatory activation of 

alternative angiogenic pathways. Therefore, effective management of PDR 

remains a significant unmet medical worldwide. Consequently, the development 

of new therapies capable of preventing or slowing the onset and progression of 

DR remains a priority239 and this underpins the need for continuing efforts to 

fully elucidate the mechanisms involved in the pathogenesis of DR. Although 

DR has long been considered a vascular disease, evidence shows that poorly 

controlled complement activation, in particular the AP, is associated vascular 

pathologies in the eye240. Investigating the role of the complement in retinal 

angiogenesis could provide a better insight into the cellular and molecular 

mechanisms underlying DR, which may facilitate the development of alternative 

or complementary treatment to current anti-VEGF therapeutics. 

 

1.11  Aims and Objectives 
 

Genetic, clinical and experimental based evidence, including that obtained from 

studies on AMD, strongly implicates the AP of complement, in particular CFB, in 

the development of DR. Unfortunately, the exact pathogenic significance of this 

association remains unclear. As a result, investigating the biological function of 

CFB within the retina will help link complement activation to specific molecular 

events in order to determine the pathologic effects of complement activity in DR. 

Therefore, the overarching aim of this project is to explore the role of one of the 

key components of the AP, CFB, in DR. We hypothesise that CFB plays a 

causative role in DR by promoting diabetes-associated retinal 
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neovascularisation. In order to satisfy this aim, the specific objectives are 

threefold: 

 

1) To characterise the expression level of CFB in rodent models of PDR, 

and human PDR patient samples. 

2) To investigate the role of CFB in retinal vascular endothelial cell 

behaviour and angiogenesis. 

3) To elucidate the mechanism through which CFB contributes to vascular 

pathology in DR. 
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2 Materials and Methods 
2.1 Human Patient Samples 

 

Aqueous humor samples were collected from patients referred to Tan Tock 

Seng Hospital, Singapore for vitreoretinal surgery to treat PDR. Samples were 

obtained from patients who provided written-informed consent. The study was in 

accordance with the Declaration of Helsinki for Human Research, and with 

guidelines from the Health Sciences Authority of Singapore. Study protocols for 

allocation and biochemical analysis of specimens were approved by the 

SingHealth Centralised Institutional Review Board. 

2.2 Animal Husbandry 
 

All procedures were performed according to the Responsible Care and Use of 

Laboratory Animals (RCULA) guidelines and approved by the Institutional 

Animal Care and Use Committees (IACUC) in Nanyang Technological 

University, Singapore. Mice were maintained at the designated animal facility 

under a 12-hour dark-light cycle at 23°C± 2°C and given standard mouse chow 

and water ad libitum. 

2.3 STZ Diabetic Mouse Model 
 

Diabetes was induced by subcutaneous injection of 50 mg/kg Streptozotocin 

(STZ) for five consecutive days241. 6-week male mice were weighed and 

subjected for basal fasting blood glucose (FBG) test using a point-of care 

glucometer following a 16-h starvation period. Mice with body weight >20g and 

FBG <100mg/dl or >250mg/dl were used for the induction of diabetes. Mice 

were then starved for 6-h each day before being subjected to intraperitoneal 

(IP) injection of 50mg/kg of freshly prepared STZ solution for 5 consecutive 

days. The STZ solution was freshly prepared just before injection by 
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reconstituting STZ powder into 0.1 M citrate buffer (please refer to Appendix 

Table 6 for composition of the sodium citrate buffer) at pH 4.5. Mice were 

subjected to measurement of FBG  4- and 8-week post-injection. Mice with FBG 

levels ³250mg/dl at both time points were considered diabetic. Mice that did not 

development hyperglycemia at 4-weeks post-induction were subject to a second 

cycle of STZ-injection. Those with FBG levels of ³250mg/dl at both the 4- and 

8-week post-injection time-points were included in downstream studies.  

 

2.4 Oxygen-Induced Retinopathy (OIR) Mouse Model 
 

Nursing mothers and neonatal mice were kept at room air from birth through to 

postnatal day (P)7. At P7 mouse litters were placed in a 75% oxygen chamber 

for 5 days until P12. The mice were then returned to room air until at P12 until 

P17. Retina were harvested for RNA and protein isolation (please refer 

Figure 10 for a schematic representation of the OIR mouse model) 

 

 
 

Figure 10: Schematic of the mouse model of OIR. From P7 to P12 mice are exposed to 75% 

oxygen for 5 days, which inhibits retinal vessel growth and causes significant vessel loss, 

leading to a central zone of vaso-obliteration. At P12, when the mice are returned to room air, 

the central avascular retina becomes hypoxic, triggering pathological neovascular growth, which 

reaches its maximum severity at P17. Between P17 and P25 neovascularisation begins to 

regress. (Adapted from Nature Protocols, Volume 4, Pages 1565-1573 (8th October 2009)242 ) 
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2.5 Protein Isolation from Retinal Tissue 
 

Eyes were enucleated by placing 45° forceps under the eyeball. Eyes were 

transferred to a 1.5 mL Eppendorf tube containing 1 mL 1X PBS and kept on ice 

until all remaining eyes had been harvested. Enucleated eyes were transferred 

to a 9 mm petri dish and submerged in 1X PBS. The retinae were dissected 

under using Leica M165 FC Stereo Microscope. Forceps were used to grip the 

optic nerve and gently rotate the eye such that the front (cornea and lens) were 

facing upwards. Whilst maintaining a grip on the eye an 18-gauge needle was 

used to make a small incision on the ora serrata, the serrated junction between 

the retina and ciliary body. Micro-dissection scissors were placed within the 

puncture and used to cut around the circumference of the ora serrata as the eye 

was gently rotated using the forceps gripping the optic nerve. After finishing the 

cut, the cornea, iris, and lens could be removed, leaving behind the posterior 

section of the eye. Two pairs of straight micro-forceps were then used to free 

the retina by peeling it away from the eyecup (RPE/Choroid). To do so, one pair 

of forceps was used to grip tightly between the eyecup and the retina. A second 

pair of forceps was placed loosely between the eyecup and the retina. The first 

pair of forceps were slowly pulled such that it caused the second pair of forceps 

to slide along the eye, detaching the retina from the eyecup (the action is similar 

to grasping a piece of paper between the thumb and forefinger of one hand and 

gently pulling it through the grasp with the other hand). Once the retinae had 

been separated from the eyecup they were transferred into a new 1.5 mL 

eppendorf tube, snap-frozen in liquid nitrogen and stored at -80°C. 

 
Retina were homogenised before adding 30 µL of cold RIPA lysis buffer (please 

refer to Appendix Table 6 for RIPA buffer composition). Samples were 

incubated on ice for 10 minutes before being snap-frozen in liquid nitrogen, 

thawed in a water bath and vortexed for 10 seconds. This freeze-thaw cycle 

was repeated three times before samples were centrifuged at 13,000 RPM for 

10 minutes to remove cell debris. The supernatant for each sample was 
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transferred into a new 1.5 mL and protein concentration was determined by 

Bradford Assay.    

 

2.6 Sodium Dodecyl Sulphate Polyacrylamide Gel 
Electrophoresis (SDS-PAGE) 

 
After calculating protein concentration using the Bradford assay, samples were 

diluted in laemmli loading buffer (please refer to Appendix Table 6 for laemlli 

buffer composition) so that an equal amount of protein for each sample was 

loaded onto the gel. Each sample was prepared in 20µL volume and denatured 

by incubating at 100°C for 5 minutes. All samples, including a molecular weight 

marker, were loaded into the wells of a 10% SDS-PAGE gel (please refer to 

Appendix Tabe 22 for SDS-PAGE gel composition). The gel was placed into a 

Mini Trans-Blot® Cell (Appendix Table 3)  and topped up with running buffer 

before securing the lid and ensuring the terminals were correctly aligned (red to 

red and black to black). The gel was run at 80 V for 30 minutes to allow 

samples to pass through the stacking gel. After which the voltage was 

increased to 110 V for 2 hours (or until the loading dye had run off the end of 

the gel).  

 

2.7 Western Blotting: Wet Transfer 
 

Following electrophoresis, proteins were blotted onto a polyvinylidene fluoride 

(PVDF) membrane (Appendix Table 4) using a wet blotting system. Sponges 

and filter paper were soaked in transfer buffer before being assembled in 

gel/membrane sandwich in the blotting cassette as follows; sponge, 2 x filter 

paper, PVDF membrane (pre-soaked in methanol), 2 x filter paper. A roller was 

used to remove any bubbles between layers. The blotting cassette was 

clamped tightly together and placed into a Mini Trans-Blot® Cell along with an 

ice pack. The tank was topped up with transfer buffer (please refer to Appendix 

Table 6 for transfer buffer composition) to the fill level and the lid secured, 
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ensuring the terminals were correctly aligned. The transfer was run at 90V for 

90 minutes. Once complete, the blotting cassette was disassembled, and the 

membrane was removed for target protein detection.  

 

2.8 Target Detection 
 

After transferring, the membrane was blocked in 5% milk solution for 1h at room 

temperature under gentle agitation. The membrane was washed 3 X 15 minutes 

in TBS-T followed by overnight incubation at 4°C with primary antibody (Table 
10) diluted in 5% BSA (please refer to Appendix Table 6 for 5% milk solution, 

5% BSA blocking buffer, and TBS-T composition). Gentle agitation was applied 

to ensure homogenous covering of the membrane by antibody containing 

blocking buffer. The following morning, the membrane was washed 3 X 15 

minutes in TBS-T to remove residual primary antibody and then incubated with 

blocking buffer containing appropriate Horse Radish Peroxidase (HRP) 

conjugated secondary antibody (Appendix, Table 11) for 2h at room 

temperature. After incubation the membrane was washed with TBS-T 3-4 times 

for 2h at room temperature with gentle agitation to remove residual secondary 

antibody. 

 

Chemiluminescence was used to visualize targets of interest. Firstly, excess 

TBS-T was removed from the membrane by blotting gently on a paper towel. 

Equal volumes of solution A (fixation agent) and solution B (development agent) 

of SuperSignal™ West Pico PLUS Substrate (Appendix, Table 3) were mixed 

together and applied directly onto the membrane. The membrane was then 

placed between two plastic sheets inside a developing cassette with protein 

side facing upwards. All subsequent steps were carried out in a dark room. The 

light sensitive X-Ray film was removed from its packaging, cut to size and 

placed over the membrane. The cassette lid was closed, and the film exposed 

to the membrane. After exposure the film was developed.  
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2.9 Western Blot Stripping 
 

To re-probe the membrane for the detection of other protein targets, the 

membrane was first washed three times in TBS-T to remove the staining. The 

primary and secondary antibodies were removed by incubating the membrane 

in stripping buffer for 10 minutes at room temperature under gentle agitation, 

washed under running tap water to remove stripping buffer followed by blocking 

in 5% (w/v) fat free milk solution in TBS-T for 1h at room temperature. After the 

membrane was probed with new primary antibody and as described above.  

 

2.10  RNA Isolation from Retinal Tissue 
 
Retina were dissected as previously described (please refer to methods section 

2.5). To isolate RNA from retinal tissue 500 µL RNAzol®RT was added directly 

to each dissected retina in a 1.5 mL eppendorf tube and homogenised using a 

23 and 26G needle. 200 µL of RNAase free dH2O was added to the tissue 

homogenate. The resulting mixture was shaken vigorously for 15 seconds, 

incubated at room temperature for 10 minutes before centrifuging at 12,000G 

for 15 minutes. Following centrifugation, DNA, proteins, and most 

polysaccharides form a semisolid pellet at the bottom of the tube, whereas the 

RNA remains soluble in the supernatant. Approximately 550 µL of the 

supernatant (75% of the total supernatant volume) was transferred to a new 

tube leaving a layer of the supernatant above the DNA/protein pellet. To 

precipitate the RNA, 200 µL of 75% of ethanol was added to the supernatant 

and samples were stored at -20°C overnight. The following day, samples were 

centrifuged at 12,000g for 8 minutes, after which the RNA precipitate formed a 

white pellet at the bottom of the tube. The pellet was washed a further 2-3 times 

using 75% ethanol and centrifuging at 8,000g for 3 minutes. After the final 

wash, the RNA pellet was air-dried for 5 minutes and then dissolved in 20 µL of 

RNAase free dH2O. Extracted mRNA was quantified using a NanoDrop ND-

1000 Spectrophotometer. Purity was determined using 260/280 and 260/230 



51 
 
 

 

ratios; only samples with values over 1.8 were used for gene expression 

studies. RNA samples were stored at -80ºC. 

 

2.11  Quantification of DNA and RNA by Spectroscopy 
 

DNA and RNA preparations were quantified using the NanoDrop™ 2000c. 

Following background correction with µL of dH2O, 1 µL of DNA was quantified 

by measuring the absorbance at 260nm. A conversion factor of 50 for DNA and 

40 for RNA for every unit of absorbance represents an estimated 50 µg/L and 

40 µg/ µL respectively. 

 

2.12  First Strand cDNA Synthesis 
 

First strand cDNA was synthesised from RNA using 5X qScript® cDNA 

SuperMix Kit. 1 µg of RNA was added into a RNase free 0.2 mL tube, along 

with 4 µL of 5X qScript® cDNA SuperMix and RNase free dH2O. The reaction 

volume per RNA template was 20 µL (refer to Table 17 for the composition of 

the qScript® cDNA SuperMix). 

 

2.13  SYBR® Green Real-Time PCR 
 
The cDNA was subject to quantitative real time polymerase chain reaction (RT-

qPCR). Each reaction was performed in a 20 µL volume containing cDNA, 

forward and reverse primers, nuclease free dH2O and iTaq™ Universal Synergy 

Brands (SYBR®) Green Supermix. Reactions were performed in experimental 

duplicates and read from a 96-well plate. All RT-qPCR components were 

thawed on ice. A master-mix for each target gene was prepared by combining 

forward and reverse primers (please refer to Appendix Table 18 and Table 19 

for primer sequences), nuclease free dH2O and SYBR® Green supermix in a 

1.5 mL eppendorf tube on ice (please refer to Appendix Table 20 for SYBR® 

reaction volume composition). The 96-well RT-qPCR plate was placed on ice 
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and 19 µL of the master-mix was added to the wells, followed by the addition of 

1 µL of sample cDNA. The 96-well plate was briefly centrifuged to ensure all 

components were collected at the bottom of each well. RT-qPCR was 

performed using Applied Biosystems StepOnePlus™ Real Time PCR System 

(please refer to Appendix Table 21 for RT-qPCR cycling conditions). 

Relative gene expression was quantified using the DDcT method to calculate 

fold change, normalising against the housekeeping gene β-actin, as described 

in the equation below. 

  

Relative Expression: 

2-∆∆cT 

Where: 
∆∆cT = ∆cTsample - ∆cTcontrol 
∆cT = cTgene of interest - ∆cThousekeeping gene 
 

 

2.14  Cell Culture Basics 
 
All cell culture was performed in sterile conditions in an Airstream® (ESCO) 

Class II biological safety cabinet. All materials and equipment to be used in the 

biological safety cabinets were either sterilised with 70% IMS or autoclaved. All 

cell culture plastic-ware was bought pre-sterilised. Any liquids were bought pre-

sterilised or were sterile filtered using a 0.22 µM filter in the biological safety 

cabinets. Cells were cultured in an incubator in humidified conditions at 37°C 

and 5% CO2. All cell culture media was pre-warmed in a 37°C water bath for 30 

minutes prior to cell culture.  

 

2.15  Thawing Cells 
 
Prior to thawing, a T25 tissue culture flask was coated with Quick Coating 

Solution for 5 minutes. Cryopreserved cells (1ml per cryovial) were defrosted 

rapidly in a 37°C water bath and transferred to a 15 mL universal tube 
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containing 9ml of appropriate cell growth media. The cell suspension was then 

placed into a centrifuge and spun at 1300 rpm for 5 minutes. After pelleting, the 

supernatant was removed and the cells re-suspended 5 mL appropriate cell 

growth media. The quick coat solution was removed from the T25 flask and the 

cell suspension was transferred from the 15 mL universal. Media was replaced 

the following day and every 2-3 days thereafter until cells were 80-90% 

confluent. 

 

2.16  Counting Cells 
 
To count the number of cells in a cell suspension, a glass haemocytometer was 

used. The hemocytometer and coverslip were cleaned with 70% ethanol prior to 

use. The coverslip was moistened with water to affix to the hemocytometer. 

Cells were re-suspended in 1ml of the appropriate culture medium. 10 µl of the 

cell suspension was pipetted into the haemocytometer tip at the edge of the 

chambers, allowing capillary action to draw the suspension from the pipette. 

The haemocytometer was viewed under an inverted microscope at 10x 

objective and phase contrast was used to visualise cells. A hand tally counter 

was used to count the total number of cells within a one set of 16 squares 

occupying a volume of 1 x 10-4 ml.  To avoid counting cells more than once, 

cells were only counted when they were set within a square or on the left-hand 

or top boundary line. Counting was repeated for the remaining 3 sets of 16 

squares to obtain an average cell number. The calculation outlined below was 

used to calculate the total number of cells per mL of cell suspension. 

 

Number of cells/mL: 
(X / D) * Y 

Where: 
X = Number of live cells counted 
D = Dilution Factor 
Y = 1mL/volume of 1 haemocytometer corner square 
 
e.g. (240 live cells/4 squares) *104 

= 6 *105 cells/mL  
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Calculation for cell seeding: 
(A/B) *N = Tc 

Where: 
A = Number of cells needed 
B = Number of cells counted/mL 
N = Number of wells/flasks to be seeded 
Tc = Total volume of cell suspension 

Tv – Tc = Tm 
Where: 
Tv = Total final volume of all wells/flasks 
Tm = Total respective media required 
 

2.17  Primary Cells: Culture and Sub-Cultivation 
 
Human Retinal Microvascular Endothelial Cells (HRECs) isolated from normal 

human retinal tissue were purchased as a cryopreserved stock of 5x105 cells 

per vial at passage 3. Upon thawing, HRECs were plated onto a T25 tissue 

culture flask coated with Quick Coating Solution and maintained in Endothelial 

Growth Medium (EGM-2™). EGM-2™ was made from a kit comprised of 

Endothelial Basal Media (EBM-2™) and Endothelial Growth Supplement Mix. 

To prepare the culture medium the contents of the supplement mix were added 

to 500 ml of EBM-2™ in a class II biological safety cabinet. In addition, 1% 

penicillin/streptomycin was added (please refer to Appendix Table 12 for the 

specification of EBM-2™ media composition). 

 

Cultures were grown at 37°C in 5% CO2 with media replaced every 2-3 days. 

Upon reaching 80-90% confluence cells were passaged to allow for cellular 

proliferation to expand the number of cells available for experimentation. To 

passage cells, media was removed from the T25 flask and washed once with 

2.5 mL of 1X phosphate buffered saline (PBS) to remove any residual serum 

proteins. Flasks were then incubated with 1 mL of trypsin EDTA at room 

temperature for 2-3 minutes. To counteract the action of trypsin 2.5 mL of EGM-

2™ was added and the cell suspension was transferred into a 15 mL universal 

tube. The cell suspension was centrifuged at 1300 rpm for 5 minutes before re-

suspending in 1 ml of culture medium. Cells were either plated at the desired 
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density for experiments or re-plated for continued cell culture. HRECs were split 

in the ratio of 1:3. HRECs were used until passage 12 in this study. 

 

2.18  Primary Cells: Cryopreservation 
 
When cells had reached 90% confluency, they were trypsinsed. Cells were 

resuspended in 1 mL of cell freezing media (please refer to Appendix Table 5 

for cell freezing medium details) and counted. Cells were re-suspended further 

to a concentration of 1X106 cells per mL The cell suspension was added to 1 

mL cryovials labelled with cell type, cell passage number, cell concentration and 

date of cryopreservation. Cryovials were cooled on ice for 10 minutes and then 

transferred to a freezing container that enabled cells to be cooled at a rate of -1 

°C per minute. The container was placed into a -80 °C freezer overnight before 

transferring the cryovials to a liquid nitrogen dewar for long-term storage.  

 

 

2.19  Freestyle 293-F Cells: Culture and Sub Cultivation 

Freestyle 293-F cells were purchased as a cryopreserved stock of   cells 

in 1 mL 90% Freestyle Expression Medium (FEM) and 10% DMSO. Prior to 

thawing, a 125 mL shaker flask was filled with 30 mL of pre-warmed freestyle 

293 culture media. Cryopreserved cells were removed from liquid nitrogen 

storage and defrosted rapidly in a 37°C water bath. Just before cells were 

completely thawed, the outside of the vial was decontaminated with 70% IMS 

and the entire contents of the cryovial was then and transferred directly to the 

125 mL shaker flask. Cells were incubated in a 37°C incubator containing a 

humidified atmosphere of 8% CO2 on an orbital shaker platform rotating at 125 

rpm. To allow oxygenation/aeration the cap of the flask was loosened a quarter 

turn from snug. 
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Cells were sub-cultured once the cell density had reached greater than 2-3 x 

106 cells/mL (typically 3 to 5 days). After determining the total cell number, the 

cell suspension was transferred aseptically from the 125 mL shaker flask into a 

50 mL universal tube and spun at 100 G for 5 minutes. Cells were resuspended 

in the appropriate volume of pre-warmed FEM to give a cell density of 3 x 105 

cells/ mL. Either 125- or 250-mL shaker flasks containing 30- or 50-mL total 

working volume of cell suspension, respectively were used. 

2.20  Freestyle 293-F Cells: Cryopreservation 

Freezing medium was prepared immediately before use. In a sterile 15 mL 

universal the following reagents were mixed together for every 1 mL of freezing 

medium needed: 0.9 mL FEM and 0.1 mL DMSO. The freezing medium was 

filter sterilised using a 0.22 µM filter unit and then placed on ice until use. Any 

remaining freezing medium was discarded after use.  

 

The Freestyle 293-F cells were counted to determine the total cell number. After 

determining the total cell number, the cell suspension was transferred 

aseptically from the 125 mL shaker flask into a 50 mL universal tube and spun 

at 100 G for 5 minutes. Cells were resuspended in the required volume of 

freezing medium to give a final cell density of 5-8 x 106 cells/mL. 1 mL of the 

cell suspension was aliquoted into a cryovial labelled with the cell type, cell 

passage number, cell concentration and date of cryopreservation. Cryovials 

were cooled on ice for 10 minutes, transferred to a freezing container and 

placed into a -80 °C freezer for at 24hours before transferring the cryovials to a 

liquid nitrogen dewar for long-term storage. 

 

2.21  Molecular Cloning of CFB Sequence 
 

The coding sequence human CFB (NM_001710.5) carrying a 6XHis tag at the 

3’ end and Kozak consensus sequence at the 5’ end was cloned into pcDNA3.1 

at the AFLII/XbaL sites to form pcDNA-CFB-His (please refer to Figure 11). 
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Figure 11: Schematic outline of the rhCFB cloning strategy. The coding sequence of human 

CFB (NM_001710.5) with a 6 X His tag at the 3’ end was cloned into pcDNA3.1 expression 

vector at the Afl II/ Xbal I sites to form pcDNA-rhCFB-His. 

 

2.22  Polymerase Chain Reaction (PCR) 
 
The coding sequence of human CFB (NM_001710.5) was amplified from 

sequence-verified cDNA clone MGC:1795 IMAGE:2959705 (Dharmacon), using 

Q5® High-Fidelity DNA Polymerase. All reaction components were assembled 

on ice in a 0.2mL PCR strip tube (please refer to Appendix Table 15 for the 

final PCR Mastermix composition). The reaction was gently mixed, followed by 

a pulse spin to collect all liquid to the bottom of the tube, before transferring the 

PCR tubes to the PCR machine for thermocycling (please refer to Appendix 

Table 16 for the PCR amplification thermocycling conditions).  

 

2.23  Agarose Gel Electrophoresis 
 

PCR products were separated and analysed for reaction quality by gel 

electrophoresis using a 1% agarose gel. 1% (w/v) agarose was prepared by 

mixing 1g agarose power in 100 mL 1 X TBE buffer and microwaving at full 

power for 2 minutes. The solution was cooled before adding 10 µL GelRed® 
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nucleic acid gel stain (Appendix Table 5)  to visualise DNA using ultraviolet 

(UV) light. Gels were poured into Sub® Cell GT electrophoresis chambers 

(Appendix, Table 3) and allowed to set before being placed into gel box and 

flooding with 1 X TBE buffer.  PCR samples were mixed with GelPilot ® DNA 

loading dye and loaded into the wells of the agarose gel. Samples were run 

next to GeneRuler 1 kb DNA ladder for approximate size calculation. Gels were 

run at 120V for 1.5 hour and then removed from the tank and placed onto a 

Dark Reader™ blue light transilluminator to visualise the bands of stained 

nucleic acid.   

 

2.24  PCR Product Purification 
 
PCR product was purified using QIAquick PCR purification kit (Appendix, 
Table 9) to remove unincorporated primers, left over dNTPs, salts, and other 

impurities from PCR amplicons. The method was carried out in accordance with 

the manufacturers protocol. DNA concentration was measured using the 

NanoDrop™ 2000c 

 

2.25  Restriction Digestion 
 

Restriction enzyme digestion of plasmid DNA (pcDNA3.1 vector and CFB 

insert) was performed with AFLII and XbaL restriction endonucleases 

(Appendix, Table 9) in FastDigest buffer (Appendix, Table 9) . Restriction 

enzyme digests were performed using the buffer system with time and 

temperature according to manufacturer’s instruction. Briefly, 20 units of enzyme 

was used in a reaction mixture containing the FastDigest buffer, 1 µg plasmid 

DNA, and incubated d at 37°C for 1-2 hours in a water bath. 
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2.26  Agarose Gel Purification 
 

The digested DNA product was separated in 0.8% agarose gel. The DNA 

fragment with appropriate size was excised from the gel using a clean scalpel. 

Purification proceeded using the QIAquick Gel Extraction Kit (Appendix, Table 
9) in accordance with the manufacturers protocol. DNA concentration was 

measured using the NanoDrop™ 2000c. 

 

2.27  Ligation 
 
DNA ligation was carried out in a 20 µL reaction volume by combining 50 ng 

vector DNA (pcDNA3.1) in a 3:1 molar ratio with insert DNA (CFB) and Quick 

Ligation™ Kit components in a microcentrifuge tube on ice (please refer to 

Appendix Table 14 for the Quick Ligation reaction components). The online 

NEBiocaluclator was used to calculate molar ratios.  The reaction was mixed by 

gentle pipetting before incubating at room temperature for 5 minutes. The 

ligation reaction mixture was chilled on ice before transforming into 50 µL of 

competent cells.     

 

2.28  Transformation 
 
Microbiological Luria-Bertani (LB) agar plates were used for growing bacterial 

cells. To make 200 mL (enough for approximately 20 plates), 7g of Agar powder 

(Appendix, Table 5) was added to 200 mL dH2O in a glass Duran. The mixture 

was shaken briefly to free the powder from the bottom of the bottle and remove 

major clumps, before autoclaving to sterilise. After autoclaving the mixture was 

cooled slightly (not below 45-50°C) and 25 µg/mL Chloramphenicol antibiotic 

(Appendix, Table 5) was added. Approximately 10 mL of LB agar was poured 

into each plate.  
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Bacterial strains were grown in LB medium (Appendix, Table 5)  with antibiotic 

selection from a single colony. Stocks of bacteria were stored at -80°C in 

cryovials in a minimum of 10% glycerol. For each transformation, 5 µL of the 

ligation reaction was mixed with 50 µL of chemically competent cells by gentle 

pipetting and incubated on ice for 30 minutes, followed by heat shock at 42°C 

for 30 seconds. The cells were allowed to recover in 950 µL of room 

temperature media (without antibiotic) and then incubated for 60 minutes at 

37°C with shaking at 250 rpm. Cells were plated on LB-agar plates containing 

25 µg/mL chloramphenicol antibiotic and incubated statically at 37°C overnight.  

 

2.29  Mini-Prep 
 

After overnight incubation, a single colony was picked up using a sterile pipette 

tip and cultured with 4 mL of LB media containing and cultured overnight at 

37°C on an orbital shaker at 190-225 rpm. The bacteria were pelleted and lysed 

for plasmid DNA isolation using QIAprep Spin Miniprep Kit (Appendix, Table 9) 

in accordance with manufactures protocol. The plasmid DNA was then 

adsorbed on a QIAprep membrane, washed then eluted with nuclease free 

H2O. The DNA was quantified using the NanoDrop™ 2000c.  

 

2.30  Freestyle 293-F Transfection 
 

Over-expression of CFB in Freestyle 293-F cells was achieved using a 

transient transfection method. Transfection experiments were performed in a 

30 mL volume with a total cell count of 3 x 107 cells. The day before 

transfection Freestyle 293-F cells were counted to determine the total cell 

number. After determining the total cell number, the cell suspension was 

transferred aseptically from the 125 mL shaker flask into a 50 mL universal 

tube and spun at 100 G for 5 minutes. Cells were resuspended in the required 

volume of pre-warmed FEM to give a final cell density of 6-7 x 105 cells/mL.  
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The following day, cells were counted again as described in to determine the 

total cell count and cell viability. For optimal transfection cells needed to be in 

a single cell suspension with viability of over 90%. The volume of cell 

suspension containing 3 x 107 cells was calculated and transferred into a new 

125 mL shaker flask. The volume was topped up to 30 mL with fresh pre-

warmed FEM. The shaker flask was incubated in a 37°C incubator containing 

a humidified atmosphere of 8% CO2 on an orbital shaker platform rotating at 

125 rpm whilst the transfection reagent mix was prepared. For the transfection 

of one 125 mL flask containing 3 x 107 cells in 30 mL FEM, 112.5 µL OptiMEM 

containing 37.5 µL of lipofectamine 2000 was added to 150 µL Opti-MEM® 

containing 37.5 µg of pCFB in a 1.5 mL eppendorf tube and incubated at room 

temperature for 20 minutes to allow the DNA-lipofectamine complexes to form. 

After incubation, the transfection reagent mix was added dropwise to the 125 

mL shaker flask prepared earlier. The shaker flask was incubated in a 37°C 

incubator containing a humidified atmosphere of 8% CO2 on an orbital shaker 

platform rotating at 125 rpm. Samples of conditioned media were harvested 

every 24h to check for recombinant protein expression.  

 

Approximately 72h after transfection, cells were counted to determine the total 

cell number. After determining the total cell number, the cell suspension was 

transferred aseptically from the 125 mL shaker flask into a 50 mL universal 

tube and spun at 100 G for 5 minutes. The conditioned media was collected 

into a new 50 mL universal and stored at -80°C until downstream protein 

purification was to be carried out.  
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2.31  Protein Purification 
 

2.31.1 Buffer Preparation 
0.1M Sodium Phosphate Buffer 

 
To prepare 50mL 1M stock solutions of NaH2PO4•H2O (monobasic) and 

Na2HPO4•H2O (dibasic), 6.9 g and 8.9 g were dissolved in dH2O respectively 

(Table 7). To prepare 500mL of 0.1M sodium phosphate buffer at pH 7.4 (from 

1M stock), 11.3 mL NaH2PO4 and 38.7 mL Na2HPO4 were diluted to 1L (final 

volume) with dH2O. 

 

Elution and Binding Buffers 
 
To prepare stock buffer 1 and stock buffer 2, buffer components were dissolved 

in 400 mL dH2O. The solutions were cooled at 4°C and the pH was adjusted to 

pH 7.4 before diluting to a final volume of 500mL with dH2O. Working 50 mL 

stocks of elution and binding buffers were prepared by mixing the correct 

volumes of stock buffer 1 and stock buffer 2 (Table 8). Elution and binding 

buffers were passed through a 0.22 µM filter before use.  

 

2.31.2 Protein Concentration 
 

Conditioned media collected from 239-F cells was thawed overnight on ice. 

After centrifuging at 100 G for 5 minutes, the supernatant was filtered using a 

0.22 µM filter before being concentrated using an Amicon® Pro Affinity 

concentrator spun at 4000 G for 30 minutes at 4°C. After each spin the flow-

through was discarded and the conditioned media in the reservoir was topped 

up. Conditioned media was concentrated to 100 X the starting volume.  
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2.31.3 Buffer Exchange 
 

After concentration, the conditioned media was equilibrated with binding buffer. 

The concentrated media was gently resuspended using a pipette and the 

reservoir was topped up with binding buffer before centrifuging at 4000 G for 30 

minutes or until the sample was concentrated to 10 X the starting volume. The 

flow through was discarded and the reservoir topped up to 10 mL with binding 

buffer. This step was repeated three times.  

 

2.31.4 Protein Binding 
 

Ni Sepharose high performance nickel-charged immobilised metal ion affinity 

chromatography (IMAC) resin was used to purify the rhCFB. 600 µL of Nickel 

beads were transferred to a 15 mL falcon tube, topped up to 5 mL with cold 

sterile PBS and centrifuged at 800 G for 5 minutes. This washing step was 

repeated twice with PBS and a final time with binding buffer. After buffer 

exchange the concentrated protein solution was gently re-suspended before 

being transferred to the 15 mL falcon with Ni beads. The tube was topped up to 

10 mL with binding buffer and incubated on the roller at 4°C overnight. 

 

2.31.5 Elution 
 

After overnight incubation the Ni beads were centrifuged at 800 G for 5 minutes. 

The supernatant was removed, and the beads were incubated with 10 mL cold 

binding buffer on the roller at 4°C for 10 minutes, before being centrifuged at 

800 G for five minutes. This washing step was repeated three times. After the 

final wash, Ni beads were incubated with 2 mL of elution buffer on the roller at 

4°C and incubated for 10 minutes before being spun at 800 G for 5 minutes. 

The eluent was collected, and the protein concentration was evaluated using 

Bradford reagent (180 µl 1  Bradford + 20 µl eluent) and checking for a colour 

change by eye. The elution steps were repeated until a colour change could no 
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longer be observed using the Bradford reagent. The eluent was then 

concentrated using Amicon Ultra 2 mL centrifugal filters. The membrane was 

washed first by adding 500 µL of cold PBS and spun at 4000 G for 

approximately 10 minutes (or until all of the PBS has passed through). After 

washing the membrane was spun at 4000 G for 10-15 minutes or until the 

sample was concentrated to 4 X the starting volume. The flow through was 

discarded and the reservoir topped up to 2 mL with eluent. This step was 

repeated, each time topping up the reservoir once the level of eluent drops, until 

the eluent was concentrated to approximately 500 µL. The the protein 

concentration was evaluated using Bradford reagent. 

 

2.31.6 Dialysis 
 

To remove imidazole from the concentrated protein solution dialysis was carried 

out using a 15 mL Scientific Slide-A-Lyzer MINI Dialysis Device. The Slide-A-

Lyzer MINI Dialysis Device was removed from the conical tube, being careful to 

not touch thee dialysis membrane so to avoid contamination. 14 mL of cold PBS 

buffer was added to the conical tube. 500 µL of the concentrated protein sample 

was added to the device, which was then placed slowly into the conical tube 

containing the buffer, making sure the membrane was in contact with the buffer 

and no air bubbles had been introduced. The conical tube was placed in the 

4°C cold room on an orbital shaker set at 200 rpm. The dialysis procedure was 

as follows: dialyze for 2h; change the dialysis buffer and dialyze overnight. After 

overnight dialysis, the device was removed from the conical tube and the 

sample collected using a pipette. The protein concentration of the sample was 

measured, and the protein purity was confirmed by InstantBlue™ protein stain 

solution (Concentrated protein was aliquot into smaller volumes in 1.5 mL 

eppendorf tubes, and stored at -80°C. 
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2.31.7 Protein Purity 
 

Gels were prepared and run as described (please refer to section 2.23). 

Following electrophoresis gels were removed from cassettes and transferred 

directly into the InstantBlue™ staining solution, making sure the gel was able to 

move freely within the solution to allow for diffusion. Protein bands were allowed 

to develop for 15 minutes at room temperature with gentle agitation.  

 

2.32  Primary Cell Transfection: Small Interfering RNA 
(siRNA) Silencing 

 
10 nM pooled CFB siRNA was briefly centrifuged to ensure that the pellet was 

collected at the bottom of the tube before resuspending in 100 µL of RNase-

free dH2O to obtain a stock solution with a concentration of 100 µM. The tube 

was securely sealed with and placed onto an orbital shaker for 30 minutes at 

room temperature. siRNA was briefly centrifuged again to ensure that the 

solution was collected at the bottom of the tube before being aliquoted into 

smaller 5 µL volumes to limit the number of freeze-thaw cycles. Resuspended 

siRNA was stored at -20°C. After thawing, storage at 4°C was suitable for up 

to 6 weeks.  

 

Knockdown of CFB in primary cells was achieved using a transient 

transfection method. HRECs were seeded in EGM-2™ overnight at a density 

of  2 X 105 cells per 6-well so that the following day they were approximately 

70-90% confluent before transfection. For transfection of one well, 150 µL 

OptiMEM® containing 6 µL of lipofectamine 3000 was added to 150 µL Opti-

MEM® containing 1µL of 100 µM stock CFB siRNA in a 1.5 mL eppendorf 

tube and incubated at room temperature for 20 minutes. 1.2 mL of fresh Opti-

MEM® was added to the 300 µL transfection reagent mix giving a final 

concentration of 66nM. HRECs were washed once with Opti-MEM® before 

adding the transfection mix. HRECs were incubated with the transfection mix 
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for 6h at 37°C and 5% CO2. After 6h, the transfection reagent mix was 

removed and replaced with 1.5 mL fresh EGM-2™.  Cells were incubated for a 

further 24h-48h before they were used for downstream experiments. CFB 

knockdown was confirmed by qRT-PCR.  

 

2.33  Primary Cell Transfection: CFB Over-expression 
 

Over-expression of CFB was achieved using a transient transfection method 

(please refer to section 2.21 for molecular cloning of CFB). HRECs were 

seeded in EGM-2™ overnight at a density of 2X105 cells per 6-well so that the 

following day they were approximately 70-90% confluent before transfection. 

For the transfection of one well, 150 µL OptiMEM® containing 2 µL of 

lipofectamine 3000 was added to 150 µL Opti-MEM® containing 1 µg of pCFB 

and 2 µL p3000 in a 1.5 mL eppendorf tube and incubated at room 

temperature for 20 minutes. After incubation 1.2 mL of fresh Opti-MEM® was 

added to the 300 µL transfection reagent mix. HRECs were washed once with 

Opti-MEM® before adding the transfection mix. HRECs were incubated with 

the transfection mix for 6h at 37°C and 5% CO2. After 6h, the transfection 

reagent mix was removed and replaced with 1.5 mL fresh EGM-2™. Cells 

were incubated for a further 24-48h before they were used for downstream 

experiments. CFB over-expression was confirmed by qRT-PCR. 

 

 

2.34  Growth factors and Inhibitor Treatments 
 
Recombinant human CFB (rhCFB) was expressed in FreeStyle™233-F cells 

and purified as described (please refer to section 2.31 for transfection protocol). 
For all in vitro and ex vivo assays rhCFB was used at a concentration of 100 

µg/mL. The multi-targeted tyrosine kinase inhibitor, Linifanib, was used in the 

Matrigel® network formation assay at a concentration of 5nM. 
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2.35  Cell Viability Assay 
 
Cell viability of cultured cells was evaluated over 2 days using the colorimetric 

MTS tetrazolium assay in a 96-well tissue culture plate. Prior to cell seeding, the 

number of individual wells required for the assay were calculated and each well 

was coated with 50 µL of Quick Coating Solution for 5 minutes. To evaluate 

HREC viability after rhCFB treatment, cells were seeded at 1000 cells per 96-

well in 100 µL EGM-2™ and cultured for 24 hours. After 24h culture cells were 

washed once with 1X PBS and cultured in EBM-2™ for 3h. Following this, EBM-

2™   media was aspirated from the wells and replaced with EGM-2™ containing 

either 100 µg/mL rhCFB or equivalent vehicle control. The day 0 time point was 

taken immediately after adding treatments. To evaluate HREC viability after 

CFB knockdown or over-expression, cells were transfected as described 

(please refer to section 2.32 and 2.33) and harvested after 48h. Cells were 

seeded at 1500 cells per 96-well in 100 µL EGM-2™ and cultured for 4h to 

allow cells to settle and adhere. After cells had adhered the EGM-2™ was 

aspirated, cells were rinsed once with 1X PBS and cultured for 3h in EBM-2™. 

Following this EBM-2™ was aspirated from the wells and replaced with EGM-

2™. The day 0 time point was taken immediately after adding fresh EGM-2™.  

 

Cell viability was measured at the following time points: day 0, day 1, and day 2. 

An equivalent group of EGM-2™ without any cells was included in parallel for 

use as a media blank. At each time point, 10 µL of MTS reagent was added into 

the corresponding wells and incubated for 2h at 37°C in 5% CO2. After 

incubation the absorbance of formazan product was measured using a plate 

reader at the wavelength of 490 nm. The final value was obtained by 

subtracting the absorbance reading of the media blank control. Each time point 

was measured in triplicate per group and control. 
 
 
 



68 
 
 

 

2.36  Cell Proliferation Assay 
 
Cell proliferation of cultured cells was evaluated by immunofluorescence 

staining of the nuclear marker Ki67. Cell proliferation was evaluated in a 48-well 

plate. Prior to cell seeding, the number of individual wells required for the assay 

was calculated and each well was coated with 500 µL of Quick Coating Solution 

for 5 minutes. To evaluate HREC proliferation after rhCFB treatment, cells were 

seeded at 10,000 cells per 48-well in 500 µL EGM-2™ and cultured for 24 

hours. Following this, fresh EGM-2™ containing either 100 µg/mL rhCFB or 

equivalent PBS control was added to the HRECs and cultured for 24h. To 

evaluate HREC viability after CFB knockdown or over-expression cells were 

transfected as described (please refer to section 2.32 and 2.33)  and harvested 

after 48h. Cells were seeded at 12,000 cells per 48-well in 500 µL EGM-2™ and 

Transfected HRECs were cultured for a further 24h.  

 

At the assay endpoint culture media was removed and cells were washed three 

times with sterile 1x PBS before fixation in 4% paraformaldehyde (PFA) for 15 

minutes. Once the cells had been fixed, subsequent work was carried out in 

non-sterile conditions on the laboratory bench. 4% PFA was aspirated from the 

wells and cells were washed three times with 1X PBS before being blocked and 

permeabilised in 1X blocking buffer (please refer to Appendix Table 6 for the 

composition of blocking 1 X buffer) for 45 minutes at room temperature. After 

blocking, cells were incubated with primary rabbit anti- Ki67 antibody (please 

refer to Appendix Table 10 for primary antibody details) diluted in 1x blocking 

buffer at 4°C overnight. After overnight incubation, cells were washed three 

times with 1x blocking buffer to remove excess primary antibody before 

incubating with Alexa Fluo® 594 conjugated goat anti-rabbit IgG secondary 

antibody (please refer to Appendix Table 11 for secondary antibody details) 

diluted in 1x blocking buffer, for 2h in the dark at room temperature. Excess 

secondary antibody was removed by washing three times with 1X PBS followed 

by incubation with DAPI dye diluted in 1x PBS, for 10 minutes in the dark at 

room temperature. A final three washes with 1x PBS was carried out before 
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imaging. Fluorescent images were captured using an Eclipse Ti-E Inverted 

Research Microscope (Nikon, Japan). Images were captured across five fields 

of view per well and the total number of cell nuclei and the total number of Ki-

67+ cell nuclei were manually counted. The cell proliferation rate was calculated 

as a percentage Ki-67+ cells. The average of the five fields of view was taken to 

give a final proliferation rate per well. 

 

2.37 MatrigelÒ Network Formation 
 

The day prior to conducting the tube formation assay, growth factor reduced 

Corning® Matrigel® Matrix was thawed overnight on ice at 4°C. 60ul of 

completely thawed Matrigel® was plated into each well of a pre-cooled 96-well 

plate and allowed to polymerise for 30 minutes at 37°C.  

 

To evaluate HREC network formation after rhCFB treatment, cells were seeded 

onto the polymerised Matrigel® at 12,000 cells per well of a 96-well plate in 100 

µL EGM-2™ medium containing either 100 µg/mL rhCFB or equivalent volume 

of PBS control and cultured overnight for 16 hours. To evaluate HREC tube 

formation after CFB knockdown or over-expression, cells were transfected as 

previously described (please refer to section 2.32 and 2.33) and harvested after 

48h before being seeded at 15,000 cells per well of a 96-well plate in 100 µL 

EGM-2™ medium and cultured overnight for 16 hours.  

 

After incubation, the vasculature was imaged using Eclipse Ti-E Inverted 

Research Microscope (Nikon, USA) at 4x magnification. Quantification of the 

vascular network was analysed using Image J (National Institute of Health, 

USA) for total number of junctions, total vessel length and total branching length 

per well. The values for each parameter were normalised to the control group 

(untreated control, scrambled control or pcDNA control) for statistical analysis.  
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2.38  Transwell Migration Assay 
 
HREC migration was evaluated using Transwell migration inserts. The day prior 

to conducting the migration assay, 8 µM Transwell® 24-Well Plate Inserts were 

coated with 1 mL Quick Coating Solution for 5 minutes and then allowed to dry 

thoroughly overnight.  

 

To evaluate HREC migration after rhCFB treatment, cells were seeded in a 6-

well plate in EGM-2™ at a density of 2x105 cells per well and cultured for 24h. 

The following day cells were rinsed once with 1x PBS and pre-treated with 

EBM-2™ containing either 100 µg/mL rhCFB or equivalent volume of PBS for 

24h. After pre-treatment, cells were harvested and seeded into the upper 

chamber of the 8 µM Transwell® inserts at a density of 30,000 cells per well of 

a 24-well plate in 200 µL EBM-2™. In the lower chamber of the inserts, EBM2 

containing 5% foetal bovine serum (FBS) was used as a chemoattractant.  

 

To evaluate HREC tube formation after CFB knockdown or over-expression 

cells were transfected as previously described (please refer to section 2.32 and 
2.33), and harvested after 48h. Cells were seeded into the upper chamber of 

the 8 µM Transwell® inserts at a density of 40,000 cells per 24-well in 200 µL 

EBM-2™. In the lower chamber of the l inserts, 600 µL EBM2 containing 5% 

FBS was used as a chemoattractant.  

 

After 4h of incubation media was removed from both the upper and lower 

chambers and inserts were washed three times in 1x PBS. To fix cells, 1 mL 1% 

PFA was added to each insert for 10 minutes followed by washing three times 

with 1x PBS. Cells were permeabilised with 0.2% Triton-X 100 for 10 minutes 

and non-migrated cells on the upper side of inserts were gently removed using 

cotton swabs. Inserts were washed a further three times with 1x PBS before 

migrated cells on the underside of the inserts were incubated with the nuclear 

stain DAPI, diluted in 1x PBS for 10 minutes in the dark at room temperature. A 

final three washes with 1x PBS was carried out to remove excess DAPI. Images 
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were captured across five fields of view per well using an Eclipse Ti-E Inverted 

Research Microscope (Nikon, USA). The total number of cell nuclei per field of 

view were counted manually using Image J (National Institutes of Health, USA). 

The five fields of view were averaged to give a total number of migrated cells 

per well.  

 

2.39  Aortic Ring Sprouting Assay 
 
All dissection instruments were sterilised before use and kept in 70% industrial 

methylated spirit (IMS) during the procedure to maintain sterility. The C57BL/6 

mouse strain was used for this assay. 

 

The thoracic aortas were dissected from wild type postnatal day 3 (P3) mouse 

pups. After surface-sterilising the mouse by spraying with 70% industrial IMS, it 

was lay back-down on a dissecting board with pins used to fix the legs in place. 

Dissection scissors were used to make a single cut in the ventral skin and blunt 

dissection was used to peel back the skin. To open the thoracic cavity 

dissection scissors were used to cut through and along the sternum, and 

around the ribcage. The heart and lungs were removed to expose the aorta 

which is visible as a fat-covered blood vessel tracking down along the spine. 

Forceps were used to grasp the anterior end of the aorta in one hand. Using a 

closed pair of sharp forceps in the other hand, the aorta was detached from the 

spinal column by blunt dissection. running the instrument between the aorta and 

spine all the way down toward the posterior end before the artery branches into 

the iliacs in the abdomen. Once the aorta was separated from the spine it was 

cut once near the abdominal branch and once near the anterior end and 

transferred into a petri dish containing aortic ring media (please refer to 

Appendix Table 13 for the composition of aortic ring media) Under the Leica 

M165 FC Stereo microscope dissection microscope all extraneous fat, tissue 

and branching vessels were removed with forceps and a scalpel. Using a 

scalpel, the aorta was then cut into rings approximately 0.5 mm in width and 
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transferred to a new petri dish containing ARM. On average, a total of 5-10 

rings can be obtained from each P3 aorta. 

 

Following dissection, the aortic ring explants were embedded in collagen. Type I 

collagen was prepared to a final concentration of 1mg/mL in ARM and the pH 

was adjusted to pH 7 by adding 1-N NaOH dropwise into the collagen solution. 

One aortic ring was embedded per well of a 96-well plate and 8-10 aortic rings 

were used per treatment group. For embedding, 60 µL of collagen was added to 

each well of a 96-well plate and aortic rings were carefully transferred from the 

petri dish using forceps, ensuring that they were completely submerged in the 

collagen, and placed so that the luminal axis was parallel to the bottom of the 

well. The plate was left undisturbed for 10-15 minutes at room temperature 

followed by incubation for 30 minutes at 37°C and 5% CO2 to ensure the 

collagen gel was fully polymerised. After incubation, 100 µL of ARM without 

treatment was added to all the aortic rings and they were cultured for 24h. The 

following day, media was carefully removed from the wells and replaced with 

ARM containing either 100 µg/mL rhCFB or equivalent volume of PBS. The 

media was changed every other day for 5-7 days.  
 

At the conclusion of the culture period, culture media was carefully removed, 

and the aortic rings were washed once with 200 µL 1X PBS before being fixed 

with 100 µL of 4% PFA for 20 minutes at room temperature. Aortic rings were 

then washed three times with 200 µL 1X PBS and submerged in 100 µL of 1% 

blocking buffer for 1 hour at room temperature. After blocking, aortic rings were 

incubated in 50 µL of 1% blocking buffer containing biotinylated primary anti-

GSL I-B4 Isolectin antibody to stain ECs, and primary rabbit-anti NG2-antibody 

to stain supporting cells overnight at 4°C in the dark (please refer to Appendix 
Table 10 for primary antibody details). After incubation, aortic rings were 

washed with 200 µL 1% blocking buffer three times to remove excess antibody, 

followed by incubation with 50 µL 1X PBS containing DAPI dye in the dark at 

room temperature. A final three washes with 1X PBS were carried out to 

remove excess DAPI. After immunofluorescence staining of aortic rings, they 
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were visualised under the Nikon Eclipse Ti Inverted Fluorescence Microscope. 

To quantify, starting from a specific point on the ring (e.g. the 12 o’clock 

position), each micro-vessel emerging from the main ring as a sprout and then 

individual branches arising from it as separate vessels, were counted. The 

focus was adjusted manually whilst moving around the ring to ensure that 

vessels sprouting in different planes were counted. Quantification was carried 

for the mean number of microvessels per ring. A mean of ≥8 aortic rings being 

analysed for each treatment. Representative images were captured and were 

processed In Adobe Photoshop to mask for presentation purposes.  
 

2.40  Fetal Metatarsal Sprouting Assay 
 

The fetal metatarsal sprouting assay was carried out as described243. The 

C57BL/6 mouse strain was used for this assay. Time-mating was performed to 

achieve an accurate prediction of the embryonic stages of the foetuses. In brief, 

a male and two other females were placed in the same cage. Thereafter, the 

females were examined for a copulatory plug every morning. The plugged 

female was transferred into a new cage and the gestation stage was considered 

to be E0.5. Embryos between E16.5 to E18 were sacrificed and metatarsal 

bones were dissected under a stereomicroscope and maintained in ice-cold 

dissection media (please refer to Appendix Table 13 for the composition of 

metatarsal dissection media). Individual metatarsals were mounted onto a 24-

well coated with 0.1% gelatin and left to adhere for 5 minutes. Next, 200 µL of 

metatarsal growth media was added to each mounted metatarsal (please refer 

to Table 13 for the composition of metatarsal growth media). The explants were 

incubated for 48 hours to allow for fibroblast migration out from the metatarsal 

bones. Any explants lacking fibroblast sprouting were classed as non-viable and 

were discounted from the assay. Those with visible fibroblast sprouting were 

subject to further treatments. The explants were treated with 300µL of fresh 

metatarsal growth media containing either 100 µg/mL rhCFB or equivalent 

volume of PBS. The media was changed every other day for 10-12 days. 
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At the conclusion of the culture period culture media was carefully removed, 

and the metatarsal explants were washed once with 200 µL 1X PBS before 

being fixed with 100 µL of 4% PFA for 20 minutes at room temperature. 

Metatarsal explants were then washed three times with 200 µL 1X PBS and 

submerged in 200 µL of 1X blocking buffer for 1 hour at room temperature. After 

blocking, metatarsal explants were incubated with primary rabbit anti-CD31 

antibody diluted in 1x blocking buffer at 4°C overnight (please refer to 

Appendix Table 10 for primary antibody details). After overnight incubation 

metatarsal explants were washed three times with 200 µL of 1X blocking buffer 

to remove excess primary antibody before incubating with Alexa Fluo® 594 

conjugated goat anti-rabbit IgG secondary antibody diluted in 1x blocking buffer, 

for 2h in the dark at room temperature (please refer to Appendix Table 11 for 

secondary antibody details). Excess secondary antibody was removed by 

washing three times with 1X PBS followed by incubation with DAPI dye diluted 

in 1x PBS, for 10 minutes in the dark at room temperature. A final three washes 

with 1x PBS was carried out before imaging. Explants were imaged directly in 

the 24-well plate using the Nikon Eclipse Ti Inverted Fluorescence Microscope. 

The raw images were processed in Adobe Photoshop CS4 to mask for 

quantification purposes. The total area of the masked image was normalised to 

the bone area to give the percentage of sprouting area.   

 

2.41  RNA Isolation from Cell Lines 
 

For RNA isolation, all pipetting was carried using filter pipette tips and all 

centrifugation steps were performed at 4°C. Cell culture media was removed, 

and cells were washed once with 1X PBS. After washing, 500 µl RNAzol®RT 

was added to each well and incubated for five minutes at room temperature to 

lyse the cells. Following incubation, the lysate was passed through a pipette 

several times and added to 200 µL of RNAase free dH2O in a 1.5 mL eppendorf 

tube. The resulting mixture was shaken vigorously for 15 seconds, incubated at 

room temperature for 10 minutes before centrifuging at 12,000G for 15 minutes. 
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Following centrifugation, DNA, proteins, and most polysaccharides form a 

semisolid pellet at the bottom of the tube, whereas the RNA remains soluble in 

the supernatant. Approximately 550 µL of the supernatant (75% of the total 

supernatant volume) was transferred to a new tube leaving a layer of the 

supernatant above the DNA/protein pellet. To precipitate the RNA, 200 µL of 

75% of ethanol was added to the supernatant and samples were stored at -

20°C overnight. The following day, samples were centrifuged at 12,000g for 8 

minutes, after which the RNA precipitate formed a white pellet at the bottom of 

the tube. The pellet was washed a further 2-3 times using 75% ethanol and 

centrifuging at 8,000g for 3 minutes. After the final wash, the RNA pellet was 

air-dried for 5 minutes and then dissolved in 20 µL of RNAase free dH2O. 

Extracted mRNA was quantified using a NanoDrop ND-1000 

Spectrophotometer. Purity was determined using 260/280 and 260/230 ratios; 

only samples with values over 1.8 were used for gene expression studies. RNA 

samples were stored at -80ºC. 

and the samples were then processed as described (please refer to section 

2.40). RNA concentration was determined using the NanoDrop™2000c. 

 

2.42  Biochemical Methods 

2.42.1 Protein Isolation from Cell Lysates 
 

Cell culture media was removed, and cells were washed once with 1X PBS 

before adding 25 µL of cold RIPA lysis buffer containing 1X protease inhibitor 

and 1X phosphatase inhibitor to each well of a 6-well plate. A cell scraper was 

used to dissociate the cells from the bottom of the well and samples were 

pipetted into 1.5 mL eppendorf tubes and incubated on ice for 10 minutes. After 

incubation, samples were snap-frozen in liquid nitrogen, thawed in a water bath 

and vortexed for 10 seconds. This freeze-thaw cycle was repeated three times 

before samples were centrifuged at 13,000 RPM for 10 minutes to remove cell 

debris. The supernatant for each sample was transferred into a new 1.5 mL and 

protein concentration was determined by Bradford Assay.    
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2.43  Statistical Analysis 
 
Statistical analysis was performed using GraphPad Prism software (GraphPad 

Software, Inc.). Results are depicted as mean ± standard deviation (SD). Prior 

to running any statistical analysis, the Shapiro-Wilk normality test was carried 

out. If data was found to have normal distribution, for experiments with n≥3, 

statistical analysis was performed using unpaired, two-tailed t-test, or one-way 

analysis of variance (ANOVA) followed by Turkey’s multiple comparisons test. If 

data was not normally distributed, for experiments with n≥3, statistical analysis 

was performed using the Mann-Whitney test. Differences were deemed 

statistically significant for p-values <0.05. For gene expression data where all 

control values are represented as 1, statistical significance was determined on 

raw delta-CT values by unpaired two-tailed students’ t-test.  
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3 Results 
3.1 Characterising the Expression of Complement Factor B 

Using Rodent Models and Human Patient Samples 
 
CFB, a 95-kDa serine protease, is the crucial catalytic element of the AP that 

acts as a C3 convertase in the presence of factor D. In addition to its role in 

activating the alternative pathway, previous studies have shown a link between 

the CFB and DR pathogenesis (please refer to chapter 1.9.4.) To begin with the 

expression of CFB was characterised using a chemically induced mouse model 

of diabetes, established by subcutaneous streptozotocin (STZ) injection. To 

investigate the association between CFB and diabetes, CFB gene and protein 

expression in the retina of STZ-induced diabetic mice was analysed by RT-

qPCR and western blot. No significant differences were observed in either CFB 

gene or CFB protein expression between the buffer-injected controls and STZ 

mice (Figure 12). Following on from this, CFB protein expression in the serum 

and aqueous humor of diabetic patients at various stages of DR progression 

was analysed by western blot. No significant differences were observed in 

serum samples from diabetic patients with no DR, NPDR and PDR as 

compared to the non-diabetic control group (Figure 13). In the aqueous 

samples, an up-regulation of CFB protein expression was observed in both 

diabetic patients with NPDR and PDR, respectively, when compared to diabetic 

patients with no DR (Figure 14). 
 

 
 
 



78 
 
 

 

 
 

Figure 12: CFB expression in the retina of STZ-induced diabetic mice. Diabetes was 

induced by Streptozotocin injection. The retinae were harvested for the analysis of CFB mRNA 
and protein expression. The changes in gene expression were calculated using fold change (-

2(∆∆cT). The changes in protein expression were detected by western blot A, RT-qPCR 

analysis of CFB transcript levels in the retina of STZ injected mice, represented as fold change 

normalised to wildtype buffer, B, Representative western blot of CFB protein levels in the retina 

of wildtype buffer and STZ injected mice, GAPDH was used as a loading control. C, 

Densitometry quantification of western blot. CFB was first normalised to the internal control 

GAPDH.  Quantification is represented as fold change normalised to wildtype buffer. Results 

represent the mean ± SD. Differences were not statistically significant as tested by Student’s t-
test: n ≥ 3 
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Figure 13: CFB expression in human patient serum samples. Human serum samples from 
patients with varying severity of DM and DR were analysed for CFB protein expression. The 

changes in protein expression were detected by western blot. A, Representative western blot of 

CFB. B-D Densitometry quantification of western blot. Quantification is represented as fold 

change normalised to control patient samples. Results represent the mean ± SD. Differences 

were not statistically significant as tested by Student’s t-test: n ≥ 3. 
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Figure 14: CFB expression in human patient aqueous samples. Human aqueous humor 

samples from patients with varying severity of DM and DR were analysed for CFB protein 

expression. The changes in protein expression were detected by western blot.  A, 
Representative western blot of CFB. B, Densitometry quantification of western blot. 

Quantification is represented as fold change normalised to DM no DR patient samples. No 

statistical test was performed: n =1 

 

 

To study the role of CFB in pathological neovascularisation, the well-established 

model of oxygen-induced retinopathy (OIR) was used. The OIR model of 

pathological neovascularization is used to mimic the clinical features of 

proliferative retinopathies230. Briefly, neonatal mice were exposed to hyperoxic 

(75%) conditions from postnatal day (P) 7-12. This abundance of oxygen 

prevents further vessel growth and causes already formed immature vessels to 

regress. From P12-17 the mice are returned to normoxic conditions (21%) and 

the avascular retina become hypoxic triggering exuberant 

neovascularization230,244. Using the OIR model, retinae were harvested at P12 

and P17 for RT-pPCR analysis of CFB gene expression. At P12 there was a 

significant reduction in CFB gene expression (*p< 0.05) in OIR retina when 

compared to retina in the normal oxygen control group. On the other hand, at 

P17 there is a significant increase in CFB expression (*p< 0.01) in OIR retina 

when compared to the normal oxygen control group (Figure 15).   
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Figure 15: CFB gene expression in the retina of OIR mice. C57BL/6 mice were subject to 

OIR to induce pathological neovascularisation. Retina were harvested at P12 and P17 for 

analysis of CFB mRNA expression. The changes in CFB gene expression were calculated 

using fold change (-2(∆∆cT). A, RT-qPCR analysis of CFB transcript levels in the retina of P12 

OIR mice, represented as fold change normalised to the normal oxygen control. B, RT-qPCR 

analysis of CFB transcript levels in the retina of P17 OIR mice, represented as fold change 

normalised to the normal oxygen control. Results represent the mean ± SD. Statistical 

significance was determined by unpaired two-tailed students’ t-test; n=³3, *:p< 0.05, **: p< 0.01. 

 

 

3.2 The Role of CFB in Regulating Retinal Angiogenesis 
 
The progression of DR is a complex process resulting from chronic and 

sustained hyperglycaemia, which culminates in a series of pathological events 

that result in vascular dysfunction and eventually blindness245. The formation of 

new blood vessels in the retina as a result of aberrant angiogenesis is a 

hallmark feature of the advanced stage of the disease, PDR. Retinal ECs are 

one of the primary cells involved in retinal angiogenesis: they line the blood 

vessels and are involved in each of the angiogenic processes; basement 

membrane disruption, migration, proliferation, stabilisation and maturation142. 

We set out to evaluate the angiogenic potential of CFB, by studying its impact 

on retinal EC behaviour using in vitro angiogenesis assays following 

recombinant CFB treatment, CFB over-expression and CFB knockdown. Firstly, 
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we attempted to demonstrate the pro-angiogenic effects of CFB using standard 

cell viability and proliferation assays, on an organ specific EC cell line, HRECs. 

The effect of CFB was assed using rhCFB treatment, CFB over-expression 

(pCFB) or CFB knockdown using siRNA (siCFB). For recombinant protein 

treatment cells were treated with 100µg/mL rhCFB and the effects of rhCFB 

were compared to the PBS control group. CFB has been reported to have an 

approximate plasma concentration of 200 µg/mL207 The pre-determined dose of 

rhCFB at 100 µg/mL was chosen based on this reported concentration. For CFB 

over-expression cells were transfected with 1µg pCFB or 1µg pcDNA control. 

Similarly, for CFB knowckdown cells were transfected with 1µg siCFB or 1µg 

siRNA. The effects of CFB over-expression and CFB knockdown were 

compared the pcDNA and siContol groups, respectively (for confirmation of 

successful knockdown and overexpression please refer to Figure 34 and 

Figure 35 in the supplementary figures for CFB mRNA expression following 

CFB knockdown and over-expression). 

 

HREC viability was evaluated using the colorimetric MTS assay. MTS assay 

indirectly measures the capacity of metabolically active healthy cells to convert 

the tetrazolium reagent into a coloured formazan end-product. The assay is a 

surrogate means to estimate the number of metabolically-viable ECs upon 

rhCFB treatment.  Given the treatment conditions, rhCFB significantly promoted 

the viability of HRECs. Compared with the untreated control, 100 µg/mL rhCFB 

significantly increased the viability of HREC on Day 1(*R<0.05) and Day 2 

(**R<0.0001) (Figure 16). Similarly, pCFB increased HREC viability on Day 

1(ns) and with a significant increase on Day 2 (****R<0.0001), in comparison to 

the pcDNA control group (Figure 17). Compared with siControl, siCFB 

significantly reduced HREC viability on Day 1 (**R<0.01) and Day 2(***R<0.001) 

(Figure 18).  
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Figure 16: rhCFB treatment promotes HREC viability. Primary HRECs were treated with 100 

µg/mL rhCFB or equivalent PBS control and functional change was measured as quantitative 

changes in cell viability on day 1 and day 2. A, HREC growth curve measured by MTS assay. B, 

Cell viability of HRECs on day 2. Results were presented as fold change normalised to PBS 

control. Results represent the mean ± SD. Statistical significance was determined using two-

way ANOVA followed by post-hoc Sidak’s multiple comparisons test; n=3, *: p< 0.05, 
****p<0.0001. 

 

 

 
  

Figure 17: CFB overexpression increases HREC viability. Primary HRECs were transfected 

with 1µg pCFB or 1µg pcDNA control and functional change was measured as quantitative 

changes in cell viability on day 1 and day 2.  A, HREC growth curve measured by MTS assay. 

B, Cell viability of HRECs on day 2. Results were presented as fold change normalised to 

pcDNA control. Results represent the mean ± SD.  Statistical significance was determined using 

two-way ANOVA followed by post-hoc Sidak’s multiple comparisons test; n=3, **: p< 0.0001. 
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Figure 18: 1 CFB silencing reduces HREC viability. Primary HRECs were transfected with 
66nM siCFB or 66nM siRNA control and functional change was measured as quantitative 

changes in cell viability on day 1 and day 2 A, HREC growth curve measured by MTS assay. B, 

Cell viability of HRECs on day 2. Results were presented as fold change normalised to siRNA 

control. Results represent the mean ± SD. Statistical significance was determined using two-

way ANOVA followed by post-hoc Sidak’s multiple comparisons test; n=3, **: p< 0.01, ****: p< 

0.0001 

 
Notably, the overall cell viability is regulated by a balance between the rate of 

cell proliferation and cell death. Hence, to improve our understanding in the 

CFB-regulated cell viability, it’s impact on cell proliferation was examined by 

staining HRECs with an antibody specific to Ki-67, a human nuclear protein that 

is strictly associated with cell proliferation. The total number of cell nuclei and 

the total number of Ki-67+ cell nuclei (please refer to the white arrows on Figure 
19, Figure 20 and Figure 21) were manually counted and the cell proliferation 

rate was calculated as a percentage Ki-67+ cells. Consistent with the 

observation in HREC viability, rhCFB treatment resulted in a significant increase 

in cell proliferation. Compared with the PBS control, treatment with 100 µg/mL 

rhCFB significantly increased the percentage of Ki67+ cells (**R<0.001) 

compared to the PBS control, (Figure 19). Similarly, pCFB significantly 

increased cell proliferation (**R<0.001) in comparison to the pcDNA control, 

(Figure 20). On the other hand, compared with siControl, siCFB significantly 

attenuated cell proliferation, (**R<0.05) (Figure 21).    
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Figure 19: Recombinant CFB treatment promotes HREC proliferation. Primary HRECs 

were treated with 100 µg/mL rhCFB or equivalent PBS control and functional change was 

measured as a change in cellular proliferation after 24h. Changes in cell proliferation was 
demonstrated using Ki-67 proliferation marker (green) localised in the cell nucleus (blue). A-B, 

Representative images of Ki-67 staining. Scale bar: 200 µM. C, Quantification of proliferating 

cells reported as the percentage of Ki-67+ nucleus. Results represent the mean ± SD of three 

experiments per treatment performed in duplicate (the symbols representing the technical 

repeats). Statistical significance was determined by unpaired, two-tailed students’ t-test; n=6, **: 

p< 0.01. 
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Figure 20: CFB overexpression promotes HREC proliferation. Primary HRECs were 

transfected with 1µg pCFB or 1µg pcDNA control and functional change was measured as a 

change in cellular proliferation after 24h. Changes in cell proliferation was demonstrated using 

Ki-67 proliferation marker (green) localised in the cell nucleus (blue). A-B, Representative 

images of Ki-67 staining. Scale bar: 200 µM. C, Quantification of proliferating cells reported as 

the percentage of Ki-67+ nucleus. Results represent the mean ± SD of three experiments per 

treatment performed in duplicate (the symbols representing the technical repeats). Statistical 
significance was determined by unpaired, two-tailed students’ t-test; n=6, **: p< 0.01. 
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Figure 21: CFB knockdown reduces HREC proliferation. Primary HRECs were transfected 

with 66nM siCFB or 66nM siRNA control and the functional change was measured as a change 

in cellular proliferation after 24h. Changes in cell proliferation was demonstrated using Ki-67 

proliferation marker (pink) localised in the cell nucleus (blue). A-B, Representative images of 

Ki-67 staining. Scale bar: 200 µM. C, Quantification of proliferating cells reported as the 

percentage of Ki-67+ nucleus. Results represent the mean ± SD of three experiments per 
treatment performed in duplicate (the symbols representing the technical repeats). Statistical 

significance was determined by unpaired, two-tailed students’ t-test; n=6, *: p< 0.05. 
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As mentioned, angiogenesis is a highly dynamic process. In response to local 

angiogenic cues, ECs degrade the basement membrane and migrate along 

chemical gradients established by angiogenic factors. The transwell migration 

assay, also known as the Boyden chamber assay, was chosen to evaluate 

CFB’s effect on HREC migration. Given the experimental setup (please refer to 

2.38) the directional migration was induced by the FBS gradient, in which cells 

migrated across a 0.8µM porous filter membrane, from the upper well 

(containing 0% FBS) to the bottom side of the well (containing 2% FBS). 

Following a five-hour incubation period the number of transmigrated DAPI+ cell 

nuclei were manually counted. Compared with the untreated control, treatment 

with 100 µg/mL rhCFB significantly increased HREC migration (****R<0.0001) 

(Figure 22). On the other hand, compared with siControl, siCFB significantly 

attenuated HREC migration, (****R<0.0001) (Figure 23).   
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Figure 22: Recombinant CFB treatment promotes HREC transwell migration. Primary 

HRECs were treated with 100 µg/mL rhCFB or equivalent PBS control and the functional 

change was measured as a change in cellular trans-migration after 5 hours. A-B, 

Representative images of migrated HRECs. Scale bar: 200 µM C, Quantification of migrated 

cells reported as the number of migrated DAPI+ cell nuclei. Results represent the mean ± SD of 

three experiments per treatment performed in triplicate (the symbols representing the technical 

repeats). Statistical significance was determined by unpaired, two-tailed students’ t-test; n=9, 

****: p< 0.0001. 
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Figure 23: CFB silencing reduces HREC transwell migration. Primary HRECs were 

transfected with 66nM siCFB or 66nM siRNA control and functional change was measured as 

changes in cellular trans-migration after 5 hours. A-B, Representative images of migrated 

HRECs after transfection with 66nM control siRNA or 66nM CFB siRNA. Scale bar: 200 µM.C, 

Quantification of migrated cells reported as the number of migrated DAPI+ cell nuclei. Results 

represent the mean ± SD of three experiments per treatment performed in triplicate (the 

symbols representing the technical repeats). Statistical significance was determined by 
unpaired, two-tailed students’ t-test; n=9, ****: p< 0.0001 
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The innate ability of ECs to spontaneously assemble into tubular structures is a 

critical step during sprouting angiogenesis. Growth factor-reduced MatrigelÒ is 

a specially formulated ECM that supports cells to form two-dimensional vascular 

networks. HRECs were seeded onto solidified GFR MatrigelÒ for 16 hours to 

form stable tubule-like structures. The extent of network formation was analysed 

using the Angiogenesis Analyzer plugin in Image J to quantify the number of 

junctions and total tubule length. Compared with the untreated control, 100 

µg/mL rhCFB was able to promote HREC network formation, as demonstrated 

by a significant in the number of junctions (****R<0.0001), and total tube length 

(****R<0.0001), respectively (Figure 24). Similarly, pCFB induced HREC 

network formation, with a significant increase in number of junctions 

(****R<0.0001), and total tube length (****R<0.0001), respectively (Figure 25). 

Compared with siControl, siCFB significantly attenuated HREC network 

formation with a reduction in number of junctions and total tube length, 

respectively (Figure 26). 
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Figure 24: Recombinant CFB treatment promotes HREC network formation. Primary 

HRECs were treated with 100 µg/mL rhCFB or equivalent PBS control and the functional 

changes were measured as changes in EC network formation after 16 hours incubation. A-B, 

Representative images of the Matrigel® network formation assay. Scale bar: 200 µM C-D, 

Quantification of HREC Matrigel® network formation reported as the total number of junctions 

and total tubule length. Results represent the mean ± SD of three experiments per treatment 

performed in triplicate (the symbols representing the technical repeats). Statistical significance 

was determined by unpaired, two-tailed students’ t-test; n=9, ****: p< 0.0001. 
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Figure 25: CFB overexpression promotes HREC network formation. Primary HRECs were 

transfected with 1µg pCFB or 1µg pcDNA and the functional changes were measured as 

changes in EC network formation after 16 hours incubation. A-B, Representative images of the 

Matrigel® network formation assay. Scale bar: 200 µM C-D, Quantification of HREC Matrigel® 

network formation reported as the total number of junctions and total tubule length. Results 

represent the mean ± SD of three experiments per treatment performed in triplicate (the 

symbols representing the technical repeats). Statistical significance was determined by 

unpaired, two-tailed students’ t-test; n=9, ****: p< 0.0001. 
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Figure 26: CFB silencing reduces HREC network formation. Primary HRECs were 

transfected with 66nM siCFB or 66nM siRNA control and the functional changes were 

measured as changes in EC network formation after 16 hours incubation. A-B, Representative 

images of the Matrigel® network formation assay. Scale bar: 200 µM C-D, Quantification of 

HREC Matrigel® network formation reported as the total number of junctions and total tubule 

length. Results represent the mean ± SD of three experiments per treatment performed in 

triplicate (the symbols representing the technical repeats). Statistical significance was 

determined by unpaired, two-tailed students’ t-test; n=9, ****: p< 0.0001. 
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Angiogenesis is a complex process involving multiple cell types and 

extracellular components246. Apart from ECs, perivascular cells, non-vascular 

cells, inflammatory cells, and ECM components also actively participate in the 

angiogenic process247,248. Hence, ex vivo angiogenesis assays provide unique 

opportunity to study the interplay of the multiple cell types subjected to the 

same microenvironment. Two different ex vivo angiogenesis assays were used 

to confirm the role of CFB in a more complex experimental setup. Both the fetal 

metatarsal and aortic ring assays were chosen to evaluate microvascular 

outgrowth, a phenomenon that models the physiologically angiogenic process in 

a more accurate way243. Dissected aortic ring explants were embedded in a 

collagen matrix and cultured in aortic ring media containing 100µg/mL rhCFB for 

an extended period of 7 days. Its impact on microvessel outgrowth was 

examined by staining explants with I-B4 Iseolectin, an antibody specific to ECs, 

and quantified by manually counting the number of microvessels that grew from 

each aortic ring explant.  Consistent with previous findings, rhCFB significantly 

promoted the number of microvessel sprouts per explant (****R<0.0001), in 

comparison to the PBS control (Figure 27).  In the fetal metatarsal assay, 

dissected metatarsal bones were embedded onto pre-coated plates and 

cultured in metatarsal growth media containing 100µg/mL rhCFB for an 

extended period of 12 days. Its impact on microvessel outgrowth was examined 

by staining explants with CD-31, an antibody specific to ECs, and quantified 

using Adobe Photoshop CS6 software to calculate the sprouting area per 

explant. As with the aortic ring assay, rhCFB significantly induced the sprouting 

area of the metatarsal explants (****R<0.0001), in comparison to the PBS 

control (Figure 28).  
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Figure 27: Recombinant CFB treatment promotes vessel outgrowth in the aortic ring 
explant assay.  Aortic ring explants were dissected, embedded into collagen and cultured in 

aortic ring media with the addition of 100µg/mL rhCFB for 7 days. The resultant microvessel 

outgrowth was stained with I-B4 Isolectin and quantified manually by counting the number of 

microvessels growing from each explant. A-B, Representative images of aortic ring microvessel 

outgrowth C, Quantification of microvesel outgrowth reported as the number of microvessels per 

explant. Results represent the mean ± SD of 15 explants per treatment. Statistical significance 

was determined by unpaired, two-tailed students’ t-test; n =15 PBS, n = 14, rhCFB ****: p< 

0.0001 
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Figure 28:  Recombinant CFB treatment promotes vessel outgrowth in the aortic ring 
explant assay. Metatarsal explants were dissected and mounted onto culture dishes and 

cultured in metatarsal growth media with the addition of 100µg/mL rhCFB for 12 days. The 

resultant microvessel outgrowth was stained with CD31 and quantified using Adobe Photoshop 
CS6 software. A-B, Representative images of metatarsal sprouting microvessel outgrowth C, 

Quantification of microvesel outgrowth reported as the percentage of sprouting area normalised 

to the metatarsal area. Results represent the mean ± SD of 15 explants per treatment. 

Statistical significance was determined by unpaired, two-tailed students’ t-test; n >14, ****: p< 

0.0001. 
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3.3 Investigating the relationship between Complement 
Factor B and VEGF-A and VEGFR2 

 
In the previous chapter, a pro-angiogenic effect of CFB in both cultured HRECs 

and ex vivo models of angiogenesis was established. To follow on from this we 

sought to find a plausible mechanism that integrated CFB into the angiogenic 

signalling network underlying PDR pathology. Retinal angiogenesis is a highly 

complex biological process that involves a delicate balance between angiogenic 

and anti-angiogenic factors, each regulated by multiple control systems141. 

Among the cytokines involved in pathological angiogenesis in the retina, VEGF 

serves as the most potent angiogenic stimulator141. A link between complement, 

angiogenesis and VEGF has been established in the pathogenesis of tumour 

angiogenesis, where activation of the AP was shown to stimulate cells to 

produce VEGF, which promoted angiogenesis of ECs249. Understandably the 

relevance of this study is questionable since its focus was the role of 

complement in cancer, and the impact of the AP on angiogenesis was 

examined in vitro using bone osteosarcoma epithelial cells. Having said that, 

angiogenesis is a characteristic feature of many pathologies, including both 

tumour growth and diabetic retinopathy, where it aberrantly contributes to 

disease progression. Some of the mechanisms that underlie pathological 

angiogenesis in the retina and tumour angiogenesis are similar, and 

consequently complement involvement in tumour angiogenesis may have 

cross-over with, and provide insights into DR pathogenesis. There are also a 

number of studies that report a link between complement components and 

VEGF in the context of AMD. In these studies, complement components are 

able to induce VEGF expression both in vitro and in vivo. However, it is 

important to note here that the complement components examined in these 

studies are C3a250, C5a250, and MAC251, and they could have different 

mechanisms of action to CFB. One group that focused specifically on CFB, 

used short hairpin RNA (shRNA) to knockdown CFB in rats. They reported a 

significant inhibition of the formation and development of CNV in vivo following 

CFB knockdown which was attributed to a reduction of VEGF expression in the 
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RPE and choroidal tissues252. In a separate study by a different group, CFB was 

knocked down in mice using siRNA. Similarly, they reported significant 

attenuation on the development of laser-induced CNV as well as reduced VEGF 

expression204. Although not directly relevant to this project, these studies bare 

more relevance than the aforementioned cancer study, because, as previously 

mentioned, AMD and DR share the same characteristic feature in that they are 

driven by aberrant angiogenesis, and it is possible that similar mechanisms may 

be involved in the pathophysiology of both AMD and DR. Given that proteins 

and receptors of the VEGF family are important drivers of pathological 

angiogenesis in PDR, the possibility that CFB contributes to dysregulation of the 

VEGF-VEGFR2 signalling cascade was considered. To query whether CFB 

regulates VEGF expression, and gain an understanding of the molecular 

mechanisms regulating the CFB mediated induction of angiogenesis in HRECs, 

RT-qPCR was used to identify the changes in gene transcripts associated with 

the gain-of-function or the loss-of-function of CFB using rhCFB treatment or 

CFB knockdown using siRNA (siCFB). For recombinant protein treatment cells 

were treated with 100µg/mL rhCFB and the effects of rhCFB were compared to 

the PBS control group. For CFB knowckdown cells were transfected with 66nM 

siCFB or 66nM siRNA. The effects of CFB knockdown were compared the 

siContol groups, respectively (for confirmation of successful knockdown please 

refer to Figure 35 in the supplementary figures for CFB mRNA expression 

following CFB knockdown). Compared with the untreated control, 100 µg/mL 

rhCFB significantly increased the gene expression of both VEGF-A (**p< 0.01) 

and VEGFR2 (**p< 0.01). In contrast, siCFB significantly decreased the gene 

expression of both VEGF-A (**p< 0.01) and VEGFR2 (*p< 0.05) compared with 

siControl (Figure 29).  
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Figure 29: Recombinant CFB treatment induces VEGF-A and VEGFR2 mRNA expression. 
Primary HRECs were treated with 100 µg/mL rhCFB and changes in VEGF and VEGFR2 

mRNA levels were analysed after 48 hours incubation. The changes in gene expression were 

calculated using fold change (-2(∆∆cT). A-B, RT-qPCR analysis of VEGF and VEGFR2 

transcript levels represented as fold change normalised to PBS control. Results represent the 

mean ± SD. Statistical significance was determined on raw delta-CT values by unpaired two-
tailed students’ t-test; n=3, **: p< 0.01. 
 

 

 
 

Figure 30: CFB silencing reduces VEGF-A and VEGFR2 mRNA expression. Primary 

HRECs were transfected with 66nM siCFB or 66nM siRNA control and changes in VEGF and 

VEGFR2 mRNA levels were analysed after 48 hours transfection. The changes in gene 

expression were calculated using fold change (-2(∆∆cT). A-B, RT-qPCR analysis of VEGF and 

VEGFR2 transcript levels represented as fold change normalised to siControl. Results 
represent the mean ± SD. Statistical significance was determined on raw delta-CT values by 

unpaired two-tailed students’ t-test; n=3, *: p<0.05, **: p< 0.01. 
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Having observed CFB mediated changes in VEGF-A and VEGFR2 gene 

expression, western blot analysis was used to identify the changes in protein 

expression associated with the loss-of-function of CFB. CFB knockdown was 

first confirmed (*p< 0.05). There were no significant changes in VEGF-A protein 

expression following CFB knockdown. However, in line with the observation of 

VEGFR2 gene expression, a significant decrease of VEGFR2 protein 

expression (*p< 0.05) was observed alongside the downregulation of CFB, 

when compared to siControl (Figure 31). 
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Figure 31: CFB silencing reduces VEGFR2 but not VEGF-A protein expression. Primary 

HRECs were transfected with 66nM siCFB or 66nM siRNA control and changes in VEGF and 

VEGFR2 protein expression were analysed after 48h of transfection. The changes in protein 

expression were detected by western blot. A, Representative western blot of CFB, VEGF, 

VEGFR2. GAPDH was used as a loading control. B-D, Densitometry quantification of western 

blot. CFB, VEGF and VEGFR2 were first normalised to the internal control GAPDH. 
Quantification is represented as fold change normalised to siControl. Data are expressed as 

mean ± SD. Statistical significance was determined by unpaired, two-tailed students’ t-test; n=3, 

*: p< 0.05. 
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Moving on, to further investigate if the CFB-regulated changes in VEGFR2 

protein expression has functional consequence on the angiogenic potential of 

HRECs, the Matrigel® network formation assay was conducted using HRECs 

treated with rhCFB treatment in the absence and presence of a VEGFR2 small 

molecule inhibitor Linifanib. (Please refer to Figure 36 in the supplementary 
figures for Linifanib concentration optimisation). Compared with the PBS 

control, 100 µg/mL rhCFB was able to promote HREC tube formation, indicated 

by a significant increase in number of junctions (****p< 0.0001) and total tube 

length (****p< 0.0001) (Figure 32). The presence of 5nM Linifanib attenuated 

HREC tube formation, observed by a significant decrease in number of 

junctions and total tube length for both the PBS (****p< 0.0001) and rhCFB 

group (****p< 0.0001).  
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Figure 32: Linifanib attenuates CFB induced HREC network formation. Primary HRECs 

were treated with 100 µg/mL rhCFB or equivalent PBS control with the presence or absence of 

5nM VEGFR2 inhibitor, Linifanib. Functional changes were measured as changes in EC 

network formation after 16 hours incubation A-D, Representative images of Matrigel® network 

formation. E-F, Quantification of HREC Matrigel® network formation reported as the total 

number of junctions and total tubule length. Results represent the mean ± SD of three 

experiments per treatment performed in triplicate (the symbols representing the technical 

repeats). Statistical significance was determined by unpaired, two-tailed students’ t-test; n=9, 

****: p< 0.0001. 
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4 Discussion 
 

The function of the systemic complement system in innate immune defence has 

been extensively characterised; it is well known to perform homeostatic 

functions that include opsonisation for phagocytosis, formation of the terminal 

complex MAC, and recruitment of immune cells. As a crucial mediator of the 

innate immune response, the complement system has for a long time only been 

perceived as a front-line surveillance system in host defence. This still holds 

true; however, it is now becoming clear that the complement system also has 

functions that reach far beyond immune surveillance. The presence of 

complement proteins and a complement regulatory system in the retina is 

widely accepted101, and since the retina is an immune-privileged tissue, its local 

complement system is independent of the systemic complement components 

typically produced by the liver253. DR, characterised by pathological retinal 

angiogenesis is a major cause of irreversible vision loss worldwide and although 

the involvement of the complement components in the progression of DR has 

been recognised101 (please refer to section 1.9.4) there is still a great deal more 

to be uncovered. Previous studies addressing the influence of complement on 

retinal neovascularisation have revealed contradictory results. For instance, a 

pro-angiogenic function of CFB has been implicated in the model of laser-

induced CNV, which represents a model of angiogenesis during the wet form of 

AMD206,207,254. Moreover, CFH and CFB polymorphisms have been associated 

with neovascular AMD198,199,255. In contrast, another study reported that CFB -/- 

mice demonstrated significantly more neovascularisation following OIR 

treatment, and suggested that CFB has a protective role in DR  by aiding in the 

clearance of pathological neo-vessels231. It is clear that the mechanisms 

involved in the crosstalk between CFB and neovascularisation remains 

ambiguous, and as a result the main focus of this study was to investigate the 

involvement of CFB in the neovascular pathology of DR. 
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4.1 Characterising the Expression of Complement Factor B 
Using Rodent Models and Human Patient Samples 

 

Dysregulation of the complement system is now a recognised characteristic of 

patients with DR. However, DR is a multifactorial disease and isolating the 

specific contributions of individual complement proteins to disease pathology is 

not straightforward. One approach, adopted by Williams et al in 2016, to 

studying the role of the complement system in the maintenance of retinal health 

was to characterise the retinal phenotype of mice carrying deletions of specific 

complement genes. After 12 months, they reported that the retinal morphology 

and retinal vasculature did not appear different across the genotypes. Although 

these results suggest that under physiological conditions the retina is stable and 

healthy even with the absence of a functional AP, it doesn’t mean to say that 

these genotypes do not contribute to pathological retinal vascular changes. This 

study was carried out in the absence of a pathological challenge or 

environmental stressor, and therefore provides limited insight into how 

complement contributes to vascular pathology under the disease conditions that 

manifest in DR. This project aimed to address this by using human patient 

samples from diabetic patients with retinopathy, and rodent models that better 

mimic the pathology that manifests in DR.  

 

Most complement proteins and complement regulatory proteins are synthesised 

in the liver by hepatocytes and released into the blood for distribution256, 

therefore to begin with CFB expression was first examined in human patient 

serum samples at different stages of retinopathy. Unsurprisingly, there was no 

difference in human patient serum CFB levels between control and diabetic 

patients at different stages of retinopathy. A major problem associated with 

using serum to detect changes in protein expression is the fact that the 

detection of low abundant proteins is largely hidden by a vast amount of high 

abundant proteins such as albumin and IgGs and therefore it might be difficult 

to detect changes in CFB expression in serum above a high background.  
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The retina is segregated from the circulation by the BRB and is considered to 

be an immune privileged257. However, it is now well established that an 

extrahepatic system of complement biosynthesis exists within the retina to 

compensate for the restricted entry of bloodborne proteins normally excluded by 

the BRB.258  Since the retina is an immune privileged organ and is protected 

from exposure to systemic circulation, human patient serum samples are not a 

true representation of the retinal microenvironment and may not reflect changes 

in ocular CFB expression. As a result local concentrations are likely to be more 

indicative227. In terms of DM-induced microvascular complications, the shift from 

a healthy state to pathology can influence protein constituents and/or protein 

abundance in the ocular fluids. As a result, levels of proteins in the ocular fluids 

can be used to indicate the health status of blood vessels and/or tissue, and 

indirectly explore the pathophysiologic events that take place. The vitreous is 

the largest component structure of the eye. In its normal state, it is a clear 

gelatinous matrix between the lens and retina, that is primarily composed of 

water, collagen, glycosaminoglycans, and proteoglycans259. In addition to 

optical functions, the vitreous also contains a whole host of factors that can 

influence retinal physiology.89 The metabolic and functional  alterations that 

occur in DR can result in molecular changes in the vitreous. In turn, alterations 

of the vitreous exert pathological effects on the diabetic retina, resulting in a 

viscous cycle that contributes to disease progression260.  Consequently, 

vitreous samples obtained from diabetic patients undergoing vitreoretinal 

surgery are currently used to indirectly explore mediators involved in the 

development of DR227. Several proteomic studies have been261 carried out to 

analyse the protein profiles of human vitreous samples from patients with DR. In 

these studies, complement factors including CFB were found to be increased in 

the vitreous of patients with PDR226,261. Protein levels in the vitreous may be a 

better indication of retinal health status than other ocular due to the close 

proximity between the vitreous and retina262. However, surgical harvesting of 

vitreous fluid is associated with a risk of vitreous haemorrhage, retinal tears, 

and retinal detachment, and it is difficult to obtain vitreous samples for 

diagnostic or investigative purpose263. The aqueous humor (AH) is a 
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transparent extracellular fluid that is secreted by the non-pigmented ciliary body 

epithelium of the eye. The AH helps to maintain intraocular pressure and the 

globe shape of the eye, and supplies oxygen and nutrients to the avascular 

cornea and lens. In comparison to vitreous samples, obtaining aqueous 

samples is a far easier and less risky procedure. In the AH of human eyes, a 

number of growth factors have been detected, such as basic fibroblast growth 

factor (bFGF), epidermal growth factor (EGF), TGF-b, insulin-like growth factor 

(IGF)-1, platelet-derived growth factor (PDGF), VEGF, hepatocyte growth factor 

(HGF), and interleukin (IL)-6, the composition of which changes dramatically 

with different conditions264. Previous studies have linked elevated cytokine 

levels in aqueous humor to vitreous fluid levels and to the progression of DR265. 

Consequently, the AH may act as a powerful tool in understanding the 

pathophysiology of DR and serve as biomarkers for predicting the development 

of the disease266. In this regard AH samples obtained from diabetic patients 

undergoing vitreoretinal surgery were used to evaluate ocular CFB levels. CFB 

levels were higher in aqueous samples of diabetic patients with retinopathy. In 

theory, checking CFB expression both systemically in serum and locally in 

aqueous samples allows comparison between the two. This could help 

determine if any changes of CFB levels in the aqueous are a localised effect 

rather than a non-specific, additive effect due to serum diffusion. As no changes 

in CFB expression were detected in the human serum samples, this observed 

up-regulated expression of CFB in the aqueous samples from DR patients may 

be caused by local changes in the eye. However, it is worthy to note that this 

observation was based on 1 aqueous sample from each patient group and 

should be confirmed in a larger cohort of patients. 

 

Enhanced expression of complement components have also been observed in 

the retina of STZ-induced diabetic rats219,267. However, the expression of CFB at 

both RNA and protein levels remain unchanged in the retina of mice suffering 

from STZ-induced diabetes. This is likely due to the mild retinal vascular 

changes in these mice: inducing diabetes in this manner reproduces early 

symptoms of DR, such as loss of retinal pericytes and capillaries, BM thickening 
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and increased vascular permeability, however advanced proliferative changes 

characteristic of PDR do not develop268. The lack of pathological 

neovascularization in STZ mice may explain the flat CFB expression.  

  

The mouse OIR model is a well-established technique used to mimic 

pathological retinal neovascularisation seen in PDR. The OIR model consists of 

2 distinct phases. In the first phase, P7 through P12, mice are placed in a high-

oxygen environment that results in vasoobliteration of the developing 

vasculature. The second phase begins when the mice are returned to 

atmospheric oxygen at P12. The relatively low oxygen concentration causes the 

central avascular zone to become hypoxic, inducing the expression 

proangiogenic mediators such as VEGF. Although these pathways stimulate the 

growth of normal vessels, they also cause the formation of pathological vessels 

which sprout from the superficial retinal vasculature resembling the pathological 

neovascularization seen in humans with DR. In this study, it has been 

demonstrated that CFB mRNA expression correlated with the 

neovascularisation progression in OIR in a similar manner to that reported for 

VEGF269. In P12 mice when the high oxygen exposure supresses vascular 

growth and causes retinal vaso-obliteration, CFB gene expression is lower in 

the OIR retina compared to normal oxygen control. In P17 mice, upon return to 

normoxic conditions when the retina becomes hypoxic and there is aberrant 

angiogenesis, CFB gene expression is significantly increased. The 

correspondence of increased CFB expression to the phase in which 

neovascularisation occurs in the OIR model suggests an association of CFB 

with retinal neo-vessel formation. These results are supported by data from 

Sweigard et al who not only reported an increase in both CFB mRNA and 

protein expression following OIR, but who also demonstrated CFB deposition 

on retinal neo-vessels by immunofluorescence staining231. In addition, these 

results are also in line with a previous study in which authors reported an 

induction of CFB expression in the pathological retinal blood vessels of several 

mouse models that exhibit marked remodelling of the retinal vasculature270. By 

conducting genome-wide transcriptional analysis of retinal microvessel 
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fragments isolated from the retinal degeneration 1 (rd1) mouse very low-density 

lipoprotein receptor (VLDLR) knockout mouse (Vldlr-/-), the Grhl3ct/J curly tail 

mouse and appropriate wild-type controls, they found 62 genes that were 

differentially regulated but common to all three models. When ranked according 

to fold change, CFB was one of most significantly up-regulated genes across all 

three models.  

 

Despite there being no changes in human serum CFB levels or in the retina of 

STZ mice, higher CFB in aqueous samples of diabetic patients with retinopathy, 

alongside the increase of CFB expression in OIR retina, indicates a possible 

role of CFB in driving DR. It suggests that CFB might not only contribute to the 

innate defence mechanism of the AP but might also contribute to DR pathology 

through functional crosstalk with other cellular networks. Whilst this 

characterisation suggests CFB may contribute to DR, the function of this protein 

has yet to be determined.  

 

4.2 The Role of CFB in Regulating Retinal Angiogenesis  
 

Angiogenesis is a highly complex and tightly regulated process that results in 

the establishment of a vasculature that supports vital systems of the body. 

However, when misdirected, angiogenesis manifests in numerous pathologies 

including diabetic microvascular complications. A defining feature of PDR is the 

formation of destructive neovascularisation, and the balance between this new 

vessel formation and regression determines the progression to blindness231. 

Results discussed in the previous section suggest an association of CFB with 

neovascular formation and so to understand the more precise function of CFB, 

several in vitro and ex vivo angiogenesis assays were conducted.  

 

In vitro assays of angiogenesis are an indispensable tool to gain a better 

understanding of this process. They represent a rapid, defined and efficient 

experimental strategy to gain understanding of complex molecular events that 

occur during angiogenesis; they can be used for modelling pathological 
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conditions as well as provide a platform for the investigation of biochemical 

factors that have the potential to be used as therapeutic agents for the 

treatment of angiogenesis related diseases. An ideal assay would allow for the 

assessment of multiple parameters, providing reliable and reproducible results 

that can be related to those found in the clinic271. Currently, there is no ‘gold 

standard’ assay that accurately represents the process in its entirety and so to 

provide a comprehensive overview of the angiogenic process, the effect of CFB 

was evaluated in retinal-specific EC line using a number of in vitro and ex vivo 

assays. Results revealed a promoting effect of CFB on HREC survival, 

proliferation, migration, and the ability to assemble into tubular networks. 

Despite providing important observations regarding EC behaviour, in vitro 

assays are unable to fully recapitulate blood vessel formation in vivo. To 

overcome these limitations and supplement findings from the cell-based 

studies, two ex vivo assays were carried out: the aortic ring and fetal metatarsal 

explant assays. Consistent with observations from the in vitro studies, in both 

ex vivo assays, vessel outgrowth from explanted tissue was significantly 

increased after the addition of exogenous CFB. These assays provided a more 

physiologically relevant platform to study angiogenesis, since explants 

developed lumenised blood vessels with surrounding supporting cells in a 

timescale similar to that observed in vivo46.  

 

Although this data strongly implicates a pro-angiogenic effect of CFB, it is 

contradictory to a previous report by Sweigard et al. Despite reporting an 

increase in CFB gene and protein expression, and co-localisation of CFB on 

retinal neo-vessels following OIR, they found that OIR mice deficient in CFB 

had a significant increase in neovascularisation after exposure to OIR, in 

comparison to their wildtype counterparts231. They concluded that the increase 

in neovascularisation was not a consequence of increased stimulation but 

rather a result of reduced neo-vessel removal, and CFB a protective effect by 

facilitating with neo-vessel clearance. One reason for these conflicting 

observations could be down to the use of either in vitro or in vivo experimental 

settings to investigate the angiogenic potential of CFB. The main findings from 
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this study are based on in vitro experiments where the effect of CFB was 

explored in an isolated, and controlled manner using a single cell type. 

However, it is important to highlight that angiogenesis is a highly context 

dependent process and the response of different cell types to certain 

angiogenic stimuli can be significantly different.  It is possible that in vitro, CFB 

exerts a promoting effect on HRECs, but when translated in vivo, CFB acts on 

other retinal cell types that mediate its anti-angiogenic effects. In the context of 

DR, anti-angiogenesis may be the predominant action of CFB, overriding the 

promoting effect of CFB on HRECs alone. One particular study that supports 

this idea found that the anti-angiogenic effect of complement was in fact not 

mediated by endothelial cells, but rather by macrophages272. In addition, 

Sweigard et al conducted their study using knockout mice that had been 

generated by conventional gene disruption using homologous recombination. 

This means the knockout manifests itself in all cells of the organism. Since the 

retina possesses its own complement regulatory system and it has been 

reported that RPE cells are the major extrahepatical source of CFB in the 

retina, it WOULD be interesting to investigate the effect of inducing the CFB 

gene defect in a tissue specific manner. Tissue specific knockdown of CFB in 

the RPE means the mice would possess a normal complement system in all 

other tissues and so it is possible that the increase in neovasculairsation 

observed in the CFB deficient mice following OIR could be attenuated by 

depleting CFB only within the retina.  

 

In summary, results revealed that CFB can exert pro-angiogenic activity in 

cultured HRECs and in ex vivo models of angiogenesis. This novel function is 

distinct from CFB’s well-established role within the AP and indicates an 

association between systems and pathways that otherwise would be 

considered as unrelated and antithetical.  
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4.3. Investigating the relationship between Complement 
Factor B and VEGF-A and VEGFR2 

 

The previous chapter reported a pro-angiogenic effect of CFB in both cultured 

HRECs and in ex vivo models of angiogenesis, however the mechanisms 

underlying the regulation of angiogenesis by CFB remain to be elucidated. This 

leaves an important question unanswered: how does CFB exert this pro-

angiogenic function?  

 

The VEGF signalling pathway is one of the most potent angiogenic mediators 

and VEGF is well established as the main agent responsible for vascular 

leakage and angiogenesis in the diabetic retina273. Some VEGF makes its way 

to the retina from systemic sources and some is produced locally in the eye273: 

ECs, pericytes, Muller cells, microglia, astrocytes, RPE cells, and neurons have 

all been known to produce VEGF in retinal disease274. Additionally, VEGF has a 

well-established role in promoting neovascularisation in the OIR model275 and 

as demonstrated by this study, CFB mRNA expression correlated with the 

neovascularisation progression in a similar manner to that reported for VEGF269. 

Therefore, a plausible explanation for the pro-angiogenic effect of CFB could be 

because of increased VEGF signalling. Since increased VEGF signalling could 

not only be a consequence of increased ligand expression, but also due to 

increased receptor expression, the mRNA and protein expression of both 

VEGF-A and VEGFR2 by cultured HRECs was examined. The ability of 

exogenous CFB to increase VEGF-A and VEGFR2 mRNA expression in 

HRECs suggests that CFB is able to mediate both VEGF-A and VEGFR2 at the 

transcript level. The promoting effect of CFB observed in the in vitro 

angiogenesis assays may be driven by the increased mRNA expression of the 

VEGF signalling pathway components. This effect was confirmed by CFB 

silencing, where the opposite trend was observed and VEGF-A and VEGFR2 

mRNA expression was attenuated. The decrease in angiogenic potential of 

HRECs observed in the in vitro assays after CFB silencing, could be a result of 

reduced expression of VEGF-A and VEGFR2 mRNA. Looking at changes in 
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mRNA expression helps gives an indication of functional protein changes, 

however this is not necessarily always the case. So, to confirm this observation, 

the effect of CFB on VEGF-A and VEGFR2 protein expression in HRECs was 

also investigated. Despite the significant suppression of both VEGF-A and 

VEGFR2 at the mRNA level, VEGFR2 protein level but not VEGF-A was 

significantly reduced in HRECs subject to treatment with CFB siRNA. This could 

be due to different rates of translation of VEGF-A and VEGFR2, meaning the 

duration of the experiment was long enough to capture changes in receptor but 

not ligand expression.  Nevertheless, there is a significant suppression of 

VEGFR2 protein expression following siRNA treatment. These results are in 

fact supported by a recent study that investigated the role of CFB in CNV. By 

using short hairpin RNA (shRNA) to knockdown CFB, they observed a 

significant inhibition in the formation and development of CNV by reducing the 

expression of VEGF252. Another study, although not looking specifically at CFB, 

also showed that VEGF expression was reduced following specific inhibition of 

the alternative pathway276. In spite of the fact that these results implicate a link 

between CFB and VEGF, they are in conflict with a previous report by Sweigard 

et al. After observing reduced neovascularisation in CFB deficient mice exposed 

to OIR they wanted to determine if this increase was a result of VEGF 

expression, and so they proceeded to check the mRNA expression of three 

different VEGF isoforms (including VEGF-A), and VEGFR2 in wildtype and 

CFB-/- mice following exposure to OIR. Surprisingly, they reported no 

differences in the expression levels of either VEGF or VEGFR2. These 

conflicting results could again be attributed to the use of either in vitro or in vivo 

experimental settings to investigate the possible mechanism of CFB. In this 

study the effect of CFB on VEGF expression was analysed in vitro using only a 

single cell type. It is possible that in a controlled, well-defined in vitro 

microenvironment comprising of only a single cell type, CFB promotes VEGF 

expression in HRECs. However, the in vivo microenvironment is complex and is 

comprised of a multitude of cell types. Since VEGF expression was conducted 

on whole retinal tissue (not isolated cell types) it is not possible to rule out the 

possibility that the unchanged VEGF expression reported by Sweigard et al may 
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be because CFB has opposing effects on VEGF expression in other cell types 

which negate the changes in VEGF expression in HRECs alone.  

 

To confirm whether the CFB mediated change in VEGFR2 protein expression 

confers functional changes in VEGF signalling, the effect of exogenous CFB on 

HRECs following inhibition of the VEGF signalling cascade using the small 

molecule tyrosine kinase inhibitor for VEGFR2, Linifanib, was explored using 

the in vitro Matrigel® network formation assay.  Blocking of VEGFR2 with 

Linifanib, attenuated the promoting effect of rhCFB on HREC Matrigel® network 

formation. This suggests that the pro-angiogenic effect of CFB is likely to be 

dependent on the activation of VEGF signalling and that CFB mediates its pro-

angiogenic effect through VEGFR2 signalling.  
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5 Conclusion and Future Work 
 

The complement system, a central constituent of innate immunity, has primarily 

been considered as a rapid and efficient immune surveillance system, however, 

genetic studies, clinical observations, and insights from improved disease 

models have renewed the views of human complement system in disease277,278. 

It is important to appreciate that biological systems are not rigid entities but are 

highly dynamic and interactive networks that influence physiological responses. 

This study aimed to take a more global appreciation of what would traditionally 

be viewed as isolated biological processes, and presented findings that indicate 

a possible cross-talk between the AP component, CFB, and retinal 

angiogenesis associated with DR.  

 

The first aim of this study was to characterise the expression level of CFB in 

rodent models of PDR and human PDR patient samples. Although initial 

characterisation pointed towards an increase in local CFB levels with 

retinopathy, caution must be observed when drawing conclusions from this 

data. Although there was an upregulation of CFB in the aqueous humor of 

patients with retinopathy, this observation was only confirmed in one patient 

sample per group. To obtain a more reliable protein profile, CFB expression 

should be confirmed in more patient samples and in human vitreous samples. 

While the STZ-induced diabetic mice are routinely used as a model for 

mechanistic studies of other diabetic complications, they only develop the early 

vascular changes associated with retinopathy and do not develop the late-stage 

proliferative vascular pathology that is routinely seen in PDR.279. Although 

relevant to diabetes, the STZ-induced diabetic mouse is not the most relevant 

model to study PDR pathology and future in vivo characterisation should be 

carried out using the OIR model. A more detailed characterisation of CFB 

expression is needed to help determine whether it also has a role in retinal 

vascular development. Future studies should compare the retinal vasculature of 

CFB knockout (CFB-/-) with wild-type (WT) mice at different postnatal stages to 

explore whether expression correlates with physiological vascular development, 
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and to determine whether CFB-/- mice have defective retinal vascular 

development. The effect of CFB -/- on pathological neovascularisation has 

already been reported231, but to confirm these observations and follow on from 

this it would be interesting to observe the effect of OIR on neovascularisation 

using mice over-expressing CFB: is neovascularisation strengthened or 

attenuated? Additional characterisation should be carried by immunofluorescent 

staining of mice retinal cross-sections to confirm which cell types are the main 

source of CFB.  

 

The second aim of this study was to investigate the role of CFB in retinal 

vascular endothelial cell behaviour and angiogenesis. In vitro cell based assays 

demonstrated a promoting effect of CFB on HREC behaviour and angiogenic 

potential, suggesting that CFB has a role in driving retinal neovascularisation by 

promoting angiogenesis. However, a significant challenge in the study of 

angiogenesis is selection of the appropriate assay that accurately reflects the 

complexity of the processes that occur in vivo. Using multiple in vitro assays in 

this study helped provide a more comprehensive overview of CFBs function in 

angiogenesis, however they were only carried out using one cell type. 

Angiogenesis is mediated by multiple cell types and besides ECs, pericytes are 

also crucial for angiogenesis. Therefore, future studies should look at the effect 

of CFB on retinal pericytes, both alone and in co-culture with ECs. In addition, 

to better capitulate the diabetic pathology, it would also be insightful to study 

CFB under high glucose conditions. Continuous hyperglycaemia in long-

standing DM majorly perturbs vascular homeostasis and leads to endothelial 

dysfunction, mainly attributable to increased accumulation of oxidative stress 

and advanced glycation end-products (AGEs)6,9. It would therefore be beneficial 

to establish in vitro models of angiogenesis using high glucose or glycated 

collagen. Although the aortic ring and fetal metatarsal assays provide a more 

physiologically relevant platform to study angiogenesis it might not be an 

accurate representation of the process within the eye. Other ex vivo assays 

should be carried out to supplement the aortic ring data including the more 
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pertinent choroid assay. The choroid assay would provide information regarding 

ocular specific microvascular behaviour.  

 

The final aim of this study to elucidate the mechanism through which CFB 

contributes to vascular pathology in DR. Although the data obtained in this 

study gives an indication to a possible mechanism through which CFB may 

exert its pro-angiogenic effect, future work should confirm the results of the 

VEGF and VEGFR2 gene and protein studies, using both rhCFB treatment and 

CFB over-expressing cells. Additionally, it would be interesting to see if the 

promoting effect of CFB is attenuated upon VEGFR2 inhibition in other 

functionality assays such as viability, proliferation and Transwell migration. The 

effect of CFB in the absence and presence of Linifanib, on signalling pathways 

downstream of VEGF/VEGFR2 would also help to supplement this data. 

 

Thus far, these preliminary studies have shown that CFB mediates VEGF gene 

expression, and VEGFR2 gene and protein expression. These studies have 

also demonstrated that the pro-angiogenic function of CFB is upstream of, and 

acts at least partially through the VEGF signalling pathway: the blocking of 

VEGFR2 causes the promoting effect of CFB to be lost. This now raises the 

question, ‘how does CFB induce these changes and regulate VEGF signalling? 

One explanation could be the crosstalk between the complement pathway and 

VEGF. Increased deposition of MAC254, the end-product of complement 

activation has been reported in other ocular neovascular disorders. It has also 

been implicated in the expression of angiogenic growth factors280 including 

VEGF281,282. It is therefore plausible that increased levels of CFB cause over-

activation of the AP, leading to increased formation of MAC. MAC mediated 

VEGF expression could be a pathogenic mechanism through which CFB 

promotes angiogenesis. To investigate this further, the relationship between 

CFB expression and MAC formation should be explored both in vivo using CFB-

/- mice, and in vitro using HRECs. Following this, the effect of MAC inhibition on 

the VEGF signalling pathway and angiogenesis should be explored.  
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The effect of CFB on the VEGF signalling system could also be controlled via 

other mechanisms. Perhaps CFB controls VEGF signalling at the gene 

expression level by activating transcription factors that are involved in the 

regulation of VEGF/VEGFR2 gene transcription. Perhaps CFB is involved in 

regulating VEGF/VEGFR2 protein stability and proteolytic processing, or ligand 

receptor interactions, or receptor endocytosis and trafficking. It is important not 

to over interpret this data and until further work is carried out, we can only 

speculate. A more extensive investigation should be carried out before a 

complete mechanistic framework can emerge. Microarray and proteomics 

studies could help identify genes or proteins that are differentially regulated by 

CFB. Any that are up- or downregulated could then be investigated further to 

see if they are involved in the mediating the relationship between CFB and 

VEGF/VEGFR2.  

 

In conclusion, this study presents a more precise role of CFB in driving retinal 

neovascularisation, providing a framework for a more in-depth exploration of 

CFB-mediated effects on retinal angiogenesis in the future. Given the conflicting 

nature of the results obtained in this study, a more in-depth exploration of CFB’s 

role in driving retinal neovascularisation associated with PDR is needed, 

particularly in regards to mechanism of action studies. However, data taken 

together and examined in the light of other relevant studies and existing 

literature has led to a tentative proposed mechanism of action (please refer to 

Figure 33 for the proposed mechanism of action). 
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Figure 33: A schematic representation of the proposed mechanism of action of CFB in 
retinal neovascularisation in DR. The inflammatory microenvironment in DR induces RPE 

cells to secrete CFB, which acts in a paracrine manner on retinal ECs, inducing the VEGF 

signalling cascade, resulting in enhanced EC survival, proliferation, migration, and network-

formation
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7 Supplementary Figures 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 34: Transient transfection of HRECs using siRNA results in a downregulation of 
CFB mRNA expression. Primary HRECs were transfected with 66nM siCFB or 66nM siRNA 

control and changes in CFB mRNA levels were analysed at 24, 48 and 72 hours of transfection. 

The changes in gene expression were calculated using fold change (-2(∆∆cT).  RT-qPCR 

analysis of CFB transcript levels is represented by fold change normalised to siControl. Results 

represent the mean ± SD. Statistical significance was determined on raw delta-CT values by 

unpaired two-tailed students’ t-test; n=3, *: p<0.05, **: p< 0.01. 
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Figure 35: Transient transfection of HRECs results in an up-regulation of CFB mRNA 
expression. Primary HRECs were transfected with 1µg pCFB or 1µg pcDNA control and 

changes in CFB mRNA levels were analysed at 24, 48 and 72 hours of transfection. The 

changes in gene expression were calculated using fold change (-2(∆∆cT).  RT-qPCR analysis of 

CFB transcript levels is represented by fold change normalised to pcDNA. Results represent the 
mean ± SD. Statistical significance was determined on raw delta-CT values by unpaired two-

tailed students’ t-test; n=3, ****: p< 0.01. 
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Figure 36: Linifanib treatment reduces HREC network formation in a dose dependent 
manner. Primary HRECs were treated with 1nM, 5nM and 10nM of the VEGFR2 inhibitor, 

Linifanib. Functional changes were measured as changes in EC network formation after 16 

hours incubation A-D, Representative images of Matrigel® network formation. E-F, 
Quantification of HREC Matrigel® network formation reported as the total number of junctions 

and total tubule length. Results represent the mean ± SD of one experiment per treatment 

performed in triplicate (the symbols representing the technical repeats). No statistical 

significance was determined for this data since only one biological repeat was carried out for 

optimisation purposes.    
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8 Appendix 
8.1 General Laboratory Equipment and Consumables  

 
Table 3: List of general laboratory equipment used 

Equipment Model Supplier 
Biological Safety 
Cabinet 1300 Series Class II, Type B2 Thermo Scientific, USA 

Cell Counter 
BRAND® Counting Chamber 
BLAUBRAND® Neubauer 
Improved 

Merck, Singapore 

Centrifuges 
Sorvall™ ST 40R Thermo Scientific, USA 
Sorvall™ Legend™ Micro 21R Thermo Scientific, USA 

IKA Mini G IKA® Works Asia, 
Malaysia 

Fridge/Freezers 
-80°C Panasonic MDF-U55V SciMed Asia, Singapore 
-20°C PHCbi MDF-MU539D SciMed Asia, Singapore 
+4°C Thermo Scientific, USA 

Gel Electrophoresis 
Mini Protean® Tetra System 
(Acrylamide Gels) Bio-Rad, USA 

Sub® Cell GT (Agarose Gels) Bio-Rad, USA 
Glucoemter Accu-Chek Performa Roche, Switzerland 

Heating Block MS Major Scienc EL-02 Dual 
Block Heater 

BioLab, Singapore 

CR Cycler C1000 Touch™ Thermal 
Cycler Bio-Rad, USA 

Gilson Pipettes 2 µl, 10 µl, 20 µl, 100 µl, 200 
µl, 1000 µl Bio-Rad, USA 

Plate Reader Synergy H1 Hybrid Multi Mode 
Reader BioTek, Singapore 

Power Supply PowerPac™ Basic Power 
Supply Bio-Rad, USA 

Rocker Stuart™ SSL4 See-Saw 
Rocker 

Thermo Scientific, USA 

Serological Pipette BRAND® accu-jet® pro pipette 
controller Merck, Singapore 

Spectrophotometer NanoDrop™ 2000c Thermo Scientific, USA 
VORTEX VX200 Vortex Mixer BioLab, Singapore 

Water Bath Grant T100-ST38 Heated 
Circulating Bath 

Insta Bioanalytik, 
Singapore 

Real Time PCR 
System 

Applied Biosystems 
StepOnePlus™ Real Time 
PCR System 

Life Technologies, USA 
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Table 4: List of general laboratory consumables used 

Consumable Supplier 
0.2 mL PCR Strip Tubes Axygen 
8µM Trasnwell® 24-Well Plate Insert Corning, USA 
Amicon® Pro Affinity Column Merck, Singapore 
Cell Scraper SPL Lifesciences  
Cryotubes (1mL) Thermo Scientific, USA 
Dissection Kit Thermo Scientific, USA 
Eppendorf Tubes (1.5mL) Axygen 
Film Carestream 
Filter Pipette Tips Neptune 
Microtitre plates (96-well, 24-well, 12-well, 6-well) Thermo Scientific, USA 
BD Precision Glide Needles (18, 23 and 26G) Sigma Aldrich, USA 
Nitrocellulose Membrane Merck, Singapore 
NUNC Petri Dishes Thermo Scientific, USA 
Pipette Tips Neptune 
Polyvinylidene Fluoride (PVDF) Membrane Merck, Singapore 
Scientific Slide-A-Lyzer MINI Dialysis Device Thermo Scientific, USA 
Serological Pipettes (5mL, 10mL, 25 mL, 50mL) SPL Lifesciences 
Sterile Filters (0.22µM) Merck, Singapore 
Syringes Thermo Scientific, USA 
NUNC Tissue Culture Vessels (25 cm2, 75 cm2) Thermo Scientific, USA 
Universal Tubes (15mL, 50mL) Thermo Scientific, USA 

 
 

Table 5: List of general laboratory chemicals used 

Chemical Supplier 
2-mercaptoethanol Sigma Aldrich, USA 
Acrylamide Invitrogen, Singapore 
Agar Powder 1st Base, Singapore 
Agarose 1st Base, Singapore 
Ammonium Persulfate Invitrogen, Singapore 
Bovine Serum Albumin Sigma Aldrich, USA 
Bradford Reagent Bio-Rad, USA 
Bromophenol Blue Bio-Rad, USA 
Cell Freezing Medium Lonza, USA 
Chloramphenicol Sigma, USA 
Citrate Acid Sigma Aldrich, USA 
Comassie Blue Bio-Rad, USA 
Corning® Matrigel® Matrix Corning, Singapore 
DMSO Sigma, USA 
EDTA (ethylenediaminetetraacetic) Sigma, USA 
Endothelial Basal Media (EBM-2™) Lonza, USA 
Endothelial Growth Supplement Mix Lonza, USA 
Ethanol Chemtech 
Foetal Bovine Serum Gibco, USA 
Freestyle Expression Medium (FEM) Gibco, USA 
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GelPilot® DNA Loading Dye Qiagen, Singapore 
GelRed® Nucleic Acid Gel Stain Thermo Scientific, USA 
GeneRuler 1 kb DNA Ladder Invitrogen, Singapore 
Glycerol Promega 
Glycine 1st Base, Singapore 
Imidazole Sigma, USA 
InstantBlue™ Protein Stain Merck, Singapore 
Lipofectamine 2000 Invitrogen, Singapore 
Lipofectamine 3000 Invitrogen, Singapore 
Luria-Bertani (LB) Media 1st Base, Singapore 
MEM Alpha + GlutaMAXTM-1 GE Healthcare, UK 
Methanol Merck, Singapore 
Milk Powder Anlene 
Mowiol Mounting Medium Merck, Singapore 
MTS Sigma, USA 
Na2HPO4 (dibasic) Sigma, USA 
NaH2PO4 (monobasic) Sigma, USA 
Ni Sepharose High Performance Nickel-Charged 
(IMAC) Resin 

GE Healthcare, Singapore 

NP-40 Sigma Aldrich, USA  
Opti-MEM® Gibco, USA 
p3000 Invitrogen, Singapore 
Paraformaldehyde Sigma Aldrich, USA 
PBS 1st Base, Singapore 
Penicillin Streptomycin Nacalai Tesque, Japan 
Phenyl-methlysulfonyl fluoride Thermo Scientific, USA 
Phosphatase Inhibitor Nacalai Tesque, Japan 
Phosphate Buffered Saline 1st Base, Singapore 
Protease Inhibitor Nacalai Tesque, Japan 
Quick Coating Solution Angio-Proteomie, USA 
RNAse free dH2O Invitrogen, Singapore 
RNAzol®RT Molecular Research Centre, 

Inc 
Sodium Chloride (NaCl) Sigma Aldrich, USA 
Sodium Citrate Sigma Aldrich, USA 
Sodium Dodecyl Sulphate (SDS) 1st Base, Singapore 
Sodium Phosphate (Na2HPO4) Sigma Aldrich, USA 
Streptozocin Powder Sigma Aldrich, USA 
Stripping Buffer Nacalai Tesque, Japan 
SuperSignal ™ West Pico PLUS Substrate Thermo Scientific, USA 
TEMED Invitrogen, Singapore 
Tris Base 1st Base, Singapore 
Trypan Blue Gibco, USA 
Tween-20 Promega, Singapore  
Type I collagen Invitrogen, Singapore 
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8.2  Buffers 

8.2.1 General Laboratory Buffers 
Table 6: List of general buffers and solutions used 

Name Components 

Blocking Buffer - IF (1%) 
0.5% BSA 

1% Tween-20 
3% TritonX-100 

DDH2O 

Blocking Buffer – WB (5%) 2.5 g Milk Powder 
50 mL TBST 

Cell Lysis Buffer (pH 8) 

20mM Tris – Base 
420 mM NaCl 
0.1 mM EDTA 
10% Glycerol 
0.5% NP-40 

DDH2O 

Inhibitor Cocktail 
(*Freshly added into RIPA buffer just 

before use) 

*1 X Protease Inhibitor 
*1 X Phosphatase Inhibitor 
*0.2M Dithiothreitol (DTT) 

0.1M Phenyl-methlysulfonyl fluoride 
(PMSF) 

Laemmli Buffer (pH 6.8) (4X) 

8% Sodium Dodecyl Sulphate (SDS) 
20% 2-merceptoethanol 

40% Glycerol 
0.008% Bromophenol Blue 

0.250 M Tris Base 

PBS (1X) Dilute 10X PBS to 1X 
DDH2O 

RIPA Buffer (pH 8) 

20mM Tris Base 
420 mM NaCl 

0.1 mM EDTA 
10% Gylcerol 
0.5% NP-40 

Running Buffer (1X) 
25 mM Tris Base 
190 mM Glycine 

0.1% SDS 

Transfer Buffer (1X) 
25 mM Tris Base 
190 mM Glycine 
20% Methanol 

Tris Base Buffered Saline with Tween 
(TBST) (1X) 

12.5 mM Tris Base 
137 mM NaCl* 

0.01% Tween-20 

Trypsin EDTA (3X) 0.005% Trypsin 
0.35 mm EDTA 

Sodium Citrate Buffer (0.1M) 0.1 M Sodium Citrate 
0.1 M Citrate Acid 
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8.2.2 Recombinant CFB Protein Purification Buffers 
Table 7: Sodium phosphate buffer components 

Buffer 
Component 

Molar Mass 
(g/mol) 

Molarity Amount Needed 
for 50 mL (g) 

NaH2PO4 
(monobasic) 

137.99 1 6.9 

Na2HPO4 (dibasic) 177.99 1 8.9 
 

Table 8: Stock buffers for binding and elution buffers 

Buffer Composition 
Stock Buffer 1 (500 mL) 

20 mM sodium phosphate 
300 mM NaCl 

100 mL 0.1M sodium phosphate buffer 
37.5 mL 4M NaCl 

Stock Buffer 2 (500 mL) 
20 mM sodium phosphate 

300 mM NaCl 
500 mM imidazole 

100 mL 0.1M sodium phosphate buffer 
37.5 mL 4M NaCl 
17.02 g imidazole 

Elution Buffer (50 mL) 
20 mM sodium phosphate 

300 mM NaCl 
20 mM imidazole 

48 mL Stock Buffer 1 
2 mL Stock Buffer 2 

Binding Buffer (500 mL) 
20 mM sodium phosphate 

300 mM NaCl 
100 mM imidazole 

40 mL Stock Buffer 1 
10 L Stock Buffer 2 

 
 

8.2.3 Commercially Available Enzymes and Buffers 
Table 9: List of enzymes and commercially available buffers/kits used 

Enzyme/Kit Supplier 
10 mM dNTPs New England Biolabs, USA 
5X Q5 GC Enhancer New England Biolabs, USA 
5X Q5 Reaction Buffer New England Biolabs, USA 
5X qScript® cDNA Supermix Kit New England Biolabs, USA 
AflII Restriction Endonuclease New England Biolabs, USA 
FastDigest Buffer Thermo Scientific, USA 
Q5 DNA Polymerase Qiagen, Singapore 
Q5® High-Fidelity DNA Polymerase New England Biolabs, USA 
QIAprep Spin Miniprep Kit Qiagen, Singapore 
QIAquick Gel Extraction Kit Qiagen, Singapore 
QIAquick PCR Purification Kit Qiagen, Singapore 
Quick Ligation™ Kit New England Biolabs, USA 
SYBR® Green Supermix Bio-Rad, Singapore 
XbaL Restriction Endonuclease New England Biolabs, USA 
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8.3 Primary and Secondary Antibodies 
Table 10: List of primary antibodies. IF - immunoflourescence WB- Western Blot 

Antibody Target Application/Dilutio
n 

Supplier 

Ki67 Proliferating 
Cells IF 1:500 Abcam, UK 

CD31 Endothelial 
Cells IF 1:500 Abcam, UK 

Isolectin B4 
(conjugated) 

Endothelial 
Cells IF 1:500 Vector Laboratories, 

Canada 
CFB - WB 1:1000 Abcam, USA 
VEGF - WB 1:1000 Abcam, USA 
Phospho-
VEGFR2 - WB 1:1000 Cell Signalling 

Technology, USA 

VEGFR2 - WB 1:1000 Cell Signalling 
Technology, USA 

GAPDH - WB 1:50,000 Santa Cruz Biotechnology, 
USA 

 
 

Table 11: List of secondary antibodies. IF - immunofluorescence; WB - Western Blot 

Antibody Supplier Application/Dilution) 

Anti-rabbit HRP conjugated Bethyl Laboratories, USA WB/ 1:5000 

AlexaFluor® 594 anti-rabbit Invitrogen, Singapore IF/ 1:200 

AlexaFluor® 488 anti-rat Invitrogen, Singapore IF/ 1:200 

 
 

8.4 Culture Media 
Table 12: Summary of the composition of HREC EGM-2 media 

Component Volume 
FBS 10 mL 

Hydrocortisone 0.2 mL 
hFGF-β 2 mL 
VEGF 0.5 mL 

Ascorbic Acid 0.5 mL 
R3-IGF-1 0.5 mL 

hEGF 0.5 mL 
GA-1000 0.5 mL 
Heparin 0.5 mL 
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Table 13: Summary of the composition of ex vivo assay media  

Name Component 
Aortic Ring Media  

Metatarsal Dissection Media 
10% FBS 

1% Penecillin/Streptomycin 
1X PBS 

Metatarsal Growth MEdia 
10% FBS 

1% Penicillin Streptomycin 
MEM Alpha + GlutaMAXTM-1 

 
 

8.5 Molecular Biology Techniques 

8.5.1 Ligation 
Table 14: Summary of the Quick Ligation reaction components 

Component 20 µL Reaction 
Quick Ligase Reaction Buffer (2X) 10 µL 
Vector DNA (pcDNA) (4.5 kb) 50 ng 
Insert DNA (pCFB) (2.5 kb) 83.3 ng 
Nuclease-free Water Up tp 20 µL 
Quick Ligase 1 µL 
 

 

8.5.2 Polymerase Chain Reaction 
Table 15: Summary of the PCR mastermix components 

PCR Mastermix 
Component 50 µL Reaction Final Concentration 

5X Q5 Reaction Buffer 10 µL 1X 
Q5 DNA Polymerase 0.5 µL 0.02 U/ µL 
5X Q5 GC Enhancer 10 µL 1X 
10 mM dNTPs 1 µL 200 µM 
10 µM Forward Primer 2.5 µL 0.5 µM 
10 µM Reverse Primer 2.5 µL 0.5 µM 
Template DNA Variable < 1000 ng (Tm – 1-2)°C 
Nuclease Free H2O Top up to 50 µL  

 

 
Table 16: Thermocycling conditions for PCR amplification 

Cycling Condition Temperature Time 
Initial Denaturation 98°C 30 seconds 

25-35 cycles 98°C 
(Tm – 1-2)°C 

5-10 seconds 
10-30 
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72°C 20-30 seconds/kb 
Final Extension 72°C 2 minutes 
Hold 4°C Infinite 

 
 

8.5.3 First Strand cDNA Synthesis 
Table 17: Components of qScript® cDNA Supermix reaction 

Component Volume 
5X Reaction Mix 4 µl 
Template RNA 1 µg 
Nuclease Free dH2O Up to 20 µl 

 

 

8.5.4 SYBR® Green Real-Time PCR 
Table 18: Mouse primer sequences for RT-qPCR 

Gene  Forward Primer Sequence Reverse Primer Sequence 
Β- Actin GGCACCACACCTTCTACAATG GGGGTGTTGAAGGTCTCAAAC 
CFB GCTTGCCATGGTTGCTTATG AAGGCAGGAGAGAAGCTGG 
 
 

Table 19: Human primer sequences for RT-qPCR 

Gene  Forward Primer Sequence Reverse Primer Sequence 
Β- Actin TGAGAGGGAAATCGTGCGTG TGCTTGCTGATCCACATCTGC 
CFB GGAAGGGAATGTGACCAG AAGGCAGGAGAGAAGCTGG 
VEGF CTACCTCCACCATGCCAAGT GCAGTAGCTGCGCTGATAGA 
VEGFR2 CCAGCAAAAGCAGGGAGTCTGT TGTCTGTGTCATCGGAGTGATATCC 
 

 
Table 20: SYBR® Green reaction volume composition 

 
 
 
 

Component Volume (µl) 
Water 7.2 
SYBR® Green Supermix 10 
Forward Primer 0.9 
Reverse Primer 0.9 
cDNA 1 
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Table 21: RT-qPCR Cycling conditions 

 

 

8.5.5 Sodium Dodecyl Sulphate Polyacrylamide Gel 
Electrophoresis (SDS-PAGE) 

Tabe 22: Composition of SDS-PAGE gels 

 

Cycle Step Temperature (°C) Time Cycles 
Step 1 95 10 min 1 

Step 2 95 
60 

15 s 
1 min 40 

Step 3 
95 
60 
95 

15 s 
15 s 
15 s 

1 

Resolving Gel 10% (5 mL) Stacking Gel (1.5 mL) 
Nuclease Free Water 1.9 mL Nuclease Free Water 680 µL 
30% Acrylamide Mix 1.7 mL 30% Acrylamide Mix 170 µL 
Tris-cl (1.5 M pH 8.8) 1.3 mL Tris-cl (1.5 M pH 8.8) 130 µL 

10% Ammonium Persulfate 50 µL 10% Ammonium 
Persulfate 10 µL 

TEMED 2 µL TEMED 1 µL 
SDS 10% 50 µL SDS 10% 10 µL 


