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Abstract 

The theme of this project was based on selective alkane oxidation with oxygen as the sole 

oxidant in a solvent-free system by means of shape selective catalysis. This was to provide a 

competitor for the application of ‘green’ synthesis of linear primary alcohols, which are 

exceptionally relevant compounds for the fine chemicals industry from surfactants and 

coatings to cosmetics.  

Groundwork for this project was based on the autoxidation of n-decane and subsequent 

analysis of complex reaction mixtures. Through standard solutions, calculators for conversion 

and selectivity were developed for 1H-NMR and GC-MS analysis. The oxidation of n-decane 

is possible with no added initiator or catalyst when operating at temperatures >120 oC, with 

conversions up to 12% and the major products being (2- to 5-) decanol and decanone, this 

was ascribed to the presence of autoxidation phenomena. These bench mark studies were 

then extended to the oxidation of cyclooctane as a model system for cyclic hydrocarbons, and 

to investigate the effects of a lower bond dissociation energy to the activation of saturated 

alkanes and the effect that a different steric hindrance can have on the reactivity of micro and 

meso-porous materials. 

Heterogeneous catalysts based on commercial bulk supports; like TiO2 and Nb2O5; as well as 

porous supports like MCM-41 and ZSM-5 were developed, including particular emphasis for 

the development of micro- and meso- porous TiO2 and Nb2O5. For these materials wetness 

impregnation was used to add a range of metal nanoparticles, especially focusing on Fe, Mn, 

and Pd, on supports which were characterized with a range of analytical techniques including: 

XRPD, ATR-FTIR, TGA, ICP-MS and XPS.   

Catalytic tests with Fe/TiO2 were used as a benchmark for our studies. It was found bulk 

Fe/TiO2 could catalyse n-decane oxidation in conditions where no autoxidation had occurred. 

Using this catalyst optimised parameters for n-decane oxidation were determined (T = 115 oC, 

PO2 = 1 bar M:S = 1:1000, t = 24 h, stirrer speed = 500-700 rpm). These parameters were 

then applied to the range of catalysts synthesised. It was found in most cases that iron was 
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the top performer on which ever support was used. Supported noble metals and manganese, 

despite their literature presence, were found to be poor catalysts at best. This is suspected to 

be due to the existence of inhibiting metal-support interactions. No clear selectivity for alcohols 

was observed from the range of catalysts tested. Cyclooctane oxidation was also possible with 

the catalysts developed. It was found that Fe/ZSM-5 and analogues are capable of very high 

conversion (>60%) and selectivity for cyclooctanone (>60%) potentially making them 

candidates to be used in the production of precursors for the fibres industry.  

Microporous metal oxides with an additional metal within the framework were developed for 

their potential to create confined metal active sites. Additional dopant metals were chosen 

based on those found to be active in previous chapters/ those with significant literature 

presence. Synthesis was conducted via a template-assisted hydrothermal protocol with 

optimisation developed here. However, literature descriptions of template removal were 

unable to be replicated (most likely by incorrect synthesis parameters, like the pH, reported in 

the original references). Instead, several template removal techniques were trialled 

(calcination, acid washing, template oxidation) as well as an innovative synthesis via a 

peptization method. This also allowed development of a novel type of analysis where changes 

in pore structure and thermal stability of these materials were studied in situ using XRPD. We 

observed that template-free microporous titanium oxide was easily collapsing due to its 

delicate pore structure upon template removal. Undoped and metal doped template-including 

and pore-collapsed template-free material were unable to activate alkanes. However, 

microporous titanium oxide doped with iron nanoparticles was achieved through peptization 

of anatase followed by wetness impregnation. This material could activate cyclooctane with 

relatively low conversion (< 10%).  

Novel microporous template-free iron-doped niobium oxide was synthesised successfully, with 

the porous framework intact. Again, literature descriptions of template removal were unable to 

be replicated for the same reasons of TiO2. However, a novel and promising form of template 

removal with phthalic anhydride was developed. This material was then applied to alkane 
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oxidation, where it was unable to activate n-decane and gave low conversion (< 10%) for 

cyclooctane oxidation. 
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1.1. Fundamental concepts of catalysis  

Linear, fatty (C6 to C22), primary (C1 position) alcohols are important precursors for a range 

of chemicals in industry (Table 1.1.1).1 The difference in polarity in these molecules, 

between the polar OH and non-polar alkyl chain, gives them desirable properties for 

creating pastes, lubricants and moisturisers.2 They can be processed into other materials 

further down the production line ultimately being involved in sweeteners, perfumes and 

cosmetics. Currently there is a global demand for 2 million tons of fatty alcohols per year 

with an expected 4.3% annual growth rate.2,3 It is therefore a must that their production is 

efficient and cost effective.  

Table 1.1.1: A selection of linear fatty primary alcohols with examples of their use in industry. 

Alcohol Example of use References 

1-octanol Perfumes, flavourings, precursor to 1-octene 

(used in polymer industry) 

[4–6] 

1-decanol Solvents, surfactants, lubricants and anti-

foaming agents 

[7] 

1-dodecanol Precursor to sodium dodecyl sulphate (used in 

fabric conditioners and degreasers) 

[8,9] 

1-hexadecanol Flavours, intermediates for perfumes and 

bases of creams and ointments 

[10] 

 

The focus of this project is to catalyse the synthesis of linear fatty alcohols from the 

oxidation of alkanes (section 1.2-1.3). Specifically, 1-decanol was chosen as a target 

starting point due to its appropriate physical properties for our equipment (e.g. boiling point, 

viscosity, commercial availability) and from its relevance in industry as it is used to produce 

a range of products such as surfactants, lubricants and cosmetics.7  From what is found in 

C10 oxidation we can then apply and move onto varying chain length substrates.  
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A catalyst is something which speeds up a reaction, without being used up during the 

reaction. Its presence in a reaction provides an alternative and lower energy pathway for 

reagents and/or intermediates during a reaction (figure 1.1.1).11 The rate constant, 𝑘𝑟 (eq. 

1.1.1), is increased either by reducing the activation energy Ea (here Ea is regarded in 

terms of Gibbs free energy) of the reaction, or by increasing the frequency factor A, or both 

of these factors. Activation entropy is also decreased when catalysis occurs via adsorbed 

species on a surface.12 These factors keep the pre-exponential factor high. 

𝑘𝑟 = 𝐴 ∙ exp (−
𝐸𝑎

𝑅𝑇
)     𝑒𝑞. 1.1.1 

Where 𝐴 is the pre-exponential factor, 𝐸𝑎 is the activation energy, 𝑅 is the gas constant 

and 𝑇 is temperature of the reaction.  

Figure 1.1.1: A schematic to show the concept of how a heterogeneous catalyst may affect the 

activation energy required for a reaction process to occur.11,13 Additional transition states may be 

present due to adsorption, desorption and intermediates not formed in the uncatalyzed reaction. 



13 
 

This allows a reaction to be faster than the uncatalysed reaction if the temperature is the 

same; or to have the same rate and to be conducted at lower temperatures and thus 

require a lower energy demand. However, this is not only the case, as (both desired and 

undesired) products whose production are typically higher in energy through unavailable 

pathways can also be reached. It is these properties that can be exploited and refined to 

lead a reaction to desired products. 

Catalysis is a corner stone in industry. Approximately 90% of all chemicals produced have 

been made with at least one step involving a catalyst.14 Therefore the development of new, 

novel and more efficient catalysts is of high importance within chemistry, with intensive 

research of the field being conducted globally and within the UK.15  Catalysis is split into 

two main fields; heterogeneous catalysis, where the catalyst is in a different phase to its 

reactants (e.g. a solid catalyst with reactants in gaseous phase). Whereas in homogenous 

catalysis, the catalyst is in the same phase as its reactants (e.g. a catalyst soluble in 

aqueous phase with reactants in aqueous phase). Although the use of homogenous 

catalysts is present within industry (e.g. cobalt in hydroformylation, see section 1.2.1),16 

typically heterogeneous catalysts are used and preferred due to their ease of separation 

from the reaction media (and in turn their recovery), or for the design of catalytic beds in 

flow reactors.17 Because of the advantages of heterogeneous catalysis, this will be the 

focus of this research project. 

Selectivity is an important concept especially in industrial catalysis. It is essential that large 

scale reactions only produce desired products, as waste products can be costly to dispose 

of and ultimately lead to a less efficient, less economic and more wasteful process.18,19 

Selectivity is often achieved through defined active sites, which is most common in 

homogenous catalysts (and predominantly in biocatalysts, section 1.3.3).20 However, 

examples of selective heterogenous catalysts exist. Selective oxidation of propylene to 

acrolein, which is needed for herbicides and acrylate polymers21 is achieved using a range 

of heterogeneous catalysts (e.g. silver on alumina catalysts and copper oxide catalysts 



14 
 

have been extensively studied).22,23 Modern catalysts have achieved selectivities of >95% 

at ~95% conversion, despite the large difference in enthalpy to the complete combustion 

products (-2060 kJ mol-1 vs. -336 kJ mol-1).14 This is crucial as a highly active oxidation 

catalyst is useless if the desired products are completely oxidised to CO2 and H2O. This is 

a relevant example where only a few products are possible, as molecules become larger 

and more complex, so does the challenge of selective catalysis. 

The efficiency of a chemical reaction can be determined using E factor. E factor can be 

defined as the mass ratio of waste products and desired products, allowing a means to 

compare the efficiency between chemical processes.18 A list of E factor ranges for 

industrial sectors can be found in table 1.1.2.24  

Table 1.1.2: E factors for corresponding chemical industries.24 

Industry segment E factor (kg waste product/ kg desired 

product) 

Oil refining < 0.1 

Bulk chemicals < 1 - 5 

Fine chemicals 5 - >50 

Pharmaceuticals 25 - >100 

 

The oil refining industry is conducted on the largest scale of all chemical industries. 

However, it has impeccably efficient processes leading to its lower E factor. The fine 

chemicals and pharmaceutical industries therefore have scope for processes to be made 

more efficient. In our case we will focus on the fine chemicals sector, as this is where linear 

fatty alcohols are categorised. 

Efficiency of a process can also be improved by choice of reagents. If possible, avoiding 

the use of stoichiometric reagents inherently reduces the cost of a process. For example, 

using molecular oxygen as the sole oxidant as opposed to those which need to be 

synthesised, such as H2O2 and aqueous metal complexes. Using H2O2 is preferred over 
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aqueous metal complexes due to water being the only by-product and is considered a 

‘green’ oxidant.25,26 However, using molecular oxygen from the air would be ideal due to 

its much larger availability and not needing to synthesise H2O2. A range of reactions using 

molecular oxygen as the sole oxidant have been developed,27 but the majority of oxidation 

reactions in industry do not exclusively use O2 or are not sufficiently selective. The 

implications of using molecular oxygen are discussed in further detail in section 1.3. 

Moreover, chemical reactions typically take place in a solvent.28,29 This is problematic for 

industrial processes as capital and energy are lost in either supplying fresh solvent or in 

processes which recycle it. Therefore, the use of ‘neat’ reagents is a desirable concept in 

industry.28,30  For example, the oxidation of hydrocarbons can be done without a solvent.31 

Avoiding the use of solvents also makes separation of products easier. This is because 

the catalyst, unreacted reactants and products are only within the reaction mixture. Again, 

this saves time, energy and cost within an industrial process. 

The effect of replacing stoichiometric oxygen-transfer reagents is twofold: additional 

materials are not required to be purchased for the input, and unwanted by-products from 

these are not made as an output.32,33 A significant example of this concept is the use of 

copper (supported onto a range of supports like zeolites and metal carbonates) for the 

oxidation of alcohols to aldehydes and ketones.34 Traditionally, the conversion of alcohols 

to ketones is done with a stoichiometric oxidant, which is typically toxic (e.g. chromates, 

manganates).35 However, a significant amount of literature was produced showcasing the 

oxidation of alcohols with copper complexes. Marko et al. showed that a copper 

phenanthroline complex deposited onto K2CO3 was capable of oxidising alcohol functional 

groups (on aryl/ olefin compounds).36 This chemistry provides a means to oxidise alcohol 

groups to carbonyls with oxygen from air and water being the only by-product. Examples 

like this are showing progression towards the replacement of toxic oxygen-transfer 

stoichiometric reagents (e.g. high valent Mn and Cr salts)37 for greener alternatives.  
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Within the context of this research project, we seek to oxidise alkanes without the addition 

of any stoichiometric oxygen-transfer oxidants (i.e. hydrogen peroxide and tert Butyl 

hydroperoxide) and develop a system which is solvent-free. 

1.2.  Industrial manufacture of linear primary alcohols 

There are three main industrial processes to produce fatty alcohols which will be discussed 

here. It is important to highlight how primary fatty alcohols are currently synthesised and 

why there is a need for an alternative process for their production. In fact, our materials 

and the chemistry involved in the catalyst that we will develop are designed precisely to 

tackle the drawbacks of the current manufacturing routes. 

Note, throughout the document ‘primary’ or ‘terminal’ will be used to refer to the C1 position 

of an alkyl chain, whereas ‘central’ will be used for Cn+1, n>o. 

1.2.1. Hydroformylation 

Hydroformylation (also known as the oxo-process) is where a homogenous catalyst, 

typically cobalt based, is used to convert terminal olefins to their corresponding 

aldehydes.38 This process is one of the largest commercial production scales which uses 

a homogenous catalyst. Because of its scale, the process has been optimised using 

multistep (and even some multiphase) reactors.38–41 Hydroformylation was originally 

developed using a cobalt catalyst for the hydrocarbonylation of ethylene, but has been 

developed into other technologies, such as the production of alcohols described here. 

During the process of aldehyde production, the catalyst builds alkyl chains via alkene units 

and then terminates the process by adding a ‘HC=O’ moiety via hydrogen and carbon 

monoxide. The aldehyde is then reduced further down the production line to the 

corresponding alcohol, summarised in figure 1.2.1.1.42  
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Figure 1.2.1.1: A catalytic cycle of the hydroformylation process using a cobalt catalyst.42 

The SHOP (Shell Higher Olefin Process) is a process which incorporates hydroformylation 

during the production of fatty alcohols. Ethene is oligomerized to C2x olefins followed by 

distillation to separate products via chain length. The C10 – C14 olefin faction is then 

selected for carbonylation, where factions of lower carbon length are recycled until the 

desired chain length is met.43 However, there is a draw back with this process as chain 

lengths can only grow by C2. Therefore, once carbonylation occurs from the addition of 

‘HCO’, aldehydes (and therefore alcohols) derived from this process will be limited to odd 

number carbon chain lengths. 

Another problem with this process is the strong competition between production of long, 

linear olefins with branched central alkenes. This occurs due to the favourable 
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isomerisation of long chains, ultimately leading to a lower yield of aldehydes (figure 

1.2.1.2).38 

Figure 1.2.1.2: Competing favourable isomerisation reactions during hydroformylation leading to 

non-terminal carbonyl compounds. 

Finally, none of the processes used industrially with this method are heterogeneous. 

Homogenous catalysts are problematic in industry due to their requirement for large scale 

separation from the products. Luft et al. studied the immobilisation of catalysts used for 

long chain alkene hydroformylation.40 A rhodium catalyst was immobilised on activated 

carbon pellets used for the hydroformylation of 1-hexene. It was found that the initial 

reaction rate was 7 times lower than when using the heterogeneous catalyst in comparison 

to homogenous catalysts and also generated a reaction mixture with a lower n/iso ratio. 

Moreover, the study revealed that the overall leaching of the system after 100 days (more 

than 60 batches, which is low in comparison to conditions used in industry where 2 years 

is the average desired lifetime) was 6% of the original amount, a threshold beyond which 

the catalyst would need re-generation and in turn the process would not be fully 

economically viable. Although the heterogeneous catalysts performed worse than the 

homogenous, this study is crucial in taking steps toward making a heterogeneous 

hydroformylation process. 
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1.2.2. Ziegler alcohol process 

The Ziegler process converts ethylene, hydrogen, oxygen and water to linear fatty alcohols 

via organoaluminium compounds (summarised in figure 1.2.2.1).2 

 

Figure 1.2.2.1: A scheme to show the steps during the Ziegler alcohol process.2 

This is an elegant process by which only primary alcohols can be formed due to the 

hydrolysis step only being able to cleave one Al-C bond, which is always terminal. 

However, as the growth of the hydrocarbon chain practically follows a similar growth 

pattern to that of a polymer, it follows the resultant chain length of the resulting primary 

alcohol is not uniform in this process, and therefore a distribution amongst products occurs. 

Two industrial processes involved this synthesis: Alfol and Epal, the latter of which 

achieved a narrower distribution of products.2,44 

However, the Ziegler process is not strictly catalytic as a stoichiometric amount of 

aluminium reagents are required for this process. Therefore, during this synthesis a 

stoichiometric amount of undesired aluminium by-product is produced. Currently there are 

no systems which can catalytically produce long chain alcohols via the Ziegler alcohol 

process.  
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1.2.3. Shilov 

The ‘Shilov system’ is a promising process where alkanes are activated via a homogenous 

platinum chloride catalyst in a biphasic system with one of the two phases being water.45 

Shilov et al. found that [Pt(IV)Cl6]2- can be used as a primary oxidant generating a Pt(II) 

complex to convert alkanes to primary chloroalkanes (which can be converted into primary 

alcohols). It has a complex reaction mechanism, studied by Labinger and Bercaw, 

summarised in figure 1.2.3.1.45–47 The system gave excellent selectivity towards terminal 

functionalisation. The selectivity arises from steric factors as the bulky chloride ligands 

only allow for the terminal C-H bond to be activated.48 

 

 

 

 

 

 

 

 

 

 

Figure 1.2.3.1: One of Labinger and Bercaw’s proposed mechanisms for the Shilov system, the 

aqueous metal salt is in a separate phase to the organic hydrocarbon. Adapted from R. H. Crabtree 

with permission.47 

Nevertheless, there are draw backs of this process. In order for this reaction to continue a 

stoichiometric amount of platinum(IV) chloride salt needs to be fed to the system. The 

reaction is catalytic but provided stoichiometric amounts of platinum(IV) chloride are 

needed to regenerate the active species, the reaction is not feasible due to high cost and 

reservations are currently present due to low abundance of platinum. Furthermore, the 

system is biphasic from the nature of the reagents, thus alkane solubility - which is 
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inherently low in water - becomes a limiting factor in conversion. Finally, there is 

uncertainty how water affects the extent of the reaction as the reaction mechanism is still 

not entirely understood, with some studies suggesting the O incorporated in the final 

product is from water.49  

Sen et al. developed a catalytic Shilov system using oxygen as the oxidant, relinquishing 

the need for stoichiometric platinum(IV) chloride.50  The system remained selective to the 

primary position of the alkyl chain utilising copper chloride to regenerate the active 

platinum species. However, the substrate used was ethanesulfonate and the study did not 

report any attempts with linear alkanes. To date no selective oxidation of alkanes via a 

Shilov system using molecular oxygen as the oxidant exists. 

In summary the Shilov system shows fantastic promise with its selectivity but is far from 

being industrially applicable. Stoichiometric amounts of platinum chloride are not feasible 

for reaction scales required. The process is also limited to biphasic systems, where 

conversion is limited to the solubility of alkyl reagents. Finally, as mentioned in 

hydroformylation, the system would ideally be made heterogeneous and this may affect 

conversion and selectivity. 
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1.3. Oxidation of alkanes using molecular oxygen 

The selective oxidation of linear fatty alkanes is a challenging reaction, regardless of the 

specific oxidizing agent used. This arises from very minor differences in bond dissociation 

energy of the C-H bonds amongst the alkyl chain, leading to no specific region significantly 

favouring oxidation and thus producing a range of potential products, e.g. n-octane 

oxidation (figure 1.3.1).51–53 

 

Figure 1.3.1: Examples of possible products during n-octane oxidation. Insertion of oxygen is 

possible to form alcohols and/or carbonyl compounds, at each position on the chain and 

dehydrogenation can lead to alkenes. Not shown here is the potential products from cracking 

(leading to shorter chain compounds) or condensation reactions between alcohols and acids. 

In the example of n-octane from figure 1.3.1, there is a statistical probability of 33% 

(6H/18H) to oxidise the terminal C-H bond. This probability will decrease with substrates 

of longer chain lengths, due to more central CH2 units capable of being oxidised (e.g. the 

terminal oxidation chance is 27% in n-decane, 23% in n-dodecane, and so on). However, 

the central CH2 is energetically more favourable to oxidise over terminal CH3.54 For 

example, in butane the terminal C-H bonds have a bond dissociation energy (BDE) of ~101 
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kcal mol-1 (423 kJ mol-1), compared to the central C-H bonds with 98 kcal mol-1 (410 kJ 

mol-1).55 Therefore, one can correctly assume that the product distribution will be 

proportionally low for terminal oxidation products of alkanes where no selectivity is 

induced. Furthermore, if alcohols are the desired product, oxidation to carbonyls must be 

prevented, despite alcohols having a tendency to be over oxidised.56 This is due to the 

lower BDE of the C-H alpha to an OH group typically being ~30 kcal mol-1 lower in energy 

compared to that of the saturated hydrocarbon.57 Therefore, in order to selectively oxidise 

alkanes to linear primary alcohols, a catalyst needs to provide shape selectivity whilst 

avoiding over oxidation.   

In this research work we are interested in the use of molecular oxygen as the sole oxidant. 

A common claim within literature is ‘alkane oxidation via molecular oxygen’, however, the 

term ‘alkane’ is broad within the field of alkane oxidation and type of alkane should always 

be clarified. For example, an article by Mizuno and Yamaguchi demonstrated how a 

ruthenium based polyoxometalate (POM) was capable of ‘alkane’ oxidation via 

autoxidation. A summary of their results is quoted in table 1.3.1.58 

Entries 1 – 4 show the proof of concept that ruthenium polyoxometalates can indeed 

oxidise alkanes, with the highest conversion and selectivity observed with adamantane. 

Adamantane is a useful model to show that a catalyst is capable of activating C-H bonds. 
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Table 1.3.1: From Mizuno and Yamaguchi, substrate (1 mmol), Ru POM (0.5 µmol), isobutyl 

acetate (3 ml), O2 atmosphere, a 373 K, b 383 K.58 Reproduced from Ref.58 with permission from the 

Centre National de la Recherche Scientifique (CNRS) and The Royal Society of Chemistry. 

Entry Substrate Time (h) Yield (%) 

1a Adamantane 72 64 

2a Cyclohexane 48 3 

3b Cyclooctane 96 12 

4b n-octane 96 3 

5a 2-adamantanol 96 99 

6a Cyclohexanol 48 67 

7b Cyclooctanol 96 98 

8b 1-octanol 48 14 

9b 2-octanol 120 90 

 

Although the products of adamantane oxidation are still of commercial importance, the 

substrate is easy (in comparison to linear alkanes) to oxidise due to its several secondary 

C-H bonds. Moreover, selectivity is easier to achieve as owing to its symmetrical structure 

they are less possible by-products (figure 1.3.2)59 compared to the linear alkanes quoted 

here. Furthermore, entries 5 – 8 show that the catalyst is capable of over oxidation from 

the high yields of alcohol oxidation, a problem common amongst catalysts in the literature. 

 

Figure 1.3.2: The oxidation products of adamantane. Although not a linear alkane, it is an important 

molecule to act as a model for C-H activation. 
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Mizuno et al. also showed that highly selective oxidation can be achieved when using bulky 

vanadium POM-based catalysts.56 Using hydrogen peroxide and a homogenous catalyst, 

a range of alkane substrates were oxidised. Most interesting for this research was the 

oxidation of n-hexane. Although a lower yield of 56% was achieved (compared to 98% 

seen in adamantane), an exceptional 94% selectivity was observed for the corresponding 

alcohols. Results like this are both rare and highly significant due to the challenge of 

avoiding over-oxidation to ketones, acids and other oxidation products. 

From all the literature considered in this research, only two research groups have shown 

the ability to oxidise long-chain linear alkanes, solvent-free, under mild conditions when 

using a catalyst. Richards et al. has numerous publications for the oxidation of n-

hexadecane under mild oxidation conditions, these are summarised in table 1.3.2.29,30,60–

62 These results are important in the field of alkane oxidation as conversions this high 

(even >5%) with no initiator and at 150 oC with no pressurized systems are not only rare, 

but also highly desired. Similarly, Bi et al. showed their ‘SBA-15-apts-Ru-2’ (a ruthenium-

based POM on SBA-15, pore size = 4.5 – 5.2 nm) was capable of n-hexadecane 

conversions of up to 52% under identical conditions to that of Richards’ group.63 Out of all 

the literature on alkane oxidation, these are the only two groups that have succeeded in 

very high conversions, with very mild conditions. 
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Table 1.3.2: A compilation of results for the oxidation of n-hexadecane from Richards’ research 

(highest conversions from each publication recorded here). 29,30,60–62 

n-hexadecane (5 mL), T = 150 oC, air flow = 30 ml min-1, t = 6 h 

Catalyst Conversion 

(%) 

Pore size (nm) Ref. 

SBA-apts-Fe4Se2W18 

(Fe-POM immobilised on SBA-15) 

18 5.8 [60] 

Zr1-xFexOy 

(Iron doped zirconia aerogels) 

36.2 15.9 – 24.9 [30] 

2-2-GMS 

(Gold nanoparticles dispersed in 

mesoporous silica) 

52.3 5.6 [29] 

SBA-15-apts-Cu20 

(Cu-POM immobilised on SBA-15) 

29.4 5.4 [61] 

PW12-TiO2-ACC 

(POM and TiO2-NPs on mesoporous 

silica) 

21 2.85 [62] 
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1.3.1. Autoxidation 

The goal of this research is the selective oxidation of linear alkanes by means of molecular 

oxygen. Autoxidation phenomena, therefore, were processes which we wanted to avoid 

as much as possible. As it may be present during the oxidation of alkanes and its influence 

on reaction mixtures it will be discussed here.   

Autoxidation is an ever-present phenomenon where the oxidation of a species can occur 

in an autocatalytic manner in the presence of an initiator or traces of a promoter (e.g. the 

walls of a reactor, residual alkyl hydroperoxide in solution, etc.),64 a substrate and 

molecular oxygen. It is an important reaction which may occur wherever molecular oxygen 

is present, and drastically lowers selectivity of a reaction (if not controlled) due to its free-

radical mechanism induced by the homolytic cleavage of the O-O bond in alkyl 

hydroperoxide intermediates, and is typically absent of a confined active site.65 

Autoxidation was first studied via the deterioration of rubber and naturally-occurring oils 

and has since been utilised within the petrochemical industry.66 This would ideally be 

avoided completely due to its inherent low selectivity when oxidising linear alkanes. 

The product distribution (often reported as a molar ratio between ketone and alcohol or 

vice-versa) from an oxidation reaction is a good initial indication of whether the reaction 

mechanism is occurring via autoxidation. In the oxidation of alkanes, the ratio of alcohols 

to ketones will be consistent for a given reaction when occurring via autoxidation only.67 

For example, autoxidation was observed in the oxidation of cyclohexane in the presence 

of ClO2
- and a manganese porphyrin complex. During oxidation it was determined whether 

autoxidation was occurring by observing a 1:1 ratio of ketone and alcohol (indicative of 

autoxidation of cyclic alkanes),68,69 whereas the non-autoxidative pathway only produced 

the alcohol.68 A rule of thumb can be applied to the expected selectivity from the 

autooxidation of linear fatty alkanes, where the ratio of carbonyls to alcohols is roughly 2:1 

(to 3:2),70 shown in figure 1.3.1.1 and figure 1.3.1.2.65,67,71,72 In the case of linear alkanes, 

oxidation can occur at any of the positions along the chain. When analysing reaction 
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mixtures this will give a quick indication on whether the mechanism has occurred via 

autoxidation. 

 

Figure 1.3.1.1: Possible mechanistic steps for the autoxidation of an alkane. ‘In’ represents an 

initiator (e.g. a metal centre, oxidising agent, intermediate). Alcohol and carbonyl products have 

been highlighted. Note: For sake of simplicity only the C1 position has been shown here, oxidation 

is not limited to this position. 

 

Figure 1.3.1.2: A step by step approach of potential routes for the autoxidation of an alkane. 
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For the context of this research, autoxidation would ideally be avoided. This is because, 

as shown by Iglesia et al.,73 the generation of ROOH can be problematic for the selective 

oxidation of linear alkanes. Iglesia’s research showed that their Mn exchanged ZSM-57 

and ZSM-5 were capable of terminal n-hexane oxidation during the beginning of their 

reaction. However, terminal selectivity decreased with time as the non-catalytic 

autoxidation mechanism became the dominating reaction.  

1.3.2. Oxidation of alkanes via promotors or oxygen transfer reagents 

The replacement of stoichiometric reagents for catalytic systems is at the heart of making 

industrial processes more efficient.18 Therefore for our research we solely wanted to use 

oxygen from the air as the oxidant. Within the literature H2O2, TBHP (tert butyl 

hydroperoxide) and other oxidants are used extensively for the oxidation of alkanes, table 

1.3.2.1.56,60,74–79 Although not the purpose of this research, promoters and oxygen transfer 

reagents will be briefly discussed due to their significant presence within the literature and 

to show how they may be used in the challenging nature of alkane oxidation. 

Hydrogen peroxide is a candidate for ‘green’ oxidation as its only by-product is water. Que 

Jr. et al. demonstrated excellent selectivity of a homogenous system utilising a tris-pyrdiyl 

amine iron(II) complex.80 Cyclohexane was oxidised to cyclohexanol, cyclohexanone and 

cyclohexene. Cyclohexanol was the major product in these reactions, showing how partial 

oxidation is capable in alkanes via hydrogen peroxide. Furthermore, hydrogen peroxide 

was utilised in the oxidation of linear alkanes.74 TS-1 (titanium silicate-1) was used to 

catalyse linear alkane (C3 – C8) oxidation to alcohols and ketones. Interestingly, the major 

oxidation products for C7 and C8 alkanes were the C2 alcohol and ketone, ascribed to the 

shape-selective nature of the catalyst (see section 1.4). While hydrogen peroxide is 

produced commercially, it still needs to be synthesised and is typically used 

stoichiometrically and therefore is still not completely ‘green’.  
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Table 1.3.2.1: A summary of relevant and significant literature on alkane oxidation utilizing 

promoters and oxygen transfer reagents. 

Oxidant Catalyst Substrate Ref. 

H2O2 TS-1 Linear alkanes, branched alkanes 

and other alkanes 

[74,81,82] 

H2O2 ZSM-5 Propane [83] 

H2O2 Ti-Beta Linear alkanes, alkenes and 

others 

[84] 

H2O2 Fe/SBA-15 Cyclohexane, cyclic alkenes and 

others 

[85] 

H2O2 Vanadium-POM/MCM-41 Cyclohexane, cyclic alkanes and 

others 

[86] 

TBHP Au/SBA-15 n-hexane and alkyl substituted 

benzenes 

[78] 

TBHP M/ZSM-5 (M = Co, Fe, 

Mn, Cu, Ni and Cr) 

Cyclohexane [87] 

TBHP Mn/Zeolite Y Cyclohexane [88] 

 

TBHP has been applied to the oxidation of alkanes.78,79,87,89 For example, Zhou et al. 

showed that ethylbenzene can be converted almost entirely (>99% yield) to acetophenone. 

Furthermore, the study converted cyclohexane to cyclohexanone with 100% selectivity 

when using nickel doped carbon-MOF based materials.90 Again, while these results are 

significant, TBHP is required and produces stoichiometric amounts of undesired t-butanol 

when used as a reagent in oxidation. Therefore, despite TBHP being used extensively 

within the literature, idealistically O2 from air will be used to oxidise alkanes due to its 

prompt availability. 
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1.3.3. Biocatalysts for alkane oxidation 

Although biocatalysts will not be experimentally used in the current research work, they 

will be briefly described here, as their impact and inspiration on chemical catalysts should 

be noted.91,92 Biocatalysts are catalysts based on enzymes.93 They can be split into two 

fields: isolated and whole cell.94 Isolated biocatalysts are those where the enzyme has 

been removed from the cell and catalyse a reaction, whereas whole cell involves the use 

of an enzyme still within a living cell. An enzyme’s active site is an example of where shape 

selective catalysis can occur (see section 1.4).95 They are capable of a multitude of 

chemically important reactions, from selective reactions to stereo chemical control in 

organic synthesis. For example, chiral resolution of racemic alcohols is achieved via the 

utilisation of the enzyme lipase.92,96 

Alkane hydroxylases have been studied extensively in the selective oxidation of alkanes, 

table 1.3.3.1.97–99 Cytochrome P450 is often used as inspiration for shape selective 

catalysts, it’s reaction mechanism for alkane hydroxylation is described in figure 1.3.3.1.95 

Another significant example is the use of P.Putida Alk+ which has been used in the 

oxidation of n-octane,96 where an industrial system has been developed by Mathys et al.100 

The system utilises a two-phase bioreactor and is capable of mass production of linear 

alcohols. Selective oxidation occurs as the enzymes are unable to further oxidise 1-octanol 

and only bind to terminal positions. However, to our knowledge, this system has not been 

conducted on a commercial scale. 
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Table 1.3.3.1: A summary of significant examples of alkane oxidation within the literature utilizing 

biocatalysts.  

Catalyst Substrate(s) Ref. 

P450 n-octane, n-hexane, cyclohexane, n-

butane, propane 

[101] 

Terminal Alkane Hydroxylases 

AlkB and CYP153A6 

n-octane, n-pentane, n-butane, propane, 

ethane 

[98] 

P450cam, P350-BM3 n-octane [102] 

 

Despite the potential for biocatalysts there are disadvantages to their use. When whole 

cells are used, typically a two-phase liquid system is required to avoid toxic products 

damaging the enzyme and when in vitro enzymes are used, additional cofactors are 

needed for functionality.102  

Finally, biotechnology may not be the ideal candidate to completely replace chemical 

processes in industry. Additional costs occur downstream due to low reactor productivities 

and essential separation of product from high volume reaction mixtures are required.100 

But as enzymes are adapted to a specific function, they act as a source of inspiration for 

the design of shape selective catalysts. 
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Figure 1.3.3.1: A generic mechanism of alkane oxidation with cytochrome P450. The iron centre is 

also complexed by a heme prosthetic group (not shown here). Diagram reproduced with permission 

from Bordeaux et al. copyright (2012).95 
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1.4. Shape selective catalysis 

1.4.1. Concept 

As we will use elements of shape selective catalysis to develop and design some of the 

materials discussed in this thesis, the fundamental concepts of this approach will be 

described here. Shape selective catalysis occurs when the catalyst applies a steric factor 

to limit the potential products of a substrate.103–108 These processes take inspiration from 

enzymes where only a specific active site is capable of catalysis, leading to 

complementary substrates and products to be bound.109 Typically, this is achieved in 

heterogeneous catalysts having a porous framework, or alternatively with homogenous 

catalysts with sufficiently bulky ligands shaping an active site.107,110,111  

Wright lists three important concepts that exemplify what porous solid shape selective 

catalysts are used for, summarised in figure 1.4.1.1.112 Reactant diffusion selectivity is 

where the pore size is sufficiently small enough to restrict sterically bulky molecules, 

allowing smaller molecules to diffuse in, this means only a specific group of molecules in 

a mixture will react. Product diffusion selectivity is when different sized molecules are 

exposed to the catalyst. Smaller molecules will diffuse quickly and only react to a certain 

extent, whereas bulkier molecules will take more time to pass through the pores and react 

further. Finally, transition state selectivity occurs due to the physical constraints of the 

pore. Certain transition states will sterically not be adopted compared to when bulk 

surfaces are used and therefore drive selectivity to specific products. 

Within the context of this research reactant selectivity will be developed. Instead of several 

molecules competing for an active site, several parts of a single molecule will compete for 

an active site. This is because we seek to selectively oxidise the terminal C-H bonds on 

an alkane over central positions by sterically deterring areas of the molecule from the 

active site.  
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Figure 1.4.1.1: A concept diagram to exemplify the possibilities of shape selectivity. Top: Reactant 

selectivity, Middle: Product selectivity, Bottom: Transition state selectivity. Adapted from Wright.112 

Where ‘R’ is a reactant, ‘I’ is an intermediate/ transition state and ‘P’ is a product, with their relative 

sizes in subscript. 

Not only does shape selectivity affect product distribution but can also change the 

robustness of a catalyst. Metal active sites on heterogeneous catalysts are susceptible to 

poisoning from a range of impurities, for example sulphur. Metal clusters incorporated into 

the framework of zeolites (see section 1.5.2) were found to have less activity reduction 

when exposed to a sulphur impurity, when compared to non-porous samples.113 The 

results summarised in table 1.4.1.1 demonstrate how the porous supported catalysts (with 

supports Gismondine and Analcime) prevented deactivation of metal active sites. This was 
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achieved through the steric hindrance of the sulphur impurity not being able to diffuse into 

the pores in contrast to the smaller reactant (as catalytic activity was still observed). 

However, the catalysts were deactivated to an extent, as this was due to the presence of 

exterior framework active sites which initially contributed to catalysis. 

Table 1.4.1.1: Data demonstrating how microporous platinum catalysts (GIS – Gismondine, 0.45 

nm x 0.31 nm; ANA – Analcime, 0.42 nm x 0.16 nm) suffer less in the presence of poisons 

compared to their bulk counterpart (SiO2).113  

Catalyst Activity reduction factor 

(Impurity present) 

Activity reduction 

(After impurity removal) 

(%) 

Pt/SiO2 530 100 

Pt/GIS 13 15 

Pt/ANA 7 30 

 

1.4.2. Shape selective catalysts for the oxidation of alkanes 

As mentioned previously, a significant desire for long chain linear alcohols is present within 

industry. These products must be made from the direct oxidation of only the primary 

position. Therefore, not only does the extent of alkane oxidation need to be controlled, but 

also the position of oxidation. 

1.4.2.1. Molecular sieves and zeolites used in shape-selective 

catalysis 

Zeolites are perhaps the most well-known solid materials to provide shape selectivity.114 

They have been applied to reactions such as polymerisation, acid catalysis and a range 

of organic reactions.115–117 The most relevant reaction to this research is the oxidation of 

hydrocarbons. Herron et al. showed that Fe/Pd exchanged zeolite 5A was capable of 

shape selectivity during the oxidation of hydrocarbons.109 A reaction mixture of n-octane 

and cyclohexane were reacted over zeolite 5A. The reaction mixture both inside and 
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outside the pores were compared. It was found that in the bulk reaction mixture 

cyclohexane and n-octane were activated almost equally. However, within the pores n-

octane was selectively activated ~9 times as much compared to the cyclohexane which 

was speculated to have diffusion limitations. In addition, the reaction mixture within the 

pores showed a significant increase in selectively activating the C1 position (and less with 

C3 and C4). It should be noted however this system was not practical. The reaction used a 

H2/O2 mixture and required dissolution of the zeolite in order to obtain the selectively 

oxidised materials. Tatsumi et al. showed similar results with TS-1.82 Dissolution of the 

catalyst was not required in their research. TS-1 showed higher turnover rates for n-

hexane compared to cyclic/branched analogues. Furthermore, product selectivity was 

exclusively C2 and C3 oxidation, with no C1 mentioned. It was found that these materials 

started to become less active as the reaction progressed. This was believed to be due to 

pore blockage from the products. Therefore, for the catalyst to be recycled the reaction 

must be stopped and the catalyst calcined. Perhaps it is these reasons why there is 

currently not an industrial process which uses zeolites for selective linear alkane oxidation. 

There are several examples of alternatives to zeolites that can provide shape selectivity. 

For example shape-selective capabilities of AlPO (aluminophosphates) molecular sieves 

(section 1.5.3) have been shown by Raja and Thomas.103,108,118,119  Within their work of 

linear alkane oxidation, it was found that AlPOs are capable of significant shape selectivity 

compared to that of zeolite based catalysts.119 Some results are replicated in table 

1.4.2.1.1. Specifically oxidising a C1 position over others is not a simple task. The catalysts 

were able to completely avoid oxidising C3 and C4 positions. This demonstrates the 

potential of these catalysts reducing unwanted oxidation products. 
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Table 1.4.2.1.1: Selected results from Raja and Thomas et al. on the selective oxidation of linear 

alkanes.119 

  Product distribution (mol %) 

Substrate Catalyst C1 C2 C3 C4 Other 

n-hexane CoAlPO-18 61.3 36.1 - - 2.6 

n-hexane MnAlPO-18 65.5 31.7 - - 2.8 

n-octane CoAlPO-18 60.3 30.7 6.4 - 2.5 

n-octane MnAlPO-18 62 36.3 - - 1.7 

n-octane Fe/Pd Zeolite A 21 33 26 20 - 

n-octane ω-hydroxylase 90 10 - - - 

 

MnAlPO has also been applied to n-dodecane oxidation on a 50 g scale.108 MnAlPO-18 

was shown to only produce C1 and C2 oxidised species, with no oxidation occurring on the 

C3 – C6 positions. The authors attributed the selectivity solely down to the confining nature 

of the pores. This is because several other catalysts were tested with varying pore sizes. 

Due to the dimensions of the pores in MnAlPO-18 only the C1 and C2 position could fit into 

a cavity where the active metal is present. It should be noted that the majority of the C1 

oxidised products were the carboxylic acid, with the alcohol not exceeding 10 mol% of the 

overall product distribution.  

To our knowledge, AlPOs have never been used within industry for the oxidation of linear 

alkanes. However, from the extensive publication history, it is demonstrated how sought-

after novel materials for the oxidation of linear alkanes are.  
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1.4.2.2. Metalloporphyrins  

An important class of compounds which served as inspiration for selective oxidation was 

taken from nature and thus developed technologies in metalloporphyrin catalysis.120 

Metalloporphyrins are a class of metal complexes with a sterically defined pocket of 

reactivity imposed from the porphyrin ligand that surrounds the metal.107 Although this 

research will focus on confined active sites within porous metal oxides, metalloporphyrins 

have extensive literature and success with alkane oxidation and thus will be discussed 

briefly here. 

Enzymes use two possible mechanisms when conducting oxidation. These are 

categorised into monooxygenases and dioxygenases, which provide one of the oxygen 

atoms to the substrate or both of the oxygen atoms from molecular oxygen respectively, 

both are capable of selective activation of substrates.91 Many research groups have 

intended to mimic this design and implement it into their catalysts. For example, Mansuy 

found that metalloporphyrin catalysts are capable of mimicking both monooxygenase and 

dioxygenase pathways.121 

Selective oxidation of alkanes has been achieved with the use of metalloporphyrin 

catalysts.106,107,121–123 Extensive research has been placed on these materials due to their 

biomimetic features. Suslick et al. demonstrated increased primary alcohol selectivity in 

linear C5-C14 alcohols and branched alkanes. Using iron and manganese-based catalysts, 

they demonstrated that manganese complexes had higher selectivity to alcohols than 

corresponding iron complexes. This is thought to be due to differences within their reaction 

mechanisms.  

Heterogenous metalloporphyrin catalysts have also been developed. Halma et al. 

demonstrated that their iron-based metalloporphyrins were able to be immobilised on 

macroporous supports and then were used to oxidise n-heptane.106 Remarkably, the 

supported materials showed an increase in alcohol yield compared to that of the 
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homogenous systems. The article stated that due to the added porosity of the support, the 

catalyst achieved micro-environments capable of mimicking those found in enzymes. 

Despite their clear potential, metalloporphyrins are not currently used in industry as they 

have several drawbacks. For example, the active site is made up from an organic 

precursor, which must be synthesised (and therefore adds cost and time to catalyst 

development). Furthermore, as these catalysts are based on immobilised homogenous 

catalysts, their structural rigidity lies solely on their immobilisation. Therefore, leaching is 

a common issue amongst these catalysts.124,125 For example, iron porphyrins immobilised 

on MCM-41 were shown to suffer from leaching due to a decrease in activity after multiple 

runs of testing.126  

Metalloporphyrins are nevertheless crucial for research of shape selectivity and are 

certainly inspirational for catalyst design, however, their current drawbacks of robustness 

led us to focus on other catalysts. 
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1.5. Microporous and mesoporous framework solids 

Porous materials fall into three categories: microporous (dpore < 2 nm), mesoporous (2 < 

dpore < 50 nm) and macroporous (dpore >50 nm).127 Significant research has gone into these 

materials due to their desirable characteristics applicable to catalysis. One of the most 

common examples of these materials are zeolites (porous silica/alumina based materials), 

and in a review from Corma, their unique properties were discussed:128 

1) High surface area and adsorption capacity 

2) Control over adsorption (hydrophobicity and hydrophilicity can be controlled) 

3) Generation of active sites 

4) Control over pore size 

5) Shape selectivity 

6) Resistance to physical and chemical processes 

The focus of this research is utilisation of shape selective catalysis, see section 1.4, from 

here the synthesis and development of porous frameworks will be discussed. 

Control over pore-size is a significant theme in this research. As the formation of pores 

occurs via a supramolecular-templating approach, figure 1.5.1, the pore size can be 

altered by varying the length of the organic template.115 The organic material is then 

typically removed via calcination, or in some cases acid/ solvent washing, this is known as 

soft-template synthesis (see section 1.5.1). 

 

Figure 1.5.1: A simple schematic to show how porous materials are synthesised through a 

supramolecular templating approach.115 
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A range of analytical tools have been applied to microporous framework solids. Due to the 

complexity of their structure a combination of XRPD (x-ray powder diffraction), 

porosimmetry/BET (Brunauer-Emmett-Teller) and TEM (transmission electron 

microscopy) are required for full characterization (amongst others).  

Porosimetry/physisorption provides a means to determine pore volume, pore sizes (and 

its corresponding distribution) and even pore shape.129–131 Furthermore, hysteresis loops 

can be collected via these analytical methods.132 Hysteresis loops come in six different 

characteristic shapes, which can then be matched to physical properties of that material 

(e.g. amount of external surface versus internal).133 TEM has been used to directly view 

the channels within a porous framework. For example, MCM-41 has repeating, regular 

hexagonal channels,134 which were observed via TEM.135 Knowing the magnification the 

pore diameter and length of channel can be determined.  

1.5.1. Microporous and mesoporous metal oxides 

Microporous and mesoporous metal oxides are pure metal oxides shaped into porous 

frameworks which are analogous to zeolites (section 1.5.2). A significant amount of work 

in this field was conducted by Ying.136 The synthesis of microporous niobium oxide is a 

conceptual starting point for this research. The material was synthesised via a soft-

templating approach utilising a niobium alkoxide precursor and amine template (figure 

1.5.1.1). Soft templating specifically refers to the composition of the template. ‘Soft-

templates’ are organic molecules, typically amines137,138 or other surfactants,139 which form 

micelles. This is followed by their alignment to form tubes and ultimately a porous network, 

where then the template must be removed.136 Template removal is crucial as diffusion of 

substrates in and out of the frameworks would be limited if blocked by alkyl chains. 

Alternatively, hard templating employs a pre-formed porous network (e.g. silica for 

mesoporous Fe2O3 synthesis),138 where then the inorganic precursor binds and fills the 

pores. Once the inorganic precursor has covered the surface, the hard template is then 
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removed (typically with strong acid/base).140,141 Pores can also be made through etching 

techniques142 but this usually leads to a less uniform pore size distribution. 
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Figure 1.5.1.1: A simplified diagram of microporous niobium oxide synthesis via a templating mechanism, adapted with permission from T. Sun et al.136. The 

synthesis is broken into steps; i) template (alkyl-amine) addition, ii) self-assembly, iii) condensation (under hydrothermal conditions), iv) template removal. 
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Synthesis of microporous niobium oxide achieved pore sizes of 17.7 Å – 25.1 Å.131,136 Like 

zeolites, it is possible to have control of pore size based on the organic template length.143 

The template, however, is removed through acidic washing as significant pore collapse and 

loss of surface area was found with calcination.131 Removal through acidic washing often leads 

to a decrease in the XRPD intensity of the reflections corresponding to the pores. But 

template-free porous metal oxides are obtained after the removal of the template, analogous 

to MCM-41. Table 1.5.1.1 shows a variety of authors who have reported synthesis of porous 

metal oxides and their corresponding physical pore sizes.   

Porous metal oxides have been proposed to have a range of applications. Mesoporous 

zirconia was developed for its applications in oxygen sensing;139 mesoporous tantalum oxide 

for ultra-stable ceramics;131 microporous titanium oxide for hydrogen storage;144 and 

microporous niobium oxide for numerous applications.136 Although these materials are often 

described for their ‘applications in catalysis’, to the best of our knowledge no template-assisted 

synthesised TiO2 or Nb2O5 has thus far been used as a catalyst or a support for heterogeneous 

catalysts in linear alkane oxidation. This led us to the primary focus of this research; the 

synthesis of porous materials will be replicated to provide a shape selective site for alkane 

oxidation. In fact, these metal oxides are expected to be inert and allow different crystal 

structures, thus allowing to potentially obtain cages or channels containing a dopant metal as 

highly reactive regions to selectively oxidise substrates. 
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Table 1.5.1.1: A range of microporous and mesoporous metal oxides within the literature. Synthesis is 

typically conducted via hydrothermal conditions using an organic template. 

Author Material Pore size Ref 

Antonelli Titanium oxide 25 Å [144] 

Dai et al. Titanium oxide 27 Å – 44 Å [145] 

Zhang Titanium oxide 20 Å – 50 Å [146] 

Antonelli, Nakahira 

and Ying 

Niobium oxide 22 Å – 39 Å [147] 

Tao and Ying Niobium oxide 17.7 Å - 25.5 Å and 18.4 Å (with 

additional 9.95 Å and 6.04 Å) 

[136,143] 

Antonelli Zirconium oxide 17 Å – 34 Å [139] 

Antonelli and Ying Tantalum oxide 29 Å – 43 Å [131] 

Antonelli et al. Iron oxide 18 Å – 28 Å [148] 

 

It should be noted a research group was able to synthesise porous titanium oxide without a 

template.149 Treating bulk titanium oxide with a ‘peptizing agent’ (e.g. NaOH) under 

hydrothermal conditions leads to a change in crystal structure and ultimately a porous material. 

Varying the peptizing agent led to different morphologies such as rods, nanotubes and zeolitic-

type frameworks. The mechanism of formation occurs by initial exfoliation of the bulk phase 

into sheets, where then the sheets ‘scroll’ and then form nanotubes (figure 1.5.1.2).150 

 

Figure 1.5.1.2: The mechanism of nanotube formation from the hydrothermal treatment of anatase with 

peptizing agents, reproduced with permission from A. Nakahira et al. Copyright (2010) American 

Chemical Society.150 

The synthesis provides a pathway to porous materials without having to remove the organic 

template, and thus will avoid any loss in crystallinity during the removal process.  
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1.5.2. Zeolites 

A dominating presence within the field of porous framework solids lies with zeolites.72,151–155 

Although within this research project porous metal oxides (i.e. silica and alumina-free) were 

the primary focus, zeolites were also studied due to their established utilisation in alkane 

oxidation (section 1.3). Zeolites can be synthesised in an analogous manner to porous metal 

oxides,156,157 and due to their regular shape their active sites are well understood.158 For these 

reasons, zeolites will be discussed here and throughout the research project to provide crucial 

comparisons to the success of the application of porous metal oxides in alkane oxidation.  

Zeolites are highly crystalline alumina-silica based materials. From their array of potential pore 

and channel shapes (figure 1.5.2.1) and tuneable chemical properties they have been applied 

extensively as shape selective catalysts.153 Due to their framework, the Lewis acidity differs to 

that of amorphous SiO2/Al2O3, and can be altered further through the addition of extra-

framework ions (i.e. promoters).112 This exemplifies how active sites within solid supports can 

be designed and give beneficial properties to that of the bulk material. Furthermore, pore size 

of these materials can be altered by changing their template length during their synthesis,159 

and even through surfactant-directed recrystallization of commercial zeolites.160  

Additional framework species can be added to zeolites to increase their catalytic abilities. For 

example iron has been incorporated into the structure of ZSM-5 and showed beneficial 

properties for the aromatization of hexane.161 The novelty of using zeolites is their well-defined 

channels, which provide well-defined active sites.154 Significant interest has been placed in 

characterising these active sites, as this will allow an understanding of how the metal activates 

a substrate. For example, Fe/ZSM-5 was studied through UV/Raman techniques to determine 

the coordination centre around the active iron.162 This technique allowed observation of 

adsorption bands due to bridging oxygen between the dopant metal and the framework, proof 

that isolated iron sites were present on the support. 
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Figure 1.5.2.1: A diagram to show a sample of zeolite frameworks. Left: adjacent cylindrical channels 

in a honeycomb-like structure for MCM-41.163 Middle: separated channels in H-ZSM-5.164  Right: cage 

structure in Zeolite-Y. 165 

A significant example where an ‘active site’ has been developed in a zeolite is from Thomas 

et al. based on MCM-41.166 Titanium grafted onto MCM-41 was capable of oxidations of 

cyclohexene and pinene via TBHP. The study focused on the oxidant, TBHP, and its utilisation 

during the reaction. The results showed a 95% selectivity for TBHP towards the epoxidation 

of cyclohexene, and stated the reactivity was occurring within the pores of the support at these 

active sites.  

Acid-site tuning was shown to have an influence on the hydroxylation of benzene.167  

Aluminium and iron were included into the structure of TS-1 and applied to the oxidation of 

benzene to selectively produce phenol. Al/TS-1 and Fe/TS-1 have a greater acidity than TS-

1. Both doped zeolites showed a greater selectivity towards phenol than the by-product p-

benzoquinone. This is an example of the fine tuning that can be applied to porous catalysts to 

influence the selectivity of products in a reaction mixture. 

Despite their potential zeolites may have serious issues with deactivation.168–170 Due to their 

narrow shape and relatively hydrophobic channels (if compared to their external surface, due 

to a lower presence of exposed –OH groups) it is common for organic material to become 

trapped leading to deactivation of the catalyst, this is known as coking.168 This means that the 

catalyst needs to be regenerated, typically through calcining the coked zeolite to remove any 
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organic material. In the example mentioned previously by Thomas et al., their catalyst 

completely deactivated after 90 minutes when oxidising cyclohexene.166 Although significant 

research has gone into preventing and limiting coke formation,169 this requires specific 

parameters of the pore structure, acidity and even the reactor and operating conditions, which 

may not be suitable for all substrates.   

1.5.3. Aluminophosphates 

Aluminophosphates are analogous to zeolites, but their composition is primarily AlPO4, 

sometimes AlPO4-n.171 Their advantage over the corresponding aluminosilicates is a higher 

degree of ionic character, making it more feasible to isomorphously substitute aluminium 

framework ions with dopant metals. The resulting doped materials are referred to as MeAPOs. 

Although not used within this research project, MeAPOs are promising candidates in selective 

alkane oxidation, their use in selective oxidation can be found in section 1.4.2. 

The advantage of using MeAPOs over zeolites has been reported extensively within 

literature.72,79,172,173 For example, CoAPOs were used for the oxidation of cyclohexane, the 

results are summarized in table 1.5.3.1.174 Ultimately, the CoAPO-5 was capable of higher 

conversion and did not deactivate. The catalysts were synthesised via a hydrothermal method 

where a fractional amount of aluminium precursor is replaced with cobalt salts. Examples like 

this are common in the literature and are discussed further in section 1.4.2.1. 

Table 1.5.3.1: A summary of results from cyclohexane oxidation using various cobalt catalysts, showing 

the advantages of CoAPOs.174 

Catalyst Conversion (%) Comments 

CoAPO-5 3  

Cobalt Naphthenate 0.5 Homogenous - Deactivated 

due to precipitation 

Co/Y 0 Completely inactive due to 

cobalt cluster formation 
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Synthesis with varying metal dopants in APOs have been conducted. A vast array of transition 

metal doped AlPOs exist in the literature,175 and there are even examples where multiple 

different metals have been doped into the same species (FeCoMnAPOs).172 This has 

generated a library of potential oxidising, porous and selective catalysts for alkane oxidation.  
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1.6. Supported metals for oxidation catalysis 

1.6.1. Basic principles of supported nanoparticles, nanoclusters and isolated 

atoms 

Metal nanoparticles, clusters and isolated atoms can be loaded within porous supports to 

create isolated active sites, which is a distinct feature of highly efficient catalysts like 

enzymes.113,116,129,142,154,176–178 This creates scope for the deposition onto porous metal oxides, 

mimicking examples in zeolites and AlPOs. For this reason, loading metal species onto a 

range of supports will be a significant part of this research and will be systematically discussed 

here. 

Depositing a metal on a support provides an efficient way to maximise surface area for 

heterogeneous catalysts, but importantly, can provide a means to have nanoparticles with 

catalytic behaviour different to the bulk.179 Nanoparticles are capable of chemistry different to 

that of isolated molecules and bulk material which is described by band theory.180 Because of 

the presence of quantized energy levels, their chemical properties can differ to the bulk and 

molecular phases, even ranging from a non-active to an active catalyst. Furthermore, 

nanoparticles have a high proportion of ‘bare’ atoms at the surface which means an area of 

numerous unsaturated atoms are present to react.180 

1.6.2. Nano-sized catalysts vs. bulk material 

To exemplify the potential of nanophase catalysts, key examples will be discussed here and 

compared to corresponding bulk material.  

There are numerous examples of nanoparticles behaving significantly different to their bulk 

phase but perhaps the most iconic is gold.181 This is because gold had been regarded as 

characteristically inert in its bulk phase, however, Haurta et al. showed that gold supported on 

a range of transition metal oxides is an efficient catalyst for the oxidation of both CO and H2.182 

For example, Au/α-Fe2O3 prepared via co-precipitation (see section 2.2 for preparation 

information), was found to have 100% efficiency when oxidising CO at 0 oC, in comparison to 
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that of fine gold powder which required a heat of 300 oC to reach a similar conversion value. 

It should be noted that the study tested activity from the support (i.e. with no active metal), 

these tests are crucial and discussed more in section 4.2.2 . 

Gold has also been demonstrated to be an effective catalyst for the oxidation of n-alkanes.78 

Asefa and Biradar showed that gold nanoparticles deposited onto the mesoporous support 

SBA-15 is capable of 95% hexane conversion to the corresponding 2-hexanone (92%) and 2-

hexanol (8%) at 70 oC, in the presence of TBHP. For seemingly inert materials such as alkanes 

to be activated to such a high conversion demonstrates the potential of using nanoparticles 

on supports as effective catalysts.  

Iron nanoparticles have also shown differences to their bulk counterparts when comparing 

catalytic activity.178,183,184 Beller et al. have shown that nano-γ-Fe2O3 is capable of much higher 

conversions compared to its bulk phase. The iron nanoparticles were reported to have a much 

higher conversion of benzyl alcohol to benzaldehyde. Interestingly, the research studied two 

different particle sizes and showed that the selectivity for benzaldehyde is dramatically 

affected by particle size. The selectivity dropped from 97% to 35% when using particles of 20-

50 nm and 3-5 nm respectively.  

Particle size and its effect on cyclohexane oxidation was reported by Tyo et al.185 Co3O4 

supported on Al2O3 is capable of cyclohexane oxidation. The study showed how by halving 

the particle size of Co3O4 from 12 nm to 6 nm had a significant effect on the conversion and 

selectivity, summarised in table 1.6.2.1. Similar results with varying Pt particle diameter in 

Pt/Al2O3 were found with deep oxidation of dodecane.186   
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Table 1.6.2.1: The effect of cobalt oxide particle size on turnover rates (TOR) for cyclohexane oxidative 

dehydrogenation utilising Co3O4 supported on Al2O3. Table adapted from Tyo et al.185 

 per total cobalt TORs (mol atom-1s-1) 

Particle 

size 

C6H12 

consumption 

C6H10 

formation 

C6H8 

formation 

C6H6 

formation 

CO2 

formation 

6 nm 3.68 x 10-3 1.72 x 10-3 0 1.45 x 10-4 3.71 x 10-3 

12 nm 7.14 x 10-3 4.28 x 10-4 1.88 x 10-4 2.49 x 10-4 3.4 x 10-4 

 

These results demonstrate the enhanced ability of nanoparticles when applied to catalysis and 

how selectivity of reaction products can be tuned via changing the size of the nanoparticles 

(which can be achieved with different loading techniques, see section 2.2.1). 

1.6.3. The effect of the support 

Choice of support for metal-loaded catalysts is as important as the choice of active metal.187–

191 In the principle of metal-supported catalysis, ideally the support would be inert so that any 

activity is provided only by the active metal, with the support maintaining the metal dispersed 

and avoiding its sintering. However, this does not mean the support is useless for a chemical 

reaction, they may themselves provide a step in the mechanism,192 alter the steric area around 

the active metal193 (thus providing shape selectivity,103,194 see section 1.4) or act as a 

promotor195–197 (or inhibitor).72,198 For example, Burch et al. showed how dramatic the effect of 

changing a support is when applied to the oxidation of methane.199 Two supports, zirconia and 

alumina, doped with rhodium or palladium were studied for methane and propane oxidation. 

When rhodium is loaded onto alumina and subjected to oxidising conditions, a significant 

amount of deactivation is observed, whereas when zirconia is used deactivation does not 

occur. It was speculated in the study this is due to shifting interactions between the rhodium 

and alumina at higher temperatures causing deactivation.  
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1.6.4. Leaching 

Leaching is a significant factor which must be considered when testing supported metals.200–

202 If a metal leaches into a reaction mixture, it may lead to many implications such as; 

alternative homogenous mechanisms occurring, lower conversions after repeated use and 

even safety issues if toxic heavy metals/ metal complexes have leached into the products.  

The use of supported metal oxides are wide spread and they are relatively simple to 

synthesise, however, there is the possibility of the active metal leaching into the reaction 

mixture and thus no longer being heterogeneous.200 For example, Sheldon et al. highlighted 

the importance of leaching studies. During their study on oxidation of α-pinene with a CrAPO-

5 catalyst (a porous catalyst comprised of chromium doped aluminium phosphate) they saw 

that chromium was capable of oxidation with TBHP but not with bulkier oxidising agents.201 

Although they initially suspected that the reaction was occurring within the pores, they actually 

found that reaction with TBHP led to leaching, and ultimately homogenous reactions (not 

within the pores). This example shows it is essential for rigorous leaching tests to be 

conducted as it may completely change the understanding of a mechanism, further information 

can be found in section 2.5.9. 
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1.7. Project scope and thesis development 

The ‘holy grail’ of selective alkane oxidation is the key aspect of this project. Considering the 

potential of zeolites, AlPOs and microporous materials, we were prompted to design novel 

materials for the oxidation of linear alkanes. Thus far there has been no catalyst capable of 

predominantly oxidising the primary position of linear alkanes, while selectively forming the 

alcohol. Zeolites are excellent candidates due to their robust hydrothermal stability, however, 

coking and over oxidation are significant drawbacks to their applications on industrial scales. 

AlPOs also showed great potential but over oxidation to carboxylic acids is prevalent in their 

use. Therefore, we propose microporous metal oxides with confined active sites (analogous 

to zeolites and AlPOs) may perhaps offer an alternative material to combat current drawbacks. 

These will be developed utilising a soft template approach, replicating those developed by 

Antonelli and Ying.136,144,147 However, the porous framework will also contain a small mol% 

(0.5 – 5 mol%) of dopant metal (e.g. Fe, Mn, Pd etc.). This will hopefully create sites confined 

within a porous framework analogous to the AlPOs described by Raja and Thomas,108 but with 

different environments. These environments will ideally create differences in catalytic activity 

and thus preferentially produce alcohols. 

Microporous metal oxides will be developed by following adapted literature procedures. The 

parameters for their synthesis will be adjusted in order to create a material which is robust, 

highly crystalline in the porous phase and template free. This will be characterised through a 

range of analytical techniques such as; FTIR-ATR, XRPD, Porosimmetry/BET and XPS (x-ray 

photoelectron spectroscopy).  

In addition, non-doped frameworks will be subjected to impregnation techniques so that the 

dopant metal will be a nanoparticle positioned on the framework’s surface, as opposed to 

being part of the framework. This will allow comparisons to be drawn in activity and potential 

leaching. In order to determine if the catalysts are indeed providing shape selectivity bulk 

materials will also be developed. For example, via wetness impregnation iron could be loaded 

onto bulk commercial TiO2, or onto microporous TiO2 synthesised following Antonelli’s 



56 
 

protocol.144 Then, from what we propose, iron could then be incorporated into the framework 

of TiO2 by adding dopant material during Antonelli’s described synthesis. Additionally, as 

zeolites are commercially available and the biggest rivals to this study, they too will be 

subjected to wet impregnation. This, in theory, will provide three materials; i) a metal 

nanoparticle located on a surface not confined in anyway (that is not embedded in the 

framework), ii) a metal nanoparticle sitting on a surface confined by a framework and iii) an 

active metal within a porous framework (and by definition confined). The resulting materials 

will then be applied to alkane oxidation so it can be determined; i) has shape selectivity been 

provided and ii) does this confinement/ incorporation of metal active sites lead to better 

selectivity to alcohols. Additionally, any metal/surface interactions can be resolved by 

comparisons to zeolites and between different microporous metal oxides (i.e. microporous 

TiO2 and microporous Nb2O5). 

As the production of bulk materials is significantly easier than microporous synthesis, these 

will be used for preliminary tests and benchmarks on alkane oxidation. Various parameters 

such as temperature, pressure and metal to substrate ratio will be tested with bulk material 

which is found to be active. This will allow the development of ideal conditions where the 

catalyst is most active and to determine how much conversion (if any) is from autoxidation.  

However, in order to determine the activity of a catalyst accurate quantitative analytical 

methods need to be developed. Linear alkane oxidation will potentially lead to complex 

reaction mixtures. Therefore, distinguishing these products analytically so they may be 

quantified will also be a significant part of this project, as they will provide data for structure-

activity correlation and in turn catalyst design. 1H-NMR and GC-MS (gas chromatography 

mass spectrometry) will be used to determine if all the reaction products can be quantified and 

thus, can conversion and selectivity be accurately measured. Reaction mixtures will be from 

‘ideal’ standards and ‘actual’ reaction mixtures from autoxidation/ where a catalyst has been 

used.  
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Finally, as linear alkane oxidation is a challenging task, cyclic alkane oxidation will also be 

tested. This is because activation of C-H bonds in cyclic alkanes is lower in energy and will 

allow a more straight forward proof of concept.  

The ultimate goal of this project is to develop a fully characterised microporous metal oxide 

including a dopant metal which is capable of regio and chemo selective oxidation of linear 

alkanes to the primary alcohol, compared to commercial/ non-porous analogues, as 

determined from an accurate spectroscopic method.  
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Abbreviations 

BET – Brunauer-Emmett-Teller 

COSHH – Control Of Substances Hazardous To Health 

CP – Coprecipitation 

DCM – Dichloromethane 

DMF – Dimethylformamide  

DP – Deposition Precipitation  

EDTA – Ethylenediaminetetraacetic Acid 

FTIR-ATR – Fourier Transform Infra-Red Attenuated Total Reflectance 

GC-MS – Gas Chromatography – Mass Spectrometry 

HPLC – High Performance Liquid Chromatography 

ICP-OES – Inductively Coupled Plasma – Optical Emission Spectroscopy  

IRE – Internal Reflection Element   

IWI – Incipient Wetness Impregnation  

MCM-41 – Mobil Composition of Matter #41 

NIST – National Institute of Standards and Technology 

NMR – Nuclear Magnetic Resonance  

PO2 – Pressure gauge O2 

p-TSA – para Toluene Sulphonic Acid 

SI – Sol-immobilisation  

TEM – Transmission Electron Microscopy 
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TEMPO – (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl 

TGA – Thermogravimetric Analysis 

TMS-1 – Transition metal oxide molecular sieve #1 

WI – Wetness impregnation 

XPS – X-ray Photoelectron Spectroscopy 

XRPD – X-ray Powder Diffraction  

ZSM-5 – Zeolite Socony Material #5 
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2.1. Materials 

A complete list of materials is shown below, table 2.1.1, materials used for a specific 

purpose are described under the relevant section headings.  

Table 2.1.1: A complete list of materials used thought the current work. 

Name Chemical formula Supplier Purity/ Grade/ 
Form 

(2,2,6,6-
Tetramethylpiperidin-1-

yl)oxyl, TEMPO 

C9H18NO SLS 98% 

1-decanol C10H22O Sigma-Aldrich ≥98% 

2-decanol  C10H22O Acros 98% 

2-decanone  C10H20O Aldrich 98% 

3-decanol C10H22O Alfa Aesar 97% 

3-decanone C10H20O Sigma-Aldrich ≥97% 

4-decanol  C10H22O Alfa Aesar 97+% 

1-octanol  C8H18O Merck For synthesis 

2-octanol  C8H18O Merck For synthesis 

2-octanone  C8H16O Merck For synthesis 

3-octanol  C8H18O Merck For synthesis 

3-octanone  C8H16O Aldrich >98% 

5-decanone  C10H20O Alfa Aesar 99% 

Aluminosilicate, 
mesostructured, MCM-41  

SiO2/Al2O3 Aldrich - 

Cerium (IV) oxide  CeO2 Acros 99.9%, trace 
metal basis 

Cyclooctane  C8H16 Aldrich ≥99% 

Decanal  C10H20O Alfa Aesar 96% 

Dodecylamine  C12H25N Acros 98% 

Dichloromethane, DCM CH2Cl2 Sigma HPLC grade 

Diethyl ether, Ether C4H10O Honeywell ≥99.8% 

Dimethylformamide, DMF C3H7NO VWR - 

Deuterated chloroform CDCl3 VWR 99.8% D 

Ethanol C2H6O VWR Absolute 

Gold(III) chloride trihydrate HAuCl4×3H2O Fluka ≥99% trace 
metal basis 

Hexylamine  C6H15N Acros 99% 

Hydrochloric acid  HCl VWR 35% 

Hydrogen peroxide  H2O2 Sigma ≥35%  

Iron(III) acetylacetonate  Fe(C5H7O2)3 Acros 99+% 

Iron(III) ethoxide  Fe(OEt)3 Alfa Aesar 99.6%, trace 
metal basis 

Iron(III) isopropoxide  Fe(OiPr)3 Alfa Aesar 98% 
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Iron(III) nitrate nonahydrate  Fe(NO3)3·9H2O Acros 99+% 

Iron(III) oxide powder  Fe2O3 Sigma 99.98% 

Iron(0) powder  Fe Acros 99% 

Manganese(II) methoxide  Mn(OMe)2 Alfa Aesar - 

Manganese(II) nitrate 
tetrahydrate  

Mn(NO3)2×4H2O Sigma Aldrich >97% 

Methanol CH4O Fisher HPLC grade 

Molecular sieves, titanium 
oxide based 

TiO2 Alfa Aesar 25 angstrom 
powder 

n-decane  C10H22 Acros 99% 

n-dodecane  C12H26 Fischer 
scientific 

99% 

n-octane  C8H18 Acros 99+%, extra 
pure 

NH4ZSM-5 NH4/SiO2/Al2O3 Alfa Aesar 425m2 g-1, 23:1 
SiO2:Al2O3 

Niobium(V) ethoxide  Nb(OEt)5 Alfa Aesar 99.9%, metal 
basis 

Niobium(IV) oxide  NbO2 Alfa Aesar 99+% 

Niobium(V) oxide  Nb2O5 Aldrich 99.9%, trace 
metal basis 

Niobium(V) oxide  Nb2O5 Aldrich 99.99%, trace 
metal basis 

Nitric acid  HNO3 VWR 68% 

Octanal  C8H16O Aldrich 99% 

Palladium(II) 2,4-
pentanedionate 

Pd(C5H7O2)2 Fisher - 

Palladium(II) nitrate hydrate  Pd(NO3)2×xH2O Acros 40% Pd 

para toluene sulphonic acid 
monohydrate 

C7H8O3S·H2O Sigma-Aldrich 98.50% 

Phthalic anhydride C8H4O3 Sigma-Aldrich ≥99% 

Silica, mesostructured, 
MCM-41 type 

SiO2 Aldrich - 

Silicon(IV) dioxide  SiO2 Aldrich 99.80% 

Silver(I) 2,4-pentanedionate  AgC5H7O2 Fisher - 

Silver(I) nitrate  AgNO3 Sigma Aldrich - 

Sodium hydroxide  NaOH VWR ≥98% 

Sodium iron EDTA  C10H12N2FeNa2O8×3H2

O 
BioReagent - 

Tetradecylamine  C14H29N Sigma-Aldrich 95% 

Titanium(IV) 
(triethanolaminato)isopropoxi

de solution  

C9H19NO4Ti Sigma-Aldrich TYZOR ® TE 
organic titanate 

Titanium butoxide (IV)  Ti(OnBu)4 Aldrich 97% 

Titanium (IV) ethoxide Ti(OEt)4 Aldrich Technical grade 

Titanium (IV) isopropoxide  Ti(OiPr)4 Aldrich 99.999% trace 
metal basis 

Titanium(IV) oxide  TiO2 Acros Aeroxide ®, p-
25 
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Titanium(IV) oxide  TiO2 Aldrich Anatase, 99.8% 
trace metals 

basis 

Titanium(IV) oxide  TiO2 Aldrich Rutile, ≥99.9% 
trace metals 

basis 

Toluene C7H8 Sigma HPLC grade 

Triethylamine N(C2H5)3 Sigma-Aldrich ≥99.5% 

Zeolite 13X  - Acros Molecular 
sieves 
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2.1.1. For bulk catalyst synthesis 

All materials used for bulk catalyst preparation are as follows: Iron(III) nitrate nonahydrate 

(Fe(NO3)39H2O, 99+%, Acros), Manganese(II) nitrate tetrahydrate (Mn(NO3)24H2O, >97%, 

Sigma Aldrich), Palladium(II) nitrate hydrate (Pd(NO3)2xH2O, 40% Pd, Acros), Gold(III) 

chloride trihydrate (HAuCl43H2O, ≥99% trace metal basis, Fluka), Silver(I) nitrate (AgNO3, 

Sigma Aldrich), Sodium iron EDTA (C10H12N2FeNa2O83H2O, BioReagent), Titanium(IV) oxide 

(TiO2, aeroxide ®, p-25, Acros), Titanium(IV) oxide (TiO2, anatase, 99.8% trace metals basis, 

Aldrich), Titanium(IV) oxide (TiO2, rutile, ≥99.9% trace metals basis, Aldrich), Molecular 

sieves, titanium oxide based, 25 angstrom powder (TiO2, Alfa Aesar), Silica, mesostructured, 

MCM-41 type (SiO2, Aldrich), Aluminosilicate, mesostructured, MCM-41 (SiO2/Al2O3, Aldrich), 

NH4ZSM-5 (425m2 g-1, 23:1 SiO2:Al2O3, Alfa Aesar), Zeolite 13X (Molecular sieves, Acros), 

Cerium (IV) oxide (CeO2, 99.9%, trace metal basis, Acros), Silicon(IV) dioxide (SiO2, 99.8%, 

Aldrich), Niobium(IV) oxide (NbO2, 99+%, Alfa Aesar), Niobium(V) oxide (Nb2O5, 99.9%, trace 

metal basis, Aldrich), Niobium(V) oxide (Nb2O5, 99.99%, trace metal basis, Aldrich), Iron(0) 

powder (99%, Acros), Iron(III) oxide powder (Fe2O3, 99.98%, Sigma).  

Ovens used are: Genlab Mino 30/F/DIG for the initial drying of catalysts, Carbolite CWF 11/14 

for calcination under static air and Carbolite MTF 12/38/250 for hydrogenation, all ovens were 

fitted with a Eurotherm temperature control. 

Hydrogenation was conducted in the Carbolite MTF 12/38/250 furnace fitted with a quartz liner 

using Hydrogen 5%, Nitrogen 95% (H2/N2, v/v%, BOC). 

2.1.2. For microporous synthesis 

All materials used for microporous TiO2 and microporous Nb2O5 synthesis are as follows: 

Titanium (IV) isopropoxide (Ti(OiPr)4, 99.999% trace metal basis, Aldrich), Titanium (IV) 

ethoxide (Ti(OEt)4, technical grade, Aldrich), Titanium butoxide (IV) (Ti(OnBu)4, 97%, Aldrich), 

Titanium(IV) (triethanolaminato)isopropoxide solution (C9H19NO4Ti, TYZOR ® TE organic 

titanate, Sigma-Aldrich), Titanium(IV) oxide (TiO2, anatase, 99.8% trace metals basis, Aldrich) 
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Niobium(V) ethoxide (Nb(OEt)5, 99.9%, metal basis, Alfa Aesar) Iron(III) ethoxide (Fe(OEt)3, 

99.6%, trace metal basis, Alfa Aesar), Iron(III) isopropoxide (Fe(OiPr)3, 98%, Alfa Aesar), 

Iron(III) acetylacetonate (Fe(C5H7O2)3, 99+%, Acros) Manganese(II) methoxide (Mn(OMe)2, 

Alfa Aesar), Silver(I) 2,4-pentanedionate (AgC5H7O2, Fisher), Palladium(II) 2,4-

pentanedionate (Pd(C5H7O2)2, Fisher), Hexylamine (C6H15N, 99%, Acros), Dodecylamine 

(C12H25N, 98%, Acros), Tetradecylamine (C14H29N, 95%, Sigma-Aldrich), Hydrochloric acid 

(HCl, 35%, VWR), Sodium hydroxide (NaOH, ≥98%, VWR), Methanol (CH4O, HPLC grade, 

Fisher), Ethanol (C2H6O, absolute, VWR), Diethylether (C4H10O, Ether, ≥99.8%, Honeywell). 

2.1.3. For template removal 

Nitric acid 68% (HNO3, VWR), para toluene sulphonic acid monohydrate (C7H8O3S·H2O, p-

TSA.H2O, 98.5%, ACS Sigma-Aldrich), Hydrogen peroxide ≥35% (H2O2, Sigma), Phthalic 

anhydride (C8H4O3 ≥99%, Sigma-Aldrich) Dimethylformamide (C3H7NO, DMF, VWR), 

Triethylamine (N(C2H5)3, ≥99.5%, Sigma-Aldrich), Hydrochloric acid (HCl, 35%, VWR). 

Calcinations were conducted in a Carbolite CWF 11/14 oven fitted with a eurotherm 

temperature control.  

2.1.4. For catalytic tests and calibration of equipment  

All materials used during catalytic tests are as follows: n-octane (C8H18, 99+%, extra pure, 

Acros), 1-octanol (C8H18O, for synthesis, Merck), 2-octanol (C8H18O, for synthesis, Merck), 3-

octanol (C8H18O, for synthesis, Merck), Octanal (C8H16O, 99%, Aldrich), 2-octanone (C8H16O, 

for synthesis, Merck), 3-octanone (C8H16O, >98%, Aldrich), n-decane (C10H22, 99%, Acros), 1-

decanol (C10H22O, ≥98%, Sigma-Aldrich), 2-decanol (C10H22O, 98%, Acros), 3-decanol 

(C10H22O, 97%, Alfa Aesar), 4-decanol (C10H22O, 97+%, Alfa Aesar), Decanal (C10H20O, 96%, 

Alfa Aesar), 2-decanone (C10H20O, 98%, Aldrich), 3-decanone (C10H20O, ≥97%, Sigma-

Aldrich), 5-decanone (C10H20O, 99%, Alfa Aesar), n-dodecane (C12H26, 99%, Fischer 

scientific), Cyclooctane (C8H16, ≥99%, Aldrich) Dichloromethane (CH2Cl2, DCM, HPLC grade, 
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Sigma), Toluene (C7H8, HPLC grade, Sigma) (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl, 

(TEMPO, C9H18NO, 98%, SLS), Deuterated chloroform (CDCl3, 99.8% D, VWR). 

2.2. Synthesis 

2.2.1. Supported metals and metal oxides – working principles of deposition 

methods    

How a metal is doped onto a support may affect its catalytic activity.1 Three main methods will 

be discussed: wetness impregnation (WI), precipitation (coprecipitation, CP and deposition-

precipitation, DP) and sol-immobilisation (SI). A schematic summary of these techniques is 

shown in figure 2.2.1.1.1–8 Microscopy images from a study of Pd/ZnO catalysts prepared by 

WI and Sol-immobilisation are shown side-by-side, figure 2.2.1.2,9 demonstrating the potential 

differences in particle size and distribution when different preparation methods are used. 

 

Figure 2.2.1.1 A brief summary of each of the three main deposition techniques for the preparation of 

metals or metal oxides on a support.1–8  
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Figure 2.2.1.2: Transmission electron microscopy (TEM) images and corresponding particle size 

distribution of Pd/ZnO (1 wt% Pd) catalysts prepared by WI (left) and SI (right). (a) samples dried after 

synthesis at 120 oC, (b) samples annealed under hydrogen at 550 oC. Reproduced under a creative 

commons licence from Bahruji et al.9 

 

2.2.1.1. Wetness impregnation 

Wetness impregnation (WI) involves dissolving a metal precursor (e.g. a metal nitrate) in a 

solvent (typically water, or ethanol).10 The support (e.g. metal oxide, silica) is then added (with 

its amount varying on desired metal loading) to this solution often to form a slurry and the 

solvent is slowly dried through gentle heating below its boiling point. This leads to the metal 

precursor being dispersed across the support. The material is then often calcined to convert 

the precursor to the desired metal/ metal oxide (and reduced afterwards if required), figure 

2.2.1.1.1. 

A variant to this protocol is the ‘incipient wetness impregnation’ (IWI). This is where the 

solution’s volume is equal to the pore volume of the support, this promotes the dopant metal 

to be deposited only within the pores of a support as opposed to the exterior.11 IWI is often 
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preferred in industry because of a minimal requirement in the use of the solvent and as this 

promotes the nearly entire deposition of the metal into the support thus minimizing waste 

(especially in the case of precious metal deposition). 

 

 

 

 

Figure 2.2.1.1.1: A schematic diagram to show the steps involved during wetness impregnation and 

composition of the dopant/support during some of the steps. Figure adapted from L.Sun et al. with 

permission.12 

The incipient wetness protocol was shown to create active catalysts for the oxidation of 

alkanes. Iron oxide was dispersed on silica by using this method. These catalysts were 

capable of the oxidation of adamantane using hydrogen peroxide as an oxidant.13 

Interestingly, the study compared the use of Fe(NO3)3 to FeEDTA as the metal salt precursor 

during the synthesis. It was found that using FeEDTA gave rise to ‘single-sites’ of iron due to 

much more dispersed material. The initial rate of the FeEDTA samples were significantly 

higher than those prepared by Fe(NO3)3 and is thought to be due to undercoordinated iron 

only found in small clusters. The study aptly illustrates how different nanomaterials may 

behave depending on their size and dispersion. Within this research we focused on wetness 

impregnation as the primary technique for loading metal oxides upon supports. We chose this 

method as it is easy to conduct practically and preliminary data of n-decane oxidation with 

Fe/TiO2 gave sufficient conversion (~5%). Other loading techniques will be briefly mentioned 

here to demonstrate the possibilities and differences in the synthesis of loaded metal oxides.  

2.2.1.2. Deposition-precipitation 

This method is similar to that of wetness-impregnation, however, instead of drying the metal 

salt solution (leading to deposition) the pH of the solution is adjusted (this is typically done 
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with either sodium hydroxide or urea) until precipitation of the metal hydroxide occurs, thus 

depositing it onto the support.10 Unlike wetness impregnation, control on the properties of the 

final material are possible from varying pH of solution and duration of the precipitation process, 

however, the overall process is more complex.14–16 A summary of this process is shown in 

figure 2.2.1.2.1. 

 

Figure 2.2.1.2.1: A schematic diagram to show the steps involved during deposition-precipitation and 

composition of the dopant/support during some of the steps.15 

Catalysts prepared from deposition precipitation have been applied to alkane oxidation. For 

example, Xu et al. showed that gold deposited onto TiO2/SiO2 via deposition-precipitation is 

capable of cyclohexane oxidation. Conversions of 8 – 9% were observed for the oxidation of 

cyclohexane.17 Deposition-precipitation is an efficient method to achieve a smaller particle size 

distribution, but often leads to a lower metal loading as part of the metal remains in solution in 

the form of soluble non stoichiometric hydroxides.18 

This method was trialled but did not yield significant conversion and was thus not pursued.  

2.2.1.3. Coprecipitation 

Coprecipitation involves dissolving a metal precursor into solution, where then a support 

precursor (the co-precipitate) is also added. Another solution is then added (e.g. sodium 

hydroxide) to form a precipitate of both the support and dopant metal, thus dispersing the 

dopant metal across the support. Any by-product is then washed away from the catalyst, 
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where then the catalyst may be calcined/reduced.19–22 This method is summarised in figure 

2.2.1.3.1. 

 

Figure 2.2.1.3.1: A schematic diagram to show the steps involved during coprecipitation and 

composition of the dopant/support during some of the steps.19–21 

This method may lead to significant dispersion of the dopant metal, however, the presence of 

the dopant metal during the support’s formation may hinder its growth, leading to less 

desirable properties.10 This method was not used in this research, but for completeness it is 

mentioned here.  

2.2.1.4. Sol-immobilisation 

Sol-immobilisation is a technique where a metal nanoparticle is formed in situ, utilising ligands 

such as long-chain thiols.23 A support is then added and the solvent is removed.24 The main 

advantage of sol-immobilisation over other techniques is typically a narrower particle size 

distribution exists in the final product as the particles are formed as colloids prior to 

calcination.9,25–27 This is summarised in figure 2.2.1.4.1. It is a technique often used to optimise 

pre-existing catalysts for a more uniform distribution.28  
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Figure 2.2.1.4.1: A schematic diagram to show the steps involved during sol-immobilisation and 

composition of the dopant/support during some of the steps.29,30 

Catalysts prepared through sol-immobilisation are therefore very common within the literature. 

For example, benzyl alcohol and CO can be oxidised using Au/MnO2 prepared via sol-

immobilisation. All methods mentioned thus far may lead to varying activity. This was shown 

in catalysts prepared by sol-immobilisation which gave the highest catalytic activity for benzyl 

alcohol conversion, whereas catalysts prepared via deposition-precipitation were best for CO 

oxidation.1 As for catalysts used in alkane oxidation prepared via sol-immobilisation there are 

some significant examples. G. Hutchings has studied Au, Pd and Pt based catalysts where 

the metals are loaded onto a support (activated carbon, titania) via sol-immobilisation and their 

application to the oxidation of alkanes.7,8,31 The use of gold and palladium alkane oxidation 

catalysts gave scope for their use within this project. Similar to coprecipitation, this method 

was not conducted in this research, however, due to its significance in the literature, it is 

mentioned here. 

2.2.2. Supported metal oxides – actual preparation procedure(s) 

2.2.2.1. Wetness impregnation 

Catalysts were prepared via wet impregnation. Here the preparation of the most extensively 

used catalyst in this research, Fe/TiO2 1 wt%, is described. Fe(NO3)39H2O (0.145 g, 3.58.10-

4 mol) was dissolved in distilled water (20 mL) followed by the addition of the support, TiO2 

(1.98 g). The mixture was then stirred at 80 oC in a 250 mL beaker. The water evaporated 

slowly leaving a damp orange solid, which was then further dried at 120 oC in a Genlab Mino 



87 
 

30/F/DIG for 16 h. The resulting material was then calcined (680 oC, 10 oC min-1) in a Carbolite 

CWF 11/14 under static air. This procedure was identical across all other dopant metals (Mn, 

Pd, Ag, Au) and supports (Nb2O5, ZSM-5, MCM-41 etc.) used, with varying amounts so a 

desired wt% is obtained. Furthermore, varying calcination conditions (250 oC – 680 oC) and 

solvent (ethanol) were also trialled.  

2.2.2.2. Hydrogenation 

In a typical hydrogenation a sample (0.200 – 0.500g) was placed in a calcination boat, 

positioned in the centre of the tubular furnace lined with a quartz tube, this was then purged 

with nitrogen (1 bar, 100 mL min−1, 10 min), followed by setting a flow of 5% H2/N2 (2 bar, 20 

mL min-1) and heated at the designated temperature (10 oC min-1 ramp) for 30 min. 

2.2.3. Microporous materials 

Microporous metal oxides were synthesised utilising hydrothermal techniques. Microporous 

TiO2 and microporous Nb2O5 are formed when a surfactant and metal alkoxide are mixed – 

with the surfactant displacing the alkoxide ligand. After the addition of water, the metal-

surfactant complexes form micelles which align to form tubes. These tubes are then compiled 

from the pressure during the hydrothermal step to form a porous array of nanotubes (more 

information in section 1.5.1 and in the literature).32 The synthesis protocol of soft-templating 

synthesis via hydrothermal methods is summarised in figure 2.2.3.1. The advantages with this 

kind of synthesis is the ability to change the parameters (autoclave temperature, autoclave 

duration, template alkyl chain length) to fine tune the properties of the final material,32,33 

however, the material must have the organic template removed which may affect porosity.34 

An alternative synthesis via peptization of bulk anatase was also conducted, see sections 

1.5.1 and 2.2.4.4.35 
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Figure 2.2.3.1: A general overview of microporous synthesis of porous metal oxides via a soft-templating approach, based on the literature sources used within 

this work.32,33,36–38 
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2.2.4. Microporous titanium oxide 

The synthesis of microporous titanium oxide was conducted several times during this 

research. Multiple modifications were made such as: autoclave step duration, autoclave 

temperature, titanium precursor and the presence of dopant metals. Therefore, specific 

examples are listed here, but are subject to differences in parameters where stated in the 

results section 5.2. 

2.2.4.1. Antonelli’s protocol 

The synthesis is based on an adapted method from Antonelli et al.37 

Mesoporous titanium oxide 

Hexylamine (0.823 mL, 6.26 mmol), was stirred between 40 – 50 oC followed by the addition 

of titanium(IV) isopropoxide in a 1:2 molar ration with respect to the template (3.71 mL, 12.5 

mmol) and continued to stir for 10 min, forming a clear homogenous solution. Distilled water 

(17.8 mL) was then added, instantly forming a white precipitate. 35% HCl (0.054 mL, 0.63 

mmol) was then added; the white precipitate was then crushed with a spatula and stirred 

gently, then left without agitation overnight. The mixture was then placed in a Teflon lined 

autoclave and heated at a designated temperature (60 oC – 120 oC) for 96 h. The resulting 

mixture was then filtered under vacuum, washed with water (3 x 50 mL), ethanol (3 x 50 mL) 

and then ether (3 x 50 mL). The remaining white solid was then dried in a vacuum desiccator 

for at least 2 days (48 h). 

Note: For 1:1 hexylamine to titanium isopropoxide tests; tests where autoclave 

time/temperature were varied in the ranges 4-14 days/ 80 oC – 110 oC; and different titanium 

precursors were used, all other parameters were kept the same. 

Mesoporous M/TiO2  

Hexylamine (0.823 mL, 6.26 mmol), was stirred between 40 – 50 oC followed by the addition 

of dopant metal precursor (2 mol%). To the solution titanium(IV) isopropoxide (3.51 mL, 12.3 
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mmol) was added and continued to stir for 10 min, forming a homogenous solution. Distilled 

water (17.8 mL) was then added, instantly forming a precipitate. 35% HCl (0.054 mL, 0.63 

mmol) was then added; the precipitate was then broken up with a spatula and stirred gently 

then left without agitation overnight. The precipitate was then placed in a Teflon lined 

autoclave and heated at 80 oC for 96 h. The resulting mixture was then filtered under vacuum, 

washed with water (3 x 50 mL), ethanol (3 x 50 mL) and then ether (3 x 50 mL). The remaining 

solid was then dried in a vacuum desiccator for at least 2 days. 

Note: The initial stirring temperature and time were varied (30 – 60 oC, 30 min – 2 h) in order 

to dissolve sparingly soluble precursors.  

2.2.4.2. Dai’s protocol 

The synthesis is based on an adapted method from Dai et al.33 Dai’s protocol differed to 

Antonelli’s reported here as a titanium ethoxide precursor is used instead of titanium 

isopropoxide. Furthermore, during the hydrolysis step where water is added in Antonelli’s 

protocol, Dai’s protocol differs as it uses an ethanol/water mixture (ethanol being a co-solvent) 

during the hydrolysis step. The time and temperature of the autoclave step was kept the same. 

Hexylamine (0.823 mL, 6.26 mmol), was stirred between 40 – 50 oC followed by the addition 

of titanium(IV) ethoxide (2.63 mL, 12.5 mol) and continued to stir for 10 min, forming a clear 

homogenous solution. An ethanol (3.95 mL)/distilled water (11.9 mL) solution was then added, 

instantly forming a white precipitate. The white precipitate was then broken up with a spatula 

and stirred gently, then left without agitation overnight. The mixture was then placed in a Teflon 

lined autoclave and heated at 80 oC for 96 h. The resulting mixture was then filtered under 

vacuum, washed with water (3 x 50 mL), ethanol (3 x 50 mL) and then ether (3 x 50 mL). The 

remaining white solid was then dried in a vacuum desiccator for at least 2 days. 

2.2.4.3. Zhang’s protocol 

The synthesis is based on a method reported by Zhang.38 Zhang’s protocol differs from 

Antonelli’s and Dai’s synthesis as it uses dodecylamine as the organic template, which is 
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longer than the hexylamine used in the other protocols. However, the key difference is Zhang’s 

protocol reported no autoclave step, which is thought to be key in micelle formation (see 

section 1.5). Similar to Dai’s protocol, Zhang’s protocol also features an ethanol/water mixture 

for the hydrolysis step and similarly to Antonelli’s protocol uses a titanium isopropoxide 

precursor.  

Dodecylamine (0.703 g, 3.791 mmol), was dissolved in a 1:1 ethanol/water solution (14.1 mL) 

and stirred. To this solution, titanium(IV) isopropoxide (3.71 mL, 12.5 mmol) was added 

dropwise and continued to stir. The mixture was then left for 24 h, followed by filtration and 

solvent washes; H2O (2 x 50 mL), ethanol (2 x 50 mL) ether (2 x 50 mL). 

Note: An additional synthesis was conducted with an autoclave step (80 oC, 96 h) after the 24 

h wait step. All other parameters were the same. 

2.2.4.4. Peptization 

This synthesis is based on a method reported by Lee et al.35 The premise of this synthesis is 

marginally different to microporous synthesis mentioned thus far. Peptization causes changes 

in a pre-existing crystal structure via a peptizing agent reforming the morphology, and in this 

case, to a porous material. Figure 2.2.4.4.1 shows the proposed mechanism of how 

peptization can convert a bulk material into a porous one, see section (1.5.1). The 

disadvantage with this synthesis is the less discrete control and less variable parameters 

present with soft-templating approaches.  

 

 

Figure 2.2.4.4.1: A schematic to show the steps involved during peptization under autoclave conditions. 

Adapted with permission from A. Nakahira et al. Copyright (2010) American Chemical Society.39 In this 

example TiO2 (anatase) is converted to microtubes via i) exfoliation and then ii) ‘scrolling’. 

i) ii) 
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The synthesis we performed is as follows, from Lee et al.:35  

To a Teflon lined autoclave NaOH solution (10 M, 20 mL) was added, followed by the addition 

of TiO2, anatase (2.00 g) with a magnetic stirrer bar. The autoclave was then heated to 120 

oC on a calibrated hotplate with stirring for 3 days. The resulting white paste was then washed 

with water (20 x 50 mL) and dried in a vacuum oven at 60 oC for 48 h. 

2.2.5. Microporous niobium oxide 

2.2.5.1. Ying’s protocol 

This synthesis is based on a method reported by Tao and Ying.32 

Microporous Nb2O5 

A 1:1 acetone-ice bath had a round bottom flask added to it. To the round bottom flask, 

hexylamine (1.03 mL, 7.81 mmol) was added, followed quickly by Nb(OEt)5 (1.96 mL, 7.79 

mmol), which was then stirred for 30 mins. After raising the flask from the ice bath, H2O (34 g) 

was then added dropwise initially until a white suspension was made, followed by the rest of 

the water which was then stirred for 1 h. The mixture was then placed in a Teflon lined 

autoclave, heated to 180 oC (10 oC min-1 ramp) , and then held at 180 oC for 10 days. The 

resulting cream/yellow suspension was then separated from the crude mother liqueur (some 

of which retained for Nuclear magnetic resonance – NMR, gas chromatography-mass 

spectrometry – GC-MS and Inductively coupled plasma-optical emission spectroscopy – ICP-

OES analysis) then the solid was washed with water (3 x 50 mL), ethanol (3 x 50 mL) and 

ether (3 x 50 mL). The solid was then dried at 120 oC for 16 h, yielding a cream/yellow solid.  

Microporous Fe/Nb2O5 

A 1:1 acetone-ice bath had a round bottom flask added to it. To the round bottom flask, 

hexylamine (1.03 mL, 7.81 mmol) was added, followed quickly by Fe(OEt)3 (0.147 g, 7.70 

mmol) and Nb(OEt)5 (1.90 mL, 7.53 mmol), which was then stirred for 30 mins. The flask was 

then raised from the ice bath and stirred at room temperature for 30 mins, followed by heating 
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and stirring in an oil bath at 60 oC for 30 mins to give a dark brown solution. H2O (34 g) was 

then added dropwise initially until a white suspension was made, followed by the rest of the 

water which was then stirred for 1 h. The mixture was then placed in a Teflon lined autoclave, 

heated to 180 oC (10 oC min-1 ramp), and then held at 180 oC for 10 days. The resulting brown 

suspension was then separated from the crude mother liqueur (some of which retained for 

NMR and ICP-OES analysis) then the solid was washed with water (3 x 50 mL), ethanol (3 x 

50 mL) and ether (3 x 50 mL). The solid was then dried at 120 oC for 16 h, yielding a brown 

solid.  

2.2.5.2. Antonelli’s protocol 

This synthesis is based on a method reported by Antonelli and Ying.40 The difference to Tao 

and Ying’s protocol is a solvent, ethanol; and a longer organic template, tetradecylamine, are 

used in Antonelli’s protocol. Furthermore, autoclave steps are used as opposed to a single 

temperature and time during the reaction mixture’s duration in the autoclave.  

Nb(OEt)5 (5.00 g, 15.7 mmol) in ethanol (15 mL) had tetradecylamine (1.68g, 7.87 mmol) 

added to it and stirred for 1 h at 40 oC. H2O (15 mL) was then added to create a cream 

precipitate, which was left overnight. The mixture was then added to a Teflon lined autoclave, 

where it was heated to 80 oC (24 h), 100 oC (24 h) and then 180 oC (7 days). The mixture 

became yellow with a white suspension, this was filtered and washed with water (3 x 50 mL), 

ethanol (3 x 50 mL) and ether (3 x 50 mL). The remaining white solid was then dried under 

vacuum at 80 oC. 
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2.3. Template removal 

2.3.1. Microporous titanium oxide 

The synthesis of microporous titanium oxide in this project required an organic template. 

Because the pores are required to be free of the template used in the synthesis for catalysis 

purposes, removal of the template was then conducted with a variety of methods. 

2.3.1.1. Calcination 

Typically, a sample of microporous titanium oxide (0.2 – 0.5 g), was placed in a static air or a 

dynamic tubular furnace and heated to a designated temperature (e.g. 250 oC – 550 oC) at 1-

10 oC min-1. Tests were conducted from no dwell times to 4 h. 

2.3.1.2. Solvent washes 

Typically, microporous TiO2 (0.2 – 0.5 g) was refluxed with chosen solvent (e.g. ethanol, ether 

~ 20 - 50 mL) and stirred vigorously for 1 h at just below the solvent’s boiling point. The sample 

was then washed with the chosen solvent several times and then the reflux and wash steps 

were repeated if required. The sample was then dried for at least 2 days in a vacuum 

desiccator.  

2.3.1.3. Acidic washes 

2.3.1.3.1. HNO3 

Initial acid washes 

Microporous TiO2 (0.100 g) had nitric acid (100 mL, 0.626 mmol, pH 2.2) added to it and stirred 

for 1 h. The resulting solid was washed with water (3 x 50 mL) followed by ethanol (3 x 50 mL) 

and dried in a vacuum desiccator. 

With indicator and pH-meter 

Microporous TiO2 (0.200 g) was added to distilled water (30 mL) and stirred vigorously. If a 

pH probe was being used, this was calibrated and placed into solution where pH was recorded. 
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An indicator was then added (e.g. methyl orange, 0.01% vol, approx. 100 μL) to give a 

coloured/colourless suspension. To this a stock solution of HNO3 (0.063 moldm-3, pH 1.20) 

was added dropwise until a colour change was observed/ desired pH was reached. The 

suspension was then filtered under Buchner filtration, washed with distilled water (4 x 50 mL), 

ethanol (2 x 50 mL) and then distilled water again (2 x 50 mL). The powder was then dried for 

at least 2 days in a vacuum desiccator.  

To determine pH curves, the procedure above was conducted, but until pH did not change 

after addition of acid.  

2.3.1.3.2. p-TSA 

Microporous TiO2 (0.100 g) had aqueous p-TSA (varied moles, see section 5.2.6.2) or p-TSA 

dissolved in acetonitrile (0.626 mmol, pH 2.2 to pH 5.35) added to it and stirred for a given 

time (1 h to 24 h). The mixture was then filtered via Buchner filtration, washed with water (3 x 

50 mL) and then ethanol (3 x 50 mL) and dried under vacuum.  

2.3.1.4. Alternatives to acids 

2.3.1.4.1. H2O2 

Method adapted from Kidwai and Bhardwaj41 in combination with methods and scale factors 

from Gee and Williamson42 considered. Microporous TiO2 (0.200 g) had hydrogen peroxide 

30% (11 mL) added to it and stirred vigorously at a set temperature (40 oC to 108 oC) under 

reflux apparatus for 24 h. This was then washed with distilled water (2 x 50 mL), and then 

ethanol (2 x 50 mL). For samples where another wash was conducted, the sample was then 

immediately washed with water again (2 x 50 mL) and then the procedure was repeated. Once 

washing was complete, the sample was then dried in a vacuum desiccator for at least 2 days. 
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2.3.1.4.2. Phthalic anhydride  

Phthalic anhydride (0.186 g, 1.26 mmol) and triethylamine (2 μL) were dissolved in DMF (25 

mL). To this, microporous TiO2 (0.200 g) was added and stirred overnight. The suspension 

was then filtered under vacuum and washed with acetone (2 x 50 mL) and ether (2 x 50 mL). 

The remaining pale-yellow solid was then dried in a vacuum desiccator for at least 48 h.  

2.3.2. Microporous niobium oxide (and microporous Fe/Nb2O5) 

2.3.2.1. Acidic washes 

Ying and Tao – p-TSA 

Microporous Nb2O5 (0.250 g) had methanolic p-TSA or aqueous p-TSA (0.1 mmol - 1 mmol 

amount also dependent on pH required) added to it and stirred at room temperature for 24 h. 

The mixture was then filtered via Buchner filtration, washed with water (3 x 50 mL) and then 

ethanol (3 x 50 mL) and dried under vacuum.  

Ying and Tao – HNO3 

Microporous Nb2O5 (0.200 g) was placed in water (30 mL), where a calibrated pH probe was 

submerged. HNO3 (0.0314 M) solution was added dropwise until pH 4 was reached. The pH 

was allowed to stabilise with each addition, until pH 4 was consistent. Once the desired pH 

was consistent, the solution was stirred for 10 minutes. The mixture was then filtered under 

vacuum and washed with water (2 x 50 mL), ethanol (2 x 50 mL) and then ether (2 x 50 mL). 

The solid was then dried in a vacuum desiccator for at least 48 h.  

Note: An initial test was conducted where HNO3 was added to the microporous niobium oxide 

suspension until the pH no longer changed in order to generate a pH curve. 

Antonelli – HNO3 

Microporous Nb2O5 (0.500 g) was added to an ethanolic solution of nitric acid (pH 1.67) and 

stirred for 1 h. The solid was then filtered under vacuum and washed with water (3 x 50 mL), 
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ethanol (3 x 50 mL) and ether (3 x 50 mL). The solid was then dried in a vacuum desiccator 

for at least 48 h. 

2.3.2.2. Phthalic anhydride  

Phthalic anhydride (0.3274 g, 2.211 mmol) and triethylamine (4 μL) were dissolved in DMF 

(25 mL). To this, microporous (Fe/)Nb2O5 (0.500 g) was added and stirred overnight. The 

suspension was then filtered under vacuum and washed with acetone (2 x 50 mL) and ether 

(2 x 50 mL). The remaining pale-yellow solid was then dried in a vacuum desiccator for at least 

48 h.  
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2.4. Catalytic tests 

It should be noted here that safety considerations were paramount due to the characteristic 

flammable nature of hydrocarbons, for example the lower flammability limit of n-decane is as 

low as 2.1% in air under atmospheric conditions.43 In order to operate safety, strict 

development of COSHH forms, risk assessment and standard operating procedure was 

conducted throughout the work reported here. When handling alkanes at high temperatures 

and under pressurised oxygen, care must always be given to ensure the risk of release of an 

alkane onto a hot surface is as low as possible. Furthermore, by conducting catalysis with 

relatively low volumes of substrate (i.e. < 5 mL) the risk of significant combustion from a large 

volume of substrate was also mitigated.  

2.4.1. n-decane  

2.4.1.1. Atmospheric tests 

In a typical reaction, n-decane (3 mL, 15.4 mmol) in a round bottom flask with reflux apparatus 

had a catalyst (mass adjusted for loading to a specific metal to substrate ratio) added to it and 

heated to a given temperature while stirring, using a Radleys Starfish reactor set-up. The 

reaction mixture was stirred at the temperature for 24 h, and then allowed to cool. The mixture 

was then centrifuged to separate the solid catalyst. The separated supernatant solution was 

then used for analysis. 

2.4.1.2. Pressurised tests 

In a typical reaction n-decane (3 mL, 15.4 mmol), in a screw capped pressure resistant round 

bottom flask (ACE flask) fitted with a glass insert bubbler (ACE tube), had a catalyst (mass 

adjusted for loading) added to it. The mixture was then stirred under oxygen (PO2 0.5 bar, 

where P is the pressure as read from the pressure gauge, in this case on an oxygen cylinder) 

for 5 minutes and then purged, this was repeated with increasing the pressure PO2 0.5 bar a 

time until the designated pressure was met (note: for lower pressures, these steps were 

repeated twice so the number of washes remained constant across tests). The reaction 
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mixture was then heated to a given temperature while stirring by using a Radleys Starfish 

reactor set-up. The reaction mixture was stirred at the temperature for 24 h, and then allowed 

to cool. The mixture was then centrifuged to separate the solid catalyst. The resulting solution 

was then used for analysis. 

2.4.2. Cyclooctane 

The procedure for cyclooctane oxidation tests was identical to that of n-decane, however, 

cyclooctane (3 mL, 22.3 mmol) was used with a set pressure of PO2 2 bar. The temperature 

used for all cyclooctane tests was 110 oC. All reaction mixture analysis was done via 1H-NMR. 

2.4.3. Dried metal salt tests 

Identical conditions for n-decane and cyclooctane oxidation (sections 2.4.1 and 2.4.2) were 

conducted with dried metal salts as a form of control test. However, prior to charging the round 

bottom flask with substrate, a metal salt solution (< 1 mL, concentration and volume adjusted 

for M:S ratio) was added to the flask. The flask was then stirred at 80 oC overnight, to give a 

dried metal salt on the surface of the round bottom flask, which then went on to the standard 

catalytic test procedures. 
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2.5. Analytical methods 

2.5.1. Quantitative analysis of hydrocarbon reaction mixtures 

It should be noted here that analysis of hydrocarbon mixtures is not a trivial task (sections 

3.2.1 and 3.2.2).44–47 Due to the similar properties amongst the tens of potential products 

during oxidation, individual qualitative and quantitative characterisation requires significant in-

depth analysis of reaction mixtures.47  

Furthermore, the presence of alkyl acids and hydroperoxides limits the amount of analytical 

techniques that can be used directly, or alternatively pre-preparation of reaction mixtures is 

required.17,44,48,49 This is because analysis of fatty acids typically requires them to be converted 

to esters.49 Whereas hydroperoxides can decompose under the high temperatures typically 

used in injection steps during GC-MS to their corresponding alcohols and ketones (180 – 200 

oC), figure 2.5.1.1, which is especially problematic when determining the relative amounts of 

each of these potential products.44,50,51 These requirements make analysis lengthy, with 

disagreements amongst authors about the capability of some catalysts.44 The ideal analytical 

tool here would be 1H-NMR as it is cheap, quick and can be run at room temperature, the latter 

relinquishing the chance of hydroperoxide decomposition leading to inaccurate quantification. 

However, 1H-NMR can only be used if over oxidation is kept low, or for reaction mixtures at 

high conversion but also with high selectivity. This is because if the reaction mixture becomes 

too complex, then so will the NMR analysis from multiple overlaps and potential broad peaks 

from organic acids. The combinations of these two factors then hampers the capability of 

accurate quantitative determinations. 

 

Figure 2.5.1.1: A simple equation to highlight the potential overall decomposition of alkyl 

hydroperoxides to the corresponding hydroxyl or carbonyl containing compounds under the conditions 

during GC-MS analysis which may lead to complications in quantification.44,51 
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2.5.2. 1H-NMR 

Nevertheless, for a substantial part of this research project NMR has been used to analyse 

reaction mixtures and used especially as a fast screening tool. Then samples that were of high 

conversion and/or selectivity would go onto a more in-depth investigation were analysed also 

by GC-MS. 1H-NMR quantification of conversion (eqs. 2.5.2.1, 2.5.2.2 and 2.5.2.3) and 

selectivity (eq. 2.5.2.4) were determined for reaction mixtures using the following equations 

(their development is described in section 3.2.1). It should be made explicit here that both 

conversion and selectivity will be strictly described as ‘observed’, as the equations rely on the 

assumption that all products are present in the reaction mixture analysed and fully quantified 

effectively. It is such that this is only correct if carbon mass balance is experimentally close to 

100% (see section 3.2.1), which was indeed the case as determined by 1H-NMR analysis of 

reaction mixtures with internal standards within the range of conversion observed. 

𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 (%) =  
∑ 𝑛𝑃𝑖𝑖

𝑛𝑅,𝑓 +  ∑ 𝑛𝑃𝑖𝑖
. 100    (𝑒𝑞. 2.5.2.1) 

𝑛𝑃𝑖 ∝  
𝐴𝑃𝑖

𝑚𝐻
   (𝑒𝑞. 2.5.2.2) 

Where 𝑛𝑃𝑖 is the number of moles of a given product, 𝑛𝑅,𝑓 is the number of moles of reactant 

left in the reaction mixture (or ‘final’ after a reaction time t), 𝐴𝑃𝑖 is the area of a given product 

and 𝑚𝐻 is the number of protons of the associated signal for that product or compound. 

𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 (%) =  
∑

𝐴𝑃𝑖
𝑚𝐻

𝐴, 𝑐𝑂𝑐𝑡𝑎𝑛𝑒,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑

6 + ∑
𝐴𝑃𝑖
𝑚𝐻

. 100    (𝑒𝑞. 2.5.2.3)   

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑃𝑖(%) =  
𝑛𝑃𝑖

∑ 𝑛𝑃𝑖𝑖
. 100    (𝑒𝑞. 2.5.2.4) 

Here it can be seen in eq. 2.5.2.3, 𝐴, 𝑐𝑂𝑐𝑡𝑎𝑛𝑒,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 (the corrected peak area for remaining 

n-octane post reaction) is divided by six as n-octane’s characteristic peak is CH3, of which it 

has two (2 x CH3, 𝑚𝐻 = 6). The peak had to be corrected as overlap from other products was 
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present. A more in-depth discussion on the development of these equations is present in 

section 3.2.1, particularly which NMR peak was chosen and thus individual 𝑚𝐻 values are 

detailed, alongside discussions on correction factors. 

All 1H-NMR analysis was conducted on a Bruker Avance IIIHD 400 spectrometer, operating 

at 400 MHz. Samples were prepared by adding 50 μL of reaction mixture to an NMR tube and 

dissolved in CDCl3.  

2.5.2.1. 1H-NMR n-decane and n-octane 

Characterisation of reaction mixture is as follows: 

n-octane, CHa
3(CHb

2)6CHa
3 (δ, ppm): 1.27 (m, 12Hb), 0.89 (t, 6Ha). 

1-octanol, CHa
3(CHb

2)6CHc
2OHd (δ, ppm): 3.56 (m, 2Hc), 2.51 (br, 1Hd), 1.52 - 1.24 (m, 12Hb), 

0.84 (t, 3Ha). 

2-octanol, CHa
3(CHb

2)5CHcOHdCHe
3 (δ, ppm): 3.77 (m, 1Hc), 1.44 – 1.27 (m, 10Hb), 1.16 (d, 

3He), 0.87 (t, 3Ha). 

3-octanol, CHa
3(CHb

2)4CHcOHdCHb
2CHe

3  (δ, ppm): 3.50 (m, 1Hc), 1.52 – 1.22 (m, 10Hb), 0.92 

(t, 3He), 0.87 (t, 3Ha) 

Octanal, CHa
3(CHb

2)4CHc
2CHd

2C(O)He (δ, ppm): 9.75 (m, 1He), 2.40 (m, 2Hd), 1.61 (m, 2Hc), 

1.27 (m, 8Hb), 0.86 (t, 3Ha). 

2-octanone, CHa
3(CHb

2)3CHc
2CHd

2C(O)CHe
3 (δ, ppm): 2.39 (t, 2Hd), 2.10 (s, 3He), 1.54 (m, 

2Hc), 1.25 (m, 6Hb), 0.85 (t, 3Ha). 

3 -octanone, CH3
a(CHb

2)2CHc
2 CHd

2C(O)CHd
2CHe

3 (δ, ppm): 2.38 (m, 4Hd), 1.55 (m, 2Hc), 1.26 

(m, 4Hb), 1.02 (t, 3He), 0.86 (t, 3Ha). 

n-decane, CHa
3(CHb

2)8CHa
3  (δ, ppm): 1.27 (m, 16Hb), 0.89 (t, 6Ha). 

1-decanol, CHa
3(CHb

2)8CHc
2OHd  (δ, ppm): 3.64 (m, 2Hc), 1.71 – 1.08 (m, 16Hb), 1.07 – 0.70 

(m, 3Ha). 
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2-decanol, CHa
3(CHb

2)7CHcOHdCHa
3  (δ, ppm): 3.80 (m, 1Hc), 1.71 – 1.08 (m, 14Hb), 1.07 – 

0.70 (m, 6Ha) . 

3-decanol, CHa
3(CHb

2)6CHcOHdCHb
2CHa

3   (δ, ppm): 3.53 (m, 1Hc), 1.71 – 1.08 (m, 14Hb), 1.07 

– 0.70 (m, 6Ha). 

Decanal, CHa
3(CHb

2)7CHc
2C(O)Hd: (δ, ppm): 9.78 (m, 1Hd), 2.45 – 2.31 (m, 2Hc), 1.71 – 1.08 

(m, 14Hb), 1.07 – 0.70 (m, 3Ha). 

2-decanone, CHa
3(CHb

2)6CHc
2C(O)CHd

3 (δ, ppm): 2.41 (t, 2Hc), 2.12 (s, 3Hd), 1.55-1.27 (m, 

12Hb), 0.87 (t, 3Ha). 

3-decanone, CH3
a(CHb

2)5CHc
2C(O)CHc

2CHd
3 (δ, ppm): 2.45 – 2.31 (m, 4Hc), 2.13 (s, 3Hd), 

1.71 – 1.08 (m, 10Hb), 1.07 – 0.70 (m, 3Ha) 

2.5.2.2. 1H-NMR Cyclooctane  

Characterisation of reaction mixture is as follows: 

Cyclooctane (δ, ppm): 1.2 – 2.3 (s, 16H). 

Cyclooctanone (δ, ppm): 1.2 – 2.3 (m, 10 H), 2.43 (t, 4H). 

Cyclooctanol (δ, ppm): 1.2 – 2.3 (m, 14H), 3.88 (m, 1H). 

Cyclooctyl peroxide (δ, ppm): 1.2 – 2.3 (m, 14H), 4.15 (m, 1H). 

1,2-cyclooctadione (δ, ppm): 1.2 – 2.3 (m, 8H), 2.68 (t, 4H). 

Cis-9-oxabicyclononane (δ, ppm): 1.2 – 2.3 (14H), 2.89 (t, 4H) 

2.5.3. Gas chromatography – mass spectrometry (GC-MS) 

Gas chromatography (GC) and mass spectrometry (MS) can be combined into one powerful 

analytical tool.52 Sample is initially separated by passing over a stationary phase in the GC. In 

our case, this was a wax column (an Agilent DB-WAX-UI 30 m x 0.25 mm x 0.25 μm column) 

which separated samples based on polarity. MS is then used to determine the molecular 



104 
 

weights of both the compounds and the products of their fragmentation during analysis. For 

the purposes of our research, we sought to separate complex reaction mixtures of 

hydrocarbons for qualitative and quantitative analysis.  

As with NMR, conversion can be defined with eq.2.5.2.1, section 2.5.2. However, with GC-MS 

𝑛𝑅,𝑓 could not be determined due to the remaining reactant in the reaction mixture being widely 

in excess and thus solvent stripping was required so products could be resolved. But assuming 

that carbon mass balance is experimentally equivalent to 100% (which we determined to be 

the case, see section 3.3), then conversion and selectivity can be defined as ‘observed’ in the 

following descriptions. 

GC-MS quantification of conversion (eq. 2.5.3.1 and 2.5.3.2) and selectivity (eq. 2.5.3.3) was 

determined with the following equations, their development can be found in section 3.2.2. 

Note: as the amount of reactant after reaction cannot be determined via this method, these 

will be recorded as observed conversion and selectivity (see sections 3.2.1 and 3.2.2). 

𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 (%) =  
∑ [𝑝𝑖]. 𝑟𝑓𝑖

[𝑅𝑖]
. 100    (𝑒𝑞. 2.5.3.1) 

[𝑝𝑖] = [𝐼𝑆].
𝐴𝑟𝑒𝑎𝑝𝑖

𝐴𝑟𝑒𝑎𝐼𝑆
    (𝑒𝑞. 2.5.3.2) 

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (%) =  
[𝑝𝑖]. 𝑟𝑓

∑ [𝑝𝑖]. 𝑟𝑓𝑖
. 100    (𝑒𝑞. 2.5.3.3) 

Where [𝑝𝑖] is the concentration of a given product, [𝑅𝑖] is the initial concentration of reactant, 

[𝐼𝑆] is the concentration of internal standard and 𝑟𝑓 is a retention factor as determined from a 

calibration curve. 

GC-MS was conducted by taking an aliquot of reaction mixture (1 mL), adding dodecane (0.1 

mL) as an internal standard and making this up to 10 mL with substrate (i.e. n-decane or n-

octane). All analysis was performed using an Agilant 7200 accuratemass Q-TOF GC-MS fitted 

with either an Agilent DB-MS-UI 30 m x 0.25 mm x 0.25 μm or an Agilent DB-WAX-UI 30 m x 
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0.25 mm x 0.25 μm column. Temperature ramping was conducted as follows: 50 oC to 90 oC, 

40 oC min-1; 90 oC to 120 oC, 2 oC min-1; 120 oC to 250 oC, 10 oC min-1 then held at 250 oC for 

2 min.  

Chromatograms of standard solutions with discussion can be found in section 3.2.2, typical 

positions of chemicals using the wax column method are as follows: 

n-octane tR: 

n-octane (min): 2.10; 1-decanol (min): 5.07; 1-octanol (min): 33.8; 2-octanol (min): 29.8; 3-

octanol (min): 28.9; Octanal (min): 23.5; 2-octanone (min):23.2; 3-octanone (min): 21.1. 

n-decane tR: 

n-decane (min): 2.35; n-dodecane (min): 5.08; 1-decanol (min): 23.2; 2-decanol (min): 17.2; 

3-decanol (min): 16.2; 4-decanol (min): 15.6; Decanal: 12.4; 2-decanone (min): 12.3; 3-

decanone (min): 11.3. 

4-octanol, 4-octanone, 5-decanol, 4-decanone and 5-decanone retention times were 

determined by qualitatively identifying these peaks amongst actual reaction mixtures via NIST 

(National Institute of Standards and Technology) functions available within the software.53 GC-

MS data are matched to the most probable identities of a substance from a spectral library 

database, this approach was required as these chemicals were not commercially accessible 

during the time of this research.54–57 All other components of the reaction mixture are grouped 

to determine the conversion and are titled as ‘other products’. 

2.5.4. Fourier transform infrared – attenuated total reflectance (FTIR-ATR) 

FTIR-ATR is a method in which a sample is placed on an internal reflection element (IRE). 

The evanescent wave from the IR source is almost completely reflected within the IRE, 

however, some of the radiation penetrates the sample at some depth where it is adsorbed by 

the sample, thus an absorption/transmission spectrum can be generated, summarised in 

figure 2.5.4.1.58 
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Figure 2.5.4.1: A simplified diagram to show how ATR-FTIR radiation is reflected (and partially 

adsorbed) at the interface between the sample and the IRE. I is the incident radiation and R is the 

reflected radiation. Adapted with permission from A. Hind et al.58 

FTIR-ATR has been used for several applications in microporous materials. These include; 

determination of surface acidity;59 observation of adsorbates;60,61 and determining the 

presence of organic templates.62 

For the purpose of this research, FTIR-ATR was used prior to thermogravimetric analysis 

(TGA) as a preliminary test to determine if the organic template from microporous material 

synthesis was still present (and if there was any loss in intensity after template removal) by 

observing C-H stretches (2700 – 3100 cm-1). 

FTIR-ATR analysis was conducted using a Bruker ALPHA-T fitted with an ALPHA-P platinum 

ATR scanned between 375 – 4000 cm-1 with a resolution of 2 cm-1 over 64 scans. 

2.5.5. Thermogravimetric analysis (TGA) 

TGA is the method in which weight of a sample is measured as temperature is increased.63 It 

has several applications in porous materials such as; determination of interlayer water;64 

quantification of adsorbates65 and presence of residual surfactants from synthesis66 (and their 

removal).34 

For the context of our research, TGA was primarily used both for quality control and 

qualitatively for determining the amount of surfactant present in as-synthesised material and 

how much had remained, if any, after template removal. Additionally, it was used to determine 
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possible changes in oxidation state during microporous niobium oxide calcination, as for this 

oxide a weight gain would be observed for the transformation 2NbO2 + 1/2O2 → Nb2O5.  

TGA was conducted using a PerkinElmer Pyris 1 TGA operating between 25 oC (5 min hold) 

to 800 oC (5 min hold) with a 10 oC min-1 ramp under air flow of 20 mL min-1. 

2.5.6. X-ray powder diffraction (XRPD) 

According to Bragg’s theory, when monochromatic X-rays are shone onto a sample, they are 

diffracted by the regular atomic layers, figure 2.5.6.1.67 The angle of diffraction can thus 

determine the space between the layers when using Bragg’s law (section 2.5.6.2). With XRPD, 

a diffraction pattern is generated, which provides information on what phases are present 

within the sample from diffraction peaks (and thus can reveal the presence of crystalline 

dopant species and even their oxidation state). 

 

 

 

 

 

 

 

 

 

Figure 2.5.6.1: A simple schematic of how XRD occurs, according to Bragg’s theory. The angle 

between incident beams and the normal to the lattice, θ, can be used to determine inter-layer spacing, 

d. Diagram reused with permission from E. Ameh.67 
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XRPD was conducted using a Bruker D8 Advance powder diffractometer fitted with a LynxEye 

detector, using a CuKα X-ray source (operating at 40 kV and 40 mA) on a low-angle flat plate 

sample holder. Typical routine scanning is as follows: 

1) 2θ: 1 – 15 o, t (per step): 0.2 s, primary opening, incident arm: 0.1 o, secondary opening, 

diffraction arm: 9.5 mm, no antiscatter slit 

2) 2θ: 2 – 15 o, t (per step): 0.2 s, primary opening, incident arm: 0.3 o, secondary opening, 

diffraction arm: 9.5 mm, no antiscatter slit 

3) 2ϴ 2 – 80 o, t (per step): 0.6 s, primary opening, incident arm: 0.3 o, secondary opening, 

diffraction arm: 9.5 mm, no antiscatter slit 

2.5.6.1. Determination of particle size 

The particle size of the supported metal/ metal oxides can be determined via analytical 

techniques. These can be observed directly with TEM68–70 or estimated through XRPD using 

the Scherrer equation,71–73 eq. 2.5.6.1.1, which determines the crystallite size.  

𝑡 =  
0.9𝜆

√𝐵𝑀
2 −  𝐵𝑆

2𝑐𝑜𝑠𝜃

    𝑒𝑞. 2.5.6.1.1 

Where 𝑡 is thickness of crystallite, 𝜆 is incident wavelength of X-ray,  𝜃 is the Bragg angle,𝐵𝑀 

is the width of the peak and 𝐵𝑆 is instrumental broadening at half maximum.73,74 

2.5.6.2. Determination of pore size 

Crystalline porous materials can use small angle XRPD to determine pore diameter, this is 

achieved through Bragg’s law: (eq.2.5.6.2.1) 75,76 

𝑛𝜆 = 2𝑑𝑠𝑖𝑛𝛳    𝑒𝑞. 2.5.6.2.1 

Where 𝑛 is an integer value, 𝜆 is the wavelength from the X-ray source, 𝑑 is the interplanar 

distance and 𝛳 is the incident angle of the x-ray source with respect to the sample. 



109 
 

2.5.7. X-ray photoelectron spectroscopy (XPS) 

 XPS is a method of surface analysis based on the photoelectric effect. It is used to determine 

binding energies of core electrons used in bonding by measuring their kinetic energy after 

being emitted from a sample by X-ray radiation (summarised in figure 2.5.7.1 and eq. 

2.5.7.1).77 

𝐸𝑘 = ℎ𝜐 − 𝐸𝑏 −  𝜑    𝑒𝑞. 2.5.7.1 

Where; 𝐸𝑘 is the kinetic energy of emitted electron; 𝐸𝑏 is the binding energy of the emitted 

electron; ℎ is Planck’s constant; 𝜐 is the frequency of incident X-ray and 𝜑 is the work function 

of the spectrometer. 

XPS is strictly speaking a surface method, this is because the number of photoelectrons that 

can escape from a specimen decreases exponentially with depth,78 this depth is known as the 

‘inelastic mean free path’ of the photoelectrons. For this reason, XPS typically probes up to 

10 nm in depth of the specimen.79 Common practise during analysis is to have a relatively 

thick carbon (a ubiquities element) layer on the surface of the sample which is in turn used as 

a reference for charge correction.80 
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Figure 2.5.7.1: A simple diagram to show how the photoelectric effect is used to determine binding 

energies from emitted electrons in XPS. Adapted with permission from M. Stöcker.77 

XPS is a method used to determine a range of features in microporous materials, such as 

covalent/ionic character of species within a framework.81 

XPS was used in our research in order to determine the oxidation states and environments 

around dopant metals on supports by comparing samples from wetness impregnation and 

hydrothermal synthesis. For example, with iron the Fe 2p3/2 peak could give information on 

iron’s environment with Fe/TMS-1 compared to Fe/TiO2 bulk. 

XPS was conducted using a Kratos Axis Nova spectrometer via monochromatized AlKα X-ray 

source (225 W), with an analyser pass energy of 160 eV for survey scans and 20 eV for high 

resolution scans. All spectra were charge corrected normalising the C1s component to 248.8 

eV. 

2.5.8. Brunauer-Emmett-Teller (BET) 

BET theory can be used to generate isotherms from adsorbed gas within a sample. This is 

based on the Langmuir isotherm, but assumes multilayer coverage is possible.82 Using the 



111 
 

BET equation (eq.2.5.8.1) and the constant C, isotherms can be obtained to give information 

on; the type of physisorption isotherm;83 pore sizes; pore volume and pore shape.34,84,85 

𝑃/𝑃0

𝑛(1 − 𝑃/𝑃0)
=  

1

𝑛𝑚𝐶
+

𝐶 − 1

𝑛𝑚𝐶
(𝑃/𝑃0)    𝑒𝑞. 2.5.8.1 

Where; 𝐶 is the BET constant; 𝑛𝑚 is the monolayer capacity of adsorbed gas; 𝑛 is the specific 

amount of gas adsorbed at the relative pressure 𝑃/𝑃0.82 

Practical BET analysis was conducted by using a Micromeritics 3Felex Gas Sorption System 

operating with liquid nitrogen at 77 K. Sample was degassed at 120 – 180 oC for 48 h before 

analysis. 

2.5.9. Inductively coupled plasma optical emission spectroscopy (ICP-OES) 

 ICP-OES is an analytical tool used for elemental analysis.86 Briefly, analysis is conducted by 

detecting emission (both wavelength and intensity are recorded) of elements in their excited 

states/collisions that occur when subjected to high temperatures in their gaseous phase.87 For 

the context of this research, ICP-OES was used for the determination of metal ions in both 

reaction mixtures and mother liquors post hydrothermal synthesis of microporous metal 

oxides.  

The effects of leaching, and the extent of how much material has leached can be monitored 

in several different ways. Gruber-Woelfler et al. displayed an extensive amount of analysis on 

leaching of immobilised palladium catalysts, summarised in table 2.5.9.1.88 ICP-OES is an 

important tool as it allows potential quantification of leached material. Although it is typically 

limited to aqueous media, solvent extraction can be conducted to draw out any water-soluble 

leachates and thus provide insight into how robust the catalyst is. Ultimately, ICP-OES can 

give a strong indication if catalysis is occurring through the intended heterogeneous platform. 

Samples were submitted directly from the collected mother liquor of hydrothermal synthesis, 

whereas catalytic tests underwent solvent exchange in order to draw out any aqueous metal 
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ions, where then the aqueous layer was submitted for analysis. A Spectro-Ciros-Vision ICP-

OES was used for all analysis. 
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Table 2.5.9.1: A summary of tests conducted by Gruber-Woelfler for the analysis of leaching of 

immobilised palladium catalysts.88 

Test name Method Results obtained 

Hot filtration Removing the catalyst while 

the reaction proceeds 

If the reaction proceeds in a similar manner to a parallel 

homogenous counterpart, it may be occurring due to 

leached material 

ICP-OES Separating the catalyst from 

the reaction mixture, drying 

the reaction mixture and 

detecting if any catalyst is 

present in the residue. 

Directly detects whether the catalyst, or some form of it, 

is present in the reaction mixture after separation of the 

solid 

Three-phase 

test 

Adding a covalently 

supported reaction partner to 

a soluble reagent and then 

the supported catalyst 

If leaching has occurred, the catalysed reaction would 

be detected as this means released catalyst has been 

able to move and therefore contact the covalently 

bound support 

Catalyst 

reusability 

Removing the catalyst from 

the reaction mixture and 

applying it to fresh substrate 

If catalytic activity is dependent on the amount of 

catalyst present, leaching would cause a reduction in 

conversion seen after multiple runs due to less catalyst 

on the support applied to new substrate 

Catalyst 

texture 

Analysis of any physical 

changes in the support after 

reaction (BET) 

This would show any deformation caused by the 

reaction conditions as surface area will decrease if 

pores have collapsed 

Tests in 

different 

solvent 

Using the catalyst in different 

solvent 

A catalyst’s activity and stability may vary in different 

solvents, therefore changes in conversion/ reusability 

will be detected if the catalyst has been affected 

Catalyst 

poisons 

Adding solid poisons to the 

reaction mixture 

If any catalyst has leached the aqueous material will 

bind to the solid poison and thus a reduction in the 

catalysed reaction will be observed 

TEM 

(Transmission 

electron 

microscopy) 

Detecting any observable 

changes in particle size 

through microscopy 

If any leaching has occurred, nanoparticle size of 

supported material may decrease in size 
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3.1. Introduction 

Alkanes are some of the most inert substrates within chemistry when referring to C-H bond 

activation.1 Their reactivity is often used as a comparison to other compounds, for example 

methane has a pKa of >40, in comparison to water’s pKa of 14.2–4 This exemplifies the acidity 

of the C-H bonds in methane and how difficult it is for these molecules to react, for example 

in acid/base catalysed or non-catalysed reactions. Similar arguments can be applied also for 

redox or radical pathways, as the typical bond dissociation energy (BDE) of the C-H bond for 

linear saturated hydrocarbons is largely in excess of 410 kJ mol-1;5 whereas by comparison 

the BDE of a C-H bond of a carbonyl group is below 375 kJ mol-1;5 and the BDE of C-Br bonds 

are usually assumed as relatively weak, being in the range of ca. 300 kJ mol-1.5 

However, alkanes have huge potential within applications in industry and academic research. 

As alkanes are a chemical feedstock – virtually all organic chemical compounds are obtained 

from them initially – it follows their functionalisation is a highly important research topic.6 Often 

dubbed the ‘holy grail’ of petrochemical and catalytic chemistry,7–9 selectively converting 

alkanes to a desired product, with minimal formation of by-products is the focus of this project. 

Specifically, the selective oxidation of long chain linear alkanes to their corresponding primary 

alcohols.10,11 As mentioned previously, this is challenging due to the potential for alternative, 

undesired products (e.g. secondary/tertiary alcohols, ketones, and products made from 

cracking).12  

Catalysts therefore need to be selective in order to reduce waste products.11,13 To enable study 

on whether a catalyst is indeed selective an accurate and quantitative determination method 

(either spectroscopic or chromatographic) of the composition of the reaction mixture is 

required.  

The complete characterization, both qualitatively and quantitatively, of a reaction mixture 

obtained from the oxidation of a hydrocarbon is not a trivial task.14–16 In fact typically tens of 

products can be obtained.16 A commonly used method to determine the composition of these 

reaction mixtures is via gas chromatography (GC, either using mass spectrometry - MS or 
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flame ionisation - FID as detection systems).17–19 However, despite their low detection limit 

(especially for GC-MS methods), these are tedious, require a long analysis time and crucially 

may not provide accurate results unless pre-preparation of the reaction mixture before 

analysis is carried out. 20,21 In our case this specifically refers to the analysis of organic acids 

and alkyl hydro-peroxides.22,23 In fact, acids need to be converted to the corresponding ester 

(R(CO)OR’)21 whereas alkyl hydroperoxides (R-OOH) can potentially decompose to ketones 

or alcohols under the injection of chromatography conditions (an injector typically operates at 

a temperature range of 180 – 200 oC to ensure full volatilization of the reaction mixture and its 

transfer to the chromatographic column).22,24,25 It follows that GC-MS or GC-FID methods can 

certainly have a low detection limit, but with the risk that the specimen analysed is not 

representative of the sample from a reaction mixture. 

In view of this, as well as to cope with a large number of reaction mixtures to be analysed, we 

decided to develop a 1H-NMR method (herein also referred to as a ‘calculator’) to quantify and 

characterize our reaction mixtures. In fact, as we expect low conversion, the amount of acids 

(which are known to be difficult to detect, due to proton exchange in NMR) to be very small. 

Furthermore, as NMR characterization is carried out at room temperature this should not 

induce any ROOH decomposition, and in turn also not require any pre-treatment of the 

sample. In addition, a single 1H-NMR determination is relatively cheap and occurs in a matter 

of minutes, whereas chromatographic methods are by comparison expensive and time 

demanding (in relative terms up to 1 h per sample). Consequently, we want to use 1H-NMR 

as a form of screening tool (materials or tests that are not active in NMR will also not be active 

in GC-MS), to quickly assess if a catalyst is active or not and gather preliminary information 

on its selectivity. Then for the most promising catalysts and corresponding tests these were 

subjected to GC-MS characterizations. We should underline though that in this work we 

attempted to use NMR entirely (because of its time and cost advantages) and in this 

perspective we carried out a method development for both NMR and chromatographic 

methods. 
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Initially, to test both NMR and GC methods we used an array of standards. Then once accurate 

quantification was available, it was applied to real reaction mixtures. These were carried out 

from the parallel study of the autoxidation of n-decane, as quantification of products in 

standard alkane reaction mixtures was developed alongside studying autoxidation. This is 

important as ideally little to no background reactions will be occurring and all activity will be 

due to the catalyst. Therefore, different autoxidation tests were carried out by varying 

temperature in order to determine the optimal or acceptable conditions where no autoxidation 

was occurring compared to tests and reaction mixtures in the presence of a catalyst. 
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3.2. Results and discussion 

3.2.1. Development of an 1H-NMR alkane oxidation quantification method 

NMR allows rapid and cheap analysis of samples. However, as the oxidation of n-alkanes can 

typically lead to multiple products,16 it is important that the individual amounts of these can be 

accurately determined so that the conversion and selectivity amongst catalysts can be 

compared. Standards of n-octane and n-decane and their commercially available oxidation 

products were made in order to test 1H-NMR as an appropriate tool. C8 and C10 were chosen 

as they fit the description of ‘linear fatty alkanes’26 while having the lowest number of possible 

oxidation products compared to C12 and above. Therefore, these were an appropriate starting 

point to develop quantification via 1H-NMR. An overlay of the standards can be seen in figures 

3.2.1.1 and 3.2.1.2. 

Although fast and cheap, the use of NMR to characterize an alkane reaction mixture is by no 

means trivial.  In fact, in ‘standard’ mono-dimensional NMR many NMR peaks appear to be 

overlapped. For our analysis the determination of a ‘characteristic peak’ for each compound 

of interest was chosen in the 1H-NMR (see appendix for all individual spectra, also indications 

of characteristic peaks for n-octane and n-decane and corresponding oxidation products). This 

means that there should be no significant overlap of the integral between these peaks. The 1o 

alcohol seemingly had some overlap with the 3o and, in n-decane, the 4o alcohols. Although 

this may lead to issues in quantification, the method was pursued as ideally the catalyst would 

generate little amounts of 3o – 5o oxidised products. Please see later in this section and table 

3.2.1.1 for characteristic peaks and corresponding chemical shifts.  

With the characteristic peaks chosen, a method to determine conversion and selectivity was 

developed. 
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Figure 3.2.1.1: 1H-NMR spectra of n-octane and commercially available oxidation products. Regions including characteristic peaks are highlighted. 
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Figure 3.2.1.2: 1H-NMR spectra of n-decane and commercially available oxidation products. Regions including characteristic peaks are highlighted.
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Conversion, in our case molar conversion, is defined as the ratio between the number of 

moles, n, of reagent, R, that have been consumed during the reaction, nR,c, and the initial 

number of moles of reagent, nR,0 (eq. 3.2.1.1):27 

𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 =  
𝑛𝑅,𝑐

𝑛𝑅,0
         (𝑒𝑞. 3.2.1.1) 

Or, as in our case if expressed in percentage (eq. 3.2.1.2): 

𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 (%) =  
𝑛𝑅,𝑐

𝑛𝑅,0
 ∙ 100        (𝑒𝑞. 3.2.1.2) 

As this definition entirely relies on the reagent with no knowledge of the products this is also 

known as ‘absolute conversion’. 

On the other hand, if the reaction has a carbon mass balance experimentally equal (i.e. within 

experimental error) to 100%, all reaction products are identified, and all the products are 

obtained per mole of reagent (i.e. the stoichiometric coefficient is 1) then eq.2 can be re-written 

as (eq. 3.2.1.3): 

𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 (%) =  
∑ 𝑛𝑃𝑖𝑖

𝑛𝑅,0
. 100    (𝑒𝑞. 3.2.1.3) 

𝑛𝑃𝑖, is the moles of a given product, i. However, as in NMR calibration curves are impractical 

(and in the absence of an internal standard), what we detect for R is the final number of moles, 

nR,f , or moles left in the reaction mixture. We can calculate the conversion as (eq. 3.2.1.4): 

𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 (%) =  
∑ 𝑛𝑃𝑖𝑖

𝑛𝑅,𝑓 +  ∑ 𝑛𝑃𝑖𝑖
. 100    (𝑒𝑞. 3.2.1.4) 

This equation (eq. 3.2.1.4) has been used as a basis for our calculations via NMR. It also 

follows that this kind of formula relies on the products that are actually observed. As a 

consequence, calculations based on these assumptions are also known as ‘observed 

conversion’ (and in turn there will also be an ‘observed’ selectivity). 
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However, in 1H-NMR the signal obtained from NMR spectra is a consequence of the amount 

of substance, but also from the number of protons (with the latter practically acting as a 

response factor). In other words, the number of moles of a product, i, is proportional to the 

area, A, of a specific NMR signal divided by the number of protons, m, associated to that 

signal (eq. 3.2.1.5). The calculation requires the number of protons to be considered as 𝑛𝑃𝑖 is 

determined by an integral from a defined environment in the 1H-NMR. Therefore: 

𝑛𝑃𝑖 ∝  
𝐴𝑃𝑖

𝑚𝐻
   (𝑒𝑞. 3.2.1.5) 

Where 𝐴𝑃𝑖 is the area of a given product, and 𝑚𝐻 equates to the number of protons for the 

integral chosen. This means that for n-octane (Octane) the signal associated to the two 

terminal CH3 groups (6H) will need to be divided by 6; for 1-Octanol (1Ol) the signal associated 

to the CH2-OH (2H) will need to be divided by two and so on for the other products: 3-Octanol 

and 4-Octanol (3Ol and 4Ol respectively) the CH-OH (1H); Octanal (Ald) the C(O)-H (1H); 2-

Octanone (2One) the C(O)-CH3 (3H); 3-Octanone + 4-Octanone (3,4One) the CH2-C(O)-CH2 

(4H); 1-Octene (1Ene) the HC=CH2 (3H); 2-Octene (2Ene) the HC=CH(CH3) (2H). Note: the 

3-Octanone and 4-Octanone do not have any additional characteristic peaks separate from 

the other products and are therefore grouped together. This gives in first approximation (eq. 

3.2.1.6): 

𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 (%) =  

𝐴1𝑂𝑙

2
+

𝐴2𝑂𝑙

1
+

𝐴3𝑂𝑙

1
+

𝐴4𝑂𝑙

1
+

𝐴𝐴𝑙𝑑

1
+

𝐴2𝑂𝑛𝑒

3
+

𝐴3,4𝑂𝑛𝑒

4
+

𝐴1𝐸𝑛𝑒  
3

+
𝐴2𝐸𝑛𝑒  

2
𝐴𝑂𝑐𝑡𝑎𝑛𝑒,𝑓

6
+ (

𝐴1𝑂𝑙

2
+

𝐴2𝑂𝑙

1
+

𝐴3𝑂𝑙

1
+

𝐴4𝑂𝑙

1
+

𝐴𝐴𝑙𝑑

1
+

𝐴2𝑂𝑛𝑒

3
+

𝐴3,4𝑂𝑛𝑒

4
+

𝐴1𝐸𝑛𝑒  
3

+
𝐴2𝐸𝑛𝑒  

2
)

. 100     

(𝑒𝑞. 3.2.1.6) 

Where 𝐴1𝑂𝑙 is peak area for 1-octanol and in this instance is divided by two as the peak chosen 

has a 𝑚𝐻 value of two (see table 3.2.1.1), 𝐴𝐴𝑙𝑑 is the peak area for octanal, 𝐴2𝑂𝑛𝑒 is the area 

for 2-octanone and so on. 

However, this is a first approximation only as the signal associated to 𝐴𝑂𝑐𝑡𝑎𝑛𝑒 overlaps with the 

signal from the CH3 groups from all the other products. Therefore, each product’s contribution 
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to this integral needs to be removed. Furthermore the 𝐴3𝑂𝑛𝑒 + 𝐴4𝑂𝑛𝑒 integral contains a CH2 

group from 2-Octanone and Octanal. This induces some correction factors. The corrected 

value of 3-Octanone + 4-Octanone is (𝐴, 𝑐3,4𝑂𝑛𝑒) (eq. 3.2.1.7): 

𝐴, 𝑐3,4𝑂𝑛𝑒 = (𝐴3,4𝑂𝑛𝑒) − 2 (
𝐴2𝑂𝑛𝑒

3
) − 2 (

𝐴𝐴𝑙𝑑

1
)    (𝑒𝑞. 3.2.1.7)   

The corrected integral area for n-octane can thus be determined (eq. 3.2.1.8a and eq. 

3.2.1.8b): 

𝐴, 𝑐𝑂𝑐𝑡𝑎𝑛𝑒,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = (𝐴𝑂𝑐𝑡𝑎𝑛𝑒,𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑) −  ∑ 𝑚𝐻′

𝐴𝑃𝑖

𝑚𝐻
    (𝑒𝑞. 3.2.1.8𝑎) 

∑ 𝑚𝐻′
𝐴𝑃𝑖

𝑚𝐻
= (3 (

𝐴1𝑂𝑙

2
) + 3 (

𝐴2𝑂𝑙

1
) + 6 (

𝐴3𝑂𝑙

1
) + 3 (

𝐴𝐴𝑙𝑑

1
) + 3 (

𝐴2𝑂𝑛𝑒

3
) + 6 (

𝐴,𝑐3,4𝑂𝑛𝑒

4
) + 3 (

𝐴1𝐸𝑛𝑒 

3
) + 3 (

𝐴2𝐸𝑛𝑒 

2
))    (𝑒𝑞. 3.2.1.8𝑏)     

Where 𝑚𝐻′ is the number of protons of a species present in the overlapping ‘CH3’ region of 

the spectra. For example, 𝐴1𝑂𝑙 is divided by two as it has a 𝑚𝐻 value of two from the peak 

chosen, it is then multiplied by three (𝑚𝐻′) as this corresponds to the number of protons 

present in the overlapping peak with n-octane, see table 3.2.1.1 for a summary of all 

overlapping peaks.  

Substituting these values into the equation gives the final conversion which can be calculated, 

or more appropriately we should say estimated, as (eq. 3.2.1.9): 

𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 (%) =  
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+
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+
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+
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3
+

𝐴, 𝑐3,4𝑂𝑛𝑒

4
+

𝐴1𝐸𝑛𝑒 
3

+
𝐴2𝐸𝑛𝑒 

2
𝐴, 𝑐𝑂𝑐𝑡𝑎𝑛𝑒,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑

6
+

𝐴1𝑂𝑙

2
+

𝐴2𝑂𝑙

1
+

𝐴3𝑂𝑙

1
+

𝐴𝐴𝑙𝑑

1
+

𝐴2𝑂𝑛𝑒

3
+

𝐴, 𝑐3𝑂𝑛𝑒

4
+

𝐴1𝐸𝑛𝑒 
3

+
𝐴2𝐸𝑛𝑒 

2

. 100    (𝑒𝑞. 3.2.1.9) 

Also referred to in this chapter as the ‘NMR conversion calculator’. Table 3.2.1.1 summarises 

all of the characteristic peaks discussed here used for n-octane and its corresponding 

oxidation products. 
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Table 3.2.2.1: A summary of NMR data of n-octane and its corresponding potential oxidation products 

with the characteristic (Ha) and overlapping (Hb for 𝐴, 𝑐𝑂𝑐𝑡𝑎𝑛𝑒,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 overlap and Hc for 𝐴, 𝑐3,4𝑂𝑛𝑒 

overlap) peaks chosen for the conversion and selectivity calculators. 

Compound Characteristic peak 

(Ha) 

δa (ppm) 

Overlapping peak(s) 

(Hb, Hc) 

δb, δc (ppm) 

n-octane 

 

0.89 (CH3, t, 6H) - 

1-octanol 

 

3.56 (CH2, m, 2H) 0.83 (CH3, t, 3H) 

2-octanol 

 

3.78 (CH, m, 1H) 0.87 (CH3, t, 3H) 

3-octanol 

 

3.50 (CH, m, 1H) 0.87 (CH3, t, 6H) 

Octanal 

 

9.74 (CH, s, 1H) 0.86 (CH3, t, 3H),  

2.43 (CH2, t, 2H) 

2-octanone 

 

2.18 (CH3, s, 3H) 0.86 (CH3, t, 3H), 

2.47 (CH2, m, 2H) 

3-octanone 

 

2.39 (CH2, m, 4H) 1.02-0.86 (CH3, t, 6H) 
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Table 3.2.2.1 (cont.) 

Compound Characteristic peak 

(Ha) 

δa (ppm) 

Overlapping peak(s) 

(Hb, Hc) 

δb, δc (ppm) 

1-octene 

 

5.82-4.96 (CH and 

CH2, m, 3H) 

0.90 (CH3, t, 3H) 

2-octene 

 

5.45 (CH=CH, m, 2H) 0.91 (CH3, t, 3H) 

 

Similar arguments have been used to calculate or estimate the selectivity. Selectivity for a 

given product i (and with the assumptions in our case all products have a stoichiometric 

coefficient of 1) is (eq.3.2.1.10): 

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑃𝑖(%) =  
𝑛𝑃𝑖

∑ 𝑛𝑃𝑖𝑖
. 100    (𝑒𝑞. 3.2.1.10) 

Where 𝑛𝑃𝑖 is determined with the same considerations applied in the derivation of conversion. 

For example, the selectivity of 1-octanol in a standard solution would be (eq.3.2.1.11): 

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦1𝑂𝑙(%) =  

𝐴1𝑂𝑙

2
𝐴1𝑂𝑙

2
+

𝐴2𝑂𝑙

1
+

𝐴3𝑂𝑙

1
+

𝐴𝐴𝑙𝑑

1
+

𝐴2𝑂𝑛𝑒

3
+

𝐴, 𝑐3,4𝑂𝑛𝑒

4
+

𝐴1𝐸𝑛𝑒 
3

+
𝐴2𝐸𝑛𝑒 

2

. 100    (𝑒𝑞. 3.2.1.11) 

The same principle has been applied to all the other products of our standards or reaction 

mixtures. 

It should be noted, however, that preliminary results on known standards showed a systematic 

error within octanal, and therefore a calibration curve was conducted and determined that AAld 

required a correction factor. This is thought to arise from some areas of the characteristic peak 

being under the background and thus it cannot be quantified accurately. However, once the 

correction was applied the error of selectivity was found to be always less than 5%.  
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It should also be noted here that carbon mass balance (CMB) must be considered for accurate 

quantification. This is to ensure if not all, but the majority of product has been quantified and 

no losses of volatile material has occurred. CMB can be quantified as follows:27 

𝐶𝑀𝐵% =  
𝑐𝑅𝑛𝑅,𝑓 +  ∑ 𝑐𝑖𝑛𝑃𝑖𝑖

𝑐𝑅𝑛𝑅,0
 ∙ 100    (𝑒𝑞. 3.2.1.12) 

Where 𝑐𝑅 are the number of carbon atoms of reactant and 𝑐𝑖 are the number of carbon atoms 

of product. For example, 𝑐𝑅 for n-octane would be eight and 𝑐𝑖 of 1-octanol would also be 

eight, whereas butanoic acid, one of the potential products from cracking, would have a 𝑐𝑖 of 

four. CMB must be statistically identical to 100% to ensure our assumptions made for 

conversion and selectivity are permissible.  

The conversion calculator was then trialled for a series of standards of varying predicted 

conversion and selectivity, the results are summarised in table 3.2.1.2. 

The majority of errors reported here are below 10%, which is fully acceptable for our scope, 

especially considering overlap and integration errors of the method and given the large 

screening capabilities that this method allows. As a consequence, we have used NMR to 

initially characterize and screen our reaction mixtures. 
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Table 3.2.1.2: Data to display error associated with calculating conversion and selectivity of expected oxidation products of n-octane with varying degree of 

conversion. 

 

 

 

 

   Selectivity error (%) 

Conversion 

Expected 

(%) 

Conversion 

Measured 

NMR 

(%) 

Conversion 

Relative error 

(%) 

1-Octanol 2-Octanol 3-Octanol Octanal 2-Octanone 3-Octanone 1-Octene 2-Octene A1/Atot K2/Ktot K/A 

3.97 3.71 -6.62 -0.73 -2.75 -5.08 2.49 5.92 4.48 -3.07 -1.42 2.18 1.56 7.36 

7.51 7.46 -0.60 12.2 5.44 0.23 -2.79 -2.58 -0.38 -7.23 -1.98 7.34 -0.86 -6.01 

17.1 17.5 2.12 -1.17 4.46 24.1 -2.37 -5.70 -6.57 - - -9.42 -0.33 -13.3 

45.7 44.9 -0.85 5.37 -0.25 2.37 4.77 3.31 -2.20 -7.06 -6.23 2.80 1.33 -0.53 

55.4 53.8 -2.84 8.49 2.96 8.86 2.44 6.02 -2.71 -4.76 -3.84 1.61 4.03 -4.56 

59.1 56.4 -4.59 0.09 -9.78 -0.33 4.38 4.30 -5.31 -0.39 3.28 3.46 1.52 6.21 
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3.2.1.1. Application of 1H-NMR conversion calculator to the autoxidation 

of alkanes 

Accurately determining the conversion and the selectivity for the autoxidation is essential. This 

is to provide a benchmark for what activity is occurring from the presence of a catalyst and 

any activity in its absence, the latter often referred to as ‘background’ activity or background 

reaction. In principle, three scenarios could occur: (i) either the catalyst is active via a non-

autoxidation mechanism under mild conditions (i.e. is active at a specific temperature, where 

it is determined that background autoxidation is not occurring),  (ii) The catalyst is active via a 

non-autoxidation mechanism where autoxidation would occur (i.e. the catalyst provides a 

dominating mechanism) or (iii) catalysis occurs through an autoxidation mechanism (but the 

catalyst induces selectivity to particular products).28 To determine this, a study on how 

temperature effects autoxidation tests were conducted at different reaction conditions. 

Although the NMR calculator was developed using n-octane standards, it can be applied to 

shorter and longer chain alkanes (e.g. n-hexane, n-decane etc.) by using exactly the same 

principles. This is essential as the project was planned to focus on substrates with varying 

alkyl chain lengths. Initial attempts of oxidation with no catalyst present found that autoxidation 

does not begin to occur until 125 oC and above. As the boiling point of n-octane is 125 oC, this 

made it a limited substrate to be studied with autoxidation if catalytic tests were carried out at 

atmospheric pressure, as we initially did. The use of non-pressurised systems was also 

selected at the initial stages of our project for screening purposes, despite previous 

explanations of alkanes’ difficulty to activate. This initial choice was done on the following 

grounds: (i) the lab was equipped with reactor carousels allowing multiple tests at the same 

time, useful for screening and (ii) variation of temperature is known to affect a reaction much 

more than variation of pressure.29–31 That said we also used pressurised systems following 

these results (see section 3.3).  Therefore n-decane was chosen as the model substrate, 

having a boiling point of 175 oC gives scope for higher temperature reactions to be conducted 

if necessary.  
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With the 1H-NMR conversion calculator proven to work, and substrate chosen, quantification 

of actual reaction mixtures was the next step to determine if it can indeed be applied to a ‘real’ 

example. Figure 3.2.1.1.1 shows a 1H-NMR spectrum of a reaction mixture conducted at a 

temperature where autoxidation has occurred (140 oC). 
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Figure 3.2.1.1.1: 1H-NMR of a reaction mixture from n-decane oxidation, with no catalyst present. n-decane (3 mL), 140 oC, atmospheric pressure, 24 h.
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NMR analysis of a real reaction mixture showed that there was significant overlap of the 

reaction’s products. It should be stated that it was expected that some overlap would occur 

with by-products such as diones, acids and other over oxidised or cracked products.32 

However, the extent actually observed was unexpected and characteristic peaks determined 

from standard solutions could not be integrated accurately.  

As a consequence, instead of isolating single peaks, grouping peaks together to determine 

regions of the 1H-NMR spectra (i.e. alcohols, ketones, other) was attempted. While this did 

give rough approximations for a catalyst’s activity, exceptionally high conversions were 

calculated (in some cases >100%). This meant the calculation model was not appropriate for 

linear alkane oxidation where a significant number of by-products were made. 

Therefore, we had to reconsider chromatographic methods (although slower) and an 

alternative quantification method was sought by using GC-MS. 

 

 

 



140 
 

3.2.2. Development of a GC-MS n-decane oxidation quantification calculator 

Although a lengthy procedure, quantitative GC-MS is a powerful tool for analysis of complex 

mixtures.33,34 Distinct separation of peaks in the chromatogram is required for the oxidation 

products of long chain linear alkanes. However, as they all have similar boiling points, we 

switched from using an Agilent DB-MS-UI column to the wax-type column Agilent DB-WAX-

UI so that the compounds would be separated on polarity.35,36 This was achieved with standard 

solutions of n-octane and n-decane and their commercially available oxidation products, as 

demonstrated in figures 3.2.2.2 and 3.2.2.3. Initial attempts of using solvents (e.g. toluene) for 

the reaction mixture yielded poorly resolved data from the overlap of peaks. Therefore, a 

solvent delay technique was utilised, treating the substrate as the solvent. This is where the 

detector is turned off during analysis when the solvent is expected to elute (often used to 

protect the detector).37 As n-octane/n-decane are treated as the solvent they are not quantified 

due to their high concentration; however, products could be resolved. Although this does mean 

that the reacting substrate cannot be directly quantified post reaction, separate NMR analysis 

of the amount of alkane after reaction can be conducted. This will allow determination of an 

approximate amount of total reactant and products, alongside carbon mass balance.  

Therefore, with the products in the standard being clearly defined, the following equations can 

be applied (eq. 3.2.2.1): 

𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 (%) =  
∑ [𝑝𝑖]. 𝑟𝑓𝑖

[𝑅𝑖]
. 100    (𝑒𝑞. 3.2.2.1) 

In this case, [𝑝𝑖] is the concentration of a given product, [𝑅𝑖] is the concentration of the reactant 

before the reaction and 𝑟𝑓 is the retention factor of a given product - as determined by its 

calibration curve. The concentration of products is determined through an internal standard 

(eq. 3.2.2.2): 

[𝑝𝑖] = [𝐼𝑆].
𝐴𝑟𝑒𝑎𝑝𝑖

𝐴𝑟𝑒𝑎𝐼𝑆
    (𝑒𝑞. 3.2.2.2) 
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Where [𝐼𝑆] and 𝐴𝑟𝑒𝑎𝐼𝑆 are the concentration and area from the GC-MS of the internal standard 

(n-dodecane for n-decane analysis and 1-decanol for n-octane) respectively.  

And finally, selectivity of a given product can be defined as (eq. 3.2.2.3): 

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (%) =  
[𝑝𝑖]. 𝑟𝑓

∑ [𝑝𝑖]. 𝑟𝑓𝑖
. 100    (𝑒𝑞. 3.2.2.3) 

The relative amounts of each product were determined through calibration curves, a selection 

is shown in figure 3.2.2.1. It should be noted here all lines are straight and thus the data is 

within the limits of linearity. Analogous to the approach used for NMR, a ‘GC-MS calculator’ 

was developed and then applied to a series of standards. The error of conversion for a 

selected range is shown in table 3.2.2.1.  

Figure 3.2.2.1: A sample of calibration curves for the various products used for the GC-MS calculator. 

Internal standard: 1-decanol. 1-Octanol (-■-), 2-Octanol (-●-), 3-Octanol (-▲-), Octanal (-▼-), 2-

Octanone (-♦-), 3-Octanone (-▼-).  
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Table 3.2.2.1: A series of data showing the recorded conversion of n-octane standards from GC-MS compared to the actual amount, with the corresponding 

error and the error of selectivity of proposed oxidation products. 

 Selectivity relative error (%) 

Conversion 
expected 

(%) 

Conversion 
measured 

GC-MS 
(%) 

Relative 
error 
(%) 

1-Octanol 2-Octanol 3-Octanol Octanal 2-Octanone 3-Octanone 

15.1 15.0 0.6 35.2 1.3 7.7 -8.9 -7.5 -27.2 

30.2 32.3 -6.4 14.6 13.8 3.1 0.4 -9.1 -22.4 

45.3 48.2 -6.0 17.5 7.0 8.1 -9.6 -0.8 -21.6 

60.4 64.1 -5.8 7.2 3.4 9.5 -11.0 0.6 -9.5 

75.6 78.7 -3.9 -6.4 0.0 -10.3 3.6 2.1 11.2 
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Typically, the error is higher within GC-MS compared to that of NMR, and at lower conversions 

the error of selectivity for 1-octanol and 3-octanone starts to become significant. However, this 

can be rectified by making a more concentrated solution if a real reaction mixture’s conversion 

was found to be too low. This is due to 1-octanol having a small tailing effect due to the nature 

of the wax-type column, which in turn, becomes harder to quantify at lower concentrations. 

Similarly, 3-octanone tends to have a broader peak shape and thus the sides of the peak start 

to become indistinguishable from the background, leading to a lower quantification. However, 

the error of conversion never exceeds 10% and thus the GC-MS calculator was deemed 

acceptable as an accurate tool for reaction mixture quantification. Most importantly, the peaks 

of a ‘real’ test were able to be distinguished and thus individual product selectivity could be 

determined.  

Figure 3.2.2.4 shows the product distribution of n-decane autoxidation at 140 oC under 

atmospheric/reflux conditions. It reveals that a significant number of products other than the 

C10 ketones and alcohols exist within the reaction mixture. This also shows why the 

corresponding NMR spectra contained many additional peaks and thus quantification was not 

possible. The additional products were primarily cracked products such as hexanol and 

hexanoic acid, but according to the NIST (National Institute of Standards and Technology) 

mass spec database,38,39 also contained some complex furanone-ester based compounds. 

These were possibly made from condensation reactions. Further study of the oxidation of n-

decane via autoxidation is explored in section 3.3. 
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Figure 3.2.2.2: Chromatogram data to show the individual retention times of n-decane and its proposed oxidation products. Separation was successful by using 

a wax column which distinguished products from their polarities. n-dodecane is present as this was used as an internal standard. 
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Figure 3.2.2.3: Chromatogram data to show the individual retention times of n-octane and its proposed oxidation products. Separation was successful by using 

a wax column which distinguished products from their polarities. 1-decanol is present as this was used as an internal standard. 
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Figure 3.2.2.4: A chromatogram of the oxidation of n-decane under autoxidation conditions. Alongside the ketones (5-decanone, 4-decanone, 3-decanone, 2-

decanone) and alcohols (5-decanol, 4-decanol, 3-decanol, 2-decanol, 1-decanol) acids from cracking and other products were identified. n-decane (3 mL), 140 

oC, reflux, 24 h. Internal standard: n-dodecane.
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3.3. The autoxidation of n-decane and determination of ideal oxidation conditions 

Although theoretically reaction between a saturated hydrocarbon and molecular oxygen in its 

ground triplet state is spin forbidden, the reaction can still occur via a process known as 

‘autoxidation’ or via  combustion through higher temperatures.6,40 These reactions, by their 

own nature, are selective to products determined by the radicals generated only. However, 

this means that they are very challenging to drive towards specific and desirable products, like 

in our case, primary alcohols. This poses a challenge to this research as a catalyst must either: 

1) Operate at temperatures where no autoxidation is occurring 

2) Induce a different and ‘dominating’ mechanism and thus be so active it overcomes any 

autoxidation 

3) Modify the autoxidation route so that the product distribution favours those desired 

(most often by inhibiting undesired reaction pathways) 

The remainder of this chapter will focus on point 1) as to define where no autoxidation is 

occurring by systematically changing the reaction conditions. Information on when catalysts 

were used can be found in section 4.2. In principle, if a temperature and pressure is used 

where no autoxidation is occurring, but conversion does occur when a catalyst is present, this 

would suggest the catalyst is active and thus should have a different selectivity to that of the 

autoxidation route.  

The simplest set up and thus the starting point of this research was the use of atmospheric 

pressure for the oxidation of n-decane. With an accurate quantification tool, the reaction 

mixture can be quantified over a series of temperature changes at atmospheric pressure to 

determine the point where autoxidation is occurring. Developing from there, pressurised 

systems were also tested as in theory these should provide higher conversions. The amount 

of oxygen used is defined here as ‘PO2’, this is the reading of the pressure gauge from the 

oxygen cylinder. A set time of 24 h was chosen as this was found to be where an equilibrium 

was met from original tests with an approximate NMR quantification. 
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 Figure 3.3.1: Conversion of n-decane to products quantified via GC-MS as a function of temperature. 

n-decane (3 mL), 24 h. P = Atmospheric (-▲-) and PO2 2 bar (-■-). 

 

 

Figure 3.3.2: Selectivity data for alcohols, ketones and acids/other products as determined by GC-MS 

from the autoxidation of n-decane as a function of temperature. n-decane (3 mL), 24 h. P = Atmospheric 

(-▲-) and PO2 = 2 bar (-■-). 
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As expected, atmospheric oxidation of n-decane did not occur until a higher temperature 

compared to that of the pressurised system (figure 3.3.1). Furthermore, at specific 

temperatures, the oxidation of n-decane is higher in pressurised systems than at atmospheric 

conditions until 140 oC, where the two lines meet. Temperatures higher than this were not 

conducted as this approached the boiling point of n-decane. In all cases, the carbon mass 

balance was determined via NMR to be >95% and thus no significant loss of volatile 

compounds was observed. At 140 oC it seems a maximum conversion is met, this is likely due 

to the limiting factor of oxygen solubility41 and the pressurised system has reached its limit of 

being beneficial.  

The selectivity of products also fits loosely what is expected from literature studies (figure 

3.3.2).42 In both atmospheric and pressurised conditions for oxidation there is a significant 

amount of alcohol at the lowest conversions, then a significant decrease of this class of 

products as temperature is increased. This is due to a further oxidation occurring where the 

oxidation of the alcohol yields the ketone or an alhdeyde.43 In fact the BDE of the C-H bond 

alpha to an OH group of an alcohol is ~125 kJ mol-1 lower than the corresponding saturated 

hydrocarbon.5 In other words, the more the reaction progresses the more the products are 

easier to oxidise. This also explains why these reactions lead to a large number of by products 

and are so challenging to control in terms of selectivity.44 Interestingly, decanal is never 

observed in the GC-MS. It is speculated that this is immediately converted to decanoic acid if 

ever present in the reaction mixture. Furthermore, the rise of acids and other condensation 

products occurs at higher temperatures. The alcohols, ketones and n-decane itself are being 

oxidised and/or cracked into over oxidised species due to more homolytic mechanisms 

occuring.45 The pressurised system starts to show a higher selectivity for acids and other 

products and a lower selectivity to alcohols when compared to atmospheric conditions. As no 

further conversion is occurring and it is expected that oxygen diffusion is a limiting factor,41 the 

presence of a higher amount of by-products during the start of the reaction in the pressurised 

system could be affecting the multiple potential mechanisms occurring and thus leading to a 
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different selectivity. However, this is to some extent expected due to the complex nature of 

the radical components of the mechanisms (see section 1.3.1), these are summarised in figure 

3.3.3: 

 

 

 

 

 

Figure 3.3.3: A sample of mechanistic steps occurring during autoxidation. Step (1) is an initiation step, 

steps (2) and (3) are propagation steps and step (4) is a termination step.6 

Ultimately, this is useful for the proposed catalytic tests as it shows: 

1) Where autoxidation does not occur. Therefore, a catalyst must be ideally active < 120 

oC for pressurised systems and < 130 oC under atmospheric conditions. It should be 

noted, however, that this is a challenging and ambitious target as a temperature of 120 

oC has to be considered very low for linear saturated hydrocarbons. 

2) The extent and product distribution of autoxidation. If a catalyst is not active at lower 

temperatures, but changes in selectivity are observed compared to autoxidation 

conditions without a catalyst, then the catalyst still has an involvement in the reaction. 

In this specific case adsorbing a reaction intermediate. 
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3.4. Conclusion and future work 

An efficient and accurate tool for the quantification of n-decane’s and n-octane’s oxidation 

products was developed. When using standard solutions both 1H-NMR and using a wax-type 

column with GC-MS allowed adequate identification, quantification and separation of the 

compounds used to mimic a reaction mixture. 1H-NMR, despite its intrinsic advantages like 

time of analysis, was unable to separate peaks in actual reaction mixtures due to the multitude 

of products formed and significant overlaps of their peaks. GC-MS on the other hand was 

capable of this and was set to be the primary tool for quantification of products in reaction 

mixtures, despite a much longer analysis time. 

Furthermore, preliminary oxidation tests were conducted to study the autoxidation of n-

decane. This determined a starting point for oxidation for a catalyst as no/minor conversion 

was seen < 120 oC under pressurised systems and < 130 oC under atmospheric conditions. 

Finally, the results pave insight into how the autoxidation of n-decane behaves and thus 

conversion and selectivity can be compared to data at temperature ranges where catalysts 

will be used (section 4.2). 

To further our understanding of autoxidation phenomena – kinetic experiments would be 

conducted to monitor the conversion and selectivity of alkane oxidation as a function of time 

and determine if there is a potential induction period. Additionally, radical scavenger 

experiments would be conducted to ensure the presence of radicals during specific 

autoxidation steps.  
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4.1. Introduction 

Catalyst design is a highly complex and challenging process. The active metal,1–4 the 

support5,6 and how the metal is deposited onto the support7 are some of the common factors 

in catalyst synthesis, to name a few.8 Additionally, for porous materials, their pore diameter is 

paramount to this research. The concept of only a specific region of a molecule  - in our case, 

a terminal methyl group of a long chain hydrocarbon - reaching an active site is dependent on 

the size of the pores and substrate.9 The identification and optimisation of all these parameters 

was a necessity to create an active and selective catalyst. 

Two studies were conducted in parallel during this research: (i) (section 4.2) synthesis of bulk 

materials, where in this context bulk stands for non-porous (neither micro nor meso) metal 

oxides, and (ii) (sections 5.2 – 5.4 and 6.2 – 6.7) development or use of their micro- meso-

porous counterparts. This approach was done in order to use materials in part (i) as a 

benchmark and comparison for part (ii), and to determine if the use and development of micro 

or meso porosity actually leads to an advantage, with respect to the chemistry of more 

established bulk metal oxides, either metal doped or not. This developed an understanding of 

how metal nanoparticles behave catalytically when different supports (e.g. TiO2, Nb2O5 and 

zeolites) and post synthesis modifications (calcination and reduction) are used.  

Additionally, this approach served for the identification and development of optimal conditions 

for n-decane oxidation with a catalyst. These were determined by using an active catalyst and 

systematically modifying parameters potentially affecting the catalytic activity like: 

temperature, pressure and stirring speed, until the highest conversion is found. Ultimately, the 

microporous materials from sections 5 and 6 would then be tested under these conditions and 

compared to the bulk materials. To put into context, a metal found to be active on bulk titanium 

oxide would be chosen as a contender to be included into the framework of microporous 

titanium oxide (and potentially niobium analogues). It should be noted, data from section 3.3 

will be considered to ensure any catalytic activity observed is indeed due to the presence of a 

catalyst and not from background autoxidation.    



158 
 

Furthermore, commercial analogues of microporous materials will be tested here. Non-doped 

Ti-TMS1 (microporous titanium oxide) will be used to support metal nanoparticles added post-

synthesis. Additionally, commercial zeolites will be tested as these are the biggest rival to 

microporous metal oxides.  In summary, three types of catalysts will be developed i) metal 

nanoparticles on a bulk support, ii) an intra-framework active metal in a porous framework and 

iii) metal nanoparticles (extra framework species) on a porous framework.  

Applying these catalysts to n-decane oxidation would allow us to determine the following; i) 

does the presence of pores increase regioselectivity? ii) does an active metal part of a 

framework give an advantage over doped commercial materials?  

Ultimately, the goal of this chapter is to understand what variables lead to a catalyst most 

suited to selective oxidation.  

4.2. Decane oxidation 

Within the literature there are many examples of metal catalysed alkane oxidation reactions. 

For example iron,10 manganese,7 palladium11 and gold5 have all been applied to alkane 

oxidation. Vanadium oxide is also prevalent in the literature but is primarily used for oxidative 

dehydrogenation and thus forms alkenes, which are not desired for our purposes.6 This gave 

scope for which metals should be prioritised. 

Preliminary tests showed that iron on bulk titanium oxide (p-25), was catalytically active 

towards the oxidation of n-decane. p-25 is an anatase/rutile mix commonly used as a standard 

support for a range of applications.12 Fe/TiO2 was chosen to determine what are the most ideal 

conditions for n-decane oxidation. Therefore, reaction parameters were varied, and 

conversion and selectivity were determined. From this an optimal set of conditions would be 

developed and then kept unchanged for the numerous other catalysts to be tested and 

compared (i.e. both bulk and microporous materials). 
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4.2.1. Determination and optimization of oxidation conditions – avoiding 

autoxidation 

In order to ensure any catalyst is indeed active and is at its most active, parameters were 

varied to ensure the highest possible conversion is achieved whilst also observing the effect 

of these parameters on the selectivity to alcohols, the desired product of this work. 

Temperature is possibly one of the most significant parameters to catalysis, especially within 

the context of autoxidation. This is important as it has been shown that within the literature 

some data initially thought to be catalyst centred oxidation was in fact autoxidation.13 Varying 

pressure, specifically O2 pressure (PO2) was also to be varied. This is important as this can 

allow understanding of the type of mechanism (i.e. Eley-Rideal or Langmuir-Hinshelwood) that 

is occurring on the surface of the catalyst. By understanding which mechanism is occurring 

and varying pressure, maximum conversion can be achieved.14,15 Furthermore to determine if 

the reaction is under a kinetic or a diffusion regime, stirrer speed and metal to substrate ratio 

were also varied. For significant comparison to be drawn between catalysts the system must 

be under a kinetic regime otherwise the limiting factor of the catalysis is diffusion of the 

substrate to the surface of the catalyst from mass transfer limitations – which may also, in turn, 

affect selectivity of a reaction.16,17 Once the ideal parameters have been determined these will 

be fixed and other factors such as wt% of metal; type of metal; type of support and porosity of 

support will be varied. 

4.2.1.1. Effect of changes of temperature  

Oxidation of an alkane under these solvent-free ‘mild conditions’ is not a trivial task.18 In both 

atmospheric and pressurised systems, Fe/TiO2 was found to catalyse the oxidation of n-

decane. Preliminary data showed that Fe/TiO2 under pressurised oxygen was found to yield 

higher conversion (~ 5%) of n-decane in comparison to atmospheric conditions at lower 

temperatures (~ 2%). Therefore, catalytic testing under pressurised oxygen was a fixed 

parameter for this study.  
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A temperature range from 110 oC to 140 oC was explored. It can be seen that at 115 oC Fe/TiO2 

is catalytically active, as conversion of n-decane was observed. As a proof of concept, 

conversion was sought with bulk catalysts so that changes could be directly monitored from 

the parameters adjusted. Figure 4.2.1.1.1 shows the trend of temperature versus conversion 

with and without Fe/TiO2 present. At 115 oC significant conversion (>2%) is observed with 

Fe/TiO2, whereas when no catalyst is used no conversion occurs.  

However, at higher temperatures the conversion data overlap where a catalyst is and is not 

present. The data follows a sigmoidal trend where a rapid increase in conversion follows a low 

gradient, commonly observed in oxidation reactions.19–21 This is because temperature is 

clearly a limiting factor < 120 oC, whereby >130 oC another limitation starts to hold back 

conversion. 

By 120 oC the autoxidation has almost identical conversion and selectivity to when Fe/TiO2 is 

used. Therefore, this means autoxidation is the dominating mechanism and the presence of 

Fe/TiO2 does not affect the reaction under these conditions. Below 115 oC there is no 

conversion from either the autoxidation or Fe/TiO2. This gives a very narrow temperature 

range of ~ 5oC where the reaction is catalysed and then there is either no activity at all or the 

reaction is taken over by autoxidation. Nevertheless, after repeating tests at 115 oC several 

times (>10 times over 3 different batches), it was found that autoxidation never occurs at this 

temperature whereas Fe/TiO2 always yields conversion. Given these results we therefore 

considered Fe/TiO2 a suitable catalyst for the identification of optimal reaction conditions and 

for further development of an improved catalytic system.  

Furthermore, the goal of this project was the selective oxidation of alkanes to alcohols. The 

reaction mixture plummets in alcohol selectivity >120 oC, with increasing favour towards acids 

and other products and little change in ketone selectivity. This shows that the acids and other 

products are likely, at least in part, to come from alcohol oxidation. Although this is primarily 

due to autoxidation reactions, it is also crucial for catalytic testing. These data show that at 
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temperatures >120 oC alcohol decomposition is likely to occur, and thus are unsuitable for 

selective catalysis.  

Therefore, 115 oC was fixed and chosen as a reference temperature. Other parameters were 

thus varied in order to optimise conversion.  
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Figure 4.2.1.1.1: Top: Conversion data; Bottom: Selectivity data for n-decane oxidation with Fe/TiO2 (1 

wt%, bulk, wetness impregnation – WI), with varying temperature. Solid bold lines are where Fe/TiO2 

was used, dashed faded lines are blank reactions to serve as a background. n-decane (3 mL), Fe/TiO2 

(1 wt%, bulk, WI), M:S (metal to substrate ratio) = 1:2000, PO2 = 2 bar, t = 24 h.  
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4.2.1.2. Effect of changes of pressure 

As expected, it was found that changing from atmospheric to pressurised systems influences 

conversion in blank tests (section 3.3). Therefore, this gave scope to varying the O2 pressure 

in order to maximise conversion of n-decane. 

However, the effect of changing this parameter is not as trivial as it could sound. In theory, 

increasing the O2 pressure would increase conversion until the amount of oxygen present in 

the reaction mixture is no longer a limiting factor.22 On the other hand if the reaction follows, 

for example, a Langmuir-Hinshelwood mechanism23 or any mechanism with competitive 

adsorption between two reagents, we would expect that beyond a certain limit there is no gain 

by increasing the pressure of O2. In fact, we would actually expect to observe a decrease in 

rate (and in turn conversion) as O2 would occupy all of the catalyst’s surface at the expense 

of the hydrocarbon.14 Catalytic tests were conducted where the temperature was fixed (115 

oC) but the pressure was varied (both in pressurised air and O2 systems) in order to determine 

an optimal oxygen pressure, the results are shown in figures 4.2.1.2.1 and 4.2.1.2.2. 
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Figure 4.2.1.2.1: Conversion data of n-decane with Fe/TiO2 (1 wt%, bulk, WI), with varying pressure. 

n-decane (3 mL), Fe/TiO2 (1 wt%, bulk, WI), M:S = 1:2000, T = 115 oC, t = 24 h. Pressure is 

corresponding O2 pressure. X-axis points 1.1 and 1.5 bar correspond to compressed air P = 0.5 and 1 

bar respectively. Point 0.2 bar is atmospheric oxygen (i.e. under open reflux conditions) All other x-axis 

values are pressurised O2 only. 
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Figure 4.2.1.2.2: Selectivity data of n-decane with Fe/TiO2 (1 wt%, bulk, WI), with varying pressure. n-decane (3 mL), Fe/TiO2 (1 wt%, bulk, WI), M:S = 1:2000, 

T = 115 oC, t = 24 h. Pressure is corresponding O2 pressure. Points 1.1 and 1.5 bar correspond to compressed air P = 0.5 and 1 bar respectively. All other x-

axis values are pressurised O2 only. (■) Alcohol, (■) Ketone, (■) Acids and other.
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And in fact, a volcano-type plot typical of competitive adsorption was observed. Initially there 

is low conversion for low pressures of O2, and as expected, as O2 pressure increases so does 

the conversion, reaching a maximum between 1.5 and 2 bar (PO2 = 0.5 and 1 bar respectively 

– i.e. pressure set on O2 cylinder as opposed to local O2 pressure). However, beyond 2 bar 

O2 a decrease in conversion is observed. This would suggest a competitive adsorption 

process with too much oxygen causes, practically, an inhibition effect on the catalysts so that 

n-decane is incapable of being activated (a similar phenomenon is observed in tungsten 

carbides),24 or the oxygen itself is hindering the reactivity of any radicals.25 For completeness, 

other reasons could also include oxygen effecting the Fe surface, such as surface 

restructuring.26  

It should be noted that although oxygen pressure affects conversion, within pressurised 

oxygen systems selectivity is essentially unchanged. This means that the increased pressure 

of oxygen influences the number of available active sites, however, their nature remains 

unchanged. This further supports the hypothesis of competition between the alkane and 

oxygen during catalysis, as opposed to any fouling of the active sites.  

On the other hand, when the oxidation is carried out using air, alcohols are selectively favoured 

compared to reactions under pure O2. However, as technically selectivity can only be 

compared when tests have statistically similar conversion, the PO2 set as 3 bar O2 and 1.1 bar 

and 1.2 bar pressurised air can be compared. This enhanced selectivity to the alcohol could 

be due to less over oxidation occurring as less O2 is present.27,28 Although alcohols were 

desired for this project, we nevertheless preferred to carry on with low pressure of pure O2 in 

order to increase the conversion and in turn to obtain an appreciable yield. 

Ultimately the results show oxygen pressures of 1.5 and 2 bar yield the highest conversion. 

Due to the ease of setting a higher pressure with our equipment, and in turn a higher stability 

of our reactor for long periods of time, 2 bar O2 (PO2 1 bar) was chosen as the optimum 

pressure for our tests. 
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4.2.1.3. Effects of changes of stirrer speed 

Stirrer speed is an essential parameter during liquid phase catalysis.29 This is because a 

uniform distribution of a solid catalyst within the reaction mixture is essential so that the 

catalyst and substrate are not limited by the slow mechanical motion of the mixture, which will 

lead to lower mass transfer.16 Stirring rates below 500 rpm were not creating a slurry, and 

above 900 rpm stirrer bars would not spin correctly. Therefore, the effect of 500 rpm to 900 

rpm stirrer speeds were studied. As a control, 0 rpm was also tested. 

From figure 4.2.1.3.1 it can be seen the highest conversion was obtained between 500 rpm 

and 700 rpm. Stirring at 900 rpm has significant error as at this speed the catalyst started to 

stick to the sides of the reaction vessel, and thus reaction uniformity is not consistent. 

At 0 rpm conversion has still occurred, however, the absence of stirring is clearly a limiting 

factor and indicates that mass transfer limitation is operating. Interestingly, the selectivity at 0 

rpm also changes (almost 1:1 ketone to alcohol, K:A, versus a typical ~2:1, figure 4.2.1.3.2). 

This suggests that selectivity is affected by diffusion in our system, commonly observed 

amongst other reactions.30 

Ultimately, neither conversion nor selectivity differed when using 500 rpm or 700 rpm. This 

indicated a true maximum had been reached and thus these conditions were chosen as 

optimal conditions.  
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Figure 4.2.1.3.1: Conversion data of n-decane with Fe/TiO2 (1 wt%, bulk, WI), with varying stirrer 

speed. n-decane (3 mL), Fe/TiO2 (1 wt%, bulk, WI), M:S = 1:2000, T = 115 oC, PO2 = 1 bar, t = 24 h.  
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Figure 4.2.1.3.2: Selectivity data of n-decane with Fe/TiO2 (1 wt%, bulk, WI), with varying stirrer speed. n-decane (3 mL), Fe/TiO2 (1 wt%, bulk, WI), M:S = 

1:1000, T = 115 oC, PO2 = 1 bar, t = 24 h. (■) Alcohol, (■) Ketone, (■) Acids and other. 
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4.2.1.4. Changes of M:S (metal to substrate ratios) 1:2000 and 1:1000 

Doubling the metal to substrate ratio does not necessarily double the conversion.29 This is 

because multiple parameters (e.g. solubility of products,17 effect of by-products,31 etc.) could 

be affecting the complex mechanisms occurring during oxidation.17,31,32 Varying metal to 

substrate ratio can allow determination of i) mass transfer limitations occurring or ii) what is 

the minimum amount of catalyst that can be used. A metal to substrate ratio of 1:1000 was 

trialled and gave a slightly lower standard deviation. It was thought that this could affect the 

reaction in two ways: i) If metal to substrate ratio is a limiting factor, then conversion would 

increase and ii) if the catalyst distribution uniformity within the reaction mixture is improved, 

then the standard deviation would decrease. Metal to substrate ratios higher (with respect to 

amount of catalyst used) than 1:1000 were not trialled as a low amount of catalyst was desired 

from an economical perspective. Furthermore, a M:S of 1:500 led to a thick slurry which made 

practical separation more difficult.  

It can be seen from figure 4.2.1.4.1 that M:S 1:1000 shows a higher conversion and slightly 

lower standard error. Therefore, an M:S of 1:2000 was a limiting factor and was also potentially 

leading to a higher standard deviation. The increase in conversion is likely from more active 

sites present as more catalyst is present and is a useful indicator that we are not carrying out 

reactions under a diffusion limited regime, as conversion may not increase in this regime. This 

in turn ensures that we can compare our catalysts under a kinetic regime of reactions over 

their surfaces.30 In view of these factors we selected the metal to substrate ratio of 1:1000 as 

a fixed condition for comparison amongst catalysts. 

It should be noted that selectivity does not change with metal to substrate ratio. Therefore, the 

additional active sites only effect conversion, and not selectivity. This suggests that the 

reaction is not limited by oxygen transfer into the reaction mixture. This further complements 

the data from varying the pressure of oxygen, and thus optimisation of this parameter was 

indeed at its maximum. 
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Within the parameters of the equipment used, optimum conditions for n-decane oxidation via 

Fe/TiO2 were determined. The conversion and selectivity obtained from Fe/TiO2 were set as a 

benchmark for all other catalysts to be tested. From here the goal was to find the most active 

metals (from high conversions/ selectivity) and thus determine which candidates were best to 

be incorporated into the proposed microporous titanium oxide (see section 5.2.4).  
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Figure 4.2.1.4.1: Conversion and selectivity data of n-decane with Fe/TiO2 (1 wt%, bulk, WI), with different metal to substrate ratios. n-decane (3 mL), Fe/TiO2 

(1 wt%, bulk, WI), T = 115 oC, PO2 = 1 bar, t = 24 h. (■) Conversion, (■) Alcohol, (■) Ketone, (■) Acids and other. 
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4.2.1.5. ICP-OES analysis for the determination of leaching 

It is crucial that loaded metals (i.e. iron in Fe/TiO2, bulk, WI) do not leach during catalytic 

conditions. This is important for heterogenous catalysts as their ease of reusability is their 

main advantage. Therefore, batch to batch, a loss of activity will be observed if significant 

leaching occurs.33 Additionally, there is the potential of the leached metal to be active in 

solution.34 This would lead to a degree of homogenous catalysis to occur (this has caused 

debates on mechanisms amongst palladium catalysts).35 As the goal of this project is to 

produce a porous heterogenous catalyst with an active site geometrically confined, it follows 

non-confined leachates freely catalysing a reaction are highly undesirable.   

ICP-OES (Inductively coupled plasma – optical emission spectroscopy) data was collected of 

the reaction mixture after a standard catalytic test (e.g. Fe/TiO2, M:S = 1:1000, T =115 oC, PO2 

= 1 bar, reaction time = 24 h). Fortunately, no iron is detected in the reaction mixture (< 0.01% 

relative to the original Fe amount in the catalyst). This means that all the iron has remained 

present on the surface, and thus, the catalytic activity is heterogenous in nature. Interestingly, 

relatively high amounts of sodium (1.2 μmol), silicon (45 nmol) and boron (130 nmol) were 

detected (table 4.2.1.5.1). Silicon and boron are suspected to come from the glassware used 

(borosilicate) for our reaction vessel.36 Sodium is a ubiquitous element,37 therefore its high 

abundance in the ICP could occur from the handling of the specimen. However, these 

elements are in low amounts compared to that of the original iron content and thus were 

disregarded.  

Table 4.2.1.5.1: ICP-OES data from n-decane oxidation with Fe/TiO2. Sample collected via solvent 

exchange with water. n-decane (3 mL), n-decane (3 mL), Fe/TiO2 (1 wt%, bulk, WI) M:S = 1:1000, T = 

115 oC, PO2 = 1 bar, t = 24 h. 

Element 

detected 

Al B Na Nb Ba Ca Si K 

Amount 

(nmol) 

4.9E+01 1.3E+02 1.2E+03 0.0E+00 6.9E+00 5.2E+01 4.5E+01 2.0E+01 
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4.2.1.6. Changes of metal loading wt% 

Varying metal wt% is a crucial factor in catalyst design.38 For the purposes of this project, 

metal nanoparticles were desired to be loaded onto a support (if the support is a bulk metal 

oxide/ commercially available porous support), or for the active metal to be part of a framework 

(for porous metal oxides). The corresponding wt% of the metal can determine how close the 

nanoparticles are to each one another on the support.39 If an excessive amount of metal is 

loaded then space between nanoparticles will be less, which will eventually form a bulk 

monolayer.40 A monolayer may behave differently to its nanoparticle counterpart, and thus 

lead to an inactive catalyst, or lead to a catalyst capable of different activity.41 Ultimately, a 

lower wt% would be a desirable target so less material can be used, this is especially 

significant when using precious metals. Therefore, varying wt% of loaded metal was trialled 

for Fe/TiO2.  

Preliminary data of n-decane oxidation with 1, 2 and 5 wt% Fe/TiO2 showed no difference in 

conversion or selectivity. However, in order to gather possible structural differences between 

these materials, XRPD (x-ray powder diffraction) patterns were collected and analysed. Figure 

4.2.1.6.1 shows that at 5 wt% a small additional peak at 33 o 2 is observed compared to WI-

p-25 (a WI where no dopant metal salt is added); and 1 wt% and 2 wt% Fe/TiO2. This reflection 

is consistent with the (104) facet of Fe2O3.42 This detection is possible precisely because of 

the higher metal loading, and in turn a higher exposed fraction of metal oxide capable to 

generate diffraction. However, this peak was too small to estimate the particles size of Fe2O3 

by using the Scherrer equation in a reliable manner.  

While no advantages were observed for varying metal wt% the data shows that varying wt% 

of Fe in Fe/TiO2 tested at this scale is not a limiting factor. In this case, by following the principle 

of using the lowest metal loading as possible (see precious metals), a 1 wt% catalyst was 

used in our study. 

 



175 
 

Figure 4.2.1.6.1: XRPD patterns of Fe/TiO2 WI, 680 oC with varying Fe wt%. A magnification of a reflection consistent with Fe2O3 is present is included (right). 

Undoped TiO2 calcined at 680 oC and commercial Fe2O3 are included for comparison. Undoped TiO2 680 oC (-), commercial Fe2O3 (-), Fe/TIO2 WI 680 oC 1 

wt% (-), 2 wt% (-), 5 wt% (-).The most intense peaks of the patterns are assigned from literature, where in undoped TiO2 ‘A’ is Anatase and ‘R’ is Rutile.42–46
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4.2.2. Catalytic activity amongst different supports  

Ideally for the scope of selective oxidation a support will not be active itself during catalysis. 

Shape selectivity arises from the isolated nature of the dopant metal within the support,47 

therefore it is not desired for the support to provide additional unwanted catalysis. In principle 

if the support is active and the active site is not restricted in anyway then by-products could 

be formed where no shape selectivity has taken place. It is therefore essential that all catalytic 

activity is from the isolated metal within a porous framework in order to induce geometrical 

constraints capable of selectivity control. 

Table 4.2.2.1 contains a range of supports and their corresponding conversion when applied 

to n-decane oxidation. Bulk TiO2 and a commercially available Ti-TMS1 show no conversion 

during n-decane oxidation (where Fe/TiO2, bulk, WI, showed a modest conversion). This is 

advantageous as it means that the catalytic activity observed when using Fe/TiO2 is indeed 

due to the iron and not the TiO2. Furthermore, alongside the ICP data from section 4.2.1.5, 

this concludes that the catalytic activity has occurred specifically on the iron on the titanium 

oxide heterogeneously (i.e. no catalysis from the support nor leached iron). Additionally, the 

commercial Ti-TMS1 shows no conversion. This means that the framework of porous titanium 

oxide is also inert towards n-decane oxidation under our chosen conditions. 

On the other hand, the catalytic behaviour of the other supports proved interesting. 

Predominantly, the zeolite-based supports showed no conversion, apart from MCM-41 

(commercial mesostructured silica). This is somewhat unexpected as the MCM-41 should not 

contain any catalytically active material. This could be due to a small amount of autoxidation 

occurring (however, blank tests at this temperature always showed no conversion), or an 

unknown metal impurity has led to minor oxidation. Perhaps most surprising is the oxidation 

of n-decane with niobium oxide (a support used within the research group for mechanistic 

studies on ethylbenzene oxidation). To our knowledge there are no instances where undoped 

niobium oxide has been applied to n-decane oxidation. Different manufacturer purity grades 

and samples from different lots were tested to determine if the presence of any undetected 
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impurities were causing conversion (table 4.2.2.2). As it can be seen in all instances the 

niobium oxide is indeed active. Furthermore, it was found to be active under atmospheric 

conditions at the same temperature, also yielding higher conversion (~7% versus ~2%) where 

no other catalysts were active. Presently these results are still being interpreted and are 

beyond the scope of this project. However, as doped microporous niobium oxide is proposed 

to be synthesised and applied to alkane oxidation, the results from the bulk material will make 

interesting and crucial comparisons for understanding how the alkane is oxidised (see section 

4.2.4.2 for further study of bulk niobium oxide as a support and section 6.7 for data on 

microporous niobium oxide).
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Table 4.2.2.1: A summary of results for n-decane oxidation with a varied selection of supports. n-decane (3 mL), M:S (1:1000, based on a nominal 1 wt% Fe), 

T = 115 oC, PO2 = 1 bar, t = 24 h.  

 Selectivity (%) 

 
Conversion (%) Alcohol Ketone Acids and other 

TiO2 (p-25, Commercial) 0 0 0 0 

MCM-41 (SiO2, Commercial) 0.7 54 38 8 

MCM-41 (SiO2/Al2O3, Commercial) 0 0 0 0 

Ti-TMS1 (Commercial) 0 0 0 0 

TiO2 (WI) 0 0 0 0 

ZSM-5 (Commercial) 0 0 0 0 

Nb2O5 99.99 (Commercial) 1.9 46 45 8.5 

Nb2O5 (WI) 1.8 46 46 8.2 

Nb2O5 (WI, reduced) 0 0 0 0 

Nb2O5 99.9 Batch 1 (Commercial) 3 42 50 8.5 

NbO2 (Commercial) 1.3 46 48 6.2 
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Table 4.2.2.2: A summary of results for n-decane oxidation with a varied selection of supports. n-decane (3 mL), M:S (1:1000, based on theoretical 1 wt% Fe), 

T = 115 oC, P = atmospheric (reflux), t = 24 h.  

 Selectivity (%) 

 
Conversion (%) Alcohol Ketone Acids and other 

Nb2O5 99.99 (Commercial) 4.6 45 49 5.9 

Nb2O5 99.9 Batch 1 (Commercial) 5.6 42 52 5.9 

Nb2O5 99.9 Batch 2 (Commercial) 5 46 49 4.7 

Nb2O5 (WI) 7.2 41 53 6.4 

CeO2 (Commercial) 2 43 48 9 

SiO2 (Commercial) 0 0 0 0 
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4.2.3. Metal supported bulk TiO2 

4.2.3.1. Wet impregnation metal-doped bulk TiO2 

Bulk TiO2 was selected as an appropriate support for adding dopant metals. This is because 

bulk TiO2 is inert with regards to n-decane oxidation. An array of TiO2 catalysts were hence 

forth developed to determine which metals were active towards n-decane oxidation. This will 

allow prioritisation and expectations of activity to be made for dopant metals in microporous 

TiO2. 

Figure 4.2.3.1.1 shows the conversion data for varying metals on TiO2, bulk metal oxides and 

dried metal salts. Fe/TiO2 is the most active for all metals on TiO2 (M/TiO2) based catalysts. 

Pure iron and iron nitrate are capable of oxidising n-decane, however, Fe2O3 powder shows 

no conversion. This shows that the morphology of Fe2O3 on Fe/TiO2 is different to that of bulk 

Fe2O3 powder. This suggests that the dopant Fe2O3 is indeed a nanoparticle (or nanosized) 

as this would explain the difference in reactivity. Furthermore, the crystallite size of bulk Fe2O3 

powder was found to be in the range of ~52 nm, this is significantly larger than the expected 

~1-10 nm of Fe2O3 when deposited onto a support in this manner,5,48–50 complementing the 

catalytic data.  

The Fe/TiO2 shows a significantly higher conversion to that of Fe powder and Fe(NO3)3. This 

demonstrates that it is advantageous to use a support to enhance iron’s activity in order to 

avoid the sintering of small Fe2O3 particles. 
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Figure 4.2.3.1.1: Conversion (left) and selectivity data (right) for n-decane oxidation with varying metal, oxidation state of metal, and metal loaded onto bulk 

TiO2. n-decane (3 mL), M:S = 1:1000, T = 115 oC, PO2 = 1 bar, t = 24 h. (■) Conversion, (■) Alcohol, (■) Ketone, (■) Acids and other. Dried metal salts prepared 

via drying a standard solution onto glassware prior to catalytic tests.
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On the other hand, manganese shows the opposite effect to iron. Dried Mn(NO3)2 solution and 

bulk MnO2 powder are active towards n-decane oxidation, whereas the TiO2 supported 

manganese shows no conversion at all. This could be due to unfavourable metal-support 

interactions, the manganese being in an inactive oxidation state, or alternatively the 

manganese oxide nanoparticle is inactive towards n-decane oxidation. However, this is 

somewhat unexpected due to the extensive literature of manganese oxidation catalysis.7,10,51,52 

The same effect is also seen in silver, both the dried nitrate salt (AgNO3) and bulk oxide (Ag2O) 

are capable of n-decane oxidation, whereas the supported metal oxide on TiO2 is incapable 

of oxidation. Supported silver’s lack of activity could be due to the same reason as 

manganese’s lack of activity. Palladium shows no conversion in either the metal salt or the 

titanium oxide supported material. This is somewhat unexpected as palladium is a well-known 

oxidation catalyst.35,53 However, owing to the inert nature of linear alkanes,54 they may be too 

difficult to oxidise under our relatively mild conditions (< 150 oC and P ca. 2 bar) and thus also 

explain why the palladium, silver and manganese are inactive. Lastly, gold supported on 

titanium oxide is also inactive. However, the dried metal salt HAuCl4 is active yielding the 

second highest conversion of the series. The different activity could be due to multiple reasons 

explained in other examples where the salt/bulk is active, and the supported metal is not. 

Furthermore, the chloride ligands will influence gold’s activity also.55 However, this is not 

desired as only the metal/metal oxide will be present in our proposed catalysts. This is 

because oxidising conditions during catalysis and potential catalyst recycling at calcination 

temperatures may convert the gold chloride into the oxide, Au2O3, and thus make it inactive.  

It should be noted from the XRPD of all the M/TiO2 (figure 4.2.3.1.2), no additional peaks were 

observed compared to that of undoped TiO2. As explained in section 4.2.1.6, this is expected 

as the weight loading of active metal of these catalysts is too low to detect any reflections, or 

the existence of particle sizes below 5 nm, or both these factors. There is a difference in the 

TiO2 peaks in Mn/TiO2 and Fe/TiO2 compared to the other catalysts as a higher calcination 

temperature was used. The additional peaks indicate a shift from an anatase/rutile mix to 
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predominately rutile.56 However, as preliminary tests indicated there was no difference in 

activity when iron supported anatase and iron supported rutile were used, this should not 

cause any inhibition effects.    

Ultimately, iron on titanium oxide showed the highest conversion. Therefore, this will be 

prioritised for the incorporation into a porous framework (sections 5.2 and 6.2). However, the 

data from other metals is crucial to this project as it has shown how different oxidation states 

and how the bulk versus nanosized phases have a profound effect on n-decane oxidation. 

Although many supported metals on titanium oxide were inactive, their literature presence as 

oxidation catalysts still makes them potential candidates to be incorporated into a porous 

framework. In theory, the environment around these intra-framework metals will be different 

to that of the bulk,57 and once tested will allow comparisons to be made (and determine if their 

incorporation into a framework is advantageous). 
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Figure 4.2.3.1.2: XRPD patterns of M/TiO2 1 wt%, WI with varying dopant metal. From bottom to top: Fe/TiO2 680 oC (-), Mn/TiO2 680 oC (-), Au/TiO2 450 oC 

(-), Ag/TiO2 180 oC (-), Pd/TiO2 450 oC (-). The most intense peaks of the patterns are assigned from literature, where ‘A’ is Anatase and ‘R’ is Rutile.44–46 
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4.2.3.2. The effect of catalyst reduction on activity 

Thus far all catalysts have been used directly after calcination and are likely to be in their most 

stable oxidation state. Therefore, to determine if conversion and/or selectivity can be boosted 

with varying oxidation state, all catalysts were subjected to reduction with H2. 

It was found that Ag, Au, Pd and Mn supported on TiO2 showed no conversion after reduction. 

This is somewhat unexpected due to a strong literature presence of these metals as oxidation 

catalysts.53,58–61 However, this could be due to a number of reasons; the metals have inhibiting 

metal-surface interactions with titanium oxide (as seen in zirconia supports);62 or the thermal 

reduction treatment (180 oC - 450 oC, 2% H2/N2, 10 ml min-1, 30 min) may have led to an 

increase or partial sintering of the supported metal nanoparticles, thus making them inactive. 

On the other hand, iron is still active post reduction (figures 4.2.3.2.1). However, this is most 

likely due to the reactivity of Fe0 towards oxygen even at room temperature, and the sample 

most likely contains Fe2O3 domains. In fact, the conversion for ‘reduced’ Fe/TiO2 is statistically 

the same as the corresponding as synthesised Fe/TiO2. Furthermore, the selectivity between 

the two catalysts is also identical. As iron in its elemental form is readily converted to the 

corresponding oxide, it is likely this has occurred in situ and thus the active catalyst is identical 

in composition to that of Fe/TiO2 post calcination.  

XRPD (figures 4.2.3.2.2a and  4.2.3.2.2b) of the reduced catalysts showed no differences 

before and after reduction. As the metal loading is too low to observe any reflections from the 

doped metal, this data reveals information only about the support. Therefore, as there are no 

differences, this means that the support remains unchanged after reduction. Although the 

crystallinity of the TiO2 support has been shown to not affect the conversion of n-decane, it is 

important to know how this behaves under calcination and reduction conditions for potential 

recycling tests. 
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Figure 4.2.3.2.1: Conversion (left) and selectivity data (right) for n-decane oxidation with varying iron species. n-decane (3 mL), M:S = 1:1000, T = 115 oC, PO2 

= 1 bar, t = 24 h. (■) Conversion, (■) Alcohol, (■) Ketone, (■) Acids and other. Dried metal salts prepared via drying a standard solution onto glassware prior to 

catalytic tests. 
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Figure 4.2.3.2.2a: XRPD patterns of M/TiO2 1 wt%, WI with varying dopant metal and corresponding reduced M/TiO2. Fe/TiO2 680 oC, H2 450 oC (-), Mn/TiO2 

680 oC, H2 450 oC (-).The most intense peaks of the patterns are assigned from literature, where ‘R’ is Rutile.44–46 
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Figure 4.2.3.2.2b: XRPD patterns of M/TiO2 1 wt%, WI with varying dopant metal and corresponding reduced M/TiO2. Au/TiO2 450 oC, H2 450 oC (-), Ag/TiO2 

180 oC, H2 200 oC (-), Pd/TiO2 450 oC, H2 450 oC (-).The most intense peaks of the patterns are assigned from literature, where ‘A’ is Anatase and ‘R’ is Rutile.44–

46
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4.2.4. Alternative supports for n-decane oxidation 

Thus far a range of metals on TiO2 have been applied to n-decane oxidation. Metals with a 

strong literature presence on alkane oxidation were found to be poorly active at best. As this 

lack of activity was suspected, in part, to be due to inhibiting metal-support interactions, 

alternative supports are tested here. Furthermore, zeolite-based supports would allow 

determination of any confinement effects through desired shape selective oxidation.63 

4.2.4.1. Zeolite based catalysts  

Two predominant zeolites were chosen as supports for n-decane oxidation. MCM-4160,64–66 

and ZSM-511,61,67 were chosen due to their presence within the literature as supports for metals 

and their appropriate pore sizes. In principle, only parts of the n-decane molecule will have 

access to the metal doped support, as the support itself will provide a degree of 

confinement.34,68 The result of this will show selectivity to specific products (i.e. differences in 

selectivity of positional isomers) if steric confinement of an active site has occurred.11 

From figure 4.2.4.1.1 the iron doped zeolites were found to be not as active as the 

corresponding iron doped TiO2 and dried metal salt solution. Fe/MCM-41 shows conversion, 

whereas Fe/ZSM-5 shows no conversion at all. It is thought this could be due to two possible 

reasons: i) inhibiting metal/support interactions and ii) diffusion limitations of the substrate to 

the active site. As the catalysts were synthesised via a wetness impregnation technique, it is 

highly likely that the dispersion of nanoparticles results in a proportion being present on the 

exterior of the pores of the zeolite catalysts.11,67 Therefore, in principle, the substrate should 

have access to these sites and thus be activated (without any confinement). This means that 

point i), where unfavourable metal/support interactions are present, is likely to be the main 

reason why these catalysts are not as active. Figure 4.2.4.1.1 also shows there is no 

advantage on selectivity towards alcohols and figure 4.2.4.1.2 shows no regioselectivity has 

occurred when MCM-41 was used as a support (i.e. due to having identical selectivity to that 

of bulk Fe/TiO2 and the dried metal salt solution). This indicates that the activity that has 

occurred in Fe/MCM-41 is likely to be due to active sites on the exterior of the porous 
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framework, or the pores are too large to induce enough confinement for selectivity. Finally, it 

should be noted for completeness, that acidity of these materials may be having an effect on   

conversion as ZSM-5 and MCM-41 may have differing Si/Al ratios and interactions when 

doped with Fe and in turn active sites.69–71
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Figure 4.2.4.1.1: Conversion (left) and selectivity data (right) for n-decane oxidation with iron doped zeolites, with dried Fe(NO3)3 solution and Fe/TiO2 bulk as 

a comparison. n-decane (3 mL), M:S = 1:1000, T = 115 oC, PO2 = 1 bar, t = 24 h. (■) Conversion, (■) Alcohol, (■) Ketone, (■) Acids and other. 
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Figure 4.2.4.1.2: Positional selectivity data for n-decane oxidation with iron doped zeolites, with dried Fe(NO3)3 solution and Fe/TiO2 bulk as a comparison. 

Selectivity is based on the sum of alcohol and ketone for a given position (e.g. C3 = 3-Decanol + 3-Decanone). n-decane (3 mL), M:S = 1:1000, T = 115 oC, 

PO2 = 1 bar, t = 24 h. 
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Figures 4.2.4.1.3 and 4.2.4.1.4 show that the pores within MCM-41 are indeed still present 

(and likely to be accessible) after WI with iron. Although a drop in the crystallinity of the pores 

is observed (a decrease in intensity to ~1/3), pores are still present after calcination. 

Furthermore, pore width and pore volume distribution remain almost identical (figure 4.2.4.1.4) 

alongside the hysteresis loops. This data concludes that pores are indeed still present, but as 

the product distribution from n-decane oxidation is identical to Fe/TiO2, it is likely that any 

conversion has occurred without steric confinement. 

 

 

 

 

 

 

 

Figure 4.2.4.1.3: XRPD patterns of MCM-41 before and after wetness impregnation with iron. MCM-41 

(-) d-spacing = 46.2 Å, Fe/MCM-41 (-) 1 wt% WI, 680 oC d-spacing = 46.2 Å. 

 

Figure 4.2.4.1.4: Porosimmetry data of MCM-41 before and after wetness impregnation with iron. 

MCM-41 (-), Fe/MCM-41 (-) 1 wt% WI 680 oC. 
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It has been seen in this data that metal/surface interactions have a dramatic effect on 

conversion. Therefore, active metals from the literature and those previously trialled with TiO2 

were doped onto MCM-41 and subsequently tested towards n-decane oxidation.  

Interestingly, metals previously shown to be inactive towards n-decane oxidation on TiO2 were 

found to be active on MCM-41 (figure 4.2.4.1.5). Gold on MCM-41 was found to be active, 

even the calcined and reduced catalysts were also active, unlike any of the Au/TiO2 catalysts. 

This suggests that MCM-41 can support an active metal which is inactive on TiO2, indicative 

of varying metal-support interactions.72,73  

Furthermore, palladium was found to be active on MCM-41. Palladium nitrate on MCM-41 

showed the highest n-decane conversion amongst all the noble metals tested on MCM-41. 

However, reduced Pd/MCM-41 and the unsupported palladium nitrate salt showed no 

conversion. This data further complements the evidence of metal/support interactions 

affecting catalytic activity. Palladium nitrate on MCM-41 shows that Pd(II) is a promising 

contender for being doped into porous materials.  

However, in all instances there is no significant selectivity towards alcohols, with most 

catalysts having similar/identical product distributions. This is apart from gold, which shows a 

preference for ketones. Although this is not desired for linear alkanes, and thus for the specific 

purpose of our research (terminal or primary alcohols), a process where ketones are produced 

from alkanes (e.g. KA oil, a Ketone-Alcohol mixture, from the oxidation of cyclic 

hydrocarbons)74 could make use of these catalysts.  

Finally, no regioselectivity is evident from the observed product distributions (figure 4.2.4.1.6). 

The data shows that the distribution of products in n-decane oxidation was identical amongst 

metal salts and doped metals onto MCM-41. Similar to the Fe/MCM-41 results, the data 

suggests that the WI technique for doping metals is not appropriate for generating isolated 

active sites. This is likely to be creating a significant number of active sites on the exterior of 

the porous framework, thus leading to oxidation of all positions of the n-decane molecule. This 
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further demonstrates the need for intra-framework metals, which are the primary focus of this 

project (see section 1.5). 
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Figure 4.2.4.1.5: Conversion (left) and selectivity data (right) for n-decane oxidation with metal doped MCM-41, with dried metal salt solutions shown as a 

comparison. n-decane (3 mL), M:S = 1:1000, T = 115 oC, PO2 = 1 bar, t = 24 h. (■) Conversion, (■) Alcohol, (■) Ketone, (■) Acids and other. 
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Figure 4.2.4.1.6: Positional selectivity data for n-decane oxidation with metal doped MCM-41, with corresponding dried metal salt solutions shown as a 

comparison. Selectivity is based on the sum of alcohol and ketone for a given position (e.g. C3 = 3-Decanol + 3-Decanone). n-decane (3 mL), M:S = 1:1000, T 

= 115 oC, PO2 = 1 bar, t = 24 h. 
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4.2.4.2. Niobium oxide-based catalysts 

As previously mentioned, (section 4.2.2) niobium oxide was capable of significant oxidation of 

n-decane (2 – 7% conversion). This result was surprising as to the best of our knowledge no 

examples of bulk niobium oxide acting as a linear alkane oxidation catalyst are present in the 

literature. In principle, a support is required to be inert towards the catalytic process to avoid 

undesired parallel reactions and in turn more by-products. If, however, a support is capable in 

leading desired reactions, this is certainly noteworthy of further investigations. Nb2O5 did 

cause interest in the product distribution of the supports, this prompted us to determine if this 

could be altered with an additional active metal. Active metals were chosen from previous data 

and their literature presence. Data collected here will be crucial for comparisons to 

microporous niobium oxide (section 6.7). 

Figure 4.2.4.2.1 shows the conversion of n-decane and selectivity data of various metals 

doped onto Nb2O5. Firstly, the wetness impregnation technique has no effect on the 

conversion of Nb2O5. From the XRPD pattern (figure 4.2.4.2.2) the crystallinity of the material 

is also unaffected. The material is yet to be indexed, to determine the crystalline phases 

present, however, it can be seen from the patterns they completely overlap. This suggests 

that the impregnation technique has essentially left the material unchanged. On the other 

hand, treatment of Nb2O5 with hydrogen led to complete loss of activity. This is interesting as 

the XRPD patterns again show no observable differences before and after reduction. The 

inactivity could be from a small number of surface species which were initially active and then 

become inactive (and inhibiting, see later in discussion) upon reduction, which cannot be 

detected via XRD as this is a bulk method. 

Additional loaded metals change the activity of Nb2O5 in most instances. Manganese, gold 

and palladium doped niobium oxide show no catalytic activity. This is peculiar as it suggests 

that these metals are somewhat inhibiting conversion. This could be due to two reasons: i) 

The metal itself may be deactivating the mechanism that niobium is initiating; however, some 

minor products would be expected to be observed here. Furthermore gold was found to be 
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active on MCM-41, suggesting that the Nb-Au interaction is the source of the inhibition (in 

Au/Nb2O5) or ii) The active sites in the undoped niobium oxide have been blocked by the 

dopant metal nanoparticles; however, this would suggest the relatively low 1 wt% loading is 

enough to cover a significant proportion of the surface active sites. Niobium inhibiting oxidation 

(to an extent) is present within the literature,75–77 but does not provide an explanation why the 

presence of these metals inhibit niobium oxide’s own activity. We speculate the most likely 

explanation might be active site blocking. 

On the other hand, dopant silver provides a significant increase in activity (around 3 times as 

much compared to the undoped Nb2O5). It is still uncertain what this could be due to. 

Potentially the silver and niobium are acting independently, and the conversion observed is 

the sum of the niobium’s and silver’s own conversion. Alternatively, the silver or niobium could 

be acting as a promoter to one another.78,79 

Besides this, iron doped niobium oxide shows no difference in activity to undoped Nb2O5. This 

is somewhat unexpected as iron is always the most active metal within the series when doped 

on other supports reported above. The conversion of Fe/Nb2O5 is identical to that of the dried 

iron salt (and similar to that of the undoped niobium oxide). However, the product distribution 

is identical to that of the undoped material. This suggests that active sites are located on the 

surface of the niobium oxide, and these could be, for example, oxygen vacancies, edges, or 

corners on the oxide at atomic level. Therefore, these are the dominating species responsible 

for the catalytic activity in this support and potentially the iron is not responsible for any 

conversion.  

Finally, reduction of doped niobium oxide almost always leads to inactivity. As with the 

undoped material, iron and silver doped niobium oxide show no conversion after reduction. As 

mentioned previously, this could be due to speculated active species on the surface of the 

niobium oxide becoming inactive (and in this case inhibiting) after reduction. However, 

palladium does not fit this trend (and actually has the opposite effect). Palladium thus far has 

been predominantly inactive on supports (except for Pd(NO3) on MCM-41). After reduction 



200 
 

Pd/Nb2O5 becomes active. This means that any inhibition from the support previously seen in 

other metals is surpassed by the palladium nanoparticles. It is still uncertain why this the case 

is but certainly demonstrates the necessity for testing other supports (both bulk and porous). 

Ultimately, this data could lead to a whole new project studying the surface of the niobium 

oxide-based materials. However, for the context of this project the data has shown how 

changes to a synthesis can have a significant effect on the activity of a catalyst. This will be 

crucial information for understanding any differences in activity in porous materials.  
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Figure 4.2.4.2.1: Conversion (left) and selectivity data (right) for n-decane oxidation with metal doped Nb2O5, with dried metal salt solutions shown as a 

comparison. n-decane (3 mL), M:S = 1:1000, T = 115 oC, PO2 = 1 bar, t = 24 h. (■) Conversion, (■) Alcohol, (■) Ketone, (■) Acids and other. 
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Figure 4.2.4.2.2: XRPD patterns of commercial Niobium oxide (99.99%, Sigma), and corresponding samples from wetness impregnation (i.e. with no dopant 

metal) and reduction. (■) Nb2O5 Commercial, 99.99% (■) Nb2O5 WI, 680 oC (■) Nb2O5 WI, 680 oC, 450 oC H2 30 min, 10 ml min-1. 
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4.3. Cyclooctane oxidation 

As n-decane has been difficult to activate, an alternative hydrocarbon was tested for catalytic 

oxidation. Cyclooctane was chosen as because it is cyclic it will have a lower C-H activation 

energy than similar linear alkanes (a difference up to ~84 kJ mol-1).80,81 Furthermore, 

cyclooctane oxidation is analogous to cyclohexane oxidation, an industrially relevant reaction 

which requires selectivity and provides sought after products.74 This allowed an easier ‘proof 

of concept’ that a catalyst can indeed activate a C-H bond compared to using n-decane. 

Catalysts which were shown to be active with n-decane and those with a strong literature 

presence were tested. Furthermore, particular interest was paid to the support ZSM-5. This is 

because its pore size (5.6 Å) 67 is almost identical to that of cyclooctane’s approximate kinetic 

diameter of ca. 5.5-5.7 Å.82 Therefore, some shape selectivity may be induced by the catalyst 

(whereas in n-decane’s oxidation, Fe/ZSM-5 was found to be inactive). 

Like with n-decane, ideal conditions and a conversion calculator were required to be 

developed. This was done previously within the research group, and it was found that 110 oC, 

PO2 2 bar, 24 h were ideal for the study of cyclooctane oxidation. Furthermore, as the product 

distribution of cyclooctane oxidation is significantly lower than n-decane oxidation (i.e. less 

individual products and by-products), 1H-NMR was able to be employed as the main technique 

for product and reactant quantification (alongside the several advantages of NMR previously 

mentioned).83 A detailed description of the development of these analytical tools is not 

reported here, as it is beyond the scope of the current thesis work. 

Although the goal of this project was to oxidise linear alkanes, cyclooctane oxidation tests are 

crucial in ruling out if a catalyst is totally inactive to hydrocarbon oxidation, or simply not active 

enough for linear alkanes.  
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4.3.1. Cyclooctane oxidation with iron-based materials  

As mentioned previously, the reactivity of cyclooctane is expected to be markedly different to 

that of n-decane. This is due to cycloalkanes having a lower BDE (bond dissociation energy) 

than that of corresponding linear alkanes.80,81 Therefore, a series of catalysts previously tested 

with n-decane were applied to cyclooctane oxidation. As iron has proved to be the most active 

when applied to n-decane oxidation, it was prioritised for cyclooctane oxidation. Figures 

4.3.1.1 and 4.3.1.2 show a summary of cyclooctane oxidation with all the iron-based catalysts 

utilised.  

Firstly, cyclooctane can be activated much more readily than n-decane. Furthermore, across 

the series the conversion is significantly higher (by around a factor of 10) for all catalysts. For 

example, Fe/Nb2O5 has a conversion close to 70%, whereas with n-decane, conversions 

barely exceeded 5%. The data is agreeable with the principle that the BDE of cycloalkanes 

are lower than linear alkanes, and thus are easier to activate.80,81 Consequently supports that 

were inactive with n-decane show significant conversion with cyclooctane. For example, 

commercial TiO2 and ZSM-5-WI (no dopant metal) are capable of relatively high conversions 

of cyclooctane, where with n-decane no conversion is seen. This result is crucial as if the 

active sites are on the outside of the pores of these materials (and with TiO2 which is not 

porous, thus is likely the case), then catalysis can be occurring with no steric confinement. 

Niobium oxide also shows a significant conversion with no dopant metal. This is somewhat 

unexpected as to our knowledge no examples of bulk niobium oxide exhibiting such high 

conversions of hydrocarbon exist. This is ongoing in investigation.  
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Figure 4.3.1.1: Cyclooctane conversion data with varying iron-based catalysts and corresponding 

supports. Cyclooctane (3 mL), M:S = 1:1000, T = 110 oC, PO2 = 2 bar, t = 24 h. 
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Figure 4.3.1.2: Cyclooctane selectivity data with varying iron-based catalysts and corresponding 

supports. Cyclooctane (3 mL), M:S = 1:1000, T = 110 oC, PO2 = 2 bar, t = 24 h. Cyclooctanone (■), 

Cyclooctanol (■), Cyclooctyl hydroperoxide (■), other products (■), unknown products (■). 
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With the conversion of supports determined, it was then possible to see how the presence of 

iron affects oxidation. In all instances the presence of iron increases cyclooctane conversion. 

For example, Fe/TiO2 has a conversion of 44% compared to undoped TiO2 with 17%. This 

suggests that the iron is indeed capable of activating the cyclooctane. To try and further the 

conversion an alternative iron precursor was trialled. It was found in the literature that WI with 

FeNaEDTA gave significantly more disperse nanoparticles, which yielded active sites not 

found with Fe(NO3)3 and better catalytic activity.84 In our case, indeed an increase in 

conversion is seen (53% compared to 44%). Additionally, a difference in selectivity is 

observed. A shift to almost 1.5 times more peroxide and 1.5 times less ketone is seen when 

FeNaEDTA was used as the precursor. This suggests a potentially different mechanism, or 

adsorption of the alkyl hydroperoxide over the catalyst surface is occurring with this material. 

However, as the alcohol and ketone were desired for our scope, tests with FeNaEDTA were 

not pursued. Interestingly, the dried iron nitrate salt had an almost identical conversion to that 

of iron doped titanium oxide. Both the conversion and selectivity of all products were within 

experimental error of the two tests. This contrasts with n-decane where supported iron was 

significantly more active than the dried salt. This could be due to cyclooctane’s inherently 

lower BDE80,81 leading to iron’s dispersion not being a limiting factor in its activation. It was 

speculated that the high conversions could be due to potential leaching of Fe from Fe/TiO2 

and thus all catalysis occurs homogenously; however, this was not the case as ICP-OES data 

showed no presence of iron in solution.  

Additionally, the presence of iron on niobium oxide showed an increase in conversion. 

Undoped niobium oxide already showed significant conversion (even higher than iron doped 

TiO2), but when iron is added, an additional 15% conversion is observed. The presence of 

more unknown products when using Fe/Nb2O5 suggests either over oxidation or an alternative 

mechanism is occurring due to iron’s presence. Although more ketone and alcohol were 

desired, these results will be used to compare to porous material where iron is within the 

porous framework.  
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Next, the use of ZSM-5 was trialled for cyclooctane oxidation. Mirroring Fe/TiO2 and Fe/Nb2O5, 

Fe/ZSM-5 shows a significant increase in conversion to that of the undoped support. The result 

of the selectivity observed towards cyclooctanone is important. It seems the presence of ZSM-

5 causes an increase in cyclooctanone selectivity compared to when iron is loaded onto TiO2 

(~1.5 times as much). From an industrial view, this is advantageous as the ketone is the most 

desired product for fibres-based manufacture.85 It was speculated that the ZSM-5’s acidic 

properties may have caused this via alkyl hydroperoxide cleavage. This is demonstrated as 

when dried Fe(NO3)3 with ZSM-5 were tested together it can be seen that the conversion is 

identical to that of when only Fe(NO3)3 is used. However, Fe/ZSM-5 selectively catalyses the 

reaction to produce ketones. This suggests that this difference is not due to potential 

metal/support interactions or confinement of nanoparticles, and instead, iron is catalysing one 

part of the mechanism and ZSM-5 another. This is interesting as this adds an additional 

contribution which must be considered when testing porous materials where the dopant metal 

is part of the framework. Fe/SiO2 and Fe/Al2O3 were also tested as bulk comparisons to the 

zeolite. Fe/SiO2 showed the highest selectivity to cyclooctanone of the series with significant 

conversion. Although out of the scope of this project, these results could be furthered for the 

industrial production of KA oil.  

Finally, as ZSM-5’s pore size (~5.5 Å)67 is almost equal to cyclooctane’s kinetic diameter, other 

zeolites with differing pore sizes were tested. Iron doped zeolite 13X (~11 Å)86 and MCM-41 

(~46 Å) were applied to cyclooctane oxidation. Fe/13X has a similar conversion to that of 

Fe/ZSM-5, and Fe/MCM-41 shows a lower conversion (~20% versus ~40%). This is of 

particular interest as in principle, ZSM-5 may have some diffusion limitation compared to the 

other, larger pore zeolites. However, the data shows ZSM-5 has the highest conversion. This 

does not necessarily mean the smaller pores are responsible for this, as multiple factors such 

as crystal size,87 Si/Al ratios88 etc. will be different amongst the supports. The data also 

represents how these differences have a profound effect on selectivity. Comparing Fe/ZSM-5 

and Fe/13X, as they have similar conversions, Fe/13X significantly favours cyclooctly peroxide 
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formation (53%) compared to Fe/ZSM-5 (25%). The difference in selectivity was attributed to 

the multiple parameters mentioned throughout this chapter. Ultimately, the data shows the 

intricate details which may affect conversion and selectivity. 

4.3.2. Cyclooctane oxidation with noble metal-based materials  

Silver and palladium on ZSM-5 were prioritised for cyclooctane oxidation due to their potential 

demonstrated in results mentioned previously. Figure 4.3.2.1 shows the conversion and 

selectivity of these catalysts. Surprisingly, palladium is inactive. Thus far all catalysts applied 

to cyclooctane oxidation, which were inactive/ of low conversion with n-decane, were found to 

be active. This suggests that palladium oxide nanoparticles prepared via wet impregnation in 

this way are not active towards alkane oxidation. However, palladium is known to be a 

common oxidation catalyst11 and potentially if it is incorporated into a framework, its properties 

may be different. This is explored in section 5.2.  

Silver on ZSM-5 showed modest activity towards cyclooctane oxidation. Although not as active 

as the corresponding Fe/ZSM-5 (23% versus 40% respectively), the data shows that silver is 

indeed an active metal towards hydrocarbon oxidation. Thus far, silver nitrate salt, Ag2O, 

Ag/Nb2O5 and now Ag/ZSM-5 have been demonstrated as active catalysts. This gives scope 

for silver/ silver oxide supported microporous catalysts (section 5.4). 
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Figure 4.3.2.1: Cyclooctane conversion and selectivity data with varying noble metal doped ZSM-5 catalysts with WI-ZSM-5 and Fe/ZSM-5 present as 

comparison. Cyclooctane (3 mL), M:S = 1:1000, T = 110 oC, PO2 = 2 bar, t = 24 h. Cyclooctanone (■), Cyclooctanol (■), Cyclooctyl hydroperoxide (■), other 

products (■), unknown products (■). 
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4.4. Conclusion and future work 

The selective oxidation of hydrocarbons is a challenging task. Numerous parameters must be 

considered to achieve the narrow sweet spot between no activation at all to over oxidation. 

Here it has been demonstrated that catalyst design for application to alkane oxidation reflects 

this difficulty. Active metals within literature; supports leading to more/less activity and the type 

of hydrocarbon which is activated have led to a spectrum of results. 

Nevertheless, it was found that iron is capable of significant oxidation of n-decane and 

cyclooctane. Optimum conditions were developed for the oxidation of n-decane with Fe/TiO2, 

where no autoxidation was occurring. These conditions were then applied to an array of 

synthesised catalysts to find a metal capable of significant conversion or selectivity. The data 

revealed that iron would always be the most active metal for a series of dopant metals on a 

support (except when doped onto niobium oxide). Silver and palladium also showed in some 

cases the metals were active but suffered from metal support interactions leading to some 

inactive catalysts, dependent on the support used. Surprisingly, manganese never showed 

any activity, despite significant literature on its use as an oxidation catalyst. This could be due 

to inhibiting metal/support interactions also, or manganese oxide being in an inactive oxidation 

state.  

Future work would be heavily focused on further catalyst characterization with a combination 

of the analytical techniques available.26,89 This would be used to determine a trend of 

properties that makes a catalyst active or not. For example, further elucidation of surface 

properties and edges between the metal nanoparticle and support would be one way to further 

understand these materials. This would allow determination of how metal salts are bound to a 

surface compared to the corresponding metal oxide, and does the choice of precursor affect 

metal particle morphology (and does this effect conversion). Specifically, for some catalysts, 

TEM (transmission electron microscopy) would be used to determine the particle size of the 

catalysts as this is crucial for catalysis. For example, Fe/TiO2 1 wt% - 5 wt% could not have 

the active Fe2O3 crystallite size determined from XRPD due to the lower loading used, 
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therefore TEM could be used to determine if particle size changes at all across this higher 

loadings, and even if particle size changes depending on the support used. This could also be 

used to determine if the particle size of the noble metals is the reason for their inactivity. 

Further surface analysis techniques (e.g. Raman, X-ray absorption spectroscopy, etc.) would 

also be beneficial in determining the reasons behind the activity of niobium oxide as analysis 

within the present work was unable to observe any differences between active and inactive 

niobium oxide based catalysts.  

Additionally, it was found in cyclooctane oxidation selectivity towards ketones was greatly 

increased in the presence of acidic sites. Specifically, Fe/ZSM-5 and Fe/SiO2 showed great 

selectivity towards cyclooctanone (60% and 67% respectively), an industrially relevant product 

used in the fibre sector. Perhaps obtaining Fe/ZSM-5 where pore size is fixed but decreasing 

the Si/Al ratio (i.e. increasing the acidity) would lead to even greater yields of ketones, and 

thus make these catalysts contenders for industrial scale production of KA oil.  

Furthermore, future work would also focus more on the kinetics of the reactions described 

here. Similar to section 3, time online experiments would be conducted to determine the 

kinetics of alkane oxidation, comparisons would ultimately be made between autoxidation and 

reactions where a catalyst is present to help determine how conversion and selectivity vary 

over time. Additionally, extra data points throughout the work could help guide focus to higher 

conversions and selectivity, for example; more data points for varying PO2, stirrer speed and 

M:S ratio, the latter two would also support discussions on kinetic/diffusion regimes. This 

information may also allow further comparisons between catalysts. For example, many 

catalyst selectivities could not be compared due to differences in conversion, as comparisons 

can only be made at statistically identical conversion. Therefore, if equivalent conversions 

were found then the selectivity of the wider range of catalysts could then be compared.  

Ultimately, the results obtained in this chapter allowed a proof of concept that hydrocarbon 

oxidation, albeit difficult, is possible with metal nanoparticles on supports. It also demonstrated 
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that an active metal may be inactive on different supports, a crucial concept for sections 5.2 

and 6.2 where metals will be included within a porous framework. 
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5.1. Introduction 

The hydrothermal synthesis of mesoporous and microporous metal oxides is a highly complex 

process from a chemical perspective, despite the relative low difficulty of practical techniques 

used to synthesise these materials. In fact, the synthesis of these materials involves self-

assembly steps1 which once started are not under the control of the operator anymore. The 

challenge of the synthesis arises from what conditions should be used from the multitude 

possible, all of which will have an effect during the delicate pore formation. The goal of this 

project was to synthesise a highly porous, uniform, and chemically resistant material, with any 

template removed from the final product. The parameters for making these materials, as well 

as the effects of these parameters to the synthesis, are explored here.  

As mentioned previously titanium oxide has been chosen as the focal material due to its 

theoretical desired properties which will be applied during alkane oxidation. Examples of 

microporous titanium oxide within literature are relatively limited; however, several authors 

have published its synthesis and subsequent template removal, each with their own ‘ideal 

conditions’ for maximum porosity and uniformity. These different methods were conducted 

and altered in order to achieve the optimum material.  

The two main analytical methods used to determine porosity throughout the literature are 

XRPD (x-ray powder diffraction) and BET (Brunauer-Emmett-Teller)/porosimetry. XRPD is 

used to identify reflections within the regions of 1 – 15o 2ϴ (this will be referred to as the 

‘porous region’, as reflections in this range correspond to interlunar distances of 8.8 to 0.6 

nm). If there are any reflections here, the 2ϴ value can be used to determine the pore diameter 

(see section 2.5.6). Furthermore, it is used to determine if any other reflections are present 

beyond this region as this would suggest crystallinity in other phases (and thus it can be 

determined if any unwanted phases are present). For example, the polymorphs rutile and/or 

anatase would be present if titanium oxide crystallised into bulk TiO2.2 BET/porosimetry is 

used to determine surface area, pore size and pore volume.3 Out of the two methods XRPD 

was chosen to be a primary indicator for porosity as this would show if the material has 
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reflections in the porous region (and is not just amorphous) as: (i) it is quicker and easier to 

run than BET, and (ii) XRPD is sensitive to highly crystalline phases, unlike BET/porosimetry 

which can be applied to amorphous systems too. And as we were interested in crystalline 

porous materials, XRPD was serving these two scopes in a more practical manner. 

Once the material has been synthesised successfully, the challenge of template removal 

arises.4,5 This is a very general problem involved in the synthesis of micro or meso- porous 

materials. In fact, the template must be removed as diffusion of molecules in and out of the 

pores must not be limited, nor can the active sites be blocked. However, as the template is 

chemically bound to the titanium, its removal can cause pore collapse (analogous to removing 

the inner supports from a tunnel), possibly rendering the material unsuitable for shape-

selective catalysis. Therefore, delicate tweaking of template removal was conducted in order 

to optimise the properties of the final material.  
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5.2. Antonelli’s protocol for the synthesis of microporous titanium oxide 

Antonelli and co-workers have done significant research into the synthesis of multiple types of 

porous metal oxides.1,6–9 Due to a few papers reporting successful synthesis and template 

removal, the synthesis of microporous titanium oxide was considered to be a good starting 

point for this project. Specifically, the synthetic protocol where titanium isopropoxide and 

hexylamine were utilised as precursors and the template was removed through solvent 

washes.6,9 However, despite initially replicating the protocol in full in our laboratory, the 

material yielded did not have any reflections in the XRPD pattern as reported in literature 

(figure 5.2.1).  

 

 

 

 

 

Figure 5.2.1: An XRPD pattern of microporous titanium oxide from D.M Antonelli et al. to show the 

reflection corresponding to the material’s porosity. Figure reproduced here with permission from X. Hu 

et al.9  

 

Therefore, the synthesis was conducted several times but stopping and retrieving samples at 

specific points (figure 5.2.2). 
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Figure 5.2.2: A diagram to show steps in the synthesis of mesoporous titanium oxide as reported by 

Antonelli. Samples were taken at specified steps for analysis (specifically XRPD) to determine the 

presence of pores and template. 
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Following all the steps as reported in the synthesis yielded non-porous material, however, 

porosity is present in the initial steps. The sample taken after heating at 100 oC – 140 oC and 

the sample after the final drying step at 150 oC (samples 2 – 3) were found to be non-porous 

via XRPD, whereas the initial 80 oC autoclave (sample 1) gave porous titanium oxide, which 

will be referred to as ‘Ti-TMS1’, see figure 5.2.3.  

Figure 5.2.3: XRPD patterns of as-synthesised mesoporous titanium oxide with commercial p-25 (y-

axis normalised) included as a term of comparison. A single reflection (d = 22.1 Å) due to the presence 

of pores can be seen in the mesoporous titanium oxide pattern with relatively no crystallinity in the bulk 

phase. (-) Mesoporous titanium oxide: Ti(OiPr)4 and hexylamine (2:1) Autoclave 80 oC, 96 h, washed 

with H2O (3 x 50 mL), MeOH (3 x 50 mL) and Et2O (3 x 50 mL), (-) Commercial TiO2 (p-25). The most 

intense peaks of the anatase pattern are assigned from literature,10–12 and the microporous peak of 

titanium oxide.13,14  

A single relatively broad peak is observed in the mesoporous titanium oxide XRPD pattern. 

This signifies the existence of crystalline pores corresponding to a pore diameter of 22.1 Å, 

which is larger than the reported pore size (12 Å).9 However, as this is on the cusp of being 

microporous the material is still within the desired range for shape selective catalysis of 

0 20 40 60 80

0

200

400

600

800

1000

1200

1400

In
te

n
s
it
y
 (

C
o
u

n
ts

)

2θ

 Ti-TMS1

 Commercial TiO2 (p-25)
(1

0
1
) 

(0
0
4
) (2

0
0
) 

(1
0
5
) 

(2
1
1
) 

(1
0
0
) 



228 
 

alkanes. Pentylamine and butylamine were not utilised as templates as they are reported to 

lead to poorer crystalline samples.13 As pore sizes of ~2 nm were desired for the application 

of shape-selective catalysis for our scope15–17 hexylamine remained as the template of choice. 

Although templates of longer chain lengths may lead to better micelle formation, they would 

also, in theory, lead to larger undesired pore sizes (see section 5.3 for discussions on the use 

of longer templates). The broadness of the peak and its Gaussian shape suggests that a 

distribution of pores exist, and 22.1 Å would represent the average for this sample. Comparing 

the rest of the pattern no other peaks, besides two small peaks at 42-45o 2ϴ, are present 

within the mesoporous titanium oxide sample. This was desired as little to no crystallinity in 

the bulk phase means that only reflections from the pores exist. 

This result was complemented with porosimetry (figure 5.2.4), showing most of the pores lying 

around 2 nm, gradually tailing off to broader pores. This material was synthesised a large 

number of times (>20) across the entire project, giving an average pore size of 22.4 (±0.3) Å 

determined through XRPD analysis, which before template removal has to be considered a 

highly reproducible and statistically robust preparation method. 
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Figure 5.2.4: Porosimetry data showing the trace of as-synthesised mesoporous titanium oxide. The 

area under the graph is focused at 2 nm and exponentially decreases beyond this suggesting most 

pores have a diameter of 2 – 2.5 nm. Mesoporous titanium oxide as synthesised: Ti:Hexylamine = 2:1, 

Autoclave: 80 oC, 96 h, washed with H2O (3 x 50 mL), MeOH (3 x 50 mL) and Et2O (3 x 50 mL). 

The ATR-FTIR (attenuated total reflectance – Fourier transform infrared) (figure 5.2.5) showed 

the presence of organic material. As no template removal has been conducted at this point, it 

was expected the hexylamine would still be present within the porous structure. The C-H 

stretch (2700 – 3100 cm-1) and a broad O-H stretch (~2750 – 3500 cm-1) can be seen in the 

spectra, with additional unassigned peaks.18 The additional peaks (1250 – 1700 cm-1)  were 

attributed to the N-H bond,19 potential lattice vibrations commonly observed in zeolites20,21 and 

adsorbed water18. 
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Figure 5.2.5: ATR-FTIR spectra of as-synthesised mesoporous titanium oxide with dried commercial 

p-25 and hexylamine slurry as a means of comparison. The C-H stretch (2700 – 3100 cm-1), O-H stretch 

(~2750 – 3500 cm-1) and potentially additional hexylamine N-H/lattice vibration peaks (1250 – 1700 cm-

1) can be seen. (-) Mesoporous titanium oxide as synthesised: Ti:Hexylamine = 2:1, Autoclave: 80 oC, 

96 h, washed with H2O (3 x 50 mL), MeOH (3 x 50 mL) and Et2O (3 x 50 mL) (-) Dried Commercial TiO2 

(p-25) and hexylamine slurry (based on Ti:Hexylamine = 2:1). 

The TGA (thermogravimetric analysis) (figure 5.2.6) also showed the significant presence of 

the amine template. An initial mass loss of 5 wt% at ca. 120 oC is water, 28 wt% is hexylamine 

from 300 oC to 520 oC18 and the remainder of the material is TiO2. A control test by using 

commercial titanium oxide with hexylamine, to confirm the weight loss is indeed our template 

(prepared by drying a slurry with water), shows the shape of the TGA profile was virtually 

overlapping with the mesoporous sample. The mass loss being significantly lower in the dried 

slurry is expected as the amine would not bind to the titanium oxide and instead just be dried 

onto the surface.  
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The expected wt% of amine is not present in the as synthesised mesoporous titanium oxide. 

An expected 38 wt% compared to an observed 28 wt% suggests that a proportion of template 

is lost during the synthesis. This is due to all the template not binding to the titanium 

isopropoxide and washed away with solvent. It was expected that all the amine would be 

bound to the metal alkoxide according to literature reporting analogous proposed 

mechanisms.1,7,14 

Figure 5.2.6: TGA of as-synthesised mesoporous titanium oxide with commercial p-25 and hexylamine 

(prepared via a dried slurry) for comparison. An initial mass loss from water/solvents from the synthesis 

is seen initially, followed by organic material decomposition from around 300 oC to 520 oC. (-) 

Mesoporous titanium oxide as synthesised: Ti:Hexylamine = 2:1, Autoclave: 80 oC, 96 h, washed with 

H2O (3 x 50 mL), MeOH (3 x 50 mL) and Et2O (3 x 50 mL). (-) Dried Commercial TiO2 (p-25) and 

hexylamine slurry (based on Ti:Hexylamine = 2:1). 
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It was concluded that the synthesis conditions when conducted on a 1 g scale were in need 

of optimisation. This was reasoned as the material could not withstand elevated temperatures 

(both within the autoclave and during calcination, see sections 5.2.2 and 5.2.5 where this was 

further explored and quantified). This led to a series of modifications to the synthesis to try 

and optimise pore formation and the material’s robustness and thermal resistance.  

After washing several times with solvents (via filtration 3 x 50 mL with ethanol, methanol and 

ether as reported in the original protocol) and gentle heating (stirring sample with solvent near 

its corresponding boiling point < 80 oC), it was found that the template remained present and 

the material was not as resilient as initially expected based on the literature available.6,9 

Because of this, the project focused on optimising the conditions for the synthesis of 

microporous titanium oxide and subsequent template removal by implementing systematic 

changes to the protocols available in literature. 
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5.2.1. Change of ratio of titanium precursor to amine template 

Various literature has studied the effect of changing metal alkoxide precursor to amine 

template ratios when synthesising porous metal oxides.1,8,22–24 The mechanism for micelle 

formation in the synthesis suggests that the amine binds to the alkoxide in a 1:1 ratio. 

Furthermore, it was found with mesostructured Fe oxide that the samples with the largest 

porosity (from XRPD determinations) were those synthesised with an amine:alkoxide ratio of 

1:1,8 this same molar ratio was therefore applied to improve porosity.  

Figure 5.2.1.1: XRPD patterns of as-synthesised mesoporous titanium oxide with two examples where 

different ratios of titanium to hexylamine template were conducted. 

(-) Mesoporous titanium oxide: Ti(OiPr)4 and hexylamine (molar ratio 2:1) Autoclave 80 oC, 96 h 

(-) Mesoporous titanium oxide: Ti(OiPr)4 and hexylamine (molar ratio 1:1) Autoclave 80 oC, 96 h 

From the XRPD (figure 5.2.1.1) alone it can be seen the intensity corresponding to the porous 

peak is slightly lower in 1:1 than that of the 2:1 sample. As no clear advantage was seen using 

a 1:1 ratio, the literature method of 2:1 was maintained. This is likely to be due to the template 

having a more complex role during the hydrothermal step and, for example, potentially forming 

a multitude of different phases depending on the amine concentration1,7,14 
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5.2.2. Varying autoclave conditions  

Temperature is a crucial parameter during the hydrothermal step of any microporous material 

synthesis. Not only does it provide energy to the reactants, but also changes the pressure 

within the sealed container. A low temperature may lead to no crystallisation at all, where high 

temperatures may lead to crystallisation in the bulk/undesired phases. Therefore, varying 

temperature was systematically trialled for the synthesis.  

Figure 5.2.2.1: An overlay of XRPD patterns focusing on the characteristic reflection of porosity within 

mesoporous titanium oxide with varying temperature of the autoclave step and length of time within the 

autoclave. Autoclave temperature and hydrothermal step time: (-) 60 oC, 4 days, (-) 80 oC, 4 days, (-) 

110 oC, 4 days, (-) 80 oC, 14 days. 
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Figure 5.2.2.2: An overlay of XRPD patterns of mesoporous titanium oxide focusing on the bulk region 

with varying temperature of the autoclave step and length of time within the autoclave. The XRPD of 

commercial anatase is included as means of comparison to the crystallinity observed beyond 2ϴ in the 

110 oC autoclave sample. From top to bottom XRPD patterns obtained from materials treated at: (-) 60 

oC, 4 days, (-) 80 oC, 4 days, (-) 110 oC, 4 days, (-) 80 oC, 14 days. (-) Commercial anatase. The most 

intense peaks of anatase within the patterns are assigned from literature.10–12 
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Antonelli’s study reported that 140 oC was the upper temperature limit of the autoclave step.6 

However, it was found that drying samples at 120 oC overnight led to pore collapse. Therefore, 

temperatures of 60 oC, 80 oC and 110 oC were chosen to identify suitable conditions for the 

hydrothermal synthesis. Figures 5.2.2.1 and 5.2.2.2 show an autoclave step with 110 oC is 

unsuitable as crystallisation to anatase has occurred with a significantly lower intensity for the 

porous peak (~2½ times less than that when 80 oC was used). Whereas samples synthesised 

with 60 oC and 80 oC are identical and therefore 80 oC was chosen as the optimal condition, 

as this can be more easily controlled with our set-up. 

To try and promote further crystallisation of our materials and pore formation, a synthesis with 

a longer aging time was conducted, as typically aging is done for 7 – 14 days for other 

microporous materials.1,14,24  

The sample synthesised via a 14-day autoclave step showed no difference in the bulk phase 

of the XRPD compared to the 4-day sample. However, porosity is significantly lower in the 14-

day sample. This suggests that prolonged autoclave steps for longer aging causes crystallinity 

to decay to amorphous material.  

Therefore, for the synthesis of mesoporous titanium oxide, an autoclave step was set at 4 

days at 80 oC as standard procedure. Other parameters such as choice of alkoxide, 

implementing dopant metals and the various proposed template removal techniques were 

then explored. 
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5.2.3. Varying titanium alkoxide precursor 

Micelle formation is an important part of the synthesis of microporous metal oxides. As this is 

dependent on the binding of the template to the precursor, varying titanium alkoxides were 

tested. Titanium isopropoxide exists as a monomer and therefore should be best suited for 

addition from an amine as the isopropyl ligands will be substituted. However, it was speculated 

that multiple substitutions could be occurring, leading to a potential tetraamine substituted 

titanium species. This could lead to the possibility of micelles not forming as effectively as they 

would in a mono-substituted species. To determine these possible effects titanium ethoxide 

(which exists as a tetramer) and a chelated titanium alkoxide, where only one position was 

available for substitution, were chosen as alternative candidates for the metal alkoxide 

precursor (see figure 5.2.3.1). 

 

 

 

 

Figure 5.2.3.1: The titanium alkoxides trialled for microporous titanium oxide synthesis. Left: 

Titanium(IV) isopropoxide, which exists as a monomer; middle: Titanium(IV) ethoxide, which exists as 

a tetramer; right: Titanium(IV) (triethanolaminato)isopropoxide, which was chosen for its single 

substitution site (the isopropyl ligand) achieved from the chelate ligand being theoretically harder to 

displace. 

All other conditions were maintained to determine the effect of the varying ligands. 
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Figure 5.2.3.2: XRPD patterns for mesoporous and microporous titanium oxide as synthesised with 

varying metal alkoxide precursors. The patterns show the reflection from the micro/mesopores between 

2o and 10o 2ϴ and the absence of reflections beyond 10o 2ϴ. Ti:Hexylamine 2:1, autoclave: 80 oC, 96 

h. 

It can be seen from figure 5.2.3.2 that a variation in titanium alkoxide precursors does not 

significantly affect the porosity of the structure, at least for the precursors that we have 

selected. The intensity of the porous reflection is highest in the sample synthesised from 

titanium isopropoxide and the pore size only varies by 3 Å amongst the samples. The only 

observable difference was the amount of water required to hydrolyse the titanium chelate 

isopropoxide during the pre-autoclave step. Usually observable hydrolysis (i.e. solid formation) 

occurs after one drop of water is added to the initial titanium alkoxide/ amine mixture when 

using Ti(IV)(OiPr)4. Whereas in the chelated titanium alkoxide, hydrolysis did not occur until a 

significant amount of the water (ca. 3-4 mL from the 15 mL used) was added. This is likely due 

to hydrolysis being more difficult due to the chelate effect. 
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Due to no clear advantage when using the alternative alkoxides, titanium isopropoxide was 

maintained as the primary alkoxide used, as it is most prevalent in the literature. However, to 

the best of our knowledge this is the first example of the synthesis of microporous titanium 

oxide utilising a chelate ligand in the alkoxide precursor.  

5.2.4. Introduction of dopant metals during synthesis 

The main aim of this project was to synthesise materials where the active metal for catalysis 

is incorporated into the structure of the porous support. Therefore, metals which were active 

when doped onto bulk commercial supports (see section 4.2 – 4.3) and those which were 

prevalent oxidation catalysts throughout the literature were chosen to be incorporated during 

the initial introduction of titanium alkoxide and the template. 

Incorporation was achieved by including a desired mol% of dopant metal precursor (i.e. a 

metal alkoxide or acetylacetate) which would then bind to the amine like the titanium alkoxide, 

and thus ultimately be incorporated into the porous framework. 

Figure 5.2.4.1 shows the XRPD patterns for the porous samples when a dopant metal is 

included. The characteristic reflection diagnostic of a mesoporous solid at ca. 4o 2ϴ in the 

diffraction pattern is present in all samples synthesised. Although no additional reflections are 

observed in the XRPD patterns, this does not necessarily mean all the dopant metals are part 

of the micro or meso-porous framework as intra-framework species, that is, part of a Ti-O-M-

O-Ti structure where M is the dopant metal. In fact dopant metal could also exist, in principle, 

as small metal oxide clusters outside the pores of the mesoporous framework - a common 

occurrence, for example, in zeolites.25–27 In view of this, and because usually these small 

clusters are often observed in the case of a metal loading >5 wt%, control tests on bulk titanium 

oxide with large Fe content were carried out (see section 4.2.1.6). The additional peak present 

in mesoporous Ag/Ti-TMS1 at 38o 2ϴ is likely from metallic silver28 and could be due to early 

hydrolysis (i.e. prior to micelle formation) of the precursor owing to its instability. To our 

knowledge these are the first examples of materials where a dopant metal has been included 
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into a porous titanium oxide framework during template synthesis, where titanium oxide is 

exclusively the framework, as opposed to TS-1 (titanium silicate-1).29 
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Figure 5.2.4.1: XRPD patterns of mesoporous titanium oxide, where a dopant metal has been incorporated into the synthesis. For all samples: dopant metal 2 

mol%, Ti: Hexylamine 2:1, hydrothermal step: T= 80 oC, t = 96 h.
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In order to gather additional structural information on our material and importantly to determine 

the chemical environment around the dopant metal present in these samples, XPS (x-ray 

photoelectron spectroscopy) was carried out. However, this method did not prove to be 

particularly informative with our samples. Mesoporous Fe/Ti-TMS1 was analysed, however, 

iron could not be detected in any of the samples. The control tests of bulk Fe/TiO2 WI 1 wt% 

and Fe/MCM-41 WI 1 wt% also did not show any presence of iron. There are multiple reasons 

for this. For the porous materials it was speculated that most of the iron could be within the 

pores and therefore as XPS is a surface technique30 the iron cannot be detected. However, 

as iron is not seen on the bulk TiO2, this could be due to an inhomogeneous sample (and 

therefore the iron nanoparticles were not detected in the areas selected) or alternatively the 

metal loading is too low to be detected, with respect to the surface area of our materials (as 

observed in the literature where iron was not detected in Fe/SBA-15 1 wt%, for example).31 

XPS did reveal the presence of adventitious carbon, and nitrogen from the amine template 

within the as synthesised mesoporous titanium oxide samples though. 
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5.2.5. Thermal resistance and calcination for template removal 

From the TGA of as synthesised material, it was shown that calcination in air, above 500 oC 

combusts all organic material. Initial attempts were made to calcine as-synthesised 

mesoporous titanium oxide material at 550 oC with varying ramping rates and dwell times. The 

template was completely removed; however, the reflection at ca. 4o 2ϴ in the XRPD pattern 

associated to micro or meso porosity was also lost. In order to investigate this phenomenon 

more in detail, and gather ranges of temperature resistance for our materials, in situ XRPD 

was used (figures 5.2.5.1 and 5.2.5.2). 

From the in situ XRPD analysis it was found that the material was not as thermally robust as 

originally thought. Beyond 160 oC, the porous reflection starts to drop in intensity, and beyond 

190 oC, the 2ϴ region becomes completely flat. Whilst observing the bulk phase, the (101) 

facet from anatase starts to crystallise from 440 oC onwards. However, as catalytic tests were 

found to be optimal at 115 oC (see section 4.2.1.1) the material was still theoretically capable 

of withstanding the temperatures required. The results show that the material is likely to be in 

a metastable crystalline phase which crystallises to anatase with calcination. 

To the best of our knowledge this is the first time in situ XRPD analysis has been conducted 

on mesoporous titanium oxide to assess the thermal stability, and this might be the reason 

why these materials are not found in gas phase reactions, as they would not be able to 

withstand the needed reaction conditions. 

On the other hand, this same experimental observation also meant that for complete template 

removal, an alternative to calcination must be sought. 
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Figure 5.2.5.1: In situ XRPD analysis of as synthesised mesoporous titanium oxide, focusing on the porous region. Pore collapse indicated from loss of intensity 

in the reflection starts to occur 150-160 oC, and all porosity is lost beyond 190 oC shown by the absence of the reflection. Air flow 10 ml min-1, T = 10 oC min-1. 
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Figure 5.2.5.2: In situ XRPD analysis of as synthesised mesoporous titanium oxide, focusing on (101) facet. Crystallinity in the bulk phase is indicated by the 

presence of a reflection at 25o 2ϴ which occurs from 440 oC and gradually becomes more intense. Air flow 10 ml min-1, T = 10 oC min−1. 
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5.2.6. Template removal: Acidification 

Although calcination methods are by far the most common to remove a template, within the 

literature another common method of template removal is done through acidification. The 

template (as in our case is a base) being removed relies on the protonation of the amine group, 

which will then dissociate from the porous structure and then be completely removed via 

washing. The most common acid used is HNO3, in ethanol or methanol with pH ranging from 

1-2 (typically using a 1:1 ratio of initial hexylamine to acid).13,14 Initial attempts were made with 

these conditions, and although the template was removed, the material lost its porosity. This 

is due to the acid attacking the porous framework leading to decomposition of crystalline 

material, or alternatively a collapse of the pore structure occurs without the template being 

present. 

Therefore, a milder approach for template removal via acidification was sought. 

 

5.2.6.1. Acidification via HNO3 

The optimal pH for template removal was required as a starting point for controlled template 

removal. Control tests were conducted with the expected amount of hexylamine with HNO3, 

this was compared to a pH plot with mesoporous titanium oxide (figure 5.2.6.1.1). As it can be 

seen the characteristic shape for acid-base titrations is present with hexylamine and p-25 and 

HNO3. Whereas when HNO3 is added to mesoporous titanium oxide containing hexylamine, 

instead a more gradual decrease is seen in pH. This could be due to the gradual release of 

the template from the porous structure. Multiple points of interest on the curve are marked and 

here repeat tests were conducted, stopping at these points and analysing the material.  
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Figure 5.2.6.1.1: pH curves from the addition of HNO3 to mesoporous titanium oxide (-) and a control 

comprised of commercial TiO2 (p-25) and hexylamine (-). Points where the addition of acid was halted 

and sample collected are shown. 
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Table 5.2.6.1.1: Quantification of parameters on the degree of porosity and the amount of template removed from mesoporous titanium oxide with increasing 

acidity of HNO3 solution utilising a range of analytical techniques. 

 Summary of results 

Test conducted As synthesised pH 7 pH 4.5 1:1 TGA (pH 4) pH 3 

XRPD 

(Porosity and pore size) 

Porous 

22.4 Å 

Porous (intensity loss) 

22.1 Å 

Porous (intensity loss) 

21.5 Å 

Porous (intensity loss) 

22.5 Å 

Not porous 

ATR-FTIR 

(C-H peak present) 

Template present Template present Template present Very minor peaks Template removed 

TGA 

(Ti:Hexylamine molar 

ratio) 

5:1 6.4:1 7.7:1 < 5 wt% Template removed 

Porosimetry 

(BET surface area) 

258 m2 g-1 186 m2 g-1 296 m2 g-1 470 m2 g-1 485 m2 g-1 

 

 

 



249 
 

Table 5.2.6.1.1 shows a summary of the results from dropwise addition of HNO3 to 

mesoporous titanium oxide. From the XRPD there is no visible trend in pore size as acid is 

added. This suggests that no pore shrinkage occurs during template removal instead, as 

intensity is lost the pore’s structure is broken apart (figure 5.2.6.1.2).  

 

 

 

 

Figure 5.2.6.1.2: Two possible routes to loss of porosity as acid attacks the porous structure. Top: Pore 

shrinkage leading to amorphous materials. Bottom: Stripping of the framework walls until all crystallinity 

is removed. 

Additional control tests were carried out using TGA and FTIR. The TGA and ATR-FTIR show, 

as expected, a stoichiometric amount of HNO3 is required before complete template removal 

is achieved. However, the amount which is removed is not proportional to the amount of acid 

added. This leaves a narrow range where if slightly too little acid is added, the template is still 

quantifiable, and if too much is added, complete pore collapse occurs. However, this 

postulates a trade-off could be met where if a significant amount of material is ‘template free’ 

and still porous, then this may still be suitable for catalytic tests. 

 Interestingly, the BET surface area increases even after the 4o 2ϴ reflection in the XRPD is 

lost. The trend is an initial drop in surface area, followed by an increase to higher than the as-

synthesised sample. The initial drop could be due to blockage of the pores from the template 

which has been dislodged, but not completely removed by washing. As expected, the BET 

increases as more template is removed as this means more surface area is capable of being 

occupied. However, even when the sample is no longer porous, it has the largest surface area. 

The shape of the hysteresis loops are identical for all samples (figure 5.2.6.1.3), showing a 

H4 type shape, as defined by IUPAC.32 The H4 shape is indicative of the presence of 

Amorphous 

Amorphous 

Acidification 
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micropores and is often found in aggregated crystals of zeolites. This is further complemented 

by the pore distribution data, figure 5.2.6.1.4, which show a pore distribution around 2-3 nm, 

tailing off towards higher pore volumes for all samples either with or without crystalline pores.  

The porosimetry results could suggest that some pores are indeed still present after template 

removal but are not uniform. Although this is an interesting result, it is unwanted for this 

research as regular, ordered pores are desired for single-site shape selective oxidation 

catalysis. Furthermore, if this was to be pursued, batch to batch reproducibility may cause 

variation and ambiguity in active sites, leading to potential differences in catalytic behaviour.  

In summary, by combining all of these data, pH 4 was chosen as the optimum condition for 

template removal. However, when this was conducted on larger scales (>0.5 g) required for 

catalyst synthesis the material did not retain porosity. This is possibly due to the fragile nature 

of acid addition and the porous structure. Because of this, inorganic acids were no longer 

pursued as candidates for template removal due to significant attack on the porous structure 

and organic acids were explored. 
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Figure 5.2.6.1.3: A collection of porosimmetry traces of HNO3 washed mesoporous titanium oxide. The 

hysteresis loop in all samples match the H4 type shape, indicative of micropores being present. 

 

 

 

 

 

 

 

 

 

Figure 5.2.6.1.4: A collection of pore width versus pore volume data of HNO3 washed mesoporous 

titanium oxide.  
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5.2.6.2. Acidification with p-TSA 

In view of this, para toluene sulphonic acid (p-TSA) was used for template removal.33 Acidic 

solutions with pH up to 5.35 were tested with p-TSA, however, although the template was 

always removed, complete loss of porosity was observed. This suggests that even when 

organic acids are used the inorganic framework is either attacked directly, or the amine 

template is the only scaffold keeping the structure together. Therefore, alternatives to acids 

were sought to determine if the template can be removed without affecting the porous 

framework and avoiding methods which may attack the framework directly. 

5.2.7. Summary of template removal attempts – calcination and acidification  

All attempts of template removal using conventional methods thus far have led to pore 

collapse. It is uncertain why exactly this is, despite the use of known and accepted protocols 

in literature. On the other hand, a closer inspection of the current literature very rarely reports, 

for these materials, data after template removal. And in fact we have found only one author 

replicating a synthesis where alkyl phosphates were used as the template for mesoporous 

titanium oxide, who also found that any attempts of template removal led to complete pore 

collapse.4 It might be the ‘architecture’ of Ti-O-Ti rings constituting the walls of our material 

are too strained to stand the removal of the template that, in our case, would act as a 

‘scaffolding’. On the other hand, as this project’s drive is the template free microporous 

titanium oxide, it was decided that other, unconventional removal techniques were to be 

explored, without the use of acids. 
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5.2.8. Template removal: Alternatives to acid 

To avoid the addition of acid altogether, alternative methods for amine removal were trialled. 

This was to avoid chemicals and harsh conditions that may attack the porous framework and 

exclusively interact with the amine template. 

5.2.8.1. Hydrogen peroxide 

As our template is an amine, this ligand could in principle detach from a metal not necessarily 

by protonating it, but by converting it into an oxide. This is in fact a mechanism of ligand loss 

for phosphine-based ligands.34 By applying this same principle to our amine, it is possible to 

identify literature where the oxidation of alkyl amines is prevalent.35,36 It was postulated that if 

the oxidation of the amine template leads to an amine oxide (figure 5.2.8.1.1), this would lead 

to a weaker bond/ bond cleavage from the titanium oxide framework (the premise of 

acidification of the template) and thus yield template-free porous titanium oxide.  

 

Figure 5.2.8.1.1: A reaction scheme to show the conversion of hexylamine to its corresponding oxime 

as reported by S. Bhardwaj.36 In their study, hexylamine was in solution and TiO2 (anatase) was used 

as a catalyst. The proposed scheme was envisioned to occur within the mesoporous titanium oxide, 

and thus remove the template and retain the porous structure. 

Several attempts with varying reaction conditions including temperature, reaction time and 

solvent choice were conducted. The most successful of which are summarised in figure 

5.2.8.1.2. After refluxing with hydrogen peroxide for 24 h the intensity of the organic peaks in 

the IR have reduced and the porous structure is still present (and some pore collapse has 

occurred, suggesting a different mechanism to template removal with acidification). When the 

necessary additional washes were repeated however, they led to complete pore collapse and 

the amine was still present. This might be due to the titanium oxide not activating the hydrogen 

peroxide as its crystal structure is different to anatase, originally reported in the literature. 
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Figure 5.2.8.1.2 Top: ATR-FTIR spectra of mesoporous titanium oxide to show how the amine template 

reduces in intensity after the treatment with hydrogen peroxide, as shown through the decrease in C-H 

stretch (2500 – 3000 cm-1). Bottom: Corresponding XRPD patterns focusing on how the intensity of the 

reflection corresponding to porosity varies with the hydrogen peroxide treatment. H2O2 30 v/v%, XS, 

reflux, 24 h (-), 2 x 24 h (-). 
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Iron can generate radical species from hydrogen peroxide.37,38 To try and promote the 

generation of radical species, Fe/Ti-TMS1 was subjected to hydrogen peroxide treatment. In 

theory the hydrogen peroxide should break down to form hydroxy free radicals through Fenton 

chemistry in the presence of iron. The resulting radicals would then attack the hexylamine 

template. However, it can be seen in figure 5.2.8.1.3 the amine template is still present after 

washing with hydrogen peroxide. Although the pores are still observed in the XRPD patterns, 

the template is desired to be completely removed so no obstructions to substrates occur. 

Therefore, a further different method for template removal was sought. 
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Figure 5.2.8.1.3 Top: ATR-FTIR spectra of Fe/Ti-TMS1 2 mol% to show how the amine template 

reduces in intensity after the treatment with hydrogen peroxide, as shown through the C-H stretch (2500 

– 3000 cm-1). Bottom: Corresponding XRPD patterns focusing on how the intensity of the reflection 

corresponding to porosity varies with hydrogen peroxide. H2O2 30 v/v%, XS, RT, 24 h. 
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5.2.8.2. Phthalic anhydride 

Phthalic anhydride was chosen as a candidate for template removal. Phthalic anhydride reacts 

and binds strongly to amines and is often used as a protecting group during organic 

synthesis.39 In theory, the phthalic anhydride would bind to the amine template and be washed 

out from the material (figure 5.2.8.2.1). 

 

Figure 5.2.8.2.1: Proposed template removal with phthalic anhydride. The phthalic anhydride binds 

strongly to hexylamine and this was proposed to occur within the pores and thus detach the amine 

template from the porous structure. 

From the FTIR-ATR (figure 5.2.8.2.2), the template is completely removed when using phthalic 

anhydride. However, the porosity is also completely lost. Although this is not desired, this 

result proved that template removal, whether acids or non-acids are used, porosity does not 

remain in mesoporous titanium oxide samples produced in this way.  

With the conclusion that the template cannot be removed and thus the porous template-free 

material cannot be achieved through methods described so far, an alternative synthesis was 

needed. Furthermore, although the as synthesised samples still contain a template, they could 

still have some sites free for catalysis and thus were applied to alkane oxidation. 
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Figure 5.2.8.2.2 Top: ATR-FTIR spectra to show template removal from mesoporous titanium oxide 

after treatment with phthalic anhydride/DMF, complete loss of the C-H stretch (2500 – 3000 cm-1) is 

observed, indicating the complete removal of the template. Bottom: Corresponding XRPD patterns 

showing the complete loss of the reflection corresponding to porosity after treatment with phthalic 

anhydride. Phthalic anhydride: Hexylamine = 1:1, RT, 24 h. 
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5.2.9. Reaction resistance and catalytic tests 

A catalyst is required to be thermally, mechanically and chemically robust. The porous 

structure of mesoporous titanium oxide has been found to be not as thermally resistant as 

desired nor could it withstand strong acidic conditions. As a consequence, if these materials 

were used for catalysis the conditions would have to have a temperature below their thermal 

decomposition temperature and not be in the presence of acid. Tests were conducted to 

determine if the porous framework could withstand the conditions during a catalytic test.  

The XRPD patterns of before and after catalytic tests (figure 5.2.9.1) clearly show a significant 

drop in intensity in the reflection corresponding to porosity. This result shows the potential for 

catalyst deactivation after multiple uses. Furthermore, a control test where mesoporous 

titanium oxide was stirred under the same conditions, but without heating and under 

atmospheric conditions, showed a similar drop in intensity of the porous peak in the XRPD. 

This concludes that the material has inappropriate mechanical properties for the nature of 

catalyst testing. 
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Figure 5.2.9.1: XRPD patterns for mesoporous titanium oxide subjected to ‘typical’ catalyst test 

conditions for the oxidation of n-decane, showing the variation in intensity of the peak corresponding to 

porosity after catalytic tests. n-decane (3 mL), mesoporous titanium oxide (200 mg), T = 115 oC, PO2 = 

2 bar, t = 24 h. Identical conditions for the control tests where T = room temperature under atmospheric 

pressure. 

Despite the loss of porosity upon stirring, the iron doped mesoporous titanium oxide was 

applied to n-decane oxidation. GC-MS (gas chromatography – mass spectrometry) analysis 

of the reaction mixture showed only n-decane, with no products or leached template, was 

observed. The results demonstrate that the template does indeed need to be removed prior 

to reaction for n-decane oxidation. 

It followed that Antonelli and co-workers’ protocol for the synthesis of microporous titanium 

oxide was no longer pursued. Because of the drawbacks of the material, such as not being as 

mechanically robust as desired and the challenge of template removal yielding only 

amorphous material, alternative synthesises were conducted. 
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5.3. Dai and Zhang synthesis of microporous titanium oxide 

Two authors other than Antonelli have demonstrated the synthesis of microporous titanium 

oxide and its subsequent template removal (summarised in table 5.3.1). Although the 

differences tend to be minor, a small change in one of the many parameters could lead to a 

material with completely different properties.  

Table 5.3.1 A comparison of different conditions used in the synthesis of meso/microporous titanium 

oxide amongst authors claiming successful template removal. 

 Conditions in original synthesises 

Author Titanium 

precursor 

Amine template Solvent Autoclave Template 

removal 

Antonelli6 Isopropoxide Hexylamine Water 40, 60, 80 (2, 2 

and 4 days) 

Solvent washes 

Dai24 Isopropoxide Dodecylamine Ethanol/Water 80, 100, 180 oC 

(1, 1 and 7 

days) 

HNO3, pH 2, 

reflux 24 h 

Zhang40 Ethoxide Hexadecylamine Ethanol/Water None HCl, pH 2, 24 h 

 

From the data collected in Antonelli’s samples with varying conditions, the above synthesises 

were also modified to optimise conditions for crystalline porosity.  
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5.3.1. Alternative synthesis of microporous titanium oxide with amine 

templates 

The optimised conditions of the synthesis for Antonelli, Dai and Zhang yielded porous 

materials. With regards to the XRPD pattern, only minor changes were observed (figure 

5.3.1.1). Both Dai’s and Zhang’s synthesis24,40 utilise a co-solvent (ethanol) during the initial 

introduction of titanium alkoxide and template, this is thought to influence the micelle formation 

before the autoclave step. However, comparing materials obtained from the protocols of 

Antonelli’s and Dai’s, it appears their XRPD patterns have little difference as both meso-

porous peaks have similar broadness, intensity, and pore size (statistically identical).  

Figure 5.3.1.1: XRPD patterns for mesoporous titanium oxide with varying synthetic parameters 

according to individual authors, with optimized conditions. Antonelli: Titanium isopropoxide, 

Hexylamine, Water, Autoclave step: T = 80 oC, t = 96 h. Dai: Titanium ethoxide, Hexylamine, 

Water/Ethanol, Autoclave 80 oC, 96 h. Zhang: Titanium isopropoxide, Dodecylamine, Water/Ethanol, 

no autoclave step. 

Perhaps most surprising is the presence of porosity in materials obtained using Zhang’s 

protocol. In fact, in this procedure, there is no hydrothermal step, whereas the ‘dogma’ in 
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microporous synthesis is precisely the hydrothermal step which is believed to provide the 

driving force for crystallisation of meso/micropores. As expected, the pore size has increased 

as a longer template was used. Furthermore, the reflection is around half as broad of that in 

sample using Dai’s protocol of almost equal intensity, suggesting a smaller pore size 

distribution. This could be due to the longer template leading to more uniform micelles.  

Despite XRPD patterns showing similar crystallinity amongst pores, this does not necessarily 

imply the chemical resistance of these materials, and thus they were tested for template 

removal. 

The material obtained using Dai’s protocol led to complete pore collapse when the template 

removal stated within the literature was conducted, and subsequent optimisation reflected 

materials from Antonelli’s protocol. However, materials obtained from Zhang’s protocol 

seemed more resistant. 

5.3.2. Template removal - Zhang 

As mentioned previously, mesoporous titanium oxide obtained from Zhang’s protocol is 

interesting due to the presence of pores despite no hydrothermal step. The literature claimed 

the material could withstand pH 2 acidic washing, however, when this was conducted it was 

found that only a trace reflection remained in the porous region of the XRPD (figure 5.3.2.1). 

Although this material is still technically more resilient than that from Antonelli’s method as a 

mesoporous reflection at 4o 2ϴ is still observed, uniform porosity is almost completely 

removed. Optimisation of template removal was conducted by varying the pH of solution. 

However, it was found that pH 2 – 3 was required for complete template removal, but by this 

point the micro/meso porous peak in the XRPD pattern is almost completely lost.  
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Figure 5.3.2.1: XRPD samples of mesoporous titanium oxide as synthesised following Zhang’s patent 

with dodecylamine as the template, with template removal treatment with HCl of varying pH and a 

mechanical resistance test with Decane. Mesoporous titanium oxide (200 mg), Decane (3 mL), RT, 

atmospheric pressure, 24 h. 

The mechanical properties of the material were also tested. The as synthesised material was 

stirred at room temperature with n-decane to determine its mechanical resistance. It was 

found, as in the sample obtained from Antonelli’s protocol, even at room temperature the 

intensity drops by almost a half.  

Because of the unsuccessful attempts of template removal despite varying the many 

parameters of both the synthesis and removal, an alternative method to prepare porous 

titanium oxide where no template is used during the synthesis was sought. 
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5.4. Non-template synthesis method: Peptization 

An alternative and recent synthesis which avoids amine templates was sought. Yin et al. 

showed that under very strong basic and hydrothermal conditions, anatase was capable of 

forming microporous channels.41 In this context, peptization refers to treating titanium oxide 

under hydrothermal conditions with a peptizing agent (in our case NaOH), this allows different 

morphologies to be achieved. This has been studied with varying peptizing agents.42 

5.4.1. Synthesis and subsequent metal loading 

It was found that peptization of bulk anatase leads to microporous titanium oxide, as reflections 

are seen in the XRPD (figure 5.4.1.1). Furthermore, unlike the other methods, the material is 

resilient to calcination (400 oC was chosen as reported in the literature). The material was 

capable of remaining porous and although calcination does have some effect on pore size, 

even after wetness impregnation a peak in the XRPD remained - thus yielding microporous 

Fe/Ti-TMS1. 

 

Figure 5.4.1.1: XRPD of microporous titanium oxide samples as synthesised through the peptization 

of bulk anatase. Anatase (2 g), NaOH (10M, 20 mL), T = 120 oC and t = 3 days (-). Corresponding 

calcination (400 oC, 4 h, 10 oC min-1) (-) and wetness impregnation (Fe(NO3)3.9H2O, 1 wt%, 400 oC) (-).  
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The material is significantly more thermally resistant than alternative synthesises listed so far. 

Mesoporous titanium oxide synthesised via a template method had its pores completely 

removed post 190 oC, whereas the peptization synthesis is capable of calcination to 400 oC. 

Although a loss of intensity is observed initially, the material maintains XRD peak intensity and 

in turn porosity after being loaded with iron oxide. This material was then used for alkane 

oxidation. 

The final product’s pore size is also more appropriate for shape selectivity than the template-

synthesised materials as less of the n-decane molecule can fit into the pore. However, this 

may influence the diffusion. 
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5.4.2. Catalytic testing 

5.4.2.1. n-decane 

When the materials obtained by using the Yin et al. (peptization) protocol were applied to n-

decane oxidation, no conversion was observed. It was expected that some conversion would 

occur as wetness impregnation would lead to iron being present both within and outside the 

pores. Therefore, some oxidation from iron loaded on the outside of the material was expected 

to occur, and thus lead to conversion.  

The reason for the lack of activity could be either or a combination of: 

1) A significant amount of iron oxide is within the porous framework and, if in the presence 

of diffusion limitations, the n-decane is unable to reach the active site. 

2) Although some iron oxide is present on the outside of the titanium oxide, the amount 

is too small to provide conversions detectable from GC-MS. 

3) As the crystallinity of the material is different to bulk titanium oxide, this may have led 

to different surface-metal interactions and therefore generated the inactive species. 

From this data, it was concluded that the materials synthesised via peptization protocol applied 

to the ‘ideal’ conditions for n-decane oxidation were not able to perform as shape selective 

catalysts for linear alkanes as harsher conditions would lead to autoxidation. 
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5.4.2.2. Cyclooctane 

As linear alkanes are harder to activate than cyclic analogues (C-H bond dissociation energies 

varies from ca. 420 to 390 kj mol-1 from linear to cyclic species),43–45 peptization synthesis-

based catalysts were tested on cyclooctane to determine if the presence of pores has any 

effect on oxidation. 

Figure 5.4.2.2.1: Conversion data for cyclooctane oxidation with iron on titania and porous frameworks. 

Cyclooctane (3 mL), M:S 1:1000, T = 110 oC, PO2 = 2 bar, t = 24 h, *t = 6 h. 
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Figure 5.4.2.2.2: Selectivity data for cyclooctane oxidation with iron on titania and porous frameworks. 

Cyclooctane (3 mL), M:S 1:1000, T = 110 oC, PO2 = 2 bar, t = 24 h, *t = 6 h. 

(■) Cyclooctanone, (■) Cyclooctanol, (■) Cyclooctyl hydroperoxide, (■) other products, (■) unknown 

products. Note: Other products refer to other oxidation products (e.g. epoxides), whereas unknown 

products are suspected condensation and dehydration products.    
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Figure 5.4.2.2.1 shows that bulk Fe/TiO2 has a significantly higher catalytic activity than the 

corresponding microporous Fe/Ti-TMS1 under identical conditions. As Fe/ZSM-5 also shows 

a conversion that is statistically identical to that of bulk Fe/TiO2 but a different distribution of 

products (figure 5.4.2.2.2), this shows that a different mechanism is occurring (this is 

discussed further in section 4.3.1).  

On the other hand, ZSM-5 has a pore size in the range of ca. 5.6 Å, which is even smaller 

than our materials. Either there is no diffusion limitation (and in turn not for our materials) or 

the reaction takes place outside the pores. However, as all iron loaded catalysts here were 

prepared identically, this suggests that the lower conversion of microporous Fe/Ti-TMS1 is 

likely to be due to differing (and thus inhibiting) metal-surface interactions.  

As bulk TiO2 (p-25) shows a significant conversion also, this is evidence that indeed the metal-

support interactions are responsible for the lack of activity in Fe/Ti-TMS1. 

A catalytic test where bulk Fe/TiO2 has similar conversion to that of the microporous Fe/Ti-

TMS1 was conducted. A 6 h run with bulk Fe/TiO2 yielded the closest possible conversion 

when varying the time of reaction, this is because strictly speaking comparisons of selectivity 

from different catalysts makes sense only if the conversion is similar due to the presence of 

secondary reaction pathways or by-products. Microporous Fe/Ti-TMS1 does indeed have a 

different selectivity to its bulk counterpart. Favourably, a lower amount of unknown and 

peroxide products and higher amounts of alcohol are formed with the microporous sample, 

however, the major product in the porous sample is cyclooctanone. From an industrial 

viewpoint, this is favourable as cyclooctanone is the desired product within current industrial 

demand. However, a trade-off from activity to selectivity must be considered owing to the low 

activity of the porous sample. Ultimately, Fe/Ti-TMS1 does not show any significant advantage 

to that of the bulk Fe/TiO2 (furthermore, the latter is significantly easier to synthesise) and thus 

further optimization of its synthesis is required. It does, however, show that selectivity control 

is possible due to its porous structure with respect to an open surface in a bulk metal oxide 

support. 
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5.5. Conclusions and future work 

In summary, microporous titanium oxide synthesised via a hydrothermal template technique 

was sought. This was successfully repeated from the literature and the parameters governing 

porosity were varied to optimise synthesis conditions, including the novel use of titanium (IV) 

(triethanolaminato)isopropoxide as a precursor. Furthermore, the novelty of adding dopant 

metals to the porous framework was also successfully accomplished showing porosity is only 

affected slightly, and even increased when using some iron precursors. However, the final 

desired template-free product was not able to be achieved yet. This could be due to other 

parameters not explored here (type of autoclave used, head space, etc.), or fundamentally 

microporous titanium oxide is unable to exist without an organic scaffold to keep the pores in 

place. Other synthetic routes using a template were explored, and although some were 

promising, none led to the robust material desired for catalytic oxidation.  

Finally, an alternative method to template synthesis, where peptization was used instead, 

yielded porous titanium oxide. However, when an active metal was loaded onto this, it did not 

achieve any n-decane oxidation. From our data this could be due to diffusion limitations but is 

more likely from inhibiting metal-surface interactions. The material did, however, show 

conversion when applied to cyclooctane and even gave a higher selectivity to alcohols and 

ketones.  

Further optimisation of the microporous synthesis could be conducted in future work, for both 

template synthesis and peptization synthesis. This would include studying mesoporous 

samples (e.g. synthesised with dodecylamine) as these showed greater resistance to template 

removal, but this could be a trade-off for primary oxidation selectivity. Alternatively, synthesis 

with templates such as cetyltrimethylammonium bromide (CTAB) used to produce MCM-41 

could be modified to utilise titanium only precursors.  
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Abbreviations 

FTIR-ATR – Fourier Transform Infra-Red – Attenuated Total Reflectance 

ICP-OES – Inductively Coupled Plasma – Optical Emission Spectrometry  

M:S – Metal to substrate ratio 

PO2 – Pressure Gauge O2 

p-TSA – para Toluene Sulphonic Acid 

TGA – Thermogravimetric Analysis 

TMS-1 – Transition Metal Oxide Molecular Sieve #1 

XRPD – X-Ray Powder Diffraction 
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6.1. Introduction 

As previously described the focus of this project was to create a porous framework, based on 

a metal oxide to provide alternative materials to zeolites for the oxidation of alkanes. 

Conclusions drawn from section 5.2 – 5.3 revealed an alternative was needed to mesoporous 

titanium oxide. Although the synthesis of microporous TiO2 and subsequent synthesis 

featuring dopant metals were successful, template removal ultimately led to complete pore 

collapse. Furthermore, synthesis via peptization led to catalytically inactive materials or 

materials not sufficiently active for our scope. Examples of the synthesis of other 

meso/microporous metal oxides including frameworks based on: Nb, Ta, Zr, Mn and Fe are 

present in the literature (see section 1.5.1).1–5 In this context, microporous niobium oxide (of 

expected stoichiometry Nb2O5) was chosen for the focus of this project due to its theoretical 

inert chemistry towards alkane oxidation (and as such to be conveniently used as a framework 

to exploit the activity of a dopant metal), and a literature presence where the template removal 

is documented.6–8 Similarly to mesoporous titanium oxide, a niobium alkoxide precursor can 

be bound to an amine to form micelles, which ultimately becomes a porous network via 

hydrothermal conditions. Again, the template is removed with acidification amongst literature 

sources.6,7  
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6.2. The synthesis of microporous niobium oxide 

6.2.1. Sun Tao’s protocol for the synthesis of microporous niobium oxide 

The synthesis of microporous niobium oxide was documented by Tao et al.6 The synthesis 

reported is analogous to that of mesoporous titanium oxide’s described in section 5.2. 

However, significantly higher temperatures and longer autoclave conditions are used, 

summarised in table 6.2.1.1. 

Table 6.2.1.1: A comparison of autoclave conditions between mesoporous titanium oxide and 

microporous niobium oxide. 

Material Autoclave temperature 

(oC) 

Autoclave duration 

(days) 

Ref 

Mesoporous titanium oxide 80 4 [9] 

Microporous niobium oxide 180 10 [6] 

 

Microporous niobium oxide synthesis was successfully reproduced from the literature using a 

hexylamine template (this will be referred to as Nb-TMS1, as it was in the original literature). 

The as synthesised sample’s XRPD (x-ray powder diffraction) patterns (figure 6.2.1.1) shows 

a significant reflection in the microporous region (1 – 15o 2ϴ) corresponding to a pore diameter 

of 19.7 (± 0.1 Å), and thus qualifies as a microporous material (< 20 Å). In the current work, 

the synthesis was repeated several times and pore size was always within experimental error, 

unlike mesoporous titanium oxide which showed small deviation from batch to batch. 

Furthermore, the intensity of the reflection associated to the interplanar distance of the pores 

is significantly higher in microporous niobium oxide (ca. a factor of 4), when compared to 

mesoporous titanium oxide prepared in an analogous way. Interestingly, there is only two 

additional peaks in the microporous sample’s XRPD at ca. 9 and 28o 2ϴ. 
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Figure 6.1.2.1: XRPD patterns of as synthesised microporous niobium oxide and corresponding bulk 

Nb2O5 and NbO2 (scaled down y-axis) shown here as comparisons. Mesoporous TiO2 obtained by using 

Antonelli’s protocol is shown here for additional comparison. (-) Microporous niobium oxide: Nb(OEt)5 

and hexylamine (1:1), Autoclave 180 oC, 10 days, washed with H2O (3  50 mL), MeOH (3  50 mL) 

and Et2O (3  50 mL). (-) Mesoporous titanium oxide obtained from: Ti(OiPr)4 and hexylamine (2:1), 

Autoclave 80 oC, 4 days, washed with H2O (3  50 mL), MeOH (3  50 mL) and Et2O (3  50 mL). The 

most intense peaks of the commercial niobium oxide patterns are assigned from literature,10–12 along 

with the microporous niobium oxide.6,8 

The peak at 9.04o 2ϴ (corresponding to a d-spacing of 9.78 Å) could be due to a hierarchal 

structure where a second set of crystalline pores exist. The peak’s identity at 27.8o 2ϴ is 

unknown. This, however, is not quartz (a common contaminant in many XRPD patterns,13 as 

it would be expected at 26.7o 2ϴ).14 On the other hand, it does not correspond to any common 

crystal phase from commercial Nb2O5, nor NbO2, this could be due to the microporous niobium 

oxide not being a stoichiometric material (this is further discussed below). The intensity 

difference between microporous niobium oxide and mesoporous titanium oxide could be due 

to numerous factors. Specifically, the higher temperature and longer duration in the autoclave 
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is likely promoting the crystallisation of this sample, whereas any temperature greater than 

110 oC, and duration more than 4 days leads to decomposition of the pores in mesoporous 

titanium oxide. This suggests that the crystallisation of microporous niobium oxide could be 

more robust than that of the mesoporous titanium oxide (for comparison, longer times and 

higher temperatures of autoclave steps were found to increase crystallinity within samples of 

zeolites).15,16 As the microporous niobium oxide synthesis already yielded very crystalline 

porous material, and considered appropriate for our aims, no further optimisation of the 

synthesis parameters was conducted. 

It should be noted, however, that details of the composition of microporous niobium oxide from 

literature2,6,8 are often vague and therefore further study using other analytical techniques were 

conducted, here in this work FTIR-ATR (Fourier transform infrared – attenuated total 

reflectance) and TGA (thermogravimetric analysis) were carried out (figures 6.2.1.2 and 

6.2.1.3 and table 6.2.1.2). 
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Figure 6.2.1.2: FTIR-ATR of as synthesised microporous niobium oxide and corresponding bulk Nb2O5 

and NbO2 as comparisons. Bulk Nb2O5 samples have been denoted H- or T- determined from their 

crystal structure.17 Mesoporous titanium oxide synthesised via Antonelli’s protocol is shown here for 

additional comparison. The C-H stretch (2700 – 3100 cm-1), O-H stretch (~2750 – 3500 cm-1) and 

potentially additional hexylamine N-H/lattice vibration peaks (1250 – 1700 cm-1) can be seen. 

 

 

 

 

 

 

 

 

Figure 6.2.1.3: TGA of as synthesised microporous niobium oxide and corresponding bulk Nb2O5 and 

NbO2 as comparisons. Mesoporous titanium oxide synthesised via Antonelli’s protocol is shown here 

for additional comparison. 
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As with the mesoporous titanium oxide, the template is still present in the as-synthesised 

microporous niobium oxide. This is shown by the bands associated to the C-H stretching 

between 2800 – 3000 cm-1 in the FTIR-ATR.3 Furthermore, this is corroborated by the mass 

loss up to 500 oC from TGA determination in air, which is typical of organic matter being 

combusted.3,18 As the protocol used for the synthesis of these materials has numerous solvent 

washes, the chemically bound amine template remains in place and requires further treatment 

for removal (section 6.4 – 6.6). Peaks around 1500-1750 cm-1 are again observed, likely to be 

due to other organic frequencies3 (e.g. N-H)19 and potential lattice vibrations seen in 

zeolites.20,21 However, IR data hint to changes in the framework structure. Interestingly, when 

comparing the FTIR-ATR of the Nb-TMS1, bulk Nb2O5 and NbO2 a different sequence of peaks 

is observed < 1000 cm-1. Specifically, there is an absence of absorbance at 750 cm-1. This is 

indicative of a different crystal structure as observed amongst the polymorphs of Nb2O5.22 This 

is expected as the microporous Nb2O5 has a proposed regular hexagonal structure versus the 

bulk.8 

Table 6.2.1.2: TGA data summary of mass loss with corresponding descriptions of mass loss. 

Material 
T 

(oC) 

Δ Weight 

(%) 
Description 

Nb-TMS1 ~50 – 100 < -2 Surface H2O 

Nb-TMS1 180 – 400 ~ -20 Organic template combustion 

Nb-TMS1 550 – 700 ~ -10 Potential changes in Nb:O stoichiometry 

NbO2 370 – 470 ~ +7 2NbO2 + ½O2 → Nb2O5 

 

Also, the TGA trace shows interesting features (figure 6.2.1.3 and table 6.2.1.2). Up to 500 oC 

there is a significant drop in wt%, (ca. 20%) this is expected and can be attributed to the 

combustion of the organic template. The molar ratio of Nb:hexylamine from the TGA is 1:1.3. 

As the initial ratio was 1:1, this could suggest that not all the niobium from the original niobium 

ethoxide is present in the sample, and thus was not bound to the hexylamine precursor and 
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washed away during the synthesis. On the other hand, this loss of precursor may in principle 

occur in hydrothermal synthesis with the metal forming soluble oligomer species.23,24 To test 

this hypothesis, the mother liquor decanted from the autoclave was characterized by ICP-OES 

(inductively coupled plasma – optical emission spectroscopy). No niobium was detected thus 

meaning the introduction of water during the synthesis completely hydrolysed all the niobium 

alkoxide/niobium amine compounds to insoluble material. Therefore, the additional mass loss 

could be from organic precursor material which did not completely hydrolyse (i.e. the ethoxy 

ligands).  

However, a shoulder is observed beginning at 600 oC. This is unlike Nb2O5 which shows no 

change in the TGA (as expected), or NbO2 which shows a weight gain at 400 oC (which is 

2NbO2 + ½O2 → Nb2O5). It is still uncertain what this change could be due to. One possible 

explanation is the presence of oxygen bridges and not having a stoichiometric niobium oxide 

(as observed in defective TiO2, for example).25 Therefore, at higher temperatures, the oxygen 

is released due to lattice mobility, like for example MoO3 and thus leading to the mass loss 

observed in the TGA.26 

6.2.2. Antonelli’s protocol for the synthesis of porous niobium oxide 

Antonelli has also reported a synthesis for porous niobium oxide.7 As a term of comparison 

Antonelli’s protocol was conducted to determine if it may offer a material with beneficial 

properties.  

Antonelli’s reported synthesis differs from Tao’s as it utilises ethanol as a solvent during the 

initial introduction of niobium ethoxide to the amine template. Also, the amine template used 

is tetradecylamine. The amine is much larger than hexylamine and therefore was expected to 

give a larger pore size in the final product. Although micropores were desired, this was still 

attempted to ensure this was not a limiting factor for successful template removal. 

It was found that Antonelli’s protocol does indeed lead to larger pore sizes (figure 6.2.2.1). 

Using a C14 template, the pore size increases to 41.2 Å – 32.1 Å. The additional peaks 
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observed in the microporous region could be due to a hierarchal structure existing within the 

framework. The pore size increase is not linearly correlative to the size of template as the 

diameter with a C6 template at 19.7 Å would predict a pore size of ~46 Å with a C14 template. 

However, this is likely to be due to the restricted flexible nature of the alkyl chain instead of 

being permanently taught.27 As for the intensity of the peaks there is little difference, with 

Antonelli’s being only slightly higher in intensity. 

When the template removal was attempted as stated in the literature, by washing with nitric 

acid at pH 2,7 the pores completely collapsed. As the pore size is already further out of range 

from the desired microporous framework, and template removal would need significant 

optimization, Tao’s protocol6 was chosen to be pursued instead.  

Figure 6.2.2.1: XRPD patterns of mesoporous niobium oxide samples obtained from Antonelli’s 

protocol and the corresponding template removed sample as described within the literature (via HNO3). 

A sample from Sun Tao’s protocol is shown here for comparison. 
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6.3. Introduction of dopant metals during synthesis 

The next challenge of the project was to include intra-framework dopant metals to the niobium 

oxide. As in the same case of mesoporous TiO2, no literature to our knowledge exists where 

a dopant metal alkoxide is used during the synthesis of microporous Nb2O5. Due to the data 

showing iron as the most active metal towards oxidation for both n-decane and cyclooctane 

(see section 4.2 – 4.3), it was prioritised for the incorporation into the framework. This was 

successfully achieved with iron ethoxide, as shown in figures 6.3.1a and 6.3.1b. 

The incorporation of the iron seemed to not cause any significant changes in porosity, which 

is highly desirable for our applications. Both the XRPD and FTIR-ATR almost completely 

overlap. The intensity for the porous reflection (4.5 2ϴ) is slightly lower in the iron doped 

sample, or if intensity is normalized the peak is broader, which suggests a material with a 

lower degree of crystallinity. However, the intensity is still significantly higher than any samples 

of mesoporous Fe/Ti-TMS1 (by a factor of ~3). The XRPD shows no additional peaks between 

the samples, however, as described previously (section 4.2.1.6) iron oxide at such low loading 

is unlikely to be detected.  

No other metals have presently been trialled for doping in microporous Nb2O5 synthesis, 

however, to our knowledge this is the first example where iron has been incorporated into the 

structure of microporous niobium oxide via a templating method.  
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Figure 6.3.1a: XRPD patterns of as synthesised microporous niobium oxide and Fe/Nb-TMS1 2 mol%.  

 

 

 

 

 

 

 

 

 

Figure 6.3.1b: FTIR-ATR data of as synthesised microporous niobium oxide and Fe/Nb-TMS1 2 mol%. 

The C-H stretch (2700 – 3100 cm-1), O-H stretch (~2750 – 3500 cm-1) and potentially additional 

hexylamine N-H/lattice vibration peaks (1250 – 1700 cm-1) can be seen. 
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6.4. Microporous Nb2O5 thermal resistance and calcination for template removal 

Due to the convenience of a calcination process to remove a template28 this method was also 

tested with microporous Nb2O5. However, attempts of calcination led to complete pore 

collapse and crystallisation in the bulk phase. Therefore, in order to investigate the thermal 

resistance of microporous Nb2O5 systematically, the material was subjected to in-situ X-ray 

diffraction at different temperatures.  

The thermal stability of as synthesised iron doped microporous niobium oxide is demonstrated 

in figures 6.4.1 and 6.4.2. As temperature increases, the pores remain stable until 200 oC, 

where then collapse begins and by 240 oC porosity is completely lost. Furthermore, the peak 

at 4.8o 2ϴ associated to the pore structure starts to shift to higher 2ϴ values, signifying a 

decrease in interplanar distance and in turn shrinking of the pores as the intensity drops. The 

correlation between intensity of reflection, with its corresponding d-spacing value (estimated 

pore size) is shown in figure 6.4.1 to illustrate this phenomenon. 

Figure 6.4.1: A plot to show how temperature affects the intensity of the reflection from porosity in the 

XRPD pattern of microporous iron doped niobium oxide and the corresponding d-spacing. 
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Figure 6.4.2: In-situ XRPD patterns of microporous iron doped (2 mol%) Nb2O5 collected using an Anton-Paar cell in air, scanning the microporous region and 

how it changes with temperature.  Pore collapse as indicated from the loss of intensity starts to occur around 200 oC until 240 oC where all porosity is lost. Air 

flow = 10 ml min-1, 3 bar T = 10 oC min-1.
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6.5. Template removal: Acidification 

Washing in nitric acid/ethanol solution is stated to be an efficient method to remove the amine 

template,3,5,8 as protonation of the amine group is required due to the strong interaction that it 

can have with a metal-oxide framework.7 Accordingly, template removal by acidification was 

conducted for microporous Nb2O5. Literature data6,7 claim these materials are acid resistant, 

and template removal should or can be carried out at pH 2. Below this value a loss of porosity 

may occur. However, repeated tests carried out in our lab showed that washing at pH 2 leads 

to complete loss of porosity. Furthermore, even template removal with HNO3 at pH 4 it was 

found to completely remove the template in mesoporous TiO2 (which was then chosen as 

optimal pH, section 5.2.6). However, for mesoporous TiO2 this did lead to complete pore 

collapse, but thus far niobium oxide has shown to be more thermally and mechanically robust. 

The results of microporous niobium oxide template removal with nitric acid are summarised in 

figure 6.5.1a and 6.5.1b.  Interestingly, the template has not been completely removed 

(quantified via TGA), and the porous framework remains. The as-synthesised material 

contains 18 wt% corresponding to the amine template in comparison to the 12 wt% remaining 

post HNO3 pH 4 wash. A small pore shrinkage was observed from 19.7 Å to 19.2 Å. 

This means that although the microporous Nb2O5 is more robust than its TiO2 counterpart, it 

is also more difficult to remove the template via acidification. It can also be seen that the other 

minor porous reflection at 9.04o 2ϴ is damaged by the acidic conditions. 

In view of this, and given some of the results reported in chapter 5, no further optimisation of 

template removal via HNO3 was conducted due to conflicting reports in the literature29 

alongside data from the titanium oxide template removal attempts. 
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Figure 6.5.1a: XRPD patterns of as synthesised microporous niobium oxide and a sample treated with 

HNO3 pH 4. 

 

 

 

 

 

 

 

 

 

Figure 6.3.1b: FTIR-ATR data of as synthesised microporous niobium oxide and Fe/Nb-TMS1 2 mol%. 

The C-H stretch (2700 – 3100 cm-1), O-H stretch (~2750 – 3500 cm-1) and potentially additional 

hexylamine N-H/lattice vibration peaks (1250 – 1700 cm-1) can be seen. 
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From data reported in section 5.2.6.2 indicating p-TSA is a slightly better candidate for acidic 

template removal,30 as it efficiently removed the template at higher pH solutions, this route 

was pursued instead. Quite promisingly, template removal with a 1:1 molar ratio of p-TSA to 

hexylamine showed complete template removal from the FTIR-ATR and TGA (figure 6.5.2 and 

table 6.5.1) and pores remaining from the XRPD figure 6.5.3. 
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However, it was found that the characteristic reflection associated to the microporosity at 4.5o 

2ϴ in the XRD patterns (figure 6.5.3) had its intensity drastically affected by the template 

removal and significant pore shrinkage had occurred. Although the pore size is still considered 

suitable for n-decane and cyclooctane oxidation (i.e. they can still fit within the pores),31,32 most 

of the resulting material is amorphous. In view of this, washes reducing the molar ratio of acid 

to template was attempted. As demonstrated in the mesoporous titanium oxide, nearly 

complete template removal can occur with a fractional amount of acid compared to that 

expected. Therefore, a series of tests were conducted where the p-TSA to hexylamine ratio 

was reduced. 

Table 6.5.1: A summary of how d-spacing and hexylamine:Nb ratio changes as increasing amount of 

p-TSA in MeOH is used for template removal with microporous niobium oxide. 

 

 

 

 

 

Test d-spacing 

(Å) 

Nb:Hexylamine Hexylamine 

wt% 

As synthesised - 

expected 

- 1:1 44 

As synthesised - actual 19.6 1:1.3 19 

10 mol% 19.1 1:1.03 16.5 

20 mol% 18.8 1:0.69 12 

50 mol% (10 then 40 

mol%) 

11.7 1:0.26 4.7 

100 mol% 11.6 1:0 0 
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Figure 6.5.2: ATR-FTIR data for the microporous niobium oxide as synthesised and increasing mol% 

p-TSA/MeOH washes. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5.3: XRPD patterns for the microporous niobium oxide as synthesised and increasing mol% 

of p-TSA/MeOH washes (based on amount of hexylamine). The reflection from the porosity (4.5o 2ϴ) 

can be seen to decrease in intensity and get broader, meaning a larger pore size distribution, with 

increasing mol% of p-TSA added. 
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Although a significant amount of amine is removed at lower mol% of p-TSA, a 1:1 molar ratio 

of acid to template seems the most viable option for template removal. At 50 mol% of p-TSA, 

the porous peak (7.2o 2ϴ) reaches a minimum intensity in the XRPD, however, not all the 

template was removed. This led to the conclusion that even the more robust niobium oxide 

suffers significant attack from acids, regardless if they are organic or not. It should be noted 

that all metal oxides are, by definition, basic in their bulk.33 This means eventually an acid 

attack will occur; however, our pH values at which these microporous materials are affected 

by acidic conditions contrast those reported in literature,6,7 despite accurate calibration of our 

experimental devices. Therefore, alternatives to acid washes that proved promising with 

mesoporous titanium oxide were tested.  
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6.6. Template removal: Alternatives to acid 

The most promising alternative to acid seemed to be phthalic anhydride, as this was capable 

of complete template removal when used as an alternative to acid for mesoporous titanium 

oxide (section 5.2.8). Although this led to complete pore collapse in mesoporous titanium 

oxide, it is (at least in principle) the mildest way to remove the hexylamine as no acid is 

involved and the only interactions should be between the amine and the phthalic anhydride. It 

can be seen from FTIR-ATR measurements (figure 6.6.1) that phthalic anhydride is capable 

of completely removing all the organic template from microporous niobium oxide. As in the 

same way with mesoporous titanium oxide, no longer are the C-H peaks observed, and only 

a single peak at around 1500-1600 cm-1, which is present due to suspected lattice 

vibrations.20,21 This is also backed up from the TGA which shows < 2 wt% organic material.  

Figure 6.6.1: An overlay of FTIR-ATR spectra from as synthesised and phthalic anhydride treated 

microporous niobium oxide (200 mg scale) and Fe/Nb-TMS1 (500 mg scale). 
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Most importantly, from the XRPD pattern of phthalic anhydride treated microporous Nb2O5 

(figure 6.6.2), a small peak at 8.0o 2ϴ can still be seen. This suggests that a porous framework 

is still present after template removal, albeit the reflection is very low in intensity, pores are 

still present. A pore shrinkage has also been observed from 19.7 Å to 11.5 Å. The pore 

shrinkage is in the same range from data obtained with p-TSA template removal, this suggests 

that whichever template removal method is used for Nb-TMS1 pore shrinkage occurs in a 

similar manner.  Although this is a significant reduction in pore diameter, it is still theoretically 

suitable for n-decane and cyclooctane oxidation.31,32 

In comparison to template-removal via p-TSA, the XRPD peaks are slightly less defined than 

in samples treated with phthalic anhydride. Therefore, a phthalic anhydride wash was chosen 

for the most ideal method for template removal as the risk of over acidification is not possible. 

This was applied to microporous Fe/Nb-TMS1 and was able to be conducted on a 500 mg 

scale. To our knowledge, this is the first example of porous iron doped niobium oxide where 

the template is removed, and where template removal is achieved with phthalic anhydride in 

microporous niobium oxide.  
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Figure 6.6.2: An overlay of XRPD patterns from as synthesised and phthalic anhydride treated 

microporous niobium oxide (200 mg scale) and Fe/Nb-TMS1 (500 mg scale). The p-TSA washed 

sample is included as comparison. 
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6.7. Catalyst testing and metal oxide framework reaction resistance  

6.7.1. As synthesised materials 

Thus far, microporous niobium oxide has proved to be more resilient than the corresponding 

mesoporous titanium oxide. Therefore, it was used for the hydrocarbon oxidation reactions at 

the centre of this project. Both the as synthesised and template removed materials were 

tested. 

 From figure 6.7.1.1 it can be seen that little change has occurred in the XRPD pattern of the 

as synthesised materials after catalytic tests. For the non-doped microporous niobium oxide, 

n-decane oxidation conditions seem to have not affected the structure at all, whereas 

cyclooctane oxidation led to a slight decrease in the intensity of the material’s pore reflection.  

As for the iron doped sample, both n-decane and cyclooctane oxidation conditions show a 

reduction in intensity in the XRPD pattern. This could be due to the presence of the iron within 

the framework, and possible leaching of Fe. However, the decrease in intensity is relatively 

minor (< ~20%) when compared to the loss of intensity observed in the mesoporous titanium 

oxide samples (~50%).  

The as synthesised materials, however, showed no conversion for either n-decane nor 

cyclooctane oxidation. This is, to some extent, to be expected as all the active sites for 

oxidation catalysis would be blocked by the amine template. However, these tests were carried 

out anyway for the following reasons: (i) partial oxidation reactions of hydrocarbons can 

generate acids, and these could remove the template in situ, and (ii) given the results reported 

for TiO2 (see section 5.2.9) these tests are crucial in determining mechanical resistance under 

harsh conditions.  
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Figure 6.7.1.1: XRPD patterns of as synthesised microporous niobium oxide (top) and the 

corresponding iron doped material (bottom) subjected to catalytic conditions for alkane oxidation. n-

decane (3 mL), M:S = 1:1000; 115 oC; PO2 = 1 bar; 24 h. Cyclooctane (3 mL), M:S = 1:1000; 110 oC; 

PO2 2 bar; 24 h. 

5 10 15 20

0

1000

2000

3000

4000

5000

6000

7000

In
te

n
s
it
y
 (

C
o
u

n
ts

)

2θ

 Nb-TMS1 - As synthesised

 Nb-TMS1 - As synthesised, n-decane

 Nb-TMS1 - As synthesised, Cyclooctane

5 10 15 20

0

1000

2000

3000

4000

5000

In
te

n
s
it
y
 (

C
o
u
n
ts

)

2θ

 Fe/Nb-TMS1 - As synthesised

 Fe/Nb-TMS1 - As synthesised, n-decane

 Fe/Nb-TMS1 - As synthesised, Cyclooctane



300 
 

6.7.2. Template free materials 

Figure 6.7.2.1 shows how the XRPD pattern changed for the template removed samples after 

oxidation reactions. There is seemingly very little difference before and after oxidation 

catalysis for the iron doped template free microporous niobium oxide. Both samples subjected 

to conditions required for both n-decane and cyclooctane oxidation remain unchanged after 

reaction. This is highly desirable as it means that the pores are resilient to the catalytic 

conditions. However, it was found no conversion was observed for n-decane oxidation. But, 

for cyclooctane, minor oxidation was observed. We ascribe this effect as the oxidation of cyclic 

hydrocarbons has been reported to be less energy demanding than that of linear.34–36 The 

results of which are summarised in table 6.7.2.1. All template containing samples showed no 

conversion. And although these could be, in principle, removed in situ under reaction 

conditions, this result fits with the theory that template removal is essential so diffusion of the 

substrate can occur and access the active site, complimenting data in section 5.2.9.  

Interestingly, however, is the lack of conversion observed in template free microporous 

niobium oxide. As the template has been removed, the cyclooctane should have access to 

any active sites present. However, as the Nb-TMS1 may have a different oxidation state to 

bulk Nb2O5 and a different crystal structure, this has caused the material to be catalytically 

inactive. This is thought to be the case as differences in conversion were observed amongst 

different crystal structures in section 4.2.2 and this is documented within the literature of other 

materials.37,38 

Conversely, Fe/Nb-TMS1 shows that template free microporous niobium oxide doped with 

iron is catalytically active. Although the conversion is significantly lower than the bulk 

counterpart under identical conditions, it can still oxidise cyclooctane. When compared to 

results obtained from bulk Fe/Nb2O5 over a 6 h timescale (a time deliberately chosen in order 

to allow comparison of the selectivity at the same conversion) the selectivity between bulk and 

microporous Fe/Nb2O5 is indeed different. Microporous Fe/Nb2O5 shows a significantly higher 

selectivity to cyclooctanone and cyclooctanol (44.2% and 12.9% respectively) compared to 
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the cyclooctyl peroxide (26.9%), whereas the bulk Fe/Nb2O5 yields no alcohol and 

predominately cyclooctyl peroxide (62.7%). This difference is likely from the iron present within 

the porous structure having a different environment to that of the bulk, and thus can provide 

an alternative active site.  
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Table 6.7.2.1: A compilation of conversion and selectivity data obtained with varying microporous niobium oxide catalysts, as synthesised and with the template 

removed via phthalic anhydride. Bulk analogues are included as a means of comparison. Cyclooctane (3 mL), Catalyst mass based on M:S = 1:1000, 110 oC, 

PO2 2 bar, 24 h. Note a 6 h run with bulk Fe/Nb2O5 was conducted for means of comparison. 

 
Conversion 

(%) 

Ketone 

(%) 

Alcohol 

(%) 

Peroxide 

(%) 

Others and Unknown 

(%) 

K/A 

Blank 0.00 0.00 0.00 0.00 0.00 0.0 

Nb-TMS1:  

As synthesised 

0.00 0.00 0.00 0.00 0.00 0.0 

Nb-TMS1:  

Template removed 

0.00 0.00 0.00 0.00 0.00 0.0 

Fe/Nb-TMS1:  

As synthesised 

0.00 0.00 0.00 0.00 0.00 0.0 

Fe/Nb-TMS1:  

Template removed 

3.97 44.2 12.9 26.9 15.9 3.4 

Commercial Nb2O5 51.5 39.6 12.3 30.3 17.9 3.2 

Bulk Fe/Nb2O5 67.8 42.2 11.3 8.09 38.4 3.8 

Bulk Fe/Nb2O5 6 h 2.00 11.5 0.00 62.7 25.9 No Alcohol 
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Finally, it was found that the structure of the template free microporous niobium oxide changed 

significantly after cyclooctane and n-decane oxidation conditions. It can be seen in the XRPD 

patterns (figure 6.7.2.1) two peaks are present for the post-reaction samples at 4.4o 2ϴ and 

8.6o 2ϴ. It is undetermined whether the original peak at 8.0o 2ϴ shifted to 8.6o 2ϴ and the 

peak at 4.4o 2ϴ formed, or even if the original peak has shifted to smaller 4.4o 2ϴ values and 

another peak has arisen in its place. Either result is not desired as ideally the structure would 

be unaffected from the reaction conditions. This could be due to a low amount of porosity 

remaining after template removal and the pores being left weak to chemical attack or the 

material even exists as a metastable crystalline phase, which is observed in bulk niobium 

oxides.17 Therefore, under the higher temperature and pressure this changes the form of the 

pores.  
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Figure 6.7.2.1: XRPD patterns of template removed microporous niobium oxide (top) and the 

corresponding iron doped material (bottom) subjected to catalytic conditions for alkane oxidation. n-

decane (3 mL), M:S = 1:1000; 115 oC; PO2 = 1 bar; 24 h. Cyclooctane (3 mL), M:S = 1:1000; 110 oC; 

PO2 2 bar; 24 h. 
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6.8. Conclusions and future work 

To summarise, the synthesis of microporous niobium oxide and samples doped with iron has 

been successfully achieved. To our knowledge, this is the first example of iron being 

incorporated during a hydrothermal synthesis of niobium oxide. Mirroring the results in chapter 

5, template removal from these materials proved difficult. Although the microporous niobium 

oxide was found to be much more resilient when compared to mesoporous titanium oxide 

synthesised in a similar way, template removal was not able to be performed as described in 

the literature without causing complete pore collapse. However, the template was successfully 

removed with pores remaining when treated with dilute p-TSA and with phthalic anhydride. 

Despite significant pore collapse, catalytic tests were conducted and found that cyclooctane 

oxidation catalysis can occur on microporous Fe/Nb-TMS1 when the template has been 

removed, and the porous structure is unchanged. Although desired products were produced 

selectively, conversion is very low when using this material. However, it shows that not only 

can these materials exist without the template but are also capable of some catalysis. Future 

work would develop synthesis of microporous niobium oxide further and its subsequent 

template removal steps by changing the parameters during the autoclave step. Materials 

synthesised in this chapter could be applied to other selective oxidation reactions (e.g. p-

xylene to terephthalic acid)39 due to the potential confined sites of the iron within the porous 

framework. 
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CHAPTER 7: Conclusion and future work 

This research work has developed three different aspects; i) the study of the autoxidation of 

n-decane, ii) synthesis of bulk materials and their applications to alkane oxidation and iii) the 

synthesis of microporous/mesoporous metal oxides and their application to alkane oxidation.  

To summarise, the main achievements from this work are: 

- Development of conversion and selectivity calculators, for both n-octane and n-decane 

utilising 1H-NMR and GC-MS. 

- Determination of conditions when autoxidation occurs for n-decane (≥ 125 oC under 

atmospheric conditions, ≥ 120 oC at PO2 2 bar) and subsequent quantification of 

conversion and selectivity. 

- The application of Fe/TiO2 to the optimisation of n-decane oxidation by varying reaction 

parameters, catalyst screening across a range of metals and supports (along with; 

comparisons of activity, selectivity towards n-decane and cyclooctane oxidation and 

characterization between catalysts) and developing catalysts capable of significant 

cyclooctane oxidation with selectivity towards cyclooctanone for use in KA oil 

manufacture.  

- Having a deeper understanding on the soft-template synthesis of microporous titanium 

oxide and microporous niobium oxide, conflicting that reported within the literature. 

This work provides further analysis of materials reported within the literature, showing 

FTIR-ATR, XRPD and BET before and after template removal with novel in situ XRPD 

analysis of how crystal structure of these materials changes as a function of 

temperature. Additionally, to our knowledge, the work reports analysis of novel 

microporous titanium oxide and microporous niobium oxide where a dopant metal has 

been included during the synthesis. The work has also demonstrated a range of 

commonly reported template removal techniques that are not suitable for template 

removal with our materials due to loss of porosity and/or insufficient template removal. 

Subsequently, the work also developed novel template removal techniques with 
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hydrogen peroxide and phthalic anhydride, the latter of which was capable of removing 

the template within microporous niobium oxide, whilst retaining its crystalline porous 

structure.  

Selective alkane oxidation was the focus of this research. Through studies with autoxidation, 

which were also used as a benchmark for our materials in terms of selectivity control, it was 

determined where appropriate reaction conditions could be used to test catalysts. Autoxidation 

becomes a dominating feature beyond 120 oC, where the product distribution of ketone to 

alcohol is roughly 2:1. This fits with results from literature on other linear alkane oxidation.1 No 

catalyst tested at temperatures where autoxidation was occurring changed the conversion or 

selectivity. This shows how dominating the autoxidation mechanisms are (also agreeing with 

literature),2 and why it is essential to develop a catalyst capable to operate where autoxidation 

is not occurring. Furthermore, over oxidation of the alcohol to unwanted by-products occurred 

under autoxidation control, more reason to avoid these conditions. All these observations were 

capable through analytical methods also developed here. Although 1H-NMR is an attractive 

candidate for the study of reaction mixtures from alkane oxidation, as the samples are 

analysed at room temperature without any pre-treatment, our study showed that due to the 

complex nature of reaction mixtures it was not possible to accurately quantify products with 

this method. Furthermore, its advantages over GC-MS3 (see section 3.1 for further details) 

made it a hard decision to move onto another tool. For our purposes another analytical tool 

was required to be developed. A GC-MS conversion calculator, with relatively low error (~15% 

standard error) was achieved. This allowed quantification of every reaction product, something 

not possible with 1H-NMR, but at a cost of a much longer analysis time and lengthy calibrations 

of the analytical apparatus. This tool could be further developed and applied to an array of 

linear alkanes, with small changes required (for example, different internal standards 

depending on chain length). Moreover, this could be improved further through pre-preparation 

of hydroperoxides and carboxylic acids (section 3.1).3–6 However, owing to the low conversion 

and low amount of acids formed in our tests, this was not deemed essential. Future work for 
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autoxidation reaction analysis would be heavily focused on time online type experiments and 

including radical scavengers into the reaction mixture. This would allow development on the 

understanding of kinetics of certain steps and how the products are evolved in situ, and 

ultimately the mechanisms occurring within the reaction. 

Applying supported metals and metal oxides to alkane oxidation gave a clear indication that 

iron is the most active metal in the series we have tested. Using Fe/TiO2 the optimal conditions 

for n-decane oxidation were developed. By varying parameters such as temperature, oxygen 

pressure, metal to substrate ratio, etc., the conversion of n-decane oxidation was optimised, 

to where then other catalysts would be tested then compared. On the main supports tested 

(TiO2, MCM-41), but not niobium oxide, iron gave significant conversion of n-decane (>5%). 

In most cases, chosen supports were not active towards n-decane oxidation, thus proving 

iron’s involvement in catalysis. Moreover, even when supports were active towards 

cyclooctane oxidation, doping with iron provided a significant increase in conversion (~2 – 3 

times). This led to iron being the main contender for doping into porous frameworks (sections 

5.2.4 and 6.3). Further still, iron’s presence significantly increased the yield of cyclooctanone 

(up to ~65% of the reaction mixture with iron doped zeolite catalysts). Although the primary 

focus of this project was on linear alcohols, cyclooctanone is interesting due to its potential 

industrial applications for fibre synthesis (and is analogous to cyclohexanone). It is expected 

that a further development of iron doped zeolites could lead to efficient catalysts to produce 

KA oil. By changing the Si/Al ratio and pore size, an optimized catalyst for ketone synthesis 

could be developed. On the other hand, iron seemed to not affect the conversion of niobium 

oxide when applied to cyclooctane oxidation. Non-doped Nb2O5 was found to give relatively 

high conversions of alkane oxidation (2 – 7% with n-decane), especially when compared to 

common oxidation catalysts. This unusual property was initially investigated by considering 

different suppliers and determining if the presence of additional metals (as impurities) changed 

its activity. While in most cases the presence of a dopant metal led to deactivation 

(deactivation was also observed when the non-doped material was reduced), non-doped 
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Nb2O5 was capable of alkane oxidation. It is still uncertain what exactly caused this result, but 

future work would certainly explore this further, for example by considering the presence of 

impurities in the hydrocarbon substrate(s). XPS, UV-VIS, Raman and other analytical 

techniques could give more information on why non-doped niobium oxide is active and 

doped/reduced niobium oxide is inactive, for example to determine if the presence of different 

niobia surface species occurs between samples.7 Furthermore, the presence of trace 

impurities which are the source of activity could be detected by additional analysis, as 

observed in ZSM-5 which was found to have iron impurities detected by x-ray absorption 

spectroscopy.8 

Perhaps the most significant result from the bulk material tests was determining catalytic 

activity’s strong dependence on metal/support interactions, specifically inhibiting reactions. 

Noble metals and manganese were initially put as priority for catalytic tests due to their 

presence in the literature,9–13 especially manganese due to its selectivity towards alcohols.14,15 

However, in most cases metal oxides (manganese, palladium, gold, silver) were not active 

towards n-decane oxidation. Although metal salts were often active, this was not desired for 

our research due to the potential requirement of calcining a catalyst, and ease of separation 

of a reaction mixture when deposited onto a support. This gave rise to potential problems and 

considerations for chapters 5 and 6 where these metals were to be part of a porous framework. 

Ideally, XRPD would have given some insight into potential active phases, however, due to 

the low metal loading this was not possible. Future work would focus on determining a trend 

why some supports allow activity while others lead to inactivity – specifically determining 

oxidation state, particle sizes and surface species of dopant metals would be the next 

conceptual points to follow. This would be done with extensive analysis, again XPS, UV-VIS, 

Raman, X-ray adsorption techniques and others would allow further insight into the surface of 

these materials.16 For example, with manganese oxide it is likely that amongst the several 

oxidation states of manganese some are more active than others17 and calcination may affect 

how the metal oxide is bound to the support.18 These would then be investigated in turn to see 
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if at all they affect conversion in our systems. Another aspect which must be developed, as 

mentioned previously, are time online type experiments. As with the autoxidation reactions, 

determining the kinetics and mechanisms within these reactions when a catalyst is present 

would not only improve our understanding, but combined with surface analysis would allow 

specific steps to be promoted with iterative development of the catalysts tested.19,20 Finally, 

with respect to catalytic testing, reactor design must be considered – especially when 

considering using flammable substrates under oxygen pressure. For example, aerobic liquid 

phase oxidations have been developed and scaled up when used with microreactor 

technology to overcome the implications of hazardous materials and low oxygen transfer.21 

In addition, microporous metal oxides were developed. Template removal from microporous 

materials is not as straightforward as stated within the literature. For microporous TiO2, a 

crystalline porous template-free material from a template-assisted synthesis was not possible. 

An array of synthesis optimisation techniques (differing metal alkoxide to surfactant ratio, type 

of metal alkoxide, temperature and duration of autoclave step), and template removal tests 

(differing the concentration, ratio and types of acid; varying the nature of species which 

interacts with the template and calcination tests) were conducted, and even a novel analysis 

of how calcination changes pores in situ (this gave effective quantification of a temperature 

range of when pore collapse occurred - for microporous TiO2 this started at 160 oC and no 

sign of pores remained by 190 oC according to the XRD). Whilst these results are not what we 

desired; they certainly gave insight on the fragility of microporous titanium oxide – a 

characteristic which is not reported in literature, and could explain the need of the addition of 

Si to form stable titanium silicates. Nevertheless, dopant metals were capable of being 

incorporated into the synthesis of microporous titanium oxide, and thus we synthesised novel 

doped microporous metal oxides. Although they were found to be inactive to the applications 

we desired, future work would be searching for their application in other fields of catalysis.22 

Additional parameters would be adjusted for microporous titanium oxide synthesis in the future 

work. For example, focusing on longer-chain templates with more ionic character may provide 
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stronger micelle formation, a key part of the synthesis.23 Or alternatives to amines would be 

used, for example polyethylene glycol (PEG)24 or porous polymers25 that can also be removed 

through calcination. While these may lead to larger pore sizes, having an intact porous 

framework may still provide a degree of conversion and selectivity as opposed to our observed 

inactivity in completely destroyed pores. On the other hand, microporous niobium oxide was 

slightly more resilient. Although again the template removal was not as easy as stated (acidic 

template removal with nitric acid was not possible and calcination with in situ XRD shows pore 

collapse between 200 – 240 oC), treatment with phthalic anhydride was able to yield template 

free material. To our knowledge this is the first-time phthalic anhydride has been used to 

remove a template from a porous framework. This method of removal may open access to 

other template-free porous materials synthesised via an amine template which are otherwise 

too fragile for calcination/acid washes. However, the template-free material was unable to 

catalyse the oxidation of n-decane. This is thought to be due to the challenging nature of linear 

alkane oxidation with bulk materials, additional diffusion limitations and potential inhibiting 

metal/support interactions. At present we speculate that oxygen vacancies in these materials 

could trap alkyl peroxides involved in the oxidation process. However, if these materials were 

to be improved by exploring the systematic parameter changes made with TiO2, then perhaps 

more pores could be accessed by n-decane and thus more active sites. On the other hand, 

cyclooctane was oxidised by template-free microporous Fe/Nb2O5. Although the conversion 

was significantly lower than that of the bulk material (~4% versus ~68%), a preference for 

ketones was observed (44% in a 24 h test with microporous Fe/Nb2O5 in comparison to 11.5% 

in a 6 h test with bulk material of statistically similar conversions). Again, if the material was 

more porous, perhaps a catalyst with high conversion and selectivity to the ketone could be 

developed.  

Finally, microporous materials without a template were also developed. Microporous titanium 

oxide was synthesised via the peptization of anatase. Although not as porous as the template-

containing microporous titanium oxide, the peptized material was template-free and porous. 
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To our knowledge, this is the first time this material has been doped with iron via wetness 

impregnation and applied to alkane oxidation. Whilst the material was able to oxidise 

cyclooctane, it was incapable of any significant changes in selectivity. This suggested that all 

the active sites involved in the reaction were on the external surface of the porous framework. 

However, this synthesis could be further optimised (i.e. longer times in autoclave, varying 

temperature – parameters which may affect crucial nanotube formation) and potentially lead 

to a more porous framework. 

To summarise, alkane oxidation is a challenging process in chemistry, here we have 

demonstrated how porous catalysts can be developed and applied to alkane oxidation to yield 

different conversions and selectivity to that of the bulk materials.  
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A.1 1H NMR spectra of n-octane and corresponding oxidation products 
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n-octane 
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Chemical shift (ppm)

Figure A.1.1: 1H NMR of n-octane used for both standard tests and oxidation reactions. 1H NMR (CDCl3 400 MHz), n-octane, δ (ppm): 1.29 

(CH2, m, 12H), 0.89 (CH2, t, 6H) 
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1-Octanol 
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Figure A.1.2: 1H NMR of 1-Octanol used for standard tests. 1H NMR (CDCl3 400 MHz), 1-Octanol, δ (ppm): 3.56 (CH2, m, 2H), 2.52 (OH, s 

broad, 1H), 1.52-1.25 (CH2, m, 12H), 0.83 (CH3, t, 3H). The peak at 3.56 ppm was used as the characteristic peak in reaction mixtures. 
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Figure A.1.3: 1H NMR of 2-Octanol used for standard tests. 1H NMR (CDCl3 400 MHz), 2-Octanol, δ (ppm): 3.78 (CH, m, 1H), 1.48-1.27 

(CH2 incl. OH, m, 11H), 1.17 (CH3, d, 3H), 0.87 (CH3, t, 3H). The peak at 3.78 ppm was used as the characteristic peak in reaction mixtures. 
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Figure A.1.4: 1H NMR of 3-Octanol used for standard tests. 1H NMR (CDCl3 400 MHz), 3-Octanol, δ (ppm): 3.50 (CH, m, 1H), 1.50-1.29 

(CH2 incl. OH, m, 11H), 0.87 (CH3, t, 6H). The peak at 3.50 ppm was used as the characteristic peak in reaction mixtures. 
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Octanal 
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Figure A.1.5: 1H NMR of Octanal used for standard tests. 1H NMR (CDCl3 400 MHz), Octanal, δ (ppm): 9.74 (CH, s, 1H), 2.43 (CH2, t, 2H) 

1.61-1.27 (CH2, m, 10H), 0.86 (CH3, t, 3H). The peak at 9.74 ppm was used as the characteristic peak in reaction mixtures. 
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2-Octanone 
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Figure A.1.6: 1H NMR of 2-Octanone used for standard tests. 1H NMR (CDCl3 400 MHz), 2-Octanone, δ (ppm): 2.47 (CH2, m, 2H). 2.18 

(CH3, s, 3H), 1.61-1.27 (CH2, m, 8H), 0.86 (CH3, t, 3H). The peak at 2.18 ppm was used as the characteristic peak in reaction mixtures. 
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3-Octanone 
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Figure A.1.7: 1H NMR of 3-Octanone used for standard tests. 1H NMR (CDCl3 400 MHz), 3-Octanone, δ (ppm): 2.39 (CH2, m, 4H), 1.54-

1.26 (CH2, m, 6H), 1.02-0.86 (CH3, t, 6H). The peak at 2.39 ppm was used as the characteristic peak in reaction mixtures. 
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1-Octene 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-1012345678910

Chemical shift (ppm)

Figure A.1.8: 1H NMR of 1-Octene used for standard tests. 1H NMR (CDCl3 400 MHz), 1-Octene, δ (ppm): 5.82-4.96 (CH and CH2, m, 3H), 

2.07 (CH2, m, 2H), 1.37-1.28 (CH2, m, 8H), 0.90 (CH3, t, 3H). The peak at 5.82-4.96 ppm was used as the characteristic peak in reaction 

mixtures. 
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2-Octene 
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Figure A.1.9: 1H NMR of 2-Octene used for standard tests. 1H NMR (CDCl3 400 MHz), 2-Octene, δ (ppm): 5.45 (CH-CH, m, 2H), 2.03-1.61 

(CH2, m, 5H), 1.32 (CH2, m, 6H), 0.91 (CH3, t, 3H). The peak at 5.45 ppm was used as the characteristic peak in reaction mixtures. 
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A.2 1H NMR spectra of n-decane and corresponding oxidation products 
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n-decane 
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Figure A.2.1: 1H NMR of n-decane used for both standard tests and oxidation reactions. 1H NMR (CDCl3 400 MHz), n-decane, δ (ppm): 

1.31 (CH2, m, 16H), 0.91 (CH2, t, 6H) 
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1-Decanol 
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Figure A.2.2: 1H NMR of 1-Decanol used for standard tests. 1H NMR (CDCl3 400 MHz), 1-Decanol, δ (ppm): 3.62 (CH2, m, 2H), 1.54-1.25 

(CH2 incl. OH, m, 17H), 0.86 (CH3, t, 3H). The peak at 3.62 ppm was used as the characteristic peak in reaction mixtures. 
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Figure A.2.3: 1H NMR of 2-Decanol used for standard tests. 1H NMR (CDCl3 400 MHz), 2-Decanol, δ (ppm): 3.78 (CH, m, 1H), 1.70-1.27 

(CH2 incl. OH, m, 15H), 1.17 (CH3, d, 3H), 0.87 (CH3, t, 3H). The peak at 3.78 ppm was used as the characteristic peak in reaction mixtures. 
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3-Decanol 
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Figure A.2.4: 1H NMR of 3-Decanol used for standard tests. 1H NMR (CDCl3 400 MHz), 3-Decanol, δ (ppm): 3.52 (CH, m, 1H), 1.50-1.29 

(CH2 incl. OH, m, 15H), 0.87 (CH3, t, 6H). The peak at 3.52 ppm was used as the characteristic peak in reaction mixtures. 
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4-Decanol 
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Figure A.2.5: 1H NMR of 4-Decanol used for standard tests. 1H NMR (CDCl3 400 MHz), 4-Decanol, δ (ppm): 3.59 (CH, m, 1H), 1.42-1.28 

(CH2 incl. OH, m, 15H), 0.87 (CH3, t, 6H). The peak at 3.59 ppm was used as the characteristic peak in reaction mixtures. 
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Decanal 
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Figure A.2.6: 1H NMR of Decanal used for standard tests. 1H NMR (CDCl3 400 MHz), Decanal, δ (ppm): 9.75 (CH, s, 1H), 2.41 (CH2, m, 

2H) 1.62-1.26 (CH2, m, 14H), 0.86 (CH3, t, 3H). The peak at 9.75 ppm was used as the characteristic peak in reaction mixtures. 
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2-Decanone 
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Figure A.2.7: 1H NMR of 2-Decanone used for standard tests. 1H NMR (CDCl3 400 MHz), 2-Decanone, δ (ppm): 2.45 (CH2, m, 2H). 2.12 

(CH3, s, 3H), 1.56-1.27 (CH2, m, 12H), 0.86 (CH3, t, 3H). The peak at 2.12 ppm was used as the characteristic peak in reaction mixtures. 
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3-Decanone 
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Figure A.2.8: 1H NMR of 3-Decanone used for standard tests. 1H NMR (CDCl3 400 MHz), 3-Decanone, δ (ppm): 2.39 (CH2, m, 4H), 1.56-

1.26 (CH2, m, 10H), 1.04-0.87 (CH3, t, 6H). The peak at 2.39 ppm was used as the characteristic peak in reaction mixtures. 
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