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Abstract

In this thesis, we present a study of cargo transport or behaviors in a cell by
clusters of molecular motors on a single and many parallel or anti-parallel mi-
crotubules. Molecular motors can be processive motors or non-processive motors
which can bind on and off and switch between microtubules (lanes). Our study in-
cludes analytical theory, simulations and a detailed comparison with experiments.
We extend the analytic expressions for the non-processive motors to the case of
finite binding sites on a single lane and multiple lanes, as presented in chapter of
one-lane and many-lane model, respectively. We performed Monte Carlo latticed
based stochastic simulations to validate the corresponding system. The simula-
tions also include simple exclusion process and sequence preservation of motors.
Our results show that the limiting number of binding sites along the lanes and se-
quence preservation reduce the probability of non-processive motors binding, but
has a relatively small effect on the velocity. Multiple-lane transport can enhance
the velocity and averaged run length and reduce the delivery time. We also study
cargo behaviour using a tug-of-war model in which the lanes on which motors step
are oriented in anti-parallel arrays between right and left ends of the cargo, as pre-
sented in chapter of cargo deformation. This mechanism generates motor pulling
force onto the cargo which results in changing its shape and position. The cargo
can be any cargoes acting as a spring and the nucleus is the example of cargo that
we are interested in. This model provides new insights of nuclear deformation and
displacement caused by the motor pulling force. Our simulations show that the
deformation and displacement can be induced by the increasing number of mi-
crotubules. This corresponds with the experimental results of Susana Godinho’s
group.
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1. INTRODUCTION

1.1 Biological background

1.1.1 Intracellular transport

Intracellular transport is the movement of organelles, vesicles and substances in
cells. Generally speaking there are two main types of intracellular transport which
are passive diffusion and motor-driven active transport [11]. Diffusive transport
can be found in some phases of the movement of microscopic particles in cells. How-
ever, active transport requires chemical energy in the movement of biomolecules.
In eukaryotic cells, active transport is necessary for the movement of intracellu-
lar cargoes becausediffusion is too slow for many biological processes. The cargoes
are transported to target sites by attaching to molecular motor proteins that move
along filaments of cytoskeleton. Cargo transport driven molecular motors along
cytoskeletal filaments can be found in neurons, cilia and flagella and many diverse
cell types.

1.1.2 Cytoskeletal filaments

The cytoskeleton is present in both eukaryotic and prokaryotic cells. The func-
tion of the cytoskeleton varies and depends on organism and cell type. In prokary-
otes, the cytoskeleton plays important roles in cell division, cell polarity and cell
shape regulation[87, 47]. In eukaryotes, the cytoskeleton linking from the nucleus
to the plasma membrane throughout the cytoplasm performs a veriety of functions
because of the more complex intracellular structure. For example, it determines
the cell shape and its spatial organization. Also, it allows either the cell to mi-
grate or forms special structures for cell motility, such as flagella and cilia [27].
Moreover, it is crucial for intracellular transport involving the movement of vesi-
cles and organelles which are absent in prokaryotes. In this case, the cytoskeleton
acts as “roads” for “vehicles” represented by molecular motors carrying intracel-
lular cargos like vesicles and organells. The complex network of cytoskeleton in all
eukaryotes consists of three fundamental types of filaments: microtubules (MTs),
actin filaments and intermediate filaments. We begin by describing the three main
types of filaments in cells which are microtubules, actin filaments and intermediate
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Fig. 1.1: Cytoskeletal network

filaments in general concepts, as depicted in Figure 1.1.

Microtubules

Microtubules are major components of the cytoskeleton and cn be found in all
eukaryotic cells. They are related in mitosis, cell motility, intracellular transport
and cell shape. They are long, hollow cylinders composed of alpha- and beta-
tubulin subunits assembled into protofilaments. A single microtubule consists of
10 to 15 protofilaments to form a cylinder with a diameter of 25 nm and the length
of around 50 µm. This basic knowledge is important in chapter 3. They are more
rigid structures than actin filaments. One end of each microtubule are attached to
a microtubule organizing centre (MTOC) called a centrosome which is positioned
close to the nucleus. This is the basic of our model in chapter 4.

Actin filaments

Actin filaments or microfilaments are two-stranded helical polymers of the pro-
tein actin. They are thin filaments with a diameter of 5-9 nm that are beneath the
plasma membrane. They mainly maintain cell shape and allow cell movement.

Intermediate filaments

Intermediate filaments are fibers with a diameter of around 10 nm. Mostly, they
can be found just beneath the inner nuclear membrane and across the cytoplasm.
The intermediate filaments mainly give the cell mechanical strength.



1.1. Biological background 21

Fig. 1.2: The head domains (bottom) and the tail domains (top) of (a) kinesin,
(b) myosin V and (c) dynein [49], with the approximate scale bar of 25 nm.

1.1.3 Motor proteins

Molecular motors are molecular machines that are the essential agents of trans-
port in living cell called motor proteins. These remarkable proteins bind to cy-
toskeletal filaments and use the energy of ATP hydrolysis to move along the cy-
toskeleton [49]. Molecular motors’ biological functions are specified by their do-
main structures as depicted in Figure 1.2. The most important parts are the mo-
tor domains called heads which bind to the filaments and perform a cycle of ATP
hydrolysis. The tail domains are connected to cellular cargo such as membrane-
enclosed organelles like mitochondria, Golgi stacks, or secretary vesicles in cells.
The cargo domain binds to specified organelles or vesicles that depend on the
biological function of individual motor proteins. Many motors carry enclosed or-
ganelles such as mitrochondria or specified vesicles whereas other motors are re-
sponsible for muscle contraction, ciliary beating and cell division. Moreover, they
differ in the type of filaments they bind to and the direction they move along.
Typically, the types of track and the direction of movement along it are deter-
mined by the motor heads. We classify motor proteins based on the cytoskeletal
filaments that they interact with and differentiate their processivity as follows.

Cytoskeletal motors

MT-based motor proteins The two most important protein families moving along
the microtubules are kinesins and dyneins. Both families are processive motors
which rarely unbind from filaments on which they are moving [12]. Nonprocessive
motors in contrast unbind from the filaments more frequently and they are a
stronger team in larger groups which will be demonstrated in chapter 2. kinesins
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and dyneins walk in different directions which are determined by the polarity of
the two ends of MTs.

Kinesins Most kinesins move towards the plus-ends of the MTs, known as
the anterograde direction, which is directed from the cell centre or nucleus to the
cell periphery. In general, kinesins without load have a unidirectional motion,
an absence of back-stepping [2, 5]. However, if the motor binds with a cargo,
the cargo causes a load force which affects the motor’s stepping. Back-stepping
becomes more dominant depending on the size of force exerted by the cargo onto
the motors. The relation between force and stepping velocity is thus an interesting
issue to study and is one of our research problems.

The stepping of kinesins is triggered by the hydrolysis of ATP. There are two
main states of motor heads during ATP hydrolysis: an ATP-bound head bound
strongly to the track and an ADP-bound head unbound from the track. The
ADP-bound head is brought to the front. After that, the ATP of the other head
is hydrolyzed to ADP and inorganic phosphate that makes the binding weaker.
This head thus detaches from the filament and is brought to the front as soon
as the other head changes from ADP to ATP. The stepping cycle of kinesin is
shown in Figure 1.3. The kinesin motors can mostly perform a large number of
steps before detaching as a processive motor. In contrast, some kinesins unbind
from the filament frequently as a nonprocessive motor. In this thesis, we focus on
studying kinesin family which is kinesin-1 and kinesin-14 (Ncd) as a representative
of processive and nonprocessive motor, respectively.

Fig. 1.3: The stepping cycle of kinesin. From left to right: an ATP-bound head
induces a conformational change which brings the ADP-bound head to the front.
The ATP of the now rear head then hydrolyzes to ADP and inorganic phosphate.
After that, the rear head unbinds from the filament and is brought to the front.
In the meantime, the other head exchanges its ADP by ATP [2].

Dyneins Most cytoplasmic dyneins move towards the minus-ends of MTs that
are in the opposite direction compared to transport with the kinesin motor pro-
teins. Dyneins have more complicated structure and more weight than kinesins.
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They have two heads to bind to the MTs but each head has a ring shape as shown
in Figure 1.2 which is different from kinesins. The cargo is bound to the domain
at the other end (tail). The stepping cycle of dyneins differs from that of kinesins.
The dynein head detaches from the MTs when it is bound with an ATP whereas
the kinesin head detaches when an ADP is bound. However, it was reported from
experiment that dyneins are processive motors which is similar to kinesins [103].

Dyneins and Kinesins can simultaneously attach to the same cargos and this
will lead to bidirectional transport because both motors move in opposite direc-
tions. Bidirectional transport is an interesting situation of motors stepping be-
haviour and has been broadly studied in experiment and theory [41, 48, 58, 20].
This mechanism is also refered to as “tug of war” which will be discussed in section
1.5.

Actin-based motor proteins

Myosins Myosins are the cytoskeletal motor proteins moving along actin fil-
aments which are an example of nonprocessive motors. There are many different
subclasses of myosins which function differently. For example, myosin II has force
generating machinery for muscle contraction due to pulling on actin filaments.
Myosin II is a kind of non-processive motor which often unbinds from the filament.
Myosin V is typically responsible for vesicle and organelle transport. Myosin V is
able to interact along the track for a long period of time like processive motors
which are similar to kinesins. All myosins move towards the plus-end of actin fil-
aments, except myosin V, which moves towards the minus end. However, myosin
is not elucidated in this work because our examples are based on microtubules.

1.2 Monte Carlo methods

Monte Carlo simulation is a broad class of computational algorithms with ran-
dom sampling to obtain numerical results. It is often used in physical, chemical
and mathematical problems and is substantially useful for the problems which
cannot mathematically solve to find exact solutions. Monte Carlo methods are
usually used for optimization, numerical integration, and generating draws from a
probability distribution.

It might be difficult to talk about Monte Carlo methods in abstract terms.
However, it can be described by the principle of a random walk model which will
be used in our model simulating motors’ stepping. As a general description of our
model, we use the principle of Monte Carlo simulation through a random walk
model and simple exclusion process.
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The random walk Monte Carlo method is a class of algorithms for sampling
from a probability distribution on constructing a Markov process in which the
probability satisfies its equilibrium distribution. One of the generally used ran-
dom walk Monte Carlo algorithms was proposed by Metropolis [63]. This method
generates a random walk as a random number for accepting some of the proposed
direction if the random number is under a probability density and rejecting if
it is out of the probability density. The Metropolis algorithm can be basically
constructed as the following scheme [28].

1. Select a particle at random, and calculate its energy U(rN).
2. Give the particle a random displacement; r′ = r +4, and calculate its new

energy U(r′N).
3. Accept the move from rN to r′N with probability exp(−β[U(r′N)−U(rN)]),

where β is 1/(kBT ) where kB is the Boltzmann constant and T is the temperature.
Furthermore, we also use simple exclusion process which is an interacting par-

ticle system of the Markov process. This process was introduced in 1970 by Frank
Spitzer [90]. It has been widely used in stochastic modelling for transport phe-
nomena which will be discussed in more detail below.

1.2.1 Simple Exclusion Process (SEP)

Stochastic modelling of the intracellular processes has been generally carried
out by lattice based model which is discrete in space [2, 96]. In a lattice based
model, a particle can occupy on one site of the lattice and then hop stochastically
to another site with its own intrinsic rate called hopping rate. The particles move
forward and backward according to the hopping forward and backward rates, re-
spectively. It is accepted to move forward and backward if a generated random
number is under the probability of hopping either forward or backward in order
to mimic the stochastic motion of the system.

The stochastic lattice based model is an appropriate choice for the intracellular
transport, especially motor-driven transport, because the hopping of particles on
the lattice can be directly compared with the stepping of motors along the filament.
That is because the stepping cycles exchanging between ATP and ADP can be
summarized by a hopping rate [2].

The simple exclusion process is a model of stochastic transport to study inter-
acting particle systems [37]. The model is performed on a one-dimensional lattice
with discrete sites. One site can either be occupied or empty and the site can be
occupied by one particle at most [76]. The particle hops forward with the forward
rate, pµ, and hops backward with the backward rate, qµ, as shown

µ0→ 0µ, with rate pµ

0µ→ µ0, with rate qµ.
(1.1)
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where µ represents a particle. According to the exclusion process, hopping only
succeeds if the target site is vacant. The motors cannot overtake, thus the motor
sequence is preserved. By this reason, the particles based on simple exclusion
process are interacted as short-range repulsion.

1.3 Mathematical description of transport by collective processive
motors

Over the past decade theoretical investigations of transport by multiple molec-
ular motors under a load force have resulted in two widely used theoretical models
for how force affects the motors, namely a mean-field theory [48] and a leading
motor model [12]. However which of these two models is more appropriate in par-
ticular applications remains ambiguous. Below we clarify the difference between
these models and the assumptions made by them.

Mean-field theory

[48] proposed a mathematical model for a cargo transported by n molecular
motors along a filament, assuming that the external load force F , is applied equally
to the n bound motors, such that an individual motor experiences a force F/n (see
Figure 1.4). A single motor can move along the filament with a certain average
velocity v, which depends on the load force. The velocity decreases when the load
force increases. [48] assume the velocity is a linear function of force and later
Kunwar et al [51] extended the linear force-velocity relation to a more general
nonlinear form with an exponent w, namely;

Vn(F ) = v

(
1−

(
F

Fsn

)w)
, (1.2)

where v is the velocity when no load is applied and Fs is the stall force of a single
motor (the force for which the cargo stops) and w is the exponent that characterises
the force-velocity relation. If w = 1 the force-velocity relation is linear. For w < 1
the force-velocity relation is sub-linear, while w > 1 corresponds to a super-linear
force-velocity relation [51].

This theoretical model is suitable to apply to experiments in which the external
force is exerted in such a way that all the motors share it equally. However, in
many scenarios, such as in a cell, motor transport is resisted by an internal viscous
drag force on the cargo from a fluid medium such as the cytoplasm. Such a force
may be all experienced by the leading motor with motors following behind force
free. Optical trap force measurements on kinesin-1 by [32] using a polystyrene
bead stuck to the motor assembly imply that one kinesin bears all the load. In the
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Fig. 1.4: Sketch showing three motors (blue circles) attached to a cargo. The cargo
moves with velocity v and the force F is shared equally by all three motors [51].

next section we therefore review the leading motor model developed by [12] which
is more appropriate for such scenarios.

The Leading motor model

An asymmetric simple exclusion process (ASEP) transport model was pio-
neered theoretically by Evans, et al [25] and then developed for molecular motors
by Campas, et al [12] which was explained in section 1.2.1. In this model, they
explain the dynamics of a cargo driven by processive motors by motor hopping
rates. As illustrated in Figure 1.5, each motor is able to move stochastically in
either direction along the filament track with specified forward, p, and backward,
q, rates, similar to classical Brownian ratchet models [1, 73, 75]. If interactions
between motors are included the rates are modified to v forwards and u backwards
for nearest neighbour interactions, i.e. if a particle is next to an occupied site. This
assumes the interactions are short ranged over one step length. Neutral interac-
tion corresponds to v = p and u = q. It is worth noting that neutral interactions
between motors in the presence of simple exclusion process can be described as
short range repulsive interaction because motors cannot occupy in the same site.
Attractive interactions are modeled by v < p, u < q, whereas repulsive interac-
tions are given by v > p, u > q. The hopping rates for the leading motor (µ = 1)
are dependent on the force, by a Boltzmann weighting; p1 = pe−fδ, q1 = qef(1−δ)

and v1 = ve−fδ, u1 = uef(1−δ) where f is the dimensionless force exerted by the
cargo such that the load force F = fkBT/dx where dx is the motor step size.
The dimensionless parameter, δ, varies from 0 to 1 and determines how much the
forward versus backwards stepping rates are affected by the load force. For δ = 0,
the forward stepping is not affected by the load force and vice versa for δ = 1. The
forward and backward rates of all the motors following the leading motor are equal
and independent of force such that pµ = p, vµ = v and qµ = q, uµ = u [12, 25].

The average velocity of a single motor in this model is V1 = p1 − q1. For two
motors, their average velocities are equal. This is because, according to the simple
exclusion process (SEP) the motors cannot overtake each other, their sequence is
preserved and their average steady state velocities are equal due to the velocities
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Fig. 1.5: Possible motor transitions and associated rates for (a) neutral and (b)
attractive and repulsive interactions. The motor tails are attached to a cargo
whereas the motor heads are attached on the filament. The boxes and balls rep-
resent lattice sites and motors, respectively [12].

of all motors being limited by that of the leading motor. Campas et al [12] express
the average velocities of each of two motors in terms of v and u, referring to the
cases of attractive and repulsive interactions, giving;

V2 =
v1(p− q) + u(p1 − q1)

(v1 + u) + (p− q)− (p1 − q1)
. (1.3)

For the general case with n motors following SEP, Campas et al [12] found an
analytical expression for their average velocities in the neutral case where v = p
and u = q given by;

Vn = p
[1− ef (q/p)n][1− q/p]

efδ[1− q/p] + ef [q/p− (q/p)n]
. (1.4)

In the simple case of unidirectional motors for which q = 0, Eq. (1.4) reduces
to Vn = pe−fδ. For small forces this can be expanded to reproduce the linear
version of the mean-field theory in Eq. 1.2 with ω = 1. We also note that a
rough approximation of Eq. (1.4) can be obtained to describe the behaviour of
multiple motors with a simpler model of a single motor with modified backwards
stepping rates (see Appendix 2.7.5). However the validity of this approximation
does not hold well for the parameter regions we are interested in. Campas et
al.[12] also consider attractive and repulsive interactions between motors. Despite
a small amount of evidence suggesting very weak attractive interactions [81], it
is not yet clear what interactions are present experimentally. We therefore focus
on the neutral case between motors according to the definition of Campas where
we define as short range repulsion as a result of exclusion potentials in our work.
As noted above, this model is suitable for situations for which the total force is
experienced by the leading motor, for example the viscous drag force of the cargo
in vivo. In addition this model can easily be extended to other forms of unequal
loading. In this sense it is more general than the mean-field model, with the latter
being a limiting case of the leading motor model. Kunwar et al.[53] present a



28 1. Introduction

more detailed model of motors as springs which results in motors sharing the force
equally when at the same position and the leading motor experiencing most of the
force when it is ahead. In our model we consider simple exclusion and therefore
do not allow multiple motors at the same site so the leading motor is the most
appropriate model for us to use.

1.4 Stochastic simulations of cargo transport by molecular motors

S. Klumpp et al. developed the theoretical study of cargo transport pulled by
several molecular motors [48]. They considered that each motor can unbind from
the filament then can rebind to it again, so that the number of actively bound
motors is not constant and can be vary between zero and N . They calculated the
transport properties of cargoes pulled by several motors against an external load
force in which the force-velocity relationships included the ability of detachment
and attachment is presented. The average velocity is calculated by the distribution
of number of bound motors, solved by master equation in an infinite system,
multiplied with the velocity of bound motors which is based on mean-field theory
(see more details in section 1.3). For this reason, it is worth noting that their
theory is consistent with in vitro experiment and vivo experiment for small viscous
force. Later, O. Campas et al. developed general solution of the force-velocity
relationship for a cargo in vivo experiment transported by N motors not including
attachment and detachment for general terms of viscous forces which are applied
to the leading motor (see more details in section 1.3) [12]. They also considered
motor-motor interaction and conducted lattice based simulations using Simple
Exclusion Process (see more details in section 1.2.1). In their simulation, they
presented results of force-velocity relation of transport byN fully processive motors
with repulsive, attractive and neutral interactions. They also show the results of
transport by a cluster of motors (N = 100) in the presence of detachment and
attachment (nonprocessive motors) for neutral interaction in which the results
behave a processsive motor when the cluster is large enough and there is no theory
supporting in this case. Here, it is noticeable that there is a gap for theoretical
study of general form of transport by nonprocessive motors for general terms of
external force. There is also a big gap of the theoretical and simulation study
of transport properties by a small team of nonprocessive motor which can be
influenced by detachment and attachment. Thus there is motivation to develop
the analytical solution and show more realistic stochastic simulation to fulfil the
gap of understanding.

O. Campas et al. applied the leading motor model to explain the growth of
membrane tubes pulled by molecular motors stepping along cytoskeletal filaments
[13]. The motors moving along a microtubule can generate force to pull the mem-
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brane tube. Generating this force is related to detachment of the leading motor.
They conducted lattice based simulations in which a one-dimensional lattice rep-
resents a single protofilament and a motor can either bind or unbind on a lattice
site. They observed how the unbinding rate depended on the force and compared
these observations with experimental results. They revealed that motors cluster-
ing on a single protofilament is not enough to generate sufficient force to pull a
membrane tube. It requires at least three protofilaments and a cluster of approx-
imately nine molecular motors [13]. Meanwhile, A. Kunwar et al. investigated
stochastic simulation of cargo transport by a multiple-motor system which is in
the form of strain-gating where motors share load unevenly [53]. In this work, the
motor dynamics are different and there are two phases. If the motors stay far away
from each other, then the leading motor shares the high load while the rear motor
is under low load, but if they stay close together then they share the load equally.
Interestingly, they combined the leading motor model and mean-field theory to-
gether. However, the analytics relating to a cluster of nonprocessive motors have
not been exposed. Later, they developed an algorithm using a combination of the
stochastic model of motor dynamics and a Langevin equation for the motion of a
spherical cargo along a microtubule [50]. The dynamics of motors include binding
and unbinding and the Langevin equation includes the diffusive motion of cargo.
They measured the velocity of a cargo pulled by a single motor in the compari-
son of experimental results and measured simulation results for the run length of
cargoes transported by several motors against high viscous friction. Again, the
analytical solution of velocity of transport by a cluster of nonprocessive motors
has not been clearly proposed and the velocity is studied just the case of a single
motor in this work.

A. Kunwar et al. has studied the mechanics of multiple motors including the
ability of binding to and unbinding from the filaments to transport a cargo [51].
The average velocity of a cargo is then driven by the number of actually active
motors that are bound to the filament because they can unbind from it. They
expressed the probability of a number of bound motors by solving the stationary
solution of the master equation proposed by S. Klumpp et al. [48]. The velocity of
bound motors is expressed by using mean-field theory which assumes that motors
share the force equally. However, we note that the probability obtained from the
mater solution in [48] is assumed an infinite system which is not representative of
a spherical cargo which has a limited space and is therefore bound by a limited
number of motors.

After that, motor-motor interaction has been considered for the cargo trans-
port by S. Bouzat et al. [9]. They studied the effects of excluded volume between
motors on cargo transport. In this study, they also considered the dynamics of
cargo following an approach similar to [50] by a continuum Langevin equation,
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while the dynamics of motors follow a Monte Carlo algorithm including forward
and backward stepping, and binding and unbinding events and under the theoret-
ical framework proposed by A. Kunwar et al [51, 53]. They compared the Monte
Carlo simulation results in the presence and in the absence of simple exclusion
process on the dynamics of motors combining the Langevin dynamics of cargo.
They found that the cargo driven by interacting motors moves slower than that
by non-interacting motors. Moreover, they conducted simulations of interacting
motors on multiple tracks which can either be protofilaments or parallel indepen-
dent microtubules [9]. The increasing number of tracks can reduce the effect of
interactions between motors for cargo transport. In this work, they mainly worked
with Monte Carlo algorithms to study the effects of integrating cargo and motor
dynamics, but they have not directly compared experimental results and analytical
calculations.

Although the cargo transport by multiple motors have been studied in various
models based on Monte Carlo algorithms in the literature, we note that there has
been no comprehensive study of a number of motors bound to a cargo of finite size,
rather than an infinite system. We can also develop stochastic models correspond-
ing with our new insight and being more representative of the biological system
in term of binding kinetics for transporting a cargo by several molecular motors
including binding to, unbinding from and switching between cytokeletal filaments.
This is the motivation for our work in Chapter 2 and Chapter 3. Meanwhile,
another complex model for a cargo transport is proposed as tug-of-war model in
which a cargo is mediated by different types of molecular motors, which will be
discussed below. This model has been studied simultaneously with the develop-
ment of our stochastic model of cargo transport mediated by multiple motors of
the same type.

1.5 Tug-of-war

Intracellular transport can be carried out by either motor proteins kinesin or
dynein which both move unidirectionally along microtubules, but in opposite direc-
tions. They can be attached simultaneously to a cargo which leads bidirectional
transport. The bidirectional transport is caused by oppositely-directed motors
attached to the same cargo which are plus-end directed kinesins and minus-end
directed dyneins. Cargo transport can be achieved by unbalanced back-and-forth
movements. Mostly, it can be found in neuronal transport [41, 68, 104, 72]. Under-
standing in motor behaviours underlying the bidirectional transport is important
to their roles in neurodegenerative diseases, such as Alzheimer’s disease, Hunting-
ton’s disease and Parkinson’s disease [41]. Bidirectional transport can be found
in transport of larger organelles which is size of a few hundred nanometers on-
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Fig. 1.6: Cartoon showing cargo transport by two kinesins directed to plus-end
microtubule and two dyneins directed to minus-end microtubule. Three dominant
configurations are no motion (0), fast plus motion (+) and fast minus motion (-).

wards [41]. For example, mitochondria, which are transported by kinesin-1 and
dynein motors, move bidirectionally in axons. Melanosomes attach to kinesin-2
and dynein which will occasionally work together with myosin V. Furthermore,
intraflagellar transport (IFT) is another category of bidirectional transport. It is
the transport of proteins in cilia and flagella along axonemal microtubules[41]. In-
terestingly, this form of bidirectional transport is different from others that there
is no directional switching during transport towards their cellular destination, so
a change in direction can only occur at the end of the filament. [41].

The model used to describe bidirectional transport is tug-of war, known as a
mechanical competition model between kinesin and dynein attached to the same
cargo, which was originally formulated in [68, 67, 104] and published in 2008. Each
motor species tries to move a cargo in its own direction, so the two motors are
competing in a tug-of-war. An interesting question is how the two motor species
achieve bidirectional transport. Cargo transport could be achieved by seven pos-
sible motility regimes in a tug-of-war model composed by three dominant regimes
and their combinations [68]. The three configurations of the dominated regimes
are (0), (+) and (-) which represent no motion, fast plus motion and fast mi-
nus motion of the cargo, respectively, as shown in Figure 1.6. The other motility
states, (-,+), (-,0,+), (-,0) and (0,+), are the combination of the three dominant
configurations which show switching. It is notable that the two regimes of (-,0,+)
and (-,+) show bidirectional transport with and without pauses, respectively. The
other two regimes of (-,0) and (0,+) show switching between one type of motors
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active and two types of motors active at the same time which correspond to a
pause state. The result is consistent with experiments which found a considerable
amount of time spent in a pause state [21, 41, 30]. Another consistent feature
found in experiment is elongated vesicles observed during directional switching of
endosomes in Dictyostelium discoideum cells in vitro and deformation of mito-
chondria in vivo. This feature is consistent with the pulling of opposing motors
during pause state in the tug-of-war model[89, 34, 52]. Here, we are interested in
applying a tug-of-war model to study nuclear deformation surrounded by multiple
microtubules in Chapter 4.

1.6 Nucleus

The nucleus is the largest organelle in eukaryotic cells which have a nucleus
bound membrane, but this is not found in prokaryotic cells (e.g. bacteria) which
have no membrane-bound organelles. It contains genetic materials which are the
chromatin (cell’s DNA) and associated proteins which are enclosed by a two con-
centric membranes, known as the nuclear envelope. However It can be connected
with cytoplasm via nuclear pores through which most molecules are transported
from the cytoskeleton via LINC (Linker of Nucleoskeleton and Cytoskeleton) com-
plex by which mechanical interactions between nucleus and cytoskeleton are medi-
ated . The nuclear membrane is supported by a network of intermediate filaments,
known as lamina. This lamina, composed of lamina proteins (type A, B and C),
are considered to be the primary source of the nucleus’ strength [29].

The nucleus mainly contains DNA which maintains the genetic information of
the cell for RNA transcription, DNA replication, and DNA repair/recombination
[59]. However, DNA is a molecule that measures roughly two meters and can
be complexed with proteins called chromatin. A subunit of chromatic is called
nucleosome which is DNA complexed with histones [59]. The nucleosome appears
as a bead and forms into a structure of long string like fibers. It is packaged
and compacted into the small space of the cell nucleus within a viscous liquid
called nucleoplasm, similar to cytoplasm found outside the nucleus. The chromatin
functions as a memory device which stores and expresses the genetic information
of cells [59].

Another prominent region found in the nucleus is the nucleolus. The nucle-
olus is the nuclear bodies which are not bound by membrane. Its function is to
synthesize rRNA and assemble ribosomes. The main structure of the nucleus is
displayed in Figure 1.7. Moreover, small structures in the nucleus include cajal
bodies, promyelocytic leukemia bodies, nuclear speckles, etc. Although, the pres-
ence of these structure are important to the organization of the nucleus, but we
don’t know their functions clearly.
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Fig. 1.7: Cartoon showing the components of the nucleus. The nuclear envelope
(double bilayers) is punctured by the nuclear pores and LINC complex. The LINC
connects between the lamina and the cytoskeleton (not shown in this figure). The
chromatin containing DNA and nucleolus are inside the nucleus.

All of these components of the nucleus contribute to its mechanical properties.
We are interested in is what provides the stiffness of nucleus because it is key
to explain many processes such as nuclear deformation during cell migration. As
mentioned above, we consider that its stiffness is mainly related by the lamina
which is under the nuclear membrane and the chromatin which form strings inside
the nucleus. In fact, the lamina has long been assumed to provide the nuclear
rigidity [29, 38], but the impact of chromatin has recently been suggested [59, 93,
92].

The rigidity of nucleus

As mentioned previously, we assume that there are two main factors providing
nuclear rigidity which are lamina and chromatin. The lamina structure underlying
nuclear envelope plays an important role in its mechanical stiffness. The stiffness
of the nuclear lamia was experimentally measured by micropipette aspiration of
isolated Xenopus oocyte nuclei with and without the chromatin [17]. These results
have revealed that the nucleus appears more deformable when it lacks Lamin
A and C and a minor effect of Lamin B. Increased levels of lamin A lead to
less deformable nuclei and reduced cell migration through small pores whereas
nuclei with decreased levels of lamin A are more fragile [43, 18]. Therefore , it is
obvious that the lamina play an important role in the nuclear rigidity with elastic
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Stephens, et al., 2018

Fig. 1.8: Experimental setup from [93] showing micromanipulation of a single
isolated nucleus. It measures the extension of the whole nucleus by the movement
of the ’pull’ pipette and the deflection of the ’force’ pipette. The force-extension
plot provides its slope as a nuclear spring constant.

behaviour.

The effect of chromatin on nuclear stiffness has recently been studied [59, 92,
93, 88]. We know that the chromatin consists of nucleosomes complexed by DNA
and histones (proteins). Apart from storing genetic messages, the chromatin has
been suggested to support the nuclear structure. However, the involvement of
chromatin contributing the nuclear rigidity is unknown.

There is a development for a force measurement microscopy setup with con-
trolled biochemical manipulation of chromatin in human cell nuclei [59, 88]. They
examined the rigidity of nuclei at different conditions of chromatin controlled by
Mg2+ concentration. In the measurement, the isolated nuclei was captured by
a pair of microneedles and they were then stretched apart. This showed the ex-
tension against force in the nuclei. It can be estimated as Hooke’s law and its
slope is its stiffness. This implied the nuclear rigidity in the relation of the resist-
ing force and resultant deformation for condensed (5mMMg2+) and decondensed
chromatin (0mMMg2+), respectively, and the results were different. They found
that the nuclear rigidity clearly depended on Mg2+ concentration which influ-
enced the chromatin compaction. The nuclear rigidity at decondensed chromatin
was 10-fold lower than the value at highly condensed chromatin [59, 88].

It confirmed that the chromatin contributes to the stiffness of the nucleus, not
only the lamina. Both the chromatin and lamin A/C provide nuclear stiffness and
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they function as a spring [93, 92]. Stephens et al. also developed the same method
of micromanipulation assay with a novel single-nucleus isolation to measure the
whole nucleus-extensional spring constant [93]. Nuclei are isolated from single
living cells and attached to two micropipettes. One is to extend the nucleus called
the ’pull’ pipette and another is to measure force called the ’force’ pipette, as
depicted in Figure 1.8. Nuclear spring constant can be calculated by the slope of
force-extension plot which is k = 0.52 nN/µm [93]. At this point, this leads to the
assumption of developed models in Chapter 4. We then assumed that a nucleus
behaves like a spring by using empirical parameters of spring constant in normal
conditions (see more in Chapter 4).
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2. ONE-LANE MODEL

2.1 Abstract

Molecular motors are responsible for intracellular transport of a variety of bi-
ological cargo. We consider the collective behaviour of a finite number of motors
attached on a cargo. We extend previous analytical work on processive motors to
the case of non-processive motors, which stochastically bind on and off cytoskele-
tal filaments with a limited number of binding sites available. In agreement with
others we find a Binomial distribution solution to our master equation for the dis-
tribution of bound motors assuming an unlimited number of binding sites along
the filament.

However, physically motors attached to a cargo cannot bind anywhere along
the filaments, so the number of accessible binding sites on the filament should be
limited. Thus, we analytically study the distribution and the velocity of a cluster of
non-processive motors bound on the cargo with limited number of binding sites in
steady state. To validate our analytical results and to go beyond the level of detail
possible analytically we perform Monte Carlo latticed based stochastic simulations.
In particular in our simulation model we include sequence preservation of motors
performing stepping and binding obeying a simple exclusion process. Using our
simulations we compare alternative models for limiting the number of binding sites
along a filament. We find that limiting the number of binding sites reduces the
probability of non-processive motors binding but has a relatively small effect on
force-velocity relations. Our analytical and stochastic simulation results compare
well to published data from in vitro and in vivo experiments.

2.2 Introduction

Molecular motors that move cargoes such as vesicles, lipid droplets or mito-
chondria facilitate intracellular transport [12, 68, 48, 45]. Motors bound to cargo
can work either alone or cooperatively. However, in vivo, transport is usually per-
formed by several motors, as is experimentally observed by electron microscopy and
by tracking of cargoes with optical methods [101, 32, 48, 60]. Many studies have
demonstrated that the number of molecular motors influences cargo transport, af-
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fecting the velocity, direction and persistence of cargoes due to the processivity of
motors [32, 68, 44, 105, 55].

In general, molecular motors can be classified according to their processivity,
which refers to the distance that they can move along a filament before detaching
[12, 2]. Processive motors can individually interact with a filament for long time
and so perform a large number of steps before detaching, i.e. they rarely unbind
from the filament during their motion. Examples of processive motors include ki-
nesin, which move toward to the plus-ends of microtubules (anterograde direction)
and dyenin, which move toward to the minus-ends of microtubules (retrograde
direction) [2]. By contrast, nonprocessive motors will often unbind[12], remaining
on a filament for only a short time and moving only a short distance. An example
of a nonprocessive motors is myosin, which moves along actin filaments. In exper-
imental biology the distinction between processive and nonprocessive is between
rare and common unbinding. However, in this work we use a purer definition of
processive and nonprocessive motors to align with the qualitative difference be-
tween theoretical models. We assume “processive” motors never unbind during
the timeframe under study whereas “nonprocessive” motors are able to unbind
and rebind to a filament within the timeframe of the study.

Motors pull a cargo against a force which affects their velocity. The force may
be just the drag force caused by the cargo moving through the viscous medium
or there may be additional external forces. For example, in vitro experiments can
exert an external force on the cargo using optical tweezers or a magnetic field [32].
Various mathematical models have been introduced to explain collective motor
dynamics from different perspectives [51, 12, 10, 48, 39, 15]. In particular, two
different models for processive motors published in [12] and [51] have both have
been widely cited but confusion exists in the literature in applying these models.
The former, [12], introduced the leading motor model in which all the load force
from the cargo is exerted on the leading motor. In contrast, the latter, [51], used a
mean-field theory, assuming that all motors share the force equally, to analytically
calculate the velocity of a cluster of motors moving along a cytoskeletal filament.

In this work, we model molecular motors moving along cytoskeleton filaments
by using Monte Carlo simulations. We compare our simulation results with math-
ematical models for a fixed number of motors on a single track. Campas et al
[12] derived the analytical result for the velocity against force for a cluster of
such processive motors. We extend this model to obtain an analytical expression
for the case of nonprocessive motors. In addition we compare our analytical and
simulation results to published experimental data [32, 78].
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2.3 Processive motors

2.3.1 Mathematic Description for processive motors

[12] developed an asymmetric simple exclusion process (ASEP) [91, 19, 25, 94]
for cargo dynamics driven by processive molecular motors. The Simple Exclusion
Process (SEP) is explained in details in section 1.2.1. As illustrated in Figure 2.1,
each motor is able to move stochastically with specified forward, p, and backward,
q, rates, similar to classical Brownian ratchet models [1, 73, 75]

✞☞�✁

F
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Fig. 2.1: Possible motor transitions and associated rates. Motor tails are attached
to a cargo whereas motor heads (blue circles) are attached to a filament. The
boxes represent a one dimensional lattice of binding sites on the filament [12].

The hopping rates for the leading motor are dependent on the force, [80], by a
Boltzmann weighting; p1 = pe−fδ and q1 = qef(1−δ) where f is the dimensionless
force exerted by the cargo such that the load force F = fkBT/dx where dx is the
motor step size. The dimensionless parameter, δ, varies from 0 to 1 and determines
how much the forward versus backwards stepping rates are affected by the load
force. This is explained in more details of SEP with leading motor model in section
1.3 .

Vn = p
(1− ef (q/p)n)(1− q/p)

efδ(1− q/p) + ef (q/p− (q/p)n)
. (2.1)

Therefore, in order to consider the collective behaviour of multiple processive
motors in intracellular transport, we use this leading motor model in which the
leading motor experiences all the force and the following motors none of the force
in section 2.3. We then extend this model to include motor attachment and detach-
ment to study in the case of non-processive motors. Campas et al [13] studied this
extension to non-processive motors using simulations but did not do the analytical
extension which we do in section 2.4.

2.3.2 Simulations of processive motors

We first simulate the model of N processive motors which do not unbind from
the filament. We model the filament as an one-dimensional lattice with lattice
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spacing equal to the motor step size, dx. We initialise the simulation by randomly
placing N motors within the width of cargo. We choose the initial cargo width
to be 10 lattice sites for N < 10 and (N + 10) lattice sites for N ≥ 10. To check
this choice of initial conditions does not influence our results, we varied the width
of the cargo between 10 and 100 and found that our results are insensitive to the
chosen initial cargo width.

The simple exclusion rule dictates that each site may be either occupied or
empty but cannot be occupied by more than one motor. Motors can thus move
to a neighbouring site only if the new site is unoccupied. In the simulation, an
individual motor moves forward with a rate pµ and backward with a rate, qµ, where
the subscript represents the motor µ (see Figure 2.1).

For consistency throughout this work we present results from our simulations
using a discretized fixed time step Monte Carlo method. However since continuous-
time discrete-state Markov processes such as the ones we study here are often
stochastically simulated with the well-known event-driven approach of Gillespie
[22], we checked our method against this. We validate the model by using Gillespie
method in section 2.7.1. We found that our results using the fixed time step
and Gillespie algorithm methods are equivalent within the error bars (see results
presented in section 2.7.1. We use our fixed time step method for our full study
since it is ten times faster than the Gillespie algorithm for our non-processive
motors case. In our fixed time step method, at each time step, dt, forward and
backward steps are attempted with the probabilities Pf = pµ dt and Pb = qµ dt,
respectively. If motor µ meets the condition for moving to a neighbouring site,
the position of the motor xµ is updated to xµ ± dx for motion forwards(+) or
backwards(-) along the track, where dx is the motor step size.

Processive motors based on Simple Exclusion Process (SEP) are considered
as short-range repulsive interacting species, as explained in section 1.2.1. The
parameters are defined by the following equation.

pµ = p, qµ = q

vµ = v, uµ = u
(2.2)

for µ ≥ 2, whereas the rates of the leading motor (µ = 1) depend on the external
force at the following equation.

p1 = pe−fδ

q1 = qef(1−δ) (2.3)

The procedures to simulate collective transport of multiple motors included the
exclusion principle are following these steps.
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1. Initially, we place all N motors randomly positioned within a length given
by the cargo width, then all N motors are occupied at position xi where i = 1 to
N at t = 0.

2. For each time step, we visit each of theN motors and calculate their tentative
steps and positions as described in step 2 and 3 of the single motor’s procedure.
In this case, only the stepping rates of the leading motor are dependent on force as
shown in Eq. 2.3, but that of the other motors are independent with force as shown
in Eq. 2.2. If the each motor’s step is approved, then we set xi(t+ ∆t) = xi(t) + 1
or xi(t+ ∆t) = xi(t)− 1 or xi(t+ ∆t) = xi(t) depending on the tentative states of
each motor’s stepping at each time step.

3. To compare with the theoretical perspective in Eq. 2.1, we calculate velocity
from similation results, V̄ = (xi(T )−xi(0))/(T−0) where T is the total simulation
time.

2.3.3 Results of processive motors

Here we present our results for fully processive motors, which do not unbind
from the track and may move bidirectionally with the rates p and q. The case
of unidirectional motors is easily obtained by setting q = 0. Our models can
be applied to a variety of different molecular motors. The simulation results we
show here are for parameter values p = 100 s−1 and q = 10 s−1 corresponding to
experimental values for processive kinesin-1 [14, 32] and the assumption that the
ratio of forward to backward rates is ten [64, 16].

To compare with the analytical solution, Eq. (2.1), we calculate the steady

state velocity of the leading motor from our simulation results, Vsim = x1(T )−x1(ts)
T−ts

where x1(t) is the position of the leading motor at time t, T is the total simulation
time and ts is the time we start measuring from once the system has reached
steady state. We find that running our simulations for T = 5 × 106 time steps
of dt = 1.0 × 10−3s is long enough to ensure that the results are not dependent
on specific initial conditions chosen. We choose ts = 1000 steps by which time all
cases have reached steady state (checked by plotting trajectories, not shown). We
ran each simulation 100 times and plot the standard deviation as error bars in the
results graphs.

The leading motor’s velocity for different numbers, N , of bound motors is
shown in Figure 2.2 using our fixed time step Monte Carlo method. It is clear
that the velocities for different number of motors N decrease rapidly with force
as also seen in [12]. The force at which the velocity reaches zero (hits the x-axis
in Figure 2.2) is known as the stall force. For large N and dimensionless force,
f , the motors form a dense cluster which moves very slowly. Furthermore, these
results imply that the force-velocity curves for multiple motors (N > 5) are almost
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Fig. 2.2: Force-velocity curves of processive motors from Monte Carlo simulations
(symbols) for different number of motors N = 1 (blue), 2 (green), 5 (red) and
20 (black) compared with the analytical solution (lines) given by Eq. 2.1 with
parameters p = 100s−1, q = 10s−1, δ = 0.5 [14, 32, 12].The force on the x-axis is
the dimensionless force f = Fdx/kBT where F is the physical force and dx = 8nm
is the step size.

Fig. 2.3: Velocity against number of processive motors under different loads (blue
f = 0, red f = 2 and green f = 4) from our fixed time Monte Carlo simulations
(symbols) compared with the analytical solution (lines) given by Eq. (2.1) with
p = 100 s−1, q = 10 s−1 and δ = 0.5 [14, 32, 12].

indistinguishable.

To clarify the effect of number of motors N on the velocity of the collection
of motors, we plot the velocity against the number of processive motors under
different loads in Figure 2.3. The figure shows the leading motor’s velocity versus
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different total numbers of motors N from 1 to 10 for different loads (various values
of dimensionless force f = 0, 2 and 4). The results in this figure confirm that the
velocities of collections of N > 1 motors pulling the same force, f , are almost
independent of the exact number of motors N . However, for N ∼ 1 and finite
force the velocity is dependent on the number of motors and for large forces the
velocity may be backwards (negative).

2.4 Nonprocessive motors

We now extend the theory and simulations described above to the case of non-
processive motors. We allow motors to bind on and off the filament with rates kon

and koff, respectively, as illustrated in Figure 2.4. Including the dynamics of motor
binding and unbinding means that, unlike the processive motor case, the number
of motors bound to a filament changes over time.

✞☛�✁ ✂✄☎
✆☞✝✟

Fig. 2.4: Cartoon showing motors bind to and unbind from a filament with rates
kon and koff, respectively.

2.4.1 Mathematic Description for non-processive motors

Since including stochastic binding and unbinding of motors (with rates kon and
koff) means the number of bound motors changes over time, we need to know the
probability distribution of the number of bound motors. The average velocity of
a cluster of motors capable of binding and unbinding can be calculated in terms
of the probability, Pn of having n motors bound [48];

V̄ =
N∑
n=1

PnVn
1− P0

(2.4)

where Vn is the velocity when there are n motors bound given by (2.1) and N
is the total number of motors in the system. In using this equation we assume that
each cluster of n motors travels with its steady state velocity Vn. This assumption
is valid as long as stepping is fast enough compared to (un)binding. In our work, we
use Eq. (2.4), to calculate the average velocity of a cluster of non-processive motors
and we calculate the probability distribution, Pn, as detailed in the following. Eq.
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(2.4) relies on the steady state assumption. Note that if this assumption is broken
then the analytical solution gives an over estimate since the steady state SEP
cluster has reduced backwards stepping rates leading to faster forwards velocities
compared to non-steady-state.

Initially we assume that the number of binding sites available is unlimited such
that the binding rate of a single motor, kon, is constant. We write down a discrete
master equation for the probability, Pn, that there are n motors bound at time t;
Initially we assume that the number of binding sites available is unlimited such
that the binding rate of a single motor, kon, is constant. We write down a discrete
master equation for the probability, Pn, that there are n motors bound at time t;

∂Pn
∂t

=(N − n+ 1)konPn−1 + (n+ 1)koffPn+1

− (N − n)konPn − nkoffPn, (2.5)

where N is the total number of motors in the system (bound plus unbound
motors). This master equation is equivalent to that used by [48]. At steady state,
∂Pn
∂t

= 0, we obtain the detailed balance condition that the binding and unbinding
processes occur with equal probability such that;

(N − n+ 1)konPn−1 = nkoffPn. (2.6)

The probability, Pn, of being in a state with n bound motors can therefore be
written in terms of the binding rates kon and koff and the total number of motors,
N . Using Eq. (2.6) and the normalisation

∑N
n=0 Pn(N) = 1, we obtain;

Pn(N) =
N !

n!(N − n)!

(
kon

koff

)n
P0 (2.7)

where P0 is the normalisation constant. If kon < koff this can be written as a
convergent series, P0 = (1 + kon

koff
)−N , and the maximum number of bound motors,

N , can be infinitely large. The opposite case of kon > koff will become incompatible
with the initial assumption of constant kon as this will break down as the filament
becomes saturated with motors. For that case the finite number of binding sites
available needs to be addressed by limiting the binding sites, as addressed in the
next paragraph. The distribution (2.7) is the Binomial distribution used by [84, 83]
and understood from considering the stochastic binding and unbinding of each
motor when the maximum number of motors that can bind is N . Considering
the case of multiple motors attached to the same cargo we expect the number
of filament binding sites accessible to those motors to be limited by the size of
the motors and cargo. We therefore study the effects of limiting the number of
binding sites. However we do this without going into the level of detail of modelling
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motors as springs as some authors have done [53, 51]. Instead we simply limit the
binding sites accessible to the motors. If the number of binding sites on the
filament is limited to M , which can be considered as the width of cargo, then
kon(M,n) = (M −n)kson where the superscript s refers to the binding rate per site,
obtained by dividing the unlimited binding rate by M , i.e. kson = kon/M . Eq.2.5
can be extended by including the limited number of binding sites, M as follows;

∂Pn
∂t

=(N − n+ 1)(M − n+ 1)ksonPn−1 + (n+ 1)koffPn+1

− (N − n)(M − n)ksonPn − nkoffPn, (2.8)

The distribution of bound motors in this case is given by

Pn(N,M) =
N !M !

n!(N − n)!(M − n)!

(
kson

koff

)n
P0 (2.9)

where P0 is the normalisation constant given by
∑N

n=0 Pn(N,M) = 1.
The average velocity of N non-processive motors is then obtained by substi-

tuting Eq. (2.1) and (2.7) into Eq. (2.4) for unlimited binding sites giving;

V̄ =
N∑
n=1

N !

n!(N − n)!

P0

1− P0

(
kon

koff

)n(
p

(1− ef ( q
p
)n)(1− q

p
)

efδ(1− q
p
) + ef ( q

p
− ( q

p
)n)

)
. (2.10)

For the case of limited binding sites the equivalent expression is obtained by
substituting Eq. (2.1) and (2.9) into Eq. (2.4).

2.4.2 Simulations of non-processive motors

We extend the fixed time step Monte Carlo algorithm we used for proces-
sive motors (described in section 2.3.2) to the system of N non-processive motors
(drawn in Figure 2.4) and validate the results and efficiency against a Gillespie
algorithm as shown in Appendix 2.7.2. We consider N motors attached to a cargo,
thus the number, n, of motors bound on the filament at time t varies between zero
and N . We choose an initial condition with all the motors unbound from the
filament. Then, at subsequent time steps, each motor is allowed to attach to the
filament track with the attachment probability Pon = kon dt.

In each time step of the simulation, we visit each of the N motors to consider
their possible states and positions. Each motor is allowed to either bind to and
unbind from the track according to the relevant probability, Pon = kon dt or Poff =
koff dt, respectively. After that the bound motors are allowed to move along the
track with the forward/backwards stepping probabilities and the constraints of the
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simple exclusion process in the same way as for the simulation of processive motors
described in section 2.3.2. Therefore, the motors cannot overtake each other when
stepping along the track. We describe our procedure for simulating non-processive
motors in the following steps and summarize in a schematic in Figure 2.5.

1. First, we have maximum number of motors, N , in the system. At initial
time t = 0, all motors are dissociated from the track.

2. We visit each detached motor and calculate the attachment probability for
the present time step, Pon = kondt with a generated number r1 .

• If r1 ≤ Pon, then the motor is attached to the track and calculate the motor’s
position xi. The binding position is randomly positioned within a length
limited by either the (moved) fore and back motors’ positions because they
cannot overtake each other or the (moved) cargo width if no prevented motors
at each time step. The attached motor then performs stepping in the next
step.

• If not, the motor is still detached.

Meanwhile, attached motors from a previous step are allowed to detach from
the track with a probability Poff = koffdt.

3. For each attached motor, it performs stepping. Stepping occurs with
the probability as the same with the case of multiple motors in the absence
of binding/unbinding as mentioned in step 2. The ith motor’s position will be
xi(t+ dt) = xi(t) + 1 or xi(t+ dt) = xi(t)− 1 or xi(t+ dt) = xi(t).

4. Calculate the leading motor’s velocity by recording the initial bound position
xi(t1) at time t1 and final bound position xi(t2) at time t2 on the track, thus the
velocity is obtained by V̄ = (xi(t2)− xi(t1))/(t2 − t1).

2.4.3 Results of non-processive motors

We now present the results of our fixed time step Monte Carlo simulations for
the stepping of a cluster of N motors including the ability of binding on and off
the filaments (kon and koff). Since we are interested in motor clusters we study
strongly binding molecular motors for which the binding rate, kon, is higher than
the unbinding rate, koff [48, 32, 8, 31]. We choose Ncd (kinesin-14) as an example
of a non-processive motor which unbinds often [32, 77]. In our simulation, we
use koff = 10 s−1 as measured experimentally [32, 86, 77]. kon is more difficult
to measure experimentally but, since we are interested in the case kon > koff , we
choose kon = 20 s−1. We run our simulations for 5×107 time steps with a time step
of 1.0 × 10−3 s. This is longer than required for processive motors because non-
processive motors take longer to reach steady state due to the binding dynamics.
For non-processive motors we set ts = 2500 steps and ts = 25000 steps by which
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At t=0, initialize all motors’ unbound positions

At each time step, visit each of N motors to 
consider its state and position 

Consider possibility of attachment and 
detachment (not allowed to bind if occupied)

For bound motors, consider possibility of 
stepping (not moved if moving site is occupied)

Update all motors’ state and position and time 

If simulation meets total 
simulation time, then stop 

end

No

Yes

Fig. 2.5: Flow chart of our fixed time step Monte Carlo simulations for non-
processive motors.

time all cases have reached steady state for N ≤ 10 and N = 100, respectively. In
the following, we first present the distribution of the number of bound motors and
then the average velocity, stall force and run length.

Probability Distribution of bound motors

We consider the effect of number of binding sites in two scenarios. First, the
number of binding sites is fixed in scenario A. Second, the number of binding sites
is variable in scenario B and the sequence of motors is preserved on binding.

Scenario A: Fixed number of binding sites. We first assume that the number of
binding sites accessible by the motors is fixed to M lattice sites as illustrated in
Figure 2.6(a). In this scenario, the motors are only able to bind within these M
sites, which can be considered to correspond to the cargo width. In this scenario
we allow an unbound motor to bind onto any of the unoccupied sites within the M
sites. This means that the sequence of motors may change during rebinding. In
other words, in the simulation of this scenario motors are allowed to swap positions
on rebinding.

In Figure 2.6(b), we plot the probability distribution of bound motors, Pn(N,M)
for N = 10 and various different number of binding sites M . We choose N = 10
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Fig. 2.6: (a) Cartoon showing scenario A in which motors may bind only to unoc-
cupied sites within a fixed limited number M of binding sites but they may swap
positions on rebinding. (b) Probability distribution of non-processive motors at-
tached on the same cargo for various fixed number of binding sites (M = 20, 30, 100
for red, green, blue respectively) from simulation results (points) and Eq. 2.7 (dark
blue line) and Eq. 2.9 (dashed lines). The parameter values are kon = 20 s−1,
koff = 10 s−1 [32, 86, 77], p = 22 s−1 [32], q = 2.2 s−1, δ = 0.5, f = 0 and N = 10.

here to highlight the differences between limited and unlimited Binomial distri-
butions which are smaller for N ≤ 10. The dark blue solid line is the analytical
distribution for unlimited binding sites (Eq. 2.7) and the dashed lines are the
analytical distributions for the number of binding sites limited to M (Eq. 2.9)
where the different colours represent different values of M . The coloured points
are results from Monte Carlo simulations of scenario A (fixed M binding sites)
allowing the motors to swap positions on rebinding. The simulation results match
the relevant analytical expressions (Eq. 2.9) within the error bars. For M � N
the simulations and analytical distribution for the limited case (Eq. 2.9) approach
that of the unlimited case (Eq. 2.7) as expected. Consequently, if the cargo size
as defined by M is large enough then we can describe the probability distribution
of bound motors by the unlimited Binomial distribution.

However, in vivo, due to steric hindrance, the molecular motors may preserve
their sequence on rebinding. In this case the number of accessible binding sites
would change over time according to the positions of the leading and last motors.
We consider this scenario in the following.

Scenario B: Variable number of binding sites with sequence preservation. Here we
present a second, more realistic, scenario in which the motor sequence is preserved
on rebinding and the number of binding sites M is no longer fixed. To preserve
the sequence a motor can only bind to unoccupied sites between its neighbouring
motors. The number of accessible binding sites changes over time following the first
and last motors’ positions. Additionally, we allow one more site in front/behind
the position of the leading/back motors to be accessible to stepping and binding.
This latter accommodation allows for a motor to stretch to reach the adjacent site.
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At the end of each time step, after motors have had the chance to bind and move,
the number of binding sites M is changed following the bound/moved leading and
last motor positions. In the case that all motors are detached, M is determined
from the positions of leading/back motors when they were last attached. The
number of binding sites M(t) in this scenario is thus updated each time step. In
this case, M is limited to the steady state cluster size plus 2.

The simulation results for P (n) shown in Figure 2.7 fit better with limited
Binomial distribution, Eq. 2.9, than unlimited Binomial distribution (Eq. 2.7).
However the simulation results are shifted slightly lower than the analytical distri-
bution because of the sequence preservation on motor rebinding in the simulation
which is not included in the analytical expression. Figure 2.17 in Appendix 2.7.2
shows that the results of this variable number of binding sites case without se-
quence preservation on rebinding do coincide with the analytical limited Binomial
distribution.

(a)
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(b) 2 4 6 8 10
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Limited(M=24)
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Fig. 2.7: (a) Cartoon showing scenario B (variable number of binding sites and
sequence preservation) in which motors may bind only to unoccupied sites between
neighbouring motors such that the sequence is preserved. (b) Probability distribu-
tion of non-processive motors with no exerted force and variable number of binding
sites, M(t), from simulation results (points) comparing with Eq. 2.7 (blue line)
and Eq. 2.9 (dashed line) with the value of M being the average calculated over
the whole simulation. The parameter values used are kon = 20 s−1, koff = 10 s−1

[32, 86, 77], p = 22 s−1 [32], q = 2.2 s−1, δ = 0.5, f = 0 and N = 10.

To date there is no clear experimental evidence showing whether motors swap
position or preserve their sequence during rebinding. However, most literature
models use the assumption that the sequence of motors is preserved on binding
[61, 12, 48]. Also, many of these studies do not support the assumption that
motors are restricted to bind within a fixed determined space as is the case in our
scenario A. We suggest that our scenario B (variable number of binding sites with
sequence preservation) is more realistic for intracellular transport. We therefore
choose scenario B to further study further the velocity of a cluster of non-processive
motors in the following section.
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Average Velocity

We compute the velocity of the motor cluster from the simulation by averaging
the leading motor’s velocity when at least one motor is bound on the track. The
average velocity is then calculated by Vsim = 〈x(t2)−x(t1)

t2−t1 〉 where x(t1) is the leading
motor’s position on binding and x(t2) is the motor’s position when it unbinds from
the track. During the course of the simulation which motor is the leading motor
will change according to the binding and unbinding of motors. The leading motor
is the bound motor with the forward most position at that point in time, i.e. the
largest xµ(t). We calculate the velocity over the time that an individual motor
acts as the leading motor (t = t1 to t2) and then calculate the velocity of the next
motor that acts as the leading motor. We then average over all these velocities.
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Fig. 2.8: (a1-b3) Probability distribution of n bound motors with maximum num-
ber of motors N = 2, 3 and 5 under (a1-a3) no force, f = 0 and (b1-b3) stall
force, f = fs, from simulations (symbols) compared with P (n) given by Eq. 2.9
by averaging M sites (dashed red) and Eq. 2.7 (solid blue). (c1-c3) Velocity of
clusters of N = 2, 3 and 5 from simulation results (symbols) compared with the
analytical solution Eq. (2.10) for limited (red) and unlimited (blue) binding sites.
Note that, for N = 2, there are always available sites to bind, so it is not com-
pared with limited Binomial distribution. The solid black lines are the velocities of
having N = 2, 3 and 5 bound processive motors without (un)binding, given by Eq
2.1. The other parameter values are those for Ncd i.e. the same as in Figure 2.7,
namely kon = 20 s−1, koff = 10 s−1, p = 22 s−1, q = 2.2 s−1, δ = 0.5 and dx = 8 nm.
For the processive case (black lines) kon = koff = 0.
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In order to obtain the force-velocity relation for non-processive motors, we first
consider the appropriate steady state probability distribution for the number of
bound motors P (n) at different forces and then consider the velocity at different
forces. Figure 2.8 shows P (n) from simulations and analytical expressions (Eq.
2.7 and 2.9) for (a) zero force, f = 0, and (b) the stall force, f = fs (the force
for which the velocity is zero) for small numbers of total motors N = 2, 3, and
5. We choose values kon = 20 s−1, koff = 10 s−1, such that kon > koff to study
motor clusters. As discussed in the previous section the analytical expression for
the distribution of bound motors with limited number of binding sites, Eq 2.9,
is a better approximation to the simulation results than the unlimited Binomial
distribution, particularly at larger force. This is because the leading motor is more
likely to move backwards at larger force, further reducing the number of accessible
binding sites. Consequently the probability distribution of motors bound on the
track is shifted to smaller numbers of motors than the case assuming unlimited
binding sites (Eq. 2.7), as is evident in Figure 2.8 (b2) and (b3). The case of
N = 2, shown in Figure 2.8 (a1) and (b1), is well described by the unlimited
binding sites expression (Eq. 2.7). This is because our model allows binding to
one site in front/behind the leading/back motor which means for N = 2 there are
always available sites to bind. For N = 3, Figure 2.8(a2), the simulation points
are between that of the limited and unlimited curves due to the extra freedom
provided by the end sites. However by N = 5, Figure 2.8(a3) we see a good
agreement with the limited analytical expression. Note for N = 10 in Figure
2.7(b) the simulation points are shifted to smaller n than the limited analytical
expression. This is caused by the restrictions imposed in the simulations to ensure
sequence preservation which is not captured by the analytical expressions (see
more discussion in Appendix 2.7.3).

Figure 2.8(c1-c3) shows the velocity as a function of force calculated from
simulations and analytical calculations (Eq. 2.4) for small numbers of total non-
processive motors N = 2, 3, and 5. The processive motor case, Eq. 2.1, is plotted
on the same graph for comparison. The parameter values used are those for Ncd
for the non-processive case and kon = koff = 0 for the processive case (black line).
See Figure 2.8 caption for the full list of parameters.

As expected from our studies of the probability distributions for the number of
bound motors (Figure 2.8(a) and (b)), the velocity for the case of limited number
of binding sites is a closer approximation than that of unlimited binding sites.
However the effect on the velocity of limiting the number of binding sites is slight
for small number of motors up to N = 3 (Figure 2.8(c2)) with both analytical cases
falling within the error bars of the simulations for almost the entire range of forces
f = 0 to f = fs. However clear discrepancies develop for the N = 5 case (Figure
2.8(c3)) at larger forces. Although the limited number of binding sites case is closer
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to the simulation results even this is outside of the error bars for N = 5 at larger
forces. This may be partly due to the larger forces decreasing the stepping rate
such that the validity of steady state assumption of Eq. 2.4 is weakened resulting
in the analytical solution overestimating the velocity. The discrepancy seen in
Figure 2.8(c3) also reflects the influence of sequence preservation that is included
in the simulations but not in the analytical results. This effect is more pronounced
for larger clusters of motors and larger forces (see Figure 2.9 and Appendix 2.7.2).
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Fig. 2.9: Probability distribution of n bound motors with maximum number of
motors N = 10 under (a1) no force, f = 0, and (b1) stall force, f = fs and
N = 100 (a2) f = 0 and (b2) f = fs , from simulation (symbols) compared
with Eq. 2.9 by averaging M sites (dashed red) and Eq. 2.7 (solid blue). (c1-c2)
Velocity of large clusters of motors (c1) N = 10 and (c2) N = 100 are plotted and
the analytical velocity of having N bound processive motors without (un)binding
(solid black) is also shown, given by Eq 2.1. The other parameter values are the
same as in Figure 2.7, namely kon = 20 s−1, koff = 10 s−1, p = 22 s−1, q = 2.2 s−1,
δ = 0.5 and dx = 8 nm. For the processive case (black lines) kon = koff = 0.

Figure 2.9(a1) and (b1) shows the probability distribution of bound motors,
P (n), at no force, f = 0, and the stall force, f = fs, for a larger motor cluster
of N = 10. As expected, we see that the case of limited binding sites fits better
than for unlimited binding sites for both extremes of the force range. In Figure
2.9 (b1) we can see that the simulation points are shifted towards smaller number
of bound motors compared to the analytical limited binding sites case. This is
even more pronounced for the N = 100 case shown in Figure 2.9(a2) and (b2).
This is due to the effect of sequence preservation which has a greater impact for
larger clusters and larger forces. Figure 2.17 in Appendix 2.7.2 shows that without
sequence preservation on rebinding the probability distributions of the number of
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bound motors follow that of the analytical expression for limited binding sites.

In Figure 2.9 (c1) we show the velocity of a cluster of N = 10 non-processive
motors with parameters for Ncd. We compare our simulation results against the
analytical results for the cases of unlimited and limited binding sites as well as the
case of 10 processive motors with kon = koff = 0. As can be seen in Figure 2.9
(c1) all three analytical curves collapse onto that of the processive motor case for
N = 10 indicating that for N = 10 there are enough motors in the cluster that
they behave as processive motors. This processive behaviour of large clusters of
non-processive motors can be justified analytically. Consider approximating the
average velocity given by Eq. 2.4 by the velocity for the number of bound motors
at the peak of the probability distribution for the number of bound motors. For
unlimited number of binding sites the peak of the relevant Binomial distribution
is at n = Nkon

kon+koff
. We see from Figure 2.3 that for large number of motors the

velocity is independent from the number of motors. Therefore if Nkon

kon+koff
� 1 then

V̄ ≈ V Nkon
kon+koff

≈ VN . Approximating the average velocity by that for the peak of

the distribution for the number of bound motors is valid as long as the bulk of
the probability distribution is for n� 1 bound motors since Vn is independent of
n for n � 1. Figure 2.9(a1) shows that this is already the case for N = 10. For
N = 100 Figure 2.9 (c2) shows that within the errors the velocity of N = 100
non-processive motors is as fast as that of processive motors. This is because for
N = 100 there is almost always at least one motor bound so, since the velocity
of a cluster is limited by the leading motor, the effect of detachment is negligible.
Therefore, we can approximate the velocity of a cluster of large enough numbers
of non-processive motors as equivalent to the velocity of processive motors with
the same number of motors.

In summary our simulation results show that it is better to approximate the
distribution of number of bound motors with Eq. 2.9 including the limited num-
ber of binding sites. This expression does not fit exactly because the simulation
includes sequence preservation which is not included in the analytical theory. How-
ever, when we calculate the velocity of a cluster of N < 10 motors, both limited
and unlimited analytical distributions can similarly approximate the velocity of a
simulated motor cluster, see Figure 2.8(c1-3). Therefore, when investigating the
velocity, it is not crucial which distribution we use for small N . The distribution
with unlimited number of binding sites has the advantage that it requires fewer
parameters such that we only need to know the total number of motors N and we
do not need to know the size of the cargo nor number of binding sites M . This
case of small N < 10 motor clusters bound to a single cargo has been shown to be
relevant in vivo [4, 62]. For large motor clusters N > 10 however, the distribution
with unlimited number of binding sites is not a good approximation for the prob-
ability distribution of bound motors due to sequence preservation. However, since
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large clusters of N > 10 rarely have all motors unbound they behave like proces-
sive motors and the force-velocity curve can be described by that for processive
motors.
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Fig. 2.10: (a) Velocity against number of non-processive motors pulling a load with
dimensionless force f = 0, 1, 2 and 4 (dark blue, red, green, light blue respectively)
from Monte Carlo simulations (circle symbols) and analytical expression using
unlimited Binomial distribution, Eq.2.10 (solid lines). We also plot the case of
processive motors (with kon = 0 s−1, koff = 0 s−1 simulation (cross symbols) and
analytical expression, Eq. 2.1 (dashed lines). (b)The distribution of velocities in
panel (a) for N = 2 with f = 0, 1, 2 and 4 (left to right). The other parameter
values are the same as in Figure 2.7, namely kon = 20 s−1, koff = 10 s−1, p = 22 s−1,
q = 2.2 s−1, δ = 0.5 and dx = 8 nm.

For completeness, in Figure 2.10 (a), we plot the velocity against the number
of non-processive motors from simulations and analytical calculations using the
unlimited binomial distribution. This is the non-processive motor equivalent of
Figure 2.3 which is for processive motors. Note that the values for the velocities
are different for these cases due to the different forward and backward stepping
rates used to mimic the molecular motors kinesin and Ncd. For comparison we
therefore also plot the case of processive motors (with kon = 0 s−1, koff = 0 s−1) and
other parameters for NcD on Figure 2.10 (a) for simulation (cross symbols) and
analytical expression, Eq. 2.1 (dashed lines). This comparison clearly supports the
point that non-processive motors behave as processive motors for larger N = 10,
consistent with Figure 2.9 (c1). Figure 2.10(a) shows the velocity increases with
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the maximum number of motors, N , but tends to a plateau for N > 5 suggesting
that for N > 5 the binding of additional motors makes little difference to the
velocity. This is similar to the case for processive motors (Figure 2.3) except that
for those the plateau is reached for N > 1. We also plot the distribution of these
velocities for N = 2 with different forces in Figure 2.10 (b). Discrepancies between
the simulation and analytical results can be seen for the larger force f = 4, shown
in light blue in Figure 2.10(a). This is due to sequence preservation included in the
simulation but not in the analytical results. As expected sequence preservation
has a larger effect at larger forces. This can be seen by comparing Figure 2.9(a1)
and (b1) with Figure 2.17 in Appendix 2.7.2 for N = 10 at f = 0 and f = fs with
and without sequence preservation on rebinding.

Stall force against number of motors

The stall force is the force at which the cargo stops moving because the team
of motors is no longer able to pull it against the load force. We can calculate the
stall force, Fs, by substituting V = 0 into Eq. (2.1) for processive motors. For
non-processive motors, we calculate the stall force from the force-velocity relations
by setting Eq. (2.4) to zero using the unlimited Binomial distribution and limited
Binomial distribution.
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Fig. 2.11: Dimensionless stall force against number of motors, N . For processive
kinesin-1 motors we calculate this analytically by setting Eq. (2.1 to zero (solid
blue line). For non-processive Ncd motors we set Eq. (2.4) to zero and solve
numerically using the distribution of bound motors with limited (Eq.2.9, light blue
crosses) and unlimited (Eq. 2.7 green crosses) binding sites. Simulation results
are shown with circle symbols for parameter values p = 100 s−1 and q = 10 s−1 for
kinesin-1 processive motors (blue circles) and p = 22 s−1 q = 2.2 s−1, kon = 20 s−1

and koff = 10 s−1 for Ncd non-processive motors (black circles).
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For processive motors, Eq. (2.1) can be solved analytically for the stall force
giving Fs(N) = NFs(1) where Fs(1) is the stall force of a single motor, i.e. for
processive motors the stall force increases linearly with the number of motors. In
dimensionless form the stall force for a single motor is given by fs(1) = ln(p/q)
and is the same for both kinesin-1 and Ncd with the parameters we use for these
different motors. We plot this in Figure 2.11 along with the stall force for kinesin-
1 extracted from our simulations displayed in Figure 2.2. We use a threshold of
|Vfs
Vf0
| ≤ 10−5 to determine the stall force from our simulations.

For non-processive motors N is the maximum number of motors that can attach
to the filament, so the number of attached motors at a particular time can vary
from zero to N . Consequently, our numerical calculation of the stall force from
the analytical result Eq. (2.4) for the stall force in the case of non-processive Ncd
motors is lower than that of processive motors at the total number of motors N , as
shown in Figure 2.11. The numerical result for non-processive motors with unlim-
ited number of binding sites increases linearly for large number of motors (N > 10)
with the same gradient as that for processive motors (see Appendix 2.7.4). This
is also the case for binding sites limited to the average found in simulations. This
is to be expected from our observations that clusters of N non-processive motors
behave like processive motors for large N . In other words, once the number of
motors is large enough, the stochasticity is effectively averaged out and no longer
significantly affects the strength of the motor cluster. We therefore conclude that
the larger the number of motors, N , bound to a cargo the larger the load forces
that can be overcome by the motors to transport a cargo for both processive and
non-processive motors. Note that the stall force scales with the number of motors
for cargoes such as beads [32] or filaments in motility assays [56, 66] but that for
fluid like cargo such as vesicles [105] or membrane tubes [13, 86] it does not since
these cargo do not experience tangential forces [13].

Figure 2.11 shows that for small number of motors the stall forces for non-
processive Ncds extracted from our simulations (black circles) correspond well with
those those numerically calculated from the analytical solutions with the number
of binding sites unlimited (green crosses) and limited (light blue crosses). However
for N > 3 the results from our simulations are are lower than those obtained from
the analytical expressions. This is due to the sequence preservation included in
the simulations but not in the analytical results, as discussed in section 2.4.3 and
Appendix 2.7.2.

Run Length

We also examine the run length defined as the distance that the cargo moves
until all the motors have detached from the filament. To find the average run
length, we record the position, x1, of the first motor to bind to the filament at
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time t1 and the position, x2, where the last remaining motor unbinds at time
t2. The difference between these positions gives the run length of the cargo. We
take the average over all the periods when the cargo is bound to the filament.
Mathematically we calculate this by 〈x〉 = 〈x2(t2)− x1(t1)〉. We found from our
simulations that the larger the team of motors pulling the cargo the longer the
average run length before the cargo detaches from the filament, as shown in Figure
2.12 (a).
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Fig. 2.12: (a) Average run lengths of N = 1 to N = 10 non-processive motors
from 100 Monte Carlo simulation runs with f = 2. The other parameter values
are kon = 20 s−1, koff = 10 s−1, p = 22 s−1, q = 2.2 s−1 and δ = 0.5. (b) Histograms
of the distributions of run lengths in (a) for N = 1, 2, 3, and N = 10. The
total number of data is about 33000, 22000, 11000, and 100 per simulation for
N = 1, 2, 3, and N = 10, respectively.

Moreover, we plot histograms of the distributions of run length for different
values of N in Figure 2.12 (b). For a few motors N = 1, 2 and 3, we see that
the cargo often moves backwards in addition to the preferred forwards direction
whereas the cargo with N = 10 motors in Figure 2.12(b) almost always moves in
the positive direction. For multiple motors the run length appears to be roughly
exponential in the number of motors, which corresponds with the conclusion of
[51, 48].
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Recently [106] have reported that cargo diffusion shortens the run length for
single kinesin-1 leading to a non monotonic relationship with increasing cargo
viscous drag in simulations. This effect is due to load dependence of off rates such
that at low viscous drag cargo diffusion can assist the motor direction whereas at
high viscous drag the run length is shortened because of the viscous drag of the
load. Assuming the viscosity in cytoplasm is more than 10 times that of water
and the cargo size is more than 0.1µm this low viscosity cargo diffusion effect is
not important. Another suggestion of non-monotonic run length is given by [102]
who use first passage time calculations and Monte Carlo simulations to find the
run length for two motors coupled by a spring. This spring coupling is a different
scenario from what we study so not directly comparable.

2.5 Comparison with experimental results

In this section we compare our theoretical and computational results with lit-
erature experimental data from two different systems.

In vitro experiment First we compare our results with the in vitro experiments
by Furuta et al [32] who measure collective transport by processive kinesin-1 and
non-processive Ncd motors. They constructed DNA-motor assemblies with a set
number of motors varying from 1 to 4. They linked the motors with defined
spacing by their DNA scaffold. They track the movement of the assemblies along
microtubules by observing a fluorescent dye attached to the DNA scaffold using
total internal reflection fluorescence microscopy. In their system there is no cargo,
apart from the DNA linking the motors together, and we therefore assume the load
force, f , is zero. To compare their experimental results with our model we ran
simulations using parameters for kinesin-1 and Ncd as observed in the experiment
(see below for details). We also compared the results with the analytical solution
of Eq. 2.1 and Eq. 2.10 for processive and non-processive motors, respectively.

For the processive motor kinesin-1, the step length is 8 nm and the forward
minus backwards stepping rate is found from the measured velocity to be p− q =
98 ± 0.6 s−1 for one motor and p − q = 89 ± 0.8 s−1 for multiple motors [32]. For
no load, f = 0, the velocity given by Eq. (2.1) is independent from the motor
number N . However, the experimental results of the velocity kinesin-1 in [32]
show a slight decrease in velocity with increased number of motors. Furuta et al
[32] suggest that the motors in their assemblies slightly interfere with each other.
The motors in their assemblies are coupled with DNA fragments so the motors are
likely to experience attractive interactions at separations in which the elasticity
of the linking DNA becomes important. This unknown interaction effect is not
captured by our simple model. We therefore use different stepping rates for N = 1
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and N > 1. Assuming p = 10q [14] we use p = 110 s−1 for N = 1 and p = 100 s−1

for N > 1 in the plot in Figure 2.13.
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Fig. 2.13: Velocity against number of motors to compare experimental data [32],
simulation and analytical solution (Eq. 2.1) for processive motor kinesin-1 (top)
and Eq. 2.10 for non-processive motor Ncd (bottom), both with zero load, f = 0.
For processive motors (top), parameters are p = 110 s−1 for single kinesin-1 and p =
100 s−1 for multiple kinesin-1. For non-processive motors (bottom), parameters are
p = 11 s−1 for single Ncd and p = 22 s−1, kon = 20 s−1 and koff = 10 s−1 for multiple
Ncds. p = 10q for all cases.

For the non-processive motor Ncd, the step length is also 8 nm and the forward
stepping rate is 12.6 ± 2.0 s−1 or 18.75 ± 1.5 s−1 from the measured value for the
velocity of one motor or two coupled. The results for the velocity from simulations
and the analytical solution are plotted in Figure 2.13 along with experimental data
from [32] for both processive kinesin-1 and non-processive Ncd. Note that [32]
suggest that single Ncd has a lower forward stepping rate than when it is linked to
other Ncd motors due to the unbound motors being kept close to the microtubule
in the latter case. Our simulated and analytical results using the leading motor
model in Eq. 2.10 match (within error bars) with their experimental data.

In vivo Experiment A significant practical problem of any motor transport ex-
periment in vivo is to identify the numbers and types of motor proteins on the
cargo. Therefore comparing theoretical results with in vivo experimental data is
more challenging because of the difficulty in determining the number of motors
on the cargo, particularly in case of non-processive motors. Several studies have
indicated that many cellular cargoes in vivo are moved by a moderate number
of motors ranging between one to five and the force exerted by the kinesin and
dynein motors are mostly reported as about 1 pN [95, 6, 23].
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(a)

(b)

Fig. 2.14: From our simulation, (b) velocity distribution for 1, 2 3, 5 and 10
kinesin-1 and (c) run length distributions for 1, 2 and 3 kinesin-1. The parameters
are p = 100 s−1, q = 10 s−1, kon = 5 s−1 and koff = 1 s−1 [48].

To compare our results with an in vivo experiment, we used data from Pilling
et al [78] who tracked mitochondria in the axons of live Drosophila neurons.
They tracked the movement of GFP labelled mitochondria using scanning con-
focal fluorescence microscopy. They report that the net velocity of anterograde
mitochondria (assumed to be moved by kinesin-1) was 0.26 ± 0.10µm s−1. They
found the mean ± standard deviation run length for anterograde mitochondria
was 1.82± 1.19µm. It is difficult to know in vivo how many motors are attached
to a cargo such as a mitochodrion. However using our model we can predict the
expected number of kinesin-1 motors carrying the axonal mitrochondria. We use
the same stepping rate parameters for kinesin-1 that we use in earlier parts of
this chapter i.e. p = 100 s−1 and q = 10 s−1. However, as is seen in trajecto-
ries in [78], axonal kinesin-1 is slightly non-processive so we use kon = 5 s−1 and
koff = 1 s−1 as proposed in [48]. We used f = 2 in our simulation corresponding
to F = fkBT

dx
= 1.1 pN. We calculate the distribution of velocity and run length

from our model for different number of motors and compare with the histograms
from experiment in [78]. Figure 2.14(a), shows that our simulations display almost
always positive velocity when N ≥ 3 (velocity = 0.21 ± 0.06µm s−1, run length
= 2.48± 2.73µm). The histograms plotted in Figure 2.14 indicate that our model
for N = 3 corresponds best with the experimental measurements [78] (velocity
= 0.26 ± 0.10µm s−1, run length = 1.82 ± 1.19µm). Therefore, our simulation
predicts that the expected number of motors carrying axonal mitochondria in [78]
is three kinesin-1.
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2.6 Conclusion

In this work we have shown by analytical modelling and stochastic simulations
that the velocity of cargo pulled by a cluster of molecular motors is insensitive
to the number of motors N bound to the cargo for N > 1 for processive motors
and N > 5 for non-processive motors. Therefore a cell investing in more than a
handful of molecular motors on a cargo will not result in faster cargo transport.
However we find that the stall force is linear with the number of motors in the
cluster for processive motors and also for large (N > 10) clusters of non-processive
motors. Therefore, if a cargo is subjected to large forces, investing in more than a
handful of molecular motors will enable a cell to overcome larger forces.

As expected, we find that the average velocity of cargoes pulled by small (N <
5) clusters of non-processive motors is significantly less than the velocity of the
same number of processive motors. However, significantly, we show that for large
number of motors, N > 5, clusters of non-processive motors approach the same
velocity as those of clusters of processive motors (see Figure 2.10). For cargoes
pulled by large, N > 5, clusters of non-processive motors the average velocity
is insensitive to the detachment of motors since there is almost always at least
one motor bound and therefore large non-processive motor clusters have the same
velocity as for processive motors (see Figure 2.9). Therefore, according to our
model and parameters used, a cluster of N = 5 non-processive motors is as fast
at pulling a cargo as two processive motors. This is a clear indication of the
effectiveness of non-processive motors for cellular transport.

A natural extension to our work would be to include force dependence in the
unbinding rate koff as has been done by [53, 13, 51] and recently by [97]. We would
expect that including this effect would increase the force sensitivity, increase the
time taken to reach steady state, decrease the stall force and decrease the mean
velocity due to the zipper effect of successive leading motors experiencing the force
dependent unbinding.

We have extended the analytical model to the novel case of non-processive
motors with limited number of binding sites since for motors bound to a cargo
the number binding sites they can access on a filament may be severely limited
by the cargo size. Limiting the number of binding sites M decreases the number
of non-processive motors bound to the filament. Our analytical expression for
the probability distribution of number of bound motors with limited binding sites
correctly reproduces that for unlimited binding sites for M � N . We find that if
the number of binding sites are limited, despite the clear shift in the probability
distribution to smaller number of bound motors, the velocity is insensitive to
this difference in probability distributions for small N (see Figure 2.8). For large
N , the velocity of a cluster of non-processive motors with limited binding sites
approaches that of a cluster of processive motors. Our simulation results of the



62 2. One-lane model

distribution of number bound motors fit better with the analytical distribution for
limited number of binding sites than that for unlimited binding sites. However,
since for small clusters the effect of limiting number of binding sites makes only
a small difference to the average velocity, the distribution with unlimited number
of binding sites is sufficient for calculating the average velocity of small clusters of
non-processive motors and it has the advantage of one fewer parameters.

Our run length studies show that for small N the cargo can move backwards
as well as forwards but for N ≥ 10 it almost always moves forwards. These
findings may be of significant importance in interpreting in vivo experiments when
assumptions are made about the identity of molecular motor types based on the
observed direction of cargo. Enough data should be obtained to make a judgement
based on statistically significant values given the stochasticity of the system.

Our simulations show the effect of sequence preservation which shifts the prob-
ability of bound motors to lower number of motors and decreases the stall force.
This effect is larger for larger forces and larger clusters.

Finally our model fits well with in vitro experiments by Furuta et al [32] and
predicts N = 3 as the most likely number of kinesin-1 motors bound to axonal
mitochondria in vivo in the experiments by Pilling et al [78].

2.7 Appendix

2.7.1 Gillespie Algorithm for processive motors

The Gillespie algorithm is the method where the time until the next event dt
is drawn from an exponential distribution with rate parameter given by the sum
of the rates of all events possible from the current state. The main concept is that
one, and only one, event happens each time step and that the duration of each
time step changes. The leading motor can move forward and backward with rates
p1 and q1 and the following motors with the rates p and q, respectively. Therefore,
there are four possible events, however, due to the simple exclusion process, not all
these events will be available in each time step. The time until the next event is
calculated each time step as τ = 1

α
ln 1

r1
where α is the total probability of all events

possible in that time step and r1 is a random number from a uniform distribution
(0, 1). Which event happens in that time step is determined by a second random
number, r2, drawn from the uniform distribution.

We perform the following four main steps simulating this method.

(1) Generate two random numbers uniformly distributes in (0,1), r1 to compute
the time step and r2 to choose the happening events.
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(2) Compute the total probability for all the events

α1 = a1 ∗ p1

α2 = a2 ∗ q1

α3 = a3 ∗ p
α4 = a4 ∗ q
α0 = α1 + α2 + α3 + α4

(2.11)

(3) Compute the time when the next event takes place as t+ τ where

τ =
1

α0

ln[
1

r1

]. (2.12)

(4) Compute the even happening at time t+ τ by

state1 : x1 = x1 + 1 if r2 ≤
α1

α0

state2 : x1 = x1 − 1 if
α1

α0

≤ r2 ≤
α1 + α2

α0

state3 : xµ = xµ + 1 if
α1 + α2

α0

≤ r2 ≤
α1 + α2 + α3

α0

state4 : xµ = xµ − 1 if
α1 + α2 + α3

α0

≤ r2 ≤
α1 + α2 + α3 + α4

α0

(2.13)

where state 1 and 2 are the stepping probability of the leading motor whereas state
3 and 4 are that of the following motor.

The leading motor’s velocity for different number, N , of bound motors from
our Gillespie simulations is shown in Figure 2.15 (a) and (b).

Our simulation results using the Gillespie algorithm match those using our
fixed time step method within the error bars. The error bars for the Gillespie
algorithm are so small as to be barely visible in Figure 2.15 since they lie inside
those of our fixed time step method. Given the equivalence of our results using
each method we are satisfied to use the faster fixed time step method to present
our results in the main text.

2.7.2 Gillespie Algorithm for non-processive motors

We also adapt the Gillespie algorithm from processive motors to non-processive
model drawn in Figure 2.4. Including the binding on and off the filament means we
now have six possible events to include in the total probability α with the addition
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Fig. 2.15: Force-velocity curves of processive motors from simulations using the
Gillespie algorithm (star symbols) compared to our fixed time step Monte Carlo
algorithm (circles) for (a) a small motor number (N = 1, 2 and 5) and (b) for
a large motor number (N = 5, 10 and 20) compared with the analytical solution
(lines) given by Eq. (2.1) with parameters p = 100s−1, q = 10s−1, δ = 0.5. The
force on the x-axis is the dimensionless force f = Fdx/kBT where F is the physical
force.

of nkoff and (N − n)kon for the probabilities of binding off or on respectively. The
rest of the algorithm is the same as that described in section 2.7.1.

We compare this algorithm with our results from our fixed time step Monte
Carlo simulations described in in section 2.4.3 for scenario B (variable number of
binding sites). We performed all the modelling details in the same way as for our
fixed time step simulations. In scenario B, the number of accessible binding sites
changes with time according to the positions of motors already bound in front
or behind, as discussed in section 2.4.3. This preserves the sequence of the mo-
tors, preventing them from overtaking each other and reflects the idea that their
sequence is determined by their attachments to the cargo. This sequence preser-
vation feature is not captured in our mathematical expressions in section 2.4.1.

We perform the following four main steps simulating this method.

(1) Generate two random numbers uniformly distributes in (0,1), r1 to compute
the time step and r2 to choose one happening event.
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(2) Compute the total probability for all event

α1 = n ∗ koff
α2 = (N − n) ∗ kon
α3 = a1 ∗ p1

α4 = a2 ∗ q1

α5 = a3 ∗ p
α6 = a4 ∗ q
α0 = α1 + α2 + α3 + α4 + α5 + α6

(2.14)

(3) Compute the time when the next event takes place at t + τ by using r1

when τ is given by

τ =
1

α0

ln[
1

r1

]. (2.15)

(4) Compute the selected event at time by using r2 t+ τ by

state1 : n = n− 1 if r2 ≤
α1

α0

state2 : n = n+ 1 if
α1

α0

≤ r2 ≤
α1 + α2

α0

state3 : x1 = x1 + 1 if
α1 + α2

α0

≤ r2 ≤
α1 + α2 + α3

α0

state4 : x1 = x1 − 1 if
α1 + α2 + α3

α0

≤ r2 ≤
α1 + α2 + α3 + α4

α0

state5 : x = x+ 1 if
α1 + α2 + α3 + α4

α0

≤ r2 ≤
α1 + α2 + α3 + α4 + α5

α0

state6 : x = x− 1 if
α1 + α2 + α3 + α4 + α5

α0

≤ r2 ≤
α1 + α2 + α3 + α4 + α5 + α6

α0

(2.16)

(5) Update the number of motors and bound motors’ position based the event
chosen.

We compare the velocity for scenario B (variable number of binding sites) sim-
ulated using our fixed time step Monte Carlo and Gillespie algorithm at different
forces in Figure 2.16 The results for the velocity from our fixed time step Monte
Carlo in Figure 2.16 are consistent with the Gillespie algorithm within the error
bars. As expected the smaller error bars in Figure 2.16 show that the Gillespie
algorithm is more accurate. However, in our case the Gillespie algorithm takes ten
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Fig. 2.16: Velocity of a cluster of N = 10 non-processive motors from our fixed
time step (o) and Gillespie simulations (x) with error bars. The parameters we
used are kon = 20 s−1, koff = 10 s−1, p = 22 s−1, q = 2.2 s−1 and δ = 0.5.

times longer to run than our fixed time step Monte Carlo simulations. Therefore in
the main text we present results using our fixed time step Monte Carlo simulations
since they are more time efficient and sufficiently accurate for our purposes.

Sequence Preservation

In Figure 2.17 we present probability distributions for the case of variable
number of binding sites (scenario B) but without sequence preservation for both
extremes of force f = 0 and f = fs. In the simulations presented in this section the
simple exclusion process ensures sequence preservation for bound motors stepping
but motors can swap positions by unbinding and rebinding. This is in contrast
to the scenario B case in section 2.4.3 in which motors are constrained to rebind
in a way that preserves their sequence. The agreement between the simulations
results shown in Figure 2.17 and the analytical distributions with limited number
of binding sites (Eq. 2.9) provides evidence that the mismatch between the ana-
lytical probability distribution and the simulation results in section 2.4.3 is due to
including sequence preservation on motor rebinding in those simulations.

2.7.3 The mismatch between the approximate P (n)

The mismatch between the approximate P (n) given by Eq. 8 and the simu-
lations does not directly depend on the total number of motors, N , but it does
depends on how the cluster is bound on the track. Eq. 8 with average M over-
estimates the number of motors bound compared to the simulations with binding
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Fig. 2.17: (a) Cartoon showing scenario B variable number of binding sites but
without sequence preservation i.e. motors can bind to any available site such that
they may swap positions by unbinding and re-binding. (b) Probability distribution
of N = 10 non-processive motors at f = 0 and f = fs = 3.6 attached on the same
cargo. Simulation results (grey and black points), analytical Eq. 2.7 (dark blue
line) and Eq. 2.9 using the average M number of binding sites found in the
simulations (dashed and solid red lines). The parameter values used are kon =
20 s−1, koff = 10 s−1, p = 22 s−1, q = 2.2 s−1 and δ = 0.5.

restricted by sequence preservation. This increases with N since a larger propor-
tion of the binding region M is affected by sequence preservation restrictions. As
requested by the referee we provide here in Figure 1 a plot of a measure of the
accuracy against N .

The plot shows the general trend of increasing mismatch with increasing N .
However two of the N = 3 points have a larger magnitude mismatch than this
trend would expect. These points correspond to n = 1 and n = 3. Figure 9(a2)
in the main text shows that the analytical curve with binding sites limited to
M = 7 is actually shifted to smaller numbers of motors bound compared to the
simulations. This is due to the end effects of allowing binding one site in front
and one site behind the first/last motor on the filament in the simulations giving
more freedom than the analytical equivalent of M = 7 fixed sites. These end sites
are a greater proportion of the total number of sites available for small number of
motors (29% for N = 3) than for lager number of motors (17% for N = 5, 1% for
N = 100). Hence the mismatch due to the effect is most prominent for the N = 3
case.

2.7.4 Stall force for large numbers of motors

In Figure 2.19 we show an extended version of Figure 2.11 of the stall force
against number of motors N up to N = 100. This additional data shows that the
numerical result for non-processive motors with unlimited number of binding sites
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Fig. 2.18: Difference in the probability distribution of bound motors against the
total number of non-processive motors N for zero load force, f = 0. The difference,
P (n)sim−P (n)analytic, is defined as the difference between the mean value of P (n)
from 100 simulation runs and the analytically calculated value P (n) from Eq.8
using the mean value of M taken from the corresponding simulations. In the figure,
each circle represents the accuracy of the point on the probability distribution with
n bound motors out of the total N motors.

increases linearly for large number of motors (N > 10) with the same gradient as
that for processive motors. This is also the case for binding sites limited to the
average found in simulations.

The black circles in Figure 2.19 show that for small number of motors the stall
forces for non-processive Ncds extracted from our simulations correspond well with
those those numerically calculated from the analytical solutions with the number
of binding sites unlimited (green crosses) and limited (light blue crosses). However
for N > 3 the results from our simulations are are lower than those obtained from
the analytical expressions and remain lower for N > 10.

2.7.5 Single motor approximation

For q � pe−f/2, we can approximate Eq. 2.1 by VN ≈ pe−f/2 − qef/2(q/p)N−1

which is the single motor case with the backwards stepping rate modified by the
factor (q/p)N−1. This can reproduce an approximation to the curves seen in Fig-
ure 2.2 but has the disadvantage of only being valid for q � pe−f/2 which is not
well satisfied for our parameter values.
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Fig. 2.19: Extended version of manuscript Figure 2.11 of dimensionless stall force
against number of motors, N , including data for 10 ≤ N ≤ 100 on a log-log plot.
For processive kinesin-1 motors we calculate this analytically by setting Eq. (2.1)
to zero (solid blue line). For non-processive Ncd motors we set Eq. (2.4) to zero and
solve numerically using the distribution of bound motors with limited (Eq. 2.9,
light blue crosses) and unlimited (Eq. 2.7 green crosses) binding sites. Simulation
results are shown with circle symbols for parameter values p = 100 s−1 and q =
10 s−1 for kinesin-1 processive motors (blue circles) and p = 22 s−1 q = 2.2 s−1,
kon = 20 s−1 and koff = 10 s−1 for Ncd non-processive motors (black circles).
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Fig. 2.20: Force-velocity curves of N = 1 (blue), 2 (red) and 10 (green) processive
motors using the full analytical expression, Eq. 2.1 (solid lines) and an approximate
analytical expression VN ≈ pe−f/2 − qef/2(q/p)N−1 which corresponds to a single
motor with backwards stepping rate modified by the factor (q/p)N−1 (dashed lines).
The equivalent simulation points are show on the main text Figure 2.2.
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3. MANY-LANE MODEL

3.1 Abstract

Cargo transport mostly involves multiple molecular motors which move along
cytoskeletal filaments. The motors have ability to detach and reattach on the fila-
ment and possibly switch onto another filaments. The cargo transport by multiple
motors on a single filament has been widely studied, but cargo transport involving
motors switching between filaments is still not well understood. Here, we use lattice
based Monte Carlo simulation to investigate the properties of transport on multi-
ple filaments such as velocity, run length and mean first passage time compared to
transport on a single filament. The analytical expression of velocity for multiple
lanes is an extension of that for a single lane with a limited number of binding
sites, which is satisfactory for describing the force-velocity curves of the systems
on multiple lanes. Our results show that cargoes being transported on multiple
filaments move faster and further than those transported by a single filament. The
time taken to deliver cargo to a set target is measured by mean first passage time,
and these measurements showed a decrease in time taken for transport on multiple
filaments. Moreover, we found that molecular motor’s intrinsic properties in bind-
ing kinetics also relates to their transport. Molecular motors with high binding
on and off rates transport slower and achieve shorter run lengths compared to the
same number of motors with low rates. Consequently, motors with high binding
rates require more time than motors with slow binding rates to reach the same
target.

3.2 Introduction

Cargo transport of many organelles such as mitochondria and synaptic vesi-
cles in cells requires molecular motor proteins which move along cytoskeletal
filaments[82, 12]. Molecular motors play a role to deliver the cargo to its des-
tination for example from the cell centre to the cell periphery by kinesin which is
directed to the plus end of microtubules (MTs). In the reverse direction, cargo is
carried by dynein to the minus end of MTs.

In general, transport in a cell is mediated by more than one motor proteins
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which are simultaneously bound to a cargo [100, 48, 24, 8, 24]. This brings into
a question that how many motors can attach to the same cargo and how they
are organized on the cargo’s surface. The typical number of motors present on
the cargo from in vivo experiments between 1 and 10 [24]. The organization of
motors binding on the cargo surface is also important for cargo transport. Most
modeling work in this area assumes that the motors are aligned along the fila-
ment [48, 8, 13, 12, 51]. Some results have demonstrated that the motors are
assumed to organize randomly on the cargo surface [24]. This supports the idea
that the molecular motors are more likely to bind on many filaments. Also, that
in vivo many filaments exist. Many filaments act as many lanes where the “lanes”
terminology is an analogy to driving on a motorway with several lanes.

The motors’ processivity is also crucial for cargo transport [82]. There are
two different classes of molecular motors classified by their processivity which are
processive and nonprocessive motors [12, 50]. In some modeling work, kinesin-1 is
considered as a fully processive motor which never unbinds from the filaments[12].
Some theoretical work considers kinesin-1 as a slightly nonprocessive motor which
can rarely unbind from the filament, although it still remains on the filament for
long time [48]. In vivo experiments have shown that a single kinesin-1 motor can
perform 100 steps on average before detaching from MTs [50]. Therefore, the
cargo transported by multiple kinesin-1 can stay attached for longer steps and
achieve longer run length. This obviously indicates that the distance traveled
along the filament depends on the number of motors. Kinesin-14 (Ncd) is a kind
of nonprcessive motor which often unbinds from the filaments but rebinds to them
rather fast [33, 79, 74, 48]. It is difficult to measure the collective transport by
identifying the number of motors in vivo experiment. However, important work has
been done constructing the collective transport of kinesin-1 and Ncds by defining a
number of motors in vitro and showing that the velocity and run length increases
with the number of motors [33] .

Past studies [7] show that the distance of a cargo transport is longer than
the length of a single MT which is about 10-40 µm. This supports the idea
that the transport occurs on more than one filament. Which means that the
molecular motors attached to the cargo can move along several filaments at the
same time and can switch lanes in the case of nonprocessive motors[7, 82, 48].
The mechanism underlying this process is obviously unknown because molecular
motors switching lanes are of the size and time scales that are very difficult to
observe even with modern super resolution microscopy techniques. Most of in
vivo studies of transport by multiple motors investigate this behaviour using cargo
tracking and it is still a challenge to track the dynamics of individual motors and
lane-switching in real time [82]. Therefore, simulations are necessary investigating
this process.
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Fig. 3.1: Sketch of multiple molecular motors randomly distributed on organelle
surface transporting along several microtubules. The random organization of mo-
tors on cargo surface is supported by [24].

This chapter is mainly focus on cargo transport pulled by several motors with
the ability to switch between several microtubules. We aim to investigate the
efficiency of the transport of molecular motors switching between several filaments.
The molecular motors are studied in two different classes of microtubule binding
kinetics which are classified by slow and fast of detachment and reattachment
rates. Kinesin-1 attachment is intrinsically slow because the motors can roughly
bind to microtubules in a small area which relates to the area of one tubulin dimer
[46] whereas kinesin-14 (Ncd) has inherently high binding on and off rates. The
intrinsically different properties of molecular motors’ binding kinetics are then
compared to study the effect of transport with switching filaments.

3.3 Mathematical models: extending the one-lane to many-lane
model

Cargo transport by multiple molecular motors with the ability of attachment
and detachment on a single filament has been explored through the comparison
of analytical calculations with simulations in Chapter 2. The analytic expressions
for non-processive motors in the case of finite binding sites along a single lane is
validated by simulations of the corresponding system in section 2.4.1. Now, we
extend the system into multiple lanes, so the motors are allowed to switch between
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lanes. The analytic expression in the case of multiple lanes based on the leading
motor model is discussed in this section.

3.3.1 Distribution of number of bound motors

We first calculated the distribution of the number of bound motors (n) which
can be actively bound, which ranges from 0 to maximum number of motors N on
a single lane within a number of binding sites (M) determined by the cargo width.
Pn(N,M) is the probability distribution of bound motors (n) out of total number
of motors (N) within M binding sites. This probability can be obtained by the
following master equation (see more details in section 2.4.1).

∂Pn(N,M)

∂t
=(N − n+ 1)(M − n+ 1)ksonPn−1 + (n+ 1)koffPn+1

− (N −m)(M − n)ksonPn − nkoffPn
(3.1)

where kon = (M − n)kson for an unbound motor

At steady state, ∂Pn(N,M)
∂t

= 0, we obtain

Pn(N,M) =
1

n!
(
kson
koff

)n
N !

(N − n)!

M !

(M − n)!
P0

P0 =

(
N∑
n=0

N !M !

n!(N − n)!(M − n)!

(
kson
koff

)n)−1 (3.2)

3.3.2 Average velocity

The velocity of a cargo pulled by several nonprocessive motors along a single
filament is given by

V̄ =
N∑
n=1

PnVn
1− P0

(3.3)

where Pn is the probability of number of bound motors and Vn is the velocity when
there are n bound motors [48]. We assume that the velocity of n bound motors,
including Simple Exclusion Process (SEP) in which the motors cannot overtake
each other, is limited by the velocity of the leading motor [12]. Their velocity is
equal to

Vn = p
(1− ef (q/p)n)(1− q/p)

efδ(1− q/p) + ef (q/p− (q/p)n)
. (3.4)
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Thus, the velocity of N nonprocessive motors moving along a single filament
with limited number of binding sites M can be obtained by substituting Eq. 3.4
and Eq. 3.2 into Eq. 3.3.

V̄ =
N∑
n=1

N !

n!(N − n)!

M !

(M − n)!

P0

1− P0

(
kson

koff

)n( p(1− ef ( q
p
)n)(1− q

p
)

efδ(1− q
p
) + ef ( q

p
− ( q

p
)n)

)
.

(3.5)
In case of multiple lanes, each leading motor shares force with leading motors

on other lanes, so the leading motors’ rates are p1 = pe
−fδ
L and q1 = qe

f(1−δ)
L

where L is number of lanes occupied by motors. The following motors’ rates are
unchanged, p and q. We assumed that it makes no difference to the probability
of binding, and the cargo velocity in this case is determined by the forwardmost
leading motor’s velocity. Thus, the analytic solution for multiple lanes is

V̄ =
N∑
n=1

N !

n!(N − n)!

M !

(M − n)!

P0

1− P0

(
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e
fδ
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p
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f
L ( q

p
− ( q

p
)n)

)
.

(3.6)
where L is the number of bound lanes which can be taken as an average value

〈L〉 from simulations.

3.4 Multiple-lanes model

The system is sketched in Figure 3.1 and our model is shown in Figure 3.2. We
have developed a model of transport by multiple molecular motors along multiple
lanes including motor’s ability to switch between lanes. It is performed using
discrete lattice based models in Fixed Time Step Monte Carlo simulations. Motors
transporting a cargo move on a square lattice keeping the sequence in the same lane
with the hopping rates (forward (p) and backward q stepping rates) and can also
switch to the other lanes with binding (kon) and unbinding (koff ) rates. The lanes
are aligned in parallel. Along the lane, the motor performs asymmetric random
walks. It hops with different rates to the neighbouring sites. It makes a forward
step with rate p and a backward step with rate q as shown in 3.2. It makes
no step if it would involve moving to an occupied lattice site, thus the motors
cannot overtake each other while stepping on the same lane according to Simple
Exclusion Process. In the model, the leading motor and the following motors
perform stepping with different rates. The leading motor’s stepping rates (p1 and
q1) depends on force transmitted from the cargo whereas the following motors do
not experience to the force and step with constant rates p and q. It is important to
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note for this model that the leading motors on each lane share the force equally, so
each leading motor experiences to fL = f

L
where f is the total force is transmitted

from the cargo and L is the number of bound lanes. Therefore, the rates of leading
motors can be written as p1 = pe−fLδ and q1 = qefL(1−δ). While performing steps
along the lane, the motor can unbind from the filaments with rate koff and rebind
it again or bind to the other lanes with rate kon. Also, the motor is allowed to bind
on an empty lattice site within a limited number of sites (M). At each time, the M
binding sites are determined by the sites between the position of the forwardmost
leading motor and last motor plus one more site in front and behind. Binding is
rejected if the site is occupied. We have performed a simulation of 1 × 108 steps
for kinesin-1 and 1 × 107 steps for Ncd in which all motors can possibly unbind
off the filament. This is important in calculating run length. The simulation time
step is 0.001 s and the simulating procedures are as follows.

1. Initially, we have N motors which are not bound to the lane but attached
on a cargo with random positions within a length given by M lattice sites.

2. Then, at subsequent time steps, we visit each of the N motors to consider
their possible states and positions by generating a random number. Each motor
is allowed to either bind to and unbind from the lane according to the relevant
probability, Pon = kon dt or Poff = koff dt, respectively.

3. If it is determined that the motor will bind, then a second random number
is generated to choose which lane it will bind to.

4. In each step, the number of bound lanes can be changed by motors switching
lane. This is related to the leading motors’ stepping rates in which fL depends on
the number of bound lanes which will be used in the next step.

5. After binding, the bound motors are allowed to move along the chosen
lane by calculating their tentative steps forward and backward. The forward and
backward stepping probabilities are p1 dt and q1 dt for leading motors which relate
to fL, and p dt and q dt for following motors. The step is not allowed if the site is
occupied, so the motor stays the same site.

6. We calculate velocity, run length and mean first passage time for transport-
ing along multi-lanes from simulation results.

In this work, we study the transport on multiple filaments with two types
of molecular motors which are slow and fast microtubule binding kinetic motors.
They are kinesin-1 and kinesin-14 (Ncds) which have low and high on and off rates.
The parameters of the two motors used in this study are described in 3.1. Our main
purpose is to investigate the efficiency of transport by several molecular motors
on multiple filaments compared to a single filament by calculating the velocity,
run length and mean first passage time of the transport. Moreover, we also show
how the different kinetics of molecular motors’ attachment on microtubules affect
cargo transport. We have used kinesin-1 and Ncds as the representatives of slow
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Tab. 3.1: Parameters of kinesin-1 and Ncds

Parameters Kinesin-1 (s−1) Ncd (s−1)
forward rates (p) 100 [14, 33] 22 [33]
backward rate (q) 10 [12] 2.2 [12]
binding rate (kon) 5 [48, 26] 20
unbinding rate (koff ) 1 [48] 10 [77, 86]

and fast binding motors on microtubules, respectively.

3.5 Results

Intracellular cargo transport controlled by molecular motors along cytoskeletal
filaments is active transport [65]. Molecular motor proteins facilitate the transport
along the cytoskeletal filaments which are a complex network in the cells. Indi-
vidual filaments have a polarity sorting the direction of motor movements, so the
molecular motors have directed motion, such as from cell body to cell periphery
by kinesin motors. In this chapter, the molecular motors are allowed to switch
from one filament to another during transport. Hence, we assumed that multiple
filaments can affect the transport of molecular motors by considering the result of
velocity and run lengths. First passage time is also interesting for studying the
time it takes to deliver a cargo to a target.

We perform kinesin-1 as a slightly nonprocessive motor. It is able to bind
on and off with small rates of 5 and 1 s−1 , respectively, as revealed in some
experiments [42, 98, 16]. This is different from the definition of most modelling
work and our first work in Chapter 2 defined kinesin-1 as a fully processive motor.
On the other hand, kinesin-14 or Ncd is very nonprocessive with higher attachment
and detachment rates of 20 and 10 s−1 [77, 86].

Representative example of trajectories of bound kinesin-1 and Ncds (n) out of
maximum 10 kinesin-1 and 10 Ncds attached on a cargo on multiple filaments are
shown in Figure 3.3 (a) and (b), respectively. The trajectories of bound motors
are plotted as the number of spatial steps against the number of time steps on
each lane. We set a gap between lanes to show trajectories on each lane clearly as
500 spatial steps and 100 spatial steps for kinesin and Ncd, respectively. One step
size represents 8 nm. As can be seen in these results, Ncd is more often unbound
from the lane than kinesin-1.

At each time step, unbinding and rebinding events can happen to bound and
unbound motors, respectively. In rebinding, the motor can either bind to the same
lane or change to other lanes, so the number of bound lanes is changed at each
step, as seen in Figure 3.4 (a). The figure shows an example of number of lanes
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Fig. 3.2: Diagram of many-lane models: an example of five motors attached on
the cargo surface switching lanes with (kon) and off (koff ) rates and performing
steps with a forward pµ and backward qµ rates where µ is the index of motors.
The bound leading motors share the force equally f

L
where L = 3 in this diagram.
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Fig. 3.3: (a) Trajectories of ten kinesin-1 motors on five lanes in 104 steps at f = 2
(b) Trajectories of ten Ncds on five lanes in 104 steps at f = 2. The parameters
used are presented in Table 3.1.

bound by 10 kinesin-1 and 10 Ncds transporting along 5 lanes in a time of 500s at
F = 2. From the results, Ncds switch lanes more often than kinesin-1 because of
higher binding and unbinding rates. The probability for the number of bound lanes
for 10 kinesin-1 and Ncds switching between five lanes for 100 runs are plotted in
Figure 3.4 (b). The results show that Ncds and kinesin-1 bind on four lanes most
of the time. However, there is less probability of Ncds occupying all lanes because
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Fig. 3.4: (a) Time course of changing number of bound lanes for kinesin-1 (above)
and Ncd (bottom) at N = 10 and L = 5 which are related to the trajectories in
Figure 3.3 (a3) and (a4), respectively. (b) The probability of number of bound
filaments of ten kinesin-1 (blue symbols) and ten Ncds (red symbols) distributed
on five filaments.

of higher unbinding rates. Ncds mostly bind to a few filaments with higher density
compared to kinesin-1.

3.5.1 Velocity of transport by several motors on multiple lanes

In simulation, we measured the velocity of a cargo transported by multiple mo-
tors along several lanes which is equal to the velocity of the forwardmost leading
motor. The following motors’ movement is limited by the leading motor because of
simple exclusion process. As a single lane, the velocity of a cluster of N nonproces-
sive motors working against a force f , is equal to the leading motor velocity which
can be analytically expressed by Eq. 3.5 in which the number of binding sites (M)
is limited, but the sequence preservation is not included. The velocity of a cargo
transported by ten kinesin-1 and ten Ncds along several filaments from simulations
are shown in Figure 3.5 (a) and (b) respectively, compared to the velocity on a sin-
gle filament. The transport of cargo by multiple motors on one lane is thoroughly
demonstrated in chapter 2. In the absence of force, kinesins and Ncds move at
velocities of 720 nm/s and 160 nm/s as displayed in Figure 3.5. In the simulation,
we calculate the velocity of the transport by averaging the velocity of the leading
motor for a single lane and the forwardmost leading motor for multiple lanes at
different forces. In Figure 3.5, the simulation results correspond to our analytical
models on a single lane (L = 1) and multiple lanes (L = 2 and L = 3) following
Eq. 3.5 and Eq. 3.6, respectively. In case of multiple lanes, we substitute the
averaged number of bound lanes 〈L〉 at each force from simulations into Eq. 3.6.
From the results in Figure 3.5, the velocity of the transport carried by ten kinesins
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(a) (b)

Fig. 3.5: (a) Force-Velocity relation of a cluster of 10 kinesin-1 on one (blue) and
two (green) lanes. (b) Force-Velocity relation of a cluster of 10 Ncds on one (blue)
and two lanes(green). The solid lines represent the analytic velocity using Eq. 3.5
for single lane and Eq. 3.6 for multiple lanes substituted by the mean value of 〈L〉
averaged throughout the simulation time of 100 runs at each force. For example,
〈L〉 is 2.9267±0.0157 for kinesin and 2.7742±0.0106 for Ncd on three lanes (L = 3)
at stall force (fs). The parameters of kinesin-1 and Ncds are mentioned in Table
3.1.

and Ncds on single and multiple lanes decreased rapidly with increasing force but
the transport on two and three lanes are faster with the same total force compared
to a single lane. This is because the transport on multiple lanes can have more
than one leading motor which shares the force transmitted from the cargo. Each
leading motor experiences a smaller force which is flane = F/L where F is the total
force is transferred from the cargo and L is the number of lanes. This implies that
having more lanes facilitates the transport. Therefore, the cargoes transporting
on multiple lanes move faster than on single lane with the same total number of
motors and the same total force.

The velocity of a cluster of ten kinesin-1 and ten Ncd motors on different
number of lanes are calculated by the velocity of forwardmost leading motor and
shown in Figure 3.6. At a particular time, the motors can switch to different lanes.
The velocity is calculated from the same forwardmost leading motor’s movement
in a period of time until it changes to the new forwardmost leading motor. From
the results, we can see it clearly that the velocity increases with the number of
lanes which corresponds with force-velocity relations in Figure 3.5.
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Fig. 3.6: Velocity of the forwardmost leading motors of ten kinesin-1 (blue symbols)
and ten Ncds (red symbols) against number of lanes (L = 1 to 5). The solid lines
represent the analytic velocity using Eq. 3.6 substituted by the mean value of 〈L〉.
For example, at L = 5, 〈L〉 is 4.2338 ± 0.0619 and 3.8302 ± 0.0178 for kinesin-1
and Ncd, respectively.

3.5.2 Runlength of transport by several motors on multiple lanes

During stepping of motors along the lane, the motors have ability to unbind
from the lane allowing them to then rebind the same or a different lanes. In order
to obtain run lengths of the transport of a cargo by multiple nonprocessive motors
on multiple lanes, we consider when there is at least one bound motor carrying
the cargo until all motors detach from the lanes. The run length is then defined
as the difference between the position of the first bound motor and the position
where all motors unbind. In this section, we also chose to study fewer motors from
ten to five motors because of compuational restrictions.

The averaged run length of five kinesin-1 and Ncds transporting at different
forces on a single and two lanes are plotted in Figure 3.7 (a) and (b) respectively.
The run length of transport by five kinesin-1 and five Ncds on a single and two
lanes decreases monotonically with force. However, the run lengths of motor teams
on two lanes are longer than a team transporting on a single lane. It importantly
indicates that intracellular cargoes transported by a team of molecular motors
along more than one filament can reach the further target cell. It corresponds
with the past studies on a single filament that the run length of kinesin-1 decreases
exponentially with the external load force [51, 69], but the run length of Ncd is
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(a) (b)

Fig. 3.7: (a) Run length of five kinesin-1 and (b) five Ncds transporting on a single
(blue symbols) and two lanes (green symbols) against total force.

likely to decrease linearly with the force. In our simualtion, the run length of
kinesin-1 and Ncd decrease with increasing forces in the same trend on one and
two lanes.

We then show the effect of number of lanes on run length in Figure 3.8 for
transport by five kinesin-1 and five Ncds on multiple by varying number of lanes
from one to five. It is obvious that the run length of kinesin-1 is higher than that
of Ncds because Ncds have higher rates of detachment and stay on the lane for
shorter period of time. The transport is terminated quicker at which a run length
is obtained. As the results, the run lengths of five kinesins increase from 10 µm to
100 µm on one and five lanes whereas the run lengths of five Ncds increase from 50
nm to 200 nm on one and five lanes. It is clear that the run length increases with
the number of lanes. Although, it seems to saturate at a point with the determined
maximum number of motors (N = 5) attached to the cargo. Our results correspond
to the past studies that revealed that the distance of cargo transport is longer than
typical lengths of microtubules (50µm) [7, 82, 48]. It is importantly noted that our
simulation does not restrict the length of microtubules(lanes) but the simulation is
limited with total simulation time or total number of steps, thus the run length in
our results is an intrinsic properties of having five kinesin-1 and Ncds transporting
a cargo with specific transition rates. Furthermore, the run length also depends
on the number of motors attached on the cargo which is discussed in the previous
chapter focusing on transporting by a team of motors on one lane (see more details
in Chapter 2).
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Fig. 3.8: Run Length of five kinesin-1 (blue symbols) and five Ncds (red symbols)on
different number of lanes (L=1 to 5).

3.5.3 Mean First Passage Time (MFPT) of transport by several motors on
multiple lanes

The first passage time (FPT) or the first hitting time is defined as the time
taken by the first leading motor to reach a given distance. In the simulation,
there are multiple motors transporting along the lanes with the ability to unbind
and rebind the lane which provides a bound and unbound state at any particular
time in their trajectories as shown in Figure 3.3. From these trajectories, the
FPT is the amount of time that the first motor out of N motors reaches to the
given distance. It is then averaged by many simulation runs and called Mean First
Passage Time (MFPT). The MFPT is characterized and shown as a function of
the number of lanes in Figure 3.9 (a) and (b) for kinesin-1 and Ncd, respectively,
and the comparison of the delivery between kinesin-1 and Ncd towards the same
destination in Figure 3.9 (c).

It is clearly shown that multiple lanes can enhance the efficiency of transport
by decreasing the amount of time taken to reach to the targeting position. This is
emphasizing that our results of MFPT are a function of the number of filaments.
This is consistent with the results in [65] which characterized the MFPT as function
of number and length of filament by simulating a network of cytoskeletal filament
with different length of filaments. As we know that the kinesin-1 team stay longer
than Ncds on the filaments, then the run length by the kinesin team is greater
than that by the Ncd team. The set distance is also essential to be lower than
the run lengths at which all motors detach from the lanes, as shown in section
3.5.2. It is reasonable to choose the destination length of kinesin about 10 - 40
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µm whereas Ncd destination is given about 80-200 nm. At different distance with
increasing the number of lanes, both kinesins and Ncds can reach to the point with
less amount of time. Furthermore, we also show that the kinesin team require less
time in reaching the same destination than the Ncd team at different number of
lanes, as illustrated in Figure 3.9 (c) because kinesin-1 is more processive and
faster than Ncd.

3.6 Conclusion

Over the past few decades, our understanding of cargo transport in the cell has
been dramatically increased by experimental, simulation and theoretical studies.
However, most studies involved with the cooperative behaviors and mechanisms of
molecular motors are referred to as along a single filament. The finding still has a
gap monitoring the transport performed on many filaments and the behaviors of
switching filament. It is also difficult to elucidate the dynamics in vivo. Our sim-
ulation is a part addressing the gap and focuses on the efficiency of transport by
molecular motors along multiple filaments. Our results obviously indicate that the
number of filaments (lanes) can enhance the intracellular cargo transport. This is
supported by the measurement of velocity, run length and mean first passage time
in this work. The velocity and run length against force applied to molecular mo-
tors is faster and longer compared to the transport on single filament. Obviously,
the velocity and run length of transport are increased with the number of fila-
ments. Multi-lane transport is also characterized by the Mean First Passage Time
(MFPT). Transport of multiple motors along several cytoskeletal filaments can
substantially decrease time to deliver a cargo to the target point compared with
single filament transport. Furthermore, our findings also show that the intrinsic
properties of molecular motors can affect the transport. We compared kinesin-1
and Ncd which have significantly differences in microtubule binding and unbinding
rates. Transport by several kinesin-1 moves faster and further than by Ncds with
shorter time reaching targets. These findings help to further our understanding of
cargo transport by molecular motors in complex cytoskeletal systems in crowded
environment in cells[7, 54, 82, 36] and neuronal transport which is long-range
transport evidencing for switching filaments [35, 85, 99].
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Fig. 3.9: (a) Mean First passage time (MFPT) of five kinesin-1 on different number
of lanes reaching to 10, 20, 30 and 40µm. (b) Mean First passage time (MFPT)
of five kinesin-1 on different number of lanes reaching to 80, 120, 160 and 200 nm.
(c) At 200 nm, Mean First passage times (MFPT) of five kinesin-1 are compared
to that of five Ncds at different number of lanes .



4. CARGO DEFORMATION

4.1 Abstract

An intracellular cargo can be simultaneously attached by different species of
molecular motors which move in different directions resulted in bidirectional move-
ment. The mechanism of bidirectional motion is generally explained by a tug-of-
war between the two motor species. The motor tug-of-war can cause cargo defor-
mation which is found during paused state in experiment. However, it has not been
broadly studied. In this chapter, we assumed that the cargo can change shape and
position. We apply the tug-of-war model to study the cargo properties as a results
of force generated by kinesin motors’ stepping on anti-parallel microtubules. Our
model can be applied to the deformation and translocation of nucleus. Our re-
sults show that the nuclear deformation and displacement depend on the number
of molecular motors and microtubules. The more number of microtubules is, the
more deformation of nucleus is. The nucleus pulled by unbalanced teams displays
non-zero displacement. The more differences in strength between the two pulling
teams, the more displacement of nucleus is. Our simulation results correspond to
experimental results by P. Monteiro and S.A. Godinho.

4.2 Introduction

4.2.1 Tug-of-war

Vesicles, organelles and any other intracellular cargoes are transported by
molecular motor proteins such as kinesin and dyneins. Sometimes, different motor
types can be simultaneously bound to the same cargo and moved in opposite direc-
tion following the polarity of microtubules. This leads to bidirectional transport
described as tug-of-war model between the two species of motors in which kinesin
is directed to plus-end of microtubules and dynein is directed to minus-end of mi-
crotubules, as proposed in many experimental and modelling studies [68, 41, 34].
Intracellular cargoes such as mitochondria and mRNA complexes are either di-
rected to the preferred direction by competing between the two types of motors
or paused. The pause state could be potentially caused by equally pulling force
between the opposite teams of motors across the cargo. Interestingly, Gennerich
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et al found deformed cargo (mitochondria) during paused state in experiments
[34, 41]. However, vesicle elongation and cargo deformation have not been widely
studied.

4.2.2 Cargo deformation

In previous chapters, we have assumed the cargo is rigid solid that cannot
change shape. However, this assumption about the physical properties of a cargo
has been changed in this chapter. We apply the tug-of-war model of opposite
molecular motors resulting in size shape changes of the cargo influenced by mo-
tor pulling force. Over a past few decades, the behaviours of molecular motors
in transporting a cargo have been significantly studied in simulation models and
theoretical point of view. However, it has never been clearly studied how molec-
ular motors’ movement impacts on the cargo itself, especially in changing shape.
Importantly, the previous models have not considered the properties of a cargo
and the possibility that the cargo could be deformed. In this work, we therefore
develop the model applying by tug-of-war of opposing teams of motors to study
the effect of motors’ stepping behaviour on cargo deformation as well as cargo
displacement. However, in our model, it is focused on the same type of molecu-
lar motors which are microtubule based kinesins, a plus end-directed microtubule
motors, moving on anti-parallel filaments. Our results are significantly interesting
because it reveals how the cargo is changed in shape and position by molecular
motor pulling force which has not been investigated yet.

4.2.3 Nucleus

One important example of organelle deformation in cell is nucleus because
the nucleus needs to change shape to move through constrictions in metastasis
and invasion of cancer cells. Metastasis is the spreading process of cancer onto
a distant part of the body. The cancerous cells can leave from the main tumor
then invade and form new tumors in new parts. The understanding of abnormal
nuclear morphology is then crucial in identifying cancer. Therefore, understanding
mechanical bases underlying cell and nuclear movement and deformation could
potentially lead to improve treatment of cancer [93].

There are a number of ways to experimentally observe cell and nuclear move-
ment and deformation to determine its mechanical properties. Nuclear mechanics
were first measured by aspiration into micropipette (Figure 4.1 (a)) [40] which
revealed the length of nuclei measured over time. This shows that it is deformable
and suggests that the nucleus behaves like a viscoelastic solid [57, 40].

There is an interesting study that determined the magnitude of forces required
for moving and deforming the nucleus by applying a direct force probe into nuclei
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in cultured, living, adherent cells (Figure 4.1 (b)) [70]. They sealed a micropipette
tip to the nuclear surface at one end then translated the pipette tip away from the
nucleus. It reveals that a minimum force pulling a nucleus which can significantly
displace and deform it is required a few nanonewtons (2−3nN) which is far greater
than intracellular motor pulling forces [70]. Note that the stall force for a single
kinesin-1 is 1.22 pN or f = 2.3 in dimensionless unit (see more details in section
2.4.3). This indicates that there are many intracellular forces acting on the nucleus
to displace and deform.

Later, a key mechanical parameter which is important for describing nuclear
deformation was measured by a technique of micropipettes by Stephens et al.,
2018 [93] (Figure 4.1 (c)). They attached a micropipette at one end of an isolated
nucleus and the other end is attached with a force reporting pipette. The force
against the nuclear extension is then quantified. They calculated the nuclear spring
constant from the slope of the force-extension plot, which is 0.52nN/µm.

Understanding the mechanics of how the nucleus is moved and deformed is still
complex. The sources and the magnitude of forces required for these changes are
still in an open question. There are many competing hypotheses for generating
forces acting on nuclear surface[71]. The source of forces which are generated
in or transmitted through the cytoskeleton onto the nucleus are various such as
actomyosin forces that push on and pull the nucleus and/or extracellular forces
applied to adhesion receptors and transmitted through the cytoskeleton and/or
microtubule motors (dynein and kinesin) [70, 57]. Generally, nuclear movement
will occur when there is a net differential in mechanical forces across the nucleus,
while nuclear deformation will occur when the mechanical forces overcome the
resistance of the structure of the nucleus [57]. In stationary cells, the nuclear
shape and position are maintained in homeostasis in which the forces are generated
constantly or balanced on the nucleus [70]. It is interesting how the nucleus is
moved and deformed. This is necessary to know the source and the magnitude of
forces and how these forces change. Particularly, motor pulling force influencing
to deform and/or move the nucleus has not yet been investigated.

4.3 Method

The tug of war model between the opposing teams of motors, which are directed
by kinesin and dynein, is presented in Figure 4.2. We developed the model based
on this paradigm to study cargo deformation. The specific example of the nucleus
is an application we are interested in. Our tug-of-war model is competed between
two teams of motors composing of the same type of motor which is kinesins. They
attached on one and multiple microtubules which are anti-parallel, as illustrated
in Figure 4.3 (a) and (b). This is different from the usual tug-of-war composing of
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(a)

(b)

(c)

Fig. 4.1: Schematic showing methods to study nuclear mechanics. (a) An isolated
nucleus is aspirated into a micropipette. (b) A micropipette is attached to the
nuclear surface and then pulled away. (c) The micromanipulation technique in
which one pipette pulls the isolated nucleus and the other pipette reports the
force.

Tug of war

endend

Kinesin motorDynein motor

Fig. 4.2: Schematic of tug-of-war between oppositely directed molecular motors
arising from a distinct polarity of microtubules which are plus-end-directed kinesin
and minus end-directed dynein along the same microtubule.
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KinesinKinesin

F=kdx

(a)

(b)

KinesinKinesin

F=kdx

Fig. 4.3: Schematic of tug-of-war between two opposite teams of the same type
of molecular motors which is kinesin along (a) one and (b) multiple microtubules
in differently oriented direction of polarity. The nucleus acts as a spring with the
nuclear spring constant, k = 0.52nN/µm [92].

two types of differently directed molecular motors along the same microtubule. In
our model, we have chosen the simplest model even though the nucleus mechanics
is likely to be more complex. We assume that the nucleus is purely elastic and
acts as a spring model. Note that this modeling method is general for any cargo
for which the spring model is reasonable.

To determine how MT motor pulling forces can move and deform the nucleus,
we assume that the nucleus’s shape and position are changed following motors’
stepping distance. The nucleus is then able to either extend or displace or both
until motors stop moving when they reach stall force.

4.3.1 Model

We know that cytoskeletal motor force is one of the forces relating to nuclear
shape and position [70]. Our model aims to estimate how much the nucleus is
moved and deformed by force generated by kinesin motors stepping along micro-
tubules based on the tug-of-war paradigm. The motor pulling force is generated
when the motors move along the cytoskeletal filaments and this pulling force is
transmitted into the the nucleus then result in changing its shape and position.
We simplified the model that the cytoskeletal filaments are aligned. The molecu-
lar motor in this model is specified by kinesin-1 which moves from the cell centre
to the cell edge. The motor force generated during stepping on microtubules are
transmitted to nuclear envelope at the right and left edges. This provides the net
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differential motor force between right and left ends of nucleus resulting in nuclear
displacement and sum of the motor force across the nucleus resulting in nuclear
deformation.

We assumed that the motors performing steps on the microtubules generate
force to pull the nucleus resulting in its deformation and movement. We simulated
the motors as biased random walkers on a one dimensional lattice [12] by using
Gillespie algorithm as described below. Simple Exclusion process and the leading
motor model are included into the dynamics of motors as describe in section 1.2.1
and section 1.3, respectively. For simplicity we initially assume that kinesin-1 are
fully processive without detachment from microtubules at which nonprocessive
motors like kinesin-14 (Ncd) does. The modelling dynamic of kinesin-1 is similar
to the simulation of processive motors with short range repulsion as described
in section 2.3.2 of chapter 2. For parameters of kinesin-1, the forward rate (p)
is 100s−1 and the backward rate (q) is 10s−1 [14, 32, 12] whereas the leading
motor’s rates depend on force which is written as p1 = pe−fδ and q1 = qef(1−δ).
Due to simple exclusion process, the motors are not allowed to overtake each other.
Following the results of [12, 25] and our simulation results of force-velocity relation
in section 2.3, the analytic velocity of N processive motors moving on one lane is
given by

VN = p
(1− ef (q/p)N)(1− q/p)

efδ(1− q/p) + ef (q/p− (q/p)N)
. (4.1)

where f is dimensionless force.
The mechanical properties of a cargo in our previous models have not consid-

ered the possibility that the cargo could be deformed. In this chapter, we then
focus on the study of cargo behaviours which relate to the stepping mechanism
of molecular motors. Our model can be generally applied to any cargo but we
are interested in nucleus. The mechanical properties of the nucleus is assumed
as a spring. There is experimental support that the rigidity of nucleus acts as a
spring [59, 92, 93, 88] (see more details in section 1.6). In Figure 4.3, the kinesin
motors stepping on anti-parallel microtubules are simultaneously bound on the
right and left ends of a spring nucleus. The nucleus is pulled by different direction
of motor pulling forces exerted onto right and left ends of the nuclear envelope.
This generated force can deform and displace the nucleus. The extension of nu-
cleus is calculated by the stepping distance of motors on the filaments. Here, it is
important to note that it is counted by the movement of the forwardmost leading
motor of right and left team. The force generated onto the nucleus is fspring = kdx
where k is nuclear spring constant, k = 0.52 nN/µm [93] and dx is the extension
of nucleus, dxextended = dxr + dxl where dxr and dxl are the moving distance of
forwardmost leading motor of right and left team, respectively. The displacement
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of nucleus is determined by difference in moving distances of right and left motor
team, dxdisplaced = dxr − dxl in which sign shows the net direction of movement.
For example, plus sign shows that the nucleus is moved towards plus ends of mi-
crotubules. The nucleus will stop deforming and displacing when motors of both
teams stop moving at which the velocity vanished. The velocity of motor team
of kinesin-1 on individual microtubule is calculated by Eq. 4.1. It is important
noting that an initial nucleus size in our model can be arbitrary. Our model shows
the results of how much the nucleus is deformed and displaced by the stepping
behavior of molecular motors.

4.3.2 Simulation procedures

We study the extension and displacement of nucleus (cargo) pulled at both
ends connected to microtubules on which molecular motors move and result in
pulling force. We simulate the model by using gillespie method as described in
section 4.3.3. Generally, the simulating procedures are followed by these steps.

1. Initialize motor’s position on each lanes within a determined number of
lattice sites.

2. Calculate nuclear spring force, fspring = kdxextended where k is nuclear spring
constant, k = 0.52 nN/µm [93] and dxextended is the extension of nucleus. At initial
time, dxextended = 0.

3. Calculate motor pulling force which is force experienced by each leading mo-
tor on each microtubule (lane), fL =

fspring×1.87

L
where fspring is nuclear spring force,

L is the number of lanes at each side (right/left sides) and 1.87 is a fraction con-
verting a spring force into a dimensionless unit of motor force which is calculated
by dx

kBT
where dx is a step size of kinesin-1 (dx = 8nm) and kB is the Boltzmann’s

constant, 1.38× 10−23J.K−1 and T is body’s temperature (T = 310K).
4. Calculate the velocity of group of N motors transporting on each lane as

given by Eq. 4.1 by substituting f = fL. According to gillespie method, only one
event happens at a particular time. This means that only one motor steps at a
time. The nucleus would only be pulled if that motor happened to be the leading
motor.

5. If the normalized velocity of motor cluster on each lane at a time point, | Vt
V0
|,

is larger than the setting up threshold, then one of motors is allowed to perform
a step as described the details in section 4.3.3. Vt and V0 are velocity at any
particular time and an initial time (t = 0), respectively. However, if the velocity
is lower than the determined threshold, then the simulation stops. This means
motors of both sides stopped moving and fspring becomes the stall force of the
system.

6. At any particular time, extension and displacement of nucleus are calculated
by dxextended = dxr + dxl and dxdisplaced = dxr − dxl, respectively. If the nucleus is
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At t=0, initialize N motors’ position on each lane 

calculate spring force 𝑓𝑠𝑝𝑟𝑖𝑛𝑔 = 𝑘𝑑𝑥𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑

Calculate force experienced by leading motors on each lane (L), 

𝑓𝐿 =
1.87×𝑓𝑠𝑝𝑟𝑖𝑛𝑔

𝐿

Calculate velocity of motors on each lane

𝑉 =
𝑝(1−𝑒𝑓𝐿( Τ𝑞 𝑝)𝑁) 1− Τ𝑞 𝑝

𝑒𝑓𝐿𝛿 1− Τ𝑞 𝑝 +𝑒𝑓𝐿( Τ𝑞 𝑝− Τ(𝑞 𝑝)𝑁)

If 
𝑉𝑡

𝑉0
> 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 end

Yes

No

Perform a forward/backward step following Gillespie 

methods including simple exclusion process

(see section 4.3.3)

Record motors’ position, Cargo’s extension and displacement

𝑑𝑥𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑 = 𝑑𝑥𝑟 + 𝑑𝑥𝑙, 𝑑𝑥𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑑 = 𝑑𝑥𝑟 − 𝑑𝑥𝑙

Calculate 𝑑𝑥𝑟, 𝑑𝑥𝑙
𝑑𝑥𝑙 = 0 if the nucleus is pulled at one end.

Fig. 4.4: Flow chart of our simulation procedures of cargo extension and displace-
ment pulled by motor force at right and left ends.

pulled by only one end (right end), then dxl = 0.
We summarize our procedures for simulating a nucleus (cargo) extended and

displaced by MT motor forces in a schematic of Figure 4.4.

4.3.3 Gillespie Algorithms

We developed Gillespie algorithm to simulate our model of molecular motors’
stepping in cells. We use our simulation to study the extension and displacement
of nucleus (cargo) as a result of motors’ movement. The gillespie algorithm is
the method where the time until the next event dt is drawn from an exponential
distribution with rate parameter given by the sum of the rates of all possible events
from the current state. The main concept is that one event happens at each step
and the duration of each time step is changed in every iteration because it is drawn
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from a distribution according to a random number generated.
According to the model, the forces are generated by stepping activities of MT

motors to pull across the nucleus at right and left ends. The motors of right and
left teams hop to the neighboring sites with the rates of p1r, q1r and p1l, q1l for the
leading motor and the rates of pr, qr and pl, ql for following motors. Therefore,
there are eight possible events, however, due to the simple exclusion process, not
all these events will be available in each time step. Only one event happens at
a particular time. The time step (dt) is changed and calculated as τ = 1

α0
ln 1

r1
where α0 is the total probability of all possible events in that time step and r1

is a random number from a uniform distribution (0, 1). The event happening in
that time step is determined by a second random number, r2, drawn from the
uniform distribution. To simulate the model of the motor stepping then analyze
to calculate the effect on the nucleus (cargo), we follow these steps.

(1) Generate two random numbers uniformly distributes in (0,1), r1 to compute
the time step and r2 to choose which events happen.

(2) Compute α0 for all the events,

α1 = a1 × p1r

α2 = a2 × q1r

α3 = a3 × pr
α4 = a4 × qr
α5 = a5 × p1l

α6 = a6 × q1l

α7 = a7 × pl
α8 = a8 × ql
α0 = α1 + α2 + α3 + α4 + α5 + α6 + α7 + α8

(4.2)

where a1,...,8 is the number of possible events depending on simple exclusion
(SEP) for each condition and the a1,...,8 can be only interger values {0, 1, 2, ...}.
For example, a1 is the number of possible events that the leading motors on every
lanes at right side can move forward. It is then multiplied by the rates p1r =
pe−fLδ where fL =

fspring×1.87

L
, L is the number of sharing lanes at each side and

fspring = kdxextended and defined as α1. Note that the following motors’ forward
and backward rates are independent of force, pr,l = p and qr,l = q and the number
of motors on each microtubule on the same side is the same but that between right
and left sides can be different.

(3) Compute the time when the next event takes place as t+ τ where

τ =
1

α0

ln[
1

r1

]. (4.3)
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(4) Compute one event happening at time t+ τ by

state1 : x1r = x1r + 1 One of leading motors of right team moves forward.

if r2 ≤
α1

α0

state2 : x1r = x1r − 1 One of leading motors of right team moves backward.

if
α1

α0

≤ r2 ≤
α1 + α2

α0

state3 : xµr = xµr + 1 One of following motors of right team moves forward.

if
α1 + α2

α0

≤ r2 ≤
α1 + α2 + α3

α0

state4 : xµr = xµr − 1 One of following motors of right team moves backward.

if
α1 + α2 + α3

α0

≤ r2 ≤
α1 + α2 + α3 + α4

α0

state5 : x1l = x1l − 1 One of leading motors of left team moves forward.

if
α1 + α2 + α3 + α4

α0

≤ r2 ≤
α1 + α2 + α3 + α4 + α5

α0

state6 : x1l = x1l + 1 One of leading motors of left team moves backward.

if
α1 + α2 + α3 + α4 + α5

α0

≤ r2 ≤
α1 + α2 + α3 + α4 + α5 + α6

α0

state7 : xµl = xµl − 1 One of following motors of left team moves forward.

if
α1 + α2 + α3 + α4 + α5 + α6

α0

≤ r2 ≤
α1 + α2 + α3 + α4 + α5 + α6 + α7

α0

state8 : xµl = xµl + 1 One of following motors of left team moves backward.

if
α1 + α2 + α3 + α4 + α5 + α6 + α7

α0

≤ r2 ≤
α1 + α2 + α3 + α4 + α5 + α6 + α7 + α8

α0

(4.4)

where µ is the index of motor if µ = 1 is the leading motor. In case of the nucleus
pulled at one end, there will be four possible states which are state 1 to 4 of the
right team and all state of left team (state 5 to 8) vanishes.

4.4 Results

We have performed Monte Carlo simulation using Gillespie algorithm to study
the extension and displacement of nucleus (cargo) caused by pulling force generated
by motors stepping along cytoskeletal filaments. The extension is proportional to
the force across the nucleus as Hookean spring which is corresponded with the
distance of molecular motors moving along microtubules. Each microtubule is all
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Kinesin

F=kdx

𝑝1𝑞1pq

Fig. 4.5: Diagram of nucleus connected with three filaments (lanes, L = 3) at one
end on which molecular motors move with forward (p) and backward (q) rates.
The parameters for kinesin-1 are p = 100 s−1, q = 10 s−1 and δ = 0.5 [14, 32, 12]
and the nuclear spring constant is k = 0.52 nN/µm [93].

occupied by N kinesins. If it is no motors bound to MTs, then it is no generating
force. We simply assume that individual microtuble in this model is all bound by
N kinesins which are not included the ability of detachment as fully processive.
All microtubules either on right or left sides are parallel alignment. We begin with
the model of nucleus (cargo) pulled at one end as illustrated in Figure 4.5, then
follow by that pulled at both ends as illustrated in Figure 4.8.

4.4.1 Nucleus is pulled at one end

The first model is a nucleus connected with a team of motors on a single and
multiple lanes on the right as shown in Figure 4.5. In this case, the force is pulled
in one direction toward the plus end of microtubule and the other end is fixed. N
kinesin-1 motors are bound to each microtubule. The force pulling and deforming
the nucleus is generated by steps of leading motor for a single MT and the forward
most leading motor for multiple MTs.

We study the effect of number of motors (N , kinesins) and lanes (L, micro-
tubules) to the extension of nucleus by varying N and L. The nucleus is extended
according to the numbers of steps of the (forward most) leading motor. When
the motors step further, the nucleus is more stretched. Meanwhile, the team of
motors moves with less speed when the force is larger. Finally, the motors stop
moving when the velocity reaches zero. However, the velocity of cluster of proces-
sive motors does not clearly reach zero as shown in the relation of force-velocity in
Figure2.2 in chapter 2, so we set up the different threshold reaching zero from 10−4

to 10−10. The threshold is defined by the fraction of velocity at a time and initial
velocity, | Vt

V0
|. We found that the simulation results are dependent of threshold.

However, we choose the threshold of 10−5 in our study because it provides the
same accuracy as the experiemtnal results in vitro [32] and in vivo [78].
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(a1) (a2)

Fig. 4.6: (a1) An example of time course of extension (dx), force (f = kdx),
velocity and trajectories of motors in number of lattice (Blue solid line for the
leading motor and dashed blue line for the following motors) of ten kinesin-1
(N = 10) stepping along one lane (L = 1) for a single run. (a2) Nuclear extension
(dx) pulled by one lane (L = 1) with varying number of motors (N).

Henceforth, we study the effect of motor number (N) and lane number (L)
using the threshold of 10−5. We begin the first case of a nucleus connected with a
single lane (L = 1) having a number of motors from N = 1 to 10 as shown in Figure
4.6 (a2). An example of the time course of results of ten kinesin-1 (N = 10) on
L = 1 is shown in Figure 4.6 (a1). First, the nuclear extension (dx) is calculated
by the difference of the leading motors’ current and initial position (dx = 0 at
t = 0). From the trajectories of ten kinesin-1 motors, we can see that the initial
position of the leading motor (solid blue) is at 20 on lattice and its final position
is at 21. The extension of the nucleus (dx) is finally 8 nm which is one step of
kinesin-1 as can be seen in the plot of dx (nm). Second, the nuclear spring force
is generated, fspring = k× dx. Third, the velocity of motor is calculate by Eq. 4.1.
If the calculated | Vt

V0
| is larger than the threshold of 10−5 then the motor is allowed

to perform a step. After that the position of motor is updated and recorded. The
simulations stop when reached the chosen threshold. At final time, the extension
of nucleus is 8nm which is the result of one forward step of the leading kinesin.
The larger force reduces the velocity of motor team. When the calculated velocity
is below the threshold then the motors stop moving. The final extension of nucleus
is recorded and averaged for 100 runs and plotted in Figure 4.6 (a2). In Figure
4.6 (a2), it shows that there is no extension (dx = 0 nm) for N = 1 to 3 and
an extension of 8nm at N = 4 to N = 10. This implies that a few motors on a
single MT are too weak to deform the nucleus because the force (fspring = 4.16pN)
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Tab. 4.1: The number of motors (N) and lanes (L) in Figure 4.7 (a) in which the
total number of motors (NT ) is 100.

L = 1 N = 100
L = 2 N = 50
L = 4 N = 25
L = 5 N = 20
L = 10 N = 10
L = 20 N = 5
L = 25 N = 4
L = 50 N = 2
L = 100 N = 1

generated by a single step of kinesin (8 nm) is lager than their stall force.
We then study the effect of number of lanes (L) on the extension by having

N number of motors on each lane. In Figure 4.7, we fix the total number of
motors as NT = 100 and vary the number of lanes (L) as shown in table 4.1.
When we increase the number of lanes (L > 1), leading motors on each lane help
sharing force equally. The leading motors on several lanes experience smaller force
compared to only on a single lane. This allows motors to perform more steps.
The nucleus can then be more stretched. Therefore, the results clearly show that
more numbers of lanes shows more extension. This implies that the nucleus is
more stretched with more microtubules. However, the result also show that it
becomes plateau for the final four points in Figure 4.7 in which there are N ≤ 5
on each lane. This implies that the number of motors on each microtubule is also
involved. If we increase the number of lanes (L), but the number of motor on each
lane is small (N ≤ 5), then it becomes a weak team which cannot perform more
extension. This implies that it would be powerful in pulling the nucleus when a
cluster of motors have at least five motors on each microtubule.

In fact, the nucleus in living cells is not static. It is movable, so the other end
of nucleus is not fixed and can also be pulled by an opposite team. Then this
allows displacement of nucleus and show the results in the next section.

4.4.2 Nucleus is pulled at both ends

Now, we are considering the model of nucleus pulled by motor force in opposite
direction between right and left ends resulting in its extension and displacement.
At right and left ends, each side of nucleus can be connected with either a single or
several microtubules on which N kinesins are bound. Individual microtubules of
both sides are simulated in parallel orientation. In this case, we study the nucleus
pulled by balanced and unbalanced teams at both ends in section 4.4.3 and section
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Fig. 4.7: Nuclear extension (dx) pulled at one end with increasing number of
microtubules (lanes) and the total of 100 motors (NT = 100). All possible cases
having NT = 100 are shown in Table 4.1.

4.4.4, respectively. The balanced teams are defined by the same number of motors
(Nr = Nl) and lanes (Lr = Ll) at both ends whereas there are differences in either
motor (Nr 6= Nl) or lane numbers (Lr 6= Ll) for the case of unbalanced teams.

4.4.3 Balanced pulling teams

According to Figure 4.8, we simulate the model of the nucleus pulled by bal-
anced teams between both ends (Nr = Nl, Lr = Ll). An example of extension and
displacement resulted by pulling force of four motors bound on a single right and
left lane (Lr = Ll = 1,Nr = Nl = 4) in one simulation run is shown in Figure
4.9 (a1). It displayed time course of nuclear spring force, velocity of right and left
motor teams and trajectories of individual motors of both sides until they stop
moving when reach the threshold. From the trajectories of four motors on each
team, it shows that the initial and final position of the leading motor of right team
(blue solid line) are the same at 20 on lattice whereas those of the leading motor
of left team (red solid line) are at −20 and −21 at initial and final time, respec-
tively. This provides dxr = 0 and dxl = 8 nm which is one step from the leading
motor of left team. The extension (dxr + dxl) is then 8 nm and the displacement
(dxr − dxl) is −8 nm in which the minus sign is the movement direction towards
the minus end of microtubule but that on average it is zero as shown in the case
of (Lr = Ll = 1,Nr = Nl = 4) in Figure 4.9 (a2). The extension and displacement
of nucleus pulled by the balanced teams of motors on one (Lr = Ll = 1), two
(Lr = Ll = 2), three (Lr = Ll = 3) and ten (Lr = Ll = 10) lanes at final time are
averaged for 100 runs and plotted in Figure 4.9 (a2). It shows that the results of
nuclear extension approach a plateau when N ≥ 5 for one and multiple lanes at the
chosen threshold. The nucleus pulled by the balanced team show no translocation
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Fig. 4.8: Diagram of nucleus connected with three filaments (Lr = Ll = 3) at
both ends with two kinesin-1 motors move on each filament (Nr = Nl = 2). The
total number of motor on each side (NT = 6) is the same. Note that teams of
kinesin-1 stepping along filaments connected at both ends of nucleus generate force
in opposite direction across the nucleus resulting in displacement and extension of
nucleus. The parameters for kinesin-1 are p = 100 s−1, q = 10 s−1 and δ = 0.5
[14, 32, 12] and the nuclear spring constant is k = 0.52 nN/µm [93].

(zero displacement on average). This is reasonable that they are pulled by force
which is generated by the balanced teams of motors and lanes (Nr = Nl, Lr = Ll).

4.4.4 Unbalanced pulling teams

In this section, we focus on the nuclear extension and the nuclear displacement
pulled by unbalanced teams between right and left sides of the nucleus. We first
study the effect of difference in motor number (Nr 6= Nl) on a fixed single lane
on each side (Lr = Ll = 1). We then consider the effect of difference in lane
number. In this case, the number of lanes between both sides is different but the
total number of motors on each side is fixed (Nr = Nl, Lr 6= Ll).

The effect of different number of motors

Modelling examples of nucleus pulled by the different number of motors be-
tween one lane on the right and one lane on the left are illustrated in Figure 4.10
(a). We made the stronger team on the right and the smaller team on the left,
so Nr > Nl. In the simulation, we fix Nl, then increase Nr with the differences in
motor numbers (∆N = Nr −Nl) from 1 to 10. For example, Nl = 1 then Nr can
be 2 and up to 11. The nuclear extension and displacement pulled by smaller left
team and larger right team are shown in Figure 4.10 (b1) and (b2), respectively
in which Nl is varied from 1 to 10. The results show that the nucleus pulled by
teams unbalancing in the number of motors show small deformation and a non-
zero averaged displacement. However, it is interesting if the number of motors on
the left team is at least five (Nl ≥ 5) and the number of motors on the right team



102 4. Cargo deformation

(a1) (a2)

Fig. 4.9: (a1) An example of trajectories in number of lattice of four motors
(Nr = Nl = 4) stepping along one lane on the left and one lane on the right
(Lr = Ll = 1). Blue and red solid lines represent the position in number of steps
of the leading motor on the right and left lane, respectively. Blue and red dashed
lines represent the position in number of steps of the following motors on the
right and left lanes, respectively. The nucleus is extended and displaced which are
calculated by dxextended = dxr + dxl and dxdisplaced = dxr − dxl. Note that dxr
and dxl are counted by the forward most leading motor’s distance stepping from
initial position. (a2) Nuclear extension (dxextended) and displacement (dxdisplaced)
pulled by balanced right and left teams of motors stepping along one, two and
three filaments (L = 1, 2, 3 and 10) against the number of motors from 1 to 10 on
each lane. In this plot, the error bar is calculated by SE = σ√

n
where σ is sample

standard deviation and n is number of runs.
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(a)

Unbalanced pulling teams

Lr=Ll but Nr ≠ Nl 

Nl =1 Nr ≥2 

Nl =2 Nr ≥3 

Nl =3 Nr ≥4 

(b1) (b2)

Fig. 4.10: (a) Diagram shows the nucleus pulled between smaller left team and
larger right team on one lane (Lr = Ll = 1, Nr > Nl). (b1) The extension and
(b2) displacement of the nucleus pulled by the unbalanced teams with varying
∆N = Nr −Nl from 1 to 10.

is larger than that then they act like a balanced team as results of zero averaged
displacement. This corresponds to the results of Figure 2.3 in which the velocity
of processive motors when (Nl ≥ 5) is indistinguishable.

The effect of different number of lanes

We simulate the model of nucleus pulled by the different number of lanes on
the right and the left sides in which the total number of motors on each side (NT )
is 12 as illustrated in Figure 4.11 (a1). We compare for two cases. The first case
is Ll = 2, Nl = 6 and Lr = 3, Nr = 4 and the second case is Ll = 3, Nl = 4 and
Lr = 4, Nr = 3. Both cases show the same extension but different displacement
which are averaged for 100 runs. The first case show more displacement than the
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(a1)

Fix NT but Lr ≠ Ll

NT = 12

Ll =2, Nl =6

NT = 12

Ll =3, Nl=4 Lr =4, Nr=3

Lr =3, Nr =4

(a2)

Fig. 4.11: (a1) Diagram shows the nucleus pulled by the unbalanced teams between
right and left sides in which the total number of motors on each side is equal
(NT = 12). The first case is Nr = 4, Lr = 3, Nl = 6, Ll = 2 and the second case
is Nr = 3, Lr = 4, Nl = 4, Ll = 3. (a2) The bar graph shows the extension and
displacement of the nucleus pulled by 12 total number of motors on each side.

second case because the strength between right and left teams in the first case is
more different than the second case which is related to the shared force between
two sides. The ratio of shared force between right and left teams of the first case
is more different than that of the second case.

From our results showing the effect of number of motors, the unbalance teams
can act like the balanced teams when N ≥ 5 on each side. By this reason, we vary
the number of left and right lanes with ten motors (N = 10) on each lane. We
simply simulate by having one-lane (4L = 1) and two-lane (4L = 2) differences
between right and left ends, 4L = Lr − Ll. The extension and displacement of
the nucleus are plotted against the number of left lanes varying from Ll = 1 to
10 with 4L = Lr − Ll = 1 and 4L = Lr − Ll = 2 in Figure 4.12 (a1) and (a2),
respectively. The results show that the extension of the nucleus increases linearly
with the increasing number of lanes in both cases.

Interestingly, the nucleus is more displaced for the case of 4L = 2 than the
case of 4L = 1 because there are more different strength between two sides. This
also corresponds with the results in Figure 4.11. Consequently, if the number of
microtubules at each side of the nucleus increases, then it is resulting in more
extension. If the nucleus is pulled by balanced teams then it provides zero dis-
placement. However, when the teams pulling across the nucleus are unbalanced,
this drives the nuclear translocation and provides non-zero displacement. We can
conclude that the more number of microtubules are, the more nucleus is extended
and the more differences of pulling teams between right and left sides of the nucleus
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(a1) (a2)

Fig. 4.12: Nuclear extension and displacement pulled by different number of lanes
between right and left ends with ten motors on each lane (Nr = Nl = 10) is plotted
against the number of left lanes (Ll). The number of left lanes (Ll) increases from
1 to 10, so the total number of motors on each side (NT ) increases as Ll. (a1)
There is one more lanes on the right, 4L = Lr − Ll = 1, so the number of lanes
on the right (Lr) is from 2 to 11 in this case. (a2) There are two more lanes on
the right, 4L = Lr − Ll = 2, so the number of right lanes is from 3 to 12 in this
case.

are, the more displacement is.

4.4.5 Experimental support

We received experimental results by Susana Godinho’s group from Barts Can-
cer Institute, Queen Mary University of London, UK. Some of the experimental
results was published in [3].

In this experiment, they found interesting results that will be useful in regu-
lating nuclear translocation and deformation during cell invasion. In many types
of cancer cells, a common feature seen during the development of cancer is centro-
some amplification. The centrosomes influence nuclear and cell structure through
the nucleation and the organization of microtubules. The mechanism underlying
cell invasion involving centrosome amplification is interesting. They hypothesised
that the increase of cell invasion and the nucleus translocation of cancer are af-
fected by microtubules (MTs) because microtubules are increased by centrosome
amplification.

The results are clearly shown that cells carrying extra centrosomes exhibit
higher nuclear deformation and translocation. It can be seen in Figure 4.13 (a1)
that cells containing extra centrosomes which are induced by doxycycline treat-
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ment (+Dox) showed more protrusive cells with nucleus and reduced the nuclear
circularity ( Width

Length
) on 2D environments compared to (-Dox) cells. Also, cells with

extra centrosomes (+Dox) have an increased nuclear deformation which extended
in the length of 1.205µm measured by ImageJ and observed by a reduced nuclear
circularity on 3D environments in Figure 4.13 (a2). However, at this points, there
are two factors involving in nuclear extension which are the increasing number of
centrosomes and microtubules.

Monterio et al. performed an experiment to work out whether extra centro-
somes or just extra microtubules affect nuclear deformation. This is to examine
the contribution of microtubules on nuclear deformation by reducing them but
remaining extra centrosomes. The MTs and centrosomes were increased by +Dox
treatment then the MTs were reduced by knockdown of CEP192 which kept the
centrosomes, as illustrated in Figure 4.14. The results show that cells with centro-
some amplification and reduced MTs nucleation do not affect nuclear circularity
which showed the same shape as control condition. This suggests that MTs play an
important role in nuclear deformation and also imply that centrosome amplifica-
tion is not a crucial factor to deform the nucleus. Therefore, this can be concluded
that increased microtubules induced more deformation of the nucleus. This corre-
sponds with our simulation results that the nucleus is more deformed by increasing
number of microtubules and their associated motors generating more force applied
onto the nucleus. Moreover, our model shows that it also enhances the nuclear
translocation by increased number of MTs in unbalanced pulling teams.

4.5 Conclusion

This chapter aims to study the effect of force generated by stepping behaviour
of molecular motors along cytoskeletal filaments on cargo extension and displace-
ment. The study can be applied to understand nucleus deformed and displaced
by the motor transport force which has not been widely studied. The tug-of-war
model which describes the mechanical competition model between two opposing
teams of motors has been used in this study. In general, the two opposing teams
consist of two different species of molecular motors moving in different directions
simultaneously bound to a cargo. However, our model focuses on the same type
of motor proteins stepping on antiparallel microtubules and generate pulling force
onto the cargo or nuclear surface. Gillespie algorithm based on Monte Carlo simu-
lation obeying simple exclusion process has been used to simulate this model. Our
study assesses the role of molecular motors and microtubules in this mechanism.
We found that if the cargo (nucleus) is pulled by balanced teams consisting of the
same number of motors and microtubules between both ends, then it is deformed
but not displaced. On the other hand, if it is pulled by unbalancing teams then it is
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(a1)

(a2)

Fig. 4.13: Nucleus containing DNA is labelled in blue and microtubules (α Tubulin)
increased by extra centrosome (+Dox) are labelled in green on 2D substrate. (a1)
The number of protrusive cells with nucleus inside the protrusion and nuclear
circularity ( Width

Length
) of +Dox cells are compared to -Dox cells. (a2) The nucleus

is blue and microtubules are red in 3D environment. The nuclear circularity is
compared between +Dox and -Dox cells. The results are from P. Monteiro and S.
Godinho.
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Fig. 4.14: This shows the protocol which decreases centrosomal MTs nucleation
without affecting centrosome number compared to the control condition. Images
of nucleus (blue) and microtubules (red) in 3D environment are also shown. The
results are from P. Monteiro and S.A. Godinho.

both deformed and displaced. Our simulation results also show that a few motors
on a single microtubule are not strong enough to change the nucleus’s shape and
position, but the increasing number of microtubules on which molecular motors
step can perform more deformation. The nuclear translocation can be induced by
the unbalance of pulling teams. Furthermore, our results are corresponded with
experiment results by P. Monteiro and S.A. Godinho. The experiment revealed
that the increasing number of microtubules exhibit higher nuclear deformation and
nuclear translocation in 2D and 3D environments. However, our model is limited
for processive motors. We believe that if the model is developed for nonproces-
sive motors then it can provide significant results and more understanding this
mechanism in cells.



5. CONCLUSION

Molecular motors are responsible for intracellular transport of a variety of bi-
ological cargo. They can be classified by their processivity. In our work, proces-
sive motors never unbind from cytoskeletal filaments on which they are moving.
Nonprocessive motors can unbind from the filaments. We proposed theoretical in-
vestigation of cargo transport by multiple motors based on a leading motor model
in which external force is experienced by the leading motors We extend this an-
alytical work on processive motors to the case of non-processive motors, which is
capable to bind on and off a single filament. We consider the collective behaviour
in transport of a finite number of non-processive motors in a spacial confinement
in binding on the filament. We analytically study the distribution and the veloc-
ity of a cluster of non-processive motors and perform Monte Carlo latticed based
stochastic simulations. In our simulation, the attachment and reattachment of
non-processive motors are included sequence preservation and their stepping be-
haviors are obeyed on a simple exclusion process. We found that the sequence
preservation and limited binding sites on the filament reduce the binding proba-
bility of non-processive motors but has a small effect on the velocity of the cluster.
Our results can be compared well by in vivo and in vitro experimental results.

Later, we extend the analytic expression of velocity of non-processive motors
and the simulation model on limited binding sites along a single filament into mul-
tiple filaments. The non-processive motors are assumed to bind randomly on the
cargo surface and can attach simultaneously to many parallel filaments. They are
allowed to switch between filaments. The switching mechanism provides more than
one leading motor sharing the external force. Our results show that the switching
mechanism can enhance the transport. The transport by multiple non-processive
motors along many filaments is faster because the motors can avoid blocking each
other during stepping on the same lane as the effect of simple exclusion process.
The averaged run length is longer compared to the transport on one lane. Time
in transporting a cargo along many lanes decreases.

Our previous work has studied the transport properties of non-processive mo-
tors on a single and multiple filaments limiting the number of binding sites. How-
ever, we have not yet studied the cargo behavior affected by the motor transport.
We then simulate the model of motor transport on cytoskeletal filaments attach-
ing to the edge of cargo. For simplicity, the molecular motors are simulated by



110 5. Conclusion

processive motors, so the number of motors on each filament is fixed. Force gen-
erated by motor steps exerts to the cargo which acts as a spring and cause the
extension of cargo. Our model can apply to any cargo for which the spring model
is reasonable, but nucleus is the specific example of cargo that we are interested in.
It is worth to note that nobody has studied the nuclear deformation and displace-
ment affected by motor pulling force. In fact, there are different types of forces
pulling the nucleus resulting in changing its shape and position. The both ends of
nucleus can attach to either a single or multiple filaments which are anti-parallel
as a tug-of-war model. The force generating onto the nuclear envelope in this
case can cause displacement. We obviously found that the nuclear extension and
displacement depends on the number of cytoskeletal filaments and the number of
molecular motors moving on them. Increasing number of filaments provides more
cargo (nucleus) deformation and displacement.

Therefore, we explore a leading motor model for processive and non-proessive
molecular motors. It does so through the comparison of analytic calculations
with simulations. The novel result is the extension of the analytic expressions
for the non-processive motors to the case of finite binding sites, which is then
validated by simulations of the corresponding system. We discuss the effects of
motor sequence preservation which never been introduced in the modeling of motor
transport. The general conclusion is that the use of analytic models is satisfactory
for describing the number of bound motors and force-velocity curves of the systems
on a single filament. The one-lane model is then developed in analytical study and
simulation models for the case of transport on multiple filaments including the
switching ability of motors. Many filaments can obviously enhance the transport.
Furthermore, we provide new insights on cargo behavior affected by processive
motor pulling forces. The tug-of-war model has been used to simulate deformable
and movable cargo which are applicable to the case of nuclear deformation and
displacement by the motor pulling force.

Potential future work is an extension of this model simulating non-processive
motors pulling a deformable cargo. We strongly believe that this future work
would provide a novel result of nuclear deformation by non-processive motors.
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