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Abstract

Herbig Ae/Be stars are pre-main sequence sources, canonically defined as having
masses 2 M⊙ . M . 10 M⊙, which are key to understanding the differences in
formation mechanisms between low- and high-mass stars. The study of the general
properties of these objects is hampered by the lack of a well-defined, homogeneous
sample, and because few and mostly serendipitously discovered sources are known.
As a consequence, many open problems involving high-mass star formation suffer
from biases and lack of completeness.

I study the general properties of the 252 known and proposed Herbig Ae/Be
stars with parallaxes from Gaia DR2 at the start of this doctoral thesis. High-mass
stars were found to have a much smaller infrared excess and optical variability
compared to lower-mass stars, with the break at around 7 M⊙. Different or differently
acting (dust-) disc-dispersal mechanisms are proposed for this break. The variability
indicator developed in this dissertation shows that ∼ 25% of all Herbig Ae/Be
stars are strongly variable. Evidence is provided to support the hypothesis that this
variability is in most cases due to asymmetric dusty disc structures seen edge-on.

Using that well-characterised sample of Herbig Ae/Be stars as a training sam-
ple for a bespoke machine learning algorithm, a homogeneous and well-defined
catalogue of 8470 new pre-main sequence candidates was obtained. In parallel, a
catalogue of 693 new classical Be candidates was produced. At least 1361 sources
are potentially new Herbig Ae/Be stars according to their position in the Hertzsprung-
Russell diagram. This increases the number of known objects of the class by an
order of magnitude.

In addition, I discuss the results of independent spectroscopic observations
conducted for a selection of 145 new Herbig Ae/Be and 14 new classical Be stars.
These independent observations further confirm the quality and the accuracy of
the classification. I conclude with an analysis of the general properties of the new
catalogues that validates the results and conclusions obtained for the set of previously
known Herbig Ae/Be stars.
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Chapter 1

Introduction

Every sentence I utter must be understood not as an affirmation, but as a question.

New York Times Book Review, 1957 – Niels Bohr

In this introduction, which does not intend to be exhaustive, I summarise for

the reader the current state of the star formation field, focusing on the aspects that

this dissertation covers in a major depth. I describe star formation chronologically,

from large to small scales, and present the motivation for this thesis. In addition, I

introduce some of the more common telescopes, tools and instrumentation used to

describe and study the discussed topics.

Following the tacit agreement in modern science, I barely mention what is still

unknown or poorly understood – which are most things – and restrict myself to

describe the few things that seem to have endured the test of the scientific method.

As a disclaimer, what is presented here is a gruesome simplification. Many physical

interpretations, models, and thoughts have been omitted either for simplicity or

because of being beyond the scope of this dissertation.

I chose it necessary and educative to start with a brief historical introduction as

the results of this thesis, though original, stand on top of decades of previous efforts

without which this work would not have been possible at all. Finally, I conclude with

the thesis outline.
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1.1 Historical overview

Questions about the internal structure and formation mechanisms of the stars can

be traced back to the dawn of natural philosophy. However, limited by technology,

stellar structure and evolution theory remained in relative darkness until the recent

period of scientific and technological revolution that followed the Second World War.

Astronomy, an interdisciplinary field, benefited from the development of the different

branches of fundamental physics. At the same time, newer and better generations of

ground and space telescopes successively set new eyes to observe deeper into the

cosmos, bringing the distant stars slightly closer to our understanding.

One of the first attempts of modern astronomy, what we now call astrophysics, to

understand the internal mechanisms of the stars was that of Julius Robert von Mayer

(1814-1878) in 1848. At that time one of the most fundamental laws of physics,

the conservation of energy, started to be understood (first stated by Mayer himself;

Mayer, 1842). Understanding how the Sun could generate a huge amount of energy

for what seemed to be an unlimited or immeasurable amount of time was therefore

the next logical step. In short, he proposed that the Sun’s source of heat might be due

to the capture of meteors from the surrounding space (Mayer, 1848). This original

explanation received, in time, independent support by other astronomers but was

practically abandoned by the 1870s, as the number of meteoric bodies required to

match the observations was found to be unreasonably high.

On February 7th 1854, a young Hermann von Helmholtz (1821-1894) gave a

lecture in Königsberg in which he proposed another gravitational theory to explain

the Sun’s luminosity. It was due to a small secular contraction. It might not be

a coincidence that he chose Königsberg to give such talk, as this contraction idea

goes back to an essay from Immanuel Kant (1724-1804) from 1785 (Watkins, 2012;

originally published in the Berlinische Monatsschrift), in which he wrote: If it be

assumed . . . that the original matter of all celestial bodies, in the whole vast space
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in which they now move, was initially distributed in gaseous form, and was formed

initially in accordance with the laws of chemical attraction. In the second half

of the 18th century it was broadly accepted that the stars were not much different

than our Sun, but they were located at much greater distances. Kant suggested that

stars were formed from cold clouds of gaseous material. Since gas is heated up if

compressed, this formation mechanism would also be responsible for the surface

heat of the stars and perhaps for the planets around them. This impressive piece of

bright instinct, as can be seen later in this introduction, was known but ignored for

decades, and only marginally and anecdotally considered until Helmholtz’s lecture.

As Kant, Helmholtz thought that the Sun’s luminosity was linked to the hypothesis

of a nebular origin of the stars. An even more primitive intuition of star formation

being produced by the condensation of diffuse matter in the Universe was written

down by the father of gravity itself, Sir Isaac Newton (1642-1727): ... if the matter

were evenly disposed throughout an infinite space, ..., some of it would convene into

one mass and some into another, so as to make an infinite number of great masses,

scattered great distances from one to another throughout all that infinite space. And

thus might the sun and fixed stars be formed, supposing the matter were of a lucid

nature (as quoted by Jeans, 1928).

Sir William Thomson, 1st Baron Kelvin (1824-1907), who had a reputed career

addressing the Sun’s source of energy problem, adopted the contraction theory of

Helmholtz and made significant contributions to it. This theory robustly stood for

over forty years until it was proved that it could not explain the source of stellar

energy. Geological evidence showed that the Sun was older than what the theory

could predict. Today, the Kelvin–Helmholtz mechanism applies to many other

astronomical scenarios, including the star formation processes (see Sect. 1.4).

The situation did not improve much in the following decades. It was agreed that,

by process of elimination, the source of stellar energy needed to have a subatomic

origin of unclear nature: by a process of exhaustion we are driven to conclude that the
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only possible source of a star’s energy is subatomic (Eddington, 1926). The answer

as we understand it today came with the revolution of nuclear physics in the 1930s

(see Chandrasekhar, 1939 and references therein), and it could be said that the story

ends with the Nobel Prize in Physics of 1967 to Hans Albrecht Bethe (1906-2005)

for his work on the creation of chemical elements within stars by nuclear fusion

reactions, which generate the amount of energy required to match the observations.

However, the understanding of how the primordial masses necessary to start nuclear

reactions were assembled (i.e. the formation of the stars) evolved little from Kant’s

intuition until the mid-20th century. George Herbig (1920-2013) expressed this way

which was the state of the star formation field before 1930: One senses the attitude

that the origin of stars was something unknown and unknowable: it happened in the

remote past under circumstances that we were unlikely to fathom (Herbig, 2002).

Earlier in the 20th century, new ‘large scale surveys’ caused the need for sys-

tematisation and the aspiration to find big correlations. One of the most successful

endeavours for systematisation was the Harvard classification of stellar spectra by

Annie Jump Cannon (1863-1941) and Edward Charles Pickering (1846-1919), which

at the present time is still broadly used. Cannon found a phenomenological corre-

lation between the line structure and the colour of the stars, and they ordered the

different spectral types in a sequence (O, B, A, F, G, K, M) in the hope that it would

represent some sort of stellar evolution (Cannon and Pickering, 1901). At that time,

previous definitions of spectral type had been already correlated with colour, and it

was an open debate in the community how the different ‘spectral types’ were related

to the evolutionary status of the stars. Panel b of Fig. 1.1 shows a sketch Henry Norris

Russell (1877-1957) used as lecture notes in 1907, in which he wonders about the

correct sequence of ‘spectral types’ to describe the evolution of a single star. These

Russell’s sequences are among the first evolutionary tracks recorded and evidence

the necessity in the early 20th century to find a proper, well-defined parameter space

to construct the star formation and evolution theory from observations.
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a

c

b

Fig. 1.1 Panel a: Russell’s original spectral type vs. absolute magnitude diagram as
it appeared in Russell (1914). The original version of the plot appeared in Russell
(1913). Panel b: Russell’s 1907 lecture notes showing two different sequences of
stellar spectral classes that suggest possible stellar evolutions, from young to old.
At the bottom it can be read: We cannot be sure at present. Panel c: Original
colour-magnitude diagram of the Pleiades by Rosenberg (1910). Late B through late
A stars can be seen vs. apparent magnitude.

Another one of the sought correlations was to link colour and spectra with

absolute magnitudes. Although at the time it was very hard to directly measure dis-

tances, it was soon established that this issue could be avoided by the use of clusters.

The first, as we now call it ‘colour-magnitude diagram’, was published by Hans

Rosenberg (1879-1940) in 1910 using the Pleiades and the Cannon classification

(Rosenberg, 1910; see panel c of Fig. 1.1). It is noteworthy that he followed the sug-

gestion of Karl Schwarzschild (1873-1916) and might have been inspired by previous

unpublished attempts of Schwarzschild’s student Ejnar Hertzsprung (1873-1967).
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Hertzsprung published his first version of the diagram in 1911 (Hertzsprung, 1911),

and continued with a series of papers with diagrams of the Pleiades, the Hyades, and

other clusters. As it often happens in science, there is no evidence that the original

diagram of Rosenberg was ever cited by his contemporary peers.

Russell pioneered the tedious process of systematically deriving parallaxes from

photographic plates and obtained the remarkable number of 55 parallax fields by

1906. Russell, in a totally independent fashion (at least according to the papers he

cited), published in 1913 the first spectral class vs. absolute magnitude diagram

using nearby field stars (Russell, 1913; see panel a of Fig. 1.1). He noticed the

correlation we now call ‘main sequence’ and even proposed an evolutionary model

in which the stars begin their lives from nebulae as red giants, get to the tip of the

main sequence (MS), and then move to cooler temperatures along the MS as they

age. Later development, and the outstanding PhD thesis of Cecilia Helena Payne

(1900-1979), which broke the degeneracy between abundance and temperature

effects in spectral lines (Payne, 1925), confirmed the long considered but never

entirely understood hypothesis that the Cannon classification of spectral types was

indeed a temperature classification. Finally, both axes of Russell’s, Rosenberg’s, and

Hertzsprung’s diagrams acquired full physical meaning.

Although Russell’s evolutionary theory did not stand for long, in the 1930s this

diagram that relates temperature with luminosity was finally coined the Hertzsprung-

Russell (HR) diagram. Since then, it has had a priceless impact on the understanding

of star formation, the stellar evolution theories and the stellar classification, and it

plays a central role in this PhD thesis.

For a field that evolved so slowly since antiquity, many things happened in the

star formation field during the decades of 1940s, 1950s, and 1960s. Astronomers

knew that the only sources of material for star formation were massive clouds or

nebulae in the interstellar medium. They also knew that stars were not formed

that long ago, as the recently discovered nucleosynthesis process allowed them to
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calculate stellar lifespans, nor that far away, as the stars did not have much time

to travel from their birthplace. Therefore, star formation should be a still ongoing

process observable in the night sky, if it was visible at all.

Hoyle and Lyttleton (1939) were the first to propose that stars might acquire most

of their mass from the interstellar medium using purely scientific and astronomical

arguments. In Joy (1942), Alfred Harrison Joy (1882-1973) discussed a Mount

Wilson spectrographic survey of variable stars. He wrote: The T Tauri and RW

Aurigae stars form a small but important group which deserves more attention than

it has yet received. Some of the stars are apparently connected with or obscured by

shells or wisps of nebulosity. The light-changes are rapid and entirely irregular...

Although in the following years he followed-up on this ‘small but important group’

of objects (see e.g. Joy, 1945, 1949), it took time until these T Tauri like objects were

associated with the efforts of studying nebulae and the star formation within them

(led by Fred L. Whipple, Bartholomeus Bok and Lyman Spitzer, among others).

According to Herbig (2002), credit should be given to the Armenian astronomer

Viktor Amazaspovich Ambartsumian (1908-1996), who in 1947 proposed for the

first time that T Tauri stars were undergoing a formation process through contraction

(Ambartsumian, 1947). However, his work and the subsequent research of the Soviet

astronomical community did not get much attention in the West, and such theory was

not seriously considered in Europe and America until 1954. In 1953 Edwin Ernest

Salpeter (1924-2008) spotted that forming stars should have a particular location

in the HR diagram from where young objects could be identified (Salpeter, 1954).

After a few years of many papers wandering around the evidence, the idea that the T

Tauri class is composed of stars undergoing formation processes finally rooted in the

astronomical community. In Herbig (1962), to summarise the scientific debate and

results of those years, Herbig stated: ... it is concluded that no acceptable alternative

has yet been developed to the interpretation of the T Tauri stars as young objects

undergoing their initial gravitational contraction.
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Fig. 1.2 Left: George Herbig observing at 20, 1940. Right: George Herbig at 90
observing at Keck-I telescope, 2010. Figure from Reipurth (2016).

In 1960, George Herbig (in Fig. 1.2), using arguments similar to those Joy used

to find the T Tauri group, looked for the massive counterparts of the T Tauri stars

(Herbig, 1960). He imposed three criteria to identify his massive young candidates:

• The spectral type is A or earlier, with emission lines.

• The star lies in an obscured region.

• The star illuminates fairly bright nebulosity in its immediate vicinity.

These famous three conditions led to the discovery of the first 26 sources of the

class now called ‘Herbig Ae/Be’, which is the central topic of this PhD thesis. Since

then, many contributions have been made to the understanding of these objects and

their formation mechanisms. Currently, none of Herbig’s original criteria stands as a

necessary requirement of the Herbig Ae/Be group, although these simple conditions

shall withstand as historical proof of scientific elegance. As the description of more

recent works may exit the realm of history and enter the domains of journalism, I

refer the interested reader to the bibliography of this PhD thesis and the references

therein contained to judge the contributions made from here.
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1.2 Molecular clouds, filaments and cores

1.2 Molecular clouds, filaments and cores

The Universe is populated by many galaxies. Different galaxies have different star

formation rates. This rate mainly depends on the amount of gas within them; which

in turn varies with age, dynamical circumstances, and galactic environment (see

Fig. 1.3). The current star formation rate in the Milky Way is 1.65±0.19 M⊙/year

(Licquia and Newman, 2015). Although the discussion about stellar evolution in

distinct galaxies throughout the history of the Universe is of the major interest, for

simplicity I restrict myself to describe the star formation observed at the local scale,

in the vicinity of our Sun in the Milky Way. Star formation in any place and time

should be expected to be similar, at least in the fundamental principles.

1.2.1 Molecular clouds

The Milky Way is full of gas that permeates the space between the stars; the inter-

stellar medium (ISM). Around half of the Galactic volume is occupied by very hot

gas, mainly ionised atomic hydrogen (HII), that was ionised and heated up by su-

pernovae (the big regulators of the ISM). This gas expands in bubbles and vertically

through the disc, dissipating in the Galactic halo. The high temperature of 106 −107

K makes the density of this HII gas to be of only 10−4 − 10−2 particles/cm3. In

pressure balance with this super hot gas we find the ionised and neutral warm ISM,

which is composed primarily of neutral and ionised atomic hydrogen (HI and HII

respectively). At a much lower temperature of around 6000−10000 K, the typical

density of this medium is about 1 particle/cm3. These two states of the ISM sum up

to ∼ 95% of the volume of the Galaxy. The remaining 5% corresponds to the cold

ISM: mostly cold HI concentrated in the Galactic plane that have a temperature of

50−100 K and a density of a few tens of particles/cm3.

Through the collision of flows of HI, huge complexes of cold molecular gas are

formed (see e.g. Valdivia et al., 2016). These complexes span hundreds or even
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thousands of parsecs and are distributed in patchy regions mostly located in the

spiral arms. Again, this molecular gas is primarily composed of molecular hydrogen

(H2). Cold molecular hydrogen does not have energy transition levels in the optical,

infrared or radio and hence it is technically invisible. Therefore CO, one of the most

abundant molecules, is normally used to trace molecular gas. The distribution of

molecular gas as traced by CO in 126 close-by galaxies is presented in Fig. 1.3.

Astronomy is a tale of scales, structure, and hierarchical substructure within the

scales. The huge complexes of cold molecular gas are subdivided into the so-called

giant molecular clouds (GMCs), which typical sizes are in the order of 20−100 pc

and have a mass of ∼ 105−106 M⊙. These GMCs are opaque to ultraviolet radiation

as it readily dissociates the molecules. This opacity is due to a density of ∼ 102−106

particles/cm3. Therefore, GMCs are super-dense compared with the rest of the ISM.

The opacity causes these clouds to be little heated by external radiation. In addition,

they are very efficient radiating energy away (CO is also the most important coolant;

see e.g. Whitworth and Jaffa, 2018). As a consequence, GMCs are at extremely low

temperatures of only ∼ 10−20 K. An example of GMC, the Polaris Flare cloud, is

presented in Fig. 1.4 in the top panels.

There is one extremely important component of the ISM yet to be mentioned;

dust. Dust particles of a typical size of 1 µm are present throughout the Galaxy,

although they are promptly sublimated at temperatures higher than 1000− 2000

K (depending on composition, Kobayashi et al., 2011). They are of the utmost

importance at every scale. They regulate many thermodynamic processes, influence

GMCs dynamics and are key for planet formation. Furthermore, most ISM chemistry

happens on the surface of dust grains (e.g. H2 formation). The high density of dust

particles causes molecular clouds to also be opaque to visible light but transparent

to longer wavelengths. Overall, the ISM is a dynamical and complex environment.

Although a detailed description of it is beyond the scope of this introduction, a good

book of reference is Tielens (2005).
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Fig. 1.3 Distribution of stars and molecular gas in 126 local galaxies. The CO
intensity map is shown in blue. The stellar light is composed of SDSS g (green
channel) and i (red channel). Figure from Bolatto et al. (2017).

11



Introduction

Molecular clouds have complex internal motions. This can be summarised in

Larson’s empirical law (Larson, 1981), which positively correlates the size of a

cloud with its internal velocity dispersion. At the present time, the physics behind

Larson’s relation is not well understood. It seems to imply that within molecular

clouds gas velocities are dominated by a turbulent motion rather than a thermal

motion. ‘Turbulence’ means some kind of size hierarchy in the random motions of

the particles, that can generate density fluctuations and shocks (see e.g. Larson, 2003

and Hennebelle and Falgarone, 2012).

One of the key consequences of their turbulence-dominated internal motions is

that GMCs do not quickly collapse under the effect of gravity to form stars. On the

contrary, they seem to be rather inefficient in forming stars. On large scales, the star

formation rate is sensitive to the Galactic environment (e.g. Galactic shear, spiral

arm potential or vertical gravity from gas, stars, and dark matter), whereas at smaller

scales star formation is subjected to local environmental conditions. These can

be summarised into dynamical effects (e.g. rotation, turbulence), gas compression

(mainly gravity), chemical heating (e.g. cosmic rays, UV radiation), mechanical

heating (e.g. supernovae), abundance of gas and magnetic fields. Significant discrep-

ancies have been found between these various factors in different GMCs, although

their precise impact in the star formation efficiency is as yet undetermined (see e.g.

Geen et al., 2017). Nonetheless, most observed GMCs show active star formation.

There is the general agreement that regardless of circumstances GMCs cannot

last much longer than ∼ 10 Myrs, as they cannot survive for long after star formation

begins within them. Soon they are dissipated by photoionisation from HII regions,

stellar winds, supernova blasts and jets from forming stars, among other things (see

e.g. Pellegrini et al., 2011, Federrath et al., 2014, Rosen et al., 2014 or Walch et al.,

2015). Thus, it is evident that star formation needs to be a rapid process that begins

promptly after the formation of the cloud (see e.g. Povich et al., 2019). All these

processes in which new stars give energy back to the cloud are known as ‘feedback’.
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1.2.2 Filaments

Internally, GMCs organise themselves into a filamentary sub-structure. Filaments

within the Polaris Flare cloud are presented as an example in Fig. 1.4 in the top panel.

This cloud is not forming stars yet, implying that filaments appear prior to stars and

their formation is independent of internal stellar feedback. Filaments can be defined

(from André et al., 2014) as: elongated ISM structures with an aspect ratio larger

than ∼ 5− 10 that is significantly over-dense with respect to their surroundings.

Therefore, they are not necessarily of a cylindrical geometry, and the possibility of

some of them being ‘sheets’ is considered. The typical width of the filaments is

observed to be of around 0.1 pc.

The magnetic field, which is always hard to measure, is found to be orthogonal

to the main filaments with a typical strength of ∼ 1−100 µG (Matthews et al., 2014;

Pillai et al., 2015). On the other hand, the magnetic field is aligned with the so-called

‘striations’, which are also perpendicularly disposed to the filaments. Striations by

all means satisfy the definition of filament of André et al., 2014, but they differ in

that they are much less dense (Tritsis and Tassis, 2016). It is not yet known whether

they are long-lived or transient, but they do not constitute a site for star formation. In

Fig. 1.4 in the bottom left panel a filament is presented together with the measured

magnetic field in the area and the surrounding striations.

Many studies have been dedicated to the internal kinematics of filaments (e.g.

Smith et al., 2016, Hacar et al., 2017 or Dhabal et al., 2018), which found signs of

rotation and velocity gradients both along and across the filaments. However, their

formation mechanism is still under debate. There are two main competing scenarios;

one dominated by turbulence and gravity and one dominated by magnetic fields

(or ‘magnetohydrodynamic mechanisms’). The problem lies in that filaments can

easily be recreated in simulations with and without strong magnetic fields. Cloud

to cloud collisions or even thermal instabilities have also been proposed for the
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Fig. 1.4 Top left: Herschel/SPIRE 250 µm dust continuum emission of the Polaris
Flare molecular cloud. Top right: Column density map of the same region with the
detected filaments in light blue. The typical width of the filaments is 0.1 pc. Figures
from André et al. (2014). Bottom left: Herschel/SPIRE 250 µm dust continuum
emission of a filament in Taurus molecular cloud. The filament is highlighted with a
black line and some striations around it are highlighted with blue lines. Polarisation
vectors that trace the magnetic field are presented in green. In the bottom right an
average of the relative orientation of the lines is shown. Note that the magnetic field
and the striations are perpendicular to the filament. Figure from Palmeirim et al.
(2013). Bottom right: Column density map of hydrogen (atomic and molecular)
from near-infrared observations of the Musca cloud. Five cores are numbered in a
filament under fragmentation. Figure from Kainulainen et al. (2016).

14



1.2 Molecular clouds, filaments and cores

formation of filaments. Of course, models that combine the previous ingredients in

different fashions also populate the literature. Interesting references are: Molinari

et al. (2010), André et al. (2014), Banda-Barragán et al. (2016), Federrath (2016),

Smith et al. (2016), Clarke et al. (2017), Wu et al. (2017) and Inoue et al. (2018).

1.2.3 Cores

If we move down one level in the structure ladder these filaments fragment into

dense, roughly spherical cores (observed in e.g. Beuther et al., 2015; Contreras et al.,

2016; Kainulainen et al., 2016). If these cores in turn lead to a spherical collapse

they can be considered the first real stage of star formation (see Fig. 1.5 and Sect.

1.3). An example of a filament fragmented into different cores is shown in Fig. 1.4

in the bottom right panel. This fragmentation can be reproduced by simulations (e.g.

Gritschneder et al., 2017; Lee et al., 2017) and it is caused by a gravity dominated

process. In addition, material appears to be funneled along filaments towards ‘hubs’,

points where various filaments intersect, at a typical timescale of 1−4 Myrs (Peretto

et al., 2014; Tackenberg et al., 2014).

These hubs seem to be the locus of cluster formation (e.g. Kirk et al., 2013;

Baug et al., 2018) and massive star formation (e.g. Peretto et al., 2013; Yuan

et al., 2018). These are not independent concepts. Clusters are formed through a

further fragmentation of the core into smaller sub-cores; fragmentation caused by

a combination of magnetic fields, turbulence and the delicate equilibrium between

pressure and gravity (see e.g. Hennebelle et al., 2011 and Fontani et al., 2016). Most

stars form in clustered environments, but this is particularly acute for high-mass stars

as ∼ 95% of them are observed associated with a cluster origin (see Portegies Zwart

et al., 2010; Kruijssen, 2012; Gvaramadze et al., 2012 and references therein).

The amount of cores formed as a function of their masses is described by the

so-called ‘core mass function’ (CMF). Equivalently, there is an ‘initial mass function’
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(IMF) that describes the proportion of stars formed at a given mass. These functions

are described both locally in individual clouds and universally, assuming they are

a fundamental feature of star formation. The connection between the two is not

trivial, but there seems to be indeed a direct correlation, this meaning that the final

mass of the stars is heavily influenced by the mass of the cores (Offner et al., 2014;

Guszejnov and Hopkins, 2015). Nonetheless, Motte et al. (2018) recently provided

evidence that implies that this might not be entirely the case. Observationally, there

is a mass offset of a factor of three between the two which is consistent among the

different star forming regions (André et al., 2010, Sokol et al., 2019). This implies

that at this scale star formation is still considerably inefficient, as most of the mass

does not end as stellar material. This is mainly due to radiation feedback (Krumholz

et al., 2016), outflows (Offner and Arce, 2014), core fragmentation that can lead to

multiple systems (Pineda et al., 2015) and other effects like the existence of starless,

perhaps sterile, cores.

1.3 Collapsing cores and protostars

In this section, I start an overview of the different stages of star formation, which are

recreated in an artistic impression in Fig. 1.5. After the previous section dedicated to

the interstellar medium and to the dynamics and structure of molecular clouds, we

are now at the level of single cores with a typical size of ∼ 0.1 pc (or ∼ 20000 au, see

panels 1 and 2 of Fig. 1.5) and a typical lifetime of ∼ 0.1−0.3 Myr (see Offner and

Chaban, 2017 and references therein). The balance of forces and interactions in these

cores have as main actors the magnetic field, thermal pressure and gravity. Depending

on the interplay, collapse starts or not. Many derivations from the fundamental laws

of physics have been used to decide this dichotomy. Each one with different subtle

assumptions. Commonly used parameters to quantify the typical mass and length

that can undergo contraction are variations of the Jeans mass and length (or of the
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1.3 Collapsing cores and protostars

more robust Bonner-Ebert mass and length) either in isothermal or non-isothermal

conditions. I refer the interested reader to Larson, 2003 and Ward-Thompson and

Whitworth, 2011 for a proper definition and discussion of these parameters and their

implications. For the sake of our story, let’s continue with the cores in which collapse

begins and follow the evolution of a single core assuming no fragmentation or halt.

Collapsing cores also receive the name of Class 0 objects, as they constitute the first

stage of star formation (panel 2 of Fig. 1.5).

Collapsing cores are subjected to the virial theorem, and hence half the grav-

itational energy acquired is radiated away and half goes to increase the thermal

energy. Nonetheless, as mentioned before the molecular gas and the dust are very

efficient at cooling the system. Hence, the collapse is roughly isothermal up to

densities of around 1010 particles/cm3. The characteristic time of the collapse can be

approximated with the free-fall time, the time that would take a spherical body of

uniform density to collapse under its own gravity:

t f f =

(
3π

32Gρ

) 1
2

. (1.1)

Note that the free-fall time is independent of the original size of the core and only

depends on the density. However, the collapse is not uniform due to the outward

forces, and it is characterised by the runaway growth of density at the centre, while

the outer regions collapse slower. This implies that the global collapse is slightly

slower than t f f . More importantly, it implies that the centre of the collapsing cloud

get to densities high enough to form a star while most of the cloud mass is still

around as an infalling envelope.

At the typical free-fall time-scale, the central overdensity becomes optically

thick. No longer isothermal, its temperature starts rising substantially from few

tens of degrees as hydrostatic equilibrium is achieved. This hydrostatic core has a

mass of ∼ 0.01 M⊙, a radius of several astronomical units and it is very short-lived
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Fig. 1.5 Stages of star formation from molecular clouds (panel 1) to main sequence
stars (panel 6). Core phase or Class 0 in panel 2. Protostellar phase or Class I in
panel 3. Pre-main sequence phase or Class II in panel 4. Late pre-main sequence
phase or Class III in panel 5. Credit of the image goes to A. J. Frost (Frost, 2020);
spectral energy distributions from André (2002).
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1.3 Collapsing cores and protostars

(Larson, 2003). As soon as its temperature rises above 2000 K H2 dissociates and

the hydrostatic core becomes unstable, provoking a second collapse (very high-mass

stars, & 30 M⊙, might go directly to this second phase, Bhandare et al., 2018). In a

similar fashion to the original contraction, this second contraction phase generates

another central overdensity. Once this second central overdensity is mostly ionised

collapse halts and a second hydrostatic core is formed. Rapidly, the first hydrostatic

core collapses onto the second one (in the order of ∼ 10 years) while most of the

material from the original core is still in an envelope slowly falling onto the central

overdensity. A protostar (or Class I object) has been born. See panel 3 of Fig. 1.5.

The central object and the envelope evolve decoupled, and the details on how

accretion feeds the hydrostatic core at this stage determine what will be the final mass

and radius of the star. Although I do not enter into much detail in this introduction,

references for the protostellar phase are: Palla and Zinnecker (1999); Larson (2003);

Wuchterl and Tscharnuter (2003); Stahler and Palla (2004); Baraffe et al. (2009).

1.3.1 Protostellar discs and outflows

There are two important ingredients that still need to be added to this picture, rotation

and magnetic fields. A direct consequence of the increasing angular velocity upon

contraction is that a disc is formed around the central overdensity (see Fig. 1.5). This

disc, which is not stable and is likely to fragment (which can lead to binary systems),

transports material inwards while it is able to remove angular momentum through

viscosity and magnetic braking.

Another way of losing angular momentum is through the ejection of material.

This happens through jets and wide-angle winds (see Fig. 1.5). Jets are a common

feature observed in protostars (e.g. Kraus et al., 2010, Purser et al., 2016, Tafalla

et al., 2017). When these jets collide with the parental cloud and are optically

visible on the parsec scale they receive the historical name of ‘Herbig-Haro objects’.
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Wide-angle winds are also detected (e.g. Santiago-García et al., 2009) and arise from

both the central protostar and the disc around it. The main difference is that jets

are narrow and collimated whereas winds are broad, shell-like and angle-dependent.

These outflows are bipolar, mostly ionised and roughly perpendicular to the disc

rotation plane, this being particularly true for the jets, although some precession is

also observed in them.

Outflows originate very close to the central protostar (. 100 au, see e.g. Zanni

et al., 2007). Material is ionised either by photoionisation or collisional ionisation

and then accelerated centrifugally along magnetic field lines away from the disc. The

rotation of the disc twists the magnetic field lines, which results in the collimation of

the jet. The details and subtleties of the ejection mechanisms are complex, different

models exist and the nature of these outflows is yet poorly understood (see Pudritz

et al., 2007; Zanni et al., 2007; Seifried et al., 2012; Carrasco-González et al., 2015;

Lee, 2020 and references therein).

1.4 Pre-main sequence stars

Now we are at the stage of a central stellar hydrostatic embryo of ∼ 0.01 M⊙ ac-

creting material from the surrounding envelope and disc, which shocks the surface.

At first, the accretion shock is optically thick and adiabatic, thus heating the outer

layers of the protostar and expanding them. However, at some point around 4 R⊙

(this value corresponds to a main sequence star of 1 M⊙, but a similar picture should

be expected for other masses up to at least ∼ 10 M⊙, see discussion in Sect. 1.4.2)

the material surrounding the shock becomes optically thin, the protostar radiates

efficiently and stops growing in size (Masunaga and Inutsuka, 2000, Larson, 2003).

Now we have an optically thick protostar accreting from an optically thin medium,

increasing its mass and radiating energy away due to conversion of gravitational

potential. The characteristic lifetime of a structure at luminosity L in hydrostatic con-
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1.4 Pre-main sequence stars

ditions sustained only by gravitational contraction is given by the Kelvin–Helmholtz

timescale (see Sect. 1.1):

tKH =
GM2

RL
, (1.2)

being R the radius of the spherically symmetric object and M its mass. Note that

massive stars (& 8 M⊙) have a tKH < t f f , implying that they evolve so fast that by

the time they get to the main sequence the surrounding envelope is still in dynamical

collapse around them. When the central protostar reaches ∼ 0.2 M⊙ deuterium (D)

burning onsets due to high central temperatures of ∼ 106 K, which halts the fast

hydrostatic Kelvin–Helmholtz contraction and in turn makes the central protostar

fully convective. Approximately 105 years after the core contraction began, the

star has accreted most of its final mass and it has arrived to the pre-main sequence

(PMS) phase (Class II objects, see panel 4 of Fig. 1.5). For the lower mass case, the

envelope has now been mostly dissipated through outflows or has settled in the disc

(now called ‘protoplanetary disc’), from which accretion continues. The scale-size

is about two orders of magnitude smaller than in the protostellar case (the typical

disc radius is of order ∼ 100 au). Outflows, if present, are much weaker and become

quiescent with time.

It is worth mentioning that forming stars experience luminosity outbursts through

all the stages of their formation, though these tend to get smaller in intensity with

time. They are abrupt and varied, and are most likely caused by sudden bursts of

accretion from the disc. When they are large and long-term they receive the name of

‘FU Ori outburst’ (they are often associated to the protostellar phase; see Vorobyov

and Basu, 2005, Zhu et al., 2007, Hales et al., 2015, Hartmann et al., 2016) and when

they are small, short-term, and repetitive they are known as ‘EXor outburst’ (see e.g.

Stahler, 2017, Hales et al., 2018; the model star is EX Lup but history is capricious).

These outbursts are neither a universal phase nor necessarily occur at early stages
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of star formation (Herbig, 2008). However, Contreras Peña et al. (2019) found that

outbursts in the Class I stage are ∼ 10 times more frequent than during the Class II

stage.

1.4.1 Hertzsprung-Russell diagram perspective

The PMS evolution is better understood on the Hertzsprung-Russell diagram. In

Fig 1.6 a HR diagram of the star formation evolution is presented. Theoretical

evolutionary tracks and isochrones of different masses and ages are indicated. Note

that isochrones need a choice of an age ‘zero’ and the assumption that the first

photospheres of all stars form at the same time, which is not true. In addition, the

location of evolutionary tracks is currently under discussion and permanent revision,

and depend upon many issues like, for example, the metallicity of each star.

Before entering into discussion the HR diagram needs further introduction, now

from a purely physical perspective (see Sect. 1.1 for the historical introduction).

On the right of Fig 1.6 we see the ‘birthline’, which can be defined as the line

where stars become optically visible. Although during the protostellar phase the

hydrostatic core radiates energy away thanks to the Kelvin–Helmholtz mechanism

and the outflows (Sect. 1.3), its light is blocked by the surrounding cloud until the

forming star emerges. This point mainly depends on the mass but also on each

source environmental circumstances and, as mentioned before, might even not ever

happen for very massive stars. On the other end, low-mass stars (M . 1 M⊙) become

optically visible even during the late protostellar phase. This can be seen in the

almost vertical lines of Fig 1.6, the so-called ‘Hayashi tracks’, (Hayashi, 1966),

where the core contracts hydrostatically from very high radii and luminosities at

almost constant temperature. These objects are sometimes given a more technical

definition of birthline as the point where the D-burning halts the fast core contraction

(Wuchterl and Tscharnuter, 2003). Nevertheless, there are differing definitions of
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1.4 Pre-main sequence stars

Fig. 1.6 Hertzsprung-Russell diagram of the optical phase of the star formation
evolutionary sequence from the birthline to the zero age main sequence (ZAMS).
Different colours trace different stellar interiors as indicated by the depictions.
Evolutionary tracks appear in black (0.5, 0.8, 1, 1.5, 2, 3, and 4 M⊙) and isochrones
appear in white (1, 4, 5, 6, 10, and 20 Myr). The orange line indicates the location
where 40% of the radius of the star is a convective envelope. Figure adapted from
Alecian et al. (2013) and Villebrun et al. (2019).

the birthline in the theoretical literature, and for simplicity I stick to the purely

observational definition regarding optical visibility.

The Hayashi tracks are caused by the development of a fully convective interior.

In short, the large luminosity and radius cause a temperature gradient which is

unstable to convection. Convection is very efficient and thus the temperature is kept

almost constant upon contraction (T ∝ M1/4R−1/8), this causing the almost vertical

drop in luminosity. When the luminosity is low enough convective stability arises,

diffusion settles throughout the interior and the temperature begins to rise. This part
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of the evolutionary tracks at roughly constant luminosity (only dependent on mass,

L ∝ M3) receive the name of ‘Henyey tracks’ (Henyey et al., 1955) and is the one

that better represent the PMS phase. Note that there are different ways to set the

limit between Class 0, protostars and PMS objects, which historically corresponded

to where the spectral energy distribution (SED) peak occurs (see Fig. 1.5 and Sect.

1.5), but now those limits are often also defined from a theoretical perspective.

The zero age main sequence (ZAMS), on the very left of Fig. 1.6 is the point

where contraction stops under the effects of nuclear reactions after D-burning, which

is considered to be the moment when the star has completed its formation and joins

the main sequence, where it remains stable for most of its life. The main sequence

can also be defined as when significant H-burning begins, which can happen before

the star reaches the ZAMS.

With all the aforementioned caveats and assumptions, it is easy to track forming

stars on the HR diagram by the evolution of their temperature and luminosity (and

thus their radius). In addition, in the HR diagram of Fig. 1.6 the different stellar

interiors that develop during evolution towards the MS are also indicated. After the

initial fully convective phase, stars develop a radiative core. Low mass stars (M . 1

M⊙) get to the MS still with a large convective envelope, these receive the name

of T Tauri stars. More massive stars (M & 1− 2 M⊙) become fully radiative and

only develop a convective core when they are about to reach the MS. These receive

the name of Herbig Ae/Be stars (HAeBes, although they can be up to F type). Very

massive stars are not optically visible at any point of their formation, and they receive

the name of Massive Young Stellar Objects (MYSOs). The limit between HAeBes

and MYSOs is uncertain and depends upon the particular environmental conditions

of each source, but it is canonically set at M ∼ 10 M⊙ (see e.g. Lumsden et al.,

2013). Finally, the sources that still have convective envelopes but that will become

fully radiative (i.e. the precursors of the HAeBes) receive the name of Intermediate

Mass T Tauri stars (IMTT). As explained in Sect. 1.4.2, the general picture presented
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in Figs. 1.5 and 1.6 should be applied with caution to very massive stars (HBe and

MYSOs). References for the theoretical evolution of stellar interiors in PMS objects

are: Bressan et al. (2012), Choi et al. (2016), Feiden, 2016, Marigo et al. (2017),

Munari et al. (2019), Villebrun et al. (2019) and references therein.

1.4.2 T Tauri stars, Herbig Ae/Be stars and MYSOs

As outlined in the previous section, there are three main categories of forming stars,

T Tauri stars (and IMTTs), Herbig Ae/Be stars and Massive Young Stellar Objects.

Before describing these in detail let us consider the magnetic fields first. Magnetic

fields are hard to measure in PMS objects. Normally they are observed through

direct Zeeman broadening or spectropolarimetry. The magnetic fields rapidly decay

from the early PMS stages (Folsom et al., 2018). Only . 10% of Herbig Ae/Be stars

have detectable magnetic fields, which rarely exceed 200 G. However, fields up to

∼ 3000 G have been reported (e.g. Hubrig et al., 2010). The observed magnetic field

in HAeBes is dipolar and stable, but it is not continuously sustained by a dynamo

(Alecian et al., 2013; Villebrun et al., 2019). T Tauri stars have a magnetic field of

1000−5000 G, which is variable and supported by a dynamo (Donati et al., 2013,

2011; Folsom et al., 2016). By ‘dynamo’ I mean a magnetic field generated by

internal convection and rotation of charged particles. Therefore, convective stars

tend to have strong magnetic fields, whereas radiative stars have small or negligible

magnetic fields (Duez and Mathis, 2010). This implies that more massive objects

are likely to be less magnetic (see Fig. 1.6). As a consequence, there is a significant

difference between the magnetic fields of T Tauri and HAeBe stars, and this has

important consequences on their accretion mechanisms.

It is commonly accepted that T Tauri stars accrete through magnetically-funnelled

flows arising from the protoplanetary disc, which is truncated by the magnetic field

lines at a distance of a few stellar-radii (see Bouvier et al., 2007; Hartmann et al.,
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Fig. 1.7 Panel a: Protoplanetary disc around a PMS star accreting magnetospher-
ically. Figure from Henning and Semenov (2013). Panel b: Depiction detailing
magnetospheric accretion, the truncation radius is of only a few stellar radii. Figure
from Hartmann et al. (2016).

2016). This is the ‘magnetospheric accretion paradigm’, and it is illustrated in Fig.

1.7. Each flow generates an accretion shock that hits the photosphere free-falling at

∼ 300 km/s with a temperature of ∼ 106 K (Brickhouse et al., 2010). This shock

cools down via X-ray emission which in turn heats the surrounding optically thin

preshock material to ∼ 105 K. This can be seen in the far UV over the Balmer

continuum of the star (see Hartmann et al., 2016; Schneider et al., 2018). The
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accretion funnels themselves are thought to be isothermal at lower temperatures of

∼ 7000 K (see e.g. Alencar et al., 2012). There is still a vague understanding on how

outflows relate to the accretion processes. It has been proposed that accretion energy

opens magnetic field lines which drive gas away through winds (Matt et al., 2012).

Whether accretion is stable or if there are unstable accretion regimes that might lead

to accretion bursts is still under study. Theoretical references for magnetospheric

accretion can be found in: Muzerolle et al. (2001); Lima et al. (2010); Romanova

et al. (2013).

In general, the accretion rate increases with stellar mass even from very low-mass

stars (Manara et al., 2017), with younger objects showing larger accretion rates.

These correlations are complex though (e.g. Manara et al., 2020). In addition, mass

and age are very degenerate in any data set, as massive objects evolve much faster

and hence are typically younger (see isochrones of Fig. 1.6).

Accretion on Herbig Ae/Be stars has been studied by a number of authors,

for example: Muzerolle et al. (2004), Donehew and Brittain (2011), Mendigutía

et al. (2011a), Cauley and Johns-Krull (2015), Fairlamb et al. (2015, 2017), Wichit-

tanakom et al. (2020). As mentioned before, higher-mass PMS objects have radiative

envelopes and hence normally exhibit negligible magnetic fields. Therefore, the

magnetospheric accretion model probably cannot apply to them. The transition from

magnetospheric accretion to the still unknown accretion mechanism for higher-mass

PMS objects takes place within the mass range of the Herbig Ae/Be stars. Indeed,

near-IR interferometric (e.g. Monnier et al., 2005), optical- and near-UV spectro-

polarimetric (e.g.Vink et al., 2002; Ababakr et al., 2017) and spectro-photometric

observations (e.g. Mendigutía et al., 2011a; Cauley and Johns-Krull, 2015; Fairlamb

et al., 2015; Patel et al., 2017; Wichittanakom et al., 2020) have shown that the

lower mass Herbig Ae stars show accretion signatures consistent with T Tauri stars,

whereas Herbig Be stars appear to be inconsistent with magnetospheric accretion (see

also Grady et al., 2010; Schöller et al., 2016). This is supported by the evidence of
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Herbig Be stars being surrounded by denser and larger inner gaseous discs (Monnier

et al., 2005 and Ilee et al., 2014, respectively).

The latest study of Wichittanakom et al. (2020) placed the change in accretion

properties at 3.98+1.37
−0.94 M⊙ (around B3 type), suggesting the ‘boundary layer’ ac-

cretion model for more massive objects. Boundary layer accretion was introduced

in the case of young stars by Bertout et al. (1988) for T Tauri stars, and it has been

proposed repeatedly (Blondel and Djie, 2006; Mendigutía et al., 2011a; Cauley and

Johns-Krull, 2014, 2015; Kraus, 2015; Wichittanakom et al., 2020) as the main

alternative to magnetospheric accretion in high-mass non-magnetic objects. It basi-

cally implies that the disc reaches directly to the star. However, it has never been

properly observed, tested or modelled in Herbig Be stars or more massive objects

(see Mendigutía, 2020 review). In principle, it should be a less energetic process

requiring larger accretion rates to match the observations (see Sect. 1.5). In addition

to accretion, there is observational evidence that points towards more differences

between low- and high-mass PMS sources. For example, Herbig Be stars are more

likely to be found in binaries than Herbig Ae stars (Baines et al., 2006) and more

massive stars tend to appear in clusters (see Sect. 1.2.3) and rotate faster (which has

an impact on the magnetic field, Emeriau and Mathis, 2015).

Regarding the aforementioned differences between low- and high-mass PMS

sources, an important issue is that the scarcity of known high-mass PMS sources

makes the statistics non-robust. Another important caveat in these studies is that

they do not include the less evolved sources in high-mass PMS tracks (most Herbig

Be stars considered are very close to the main sequence, see Chapter 2), which are

obviously of paramount importance for understanding high-mass star formation.

This is because more massive objects become optically visible later and evolve faster,

thus implying that they are more likely to be found close to the main sequence. In

addition, less evolved massive objects can have a later spectral type than A or B, and

thus they could have been missed. This is why the main objective of this thesis is to
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study the general properties of Herbig Ae/Be stars as a function of mass and to find

new objects of the class in a homogeneous and unbiased fashion, trying to identify

new young and massive PMS sources.

Very massive stars present other several particularities in their formation. During

the PMS phase MYSOs may even ignite H-burning while accreting, thus blurring the

concept of ZAMS for these objects. In addition, they generate enormous amounts

of radiation pressure, which has an impact on the infalling material. Theoretically,

this radiation pressure can halt the collapse eventually and prevent the formation of

super-massive stars, although stars up to ∼ 100 M⊙ have been observed (e.g. Kashi

and Soker, 2010, Crowther et al., 2016). As MYSOs are optically-invisible, heavily

extincted, low in number and typically farther away (Mottram et al., 2011); it is

challenging to study their super fast formation. In general, significant differences

are expected in the MYSO formation process with respect to the lower-mass case,

from the core phase to the ZAMS. These differences are probably caused by the

high mass gravitational instabilities generated, episodic accretion events, dynamical

interactions within clusters, and by the differences in the magnetic field. Hence,

the picture presented in this general introduction may only partially apply to them,

while the sketch of discrete phases of Fig. 1.5 is not entirely true, as these objects

basically skip through the PMS phase. It is important to note that although very few

in number (according to the IMF), MYSOs dominate the feedback of the ISM via

their outflows, HII regions and eventual supernovae. See Lumsden et al. (2013) for a

summary of the properties of these objects.

The pre-main sequence phase is the last stage of star formation. As the objects

evolve through the PMS phase; the interactions within the disc, the accretion, and

the feedback from the star (radiation and winds) end up clearing the disc (which

perhaps has formed a few planets, see Sect. 1.4.3). This is represented in the panel 5

of Fig. 1.5 (also called Class III phase). The timescale on which this occurs depends

on the mass of the star, as can be seen from the isochrones of Fig. 1.6, but it happens
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typically between ∼ 106 −107 yr. Historically, T Tauri stars have been subdivided

into classical T Tauri stars and weak-line T Tauri stars, depending whether they

are in the Class II or the Class III respectively. At some point the star reaches the

ZAMS, the disc gets mostly dispersed and a formed star starts its life with an orbiting

planetary system around, which is composed of planets and other minor bodies, a

picture not much different to our own Solar System.

1.4.3 Discs and planets

To complete the picture of star formation it is worth detailing the protoplanetary

discs around PMS objects. These discs consist of approximately 99% gas and 1%

dust (although this ratio is debated). Discs are rich, complex environments and they

evolve from gas-rich protostellar discs to gas-depleted, dissipated discs in a few

million years. These discs can be directly detected in the sub-millimiter and radio

wavelengths with telescopes like the Atacama Large Millimeter/submillimeter Array

(ALMA) or the forthcoming Square Kilometre Array (SKA). Examples of discs

around PMS objects detected with ALMA are presented in Fig. 1.8. In addition,

near-infrared scattered light traces the micron-sized grains that populate the optically

thick surface of the discs. This scattered light can also evidence planets or sub-

structure within protoplanetary discs (e.g. Canovas et al., 2017, Mendigutía et al.,

2017, Avenhaus et al., 2018).

A glance of the internal composition of these discs can be seen in the a panel of

Fig. 1.6. Mostly Keplerian in nature (except for some MYSOs), they have radial

mass displacements driven mostly through viscosity and turbulence. The first thing

to note is that because dust sublimates at a temperature of ∼ 1500 K only gas reaches

to the inner radii. However, dust is the most important component of the disc,

as many important chemical processes happen on the surface of dust grains and

they are the first step in the formation of planetesimals and planets through grain
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Fig. 1.8 Protoplanetary discs detected in continuum emission with ALMA around
different pre-main sequence stars. The beam size (resolution) is indicated in the
lower left corner. Figure from van der Marel et al. (2019).

growth processes. Hence, an important concept is the ‘snowline’, the radii where the

different volatile elements ice-condensate on the surface of dust grains and hence

are removed from the gas. Snowline locations depend primarily on temperature,

although other factors might have an influence. See Andrews (2020) for a review for

more details.

There is a large variety in the structure of PMS protoplanetary discs: spirals,

rings, cavities, misaligned inner discs, etc. (Garufi et al., 2018; Andrews et al., 2018

and related papers). The causes of these structures are under debate and several
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mechanisms have been proposed; for example dust traps (van der Marel et al., 2019),

snow lines (Zhang et al., 2015) or gravitational instabilities (Dong et al., 2018;

Booth and Ilee, 2020). However, the most accepted explanation is forming planets

interacting with the disc (Dipierro et al., 2015; Liu et al., 2019). Some planets have

been found within these discs in, for example, Quanz et al. (2015), Sallum et al.

(2015), Haffert et al. (2019), and Pinte et al. (2019); although most have been refuted

or questioned in later studies (see e.g. Mendigutía et al., 2018). Therefore, although

most protoplanetary discs show sub-structures (Long et al., 2018), hardly any planet

is detected in these discs. Note that detecting planets in such active environments

needs complex techniques which are often open to interpretation (see e.g. Mendigutía

et al., 2018 and references therein). However, there is a clear observational bias, as

so far mostly long-lived, massive discs around low-mass stars have been observed.

Manara et al. (2018) stated that discs as old as 1−10 Myrs might not be massive

enough to have active planet formation. As most planet detection methodologies

trace the interaction of the disc with the forming planets, this implies that planets

responsible for the observed sub-structures may have escaped searching campaigns

so far. In addition the presence of planets is expected to be higher at high-mass stars

(Kennedy and Kenyon, 2008; Pascucci et al., 2016; Panić and Min, 2017; Garufi

et al., 2018).

All the previous discussion points towards the fact that what we are missing in

these analyses is a homogeneous set of young Herbig Ae/Be stars. As explained in

Sect. 1.4.2 to generate that set is one of the main motivations of this thesis.

1.5 Observables: Gaia and other telescopes

As explained in Sect. 1.4.3, protoplanetary discs are visible at sub-mm and radio

wavelengths because they are irradiated by the central star. In fact, the disc is visible

from the near-infrared, in addition to the stellar photosphere. This IR excess which
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is re-radiated from the stellar emission can be seen in Fig. 1.5 in the different SEDs.

It characterises the stage of stellar evolution: Class 0 objects are only visible in the

IR, protostars might be optically visible but emit most of their energy as IR excess,

PMS sources’ SEDs peak in the optical but the disc is clearly visible from the near-

or mid- IR. Class III objects only have small or negligible IR excesses.

The IR excess properties of Herbig Ae/Be stars have been classified into two

groups differentiated by a flat or rising shape of the continuum (Meeus et al., 2001).

It is believed that this difference has a geometric origin depending on the presence

of flaring outer discs and puffed-up inner discs (Dullemond and Dominik, 2004a,b,

2005), and the presence of gaps in the disc (Maaskant et al., 2013; Honda et al.,

2015). Indeed, near-IR scattered light images of HAeBe stars indicate large disc

cavities which might be the base of the differences in IR SEDs. Whether this is

circumstantial or an evolutionary effect is still under study.

Another characteristic I have not mentioned yet is the presence of spectral emis-

sion lines, one of Herbig’s original conditions (Sect. 1.1). The material around the

photosphere is excited and ionised, generating emission lines above the photosphere

continuum (Kurosawa et al., 2006, 2011; Tambovtseva et al., 2014). Therefore, this

emission mainly comes from the accretion shock, pre-shock, and accretion column

(assuming magnetospheric accretion. In high-mass stars emission lines are observed

which also arise from hot gas close to the star, but note that a boundary layer model

for line emission is not yet available). At optical and IR wavelengths, the absorption

lines might appear more filled than they should because of the underlying emission,

this being called ‘veiling’. However, it is in the UV where the excess from accretion

is more evident, contributing to the continuum emission even orders of magnitudes

over the photosphere. X-rays have been observed, although they do not seem strongly

correlated with the accretion rates (Curran et al., 2011; Argiroffi et al., 2017).

Normally, the Hα line or other hydrogen lines are used to trace and characterise

accretion. However, other lines can be used. For example, Cauley and Johns-Krull

33



Introduction

(2014) found no infalling matter in HBe stars using He I λ10830. The correlation

between accretion luminosity and emission line strength for different lines was

studied in Mendigutía et al. (2011a, 2015), Donehew and Brittain (2011), and

Fairlamb et al. (2017). However, the origin of this correlation is yet unclear. The

line profile also carries information, and single-peaked profiles normally correspond

to face-on discs whereas double-peaked profiles correspond to edge-on discs (see

Chapter 2). P-Cygni profiles normally trace stellar winds or accretion. Similar

emission for stars with and without magnetic fields has been detected, which means

that some HAeBes have low magnetic fields but show strong accretion. Emission

lines might be misleading though, as they might vary over short time-scales and

be subjected to other stellar circumstances in addition to accretion (see Mendigutía

et al., 2011b).

The last main observational characteristic of PMS objects is variability. Herbig

Ae/Be stars are known to present irregular photometric variations, with a typical

timescale from days to weeks (Oudmaijer et al., 2001; Eiroa et al., 2002) and of the

order of one magnitude in the optical. This variability is typically caused by variable

extinction (‘dippers’, detected in ∼ 33% of the objects, Bouvier et al., 1999, Bodman

et al., 2017), which mainly arises from the rotating circumstellar discs. An extreme

case of large photometric variations caused by discs is observed in UX Ori type stars

(UXORs), with amplitudes up to 2− 3 mag. Other sources of variability are the

effect of rotation on cold photospheric spots and pulsations due to internal instability

(Marconi and Palla, 1998 and Zwintz et al., 2014, respectively). We add to this the

episodic accretion events mentioned in Sect. 1.4 (EXor or FU Ori type sources,

detected in ∼ 14% of the PMS objects, Cody et al., 2017). Infrared photometric

variability related to disc structure variations is not always correlated with the optical

variability (Eiroa et al., 2002) which implies that different mechanisms regarding both

the disc structure and accretion underlie the final observed variability. Spectroscopic

variability is also present in Herbig Ae/Be stars (Mendigutía et al., 2011b). PMS
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Fig. 1.9 Sky map of the total flux measured by Gaia for the almost 1.7 billion
sources in Gaia DR2. The colour is obtained from the blue (GBP) and red (GRP)
Gaia passbands. Note that this is not a picture, each point is an individual detection.
Figure from Gaia Collaboration et al. (2018b).

sources have a particular footprint in variability curves (because of disc-variability

but also because of asteroseismological oscillations; see Zwintz et al., 2015, 2011)

and different surveys have been used to sample their variability light-curves such as

CoRot, Kepler - K2, and the Transiting Exoplanet Survey Satellite (TESS).

As mentioned in Sects. 1.4.2 and 1.4.3, the purpose of this thesis is to perform a

general study of the properties of Herbig Ae/Be stars and to find new objects of the

class that allow to correct for the biases of the set of known objects. For this goal, I

used the data from the Gaia mission as a cornerstone of the thesis.

Gaia is an astrometric all-sky mission, whose main goal is to homogeneously

determine parallaxes, proper motions, radial velocities, and positions for about one

billion celestial sources. The Gaia spacecraft is currently orbiting at the L2 point in

a Lissajous orbit. Launched in 2013 for a nominal mission of five years, it carries

two telescopes which register stars passing through a single focal plane composed of

multiple CCDs. Gaia scans this way the whole sky while spinning, and it is totally

independent of previous catalogues and surveys. After 22 months of observations

its Data Release 2 (DR2, Gaia Collaboration et al., 2018b, 2016; map shown in
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Fig. 1.9) provided a five dimensional astrometric solution and low resolution optical

photometry in three bands for up to G . 21 mag (white G band, described in Evans

et al., 2018) to over 1.3 billion objects (Lindegren et al., 2018). The accuracy of the

parallax is of 22 micro-arcsecond at G = 15 mag. In addition, spectroscopy from Ca

triplet provides radial velocities for 7.2 million objects on the brighter end.

Looking back, the first reliable stellar parallax was measured in 1838 by Friedrich

W. Bessel (1784-1846) for 61 Cygni (Bessel, 1838). As discussed in Sect. 1.1, Rus-

sell produced a state-of-the-art catalogue of 55 parallax fields in 1906. He estimated

that the error of a single exposure was ∼ 0.05 arcsecond (Devorkin, 2000), which is

three to four orders of magnitude above Gaia DR2 typical uncertainties. Hipparcos,

the predecessor of Gaia, measured ∼ 120,000 parallaxes down to magnitude G ∼ 11.

By the time this PhD thesis was written, 1.33 billion sources had a Gaia parallax.

1.6 Machine learning

In this thesis I have used different machine learning (ML) techniques to visualise and

work with large datasets. ML is the branch of artificial intelligence which, by means

of statistical techniques, designs programs with the ability to progressively improve

at performing a specific task given some input data (i.e. to learn), without them

being explicitly programmed for that particular problem. ML algorithms discover

patterns in the data, achieve a good prediction performance in novel data and may

also aim at understanding, if such a thing could be properly defined.

There are two main branches within ML, supervised learning and unsupervised

learning. In supervised learning the input is a list of objects with measured properties

(features) and labels (ground truth). Supervised algorithms are mostly used for

regression or classification problems. The key concept of supervised learning is

that prior knowledge is required, from which the algorithm learns. Some of the

most famous supervised algorithms are: artificial neural networks (ANN), support
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vector machines (Cortes and Vapnik, 1995) and random forests (Ho, 1995). In unsu-

pervised learning the input is a list of objects with measured properties (no labels).

Unsupervised algorithms are mostly designed to detect clusters, complex relations

or outliers, or to reduce the dimensionality of a dataset. Prior knowledge is not

required. Examples of popular clustering algorithms are the ‘k-nearest neighbours’

or the ‘density-based spatial clustering of applications with noise’ (DBSCAN, Ester

et al., 1996). Examples of popular dimensionality reduction algorithms are ‘principal

component analysis’ (PCA) or ‘t-distributed stochastic neighbor embedding’ (t-SNE,

van der Maaten and Hinton, 2008).

1.6.1 Loss and hypothesis functions

The output of a ML algorithm is called the hypothesis function, which is expressed

by means of the internal parameters of the algorithm (θ0,θ1,θ2, ...,θm). All machine

learning algorithms are based on two main concepts. A loss or cost function and an

algorithm to minimise (optimise) such function. The loss function measures of how

good an algorithm does in terms of being able to predict the expected outcome. In

other words, it measures the accuracy of the hypothesis function. A simple example

of a hypothesis function is:

hθ (x) = θ0 +θ1x. (1.3)

If a set parameters (θ0,θ1) is chosen it is possible to make a prediction hθ (x) for

any value of the feature x. Selecting the best parameters θ0 and θ1 so hθ (x) gives the

best prediction according to some prior knowledge constitutes a linear regression

problem, one of the simplest forms of ML algorithms. Say we have n known data

pairs [(x0,y0),(x1,y1), ...,(xn,yn)] (i.e. some ground truth yi for every object i with

the feature value xi). A perfect hypothesis would be the one with hθ (xi) = yi for

every xi,yi pair. Therefore, the way forward is to minimise the distance between the

37



Introduction

hθ (xi) and the yi values on the n pairs (xi,yi). That is, it is necessary to minimise the

loss function J:

J(θ0,θ1) =
n

∑
i=1

(hθ (xi)− yi)
2. (1.4)

In order to minimise J we need of an optimisation algorithm that starts with

some random θ0,θ1 and iteratively changes them to reduce the value of J(θ0,θ1)

until, hopefully, a minimum is reached. The parameters at the minimum define our

trained algorithm, which makes the best hypothesis given the chosen ground truth.

The (xi,yi) pairs receive the name of ‘training set’. Loss function optimisation is

exemplified in Fig. 1.10.

Other ML algorithms are not much different in their principles to this example,

although they might be much more complex in their details. Hence, they can adapt

to datasets which are beyond the scope of any polynomial fit. In particular, ML

algorithms are characterised by the so-called ‘hyper-parameters’, which are the

values the user may or must choose that define the fine details of the structure of the

algorithm and constrain its behaviour. Thus, the selection of the hyper-parameters is

of the utmost importance in any ML application. In the case of unsupervised learning,

where there is no prior knowledge to aid the algorithm, the hyper-parameters totally

dominate the output.

1.6.2 Overfitting and underfitting

Two paramount concepts in any supervised ML application are ‘overfitting’ and

‘underfitting’. With the right hyper-parameters, most ML algorithms can get as

complex as the user demands. However, in order to achieve optimal performance

the complexity of the algorithm needs to match the one demanded by the specific

problem. The more complex the algorithm is, the more it adjusts to the training

data. If the algorithm is overly complex it gets too sensitive to the training data
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Fig. 1.10 Left: Two different hypothesis functions, one linear (h1
θ

) and one fifth
degree polynomial (h5

θ
), result from training with the same training set of six data

pairs. The training was performed by finding the parameters θ that minimised
the total distance between the hypothesis predictions and the training labels (i.e.
hθ (xi)− yi, see Eq. 1.4). After training, the more complex algorithm (h5

θ
) has

achieved a much better fit to the training data, but it is unlikely that the resulting
hypothesis function satisfactorily predicts novel data. This is a case of overfitting.
Right: Six more data pairs were added to the training set at left, increasing the
complexity of the problem. Now h1

θ
is clearly underfitting the problem, whereas a

more complex hypothesis like h2
θ

is more capable of generating adequate predictions.

and no longer generalises properly to novel data outside the training set. This is

called overfitting or high variance. On the other extreme, if a too simple algorithm

is applied to a problem of greater complexity it will not achieve an accurate fit to

the training set and, therefore, it will also fail when generalising. This is called high

bias or underfitting. The performance of every supervised ML algorithm is mostly

determined by the balance of these two concepts, which are exemplified in Fig. 1.10.

The loss function is defined in terms of the training set (see Eq. 1.4) so it does

not inform about overfitting. This is why ‘cross-validation’ and ‘test sets’ are used.

These sets are random subsamples of the training set that are not used for training, but

are kept separate to evaluate the performance of the algorithm. Cross-validations sets

are used at intermediate steps to estimate the best configuration of hyper-parameters

or to assess when to ‘early-stop’ the optimisation of the loss function, whereas the
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test set (typically 10−30% of the original training set) is used only to evaluate the

performance of the final trained algorithm.

There are different ways to approach underfitting, in addition to increasing the

complexity of the algorithm, which is not always possible, desirable or convenient.

It is often more useful to get more training data or to use additional features. If an

algorithm suffers from overfitting it is possible to reduce its complexity or to use

fewer features. Another approach is to use the hyper-parameters of the algorithm.

For example, some common hyper-parameters used in ANNs to reduce overfitting

are ‘regularisation’ or ‘dropout’.

It is important to note that it has been widely tested that most supervised algo-

rithms achieve similar performances when exposed to the same dataset (e.g. Banko

and Brill, 2001). Therefore, it is not about the algorithm used, it is about the quality

and quantity of the data. This also have been observed in multiple astrophysical

applications (e.g. Pérez-Ortiz et al., 2017, Pashchenko et al., 2018 or Marton et al.,

2019). Therefore, feature extraction and data selection constitute a necessary and

important step in any ML application. In contrast, performance on unsupervised

algorithms can vary heavily from algorithm to algorithm, and as happens with the

hyper-parameters, the selection of the algorithm determines the output and it should

be studied with caution for every particular case. Furthermore, there is a strong

inverse correlation between algorithm interpretability and algorithm complexity.

Linear regressions on one extreme are easy to interpret but cannot construct complex

hypothesis functions. On the other end, ANNs and support vector machines can find

highly complex non-linear relations in the data, but little or no information can be

extracted about how they got to the output they provide.

Most of ML algorithms have been known for decades. However, only now that

the Big Data era has arrived their use has generalised to almost all disciplines. This

is because ML algorithms are very data-demanding. Therefore, large datasets as

the ones produced by Gaia are excellent for exploitation with statistical learning
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techniques (as done in e.g. Marton et al., 2019, Castro-Ginard et al., 2019, 2018;

Galli et al., 2019; Cánovas et al., 2019; Kounkel and Covey, 2019 or Zari et al.,

2019). There are some caveats; ML algorithms are not suitable for all problems, their

outputs are hard to interpret and it is very easy to introduce unwanted or uncontrolled

biases. In addition, they are computationally expensive and they struggle to deal with

missing data and uncertainties. However, there are several problems and patterns that,

either because of being too complex or too subtle, are unreachable for the human

brain and can only be explored using these techniques. General references can be

found in James et al. (2013) and Ng (2017). See also Baron (2019) for a general

description of these techniques into astronomy, including the not mentioned but

broadly used convolutional neural networks and other ‘deep learning’ algorithms. A

more detailed description of the ML algorithms used in this dissertation is presented

in Appendix B.

1.7 Thesis outline

Almost all of the known Herbig Ae/Be stars have parallaxes in Gaia DR2, which

allows luminosities to be derived and 252 HAeBes to be placed in the HR diagram.

This enables me to perform a homogeneous study of the general properties of these

objects. This is done in Chapter 2 of this thesis.

Using the Gaia characterisation of known Herbig Ae/Be stars of Chapter 2 as

starting point, I identify new Herbig Ae/Be candidates and create an unbiased and

well defined catalogue of new objects of the class. This is done by means of machine

learning techniques in Chapter 3. Classical techniques are not efficient for identifying

new Herbig Ae/Be stars mainly because of their similarity with classical Be stars,

with which they share many characteristics. By focusing on disentangling these two

types of objects, our algorithm has also identified new classical Be stars.
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Chapter 4 is dedicated to a study of the properties of the new PMS and classical

Be candidates from the catalogues constructed in Chapter 3. To this I add a detailed

description and analysis of the independent spectroscopic observations I performed

for a subsample of the catalogues.

Finally, the general conclusions of the thesis are presented in Chapter 5, to which

I add future prospects for research.
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Chapter 2

Analysis of known Herbig Ae/Be

stars

The geometry of innocence flesh on the bone

Tombstone Blues, 1965 – Bob Dylan

In this chapter I use Gaia Data Release 2 (DR2) to place 252 known Herbig Ae/Be

stars in the Hertzsprung-Russell (HR) diagram and investigate their characteristics

and properties. This chapter is organised as follows: In Sect. 2.1, I describe the data

acquisition of not only the parallaxes, but also optical and IR photometry, effective

temperatures, extinction values, Hα emission line information, and binarity. In Sect.

2.2, I derive the stellar luminosities and place the objects in a HR diagram, while

I also present a method to derive a statistical assessment of the objects’ variability

in Gaia’s database. In addition, I homogeneously derive masses and ages for all the

sources, together with near-IR (NIR) and mid-IR (MIR) excesses. In Sect. 2.3, I carry

out an analysis of the data and present various correlations and interdependencies,

which I discuss in the context of intermediate-mass star formation in Sect. 2.4.
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2.1 Data acquisition

2.1.1 Construction of the sample

I have gathered the majority of Herbig Ae/Be stars known and proposed to date from

different works (272, see Chen et al., 2016 for a compilation of most of them). Chen

et al. (2016) based their sample mostly on the work of Zhang et al. (2006) which in

turn is based on the work of The et al. (1994) and Vieira et al. (2003). In addition, I

included a few HAeBes from Alecian et al. (2013), Baines et al. (2006), Carmona

et al. (2010), Fairlamb et al. (2015), Hernández et al. (2005), Manoj et al. (2006),

and Sartori et al. (2010) that are not present in the aforementioned papers.

Although Herbig Ae/Be stars have long been considered, by definition, to be type

A or B, there should be some flexibility in this constraint as the physical boundary

between Herbig Ae stars and Intermediate Mass T Tauris is relatively poorly studied.

This is because spectral types of T Tauri stars are typically K-M with some G-type

objects, while Herbig Ae/Be stars are, quite unsurprisingly, limited to A and B

spectral type. Therefore, PMS stars of intermediate spectral types have often been

largely understudied. I therefore keep objects with F-type classification in Chen et al.

(2016) in the sample. Similarly, no upper limit in mass was imposed, leaving the

separation between MYSOs and HAeBes to the optical brightness of the sources 1.

Subsequently, I cross-matched the sources with Gaia DR2. Detections were

considered to be matched with the catalogue when their coordinates agreed to within

0.5 arcsecond. If more than one match was found, I took the closest one. If no match

was found within 0.5 arcsecond, successive cross-matches with larger apertures

were performed up to 2 arcsecond. In these latter cases an individual inspection of

the cross-match was applied. Finally, a comparison between the Johnson V band

1The MYSOs are typically IR-bright and optically faint (Lumsden et al., 2013). However, a
number of optically visible objects are known to have passed all selection criteria such as the
early-type objects PDS 27 and PDS 37 that are also classified as Herbig Be stars (Ababakr et al.,
2015).
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magnitudes and the Gaia filters was made for each source in order to discard possible

incorrect matches. This provided me with parallaxes for 254 HAeBes.

As Lindegren et al. (2018) point out, not all Gaia DR2 parallaxes are of the same

quality, and some values - despite their sometimes very small error bars - appear

erroneous. I included the following constraint in astrometric quality following the

indications in Appendix C of Lindegren et al. (2018) and what was applied in Gaia

Collaboration et al. (2018a). This constraint will remove objects with spurious

parallaxes from the sample:

u < 1.2×max(1,e−0.2(G−19.5)), (2.1)

where G is the Gaia G band and u is the ‘unit weight error’, defined as the square

root of the ratio of the ‘astrometric_chi2_al’ and (‘astrometric_n_good_obs_al’ −

5) columns (Lindegren et al. 2018, their Equation C.2). Of the 254 HAeBes, 228

satisfy this condition.

Some objects are found to be very close to this condition; PDS 144S, PV Cep

and V892 Tau, and as I show below, they would appear significantly below the MS

in the HR-diagram. Given that the Lindegren et al. (2018) condition is presented as

a guideline rather than a rule by the Gaia astrometry team, I decided to treat these

three objects as if they satisfy Eq. 2.1 as well.

I refer to the set of astrometrically well-behaved sources as the high-quality

sample and to those that do not satisfy Eq. 2.1 as the low-quality sample. Two sources

could not be placed in the HR diagram due to a lack of appropriate parameters (Sect.

2.1.2). In addition, I move five more sources to the low-quality sample in Sect.

2.2.1 for different reasons. Summarising, there are 218 objects (228−3−2−5) in

the final high-quality sample and 34 in the low-quality one. Information about the

objects in different samples is presented in separate tables in Appendix A (Tables

A.1, A.2, and A.3 for the high-quality sample and Tables A.4, A.5, and A.6 for the
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low-quality sample). The high-quality sample will be the one taken into account in

further considerations unless otherwise specified.

Distances are not obtained by straightforwardly inverting the parallax. The

conversion of one parameter to the other one is not strictly trivial because of the non-

linearity of the inverse function (see for example Bailer-Jones, 2015). In addition,

distances can be strongly affected by the selection of a prior for the conversion. In

the case of Gaia DR2, Bailer-Jones et al. (2018) proposed distance values using

a weak distance prior that follows a Galactic model. Their distances begin to

differ from the distances obtained through simple inversion for sources with large

errors, σϖ/ϖ & 0.5. Therefore, in the initial (high- and low-quality) sample only

a small subset of 12 Herbig Ae/Be stars suffers substantially from these effects.

Following the indications in Luri et al. (2018) on how to treat the Gaia parallaxes,

I decided to apply a simpler exponentially decreasing prior to estimate distances.

For completeness, I should note that the parallaxes provided by Gaia DR2 have a

regional and not Gaussian systematic error as large as 0.1 mas and a global zero

point error of about −0.029 mas which are not included in the Gaussian random

errors provided in the Gaia archive (see Arenou et al., 2018 and Lindegren et al.,

2018). The uncertainty in the parallaxes is therefore slightly underestimated. The

final errors in the high-quality sample range from 0.016 to 0.37 mas.

Herbig Ae/Be stars have been historically confused with classical Be stars, with

which they share many characteristics (Grundstrom and Gies, 2006; Rivinius et al.,

2013; Klement et al., 2017). Indeed, the nature of some of the objects in the sample is

still under debate. An interesting example in this respect is HD 76534, a B2Ve object

that appears in listings of Be stars (e.g. Oudmaijer and Drew, 1997) and Herbig

Be stars alike (Fairlamb et al., 2015). The latest dedicated study puts the object

in the Herbig Be category (Patel et al., 2017). To assess the effect of ambiguous

classifications in this study, next to the full sample, I also consider the subset of

Herbig Ae/Be stars in Table 1 of The et al. (1994). This catalogue contains all
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historically known, and best studied, Herbig Ae/Be stars. Ninety-eight of the 254

initial sources with parallaxes are present in this table (their best candidates). This

The et al. (1994) subset is indicated in Table A.3 and Table A.6 for the high- and

low-quality samples, respectively.

2.1.2 Atmospheric parameters, photometry, and extinction val-

ues

I obtained atmospheric parameters and photometric and extinction values for all

the sources from the literature. These were mainly Alecian et al. (2013), Carmona

et al. (2010), Chen et al. (2016), Fairlamb et al. (2015), Hernández et al. (2004),

Hernández et al. (2005), Manoj et al. (2006), Montesinos et al. (2009), Mendigutía

et al. (2012), Sartori et al. (2010), Vieira et al. (2003), and the APASS Data Release

9 (Henden et al., 2018). Whenever the effective temperature (Teff) was not available

it was derived from the spectral type with the effective temperature calibration tables

of Gray and Corbally (2009). An uncertainty of 1 sub-spectral type was assigned

in all cases. When not listed in the literature, AV values were derived from the

observed photometry and using the intrinsic colours of Pecaut and Mamajek (2013).

An RV = 3.1 was used in all cases in which AV was derived; although other studies

like Hernández et al. (2004) or Manoj et al. (2006) have suggested that a larger value

of for example RV = 5 could be more appropriate for HAeBes where local extinction

dominates the total extinction. This is a topic for future investigations using diffuse

interstellar bands (as done by e.g. Oudmaijer et al., 1997). The relevant data of each

source is presented in Tables A.1 and A.4 for the high- and low-quality samples,

respectively.

HAeBes usually show photometric variability. Thus, for objects with multi-epoch

photometry available, I selected the brightest set to determine the extinction towards

the objects and thus their intrinsic brightnesses. As I also show below, the variability
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is often caused by irregular extinction; using those data with minimum extinction

introduces the smallest errors in the determination of the stellar parameters. For

this reason, I only used simultaneous photometry when deriving AV values. All the

photometric values were corrected for extinction using the reddening law of Cardelli

et al. (1989).

Two sources, V883 Ori and GSC 1829-0331, do not have enough simultaneous

photometry available to derive extinctions for them and therefore they were excluded

from the sample. The total number of Herbig Ae/Be stars that can be placed in

the HR diagram and for which I can derive stellar luminosities, masses, ages, IR

excesses, and variabilities in Sect. 2.2 is therefore reduced to 252 objects.

2.1.3 Infrared photometry

All the sources were cross-matched with the Two Micron All-Sky Survey (2MASS,

see Skrutskie et al., 2006) and with the Wide-Field Infrared Survey Explorer all-sky

catalogue (hereafter WISE, see Cutri et al., 2013). Both of these surveys contain

hundreds of millions of stars, guaranteeing a large overlap with Gaia. I used a

three-arcsecond aperture for the cross-match. The few sources that did not lie within

that three-arcsecond threshold were studied individually and, if present, their IR

photometry was included. This provides values and uncertainties for the J, H, and

Ks bands (1.24, 1.66 and 2.16 µm, respectively) and for the W1, W2, W3, and W4

bands (3.4, 4.6, 12 and 22 µm, respectively) for most of the HAeBes. I note that

for some sources some of the bands may be missing or may just be upper limits. I

double-checked all IR matches with the dereddened optical photometry and found

no inconsistencies.

48



2.1 Data acquisition

2.1.4 Hα equivalent width and emission line profile

I collected all the Hα equivalent widths (EW) I could find in the literature for the

Herbig Ae/Be stars. Not only the intensity of the line but also the shape contains

very useful information. Therefore, when possible, information about the shape

of the Hα line was included. I have classified the Hα line profile as single-peaked

(s), double-peaked (d) and showing a P-Cygni profile (P), both regular or inverse.

Equivalent width and line shape information are presented in Tables A.2 and A.5

for the high- and low-quality samples, respectively. Many Herbig Ae/Be stars are

quite variable in their Hα emission and their EWs may significantly change on short

timescales (e.g. Costigan et al., 2014). This is also the case for the line shape,

although spot checks on objects that have more than one Hα observation listed

in the literature appear to indicate that there are not many changes in line profile

classification (see also e.g. Aarnio et al., 2017), although changes between single-

peaked and double-peaked profiles in a given star are also observed (Mendigutía

et al., 2011b). I do note the additional complication that emission line shapes are

often difficult to unambiguously classify.

Regarding the Hα EWs compiled, I note that the main references (Fairlamb et al.,

2015 and Mendigutía et al., 2011b) provide the non-photospheric contribution of the

EW, while most other authors state the observed EW, which includes the photospheric

contribution. This photospheric absorption peaks for A0-A1 type objects, with EW

values of ∼+10 Å (See e.g. Fig. 7 of Joner and Hintz, 2015) but is only ∼+2 Å for

B0 objects. I used the Joner and Hintz (2015) results to correct those EWs that were

not corrected for absorption.

I have Hα EWs for 218 of the 252 HAeBes and line profiles for 197 of these:

31% are single-peaked, 52% are double-peaked, and 17% are P-Cygni (of which the

vast majority are of regular P-Cygni type). This is in agreement with Finkenzeller

and Mundt (1984) who found that out of 57 HAeBes, 25% were single-peaked,
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50% showed double-peaked Hα profiles, and 20% presented a P-Cygni profile (both

regular and inverse). The main references for the EW values are Baines et al. (2006),

Fairlamb et al. (2017), Hernández et al. (2004), Mendigutía et al. (2011b), and

Wheelwright et al. (2010). The main references for the line profiles are van den

Ancker et al. (1998), Baines et al. (2006), Mendigutía et al. (2011b), Vieira et al.

(2003), and Wheelwright et al. (2010). The rest of the references can be found in

Tables A.2 and A.5.

2.1.5 Binarity

More than half of the Herbig Ae/Be stars are known to be in binary systems (Duchêne,

2015). The true number is likely much larger, as there have been a small number

of targeted surveys for binarity of HAeBe stars, the largest are Wheelwright et al.

(2010) and Baines et al. (2006) who performed spectroastrometry of 45 HAeBes and

31 HAeBes, respectively, probing companions in the ∼ 0.1 - 2 arcsecond range, and

Leinert et al. (1997) who performed speckle interferometry of 31 objects, sampling

separations of order 0.1 arcsecond. Eighty-one of the 252 HAeBes (∼ 32%) of my

set are catalogued as binary systems, a fraction that is in agreement with the Duchêne

(2015) findings if the large number of faint Herbig Ae/Be stars which have never

been studied for binarity is taken into account. The binary status of each HAeBe is

presented in Tables A.1 and A.4 for the high- and low-quality samples, respectively.

Main references were Baines et al. (2006), Leinert et al. (1997), and Wheelwright

et al. (2010); I refer to Table A.1 and A.4 for a complete list.

Baines et al. (2006) found a typical wide (few hundred astronomical units)

separation in the binary systems. Wheelwright et al. (2010) detected no binaries

closer than 30 au and established a range of ∼ 40−4000 au in their data.
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2.2 Derived quantities

2.2.1 Luminosity and Hertzsprung-Russell diagram

Using the parallaxes, atmospheric parameters, and extinction values, I derived the

luminosity for the 252 HAeBes with parallaxes employing a similar method to

Fairlamb et al. (2015), which is similar to that of Montesinos et al. (2009) and van

den Ancker et al. (1997). In short, it first consists of using values of Teff and surface

gravity (log(g)) to select an atmosphere model from Castelli and Kurucz (2003)

(referred to as CK-models hereafter) for each star to be used for its intrinsic spectral

energy distribution (SED). Solar metallicity CK-models were used in all cases but for

BF Ori, RR Tau, SV Cep, XY Per and WW Vul for which the metallicities are known

not to be solar from the spectroscopic work of Montesinos et al. (2009). When

possible, the log(g) values were estimated from the luminosity class; otherwise they

were taken as 4.00 (typical values range from 3.5 to 4.5). Uncertainties in log(g)

and metallicity can be neglected in this study as their effect on the model SED and

derived quantities is negligible.

I then scaled the model to the dereddened photometric Johnson V band. The

energy distribution is then integrated over frequency to get the total flux. The final

luminosities, presented in Tables A.1 and A.4 for the high-quality and low-quality

samples, respectively, are then obtained by means of the total flux and the parallax.

All sources of uncertainty were taken into account at this step including using

different CK models for the different temperatures within the T eff uncertainty range.

The 223 Herbig Ae/Be stars satisfying the Eq. 2.1 constraint are plotted in the

resulting HR diagram in Fig. 2.1. This number is an increase of more than a factor

of ten compared to the previous, Hipparcos-based study by van den Ancker et al.

(1998). Pre-main sequence evolutionary tracks from Bressan et al. (2012) are also
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GSC 5360-1033

UY Ori

MWC 314

MWC 623

MWC 930

Fig. 2.1 223 Herbig Ae/Be stars in the HR diagram satisfying Eq. 2.1 constraint. In
most cases vertical error bars are dominated by parallax uncertainties. Sources with
a white dot have been classified as binaries. Explicitly named sources are discussed
in the text in more detail. The mass of each PMS track (Bressan et al., 2012) is
indicated on the righthand side. An isochrone (Bressan et al., 2012; Marigo et al.,
2017) of 2.5 Myr is also shown for reference as a dashed line.

plotted in Fig. 2.1 in addition to a 2.5Myr isochrone (Bressan et al., 2012, Marigo

et al., 2017), all of them with solar metallicities (Z = 0.01 and Y = 0.267).

Before I analyse this sample, I also plot the HR diagram for all 252 objects with

parallaxes (the high- and low-quality samples together, hence including those which

failed the Lindegren quality selection criteria) in Fig. 2.2 in the top panel. Many

of these astrometrically badly behaved sources are located in unphysical positions,

significantly below the MS, validating the approach of removing those from these

analyses.

Returning to the HR diagram in Fig. 2.1, there are still several outliers that do

not seem to be PMS objects. GSC 5360-1033 and UY Ori appear way below the MS,

just like the lower-quality objects that were removed earlier. However, the Gaia DR2
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data of these two objects appear to be of good quality. Regarding GSC 5360-1033,

the situation is unclear, an ambiguous spectral type or photometry for this object

or an incorrect estimation of the extinction may be the reason for the unexpected

location of the object. For UY Ori, Fairlamb et al. (2015) assigned a spectral type

of B9, but the photometry listed in SIMBAD indicates a large variability. Pending

more certainty, I decided to move these two objects from the high- to the low-quality

sample.

MWC 314, MWC 623, and MWC 930 on the other hand appear quite luminous

and very much to the right of the MS (see Fig. 2.1), something very unusual for

high-mass PMS objects. An individual inspection reveals that these objects are

more likely to be evolved giants and they appear in the literature as such (e.g. for

MWC 314: Carmona et al., 2010, for MWC 623: Lee et al., 2016, for MWC 930:

Miroshnichenko et al., 2014). Deciding on the nature of the various Herbig Ae/Be

stars in the master sample is beyond the scope of this chapter, which is essentially

a statistical study (see Chapter 3 for further discussion on this topic). However,

these objects occupy a special place in the HR diagram that is consistent with both a

pre- and a post-MS nature, while there is much information regarding these objects

supporting their post-MS nature. I therefore decided to err on the side of caution and

exclude these from further analysis as well.

The final HR diagram without these 2+ 3 problematic objects is presented in

Fig. 2.2 in the bottom panel. In addition, in this graph, I highlight the sample of The

et al. (1994) bonafide HAeBes in red. This final high-quality sample of 218 objects

is the one used in the following plots and studies. The information concerning the 34

discarded objects in the low-quality sample can be found in Tables A.4, A.5 and A.6.

In this last high-quality HR diagram I see that there are many more low-mass

HAeBes than high-mass HAeBes (69% of the sources are below 4 M⊙). This is

most likely because of the initial mass function (IMF). This trend of more objects for

lower masses discontinues below ∼ 2 M⊙. This is roughly the mass corresponding
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Fig. 2.2 Top: 223 high-quality and 29 low-quality Herbig Ae/Be stars in the HR
diagram after the cut in astrometric quality described in Eq. 2.1. Bottom: 218 Herbig
Ae/Be stars in the final high-quality sample after removing the five problematic
objects described in Sect. 2.2.1. Those objects present in Table 1 of The et al. (1994)
are shown in red. The mass of each PMS track (Bressan et al., 2012) is indicated on
the right-hand side. An isochrone (Bressan et al., 2012; Marigo et al., 2017) of 2.5
Myr is also shown for reference as a dashed line.
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to the boundary between MS A- and F-type stars, and thus the traditional lower-mass

boundary at which the Herbig Ae/Be stars were originally selected.

For lower masses, the sources show a greater spread in temperature, occupying

larger parts of the PMS tracks, while, instead, the high-mass objects tend to be

predominately located close to the zero-age main sequence (ZAMS). This is likely

because the higher the mass, the faster the PMS evolution. This fast evolution could

explain why high-mass objects at low temperatures (and thus low surface gravities)

are barely present in Fig. 2.1 or the sample. I encounter more examples below where

high- and low-mass objects have different properties.

2.2.2 Mass and age

The masses and ages of the Herbig Ae/Be stars were estimated using isochrones. I

used 100 PMS PARSEC (PAdova and TRieste Stellar Evolution Code) isochrones

with solar metallicity (Bressan et al., 2012; Marigo et al., 2017) from 0.01 to 20

Myr. To each Herbig Ae/Be star I assigned the closest two isochrone points in the

HR diagram; the solar metallicity isochrones did not match seven sources from the

high-quality sample in the HR diagram and isochrones with lower metallicities were

used in those cases. As each point is associated with a mass (M) and an age, for each

HAeBe I computed an average of those values weighted by the distance to the points.

The result is an estimate of age and mass for 236/252 HAeBes. These values are

presented in Tables A.2 and A.5 for the high- and low-quality samples, respectively.

Uncertainties were derived from the error bars in the HR diagram (Fig. 2.1 and

Fig. 2.2) keeping a minimum error of 5%. Many of the derived masses and ages

were compared with those of Alecian et al. (2013) and Reiter et al. (2018). I found

that the determinations presented here of these parameters are consistent with the

results of the previous authors.
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2.2.3 Infrared excesses

An example of a dereddened SED with a CK-model scaled to the V band that allows

for measuring luminosity is presented in Fig. 2.3. In the process of deriving the lumi-

nosity it is also possible to derive the IR excess. The different dereddened observed

fluxes from the J band (1.24 µm) to the W4 band (22 µm) were logarithmically

interpolated and the IR excess (E) was defined as:

E =
(Fe −F∗)[λ1,λ2]

F∗
, (2.2)

where Fe is the total flux underneath the observed dereddened photometry (the IR

photometry has also been dereddened) and F∗ is the total photospheric flux below the

CK model (see Fig. 2.3). λ1 and λ2 define the range of wavelengths of interest and

the total fluxes in the numerator simply refer to that range. This measure expresses

the excess in terms of the total luminosity of the object. For example, all things being

equal, if two stars have the same amount of dust surrounding them, and one of them

is brighter, the IR re-radiated emission will be larger but the IR excess, as defined

here, would be the same, as it is a relative measure. The same or a very similar

indicator was used by Cote and Waters (1987, their Eq. 8), Waters et al. (1987, Eq.

3), and more recently by Banzatti et al. (2018) in their Sect. 2.3.

Uncertainties in the IR excesses were derived using the uncertainties in the

observed fluxes and the uncertainties in the temperature (which affect the CK models)

of each object.

I have split the total IR excess into two: a NIR excess (1.24−3.4 µm, roughly

the 2MASS region) and a MIR excess (3.4−22 µm, the WISE region). The values

for these excesses are presented in Tables A.2 and A.5 for the high- and low-quality

samples, respectively. The total IR excess (1.24−22 µm) is the sum of the two.

In addition, I also computed the IR excess at each individual band (J, H, Ks, W1,

W2, W3, and W4) as the flux ratio between the dereddened observed monochro-
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Fig. 2.3 Dereddened SED of HD 100453 Herbig Ae/Be star with a Castelli and
Kurucz (2003) atmosphere model of the literature temperature in black scaled to the
V band. 2MASS (J, H, Ks) and WISE (W1, W2, W3, W4) infrared bands are shown.
Shaded area indicates the IR excess region considered at the numerator of Eq. 2.2.
The derived parameters in Sects. 2.2.1 and 2.2.2 are shown on the top right. This
Herbig Ae/Be SED is presented as an example of the 252 obtained in this chapter.

matic flux and the expected flux according to the CK model. The values for these

excesses are presented in Tables A.3 and A.6 for the high- and low-quality samples,

respectively

2.2.4 Variability information

Gaia DR2 does not provide a general variability indicator for all sources. Here,

Gaia’s repeated observations are used to extract photometric variability information.

Gaia DR2 used a total of 22 months of observations and each source was observed

repeatedly in a non-periodic fashion. Data Release 2 provides the average photometry,

the uncertainty on this value, and the number of observations. All things being equal,
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the photometric error will be larger for a photometrically variable object than for a

stable object. Here I aim to quantify the variability of the objects. I start with the

‘variability amplitude’ (Ai) for a certain source i as presented in Deason et al. (2017):

Ai =
√

Nobs,i e(Fi)/Fi, (2.3)

where Nobs is the number of CCD crossings, and F and e(F) are the flux and flux

error, respectively. This quantity is powerful in identifying objects that show larger

flux variations than expected for a stable star. However, in order to statistically assess

the level of variability, I introduce a variability indicator Vi, which quantifies how

much more variable an object is compared to stable objects of the same brightness.

In short it compares the variability amplitude from Eq. 2.3 of a given object (i) to

that of all Gaia objects in a brightness interval of ±0.1 magnitude around the G band

value of the object (i.e. to Aa,Ga∈(a1,a2), with a indexing the Gaia catalogue and being

a1 = Gi −0.1mag and a2 = Gi +0.1mag). The equation is as follows:

Vi =
Ai −Aa,Ga∈(a1,a2)

σ [Aa]Ga∈(a1,a2)
, (2.4)

where G is the Gaia white G band magnitude and σ is the standard deviation. In

essence, I subtract the error to flux ratio of each HAeBe, weighted by the number

of observations, to the mean of the same expression (Aa, Eq. 2.3) for the sources in

the Gaia catalogue within ±0.1 mag of the Herbig star in the G band. I then divide

by the standard deviation of Aas of that Gaia subset. This results in a variability

indicator which measures the variability (in standard deviations, σ ) for each Herbig

Ae/Be star compared to the mean of field objects of the same brightness.

For completeness, I note that it is necessary to impose more constraints to exclude

the cases in which a larger error is not due to intrinsic variability. Following Deason

et al. (2017), Appendix C of Lindegren et al. (2018) and what was done in Gaia

Collaboration et al. (2018a) I require Nobs > 70 and more than eight visibility periods
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Fig. 2.4 Distribution of the variability indicator for Herbig Ae/Be stars and two
catalogues of photometric standards; one of bright sources (Landolt, 2009) and one
of faint sources (Clem and Landolt, 2016). As a class, the Herbig Ae/Be stars are
more variable than the photometric standards.

(i.e. groups of observations separated by at least four days), in addition to the Eq. 2.1

constraint that limits the astrometric quality (and hence the variability indicator

can simply be derived for sources in the high-quality sample). In order to also

limit the photometric quality, I included the following criterion presented in Gaia

Collaboration et al. (2018a):

1.0+0.015(GBP −GRP)
2 < EF < 1.3+0.06(GBP −GRP)

2, (2.5)

where EF is the ‘flux excess factor’ and GBP and GRP the Gaia blue and red passbands,

respectively. I note that these constraints may inevitably exclude many of the

very variable HAeBes as they also trace larger errors and hence variability. These

constraints will also be biased toward discarding binaries and faint sources in crowded

areas (Lindegren et al., 2018; Gaia Collaboration et al., 2018a).
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The variability indicator values for the 193 sources satisfying the previous condi-

tions are presented in Table A.2.

In Fig. 2.4, I show the Vi distribution of Herbig Ae/Be stars and compare it to

the Vi distribution of bright photometric standards from Landolt (2009) and faint

photometric standards taken from Clem and Landolt (2016). If Eq. 2.4 had not been

used these two latter samples would have had a different mean in the distribution of

Ai. The Herbig Ae/Be stars appear to show, on average, a larger variability indicator

value than the standard stars, which have typical values of Vi . 2. I performed a

two-sample Kolmogorov-Smirnov (KS) statistical test to decipher whether or not

Herbig Ae/Be stars can be drawn from those two samples of standard stars. The

result shows that I can reject that hypothesis to within a 0.001 significance and hence

this variability indicator differentiates them as a group.

In order to assess the relation between the variability indicator (G band variability)

and variability in the V band I compared the magnitude variations in the V band as

presented in the International Variable Star Index (VSX, Watson et al., 2006) with

the variability indicator values. I found that variabilities as small as ∼ 0.5 mag are

being traced with the Vi = 2 cut-off. In Eiroa et al. (2002) 7/23 (30%) PMS objects

homogeneously observed for variability have variabilities above 0.5 mag. In the case

presented here, 48 out of 193 sources have values above Vi = 2 (25%) and hence

can be considered as strongly variable. Of those 48, 17 are catalogued as UXOR

type (Oudmaijer et al., 2001; Poxon, 2015). There are 5 other UXORs in the sample

with Vi values, and 4 of them have reported optical variabilities smaller than 0.5

mag in the V band. The other one is BO Cep. This object has been reported to

have a periodic variability with a single prominent peak with a period of ∼ 10 days

(Gürtler et al., 1999). The regular non-periodic variability of the object is smaller

than 0.5 mag which explains why this UXOR has not been detected by the variability

indicator. Supporting this, it appears as UXOR in Poxon (2015) but not in Oudmaijer
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et al. (2001). Known UXORs are indicated in Tables A.2 and A.5 for the high- and

low-quality samples, respectively.

To put the variability indicator into perspective, I find that 6 out of 411 photo-

metric standards from Landolt (2009) have variability indicator values larger than

2. I would therefore expect only 3 of the 193 Herbig Ae/Be stars for which I could

determine Vi to be strongly variable, at amplitudes of 0.5 magnitudes in the V band

or higher. However, I find 45 more, indicating that a large fraction of Herbig Ae/Be

stars exhibit strong variations.

In addition, it is interesting to compare the variability indicator with the vari-

ability catalogues published alongside the Gaia DR2 general catalogue (Holl et al.,

2018). Just 1 every 3000 objects passed the Gaia DR2 stringent selection criteria

for variability. Ten of the 252 objects in my list fall in this category and appear as

variable in those catalogues. Of the five of those that have derived Vi values, they are

larger than Vi = 5.

2.3 Data analysis

2.3.1 Infrared excesses

In Fig. 2.5 the total IR excess (1.24−22 µm) versus the estimated mass and age of

the sources is plotted. There appears to be a difference in IR properties between high-

and low-mass stars. Whereas low-mass stars show a range of IR excess, the higher-

mass stars in general only present very low levels of excess. A similar behaviour

is seen when the excess is plotted as a function of age; the excess for the youngest

objects is smallest. This is probably readily explained by the fact that the more

massive PMS objects in the HR diagram have the lowest ages by virtue of their

rapidly evolving isochrones, so trends in mass will automatically also be present

in those with age. To study trends as a function of age, it would be necessary to

61



Analysis of known Herbig Ae/Be stars

Fig. 2.5 Top: IR excess in the range 1.24−22 µm vs. estimated mass of the objects.
The most massive objects (more massive than ∼ 7 M⊙) barely show an IR excess.
Bottom: IR excess in the range 1.24−22 µm vs. estimated age. Ages and effective
temperatures are respectively colour coded in the legend. The symbols stand for the
Hα line profiles: circles (double-peaked), triangles (single-peaked), stars (P-Cygni
profile), and diamonds (no information). I note that although it is not necessarily a
one-to-one correlation, lower ages correspond to higher masses.
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Fig. 2.6 IR excess in the range 3.4−22 µm (MIR excess) vs. IR excess in the range
1.24− 3.4 µm (NIR excess). The symbols stand for the Hα line profiles: circles
(double-peaked), triangles (single-peaked), stars (P-Cygni profile), and diamonds
(no information). A linear fit in the log space is shown in blue (log(Mid IRexcess) =
1.16log(Near IRexcess)+0.23, r = 0.88).

consider subsamples with a narrow range in mass. I therefore consider that the main

result of this exercise is that high-mass objects have a very low IR excess, and that

there appears to be a break at ∼ 7 M⊙ from where almost no sources with significant

excess appear.

Figure 2.6 splits the total IR excess into two, a NIR and a MIR part. This

demonstrates that the excesses at both wavelength ranges are highly correlated with

each other (the linear fit in logarithmic space that can be seen in the plot has a

correlation coefficient of r = 0.88). Therefore, it is not unexpected that the ∼ 7 M⊙

break is also present at NIR and MIR.
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2.3.2 Hα equivalent width

Figure 2.7 shows the Hα EW as a function of mass and age, respectively. As the

definition of a Herbig Ae/Be star includes the presence of emission, which is mostly

from the Hα line, it may not come as a surprise that essentially all measurements are

negative (i.e. tracing emission).

The EWs show a large range of values, which appears to increase with increasing

mass and decrease with increasing age (studied by Manoj et al., 2006). The older

objects typically have lower EWs than younger objects. It is tempting to read an

evolutionary effect into this finding - after all it would be expected that the accretion

(and therefore emission) would decrease when the PMS objects are closer to the

MS. However, I should recall that there is a strong correlation between the age and

the mass of the stars, so this may well be a mass effect instead. As the EW is a

relative measurement with respect to the stellar continuum, a larger EW for otherwise

similar objects indicates a stronger emission line. The observed trend towards higher

temperatures/masses and thus higher luminosities implies that the lines become even

stronger than the EW alone would seem to imply.

2.3.3 Hα equivalent width and infrared excess

The correlation between Hα emission, measured by its EW, and NIR and MIR excess

is studied in Table 2.1 and Fig. 2.8 for each one of the IR bands (J, H, Ks, W1, W2,

W3, and W4). In this case, I computed the IR excess as the flux ratio between the

dereddened observed monochromatic flux and the expected flux according to the CK

model at each band (see Sect. 2.2.3 and Fig. 2.3; the values for these excesses are

presented in Tables A.3 and A.6 for the high- and low-quality samples, respectively).

In all cases, there is a general and consistent increase of the Hα EW from sources

with very little IR excess to those with higher IR excess.
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Fig. 2.7 Top: Hα EW vs. estimated mass. Bottom: Hα EW vs. estimated age.
Effective temperatures and masses are respectively colour coded in the legend. The
symbols stand for the Hα line profiles: circles (double-peaked), triangles (single-
peaked), stars (P-Cygni profile), and diamonds (no information).
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Table 2.1 Correlation between IR excess and Hα EW at different wavelengths.

Band Correlation A B
coefficient (r)

J (1.24 µm) 0.41 0.15±0.03 0.025±0.034
H (1.66 µm) 0.56 0.32±0.03 0.0024±0.0478
Ks (2.16 µm) 0.60 0.48±0.05 0.046±0.066
W1 (3.4 µm) 0.57 0.64±0.07 0.15±0.10
W2 (4.6 µm) 0.57 0.78±0.09 0.24±0.12
W3 (12 µm) 0.52 0.93±0.12 0.79±0.16
W4 (22 µm) 0.41 0.71±0.12 2.05±0.17

Notes: Correlation between IR excess (defined as a flux ratio, Fobserved/FCK) and
Hα EW at different wavelengths for all the sources. The coefficients are defined by:
log(Fobserved/FCK) = A log(|EW|)+B. The Ks band, with the higher correlation, and the
W4 band are in bold; both are shown in Fig. 2.8.

In Table 2.1 I show that the Hα emission line EW is more correlated with the

IR excess at shorter wavelengths than at larger wavelengths, with the correlation

peaking at 2.16 µm (Ks band).

An obvious question might be whether there is a causal correlation between

the Hα emission and presence of emission due to dust around these objects. The

various excesses at various wavebands are correlated with each other (Fig. 2.6), and

as a consequence the IR excesses at many wavelengths also correlate with the EW.

However, the correlation with Hα is strongest at the Ks band which traces the hot

dust in the inner disc, suggesting that the accretion mechanism or wind activity as

traced by Hα is related to the inner parts of the dusty disc (see also Manoj et al.,

2006). As presented in Table 2.1, the correlation rises from a minimum at 1.24

µm (effectively tracing the stellar photosphere) up to 3.4 µm and then goes down

again to the same minimum at 22 µm (W4 band), where dust in the outer disc is

found. In fact, Mendigutía et al. (2012) discovered the same correlation between IR

excess and accretion rate and they found that it is no longer present beyond 20 µm.

For comparison purposes, in Fig. 2.8 the Ks band is plotted in the upper panel and

the W4 band in the lower. It is noteworthy that for the Ks band, where the strongest
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Fig. 2.8 2.16 µm (blue markers in top panel) and 22 µm (red markers in bottom
panel) IR excesses defined as Fobserved/FCK vs. Hα EW (absolute value). I note that
this IR excess indicator is a flux ratio and not the one described in Eq. 2.2 where I
integrated under the SED. Dots are Herbig Ae/Be stars with M < 7 M⊙ and triangles
are Herbig Ae/Be stars with M > 7 M⊙. Lines are linear fits to the data, dashed for
HAeBes with M > 7 M⊙ and in solid colours for HAeBes with M < 7 M⊙; black
solid lines are the linear fits for all the sources (equations and correlation coefficients
for these fits to all the sources for all the IR bands can be seen in Table 2.1).

correlation is found, small EWs are almost only present in sources with little IR

excess and, in consonance with Sect. 2.3.1, for a given Hα EW value low-mass stars

(M < 7 M⊙) tend to have higher IR excesses. However, these trends are weaker or

non-existent in the case of the W4 band, where I find the weaker correlation. This

reinforces the idea that the Hα emission is correlated with the inner parts of the disc.
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I note that in both panels the average excess is still lower for the higher-mass objects.

The emission line strengths were subject of a follow-up study using accretion rates

in Wichittanakom et al. (2020).

2.3.4 Variability

I conclude this section by studying the variability of the objects and its correlation

with the various properties discussed so far, including the Hα line profiles taken from

the literature.

The top panel of Fig. 2.9 presents the variability indicator as a function of the

total (near- plus mid-) IR excess. As described in Sect. 2.2.4, the variability indicator

states the number of standard deviations separating a certain source from the mean

of the Gaia objects of the same brightness. No, or hardly any variability is present

at the lowest IR excesses but sources can be both variable and non-variable at the

higher IR excesses, consistent with van den Ancker et al. (1998) based on a smaller

sample.

The bottom panel of the same figure shows the variability as a function of mass.

As high-mass stars in this sample generally do not have a strong IR excess, I find

that mostly the lower-mass and cooler objects display high variabilities, with the

break also around 7 M⊙, corresponding to a MS spectral type of around B1.5-B2.

Although cooler objects tend to have larger variabilities (also observed by van den

Ancker et al., 1998), I can observe how the range in temperatures for variable sources

is wide in the bottom panel of Fig. 2.9, and that there are in fact many Herbig Be

stars with very strong variabilities. Therefore, this is more likely a trend with mass

and not with temperature. I note that although I detect photometric variability from

the Vi = 2 value, the Vi = 5 value is a better separation boundary for the observed

trends in both panels of Fig. 2.9.
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Fig. 2.9 Top: Variability indicator vs. IR excess in the range 1.24− 22 µm. It
can be seen how objects with the lower IR excess do not show high variability.
Bottom: Variability indicator vs. estimated mass. It can be seen how the most
massive objects (more massive than ∼ 7 M⊙) barely show any variability. Line
profiles and temperatures are colour coded in the legend in the top and bottom panels,
respectively. The symbols stand for the Hα line profiles: circles (double-peaked),
triangles (single-peaked), stars (P-Cygni profile), and diamonds (no information).
The Vi = 2 and Vi = 5 values are stressed for clarity.
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The challenge is to identify which property lies at the cause of the variability;

is it the mass of the objects, their age, or IR excess emission or something else?

An important clue is that many objects with strong variability (above Vi = 2) and

line shape information have doubly peaked Hα profiles ( 31 out of 43; 72±7%, 68%

confidence interval). In general, double-peaked emission line profiles are due to

rotating discs, so the data are suggestive of an edge-on disc-type orientation and

structure (from the remaining 12 objects they all have a P-Cygni profile and none

have a single-peaked profile). The number of variable objects with doubly peaked

line profiles is significantly different from the full sample, in which only half of the

targets with known line classifications have a double-peaked profile (of the sources

with derived variability indicator and known line profile, 79 out of 155 or 51±4%

are double-peaked and 48 out of 155 or 31±4% are single-peaked). These fractions

are significantly different, and I therefore suspect that the variable sources are mostly

oriented edge-on, and that the line-of-sight inclination to the objects could be a

decisive factor in the cause of the variability. This is in agreement with the trend

observed in the top panel of Fig. 2.9. Sources with large amounts of circumstellar

material show large IR excesses and high or low levels of variability depending on

the inclination of their disc whilst sources with little material around have low IR

excesses and low variabilities in all cases (also discussed in van den Ancker et al.,

1998).

2.4 Discussion

2.4.1 General findings

In the above I have determined fundamental parameters such as temperature, mass,

age, IR excess, variability, and luminosity for a large sample of Herbig Ae/Be stars

which was made possible due to the more than a factor of ten increase in available
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distances to these objects compared to Hipparcos. With the Gaia DR2 data, the

majority of known Herbig Ae/Be stars could be placed in the HR diagram. I found

the following:

• There are more low-mass objects than high-mass objects, with the high-mass

objects mostly located close to the MS.

• High-mass objects have in general very small IR excesses and low variability;

the properties appear to differ around 7 M⊙.

• Hα emission is generally correlated with IR excess, with the correlation

stronger for IR emission at wavelengths tracing the hot dust closest to the star.

• More massive and younger objects have higher Hα EWs.

• When split at 7 M⊙ into ‘low’- and ‘high’-mass samples, the Hα - IR excess

correlations hold for both mass ranges, with the average excess being lower

for the higher-mass objects.

• Photometric variability can be traced back to those objects with double-peaked

Hα emission and large IR excesses.

• All catalogued UXORs in the sample with detected variabilities above 0.5 mag

in the V band appear as strongly variable (above Vi = 2) with the exception of

BO Cep (discussed in Sect. 2.2.4).

Below, I discuss these findings and their implications for the formation of

intermediate-mass stars.

2.4.2 Selection effects

Let me first investigate the various selection effects and biases that could potentially

affect the results.
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Quality parallaxes. It could be argued that the quality of the astrometric data has

an effect on the findings. The parallax errors occupy a comparatively small range,

from ∼ 0.016−0.37 mas, but because of the large spread in distances, the relative

uncertainties can be very large. To investigate whether this has a detrimental effect on

the results, I repeated the analysis with only the objects with the very best parallaxes

(ϖ/σϖ > 10). This, of course, limits the sample and 182 out of 218 objects remain

in the high-quality sample. These 182 objects are less luminous, which may be

expected as in general they have larger parallaxes and are therefore closer. As a

result they will be less massive and have greater ages than the objects in the entire

sample. This, as a consequence of the trends described in previous sections, implies

that these objects also show larger IR excesses and variabilities as well as smaller

Hα EWs (see Figs. 2.5, 2.7 and 2.9). However, I find that essentially all correlations

also hold for the higher-quality parallax sample, and if anything, they appear stronger.

For example, almost all of the high-mass sources that have large IR excesses and

variabilities in Figs. 2.5 and 2.9 have ϖ/σϖ < 10. The inclusion of lower-quality

parallaxes induces an extra scatter in the results, but the larger sample and wider

coverage in luminosity aids in reinforcing them.

Quality identification as Herbig Ae/Be star. Another potential source of error is

source misclassification. I have used the largest sample of Herbig Ae/Be stars known

before this thesis (Chen et al., 2016 with some added from Alecian et al., 2013; Baines

et al., 2006; Carmona et al., 2010; Fairlamb et al., 2015; Hernández et al., 2005;

Manoj et al., 2006 and Sartori et al., 2010). The defining characteristics of HAeBes

are not unique to the class, and can often also be found in other types of stars such as

classical Be stars, which display Hα emission and a NIR excess (e.g. Rivinius et al.,

2013), and evolved stars, which can have spectral types A and B, display hydrogen

recombination emission, and be surrounded by dusty shells and discs such as the

luminous blue variables and B[e] stars (Davies et al., 2007; Oudmaijer et al., 1998 on
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HD 87643). It is therefore inevitable that some sources will have been misclassified

(see Chapter 3 for a more detailed description of contaminants). It would be fair to

say that the more ‘classical’ Herbig Ae/Be stars going back to the Herbig (1960) and

The et al. (1994) papers have been studied in more detail and are better established

as young PMS stars.

I therefore studied the The et al. (1994) sample of objects (their Table 1, 85

sources out of the 218) separately and find that all correlations do hold for this ‘gold

standard’ sample as well. I do find that on average these objects have a larger Hα EW

and have larger IR excesses than the full sample. These properties are the defining

characteristics of a Herbig Ae/Be star, and it may not be surprising that the first

objects to be proposed as Herbig Ae/Be stars are on average more extreme in these

properties. Yet, again, as with the higher-quality parallax sample, the trends are still

present in this sub-sample.

Mass distribution of the sample. The known Herbig Ae/Be stars have mostly been

found serendipitously, and the first large-scale systematic search for them is done in

Chapter 3. Yet, an interesting question is how representative the present sample is

for the class. To this end, I consider the mass distribution of the objects. There are

more or less the same number of low-mass, A-type objects as there are higher-mass

B-type objects. There are more Herbig Be stars than might be expected from the

IMF; however, the B-type objects are brighter and are sampled from a larger volume,

as also attested by their smaller parallaxes. A larger fraction of Herbig Be stars in the

sample should therefore be expected. When limiting the sample in distance, I obtain

a Herbig Ae/Herbig Be ratio that is close to the IMF. As far as the mass distribution

is concerned, I may say that the current sample is representative of the class. In

Chapter 3 I draw an increased and well-selected sampled of Herbig Ae/Be stars from

the Gaia catalogue.

73



Analysis of known Herbig Ae/Be stars

Binarity. One may think that binarity may affect the observed photometry and for

example produce fake levels of variability in the variability indicator. This is because

binary sources tend to be more astrometrically and photometrically irregular. I

studied the group of binaries against the group of isolated sources and overall I

find that the known binaries are slightly brighter than the objects that have not been

reported to be a binary. This is probably a selection effect in that brighter objects

were more likely to be included in the binary surveys. I compared the brightnesses

of binaries and non-binaries in the Baines et al. (2006), Wheelwright et al. (2010),

and Leinert et al. (1997) studies separately and find that within the surveys there are

indeed no brightness differences between binaries and non-binaries.

Returning to the Gaia sample; all other properties but IR excesses, including

variability, are similar. I do find that binaries have in general slightly larger IR

excesses. With the benefit of hindsight, this is perhaps something that could have

been expected. Most of the binaries are distant binaries with separations larger than

0.1 arcsecond (Gaia’s angular resolution is 0.4 arcsecond). Indeed, no binaries are

found closer than 30 au and therefore binarity is not expected to play a significant role

in the optical photometry. At the same time, companions could potentially contribute

to the IR emission whose fluxes have been measured with apertures larger than the

typical separations. Given that I do detect slight differences in IR excess between

binaries and non-binaries, a preliminary inference would be that the companions

may contribute to the IR flux in some cases.

2.4.3 Infrared excess as a function of mass

Figure 2.5 shows the IR excess as a function of mass and of age. There is a marked

difference in the IR excess observed towards high- and low-mass objects. Herbig

Be stars more massive than ∼ 7 M⊙ in general appear to have little to no excess,

while the lower-mass objects show a wide range of excesses. There is also a trend
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with age with the youngest objects having the smallest IR excess. Although it would

be tempting to assume a causal relation between age and presence of dust, and

try to explain why the youngest objects have the smallest amount of dust around

them, I suspect the stellar mass is the dominant factor. The durations of the PMS

evolutionary tracks are progressively shorter for higher masses, and an underlying

relation between mass and IR excess would therefore also appear as a correlation

between age and IR excess. This inverse correlation of infrared excess with stellar

mass was also found in Ribas et al. (2015) and Arun et al. (2019).

Either way, the lack of dusty emission from high-mass objects is puzzling, as it

would be expected the more massive objects to be formed in more massive clouds

and therefore be more embedded. A natural conclusion would be that at any time of

their PMS evolution, these young objects would be surrounded by more dust than

their lower-mass counterparts, and therefore, at any stage, they would have a stronger

IR emission. A counterargument is that the Herbig Be stars are predominately

found closer to the ZAMS and are therefore more evolved, having dispersed their

circumstellar material. Supporting this idea, Alonso-Albi et al. (2009) found, from

their compilation of millimetre observations of 44 objects, that Herbig Be stars have

much weaker millimetre emission than their later-type counterparts. In addition,

they found that the masses of the discs around Herbig Be stars traced at millimetre

wavelengths are usually five to ten times lower than those around lower-mass stars,

with the boundary also around 7 M⊙. These authors suggest that the disc dispersal is

more efficient and faster in high-mass objects above 7 M⊙. Indeed, the disc dispersal

times are a steep, declining function with stellar mass, from millions of years for the

lower-mass stars to tens of thousands of years for the highest-mass young stars of 10

M⊙ and higher (Gorti et al., 2009).

The latter timescales are comparable to the evolutionary timescales as for ex-

ample computed by Bressan et al. (2012) for these massive objects. Therefore, the

observation here is consistent with the classical scenario that the Kelvin-Helmholtz
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contraction timescale is much smaller for massive objects compared to the free-fall

timescale of the collapsing parental cloud. In this scenario, the massive young stars

only become visible once they are on, or close to, the MS - the so-called birthline. I

discuss this further below, but note that with this interpretation one would still expect

a range of IR excesses in any sample. This is consistent with what I find for massive

objects (larger than 7 M⊙); a large number of low-excess stars, but still a few with

noticeable excess (see Fig. 2.5).

Moving to the lower-mass objects, which do display a large range of IR excess

emission, an immediate question to ask is whether it is possible to detect any

evolutionary effect in the sense that objects that are further evolved have smaller IR

excesses, as one expected from the progressive dust dispersal, and as suggested by

Fuente et al. (1998). For example, if the inside-out clearing model of disc evolution

is correct, a trend at each PMS track from high excess to little excess should be

observed.

However, it appears that Herbig Ae/Be stars do not show any consistent evolution

of the IR excess from high to low excess at any mass range. There are many objects

appearing younger than 2.5 Myr or even 1 Myr at all mass ranges with little IR

excess. Arguably the lack of an evolutionary effect can be explained by the size

of the error bars on for example the luminosity. The evolutionary timescales vary

strongly with mass (and thus luminosity), masking any trend of IR excess emission

with age. Here, I would highlight that many young Herbig Ae stars show little excess.

By looking at these objects in the bottom panel of Fig. 2.2 it is not difficult to find

sources with error bars small enough to discard the contribution of uncertainty to the

problem. Finally, the contamination by binaries as discussed in Sect. 2.4.2 can play

a role here as many HAeBes can still remain as undetected binaries.

I should also note that the underlying assumption of the evolutionary calculations

is that the conditions under which the stars form are uniform, and the accretion

rates are a smooth function of time, resulting in an overall similar evolution for all
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stars. However, the final configuration is undoubtedly affected by inhomogeneities,

varying accretion rates, and even the masses of the initial clouds. Nevertheless,

looking for real evolutionary effects in the SEDs requires selecting subsamples of

objects that are located at or close to the same mass tracks. In many cases this may

require even more precise parallaxes than can presently be provided by Gaia. It also

requires precise determinations of the atmospheric parameters and extinction values.

A proper statistical study with high-quality parameters of the evolutionary properties

of the HAeBes as they move towards the MS is therefore pending but is planned for

the future.

2.4.4 Variability in terms of the UXOR phenomenon

An extreme case of large non-periodic photometric and polarimetric variations caused

by discs is observed in UX Ori type stars (UXORs). Many of them are catalogued as

HAeBes and their extreme variability is explained by eclipsing dust clouds in nearly

edge-on sources and the scattering radiation in the circumstellar environment (see

Grinin, 2000 and references therein; Natta et al., 1997; Natta and Whitney, 2000).

The variability indicator that was developed in this chapter (Eq. 2.4) specifically

for the Gaia data demonstrates that the class of Herbig Ae/Be stars is more variable

than the general population of stars. Figure 2.9 shows that the lower-mass objects

are much more photometrically variable than those of higher mass, for which the

variability appears to cease beyond ∼ 7 M⊙. The photometrically variable objects

contain most of the so-called UXOR variables reported in the literature. Using the

compilation of UXOR variables by Oudmaijer et al. (2001) and Poxon (2015), I find

that 17 out of the 48 strongly variable objects - those with variability indicator values

larger than 2, representing variations of 0.5 magnitudes (in the V band) or higher -

are classified as UXORs. The remaining 5 UXORs with variability indicator values
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present in the sample have documented variabilities below 0.5 magnitudes with the

exception of BO Cep (discussed in Sect. 2.2.4).

The defining characteristic of the UXOR phenomenon is not only the photometric

variability but also the reddening and blueing associated during the variations. The

explanation put forward for this behaviour is the obscuration of the star by a rotating,

inhomogeneous, dusty, edge-on disc. The objects first become redder when dust

obscures the object, and can even become blue at their faintest phases, when the

direct light from the stars is blocked and, predominately blue light is scattered

into the line of sight. As the polarization - resulting from scattered light - also

peaks during the faintest phases (e.g. Grinin 2000), the obscuring disc hypothesis is

favoured. Interestingly, observational evidence other than the polarization supporting

this conclusion has been relatively sparse.

With the large sample of Herbig Ae/Be stars, and the large number of UXORs

among them, I can repeat a similar experiment using the Hα line as a proxy for the

inclination of the circumstellar discs. I consider the line profiles of the Hα emission

in tandem with the variability indicator. Figure 2.9 shows that all but twelve of the

strongly variable objects with documented line profiles (above Vi = 2, those with

∆V > 0.5 mag) have double-peaked Hα emission. The five objects for which no

line profile is listed have, to my knowledge, no reported profiles. The occurrence

of double-peaked profiles in the highly variable sample is significantly higher than

for the other objects (see Sec. 2.3.4). It is significant that the other twelve objects

have P-Cygni profiles and none of them show a single-peaked profile. The P-Cygni

profile is often related to episodic energetic phenomena and it is not unexpected

that it is also traced by the variability indicator. Given that doubly peaked line

profiles are most easily explained by at least part of the emission originating in a

rotating disc leads me to conclude that the photometrically variable objects are seen

edge-on and surrounded by a disc-like structure. It is true that outflows or winds not

limited to the disc can produce double-peaked Hα profiles (Kurosawa et al., 2006;
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Tambovtseva et al., 2014). Supporting the hypothesis of edge-on discs being the main

cause of photometric variability, I find in variability the same separation at ∼ 7 M⊙

between low- and high-mass objects that I found when studying IR excesses, which

suggests that photometric variability and IR excess have the same cause. In addition,

sources with high IR excesses have both high and low variability levels, which can

be understood as depending on the disc inclination, while sources with lower IR

excesses show little variability in all cases (top panel of Fig. 2.9, discussed in Sect.

2.3.4). This would also explain the few high-mass strongly variable objects that can

be seen in the bottom panel of Fig. 2.9; they are mostly the ones with high IR excess

in the top panel of Fig. 2.5 (discussed before in Sect. 2.4.3). Given that an edge-on

orientation is the major and main ingredient of the dust obscuration hypothesis, these

results lend very strong support to it using a large sample of Herbig Ae/Be stars.

The large fraction of objects with double-peaked line profiles or variability is in

agreement with the model predictions by Natta and Whitney (2000) who worked out

how many Herbig Ae/Be stars would undergo the UXOR phenomenon considering

the scale heights of dusty discs and under which inclinations the photometric vari-

ability would still be visible. They conclude that around half of the Herbig Ae stars

could be UXORs. In the high-quality sample I have 85 A-type stars with variability

indicator values and just 16 of them were previously listed as UXORs; however,

again, most of them have been largely unstudied. Nevertheless, of the 25 A-type

stars with variabilities above Vi = 2, 13 are known UXORs. This means that for the

Herbig Ae stars for which I detect variability at the Vi = 2 level, ∼ 52% are known

UXORs (and just two have P-Cygni profiles). Moreover, this implies that I am

retrieving ∼ 81% of known A-type UXORs with the variability indicator and hence,

assuming that all the 25 A-type stars with variabilities above Vi = 2 are of UXOR

type; 31 of the 85 A-type stars with variability indicator values in the sample should

be UXORs. In turn this would imply that ∼ 37% of all Herbig Ae stars belong to

the UXOR class. If I also take into account that I have potentially removed some
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UXORs from consideration, possibly the most variable ones, when applying the

constraints described in Sect. 2.2.4, I get to values close to the 50% predicted by

Natta and Whitney (2000). In general, there are 31 Herbig Ae/Be stars above the

Vi = 2 level which have not been classified as UXOR and can be considered as new

candidates of the class.

Finally, Davies et al. (2011) recently studied the UXOR object CO Ori in detail,

which has single-peaked Hα emission. Consequently, they found that the inclination

of its disc is of ∼ 30◦ (i.e. it is nearly face-on). In this particular case, whether the

disc is still causing the UXOR phenomenon or if it is caused through fluctuations

in the circumstellar material outside the disc is still uncertain. I could not derive a

variability indicator value for this object to assess its variability. Inspired by this

example, I took a look at the other UXORs in the sample with single-peaked profiles;

they all have variabilities below Vi = 2 in the variability indicator (HD 100546, HD

142527, HD 98922, and IL Cep), suggesting a category of low-variability UXORs

with nearly face-on discs. Nonetheless, the results presented in this section strongly

support the idea that most UXORs are caused by edge-on discs, which are responsible

for large photometric variabilities.

2.4.5 Missing objects in the HR diagram

When inspecting the bottom panel of Fig. 2.2, it appears that most Herbig Be stars

are located relatively close to the MS, whereas the lower-mass Herbig Ae stars

occupy a larger part of their evolutionary tracks, contracting to higher temperatures

at constant luminosity. In other words, the late-type Herbig Be and Herbig Ae stars

at high luminosities (and low surface gravities) that would occupy the tracks towards

the locations of B-type stars on the MS are missing. It is only due to the use of

Gaia parallaxes, expanding the number of Herbig Ae/Be stars with well established

luminosities, that this observation can be made.
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In the discussion above, I mentioned the fact that these objects could still be

heavily embedded in their parental clouds, preventing them from being optically

visible when evolving on their way to the MS. There is evidence for optically invisible

but IR-bright objects at locations in these regions of the HR-diagram. For example,

Pomohaci et al. (2017) were the first to spectrally type an IR-bright MYSO based

on the rare absorption spectrum at NIR wavelengths (higher-order Brackett lines

are in absorption for this object, while Brγ is in emission). They found that the

object could be fitted with the spectra of an A-type giant star. Had this object been

optically visible, it would have occupied the empty region in the bottom panel of

Fig. 2.2. To this, I add the early B-type Herbig Be stars/IR bright MYSOs PDS

27 and PDS 37 (Ababakr et al., 2015). They are found in the upper regions of the

HR diagram, slightly off the MS. They are optically visible, but not overly bright

at V ∼ 13 mag, and have not been included in many (optical) magnitude-limited

catalogues. Therefore, there are several examples that might lead to the conclusion

that the - implicit - optical brightness limit of any catalogue of Herbig Ae/Be stars

would prevent the inclusion of massive PMS stars on the horizontal portions of

the evolutionary PMS tracks. However, many of these objects are present in Gaia

DR2, due to its ∼ 21 mag faint end, although they are yet uncatalogued as HAeBes.

Numerous new young massive PMS stars that were so far missing from the catalogues

are identified in Chapter 3.

In a sense this is a situation similar to that outlined for the low IR excesses

observed toward the Herbig Be stars that are mostly located close to the MS. This

could be explained by the fact that the objects would be embedded and thus optically

invisible or faint in earlier phases of their evolution. Further observations of optically

fainter objects are necessary to settle this issue (see Chapter 4). Additional progress

can be made by connecting the PMS evolutionary tracks with radiative transfer codes

to provide synthetic observations (as e.g. Davies et al., 2011, or Zhang et al., 2014
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for Massive Young Stellar Objects) extended to optical wavelengths in the Herbig

Be mass range.

Related to the ‘missing’ high-mass stars in the HR diagram, it will be important

to fill the historic, and entirely man-made, gap between the Herbig Ae stars and the

T Tauri stars. The latter are confined to have spectral types G-K-M, and typically

Herbig Ae/Be stars, in this case by definition, have spectral types A and B. This

implies that historically most PMS studies have missed out the F-type stars, resulting

in an incomplete coverage of the HR diagram for PMS stars. See Chapter 4 for a

further discussion of this topic.

2.4.6 The difference between Herbig Ae and Herbig Be stars

From the above discussion it appears that the dusty discs surrounding Herbig Ae and

Herbig Be stars are different, with the break in IR excess occurring at 7 M⊙ (around

B1.5-B2 spectral type), a value which was also found by Alonso-Albi et al. (2009)

from their compilation of millimetre emission tracing the outer parts of the dusty

discs. As discussed, given the much stronger radiation field from B-stars, both in

intensity and photon-energies, the most straightforward explanation for the much less

massive discs of higher-mass objects is a more efficient disc dispersal mechanism

(see e.g. Gorti et al., 2009). This also explains why the same 7 M⊙ break is seen

in variability (Fig. 2.9). As described in Sect. 2.4.4, the high levels of variability

in some sources are caused by edge-on dusty discs. A more efficient disc dispersal

mechanism beyond 7 M⊙ would result in these sources showing no strong variability

in the indicator. It also explains why the objects with the lower IR excesses are not

strongly variable while the rest can have both high and low variability values.

Other studies of large samples of Herbig Ae/Be stars indicate a break in properties

at a much lower mass of 3−4 M⊙. Fairlamb et al. (2015) studied the accretion rates,

which are proportional to the mass of the objects, and found a different slope for
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lower-mass than for higher-mass objects. Similarly, Wichittanakom et al. (2020)

placed at 3.98+1.37
−0.94 M⊙ the change in accretion properties (around the B3 spectral

boundary). Ababakr et al. (2017), extending the work of Mottram et al. (2007),

found a distinct difference in spectro-polarimetric properties across the Hα line

between the Herbig Ae and late Be-type stars on the one hand and earlier Herbig

Be-type objects on the other hand. These authors also point out the similarity in the

Hα spectro-polarimetry of the Herbig Ae stars and T Tauri stars. Finally, Mendigutía

et al. (2011b) noted the difference in Hα variability; Herbig Ae and late Be stars are

largely variable, whereas early type Herbig Be stars are not. Later, Fang et al. (2013)

showed that T Tauri stars display even more variable Hα emission - again hinting at

a similar accretion mechanism for the T Tauri stars and Herbig Ae stars.

How can I reconcile the fact that some studies show a break in properties that is

different from that of others? It is worth pointing out that the latter investigations

consider regions much closer to the star than the dusty emission. Fairlamb et al.

(2015) derive accretion rates from the UV excess which trace the shocked material

on the stellar surface, and Ababakr et al. (2017)’s spectropolarimetry traces the free

electrons in ionized material at distances of the order of stellar radii from the stars.

The spectro-polarimetric properties of the B-type stars can be explained by stable

circumstellar discs, while the line properties for T Tauri and Herbig Ae objects are

consistent with magnetically controlled accretion. Likewise, the Hα emission (used

by e.g. Wichittanakom et al., 2020) traces the ionized zones close to the star, such as

the accretion columns and circumstellar discs, and the variability is explained by the

accretion columns orbiting the central star (e.g. Kurosawa et al., 2008).

Earlier, I showed that the IR fluxes and Hα properties are largely correlated,

especially at the wavelengths that better trace the hot dust of the inner disc, but that

the IR fluxes are smaller for the earlier-type objects because of them being subjected

to a more efficient disc dispersal mechanism. I therefore conclude this section with

the observation that the IR and millimetre emissions trace the circumstellar discs and
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originate much further from the stars than the UV, hydrogen recombination emission,

and free electrons, which themselves trace the accretion onto the stars. The break

in accretion mechanism appears to occur around 4 M⊙, whereas the disc dispersal

becomes significant at higher masses of 7 M⊙.

I conclude this chapter with this discussion. Summarising, in this chapter I have

homogeneously characterised all previously known and proposed Herbig Ae/Be

stars with parallaxes in Gaia DR2. Their established parameters were compiled and

masses, ages, luminosities, distances, photometric variabilities, and infrared excesses

were derived. The HR diagram presented in this chapter contains over ten times

more objects than was possible previous to Gaia. All this information is used in the

next chapter to find new objects of the Herbig Ae/Be class.
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Chapter 3

New Herbig Ae/Be and classical Be

candidates

This emerged from my conviction, that if stars form at 1–2 solar masses, then more

massive stars must also form and ought to be recognizable in some way.

Autobiographical notes, 1993 (as quoted by Reipurth, 2016) – George Herbig

In the introduction (Chapter 1) and Chapter 2 of this thesis it was shown the

usefulness to obtain a large homogeneous and low biased catalogue of new Herbig

Ae/Be stars. In this chapter I use an algorithm based on an artificial neural network

(ANN) to identify new Herbig Ae/Be stars within Gaia DR2. Herbig Ae/Be stars

share many characteristics with other types of objects, of which classical Be stars

stand out. The ANN-based algorithm spotlights on disentangling these two types of

objects, and as a consequence new classical Be candidates are also found.

This chapter is organised as follows: in Sect. 3.1, I describe the observables,

features, and the metrics used for evaluating the performance of the algorithm as well

as the sources that the algorithm classifies once it is trained. In Sect. 3.2 I present

the labelled sources used for training the ANN. The algorithm itself is detailed in

Sect. 3.3. In Sect. 3.4 I describe and evaluate the output of the algorithm which I

analyse in Sect. 3.5, describing its flaws and biases.
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3.1 Observables, features, and data

ANNs are supervised learning classifiers, this means that they need to be trained

with a list of known sources (training set) that have a set of characteristics (features)

and a label (ground truth) that assign them to a certain category (e.g. a stellar class).

The features are the individual properties or characteristics that are used by the ANN

to learn how to classify new sources. Feature selection is important, as the use of

useless features or the lack of very relevant ones for differentiating the categories

can heavily affect the performance of the algorithm. Once trained, ANNs assign

probabilities of belonging to every one of the chosen categories to each input source.

A brief introduction to artificial neural networks is presented in Appendix B.

The known HAeBes constitute a small, biased, and contaminated set (described

in Chapter 2). In order to achieve a good training performance the strategy adopted

was to include T Tauri stars in the training and use an algorithm focusing on the

high-mass end. In the resulting catalogue of new PMS candidates, the most massive

ones can be further selected by means of the Hertzsprung-Russell (HR) diagram.

3.1.1 Observables

The features that feed the ANN need to be relevant for identifying PMS sources.

Hence, I want the features to trace the main observational characteristics of PMS

sources. As described in the introduction (Chapter 1), the main observational

characteristics of PMS sources are: IR excesses, emission lines and photometric

variability. If HAeBes were unique in these properties, a simple linear separation

in the parameter space would suffice for identifying more objects of the class (e.g.

in a colour-colour plot). However, HAeBes share these characteristics with other

types of objects, of which classical Be (CBe) stars stand out, as their outwardly

diffusing gaseous discs generate very similar observables (Grundstrom and Gies,

2006; Rivinius et al., 2013; Klement et al., 2017).
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To feed the algorithm with these characteristics, in this thesis I used observables

belonging to different surveys. These are mainly Gaia DR2 for variability, 2MASS

(Skrutskie et al., 2006) and WISE (Wright et al., 2010) for near- and mid-IR excess

respectively, and IPHAS (Drew et al., 2005; Barentsen et al., 2014) and VPHAS+

(Drew et al., 2014) for Hα emission.

I used the following passbands: from Gaia DR2, the broad white G band (0.59

µm), and the blue (GBP) and red (GRP) bands (0.50 µm and 0.77 µm respectively). A

description of the Gaia filters can be found in Evans et al. (2018). From IPHAS and

VPHAS+, I used the SDSS passband r (0.62 µm) together with the Hα narrow filter

(0.66 µm). A description of the IPHAS passbands and associated footprints can be

found in Drew et al. (2005) and Barentsen et al. (2014) (for the second data release

that I am using) and in Drew et al. (2014) for VPHAS+. Finally, from 2MASS I used

the three passbands J, H, and Ks (1.24 µm, 1.66 µm and 2.16 µm respectively) and

from WISE the four passbands W1, W2, W3, and W4 (3.4 µm, 4.6 µm, 12 µm, and

22 µm respectively). These passbands of 2MASS and WISE were obtained from the

AllWISE catalogue, which is described in Cutri et al. (2013).

It is important when setting up the features to be cautious about introducing

unwanted bias regarding the selection to be performed. An example of an unwanted

bias is, for example, to introduce distance as a feature. Most of the known PMS

objects are close-by because it is easier to study bright objects. If I introduce a

distance dependent feature the algorithm would work with the idea that being close

is an intrinsic property of PMS objects, and it would be biased to find PMS objects

that are nearby. In addition, if I introduce position dependent features any posterior

analysis about the clustering properties of Herbig Ae/Be stars would be biased

towards the selected preferred positions of the training data. Therefore, I set the

features to be distance and position independent, which implies that most of the

observables used are colours. Of course, there are unwanted biases in the resulting

catalogues because of the selected features, and they are addressed in Sect. 3.5.
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For example, interstellar extinction results in colours that are not strictly distance-

independent, and by demanding to have detections in all the WISE bands I am

biasing myself to the most extreme IR-bright sources.

In total, I chose 48 observables from Gaia DR2, 2MASS, WISE, and IPHAS and

VPHAS+ data. The colours used are r−Hα plus all combinations of the passbands

of Gaia DR2, 2MASS, and WISE (i.e. GBP −G, GBP −GRP, GBP − J, GBP −H,

GBP −Ks, GBP −W1, GBP −W2, GBP −W3, GBP −W4, G−GRP, G− J, G−H,

G−Ks, G−W1, G−W2, G−W3, G−W4, GRP−J, GRP−H, GRP−Ks, GRP−W1,

GRP −W2, GRP −W3, GRP −W4, J−H, J−Ks, J−W1, J−W2, J−W3, J−W4,

H −Ks, H −W1, H −W2, H −W3, H −W4, Ks−W1, Ks−W2, Ks−W3, Ks−W4,

W1−W2, W1−W3, W1−W4, W2−W3, W2−W4, W3−W4). The idea behind

using all these combinations is that it is not entirely known which colours are ideal

for selecting PMS objects, so I let principal component analysis (PCA) facilitate this

(see Sect. 3.1.2). The reason why neither r nor Hα passbands are combined with the

other passbands is explained in Sect. 3.2.1.

In addition, I constructed two observables, Gvar and Vhtg, that trace optical

photometric variability and are based on the Gaia passbands. I define Gvar as:

Gvar =
F ′

G e(FG)
√

Nobs,G

FG e′(FG)
√

N′
obs,G

, (3.1)

where FG and e(FG) are the Gaia G band flux and its associated uncertainty for a

certain source and Nobs,G the number of times that source was observed in the G band.

The idea is that variable sources have larger uncertainties (weighted with the square

root of the number of observations) than non-variable ones. F ′
G/e(F ′

G)
√

N′
obs,G

refer to the median value of Gaia DR2 sources of the same brightness. This denom-

inator is necessary as non-variable objects of different brightness show different

median uncertainties (see Fig. 3.1, the sources presented in that figure are the ones

used to construct this denominator). A similar indicator was used in Chapter 2 to
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Fig. 3.1 Uncertainty in the Gaia G, GBP, and GRP band fluxes scaled to the square
root of the number of observations in each band versus the associated Gaia flux for a
random subset of about ten million Gaia DR2 objects. These random sources were
selected from different flux bins in order to cover the whole flux space and not only
the faint end. The lines trace the median value for each flux.

study the variability of known Herbig Ae/Be stars. In that chapter it was evidenced

that this variability proxy mostly traces irregular (i.e. non-periodic) variabilities

caused by material on the line of sight, so I expect it to be efficient in separating

CBes from HAeBes. I define the heterogeneous variability (Vhtg) as:

V htg =
F ′

Bp e(FBp)
√

Nobs,Bp

FBp e′(FBp)
√

N′
obs,Bp

−
F ′

Rp e(FRp)
√

Nobs,Rp

FRp e′(FRp)
√

N′
obs,Rp

. (3.2)

This Vhtg observable is based on the same idea as Gvar but it evaluates the

heterogeneous variability that may be present among the blue (GBP) and red (GRP)
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filters. This may arise, for example, by circumstellar material causing irregular

extinction episodes (as is the case in the reddening and blueing associated during the

variations of UX Ori type stars, Grinin, 2000) or by variable accretion.

3.1.2 Features

I use PCA to select the optimal set of features for this problem. When applying PCA

to the complete set of 48 observables I obtain 48 principal components. However,

in my pipeline only 12 of those principal components carry 99.99% of the variance

(see Sect. 3.3.3). These principal components that carry almost all of the variance

of the space of observables constitute the set of features. In other words, these

principal components are the features used by the ANN. PCA also removes any

linear dependency between the observables. A brief description of the PCA algorithm

is presented in Appendix B.

3.1.3 Evaluation metrics

I use two correlated metrics, precision (P) and recall (R). They are defined as follows:

P =
T P

T P+FP
, (3.3)

where TP is the number of true positives, that is, the number of sources of a certain

category correctly catalogued, and FP is the number of false positives, this is the

number of sources of the same category wrongly classified1. In other words, of all

objects for which I have predicted a certain category, P describes what fraction was

correctly classified. Separately:

R =
T P

T P+FN
, (3.4)

1Other metrics, like the Area Under the Curve or the F1 score, were discarded because FP is
over-measured in this classification problem due to contamination in the training data, see Sect. 3.3.1.
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where FN is the number of false negatives, that is, the number of sources that belong

to a certain category but were not classified as such. In other words, of all objects

that are actually of a certain class, R describes what fraction have I detected as

belonging to that class, introducing a notion of completeness. These metrics are

defined independently for each category.

3.1.4 Data

Before describing the training data, it is necessary to assess how many sources exist

with all the observables I am using (Sample of Study, SoSt hereafter). The first

step for generating this SoSt was to cross-match the catalogues that contain the

required observables (Gaia DR2, AllWISE, IPHAS, and VPHAS+). Examples of

works where this was done to a high level of accuracy are Scaringi et al. (2018)

for Gaia DR2 with IPHAS and Marrese et al. (2019) for Gaia DR2 with AllWISE,

among others. However, these cross-matches arrived at a high level of accuracy by

sacrificing completeness (see Wilson and Naylor, 2018). PMS sources in particular,

because of their variability and preferred location in extincted and crowded regions,

tend to be excluded in those general cross-matches (e.g. only ∼ 52% of the known

HAeBes of Chapter 2 are present in the AllWISE ‘BestNeighbour table’ of Marrese

et al., 2019). Instead, I perform a more generous cross-match accepting that I may

generate some incorrect associations.

I first cross-matched Gaia DR2 (using epoch 2000 adapted coordinates) with

IPHAS and VPHAS+ independently with a 1 arcsecond aperture because that is

approximately the angular resolution of VPHAS+, IPHAS being slightly worse. 95%

of the sources are found to be within 0.25 arcsecond. These two catalogues present

a further complication. They present different observations of the same source as

different entries and hence produce duplications in the cross-match. Therefore, in

those cases I chose the observation with data in all the passbands, if any. If none or
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more than one of the observations have information in all the passbands I chose the

one with a higher quality flag and, in the case of having the same flags, I chose the

object with the smaller angular distance to the Gaia DR2 source. Similarly, whenever

a Gaia DR2 source was present in both IPHAS and VPHAS+ I gave priority to the

observation with all the passbands, followed by the one with a higher quality flag

and, in the case of having the same flags, to the object with the smaller angular

distance to the Gaia DR2 source. Then, I performed another cross-match using Gaia

DR2 coordinates with AllWISE, using a cross-match aperture of 2 arcsecond. This

cross-match aperture, though large, was chosen after the experience in Chapter 2

where even a 3 arcsecond aperture was still not sufficient for some HAeBes. 95% of

the sources are found to be within 1.12 arcsecond. This last cross-match provides me

with a set of 51,548,230 sources. However, missing values are not allowed in ANNs

and only 4,151,538 sources (8% of the original set) have all the 48 observables (see

Sect. 3.1.1). This constitutes the SoSt (Fig. 3.2), the master sample of all the objects

with the data necessary to enter the ANN. This set has a mean of G = 16.7±2.0 mag

(error is 1σ of the mean) so 98% of the sources are in the range 12.3 < G < 20.3

mag. The mean parallax is ϖ = 0.36± 0.75 mas. I note that the Gaia parallax is

not available for all the sources. The sky footprint of the SoSt is not homogeneous

as it is limited by the combined footprint of the surveys used. Primarily, IPHAS

and VPHAS+ are limited to the galactic plane (5.5◦ > b > −5.5◦) and VPHAS+

footprint (29◦ > l >−145◦, see Fig. 3.2) is largely incomplete at the time of writing.

In addition, spurious WISE photometric detections in the galactic plane are a known

issue (Marton et al., 2019 and references therein). Furthermore, due to the Gaia

scanning law, Gaia DR2 itself presents a heterogeneous footprint completeness.

Finally, demanding proper detections up to W4 (22 µm) and in the Hα passband

excludes many objects and it may be expected to have overdensities of SoSt sources

around star forming regions. The impact of this footprint of Fig. 3.2 in the final

catalogues is addressed in Sect. 3.5.2.
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Fig. 3.2 Sky footprint of the SoSt in galactic coordinates, colour-coded by number
density. Note the heterogeneity of the footprint. The scarcity of sources between
29◦ > l > −145◦ is due to the incompleteness of VPHAS+ at the time of writing.
Each pixel is 2◦×0.2◦.

As the beams of IPHAS, VPHAS+, and AllWISE are larger than Gaia’s, different

Gaia sources could have been assigned to the same IPHAS, VPHAS+, or AllWISE

source. This can be the case if various Gaia sources are present within the same

beam or if a wrong assignation was done in the generous cross-match. Indeed,

4.9% of the AllWISE sources are repeated and 0.31% of the IPHAS or VPHAS+

objects. These do not affect the classification, as the values are too small to have a

significant impact on the training or the final catalogues (see Sects. 3.2.4 and 3.5.2

respectively). However, this implies that on average 1/42 (regarding AllWISE) and

1/625 (regarding IPHAS or VPHAS+) sources of the SoSt are fake, in the sense that

its associated photometry does not belong to them, or it is a mixture of all the Gaia

sources within the same beam. Another way of estimating the number of purely

incorrect cross-matches is by comparing the Gaia passbands and colours with the

AllWISE and IPHAS or VPHAS+ ones. In the case of AllWISE I compared GRP−J

vs. J−H, which are strongly linearly correlated, and labelled as potential incorrect

cross-matches those sources that were beyond 0.5 mag of the best linear fit. This

results in about 2.3% bad matches for AllWISE. In the case of Hα I compared GBP
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vs. r (there is no linear relation between colours) and labelled as potential incorrect

matches those sources that were beyond 1 mag (to account for variability) of the best

linear fit. This results in a contamination of 1.3% for IPHAS or VPHAS+. Therefore,

I conclude that the cross-matches are good to the ∼ 98% level.

I did not take into account the quality flags of the catalogues. This decision

was made for two reasons. First, IPHAS and VPHAS+ have very stringent quality

indicators, and by limiting myself to sources with a good flag in these catalogues I

reduce the size of the training set significantly (e.g. the SoSt previously described,

shown in Fig. 3.2, would be reduced to 47% the size of the original set). Similarly,

the mid-IR colours W3 and W4 tend to have very poor quality flags. Only ∼ 10% of

the sources within Gaia and AllWISE with information in all passbands have reliable

mid-IR measurements (Marton et al., 2019). However, in this work the mid-IR is

of paramount importance and cannot be excluded, as it is where the discs around

HAeBes start to differ from the dust-free discs around classical Be stars (Waters

et al., 1988; Rivinius et al., 2013). Second, because introducing cuts in the training

data based upon quality criteria can introduce uncontrolled biases in the subsequent

selection. This is because these quality flags are a result of a combination of very

different factors. It is preferable to let the ANN deal with bad quality photometry

as well as contaminants. Nonetheless, these quality flags are added to the final

catalogues of new PMS and CBe candidates (Sect. 3.4 and Tables 3.3 and 3.4). The

consequences of using low-quality data are discussed in Sect. 3.5.2.

3.2 Labelled sources

As introduced in Sect. 3.1, it is necessary to select which categories the ANN should

learn to classify. Then I need to label a set of sources as belonging to these categories

and use them to train the ANN. These labels are considered as ground truth and

any bias, trend or contamination of this sample inevitably results in a bias in the
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final classification. In this section I describe the construction of this set of Labelled

Sources, which is a subset of the Sample of Study. The complementary subset of

the SoSt that is not labelled (Input Set) is the one classified by the trained ANN (see

Sect. 3.3 and Fig. 3.5 for further details).

I use one category of PMS sources and another category of classical Be stars, as

telling the difference between these two groups is the main goal of the algorithm.

In addition of learning from the characteristics of PMS and CBe objects I need

the algorithm to learn from the existence of other similar or distinct sources that

do not belong to these categories. This includes the erroneous or spurious data

present in every catalogue. In other words, I need to construct a representation of

what the algorithm finds when being applied to the Input Set. Hence, I use a third

category of other objects, which comprises all types of sources present within the

catalogues used that are neither a PMS source nor a CBe star. Therefore, the set of

Labelled Sources contains already known PMS sources (Sect. 3.2.1), already known

CBes (Sect. 3.2.2), and other objects (Sect. 3.2.4). In the following sections the

construction of these three categories is described.

All known PMS and CBe sources considered with a good astrometric solution

appear on the Gaia HR diagram (colour vs. absolute magnitude diagram) in Fig. 3.3.

I define as sources with a ‘good astrometric solution’ those with a re-normalised unit

weight error (RUWE parameter of Gaia DR2) of smaller than 1.4 and ϖ/σ(ϖ)≥ 10.

Only these astrometrically well behaved sources have trustworthy positions in the

HR diagram, as astrometry carries most of the uncertainty (see Chapter 2). However,

those with a bad astrometric solution are still used by the algorithm as the observables

are astrometry-independent (see Sect. 3.1.1). In this chapter I use the parallax to

distance conversion of Bailer-Jones et al. (2018). In order to achieve the most

accurate HR diagram positions I also needed to correct for extinction. Unfortunately,

often it cannot be totally taken into account as in general the intrinsic extinctions are

unknown. However, I corrected for interstellar extinction by using the dust map of
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Fig. 3.3 Gaia colour vs. absolute magnitude diagram. Known PMS (in red circles)
and classical Be stars (in violet diamonds) with good astrometric solution and
corrected from interstellar extinction are plotted. An extinction vector corresponding
to AG = 1 is shown at the bottom left of each plot. Black contours trace Gaia sources
within 500 pc with good astrometric solution. Left: All known sources. Right: The
subset of sources with all the observables that are used for training. The very blue
classical Be star is ω CMa and it probably has a spurious GRP magnitude because of
being brighter than the bright limit of Gaia DR2.

Lallement et al. (2019) and the extinction coefficients of Gaia of Casagrande and

VandenBerg (2018). This interstellar extinction shall only be considered as a lower

limit to the total extinction. This procedure for generating HR diagrams is standard

throughout the chapter, so all the HR diagrams presented can be directly compared.

3.2.1 PMS object category

Although for the algorithm there is just a single class of PMS objects, I create that

class by combining intermediate-mass Herbig Ae/Be stars and lower mass T Tauris,

in order to cover the whole mass range.

Herbig Ae/Be stars

Regarding the Herbig Ae/Be stars, I start with the compilation of Chapter 2 where

most known HAeBes could be matched with Gaia DR2 data. The main issue with
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Herbig Ae/Be stars is that almost all of them are brighter than the bright limit of

IPHAS and VPHAS+ (12−13 mag). Using Hα equivalent widths (EWs) I derived

the IPHAS and VPHAS+ like colour r −Hα using the synthetic tracks of Drew

et al. (2005, see their Fig. 6, extinctions and effective temperatures are present

in Chapter 2 and references therein). Combining the Hα EWs of Chapter 2 and

Wichittanakom et al. (2020) with the few sources present in IPHAS or VPHAS+

provided the r−Hα colour for 215 HAeBes. This is why neither r nor Hα passbands

are combined with the rest in Sect. 3.1.1, as they are not available for many sources.

There is a bias in this conversion from Hα EWs to r −Hα colour because it can

only be applied to those objects with observed Hα in emission above the continuum.

Hence, it could not be applied to the many HAeBes with intrinsic emission filling

in the underlying absorption but below the continuum level. This bias also appears

later for T Tauri stars and CBes in Sects. 3.2.1 and 3.2.2 and its impact is addressed

in Sect. 3.5.2.

The cross-match with AllWISE to obtain 2MASS and WISE passbands was

already performed in Chapter 2. The final number of Herbig Ae/Be stars considered

is 255, of which 163 have all observables. I did not include Massive Young Stellar

Objects (Lumsden et al., 2013) in this sample as in general they are not optically

visible so they are not present in Gaia DR2 (except those that are already in Chapter

2 list which were also included in this chapter).

T Tauri stars

To the set of intermediate-mass Herbig Ae/Be stars I add a set of T Tauri stars to

complete the low-mass regime. If I use those objects catalogued as T Tauris in the

SIMBAD database (around 3500 objects at the time of writing) I end up, after the

cross-matches, with most of the objects having being catalogued by a few papers

dedicated to very specific regions (e.g. Venuti et al., 2014 on NGC 2264 open
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cluster or Sicilia-Aguilar et al., 2013 on Tr 37). In order to minimise the possible

implications due to this I add the sources of the Herbig-Bell (HB) Catalogue (Herbig

and Bell, 1988) which, although focused in the Orion region, has sources distributed

all over the sky. I cross-matched the set of T Tauris with Gaia DR2 with a 0.5

arcsecond aperture (close to the 0.4 arcsecond angular resolution of Gaia DR2). I

double checked that the cross-matched sources have a similar V and G band (within

±2 mag, the range is rather generous to avoid biasing to exclude very variable

sources) when possible to discard bad cross-matches. Then, I cross-matched the

Gaia source identifications with those of the SoSt (see Sect. 3.1.4) to obtain the T

Tauri stars with all the observables.

In addition, the HB catalogue provides me with Hα EWs and spectral types that

allow me to derive r−Hα colour for 297 more T Tauris. To this end, I used the HB

B-V colour, which come from simultaneous passbands at maximum brightness, and

the spectral types provided by the HB catalogue to derive extinctions for these T

Tauris. Whenever B-V colours were not available I used those of the APASS survey

(Henden et al., 2018) with a 3 arcsecond cross-match. A small error is introduced

for objects colder than roughly a G2 V star which are typically given slightly smaller

r−Hα magnitudes than those that correspond to them (see Drew et al., 2005 for

further details). The overall result is a sample of 3171 T Tauri stars, of which 685

have information in all the observables.

3.2.2 Classical Be stars

For the classical Be stars, I use the Be Star Spectra Database (BeSS Database, Neiner

et al., 2011) which comprises 2264 CBes. This includes the candidates of Raddi et al.

(2013, 2015). To these I add 35 more CBes from Shokry et al. (2018, those they

claim as secure detections). I cross-matched that catalogue with Gaia DR2 using

a 0.5 arcsecond aperture. Again, I double checked that the cross-matched sources
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have a similar V and G band photometry (within ±2 mag) when possible, in order to

discard bad cross-matches. Then, I cross-matched the Gaia source identifications

with those in the SoSt (Sect. 3.1.4) to assess how many CBe stars are there with all

the observables.

In order to increase the number of stars in this category, I complemented it with

Hα EWs from the spectra available in the BeSS database. I estimated an uncertainty

measuring EWs of 15%, which is probably within the intrinsic EW variations of these

objects. Then, I used again the synthetic tracks of Drew et al. (2005) to transform

Hα EWs to IPHAS and VPHAS+ r−Hα colour for 442 sources. In order to do this,

I used the spectral types of the BeSS database to estimate effective temperatures

and, if undetermined, I estimated them from the positions in the HR diagram (Fig.

3.3). I assumed no extinction, which is roughly safe for this kind of object (only the

faint ones from Raddi et al., 2015 suffer significantly from interstellar extinction).

To assess whether this is a valid assumption I studied the extinction in the G band

provided by Gaia DR2 for all the CBe stars for which it is available. If I take the

central values I found that 94% of the sources have an AG lower than 1.55, which is

roughly the value beyond where the extinction becomes significant for the colour

conversion of Drew et al. (2005). The final number of classical Be stars considered

is 1992 of which 775 have information in all the observables.

3.2.3 Disentangling Herbig Ae/Be, CBe stars, and B[e] stars

There is some inevitable contamination between categories. For example, the set

of known PMS objects is contaminated in its massive end by classical Be stars and

vice-versa. Indeed, there were 15 sources that appeared both as PMS and CBe star

in the previous selections. Therefore, I needed to take decisions on how to catalogue

them, even though in many cases there is no clear answer in the literature. These
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objects were not excluded as they are the most interesting ones for the algorithm to

learn from.

In the following I specify which classification decision was made regarding the

sources that appear both as Herbig Ae/Be and classical Be in this section. Not all of

them have all the observables.

• BD+41 3731 - Classical Be - It appears as a Herbig Ae/Be star in Alecian et al.

(2013) and Reiter et al. (2018). However, Labadie-Bartz et al. (2017) consider

it a classical Be star and Cauley and Johns-Krull (2014) suggest not to treat it

as a PMS object and so did I.

• GU CMA - Herbig Ae/Be - It is generally considered as a Herbig Ae/Be star

(e.g. Ababakr et al., 2017; Fairlamb et al., 2015; Reiter et al., 2018; Mathew

et al., 2018).

• HBC 7 - Herbig Ae/Be - It is a bit doubtful but Hernández et al. (2004) argue

that it shows charecteristics of PMS objects.

• HD 114981 - Classical Be - It appears as Herbig Ae/Be in many papers (Reiter

et al., 2018; Fairlamb et al., 2015) but as CBe in Labadie-Bartz et al. (2017).

Cauley and Johns-Krull (2014) found evidence for it to be a CBe star.

• HD 130437 - Classical Be - Although it appears in The et al. (1994) as a Herbig

Ae/Be star, the situation is very unclear. I decided to follow the intuition of

Acke and van den Ancker (2006).

• HD 158643 - Herbig Ae/Be - Shokry et al. (2018)

• HD 174571 - Herbig Ae/Be - It displays a doubtful nature in many papers

(Reiter et al., 2018; Ababakr et al., 2017; Cauley and Johns-Krull, 2014;

Labadie-Bartz et al., 2017) but there is a general consensus that it is a Herbig

Ae/Be star.
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• HD 36408 - Herbig Ae/Be - Donehew and Brittain (2011) and Cauley and

Johns-Krull (2014)

• HD 37490 - Classical Be - Cauley and Johns-Krull (2014) and Cochetti et al.

(2019)

• HD 50083 - Herbig Ae/Be - Reiter et al. (2018), Alecian et al. (2013), Sartori

et al. (2010), Wheelwright et al. (2010), and Cauley and Johns-Krull (2014)

• HD 76534 - Herbig Ae/Be - Patel et al. (2017)

• HD 94509 - Herbig Ae/Be - Fairlamb et al. (2015)

• LkHA 350 - Herbig Ae/Be - Hernández et al. (2004)

• MWC 655 - Herbig Ae/Be - Ababakr et al. (2017) and Wheelwright et al.

(2010)

• V1493 Cyg - Herbig Ae/Be - It has been little studied in the recent years but

appears as a Herbig Ae/Be star in The et al. (1994) and in a few papers since

then (e.g. Mathew et al., 2018) although Hernández et al. (2004) was unable

to classify it.

In addition, within the sets of known sources there were many ‘unclassified

B[e]’ stars (also known as FS CMa stars, Miroshnichenko, 2017; Arias et al., 2018).

FS CMa objects are an inhomogeneous group of B stars with forbidden lines and

a very unclear nature. These forbidden lines and the dust-type infrared excess

exclude them from being PMS or CBe sources (Rivinius et al., 2013) and I removed

them from the sets of known objects in order to not bias the results. As a word of

caution, independently, around half of the HAeBes display the B[e] phenomenon

(see Oudmaijer, 2017).

Almost all the confirmed FS CMa objects are listed in Lamers et al. (1998),

Miroshnichenko (2007), Miroshnichenko et al. (2007), Miroshnichenko et al. (2017),
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and Khokhlov et al. (2018) and they add up to 53 objects (around 70 proposed in

total, Miroshnichenko and Zharikov, 2015). A total of 17 FS CMa stars from this list

were discarded from the sets of known PMS and CBe stars: BD+23 3183, CD-24

5721, CD-49 3441, AS 119, HD 328990, HD 45677, HD 50138, HD 85567, Hen

3-847, LkHA 348, MWC 1055, MWC 342, MWC 657, PDS 021, PDS 211, V2211

Cyg, and V669 Cep.

Separately, but related, in Chapter 2 it was found that because of their positions

on the HR diagram: MWC 314, MWC 623, and MWC 930 were not very likely to

be PMS objects. Indeed, MWC 314 seems to be a supergiant B[e] star (Frasca et al.,

2016), MWC 930 looks like a luminous blue variable (Martayan et al., 2016; Jiang

et al., 2018) and MWC 623 seems clear to be a FS CMa star (Miroshnichenko, 2007;

Polster et al., 2018). Therefore, I also removed these three objects from the set of

known HAeBes (Sect.3.2.1).

3.2.4 Other objects

I construct the category of other objects by randomly sampling sources from the

Sample of Study. I would like to have a representative set of whatever else might be

present in the SoSt that is not a PMS object or a classical Be star. The question is

how large this category should be in order for the algorithm to generalise properly. In

other words, I want to know how many random sources from the SoSt are necessary

so all populations present in the cross-matched catalogues have been represented in

this category of other objects.

This can be estimated by training an ANN with different sizes of this third

category, and studying how well it generalises in each case. The size of the previously

described categories is kept constant. Using an ANN (3 fully connected hidden layers

of 300 neurons each) I evaluate how the precision and recall of the network on the

PMS group behave on a test set (sized 20% of the training set) for different sizes of
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Fig. 3.4 Different metrics of the ANN on the PMS category vs. different sizes of
the other objects category. Stabilisation point is marked with a vertical grey line.
Top: Precision and recall. As the size of the category gets larger the recall drops
drastically up to the stabilisation point whereas the precision is roughly stable at all
sizes. Middle: TP, FP, and FN. Similarly, TP and FN have equal stabilisation point
whereas FP is stable for all sizes. Bottom: Number of PMS candidates obtained
when generalizing the trained ANN, I note the same stabilisation point.
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this other objects category (Fig. 3.4). The architecture of this ANN is a bit more

sophisticated than the complexity demanded by the problem (as can be seen by the

chosen architecture in Sect. 3.3.2), but I wanted to be sure to not underfit in any

case so the ANN is always sensitive to new data. If the category of other objects is

very small the algorithm is very precise and has a high recall (Fig. 3.4 on top); few

other objects appear in the regions of the feature space where PMS and CBe stars

tend to be placed, so they have little impact in the classification (it also indicates

that the ANN is good in telling the difference between PMS and CBe stars, although

I note that a large fraction of the PMS category are low-mass T Tauri stars). The

more I populate the feature space with other objects the algorithm is less able to

recognise PMS stars (the false negatives rise, Fig. 3.4 at middle) as the regions of

the feature space with the more common PMS sources start to be highly populated

by objects similar to PMS stars and undiscovered PMS objects. The number of false

positives stays the same as the algorithm is still being efficient in the less populated

regions. In other words, the PMS candidate region in the feature space gets smaller

and localised around the less common PMS sources. The number of true positives

drops as a consequence of the increase of false negatives. This causes the precision

to barely change (Eq. 3.3) but the recall to drop (Eq. 3.4, Fig. 3.4 on top) up to a

stabilisation point (grey line in Fig. 3.4) where most of the different types of objects

that populate the feature space differently have appeared, and hence adding more

sources does not further constrain significantly the locus of PMS candidates in the

feature space.

This stabilisation point can also be found if I study the number of PMS candidates

retrieved after generalizing the trained ANN to the unlabelled sources of the SoSt

(Fig. 3.4 at bottom, selecting as candidates those with a probability p ≥ 50% of

belonging to the PMS category). This number drops quickly from a very high value,

where the algorithm does not know about the existence of anything but PMS stars

and CBes, up to the stabilisation point where it becomes roughly stable. Of course,
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adding more other objects always diminish the region of PMS and CBe candidates

in the feature space, but this stabilisation point constitutes the optimal size for the

category of other objects, as larger sizes do not compensate the amount of extra

information for the contamination they introduce.

Therefore, for constructing the category of other objects, I randomly sample

sources from the SoSt (excluding the sources in the PMS and CBe categories) so

that they are in a proportion of 99.82% with the number of sources in the category

of PMS objects (848), this being the observed stabilisation point. This scales to

470,263 objects. Some of these sources might have been classified previously by

different catalogues, although most remain unclassified.

I can approximate what is the proportion of other objects to PMS objects in

the SoSt from a simulation. Robin et al. (2012), using the Gaia Universe Model

Snapshot (GUMS) simulation estimated that the percentage of PMS objects within

G < 20 mag in Gaia is 0.18%. The real proportion of PMS sources in the SoSt is

somewhat larger as I am demanding detections up to 22 µm and in Hα. This implies,

theoretically, that roughly there are as many undiscovered PMS stars in the other

objects category as known PMS stars in the PMS category.

3.3 Algorithm and methodology

The pipeline used can be seen in Fig. 3.5. Most of the algorithm described in

it is available on a GitHub repository2 under the name of YODA (Young Object

Discoverer Algorithm). In this section I describe this pipeline in detail.

3.3.1 Class weights

As explained in Sect. 3.2.4, the set of other objects is contaminated by undiscovered

PMS and CBe stars. This causes the ANN used in Sect 3.2.4 to obtain a decent
2https://github.com/MVioque/YODA
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Fig. 3.5 Pipeline of the whole algorithm, from the cross-match of Gaia DR2, All-
WISE, IPHAS, and VPHAS+ to the set of new HAeBes and classical Be stars. The
light blue area indicates the set of processes that are repeated in a loop 30 times, each
time generating a different set of probabilities associated to each input source. The
green area shows the bootstrapped sets. The red arrow indicates that the Archival
data is partially contained within the Sample of Study, but was also constructed using
external information like the Hα EWs.
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precision but a terrible recall (see Fig. 3.4). As discussed in Sect. 3.2.4, this is

because I am only retrieving the less common sources. Any pre-classifications

performed with the observables used by the algorithm would artificially bias the

results. One option is to use simulations to generate this well defined category of

other objects without PMS and CBe stars (as done for example by Castro-Ginard

et al., 2018) but there is none that lists PMS and CBe objects and contains IR and

Hα information.

I can address this issue by changing the weights of the sources used in the training,

in a way that they are balanced for the different category sizes. Hence, during training

the ANN is heavily penalized when failing at categorising PMS or CBe sources,

but lightly affected by mistakes on the other objects category, which is much larger.

Therefore, the training is not dominated by contaminants or undiscovered sources,

although they still are considered. This weighting technique produces a decent recall

and a very low precision, but this precision is just a lower limit as the candidate

regions of the feature space contain many undiscovered PMS and CBe stars. In other

words, FP is over-measured (Eq. 3.3). In addition, these class weights stress the

algorithm to focus on the differences between PMS sources and CBe stars, which

also bias the selection of PMS sources towards the high-mass end.

3.3.2 Architecture selection

Different machine learning algorithms were considered for this classification problem.

A variety of them have been used so far for similar matters. For example: random

forests (Hedges et al., 2018; Marton et al., 2019; Rimoldini et al., 2019), support

vector machines (Małek et al., 2013; Marton et al., 2016; Solarz et al., 2017; Ksoll

et al., 2018), or artificial neural networks (Snider et al., 2001; Hampton et al., 2017).

Akras et al. (2019b) used the classification tree, linear discriminant analysis, and K-

nearest neighbour algorithms to distinguishing Hα emitters with infrared information
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in photometric surveys. However, similar performances are achieved with most of

the algorithms and it is evident that the output is mainly dominated by the quality of

the training data (Pérez-Ortiz et al., 2017; Pashchenko et al., 2018, or Marton et al.,

2019 in a similar problem of identifying Young-Stellar Objects). Therefore, I decided

to use a shallow artificial neural network as it has the advantage of flexibility and

non-linearity, being able to describe very complex and subtle relations. In addition,

its output can be a probability vector, which eases the catalogue construction. Cons

are the number of hyper-parameters required, which are normally hard to interpret.

Therefore, I needed to find the architecture or optimal configuration of the

ANN for my particular problem. This means choosing the hyper-parameters of the

ANN (e.g. layers, neurons per layer, regularization, see Appendix B). Ideally, this

architecture would be selected with cross-validation (CV) sets that are not used for

the training. However, the sample of known PMS and CBe stars is too small to have

the number of CV sets necessary to test a large enough grid of ANN configurations.

Instead, I used the set of Labelled Sources to select the optimal hyper-parameters

and then, independently, used those hyper-parameters and that same set of Labelled

Sources for the training (see Fig. 3.5). I ran an ANN over the Labelled Sources set

100 times (each time with a 10% test set random split); evaluating at each training

iteration on a CV set (sized 10%) and early-stopping whenever the precision of the

algorithm on the PMS category (selecting as candidates those with a probability

p ≥ 50% of belonging to such category) stopped increasing over 250 iterations. In

addition, I imposed that the recall had to be at least 90%. In each run a different grid

of hyper-parameters was used. After the 100 runs, the best architecture resulted in

two fully connected hidden layers of 580 neurons, with a dropout rate of 50% and

0.01 L2 regularization. Batch Normalisation was applied after every layer, though

no batches were used and the whole training data was evaluated in each training

iteration (as it is a very skewed training set, see Sect. 3.2).
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The activation functions used were ‘ReLU’ for the hidden layers and ‘softmax’

for the output layer. This is because softmax output can be interpreted as a probability

distribution. The loss function used was ‘categorical crossentropy’ with the ‘AdaMax’

optimiser (Kingma and Ba, 2014). See Appendix B for a brief introduction to these

concepts. To construct the ANNs of this project I used Keras (Chollet et al., 2015), a

high-level neural networks application programming interface.

3.3.3 Training, cross-validation, and test set

I shuffle the Labelled Sources set and randomly split it into two subsets (see Fig.

3.5). One contains 90% of the sources and is used to train the algorithm (training

set). The other, containing 10% of the sources is used to evaluate its performance

(test set).

The first step is to perform feature scaling and mean normalisation to the observ-

ables, so they all have the same mean and standard deviation. Then I apply PCA

to the scaled observables to get the set of features used by the ANN (12 principal

components of the 48 carry 99.99% of the variance, see Sect. 3.1). Next, I train the

ANN, which has the architecture chosen in Sect. 3.3.2, with the training set and

use a CV set (sized 10% of the training set) to evaluate the ANN performance after

every training iteration. Early-stopping finishes the training whenever the precision

on the PMS category (with p ≥ 50%) stops increasing over 50 iterations. I note that,

as discussed in Sect. 3.3.1, the precision retrieved is just a lower limit. Once the

ANN is trained, I run it on the test set, that needs to be scaled and feature extracted

as done for the training set. Evaluation on test set gives a value of precision and

recall for each probability threshold for classification p (i.e. the performance of the

algorithm, see Fig. 3.6). Finally, I can apply the trained ANN to the Input Set, giving

a probability for every source of belonging to each of the chosen categories.
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Fig. 3.6 Precision vs. recall trade-off plot resulting after evaluation on test set for
three different bootstrapped iterations. Blue lines correspond to PMS classification
and grey lines to classical Be classification. Different probability thresholds (p) for
selecting candidate objects correspond to different locations on the line. Upwards
arrows (p ≥ 75%), circles (p ≥ 50%), and downwards arrows (p ≥ 25%) are ex-
amples of such probability thresholds. Some lines do not cover the whole metric
space because evaluation stops whenever there are no longer true positives in the
corresponding test set. The precision values are lower limits to the real precisions.

3.3.4 Bootstrap

A major issue is the small size of the PMS and classical Be categories in the training

data (see Sect. 3.2). Small training sets imply that outliers and contaminants have a

very strong influence and might dominate the posterior generalisation. In addition,

the training might be biased to any hidden trend or pattern.

One way to minimise the impact of this is by means of the bootstrap. The key

idea is to fake the construction of new training sets. It works by repeatedly sampling

the original training data and randomly substituting sources with others of the same

data set. If the same algorithm is run over two bootstrapped sets similar, but slightly

different metrics are obtained as a result. If I repeat this bootstrapping process a

large enough number of times I end up with a distribution of precisions and recalls

characteristic of my method, which allows me to estimate the uncertainty of the
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metrics for each probability threshold. Bootstrapping has another advantage, which

is to better represent the distribution of the categories on the feature space and

minimise the impact of outliers.

Therefore, I run the processes described in Sect. 3.3.3 (blue area of Fig. 3.5) 30

times in a loop. In each iteration, I create a bootstrapped version of the combination

of the categories of known PMS and classical Be stars (so the number of objects in

each group is not conserved). In the case of the other objects category, I just withdraw

another random set of sources from the Sample of Study. Once the algorithm is

trained with a certain Labelled Sources bootstrapped set, I obtain by evaluating on

the corresponding test set values for the precision and recall at different probability

thresholds (see Fig. 3.6). When I run the trained ANN over the Input Set, I retrieve

probabilities associated to every source of belonging to each of the three categories.

Hence, after the bootstrapped iterations I end up with 30 values for precision and

recall at different thresholds (in Fig. 3.6 only three bootstrapped iterations are shown

for clarity) and 30 sets of probabilities associated to each source of the Sample of

Study. This is because as the category of other objects has been randomly sampled 30

times, the whole SoSt has been covered eventually. I can average those 30 repetitions

and take the standard deviation of the mean as the uncertainty of each measurement.

This gives a solid estimate of the final precisions and recalls for different p thresholds

as well as final probabilities and uncertainties for all the sources in the SoSt.

Summarising, the set of Labelled Sources described Sect. 3.2 and the Sample of

Study of Sect. 3.1.4 are introduced in a pipeline of algorithms which core is an ANN.

As an output, the pipeline gives probabilities and associated uncertainties for all the

sources in the SoSt of belonging to either the PMS, classical Be, or other objects

category (excluding the known PMS and CBe sources included in the categories of

the Labelled Sources set). These probabilities, that sum up to one in each source, are

presented in Fig. 3.7. The uncertainties for the PMS category are shown in Fig. 3.8.
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3.4 Results

The Sample of Study with probabilities is available in electronic form in its entirety

(4,150,983 sources, see Sect. 3.6). This data is made available so the user can

choose their own probability threshold (p) to select PMS and classical Be candidates.

Choosing p implies fixing a precision (P) and a recall (R). The pipeline also gives

a solid estimate of the precisions and recalls for different p thresholds. However,

due to the nature of the pipeline the values for the precision are only lower limits

(see Sect. 3.3.1). Ideally these two metrics should be as high as possible but there

is a trade-off between them. This is shown in Fig. 3.6, where the precision and

recall for both the PMS and CBe category are plotted for different p probability

thresholds. Raising the threshold to p ≥ 99% maximises the precision to almost

1, but as a consequence the recall lowers to almost 0. The opposite also applies

and neither of both extremes is close to be representative of a good selection; as it

would be either largely incomplete or largely imprecise. The general shape of the

curves is determined by the architecture of the algorithm and the peculiarities of the

classification problem (see Sect. 3.3.2).

In practice, using probability thresholds below 50% is possible, but entering

the regime where the algorithm assigns larger probabilities to other categories is

not advisable as p does not correlate linearly with the precision and recall (see

Fig. 3.6). At p ≥ 50% the resulting catalogues are: new PMS candidates (8,470

sources, P = 40.7± 1.5%, R = 78.8± 1.4%), new classical Be candidates (693

sources, P = 88.6± 1.1%, R = 85.5± 1.2%). I note that the precisions are lower

limits. These catalogues of new candidates are presented in Sect. 3.6 in Tables 3.3

and 3.4 respectively and highlighted in Fig. 3.7 (full tables available in electronic

form, see Sect. 3.6)3. In those tables, together with the probabilities (and associated

3As a word of caution, these recalls do not imply that the presented catalogues contain ∼ 80%
of the existing PMS and CBe stars within any region. They imply that ∼ 80% of the known PMS
and CBe stars in the test set are recovered by the algorithm. This is for example affected by what the
different surveys used are probing and the distribution of the SoSt (see Sect. 3.1.4 and Fig. 3.2). As
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Fig. 3.7 Output probability map of the Sample of Study. A probability threshold of
p ≥ 50% is used to select the PMS (in red) and classical Be candidates (in blue).
On top and right number histograms of the candidates for different probabilities. In
dark grey the sources which belong to either category (p(PMS)+ p(CBe) ≥ 50%
but p(PMS) < 50%, p(CBe) < 50%). Uncertainties are not indicated for clarity.
Numbers are: PMS candidates (8,470), classical Be candidates (693), either (1,309),
other objects (4,140,511).

uncertainties, see Fig. 3.8) I present the observables used for the training (Sect. 3.1.1)

and Gaia astrometric information. In addition, I included the derived interstellar

extinction (A′
G) and A′

G corrected MG (Gaia G absolute magnitude) and GBP −GRP

for those sources with RUWE<1.4 and ϖ/σ(ϖ) ≥ 5. These allow for a better

positioning in the HR diagram (see Sect. 3.2 and Figs. 3.3, 3.9, and 3.13).

explained in Sect. 3.5, probably some of the less extreme objects in the observables used have not
been classified. Similar reasoning can be applied to the precision values.
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Fig. 3.8 PMS probabilities of all Sample of Study sources vs. the uncertainty in that
probability given by bootstrap. Logarithmic contours trace number density and the
red line traces the median uncertainty value for each probability. Naturally, as the
uncertainty is the standard deviation of the mean of 30 bootstrapped iterations (see
Sect. 3.3.4), central values tend to have larger uncertainties than extreme values.
This does not imply that this distribution is random.

In the CBe case the precision does not drop drastically (see Fig. 3.6). This

implies that for the algorithm it is easier to find CBe stars than PMS stars as their

locus in the feature space is less prone to contaminants but mostly because there are

fewer unclassified CBes in the SoSt (see Sect. 3.3.1). A consequence of this is that I

retrieve an order of magnitude less CBe candidates than PMS candidates.

Following the discussion of Sect. 3.2.4, the size of the other objects category

roughly coincides with the point where there is approximately one undiscovered

PMS source per known PMS source in the training and test sets. Taking this into

account, the lower limit on the precision of P ∼ 40% for the PMS group obtained

with p ≥ 50% is an adequate enough result (i.e. the real precision is roughly double).

However, as the precision is a lower limit, it is hard to assess whether a higher
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probability threshold is better to retrieve a stronger catalogue of PMS candidates.

In order to decide this, I need to use parameters and observables that have not been

used in the training, and are hence independent of the selection. As explained in

Sect. 3.1, the set of features (and hence the classification) is distance and position

independent, at least at first order. This means that I can use the HR diagram and the

sky locations to assess this issue.

Before analyzing these catalogues, I first remove the sources brighter than the

typical bright limit of IPHAS and VPHAS+ that show significant differences between

their IPHAS or VPHAS+ magnitudes and their Gaia magnitudes (marked in Tables

3.3 and 3.4 with a ‘X-mtch’ flag). These objects did not affect the training as they

barely account for 0.5% of the other objects category. There are 18 PMS and 57 CBe

candidates with this flag. These sources are likely to be incorrect cross-matches and

they are left out in the following analyses.

3.4.1 Evaluation using the HR diagram

The HR diagram is not entirely selection independent, as I used different colours in

the classification and I do not correct for the unknown intrinsic extinctions. However,

the location in the HR diagram, which carries information about evolutionary status,

is almost independent of the classification.

The Gaia HR diagram of the PMS and classical Be candidates (those with p >

50%) can be seen in Fig. 3.9 at left panels. In Fig. 3.9 at right panels I also distinguish

those with a good astrometric solution (RUWE<1.4 and ϖ/σ(ϖ) ≥ 10) to which

interstellar extinction corrections have been applied. These well behaved sources

have trustworthy positions in the HR diagram. The candidates have been colour-

coded according to their membership probability to the corresponding category. In

this HR diagram I can evaluate the quality of the retrieved catalogues. Regarding

the PMS candidates, the majority are placed to the right of the main sequence, as
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CBe candidates CBe candidates, good astrometry, 𝐴′# corrected

Fig. 3.9 Gaia colour vs. absolute magnitude HR diagram. An extinction vector corre-
sponding to AG = 1 is shown on the bottom left of each plot. Black contours trace
Gaia sources within 500 pc with good astrometric solution. Top left: HR diagram of
PMS candidates (p ≥ 50%) colour-coded by their associated membership probability.
Top right: HR diagram of PMS candidates (p ≥ 50%) with good astrometric solution
colour-coded by their associated membership probability and corrected from inter-
stellar extinction. Bottom left: HR diagram of classical Be candidates (p ≥ 50%)
colour-coded by their associated membership probability. Bottom right: HR diagram
of classical Be candidates (p ≥ 50%) with good astrometric solution colour-coded
by their associated membership probability and corrected from interstellar extinction.

expected for PMS sources. Moreover, if higher probability thresholds or only those

sources with a good astrometric solution are used the selection of PMS candidates

is constrained to those sources that are located in the more likely PMS positions.

Something similar happens with the CBe candidates, as they are placed where CBe

stars are supposed to be. This can be better appreciated when comparing these

candidates with the locus of the known PMS and classical Be stars in Fig. 3.3.

I note that ∼ 6% of PMS candidates and ∼ 1% of CBe candidates lack parallax

information.
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This, in addition of evidencing the quality of the selection, allows to select a

higher probability threshold by looking at the retrieved candidates in the HR diagram

of astrometrically well behaved sources corrected from interstellar extinction (Fig.

3.9 at top right). This threshold can be adapted to the requirements of different

studies or situations. Here, I stick to the probability threshold of p ≥ 50% for

constructing the catalogues of candidates. This is because the candidates with the

higher probabilities are the easier ones to find. Hence, as can be seen in Fig. 3.9,

most of the high-mass PMS candidates do not have high associated probabilities

as the algorithm struggles more to differentiate them from classical Be stars and

vice-versa. In addition, Fig. 3.7 shows that there are very few CBe candidates

with a negligible PMS probability. Therefore, a more conservative selection of the

probability threshold would exclude many of the high-mass objects (see histograms

of Fig. 3.7).

Finally, although in the rest of the paper I discuss the catalogues as of p ≥ 50%,

the user can construct their own catalogues by means of Tables 3.3, 3.4, and the

SoSt with probabilities. As any new catalogue is likely to have a higher probability

threshold, the discussion and analysis that follows holds true. Hence, from here

onward I refer to PMS and CBe candidates as those with a p> 50% in their respective

categories.

3.4.2 Evaluation using sky locations

The selection has been totally independent of coordinates. This, though true, is

limited by the combined footprint of the surveys used; for example, it is limited to

the Galactic plane, see Sect. 3.1.4 and Fig. 3.2. Now, in Fig. 3.10 at top, I plot the

contours of the catalogue of new PMS candidates on the Sample of Study footprint.

The PMS candidates trace some of the overdensities of the SoSt. This is because any

random selection of sources traces the footprint of the SoSt but might also be because
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Fig. 3.10 Top: Sky footprint of the Sample of Study in galactic coordinates, colour-
coded by number density. I note the heterogeneity of the footprint. The scarcity of
sources between 29◦ > l >−145◦ is due to the incompleteness of VPHAS+ at the
time of writing. Each pixel is 2◦× 0.2◦. PMS candidates overdensities appear as
black contours. There are ten time more candidates inside than outside the contours.
CBe candidates appear as white dots. Expanded regions at bottom panels appear
between dashed lines. Middle: Expanded regions. Each region is 20◦×11◦. PMS
contours are replaced by PMS candidates (black dots). Each pixel is 0.5◦× 0.5◦.
Bottom: Same expanded regions in DSS2 colour with the PMS candidates as white
circles and the CBe candidates as yellow dots. Contours trace the footprint of the
Sample of Study.

the new PMS candidates are mostly appearing in star forming regions, which would

be a strong assessment of the selection.

In this respect, it is noticeable that some overdensities are not particularly pop-

ulated by PMS candidates. Moreover, when looking at the small scale (examples
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in Fig. 3.10 at middle and bottom panels) it can be seen that the PMS candidates

are not strictly following the SoSt overdensities but are more likely associated to

nebulosities. In addition, in Fig. 3.11 I plot all the PMS candidates in the sky. They

appear distributed all over the Galactic plane but there are associations of candidates,

regions of around ∼ 0.5 to 1 squared degrees where there are ten to a hundred more

PMS candidates than normally distributed. These associations also appear if I include

the distances (Fig. 3.12).

This means that the Gaia coordinates are assessing the efficiency of the algorithm,

as the retrieved PMS candidates are prone to appear around nebulosities and star

forming regions, even though these regions are not over-represented in the input data.

Further evidence in this respect can be seen in Fig. 3.11, where the new classical

Be candidates are also plotted in the sky. These candidates are distributed all over

the Galactic plane but they are not tracing the associations of PMS candidates or

nebulosities (see e.g. Fig. 3.10 at bottom panels), which implies that they are indeed

of an independent nature for the algorithm. Moreover, if I include the distances

(Fig. 3.12), CBe candidates also appear decoupled from the PMS candidates. CBe

candidates are typically further away, something expected from bright B-type stars.

Although the clustering properties of this new set of PMS sources is beyond

the scope of this study (see Chapter 4 for a more detailed insight), I can make

some remarks. Firstly, on a global scale, PMS candidates trace some of the regions

with more data available. This is likely because these zones contain star forming

regions, as not all the regions with more data available are overpopulated with PMS

candidates (Fig. 3.10 at top panel). However, on a local scale, PMS candidates

do not trace overdensities in the available data, and the associations of candidates

appearing are normally not related to those overdensities (e.g. Fig. 3.10 at middle

panels). Secondly, the PMS candidates seem to trace nebulosities, and the large

sky associations obtained are mostly related to them (e.g. Fig. 3.10 at bottom

panels). There are also a few smaller associations of PMS candidates unrelated to
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Fig. 3.11 Classical Be candidates in blue distributed in the sky in galactic coordinates
plotted on top of the PMS candidates in light grey. The densest regions of PMS
candidates appear darker. The scarcity of sources between 29◦ > l >−145◦ is due
to the incompleteness of VPHAS+ at the time of writing.

footprint overdensities that seem to trace dark nebula and are placed on their edges.

Lastly, among the PMS candidates there is no significant correlation between PMS

probability (0.5 ≥ p ≥ 1, see Fig. 3.7) and coordinates.

3.4.3 Herbig Ae/Be candidates

I have constructed a new catalogue of PMS candidates, of which some can be plotted

accurately in the HR diagram (Fig. 3.9 at top right), a selection-independent plot.

Therefore, I can further select the Herbig Ae/Be stars. In order to do this I study

where the known HAeBes (Sect. 3.2.1) are placed in the HR diagram using the same

quality constrains and extinction corrections. This is done in Fig. 3.13. There, I
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Fig. 3.12 Galactic longitude vs. distance (in parsec [pc], from Bailer-Jones et al.,
2018) of PMS (red dots) and classical Be (blue circles) candidates with good astro-
metric solution. Left:All candidates, Right: Candidates up to 1500 pc.

estimate that PMS candidates with absolute magnitude MG < 6 are possible HAeBe

candidates. This is taking into account that the intrinsic extinction, typically large for

these objects, has not been considered (most of these sources do not have measured

spectral types). This way, I retrieve 1361 new Herbig Ae/Be candidates which are

marked in Table 3.3 (end of the pipeline, Fig. 3.5). This constitutes an improvement

of one order of magnitude with respect to the ∼ 272 previously known HAeBes (see

Chapter 2). The new Herbig Ae/Be candidates are shown in Fig. 3.13.

By construction, these HAeBe candidates are astrometrically well behaved

sources (RUWE<1.4 and ϖ/σ(ϖ) ≥ 10). Hence, I expect many more HAeBes

among the PMS candidates, as most of them do not satisfy these conditions (∼ 60%,

see Fig. 3.9 at top left) or do not even have parallax information (∼ 6%). For

example, using a more relaxed ϖ/σ(ϖ)≥ 5 parallax constraint gives 2226 HAeBe

candidates, but their distance and interstellar extinction uncertainties do not allow

for separating them as nicely from the low-mass candidates. In contrast, using less

precise parallaxes allow to retrieve candidates at farther distances and typically more

massive. As the list of all PMS candidates is available in Table 3.3, future studies
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Fig. 3.13 Gaia colour vs. absolute magnitude HR diagram. Blue dots are previously
known Herbig Ae/Be stars with good astrometric solution corrected from interstellar
extinction. Red diamonds are new Herbig Ae/Be candidates corrected from interstel-
lar extinction. An extinction vector corresponding to AG = 1 is shown on the bottom
left. Black contours trace Gaia sources within 500 pc with good astrometric solution.

may want to use less conservative thresholds to the astrometric quality and select

their own set of Herbig Ae/Be candidates.

3.4.4 Variable candidates

As discussed in Chapters 1 and 2, UX Ori type objects (UXORs) are sources with

irregular brightness variations from 2-3 magnitudes in the optical. Observed light gets

bluer in the deep minima, and the fraction of polarised light increases. Many of them

are catalogued as HAeBes and their extreme variability is explained by eclipsing

dust clouds in nearly edge-on sources and scattering radiation in the circumstellar

environment (Natta et al., 1997; Grinin, 2000; Natta and Whitney, 2000; Oudmaijer
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et al., 2001). In Chapter 2 I provided strong support to the edge-on disc explanation

using Hα line profiles of known HAeBes. In addition, using a similar variability

indicator to Gvar (Eq. 3.1), I found that all catalogued UXORs with V band detected

variabilities above 0.5 mag are strongly variable (17 objects). This implies that these

indicators effectively trace irregular photometric variability.

By using a variability threshold, in Chapter 2 I proposed 31 new UX Ori can-

didates among the previously known HAeBes. The equivalent Gvar threshold is

Gvar ≥ 10. PMS candidates with Gvar ≥ 10 are marked in Table 3.3 with the flag of

‘Var’ (3436 sources) and for the HAeBe candidates the UXOR phenomenon is the

most likely explanation. As I am tracing variability by using the Gaia DR2 uncer-

tainties, sources without intrinsically irregular photometry like binaries or extended

objects can pop out as strongly variable.

This means that ∼ 41% of the new PMS candidates are of this variability type.

This proportion increases to ∼ 49% when it comes to the HAeBe candidates. This

number is consistent with the UXOR behaviour caused by an inclination effect (50%

predicted by Natta and Whitney, 2000). Very probable PMS candidates are in general

very variable (see Sects. 3.5.1 and 3.5.2), so most of the best PMS candidates appear

as ‘Var’ in Table 3.3.

Another assessment of the variability proxies can be achieved by cross-matching

the PMS candidates with variability surveys. A 5 arcsecond cross-match with ASAS-

SN (Jayasinghe et al., 2019) gives 949 sources, of which 830 (87%) have Gvar ≥ 10.

In addition, 557/949 (59%) appear as of Young-Stellar Object (YSO) variability

type. A 5 arcsecond cross-match with the Zwicky Transient Facility (ZTF, Masci

et al., 2019) gives 6438 sources, including 95% of those with Gvar ≥ 10 in the sky

region covered by the survey. A 5 arcsecond cross-match with ATLAS-VAR (Heinze

et al., 2018) gives 2216 objects. Of these, 1960 (88%) have variabilities which are

hard to classify by the ATLAS-VAR machine classifier, suggesting that they are

likely of an irregular type, similar to those of PMS sources. Finally, if I cross-match
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my results with the catalogue of long-period variable candidates of Mowlavi et al.

(2018), which also contains a small set of YSO candidates, I obtain 491 matches

with my set of PMS candidates, of which 444 (90%) have Gvar ≥ 10. According to

Mowlavi et al. (2018) classification, 297/491 (60%) are YSO candidates but 190/491

(39%) are long-period variable candidates (4/491 are undetermined because they

lack parallaxes). These possible contaminants are addressed in Sect. 3.5.2.

3.4.5 Comparison with Marton et al. (2019) and other catalogues

and surveys

Marton et al. (2019) did a similar study to the one presented here but looking for

YSOs in general and only using Gaia DR2, 2MASS, WISE colours and passbands,

and the optical depth from the Planck dust opacity map. Therefore, they did not use

Hα or variability information and did use distance-dependent features. In addition,

they restricted the search to high dust opacity regions. They found 1,768,628

potential new YSO candidates (with the recommended p ≥ 0.9) using a random

forest algorithm. In contrast with that study, in this chapter I have focused on

identifying new high-mass pre-main sequence objects, and on differentiating them

from classical Be stars.

Giving the differences between the two approaches in terms of considered sources,

training data, and features; it should not be surprising if there are not many objects

in common between the two studies and yet both are highly accurate. However, I

find that 48% of my PMS candidates are within the Marton et al. (2019) catalogue.

Moreover, this percentage slightly increases at higher probability thresholds of my

catalogue (56% at p ≥ 0.95). Regarding the Herbig Ae/Be candidates (see Sect.

3.4.3), 56% of them are present among the YSOs of Marton et al. (2019). In contrast,

only 11% of my catalogue of classical Be stars appear as YSOs in Marton et al.

(2019). When moving to p ≥ 0.85 this number goes down to 0%.
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This is a good assessment of the quality of the categorisation as an indepen-

dent study, using a different algorithm and training data, has achieved relatively

similar results regarding PMS sources (taking into account the differences between

methodologies) but has not found almost any of the new CBe candidates presented

in this chapter (and none of the best CBe candidates). This, in addition to support

my selection, proves that the new HAeBe candidates are nicely separated from the

population of CBe stars. The differences between the two studies probably lie in that

I am using Hα and variability information and that Marton et al. (2019) searched only

in dusty environments, being this way position-dependent. In addition, I demand

detections up to W4 (22 µm), whereas these authors only demand detections up to

W2 (4.6 µm). Further assessment is that, as in Marton et al. (2019), I find that 62 of

my PMS candidates are within the Gaia Photometric Science Alerts published at the

time of writing (a project that looks for transient events in the Gaia data, Delgado

et al., 2019); 13 of them appear as YSO, 47 as unknown, and only two appear as

non-PMS. Conversely, of the 87 YSOs in the Alerts, 18 are in the SoSt, which means

that I only missed five that were classified as ‘other source’.

Similarly, of the PMS candidates in SIMBAD (2607 within 1 arcsecond cross-

match at the time of writing) 974 (∼ 37%) appear catalogued as PMS or PMS

candidate. There are 18 objects appearing as CBe, but these were mostly catalogued

by Mathew et al. (2008) and Gkouvelis et al. (2016). These papers selected CBes

using simple cuts in IPHAS+, 2MASS, or WISE observables and hence I understand

that the analysis presented in this chapter supersedes theirs. In addition to this, 663

sources (∼ 25%) appear as with emission lines, infrared bright, or variable. Only

356 sources (∼ 14%) appear as clearly non-PMS. This includes 101 AGB candidates

and 16 carbon star candidates that are addressed in Sect. 3.5.2. As explained in that

section, I expect this number of 356 PMS candidates classified as non-PMS by other

studies to be considerably lower, so this cross-match with SIMBAD is consistent

with the estimated precision in Sect. 3.4 of P & 80% for the catalogue of PMS
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candidates. The other 596/2607 sources do not have a defined category in SIMBAD.

VES 263, the new Herbig Ae/Be star discovered by Munari et al. (2019) is not within

the Sample of Study.

Of the classical Be candidates in SIMBAD (280 within 1 arcsecond cross-match

at the time of writing) 17 appear as CBe (again, most from Mathew et al., 2008 and

Gkouvelis et al., 2016) and 197 as with emission lines. Only nine are clearly not

CBes, of which four are of PMS nature and three appear as variable. This reinforces

the idea that the algorithm is efficiently separating PMS sources from classical Be

stars. The other 57/280 sources do not have a defined category in SIMBAD.

Finally, using a cross-match aperture of 20 arcsecond I find 26 matches between

the set of PMS candidates and the Gaia-ESO Public Spectroscopic Survey (Gilmore

et al., 2012). A fraction of 24/26 sources have hydrogen lines in emission: 14/26

show double-peaked emission (although two might be considered P-Cygni), 6/26

single-peaked emission, 3/26 are either single-peaked or double-peaked, and one

shows a clear inverse P-Cygni profile. Only 2/26 spectra have Hα line in absorption.

The line profile fractions agree with those studied in Chapter 2 for known HAeBes

(31% single-peaked, 52% double-peaked, and 17% P-Cygni). This gives independent

spectroscopic evidence for the PMS nature of the new PMS candidates.

3.4.6 Visualisation

It is possible to visualise the feature space and the selection using a dimensionality

reduction algorithm. I used the UMAP algorithm (Uniform Manifold Approximation

and Projection for Dimension Reduction, McInnes et al., 2018, a brief introduction

to the algorithm is presented in Appendix B) to project the 12-dimensional feature

space (Sect. 3.1.2) into two dimensions. This is done in Fig. 3.14. In the left panel I

project the candidates using an euclidean metric (15% of the number of sources as

number of neighbours and a minimum distance of 0.4). In the right panel I project
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Fig. 3.14 UMAP dimensionality reduction from the 12D space of features to 2D.
Left: dimensionality reduction of the PMS and classical Be candidates, together
with those sources which belong to either category (i.e. p(PMS)+ p(CBe)≥ 50%
but p(PMS) < 50%, p(CBe) < 50%). Right: I project the known Herbig Ae/Be,
T Tauri, and classical Be stars used for the training onto the same plane, which is
colour-coded following the PMS probability distribution of the sources at left.

the known HAeBe, T Tauri, and CBe stars used for the training (Sect. 3.2) onto this

same plane, which is colour-coded following the PMS probability distribution of

the sources at left. This dimensionality reduction helps to understand the catalogue

construction and to find trends within the data. However, information is lost when

moving to 2D. The category of other objects was not included here because of size

limitations.

First, it can be noticed that there is indeed a separation between known PMS

sources and classical Be stars (Fig. 3.14 at right), which is used by the algorithm

to learn how to separate these populations (Fig. 3.14 at left). It is remarkable that

most of the retrieved CBe candidates are not found where known CBe stars are, but

even farther away from the PMS region, which might imply that I am retrieving very

extreme CBe candidates (see Sect. 3.5.2). In addition, most of the PMS candidates

that are located very close to the CBe region are those with a high CBe probability

and vice-versa (see Fig. 3.7). These PMS candidates have r−Hα and GBP −GRP

values typical of known CBes and low IR-excesses for PMS objects. However, these
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are still typically larger than the ones of known CBes. This, together with strong

Gvar variability explains their selection as PMS.

Second, in Fig. 3.14 an arm structure at the very top left of the space of PMS

candidates seems special. A closer look at the 204 PMS candidates located in that

arm shows that they are all placed in the red giant region of the HR diagram (see Fig.

3.9 at top left). They differentiate from the rest of the PMS candidates in that they

have more variability in the indicators and are typically brighter. In addition, they

show on average larger near-IR excesses but lower mid-IR excesses. None of them

have reliable astrometry so they do not contaminate the sample of Herbig Ae/Be

candidates. Potentially, they are evolved contaminants and are flagged in Table 3.3

as ‘GUMAP’ (see Sect. 3.5.2 for further details of their nature). I cannot exclude

sources only because of their HR diagram position, as I might remove HAeBes

with high extinctions and some candidates do not have parallax information. Hence,

candidates in similar red giant HR diagram positions but not in this UMAP region

are not flagged in the final catalogues of Tables 3.3 and 3.4.

3.5 Quality assessment

Table 3.1 summarises the final number of sources in the resulting catalogues of

PMS and CBe candidates. Table 3.1 also indicates the number of known sources

considered in Sect. 3.2, of which those having all observables were used for the

set of Labelled Sources. In this section I evaluate the classification from different

perspectives and give insights on the relative importance of the different observables

used for the selection. In addition, I discuss any detected bias or flaw in the final

catalogues of PMS and classical Be candidates. In general, these mostly affect

sources with a bad astrometric solution in Gaia DR2 so they do not implicate the

catalogue of new Herbig Ae/Be candidates (Sect. 3.4.3).
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Table 3.1 Summary of the number of known sources of each type considered together
with those included in the set of Labelled Sources because of having all observables.
The last column indicates the number of new candidates of each type classified by
the algorithm.

Considered Labelled Sources Classified
sources set p ≥ 0.5

Herbig Ae/Be 255 163 -
T Tauri 3171 685 -
PMS 3426 848 8470
Classical Be 1992 775 693

Note: To be considered, I demanded the sources to be present in Gaia DR2. For
the algorithm there is just a single class of PMS objects, which is constructed by
combining known Herbig Ae/Be and T Tauri stars. Herbig Ae/Be and T Tauri
candidates can be selected from the set of PMS candidates using the HR diagram.
In Sect. 3.4.3 1361 Herbig Ae/Be candidates were obtained this way.

3.5.1 Classification on the test sets

One way to analyse the classification is to study the evaluation on the test sets. As

described in Sect. 3.3.4, I evaluated the performance of the ANN in 30 different test

sets. As the selection of the test set is random in every iteration, almost all of the

known PMS and classical Be sources were in the test set at some point. Averaging

those 30 evaluations results in 793 PMS and 733 CBe known sources that have been

independently assessed by the algorithm.

Regarding the classification of known PMS sources, the most noteworthy trend

is that very variable PMS stars in either indicator (Gvar and Vhtg) are identified.

Although those known PMS stars with r −Hα > 1.3 are identified, objects with

0< r−Hα < 1.3 are spread over the whole range of probabilities. Thus, r−Hα does

not seem to play an important role in detecting PMS sources (see Sect. 3.5.4). This

also happens with GBP −GRP. However, in these two cases, known PMS sources

with low r−Hα or bluer are those who tend to be given high CBe probabilities. The

known PMS sources that were not identified were mostly stars with low near-IR

excess (J−Ks), which are also the ones that are given high CBe probabilities. This
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is probably because these are more similar to CBe stars. Surprisingly, I miss many

known PMS sources with high mid-IR excess (W1−W4) and those that had very low

W1−W4 values were mostly not identified, which again are the ones with higher

CBe probabilities. In general, very few known PMS sources are assigned to the CBe

category, although many known PMS sources are not classified as such (algorithm

recall on the PMS group is R = 78.8±1.4%, Sect. 3.4.1).

Regarding the known classical Be sources, the algorithm also identifies the very

variable ones correctly. CBe sources with high r−Hα are normally given high PMS

probabilities but in general they are not misclassified. There is no trend between

r −Hα values and CBe assigned probabilities. In contrast, there is a trend with

GBP −GRP and redder objects are less likely to be classified as CBe and are given

higher PMS probabilities, but are rarely misclassified as PMS. In addition, CBe

sources show no CBe probability trend with J −Ks or W1−W4 although sources

with W1−W4 & 3 are normally not classified as CBe. Similarly, CBe sources

with higher near- and mid-IR excesses are given higher PMS probabilities but are

infrequently assigned to the PMS category.

Evaluation on the test sets indicates that the algorithm effectively identifies

sources of different categories and uses the various observables to trace the main

characteristics of PMS and classical Be stars.

3.5.2 Final catalogues assessment

In the following points I discuss a few biases and flaws detected in the final catalogues

of PMS and CBe candidates:

1. I demand to have detections up to W4 (22 µm) and in the Hα passbands.

Although I am training with sources that span the whole range of values in

these observables, this induces some biases as I am excluding in the training

many of the less extreme sources and hence biasing the posterior selection.
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This is aggravated given that the Hα EW to r−Hα colour conversion of Sect.

3.2 can only be applied to sources with observed emission above the continuum.

This effect can be quantified if I compare the output catalogues with all the

known sources gathered in Sect. 3.2 (see Table 3.1). This way, the mean value

of r−Hα for known PMS (classical Be) sources (using one standard deviation

as error) is r−Hα = 0.74±0.36 mag (0.38±0.18 mag) and for the candidates

is r−Hα = 0.87±0.46 mag (0.63±0.20 mag). The mean value of W1−W4

for known PMS (classical Be) sources is W1−W4 = 4.0±2.2 mag (1.7±1.3

mag) and for the candidates is W1−W4 = 5.2±1.4 mag (2.24±0.71 mag).

In short, the retrieved candidates are the more extreme of their kind in terms of

Hα emission and IR excess (specially mid-IR excess). This particularly affects

the catalogue of CBe candidates, as these have typically less extreme values.

In Fig. 3.15 I present the frequency density distribution of the final catalogues

of PMS and CBe candidates for a subsection of key observables (GBP −GRP,

J−Ks, W1−W4, r−Hα , Gvar, and Vhtg) together with the distribution of all

known sources.

2. As mentioned in Sect. 3.1.4, WISE presents many spurious photometric

detections in the Galactic plane. To investigate this, Koenig and Leisawitz

(2014) used a set of AllWISE quality parameters and additional selection

criteria to determine that only ∼ 28% of the sources in their study have reliable

W3 and W4 detections. Marton et al. (2019), using a different approach,

concluded that only 10% of their set have reliable W3 and W4 photometry.

These authors used very stringent criteria for the sake of purity and these

percentages may be slightly pessimistic.

I decided to use these passbands because of their expected importance in sepa-

rating CBes from PMS sources (see Sect. 3.5.4). A more relaxed constraint,

using the extended source flag of AllWISE distinct to 0 gives 44% and 27% of
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badly behaved PMS and CBe candidates respectively (marked in Tables 3.3

and 3.4 with a ‘W3W4’ flag). I note that, in contrast to Marton et al. (2019), I

am using many observables in addition to W3 and W4 so the algorithm can

deal better with these being spurious.

3. As described in Sect. 3.1.4, because of the cross-match, I estimated that 1/42

(1/625) sources of the Sample of Study on average are fake, in the sense that

their associated IR (Hα) photometry do not belong to them. However, only 17

(6) PMS and no CBe candidates appear with duplicated IR (Hα) information.

The sources that have the AllWISE, or IPHAS or VPHAS+ name repeated in

the SoSt are marked in Tables 3.3 and 3.4 with the ‘ID AllW’ or ‘ID IPH/VPH’

flag respectively.

4. There are 104 SIMBAD AGB stars in the catalogue of PMS candidates (only

three appear as of confirmed AGB nature and the rest appear as candidates).

This is because they were all classified in one single paper (Robitaille et al.,

2008), where they attempted to separate YSO from AGB stars using a simple

colour and magnitude selection criteria in the near- and mid-IR. I understand

that these are contaminants in that work as my analysis supersedes theirs.

5. I have detected a high incidence of planetary nebulae (PN) detected as PMS

candidates. Observational similarities between YSOs, B[e] stars, and PN

have been reported before (e.g. Frew and Parker, 2010; Boissay et al., 2012;

Miroshnichenko and Zharikov, 2015 and references therein). In fact, Akras

et al. (2019a) found new PN objects by using machine learning techniques

and a similar set of observables to the ones used in this chapter. This is

mainly caused because PN show high r−Hα colours. In addition, as they

are extended they present large Gaia uncertainties, so they can appear as

highly photometrically variable in the indicators (Eqs. 3.1 and 3.2). Of the

PMS candidates in SIMBAD (Sect. 3.4.5), there are 57 (∼ 3.5%) catalogued
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as PN and 34 as possible PN. By studying their location in the observable

space I concluded that any candidate with a r−Hα & 1.3 should be treated

with caution (16% of the sample of PMS candidates). Below that number

I estimate the possible contamination by PN to be below 5%. Candidates

with r−Hα ≥ 1.3 are marked in Tables 3.3 and 3.4 with a ‘PN’ warning flag.

Indeed, there are eight PN (within 5 arcsecond) from Sabin et al. (2014), 40

from Kerber et al. (2003), and three from Stanghellini et al. (2008) among the

PMS candidates. A fraction of 46/51 (90%) have r−Hα ≥ 1.3. I expect also

some contamination in these works. PMS candidates with r−Hα ≥ 1.3 have

mostly absolute magnitudes MG > 6, so they barely contaminate the sample

of Herbig Ae/Be candidates (Sect. 3.4.3). In contrast, the few candidates

with a ‘PN’ warning flag and MG < 6 have a significant probability of being

unclassified B[e] (FS CMa) stars.

6. Similarly, I detect a high number of carbon stars among my PMS candi-

dates (71 confirmed and 16 candidates, according to SIMBAD). They stand

out in variability and near-IR excess, but not in mid-IR excess, where they

have a smaller excess than the rest of the candidates. Only two were clas-

sified as Herbig Ae/Be (Gaia DR2 1828276425855506304 and Gaia DR2

5336019093122634624 with PMS probability of 0.52 and 0.53 respectively)

as the other 85 do not have reliable astrometry. Not surprisingly, 80/87 (92%)

were identified as contaminants in Sect. 3.4.6 and marked in Table 3.3 with a

‘GUMAP’ warning flag. Therefore, I do not expect them to have a high impact

on the final catalogue of PMS candidates. In addition, 29 PMS candidates

appear as variable stars of Mira Cet type in the cross-match with SIMBAD. A

fraction of 17/29 (59%) are flagged as ‘GUMAP’ in Table 3.3.

7. 51 PMS candidates are in the catalogue of OH/IR stars of Engels and Bunzel

(2015, within 5 arcsecond). These 51 sources have different categories in
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SIMBAD and may have been assessed in previous points and sections as

of other nature (even YSO). From the catalogue of AGBs of Suh and Hong

(2017), 26 (within 5 arcsecond) are among the PMS candidates (14, 54%, are

flagged as ‘GUMAP’ in Sect. 3.4.6). Similarly, a very small fraction of the

CBe catalogue is potentially contaminated by sources with very strong mid-IR

excess or that seem evolved. There are 0 post-AGB stars of Szczerba et al.

(2007) in either catalogue.

Most of the contaminants discussed in the previous points can be avoided by

constraining the position in the HR diagram and moving away from the giant and

supergiant region. One way to do so is with the constraint applied in Fig. 3.9 at right.

This also implies that the sample of Herbig Ae/Be candidates (see Sect. 3.4.3) is

barely affected by these contaminants. Conversely, the HR diagram is a powerful

tool to discard contaminants in other catalogues which were correctly classified in

this chapter.

3.5.3 Probability of being either PMS or classical Be

There are 1309 sources whose probabilities of being PMS and CBe sum up to

a probability ≥ 50%, but that are below 50% in either category (i.e. p(PMS)+

p(CBe)≥ 50% but p(PMS)< 50%, p(CBe)< 50%, see Fig. 3.7). This means that

the algorithm thinks that they belong to one of those two categories, but it is unable

to say which. A closer look at these objects reveals that they behave very similarly to

known CBe stars in terms of Gvar, Vhtg, and r−Hα but their mean GBP−GRP colour

is redder and they have slightly larger near-IR excess (J−Ks). The W1−W4 colour

peaks where CBe stars do but it is quite homogeneously distributed. This is not

surprising as in Fig. 3.14 at left they appear mostly mixed with the CBe candidates,

in the region where the PMS candidates that are more similar to known CBes are

placed.
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These borderline objects are interesting in their own right and contain probably

most of the less active PMS sources and in particular, most of the less active and

probably more evolved Herbig Ae/Be stars. These sources are listed in a table

equivalent to Tables 3.3 and 3.4 which is only available in electronic form (see Sect.

3.6). A more detailed analysis of these sources is presented in Chapter 4.

3.5.4 Important observables

In this section, I try to assess how important the different observables are for identi-

fying PMS and classical Be stars. This is not trivial because of the intrinsic nature of

the ANN-based algorithm, as the selection itself is not an obvious process.

What I did was to repeat the pipeline explained in Sect. 3.3 excluding some

observables. I did not include the sources that were removed by demanding detections

in those observables (see Sect. 3.2 and Table 5.1), as this would make it impossible

to know whether the new results are caused by the new sources or the lack of those

observables. Similarly, the ANN architecture was optimized for the whole set of

observables (Sect. 3.3.2), so using fewer observables might alter the performance

in an uncontrolled manner that can affect the conclusions. In order to minimise the

impact of this I removed only a few observables at a time. Another problem is that

by using fewer observables without changing the complexity of the algorithm I may

start overfitting the selection. To assess this I checked that the retrieved precisions

and recalls are within reasonable limits in each case.

In Table 3.2 I present the results (precision, recall, PMS and CBe candidates

with p ≥ 0.5) obtained when applying the same algorithm of Sect. 3.3 to the same

sources of Sects. 3.1.4 and 3.2 but excluding certain observables (in the case of

passbands this implies excluding the colours they appear on, see Sect. 3.1.1). In

the last two columns I express the percentage of PMS and CBe candidates of those

selections that were also retrieved when using all the observables and the percentage
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of sources classified when using all the observables present in these new catalogues.

These two values, in some sense, are equivalent to precisions and recalls if the

catalogues obtained using all observables are taken as reference. As the algorithm

was optimized to maximise the precision on PMS sources (see Sect. 3.3.3), this is

maximum when using all observables. Similarly, when applying the algorithm to a

smaller set of observables the results are going to be inevitably worse (as I do not

include more sources). However, there is information in how much worse they get,

although I can only talk in relative terms.

As outlined above, this table should be treated with caution but it gives infor-

mation about the relative importance of the different observables in the selection of

PMS and CBe candidates. I discuss the main outcomes of Table 3.2 in the following

points:

1. Not using r −Hα does not change the output tremendously. The number

of PMS and CBe candidates retrieved is similar and there is only a small

discrepancy (of ∼ 20%) with the case of using this colour, in the sense that

mostly the same sources are identified and not many sources that were not

identified when using r−Hα are included. This is because cool stars have the

same r−Hα colour than hot stars with emission, see Drew et al. (2005), and

hence this observable is not efficient in separating high-mass PMS and CBe

sources from other objects.

2. GBP, G, and GRP are more relevant for the selection. If I do not use them the

discrepancy with the original set of PMS candidates obtained using all the

observables is higher than in the r−Hα case. Many more sources are obtained

(which can be considered a sort of contaminants) without losing many of the

catalogued ones using all observables. In the case of the CBes, the effect is the

opposite, not many contaminants are added but a few of the sources identified

with these colours are lost. This might be caused by these colours carrying
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3.5 Quality assessment

the photospheric information less affected by disc emission and hence more

representative of temperature. Therefore, for the PMS case including them

helps to remove candidates with unfeasible temperatures (like white dwarfs)

and in the CBe case it helps a bit the selection as they are mostly blue with

low extinctions (see Figs. 3.3 and 3.9).

3. J, H, and Ks: Not using these 2MASS passbands makes very few PMS and

CBe candidates to be lost (less than in the previous cases) but I get many

PMS contaminants, implying that the colours involving these passbands are

relevant for differentiating PMS sources from other objects, although they are

not critical for the selection. These observables do not seem to have a big

impact for the classification of CBes.

4. As expected, W1, W2, W3, and W4 are very important. Not using these WISE

passbands drastically increases the number of contaminants and significantly

reduces the number of PMS and CBe candidates obtained when compared to

the case of using this information. However, removing so many observables at

a single time can cause the algorithm to start overfitting, so these results might

be a bit exaggerated. If I choose to not use only W1 and W2 the selection is

not much affected (only a bit more than in the r−Hα case). Not surprisingly,

it is if I choose not to use W3 or W4 when very poor results are obtained. I

retrieve mostly the same PMS candidates but also many PMS contaminants.

The larger impact is in the case of the CBes, as a lot of them are missed and

almost half of the obtained catalogue is misclassified. This is expected, as at

this wavelength range is where the discs of PMS stars and CBes start differing.

Therefore, probably many CBes are moved to the PMS catalogue lowering

its precision. This is the reason I opted to keep these passbands even though

they suffer from a high incidence of spurious detections (see Sects. 3.1.4 and

3.5.2).
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New Herbig Ae/Be and classical Be candidates

5. Gvar and Vhtg: The observable Gvar proves to be of the utmost importance for

identifying PMS sources. When excluding both variability indicators, I get

twice as many PMS candidates than in the catalogue using all observables,

with an almost full recovery of the later ones. Curiously, half of the CBes are

lost, but not a single contaminant is added. If I exclude them independently I

find that Vhtg is almost irrelevant. It only helped to classify several CBes. In

contrast, not using Gvar doubles the number of PMS candidates retrieved (so

half the sources can be considered contaminants) and halves the number of

CBes obtained. The number of CBe contaminants is close to zero in every case.

All these imply that this indicator is very useful for separating PMS sources

from other objects and, in some cases, to differentiate them from CBes, but

ineffective to identify CBes from the background sources. I showed in Chapter

2 that Gvar mostly traces irregular photometric variations caused by edge-on

dusty discs, so this result is just as expected.

It is clear that if I had optimized the algorithm for each situation using all the

sources available in each case for the training I would have obtained more candidates

and, from Table 3.2, it is safe to say that these would have been more contaminated.

3.6 Catalogue of new PMS and classical Be stars

Using the well-characterised sample of previously known Herbig Ae/Be stars of

Chapter 2, in this chapter I have created a homogeneous and well-defined catalogue

of new Herbig Ae/Be candidates by means of machine learning techniques. Standard

techniques are not efficient for identifying new Herbig Ae/Be stars mainly because

of their similarity with classical Be stars, with which they share many characteristics.

By focusing on disentangling these two types of objects, my algorithm has also

identified new classical Be stars. A catalogue of 8470 new pre-main sequence

candidates and another catalogue of 693 new classical Be candidates were obtained.
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3.6 Catalogue of new PMS and classical Be stars

From the catalogue of new pre-main sequence stars, at least 1361 sources are strong

new Herbig Ae/Be candidates according to their position in the Hertzsprung-Russell

diagram. Note that many more Herbig Ae/Be candidates can be obtained by relaxing

the constraints on the parallax quality (see Sect. 3.4.3). This catalogue of new

Herbig Ae/Be stars increases the number of known objects of the class by an order

of magnitude.

The catalogue of new pre-main sequence stars (Table 3.3), new classical Be stars

(Table 3.4), Sample of Study with probabilities (described in Sect. 3.4), and table of

sources that belong to either category (described in Sect. 3.5.3) are only available in

electronic form in their entirety4.

Below I present a portion of Tables 3.3 and 3.4 for guidance regarding their form

and content. The electronic version of the tables contains the uncertainties of the

magnitudes, quality flags and rest of Gaia parameters together with angular distances

from AllWISE and IPHAS or VPHAS+ sources to Gaia sources. In the points that

follow I describe the possible warning flags of Tables 3.3 and 3.4 by alphabetical

order. See the referred text for further discussion.

• GUMAP: Possible evolved star contaminant. Identified through UMAP visuali-

sation. Discussed in Sect. 3.4.6.

• ID AllW: Source with an AllWISE name repeated in the Sample of Study.

Discussed in Sect. 3.5.2, point 3.

• ID IPH/VPH: Source with an IPHAS or VPHAS+ name repeated in the Sample

of Study. Discussed in Sect. 3.5.2, point 3.

• PN: Possible planetary nebula or ‘unclassified B[e]’ contaminant. Defined as

those candidates with r−Hα ≥ 1.3. Discussed in Sect. 3.5.2, point 5.

4https://vizier.u-strasbg.fr
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New Herbig Ae/Be and classical Be candidates

• Var: Photometrically variable PMS candidate. Defined as those PMS candi-

dates with Gvar ≥ 10. Discussed in Sect. 3.4.4.

• W3W4: Source which extended source flag of AllWISE catalogue is different

of 0. Discussed in Sect. 3.5.2, point 2.

• X-mtch: Likely false candidate because of incorrect cross-match with IPHAS

or VPHAS+. Discussed in Sect. 3.4.
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3.6 Catalogue of new PMS and classical Be stars
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Chapter 4

Analysis of candidates and

independent observations

Non ignoravi me mortalem genuisse

In this chapter I perform an analysis from different perspectives of the catalogues

of pre-main sequence (PMS) and classical Be (CBe) candidates constructed in

Chapter 3. To this I add an analysis of the catalogue of sources that have a probability

of larger than 50% of belonging to one of the two categories. Although little

importance was given to it in the previous chapter, this latter catalogue is in some

respects the most interesting one as it may contain most of the massive PMS sources.

The analysis is complemented with independent spectroscopic observations

that I conducted for a subsample of the catalogues. These observed objects can

be characterised and studied in better detail than the larger catalogues they were

obtained from. Therefore, the set of observed objects is used as a control sample.

I start the chapter with a description of the observations (Sect. 4.1). After this I

describe the properties of the observed objects (Sects. 4.2, 4.3, and 4.4), analyse the

possible contaminants (Sect. 4.5), and discuss the results of the observations (Sect.

4.6). Finally, I move on to analyse the general catalogues in Sect. 4.7.
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Analysis of candidates and independent observations

4.1 Observations

I carried out three independent observing runs to sample the catalogues presented in

Chapter 3 with optical spectroscopy, with emphasis on the PMS candidate catalogue.

The goal was to evaluate the accuracy and quality of the catalogues, and also to

characterise spectral types and hence obtain total extinction values for a subset of

interesting objects, allowing them to be placed in the HR diagram. As explained in

Chapter 3, knowledge of the total extinction is essential to derive accurate stellar

parameters.

In total 145 PMS candidates and 14 classical Be candidates were observed. In

order to obtain precise stellar parameters I tried to select candidates with good

astrometric quality when possible (all but two have ϖ/σ(ϖ)≥ 5 and RUWE < 1.4).

This is because the parallax dominates the uncertainty of the stellar parameters

when these are obtained from the location of the objects in the Hertzsprung-Russell

diagram (see Chapter 2). I intentionally observed objects that were flagged as

possible contaminants in Chapter 3. In particular, nine observed candidates are

tagged as ‘PN’, 81 as ‘W3W4’, and one as both ‘ID AllW’ and ‘ID IPH/VPH’.

The ‘PN’ flag traces possible planetary nebula or ‘unclassified B[e]’ contaminants;

it applies to those objects with r −Hα ≥ 1.3. The ‘W3W4’ flag traces sources

which ‘extended source flag’ of AllWISE catalogue is different from 0, and hence

might have spurious WISE photometry. The ‘ID AllW’ and ‘ID IPH/VPH’ flags

respectively indicate sources with a possible incorrect cross-match with the AllWISE

or IPHAS or VPHAS+ catalogues. These observed tagged contaminants are useful

to test the accuracy of the catalogue warning flags.

The PMS target list was chosen to confirm the pre-main sequence nature of some

of the objects which are expected to be more massive. Thus, I selected the observed

PMS candidates by their expected mass as traced by the absolute magnitude corrected

from interstellar extinction (presented in Chapter 3, see discussion in Sect. 3.2). As
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4.1 Observations
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Fig. 4.1 Probability of each catalogue vs. Gaia white G band magnitude for the
subsample of candidates independently observed with optical spectroscopy. The
different shapes indicate the instrument used to observe each source: triangles
for EFOSC2, circles for IDS, and squares for CAFOS. Filled symbols trace PMS
candidates and unfilled symbols trace CBe candidates. The number of objects of
each category observed at each telescope appears in Table 4.1.

the interstellar extinction is a lower limit, the lower limits to their masses should

ensure they are massive objects indeed. In addition, I included PMS candidates that

span the whole probability range to trace the sensitivity of the probability values

(presented in Chapter 3). This was also done because the most massive objects tend

to have lower probabilities as the algorithm struggles more to differentiate them from

CBe sources.

In addition, a small number of 14 CBe candidates was observed, these were

selected only based on their high CBe probability values.

The PMS and CBe catalogue probabilities of the observed candidates (each

type of candidate with its corresponding catalogue probability) can be seen in Fig.
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4.1. The number of sources observed in each observing run are tabulated in Table

4.1, together with the reciprocal dispersion and the spectral resolution of each

configuration used. The individual sources are detailed in Appendix C. The three

observing runs can be summarised as follows:

• 4th – 11th August 2019. Eight nights with the Intermediate Dispersion Spec-

trograph (IDS) instrument which is at the Cassegrain focus of the 2.54-metre

Isaac Newton Telescope (INT). The INT is located at the Roque de los Mucha-

chos Observatory in the island of La Palma, Spain. In two blocks of four nights

each, two different configurations were used. One block used the EEV10 CCD

detector together with the medium resolution R900V diffraction grating which

covers the ∼ 3600− 5000 Å spectral range. This setting has a reciprocal

dispersion of 0.63 Å/pixel and a spectral resolution of ∼ 1.3 Å (or resolving

power R ∼ 3400). The other block used the higher resolution R1200R grating

with the Red+2 CCD detector (∼ 5700−6700 Å). This setting has a reciprocal

dispersion of 0.52 Å/pixel and a spectral resolution of ∼ 1.0 Å (or resolving

power R ∼ 6000). Bias, flat and arc frames were taken each night for the

reduction of the data.

• 3rd – 5th September 2019. Three nights with the Calar Alto Faint Object

Spectrograph (CAFOS) and SITe-1d 2Kx2K CCD chip at the Calar Alto 2.2-

metre telescope (CAHA2.2m) in Calar Alto Observatory, Spain. I employed

the B-100 grism (∼ 3200−5800 Å) which produces a reciprocal dispersion of

2.0 Å/pixel and a spectral resolution of ∼ 4.0 Å (or resolving power R∼ 1100).

Bias, flat and arc frames were taken each night for the reduction of the data.

• 11th – 13th and 17th – 20th March 2020. Seven nights with the ESO Faint

Object Spectrograph and Camera (v.2) or EFOSC2 in two settings. EFOSC2 is

installed at the Nasmyth B focus of the 3.58-metre New Technology Telescope

(NTT) at La Silla Observatory, Chile. The first block used a medium resolution
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Table 4.1 Number of candidates of each category observed in each observing run
together with the dispersion and resolution of each configuration used.

Telescope Instrument Dispersion Resolution PMS CBe Total
blue/red range blue/red range candidates candidates

(Å/pixel) (Å)
INT IDS 0.63/0.52 1.3/1.0 56 (6) 9 65
CAHA2.2m CAFOS 2.0/- 4.0/- 39 (1) 5 44
NTT EFOSC2 0.96/0.55 7.4/3.5 51 (2) 0 51

Total 145* 14 159

Notes: Blue range corresponds to ∼ 3300− 5400 Å and red range corresponds
to ∼ 5800−7000 Å. Between brackets the number of candidates that have a ‘PN’
warning flag in the catalogues of Chapter 3. * Gaia 4094703381988286592 PMS
candidate is repeated between NTT and INT observations.

G7 diffraction grism and the second block used the higher resolution G20

grism. The G7 grism (∼ 3300−5300 Å) provides a reciprocal dispersion of

0.96 Å/pixel and a spectral resolution of ∼ 7.4 Å (or resolving power R∼ 580).

The higher resolution G20 grism (∼ 6000− 7200 Å) provides a reciprocal

dispersion of 0.55 Å/pixel and a spectral resolution of ∼ 3.5 Å (or resolving

power R ∼ 1900). Bias, flat and arc frames were taken each night for the

reduction of the data.

The blue spectral region considered in the three observing runs (∼ 3300 −

5400 Å) covers the main wavelength range to determine spectral types. This region

is especially useful for the earlier spectral type stars such as A and B stars, as their

spectrum in the wavelength range beyond 5000 Å is fairly line free. The chosen

grisms allow for efficiently obtaining spectral types which in turn can be converted

to effective temperatures (Teff), which are needed to deredden the sources by means

of intrinsic colours. The blue region also covers the Balmer jump and Hβ , which

allows the study of the circumstellar activity. Examples of the normalised spectra

obtained in this spectral range are shown in Fig. 4.2 in the top panels.

At the INT and NTT telescopes additional observations covering the red spec-

tral range (∼ 5800− 7000 Å) were performed for each source that was observed
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with the blue setting. The exceptions are Gaia DR2 3348898739291597568 and

4253225574005033088, which were not observed in the red spectral range even

though they were observed in the blue range at the NTT. The red range covers the

important diagnostic Hα line, which enables the determination of accretion rates. In

addition, next to Hα, the red spectra cover an additional number of lines that are

useful for diagnostics of (circumstellar) activity, such as the He 5876 line and the Na

D doublet at 5890 Å. It also contains the strong Diffuse Interstellar Bands (DIBs)

at 5797 and 5870 Å that trace interstellar extinction. The higher resolution allows

one to better resolve the line-profiles, which are important for further assessing the

nature of the candidates. Examples of the Hα lines observed within the red spectral

range are shown in Fig. 4.2 in the bottom panels.

I wrote the observing proposals and was awarded time for these observations at

telescopes from three different organisations. The observations were also prepared

and carried out by myself but the spectra were reduced by Mr. C. Wichittanakom

(for the INT data) and Prof. R. D. Oudmaijer (for the CAHA2.2m and NTT data).

The signal-to-noise ratio of the spectra were typically of order 100. More detailed

information regarding the observations will be provided in a future publication. The

resulting effective temperatures or spectral types and the Hα equivalent widths and

line profile information were forwarded to me as a private communication, which I

include and discuss in the following sections.

4.1.1 Results from the blue spectral range

The observed 145 PMS candidates and 14 CBe candidates and their derived spectral

types and temperatures from the blue spectral range (∼ 3300−5400 Å) are listed in

Tables C.1 and C.4, respectively.

For several objects the temperature was estimated directly from model fitting

the spectra, and thus no spectral type was derived for those sources. For the rest
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Gaia DR2 428909457258627200
Herbig Ae/Be star candidate

Gaia DR2 431592948519739136
Classical Be star candidate

Blue rangeBlue range

Red rangeRed range

Fig. 4.2 Examples of the normalised spectra obtained with IDS of a PMS candidate
and a classical Be candidate (see Table 4.1). The top panels contain the blue spectral
range of each source and the bottom panels contain the corresponding Hα line within
the red spectral range. Spectra are courtesy of Mr. C. Wichittanakom.

spectral types were obtained by comparison with model spectra and published

spectral standards, and the Teffs appearing in Tables C.1 and C.4 are the values that

correspond to those spectral types according to Pecaut and Mamajek (2013). In the

latter case the Teff uncertainties are larger than with the previous method.

The brightness of the observed sources is shown in Fig. 4.1. Because of sensitivity

limitations, only candidates at the bright end of the catalogues were observed. One

could therefore argue that the observed sample is biased, however as the selection

was distance independent, the conclusions that arise from these observations can be

extrapolated to the fainter objects of the catalogues, given that they were all selected

homogeneously by the machine learning algorithm. I note that it is at the fainter

end of the catalogues where the vast majority of the sources are totally novel and

unexplored. Thus, several of the observed objects have been already characterised

155



Analysis of candidates and independent observations

and studied by other surveys and authors. The independent classification of sources

in my catalogues was thoroughly discussed in Chapter 3, where it was shown that

those previous results often agree with my categorisation.

In this regard, I performed a 5 arsecond cross-match of the observed candidates

with SIMBAD. The resulting ‘SIMBAD object types’ (the category the SIMBAD

database assigns to each object; e.g. YSO, emission-line star) and spectral types

from previous literature, if available, are tabulated in Tables C.1 and C.4 together

with our determinations. There are 26 candidates with some previous spectral type

information in SIMBAD. Only two of those sources show discrepancies greater

than a few spectral subtypes with our spectral types or Teff values. These are Gaia

DR2 4272195138879459200 and 2013474586693428096. Although Gaia DR2

4272195138879459200 appears as a F6 star in SIMBAD, it has been classified by

most previous studies, including ours, as of B type (e.g. The et al., 1994). Gaia DR2

2013474586693428096 was classified as B2 from its photometric B−V colour by

Uemura et al. (2004). However, the spectra of this object evidences that it is a much

cooler object. Our determination is Te f f = 6500±500 K. Therefore, the independent

SIMBAD spectral types evidence the accuracy of our derivations. I proceed with our

determinations as they were obtained homogeneously.

In addition, there are 116 observed candidates with SIMBAD object types. These

are consistent with the precisions derived in Chapter 3 of ∼ 81% and ∼ 89% for

the PMS and CBe catalogues respectively. Individual analysis of the object types

leads to similar conclusions to what was discussed in Chapter 3 (see Sects. 3.4.5 and

3.5.2). I note that the ‘Candidate AGB’ sources were catalogued by Robitaille et al.

(2008) and in Sect. 3.5.2 it was concluded that my analysis supersedes theirs. See

Sect. 4.5 for further discussion of possible contaminants.
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4.1.2 Results from the red spectral range

Several spectral features in the red spectral range (∼ 5800−7000 Å) that can trace

circumstellar activity and accretion in PMS objects were observed. In this section I

mainly focus on describing what was observed in the Hα emission line.

In Sect. 4.5, I discuss that 12 clear contaminants among the observed PMS

candidates can be directly identified from the observations. Excluding those, of the

95 PMS candidates with observations in the red spectral range, 85 (∼ 89%) show

Hα emission. In general, of the 133 PMS candidates remaining (145−12), 97 show

emission in Hα or Hβ (∼ 73%). I note that Hβ emission may not be present even if

Hα emission is. All nine CBe candidates observed in the red spectral range show

Hα emission and 13/14 show emission in Hα or Hβ (∼ 93%). This high percentage

of sources with hydrogen emission supports the PMS or CBe classification.

The Hα line profile was classified into single-peaked, double-peaked or P-Cygni

profile, both regular or inverse, following the classification of Chapter 2. Of the afore-

mentioned 95 PMS candidates with Hα line observations, 37 show single-peaked

emission, 40 double-peaked emission and eight P-Cygni emission (ten sources have

Hα in absorption). Therefore, of the PMS candidates with Hα emission, 44% are

single-peaked, 47% are double-peaked and 9% are P-Cygni. These percentages

are somewhat different to those observed for known HAeBes (31%, 52%, and 17%

respectively; see Chapter 2). I suspect that this difference is caused by the low-

resolution of my spectroscopical observations, which moved many P-Cygni and

double-peak profiles to the ‘single-peaked’ group; and because of the presence of

contaminants (see Sect. 4.5). Indeed, the main references for the line profiles of the

known HAeBes in Chapter 2 were Vieira et al. (2003) and a private communication of

the spectra used for Fairlamb et al. (2017). Both studies have a spectral resolution of

R ∼ 10000, which is two to five times larger than the resolution of my observations.
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Of the 9 CBe candidates with Hα line observations, 7 (78%) have single-peaked

emission and 2 (22%) have double-peaked emission. No P-Cygni profile was ob-

served in them. I also expect these percentages to be affected by the low-resolution

of my observations.

The measured Hα equivalent widths (observed above the continuum) and the

Hα line profiles are tabulated in Tables C.2 and C.5 for all observed PMS and CBe

candidates respectively. In addition, in these tables I present information of whether

the Hβ line from the blue range (∼ 3300−5400 Å, Sect. 4.1.1) appears in emission.

4.1.3 SIMBAD set

In addition to the observed objects, I checked the literature for sources among the

catalogues of Chapter 3 with spectral type determinations. For doing this I cross-

matched the catalogues of PMS and CBe candidates, and the list of sources with

a probability of larger than 50% of belonging to either category (which I call the

‘Either’ group hereafter), with the SIMBAD database using a 5 arcsecond aperture.

This resulted in 187 stars (103 PMS, 56 CBe, and 28 Either) that were not observed

by myself but have a spectral type in the literature (‘SIMBAD set’ hereafter). I found

that the cross-match is consistent by comparing optical and infrared colours and no

incorrect cross-match was detected.

These sources are tabulated in Appendix D. I note that the heterogeneity of the

SIMBAD database introduces some uncontrolled scatter and spurious determinations,

which makes this sample less useful than my own observations.

4.2 Intrinsic Gaia GBP−GRP colours

In the next sections I use the observed spectral types or effective temperatures to

determine the total extinction. However, for many objects, only Gaia photometry is
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available, and the intrinsic GBP −GRP colour of the different spectral types are not

yet published, so it was necessary to perform my own derivations. This is not trivial.

A set of stars with well-characterised spectral types is needed, with the additional

complication that these objects need to have a negligible or well controlled extinction

and photometric data that are not problematic (not variable and systematic free).

As discussed below, there is no ideal set of sources with observationally obtained

spectral types and Gaia data to derive empirical GBP −GRP intrinsic colours.

However, at present I need to determine Gaia intrinsic colours empirically,

because the very broad Gaia passbands do not yet have a properly characterised

sensitivity curve (see later discussion in this section). A further complication is

that Gaia photometry suffers from systematic effects and biases in the published

values. This was first discussed in Evans et al. (2018) for the case of Gaia DR2.

Later, Weiler (2018) and Maíz Apellániz and Weiler (2018) proposed new sensitivity

curves and, building on previous results, detailed and summarised the biases and

systematic effects of the Gaia photometry.1 In particular, two magnitude ranges with

different GBP sensitivity curves are necessary, with the split at G = 10.87. Because

of these issues, the Gaia intrinsic colours should not be obtained from theoretical

models, as these are yet highly uncertain, and should be derived only from empirical

observations.

All large surveys with temperature determinations and Gaia DR2 colours (e.g.

Gaia DR2: Andrae et al., 2018; RAVE DR6: Steinmetz et al., 2020; or GALAH DR2:

Buder et al., 2018) are largely incomplete at the spectral type range of interest here (O,

B, A). Similarly, the LAMOST survey (Luo et al., 2019) is also inefficient because

1It turns out there is a small systematic, magnitude dependent, effect in the white G band. Its
correction, which is applied from here onward, can be summarised by:

2 < G ≤ 6 −→ Gcorr =−0.047344+1.16405G−0.046799G2 +0.0035015G3,

6 < G ≤ 16 −→ Gcorr = G−0.0032(G−6),
G > 16 −→ Gcorr = G−0.032.

(4.1)

I note that this is a small systematic effect that would not affect any of my conclusions.
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of its sparse coverage of B type stars. In addition, those works that derive both T eff

and AV simultaneously (e.g. Anders et al., 2019) suffer from the degeneracy between

those parameters, especially for objects that do not lie on the main sequence and

suffer circumstellar extinction. The Tycho-2 Spectral Type Catalogue (Wright et al.,

2003), which includes some of the better characterised spectral types catalogues,

was also discarded as each of its spectral sub-types exhibit a large spread in the

GBP −GRP colour. This indicates that the catalogued objects would require major

extinction corrections, or have a large uncertainty in their spectral types.

After considering this, I decided that the Bright Star Catalogue (BSC, Hoffleit

and Jaschek, 1991) was the best set of stars to use. The BSC lists the spectral types

of 9110 of the brightest stars in the sky. This catalogue is not ideal as Gaia suffers

significantly from saturation for sources brighter than G < 6, whereas the optimal

range is for objects with G > 13 (Riello et al., 2018). However, because they are

bright, they are typically not far away and hence are not expected to suffer much

from extinction. This is further evidenced by the small scatter of the BSC spectral

sub-types in the GBP −GRP colour (see Fig 4.3).

Some dwarf BSC objects appear in the sub-giant or red-giant branch. Therefore,

the luminosity class classification of the BSC is somewhat affected by reddening

and erroneous determinations. Thus, I use the theoretical main-sequence location to

select the set of BSC objects to use for deriving the Gaia GBP−GRP intrinsic colours.

The PARSEC 1.2S isochrones of Bressan et al. (2012) and Marigo et al. (2017) have

a label that describes the evolutionary stage of each point, and those corresponding

to a main sequence stage were used to define a theoretical main sequence in the Gaia

GBP −GRP vs. absolute G magnitude diagram (see Fig 4.3). I used 4000 isochrones

of solar metallicity from log(Age) = 1.00 to log(Age) = 10.48 yr in steps of 0.0025

dex. This set of isochrones is used throughout the whole chapter. The passband

profiles of Maíz Apellániz and Weiler (2018) were used (in this case with the blue

sensitivity curve for bright objects, see Fig. 4.4).
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Fig. 4.3 Gaia colour vs. absolute magnitude diagram of the Bright Star Catalogue
sources considered for deriving Gaia GBP −GRP intrinsic colours (in grey). Only
four spectral sub-types are highlighted for clarity. Black lines trace the derived
intrinsic colours for those sub-types (B5: −0.197, A5: 0.245, F5: 0.591, G5: 0.834
mag). Note that for B5 a posterior reddening correction was applied (see Sect. 4.2).
The theoretical main sequence from PARSEC 1.2S isochrones appears in light blue
(Marigo et al., 2017).

BSC sources with incorrect Gaia photometric determinations according to the

criterion introduced in Chapter 2 (Eq. 2.5) from Gaia Collaboration et al. (2018a)

were also removed. In total, 3765 BSC sources have a good photometry according to

this constraint, have Gaia distances from Bailer-Jones et al. (2018), and are on the

theoretical main sequence according to the PARSEC 1.2S isochrones. This is the

set of sources I use to derive the Gaia GBP −GRP intrinsic colours and it is shown

in the Gaia colour vs. absolute magnitude diagram of Fig. 4.3. No constraints

to the astrometric quality were applied as only one of the BSC sources used has
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ϖ/σ(ϖ)< 5. I note that 16% of the used BSC sources have RUWE≥ 1.4, and hence

their astrometry might be unreliable according to this Gaia astrometric indicator.

However, the parallax determination does not affect the colour (i.e. the astrometric

solution is independent of the photometry) and for this exercise I chose to keep these

objects for their colour information. This is because the exact absolute magnitudes

of the used BSC sources are not relevant (see Fig. 4.3). As the selection of the

theoretical main sequence is already an arbitrary cut in absolute magnitude, I expect

the potential impact of these sources with a possible unreliable astrometry to be very

minor.

Artificially biasing the empirical observations to those objects in theoretical

main sequence positions seems to contradict the previous discussion. However,

after inspection I concluded that this approach is less affected by uncontrolled

uncertainties and biases than to use the luminosity class classification of the BSC.

I took the median GBP−GRP and B−V value of each BSC spectral subtype. The

median colours obtained this way are presented in Table 4.2 (see also Fig. 4.3). The

obtained B−V median colours are compared with the intrinsic colours of Pecaut

and Mamajek (2013). This allows me to assess the quality of the selected set of

BSC sources for spectral typing. The result is that the difference between the two

is below 0.03 mag for almost all spectral subtypes (44/49, see ‘residual’ column of

Table 4.2). This implies that the selected BSC sources constitute a photometrically

well-behaved sample which is good for deriving intrinsic colours. A 0.03 mag error

is good enough for the purposes of this chapter; for example, the mass as determined

from the isochrones and Gaia colour throughout the chapter is typically affected by

. 2% under GBP −GRP = 0.03 mag deviations.

Finally, the observed median GBP−GRP colour was taken directly as the intrinsic

colour (see Fig. 4.3). However, I do note a systematic deviation in the aforementioned

residual values for O and B objects (see Table 4.2). As these sources are typically

further away this is likely caused by reddening. Therefore, O and B Gaia GBP −GRP
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Fig. 4.4 Gaia DR2 GBP −GRP intrinsic colours for dwarf stars of different spectral
types. Magenta and yellow lines trace the theoretical main sequence colours using
the bright and faint GBP sensitivity passband profiles of Maíz Apellániz and Weiler
(2018) respectively. Note the difference between empirical and theoretical colours in
the B1.5V to B7V range.

median colours were corrected for reddening using the residual values. For this I

used the E(B−V ) to E(GBP −GRP) conversions of Casagrande and VandenBerg

(2018). In this latter case, these colours that were corrected for reddening were

chosen to be the intrinsic colours. The resulting intrinsic colours are tabulated in

Table 4.2 and shown in Fig. 4.4, in which the theoretical main sequence intrinsic

colours arising from the two Maíz Apellániz and Weiler (2018) GBP sensitivity

curves are also plotted. The sensitivity curve for bright objects was used to constrain

the BSC set of sources used to derive the Gaia GBP −GRP intrinsic colours and the

sensitivity curve for faint objects (G > 10.87) is used hereafter in the chapter. The

difference between the two passband profiles is significant for the early type regime
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Table 4.2 Gaia GBP −GRP median and intrinsic colour for each spectral sub-type
from Bright Star Catalogue selected objects. The B−V median colour from the
Bright Star Catalogue is also derived and compared with the intrinsic B−V colours
of Pecaut and Mamajek (2013, PM13). The difference between these latter two
appear in the fifth column. Temperatures from PM13 are listed in the seventh column.

SpType Gaia DR2med BSCmed PM13int Residual Gaia DR2int PM13
GBP −GRP B−V B−V (mag) GBP −GRP Teff [K]

O9/O9.5V -0.374* -0.24* -0.318 0.078 -0.478* 34000
B0/B0.5V -0.366 -0.24 -0.307 0.067 -0.455 31500
B1V -0.315 -0.21 -0.278 0.068 -0.406 26000
B1.5V -0.281 -0.185 -0.252 0.067 -0.371 24800
B2V -0.255 -0.18 -0.21 0.03 -0.295 20600
B2.5V -0.237 -0.17 -0.198 0.028 -0.274 18500
B3V -0.209 -0.15 -0.178 0.028 -0.246 17000
B4V -0.196 -0.14 -0.165 0.025 -0.230 16700
B5V -0.162 -0.13 -0.156 0.026 -0.197 15700
B6V -0.146 -0.115 -0.14 0.025 -0.179 14500
B7V -0.126 -0.10 -0.128 0.028 -0.163 14000
B8V -0.102 -0.08 -0.109 0.029 -0.141 12500
B9V -0.064 -0.06 -0.07 0.01 -0.077 10700
B9.5V -0.035 -0.04 -0.05 0.01 -0.048 10400
A0V 0.000 -0.01 0.00 -0.01 0.000 9700
A1V 0.044 0.02 0.043 -0.023 0.044 9200
A2V 0.096 0.06 0.074 -0.014 0.096 8840
A3V 0.162 0.11 0.09 0.02 0.162 8550
A4V 0.191 0.15 0.14 0.01 0.191 8270
A5V 0.245 0.17 0.16 0.01 0.245 8080
A6V 0.246 0.19 0.17 0.02 0.246 8000
A7V 0.290 0.20 0.21 -0.01 0.290 7800
A8V 0.343 0.24 0.25 -0.01 0.343 7500
A9V 0.392 0.28 0.255 0.025 0.392 7440
F0V 0.410 0.28 0.294 -0.014 0.410 7200
F1V 0.481 0.34 0.334 0.006 0.481 7030
F2V 0.515 0.36 0.374 -0.014 0.515 6810
F3V 0.541 0.39 0.389 0.001 0.541 6720
F4V 0.574 0.41 0.412 -0.002 0.574 6640
F5V 0.591 0.43 0.438 -0.008 0.591 6510
F6V 0.632 0.47 0.484 -0.014 0.632 6340
F7V 0.662 0.49 0.51 -0.02 0.662 6240
F8V 0.694 0.53 0.53 0.00 0.694 6150
F9V 0.740 0.55 0.552 -0.002 0.740 6040
G0V 0.753 0.58 0.588 -0.008 0.753 5920
G1V 0.781 0.62 0.604 0.016 0.781 5880
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Table 4.2 continued.

SpType Gaia DR2 BSC PM13 Residual Gaia DR2 PM13
GBP −GRPmed B−V med B−V int (mag) GBP −GRPint Teff [K]

G2V 0.808 0.63 0.65 -0.02 0.808 5770
G2.5/G3V 0.817 0.64 0.661 -0.021 0.817 5720
G4V 0.822 0.65 0.674 -0.024 0.822 5680
G5V 0.834 0.67 0.68 -0.01 0.834 5660
G6V 0.885* 0.72* 0.704 0.016 0.885* 5590
G7V 0.905* 0.73* 0.713 0.017 0.905* 5530
G8V 0.917 0.73 0.737 -0.007 0.917 5490
G9V 0.935* 0.73* 0.777 -0.047 0.935* 5340
K0V 0.974 0.805 0.816 -0.011 0.974 5280
K1V 1.019 0.84 0.847 -0.007 1.019 5170
K2V 1.067 0.87 0.893 -0.023 1.067 5040
K3V 1.210 0.995* 0.99 0.005 1.210 4840
K4V 1.322* 1.105* 1.1 0.005 1.322* 4620

Note: *Values obtained with fewer than 5 objects. 44 spectral types have residuals
below 0.03 mag. Those who do not are O9/O9.5, B0/B0.5, B1, B1.5 and G9. O
and B type GBP −GRP median colours were corrected from extinction using the
residuals to derive the corresponding intrinsic colours; for the other spectral types
the median GBP −GRP colour equals the intrinsic GBP −GRP colour.

and it exemplifies a problem with the Gaia photometric system and the requirement

of using only empirically obtained intrinsic colours.

In Fig. 4.4 the empirically derived intrinsic colours match the theoretical values

for most of the spectral types, which is another positive assessment of the quality

of the derived intrinsic colours (although there is an induced bias by demanding the

BSC sources to be on theoretical MS locations, see Fig. 4.3). However, there is a

small offset of a few tens of milli-magnitudes in the B1.5V to B7V range. This offset

could be caused by a flaw in the theoretical isochrones but also by an incomplete

reddening correction or even by photometrically problematic BSC sources. As no

intrinsic colour is bluer than theoretically expected, I have reasons to believe that an

incomplete reddening correction is the more likely explanation.

I wish to stress that the intrinsic colours derived in this section are not optimal, but

they are the first empirical determinations. Probably in the future superior derivations
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will be achieved from a better behaved set of objects in the adequate magnitude

range for the Gaia data.

Finally, it is worth remarking that I use intrinsic colours for dwarf sources

throughout the chapter. Although this is correct for most CBe sources, Pecaut

and Mamajek (2013) already noted that this may be inaccurate for PMS stars.

Nonetheless, the error introduced is often insignificant when compared to other

uncertainties, and most of the observed objects are indeed of a dwarf type.

4.3 HR diagram and stellar parameters

Using the intrinsic colours obtained in Sect. 4.2 and the temperatures and spectral

types of Tables C.1 and C.4 I derived the intrinsic GBP−GRP colours of the observed

sources described in Sect. 4.1. For the sources which spectral types were determined

I took one spectral sub-type as uncertainty to derive the error on the intrinsic colour.

For those sources which effective temperatures were directly derived, the Teff uncer-

tainty was used, with a minimum value of one spectral sub-type (using the Pecaut

and Mamajek, 2013 values; see Table 4.2). Then, extinctions were derived using

the Gaia observed colours (AG = 2.046E(GBP −GRP); Casagrande and VandenBerg,

2018). Finally, I used those extinctions and the Gaia G magnitude and parallax to

obtain absolute magnitudes (using the parallax to distance conversion of Bailer-Jones

et al., 2018).

This could be done for all sources but for five PMS candidates. Gaia DR2

4318785810234714752, 506799479443438080 and 5333545642950621696 could

not be spectral typed, mainly because of their strong emission line spectrum. In

addition, stars cooler than K4 could not be assigned an intrinsic colour because

there are no sources in the BSC with those spectral types in the demanded MS

positions (see Sect. 4.2 and Fig. 4.3). Thus, the observed PMS candidates Gaia

DR2 431934385541454080 and 2071705173505640448, which are a late-K/M and
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M1 star respectively, do not have intrinsic colours tabulated in Table 4.2 and no

extinction or absolute magnitude were derived for them. I note that these five objects

are very likely contaminants: Gaia DR2 4318785810234714752 is a known planetary

nebula (and was tagged with a ‘PN’ flag in my catalogue) and 506799479443438080

appears as dwarf nova in SIMBAD (from e.g. Sahman et al., 2015 or Dubus et al.,

2018). Gaia DR2 5333545642950621696 has a PN warning flag in my catalogue and

might be a B[e] (FS CMa) star. This is supported by the extremely strong emission it

shows in all H lines observed (see Sect. 4.5). Gaia DR2 431934385541454080 and

2071705173505640448 are probably evolved stars given their low temperature and

low absolute magnitude (high luminosity) in the HR diagrams of Chapter 3.

Gaia 4094703381988286592 was observed with both IDS and EFOSC2 settings

and was assigned a B1.5 and a B3 spectral type respectively. Given the better

resolution of the IDS configuration and its smaller spectral type uncertainty I used

the B1.5 spectral type for this object in the derivations of this section.

In the end, 140 PMS candidates and 14 CBe candidates can be placed accurately

on the Gaia Hertzsprung-Russell diagram. This is done in Fig. 4.5. I note that all of

them have a ϖ/σ(ϖ)≥ 5 and only two have a RUWE > 1.4. These are Gaia DR2

5884829984147822976 and 5544618168572613504, which are highlighted in Fig.

4.5. Therefore, the indicated absolute magnitudes for those two objects might be

spurious.

In Fig. 4.5 pre-main sequence tracks of 1, 2, 4, and 7 M⊙ are shown together

with the theoretical main sequence described in Sect. 4.2. In Fig. 4.5 it can be

seen that most observed PMS candidates are massive hot objects. In addition, many

occupy clear early-stage PMS locations, whereas some of them are closer to the

ZAMS. No PMS candidate is located outside PMS positions in this HR diagram,

which resembles very much that of Fig. 2.1 in Chapter 2 for the known Herbig

Ae/Be stars. I note that from the PMS tracks of Fig. 4.5 most of the observed PMS

candidates are very strong intermediate mass Herbig Ae/Be candidate stars, with
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Fig. 4.5 Gaia colour vs. absolute magnitude diagram of the observed candidates.
PMS candidates (140) appear as full circles and CBe candidates (14) appear as
blue open circles. In green the two PMS candidates with an unreliable astrometric
solution. In red those PMS candidates with a ‘PN’ warning flag in the catalogue of
Chapter 3. The theoretical main sequence and the pre-main sequence tracks appear
in blue and grey respectively (from Marigo et al., 2017). PMS tracks correspond to
1, 2, 4, and 7 M⊙.

the exception of a handful that are placed around the 1 M⊙ track. As in the HR

diagrams of Chapter 2 for the known HAeBes, most massive sources appear close

to the ZAMS whereas the scatter along PMS tracks is larger for low mass objects.

However, around 10% of the observed candidates appear located at high-mass tracks

(above 4 M⊙) and at early stages of evolution (i.e, far away from the ZAMS, see Fig.

4.5). These are studied in more detail in Sect. 4.6. In addition, in Fig. 4.5 I highlight

the seven PMS candidates with a ‘PN’ warning flag. These are discussed further in

Sect. 4.5.

Most classical Be candidates observed appear on B main sequence positions

in the HR diagram of Fig. 4.5. Only two appear in sub-giant locations, which
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Fig. 4.6 Gaia colour vs. absolute magnitude diagram of candidates with spectral
types from SIMBAD. PMS candidates (103) appear in black, CBe candidates (56) in
blue and Either candidates (28) in red. Open circles are those sources which do not
satisfy the ϖ/σ(ϖ) ≥ 5 and RUWE < 1.4 astrometric condition. The theoretical
main sequence and the pre-main sequence tracks appear in blue and grey respectively
(from Marigo et al., 2017). PMS tracks correspond to 1, 2, 4, and 7 M⊙.

have also been reported for several known classical Be stars (Rivinius et al., 2013,

Bodensteiner et al., 2020a; see also Chapter 3).

In addition, I derived extinctions and absolute magnitudes for the sources in the

SIMBAD set (Sect. 4.1.3) as was done for the sample of observed objects. The

corresponding HR diagram for these SIMBAD objects is shown in Fig. 4.6. In this

case many sources have poor astrometry, and only 47/103 PMS, 37/56 CBe, and

17/28 Either candidates have ϖ/σ(ϖ)≥ 5 and RUWE < 1.4. As the sources with

poor astrometry typically have too large uncertainties in the HR diagram, hereafter I

only consider the sources of the SIMBAD set that satisfy those astrometric constraints.

These sources are highlighted in Fig. 4.6.
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In Sect. 4.1.3 the heterogeneity and problematic of the SIMBAD database was

discussed. An example of this is the nine CBe candidates of the SIMBAD set that

appear outside of CBe locations in the HR diagram when using the SIMBAD spectral

type information (see Fig. 4.6). These nine sources do appear in CBe positions

in the HR diagrams of Chapter 3, where only the observed Gaia passbands and

distances were used (see Fig. 3.9). In addition, seven of them have CBe probabilities

above 70% in my catalogue. Therefore, these nine CBe candidates probably have an

inaccurate or erroneous spectral type classification in SIMBAD. Obtaining a new

spectrum of those would help in settling the matter.

Nevertheless, the candidates of the SIMBAD set in Fig. 4.6 follow the general

trends observed for the sources with our own spectral determinations (Fig. 4.5): most

PMS candidates are hot, massive and appear in PMS locations on the HR diagram.

This has an added value as for this set I did not bias the selection towards massive

objects. In addition, most CBe candidates are of B type and have luminosities

compatible with those of known classical Be stars.

I derived stellar parameters (mass, luminosity, and age) for all sources placed

in the HR diagrams of Figs. 4.5 and 4.6. For doing this I used the PARSEC 1.2S

isochrones introduced in Sect. 4.2. I set a maximum of 50% relative error for the

derived uncertainties. This is to avoid unrealistically large uncertainties for the

sources with large spectral type uncertainties. Only isochrones with a pre-main

sequence label were used for the PMS candidates, and only isochrones with a main

sequence, sub-giant branch or RGB label were used for the CBe candidates. For

the sources of the Either catalogue I applied both sets of isochrones independently

and hence obtained two sets of stellar parameters. The difference between these sets

of parameters can be significant. For example the PMS isochrones result in a mass

typically 28±13% larger than that predicted by the non-PMS isochrones.

The derived extinctions, absolute magnitudes, masses, luminosities, and ages

are presented in Tables C.3 and C.6 for all the observed PMS and CBe candidates,
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respectively. I also include in those tables the Gaia parallaxes and distances. I note

that the ages are very model dependent, are based on an arbitrary decision of the

age ‘zero’ and, as discussed in Chapter 2, are very susceptible to the HR diagram

uncertainties. The parameters used in the following sections from the PMS, CBe,

and Either candidates of the SIMBAD set are tabulated in Tables D.1, D.2, and D.3,

respectively.

4.4 Hα line and variability trends

In this section I discuss how the Hα line properties discussed in Sect. 4.1.2 correlate

with the stellar mass parameter derived in Sect. 4.3 and the Gvar observable.

I correct the measured Hα EWs of Tables C.2 and C.5 for the underlying line

absorption for the 95 PMS candidates and 14 CBe candidates with Hα line obser-

vations discussed in Sect. 4.1.2. For this I use the typical absorption EW values of

each spectral sub-type (from Joner and Hintz, 2015). These corrected Hα equivalent

widths for both sets of candidates are shown in Fig. 4.7 as a function of mass and

are tabulated in Tables C.2 and C.5. In this figure I add the Hα EWs of the known

Herbig Ae/Be stars from the high-quality sample of Chapter 2, which also have been

corrected for the line absorption. For the PMS candidates a similar trend to what was

found in Chapter 2 for the known HAeBes is also present here, with low-mass stars

typically showing low levels of emission and high-mass stars displaying both high

and low Hα EWs. At each mass range the median EW values are similar for both

the PMS candidates and the known Herbig Ae/Be stars. The CBe candidates show

levels of emission comparable to those of the HAeBes of the same mass.

In Fig. 4.8 I plot the Hα line shape information of the observed candidates

(excluding the 12 clear contaminants discussed in Sect. 4.5) as a function of mass

and Gvar. The left panel of this figure can be compared with its equivalent for

the known Herbig Ae/Be stars in Fig. 2.9 in Chapter 2. As in Chapter 2, low-
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Fig. 4.7 Mass vs. Hα equivalent width of the observed candidates (excluding the
12 clear contaminants discussed in Sect. 4.5). Red diamonds trace the known
Herbig Ae/Be stars of the high-quality sample of Chapter 2 within the same mass
range. The equivalent widths have been corrected for the line absorption and have a
typical uncertainty of 10% (not including the line variability). The grey line traces
EW = 0 Å, and thus separates the sources with Hα emission from those without it.

mass PMS stars show both low and high levels of variability; this variability range

reduces gradually from ∼ 4 M⊙, with a break appearing at ∼ 7 M⊙ from where

more massive PMS stars only show low levels of variability. I note that there are

four PMS candidates which appear to be very variable and massive. The fact that

they are clearly deviating from the general trend and that they all have the Hα line

in absorption or with very little emission (EWobs = −1.28 Å for the one with a

double-peaked Hα line profile) indicates that they are likely contaminants (see Sect.

4.5 for further discussion on the nature of these objects). The right panel of Fig.

4.8 shows that the CBe candidates have a different behaviour; the more massive in

general appear more variable.
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Fig. 4.8 Mass vs. photometric variability as traced by the variability indicator Gvar.
Different symbols indicate different Hα line profiles. The horizontal line marks the
Gvar = 10 threshold from which Gvar is sensitive to disc orientation (see discussion
in Chapters 2 and 3). Left: 133 observed PMS candidates (I have excluded the 12
clear contaminants discussed in Sect. 4.5). Right: 14 observed CBe candidates.

In Chapter 2 it was shown that the photometric variability as traced by the Gaia

proxies I have developed along this thesis is correlated with the Hα line profiles. In

particular, it was discussed that above a certain variability threshold (equivalent to

Gvar = 10), Herbig Ae/Be stars tend to have double-peaked Hα line profiles. This

indicates that the traced variability is mainly caused by edge-on discs. As observed

for the known HAeBes of Chapter 2, it can be seen in the left panel of Fig. 4.8 that

the amount of optical variability for the observed PMS candidates is correlated with

the Hα profiles. Above Gvar = 10, the proportions of the observed profiles change

to 34% single-peaked, 58% double-peaked, and 8% P-Cygni (from 44%, 47%, and

9% respectively, see Sect. 4.1.2). However, the increase of double-peaked profiles at

high variabilities is not as large as for the previously known Herbig Ae/Be stars (see

Chapter 2). As discussed in Sect. 4.1.2, this is mainly because of the low resolution

of my observations and the presence of contaminants.
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4.5 Contaminants

The analysis of the previous sections allow identifying several potential contaminants

among the observed objects. From the study of the line profiles in both the blue

(∼ 3300−5400 Å) and red (∼ 5800−7000 Å) spectral ranges eight sources were

catalogued as new ‘unclassified B[e]’ (FS CMa) discoveries. These are listed in

Tables C.1 and C.2.

To this list I add the planetary nebula and the dwarf nova discussed in Sect. 4.3

for a total of ten contaminants that were identified because of their strong emission

line spectra. Seven of these contaminants have a ‘PN’ warning flag in the catalogues

of Section 3 (see Table C.1). This flag traces possible contamination by planetary

nebulae or B[e] stars. Therefore, the PN flag is highly efficient at tracing strong

emission line contaminants. Of the seven PMS candidates in Fig. 4.5 with a PN

warning flag only two, Gaia DR2 2200017424528999936 and 205118464010485632,

could not be discarded from the PMS group.

The set of detected contaminants is completed with the two evolved stars identi-

fied from their HR diagram locations that were discussed in Sect. 4.3. In total, from

the observations 12 PMS candidates appear as clear contaminants. These 12 sources

are marked in Tables C.1 and C.2.

In principle, Herbig Ae/Be stars are defined as with the presence of emission

lines. Thus, the ten PMS candidates with the Hα line in absorption (see Sect. 4.1.2)

could be considered potential contaminants. This is further evidenced by the three

very massive and variable sources without Hα emission in the left panel of Fig. 4.8.

These ten objects are marked in Tables C.1 and C.2 with an ‘abs’ comment.

To conclude the analysis of contaminants, I examine in detail the observed

candidates with a SIMBAD object type that were not flagged as possible contam-

inant in the previous paragraphs. Only three appear to be probable contaminants.

The double-peaked source in the left panel of Fig. 4.8 which is also placed at
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atypically high mass and variability values is Gaia DR2 2035402872974695936, a

well known Cepheid variable (e.g. Schmidt et al., 2004). In addition, Gaia DR2

1828276425855506304 is very likely a carbon star (e.g. Groenewegen et al., 2002),

and Gaia DR2 4253225574005033088 is a long-time considered eclipsing binary

(e.g. Jiang et al., 2012). These three sources are also marked in Tables C.1 and C.2.

None of the 14 classical Be candidates observed can be discarded as contaminant,

not even from their position in the HR diagram (see Fig. 4.5).

In total I have identified 25 possible contaminants among the observed PMS

candidates (12+10+3), of which 12 appear as clear contaminants in my observations

because of strong emission line spectra or HR diagram locations. This number of

possible contaminants (25/145 or 17%, see Table 4.1) is consistent with the estimated

precision of the catalogue of PMS candidates (P ∼ 81%). These contaminants span

the whole range of observed PMS probabilities (Fig. 4.1). This implies that those

probabilities mainly indicate the confidence of the algorithm at separating CBes

from HAeBes, which was the main goal of Chapter 3, but they are not sensitive to

other types of contaminants.

4.6 Discussion of the observations

In the previous sections I discuss the results of the observations of a sample of 145

PMS and 14 CBe candidates. The objectives of the observations were to derive

accurate stellar parameters and to assess the accuracy of the catalogues constructed

in Chapter 3. In this section, I summarise the main results and conclusions of those

observations.
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4.6.1 Observed PMS candidates

In Sect. 4.5 25 possible contaminants were found among the 145 PMS candidates

observed. The HR diagram with the remaining 120 PMS objects is shown in Fig.

4.9. As in Fig. 4.5, most of the observed PMS candidates are hot and massive. In

Fig. 4.9 the 218 known Herbig Ae/Be stars of the high-quality sample of Chapter

2 are also plotted. Most of the observed PMS candidates are distributed in the HR

diagram similarly to the known HAeBes. However, the are some massive candidates

at early stages of evolution (i.e. far away from the ZAMS) that are younger than

most previously known Herbig Ae/Be stars of the same mass. I note that these less

evolved Herbig Ae/Be candidates are significantly more variable than the candidates

of the same mass that are closer to the ZAMS. This could be caused by these younger

sources hosting larger discs than their more evolved counterparts, which already

have suffered from the fast dust dispersal mechanisms discussed in Chapter 2. No

clear trend in the IR colours is detected.

In the bottom panel of Fig. 4.9 I present the mass distribution of the 120 PMS

candidates. In this panel I also plot the mass distribution of the 218 known Herbig

Ae/Be stars. The first thing to note is that the observed PMS candidates have masses

that correspond to the Herbig Ae/Be category. In particular, 42 of them are above the

4 M⊙ threshold of Wichittanakom et al. (2020) for the break in accretion properties

(from magnetospheric accretion to the still unknown accretion mechanism for high-

mass stars, see Chapter 1), and 21 are above the 7 M⊙ threshold of Chapter 2 (from

which different or differently acting disc-dispersal mechanisms appear). Therefore,

the PMS candidates observed and characterised in this chapter are indeed new strong

Herbig Ae/Be candidates of the greatest interest for understanding the mechanisms

of high-mass star formation. It is noteworthy that in Fig. 4.9 no very high-mass PMS

candidates (M > 15 M⊙) were observed, whereas there are several known HAeBes at

this mass range. This is because the PMS candidates with those masses, in addition to
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Fig. 4.9 Top: Hertzsprung-Russell diagram of the 120 observed PMS candidates
that could not be discarded as possible contaminants. The 218 known Herbig Ae/Be
stars of the high-quality sample of Chapter 2 are also shown. PMS tracks correspond
to 1, 2, 4, and 7 M⊙ (from Bressan et al., 2012 and Marigo et al., 2017). Bottom:
Histogram of the number of objects in the sets of the top panel per 1 M⊙ mass bin.
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being rare and extreme, are typically at large distances and thus normally have poor

parallaxes. Therefore, they were excluded from the target list of the observations

(Sect. 4.1).

It is beyond the capabilities of the data presented in this chapter to assert with

absolute certainty whether the observed Herbig Ae/Be candidates are indeed new

Herbig Ae/Be discoveries. In fact, it even proved difficult and controversial for much

more intensely studied objects (e.g. HD 45677, Oudmaijer and Miroshnichenko,

2017). Nevertheless, in this and the previous sections I have provided ample and

independent evidence to conclude that, at least, a large fraction of the proposed

objects have a Herbig Ae/Be nature. This can be summarised by their PMS position

in the HR diagram (Figs. 4.5 and 4.9) and the presence of emission lines in their

spectra (Hα in particular, Fig. 4.7). In addition, similar trends to those found

in Chapter 2 for the known HAeBes were found for the observed Herbig Ae/Be

candidates. In particular, I have found the same correlation of the stellar mass with

the Hα EW and the photometric variability (Figs. 4.7 and 4.8, respectively), and also

the same correlation between the Hα line profiles and the photometric variability

(Fig. 4.8).

4.6.2 Observed classical Be candidates

Regarding the 14 classical Be candidates observed, they were all classified as of B

type and are placed at the typical HR diagram location of classical Be stars. None

could be identified as a possible contaminant. In addition, the nine that were observed

in the red spectral range show Hα in emission, and of the five that were only observed

in the blue spectral range, four show Hβ in emission.

Variability in CBes has been studied by a number of authors (e.g. Kurtz et al.,

2015, Baade et al., 2018, Borre et al., 2020 or Neiner et al., 2020), and its underlying

cause is complex. However, the variability is believed to be mainly related to mass
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changes in the disc and stellar pulsations. Therefore, it should not be strongly

dependent on the disc orientation. In Chapter 2 I showed that variability proxies like

Gvar trace edge-on discs in PMS sources, as it is indicated by the higher incidence of

double-peaked Hα line profiles for variable sources. In Fig. 4.8 the observed CBe

candidates lack of this correlation with the Hα line profile. This is another argument

in favour of their correct classification. In addition, the CBe candidates of Fig. 4.8

display an increasing photometric variability with mass, the opposite trend to what

is expected for PMS objects (see Chapter 2).

Most CBe stars are known to be binaries (Klement et al., 2019); and their gaseous,

dust-free, and diffuse discs and the Be phenomena are commonly explained by the

interaction with the companion (see e.g. Bodensteiner et al., 2020b or El-Badry

and Quataert, 2020). Unresolved binaries might appear as variable in the variability

indicators of this thesis. This is because the moving photocenter of an unresolved

binary system might result in large Gaia flux uncertainties (see definition of Gvar, Eq.

3.1, in Chapter 3). Therefore, a part of the variability I am tracing for classical Be

stars might be due to binarity.

Further evidence for CBe candidates being correctly classified was given to me

by Mr. C. Wichittanakom from the analysis of the INT data. Of the 65 sources

observed in that observing run, 19 show absorption line broadening consistent with a

fast rotational velocity. All nine CBe candidates observed in that run but Gaia DR2

522471059195179008 are in this group of fast rotators. Fast rotational velocity is one

of the defining characteristics of the CBe class (see e.g. Rivinius et al., 2013). Six

other fast rotators are among the 120 Herbig Ae/Be candidates previously discussed

in this section. The last five were tagged as possible contaminants in Sect. 4.5

because of having the Hα line in absorption (I note that only ten objects show Hα in

absorption). These latter five sources are all of B type, and it is tempting to consider

that the observed line broadening might have been caused by unresolved binarity. A

more detailed analysis of these sources is planned for the future.
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As for the observed PMS candidates, it is not possible to state the category of

each observed CBe candidate with an absolute certainty, but the previous discussion

is consistent with the lower limit to the precision of P ∼ 89% derived for the cata-

logue of CBe candidates (see Chapter 3). Therefore, the independent observations

described in this chapter lead me to conclude that the algorithm is very efficient

finding classical Be stars, and separating classical Be stars from Herbig Ae/Be stars.

4.6.3 General remarks of the observations

In Sect. 4.1 I mentioned that objects with different warning flags were intentionally

observed to study the accuracy of those flags. I conclude that the ‘PN’ flag is very

efficient at tagging extreme emission line objects which are not PMS, in particular

planetary nebulae and B[e] (FS CMa) stars. I note that at the mass range of Herbig

Ae/Be stars, this flag mainly traces contamination by B[e] stars. The source with

both ‘ID AllW’ and ‘ID IPH/VPH’ flags, Gaia DR2 2208194286334441344, is not

an incorrect cross-match in AllWISE or IPHAS. Finally, 72% of the sources selected

as possible contaminants in Sect. 4.5 have the ‘W3W4’ flag, whereas this proportion

is of 46% for the candidates that could not be marked as possible contaminants. The

‘W3W4’ flag is too general and frequent to be traced appropriately, but it would seem

from these proportions that sources with this flag are more likely to be contaminants.

Finally, in Sect. 4.1.3 I presented the SIMBAD set, a set of sources that were

not observed by myself but which have spectral types in the literature and could be

placed in the HR diagram of Fig. 4.6. Therefore, this is a random subsample of the

catalogues of Chapter 3, which in general has a greater degree of uncertainties and

biases than the subsample of sources selected for my own observations. However,

in Sect. 4.3 I discussed that most of the PMS and CBe candidates of this SIMBAD

set seem to be of a Herbig Ae/Be and CBe nature respectively, according to their

positions in the HR diagram. Moreover, the HR diagram of the SIMBAD set is
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similar to the HR diagram of the observed candidates (Figs. 4.5 and 4.6 respectively).

This is important because it evidences that the conclusions of this section are not

biased by the decisions made when constructing the target list (which, for example,

selected some of the best candidates; see Sect. 4.1).

In conclusion, the independent observations described in this section and the pre-

vious ones provide further support to the accuracy and high-quality of the catalogues

of new PMS and CBe sources presented in Chapter 3. The degree of contamination

by other sources in the observations described in this chapter is similar to what it

was proposed in Chapter 3 for the general catalogues. In addition, I have accurately

characterised the stellar parameters of a large set of new probable Herbig Ae/Be and

classical Be stars.

4.7 Analysis of the catalogues

In this section I discuss the general catalogues obtained in Chapter 3. The sample of

PMS candidates has 8470 sources, the classical Be candidate star sample contains 693

sources while the list of sources with a probability of larger than 50% of belonging

to one of the two categories (Either group) has 1309 sources.

Following the discussion of Chapter 3, for this section I excluded objects which

have a ‘X-mtch’ warning flag as they are likely wrong cross-matches. In addition,

I removed those tagged as ‘G-UMAP’ as they are likely evolved contaminants

(the G-UMAP flag indicates the sources that the unsupervised UMAP algorithm

found as likely not PMS, see Sect. 3.4.6). I did not exclude those marked as ‘PN’,

‘W3W4’, ‘ID AllW’ or ‘ID IPH/VPH’ because that would remove many correctly

classified sources. However, I note that in the previous section it was concluded

that the PN flag is very efficient at tracing contaminants. This exercise results in a

sample of 8248 PMS candidates, 636 CBe candidates and 1264 sources belonging

to the Either group. These different sets are summarised in Table 4.3. Not all the
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Table 4.3 Number of sources per catalogue for different thresholds on the astro-
metric quality.

Catalogue Total With parallax (ϖ) ϖ/σ(ϖ)≥ 5 ϖ/σ(ϖ)≥ 10
RUWE < 1.4 RUWE < 1.4 RUWE < 1.4

PMS 8248 6381 3369 2038
CBe 636 578 462 230
Either 1264 1094 707 397
ED/D - 0.35±0.40 0.101±0.070 0.058±0.028

Note: The bottom row shows ED/D, the mean relative error in the distance for the
different astrometric constraints (error is one standard deviation of the mean).

objects in these catalogues have parallax detections, and those with parallax have

different astrometric qualities. In Table 4.3 the mean relative error in the distance is

indicated for different astrometric constraints. By constraining the parallax quality

with ϖ/σ(ϖ)≥ 10 we ensure that the uncertainties in the distance are below 10%

(which is why this constraint was used in Chapter 3). However, as discussed in

Sect. 4.6.1, applying a strong constraint on the parallax quality comes at the price

of excluding many sources, especially massive ones that are typically further away.

In contrast, using a more relaxed constraint introduces a larger uncertainty on the

parameters that are derived from HR diagram locations. The number of sources

within each set that satisfy the different astrometry quality constraints discussed in

this thesis are summarised in Table 4.3.

4.7.1 General considerations

In Chapter 3 it was discussed that the main observables that can be used to separate

PMS from CBe objects are the mid-IR colours because of the different nature of

their circumstellar discs. In Fig. 4.10 the mid-IR W1−W4 colour is plotted against

the near-IR (J −Ks), photometric variability (Gvar), and r −Hα observables for

the three catalogues (PMS, CBe, and Either; see Table 4.3). The sample of the

spectroscopically observed sources described in the previous sections is also shown.
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Fig. 4.10 W1−W4 vs. J−Ks, Gvar, and r−Hα for the sample of PMS candidates
(top), CBe candidates (middle) and Either group (bottom). The crosses mark the
observed candidates (not including the SIMBAD set). In the case of r−Hα the PMS
candidate Gaia DR2 2069751818049277824, with r−Hα = 7.39, has been removed
from the plot for visualisation purposes. It has a ‘PN’ warning flag and it is likely a
contaminant.

It is important to assess whether the spectroscopically observed sources are

a representative subsample of the general catalogues. In Fig. 4.10 they roughly

match the distribution of all sources in the space of observables. The observed PMS

candidates also cover the whole probability range (see Fig. 4.1). Therefore, it could

be said that the observed PMS candidates described in Sect. 4.6.1 are a representative

selection of the entire catalogue of PMS objects. In contrast, only CBe candidates

with high (> 85%) probability were observed. Nonetheless, from Fig. 4.10 it is fair

to say that the CBe candidates observed are not extreme in any observable, and thus
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they can also be considered as a representative subsample of the catalogue of CBe

objects. I thus conclude that it is possible to work with the catalogues of PMS and

CBe candidates constructed in Chapter 3 with a high degree of confidence. This

conclusion is based on the independent assessment of their high accuracy provided

by a representative subsample of them (see Sect. 4.6).

In addition, in order to have a complete view of the high-mass pre-main sequence

candidates it is necessary to take into account the Either catalogue. This is because

the PMS candidates obtained tend to have large W1−W4 colours (see Fig. 4.10),

whereas most Either sources appear at lower W1−W4 values. In Chapter 2 I

demonstrated that massive Herbig Be stars dissipate their discs much faster than

their lower mass counterparts, and hence typically show lower W1−W4 values. In

this respect, in the Gaia colour vs. absolute magnitude diagram of Fig. 4.11 we can

see that most of the high-mass sources are in the Either category (and thus show low

IR excess, see Fig. 4.10). Therefore, the Either catalogue probably contains most of

the more evolved new Herbig Ae/Be stars with dissipated discs. In contrast, many of

the newly classified high-mass PMS stars from the PMS catalogue must either be

younger or have suffered different, less efficient, dispersion mechanisms than most

of the previously known Herbig Ae/Be stars. I note that in Fig. 4.11 only interstellar

extinction corrections have been applied to the full samples (using the dust map of

Lallement et al., 2019), so all sources could move significantly to brighter and bluer

positions if corrected from the total extinction.

4.7.2 Stellar parameters

In Sect. 4.3 I used total extinction corrections to determine HR diagram positions and

derive stellar parameters. In addition, I used the uncertainty on the total extinction to

derive error bars for those stellar parameters. However, for the general catalogues

(PMS, CBe, and Either) I only have the interstellar extinction A′
G described in Chapter
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Fig. 4.11 Gaia colour vs. absolute magnitude diagram of high-mass PMS and Either
sources with RUWE < 1.4 and ϖ/σ(ϖ) ≥ 5. This plot contains ∼ 71% of the
Either sources with these astrometry constraints. Only corrections to the interstellar
extinction were applied. Two PMS tracks from Marigo et al. (2017) appear in black.
One track indicates the threshold at ∼ 4 M⊙ where Wichittanakom et al. (2020)
found a break in accretion properties. The other track indicates the threshold found
at ∼ 7 M⊙ in Chapter 2, from which more efficient disc-dispersion mechanisms were
detected.

3 from the dust map of Lallement et al. (2019). Therefore, by placing the PMS,

CBe, and Either catalogues in the HR diagram (see e.g. Fig. 4.11 or Fig. 3.9 in

Chapter 3) I can only derive lower limits to the stellar mass, effective temperature,

and luminosity. This is because to correct from circumstellar extinction would only

make the sources bluer and brighter. I use the same PARSEC 1.2S isochrones of

Sect. 4.2. The main parameters controlling the uncertainty on a star’s position in

the HR diagram are the parallax and the extinction. In this case, the extinction

obtained from the dust map of Lallement et al. (2019) depends on the distance and

therefore its uncertainty is also heavily influenced by the parallax. Therefore, it is

necessary to impose some constraints to the parallax quality. Contrary to what was
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done in Chapter 3, I derive stellar parameters for sources with RUWE < 1.4 and

ϖ/σ(ϖ)≥ 5 (instead of ϖ/σ(ϖ)≥ 10, see Table 4.3) to be able to study massive

objects.

I compare the (lower limit) stellar parameters obtained this way with those

obtained in Sect. 4.3 for the objects I observed and those of the SIMBAD set (see

Sect. 4.1). This is done for the mass parameter in Fig. 4.12. The main result is that

most masses obtained from HR diagrams that were only corrected from interstellar

extinction are indeed lower limits to the masses obtained from HR diagrams that

were corrected from total extinction. The stars for which this is not the case have

incorrectly large interstellar extinctions. This is because the spatial resolution of the

Lallement et al. (2019) dust map is quite large and might lead to erroneous extinctions.

Similar trends are found with the other stellar parameters and, as expected, the Teff

and L values are in general lower limit derivations.

It is useful to quantify the typical difference between the lower limit approxima-

tions of this section and the values obtained in Sect. 4.3 for the observed objects. In

Fig. 4.12 the identity line is indicated, together with lines that trace a 20% deviation

from it. 122 out of 248 sources (∼ 49%) fall within these 20% deviation lines,

which means that for them the mass lower limit is a reasonably good approximation.

This percentage goes up to ∼ 74% for sources below 4 M⊙. Some sources, mainly

belonging to the SIMBAD set, are very massive and appear in Fig. 4.12 with very

large error bars. These are mostly candidates with a generic ‘B’ spectral type, that

were assigned a central Teff value with generous error bars.

Therefore, it can be concluded that the masses, luminosities, and temperatures

derived in this section for the general catalogues are, in general, robust lower limits.

Furthermore, a large fraction of these stellar parameter determinations are reasonably

close to the ones obtained when the total extinction is known. In general, more

massive stars tend to behave worse in this respect (see Fig. 4.12). This is because

they are often further away and thus have poorer parallaxes and perhaps incomplete
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Fig. 4.12 Mass (using extinctions determined from spectra) vs. mass lower limit
(using interstellar extinctions determined from the dust map of Lallement et al.,
2019). The identity line is shown in black. Grey lines trace 20% deviations from the
identity line.

interstellar extinctions (the dust map of Lallement et al., 2019 typically does not

extend beyond 3 kpc).

The distribution of the mass lower limits obtained for the PMS, CBe, and Either

catalogues is shown in Fig. 4.13. The derived mass lower limits imply that there are

at least 129 PMS candidates with M > 4 M⊙ (and an additional 317 in the Either

group). These sources are interesting for the study of the accretion properties of

the high-mass regime, as these objects are expected to not undergo magnetospheric

accretion (Wichittanakom et al., 2020). The steep decline of new discoveries at

around 7 M⊙ (see Fig. 4.11 and Fig. 4.13) can be explained by the lack of previously

known Herbig Ae/Be stars with non-dispersed discs that are far from ZAMS positions.
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Fig. 4.13 Histogram of the number of sources from the PMS, CBe, and Either
catalogues at different masses (lower limit). Note that both axes are logarithmic.
The masses of the Either catalogue were obtained from PMS isochrones. The black
vertical lines are the two mass thresholds at 4 and 7 M⊙ where, respectively, the
break in accretion and disc-dispersal properties are expected to occur.

This meant that very few objects in the training set with M > 7 M⊙ were emphasised

for the algorithm by the observables used in Chapter 3. The constraint on the parallax

quality removes many massive objects that as a result are not considered in Fig. 4.13

or for the statistical purposes of this chapter (see Table 4.3). However, these massive

sources might be of great interest for future surveys.

The mass distribution of the CBe catalogue in Fig. 4.13 shows that most CBe

candidates appear in a narrow range between ∼ 2.5−5 M⊙, which is precisely the

mass range that corresponds to main sequence B stars (according to Marigo et al.,

2017 isochrones and Table 4.2). This, in addition to further confirming the accuracy

of the CBe classification, implies that the circumstellar extinction of these objects is

very minor, as is typical for CBe stars (e.g. Chapter 3). Fig. 4.13 also evidences that
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the Either group peaks at a high-mass where the PMS and CBe catalogues contain

much fewer sources. This supports the discussion of Sect. 4.7.1 which stated that

most of the massive sources are in the Either group. These massive PMS objects in

the Either group are those more similar to CBe stars and to most of the previously

known Herbig Be stars of Chapter 2.

Some sources appear outside the theoretical tracks in the HR diagram and it

proved not possible to obtain an estimate of their stellar parameters. Sources with

too large extinction corrections might appear in unphysical positions to the left of

the MS. In addition, some sources are too red for the tracks, implying they might

be evolved contaminants. However, some of these latter sources might also be very

young objects with inadequate extinction corrections. The number of objects without

derived stellar parameters are 115, 2, and 62 for the PMS, CBe, and Either catalogues

respectively.

Mass completeness and the IMF

In Chapter 2 it was mentioned that one of the main biases of the previously known

set of Herbig Ae/Be stars is the existence of a gap between T Tauri and Herbig Ae

stars because of historical selection effects. Using the derivations of this section I

assess whether the new catalogue of PMS candidates covers this artificial gap and

smoothly transits between high- to low-mass PMS objects, including the elusive

Intermediate-Mass T Tauri stars. In Fig. 4.14 I show the mass distribution of the

previously known Herbig Ae/Be stars of the high-quality sample of Chapter 2 (see

discussion in Sect. 2.4.2), together with the mass distribution (lower limit) of the

new PMS candidates. Two lines that trace the same initial mass function (IMF) from

Kroupa (2001) are plotted. They are normalised to the last increasing bin of each set.

As discussed in Chapter 2, the previously known HAes are consistent with the IMF

above ∼ 2 M⊙, but the range between 1−2 M⊙ is rather incomplete. In contrast,
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Fig. 4.14 Mass distribution up to 6 M⊙. In blue the known Herbig Ae/Be stars of the
high-quality sample of Chapter 2, and in red the new PMS candidates with lower
limits to the mass. Black lines trace the initial mass function of Kroupa (2001),
normalised to the last increasing bin of each set.

the new catalogue of PMS candidates is consistent with the IMF up to the 0.5−1

M⊙ bin. Therefore, the new catalogue links the HAeBe stars with the T Tauri stars

continuously, without artificial breaks. It is remarkable that this set adjusts nicely

to the IMF even though its masses are only lower limits. This further supports the

previous discussion about the accuracy of the stellar parameter determinations of

this section, especially for objects with M . 4 M⊙ (see Fig. 4.12).

Therefore, the new catalogue of PMS sources does not suffer from the historical

bias the previously known Herbig Ae/Be stars have at the low-mass end. This

was achieved because the algorithm of Chapter 3, and thus the classification, are

independent of the mass, spectral type or temperature.
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4.7.3 Hα line emission

In order to study the Hα line emission properties of the PMS, CBe and Either cata-

logues I converted the IPHAS or VPHAS+ r−Hα and r− i colours to Hα equivalent

widths (EWobs, observed above the continuum), using the models of Drew et al.

(2005). It is not necessary to deredden the r−Hα and r− i colours as the reddening

line moves parallel to that of equal EWobs (Drew et al., 2005). This conversion can

only be done effectively for objects approximately hotter than 5900 K (see Chapter

3). Hence, the EWobs derived for cooler stars can be considered as an upper limit

(see Fig. 6 of Drew et al., 2005). Nevertheless, the error introduced is expected to be

as much as ∼ 20 Å. I provide EWobs for all the PMS, CBe and Either sources for

which the r−Hα and r− i colours are available from the cross-matches of Chapter

3 (8179, 623, and 1239 sources respectively). Only lower limits to the EWobs could

be derived for 68 of the PMS candidates because of their large r−Hα colour (these

have a ‘PN’ warning flag in the catalogue and are probably contaminants).

To assess this methodology I compare the EWobs obtained in this section with

those measured in Sect. 4.1.2 from the independent spectroscopic observations. This

comparison is shown in Fig. 4.15, where it can be seen that the agreement between

the two derivations is remarkably good for most objects (within ±10 Å, which is

the typical Hα variability of Herbig Ae/Be stars; Mendigutía et al., 2011b). In this

comparison the ten strong emission line contaminants described in Sect. 4.5 were

excluded.

I also add to Fig. 4.15 the Hα EWobs measured in Wichittanakom et al. (2020) for

some of the known HAeBes of Chapter 2. In this case, the Hα EWobs obtained from

r−Hα and r− i colours were derived after a 1 arcsecond cross-match with IPHAS

and VPHAS+. For this set the agreement between methodologies is also good,

although there is a larger discrepancy for high-emission objects (EWobs <−100 Å),

a regime that my observations barely covered. The scarcity of points in this region
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Fig. 4.15 Comparison of the Hα EWs measured from independent spectroscopic
observations (excluding the ten strong emission line contaminants of Sect. 4.5) with
the Hα EWs determined from the r−Hα and r− i colours. The identity line is shown
in black. Grey lines trace ±10 Å deviations from the identity line. The W20 set is
formed by those known HAeBes with Hα EWs from Wichittanakom et al. (2020).

make it hard to investigate what the reason might be behind this discrepancy, but the

extreme emission of these objects suggests that they might have strong Hα variability.

The number of points which are deviant beyond ±10 Å is 39 out of 114 (34%),

probably caused by Hα variability. Therefore, I conclude that the Hα EWobs that

can be obtained for the general catalogues from the r−Hα and r− i colours are in

general a good approximation to the Hα EWobs that can be measured from spectra.

4.7.4 Observed trends in the catalogues

In Sects. 4.7.2 and 4.7.3 I have shown that the derived stellar parameters and

Hα EWobs for the PMS, CBe, and Either catalogues are adequate estimations of the

stellar parameters and Hα EWobs that could be derived from spectroscopic data. This
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Fig. 4.16 Lower limit to the mass vs. photometric variability as traced by Gvar.
Horizontal grey lines indicate the Gvar = 10 threshold from which Gvar is sensitive
to disc orientation (see discussion in Chapters 2 and 3). Vertical lines trace the two
mass thresholds at 4 M⊙ and 7 M⊙ discussed in this chapter. Five extreme sources
were left out of bounds for visualisation purposes. Top: PMS candidates. Middle:
CBe candidates. Bottom: Either group.
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was evidenced by using the observed sources of Sect. 4.1, which are a representative

selection of the general catalogues (Sect. 4.7.1). In this section I study the catalogues

as a function of the stellar mass lower limit. This parameter was chosen instead of

the effective temperature or the luminosity because PMS objects evolve at almost

constant mass values (see Chapter 1). The masses of the Either catalogue presented

in this section are those obtained from PMS isochrones (see Sect. 4.3).

In Fig. 4.16 I study the irregular photometric variability as traced by Gvar as a

function of mass for the three catalogues. The first thing to note is that the sources of

the PMS catalogue follow the same trend observed for the known Herbig Ae/Be stars

in Chapter 2. Low-mass PMS objects show both low and high levels of variability,

whereas sources with masses above 4 M⊙, and especially 7 M⊙, are typically weakly

or not variable. This trend was also detected for the spectroscopically observed

sample in Sect. 4.4.

In Chapter 2 it was concluded that Gvar is sensitive to variability caused by disc

orientation for values higher than Gvar ∼ 10 (see Chapter 3 for the comparison of

Gvar and Vi variability proxies). Therefore, high-mass objects only show low levels

of variability because they have suffered from faster or more efficient disc dispersal

mechanisms. However, in Chapter 2 it was discussed that at least a small fraction of

HBe stars should still have discs large enough to be traced by this variability proxy.

In that chapter I concluded that the scarcity of HBe stars at high-variability levels

was caused by a bias in the set of known Herbig Ae/Be stars; most previously known

HBe stars are very close to the ZAMS, and thus may have lost their discs during their

evolution towards it. In Fig. 4.16 several high-mass PMS candidates appear with

large Gvar values. In Sect. 4.6.1 some of these objects could be placed accurately in

the HR diagram of Fig. 4.9, and they are typically those further away from the main

sequence. This is an important supporting argument to the conclusion of Chapter 2,

and it also shows that I have detected new high-mass PMS stars that are less-evolved

than most of the Herbig Ae/Be stars that were previously known.
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Fig. 4.17 Lower limit to the mass vs. Hα EWobs. Vertical lines trace the two
mass thresholds at 4 M⊙ and 7 M⊙ discussed in this chapter. Only sources with
Te f f > 5900 K are shown. The sources with ‘PN’ warning flags (17) were removed.
Three extreme sources were left out of bounds for visualisation purposes. Top: PMS
candidates. Middle: CBe candidates. Bottom: Either group.
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In Fig. 4.16 the variability of the CBe candidates seems to increase with mass.

This was also found for the spectroscopically observed CBe candidates (Fig. 4.8, see

discussion in Sect. 4.6.2). As discussed in Sect. 4.6.2, the variability of classical

Be stars is probably not dominated by the disc orientation, and hence for the CBe

candidates a different behaviour in this plot is expected with respect to PMS objects.

For the Either catalogue, Fig. 4.16 shows that sources in this catalogue mostly

have low levels of variability for any mass value (Gvar < 10). This is because this

catalogue contains, together with some CBe stars, the PMS sources that are more

similar to CBe stars (see Chapter 3). In other words, all the PMS objects with large

variability were readily classified by the algorithm into the PMS group. Following

the discussion of Sect. 4.7.1, Fig. 4.16 also shows that the high-mass range of the

Either group contains the new high-mass PMS stars that are more similar to the

previously known Herbig Be stars with dissipated discs (which only show low levels

of variability) of Chapter 2.

In Fig. 4.17 I study the Hα EWobs as a function of mass for the three catalogues.

I only considered sources with Te f f > 5900 K as only for those the Hα EWobs are

accurate (see Sect. 4.7.3). In addition, I removed those candidates with ‘PN’ warning

flags (17 PMS candidates in total).

In Fig. 4.17 it can be observed that, similar to what was reported for the known

HAeBes in Chapter 2, low-mass PMS candidates show a very low median value of

Hα EWobs whereas higher mass sources have a more evenly distributed Hα EWobs.

This is not exactly true beyond 7 M⊙, probably because of the scarcity of PMS

candidates in this mass range (see Sect. 4.7.2 and Fig. 4.13). This trend was

also detected for the spectroscopically observed sample in Sect. 4.4. In Fig. 2.7 of

Chapter 2, no low-mass Herbig Ae/Be star (∼ 1−2 M⊙) shows levels of Hα emission

EW <−60 Å. However, in the top panel of Fig. 4.17 a few PMS candidates appear

at these values. This could be caused by the artificial incompleteness of the set of

previously known HAeBes at low-masses (see discussion in Sect. 4.7.2), or these
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Fig. 4.18 Lower limit to the mass vs. mid-IR excess as traced by W3−W4 ([12]-[22]
µm). Horizontal grey lines indicate the typical maximum W3−W4 value for CBe
candidates. Vertical lines trace the two mass thresholds at 4 M⊙ and 7 M⊙ discussed
in this chapter. Four extreme sources were left out of bounds for visualisation
purposes. Top: PMS candidates. Middle: CBe candidates. Bottom: Either group.
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sources could just be contaminants. The distribution of the Hα EWobs as a function

of mass for the CBe and Either catalogues shows no correlation.

To conclude the analysis of the catalogues, in Fig. 4.18 I study the mid-IR excess

as traced by W3−W4 ([12]-[22] µm) as a function of mass for the three catalogues.

In principle, the W3−W4 colour traces the IR excess arising from warm dust and

will have little contribution by the re-radiated emission from hot gas. Therefore, the

W3−W4 colour is expected to be typically smaller for classical Be stars, that have a

dust-free gaseous disc, than for most PMS objects. Indeed, in Chapter 3 I showed

that the W3 and W4 passbands were effectively used by the algorithm to separate

PMS objects from classical Be stars. However, many high-mass HBe stars with

dispersed discs show W3−W4 colours compatible with those of CBe stars. This is

observed for the known objects that were considered for the training in Chapter 3. In

Fig. 4.18 a grey horizontal line marks the typical maximum W3−W4 value for the

CBe candidates. Many PMS candidates in the top panel of that figure are above this

line, although many others have levels of mid-IR excess compatible with the values

observed for CBe objects.

Fig. 4.18 evidences that most PMS and Either sources with M & 7 M⊙ have

low W3−W4 values. This supports the conclusion of Chapter 2 which stated that,

from ∼ 7 M⊙, Herbig Ae/Be stars suffer from faster or more efficient (dust-) disc

dispersal mechanisms.

The discussion of this section about the general properties of the catalogue of

new pre-main sequence candidates validates the results and conclusions of Chapter

2 for the set of previously known Herbig Ae/Be stars. In addition, the catalogue

of new classical Be candidates also resembles in the studied properties the set of

known classical Be stars considered in Chapter 3. This evidences the quality of the

classification and reassures the analysis performed for the previously known sources.

In addition to analysing the catalogues, in this chapter I have discussed the results

of independent spectroscopic observations conducted for a selection of 145 new

198



4.7 Analysis of the catalogues

Herbig Ae/Be candidates and 14 new classical Be candidates. These observations

further confirm the high quality and precision of the catalogues, and help to better

characterise the properties of these newly discovered sources.
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Chapter 5

Conclusions

Siente pequeños susurros. En seguida oye el percutir de su corazón en palpitaciones

desiguales. Al través de sus párpados cerrados entrevé la llama de la luz.

Pedro Páramo, 1955 – Juan Rulfo

This chapter summarises the main conclusions and results of this doctoral thesis.

First, I briefly recapitulate the context and motivation for the work presented in the

previous chapters (Sect. 5.1). Secondly, I detail the main results of the thesis and

explain how they fulfill the original motivation and expectations (Sect. 5.2). In

addition, I introduce ideas and concepts for future work which were left unfinished

in this thesis (Sect. 5.3). Finally, I conclude with some closing remarks and thoughts

in Sect. 5.4.

5.1 Context and motivation

Herbig Ae/Be stars (HAeBes) are pre-main sequence (PMS) sources of intermediate-

mass (historically defined as having masses 2 M⊙ . M . 10 M⊙; spectral type B,

A, and F) that cover the gap between the lower-mass T Tauri stars and the deeply

embedded infrared-bright Massive Young Stellar Objects (MYSOs). HAeBes are

essential to understanding the properties of high-mass star formation. This is because
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HAeBes present significant differences with respect to lower mass objects regarding

their formation mechanisms and protoplanetary disc structures. In addition, HAeBes

are optically bright so they are much more easy to observe and study than their more

massive MYSO counterparts.

However, a large caveat in all of the studies dedicated to Herbig Ae/Be stars

is that only 272 of them were known and proposed at the start of this thesis work.

Only about half of those are widely accepted HAeBes, while the others have been

proposed without much extra tests or verification (108/272 are in the master list

of The et al., 1994, see Chapter 2). In addition, this is a very heterogeneous and

biased set. In particular, few objects were known at the high-mass end (Herbig Be

stars), with many of them having a doubtful nature as they are easily confused with

classical Be stars (CBes, rapidly rotating main sequence B stars with Keplerian gas

discs, Rivinius et al., 2013). This situation contrasts with the thousands of T Tauri

stars known in the literature.

As a consequence, many open problems involving high-mass star formation

suffer from these biases and the lack of completeness. For example, it is commonly

accepted that T Tauri stars accrete through magnetically-driven flows arising from

the protoplanetary disc, which is truncated at a distance of a few stellar-radii (see

Bouvier et al., 2007 and Hartmann et al., 2016). However, higher-mass PMS objects

have radiative envelopes and hence normally present negligible magnetic fields

(Alecian et al., 2013; Villebrun et al., 2019). Therefore, the magnetospheric accretion

paradigm may not apply to them. Several studies have indicated that the change

in accretion mechanism occurs within the mass range of Herbig Ae/Be stars (see

Chapter 1). The recent work of Wichittanakom et al. (2020) placed the change in

accretion properties at 3.98+1.37
−0.94 M⊙. Nonetheless, most Herbig Be stars considered

in these studies are very close to the main sequence. Therefore, these studies barely

include younger high-mass pre-main sequence sources, which are obviously of

paramount importance for understanding high-mass accretion.
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In addition, there is observational evidence that points towards differences be-

tween the discs of low- and high-mass PMS sources. This can be seen in the amount

of infrared and millimeter excess, which are much lower for high-mass sources

(Alonso-Albi et al., 2009; Ribas et al., 2015; Arun et al., 2019) or in morphology; for

instance, spirals have only been found in the discs around early spectral type stars

(Garufi et al., 2018). Similarly, there is a clear observational bias in these results, as

so far mostly long-lived, massive discs around low-mass stars have been observed.

Furthermore, more planets should have been detected around Herbig Ae/Be stars

given their discs mass (albeit it is hard to determine the exact masses of their discs;

Pascucci et al., 2016, Panić and Min, 2017). It has been proposed that the scarcity of

detected planets is because the HAeBes observed are too old to have active planet

formation (e.g. Kennedy and Kenyon, 2008 or Manara et al., 2018).

Independently, it is known that high-mass stars tend to form in clusters (Hil-

lenbrand et al., 1995; Testi et al., 1999). Studies of massive field runaway stars

have shown that at least a small fraction (∼ 4%, de Wit et al., 2005) of O-type stars

are formed without a cluster environment. Nonetheless, the existence of isolated

high-mass star formation is still questioned (e.g. Stephens et al., 2017 or Lucas et al.,

2018). Again, the scarcity of high-mass PMS sources in these studies hampers the

statistics.

5.2 Main results

It is thus useful to characterise the set of known Herbig Ae/Be stars and to obtain a

large, homogeneous, and unbiased catalogue of new Herbig Ae/Be stars. Gaia Data

Release 2 (DR2, Gaia Collaboration et al., 2018b, 2016) provides a five dimensional

astrometric solution for up to G . 21 mag to over 1.3 billion objects. This large

dataset allows for exploitation with statistical learning techniques and it is the ideal
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survey for finding new sources of the elusive Herbig Ae/Be class. Thus, Gaia DR2 is

of central importance for this PhD thesis and it was used repeatedly in every chapter.

5.2.1 Analysis of previously known Herbig Ae/Be stars

Before attempting to find new Herbig Ae/Be stars, it was necessary to first charac-

terise and homogeneously study the properties of the set of known HAeBes.

For all previously known Herbig Ae/Be stars with parallaxes in Gaia DR2, I

collected their atmospheric parameters and photometric and extinction values from

the literature. To these data I added catalogued near-infrared and mid-infrared

photometry, and collected Hα emission line properties such as equivalent widths

and line profiles, and their binarity status. In addition, I developed a photometric

variability indicator from Gaia’s DR2 information; a proxy that enables for an

objective measurement of the optical photometric variability.

The Gaia parallaxes were used to determine distances and from these I de-

rived luminosities, which made it possible to place 252 Herbig Ae/Be stars in the

Hertzsprung-Russell (HR) diagram. From their location in the HR diagram stellar

masses and ages were derived and from the spectral energy distributions I determined

the infrared (IR) excess of each source. Thus, I homogeneously derived luminosities,

distances, masses, ages, variabilities and IR excesses for the most complete sample

of Herbig Ae/Be stars to date. This is a tenfold increase in number on earlier studies

using Hipparcos parallax data. I investigated the various observed properties of the

set and the relations between parameters and reached the following conclusions.

1. The Gaia photometric variability indicator shows that 48 out of 193 or ∼ 25%

of all Herbig Ae/Be stars are strongly variable. The presence of variability

correlates very well with the Hα line profile. The variable objects display

doubly peaked profiles, indicating an edge-on disc. Most sources catalogued

as UX Ori type stars (UXORs) in the sample appear as strongly variable
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with double-peaked profiles. In addition, the fraction of strongly variable

A-type objects is close to that found for the A-type objects with the UXOR

phenomenon. It had been suggested that the UXOR variability is in most cases

due to asymmetric dusty disc structures seen edge-on. The observation here is

the most compelling confirmation of this hypothesis. Moreover, 31 new UX

Ori type sources were proposed among the previously known HAeBes.

2. High-mass Herbig Ae/Be stars do not display an IR excess and show no

strong photometric variability. Several suggestions have been put forward to

explain this. These include fast evolutionary timescales and fast dust dispersion

timescales for high-mass objects. The break is found around 7 M⊙, which is

intriguingly similar to other statistical studies related to dusty discs around

Herbig Ae/Be stars which signpost a different or more efficient disc dispersal

mechanism for high-mass objects.

3. Various UV, optical, and Hα line properties including mass accretion rates,

spectropolarimetric properties, and emission line variability seem to differ at

a lower mass of 3−4 M⊙. The latter has been linked to different accretion

mechanisms at work; magnetospheric accretion for the lower mass objects and

another mechanism, possibly boundary layer accretion, for the higher mass

objects. The differing IR and variability properties detected in this work are

related to different or differently acting (dust-) disc-dispersal mechanisms,

which occur at higher masses and larger size scales than the accretion traced

by hydrogen recombination line emission.

This characterisation and homogeneous study of all previously known Herbig

Ae/Be stars greatly assist to develop the methodology for identifying new objects

of the class. The findings presented in the previous points signal the potential of

Gaia for studying Herbig Ae/Be stars and high-mass star formation. Thus, Gaia is an

excellent survey to search and identify new HAeBes.
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5.2.2 Catalogue of new Herbig Ae/Be and classical Be stars

In this thesis I have used machine learning techniques (mainly artificial neural

networks or ANNs) to produce a catalogue of new PMS candidates and a catalogue

of new classical Be (CBe) stars from the Gaia survey. From the resulting catalogue

of new PMS objects, new Herbig Ae/Be stars were selected by their location in the

HR diagram. The pipeline, algorithms, and methodology used are described in detail

in Sect. 3.3 of Chapter 3.

Herbig Ae/Be and classical Be stars have been historically a source of confusion

and misclassification, and are often indistinguishable by using classical techniques.

Therefore, one of the main goals of the methodology was to effectively separate

these two types of objects, and as a consequence new CBe candidates were found.

The ANN was trained with the set of known Herbig Ae/Be stars previously

described, and with a set of known T Tauri and CBe stars. The features that feed the

ANN need to be relevant for identifying PMS sources. Hence, I wanted the features

to trace the main observational characteristics of PMS sources, which are: infrared

(IR) excesses, because of the radiation of the heated up protoplanetary disc, emission

lines, that trace the surrounding material close to the forming star, and photometric

variability. This PMS variability is caused by the presence of the disc in the line

of sight (e.g. dippers, Bouvier et al., 1999, or UX Ori type sources, Grinin, 2000),

because of episodic accretion events (EX Lup or FU Ori type sources, Cody et al.,

2017), or pulsations due to internal instability (Zwintz et al., 2014). To feed the

algorithm with these characteristics, I used observables belonging to five different

surveys: Gaia DR2 for variability, 2MASS and WISE for near- and mid-IR excess

respectively, and IPHAS and VPHAS+ for Hα emission.

4,150,983 sources resulted from the cross-match of Gaia DR2, 2MASS, WISE,

and IPHAS or VPHAS+. To each of the 4,150,983 sources the algorithm assigned a

PMS and a classical Be probability. The entire set of sources is available in electronic
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form1 (together with the catalogues described below) so the users can choose the

probability thresholds (p) that fit their needs.

In Chapter 3 I presented the methodology used, evaluated the quality of the

classification, and conducted an analysis of its flaws and biases. For this assessment,

I made use of observables that have not been accounted for by the algorithm and

hence are selection-independent, such as coordinates and parallax based distances. I

have given independent evidence that the categorisation is accurate and consistent,

having a high efficiency at separating PMS sources from classical Be stars. The main

remarks and conclusions are:

1. At p ≥ 50% the catalogue of PMS candidates is: 8470 sources, recall (com-

pleteness) of 78.8±1.4% and lower limit to precision of 40.7±1.5%. Inde-

pendent analyses indicate that the real precision is around double this value.

The PMS candidates are distributed all over the Galactic plane, tend to be asso-

ciated with nebulosities and appear mostly in PMS locations in the HR diagram.

This catalogue (Table 3.3) is available in electronic form independently.

2. 2052 PMS candidates have a good astrometric solution in Gaia DR2 (RUWE<

1.4 and ϖ/σ(ϖ)≥ 10). Of those, 1361 occupy a location in the HR diagram

compatible with that of known Herbig Ae/Be stars. Many more new Herbig

Ae/Be candidates can be obtained from the set of PMS candidates by relaxing

the constraint on the parallax quality. This comes at a price, as the larger

errors on the absolute magnitudes make it more difficult to distinguish low-

and high-mass objects from each other.

3. At p ≥ 50% the catalogue of classical Be candidates is: 693 sources, recall

(completeness) of 85.5± 1.2% and lower limit to precision of 88.6± 1.1%.

In contrast to the PMS candidates, the classical Be candidates are distributed

all over the Galactic plane and appear mostly in classical Be locations in
1https://vizier.u-strasbg.fr
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the HR diagram. This catalogue (Table 3.4) is available in electronic form

independently.

4. There are 1309 sources that have a combined probability of larger than 50%

of belonging to either of these categories but each individual category has a

probability of below 50% (the ‘Either’ catalogue). In general these objects

have characteristics of classical Be stars or the less extreme PMS sources in

the observables used. These sources are listed in a table equivalent to Tables

3.3 and 3.4 which is only available in electronic form.

5. I have made a thorough analysis of the possible biases and contaminants

present in the selection. The biases can be summarised in that I have retrieved

the most extreme PMS and classical Be sources in the observables used. The

contaminants are mostly giants, with the special case of planetary nebulae ap-

pearing as PMS. These contaminants are sparse and easy to avoid. Instructions

are given to minimise their impact (in Sects. 3.4.6, 3.4, 3.5.1, 3.5.2). The new

HAeBe candidates are little affected by these contaminants, mainly because

they have a good astrometric solution.

6. 3436 PMS candidates (at p ≥ 50%) show strong irregular photometric vari-

abilities. For the HAeBe candidates the UXOR phenomenon is the most likely

explanation. The proportion of variable HAeBe candidates is consistent with

the idea that in order to see UX Ori type variability, the objects need to be

oriented favourably.

7. An analysis of the relative importance of the different observables used shows

that irregular photometric variability is extremely important for identifying

PMS sources in general and that W3 [12 µm] and W4 [22 µm] are very

powerful to separate high-mass PMS sources from classical Be stars. On the
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other hand, perhaps surprisingly, r−Hα is not very relevant for the selection

of these two types of objects.

5.2.3 Independent spectroscopic observations

The catalogues of new PMS and classical Be candidates were subjected to follow

up studies using independent observations. A sample of 145 PMS and 14 CBe

candidates were observed with low resolution spectroscopy at the INT, CAHA2.2m,

and NTT telescopes (with IDS, CAFOS, and EFOSC2 instruments respectively).

The goal of the observations was to determine their spectral types and total extinction

values. These make it possible to accurately place them in the HR diagram and

derive their masses, luminosities, and ages. In addition, the Hα line was observed and

characterised for 107 of the PMS sources and 9 of the CBe stars. Below I summarise

the key conclusions of the observations:

• Evidence to support the Herbig Ae/Be nature of 120 of the 145 observed PMS

sources is provided. Only 25 were detected as possible contaminants. This

number agrees with the precision proposed for the PMS catalogue (∼ 81%).

The 120 new Herbig Ae/Be stars proposed appear in the HR diagram in the

same locations as the previously known HAeBes. However, some of the newly

observed objects are younger (further away from the ZAMS) than most of

the previously known HAeBes of the same mass. All objects observed in Hα

show the line in emission. In addition, the 120 objects present the trends with

mass, photometric variability, Hα EW and Hα line profile that were found for

the previously known HAeBes.

• All 14 CBe candidates observed are consistent with being a classical Be star.

They are all of B-type, all of those observed in Hα have emission, and they

appear in classical Be locations in the HR diagram. In addition, eight of the
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nine Hα emitting objects show absorption line broadening that likely implies a

fast rotational velocity, consistent with a classical Be nature.

• An additional 187 sources from the catalogues (103 PMS, 56 CBe, and 28

Either) have spectral types tabulated in the SIMBAD database at the time of

writing and could be placed in the HR diagram. Although the heterogeneity

and unknown biases of this set make it inferior to the spectroscopically ob-

served sample, judging by their resulting location in the HR diagram most

of the objects in this set seem to be correctly classified. These sources were

essentially a random subset of the catalogues. Therefore, this is another impor-

tant assessment of the quality of the catalogues as this independent set is not

biased towards preferred, well-behaved, sources.

• Although the observed sources are a representative subset of the full cata-

logues, because of sensitivity limitations only sources at the bright end of

the catalogues were observed. However, as the catalogues are distance and

position independent, the results of these observations can be extrapolated to

the entirety of the catalogues.

• The warning flags of the catalogues are efficient at tagging contaminants. In

particular, the ‘PN’ flag is very efficient at identifying extreme emission line

objects. In the mass range of the Herbig Ae/Be stars, these are mostly B[e]

(FS CMa) stars.

• Intrinsic Gaia GBP −GRP colours were obtained for spectral types O9/O9.5V

to K4V. This is the first empirical determination of the intrinsic Gaia colours.

Evidence is provided for the adequate quality of this derivation.

Therefore, these observations provide a large set of new objects of the Her-

big Ae/Be and classical Be class, and further support the categorisation allowing

extending the analysis to the full sample.
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5.2.4 Analysis of the catalogues

Mass, temperature and luminosity lower limits are derived for a large fraction of

the PMS, CBe, and Either catalogues by means of the HR diagram. In addition,

Hα equivalent widths (EWobs) were derived from the r− i and r−Hα colours. In the

case of the stellar parameters, ∼ 49% of the lower limit determinations are within

20% deviations of the value obtained with data from spectroscopic observations.

This correspondence is higher for low mass objects (M . 4 M⊙).

For the catalogue of new PMS sources, the break in variability properties is found

to occur at the same mass (7 M⊙) as for the previously known HAeBes. However,

a larger number of highly variable high-mass objects is present. It is proposed

that these are new massive objects that are younger than most previously known

Herbig Be stars. Their variability can be explained by the fact that they still have not

dispersed their discs. In addition, the same trend in the median amount of Hα EW

per mass bin detected for the previously known HAeBes is observed for the new

PMS candidates.

The mass distribution of the catalogue of PMS objects is consistent with the

IMF down to 0.5−1 M⊙. Therefore, the catalogue of new PMS candidates has no

artificial gap between Herbig Ae/Be stars and T Tauri stars, contrary to the set of

previously known HAeBes.

Regarding the catalogue of classical Be candidates, most sources have masses

that correspond to main-sequence B stars. As expected for the CBe group, the mid-IR

excess as traced by W3−W4 is not large for any CBe candidate.

Regarding the Either group, I demonstrated that it contains the high-mass PMS

stars that are more similar to CBe stars. This means that the high-mass sources in

the PMS catalogue have larger IR excess, Hα emission and photometric variability

than is typical for the previously known high-mass PMS sources. It is proposed that

this is because they are less evolved or have suffered from a different disc evolution.
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The fact that most of the sources beyond 7 M⊙ are in this Either group is a strong

support for the fast disc dispersal mechanisms proposed for the high-mass Herbig

Ae/Be stars.

Summarising, the study of a well-characterised sample of 8470 new pre-main

sequence objects that were homogeneously selected (of which, at least, 1361 are

strong Herbig Ae/Be candidates) validate the results that were obtained for the

previously known set of HAeBes. The current sample corrects the heterogeneous

nature and the biases of the set of previously known HAeBes, and allows for a much

better defined, constrained, robust, and rigorous studies.

5.3 Future work

This section of future work is divided into two different subsections. First, in Sect.

5.3.1 I discuss some aspects of the work presented in this thesis that could have been

done differently or from another perspective. Secondly, in Sect. 5.3.2 I present ideas

and concepts for future work from the results presented in the previous sections of

this chapter.

5.3.1 Different approach to some results of this thesis

In Chapter 3 a set of observables was chosen to feed the machine learning algorithm

and classify sources into the PMS and CBe categories. By demanding to have

detections in all these observables, the set of sources available for the training

reduced significantly. In addition, the objects that could be classified with the trained

algorithm also reduced considerably. In Table 5.1 I present the known sources

available for training for different combinations of the observables used. The total

number of sources with those observables is also included (i.e. the corresponding

‘Sample of Study’).

212



5.3 Future work

Table 5.1 Size of the sets of known PMS stars, known classical Be sources, and
Sample of Study for different chosen observables.

PMS

Herbig Ae/Be T Tauri CBe Sample of Study
All considered sources 255 3171 1992 51,548,230
Using all observables 163 685 775 4,151,538
All but r and Hα 206 1622 1450 4,707,553
All but Bp, G, and Rp 163 685 775 4,151,538
All but J, H, and Ks 166 695 779 4,711,861
All but W1, W2, W3, and W4 197 1130 976 35,463,237
All but W3 and W4 168 1124 969 35,236,079
All but Gvar and Vhtg 163 685 775 4,151,538

Notes: In bold font the selection of observables used in Chapter 3 to train the ANN.
Note that the Sample of Study column includes the sources of the other columns.

The goal of Chapter 3 was to find new high-mass PMS sources and to differentiate

them from CBe stars. Therefore, these observables were selected a priori because of

the known properties of Herbig Ae/Be and CBe sources. However, in Sect. 3.5.4 of

Chapter 3 it was discussed what was their effective relevance for separating Herbig

Ae/Be from classical Be stars and in general for identifying sources of these two

categories among other types of sources. Future studies may want to use different

observables based on what was learnt here.

In addition, among the sources that are not in the Either or PMS catalogue but

have a significant probability of being PMS (e.g. p(PMS)> 0.40 but p(CBe)< 0.10)

there are also interesting PMS objects. However, this set likely does not contain

many massive objects and, as discussed in Chapter 3, it brings complications to

use sources with low probabilities. That is the reason why these sources were not

considered in this dissertation. However, future studies might be aimed at using

some of those sources with the intention to search for the pre-main sequence objects

that were not the main target of this thesis, like debris discs around low-mass T

Tauris or PMS sources experiencing outbursts.
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5.3.2 Research from the results of this thesis

Most of the uncertainties of this thesis come from the parallax error. Therefore, future

Gaia data releases will expand the conclusions and improve the derivations of this

work, and will allow to better study the properties of Herbig Ae/Be stars. In particular,

smaller parallax uncertainties will allow to study SED evolution along PMS tracks,

an analysis that with current Gaia DR2 parallaxes proved to be impossible.

The most immediate future work is the derivation of the accretion rates from the

Hα EWs of the new Herbig Ae/Be stars spectroscopically observed. Independently,

accretion rates can be directly measured from the UV excess emission over the

Balmer jump. This is a work in preparation led by Mr. C. Wichittanakom in

collaboration with myself. Similarly, an estimation of the accretion rate can be

obtained for the whole catalogue of PMS candidates, given that it was demonstrated

in this work that the Hα EW derived from r− i and r−Hα colours is adequate. In

addition, accretion rates can be independently estimated for the full set of PMS

candidates by using catalogues with U band information to trace the UV excess, like

IGAPS (INT Galactic Plane Survey, Monguió et al., 2020).

Moreover, there are 22 sources that were removed from the SIMBAD set of

Chapter 4 (14 CBe, 6 PMS, and 2 Either). They were excluded because of their

spectral type ‘O’ or ‘OB’ which I could not characterise because of the limitations

of the Gaia intrinsic colour derivations (see Chapter 4). However, these very massive

sources deserve a study in their own right.

In order to probe the new PMS sources from a different perspective, it would be

of interest to study in detail the sky associations found in Chapter 3. In particular, to

study how many new Herbig Ae/Be stars appear related to known open clusters and

whether there are new high-mass PMS candidates in isolation. As the selection was

independent from the objects’ coordinates and distances, a study of the clustering
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properties of the new PMS stars would not be biased towards any preferred direction

or star forming region.

Separately, a detailed study of the newly spectroscopically observed CBe sources

and of the general catalogue of classical Be candidates is also missing in this doctoral

thesis and it is planned for the future. In addition, the elusive B[e] stars, that were

treated here as contaminants, deserve more attention. Very few of these objects are

known at the moment and the ‘PN’ warning flag of the catalogues has proved to be

rather efficient at identifying sources of this class. In this work eight B[e] stars were

identified.

Finally, it would be interesting to measure the disc mass of some of the near-by

new Herbig Ae/Be stars with ALMA. This, in addition to confirm the existence of

discs around these objects, will allow for a detailed study of protoplanetary disc

evolution in high-mass objects, which in turn will enable a study of the possible

planet formation mechanisms of these massive stars as a function of their age and

mass.

I conclude this section of future work by stating that the catalogue of new

PMS candidates was accepted as target list for the WEAVE survey, a wide-field

spectroscopic survey which will be carried out at the William Herschel Telescope in

the forthcoming years (Dalton et al., 2018).

5.4 Final remarks

In this dissertation, a study of the general properties of the previously known and

proposed Herbig Ae/Be stars is presented. This study evidences that high-mass stars

(M & 7 M⊙) suffer from faster or more efficient disc dispersal mechanisms, and

provides the necessary information to find new objects of the class.

By using machine learning techniques a catalogue of 8470 new pre-main se-

quence candidates was obtained. Evidence has been provided for the accuracy
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and high-quality of the catalogue. 1361 of those pre-main sequence sources have

been proposed as strong new Herbig Ae/Be candidates from their position in the

Hertzsprung-Russell diagram. However, many more Herbig Ae/Be candidates can

be obtained by relaxing the constraints on the parallax quality.

In addition, a different catalogue of 693 new classical Be candidates was obtained.

The algorithm used to construct the new catalogues has efficiently separated the

high-mass PMS sources from the classical Be stars. This could not be achieved in

previous studies that used classical techniques and it is the first time these two types

of objects are effectively separated in a large scale categorisation.

The analysis of the general properties of the new catalogue of PMS candidates

confirms the results obtained for the set of previously known Herbig Ae/Be stars.

However, the newly discovered sources make it possible to correct for the biases and

heterogeneity of the set of previously known HAeBes. For example, most previously

known high-mass PMS stars are very close to the main sequence, whereas among the

proposed new Herbig Ae/Be stars there are many high-mass objects that are younger.

In addition, the previous set of HAeBes has an artificial gap between Herbig Ae and

T Tauri stars, where it is incomplete. This gap does not exist in the new catalogue of

PMS sources.

The catalogue of new Herbig Ae/Be stars that is presented in this thesis increases

the number of known objects of the class by an order of magnitude, and it is of

paramount importance for providing new insights to the nature of these intermediate-

mass pre-main sequence objects. As an example of the studies that this catalogue

enables, in this dissertation 120 new Herbig Ae/Be stars are proposed and studied

from independent spectroscopic observations.

I conclude the final remarks of this dissertation acknowledging the STARRY

project, of which this PhD thesis is part, which has received funding from the

European Union’s Horizon 2020 research and innovation programme under MSCA

ITN-EID grant agreement No 676036.
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R., Belligoli, R., Bergamini, A., Graziani, M., Righetti, G. L., Vagnozzi, A., and
Valisa, P. (2019). The 2018 eruption and long-term evolution of the new high-mass
Herbig Ae/Be object Gaia-18azl = VES 263. MNRAS, 488(4):5536–5550.

Muzerolle, J., Calvet, N., and Hartmann, L. (2001). Emission-Line Diagnostics of
T Tauri Magnetospheric Accretion. II. Improved Model Tests and Insights into
Accretion Physics. ApJ, 550(2):944–961.

Muzerolle, J., D’Alessio, P., Calvet, N., and Hartmann, L. (2004). Magnetospheres
and Disk Accretion in Herbig Ae/Be Stars. ApJ, 617(1):406–417.

Nakano, M., Sugitani, K., Watanabe, M., Fukuda, N., Ishihara, D., and Ueno, M.
(2012). Wide-field Survey of Emission-line Stars in IC 1396. AJ, 143:61.

Natta, A., Grinin, V. P., Mannings, V., and Ungerechts, H. (1997). The Evolutionary
Status of UX Orionis-Type Stars. ApJ, 491:885–890.

Natta, A. and Whitney, B. A. (2000). Models of scattered light in UXORs. A&A,
364:633–640.

Neiner, C., de Batz, B., Cochard, F., Floquet, M., Mekkas, A., and Desnoux, V.
(2011). The Be Star Spectra (BeSS) Database. AJ, 142(5):149.

Neiner, C., Lee, U., Mathis, S., Saio, H., Lovekin, C. C., and Augustson, K. C.
(2020). Transport of angular momentum by stochastically excited waves as an
explanation for the outburst of the rapidly rotating Be star HD49330. arXiv
e-prints, page arXiv:2007.08977.

Ng, A. (2017). Machine Learning Yearning. Self-publishing: https://www.
deeplearning.ai/machine-learning-yearning.

Offner, S. S. R. and Arce, H. G. (2014). Investigations of Protostellar Outflow
Launching and Gas Entrainment: Hydrodynamic Simulations and Molecular
Emission. ApJ, 784(1):61.

Offner, S. S. R. and Chaban, J. (2017). Impact of Protostellar Outflows on Turbulence
and Star Formation Efficiency in Magnetized Dense Cores. ApJ, 847(2):104.

Offner, S. S. R., Clark, P. C., Hennebelle, P., Bastian, N., Bate, M. R., Hopkins, P. F.,
Moraux, E., and Whitworth, A. P. (2014). The Origin and Universality of the
Stellar Initial Mass Function. In Beuther, H., Klessen, R. S., Dullemond, C. P.,
and Henning, T., editors, Protostars and Planets VI, page 53.

241

https://www.deeplearning.ai/machine-learning-yearning
https://www.deeplearning.ai/machine-learning-yearning


References

Oudmaijer, R. D. (2017). The B[e] Phenomenon in Pre-Main-Sequence Herbig
Ae/Be Stars. In Miroshnichenko, A., Zharikov, S., Korčáková, D., and Wolf, M.,
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Appendix A

Parameters of known Herbig Ae/Be

stars

This appendix contains Tables A.1, A.2, A.3, A.4, A.5, and A.6 which were intro-

duced and discussed in Chapter 2. These tables tabulate the main compiled and

derived parameters of the 252 known Herbig Ae/Be stars considered in that chapter.

Tables A.1, A.2, and A.3 contain the data for the 218 sources of the high-quality

sample (Sect. A.1) and Tables A.4, A.5, and A.6 contain the data for the 34 sources

of the low-quality sample (Sect. A.2):

1. Tables A.1 and A.4 tabulate the main parameters: coordinates, parallax, dis-

tance, Teff, luminosity, AV, V magnitude, and binarity information.

2. Tables A.2 and A.5 tabulate other parameters: near- and mid-IR excess,

Hα EW, Hα line shape, variability indicator, mass, and age.

3. Tables A.3 and A.6 tabulate the IR excess at each bandpass (J, H, Ks, W1, W2,

W3, and W4) defined as Fobserved/FCK.
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A.1 High-quality sample parameters
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Parameters of known Herbig Ae/Be stars
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A.1 High-quality sample parameters
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Parameters of known Herbig Ae/Be stars
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A.1 High-quality sample parameters
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Parameters of known Herbig Ae/Be stars
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A.1 High-quality sample parameters
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Parameters of known Herbig Ae/Be stars
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A.1 High-quality sample parameters
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Parameters of known Herbig Ae/Be stars
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A.1 High-quality sample parameters
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Parameters of known Herbig Ae/Be stars
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A.1 High-quality sample parameters
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Parameters of known Herbig Ae/Be stars
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A.1 High-quality sample parameters
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Parameters of known Herbig Ae/Be stars
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A.1 High-quality sample parameters
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Parameters of known Herbig Ae/Be stars
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A.1 High-quality sample parameters
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Parameters of known Herbig Ae/Be stars
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A.1 High-quality sample parameters
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A.1 High-quality sample parameters
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Parameters of known Herbig Ae/Be stars
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A.2 Low-quality sample parameters
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Parameters of known Herbig Ae/Be stars
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A.2 Low-quality sample parameters
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Parameters of known Herbig Ae/Be stars
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Appendix B

Machine learning algorithms

In this doctoral thesis I have used artificial neural networks (ANN) and two unsu-

pervised algorithms: principal component analysis (PCA) and Uniform Manifold

Approximation and Projection (UMAP). In this appendix I briefly introduce these

algorithms in more depth.

B.1 Artificial neural networks

The main machine learning (ML) algorithm used in this dissertation is the artificial

neural network. ANNs can be used both for regression or classification problems.

At heart an ANN is a function of the type f : Rn → Rm. Rn is the space of features

and Rm is the prediction space. As any other supervised algorithm (see Chapter 1),

ANNs are trained to approximate unknown functions with hypothesis functions by

mapping between multidimensional inputs and the labels describing those inputs.

The mapping is performed by repeatedly applying blocks of operations, called layers,

to an input vector. Each layer consists of a linear transformation of the form:

zzzl+1 =Wl+1xxxi +bbbl+1. (B.1)

This is followed by a non-linear activation function,
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Machine learning algorithms

xxxl+1 = σl+1(zzzl+1). (B.2)

Wl and bbbl are respectively called the weight matrix and bias vector of the l’th

layer, and in essence contain the algorithm parameters (θm). xxx0 is the input vector

of features of a given object, xxxl is called the activation of the layer l, and σ is the

activation function, which is applied element-wise to its input. The size of each layer

(i.e. the number of columns of the W matrix) is called the number of neurons. Thus,

the activation function is the function that defines the output of the neurons within a

given layer. The last layer of the ANN is called the L’th layer and the output of the

ANN can be read as the L’th layers’ activation. This is the hypothesis function of the

ANN (hhhθ (xi) := xxxL, see Eq. B.2 and Chapter 1). hhhθ (xi) is calculated by successively

applying Eq. B.1 and Eq. B.2 to the ANNs’ input xxx0 of the object i. The number of

iterations depends on the number of layers of the ANN (in particular, L−1 iterations;

note that Wl and bbbl are different for each layer, see Eq. B.1). In classification

problems each element of the hhhθ (xi) vector corresponds to a category. By using

certain activation functions in the last layer these elements can be understood as a

normalised probability, and the sum of the elements of the hhhθ (xi) vector equals one.

ANNs can be described in their entirety by their activation functions σl and the

parameters describing the linear transformations θ = {Wl,bbbl}L
l=0. These latter ones

are determined by the training. σl and the dimensionality of the layers l = 1 through

l = L−1, which are called hidden layers, are considered hyper-parameters and are

not changed during training. These hyper-parameters define the ‘architecture’ of the

network.

Training the network means to tune the θ parameters in order to minimise the

amount of wrong predictions. It is thus necessary to define a loss function (see

Chapter 1). Without entering into details, an example of a simple ANN loss function

is:
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B.1 Artificial neural networks

J(θ) =− 1
m

m

∑
i=1

K

∑
k=1

[
y(i)k log

((
hθ (x(i))

)
k

)
+
(

1− y(i)k

)
log

(
1−

(
hθ (x(i))

)
k

)]
+

λ

2m

L−1

∑
l=1

sl

∑
i=1

sl+1

∑
j=1

(W (l)
j,i )

2. (B.3)

The fundamental principles of this loss function are very similar to those of the

loss function of Eq. 1.4 in Chapter 1. In the loss function of Eq. B.3 some hyper-

parameters are present such as the number of neurons per layer (sl), the number

of layers (L), and the regularisation parameter λ (K is the number of categories).

Regularisation is basically a term added to the loss function that sets a limit to the

sensitivity of the θ parameters and imposes a penalty to complex configurations.

This helps to prevent overfitting as the algorithm cannot get unreasonably complex

through iterations with the optimiser. If λ = 0 the last term of Eq. B.3 is null and

the ANN has no regularisation.

ANNs normally work by a two steps learning process. Forward propagation

and back-propagation. First, θ is selected at random. Secondly, every object of the

training set is passed forward through the layers until hhhθ (xi) is obtained. This hhhθ (xi)

is compared with the known labelled truth yyyi (i.e. the cross-entropy between the two

vectors is computed). Thirdly, the cross-entropy is minimised by finding the cross-

entropy’s dependency of the parameters in θ . Lastly, the network is walked back by

inverting the functions (Eq. B.1 and Eq. B.2) and introducing small corrections to

the θ parameters so they adapt better to the labelled truth. After enough forward- and

back-propagation iterations the θ parameters are fixed to the specific problem and

the ANN is trained (i.e. the network has learnt). During training the θ parameters

can be updated for every training object or in batches of objects.

One important technique that can be used to prevent overfitting is the so-called

‘dropout’. Dropout consists on turning off a percentage of random neurons in every
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training iteration, so not all neurons are used per iteration. Similar to regularisation,

this causes the θ parameters to be less sensitive to the training data. Dropout also

prevents certain neurons to pick on outliers or spurious training data and import that

information when generalising. Intuitively, it can be seen as the network thinking as

a whole instead of individual neurons carrying a lot of decision weight.

B.2 Unsupervised learning: PCA and UMAP

Principal component analysis is a dimensionality reduction algorithm. These algo-

rithms reduce the number of dimensions of a data set while removing the smallest

possible amount of information. They are mainly used for feature extraction or

representation purposes. PCA works by finding the directions in the parameter space

that maximise the variance (called principal components), and hence the information

retained within them. There are as many principal components as dimensions of

the parameter space, and it is up to the user to choose how many to use. These

principal components are a linear combination of the original dimensions, and they

are linearly uncorrelated between them. Normally, the selection of the number of

PCA components is expressed in terms of the retained variance. In other words, the

amount of information that was retained by moving to a lower dimension.

UMAP is based on the same conceptual idea as PCA, but it is a much more

powerful non-linear algorithm. The dimensionality reduction is based on the topo-

logical properties of the data set, which the algorithm tries to keep invariant at lower

dimensions (details can be found in McInnes et al., 2018). In contrast to PCA,

UMAP demands the user to select several hyper-parameters, and hence its output

might be biased by those decisions.
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Appendix C

Spectroscopically observed

candidates

This appendix contains Tables C.1, C.2, C.3, C.4, C.5, and C.6. These tables tabulate

the main observed and derived parameters of the spectroscopically observed sources

presented in Chapter 4. Tables C.1, C.2, and C.3 contain the data for the 145 observed

pre-main sequence candidates (Sect. C.1) and Tables C.4, C.5, and C.6 contain the

data for the 14 observed classical Be candidates (Sect. C.2):

1. Tables C.1 and C.4 tabulate coordinates, catalogue probability and warning

flags, SIMBAD object type and spectral type (if available), our derivation of

the spectral type, Teff, and comments about the detected possible contaminants.

2. Tables C.2 and C.5 tabulate coordinates, instrument used to observe each

source, Hα line profile and equivalent width (both observed and corrected

from line absorption), Hβ emission information, and comments about the

detected possible contaminants.

3. Tables C.3 and C.6 tabulate Gaia DR2 parallax, distance and G, GBP, and GRP

photometry; together with my derivation of AG, absolute magnitude, mass,

luminosity, and age.
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Spectroscopically observed candidates
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Spectroscopically observed candidates
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C.1 Observed PMS candidates
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Spectroscopically observed candidates
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Spectroscopically observed candidates
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C.1 Observed PMS candidates
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Spectroscopically observed candidates
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Spectroscopically observed candidates

Ta
bl

e
C

.3
D

is
ta

nc
es

,p
ho

to
m

et
ry

,e
xt

in
ct

io
ns

,a
bs

ol
ut

e
m

ag
ni

tu
de

s
an

d
st

el
la

rp
ar

am
et

er
s

of
th

e
14

5
ob

se
rv

ed
PM

S
ca

nd
id

at
es

.

G
ai

a
Pa

ra
lla

x
D

is
ta

nc
e

A
G

M
G

M
as

s
L

og
(L

)
A

ge
G

B
P

G
G

R
P

so
ur

ce
id

(m
as

)
(p

c)
(m

ag
)

(m
ag

)
(M

⊙
)

(L
⊙

)
(M

yr
)

(m
ag

)
(m

ag
)

(m
ag

)

42
95

87
67

98
27

88
73

60
0.

24
7
±

0.
03

1
35

60
+

44
0

−
36

0
2.

63
9+

0.
07

7
−

0.
07

7
−

3.
07

+
0.

31
−

0.
33

9.
1+

1.
5

−
1.

2
3.

79
+

0.
18

−
0.

20
0.

11
5+

0.
04

9
−

0.
03

6
12

.7
2

12
.3

3
11

.7
7

43
19

34
38

55
41

45
40

80
0.

36
1
±

0.
03

8
25

60
+

28
0

−
23

0
-

-
-

-
-

14
.1

7
12

.6
3

11
.4

6
42

89
09

45
72

58
62

72
00

0.
35

6
±

0.
02

7
25

90
+

20
0

−
17

0
1.

71
+

0.
06

−
0.

10
1.

09
+

0.
25

−
0.

22
2.

40
+

0.
25

−
0.

22
1.

56
+

0.
11

−
0.

14
5.

1+
1.

8
−

1.
4

15
.1

9
14

.8
7

14
.4

0
43

04
81

14
04

13
94

75
20

0.
21

1
±

0.
01

7
41

30
+

32
0

−
28

0
3.

08
+

0.
07

−
0.

15
−

2.
76

+
0.

30
−

0.
23

8.
8+

1.
2

−
1.

6
3.

77
+

0.
18

−
0.

30
0.

13
5+

0.
06

8
−

0.
03

5
13

.9
0

13
.4

0
12

.7
7

43
08

54
25

28
09

01
12

00
0.

80
4
±

0.
03

4
12

02
+

52
−

48
3.

74
+

0.
09

−
0.

11
−

1.
16

+
0.

20
−

0.
18

4.
47

+
0.

36
−

0.
31

2.
31

1+
0.

07
3

−
0.

07
9

0.
59

+
0.

16
−

0.
14

14
.0

7
12

.9
8

11
.9

6
43

07
07

60
11

41
58

19
52

2.
72

9
±

0.
03

4
36

2.
6+

4.
6

−
4.

5
0.

70
+

0.
31

−
0.

52
4.

16
+

0.
55

−
0.

33
1.

42
+

0.
17

−
0.

40
0.

22
+

0.
18

−
0.

24
6.

7+
3.

3
−

3.
3

13
.3

1
12

.6
5

11
.9

0
42

55
59

10
78

89
03

75
68

0.
74

0
±

0.
03

1
13

02
+

54
−

50
2.

80
3+

0.
02

7
−

0.
05

7
1.

47
+

0.
14

−
0.

12
2.

48
+

0.
13

−
0.

15
1.

26
1+

0.
04

7
−

0.
05

5
2.

52
+

0.
54

−
0.

37
15

.9
8

14
.8

5
13

.8
6

52
39

68
76

15
23

65
03

04
0.

30
6
±

0.
02

5
29

70
+

24
0

−
21

0
2.

26
+

0.
14

−
0.

19
−

1.
95

+
0.

35
−

0.
31

5.
45

+
0.

75
−

0.
65

2.
67

+
0.

16
−

0.
16

0.
35

+
0.

17
−

0.
13

13
.2

0
12

.6
8

12
.0

2
42

62
13

00
80

67
89

19
68

0.
32

5
±

0.
02

1
28

20
+

18
0

−
16

0
1.

69
+

0.
06

−
0.

10
−

0.
37

+
0.

22
−

0.
19

3.
18

+
0.

20
−

0.
22

2.
13

+
0.

10
−

0.
13

1.
88

+
0.

39
−

0.
32

13
.8

9
13

.5
8

13
.1

1
50

90
13

48
35

46
65

10
08

0.
39

5
±

0.
02

3
23

50
+

14
0

−
13

0
1.

55
+

0.
20

−
0.

28
0.

58
+

0.
40

−
0.

32
2.

53
+

0.
42

−
0.

36
1.

62
+

0.
13

−
0.

16
3.

0+
1.

5
−

1.
1

14
.4

8
13

.9
9

13
.3

8
50

81
64

24
82

53
69

63
84

0.
19

3
±

0.
02

5
43

90
+

54
0

−
44

0
2.

14
+

0.
11

−
0.

14
−

0.
79

+
0.

36
−

0.
36

3.
73

+
0.

53
−

0.
46

2.
20

+
0.

15
−

0.
16

1.
12

+
0.

54
−

0.
39

15
.0

5
14

.5
6

13
.9

1
50

67
99

47
94

43
43

80
80

2.
09

2
±

0.
02

5
47

1.
6+

5.
8

−
5.

6
-

-
-

-
-

13
.5

5
13

.3
4

12
.9

8
51

45
73

74
82

08
68

76
16

0.
17

9
±

0.
03

1
46

30
+

77
0

−
59

0
2.

97
+

0.
49

−
0.

34
−

3.
35

+
0.

63
−

0.
83

8.
8+

4.
4

−
2.

0
3.

63
+

0.
18

−
0.

30
0.

10
6+

0.
05

3
−

0.
05

3
13

.4
6

12
.9

5
12

.2
2

46
54

85
91

41
43

80
31

36
0.

45
6
±

0.
02

3
20

60
+

10
0

−
90

2.
37

+
0.

19
−

0.
17

−
0.

10
+

0.
27

−
0.

29
3.

01
+

0.
39

−
0.

31
1.

91
+

0.
13

−
0.

11
2.

02
+

0.
75

−
0.

63
14

.4
3

13
.8

5
13

.1
1

46
41

44
54

43
17

48
45

44
0.

15
9
±

0.
02

0
51

60
+

58
0

−
48

0
2.

42
+

0.
06

−
0.

10
−

2.
90

+
0.

31
−

0.
29

7.
25

+
0.

74
−

0.
69

3.
13

+
0.

14
−

0.
17

0.
15

1+
0.

06
4

−
0.

04
6

13
.5

7
13

.0
8

12
.4

4
46

46
75

22
61

77
23

17
44

0.
49

7
±

0.
03

6
19

00
+

14
0

−
13

0
2.

41
6+

0.
03

2
−

0.
04

6
−

1.
24

+
0.

19
−

0.
19

4.
34

+
0.

30
−

0.
29

2.
66

+
0.

11
−

0.
11

0.
85

+
0.

17
−

0.
15

13
.0

0
12

.5
8

11
.9

9
46

61
47

61
39

83
22

54
72

0.
39

0
±

0.
02

3
23

90
+

14
0

−
13

0
2.

75
+

0.
05

−
0.

13
−

1.
68

+
0.

25
−

0.
17

4.
95

+
0.

30
−

0.
44

2.
79

+
0.

09
−

0.
21

0.
56

+
0.

15
−

0.
10

13
.4

7
12

.9
5

12
.2

7
46

20
17

33
29

14
17

28
00

0.
25

6
±

0.
02

3
34

80
+

30
0

−
26

0
2.

19
+

0.
17

−
0.

20
−

1.
36

+
0.

36
−

0.
35

4.
72

+
0.

72
−

0.
59

2.
40

+
0.

15
−

0.
15

0.
51

+
0.

25
−

0.
20

14
.1

3
13

.5
3

12
.8

2
44

22
87

24
52

87
22

58
56

0.
47

9
±

0.
03

7
19

60
+

16
0

−
13

0
2.

34
+

0.
14

−
0.

19
−

1.
27

+
0.

34
−

0.
31

4.
34

+
0.

60
−

0.
52

2.
40

+
0.

16
−

0.
16

0.
71

+
0.

36
−

0.
26

13
.0

8
12

.5
4

11
.8

7
46

23
39

21
06

41
16

24
96

2.
12

0
±

0.
03

3
46

5.
5+

7.
2

−
7.

0
0.

72
+

0.
28

−
0.

22
2.

96
+

0.
26

−
0.

32
1.

50
+

0.
14

−
0.

16
0.

67
+

0.
13

−
0.

11
17
.0

+
8.

5
−

5.
7

12
.3

7
12

.0
2

11
.5

4
25

07
64

45
30

16
22

08
00

0.
34

7
±

0.
03

1
26

50
+

24
0

−
20

0
3.

35
+

0.
11

−
0.

09
−

2.
54

+
0.

27
−

0.
30

6.
46

+
0.

68
−

0.
55

2.
96

+
0.

17
−

0.
14

0.
21

3+
0.

08
6

−
0.

06
5

13
.6

9
12

.9
4

12
.0

8

306



C.1 Observed PMS candidates
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Spectroscopically observed candidates
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C.1 Observed PMS candidates
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Spectroscopically observed candidates
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C.1 Observed PMS candidates
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Spectroscopically observed candidates
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Appendix D

SIMBAD set

This appendix contains Tables D.1, D.2, and D.3. These tables tabulate the main

compiled and derived parameters of the SIMBAD set of sources described in Chapter

4. In particular, they list coordinates, SIMBAD spectral type, astrometric quality,

distance, Gaia DR2 G, GBP and GRP photometry and my derivations of AG, absolute

magnitude, and mass:

1. Table D.1 lists the 103 sources in the PMS catalogue.

2. Table D.2 lists the 56 sources in the CBe catalogue.

3. Table D.3 lists the 28 sources in the Either catalogue.
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It is reasonable to hope that in a not too distant future we shall be competent to

understand so simple a thing as a star.

The Internal Constitution of the Stars, 1926

Sir Arthur Stanley Eddington
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