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Abstract

PET has an important role in disease diagnosis, drug development and patient
management. PET images are accompanied with computed tomography (CT)
or magnetic resonance (MR) to provide the complementary structural informa-
tion. GE SIGNA PET/MR is the state-of-the-art clinical scanner that aims at
combining TOF-PET with anatomical and soft-tissue MR imaging. This work
aims at modelling the mathematical and physical processes of TOF-PET data
for the GE SIGNA PET/MR within an open-source software, STIR. This work
further examines the developments made to implement the acquisition model us-
ing typical (ordered subsets expectation maximisation (OSEM)) and advanced
iterative algorithms (TOF-OSEM and TOF-kernelised expectation maximisation
(KEM)).

TOF-PET improves conventional PET imaging as it localises the event along
the line of response (LOR) within a small region with an uncertainty which is
calculated using the timing resolution of the detectors. It demonstrates robust-
ness despite the presence of small errors, inconsistencies or patient motion in the
acquired data. The GE SIGNA PET/MR have a timing resolution of 390 ps.
The aim of this work is to exploit TOF-PET and further include the anatomical
information from MR images to facilitate robust PET reconstructions.

All the developments made in this thesis were compared with the vendor’s
reconstruction software (GE-toolbox). Real phantom and clinical datasets were
used for the analysis. The calculated emission and data corrections using de-
velopments made in STIR were in excellent agreement with the GE-toolbox
despite the absence of dead-time and decay effects within the current develop-
ments. Reconstructions using OSEM and TOF-OSEM algorithms demonstrated
a good agreement with the GE-toolbox concerning quantitative, resolution and
structural based analysis. TOF-KEM reconstructions demonstrated a slight im-
provement in quantification as compared to TOF-OSEM with STIR.

The thesis demonstrates the first instance of real data reconstruction for
TOF-PET data using TOF-OSEM and TOF-KEM algorithms. The develop-
ments made in this thesis provide a platform to investigate the effects of a novel
reconstruction algorithm, TOF-KEM on the dose and scan time reduction using
real clinical datasets.
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Chapter 1

Introduction

1.1 Context and Motivation

Positron emission tomography (PET) and magnetic resonance (MR) modalities

are complementary imaging modalities (Lasocki and Hicks [2019]). PET provides

highly specific and sensitive in vivo images of molecular and metabolic informa-

tion, whereas, MR provides high-resolution images of anatomical and functional

information (Lasocki and Hicks [2019]). The ability of PET to detect molecular

abnormality along with the MR to detect and anatomically localise the lesion can

be used in a complementary manner to improve the diagnostic accuracy and fur-

ther remove the need for biopsy. Particularly, the combination of PET and MR

has demonstrated to be beneficial in neuro-oncology. MR is used as a standard

clinical test in neuro-oncology and particular MR sequences such as T1-weighted,

T2-weighted and diffusion-weighted imaging are used to indicate the intracranial

lesions. Lasocki and Hicks (2019) have discussed that the PET imaging using

newer radio-tracers which target specifically neuro-endocrine tumours such as
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gallium-68 labelled 1,4,7,10-tetraazacyclododecane-N,N’,N”,N”’-tetraaceticacid-

Tyr3-octreotate (GaTate), when combined with the MR, demonstrates accurate

detection (due to PET and MR) and localisation (due to MR) of the intracra-

nial lesions. Combining PET and MR imaging has also demonstrated to be

important in patient management and therapy planning. Similarly, PET/MR

can provide complementary information in cardiology and oncology using MR

techniques such as cine-MRI and novel PET radio-tracers. This has led to the

incorporation of PET and MR into single systems. Although the hardware com-

ponents of PET and MR are incorporated together, there is a lack of synergistic

imaging for these modalities (Ovtchinnikov et al. [2020]). This lack has cre-

ated a detrimental effect on the motivation for using the combined PET/MR

modality. Unlike the combination of PET with computed tomography (CT),

which produces combined output that is greater than the sum of the individual,

combined PET/MR has not yet conclusively demonstrated an advantage over

the individual modalities (Mayerhoefer et al. [2020]). The combination of PET

with CT had led to a significant improvement in PET images and clinical di-

agnosis as CT provided the attenuation map which is significant for PET data

correction. Although PET/MR has demonstrated to provide complementary in-

formation, it has a major drawback due to the cost of the scanner installation

and maintenance. Further, PET/MR has lower patient throughput as compared

to PET/CT (Mayerhoefer et al. [2020]).

The availability of pre-developed open-source software, with the ability to

read raw PET and MR data, can overcome the challenging nature of imple-

menting and validating novel image reconstruction algorithm for multi-modality

scanners. This can also remove the need for duplication of utilities required to
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read raw PET/MR data and implementation of iterative reconstruction algo-

rithms for PET/MR scanners at different scientific sites by offering a platform

for collaboration (Ovtchinnikov et al. [2020]). To facilitate the software develop-

ment for combined PET/MR scanners, part of this thesis includes the develop-

ment and implementation of the software necessary to reconstruct time-of-flight

(TOF)-PET data extracted from the GE SIGNA PET/MR scanner and make it

available as a part of open-source software (Wadhwa et al. [2020]).

The concern with clinically used reconstruction techniques is that they demon-

strate an inherent increase in statistical noise over iterations (Jaskowiak et al.

[2005]). The statistical noise affects image quantification and lesion detectability.

The reconstructions are stopped after 2 or 3 iterations so that the images are

not degraded by the noise and this may lead to less accurate quantification (Ahn

et al. [2015], Akerele et al. [2017]). TOF-PET imaging reduces the image noise

and improves image contrast (Surti [2015]). Further, TOF-PET reconstruction

also demonstrates robustness by reducing the effect of data inconsistency and

patient motion (Conti [2010], Surti [2015], Turkington and Wilson [2009]). This

is because the TOF information limits the coincident event spatially along the

line of response (LOR) using a spatial weighting factor which is dependent on

the timing resolution of the scanner. This spatial weighting of TOF competes

with the spatial weighting of inconsistent attenuation or normalisation factors

and corrects the data (Conti [2010], Mehranian and Zaidi [2015]). Similarly, the

events affected by motion are accurately localised along the LOR using the TOF

information. The combination of PET and MR modality also provides an oppor-

tunity to improve image quantification with imaging algorithms that can exploit

the cross-modality similarities which can thus prove to be advantageous for both
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PET and MR individual images (Ovtchinnikov et al. [2020]). The kernelised ex-

pectation maximisation (KEM) algorithm uses anatomy-based kernels to guide

PET reconstruction which further reduces iterative noise build-up (Wang and

Qi [2014], Deidda et al. [2018b, 2019]). This thesis aims at improving PET im-

age quantification by using MR information with reconstruction for TOF-PET

data (Wang and Qi [2014], Deidda et al. [2018b], Efthimiou et al. [2019], Wadhwa

et al. [2020]). It demonstrates reconstructions with novel iterative reconstruction

algorithms for the GE SIGNA PET/MR.

KEM iterative reconstruction algorithm (Deidda et al. [2018b, 2019], Wang

and Qi [2014]) along with TOF-PET imaging (Efthimiou et al. [2019], Wadhwa

et al. [2020]) can help to reduce injected dose and scan times, whereas, this

requires future investigation (Surti [2015], Deidda et al. [2018b]).

1.2 Purpose of the Thesis

The main goal of this thesis is to develop and implement advanced image re-

construction techniques by combining TOF-PET imaging with kernelised recon-

struction. This overarching goal was achieved by dividing the developments into

sub-parts:

1. Model and implement the non-TOF and TOF PET acquisition process for

GE SIGNA PET data within the open-source software, Software for To-

mographic Image Reconstruction (STIR). The mathematical and physical

modelling of the acquisition process for GE SIGNA PET/MR scanner in

open-source library, STIR, has not been done before as this scanner is a

recent clinical scanner. Further, GE SIGNA PET/MR processes the PET
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data differently to the previously implemented scanners within STIR. Par-

ticularly, it has its own conventions and data organisation. Thus, in order

to reconstruct the data acquired from this scanner using the open-source

library, it was a necessity to incorporate the scanner and its acquisition

process within STIR.

2. Implement the calculation of the correction factors for the effects that de-

grade the PET image reconstructions for GE SIGNA PET data such as

normalisation, randoms and background effects. All the implementations

are carried out using the measurements extracted from the GE SIGNA

PET/MR.

3. Expand STIR library by introducing various new classes and utilities to

read and process GE data formats.

4. Validate the above implementations by comparing the results calculated

with STIR with those calculated using the vendor’s reconstruction software

(referred to as GE-toolbox in this thesis). GE-toolbox has been created

with greater details about the scanner as they manufactured the scanner

and can model it with finer accuracy within the software. The approach

demonstrated in this thesis is an approximation to the GE scanner, and

hence, it is compared with the GE-toolbox. For example, the scanner is not

an exact cylinder, but STIR library approximates it as such, whereas, GE-

toolbox accounts for the non-cylindrical geometry of the scanner within the

system matrix. Further, GE-toolbox is a proprietary closed-source software

and a black-box, and the acquisition process modelled within the software

is not known. The implementations made during this work demonstrates
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an effort to make the acquisition model available as a part of the open-

source software, STIR, which now allows the reconstruction of PET data

acquired from the GE SIGNA PET/MR scanner. The comparison of final

reconstructions using STIR with the GE-toolbox are of major importance

to ensure that the implementations made within the open-source software

are accurate and the scanner is modelled to the best possible approxima-

tion. Also to point out the complexity of this implementation, it is nec-

essary to understand that the underlying acquisition model was improved

iteratively by rigorously comparing the reconstructions using STIR with

the GE-toolbox. Thus, the scanner and acquisition process was modelled

to the highest possible accuracy within the given limitation of GE-toolbox

being a black-box.

5. Demonstrate and validate both routine and advanced image reconstruction

techniques (including TOF and kernelised reconstruction) and compare

them against the GE-toolbox reconstructions. The advanced reconstruc-

tion algorithm TOF-KEM is the novel part of this thesis and reconstruc-

tions with real scanner data using this algorithms has not been demon-

strated before.

This thesis provides a platform for the PET research community to use the

current implementations and reconstruct non-TOF and TOF PET data extracted

from any current GE PET scanner.

This thesis also provides methods to recover the PET activity and reduce

noise by using MR anatomical information (Deidda et al. [2018b], Wadhwa et al.

[2020]). Further, this thesis also provides a novel reconstruction algorithm, TOF-

KEM for clinical PET/MR scanners.
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1.3 Key Contributions of the Thesis

The main contribution of this thesis are summarised below:

1. Classes to handle PET data from GE SIGNA PET/MR are implemented

in STIR.

2. TOF-KEM algorithm was implemented for TOF-PET data and validated

for the first time with real data.

3. All work in the thesis is available or will be available soon, as part of STIR

and Synergistic Image Reconstruction Framework (SIRF), as open-access

software.

The contributions made in this thesis will further allow all current and future

STIR users to produce accurate reconstructions with GE SIGNA PET/MR with-

out the need of re-investigating the developments. The thesis contributes to the

PET community by providing an important tool with substantial examples of

incorporating a new clinical scanner in open-source software. The developments

made in this thesis not only provide a platform to reconstruct PET data from GE

SIGNA PET/MR but will allow other users to reconstruct data acquired from

any GE PET scanner using conventional and advanced reconstruction algorithms

mentioned in this thesis. This is because the software implemented during this

thesis can be used to reconstruct data from any clinical GE scanner as most

acquired data from GE scanners have the same format. Further, the users can

reconstruct GE PET data using novel TOF-KEM algorithm as demonstrated

within this work can be majorly beneficial for studies with lower count rates.
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1.4 Thesis Overview

There are six chapters in this thesis that describe the major implementations

made to incorporate the first TOF PET-MR scanner model ever available in an

open-source emission tomography reconstruction software and its applications in

the clinical environment. The thesis chapters are summarised below in order to

provide an overview of the entire thesis:

Chapter 2: Background

This chapter discusses the necessary background to lay the foundation of the

thesis. It starts by explaining the basics of PET and introduces the data ac-

quisition procedure in conventional scanners. It then progresses to explain the

mathematical formulation of the typically used image reconstruction algorithms

and the available methods for correcting PET data due to degrading effects. Fi-

nally, this chapter discusses the background of the novel iterative reconstruction

algorithms used in this thesis as well as all relevant software.

Chapter 3: Methods

This chapter presents the implementation of physical and mathematical methods

required to model the scanners acquisition process in STIR library. This chap-

ter initially focuses on TOF and non-TOF PET data implementation from GE

SIGNA PET/MR within the STIR library. It further develops the theory be-

hind TOF-KEM reconstruction method. It then describes the acquired phantom

and clinical data and summarises the reconstruction setup and statistical image

analysis methods used for validation of the reconstructions. The software devel-
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opment, data acquisitions, reconstruction setup and image analysis presented in

this chapter are published in Wadhwa et al. [2018, 2020] and were presented as

a poster at IEEE Medical Imaging Conference, Sydney, Australia, 2018 and 8th

Conference on PET-MR and SPECT/MR, Munich, Germany, 2019.

Chapter 4: Results

This chapter presents the results which compare the iterative reconstructions for

the datasets with the vendor’s reconstruction software. The emission and data

corrections histograms are also compared with the vendor’s extracted histogram

and corrections. It further describes findings that demonstrate the improvement

in image quality for reconstructed images with the TOF-KEM method for real

data. This chapter compares quantitatively the images reconstructed for patient

and phantom datasets with standard (ordered subsets expectation maximisation

(OSEM) and TOF-OSEM) and novel (TOF-KEM) iterative reconstruction al-

gorithms. The results presented in this chapter are published in Wadhwa et al.

[2018, 2020] and were presented as a poster at the IEEE Medical Imaging Con-

ference, Sydney, Australia, 2018 and at the 8th Conference on PET-MR and

SPECT/MR, Munich, Germany, 2019.

Chapter 5: Discussion

This chapter discusses the results that are demonstrated in Chapter 4 and high-

lights the similarities between GE-toolbox and STIR-based calculated emission

and data correction histograms. It also illustrates the quantitative comparison

of the performance of clinical and novel iterative reconstruction algorithms. Part

of this chapter is published in Wadhwa et al. [2018, 2020] and was presented as
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a poster at the IEEE Medical Imaging Conference, Sydney, Australia, 2018 and

at the 8th Conference on PET-MR and SPECT/MR, Munich, Germany, 2019.

Chapter 6: General Conclusion and Future Work

This chapter summarises the most important findings of the thesis and discusses

further potential opportunities that have been created by this work.

1.5 Ethical Review

Patient scans acquired under a clinical study performed at Invicro with the ethics

number 17/ WM/0084.
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Background

2.1 PET

2.1.1 Introduction to PET

PET is a non-invasive imaging modality that is widely employed in clinical di-

agnosis, patient management (Sachs and Bilfinger [2005]), drug development

(Matthews et al. [2012]), treatment response (Stasa and Rajer [2015]) and clin-

ical research. The modality has proven to be highly specific and sensitive to

detect the uptake of radio-labelled molecules in vivo (Jones [1996]) which can

explain its widespread use as discussed previously. The specificity of the PET

modality is due to the radiolabelled molecules available that can be attached to

the specific biomarkers and pharmaceuticals that target the specific organ func-

tions. The sensitivity of the PET modality is due to the electronic collimation of

the PET detectors as discussed later in section 2.1.1. The main areas of clinical

applications of PET include:

• Neurology: PET allows quantification of cerebral blood flow, metabolism,
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oxygen consumption in different parts of the brain and receptor binding

for initial diagnosis and assessment of brain tumours, epilepsy, Parkinson’s

disease (Walker et al. [2018]), Alzheimer disease, dementia (Motara et al.

[2017], Zhang et al. [2017]) and movement disorders (Gunn et al. [2015],

Herholz and Heiss [2004]).

• Oncology: The measurement of the rate of consumption of the radio-

labelled glucose analogue or [18F]-fluorodeoxyglucose ([18F]FDG) allows

the quantification of metabolic activity for cancer diagnosis, staging, dif-

ferentiation between malignant and benign tumours and treatment re-

sponse (Kelloff et al. [2005], Price and Green [2011], Goelz et al. [1985]).

PET can be used in patient management by assessing the response towards

the therapy. This can help in the decision to continue or discontinue the

therapy by measuring tumour size in the scanned images. Malignant tu-

mours have higher metabolic activity rates than benign tumours (Goelz

et al. [1985]). PET is not only helpful in disease diagnosis and patient

management, but its applications extend to oncological drug development

for lung, lymphoma, prostate, sarcoma, ovary, breast and colorectal can-

cers (Kelloff et al. [2005]).

• Cardiology: In ischemic heart failure, there is a metabolic shift that is

reported from fatty acid consumption to glucose utilisation. Since PET

can measure the myocardial glucose metabolism, it can be used as a di-

agnostic and patient management tool for myocardial ischemia. PET also

allows the quantification and assessment of the myocardial perfusion and

viability (Robson et al. [2017a]). Myocardial perfusion indicates reduced
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blood flow through the heart vessels, which is localised using PET. This

can provide a test for the narrowed or blocked heart vessels (Robson et al.

[2017a]). Cardiac viability scans can further clinically indicate if there is

a possibility of the heart muscles to go back to normal after placement of

a coronary stent or surgically operating to reroute the blood flow along

the coronary arteries (Robson et al. [2017a]). PET can also detect the

calcium or plaque deposition in the coronary arteries which is related to

atherosclerosis detection (Lindner and Sinusas [2013], Alie et al. [2014]).

As discussed above, PET is a highly successful molecular imaging modality

in clinical imaging, therapy response and clinical research. PET is a sensitive

modality that has evolved from collimated detectors based planar imaging tech-

niques to a 25-cm long axial field of view (FOV) electronic collimator-based

detection process, as discussed in detail in section 2.1.2. The FOV of PET scan-

ners, which can image the human torso, is covered with thousands of detectors.

A large number of detectors placed all around the radioactive object that is to

be scanned makes PET a highly sensitive modality which can detect radiation

emitted from very small quantities of injected radiotracers. The PET modality,

is for instance, extremely successful in imaging molecular abnormalities, whereas

it lacks the ability to localize it structurally (Blodgett et al. [2007], Jennings

et al. [2015]). A modality that can provide structural information, such as CT,

can be used alongside PET. The resulting image from PET and CT scans can

be fused together to localise the abnormalities within the patient body. The

PET and CT scans are conducted at separate times and are prone to inter-scan

motion. The skull is mainly prone to rigid motion (although, neck, tongue and

throat can move non-rigidly) which can be corrected for during the image fusion.
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In contrast, motion correction is a major issue in the body due to significant

deformations and large movements of the organs in the body. This drawback

has lead to the development of hybrid imaging modalities such as PET/MR.

The structural and the functional information can also be extracted from MR

scans, which can be used as the complementary information to PET scans. The

hybrid PET/MR scanners have an added advantage over the individual PET

and MR scanners (Robson et al. [2017b]). The hybrid PET/MR is beneficial as

MR has no ionising radiation. This makes it a low radiation hybrid modality as

compared to PET/CT.

2.1.2 PET Radiotracers

A PET radioactive tracer or commonly known as radiotracer is a synthetic chem-

ical compound comprising of a specific biomolecule (the molecule which is tar-

geted to be taken up by a specific tissue or organ) where one or more of its atoms

are replaced by a radio-isotope (Buechel et al. [2015]). The radio-isotopes are

produced by accelerating and bombarding the protons or deuterons onto a stable

target using a cyclotron (Gillings [2013]). When the biomolecule is taken up by

the target tissue or organ, there is a freely available radio-isotope which decays

naturally and contributes to the detected activity (Buechel et al. [2015]).

Over the past years, there has been an observed increase in the number

of [11C]-labelled, [13N]-labelled and [18F]-labelled radiotracers which has signif-

icantly contributed towards the success of PET imaging (Gunn et al. [2015]).

These radiotracers are used to image a large range of molecular abnormalities

that are present in the diseased or abnormal tissues. The most significant PET

radiotracer that is used in the clinic is [18F]FDG (Ido et al. [1978], Gillings [2013]).
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[18F]FDG has proven to be highly successful in brain imaging and tumour imag-

ing. Another example of commonly used radiotracer is [18F]-sodium fluoride

([18F]NaF). [18F]NaF is used to image the bones and plaques, for instance, in

coronary arteries for atherosclerotic imaging (Kwiecinski et al. [2020]).

2.1.3 From Positron Emission to Photon Detection

A picomolar amount of radiotracer is administered within the body, and the

molecule is taken up by the target tissue, which results in the radioligand being

freely available within the tissue. The recommended dose for a 5 min acquisition

and bed overlap of less than 25% is around 2.5 MBq per every kg of body

weight (Boellaard et al. [2010]). The radioligand is proton-rich and unstable,

which leads to the beta decay within its nucleus, where the proton gets converted

to the neutron, emitting a positron and a neutrino. The positron resulting from

the beta decay is antimatter, which travels a short distance within the tissue

before losing all its energy due to its interactions. During its interaction with

the atoms of the tissue, the positron is scattered by, the peripheral electrons by

a small distance or ‘range’ (Lois et al. [2020]). After losing the kinetic energy,

the positron then annihilates with a local electron causing an ‘event’ to occur,

where a pair of γ rays (or photons) that travel at approximately 180◦ to each

other are formed.

The rest mass, or m0, of the electron and the positron is equal to 9.1× 10−31

kg. The γ rays travel at the speed of light (c=3 × 108 m/s). According to

conservation of energy, the emitted γ rays have energy of 0.511 MeV, where 1

MeV=1.6 × 10−13 J (kgm2/s2) and must travel in opposite directions to each

other.
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Figure 2.1: This figure demonstrate a LOR joining the centers of two detector
crystals c1 and c2. All annihilation events occurring within the parellelepiped
volume or ‘tube of response’ joining the surface areas of the crystals c1 and c2,
that detected the annihilation, are stored by the scanner as LOR lc1c2. The
scanner thus, stores an event as a LOR with spatial angle, ‘φ’ and perpendicular
distance from the center, ‘s’.

These γ rays are detected by the detectors that are placed around the ra-

dioactive object. In an ideal scenario, where the γ rays are not scattered, they

are recorded by a pair of detectors which have electronics to estimate the time

difference between the arrival of the photons. This time difference must be within
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the ‘coincident time’ of the scanner to be regarded as a coincident event. This

forms the basic principle of PET detection, which is called as annihilation coinci-

dence detection (ACD). The coincidence event must have occurred along a ‘tube

of response’ that joins the two detectors that detected the photons (Fahey [2002],

Defrise et al. [2005]). Each event that occurs within the volume or the ‘tube of

response’ joining two detector surfaces are represented as ‘LOR’ as illustrated in

Figure 2.1.

2.1.4 Photon Detection

As discussed in the previous section, PET is based on the principle of coincidence

detection along the LOR. This section describes in detail, how the PET detectors

classify the events as coincident.

The PET scanner is composed of multiple rings of detectors that are placed

next to each other along the axial direction of the scanner. This leads to nearly

16,000 crystal-based detectors that cover the surface of the PET scanner (Jones

and Townsend [2017]). These scintillation crystals are made up of inorganic ma-

terial doped with an activator ion (Melcher [2000]). These materials absorb high

energy photons, such as γ rays, and convert them into visible light. This is be-

cause the scintillator crystals have high density and high atomic number. These

crystals have valence and conduction bands with an energy gap of 5 eV or more

and are doped to create new energy levels within the band gaps. The photon

that is absorbed by the crystal results in the emission of the scintillation pho-

tons as the excited activator ions lose their energy and come back to the valence

band. The light that is emitted upon this relaxation is typically blue (Melcher

[2000]). Bismuth germanium oxide (BGO), lutetium oxyorthosilicate (LSO) and
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lutetium-yttrium oxyorthosilicate (LYSO) are a few of the crystals that are used

as the detectors in currently used PET scanners. The traditional PET scanners

used thallium-doped sodium iodide (NaI[Tl]) as the detectors which are then

connected to a photomultiplier tube (PMT). Current PET scanners are com-

prised of blocks of detectors where each block is coupled to a PMT by a coupling

material that has a refractive index similar to the scintillator material. The PMT

detects the light in visible and ultraviolet (UV) ranges and generate electrons.

In current PET scanners, the position of incident visible light is localised along

the surface of the PMT which gives the information of scintillation crystal which

detected the γ ray (Melcher [2000], Vandenberghe et al. [2016], Vandenberghe

and Marsden [2015]).

Along with the position of the detection, γ ray energy and time of arrival

of the ray onto the scintillator is measured and stored. In traditional PET

scanners, that used scintillators such as BGO, the event is considered to be a

‘coincident event’ if two simultaneous photons are detected within the coincident

time window of 2 ns (Moses [2001]). The PET detectors have internal clocks

which register the time of arrival of one of the γ rays as it hits the scintillator.

This opens the coincident time window for all other detectors, and if the other

γ ray is registered by another detector within this time window, it is accepted

and stored as a coincident event.

A typical PET scanner has its transaxial FOV of nearly 60 cm. The γ rays

travel at the speed of light i.e. 3× 108 m/s. According to the simple mechanics

equation, speed = distance/time, the coincident time window is calculated to

be 2 ns for a typical PET scanner.

The γ rays being detected within this time window are considered to be
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simultaneous, and it is deduced that the ‘coincident event’ must have occurred

along the LOR that joins the two detectors that detected them. Scintillation

crystals with faster decay time, such as LYSO, improve the timing resolution

significantly and can allow for ‘TOF’ imaging.

2.1.5 PET Data Acquisition

PET quantitatively measures the metabolic activity of the irregular tissue within

the body with the help of a specific radiotracer. As discussed in the previous

section 2.1.3, the detection mechanism of PET works on coincident detection

and PET detectors measure and store information including the time of arrival,

energy and the positions of the detectors for the incident γ ray.

The PET scanner stores the detected events in one of the two formats as

described below:

• Listmode (LM) Format: LM data format is a stream of sequential events

detected by PET crystals. In order to localise the position of an event

within the FOV of the scanner, crystal transaxial and axial ID’s are stored

with it. The energy and time information is also stored for each event.

• Histogram Format: Histogram is the most common data format that is

stored by PET scanners (Fahey [2002]). For histogram format, the scanner

allots a large memory space for an array where each array element cor-

responds to a possible detector pair (or LOR). Traditional scanners had

metal barriers called ‘septa’ between the rings to block inter-ring detec-

tions. Since current scanners do not have septa within the rings, this array

is composed of all possible LOR for a cylindrical 3-dimensional (3-D) PET
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Figure 2.2: This figure demonstrate the PET acquisition process. (A) The im-
age represents a radioactive source placed at position O within the FOV of the
scanner. The gamma rays are emitted by the radioactive material and detected
by the detectors at the end of the LOR’s I, II, III and IV. The LOR’s I, II, III
and IV makes an angle of 0◦, 33.3◦, 71.7◦ and 90◦ with the centre of the gantry
and is displaced from the centre. (B) The sinogram formed by plotting the dis-
placement of the LOR from the centre on the x-axis and the angle on the y-axis
is also depicted. (C) The cross-section of scanner geometry along scanner axis
(or z-axis). The oblique LOR for an event detected by detectors having a ring
difference ∆r = r2− r1 with axial position z is demonstrated. The width of each
ring of the scanner which is represented as ∆dz is also demonstrated.
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scanner. This allows coincidence detection in not only direct rings, which

implies that the detection occurs within one ring, but also oblique rings,

where the detection takes place in different rings. The scanner stores the

following information for each detection:

1. Shortest distance of the LOR from the centre of the scanner, repre-

sented as ‘s’ as can be seen in Figure 2.2 (B),

2. The azimuthal angle of the LOR represented as ‘φ’ as can be seen in

Figure 2.2 (B),

3. The ring difference between the detectors that detected the events

represented as ‘∆r’ as can be seen in Figure 2.2 (C) and

4. The axial position represented as ‘z’ as can be seen in Figure 2.2 (C).

Each histogram is a 4D array of ‘bins’. Each bin is completely defined by

the segment number, axial position, tangential position and view number

where (Lima [2016]):

1. Tangential position is calculated as: tangential = s
binsize

, where the

binsize of the scanner is calculated as the projection of the detector

crystal along the x-axis of the scanner. Thus, tangential positions

for a scanner are a set of discrete numbers that depend on the total

number of bins.

2. View number is calculated as: view = φ
sampling

, where sampling refers

to the azimuthal angle sampling. The azimuthal angle sampling is

equal to the ratio of the total number of detectors within the scanner

and ‘2π’. Thus, view numbers are a set of discrete numbers that
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varies from 0 to half the total number of detectors per ring. It should

be noted that the azimuthal angle runs from 0◦ to 180◦ due to the

symmetry in the detection of the γ rays along the opposite direction.

3. Segment number is calculated using ‘∆r’. Segment numbers are a set

of discrete numbers that represents all the possible ring differences

allowed for the scanner. All the bins with common ring differences

are merged together as one.

4. Axial number is calculated as: axial = r1+r2
2
∗ ∆dz, where r1 corre-

sponds to the ring number for first detected γ ray, r2 corresponds to

the ring number for the second detected γ ray of the coincident event

and ∆dz corresponds to the width of the ring for the scanner as can

be seen in Figure 2.2 (C) (Lima [2016]).

When an event is detected along a LOR or the ‘bin’, the count in the ele-

ment corresponding to that bin is incremented by 1. The number of events

that are detected along a particular LOR can be obtained by reading the

array element. The 2D arrays for a particular segment and axial positions

resemble a ‘sinogram’ as demonstrated in Figure 2.2 (A), and so will be

referred to as a sinogram hereafter. The sinogram, which is a 2D array of

view and tangential positions. Thus, a histogram format is essentially a 4D

array of 3D segment varying arrays where each array is further composed

of axial position varying sinograms as demonstrated in Figure 2.3.

When 3D arrays of LOR’s with the same view number, also referred to

‘projection angle’, are grouped together, it is called a ‘projection’. A 4D

array of 3D view varying projections (or 2D viewgrams for each segment)
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form the complete ‘projection data’ (Fahey [2002]).

Michelogram

In order to describe sinogram mashing (or angular compression) and the Mich-

elogram, a cylindrical PET scanner, having 15 rings and 8 detector modules as

demonstrated in Figure 2.4, will be used. As discussed above, the histogram

Figure 2.3: This figure demonstrates the 2-D sinogram with varying axial posi-
tions and viewgram with varying view numbers.
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Figure 2.4: This figure demonstrates a PET scanner along transaxial and axial
cross-section for a 15 ring scanner with each ring composed of 8 detector modules.
The figure shows the direct LOR which implies that the event has occurred within
a single ring. It also shows oblique LOR where the event occurred between ring
number 4 and 6. This oblique LOR occurs in the segment that makes angle θ
(co-polar angle) as demonstrated in the figure.

format arranges the acquired data in such a way that LOR’s having similar

physical properties are combined. When 3D arrays of multiple ring differences

are merged to form a single array, the acquired data is said to have ‘axial com-

pression’ or ‘span’ (Fahey [2002]). The Michelogram is a diagram that presents

the axial compression present in the acquired projection data. An example of

a Michelogram for the 16 ring scanner, that saves acquired data with span 1,

is demonstrated in Figure 2.5. Span 1 has no axial compression, and thus, it

does not combine the direct and oblique LOR’s. For a 15 ring scanner with span

1, as demonstrated in Figure 2.5, ring differences vary from -14 to +14, where

negative ring differences correspond to negative segment numbers, and positive

ring differences correspond to the positive segment numbers. The ring difference
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Figure 2.5: This figure represents a Michelogram for a 15 ring PET scanner and
with span 1 where no ring differences are mashed.

0 corresponds to segment 0, and there are 15 direct axial positions (or transax-

ial planes) in this segment. Similarly, ring difference 1 corresponds to segment

number 1, and there are 14 oblique planes within this segment, and so on. When

there is a span in the data, there are ring differences that are combined to form

a single segment. Figure 2.6 illustrates a Michelogram for a 15 ring scanner that

stores the data with span 7, where ring differences 3 and 4 are mashed together

25



Chapter 2

Figure 2.6: This figure represents a Michelogram for a 15 ring PET scanner with
span 7 where ring differences=3+4 are mashed together.

in one segment.

LM versus Histogram Data Format

The LM data format preserves the spatial information of the events as they

are stored along with the detector position information and the time of arrival

information. Whereas, the sinogram data format groups together the events with

common spatial characteristics which leads to the loss of spatial information in

sinogram data format.
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The LM data format can also be beneficial when the number of detected

events is less than the number of LOR’s as it can help to reduce the computer

memory used. It is also possible to convert the LM data into sinogram format

whereas, it is not possible to create LM data from sinograms, as the time and

energy information is lost.

2.1.6 Acquisition Model

The radioactive distribution of an object filled with a radioactive tracer and

placed within the PET scanner can be mathematically modelled as follows:

y = Ax+ b, (2.1)

where y = [yp] is a vector that represents the measured data acquired by scanning

the object, A = [apm] is a matrix that represents the system matrix, x = [xm] is a

vector that represents the image parameters and b is a vector that represents the

background coincidences (including randoms and scatter). The system matrix

A models the probability of a positron annihilation occurring in voxel m being

detected as a photon-pair coincidence by the detector pair p. It basically repre-

sents the sensitivity measure at each voxel m of the scanner. The sensitivity of

each voxel m combines the detector efficiency, geometric and attenuation effects.

Image Representation

The unknown radioactivity distribution of the 3D object that is being imaged

can be defined as a continuous function, f(r) over spatial locations r. Since the

measured data obtained from the scanner comprises of limited data quantities,
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the continuous function, f(r) needs to be discretized in order to be computed.

This is done by using a set of m = 1, ....,M spatial basis functions, βm(r) to

approximate f(r) as (Reader and Zaidi [2007]):

f(r) =
M∑
m=1

xmβm(r), (2.2)

where βm(r) represents the voxels that cover the FOV of estimated image and

xm represents the M-dimensional vector with each vector element represents the

estimated image parameter or the voxel value (Reader and Zaidi [2007]).

Thus, the estimated image parameters, xm represents the calculated value of

radiotracer concentration (in units such as MBq/ml) within each voxel, m. The

3D image, x̂ is calculated by appropriately using the image parameters as the

elements of the matrix (Reader and Zaidi [2007]).

Data Representation

The measured PET data or the projection data in the measurement space is an

array of sinograms or viewgrams and it is used to estimate the image (Reader

and Zaidi [2007]). Projection data, y, is a P-dimensional vector with each vector

element representing a bin, where each bin has a value representing the total

number of coincidences detected by the detector pair p = 1, 2, ...., P (Reader and

Zaidi [2007]).

2.1.7 Counting Statistics

During a PET scan, a radiotracer is administered in the patient body to visualize

the metabolic activity of the target tissue or organ. The detectors placed around
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the body of the patient detect the emissions within a region and the emissions

are proportional to the concentration of the radiotracer uptake (Lima [2016]).

Due to the low quantity of administered dose in PET, the measurements or

events detected with PET are generally limited (Rzeszotarski [1999]). Since the

measured events are discrete and random, and the probability of detection per

unit time is typically very small, the measurement process can be modelled using

Poisson statistics (Rzeszotarski [1999]).

2.1.8 Image Reconstruction: Formulating the Problem

In a real scenario, the number of events detected by a standard whole-body PET

scan with nearly 16,000 crystals are nearly a few hundred million. This is an

estimated number for events detected in a typical 20 minutes scan for a 70 kg

object with the administered activity of nearly 200 MBq. The measured projec-

tion data, y in equation 2.1, is a matrix of a few hundred million elements, called

LOR. Each element or LOR stores annihilation event based on the detection

parameters such as detection position, time and energy. If it is assumed that the

object to be reconstructed has dimensions of 256× 256× 89 voxel elements and

that the object is scanned, as discussed above, for a 20 minute duration, then

matrix x will have over 100 million parameters that must be estimated using

equation 2.1. As can be seen, equation 2.1 is a linear equation and it can be

re-written as:

y − b = Ax, (2.3)

where y and b are in projection data space and have the same matrix size.
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The image x can be calculated as:

x = A−1(y − b). (2.4)

Further, if the transpose of matrix A which is represented as AT is applied

to the above equation 2.3, it results in (Reader and Zaidi [2007]):

AT (y − b) = ATAx. (2.5)

Thus, if the measured data, y, is corrected for the background events, b,

then the image, x, that represents the activity distribution of the object can be

calculated as:

x = (ATA)−1AT (y − b) (2.6)

In the above equations, matrices A and ATA are huge and non-sparse (typ-

ically containing elements greater than 1014) matrices which do not allow easy

computation for pseudo-inverse (Reader and Zaidi [2007]).

Further, the above inverse problem as described in equation (2.4) is ill-

conditioned. The condition number for matrix (condition number is calculated

by taking the ratio of the largest to smallest singular value) demonstrates how

sensitive is the solution to the changes or fluctuations (in the problem presented

in this chapter these changes correspond to statistical noise) of the measured

data. The condition number calculated for a very small matrix A of size 8× 8 is

around 250,000 (Llacer and Meng [1985]) and the condition number of the ma-

trix of size 13 × 13 has been impossible to calculate with 48-bit mantissa. This

shows the ill-conditioned nature of the matrix A. Ill conditioned nature of the
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above inverse problem implies that even small errors (noise) in measured data

will contribute towards large errors in the estimated image. Thus, the solution

of x is basically a meaningless and bad approximation to the underlying image

if it exists at all and does not give an accurate model of the actual underlying

physical processes (Kabanikhin [2008], Tarokh [2017]). Whereas, the iterative

reconstruction method such as Maximum likelihood expectation maximisation

(MLEM) allows complete flexibility in the modelling of PET physical processes

(such as attenuation and normalisation) within the matrix, A. Further, iterative

methods estimate the underlying image by maximising the objective function

which includes the assumption on the statistical distribution of the noise. An-

other benefit of iterative methods is that the matrix A is not stored within the

memory but rather the respective matrix element having row, p and column,

m is calculated on-the-fly which reduces the computational burden unlike the

calculation of inverse of the matrix A which requires to be stored within the

computer memory (Reader and Zaidi [2007]).

2.1.9 Image Reconstruction

Analytical Reconstruction

In analytical reconstruction methods, the continuous 3D radioactive object, f(r),

is not discretized into voxels. Whereas, the practical implementation of this

method involves the calculation of discrete approximation of the continuous so-

lution (Reader and Zaidi [2007]). The reconstruction problem here is to estimate

f(r) using a set of 2D parallel projections. It is assumed in the analytical re-

construction methods that 2D parallel projections (which are further a set of 1D

LORs), R(t, ĉ) is equal to the line integrals through f(r) as (Reader and Zaidi
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Figure 2.7: A representation of 2D parallel projection located at position vector
t and oriented along unit vector ĉ = (θ.φ). This plane contains projections along
all 1D LORs that are characterized by orthogonal distance s and along unit
vector ĉ.

[2007]):

R(t, ĉ) =

∫ ∞
−∞

f(t + x′ĉ)dx′ (2.7)

where r = [xyz]T is decomposed into two vectors t and x′ĉ. Basically, the 2D

parallel projection of the underlying radiotracer distribution, f(r), is a y′ − z′

plane located using position vector, t = [y′z′]T and oriented along the unit vector

ĉ = (θ, φ), where θ is the co-polar angle and φ is the azimuthal angle as can be

seen in Figure 2.7 (Reader and Zaidi [2007]).

Fourier Slice Theorem states that the Fourier Transform of the 2D parallel
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projection, T (νt, νĉ) = F [R(t, ĉ)], is equal to the central plane of the FT of

3D radioactivity distribution, F (νx, νy, νz) = F [f(r)] for the same orientation,

ĉ = (θ, φ). This implies if FT for all 2D parallel projections (where θ and φ

varies between 0◦ and 180◦) are calculated, then all the planes of F (νx, νy, νz)

can be filled up subsequently. Thus, the 3D radioactivity distribution, f(r)

can be easily calculated by taking the 3D inverse FT of F (νx, νy, νz), f(r) =

F−1[F (νx, νy, νz)] (Reader and Zaidi [2007]).

In the case of 2D PET reconstruction, the Fourier Slice Theorem states that

the FT of 1D projection L(s, φ) (for each projection angle φ varying from 0 to

180◦), P (ν, φ) = F [L(s, φ)], is equal to the central section of FT of 2D radioactive

distribution f(x, y), F (νx, νy) = F [f(x, y)] at the same φ. In this case, the 2D

radioactive distribution f(x, y) can be calculated by taking the 2D inverse FT,

f(x, y) = F−1[F (νx, νy)] (Reader and Zaidi [2007]). This is Fourier transform or

direct method.

Generally, the projections are ‘smeared-back’ along the same angle and po-

sition as detected. This is called back-projection. When projections along all

orientations, ĉ are smeared back, the superposition causes blurring which is re-

moved by applying ‘ramp filter’ to the projections. The filtered projections

obtained by using ‘ramp filter’ are backprojected within the FOV to estimate

the underlying radiotracer distribution and this method is called Filtered Back

Projection (Reader and Zaidi [2007]).

The above discussed analytical image reconstruction methods are generally

considered inadequate as they do not model the statistical noise of the measured

data. Thus, the analytical algorithms are not available within current clinical

scanners such as GE SIGNA PET/MR and not used in this study. Thus, iterative
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methods are generally used in the clinical environment.

Iterative Image Reconstruction

The main iterative reconstruction algorithms that are used in the clinical envi-

ronment are discussed below:

MLEM

MLEM is an iterative algorithm that calculates the parameters which maximise

the likelihood of a modelled random process for the observed data.

The measured PET data, yp is best modelled using the Poisson distribution

as discussed in section 2.1.7. The equation presented below demonstrates the

measured data mathematically as:

yp ∼ Poisson(
∑
m∈M

apmxm + background), (2.8)

where background refer to scatter and random events.

The expectation, yp of the measured data, yp is defined as:

yp = E[yp] =
∑
m∈M

xmapm. (2.9)

where yp represents the model of the mean of the measured data. The elements

of yp are basically the average number of counts that would have been measured

in each tube that joins the detector pair p if the same experiment was repeated

an infinite number of times. Thus, the mean data, yp is never observed but is

basically obtained from equation 2.9 (Reader and Zaidi [2007]).
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An estimator x̂ is calculated which maximises the log-likelihood or the ‘ob-

jective function’, l(y | x) as below:

• The likelihood, L(y | x) is defined as the product of the probability mass

function of independent random variables, yp as follows:

L(y | x) =
∏
p∈P

P (y | y) =
∏
p∈P

e−yp
yp
yp

yp!
, (2.10)

where P (y | y) represents the probability of obtaining measured data yp

with expectation, yp (Reader and Zaidi [2007]).

• The log-likelihood is thus:

l(y | x) = lnL(y | x) =
∑
p∈P

yp ln yp − yp − ln yp!. (2.11)

After substituting yp from equation 2.9 in equation 2.11, the log-likelihood

can be written as:

l(y | x) =
∑
p∈P

∑
m∈M

yp ln(xmapm)−
∑
p∈P

∑
m∈M

xmapm −
∑
p∈P

ln yp! (2.12)

Below is the double derivative of l(y | x):

∂2l(y | x)

∂xk∂xl
= −

∑
p∈P

ypapkapl
(
∑

m∈M apmxm)2
, (2.13)

where xk and xl represents the voxel values for voxel k and l respectively,

apk and apl represents the probability that an event detected by detector
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pair p is emitted within voxel k and l respectively. In the above equation,

yp, apk and apl are values greater than zero.

The log-likelihood is a concave function, as the calculated double derivative

of the l(y | x) (described in equation 2.13) with respect to image parameter,

xk and xl is negative.

The measured data, yp is considered as incomplete observed data as it

denotes the value of measured counts within tube joining detector pairs,

p and the exact location of emission is unknown. Whereas, G = [Gpm]

represents the matrix of complete unobserved data which consist of counts

detected along the tube joining the detector pairs, p and emitted in voxel,

m (Dempster et al. [1977]).

The complete unobserved data, Gpm is related to the measured data, yp as:

yp =
∑
m

Gpm. (2.14)

The expectation, q = [qpm] of the complete data Gpm is defined as:

qpm = E[Gpm] = xmapm. (2.15)

where qpm represent the elements of matrix q and q represents the model

of the mean of the complete unobserved data. The mean data q is never

observed but is basically obtained from equation 2.15 (Reader and Zaidi

[2007]).

The complete unobserved data, Gpm relates the measured data, yp with

the reconstructed image as in equation 2.15. The expectation maximiza-
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tion algorithm basically computes the conditional expectation of the log-

likelihood of the complete unobserved data, Gpm, using the given measured

data, yp and the current image estimate, xj and then maximizes it (Leahy

and Qi [2000]).

This expectation maximization algorithm can be formulated as:

x̂j+1 = argmax
x

E[l(G | x) | y, x̂j], (2.16)

where x̂j+1 represents the estimated image update at iteration j + 1 and

x̂j represents the estimated image at the current iteration j.

• The conditional expectation for l(G | x) w.r.t y and x̂j, denoted as E[l(G |

x) | y, x̂j], is calculated as (Lange and Carson [1984]:

E[l(G | x) | y, x̂j] = E
[∑
p∈P

∑
m∈M

Gpm ln(xmapm)− xmapm − lnGpm! | y, x̂j
]
,

(2.17)

where l(G | x) is substituted according to the equation 2.12.

Since, expectation follows linearity, the above equation can be re-written

as:

E[l(G | x) | y, x̂j] =
∑
p∈P

∑
m∈M

(
E[Gpm | y, x̂j] ln(xmapm)− xmapm

)
+O,

(2.18)

where E[Gpm | y, x̂j] represents the conditional expectation of independent

Poisson random variables, Gpm w.r.t y and the current image estimate

x̂j and O are factors that are independent of xm and are omitted, while

maximising the expectation with respect to xm as they are zero.
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Since, Gpm is modelled as Poisson statistics (follows from equation 2.8 and

equation 2.14), the conditional probability distribution of Gpm is a Bino-

mial distribution. The expectation of this Binomial distribution is product

of its parameters with parameters (
∑

m∈M Gpm,
E[Gpm]∑

m∈M E[Gpm]
). Thus, equa-

tion 2.18 can be re-written using equation 2.14 as (Lange and Carson [1984],

Vardi et al. [1985], Blume [2008]):

E[l(G | x) | y, x̂j] =
∑
p∈P

∑
m∈M

(
yp

x̂jmapm∑
k∈M x̂kapk

ln(xmapm)− xmapm
)

+O,

(2.19)

• Finally, the expectation of objective function is maximised as the objective

function is concave. This is done by setting the derivative of expectation

of the objective function to zero as shown below:

∂E(l(G | x) | y, x̂j)
∂xm

=
∑
p∈P

E[Gpm | y, x̂j]x−1m −
∑
p∈P

apm = 0. (2.20)

The equation 2.20 follows from equation 2.18. By substituting the value

of E(l(G | x) | y, x̂j) in equation 2.20, the new estimate of the image

parameter, xm can be obtained as (Vardi et al. [1985]):

xm =
x̂jm∑
p∈P apm

∑
p∈P

apm
yp∑

k∈M apkx̂
j
k

, (2.21)

Thus the MLEM takes the form of:

x̂j+1
m =

x̂jm∑
p∈P apm

∑
p∈P

apm
yp∑

k∈M apkx̂
j
k

, (2.22)
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where x̂j+1
m represents the updated image estimate with iteration j + 1 from the

image estimate of previous iteration, x̂jm The above equation is represented for

a very simple case where the acquired data do not have any scatter or randoms.

This is never the case and in a real life scenario, the acquisition model is as

presented in equation 2.1. This implies the equation 2.22 is modified as follows:

x̂j+1
m =

x̂jm∑
p∈P apm

∑
p∈P

apm
yp∑

k∈M apkx̂
j
k + bp

, (2.23)

where bp represents the background histogram which is calculated by adding

randoms correction and scatter correction sinograms.

In case the acquired data is in LM format instead of histogram format, LM

events can be directly reconstructed using the LM-MLEM algorithm as men-

tioned and discussed in (Barrett et al. [1997], Snyder and Politte [1983], Reader

et al. [1998a,b], Parra and Barrett [1998], Levkovilz et al. [2001]).

The LM-MLEM update equation is defined as:

x̂j+1
m =

x̂jm∑
p∈L apm

∑
p∈L

apm
1∑

k∈M apkx̂
j
k + bp

, (2.24)

where L represents the list of events.

OSEM Algorithm

MLEM algorithm is computationally demanding as it has slow convergence(Shepp

and Vardi [1982], Parra and Barrett [1996]). The OSEM algorithm is an acceler-

ated version of MLEM and uses subsets of the acquired data to compute image

estimates (Hudson and Larkin [1994]). Due to its faster convergence, OSEM al-

gorithm is a clinically preferred reconstruction algorithm. The OSEM algorithm
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is defined as:

x̂j+1
m =

x̂jm∑
s∈Sz

asm

∑
s∈Sz

asm
ys∑

k∈M askx̂
j
k + bs

(2.25)

where x̂jm represents the intensity of mth voxel of the estimated image updated

over the sub-iteration j, ys represents measured event detected by the detector

pair s of the subset Sz, asm represents the probability of an event occurring in

voxel m being detected by the detector pair s of the subset Sz, bs represents the

background term to account for the sum of randoms and scatter events for the

detector pair s of subset Sz. In the above equation, Sz represents the subset

of detector pairs and z = 1, 2, 3, ..., Z represents the number of subsets with Z

being the total number of subsets. In MLEM, with every iterative update, the

iteration value incremented by 1. Since OSEM is accelerated version of MLEM,

it processes data as subsets (blocks) within one full iteration. So each iteration

corresponds to a full cycle of sub-iterations across all subsets (i.e. iterations =

sub-iterations/subsets). The subsets for OSEM algorithms are generally selected

as a divisor of the blocks of detector within a ring of the scanner (Hudson and

Larkin [1994]). This is because Hudson and Larkin have demonstrated that

in order to reconstruct PET data with OSEM algorithm, the LOR’s must be

rebinned in the subsets with a particular order. This ensures that activity in

every voxel is equally contributed by events in all the subsets (Hudson and Larkin

[1994]).

Stopping Rule

MLEM algorithm iteratively computes the expectation of the objective function

and maximises it to converge towards the maximum likelihood estimate. How-
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ever, the iterative updates get noisier and develop ‘noise’ artefact (peaks and

valleys) as the image updates climb the likelihood hill towards the maximum

likelihood estimate (Snyder et al. [1987]). As shown by Snyder et. al. (1985),

there is an increase in image noise over iterations, which is due to the uncon-

strained maximum likelihood estimation of the density function (Snyder and

Miller [1985]). Due to the fundamental nature of the problem, a stopping rule is

important as the noisy images can be avoided at lesser iterations. Various stop-

ping rules have been investigated, which allows stopping the reconstruction just

before the iteration, where the image deterioration (image deterioration refer to

the sharp changes in the intensity near the edges of the imaged object) begins

(Veklerov et al. [1988], Veklerov and Llacer [1987], Gaitanis et al. [2010], Bis-

santz et al. [2006]). The image deterioration depends on the measured number

of counts and tend to occur at a later iteration if the measured number of counts

are higher, whereas, it occurs at an earlier iteration if the measured number of

counts are lower. Veklerov and Llacer (1987) suggested to calculate a parameter,

H, which is a part of Pearson’s χ2 test after each image update and to stop

the reconstruction where the parameter H is minimized (Veklerov and Llacer

[1987]). Bizzante et. al. (2016) proposed a stopping rule which uses the scaled

partial sums of the normalised difference between measured data and forward

projection of the image at every iteration and a critical model parameter (which

is the median of the test statistics) to deduce the optimal image update (Bis-

santz et al. [2006]). Although these stopping rules are available, they have not

yet proven to have practical value in the clinic (Hamill and Bruckbauer [2002],

Gaitanis et al. [2010], Barrett et al. [1994], Kontaxakis and Tzanakos [1992]).

The ‘noise’ artefact is also prevalent in OSEM algorithm due to its fundamental
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nature. In clinic, the iterative process is generally stopped after 2 or 3 iterations

and then a Gaussian filter is applied to suppress the ‘noise’ artefacts (Meikle

et al. [1994], Liow and Strother [1991], Asma et al. [2012], Ahn et al. [2015]).

2.1.10 Data Corrections

Each coincidence event can be associated to a LOR that joins the detector pairs

where the event was detected. A LOR is associated with multiple coincidence

events detected by the respective detector pairs. The coincidence events are

also called ‘prompts’ (Bolus et al. [2009]). The prompts not only comprise ‘true’

coincidences but also ‘random’ and ‘scatter’ coincidences which degrade the data

and thereby reconstructed images. A ‘true’ coincidence refers to the event which

actually took place along the LOR (Bolus et al. [2009]).

Scattered and Random Coincidences

The photon travelling from the place of annihilation towards the detectors does

not always have a smooth journey. It can get scattered with the object leading

to scattered and random coincidences. When one or both of the γ rays gets scat-

tered due to body tissue along its way to the detector, it is said to be ‘scattered’

coincidence and the LOR is misplaced from the actual annihilation location (Bo-

lus et al. [2009]). This coincidence contributes to the image background, thereby

leading to the loss of contrast and hence poor quantification of the image. When

two scattered events from unrelated coincidence are detected within a coinci-

dence window, this again leads to false and misplaced coincidence and is called

‘random’ coincidence.

These coincidences need to be accounted for as they contribute to image
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degradation and artefacts, and in clinical situations, they are corrected during

image reconstruction. These coincidences contribute to the image background

and are represented as b in equation 2.1.

In a typical clinical situation, the randoms and scatter correction histograms

are calculated using the methods described below. The histograms are further

included within the iterative reconstruction process as the background term.

These corrects for the embedded noise effects within the measured data during

the reconstruction and artefacts due to scatter and random events are not present

within the final PET images.

Scatter Correction

The photons in PET are generally scattered due to Compton scattering (Zaidi

and Montandon [2007]). Every non-scattered photon is expected to have 511 keV

energy. Photons that suffer Compton scattering experiences a loss of energy with

the scattered energy, Es, and a change in incoming direction with a scattering

angle, θ. The scattered energy is described as:

Es =
E

1 + E
m0c2

(1− cosθ)
, (2.26)

where E is the energy of the incoming photon and m0 is the rest mass of the

photon. All the photons that are deflected by large angles have the scattering

energy that falls outside of the ‘coincidence energy window’ (where coincidence

energy window corresponds to the scanner specific energy window to detect co-

incidence events) and thus, are not relevant for scatter correction. The photons

that have a small scattering angle, less than 35◦, are the ones that need to be
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scatter corrected. This is because they will retain more energy and will be de-

tected within the coincidence energy window (i.e. usually above 430keV). For

GE SIGNA PET/MR scanner, the coincidence energy window is set between

425-650 keV.

The scatter correction can be modelled and estimated using various meth-

ods such as multiple energy window, convolution and de-convolution based ap-

proaches and statistical-reconstruction based scatter correction. The most com-

monly used method is single scatter simulation (SSS) (Watson et al. [1996]).

The SSS method is implemented in open-source software, STIR, and uses the

emission data along with the attenuation image to reconstruct the attenuation

corrected image (Tsoumpas et al. [2004]). It uses the attenuation image to esti-

mate scatter points and calculate the scattering probability for each point based

on the Klein-Nishina equation (Klein and Nishina [1929]). The scattering prob-

abilities are then added for each scatter points and interpolated to create the

entire scatter correction histogram. The estimated scatter correction histogram

is finally scaled with the factors calculated using the tail-fitting method (Thiele-

mans et al. [2007], Polycarpou et al. [2011]). Double scatter simulation is also

implemented in STIR but it is not used as it is computationally slow (Tsoumpas

et al. [2005]).

Randoms Correction

Two non-related scattered photons which are detected as a coincidence event by

the PET scan are called ‘accidental’ or ‘random’ coincidences. They contribute

to image degradation and must be corrected for, to estimate accurate image

quantification. In clinical PET, random coincidences are estimated and corrected
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for during the reconstruction. The randoms can be estimated for each detector

pair using the following methods (Oliver and Rafecas [2016]):

• Randoms from singles (RFS) estimation: The random events (represented

as Rij) along a LOR joining detectors i and j are estimated using the rates

of single events recorded by detectors i and j within a coincidence window

of the scanner. The randoms estimation is described by (Stearns et al.

[2003], Stearns and Lonn [2011]):

Rij = 2τSiSj, (2.27)

where Si, Sj is the detected singles rate by detector i and j respectively

and τ is the coincidence time window.

This method is almost noiseless as there are much greater number of de-

tected single events per unit time, but it may have bias (Stearns et al.

[2003]). This bias may arise due to the inaccuracies in singles rate mea-

surement.

GE SIGNA PET/MR uses this method to estimate the random events

(Stearns and Lonn [2011]). Within the PET detectors of this scanner, there

are single counters which accumulate the registered single events. The ac-

cumulated single events are passed on to the digital coincidence processor.

The digital coincidence processor records each event at a timestamp with

the timing resolution of τLSB. Assuming that a coincident event is regis-

tered when the difference between the recorded time is W, then the effective

coincidence window, teff will be (2W + 1)τLSB (Stearns et al. [2003]). For

the entire acquisition with acquisition time, Tacq, the calculated randoms
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events are (Stearns et al. [2003], Stearns and Lonn [2011]):

Rij =
(2W + 1)τLSBSiSj

Tacq
=
teffSiSj
Tacq

. (2.28)

The calculated single events are prone to activity decay of the source and

the intrinsic activity of the detector (Stearns and Lonn [2011]). The scanner

has Lutetium-based scintillator crystals which have intrinsic activity even

when zero activity is present within the field of view (Stearns and Lonn

[2011]). This factor is included within the modelling of single events and

is accounted for within the randoms correction by the scanner. It has

also been reported by Stearns and Lonn (2011), that the random events

are affected by the detector dead-time (dead-time is defined as the time of

paralysis of each crystal when it does not detect any event as it is processing

the previously detected event). The scanner also accounts for dead-time

correction within the randoms correction calculations (Stearns and Lonn

[2011]).

Decay and dead-time effects are explained in detail (Stearns and Lonn

[2011]):

1. Decay Correction: The radioactive source decays over time during

the acquisition. This isotope decay is not taken into account in equa-

tion 2.28. Whereas, GE SIGNA PET/MR scanner corrects for decay

within the randoms correction model (Stearns and Lonn [2011]). The

decay correction are increasingly important for longer scan duration

with more than one half-life of the imaged radio-isotope (Stearns and

Lonn [2011]). The decay factor is small and the value is between
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1.00 − 1.01 when the acquisition time is less than on-half life of the

injected radio-isotope.

2. Dead-time Correction: An experiment conducted by Stearns and Lonn

(2011) using a phantom filled with 82Rb (75 sec half-life) and GE scan-

ner demonstrated that detector dead-time effects can be seen within

the acquired data even early on within the scan. GE SIGNA PET/MR

scanner accounts for the dead-time effects within the randoms correc-

tion model (Stearns and Lonn [2011]). Dead-time effects are small for

clinical situations and increase with the injected dose substantially.

3. Intrinsic Activity of Scintillators: GE SIGNA PET/MR scanner uses

LYSO crystals as scintillators. Lutetium-based crystals have intrinsic

activity and have observed to produce randoms coincidence events

even when there is no activity present within the scanner. GE SIGNA

PET/MR scanner accounts for the intrinsic activity as a background

term within the randoms correction model (Stearns and Lonn [2011]).

The RFS model is adapted by GE SIGNA PET/MR scanners to account

for decay, dead-time and intrinsic activity as follows (Stearns and Lonn

[2011]):

sx(t) = s0xe
−λt + bx, (2.29)

where sx(t) represents the calculated singles rate at time, t, s0x represents

the singles rate at t = 0, bx represents the intrinsic activity of the LYSO

crystals (bx = 0 for non-lutetium scintillator) and λ represents the decay

constant of the radioisotope. The dead-time effect is also taken into account
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within the model as (Stearns and Lonn [2011]):

σx(t) = sx(t)e
−τDsx(t), (2.30)

where σx(t) represents the effective singles rate output from detector, x, at

time, t, τD is the paralyzing dead-time of the detector.

Finally, the RFS estimation (equation 2.28) which accounts for decay,

dead-time and intrinsic activity correction is defined as (Stearns and Lonn

[2011]):

Rij =
teffσi(t)σj(t)

Tacq
, (2.31)

where σi(t) is the effective singles rate from detector i at time t, σj(t) is

the effective singles rate for detector j at time t.

• Randoms estimation using the delayed window: In this method, the coin-

cident events detected are duplicated by applying a delayed time such that

the events do not fall within the coincidence window (Oliver and Rafecas

[2016]). A random event is detected when the delayed γ ray is detected

as coincident with a non-delayed γ ray. This method relies on the fact

that the correlation between delayed and non-delayed (or original) streams

is broken. This method is more accurate than randoms from singles esti-

mation, but the delayed window method needs to be stored in a different

channel than the prompt events, which further needs an increase in stor-

age to double. Also, the randoms have higher levels of statistical noise

as this method uses coincidences to estimate the randoms. The Siemens

mMR scanner estimates the random events using this method (Delso et al.

[2011a]).
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Normalisation Correction

The PET detectors have different detection efficiency, which leads to systematic

and random errors (Theodorakis et al. [2013]). These errors lead to artefacts

in PET images which degrade the image quantification. These systematic and

random errors are called normalisation errors.

Normalisation errors can be estimated as calibration factors for each LOR us-

ing a ‘blank scan’ (Defrise et al. [1991b]). A blank scan is a scan where a uniform

source of known activity is placed within the gantry to irradiate the detectors

with the equivalent activity over a constant period of time. The calibration

factors for each detector, are calculated to normalise the differences between de-

tector responses as a ratio of the number of coincidences detected during a blank

scan and the mean number of coincidences averaged over all LORs. The limita-

tions of the calculated efficiency is in the direct correlation with the statistical

accuracy of the blank scan.

In current scanners, the normalisation correction is calculated using the tech-

nique proposed by Casey and Hofmann (Casey and Hoffman [1986]). The method

proposed calculates the normalisation factors along each LOR and assumes that

the sensitivity of each LOR can be expressed as the product of each detector

efficiencies and radially-dependent geometric factor (Theodorakis et al. [2013],

Defrise et al. [1991b]). These geometrical factors depend on the detector posi-

tions and are calculated for each scanner once, and the same array of geometric

factors are used thereafter. The detector efficiency factors are calculated more

often as they change over time. In current scanners, the detector efficiency is

calculated daily during quality checks.
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Attenuation Correction

The γ rays get attenuated as they pass through tissues within the body which

leads to the reduction of the energy of the detected radiation. Attenuation is

calculated as:

I = I0e
−
∑

i µiXi (2.32)

where I is the intensity of the attenuated radiation with initial intensity I0, µi

corresponds to the linear attenuation coefficient of the tissue i andXi corresponds

to the thickness of the tissue i where the radiation passed through. Traditionally,

CT has been used as a companion to PET due to its ability to provide electron

density information of the object placed in the scanner which can be used to

calculate the PET based attenuation coefficients. However, PET scanners which

are combined with MR has a significant drawback as MR scanners are only

capable of giving proton density information which cannot be used to calculate

the attenuation correction (AC) factors.

This lack of attenuation information with MR could be resolved by using

traditional PET attenuation calculation techniques (Vandenberghe and Marsden

[2015]). A torus shaped source containing a tube filled with radioactive [68Ge] or

[137Cs] is used to calculate attenuation. In this method, the source is scanned with

and without the patient placed within the gantry, to estimate the electron density

of the tissues of the patient (Bowen et al. [2016]), by calculating the intensity of

detected radiation. This PET scan used to calculate the attenuation is termed

as ‘transmission scan’. Currently, this method is only validated using simulated

studies for PET/MR scanners. The current clinical protocol uses MR images

to calculate the attenuation correction histogram. Although, the MR images do
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not give electron density information, they give soft tissue contrast and excellent

anatomical details. These high-resolution anatomical images are segmented to

provide the entire volume of each tissue which is further assigned with pre-

calculated PET attenuation factors. Mean attenuation factors (for PET at 511

keV) for tissues are reported in the literature, for example, the attenuation factor

for air= 0.0058cm−1, lung = 0.0349 cm−1, fat = 0.0895 cm−1, water = 0.0987

cm−1 and bone = 0.1178 cm−1 (Kim et al. [2012]). The resulting segmented

tissue assigned with PET attenuation factors are combined together to get a

attenuation map from MR images which is forward projected to calculate the

attenuation correction histogram.

The above-mentioned data correction techniques are used to calculate the

histograms which are used directly within image reconstruction algorithms to

calculate the fully corrected PET images.

Well Counter Calibration

The reconstructed images are in units of detected counts which must be trans-

lated into units of injected activity for quantitative accuracy (Wilson et al.

[1991]). The conversion of units is determined using a well counter which is

a cylindrical scintillation crystal with a well within the crystal. PET radiotracer

is placed within this well and detected by the scintillator (Lodge et al. [2015]).

There is a photo-multiplier placed at the end of the scintillator and measure-

ments are made in counts per minute (cpm). These units are converted to the

units of activity/cpm using the table provided by the manufacturer for different

possible isotopes (Lodge et al. [2015]). This factor is calculated at the time of

the scanner installation.
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2.1.11 TOF-PET

The basic principle behind TOF imaging is that the γ rays are detected by

faster scintillating crystals with greatly improved timing resolution (Vanden-

berghe et al. [2016]). The current clinical scanners achieve a timing resolution

of 220 ps for PET/CT (van Sluis et al. [2019]) and 390 ps for PET/MR scan-

ner (Grant et al. [2016]). The improved timing resolution thereby improves the

localisation of the event along the LOR. This is because of the simple mechanics

equation (Vandenberghe et al. [2016]):

∆t = 2
∆x

c
, (2.33)

where ∆t represents the difference in arrival times of the coincident γ rays with

improved timing precision, ∆x represents the uncertainty in the localisation of

the event along the LOR where the event has occurred, and c is the speed of

γ rays. For example, with a timing resolution of 200 ps, the uncertainty in

the position of the event along the LOR is calculated to be 30 mm (Moses

[2003]). For an even better timing resolution of 20 ps, the uncertainty reduces to

3 mm. Thus, the TOF information is hugely helpful in improving the contrast

recovery and signal to noise ratio, which further improves image reconstruction

performance even with low count statistics (Conti [2011]).

These advantages and availability of cheaper computing power along with

advanced iterative reconstruction methods have inspired manufacturers to as-

semble TOF-PET scanners with CT or MR modalities. GE SIGNA and Philips

Ingenuity TF are two PET/MR scanners with improved timing resolution of

390 ps and 525 ps respectively (Vandenberghe et al. [2016]). Siemens Biograph
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PET/CT has even faster timing resolution of 220 ps (van Sluis et al. [2019]).

TOF-OSEM

Unlike conventional PET scanners where the measured coincidence event is lo-

calised along the LOR joining the detector pairs, the TOF PET scanners localise

the measured event within a number of voxels along the LOR which belong to

the individual TOF bins, t = 0, 1, ...., T , where T corresponds to the total num-

ber of bins. Thus, the measured TOF data can be defined as a matrix ypt, where

each event is recorded along the LOR p and TOF bin t. The TOF bins are

equally sampled along the coincidence window with the width, ∆ = 2τ/T , where

τ corresponds to the width of the coincidence window.

The system matrix of the acquisition model as described in equation 2.1

is modified as aptm. A TOF kernel matrix is multiplied to apm to form the

system matrix, aptm for the measured TOF data, ypt. Each element of TOF

kernel matrix corresponds to the TOF spatial weighting coefficient which models

the probability of detection of an event occuring in voxel, m to be detected by

detector pair, p and in a certain TOF bin, t (Mehranian et al. [2016], Efthimiou

et al. [2019]).

The statistical distribution of the measured noisy TOF PET data, ypt can be

mathematically modelled as:

ypt ∼ Poisson(
∑
m∈M

aptmxm + rpt + spt), (2.34)

where rpt and spt represents the random and scatter events respectively, detected

within the detector pair p and TOF bin t (Mehranian et al. [2016]).

The log-likelihood to be maximised for estimating the image parameters, xm
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for acquired TOF PET data, ypt is:

l(y | x) =
∑
p∈P

∑
m∈M

yptln(ypt)− ypt − lnypt!, (2.35)

where ypt represents the expectation of ypt (Mehranian et al. [2016]).

Thus, the expectation maximisation algorithm is used to maximise the log-

likelihood and estimate image x̂ from TOF PET data as:

x̂j+1
m =

x̂jm∑
p∈P aptm

∑
p∈P

aptm
ypt∑

k∈M aptkx̂
j
k + bpt

, (2.36)

where xjm represents the estimated intensity of the mth voxel updated over the

sub-iteration j and bpt represent the matrix of the background events to account

for randoms rpt and scatter spt events detected in detector pair p and TOF bin

t.

The TOF-OSEM algorithm (Mehranian et al. [2016]) was implemented within

STIR by Efthimiou et. al. (2019). This algorithm has been validated within STIR

using simulated data (Efthimiou et al. [2019]) and is validated further in this

thesis for clinical datasets with the state of the art TOF PET/MR scanner. The

algorithm is described as (Wadhwa et al. [2020]):

x̂j+1
m =

x̂jm∑
s∈Sz

astm

∑
s∈Sz

astm
yst∑

k∈M astkx̂
j
k + bst

, (2.37)

where yst is a matrix representing the TOF projection data for a detector pair s

within the subset Sz and timing bin t, astm is a matrix representing the proba-

bility of an event occurring in voxel m being detected by a detector pair s within

the subset Sz and the timing bin number t, bst is a matrix representing the back-
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ground term to account for the sum of randoms and scatter events for a detector

pair s within the subset Sz and timing bin t. Sz represents the subset of the

detector pairs s and z is the number of subset.

2.2 Magnetic Resonance Imaging (MRI)

2.2.1 Introduction to MRI

MRI is an imaging modality particularly employed in clinical diagnosis as it pro-

vides detailed anatomical and functional images. It images protons in the hydro-

gen nuclei of water and lipid molecules found within the human body (Westbrook

and Kaut [1998]). In the presence of an externally applied magnetic field, the

protons of hydrogen nuclei interact with the applied field and precess with a fre-

quency that is proportional to the applied magnetic field. The net magnetic field

produced as a result of this interaction is called the Net Magnetisation Vector

(NMV) (Westbrook and Kaut [1998]).

An oscillating magnetic pulse having the precessional frequency of protons

is applied to the patient and is absorbed by the protons causing the NMV to

move out of alignment from the direction of the static magnetic field (called

longitudinal plane) and flips towards the transverse plane. The applied Radio

Frequency (RF) pulse also makes the protons to move in phase (Westbrook and

Kaut [1998]).

When the RF pulse is switched off, the NMV induces voltage fluctuations

within the receiver coil which is read out as MR signal (Westbrook and Kaut

[1998]). The protons lose their absorbed energy and the loss of absorbed energy

leads to (Westbrook and Kaut [1998]):
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• An increase in the amount of magnetisation along the longitudinal direc-

tion. This is termed as T1 recovery.

• A decrease in the amount of the magnetisation along the transverse direc-

tion due to the de-phasing (protons interact and begin to precess out-of-

phase with one another) of the individual protons. This is termed as T2

decay (Westbrook and Kaut [1998]).

2.2.2 MR Sequences

There are various MR sequences that are used in MRI. A common technique

used in PET/MR imaging is the Dixon technique, as it gives segmented map of

fat and water, which is used for PET attenuation correction as further described

in section 2.3.

Dixon Sequence

Images obtained from the Dixon sequence are fat and water images which ex-

ploit the difference in the resonant frequencies of the hydrogen nuclei found in

fat and water respectively. The hydrogen nuclei of fat are linked with carbon,

whereas, the hydrogen nuclei of water are linked to oxygen. In water, the oxygen

attracts the shared electrons more strongly than hydrogen, which implies that

the hydrogen in the water molecule is more susceptible to the external magnetic

field. Whereas, in fat, the shared electrons remain in the hydrogen atom cloud

and thus, the hydrogen atom is protected. This leads to a difference in preces-

sional frequency of the hydrogen nuclei in fat and water. This difference in the

resonance frequency is termed as “chemical shift” (Coombs et al. [1997]). At 3T,

there is a chemical shift of 450 Hz.
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Since fat and water have a chemical shift, the NMV of fat and water precess

at different frequencies and move in and out of phase with each other. At 3T,

fat and water protons fall out of phase (called opposite phase) at 1.1 msec and

they fall in phase (in-phase) at 2.2 msec after the RF pulse excitation. This

causes the signal produced in the receiver coils to be a ‘water minus fat’ during

opposite-phase and ‘water plus fat’ signal during in-phase. Images are processed

to achieve water-only and fat-only images by carrying out voxel-by-voxel addition

or subtraction according to:

Fat =
(In phase–Opposite phase)

2
(2.38)

Water =
(In phase+Opposite phase)

2
(2.39)

Dixon sequence, therefore, gives a segmented map of fat-only and water-

only images. This technique divides the body into tissue classes: water and

fat Coombs et al. [1997].

2.3 Multi-Modality PET

PET is a quantitative visualisation tool that images the function of abnormal

tissue using target-specific radiotracers as described above (Lammertsma [2017],

Bastiaannet et al. [2004]). The ability to image the functional activity gives PET

an advantage over other morphology-based conventional imaging modalities, such

as MR, Ultrasound (US) and CT, in diagnosing and patient management (Pen-

nant et al. [2010], Schiepers et al. [1995]). PET images provide important infor-
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mation for various clinical applications, but are prone to degraded image quality

and quantification due to various reasons such as attenuation, Compton scatter-

ing, positron range and motion (Zaidi [2001], Jødal et al. [2012], Vandenberghe

and Marsden [2015], Catana [2015]). Attenuation effects have been resolved by

combining the PET modality with CT which provides the electron density map

of the scanned object (Townsend et al. [2003]). In current clinical environments,

PET/CT is largely used and there are only standalone PET scanners available for

breast and brain (Czernin and Schelbert [2004], Ishikita et al. [2010]). Although,

there is a major advantage of PET/CT combined modality which improves image

quality and quantification and thus patient management, there is a major draw-

back as it provides nearly double the amount of radioactive dosage to the scanned

patient (Akin and Torigian [2012]). The other drawback is that PET/CT is only

a sequential imaging modality and does not allow simultaneous imaging.

Recently, combined PET/MR scanners have been introduced and the PET

research community has developed a major interest in PET/MR scanners due

to various benefits that are involved with MR scanners over CT (Judenhofer

et al. [2008], Antoch and Bockisch [2009]). One of the advantages is that the

MR scanner lacks ionising radiation which can allow the scanning of a sensitive

group of patients, such as children and pregnant women, with PET/MR modality.

Although, the main advantage of MR over CT, is that MR provides soft tissue

contrast which can be beneficial in the brain, abdominal and musculoskeletal

imaging (Antoch and Bockisch [2009], Ehman et al. [2017]). Another advantage

of using MR imaging modality is that the positron range reduces in the presence

of magnetic field and the positrons only move along the magnetic field, which

improves the in-plane resolution in PET images (Kolb et al. [2015], Hammer
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et al. [1994]). PET/MR imaging modality allows simultaneous functional and

anatomical imaging which can help to reduce the motion effects as MR can

provide high temporal imaging information to correct for motion (Kolbitsch et al.

[2014]).

Despite the above-mentioned advantages, combining PET/MR modality into

a single unit was challenging. The conventional PET modality has PMTs that

are incompatible withMR due to their sensitivity towards the magnetic field (Ju-

denhofer et al. [2008]). This has been resolved by using the solid-state detectors

that are insensitive to magnetic field, such as Avalanche photodiode (APD)s,

LYSO and LSO. Apart from this, a current challenge with PET/MR modality

is the lack of a gold standard attenuation correction method with MR for PET

attenuation affected data.

There have been various methods that have been investigated to extract Mag-

netic Resonance Attenuation Correction (MRAC) images from the MR images

including atlas-based and direct imaging segmentation-based methods (Chen and

An [2017]). The atlas-based method estimates PET attenuation values from a

MR images. This is done using a large training data of CT anatomical images

and deriving a computational relationship from this CT image to get the MR

image. The computational algorithm that estimates the MR image from the CT

image can further be used to estimate the pseudo-CT image for a given MR

image when the CT is not available. Thus, an attenuation image can be esti-

mated using the MR image. There are various ways which can be used to derive

the computational relationship between MR and CT images including machine

learning methods (Chen and An [2017]).

The other way to extract the AC image using the MR image, that has been
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exploited, is the segmentation-based method. This method utilises direct MR

anatomical sequences such as Dixon, ultrashort echo time (UTE) and zero echo

time (ZTE) to extract the patient anatomy. These images are further segmented

along the volume, and each region is assigned with the PET attenuation correc-

tion factors. Dixon images are acquired within a few seconds, and UTE or ZTE

images are acquired within a few minutes, which is quite favourable to keep the

attenuation correction protocol short (Chen and An [2017]).

Although segmentation-based and atlas-based are highly used MRAC meth-

ods, there are significant drawbacks associated with these methods. With the

presence of anatomical abnormalities or unusual tissue density within the data,

the atlas-based method will produce large AC errors. This is because these ab-

normalities are different from the training dataset and computational algorithms

cannot accounted for them. The drawback associated with the segmentation-

based method is because the sequences such as UTE and ZTE cannot differenti-

ate between bone and air. This can lead to large AC errors when air cavities are

wrongly assigned as bone (this can occur in situations where the bone is removed

or not present). Apart from this, the MR extracted images are prone to noise

and artefacts, which can undermine the accuracy of this method (Chen and An

[2017]).

2.4 GE SIGNA PET/MR

Scanner Specifications

This PET/MR scanner is composed of a MR-compatible TOF-PET scanner fit-

ted within the bore of a 3T MR scanner as can be seen in Figure 2.8 (Grant et al.
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Figure 2.8: GE SIGNA PET/MR scanner is composed of 28 detector modules
with module 0 located vertically above the iso-center of the MR scanner.
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[2016]). The axial field of view of the PET component of this scanner is 25 cm. It

comprises of Lutetium-Yttrium Oxyorthosilicate (LYSO) crystal-based detectors,

Silicon PhotoMultipliers (SiPM) and other fast processing electronics (Vanden-

berghe et al. [2016], Hsu et al. [2017]). The SiPM is magnetically insensitive to

electromagnetic fields which makes it possible to scan PET data while collecting

MR data (Grant et al. [2016]).

PET Component Configuration

The PET component of the scanner is composed of 28 detector modules placed

next to each other to form a cylindrical insert. The detector module 0 is centred

vertically above the isocenter of the MR scanner and the crystal 0 is positioned

at an offset of −5.23◦ from the vertical centre in the anticlockwise direction

when viewed from the back of the scanner as can be seen in Figure 2.8. Each

detector module has 5 detector units placed simultaneously along the z-axis with

a crystal-free gap of size 2.8 mm. There are 4 blocks of crystals in each detector

units composed of 4×9 crystals. The dimensions of each crystal is 5.3×3.95×25

mm3 along the axial, tangential and radial directions. There are 3×6 SiPMs for

each 4 × 9 crystal configuration. The total number of detectors in this scanner

is 20,160 (Wadhwa et al. [2020]).

2.5 Image Reconstruction Software

Every clinical scanner is available with software which can allow image recon-

struction of the data and the images used for further clinical applications such

as kinetic modelling, clinical diagnosis and therapy planning. GE scanners come

along with in-built reconstruction software and an offline reconstruction software
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called GE-Toolbox, which is used in this thesis.

2.5.1 GE-Toolbox

GE-Toolbox is an object-oriented MATLAB based software framework provided

by the vendor that allows offline PET image reconstruction. It is comprised of

various MATLAB, C and C++ (wrapped inside MATLAB-callable wrappers)

functions and utilities. These functions and utilities are used to reconstruct and

analyse PET data. The software framework is compatible with GE PET/CT as

well as PET/MR scanners. The DICOM data acquired at the end of a scan are

used as input for reconstruction for this software and reconstructions are con-

ducted after setting the reconstruction parameters. The functions and utilities

in the toolbox model the system matrix including scanner geometry, detector

dead-time/pile up and attenuation effects. The model implementation in the

toolbox also accounts for the physical effects, including the random and scatter

events. The modelling has proprietary information and is a ‘black box’.

Although all scanners have an accompanying reconstruction software, this

software is not available at all sites. In research, data sharing (especially for

phantoms) can be helpful in improving the research efficiency. Thus, a software

platform that can readily provide a framework to reconstruct data is of high sig-

nificance for the research community. Different research groups have contributed

towards creating license-based software platforms that readily allows image re-

construction. Michigan Image Reconstruction Toolbox (MIRT) is a MATLAB-

based software platform that provides various iterative and non-iterative im-

age reconstruction algorithms (Fessler [2018]). A sparse iterative reconstruc-
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tion library (ASPIRE) and Tomographic Image Reconstruction Interface of the

Universite de Sherbrooke (TIRIUS) as well are software platforms available for

emission tomographic reconstruction (Fessler [1995]). These libraries have regu-

larised and unregularized reconstruction methods implemented for users (Fessler

[1995]). Another available software library is PET Reconstruction Software

toolkit (PRESTO), which focuses on a novel scanner-independent geometrical

description of 3D PET data and optimising the reconstruction times (Scheins and

Herzog [2008]). The open-source reconstruction software called STIR (http://stir.

-sf.net) used in this thesis for PET image reconstruction is described in the next

section.

2.5.2 STIR

STIR is an open-source reconstruction library comprising of various classes, func-

tions and utilities to reconstruct Emission Tomography (ET) data (Thielemans

et al. [2012]). It is designed to be modular and has an inheritance between classes

which allows it to be extended to incorporate novel algorithms and scanner ge-

ometries conveniently without the need of re-implementing existing attributes

and functions. The inheritance structure of the STIR library implies that there

are base classes and descendent classes can inherit the attributes and behaviour

of these base classes without needing to re-implement the code again. The basic

building blocks of STIR are described below:

• Basic Data Storage Classes: All input and output data that is processed

in STIR can be arranged as an array which is a basic data storage class

implemented. The images that are stored are based on 3-dimensional ar-

rays which can be built on the base class. STIR also has Cartesian grids
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defined within a base class for images. Projection data and projection data

information are read and stored within ‘ProjData’ and ‘ProjDataInfo’ base

classes respectively, which are defined within STIR. Further, STIR also al-

lows storing dynamic projection data and gated projection data. Apart

from projection data, LM data can also be imported in STIR and base

classes that are implemented for LM data include ‘CListModeData’ and

‘CListRecord’. The LM base classes allow reading of each event and ex-

tract all the information from the acquisition to store these events such as

detector pair information. The input and output base classes provide the

building blocks to import projection or LM data and write the image data.

• Scanner Geometry Building Block: STIR has a base class where cylindrical

scanner geometry is implemented. It currently does not support other

geometry types with gaps whereas there is a major study conducted which

can be used to support this (Thielemans et al. [2012], Khateri et al. [2019]).

Most clinical PET scanners are cylindrical and STIR can define user-based

scanners.

• Reconstruction Class Building Blocks: STIR has base classes implemented

for analytical and iterative reconstructions which can further be inher-

ited to develop novel reconstruction algorithms such as parallel level sets

(PLS) (Tsai et al. [2017]) and hybrid kernelised expectation maximisation

(HKEM) (Deidda et al. [2018b, 2019]) as described and used in subsequent

chapters.

STIR provides a platform for the PET research community where the library

is expandable to “fit the needs” of new users as the field progresses by deriving
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new classes from basic building blocks (Thielemans et al. [2012], Wadhwa et al.

[2020, 2018]). Currently, STIR is used to reconstruct PET emission data us-

ing analytical and iterative reconstruction algorithms (Thielemans et al. [2012]).

Most commonly used reconstruction algorithms such as MLEM and OSEM are

already implemented within the library (Beisel et al. [2008], Thielemans et al.

[2012]). The structure of STIR allows for the incorporation of the newly in-

troduced commercial scanners. An example of such implementation is demon-

strated in the subsequent chapter. Although STIR is a modular programming

tool which allows users to reconstruct data from the clinical scanners, it has its

limitations. Some of these include a lack of flexibility in scanner geometry and

conventions (Thielemans et al. [2012], Wadhwa et al. [2020, 2018]). Nevertheless,

STIR is a continually evolving software and incorporates more reconstruction al-

gorithms such as LM-OSEM, which makes it a robust open-source software to

implement new scanners.

2.5.3 SIRF

As discussed above, there are clinically available PET/MR scanners which are

provided by major clinical manufacturers. Although the hardware component of

PET/MR modalities have been combined, there is no software that allows syner-

gistic PET/MR reconstructions. This lack of software availability has been over-

come by the introduction of SIRF (downloadable from: https://github.com/CCP-

PETMR) (Ovtchinnikov et al. [2020], Brown et al. [2019]). This software com-

bines already available PET and MR image reconstruction softwares, STIR and

gadgetron in one reconstruction software and allows synergistic image reconstruc-

tion (Ovtchinnikov et al. [2020], Brown et al. [2019]).
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2.6 Anatomically-Informed Image Reconstruc-

tion Algorithms

With open-source software such as STIR, there are greater possibilities of im-

proving image reconstructions using novel iterative algorithms. With the intro-

duction of clinical PET/MR modalities, the PET images can be improved using

MR anatomical information. Novel iterative algorithms that utilises MR ker-

nels to reconstruct PET images, called KEM, have already been implemented in

STIR and are further expanded in this thesis.

2.6.1 KEM Algorithm

The KEM algorithm was first proposed by (Wang and Qi [2014]) and was de-

veloped in STIR library by Deidda et al. (2019). This algorithm is based on a

machine learning technique and it aims to extract a kernel matrix using the MR

feature vectors. The PET image is modelled as a sum of weighted kernels kfm

as described:

xm =
Nm∑
f=1

λfkfm, (2.40)

where value at voxel m of image, xm, is represented by the linear combination of

the kernel matrix (kfm represents its fmth elements and f and m represent the

elements of the feature vectors that form the kernel matrix), Nm represents the

number of feature vectors and λf represents the kernel weights (Deidda et al.

[2019]). Feature vectors represents the voxel intensities within a patch (or cubic

array) extracted from MR image.

The acquisition model represented in equation 2.1 is modified using the equa-
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tion 2.40 as:

y = AKλ+ b, (2.41)

where K = [kfm] represents the kernel matrix and λ = [λf ] represents a vector

of kernel weights.

Thus, the image reconstruction algorithm here is used to estimate the kernel

weights, λ. The standard expectation maximisation algorithm can be directly

used to estimate the kernel weights.

The kernel weights are reconstructed as follows:

λj+1
f =

λjf∑
m∈M kfm

∑
s∈Sj

asm

∑
m∈M

kfm
∑
s∈Sj

asm
ys∑

l∈M asl
∑

o∈Nm
komλ

j
o + bs

.

(2.42)

The final image, x̂ which contains the PET radioactive information is obtained

by substituting the last iteration of equation 2.42 within equation 2.40 (Deidda

et al. [2019]).

2.7 Summary

PET images have a low resolution which affects the quantification and detection

of small regions. This study targets improved image quantification as well as

contrast recovery and signal to noise ratio using novel iterative reconstruction

algorithms. This is mainly possible due to improved PET technology, TOF-PET,

which allows improved localisation of PET activity. Both TOF-PET imaging

and KEM algorithm reduce noise which can be hugely beneficial in reducing the

injected radioactivity.

This chapter introduced and discussed the background of PET physics, MR
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imaging modality, data acquisition, data correction methodology and the GE

SIGNA PET/MR scanner and its image reconstruction software. This chapter

also discusses TOF imaging, open-source software, STIR and clinical and novel

image reconstruction algorithms.

69





Chapter 3

Methods

This chapter focuses on the methodology of reading TOF-PET data from GE

SIGNA PET/MR with the STIR library. It also discusses the troubleshooting

and validation testing required to incorporate the scanner acquired raw data

formats into STIR’s native histogram format. The implementation of the mod-

elling of PET acquisition data within the STIR library was necessary to create

the foundation for this study. Further, the implemented novel iterative recon-

struction algorithm TOF-KEM has been described in this chapter. It presents

the method of reconstructing the TOF-PET data with clinically-used and novel

iterative reconstruction algorithms, using the open-source software, STIR, for

the first time. It also summarises the phantom and clinical data used for demon-

stration and validation purposes. Finally, it introduces the statistical methods

used to carry out region of interest (ROI) based image analysis.
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Description of Acquired Data

• Emission Data

• Detector Efficiency Factors

• Detector Pile Up Factors

• Geometric Factors

• MRAC Images

• Single events detected per
crystal per unit time

Pre-Processing of Acquired Data

• Conversion of LM data into
STIR histogram

• Calculate normalisation
correction from detector effi-
ciency and geometric factors

• Calculate attenuation correc-
tion from MRAC image

• Calculate randoms correction
from single events

• Extract scatter correction in
STIR format

Acquisition Model

Calculation of system matrix
and sensitivity image

Reconstructed Image

Using standard algo-
rithms such as OSEM

Figure 3.1: This figure shows the pipeline exhibiting the image reconstruction of
raw data extracted from the scanner using STIR.
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3.1 Description of Acquired Data

This section describes the acquired TOF-PET and MRAC (i.e. attenuation

correction images extracted from MR scan using segmentation method) data that

is extracted from the GE SIGNA PET/MR scanner at the end of a simultaneous

PET/MR scan. It also describes the data format of the extracted raw data files

for this scanner.

The output PET and MRAC files saved by the scanner console at the end of

an acquisition include:

1. Compressed LM file: This file is saved with GE’s proprietary compression

algorithm and can be uncompressed by the scanner console after the scan.

2. Compressed histogram file: The scanner also saves a compressed emission

data file which is saved as a Digital Imaging & COmmunication in Medicine

(DICOM) file. The histogram array along with the header information is

wrapped within the DICOM file and it stores all detected LOR’s. The his-

togram array, along with the header information, is stored as a Hierarchical

Data Format 5 (HDF5) file. The acquired histogram data is described in

detail in the next section. The DICOM file can be uncompressed using the

scanner console, and the GE-toolbox can be used to extract the HDF5 file

that contains the histogram data.

3. Normalisation files: The scanner stores arrays of detector efficiency factors,

geometric factors and well counter calibration as HDF5 files which are

wrapped within DICOM files.

4. PET Image For Attenuation (PIFA) files: The MR images resulting from
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Dixon and ZTE sequences are segmented and assigned with appropriate

PET attenuation factors. The resulting images are called PIFA, which are

stored by the scanner in its native PIFA file format.

5. PET reconstructed images: These are DICOM images that are recon-

structed with particular reconstruction and image settings at the time of

the scan.

The GE toolbox stores the acquired data in its proprietary file format, which

is HDF5. The scanner saved normalisation and histogram DICOM files with

‘.RPDC’ extension and MRAC images are stored in PIFA file format. The output

LM compressed files are stored with an extension ‘.BLF’.

The HDF5 files are extracted from the above-mentioned output files using

the GE-toolbox in order to use them as inputs for image reconstruction. The

extracted HDF5 files are named as follows:

1. Histogram array is stored in a file called ‘rdf.1.1’.

2. Detector efficiency and geometric correction factors array are stored in a

file called ‘norm3d’.

HDF5, PIFA and DICOM files are used as inputs to STIR and these files

are further pre-processed to extract emission and data correction in file formats

native to STIR software.

3.2 Pre-Processing of Acquired Data

As illustrated in Figure 3.1, the acquired data is pre-processed within STIR.

This section describes the implementation that are made within STIR to pro-
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cess the acquired emission data and data corrections to facilitate further image

reconstruction.

3.2.1 Conversion of LM Data into STIR Histogram

The LM HDF5 file stores a stream of coincident events along with detection

information, including arrival time differences and detector position for the pair

of detectors. Each coincident event is stored as a 6 byte (or 48 bit) structure of

fields describing the detection information. The 48 bits of the coincident event

are organised as:

• The first 2 bits store the event type name, such as coincidence or single

event.

• The next 1 bit stores the flag for coincidence.

• The next 6 bits store the axial crystal position for one coincident detector.

• The next 10 bits store the transaxial crystal position for one of the coinci-

dent detectors.

• The next 6 bits store the axial crystal position for the other coincident

detector.

• The next 10 bits store the transaxial crystal position for the other coinci-

dent detector.

• The next 9 bits store the arrival time difference.

• The next 4 bits store a binary flag for detector recovery after an event is

detected, i.e. the flag is 0 when the event is being processed by the detector
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(within the detector’s dead-time), and the flag is 1 when the detector is

ready to detect the next event.

The required fields within this structure that are used in this study correspond

to the axial and transaxial crystal (or detector) numbers of the crystal pairs that

detected the events and the delta time (i.e. the difference between the arrival

times of the two γ rays detected within a coincidence). This data is accessible by

navigating to the field called ‘/ListData/ListData’ (Bertolli et al. [2016], Wadhwa

et al. [2018]) and can be accessed after skipping the first 3 bits.

The crystal identifiers (ID)’s and the TOF information are handled within

STIR in ‘CListModeData’ base class. A derived class ‘CListModeDataGES-

IGNA’ was implemented to handle the transaxial and axial crystal coordinates

for GE’s extracted LM data as described above in STIR space. Pre-defined func-

tions in STIR were used to convert the crystal pair coordinates into respective

LOR’s. The LOR coordinates are then converted into the bin of the histogram.

Further, the arrival time differences are also handled here to calculate the TOF

bin number.

3.2.2 Implementation of Normalisation Correction

The scanner stores the normalisation factors in the ‘norm’ HDF5 file (Wadhwa

et al. [2018]). It stores crystal efficiency factors as an array of dimensions 448×45.

This array is stored in the field called ‘/3DCrystalEfficiency/crystalEfficiency/’.

It also stores 3-D geometric correction factors as a histogram but for only 16

views. This array is repeated to populate the entire histogram for this scan-

ner having a dimension of 224 × 1981 × 357. The projection data is stored in

the field called ‘/SegmentData/Segment4/3D Norm Correction/slice#’, where
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slice# corresponds to view number 1 - 16.

To correct for the systematic variations between different detectors and ge-

ometric variations over the axial FOV, the detector efficiency correction and

geometric correction factors are read for every LOR. The normalisation correc-

tion factors that counteracts the normalisation effects for each histogram bin (or

LOR connecting two detectors) is calculated (Defrise et al. [1991a], Bailey et al.

[1996]) as:

nXY =
gXY
εXεY

, (3.1)

where nXY represents the normalisation correction factor for the detector pair

comprised of detectors X and Y , εX and εY represents the crystal efficiency

factors and gXY represents the geometric correction factors.

The efficiency factors for detector X and Y within the adjacent rings are

combined together as:

εcomb = εXfεY g + εXgεY f , (3.2)

where ecomb represents the efficiency of the combined LOR from adjacent crystal

rows (as GE SIGNA PET/MR combines the adjacent ring as one single histogram

bin and all LOR’s detected between detectors of the two adjecent rings and direct

ring are combined together), εXf is the efficiency of the detector f placed on ring

X, εY g is the efficiency of the detector Y placed on ring g, εXg is the efficiency

of the detector X placed on ring g and εY f is the efficiency of the detector Y

placed on ring f .

The normalisation correction factors are inversely related to the efficiency
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factors. Thus, equation 3.2 can be written as:

εcomb =
1

cXfcY g
+

1

cXgcY f
=

cXgcY f + cXfcY g
(cXfcY g)(cXgcY f )

, (3.3)

where cXf is the correction factor for the efficiency of the detector X placed on

ring f , cY g is the correction factor for the efficiency of the detector Y placed on

ring g, cXg is the correction factor for the efficiency of the detector X placed on

ring g and cY f is the correction factor for the efficiency of the detector Y placed

on ring f .

Equation 3.3 can be re-written for ccomb as:

ccomb =
(cXfcY g)(cXgcY f )

cXgcY f + cXfcY g
. (3.4)

Thus, for the combined LOR of adjacent rings f and g, the normalisation

correction is calculated as:

nXY =
gXY (cXfcY g)(cXgcY f )

cXgcY f + cXfcY g
=

gXY
εXfεY g + εXgεY f

. (3.5)

For all other LOR’s between detectors located at non-adjacent rings, equa-

tion 3.1 holds true and it is used to calculate the normalisation correction factors.

The dead-time correction has not been implemented in this study.

3.2.3 Calculation of Attenuation Correction from MRAC

Image

The PIFA images are stored by the scanner, as described in this section. The

scanner treats each acquisition differently to acquire their PIFA images due to
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Figure 3.2: Bottle Phantom Dataset: Transverse and coronal slices of the ex-
ported and resampled PIFA image (bottom row) that are extracted using custom
scripts from MRAC image (top row). MRAC image is also used as an anatomical
prior for kernel matrix estimation for TOF-KEM image reconstructions. PIFA
image is further used to correct for the AC after it is converted in STIR interfile
format using custom scripts.
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Figure 3.3: Patient Dataset: Transverse and coronal slices of the exported and
resampled PIFA image (bottom row) that are extracted using custom scripts
from MRAC image (top row). MRAC image is also used as an anatomical prior
for kernel matrix estimation for TOF-KEM image reconstructions. PIFA image
is further used to correct for the AC after it is converted in STIR interfile format
using custom scripts. The patient has one lung. (Figure taken from the paper:
Wadhwa et. al., PET image reconstruction using physical and mathematical
modelling for time of flight PET-MR scanners in the STIR library, Elsevier, 2020.
Figure used under the terms of Creative Commons Attribution 4.0 International
licence.)
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its conventions.

For patient and customized phantoms such as bottle phantom (as described

in section 3.6 later in this thesis), the scanner assigns the PET attenuation

factors after segmenting the tissues imaged using MRAC sequences (Wadhwa

et al. [2018]). The sequence that is used for acquiring MRAC image is Dixon.

For GE provided phantoms such as Hoffman (as described in section 3.6 later

in this thesis), the scanner uses pre-defined templates which were implemented

by taking the CT scan of the phantom assigned with PET attenuation factors.

The scanner registers the templates to non-attenuation corrected PET recon-

structions during the scan which accurately localises the phantom template to

the position of the phantom on the gantry.

The scanner also stores PET attenuation templates for head coils, head and

neck coil, breast coil and patient table. The coil used in the scan and the patient

table template are added at the end of the scan to obtain the PIFA images that

include non-patient objects.

Further, in the case of Volumetric Quality Control (VQC) phantom, PIFA

images are not required as the phantom has negligible attenuation.

As discussed in 2.4.2, STIR utilities only accept input in its native interfile

format. The PIFA file format is not a format implemented within STIR. Thus,

customized MATLAB scripts were implemented and the PIFA images were con-

verted into DICOM and further into STIR interfile file format.
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3.2.4 Randoms Correction: Implementation of Randoms

from Singles

LM HDF5 files store the singles rate for every second of the acquisition at the

end of each scan. For an acquisition of time N seconds, there is a list of N+1

samples stored in the field called ‘/Singles/CrystalSingles/sample#’, where every

sample#1 stores a singles rate. There are N+1 samples as the periodic data is

asynchronous with the start of PET scan, which needs to be taken into account

during data calculation by weighting the first and last samples of the periodic

data appropriately.

The singles rate for each crystal is read and stored within a newly imple-

mented STIR class called ‘SinglesRatesFromGEHDF5’. This class reads the ar-

ray with dimensions 45×448, that stores the rates of the singles. The above array

that stores the singles rate per second is converted into a STIR-based histogram

using a utility called ‘construct randoms from GESingles’.

The random events over the complete PET acquisition, T , are calculated in

STIR as (Stearns et al. [2003], Oliver and Rafecas [2016]):

RXY = 2τSXSY /T, (3.6)

where RXY is the estimated number of random events (or counts) detected by

the detector pair X and Y , τ represents the coincidence window of the scanner

(the coincidence window is 4.57 ns for this scanner), T represents the total time

of PET acquisition, SX and SY represent the single events detected per crystals

X and Y , respectively.

1# is replaced with the index having the units of ‘seconds’ starting at 1
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The singles rate for each crystal are read from the LM HDF5 file to further cal-

culate the random rates. The STIR utility ‘construct randoms from GEsingles’

is implemented for this purpose during this work. In the current STIR imple-

mentation, dead-time and decay modelling are not considered within randoms

correction.

3.2.5 Scatter Correction

Scatter correction is calculated for each dataset using already implemented sin-

gle scatter simulation in STIR (Tsoumpas et al. [2004], Watson [2000], Watson

et al. [1996]). The PIFA images are converted into STIR interfile image format

using customised scripts. This image is used to calculate the attenuation correc-

tion factors. The emission sinogram is used along with the estimated attenuation

correction to reconstruct the attenuation corrected image for a sub-sampled scan-

ner template. This image is further used to simulate a series of random points

(also called scatter points) to calculate the scattering probability for each of

these points using the Klein-Nishina formula (Tsoumpas et al. [2004]). Single

scatter probabilities are summed up for each scatter point in order to estimate

the single scatter distribution. The single scatter distribution is estimated for

each detector pair and scaled using tail-fitting to calculate the scatter correction

histogram (Thielemans et al. [2007], Polycarpou et al. [2011]). The calculated

scatter correction histogram is interpolated to get the scatter probability for the

entire histogram for GE SIGNA PET/MR scanner.
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3.3 Transformation of Histogram Data from GE

Scanner to STIR Space

3.3.1 TOF Histogram Data Organisation

The calculated LOR and TOF bin numbers are converted into a complete TOF

histogram using the pre-defined STIR utility ‘lm to projdata’. This utility uses

scanner template information to initialise the histogram and assign detected

LOR’s that are read in the class ‘CListModeDataGESIGNA’.

The scanner stores each timing bin as a signed integer (i.e. numbered from

-175 to +175 bins), which are ‘mashed’ together by combining every 13 timing

bins together to produce a total of 27 histogram timing bins. The coincidence

events are stored in a histogram of dimensions 224× 1981× 27× 357, where 224

corresponds to the total number of views, 1981 corresponds to the total number

of axial positions, 27 corresponds to the number of “mashed” timing bins and 357

corresponds to the number of tangential positions (Wadhwa et al. [2018]). The

number of views, by convention, refers to half of the total number of detectors

along the ring. There are 448 detectors in GE SIGNA PET/MR, resulting in

224 views. There are half the number of detectors that comprise the views as the

other half of the detectors are accounted for in the part of the same histogram

that stores negative segments.

3.3.2 Span 2 Implementation

The scanner stores the coincidence events as projection data with span 3 for

segment 0 and span 1 for all other segments. Span 3 for segment 0 implies that
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coincident events from rings having ring difference -1,0 and 1 are all combined

together, resulting in 89 different axial positions. For all other segments +/-

N, coincidences that correspond to rings having ring difference +/-2N and +/-

(2N+1) are taken into account. This leads to 85 axial positions for segment

number +/-1, 81 axial positions for segment number +/-2, and so on. When

axial positions are added together for all 45 segments for this scanner, a total of

1981 axial positions are calculated. Thus, there are a total of 1981 2D sinograms

within all 45 segments. This span is defined as span 2, and the data is read

properly by initialising segment based sinograms accurately.

3.3.3 Transformation of LM Events from GE to STIR

Space

The LM is converted to a histogram by reading the events and calculating the

bin number where the event must have occurred. STIR has a fixed convention

to read the detector positions in axial and transaxial directions and has a fixed

projection data space with the fixed segment, axial, tangential and view con-

vention. STIR assumes that all scanners have detector positions running in the

clockwise direction along with the rings as can be seen from the back of the

scanner and rings are numbered from front to back, i.e. the z-axis starts from

the front of the scanner. Whereas, the scanner chooses to number its detectors

along the counter-clockwise direction as seen from the back of the scanner, as

demonstrated in Figure 3.5. The above mentioned conventional incongruity has

been accounted for within STIR’s class ‘CListModeDataGESIGNA’.

The list of events stored in clinical data starts with the timestamp of 0.

The scanner discards the first few recorded events during reconstruction and
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Figure 3.4: This figure presents the Michelogram for the scanner.

only use events recorded after the start of simultaneous acquisition scan. This

asynchronicity in the LM file start time and acquisition start time is taken into

account during the conversion of LM files into STIR histogram format using

time frame definitions. The time frames are defined in seconds and are read

from the header data of the HDF5 file. The acquisition start time is recorded

under the field called ‘/HeaderData/ListHeader/firstTmAbsTimeStamp’ and the

acquisition time frame is recorded under the field called ‘/HeaderData/ListHead-

er/listAcqTime’.
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Figure 3.5: This figure represents the scanner and STIR incongruity in terms of
the detector numbering. It demonstrates that the scanner reads the crystal in
the counter-clockwise direction and the crystals are numbered from 0 to 447 as
there are 448 crystals in total. The crystal 0 is positioned at an offset of −5.23◦

from the y = 0 position as the module 0 is centered at y = 0. This offset for
crystal 0 in the scanner is translated to be in the clockwise direction in STIR as
demonstrated here.

3.3.4 Troubleshooting

The GE SIGNA PET/MR scanner has modules running in the counter-clockwise

direction as seen from the back of the scanner. Module 0 of the scanner is centred

at y = 0 and crystal 0 has a transaxial offset of −5.23◦ (negative sign representing

anti-clockwise direction). STIR adopts a different convention and initialises the

scanner geometry with crystal 0 to always be located at y = 0. The STIR pro-

jection matrix was changed during this work to take the view offset into account.

STIR stores projection data using a fixed segment sequence, which is different

from the GE segment data format. The GE data organisation is presented in

Figure 3.6 and it demonstrates that the projection data is organised by concate-

nating 2D segment based sinograms with the sequence: 0, 1, -1, 2 and so on.
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Figure 3.6: This figure demonstrates the TOF histogram data organisation as
stored by the GE SIGNA PET/MR scanner. As shown in the figure, the scanner
stores events in a series of 3-D TOF viewgrams for view numbers as represented
by φ. The view numbers vary from 0 to 223 as the total number of views stored by
GE SIGNA scanner are 224. The 3D TOF viewgrams are demonstrated to have
a volume with dimensions of segment number as presented by θ, axial positions
as presented by v, tangential positions as presented by u and TOF positions as
presented by ∆t. The segment numbers vary according to the segment sequence
as: 0, 1, -1, 2, -2 and so on.

This is different to STIR’s native projection data organisation as STIR organises

its segment having sequence: 0, -1, 1, -2, and so on. This incompatibility is taken

into account to read the GE data format by implementing GE based segment

sequence in STIR. These are important as the lack of these implementations will

lead to wrongly quantified PET images as the detected events will be assigned

to the wrong bin number. Thus, it is essential to account for all the above in-

congruity between two data spaces in order to read the acquired data accurately

within STIR space.
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3.4 Acquisition Model

3.4.1 GE SIGNA PET/MR Acquisition Model in STIR

The data collected at the end of a scan with a GE SIGNA PET/MR scanner

is a TOF projection data measurement, represented as ypt. The sections below

describe the implementation of non-TOF projection data based forward model,

y, where, y = Σtypt and TOF projection data based forward model, ypt where t

represents the TOF bins measured by the scanner.

Non-TOF Acquisition Model

For non-TOF acquired data, yp (a vector of detected events stored for the detector

pairs, p), the acquisition model for the scanner is defined as:

yp = Σmapmxm + bp; (3.7)

where [apm] represents the system matrix, which models the probability of event

emitted in voxel m to be detected by detector pair p, xm represents the image

vector with voxels m, and bp represents the vector of background events detected

along detector pair p. Background events represent the sum of non-TOF randoms

and scattered events.

• The normalisation correction and attenuation correction factors are in-

cluded in the system matrix [apm]. The system matrix is calculated by

multiplying forward and back projectors using Hadamard or element-wise

multiplication along with the normalisation and attenuation factors for

each voxel and detector pair combination to calculate the corresponding
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matrix element (Mehranian and Zaidi [2015]).

• The randoms and scatter correction histogram together form the back-

ground term, bp.

TOF Acquisition Model

GE SIGNA TOF-PET measured projection data, ypt is modelled within the

acquisition model as:

ypt = Σmaptmxm + bpt; (3.8)

where [aptm] represents the system matrix which models the probability of event

emitted in voxel m to be detected by detector pair p within the signed TOF bin,

t, xm represents the image vector with voxels m, [bpt] represents the matrix of

background events detected along the detector pair p and within TOF bin t.

• The TOF kernel is modelled within the system matrix aptm as (Efthimiou

et al. [2019]):

aptm = apmTptm. (3.9)

This equation models the time spread function as a matrix, Tptm for each

TOF bin t and separates it from the sensitivity information stored within

the matrix, apm. The sensitivity information models the system effects such

as scanner geometry, detector efficiency, geometric, attenuation effects and

projection matrix.

The coincidence window width of the scanner is equally divided into t TOF

bins with the bin boundary being [kt, kt+1] as can be seen in Figure 3.7.

The time spread function represents the system response to a point source
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located at voxel m and TOF bin t having boundaries [kt, kt+1]. The time

spread function is typically modelled as a Gaussian function with mean lo-

cated at v′cm and standard deviation, σ = Rt(8ln2)−
1
2 , where Rt represents

the timing resolution of the scanner Mehranian et al. [2016]. As can be

seen in Figure 3.7, v′cm is the orthogonal projection of the center c of the

voxel m within timing bin t.

The probability that the event having projection v′cm, is detected within

the TOF bin t, having boundaries [kt, kt+1] is computed as the cdf or the

cumulative distribution function. Since time spread function is a Gaussian

distribution, the cdf(kt−v′cm) is equivalent to the 1
2
[1+(erf(kt−v

′
cm

σ
√
2

)], where

erf represents the error function. Similarly, the cdf(kt+1−v′cm) is equivalent

to the 1
2
[1 + (erf(kt+1−v′cm

σ
√
2

)] (Efthimiou et al. [2019]).

Thus, the time spread function Tptm is calculated as (Efthimiou et al.

[2019]):

Tptm = cdf(kt+1−v′cm)−cdf(kt−v′cm) =
1

2
(erf(

kt+1 − v′cm
σ
√

2
)−erf(

kt − v′cm
σ
√

2
)),

(3.10)

In the above equation 3.9, time spread function is calculated as equa-

tion 3.10 and multiplied together with apm to calculate the system matrix

aptm.

• The scatter and randoms correction TOF histograms are added together

to calculate the background term, bt.
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Figure 3.7: This figure shows the orthogonal projection of the event that is
detected in voxel m with center c within the timing bin t as v′cm. The event
is detected within the TOF bin t having boundaries, kt and kt+1. This figure
also illustrates the time spread function for TOF bin t as a Gaussian distri-
bution. (Figure taken from the paper: Efthimiou et. al., Implementation and
validation of time-of-flight PET image reconstruction module for listmode and
sinogram projection data in the STIR library, Institute of Physics and Engi-
neering in Medicine, 2019. Figure used under the terms of Creative Commons
Attribution 3.0 licence.)

3.4.2 Scanner Geometrical Modelling in STIR

Table 3.1: GE SIGNA PET/MR Scanner Specifications
Number of detectors per ring 448

Number of rings 45
Ring Spacing 5.56mm

Transaxial FOV 600mm
Depth of Interaction 8.5mm
Crystal Information 5.3× 3.95× 25mm3

Number of non arc-corrected bins 357
Number of arc-corrected bins 331

Bin Size 2.13mm
Intrinsic Tilt Angle −5.23◦

View Number 224
Number of TOF bins 351

Timing Least Significant Bit 13.02ps
Timing Resolution 390ps

When a scanner is defined in STIR, it uses a pre-defined cylindrical geom-
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etry (STIR currently supports only cylindrical PET scanners) and conventions

to model parameters within the system matrix. STIR uses scanner parameters,

such as the number of detectors per ring, number of rings, ring spacing, transaxial

FOV, depth of interaction, blocks and crystal information to initialise the scan-

ner geometry. The number of transaxial and axial blocks per module, number of

crystals per block and the crystal layers information are defined within the scan-

ner geometry information. The number of non arc-corrected and arc-corrected

bins (i.e. tangential position numbers), bin size and the intrinsic tilt angle in-

formation are also stored to initialise the histogram. The number of detectors

per ring is used to initialise the view numbers, which defines the projection data.

Further to this, TOF information, including the number of TOF bins, timing

least significant bit and timing resolution of the scanner are also initialised. The

histogram array is initialised for the GE SIGNA PET/MR scanner within STIR

according to the geometrical and hardware information as described in table 3.1.

3.5 TOF-KEM

The combination of previously implemented advanced reconstruction algorithms,

TOF-OSEM and KEM, has been demonstrated in this work. This combination

has given the foundation for novel reconstruction algorithm, TOF-KEM.
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3.5.1 Theory

The statistical distribution of the measured noisy TOF PET data, ypt that is

extracted from the scanner can be mathematically modelled as:

ypt ∼ Poisson(
∑
m∈M

aptmxm + rpt + spt) (3.11)

Further, kernel based PET image model as described in equation 2.40 and

aptm as described in equation 3.9 is substituted in equation 3.11 as:

ypt ∼ Poisson(
∑
f

apmTptmkfmλf + rpt + spt) (3.12)

The scanner stores the data in t TOF bins spaced over the entire coincidence

window of 4.57 ns. There are 351 TOF bins over the total coincidence window

which leads to each timing bin having a width of 13.02 ps.

The acquisition model as described in equation 2.1 is modified according to

equation 3.12 as below:

y = ATKλ+ b, (3.13)

where y = [ypt] represents the measured TOF data, T = [Tptm] represents a

TOF kernel matrix with each element representing the time spread function,

K = [kfm] represents the kernel matrix constructed using MR feature vectors

ν = 1, ..., Nm extracted from the MR anatomical image, where Nm represents

the number of feature vectors, λ = [λf ] represents a vector of kernel weights and

b = [bpt] represents the background term.

Thus, standard expectation maximization algorithm can be used to estimate

94



TOF-KEM

Figure 3.8: Schematic Representation of TOF-KEM algorithm.

the kernel weights, λ for TOF-PET data, ypt as:

λj+1
f =

λjf∑
m∈M kfm

∑
p∈P apmTptm

∑
m∈M

kfm
∑
p∈P

apmTptm
ypt∑

l∈M aplTptl
∑

o∈Nm
komλ

j
o + bpt

.

(3.14)

The final estimate of PET image, x̂ reconstructed using TOF-KEM algorithm

is obtained by substituting equation 3.14 in equation 2.40.

3.5.2 Kernel Matrix Construction

The kernel matrix comprises of basis functions that utilizes the spatial informa-

tion from a MR image which is co-registered and resampled to match PET. The

basis functions are basically constructed using the feature vectors, νm where each

feature vector represents the voxel intensities within a patch extracted from MR

image where the patch is basically a cubic array of voxels centered around voxel

m.
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Gaussian kernels are used to construct the kernel matrix and the elements of

the kernel matrix K are defined as:

kfm = exp
(
− ‖νf − νm‖

2

2σ2
m

)
exp
(
− ‖xf − xm‖

2

2σ2
dm

)
, (3.15)

where kfm represents the (fm)th element of kernel matrix K, kfm is basically

a basis function comparing feature vector νf with the all other feature vectors

νm, νf and νm represents the feature vector for voxel f and m respectively, σm

represents a scaling parameter which is chosen to scale the distance between

the feature vectors and it controls the edge sensitivity, xf and xm represents

the position vector of voxel f and m respectively, σdm represents the scaling

parameter chosen to scale the distance between the position vector of voxel.

3.6 Data Acquisition

The data used in this study is collected using the GE SIGNA TOF PET/MR

scanner located at Invicro, Imperial College London, Hammersmith Hospital,

London, UK. The study also uses the STIR and GE-toolbox to reconstruct the

acquired phantom and clinical datasets as described below.

The study to collect the phantom data was designed by the candidate. The

phantom data was collected by the candidate along with the assistance of GE

engineer and collaborator at Invicro. Whereas, clinical dataset were given for

this study by collaborators at Invicro.

MRAC images, PIFA images, uncompressed PET LM and RDF files were

exported from the scanner for all phantom and clinical acquisitions.
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Figure 3.9: (a) VQC Phantom: Five 68Ge spheres having an activity diameter
of 19 mm and an activity diameter of 17 mm are combined to form the VQC
phantom. These spheres are encased within the NiCl2 tubes and are placed at the
locations as can be seen in the figure. This configuration is then encased within
the solid cube. (b) Bladder Mimicking Bottle Phantom consists of 6 radioactive
spheres and a 500 ml radioactive bottle placed between smallest spheres (Wadhwa
et al. [2018]).

3.6.1 Phantom Dataset

1. VQC Phantom: Five small 68Ge spheres with a physical diameter of 19 mm

but radioactivity diameter of 17 mm are placed in five different locations as

can be seen in figure 3.9 (a). The radioactive spheres are embedded within

MR-visible tubes made of NiCl2. Originally this phantom was used to

observe the misalignment between MR and PET gantries, whereas, in this

study, it is used to validate the reconstructions. These are low radiation

spheres with 0.7 MBq radioactivity in each sphere. The entire configuration

is encased within the foam cube. The phantom was scanned for 10 minutes,

and there were 5× 106 prompts registered.

2. Bottle Phantom: National Electrical Manufacturers Association Image

Quality (NEMA IQ) phantom is modified by removing the phantom wall
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as can be seen in figure 3.9. The remaining phantom, that was used in

this study, consists of 6 fillable spheres with diameters varying from 10

mm to 37 mm which were filled with 5.38 MBq of [18F]-FDG (Boellaard

et al. [2015]). A high activity bottle filled with 77.9 MBq of [18F]-FDG

was further added to the phantom. This bottle touches two of the smallest

spheres. The phantom was scanned for 5 minutes, and there were 5× 108

prompts registered at the end of the scan.

3. Hoffman Phantom (Hoffman et al. [1990]): The Hoffman phantom is in-

jected with 22.9 MBq of 18F-FDG. The scan was conducted for 20 minutes

resulting in 1.5× 108 prompts.

3.6.2 Clinical Dataset

A patient with fibrosis of the lung was injected with 40.62 MBq of an exper-

imental 18F radiotracer, 90 minutes prior to the scan. The scan duration was

13 minutes, resulting in 3.8 × 107 prompts. The patient is missing one of his

lungs.

3.7 Image Reconstruction

3.7.1 Image Reconstruction with STIR

The scanner acquired uncompressed LM data converted into TOF STIR his-

togram using the existing ‘lm to projdata’ utility.

Data correction histograms were calculated, using custom utilities and pa-

rameter classes within STIR, for this scanner. Normalisation corrections were
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calculated using the ‘correct projdata’ utility with parameters set to read data

from the ‘norm3d’ file exported from the scanner. Attenuation correction was

carried out using the exported PIFA images, as illustrated in Figure 3.2. An im-

portant point to note is that the VQC phantom had negligible attenuation and

thus, attenuation correction was not needed. Randoms correction histogram was

calculated using ‘construct randoms from GEsingles’ utility. Scatter correction

was done using the histogram extracted from the vendor’s reconstruction toolbox.

Since, VQC phantom had negligible attenuation, scatter correction was also not

needed. For TOF image reconstruction, the TOF histogram data were calculated

using the LM file. Randoms and scatter correction histograms were translated

into TOF projection data by developing custom utilities and appropriate scaling

of data. This was done by using non-TOF 4D histogram data repeated over all

the TOF bins to form a 5D TOF data. Each bin value was scaled using appropri-

ate scaling. The scaling parameter used to construct TOF randoms histogram

was equal to total number of TOF bins. Whereas, to construct TOF scatter

histogram varying scaling parameters were used to scale each bin proportional

to the number of counts within respective bin. This is because, lower number

of counts leads to lower scattered events (Watson [2007]). This is a very primi-

tive modelling of scatter correction for TOF data and cannot be considered as a

substitue for TOF scatter. The custom utilities were developed as TOF scatter

correction is not implemented yet in STIR (Watson [2007]). Attenuation and

normalisation histograms were uniform in timing bins and were multiplied with

the background term to create an additive histogram for STIR implementations.

Image reconstruction were carried out using TOF-OSEM algorithms with and

without point spread function (PSF) modelling. The PSF modelling used here
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is applied in image space and is already implemented in STIR. The image space

modelling is carried out using the resolution values which are 4.2 mm in transax-

ial and 5.8 mm in axial directions respectively (Vandenberghe et al. [2016]).

Patient dataset was reconstructed using TOF-KEM algorithm as well. The

images used as the input to construct the kernel matrix for TOF-KEM recon-

structions were:

• Dixon ‘in-phase’ MR image as shown in Figure 3.3 (top row),

• TOF-OSEM PET image as shown in Figure 3.10 (a), and

• TOF-OSEM+G (TOF-OSEM image post-filtered with Gaussian filter hav-

ing Full Width Half Maximum (FWHM) of 4 mm) PET image as shown

in Figure 3.10 (b).

The Dixon ‘in-phase’ MR images were resampled and manually aligned to match

PET FOV. The MR images were resampled to matrix of 256×256×89 with voxel

size of 2.3 × 2.3 × 2.8. Further, TOF-OSEM and TOF-OSEM+G images were

reconstructed using STIR with 28 subsets and 2 iterations. The reconstruction

obtained at 2nd iteration was chosen to reduce the noise in the input image.

Bladder phantom was also reconstructed with TOF-KEM algorithm by using

Dixon ‘in-phase’ MR image as shown in Figure 3.2, as input to construct the

kernel matrix.

VQC and Hoffman phantom does not have any appropriate MR images and

thus, this thesis does not contain TOF-KEM reconstructions using VQC and

Hoffman.

The standard number of subsets used for this scanner in the clinical scenario

is 28 subsets. Thus, all reconstructions were carried out with 28 subsets.
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(a)

(b)

Figure 3.10: This figure shows the PET images that are used as inputs to con-
struct the kernel matrix for TOF-KEM reconstruction: (a) TOF-OSEM (b)
TOF-OSEM+G (TOF-OSEM image post-filtered with Gaussian filter having
FWHM of 4 mm). The images were reconstructed with STIR using 28 subsets
and 2 iterations.

3.7.2 Image Reconstruction with GE-Toolbox

GE proprietary reconstruction algorithms, including VUE Point FX (or fully 3D

TOF iterative reconstruction which is further referred to TOF-OSEM-GE) and

VUE point FX SharpIR (or PSF-TOF-OSEM-GE) (Ross and Stearns [2010],

Vandendriessche et al. [2019]), were used to reconstruct VQC, Hoffman and pa-

tient datasets with 28 subsets.
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3.8 Image Analysis

Emission and data correction histograms, exported from the scanner, are calcu-

lated using the implementations made in STIR and then compared using vox-

elwise subtraction to the GE extracted histogram. TOF-OSEM reconstructions

with STIR and the GE-toolbox (or ‘GE’) for the VQC phantom were used to

compare the FWHM (Delso et al. [2011b]). FWHM was calculated using a STIR

utility called ‘find fwhm in image’, for all five spheres for GE-toolbox and STIR

based reconstruction. The FWHM for all spheres in all three dimensions were av-

eraged and the standard error was calculated as the tolerance window as defined

in equation 3.16.

FWHM =
n=5∑
i=1

FWHMi

n
±

√
(FWHMi − (

∑n=5
i=1 FWHMi/n))2

n
. (3.16)

In the equation 3.16, FWHMi represents the calculated FWHM for sphere i,

where i varies from 1 to n = 5.

Images obtained with TOF-OSEM reconstructions with STIR and vendor’s

reconstruction toolbox for the patient dataset were compared using Standard-

ised Uptake Value Ratio (SUVR) and coefficient of variation (CoV). SUVR is

calculated as the ratio of the SUV of target and reference regions as defined in

equation 3.17

SUV R =
SUVtarget
SUVlung

. (3.17)

In this study, regions of interest (ROI), drawn within the liver and spleen,

were used as the target, and another ROI of the same volume, within the lung,

was used as the reference as illustrated in Figure 3.11.
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Figure 3.11: The ROIs placed in target regions: liver and spleen, and reference
region: lung.

CoV is calculated as the standard deviation over the mean, as a percentage,

as defined in equation 3.18

CoV =
StandardDeviation

Mean
∗ 100. (3.18)

STIR images reconstructed with and without TOF were compared using CoV

for bottle and Hoffman phantom. This was done to study the performance of

TOF reconstruction over the iterations.

STIR images were also compared with the GE-toolbox images using the Struc-

tural Similarity Index Measure (SSIM) as described in (Wang et al. [2004]). The

global SSIM values are reported as the similarity measure between STIR and GE

reconstructed images and is calculated as:

SSIM(x, y) = [l(x, y)][c(x, y)][s(x, y)], (3.19)

where l(x, y) is the luminance term, c(x, y) is the contrast term and s(x, y) is

the structural term. In the above equation, x and y represents a pair of images

to be compared.
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In equation 3.19 (Wang et al. [2004]),

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1

, (3.20)

where µx = 1
N

∑N
i=1 xi and µy = 1

N

∑N
i=1 yi represents the local mean for images x

and y respectively with voxels i = 1, 2, 3, ...., N . C1 = KL represents a constant

that prevents the denominator in equation 3.20 from going to zero, whereK << 1

and L = 255 (Wang et al. [2004]).

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2

(3.21)

where σx =
√

1
N−1

∑N
i=1(xi − µx)2 and σy

√
1

N−1
∑N

i=1(yi − µy)2 represents the

standard deviation for images x and y respectively with voxels i = 1, 2, 3, ...., N ,

C2 = K ′L represents a constant that prevents the denominator in equation 3.21

from going to zero, where K ′ << 1 and L = 255 (Wang et al. [2004]).

s(x, y) =
σxy + C3

σxσy + C3

(3.22)

where σxy = 1
N−1

∑N
i=1(xi − µx)(yi − µy) represents the cross-covariance of the

images x and y, σx and σy represents the standard deviation for images x and y

respectively and C3 = C2

2
(Wang et al. [2004]).

The similarity measure evaluates the image quality of the calculated image

with respect to the reference in order to check the level of distortion in the calcu-

lated image. This metrics is highly applicable for the comparisons demonstrated

in this study as the reconstructed images using novel iterative algorithms are

compared to their clinical counterparts. Particularly, TOF-KEM reconstruction
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algorithm utilises the anatomical information from MR to guide PET recon-

struction which could lead to introduction of bias in PET reconstructed images.

The SSIM comparison metrics can indicate the structural distortion due to MR

anatomical information over PET reconstructions. Further, this metrics is also

helpful to indicate if the acquisition model implemented in STIR yields images

close to the GE-toolbox. The closer the value of SSIM is to 1 for a pair of images,

the more similar the images are.

The global SSIM values are calculated for TOF-OSEM-STIR versus TOF-

OSEM-GE, TOF-KEM-STIR versus TOF-OSEM-GE, PSF-TOF-OSEM-STIR

versus PSF-TOF-OSEM-GE and PSF-TOF-KEM-STIR versus PSF-TOF-OSEM-

GE, where STIR images are considered as distorted images, and GE images

are considered as reference images. The comparisons are carried out for recon-

structed images over the first six iterations.

3.9 Summary

This chapter describes in detail the major software developments required to

read and reconstruct TOF-PET data from the GE SIGNA PET/MR scanner.

This chapter also describes the implementations needed to allow data correction

for this scanner with STIR. Finally, this chapter theoretically describes the novel

TOF-KEM algorithm, which has been implemented during this work in STIR to

demonstrate quantitative improvements with PET data. It describes the acqui-

sition data, image reconstruction settings and the analysis conducted to compare

different iterative reconstruction algorithms. The next chapter presents the re-

sults that were produced and compares the different reconstruction algorithms
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and software, as defined above.
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Results

This chapter presents the results that illustrate the developments described in

previous chapters. The results presented in this chapter demonstrate the cal-

culation of emission and data correction histograms and PET reconstruction

conducted with already available and newly implemented novel reconstruction

algorithms. Here, PET histograms and reconstructed images using STIR and

GE-toolbox are compared. The histogram-based comparisons are made for both

non-TOF and TOF PET data using voxel-wise subtraction. The reconstructions

are compared for OSEM, TOF-OSEM and TOF-KEM algorithms using SUVR,

FWHM, CoV and SSIM metrics.

4.1 Histogram Comparisons

4.1.1 Non-TOF

Figure 4.1 compares the non-TOF emission, normalisation and randoms cor-

rection histograms calculated from GE-toolbox and STIR for the VQC phantom
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dataset. This figure also shows the voxel-wise subtracted histograms, which com-

pares the calculated histograms extracted from STIR and GE-toolbox. The top,

middle and the bottom rows of the figure displays the emission, normalisation

and randoms histogram for segment 0 and axial position 45, respectively along

with the estimated difference histogram. The comparisons displayed here are

for display purposes only and the choice of segment and axial position does not

affect the results. If any other segment or axial position is chosen, the compar-

isons would still demonstrate the same results, i.e. the emission histogram are

identical, whereas, normalisation correction histogram have negligible differences

and small differences are observed in randoms correction histogram.

The comparisons were made after pre-processing the STIR histograms back

into GE space. This was done by inverting the view and tangential positions

of histograms calculated with STIR. Histograms stored in GE space (i.e. read

by GE-toolbox) have view numbers and tangential positions running in opposite

directions as compared to STIR space (i.e. read by STIR). This is a native con-

ventional choice of each software. In order to compare the histograms calculated

by each software, the conventional asymmetry must be resolved. Thus, the pre-

processing of STIR histogram here and later is required to translate it into GE

space and compare the histograms in same space.

4.1.2 TOF

TOF emission histograms extracted using the STIR and GE-toolbox for the

VQC phantom were compared for every TOF bin, segment number, axial posi-

tion, view number and tangential position. Figure 4.2 demonstrates the TOF

emission histogram for only TOF bins 0 and 5. The histogram are displayed for
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Figure 4.1: Non-TOF emission, normalisation and randoms histograms for VQC
phantom datasets exported from GE-toolbox and STIR along with the difference.
(Figure taken from the paper: Wadhwa et. al., PET image reconstruction using
physical and mathematical modelling for time of flight PET-MR scanners in the
STIR library, Elsevier, 2020. Figure used under the terms of Creative Commons
Attribution 4.0 International licence.)

segment number 0 and axial position 18. The TOF bin numbers, segment num-

ber and axial position are chosen in an arbitrary manner and are only for display

purposes. The choice of segment number and axial position here and later does

not affect the result and the TOF emission histograms are completely identical

regardless of the segment number, TOF bin number, axial position, tangential

position or view number.

TOF emission histograms extracted using the STIR and GE-toolbox for the

Hoffmann phantom were compared for every TOF bin, segment number, axial

position, view number and tangential position. Figure 4.3 compares the TOF

emission histograms for only TOF bins 0 and 2. The histograms are displayed
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for segment number 0 and axial position 46. The TOF bin numbers, segment

number and axial position are chosen in an arbitrary manner and are only for

display purposes.

All comparisons were made after pre-processing the STIR histograms to con-

vert them back into GE space.

Figure 4.2: TOF histograms for TOF bin 0 (top row) and 5 (bottom row) ex-
ported from GE-toolbox and STIR for the VQC phantom dataset. All histograms
are for segment 0 and axial position 18. (Figure taken from the paper: Wadhwa
et. al., PET image reconstruction using physical and mathematical modelling for
time of flight PET-MR scanners in the STIR library, Elsevier, 2020. Figure used
under the terms of Creative Commons Attribution 4.0 International licence.)
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Figure 4.3: TOF histograms for TOF bin 2 (top row) and 0 (bottom row) ex-
ported from GE-toolbox and STIR for the Hoffman phantom dataset. All his-
tograms are for segment 0 and axial position 46.

4.2 Comparison of Reconstructions

For comparing image reconstructions visually, 2 or 3 iterations have been used

as per standard clinical protocol. Particularly, for TOF-OSEM and TOF-KEM

reconstructions, 2nd iteration is used as they are visually the best images in

terms of image noise. Further, 6 iterations have been used to compare the recon-

structions quantitatively using the CoV and SSIM. The behaviour of different
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algorithms is observed over the iterations using CoV and SSIM. 6th iteration has

been used to demonstrate the SUVR comparisons as the SUVR value was found

to be nearly constant over the iterations and thus, later iteration was chosen due

to convergence of algorithm at later iterations.

4.2.1 Non-TOF

All the examples mentioned in this section compare the images reconstructed

with STIR and GE-toolbox visually. All the images in this section were recon-

structed using 28 subsets and 3 iterations. The images used for demonstration

purpose in this section are reconstructions with 3 iterations as in clinical sce-

nario reconstructions are stopped after 2 or 3 iterations. Further, 3 iterations

demonstrate the less bias for OSEM reconstruction as compared to 2 iterations.

Figure 4.4 shows the reconstructed images using non-TOF histograms calcu-

lated using the STIR implementation. The figure has four rows and two columns

where each row contains four different datasets: VQC, bottle, Hoffman and clin-

ical dataset respectively; and two columns represent STIR and GE-toolbox com-

parisons for the same dataset. The images were reconstructed using the OSEM

algorithm (STIR) and VUE-point HD algorithm (GE-toolbox). The images were

reconstructed as a 305 × 305 × 89 array with a voxel size of 2.02 × 2.02 × 2.78

mm3.

Figure 4.5 shows the transverse and coronal slices of the reconstructed images

for bottle phantom. The images shown were reconstructed with OSEM-STIR

(OSEM algorithm with STIR) and OSEM-GE (VUE-point HD algorithm with

GE-toolbox) in 256 × 256 × 89 array with the voxel size of 2.34 × 2.34 × 2.78

mm3.
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Figure 4.4: Image Comparison: STIR and GE-Toolbox. Offset between recon-
structed images using GE and STIR are pointed out using purple arrows in the
image (Wadhwa et al. [2018]).

Figure 4.6 shows the transverse and coronal slices of the reconstructed im-

ages for the Hoffman phantom. The view offset correction is applied to the STIR

reconstructions. The images are also aligned manually to GE-toolbox for opti-

mal comparisons. The alignment between STIR and GE-toolbox is necessary

as the PET images extracted from STIR are reconstructed in PET space of the

scanner whereas GE-toolbox conventionally registers the PET image with MR
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Figure 4.5: Bottle Phantom: Transverse and coronal slice comparisons for (a)
OSEM-STIR (OSEM algorithm with STIR) (b) OSEM-GE (VUE-point HD al-
gorithm with GE-toolbox) . Comparisons are made for images reconstructed
with 28 subsets and 3 iterations.

and translate the PET images into MR space. This implies that PET images

reconstructed using STIR and GE-toolbox are not in the same space and cannot

be compared unless the STIR image is aligned with MR space.

The reconstructions are conducted using OSEM-STIR (OSEM algorithm with

STIR) and OSEM-GE (VUE-point HD algorithm with GE-toolbox). The images

were reconstructed as a 256×256×89 array with the voxel size of 2.34×2.34×2.78

mm3.

Figure 4.7 shows the transverse and coronal slices of the reconstructed im-

ages for the Hoffman phantom. The reconstructions shown in this figure were
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Figure 4.6: Hoffman Phantom: Transverse and coronal slice comparisons for (a)
OSEM-STIR (OSEM algorithm with STIR) and (b) OSEM-GE (VUE-point HD
algorithm with GE-toolbox). Comparisons are made for images reconstructed
with 28 subsets and 3 iterations. Structural differences between reconstructed
images using GE and STIR are pointed out using red arrows in the image (Wad-
hwa et al. [2020]).

conducted using PSF-OSEM-STIR (PSF-OSEM algorithm with STIR) and PSF-

OSEM-GE (VUE-point HD SharpIR algorithm with GE-toolbox). The images

were reconstructed in 256×256×89 array with the voxel size of 2.34×2.34×2.78

mm3.

Figure 4.8 shows the transverse and coronal slices of the reconstructed images

for clinical dataset. The images shown were reconstructed with OSEM-STIR

(OSEM algorithm with STIR) and OSEM-GE (VUE-point HD algorithm with

GE-toolbox) in 256 × 256 × 89 array with the voxel size of 2.34 × 2.34 × 2.78

mm3.
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Figure 4.7: Hoffman Phantom: Transverse and coronal slice comparisons for (a)
PSF-OSEM-STIR (PSF-OSEM algorithm with STIR) and (b) PSF-OSEM-GE
(VUE-point HD SharpIR algorithm with GE-toolbox). Comparisons are made
for images reconstructed with 28 subsets and 3 iterations. Structural differences
between reconstructed images using GE and STIR are pointed out using red
arrows in the image (Wadhwa et al. [2020]).

Figure 4.9 shows the transverse and coronal slices of the reconstructed im-

ages for the clinical dataset. The images were reconstructed with PSF-OSEM-

STIR (PSF-OSEM algorithm with STIR) and PSF-OSEM-GE (VUE-point HD

SharpIR algorithm with GE-toolbox). The images were reconstructed in 256 ×

256× 89 matrix with the voxel size of 2.34× 2.34× 2.78 mm3.
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Figure 4.8: Patient Dataset: Transverse and coronal slice comparisons for (a)
OSEM-STIR (OSEM algorithm with STIR) and (b) OSEM-GE (VUE-point HD
algorithm with GE-toolbox). Comparisons are made for images reconstructed
with 28 subsets and 3 iterations. Structural differences between reconstructed
images using GE and STIR are pointed out using red arrows in the image (Wad-
hwa et al. [2020]).

4.2.2 TOF

All the images in this section were reconstructed using 28 subsets and 2 iterations.

The images were reconstructed in 256 × 256 × 89 matrix with the voxel size

of 2.34 × 2.34 × 2.78 mm3. The image reconstructions over 2 iterations are

used in this section as this is consistent with the clinical scenario. Further,

the reconstructions demonstrated here have been chosen to reduce the noise

characteristics introduced due to iterative reconstructions.
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Figure 4.9: Patient Dataset: Transverse and coronal slice comparisons for (a)
PSF-OSEM-STIR (PSF-OSEM algorithm with STIR) and (b) PSF-OSEM-GE
(VUE-point HD SharpIR algorithm with GE-toolbox). Comparisons are made
for images reconstructed with 28 subsets and 3 iterations. Structural differences
between reconstructed images using GE and STIR are pointed out using red
arrows in the image (Wadhwa et al. [2020]).

Figure 4.10 shows the transverse and coronal slices of the reconstructed im-

ages for the bottle phantom. This figure has three sub-parts: (a) TOF-OSEM-

GE (VUE-point FX algorithm with GE-toolbox) post-filtered with Gaussian fil-

ter having the FWHM of 4 mm; (b) TOF-OSEM-STIR (TOF-OSEM algorithm

with STIR) post-filtered with Gaussian filter having the FWHM of 4 mm; (c)

TOF-KEM-STIR (TOF-KEM algorithm with STIR).
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Figure 4.10: Bottle Phantom: Transverse and coronal slice comparisons for (a)
TOF-OSEM-GE (VUE-point FX algorithm with GE-toolbox) (b) TOF-OSEM-
STIR (TOF-OSEM algorithm with STIR) and (c) TOF-KEM-STIR (TOF-KEM
algorithm with STIR). Comparisons are made for images reconstructed with 28
subsets and 2 iterations. Gaussian post-filtering with FWHM of 4mm was applied
to TOF-OSEM images.
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(a)

(b)

Figure 4.11: Hoffman Phantom: Transverse and coronal slice comparisons for
(a) TOF-OSEM-STIR (TOF-OSEM algorithm with STIR) and (b)TOF-OSEM-
GE (VUE-point FX algorithm with GE-toolbox). Comparisons are made for
images reconstructed with 28 subsets and 2 iterations. Gaussian post-filtering
with FWHM of 4mm was applied to TOF-OSEM images.

Figure 4.11 shows the transverse and coronal slices of the reconstructed im-

ages for the Hoffman phantom. The images shown were reconstructed with TOF-

OSEM-STIR (TOF-OSEM algorithm with STIR) and TOF-OSEM-GE (VUE-

point FX algorithm with GE-toolbox). The reconstructions were post-filtered

with Gaussian filter having the FWHM of 4 mm.

Figure 4.12 shows the transverse and coronal slices of the reconstructed im-
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Figure 4.12: Patient Dataset: Transverse and coronal slice comparisons for (a)
TOF-OSEM-GE (VUE-point FX algorithm with GE-toolbox), (b) TOF-OSEM-
STIR (TOF-OSEM algorithm with STIR) and (c) TOF-KEM-STIR (TOF-KEM
algorithm with STIR). Comparisons are made for images reconstructed with 28
subsets and 2 iterations. Gaussian post-filtering with FWHM of 4mm was applied
to TOF-OSEM images. (Figure taken from the paper: Wadhwa et. al., PET
image reconstruction using physical and mathematical modelling for time of flight
PET-MR scanners in the STIR library, Elsevier, 2020. Figure used under the
terms of Creative Commons Attribution 4.0 International licence.)

ages for the clinical dataset. This figure has three sub-parts: (a) TOF-OSEM-

GE reconstructions (VUE-point FX algorithm with GE-toolbox) post-filtered
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with Gaussian filter having the FWHM of 4 mm; (b) TOF-OSEM-STIR recon-

structions (TOF-OSEM algorithm with STIR) post-filtered with Gaussian filter

having the FWHM of 4 mm; (c) TOF-KEM-STIR reconstructions (TOF-KEM

algorithm with STIR).

Figure 4.13 shows the transverse and coronal slices of the reconstructed im-

ages for the clinical dataset. This figure has three sub-parts: (a) PSF-TOF-

OSEM-GE reconstructions (VUE-point FX SharpIR algorithm with GE-toolbox)

post-filtered with Gaussian filter having the FWHM of 4 mm. (b) PSF-TOF-

OSEM-STIR reconstructions (PSF-TOF-OSEM algorithm with STIR) post-filtered

with Gaussian filter having the FWHM of 4 mm. (c) PSF-TOF-KEM-STIR re-

constructions (PSF-TOF-KEM algorithm with STIR).

4.3 FWHM Comparisons

4.3.1 Non-TOF

Table 4.1: FWHM Comparisons: VQC Phantom

Algorithm Iteration GE STIR

OSEM 1 14.1±0.4 13.5±0.4
2 14.4±0.3 13.6±0.4
3 14.3±0.3 13.4±0.4

PSF-OSEM 1 13.1±0.5 13.6±0.4
2 13.1±0.4 13.1±0.4
3 14.3±0.3 12.3±0.5

Table 4.1 shows the FWHM comparison of reconstructions conducted using

GE-toolbox and STIR. The reconstructed images with 28 subsets for the first 3
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Figure 4.13: Patient Dataset: Transverse and coronal slice comparisons for
(a) PSF-TOF-OSEM-GE (VUE-point FX SharpIR algorithm with GE-toolbox),
(b) PSF-TOF-OSEM-STIR (PSF-TOF-OSEM algorithm with STIR) and (c)
PSF-TOF-KEM-STIR (PSF-TOF-KEM algorithm with STIR). Comparisons are
made for images reconstructed with 28 subsets and 2 iterations. Gaussian post-
filtering with FWHM of 4mm was applied to PSF-TOF-OSEM images. (Figure
taken from the paper: Wadhwa et. al., PET image reconstruction using physical
and mathematical modelling for time of flight PET-MR scanners in the STIR
library, Elsevier, 2020. Figure used under the terms of Creative Commons At-
tribution 4.0 International licence.)

iterations were used to calculate the FWHM values. The comparisons are shown

as an average of the FWHM of all the five 68Ge spheres of the VQC phantom
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along all three spatial dimensions. The table presents the results with OSEM-

STIR (OSEM algorithm with STIR) or OSEM-GE (VUE-point HD algorithm

with GE-toolbox) and PSF-OSEM-STIR (PSF-OSEM algorithm with STIR) or

PSF-OSEM-GE (VUE-point HD SharpIR with GE-toolbox) algorithms. These

results give a comparison of the resolution achieved by the reconstructed images

for a three-dimensional sphere.

4.3.2 TOF

Table 4.2: FWHM Comparisons: VQC Phantom

Algorithm Iteration GE STIR

TOF-OSEM 1 14.7±0.2 13.9±0.4
2 14.5±0.2 13.9±0.4
3 14.4±0.2 13.6±0.3

PSF-TOF-OSEM 1 13.0±0.5 13.6±0.4
2 13.1±0.4 13.7±0.4
3 12.7±0.5 13.9±0.4

Table 4.2 shows the FWHM comparisons for reconstructions conducted using

GE-toolbox and STIR. The reconstructed images with 28 subsets and up to 3

iterations were used to calculate the FWHM values. The table presents the

results with TOF-OSEM-STIR (TOF-OSEM algorithm with STIR) or TOF-

OSEM-GE (VUE-point FX with GE-toolbox) and PSF-TOF-OSEM-STIR (PSF-

TOF-OSEM with STIR) or PSF-TOF-OSEM-GE (VUE-point FX SharpIR with

GE) algorithms.
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4.4 SUVR Comparisons

4.4.1 Non-TOF

Table 4.3: SUVR(liver/lung) Comparisons: Patient Dataset

Algorithm GE STIR

OSEM 21.8 21.8
PSF-OSEM 22.6 20.5

Table 4.4: SUVR(spleen/lung) Comparisons: Patient Dataset

Algorithm GE STIR

OSEM 28.0 34.0
PSF-OSEM 28.9 28.9

Tables 4.3 and 4.4 show the SUVR comparisons for liver and spleen with

respect to lungs for the clinical dataset. The comparisons are made for a ROI

selected in all three regions of the reconstructed images and presented here for

the 6th iteration. The comparisons are made between OSEM-STIR (OSEM al-

gorithm with STIR) and OSEM-GE (VUE-point HD with GE-toolbox) as well

as PSF-OSEM-STIR (PSF-OSEM with STIR) and PSF-OSEM-GE (VUE-point

HD SharpIR with GE-toolbox) algorithms.

The SUVR comparison is a quantitative comparison and the PET reconstruc-

tion have less bias at greater iterations. Thus, 6th iterations is used here as the

comparisons are based on comparing the images quantitatively.

4.4.2 TOF

Tables 4.5 and 4.6 show the SUVR comparisons for liver and spleen with re-

spect to lungs for the clinical dataset. The comparisons are made between
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TOF-OSEM-STIR (TOF-OSEM with STIR) and TOF-OSEM-GE (VUE-point

FX with GE-toolbox) as well as TOF-PSF-OSEM-STIR (TOF-PSF-OSEM with

STIR) and TOF-PSF-OSEM-GE (VUE-point FX SharpIR with GE-toolbox) al-

gorithms. The table also shows the SUVR values for images reconstructed with

TOF-KEM-STIR (TOF-KEM with STIR) and PSF-TOF-KEM-STIR (PSF-TOF-

KEM with STIR) algorithms. All comparisons are made for reconstructions

obtained with 28 subsets and 6 iteration.

Table 4.5: SUVR(liver/lung) Comparisons: Patient Dataset

Algorithm GE STIR

TOF-OSEM 25.5 18.5
PSF-TOF-OSEM 25.7 17.1
TOF-KEM-STIR - 18.8

PSF-TOF-KEM-STIR - 17.3

Table 4.6: SUVR(spleen/lung) Comparisons: Patient Dataset

Algorithm GE STIR

TOF-OSEM 34.0 29.3
PSF-TOF-OSEM 35.0 25.5
TOF-KEM-STIR - 29.4

PSF-TOF-KEM-STIR - 25.4

4.5 Coefficient of Variation (CoV)

4.5.1 Non-TOF vs. TOF:STIR

Figure 4.14 shows CoV comparisons for a ROI placed within the white matter

(ROI is displayed in the top left corner of the figure). Graph compares the CoV

for OSEM and TOF-OSEM algorithms with STIR for Hoffman phantom.
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Figure 4.14: Hoffman Phantom: CoV comparisons for OSEM and TOF-OSEM
with STIR for ROI placed within the White Matter as shown in the top left
corner of the image.

Figure 4.15 shows CoV comparisons for a ROI placed within the gray matter

(ROI is displayed in the top left corner of the figure). Graph compares the CoV

for OSEM and TOF-OSEM algorithms with STIR for Hoffman phantom.

Figure 4.16 shows CoV comparisons for a ROI placed within the bottle (ROI

is displayed in the top left corner of the figure). Graph compares the CoV for

OSEM, TOF-OSEM and TOF-KEM algorithms with STIR for bottle phantom.

Figure 4.17 shows CoV comparisons for a ROI placed within the sphere (ROI

is displayed in the top left corner of the figure). Graph compares the CoV for

127



Chapter 4

Figure 4.15: Hoffman Phantom: CoV comparisons for OSEM and TOF-OSEM
with STIR for ROI placed within the Gray Matter as shown in the top left corner
of the image.

OSEM, TOF-OSEM and TOF-KEM algorithms with STIR for bottle phantom.

4.5.2 STIR vs. GE

Figure 4.18 shows CoV comparisons for a ROI placed within the spleen and liver

of the patient dataset. Graphs (a) and (b) compare the CoV in ROI placed within

spleen and liver respectively, for TOF-OSEM-STIR (TOF-OSEM with STIR),

TOF-KEM-STIR (TOF-KEM with GE-toolbox) and TOF-OSEM-GE (VUE-

point FX with GE-toolbox) algorithms. Graphs (c) and (d) compare the CoV
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Figure 4.16: Bottle Phantom: CoV comparisons for OSEM, TOF-OSEM and
TOF-KEM with STIR for ROI placed within the bottle as shown in the top left
corner of the image.

in ROI placed within spleen and liver respectively, for PSF-TOF-OSEM-STIR

(PSF-TOF-OSEM with STIR), PSF-TOF-KEM-STIR (PSF-TOF-KEM with

STIR) and PSF-TOF-OSEM-GE (VUE-point FX SharpIR with GE-toolbox)

algorithms.
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Figure 4.17: Bottle Phantom: CoV comparisons for OSEM, TOF-OSEM and
TOF-KEM with STIR for ROI placed within the sphere as shown in the top left
corner of the image.

4.6 Structural Similarity Index Measure (SSIM)

Table 4.7 compares the SSIM of the reconstructions that are obtained with

the GE-toolbox (reference images) with the reconstructions that are obtained

with STIR (distorted images). The reconstruction algorithms that are com-

pared are: (a) TOF-OSEM-STIR (TOF-OSEM with STIR) and TOF-OSEM-GE

(VUE-point FX with GE-toolbox) (b) TOF-KEM-STIR (TOF-KEM with STIR)

and TOF-OSEM-GE (VUE-point FX with GE-toolbox) (c) PSF-TOF-OSEM-
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Figure 4.18: Patient Dataset: TOF-OSEM-STIR (TOF-OSEM with STIR),
TOF-OSEM-GE (VUE-point FX with GE-toolbox) and TOF-KEM-STIR (TOF-
KEM with STIR) comparisons for (a) CoV: Spleen; (b) CoV: Liver; PSF-TOF-
OSEM-STIR (PSF-TOF-OSEM with STIR), PSF-TOF-OSEM-GE (VUE-point
FX SharpIR with GE-toolbox) and PSF-TOF-KEM-STIR (PSF-TOF-KEM with
STIR) comparisons for (c) CoV: Spleen; (d) CoV: Liver.

STIR (PSF-TOF-OSEM with STIR) and PSF-TOF-OSEM-GE (VUE-point FX

SharpIR with GE-toolbox) (d) PSF-TOF-KEM-STIR (PSF-TOF-KEM with

STIR) and PSF-TOF-OSEM-GE (VUE-point FX SharpIR with GE-toolbox).

All these reconstructions are compared over first six iterations to observe the ef-

fect of iterations over distortions and thus, understand the effect of the increase
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Table 4.7: SSIM Index
Compared Images Iteration Global SSIM value

TOF-OSEM-STIR 1 0.61
vs 2 0.85

TOF-OSEM-GE 3 0.85
4 0.85
5 0.84
6 0.84

TOF-KEM-STIR 1 0.57
vs 2 0.85

TOF-OSEM-GE 3 0.84
4 0.84
5 0.84
6 0.84

PSF-TOF-OSEM-STIR 1 0.84
vs 2 0.85

PSF-TOF-OSEM-GE 3 0.85
4 0.85
5 0.85
6 0.84

PSF-TOF-KEM-STIR 1 0.83
vs 2 0.84

PSF-TOF-OSEM-GE 3 0.84
4 0.84
5 0.84
6 0.84

of the statistical noise on the structure with the increase in iterations.

4.7 TOF-KEM: MR vs PET

This section compares the TOF-KEM reconstructions for patient dataset where

kernel matrix is constructed with MR or PET images used as inputs.

132



TOF-KEM: MR vs PET

Figure 4.19: Patient Dataset: Transverse and coronal slice comparisons for (a)
TOF-KEM-MR: TOF-KEM algorithm using MR as the input to construct kernel
matrix. (b) TOF-KEM-PET (TOF-OSEM): TOF-KEM algorithm using TOF-
OSEM (as shown in Figure 3.10 (a)) as the input to construct kernel matrix. (c)
TOF-KEM-PET (TOF-OSEM+G): TOF-KEM algorithm using TOF-OSEM+G
(as shown in Figure 3.10 (b)) as the input to construct kernel matrix. Com-
parisons are made for images reconstructed using STIR with 28 subsets and 2
iterations.
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4.7.1 Comparison of Reconstructions

All the images in this section were reconstructed using STIR and with 28 subsets

and 2 iterations. The images were reconstructed in 256× 256× 89 matrix with

the voxel size of 2.34× 2.34× 2.78 mm3.

Figure 4.19 shows the transverse and coronal slices of the reconstructed im-

ages for the clinical datasetwith STIR. This figure has three sub-parts: (a)

TOF-KEM-MR: TOF-KEM algorithm using MR as the input to construct kernel

matrix. (b) TOF-KEM-PET (TOF-OSEM): TOF-KEM algorithm using TOF-

OSEM (as shown in Figure 3.10 (a)) as the input to construct kernel matrix. (c)

TOF-KEM-PET (TOF-OSEM+G): TOF-KEM algorithm using TOF-OSEM+G

(as shown in Figure 3.10 (b)) as the input to construct kernel matrix.

TOF-OSEM and TOF-OSEM+G were used as PET inputs to construct ker-

nel matrix and to compare the effect of noisy and noise filtered PET images on

the reconstructed TOF-KEM images.

4.7.2 SUVR

Tables 4.8 and 4.9 show the SUVR comparisons for liver and spleen with respect

to lungs for the clinical dataset reconstructed with STIR. The comparisons are

made between:

1. TOF-KEM-MR: TOF-KEM algorithm using MR as the input to construct

kernel matrix,

2. TOF-KEM-PET (TOF-OSEM): TOF-KEM algorithm using TOF-OSEM

(as shown in Figure 3.10 (a)) as the input to construct kernel matrix,
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3. TOF-KEM-PET (TOF-OSEM+G): TOF-KEM algorithm using TOF-OSEM+G

(as shown in Figure 3.10 (b)) as the input to construct kernel matrix,

4. TOF-OSEM and

5. TOF-OSEM+G: TOF-OSEM post-filtered with Gaussian filter having the

FWHM of 4mm.

All comparisons are made for reconstructions obtained with 28 subsets and 6

iteration.

Table 4.8: SUVR(liver/lung) Comparisons: Patient Dataset

Algorithm:STIR SUVR

TOF-KEM-MR 21.3
TOF-KEM-PET (TOF-OSEM) 21.4

TOF-KEM-PET (TOF-OSEM+G) 21.3
TOF-OSEM 20.9

TOF-OSEM+G 20.9

Table 4.9: SUVR(spleen/lung) Comparisons: Patient Dataset

Algorithm:STIR SUVR

TOF-KEM-MR 38.7
TOF-KEM-PET (TOF-OSEM) 39

TOF-KEM-PET (TOF-OSEM+G) 38.8
TOF-OSEM 38.2

TOF-OSEM+G 37.6

4.7.3 CoV

Figure 4.20 shows CoV comparisons for a ROI placed within the spleen and

liver of the patient dataset. Graphs (a) and (b) compares following iterative

algorithms for spleen and liver respectively:
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1. TOF-KEM-MR: TOF-KEM algorithm using MR as the input to construct

kernel matrix,

2. TOF-KEM-PET (TOF-OSEM): TOF-KEM algorithm using TOF-OSEM

(as shown in Figure 3.10 (a)) as the input to construct kernel matrix,

3. TOF-KEM-PET (TOF-OSEM+G): TOF-KEM algorithm using TOF-OSEM+G

(as shown in Figure 3.10 (b)) as the input to construct kernel matrix,

4. TOF-OSEM and

5. TOF-OSEM+G: TOF-OSEM post-filtered with Gaussian filter having the

FWHM of 4mm.

4.8 TOF-KEM PET/MR

This section highlights the reconstructed images using novel iterative algorithm,

TOF-KEM with GE SIGNA PET/MR scanner using MR Dixon ‘in-phase’ im-

ages as input to construct kernel matrix. The superimposed/fused image using

TOF-KEM PET reconstruction and MR have been displayed in this section.

4.8.1 Bottle Phantom

Figure 4.21 shows (a) Transverse slice and (b) Coronal slice of MR Dixon ‘in-

phase’ image (left column), Fused PET/MR image (middle column) and TOF-

KEM PET reconstructed image (right column) for bottle phantom. TOF-KEM

images were reconstructed using 28 subsets and 2 iterations and using STIR.
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4.8.2 Patient Dataset

Figure 4.22 shows (a) Transverse slice and (b) Coronal slice of MR Dixon ‘in-

phase’ image (left column), Fused PET/MR image (middle column) and TOF-

KEM PET reconstructed image (right column) for patient dataset, respectively.

TOF-KEM images were reconstructed using 28 subsets and 2 iterations and using

STIR.

4.9 Summary

This chapter presents the results and comparisons of the image reconstruction

conducted with STIR and GE-toolbox for clinical and advanced reconstruction

algorithms. The next chapter discusses the results presented in this chapter.
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Figure 4.20: Patient Dataset: TOF-KEM-MR: TOF-KEM algorithm using MR
as the input to construct kernel matrix; TOF-KEM-PET (TOF-OSEM): TOF-
KEM algorithm using TOF-OSEM (as shown in Figure 3.10 (a)) as the input
to construct kernel matrix; TOF-KEM-PET (TOF-OSEM+G): TOF-KEM al-
gorithm using TOF-OSEM+G (as shown in Figure 3.10 (b)) as the input to
construct kernel matrix; TOF-OSEM; and TOF-OSEM+G: TOF-OSEM post-
filtered with Gaussian filter having the FWHM of 4mm with STIR comparisons
for (a) CoV: Spleen; (b) CoV: Liver.
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Figure 4.21: Bottle Phantom: (a) Transverse Slice and Coronal Slice of MR
(left column), Fused PET/MR (middle column) and PET reconstruction (right
column). The PET image displayed here is reconstructed using TOF-KEM-STIR
(TOF-KEM algorithm with STIR) with 28 subsets and 2 iterations.
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Figure 4.22: Patient Dataset: (a) Transverse Slice and Coronal Slice of MR
(left column), Fused PET/MR (middle column) and PET reconstruction (right
column). The PET image displayed here is reconstructed using TOF-KEM-STIR
(TOF-KEM algorithm with STIR) with 28 subsets and 2 iterations.
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Discussion

This chapter focuses on discussing the results presented in the previous chapter.

It indicates the achievements obtained during this thesis. It also contains the

issues that are still unresolved despite the developments.

5.1 Histogram Comparisons

5.1.1 Non-TOF

The non-TOF histograms shown in Figure 4.1 illustrate the developments made

in STIR for calculating emission, normalisation correction and randoms correc-

tion histograms. The top row shows the accurate binning of the LM data ex-

tracted from GE SIGNA PET/MR into the emission histogram in STIR space,

as the histograms are identical. This demonstrates the accurate assignment of

the detector pairs to the individual bins with the correctly calculated segment,

axial, tangential and view positions in STIR.

The middle row of Figure 4.1 shows that the normalisation correction his-
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tograms extracted from STIR and GE-toolbox are approximately equal as the

range of differences is very small by a factor of ±1.6 × 10−7. This indicates

that the normalisation factors calculated for each bin are accurate and are in

correspondence with GE-toolbox calculations. Since the GE SIGNA PET/MR

histogram has span 2, the LORs combined in a single bin due to compression is

accurately estimated with the implementations described in Chapter 3, section

3.2.2. The difference between histograms extracted from STIR and GE-toolbox

is due to the precision error (or errors arising due to rounding off huge numbers

when stored in computer memory as different storage sizes which depend on the

data type that is used to handle the numbers within the code).

The last row of the Figure 4.1 displays a difference of 0.6% to 1.1% in randoms

histogram calculated with STIR and GE-toolbox. STIR calculates the randoms

correction histogram using RFS method as described in Chapter 3, section 3.2.4.

The differences observed in randoms correction histogram are due to the differ-

ences within randoms correction modelling between GE and STIR. GE models

decay and dead-time correction within their randoms correction as can be seen in

equation 2.31, whereas, this is ignored in STIR (Stearns et al. [2003], Stearns and

Lonn [2011]). The randoms modelling implementation in STIR is not identical

to the GE SIGNA PET/MR due to proprietary issues. Although the randoms

correction modelling implemented in this thesis is not identical to GE-toolbox,

the results demonstrate that the randoms calculations are not principally differ-

ent. This is because the difference in modelling randoms correction within STIR

and GE-toolbox lies at the lack of decay and dead-time correction within STIR,

which is not of much relevance in clinical situations as those included within this

thesis. Since, the scans included within this thesis are acquired for short time
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and the decay of the injected activity is much below the half-life of the radioac-

tive isotope, the decay correction factor is quite small as discussed by Stearns

and Lonn (2011). Further, clinical scans do not have a high injected activity

which can lead to high count rates and thus, the dead-time is also small (Stearns

and Lonn [2011]).

5.1.2 TOF

As demonstrated in Figures 4.2 and 4.3, the TOF emission sinograms extracted

with STIR and GE-toolbox are identical. This show that the sinograms are not

only identical for different timing bin values but also across different datasets.

The identical results demonstrate that the timing information extracted from

TOF-PET LM file with implementations made in this thesis is accurate. Thus,

the functions implemented in STIR calculate the histogram dimensions (TOF bin

value, segment number, axial position, tangential and view number) accurately

using the LM measured data as input. These functions were modified iteratively

during this study to calculate the correct map from LM event to STIR bin.

Sections 3.3.2 to 3.3.4 describe the modifications that were required to achieve

accurate mapping.

Also, it is seen that the number of LM events histogrammed in each bin of

the histogram is equal to the GE-toolbox bin values. Thus, STIR reads all the

LM events of the entire scan duration.

143



Chapter 5

5.2 Comparison of Reconstructions: STIR and

GE-toolbox

5.2.1 Non-TOF

The VQC phantom reconstruction as shown in Figure 4.4, the translation offsets

between STIR and GE-toolbox. The GE-toolbox registers the PET image onto

MR space automatically after reconstruction, whereas STIR does not follow this

step, which implies images are in PET space. These offsets are also defined in

the header of the LM file and are fixed manually. Apart from the translational

offset, there is also rotation between the PET and MR gantries which is visible in

the top row. The MRAC images used to correct for attenuation are in MR space

whereas all reconstructions in STIR takes place in PET space. These alignment

issues affect the attenuation correction as well in STIR, and its degrading effects

are evident in the bottle phantom reconstructions with STIR.

The Hoffman and patient datasets reconstructed with OSEM with STIR and

the GE-toolbox, as shown in Figures 4.6 to 4.9, show structural differences (as

pointed in figures using red arrows). The figures also show noise differences. It is

followed from discussion in Section 5.1 that the emission histograms are identi-

cal and normalisation histograms are almost identical with negligible differences

with the two softwares, GE-toolbox and STIR. The inputs given to reconstruct

image using OSEM algorithm as defined in equation 2.25 are measured projec-

tion data, system matrix and background correction data. This implies that

the visible noise and structural differences as seen in Figures 4.6 to 4.9 result

from differences in either of these given inputs. There are obvious differences in

system matrix model between GE-toolbox and STIR, which particularly include
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the lack of detector gap modelling within STIR and the different forward and

back projectors in the two softwares. These detector gaps are not accounted for

within the system matrix of STIR, as STIR considered only cylindrical geome-

tries till recently (Khateri et al. [2019]). Further, as observed in Section 5.1, the

randoms correction histograms has an observed small difference between STIR

and GE-toolbox. These differences within system matrix modelling influence the

final estimated image heavily, whereas, the differences within randoms correction

are bound to produce smaller noise-based differences. Further, the reconstructed

images are also influenced by the offset between MR and PET gantry which is

not accounted for in this thesis. These visual comparisons set the initial scene for

further quantitative comparisons and also allow to choose the metrics to be used

for further investigation. Such as the noise based differences seen in the recon-

structions are investigated further using the SUVR and CoV and the structural

differences seen visually have been investigated using SUVR and SSIM.

There are further differences in the image reconstructions using point spread

function (PSF). These differences are due to different PSF modelling between

GE-toolbox and STIR. GE-toolbox applies a PSF kernel matrix in sinogram-

space whereas STIR accounts for PSF correction by applying the PSF kernel

matrix in image space (Thielemans et al. [2010]). Although there are visible

differences in reconstructions, STIR is in good agreement with the GE-toolbox

within the limitations mentioned earlier including lack of dead-time and detector

gap modelling.
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5.2.2 TOF

The bottle, Hoffman phantom and patient dataset as shown in Figures 4.10,

4.11 and 4.12, respectively, and reconstructed with the TOF-OSEM algorithm

using STIR and GE-toolbox show differences in noise property of the images.

The inputs given to reconstruct image using TOF-OSEM algorithm are mea-

sured TOF projection data, system matrix which includes TOF kernel and TOF

background correction data. Since, TOF projection data is identical as can be

seen in Figures 4.2 and 4.3, the differences in the images arise either from TOF

kernel, system matrix or TOF background correction data. The TOF kernel was

implemented and validated using simulated data by Efthimiou et. al. (2019).

Thus, the differences in STIR reconstruction arise from lack of modelling of

the detector gaps in STIR, differences in projectors between the two softwares

and differences in the background correction term. Further with TOF-OSEM

reconstruction, GE-toolbox uses TOF-scatter correction within the background

correction term (Watson [2007]). Whereas, this correction is not applied within

STIR and a primitive approximation using non-TOF scatter is used within back-

ground correction term in STIR.

The TOF-KEM-STIR (Figure 4.12 (c)) images demonstrate reduction in the

background noise and visual improvement.

5.3 FWHM Comparisons

5.3.1 Non-TOF

Table 4.1 shows a the FWHM comparisons made between STIR and GE-toolbox.

STIR and GE-toolbox reconstructions have a relative difference of 6.3% and 14%
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for OSEM and PSF-OSEM reconstructions respectively. The FWHM compar-

isons show a more significant difference for PSF reconstructions between STIR

and GE-toolbox because of different PSF implementations. Also, the kernel used

in the STIR reconstructions is based on the resolution of the scanner calculated

with GE-toolbox. The resolution achieved here is the best that could be achieved

for this scanner in STIR due to the limitations including lack of detector gap

modelling, different forward and back projectors and the lack of dead-time mod-

elling. The lack of detector gap is due to the lack of STIR’s ability to account for

non-cylindrical geometries at the instance this work is produced. The differences

in forward and back projectors occurs due to the reason that the GE-toolbox is a

black-box and so the projectors used there are not known. The lack of dead-time

modelling in STIR is due to the lack of proprietary information available.

5.3.2 TOF

Table 4.2 shows a relative difference of 5.6% and 9.5% for TOF-OSEM and PSF-

TOF-OSEM between STIR and GE-toolbox. The reconstructions demonstrate

similar resolution and good agreement for TOF reconstructions as well. The GE

reconstructions demonstrate better resolution for TOF-OSEM, whereas STIR

demonstrates better resolution for PSF-TOF-OSEM.

5.4 SUVR Comparisons

5.4.1 Non-TOF

Table 4.3 displays SUVR comparison for the reconstructions with OSEM and

PSF-OSEM between GE-toolbox and STIR for ROI drawn within the liver. The
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SUVR calculated for OSEM is identical with STIR and GE-toolbox. Whereas,

SUVR calculated for PSF-OSEM shows a relative difference of 9.3% between

STIR and GE-toolbox.

Table 4.4 displays SUVR comparisons for the reconstructions with OSEM and

PSF-OSEM between GE-toolbox and STIR for ROI drawn within the spleen.

The SUVR calculated for OSEM shows a much greater relative difference of

21.4% between STIR and GE-toolbox. Whereas, PSF-OSEM algorithm shows a

good agreement and the calculated SUVR value is identical.

The much greater relative difference of 21.4% are due to the major differences

in system matrix modelling, whereas, as small proportion of this relative differ-

ence is contributed by the difference in background correction data between two

softwares.

The above comparisons show that STIR reconstructions demonstrate rela-

tively accurate quantification assuming GE-toolbox is the ground truth. The

residual differences are perhaps due to differences in system matrix, scatter and

random modelling.

5.4.2 TOF

Tables 4.5 and 4.6 demonstrate that SUVR comparisons between GE-toolbox and

STIR for TOF reconstructions have greater relative differences. SUVR compar-

isons for liver/lung, demonstrate a relative difference of 27.5% for TOF-OSEM

and 33.5% for PSF-TOF-OSEM algorithms. For spleen/lung comparisons, there

is a relative difference of 13% and 27% for TOF-OSEM and PSF-TOF-OSEM

algorithms, respectively.

SUVR comparisons for TOF reconstructions further shows that the lack of
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TOF scatter implementation in STIR has a detrimental effect on the quantifica-

tion Watson [2007].

TOF-KEM reconstructions display a very slight improvement in terms of

the quantification from TOF-OSEM algorithm with STIR. Although TOF-KEM

shows slight quantitative improvement compared to TOF-OSEM-STIR, the lack

of TOF scatter degrade its overall quantification as compared to TOF-OSEM-

GE.

5.5 CoV

5.5.1 Non-TOF vs. TOF

Figure 4.14 shows that TOF-OSEM demonstrate less CoV over OSEM for ROI

placed within the white matter of the Hoffman phantom.

Figure 4.15 shows that OSEM demonstrate less CoV over TOF-OSEM for

ROI placed within the gray matter of the Hoffman phantom.

Figures 4.16 and 4.17 show that TOF-KEM demonstrates better performance

over TOF-OSEM and OSEM as it has the lowest CoV over iterations. It can

also be seen from Figure 4.17 that TOF-OSEM perform better by improving

image uniformity over OSEM. Although, this is not true for the ROI placed in

the bottle and the Figure 4.16 shows that OSEM has better uniformity over

TOF-OSEM.

The TOF-OSEM conclusively demonstrates better performance in regions of

lower activity as compared to OSEM, whereas, OSEM tend to perform better in

higher activity regions.
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5.5.2 STIR vs. GE

Figure 4.18 (a) shows the behaviour of TOF-OSEM algorithm with STIR and

GE-toolbox and TOF-KEM algorithm with STIR over iterations using CoV. The

figure demonstrates that for higher iterations, TOF-OSEM-STIR has the least

value for CoV and thus, has the maximum uniformity. Whereas, TOF-KEM-

STIR has maximum uniformity for iterations 1 and 2. The figure also shows

that STIR reconstructions show less CoV over GE reconstruction when the ROI

is within the spleen.

Figure 4.18 (b) shows that the TOF-KEM algorithm has the maximum uni-

formity as compared to TOF-OSEM algorithms. The graph also shows that

TOF-OSEM-GE demonstrates the most deviation from the mean activity for

higher iterations.

Figure 4.18 (c) demonstrates that with the application of the PSF kernel,

all three reconstructions show similar behaviour over iterations. The graph also

shows that PSF-TOF-KEM-STIR demonstrates maximum uniformity.

Figure 4.18 (d) shows that PSF-TOF-KEM-STIR demonstrates maximum

uniformity for higher iterations.

Toolbox reconstructions show the maximum increase in CoV over iterations.

There is an increase of 58.6% in the CoV over the iterations for PSF-TOF-

OSEM-GE algorithm, which implies the toolbox reconstructions have the least

uniformity. Overall there is a good agreement between TOF-OSEM-STIR and

TOF-OSEM-GE with and without PSF. Kernel method shows an overall decrease

in CoV. The KEM has maximum uniformity which perhaps could be because

of prior anatomical information which distributes the activity uniformly in the

region of interest.
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5.6 SSIM

In order to investigate the visible structural differences, global SSIM values were

calculated. The global SSIM value is between 0.84-0.85 for most comparisons

performed on reconstructed images over six iterations. The values of global

SSIM mentioned above shows a high structural similarity between STIR and

GE reconstructed images for TOF imaging. The difference between the pairs of

images is due to the intensity difference between the two images.

This study does not take into account TOF scatter correction, which gives

rise to differences in noise properties (as observed in ) between STIR and GE

reconstructions. The randoms correction modelling implemented in STIR is not

identical to that in GE toolbox. Global scaling of 106 and well counter calibra-

tion factor (section 2.1.10) are applied at the end of reconstruction and to the

reconstructed activity image by GE-toolbox. This multiplicative factor is not

automated within STIR reconstructions for GE SIGNA PET/MR. The lack of a

complete account of this multiplicative factor manifests as the residual difference

in image intensities. There is a relative difference of 12% to 35% between STIR

and GE-toolbox image intensities at the sixth iteration.

Table 4.7 also demonstrates an improvement in structural similarity with an

increase in iterations. Whereas, the results demonstrate lower SSIM value, and

thus a greater structural distortion, for the first iteration. This indicates that

STIR and GE-toolbox reconstruction perform differently to each other at the

first iteration.

Table 4.7 also indicates that the TOF-KEM algorithms do not show any

improvement in structural similarity as compared to TOF-OSEM algorithms.
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5.7 TOF-KEM: MR vs. PET

Figure 4.19 shows the visual comparison of TOF-KEM reconstructions with ker-

nel matrix constructed using MR and PET images. The effect of noisy PET

image used as an input to construct kernel matrix can be seen in Figure 4.19

(b). It can be pointed out that the noise properties of the kernel matrix input

image is directly reflected in the TOF-KEM reconstructions.

Table 4.8 shows an increase in quantification with TOF-KEM over TOF-

OSEM by 1.8%, irrespective of the input image.

Table 4.9 shows a slightly greater increase in the quantification with TOF-

KEM-PET (TOF-OSEM) over TOF-OSEM by 2.09% as compared to an increase

of 1.5% for TOF-KEM-MR.

Figure 4.20 shows that the TOF-OSEM image is the least uniform, whereas,

TOF-KEM-MR is the most uniform image. The figure also shows that TOF-

OSEM+G performs better that TOF-KEM-PET (TOF-OSEM). The graph shows

that for second iteration, TOF-KEM-MR improves the unifromity by 45% as

compared to TOF-OSEM. This reflects the nature of TOF-KEM-MR algorithm

which reduces the noise within PET reconstructions by including anatomical

prior information from MR images.

The thesis demonstrates that lower noise images can be obtained using TOF-

KEM-MR images over TOF-KEM-PET. Although, TOF-KEM-MR reduces the

noise substantially within the reconstructions as compared to TOF-KEM-PET,

the SUVR values are not much different.

Further, using PET as input image to construct kernel defeats the purpose to

introduce anatomical prior information as not much prior anatomical information

is introduced by using PET input image. The effect of noisy PET images as
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inputs within TOF-KEM algorithm also demonstrate higher CoV over TOF-

OSEM+G.

5.8 Summary

This chapter discusses the results of the investigations and explains the findings in

detail. The next chapter presents an overall summary of the thesis and proposes

future research.
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General Conclusion and Future

Work

6.1 Summary

This thesis describes the physical and mathematical modelling of the acquisi-

tion process for the GE SIGNA PET/MR and demonstrates reconstruction with

anatomically informed algorithms for TOF-PET data. The contributions made

in this thesis demonstrate the first instance of TOF-PET reconstruction for real

data with the STIR library. The thesis also presents the first instance of re-

construction with the TOF-KEM algorithm. Before the work presented in this

thesis, reconstructions of the raw data extracted from GE SIGNA PET/MR was

solely possible with the vendor’s proprietary reconstruction software. With the

developments presented here, the data extracted from the scanner can be recon-

structed with open-source software which allows the validation of novel iterative

reconstruction algorithms implemented in STIR with clinical datasets. It also

155



Chapter 6

demonstrates the complexity of the implementations. It also presents the com-

parison of these developments with its counterparts extracted using the vendor’s

closed-source software (GE-toolbox).

Validation is made by comparing images reconstructed with iterative recon-

struction algorithms available in the STIR library for acquired phantom and

clinical datasets. Reconstructed images appear to be at a comparable level with

the ones provided by the manufacturer. The reconstructed images also demon-

strate comparable resolution to the reconstructions extracted from GE-toolbox.

Dead-time correction, absence of detector gap modelling, differences in randoms

modelling and lack of TOF scatter implementations may account for the observed

discrepancies. This thesis demonstrates and compares reconstruction with TOF-

KEM algorithms. It can be concluded that there is a slight improvement in

quantification with the TOF-KEM algorithm as compared to TOF-OSEM algo-

rithm with STIR. It can also be concluded that the TOF-KEM reconstructions

do not distort the PET images (GE-toolbox reconstructions is used as reference)

and hence, the anatomical kernels do not introduce structural bias. It can be

finally concluded from the study, that TOF-KEM algorithm using MR anatom-

ical image as kernel matrix input increases image uniformity substantially over

TOF-OSEM with STIR. The modelling of the acquisition process in open-source

software for a state-of-the-art scanner is beneficial for the scientific community

to allow further research with the flexibility to manipulate data (Wadhwa et al.

[2020]). This can help the researchers to implement new algorithms and test

them using clinical dataset extracted from the GE scanner. These implemen-

tations can also pave the way for harmonisation of methodology across various

PET scanners used in the clinic.
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Overall, the purpose of this thesis, to reconstruct TOF-PET with anatom-

ically informed reconstruction algorithms with open-source software, STIR is

served. The developments made to expand STIR to reconstruct non-TOF and

TOF PET data from the clinical GE SIGNA PET/MR scanner are demonstrated

and validated.

6.2 Future Work

A natural extension of the work presented in this thesis is the incorporation

of TOF scatter (Watson [2007]), modelling of the detector gaps (Khateri et al.

[2019]) and implementation of dead-time modelling within random correction

calculations. These implementations may show further improvement in image

quantification with STIR. Further, the performance of TOF-KEM can be stud-

ied in a 10 clinical datasets that were collected as a part of the study carried

out at Invicro. This extension of the current work will allow to validate the

robustness and reproducibility of the results presented in this thesis. A more

robust PET/MR motion correction method can also be investigated using these

developments (Dikaios and Fryer [2009]).

With the implementation of the TOF-KEM algorithm and demonstration of

clinical reconstruction for TOF-PET data from GE SIGNA PET/MR, there

is a possibility of reducing the injected dose. TOF-KEM algorithm reduces

image noise which increases its applicability for low dose clinical analysis. One

of the significant clinical challenges with PET is lack of radiotracer availibility

as compared to the patients required to be scan per day due to limited number

of cyclotrons. The TOF-KEM algorithm reduces image noise and can be used to
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reduce the injected dose by a factor of 10, which can increase patient throughput

without adding more cyclotrons. The natural progression of this thesis can be an

investigation which studies the effects of anatomical and TOF-PET information

by reducing the injected dose.

The application of the TOF-KEM algorithm can be beneficial for kinetic

analysis where short time frames are studied. In current scenario, dynamic im-

ages having time frame of 5 − 10 s are used to study the tracer kinetics as the

reconstructions are inadequate with less than 5 s time frames (Wang [2018]).

Wang (2018) has demonstrated that using the PET image reconstructed for the

complete long acquisition as the input to construct kernel matrix can improve

reconstructions for short time frames. This study can be extended using the

outputs of this thesis and long acquisitions can be used to reconstruct short

time frames using TOF-KEM algorithm. TOF-KEM algorithm can be further

extended to combine more that two modalities or multiple MR sequences so that

maximum anatomical information can be used to reconstruct PET data (Deidda

et al. [2018a]). The kernel method is also used to reconstruct PET data with

direct parametric reconstruction (Tsoumpas and Thielemans [2009]).

6.3 Conclusion

The thesis concludes that the implementations made to expand STIR to read GE

data from the scanner is accurate. It can be concluded that emission and data

corrections calculated using the STIR library are in good agreement with the

scanner even though the randoms modelling implemented within STIR is prim-

itive. This study reports the modifications needed to read data from the GE
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SIGNA PET/MR data directly into STIR and demonstrates successful recon-

structions within the given limitations. It can also be concluded that the novel

iterative reconstruction algorithm, TOF-KEM, demonstrates improved quantifi-

cation and substantially improved uniformity within reconstructed images as

compared to clinically-used algorithm, TOF-OSEM. The work conducted during

the study presented in this thesis shows reconstructed images using real TOF-

PET data extracted from GE SIGNA PET/MR scanner within open source

library, STIR for the first time. The developments presented here will finally

allow future investigations with TOF-PET data from any scanner and will also

provide a platform to study novel iterative algorithms such as TOF-KEM with

TOF-PET data.
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Appendix A

Software Implementation of

Acquired Data for GE SIGNA

PET/MR in STIR

This appendix provides the C++ code for the software implementations that

were made in open-source software, STIR to make it compatible with acquired

GE data. It also describes the software implementations specific to GE SIGNA

PET/MR.

A.1 Reading the List of Events from LM File

in STIR

The LM file extracted from the scanner is opened, and the stream of events is

read as described in the C++ code here. Each coincidence event is read as a

record and has four bytes.

183



Succeeded

CListModeDataGESigna : :

o p e n lm f i l e ( )

{

i n f o ( boost : : format ( ”CListModeDataGESigna : opening f i l e %1%” )

% l i s tmode f i l e name ) ;

#i f 0

shared ptr<std : : i stream> s t ream ptr (new std : : f s t ream (

l i s tmode f i l e name . c s t r ( ) , s td : : i o s : : in | std : : i o s : : b inary ) ) ;

i f ( ! ( ∗ s t ream ptr ) )

{

return Succeeded : : no ;

}

stream ptr−>seekg (12492704) ;

cu r r en t lm data p t r . r e s e t (

new InputStreamWithRecords<CListRecordT , bool>( stream ptr ,

4 , 16 ,

ByteOrder : : l i t t l e e n d i a n != ByteOrder : : g e t n a t i v e o r d e r ( ) ) ) ;

#else

i f ( !GEHDF5Wrapper : : check GE signature ( l i s tmode f i l e name ) )

{

return Succeeded : : no ;

}

#endif

GEHDF5Wrapper i npu tF i l e ( l i s tmode f i l e name ) ;

shared ptr<Scanner> tmp = inpu tF i l e . g e t s c ann e r s p t r ( ) ;



shared ptr<ProjDataInfo> proj data tmp ( ProjDataInfo : :

ProjDataInfoCTI (tmp , 2 , tmp−>get num rings ()−1 ,

tmp−>ge t num de t e c t o r s p e r r i ng ( )/2 ,

tmp−>get max num non arccorrected b ins ( ) ,

fa l se ) ) ;

this−>s e t p r o j d a t a i n f o s p t r ( proj data tmp ) ;

cu r r en t lm data p t r .

r e s e t (

new InputStreamWithRecordsFromHDF5<CListRecordT>(

l i s tmode f i l ename , 6 , 1 6 ) ) ;

return Succeeded : : yes ;

}

A.2 Calculation of Emission Data

The code presented below demonstrates the implementations that were made to

read the detector axial and transaxial positions and the timing bin information

for each coincidence event within STIR. This information is further used to

calculate the segment, axial, transaxial and view positions for respective events

to map each event within the correct histogram bin in STIR.

#i f STIRIsNativeByteOrderBigEndian

// Do byteswapping f i r s t b e f o r e us ing t h i s b i t f i e l d .

TODO

#else



boost : : u i n t 16 t eventLength : 2 ;

/∗ Event Length : Enum fo r the number o f b y t e s in the event ∗/

boost : : u i n t 16 t eventType : 1 ;

/∗ Event Type : Coin or Extended type s ∗/

boost : : u i n t 16 t h iXta lShor t In teg : 1 ;

/∗ High Crys ta l Short I n t e g r a t i on on / o f f ∗/

boost : : u i n t 16 t l oXta lShor t In t eg : 1 ;

/∗ Low Crys ta l Short I n t e g r a t i on on / o f f ∗/

boost : : u i n t 16 t h iXta lScat te rRec : 1 ;

/∗ High Crys ta l S ca t t e r Recovered on / o f f ∗/

boost : : u i n t 16 t loXta lScat te rRec : 1 ;

/∗ Low Crys ta l S ca t t e r Recovered on / o f f ∗/

boost : : i n t 1 6 t deltaTime : 9 ;

/∗ TOF ’ s i gned ’ d e l t a time ( un i t s de f i ned by e l e c t r o n i c s ∗/

boost : : u i n t 16 t hiXtalAxia l ID : 6 ;

/∗ High Crys ta l Axia l Id ∗/

boost : : u i n t 16 t hiXtalTransAxID : 1 0 ;

/∗ High Crys ta l Trans−Axia l Id ∗/

boost : : u i n t 16 t loXta lAxia l ID : 6 ;

/∗ Low Crys ta l Axia l Id ∗/

boost : : u i n t 16 t loXtalTransAxID : 1 0 ;

/∗ Low Crys ta l Trans−Axia l Id ∗/

#endif

} ; /∗−co inc idence event ∗/

A.2.1 Non-TOF

The detector positions read for each coincidence event as described in the code

above is converted in STIR space. The tangential and axial coordinates for each

detector pair read from the LM file is in scanner space. Although STIR and



scanner have the same conventions for axial detector numbering, it numbers the

detectors with opposite conventions as compared to STIR along the tangential

direction (demonstrated in Figure 3.5). This incongruity is accounted by flipping

the crystal number as described in the code below (total number of crystals in

tangential direction for GE SIGNA are 448, and they are numbered from 0 to

447): 447− loXtalTransAxID; 447− hiXtalTransAxID.

class CListEventDataGESigna

{

public :

inl ine bool i s prompt ( ) const { return true ; }

inl ine Succeeded set prompt ( const bool prompt = true )

{

// i f ( prompt ) random=1; e l s e random=0; re turn Succeeded : : yes ;

return Succeeded : : no ;

}

inl ine void g e t d e t e c t i o n p o s i t i o n (

Detec t i onPos i t i onPa i r<>& det pos ) const

{

det pos . pos1 ( ) . t ang en t i a l c o o rd ( ) = 447 − loXtalTransAxID ;

det pos . pos1 ( ) . a x i a l c o o rd ( ) = loXta lAxia l ID ;

det pos . pos2 ( ) . t ang en t i a l c o o rd ( ) = 447 − hiXtalTransAxID ;

det pos . pos2 ( ) . a x i a l c o o rd ( ) = hiXtalAxia l ID ;

}

inl ine bool i s e v e n t ( ) const

{

return ( eventType==COINC EVT)

/∗ && eventTypeExt==COINC COUNT EVT) ∗/ ;

}



A.2.2 TOF

The TOF bin information is read for each event from the LM file for each coinci-

dence event. This information is stored within the deltaT ime field of the LM file

as a signed bin number ranging from −175 to 175. The read TOF bin number

from scanner space is converted into STIR space using: detpos.timingpos() =

get tof bin() for positive bin number and detpos.timingpos() = −get tof bin()

for negative bin number.

inl ine void g e t d e t e c t i o n p o s i t i o n (

Detec t i onPos i t i onPa i r<>& det pos ) const

{

i f ( deltaTime<0)

{

det pos . pos1 ( ) . t ang en t i a l c o o rd ( ) = 447− loXtalTransAxID ;

det pos . pos1 ( ) . a x i a l c o o rd ( ) = loXta lAxia l ID ;

det pos . pos2 ( ) . t ang en t i a l c o o rd ( ) = 447−hiXtalTransAxID ;

det pos . pos2 ( ) . a x i a l c o o rd ( ) = hiXtalAxia l ID ;

det pos . t iming pos ( ) = −g e t t o f b i n ( ) ;

}

else

{

det pos . pos1 ( ) . t ang en t i a l c o o rd ( ) = 447−hiXtalTransAxID ;

det pos . pos1 ( ) . a x i a l c o o rd ( ) = hiXtalAxia l ID ;

det pos . pos2 ( ) . t ang en t i a l c o o rd ( ) = 447− loXtalTransAxID ;

det pos . pos2 ( ) . a x i a l c o o rd ( ) = loXta lAxia l ID ;

det pos . t iming pos ( ) = g e t t o f b i n ( ) ;

}

}

inl ine bool i s e v e n t ( ) const



{

return ( eventType==COINC EVT)

/∗ && eventTypeExt==COINC COUNT EVT) ∗/ ;

}

inl ine int g e t t o f b i n ( ) const

{

return static cast<int>(deltaTime ) ;

}

private :

A.3 Reading the TOF Histogram Directly from

the Scanner

The scanner not only stores emission data in the LM format but also stores it

in histogram format. It stores the emission data within the TOF histogram,

which is a series of viewgrams starting from viewgram 0 to viewgram 223. Each

viewgram is stored as an array of size of 1981 × 27 × 357. Each cell of the

viewgram array is stored as an 8-bit unsigned character. An example of the

histogram HDF5 structure is presented in Figure A.1.

Chunks of the data can be read from the array stored in the HDF5 file. The

exact location of the chunk is obtained by defining the offset (which is the starting

position of the chunk), count (which corresponds to the number of elements that

are to be read), stride (which corresponds to the number of elements to be

skipped within individual selected elements) and block (size of the block to be

selected). A hyperslab defines this selected chunk of data.

The code below reads the histogram data as a list of the viewgram for each



view num (view number) and accesses the array for each viewgram using the ad-

dress: m address = “/SegmentData/ Segment2/3D TOF Sinogram/view”.

The initialise proj data data function initialises each viewgram as an array

within STIR by defining the dimensions of the hyperslab.

Figure A.1: This figure demonstrates an example of the HDF5 file opened with
the HDF View application. The HDF5 file shown in this figure is an example
of the ‘rdf.1.1’ file or the raw histogram file. The HDF5 files have a number of
fields and each field can further have sub-fields.



Succeeded GEHDF5Wrapper : : i n i t i a l i s e p r o j d a t a d a t a

( const std : : s t r i n g& path , const unsigned int view num )

{

i f ( path . s i z e ( ) == 0)

{

i f ( i s s i g n a )

{

m address = ”/SegmentData/Segment2/3D TOF Sinogram/view” ;

i f ( view num > 0)

{

std : : o s t r ing s t r eam datasetname ;

datasetname << m address << view num ;

m datase t spt r . r e s e t (new H5 : : DataSet ( f i l e . openDataSet

( datasetname . s t r ( ) ) ) ) ;

m dataspace = m dataset sptr−>getSpace ( ) ;

}

{

m NX SUB = 1981 ; // hype r s l a b dimensions

m NY SUB = 27 ;

m NZ SUB = 357 ;

m NX = 45 ; // output b u f f e r dimensions

m NY = 448 ;

m NZ = 357 ;

}

}

else

return Succeeded : : no ;



}

else

m address = path ;

return Succeeded : : yes ; }

A hyperslab is selected and read as the output using the code below. Since the

data is stored as an unsigned 8-bit character in the array as can be seen in figure

A.1, the output is defined as unsigned char.

Succeeded GEHDF5Wrapper : : g e t f r om data s e t

( const std : : array<unsigned long long int , 3>& o f f s e t ,

const std : : array<unsigned long long int , 3>& count ,

const std : : array<unsigned long long int , 3>& st r i d e ,

const std : : array<unsigned long long int , 3>& block ,

Array<1, unsigned char> &output )

{

m dataspace . s e l e c tHype r s l ab (H5S SELECT SET ,

count . data ( ) , o f f s e t . data ( ) ) ;

m memspace ptr= new H5 : : DataSpace (3 , count . data ( ) ) ;

m dataset sptr−>read ( output . g e t da t a p t r ( ) ,

H5 : : PredType : : STD U8LE, ∗m memspace ptr , m dataspace ) ;

output . r e l e a s e d a t a p t r ( ) ;

return Succeeded : : yes ;

}

A viewgram buffer is initialised below to finally store the entire viewgram of

size 224× 1981× 27× 357 read from the acquired TOF histogram from the GE

SIGNA PET/MR (as described in code above) within STIR.

void ProjDataFromHDF5 : : i n i t i a l i s e v i ew g r am bu f f e r ( )

{

const unsigned int num tof poss = 27 ;



const unsigned int max num axial poss = 1981 ;

const unsigned int get num viewgrams = 224 ;

unsigned int t o t a l s i z e = ge t num tangent i a l po s s ( )

∗ num tof poss ∗ max num axial poss ;

this−>t o f d a t a . r e s i z e ( IndexRange4D ( get num viewgrams ,

ge t num tangent i a l po s s ( ) , num tof poss , max num axial poss ) ) ;

Array<1,unsigned char> bu f f e r ( t o t a l s i z e ) ;

for ( int view num = get min view num ( ) ;

view num <= get max view num ( ) ; view num++)

{

m input hdf5 sptr−> i n i t i a l i s e p r o j d a t a d a t a ( ”” , view num + 1 ) ;

std : : array<unsigned long long int , 3> s t r i d e = {1 , 1 , 1} ;

const std : : array<unsigned long long int , 3> count

= {max num axial poss , num tof poss ,

static cast<unsigned long long int>( g e t num tangent i a l po s s ( ) ) } ;

s td : : array<unsigned long long int , 3> o f f s e t = {0 ,0 , 0} ;

s td : : array<unsigned long long int , 3> block = {1 , 1 , 1} ;

m input hdf5 sptr−>ge t f r om data s e t ( o f f s e t , count , s t r i d e ,

block , bu f f e r ) ;

s td : : copy ( bu f f e r . begin ( ) , bu f f e r . end ( ) ,

t o f d a t a [ view num ] . b e g i n a l l ( ) ) ;

}



There is a segment incongruity between scanner and STIR space which is ac-

counted in the code presented below (which is demonstrated in figure 3.5). This

code defines a map between the scanner segment and STIR segment number for

the GE scanners acquired data.

void ProjDataFromHDF5 : : i n i t i a l i s e s e gmen t s e q u e n c e ( )

{

segment sequence . r e s i z e (2∗ get max segment num ()+1) ;

segment sequence [ 0 ] = 0 ;

for ( int segment num = 1 ; segment num<=get max segment num ( ) ;

++segment num )

{

segment sequence [2∗ segment num−1] = segment num ;

segment sequence [2∗ segment num ] = −segment num ;

}

}

The stored viewgrams are translated within STIR space using the code below.

Viewgram<f loat>

ProjDataFromHDF5 : :

get viewgram ( const int view num , const int segment num ,

const bool make num tangent ia l poss odd ) const

{

i f ( make num tangent ia l poss odd )

e r r o r ( ”make num tangent ia l poss odd not supported by Proj

DataFromHDF5” ) ;

Viewgram<f loat> ret viewgram =

get empty viewgram ( view num , segment num ) ;

ret viewgram . f i l l ( 0 . 0 ) ;



const unsigned int num tof poss = 27 ;

// cons t unsigned i n t max num axia l poss = 1981;

// PW Attempt to f l i p the t a n g en t i a l and view numbers .

for ( int tang pos = ret viewgram . get min tangent ia l pos num ( ) ,

i t ang = 0 ; tang pos <= ret viewgram . get max tangent ia l pos num ( ) ,

i tang<=static cast<unsigned long long int>

( g e t num tangent i a l po s s ())−1; ++tang pos , ++i t ang )

for ( int i a x i a l =0, a x i a l p o s =

s e g a x o f f s e t [ f i nd s egment index in s equenc e ( segment num ) ] ;

i a x i a l<= static cast<unsigned long long int>

( ge t num ax ia l po s s ( segment num))−1 ,

a x i a l p o s <= s e g a x o f f s e t [ f i nd s egment index in s equenc e

( segment num)]+

static cast<unsigned long long int>

( ge t num ax ia l po s s ( segment num))−1;

i a x i a l ++, ax i a l p o s++)

for ( int t o f p o s s = 0 ; t o f p o s s <=

num tof poss −1; t o f p o s s++)

{

ret viewgram [ i a x i a l ] [− tang pos ] +=

static cast<f loat> ( t o f d a t a [223−view num ] [ i t ang ]

[ t o f p o s s ] [ a x i a l p o s ] ) ;

}

return ret viewgram ;

}



A.4 Implementation of Normalisation Correc-

tion in STIR

The normalisation effects acquired by the scanner after each scan are stored in

HDF5 file as:

• Detection Efficiency Factors: These are stored as an array of size 448× 45.

• Geometric Correction Factors: These are stored as a list of viewgrams of

size 1981× 357.

The code below reads the detection efficiency and geometric correction factors

from the ‘norm’ file. The function that reads these factors is: read norm data.

The function called ‘get bin efficiency’ calculates the normalisation correction

factors using equation 3.1 within STIR space.

void

BinNormalisationFromGEHDF5 : :

read norm data ( const s t r i n g& f i l ename )

{

m input hd f5 spt r . r e s e t (new GEHDF5Wrapper( f i l ename ) ) ;

this−>s canne r p t r = m input hdf5 sptr−>g e t s c ann e r s p t r ( ) ;

p r o j da t a i n f o cy l un compr e s s ed p t r . r e s e t (

dynamic cast<ProjDataInfoCyl indr ica lNoArcCorr ∗>(

ProjDataInfo : : ProjDataInfoCTI ( scanner ptr ,

/∗ span=∗/ 1 , scanner ptr−>get num rings ()−1 ,

/∗num views ,=∗/ scanner ptr−>ge t num de t e c t o r s p e r r i ng ( )/2 ,

/∗ num tangen t ia l pos s=∗/ scanner ptr−>

get max num non arccorrected b ins ( ) ,

/∗ a r c co r r e c t e d =∗/ fa l se )



) ) ;

e f f i c i e n c y f a c t o r s =

Array<2, f loat>(IndexRange2D (0 , scanner ptr−>get num rings ()−1 ,

0 , s canner ptr−>ge t num de t e c t o r s p e r r i ng () −1)) ;

{

const int num rings = scanner ptr−>get num rings ( ) ;

const int num dete c to r s pe r r i ng

= scanner ptr−>ge t num de t e c t o r s p e r r i ng ( ) ;

m input hdf5 sptr−> i n i t i a l i s e e f f i c i e n c y f a c t o r s ( ”” ) ;

s td : : array<unsigned long long int , 2> s t r i d e = {1 , 1} ;

const std : : array<unsigned long long int , 2> count = {45 , 448} ;

s td : : array<unsigned long long int , 2> o f f s e t = {0 ,0} ;

s td : : array<unsigned long long int , 2> block = {1 , 1} ;

unsigned int t o t a l s i z e = num rings∗ num dete c to r s pe r r i ng ;

s t i r : : Array<1, f loat> bu f f e r (0 , t o t a l s i z e −1);

m input hdf5 sptr−>ge t f r om 2d data s e t ( o f f s e t , count , s t r i d e ,

block , bu f f e r ) ;

s td : : copy ( bu f f e r . begin ( ) , bu f f e r . end ( ) ,

e f f i c i e n c y f a c t o r s . b e g i n a l l ( ) ) ;

}

g e ome t r i c f a c t o r s =

Array<3, f loat>(IndexRange3D (0 , max num view num−1, 0 ,

max num axial poss −1,

min tang pos num , max tang pos num ) ) ;



{

r e t a r r a y . r e s i z e ( IndexRange3D

(max num view num ,

max num axial poss , max num tangent ia l poss ) ) ;

for ( int i v i ew = 0 ;

i v i ew <= pro j da ta i n f o cy l uncompre s s ed p t r−>get max view num ( ) ;

++i v i ew )

{

// Viewgram and geometr ic co r r e c t i on f a c t o r s are

i n i t i a l i s e d .

m input hdf5 sptr−>

i n i t i a l i s e g e o f a c t o r s d a t a ( ”” ,modulo ( i v i ew ,16 )+1) ;

// Here the data i s read from the HDF5 array .

std : : array<unsigned long long int , 2> s t r i d e = {1 , 1} ;

s td : : array<unsigned long long int , 2> count =

{max num axial poss , max num tangent ia l poss } ;

s td : : array<unsigned long long int , 2> o f f s e t = {0 , 0} ;

s td : : array<unsigned long long int , 2> block = {1 , 1} ;

unsigned int t o t a l s i z e = max num axial poss ∗

max num tangent ia l poss ;

s t i r : : Array<1, unsigned int> tmp(0 , t o t a l s i z e −1);

m input hdf5 sptr−>ge t f r om 2d data s e t ( o f f s e t , count ,

s t r i d e , block , tmp ) ;

std : : copy (tmp . begin ( ) , tmp . end ( ) ,



r e t a r r a y [ i v i ew ] . b e g i n a l l ( ) ) ;

}

//PW Fl ip view and t a n g en t i a l p o s i t i o n s here .

for ( int view num =

pro j da t a i n f o cy l uncompre s s ed p t r−>get min view num ( ) ;

view num <=

pro j da ta i n f o cy l uncompre s s ed p t r−>get max view num ( ) ;

++view num )

for ( int tang pos =

pro j da t a i n f o cy l uncompre s s ed p t r−>get min tangent ia l pos num ( ) ,

i t ang = 0 ; tang pos <=

pro j da ta i n f o cy l uncompre s s ed p t r−>get max tangent ia l pos num ( ) ,

i tang<=max num tangentia l poss −1; ++tang pos , ++i t ang )

for ( int ax i a l p o s = 0 ; a x i a l p o s <= max num axial poss −1;

a x i a l p o s++)

{

g e ome t r i c f a c t o r s [223−view num ] [ a x i a l p o s ][− tang pos ] =

r e t a r r a y [ view num ] [ a x i a l p o s ] [ i t ang ] ;

}

//PW Current ly the s c a l e f a c t o r s are hardcorded .

// ! \ todo Get t h e s e from HDF5 f i l e .

g e ome t r i c f a c t o r s ∗= 2.2110049 e−4;

}

}



f loat

BinNormalisationFromGEHDF5 : :

g e t b i n e f f i c i e n c y ( const Bin& bin , const double s t a r t t ime ,

const double end time ) const {

const Detec t ionPos i t i on<>& pos1 = d e t e c t i o n p o s i t i o n p a i r . pos1 ( ) ;

const Detec t ionPos i t i on<>& pos2 = d e t e c t i o n p o s i t i o n p a i r . pos2 ( ) ;

f loat l o r e f f i c i e n c y t h i s p a i r = 1 .F ;

i f ( this−>u s e d e t e c t o r e f f i c i e n c i e s ( ) )

{

l o r e f f i c i e n c y t h i s p a i r =1/

( e f f i c i e n c y f a c t o r s [ pos1 . a x i a l c o o rd () ] [447 − pos1 . t ang en t i a l c o o rd ( ) ]

∗ e f f i c i e n c y f a c t o r s [ pos2 . a x i a l c o o rd () ] [447 − pos2 . t ang en t i a l c o o rd ( ) ] ) ;

}

i f ( this−>u s e g e ome t r i c f a c t o r s ( ) )

{

// i n t segment num span1 = uncompressed bin . segment num ;

t o t a l e f f i c i e n c y +=

v i ew e f f i c i e n c y ∗ g e ome t r i c f a c t o r s [ uncompressed bin . view num()−1]

[ f i nd ax i a l p o s i n span2 f r om span1

( const cast<Bin>(bin ) , uncompressed bin)+

s e g a x o f f s e t [ f i nd s egment index in s equenc e

( f ind segment pos in span2 f rom span1 ( const cast<Bin>(bin ) ,

uncompressed bin ) ) ] ] [ uncompressed bin . tangent ia l pos num ( ) ] ;

}

}



A.5 Implementation of Randoms Correction in

STIR

The randoms correction factors are calculated using the single events that are

stored within the LM HDF5 file. LM HDF5 file stores the singles for each second

starting from the scan start time. The code below defines each second as a slice

and reads the singles per slice for each detector pair.

unsigned int

SinglesRatesFromGEHDF5 : :

r e a d s i n g l e s f r om l i s tm o d e f i l e

( const std : : s t r i n g& l i s tmode f i l e n ame )

{

unsigned int s l i c e = 0 ;

//PW Open the l i s t mode f i l e here .

m input sptr . r e s e t (new GEHDF5Wrapper( l i s tmode f i l e n ame ) ) ;

S ing l e sRate s : : s c anne r sp t r = m input sptr−>g e t s c ann e r s p t r ( ) ;

// Get t o t a l number o f b in s f o r t h i s type o f scanner .

const int t o t a l s i n g l e s u n i t s =

S ing l e sRate s : : s canner spt r−>g e t num s i ng l e s un i t s ( ) ;

m num time s l i ces =

m input sptr−>g e t exam in f o sp t r ()−>

g e t t im e f r ame d e f i n i t i o n s ( ) . get num frames ( ) ;



// A l l o ca t e the main array .

m s i n g l e s s p t r . r e s e t

(new Array<2, unsigned int>

( IndexRange2D (0 , m num time s l i ces − 1 , 0 ,

t o t a l s i n g l e s u n i t s − 1 ) ) ) ;

m input sptr−> i n i t i a l i s e s i n g l e s d a t a ( ) ;

while ( s l i c e < m num time s l i ces )

{

m input sptr−>ge t data space ( s l i c e +1,

(∗ m s i n g l e s s p t r ) [ s l i c e ] ) ;

++s l i c e ;

}

//PW Modify t h i s b i t o f code too .

i f ( s l i c e != m num time s l i ces )

{

e r r o r ( ”\nSinglesRatesFromGEHDF5 : Couldn ’ t read a l l r e co rd s in the

f i l e . Read %d o f %d . Ex i t ing \n” ,

s l i c e , m num time s l i ces ) ;

//TODO r e s i z e s i n g l e s to re turn array wi th new s i z e s

}

t imes = std : : vector<double>(m num time s l i ces ) ;

for (unsigned int s l i c e = 0 ; s l i c e < m num time s l i ces ;++ s l i c e )

t imes [ s l i c e ] = s l i c e +1.0 ;

a s s e r t ( t imes . s i z e ( ) !=0 ) ;

s i n g l e s t im e i n t e r v a l = t imes [ 1 ] − t imes [ 0 ] ;



// Return number o f time s l i c e s read .

return s l i c e ;

}

The singles rate is read and stored within STIR space using the function

called read singles from listmode file as implemented in the code above.

The code below calculates the randoms correction sinogram in STIR space

using the singles rate.

De t e c t o rE f f i c i e n c i e s

e f f i c i e n c i e s ( IndexRange2D ( num rings ,

num dete c to r s pe r r i ng ) ) ;

{

SinglesRatesFromGEHDF5 s i n g l e s ;

s i n g l e s . r e a d s i n g l e s f r om l i s tm o d e f i l e

( l i s tmode f i l e n ame ) ;

// e f f i c i e n c i e s

i f ( true )

{

// s i n g l e s . wr i t e ( s t d : : cout ) ;

for ( int r=0; r<num rings ; ++r )

for ( int c=0; c<num dete c to r s pe r r i ng ; ++c )

{

Detec t i onPos i t i on<> pos ( c , r , 0 ) ;

double t im e i n i t = 0 . ;

int t im e f i n a l =

static cast<double>

( s i n g l e s . g e t num t ime s l i c e s ( ) ) ;



e f f i c i e n c i e s [ r ] [ c ]=

s i n g l e s . g e t s i n g l e s r a t e ( pos , t ime i n i t , t im e f i n a l ) ;

}

}

shared ptr<GEHDF5Wrapper> m input sptr ;

m input sptr . r e s e t (new GEHDF5Wrapper( l i s tmode f i l e n ame ) ) ;

int num s l i c e s = m input sptr−>g e t exam in f o sp t r ()−>

g e t t im e f r ame d e f i n i t i o n s ( ) . get num frames ( ) ;

Bin bin ;

Bin uncompressed bin ;

for ( bin . segment num ( ) = pro j da ta . get min segment num ( ) ;

bin . segment num ( ) <= pro j da ta . get max segment num ( ) ;

++ bin . segment num ( ) )

{

for

( bin . ax ia l pos num ( ) = pro j da ta . get min ax ia l pos num

( bin . segment num ( ) ) ;

bin . ax ia l pos num ( ) <= pro j da ta . get max axia l pos num

( bin . segment num ( ) ) ;

++bin . axia l pos num ( ) )

{

Sinogram<f loat> sinogram =

pr o j d a t a i n f o p t r−>get empty sinogram

( bin . axia l pos num ( ) , bin . segment num ( ) ) ;



const f loat out m = pr o j d a t a i n f o p t r−>get m ( bin ) ;

const int in min segment num

=pro j d a t a i n f o p t r−>g e t m i n r i n g d i f f e r e n c e

( bin . segment num ( ) ) ;

const int in max segment num =

pr o j d a t a i n f o p t r−>

g e t max r i n g d i f f e r e n c e

( bin . segment num ( ) ) ;

// now loop over uncompressed de t ec to r−pa i r s

{

for ( uncompressed bin . segment num ( ) = in min segment num ;

uncompressed bin . segment num ( ) <= in max segment num ;

++uncompressed bin . segment num ( ) )

for ( uncompressed bin . ax ia l pos num ( )

= uncompre s s ed pro j da ta in f o p t r−>

get min ax ia l pos num ( uncompressed bin . segment num ( ) ) ;

uncompressed bin . ax ia l pos num ( ) <=

uncompre s s ed pro j da ta in f o p t r−>

get max axia l pos num ( uncompressed bin . segment num ( ) ) ;

++uncompressed bin . ax ia l pos num ( ) )

{

const f loat in m = uncompre s s ed pro j da ta in f o p t r−>

get m ( uncompressed bin ) ;

i f ( f abs ( out m − in m ) > 1E−4)

continue ;



// views e t c

i f ( p ro j da ta . get min view num () !=0)

e r r o r ( ”Can only handle min view num==0\n” ) ;

for ( bin . view num ( ) = pro j da ta . get min view num ( ) ;

bin . view num ( ) <= pro j da ta . get max view num ( ) ;

++ bin . view num ( ) )

{

for ( bin . tangent ia l pos num ( ) = −h a l f f a n s i z e ;

bin . tangent ia l pos num ( ) <= h a l f f a n s i z e ;

++bin . tangent ia l pos num ( ) )

{

uncompressed bin . tangent ia l pos num ( ) =

bin . tangent ia l pos num ( ) ;

for ( uncompressed bin . view num ( ) =

bin . view num ()∗ mash ing fac tor ;

uncompressed bin . view num ( ) <

( bin . view num()+1)∗ mash ing fac tor ;

++uncompressed bin . view num ( ) )

{

int ra = 0 , a = 0 ;

int rb = 0 , b = 0 ;

uncompre s s ed pro j da ta in f o p t r−>

g e t d e t p a i r f o r b i n (a , ra , b , rb , uncompressed bin ) ;

f loat co inc idence t ime window = 0.00000000457 f ;

/∗ (∗ segment p tr ) [ b in . ax ia l pos num ( ) ] ∗/



sinogram [ bin . view num ( ) ] [ bin . tangent ia l pos num ( ) ]

+=

num s l i c e s ∗

co inc idence t ime window ∗

e f f i c i e n c i e s [ ra ] [447−a ]∗

e f f i c i e n c i e s [ rb ][447−b%num dete c to r s pe r r i ng ] ;

}}}}

}

pro j da ta . s e t s inogram ( sinogram ) ; }


	Publications
	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context and Motivation
	1.2 Purpose of the Thesis
	1.3 Key Contributions of the Thesis
	1.4 Thesis Overview
	1.5 Ethical Review

	2 Background
	2.1 PET
	2.1.1 Introduction to PET
	2.1.2 PET Radiotracers
	2.1.3 From Positron Emission to Photon Detection
	2.1.4 Photon Detection
	2.1.5 PET Data Acquisition
	2.1.6 Acquisition Model
	2.1.7 Counting Statistics
	2.1.8 Image Reconstruction: Formulating the Problem
	2.1.9 Image Reconstruction
	2.1.10 Data Corrections
	2.1.11 TOF-PET

	2.2 Magnetic Resonance Imaging (MRI)
	2.2.1 Introduction to MRI
	2.2.2 MR Sequences

	2.3 Multi-Modality PET
	2.4 GE SIGNA PET/MR
	2.5 Image Reconstruction Software
	2.5.1 GE-Toolbox
	2.5.2 stir
	2.5.3 sirf

	2.6 Anatomically-Informed Image Reconstruction Algorithms
	2.6.1 kem Algorithm

	2.7 Summary

	3 Methods 
	3.1 Description of Acquired Data
	3.2 Pre-Processing of Acquired Data
	3.2.1 Conversion of lm Data into stir Histogram
	3.2.2 Implementation of Normalisation Correction
	3.2.3 Calculation of Attenuation Correction from mrac Image
	3.2.4 Randoms Correction: Implementation of Randoms from Singles
	3.2.5 Scatter Correction

	3.3 Transformation of Histogram Data from GE Scanner to stir Space
	3.3.1 tof Histogram Data Organisation
	3.3.2 Span 2 Implementation
	3.3.3 Transformation of lm Events from GE to STIR Space
	3.3.4 Troubleshooting

	3.4 Acquisition Model
	3.4.1 GE SIGNA pet/mr Acquisition Model in stir
	3.4.2 Scanner Geometrical Modelling in stir

	3.5 tof-kem
	3.5.1 Theory
	3.5.2 Kernel Matrix Construction

	3.6 Data Acquisition
	3.6.1 Phantom Dataset
	3.6.2 Clinical Dataset

	3.7 Image Reconstruction
	3.7.1 Image Reconstruction with stir
	3.7.2 Image Reconstruction with GE-Toolbox

	3.8 Image Analysis
	3.9 Summary

	4 Results
	4.1 Histogram Comparisons
	4.1.1 Non-tof
	4.1.2 tof

	4.2 Comparison of Reconstructions
	4.2.1 Non-tof
	4.2.2 TOF

	4.3 fwhm Comparisons
	4.3.1 Non-TOF
	4.3.2 TOF

	4.4 suvr Comparisons
	4.4.1 Non-TOF
	4.4.2 TOF

	4.5 Coefficient of Variation (CoV)
	4.5.1 Non-TOF vs. TOF:STIR
	4.5.2 STIR vs. GE

	4.6 Structural Similarity Index Measure (SSIM)
	4.7 TOF-KEM: MR vs PET
	4.7.1 Comparison of Reconstructions
	4.7.2 SUVR
	4.7.3 CoV

	4.8 TOF-KEM PET/MR
	4.8.1 Bottle Phantom
	4.8.2 Patient Dataset

	4.9 Summary

	5 Discussion
	5.1 Histogram Comparisons
	5.1.1 Non-TOF
	5.1.2 tof

	5.2 Comparison of Reconstructions: STIR and GE-toolbox
	5.2.1 Non-TOF
	5.2.2 tof

	5.3 fwhm Comparisons
	5.3.1 Non-tof
	5.3.2 tof

	5.4 suvr Comparisons
	5.4.1 Non-TOF
	5.4.2 TOF

	5.5 CoV
	5.5.1 Non-TOF vs. TOF
	5.5.2 STIR vs. GE

	5.6 SSIM
	5.7 TOF-KEM: MR vs. PET
	5.8 Summary

	6 General Conclusion and Future Work
	6.1 Summary
	6.2 Future Work
	6.3 Conclusion

	Bibliography
	Appendix
	A Software Implementation of Acquired Data for GE SIGNA PET/MR in STIR
	A.1 Reading the List of Events from LM File in STIR
	A.2 Calculation of Emission Data
	A.2.1 Non-TOF
	A.2.2 TOF

	A.3 Reading the TOF Histogram Directly from the Scanner
	A.4 Implementation of Normalisation Correction in STIR
	A.5 Implementation of Randoms Correction in STIR


